
Equipment Group
P. 0. Box 2909
Austin, Texas 78767

930182-2
December 1973

OPERATION AND MAINTENANCE

INSTRUCTIONS

PERIPHERAL PROCESSOR

VOLUME 1 OF 2

---~,.._._,,,~,.,,,._,_,,..,,,_..,.,,,,,.~"'"''"''' ____ ,,,,,,,.,,..,,.,.,,,,..,,_,.,.,,,,,,,.,,..,,,'""~"""'"'~--
_______ _, __ ,,,,,,,,.,,"''·~·~··;..~,·"'""'~ ,,~.~ .. ,,,,
--~ ... -_,..,, _ _,_,""'1>-'''"''"''.,_,"'~A•,,""-~·'••'•oo_.,.,,..,,,,,,,.,,,,._-''°'-'"""""-'l'"»'"'-''--"'"'"""""''"'•"'-----
-,.._'-' __ "':;'"-~::;,,::."::-:•::-.:.::--_':'.'.~:;,,,::""""""'"""""'""'"'""""'""AY""'-4'"~"'"'""~'-""""''""""~~,,,,-..,,.,__,.,_ .. .,__,_,,.,,,,_~--_________ _... __

TEXAS INSTRUMENTS
NCORPORATED

I&) Texas Instruments Incorporated 1973

All Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos­
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES Note: The portion of the text affected by the changes h
indicated by a vertical line in the outer margins of the

page.

DATES OF ISSUE FOR ORIGINAL AND CHANGED PAGES ARE:

ORIGINAL • • • • • •• 0. • •••• , • DECEMBER 1 973

Page
No.

Title . .
A Page.
Update .
iii - xvi

.

.

. . . .

.
1-1 - 1-30
2-1 - 2-2 .•...
3-1 - 3-3
4-1 - 4-359 ..
I- 1 - I- 3 ...•..
Update .

Change Page Change Page
No. No. No. No.

0
0
0
0
0
0
0
0
0
0

•flo\e o,ter1\lr. indicates pages cho"ged, added. or deleted by the Cl.Hre,,t ri-ionge.

Change
No.

Paragraph

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20

2-1

3-1

4-1
4-2
4-3
4-4
4-5

TABLE OF CONTENTS

Title

INTRODUCTION

SECTION I. GENERAL DESCRIPTION

General •••..• , .
Purpose of Equipment.
Equipment Overview •.
System Interface .••.••
Functional Description

.

Virtual Processors.
Arithmetic Unit ...
Indexer
Communications Register File
Read Only Memory .•••••••
Single Word Buffer Controller
Control
Maintenance Logic •

Instruction Repertoire .•
Instruction Format .••
Data Formats •.•.••
Instruction Processing
General Characteristics
Physical Description .••

Integrated Circuit Types .

SECTION II. INSTALLATION

. .

General •••••••
SECTION III. OPERATING INSTRUCTIONS

General ...•••.
SECTION IV. PRINCIPLES OF OPERATION

General .•..••
General Description ..

Virtual Processors. • •••••
Program Counter Register .•
Next Instruction Register ..•

Page

1-1
1-1
1-1
1-5
1-5
1-7
1-10
1-10
1-11
1-11
1-11
1-11
1-12
1-12
1-13
1-22
1-23
1-24
1-25
1-29

2-1

3-1

4-1
4-1
4-5
4-5
4-6

iii Advanced Scientific Computer

Paragraph

4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40

4-41

4-42

TABLE OF CONTENTS (Continued)

Title

Instruction Register ..•..•.•..
Virtual Processor Register File.
Central Memory Base Register ..•
Single Word Buffer Address Register.
Single Word Buffer Data Register .

Arithmetic Unit•.
Aligner
Complement or Constant Generator ..
Unload Box .•.•...••.
Double Rail Generator .•.
Adder •...
Shifter •..•
Bit Picker.
Test Box 1, 2, and 3 Logic
Comparator•.•...•
Data Manipulator ...••.•
Skip Taken and Branch Taken Logic ..
AU Control.

Indexer
PC Indexer
TN Field Indexer
Register Indexer

Communicatio'ns Register File .
CR File Control •...•....
Input Synchronizers
Conununications Registers.

Read Only Memory • . . .
Single Word Buffer Controller
Synchronous Logic .
Asynchronous Logic ..•••
Two-Way Bus ...••.•.••.

Peripheral Processor Control
Maintenance Logic ..•

Instruction Repertoire ...
Store Instructions (ST, STA, STH, STB, STL, STR,

and STF)
Load Instructions (LD, LDA, LDH, LDB, LDL,

LDR, LDF, LDI, LDHI, and LDBI) ...•••.
Arithmetic Instructions (AD, ADH, ADB, ADL,

ADR, ADI, ADHI, ADBI, SU, SUH, SUB, SUL,
SUR, SUI, SUHI, SUBI) •••••••.•....••.

Page

4-6
4-7
4-7
4-7
4-8
4-9
4-10
4-10
4-10
4-10
4-12
4-12
4-12
4-12
4-14
4-14
4-14
4-14
4-15
4-15
4-16
4-17
4-17
4-18
4-19
4-19
4-19
4-20
4-21
4-21
4-23
4-23
4-25
4-28

4-31

4-32

4-32

iv Advanced Scientific Computer

Paragraph

4-43

4-44

4-45
4-46
4-47
4-48

4-49

4-50
4-51

4-52

4-53

4-54

4-55

4-56

4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66

TABLE OF CONTENTS (Continued)

Title

Logical Instructions (OR, ORH, ORB, ORL, ORR,
ORHI, ORB!, AN, ANH, ANB, ANL, ANR,
ANH!, ANBI, EX, EXH, EXB, EXL, EXR,
EXHI, EXBI, EQ, EQH, EQB, EQL, EQR,
EQHI, EQBI) .••.......•.........

Compare and Skip Instructions (CE, CEH, CEB,
GEL, GER, CE!, CEHI, CEBI, CN, CNH, CNB,
CNL, CNR, CNI, CNHI, CNBI. ••.••

Shift Instructions (SHL, SHA, SHC) ••••.•
Stack Instructions (PUSH, PULL, MOD) ••.••••••
Set/Reset CR Bit Instructions (SL, SR, RL, RR).
Test CR Bits and Skip Instructions (TOL, TOR,

TZL, TZR, TAOL, TAOR, TAZL, TAZR) ••
Test CR Bits, Set/Reset, and Skip Instructions

(TSZL, TSOL, TRZL, TROL, TSZR, TSOR,

Page

4-33

4-33
4-33
4-33
4-34

4-35

TRZR, TROR) ..•.......•••.•.•••• • · 4-35

Set/Reset CR VP Flag Instructions (VPS, VPR).
Test CR VP Flag and Skip Instructions (VPTO,

4-35

VPTZ). 4-35
Arithmetic Conditional Branch Instructions (T Z,

TZH, TZB, TN, TNH, TNB, TP, TPH, TPB,
TM, TMH, TMB)••...•.

Increment/Decrement and Test Conditional Branch
Instructions (IBZ, IBN, DBZ, DBN) ••.•.

Unconditional Branch Instructions (BPC, BR, BC,

4-35

4-35

B CA). 4- 36
Unconditional Branch and Load PC Instructions

(BPCS, BCS, BRS, BCAS) •..•.•••.••
Unconditional Branch to ROM and Store PC

Instruction (BRSM) ..•..•.•...•...•
Analyze Effective Address Instruction (ANAZ).
Load Effective Address Instruction (LDEA).
Load CM Base Register Instruction (LDMB)
Execute CM Instruction (EXEC) •.
Test Poll Bits Instruction (POLL) .

Instruction Processing .••..•.•••
Sequential Dependencies•.

CM Instruction Requires CM Access
Current Instruction Modifies Next Instruction .
Current Instruction Modifies Next Instruction

4-36

4-36
4-36
4-36
4-37
4-37
4-37
4-37
4-39
4-40
4-40

Index. • . . • . • • . • • • . • • • • • . • • • • • • • • 4-40

v Advanced Scientific Computer

Paragraph

4-67

4-68
4-69
4-70
4-71
4-72
4-73
4-74
4-75
4-76
4-79
4-80
4-85
4-88
4-91
4-92
4-93
4-94
4-95
4-96
4-97
4-98
4-104
4-108
4-109
4-113
4-114
4-115
4-119
4-123
4-124
4-125
4-129
4-130
4-131
4-135
4-136
4-140
4-141
4-142

TABLE OF CONTENTS (Continued)

Title

Unconditional Branch and Load PC Instruction
Followed by PC Relative Branch

Instruction Transfer Tables ...•.....•.•.
No Operation Instruction .•.•.••.......
Store Word to Central Memory Instruction •.
Compare Central Memory to VPR Instruction .•
Indirect Cycle ••.
Interrupt Cycle ...

Detailed Description .•
Virtual Processors.

Program Counter Register.
Next Instruction Register .•
Instruction Register •.•.••
Virtual Processor Register File.
Central Memory Base Register ..
Single Word Buffer Address Register.
Single Word Buffer Data Register .

Arithmetic Unit ••...•..•••••.•.
Aligner
Complement or Constant Generator.
Unload Box .•..•.••
Double Rail Generator.
Adder ...•
Shifter . • • . •
Bit Picker ..•..•.•.
Test Box 1, 2, and 3 Logic
Comparator ••...•.•.•..
Data Manipulator .•.••••
Skip Taken and Branch Taken Logic.
AU Control .

Indexer. •
PC Indexer
TN Field Indexer
Register Indexer

Communications Register File
CR File Control ..•
Input Synchronizers
CR Registers •••.•.

Read Only Memory •..
ROM Addressing Logic .
ROM Merging Logic .•.

. . .

Page

4-41
4-42
4-43
4-45
4-45
4-46
4-48
4-49
4-49
4-49
4-51
4-52
4-63
4-67
4-69
4-70
4-72
4-72
4-75
4-75
4-75
4-78
4-93
4-97
4-100
4-104
4-104
4-106
4-116
4-129
4-130
4-131
4-137
4-138
4-138
4-151
4-153
4-161
4-161
4-161

vi Advanced Scientific Computer

~------

Paragraph

4-143
4-144
4-147
4-151
4-154
4-155
4-156
4-195
4-196
4-204
4-207
4-208
4-211

TABLE OF CONTENTS (Continued)

Title

Single Word Buffer Controller
Synchronous Logic .
Asynchronous Logic . • . . .•
Two Way .Bus .••..•.••••.

Peripheral Processor Control Introduction.
Peripheral Processor Control •••
Detailed Transfer Table Analysis

Maintenance Logic•.•••.
Maintenance Registers ..••.•
Maintenance Logic Control •••

. . . Maintenance Logic Data Paths
Maintenance Logic /PP Timing .•.
Maintenance Command Transfer Tables.

INDEX

Page

4-165
4-165
4-171
4-179
4-182
4-182
4-218
4-289
4-289
4-295
4-321
4-323
4-331

vii/ viii Advanced Scientific Computer

~------

Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27

LIST OF ILLUSTRATIONS

Title

Peripheral Processor
ASC System Simplified Block Diagram.
CR File Time Slot Assignment ••••...
Simplified System Interface Diagram. • • . • ••••
Peripheral Processor Simplified Block Diagram .
Virtual Processor Simplified Block Diagram .••
Peripheral Processor Instruction Format .•
Peripheral Processor Data Formats .••.•.
Peripheral Processor Assemblies .•..••••
Peripheral Processor Logic Card Locations.
Peripheral Processor ECL Logic Set .••.•.

Peripheral Processor Detailed Block Diagram.
PCCARDA(0-7) Registers ..••••.....
VPRCARD(0-7) VPR File ..•.•..•..•.
Arithmetic Unit Detailed Block Diagram .•.
Peripheral Processor Shift Basics .•••
Indexer Block Diagram .•..•••••••.•
Communications Register File Block Diagram .•
Read Only Memory Block Diagram .•••..•..
Single Word Buffer Controller Block Diagram •.
Peripheral Processor Control Block Diagram ..
Peripheral Processor Maintenance Logic

Block Diagram .
Peripheral Processor Instruction Set ..••••••
Peripheral Processor Instruction Processing ••
Program Counter Registers. • . •.•.
Next Instruction Registers .•.....•
Instruction Register Format .•.•••.
Instruction Register Loading Format.
Instruction Register (IRCARD (O))
Instruction Register (IRCARD(l))
Instruction Register (IRCARD(2))
Instruction Register (IRCARD(3))
Virtual Processor Register Files •••••
Central Memory Base Registers .
Single Word Buffer Address Registers ..
Single Word Buffer Data Registers
Aligner Logic on PPAUCDM(0-3)
Aligner Byte Rotation .•.•.....

Page

1-2
1-3
1-4
1-6
1-8
1-9
1-22
1-23
1-26
1-27
1-30

4-3
4-6
4-8
4-11
4-13
4-16
4-18
4-20
4-22
4-24

4-26
4-29
4-38
4-50
4-52
4-53
4-56
4-57
4-59
4-61
4-62
4-65
4-68
4-69
4-71
4-73
4-74

ix Advanced Scientific Computer

LIST OF ILLUSTRATIONS (Continued)

Figure Title

4-28 ·Complement or Constant Generator.
4-29 Unload Box ...••.......•.•..
4-30 Five-Level Look-Ahead Adder ...•
4-31 Five-Level Look-Ahead Adder Detailed Block

4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46

Diagram
Adder Level 1 Equation Implementation .
Adder Level 2 Equation Implementation ••
Adder Level 3 Equation Implementation •
Adder Level 4 Equation Implementation .
Adder Level 5 Equation Implementation ..
Shifter Logic on PPAUCDM (N) .•..•
Bit Picker Data Flow .••.••...•..
Bit Picker Equation Implementation .••
Bit Picker Support Logic on PPCTL2 •.••••
Data Manipulator ••....•.••
Data Manipulator Flow Chart •.
Arithmetic Unit Test Functions.
AU Control on CONTAU .•....
Aligner Control Logic on CONTAU
Aligner Control Inputs (PALWSWB(0-3) and

PALRSWB(0-3) ••..••...••..••••.
Shift Control Logic on CONTAU .••••••
Shift Operand/Shift Decode Logic Output ..
Shift Code Update Logic .•
Program Counter Indexer
TN Field Indexer .
OP A Selector .
OP B Selector .•
OP C Selector .•
Register Indexer
CRMIRLDR Control Logic
CRMIR Input Format From CRMIRLDR •.
CRCONT 1 Control Logic •...•.••••.

4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67

CRMIR Output Format from CRCONTO - CRCONT3 •
CRCELLY Control Logic .••...••
Input Synchronizers ••.....••..
Input Synchronizer Timing Diagram.
CR File Card Layout .•
CRCELLY Registers •••......••
CRCELLl (0) Registers •.•..••.•.
CR File Output Merging Logic (CRAB2 Bus) •
Read Only Memory (ROM) .••..•......•

. . . .

Page

4-76
4-77
4-79

4-80
4-81
4-84
4-87
4-90
4-91
4-94
4-98
4-99
4-101
4-105
4-107
4-109
4-117
4-118

4-120
4-122
4-123
4-125
4-130
4-132
4-133
4-135
4-136
4-137
4-139
4-141
4-143
4-144
4-147
4-152
4-153
4-154
4-155
4-158
4-160
4-163

x
Advanced Scientific Computer

Figure

4-68
4-69
4-70

4-71
4-72
4-73
4-74
4-75
4-76
4-77
4-78
4-79
4-80

4-81

4-82
4-83
4-84
4-85

4-86

4-87
4-88
4-89
4-90
4-91
4-92
4-93
4-94
4-95
4-96
4-97

4-98

LIST OF ILLUSTRATIONS (Continued)

Title

Single Word Buffer Controller Synchronous Logic
Single Word Buffer Controller Registers ..•
Single Word Buffer Controller Input/ Output

Counters
Single Word Buffer Controller Asynchronous Logic
Active Flag Reset Synchronizer
Write Request Synchronizer.
Read Request Synchronizer ...
Parity Error Synchronizer .•..
Single Word Buffer Controller TWB and MAMB Buses
Peripheral Processor Control Block Diagram ..
MIR Input Format .••.•............••.
MIR Output Format. .•....•.......•.•.
MIR Op-Code, State Class, and Step Decoding Logic

on PPG T L2 • . • . • . . • . .
SWBD /NIR Op-Code and T Field Selection and

Decoding Logic on PPCTL2.
Store Op-Code Groups .•
Load Op-Code Groups
Arithmetic and Compare Op-Code Groups.
Shift, Stack, VP Bit Control, and CR Bit Control

Op-Code Groups•..•...
Conditional and Unconditional Branch Op-Code

Groups•...•....••..•.....
Logical and Miscellaneous Op-Code Groups
Load CR (PILDCR) Op-Code Groups
Load VPR (PILDVPR) Op-Code Groups
Remapped and Augmented Remapped Op-Code Groups.
PIRMAPA• •PIAR(l) Remapped Op-Code Groups.
•PIRD(Z) Remapped Op-Code Groups.
1PIRD (3) Remapped Op-Code Groups .
1PIRD(4) Remapped Op-Code Groups.
1PIRD(5) Remapped Op-Code Groups.
Illegal Op-Codes .•..........•.
Unconditional Branch to Central Memory ($XMDR(O))

and Indirect Through CR or VPR (PIPPTNX)
Op-Code Groups •..........••••...•...•.

Base Relative Unconditional Branch to Central Memory
(1PINBRUCB) and Miscellaneous Central Memory
(•PINBMISC) Op-Code Groups•..•.•.•.

Page

4-167
4-169

4-170
4-173
4-176
4-177
4-179
4-180
4-181
4-183
4-185
4-187

4-189

4-191
4-193
4-194
4-195

4-196

4-197
4-198
4-199
4-200
4-201
4-202
4-203
4-204
4-205
4-206
4-207

4-208

4-209

xi Advanced Scientific Computer

Figure

4-99

4-100

4-101

4-102

4-103

4-103A
4-104
4-105
4-106
4-107
4-108
4-109
4-110
4-111

4-112
4-113
4-114
4-115
4-116
4-117
4-118
4-119
4-120
4-121
4-122
4-123
4-124

4-125

LIST OF ILLUSTRATIONS (Continued)

Title

·Register Indexer Supplied Destination (•PISDR)
Op-Code Groups (Source is Central Memory or
Immediate)

TN Field Indexer Supplied Source (•PITATNR)
Op-Code Groups

Register Indexer Dependent (PININDCR) Op-Code
Groups

Base Relative Branch to Central Memory (1PINBCM)
and Register Indexer Specifying CR (PINCRR)
Op-Code Groups

TN Field Specifying Central Memory (IPINCMTN)
Op-Code Groups

Ignore Indirect (!GI) Op-Codes•
SWBD /NIR Unique Op-Code Groups •.
PCCTL Detailed Block Diagram .
PPCTLl Detailed Block Diagram •••
PPCTL2 Detailed Block Diagram ...
VPRCONT Detailed Block Diagram .

.

Peripheral Processor Maintenance Registers
Maintenance Register Register Field Format
Peripheral Processor Maintenance Logic Control

Detailed Block Diagram .•........•••.
MLCTL Detailed Block Diagram ..•...
Maintenance Controller State Diagram.
ML2 Detailed Block Diagram .•••...
MLl (0, 1) Detailed Logic Diagram .••.
Maintenance Related Logic on PCCTL •
Maintenance Related Logic on PCCARDA(0-7) .•.
Maintenance Related Logic on VPRCONT
Maintenance Logic on MIRMRGB .••.......
Maintenance Related Logic on CRCONT 1 ..•.
Maintenance Related Logic on SWBSYNC /SWBASY •.
Maintenance Related Logic on AU2XFER •....•.
Maintenance Related Logic on IRCARD (0-3) ••..•
Peripheral Processor Maintenance Logic Data Path

Detailed Block Diagram•..........
Maintenance Logic/Peripheral Processor Timing •..

Page

4-210

4-211

4-212

4-213

4-214
4-215
4-216
4-219
4-221
4-223
4-225
4-290
4-294

4-297
4-299
4-301
4-307
4-309
4-311
4-312
4-313
4-315
4-316
4-317
4-319
4-320

4-322
4-325

xii
Advanced Scientific Computer

Table

1-1
1-2
1-3

4-1
4-lA
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

4-23

LIST OF TABLES

Title

Peripheral Processor Instructions .•......
Peripheral Processor General Characteristics
Peripheral Processor Logic Card Functions.

Peripheral Processor Operand Types
Transfer Table Column Description .•
Instruction States
State Class and Step Defined/ Actual Relationships .
Instruction Transfer Table Analysis Index .•..•
Maintenance Register Control Field Breakdown .••
Maintenance Command Codes. . . • • ••.
Maintenance Register F Field Breakdown .••.•
Register Field Register Designation .•.....•
MLCTL Maintenance Command Control Signals.
Maintenance Logic Abbreviations .••..••..•
Maintenance Command Transfer Table Terms ..
Switch Register to Display Register Maintenance

Command Transfer Table ..•••..•....
PP Register to Display Register Maintenance Command

Transfer Table .•...•.....•...•......
Central Memory to Display Register Maintenance

Command Transfer Table .•....•.........••..
ROM to Display Register Maintenance Command

Transfer Table ..•.•....•...........
Switch Register to PP Register Maintenance Command

Transfer Table
Display Register to PP Register Maintenance Command

Transfer Table
Display Register to CM Maintenance Command

Transfer Table .•.........•...•....
Lock Program Counter Maintenance Command

Transfer Table •••.........•..•.•...
Unlock Program Counter Maintenance Command

Transfer Table
Reset PP Registers Maintenance Command Transfer

Table
Set PP Registers Maintenance Command Transfer

Table
PP Burst Maintenance Command Transfer Table ••.

Page

1-14
1-24
1-29

4-30
4-42
4-44
4-228
4-228
4-290
4-291
4-293
4-294
4-303
4-327
4-332

4-335

4-336

4-338

4-341

4-343

4-345

4-346

4-347

4-349

4-350

4-351
4-353

xiii Advanced Scientific Computer

Table

4-24
4-25
4-26

LIST OF TABLES (Continued)

Title

·PP Cycle Maintenance Command Transfer Table.
VP Burst Maintenance Command Transfer Table.
VP Continuous Maintenance Command Transfer Table

Page

4-355
4-356
4-358

xiv Advanced Scientific Computer

INTRODUCTION

PURPOSE OF MANUAL

This manual provides the information and instructions necessary for mainte­
nance personnel to operate and maintain the Peripheral Process or, Texas
Instruments part number 921444-1. This manual is one of a series of man­
uals prepared for the Advanced Scientific Computer (ASC) system.

CONTENT

This manual consists of seven sections and appendices, divided into two
volumes. A brief description of each section is provided in the following
paragraphs.

SECTION I (VOLUME I) GENERAL DESCRIPTION

This section provides a brief functional description of the Peripheral Pro­
cessor, the manner in which the Peripheral Processor interfaces with the
ASC system, and the part the Peripheral Processor plays in the ASC system.
This section also contains a list of general operating characteristics, a brief
introduction to the instruction repertoire, and a paragraph on the unique
method of Peripheral Processor instruction processing.

SECTION II (VOLUME I) INSTALLATION

This section references the ASC System Installation Manual for Peripheral
Processor installation instructions.

SECTION III (VOLUME I) OPERATING INSTRUCTIONS

This section references the ASC Maintenance Console OMI for the controls
and indicators related to Peripheral Processor operations and the ECL
Regulators OMI for the controls and indicators associated with the Periph­
eral Processor power supply regulators.

SECTION IV (VOLUME I) PRINCIPLES OF OPERATION

This section provides both a general and detailed description of the Periph­
eral Processor theory of operation. Both descriptions are based on the
eight basic functional areas of the Peripheral Processor. The general de­
scription covers the eight functional areas at the block diagram level and the
detailed description is based on logic diagrams and detailed block diagrams.

xv
Advanced Scientific Computer

SECTION V (VOLUME II) MAINTENANCE

This section will be provided at a later date.

SECTION VI (VOLUME II) PAR TS LISTING

This section will be provided at a later date.

SECTION VII (VOLUME II) DIAGRAMS

This section will be provided at a later date.

APPENDICES (VOLUME II)

This manual contains the following three appendices:

APPENDIX A - Peripheral Processor Transfer Tables

APPENDIX B - Communications Register File Map

APPENDIX C - External Maintenance System

xvi Advanced Scientific Computer

1-1 GENERAL

SECTION I

GENERAL DESCRIPTION

This manual provides operation and maintenance instructions for the Periph­
eral Processor (figure 1-1) manufactured by Texas Instruments Incorporated
as part of the Advanced Scientific Computer (ASC) system.

1-2 PURPOSE OF EQUIPMENT

The Peripheral Processor (PP) is a versatile multiprocessor designed to
control a variety of peripheral devices and perform management functions
for the ASC system. The primary device interfaces of a typical ASC system
are shown in figure 1-2. Within this configuration, the Peripheral Proces -
sor performs the following:

• Controls all ASC operations required to process User Programs

• Communicates with all peripheral devices

• Schedules tasks for the Central Processor

• Fulfills job requests that do not require the high arithmetic
capabilities of the Central Processor

• Provides central control for ASC operational checkout and
maintenance

The Peripheral Processor is readily adaptable to future changes in the
peripheral scheme due to the large file of Communications Registers that
provide the primary interface to the peripherals and the rich instruction
repertoire designed to control these Communications Registers.

1-3 EQUIPMENT OVER VIEW

The Peripheral Processor structure includes eight identical processors,
designated Virtual Processors (VP's), each capable of executing a separate
program from Central Memory or the Peripheral Processor Read Only
Memory. The Virtual Processors execute programs on a time-sharing
basis under the influence of a time slot table that allocates real time to 16
table entries, each approximately 85 nanoseconds long. The time slot table
is located in Communications Registers (CR' s) eight and nine, as shown in
figure 1-3. As real time progresses, the time slots are examined in the
sequence shown in figure 1-3. Each time slot entry consists of an active
bit and a three -bit Virtual Processor identification code. The active bit is

1-1 Advanced Scientific Computer

119189 (686-1072-13-4)

Figur e 1-1. Peripheral Processor

1-2 Advanced Scientific Computer

-I
lN

OPERATORS
CONSOLE

CARD
PUNCHES

LINE PRINTERS

(A) 124726

PERIPHERAL
PROCESSOR
(PP)

CENTRAL
PROCESSOR
(CP)

CARD
READERS

CENTRAL
MEMORY
(CM)

Figure 1-2. ASC System Simplified Block Diagram

DATA
COMMUNI­
CATIONS
CHANNEL

TO DATA
CON­
CENTRATOR

TO FIELD
TAPE

--- INTERFACE
TERMINAL

1 3

12

1 1

10

(A) 124725

1 4

9

CR8

CR9

1 5

8

0

NUMBER OJ:'/
VP ASSIGNED TO
TIME SLOT.

7

TIME SLOT ASSIGNMENT EXAMPLE

0 31

0 8 1 9 2 10 3 1 1

4 1 2 5 1 3 6 14 7 1 5

'V 31

3

4

L CR FILE TIME SLOT COUNTING SEQUENCE

~

0 3

'
I

3-BIT VP CODE

ACTIVE BIT

TIME SLOT ENTRY FOR
ONE CLOCK

Figure 1-3. CR File Time Slot Assignments

1-4 Advanced Scientific Computer

set to indicate when a Virtual Processor is to use the time slot for program
execution and the three-bit identification code identifies one of eight Virtual
Processors to perform the execution. The example in figure 1-3 is one case
of time slot assignment where each of the Virtual Processors is provided
with two execution periods for one pass through the time slot table. Any
other combination of Virtual Processor time slot assignments can be made;
however, if one Virtual Processor is as signed two consecutive time slots,
the second assignment will be voided due to hardware limitations.

One of the eight Virtual Processors is designated the master Virtual Proces­
sor and is assigned time slot zero. The master Virtual Processor then ex­
ecutes the Master Controller function lthis includes making the initial time
slot assignments) of the ASC Operating System I software) and as signs the
remaining controller functions to other Virtual Processors. Any Virtual
Processor not as signed a block of the Operating System can be used to con­
trol the individual jobs required to execute ASC system jobs. This type of
job includes reading cards from one of the system card readers, printing
out a memory buffer on one of the line printers, or initializing a Central
Processor job. Virtual Processors not assigned work remain idle until
activated by the master Virtual Processor.

1-4 SYSTEM INTERFACE

The eight Virtual Processors that make up the Peripheral Processor inter­
face with the Central Processor and all other peripherals in the ASC system
through a group of 64 32-bit registers designated the Communications Reg­
ister (CR) file. Each hardware device in the system is assigned a portion of
the CR file as detailed in Appendix B of this manual. The assigned bits in
the CR file may be set or read by the associated peripheral devices (includ­
ing the Central Processor) and all CR file bits may be set or read by any of
the Virtual Processors.

The CR file provides the data paths for the paper peripheral devices and the
control interface between the Virtual Processor.s and all units in the system
lrefer to figure 1-4). The CR file also monitors and processes system hard­
ware and software interrupts, holds control information necessary to exer­
cise the Peripheral Processor maintenance logic, and serves as the mainte­
nance interface with the system whereby Virtual Processors execute diagnos­
tic programs and monitor data, status, and control bits for each device in
the sys tern.

1-5 FUNCTIONAL DESCRIPTION

The Peripheral Processor I PP) consists of eight identical Virtual Processors
IVP' s) and the following major components that are time-shared by the VP' s:

1-5 Advanced Scientific Computer

~------

FIXED
CONN EC-

TION

f 7 l

\~~~.:'-I - ' D/C

TERS ,-

,
CARD - D/C -READERS - CR

FILE

r
CARD - D/C -PUNCHES -

f); D/C --

CENTRAL - c 64 x 32 PROCES- - BITS
SOR -

trERMINALS
D/C --- -

D/C ~ DATA AND CONTROL LINES

(A) 124724

RANDOM
ACCESS

J

-' --

- --

- -- -

1.- --- -

i- -

i- -

"-- ---

- -- -

--
VPO

--
VP1

--
VP2

--
VP3

1.--
VP4

-
VP5

~

VP6

--
VP7

-

-

-

-

-

-

... TO
-R
c

OM OR
ENTRAL
EMORY M

Figure 1 -4. Simplified System Interface Diagram

1-6 Advanced Scientific Computer

• Arithmetic Unit

• Indexer

• Communications Register File

• Read Only Memory

• Single Word Buffer Controller

• Control

• Maintenance Logic

A simplified block diagram of the PP detailing the interfaces between the
major components is shown in figure 1-5. A brief description of each com­
ponent is given in the following paragraphs.

1-6 VIRTUAL PROCESSORS

The PP contains eight identical Virtual Processors (VP' s), designated VPO
through VP?, used to execute the software necessary to control all ASC sys­
tem operations.

The VP' s execute their respective code according to the time-sharing meth­
od provided by the time slot table (described in the equipment overview para­
graph of this section). Since only one of the eight VP' s can be active at any
given time, the other seven major components of the PP can be time-shared
between the eight VP' s. The net effect is eight separate processors, but
with a considerable savings in logic.

Each VP has a large instruction repertoire 1219 basic instructions and one
no-operation instruction) and employs three -level instruction look-ahead to
facilitate high-speed instruction processing. The instruction word retrieved
from either Central Memory or Read Only Memory is 32 bits, but is expanded
to 64 bits within each VP prior to instruction execution. Each of the VP' s
consists of the following register types:

• Program Counter Register

• Next Instruction Register

• Instruction Register

• Virtual Processor Register File

• Central Memory Base Register

• Single Word Buffer Address Register

• Single Word Buffer Data Register

Figure 1-6 ties all of the VP register types together, along with some of the
other major PP components. The Program Counter (PC) is a 32-bit register

1-7 Advanced Scientific Computer

~] ______ _

--

~ --
--

8

~
VIRTUAL

PROCESSORS --

~ ~

.....

-

(A) 1 24723

ARITHMETIC
UNIT

INDEXER

SINGLE
WORD

BUFFER
CONTROLLER

CR
FILE

MAINTENANCE
LOGIC

READ
ONLY

MEMORY

-

..

-

-
~ ..

-

CONTROL

~

--

-

CENTRAL
MEMORY

ASC
SYSTEM
INTERFACE

Figure 1-5. Peripheral Processor Simplified Block Diagram

1-8 Advanced Scientific Computer

,-..,
READ I ONLY

~EMORY'

NEXT
INSTRUCTION

REG

CENTRAL
MEMORY

BASE REG

PROGRAM
COUNTER

INSTRUCTION
REGISTER

SINGLE WORD
BUFFER

ADDRESS REG

SINGLE WORD
BUFFER

DATA REG

I --,
ARITHMETIC I

UNIT

L _J

VIRTUAL
PROCESSOR
REG FILE

I
-,

I
I

SINGLE I WORD
BUFFER

CONTROLLER

CENTRAL
MEMORY

I

NOTE: ALL DASHED BLOCKS ARE TIME-SHARED AND ARE NOT PART OF A VP

(A) 124722

Figure 1-6. Virtual Processor Simplified Block Diagram

used to hold the address of the next instruction to be retrieved from Central
Memory or Read Only Memory. The program counter is updated by the In­
dexer during each active time slot period to point to the next sequential in­
struction in the executing program. The Single Word Buffer Address (SWBA)
register is a 32-bit register used to hold the address necessary to access
Central Memory. The SWBA accepts PC data during the normal instruction
acquisition process and PP Control data via the Arithmetic Unit when the
executing instruction requires use of Central Memory for a store, load, or
branch type instruction. The Single Word Buffer Data fSWBD) register is a
32-bit register that provides temporary storage of data being written to or
read from Central Memory. The SWBD accepts data from Central Memory

1-9 Advanced Scientific Computer

~------
via the Single Word Buffer Controller when a read operation is being per -
formed or from the VP register addressed by PP Control via the Arithmetic
Unit when a write operation is being performed. When a write is executed,
the SWED data is input to the Single Word Buffer Controller and eventually,
Central Memory. When a read is executed, the SWED data is distributed to
the Indexer (for Instruction Register address development) and Arithmetic
Unit (for arithmetic and load type operations).

The Next Instruction Register (NIR) is a 32-bit register used to hold instruc­
tions retrieved from Read Only Memory prior to their transfer to the Instruc­
tion Register via the Indexer. The Instruction Register IIR) is a 64-bit reg­
ister used to hold the expanded instruction developed by the Indexer. The
expanded instruction contains the control information necessary for execution,
and is input to PP Control when the associated VP is active. The Virtual
Processor Register (VPR) file consists of four 32-bit registers, designated
VPRO through VPR3, used as general purpose accumulator registers. The
VPR file is different from the other VP registers in that they can be ad­
dressed on the byte, halfword, or word level. The Central Memory (CM)
Base register is a 24-bit register located in the Communications Register
file and used to hold a base value for base relative address development.

1 - 7 ARITHMETIC UNIT

The Arithmetic Unit (AU) is time shared by the eight Virtual Processors to
perform addition, subtraction, logical functions (AND, OR, EXCLUSIVE
OR, and EQUIVALENCE), data shifting, data testing, and bit setting and re­
setting. The AU is capable of handling two 32-bit words at one time lfor
addition, subtraction, and logical functions) or a single 32 -bit word and oper­
ating on it down to the bit level. The data handled by the AU is supplied by
the active VP and the operation performed is under direction of PP Control.
The AU accepts one operand from the VPR file and a second operand from a
different VPR, a Communications Register, or the SWED.

1-8 INDEXER

The Indexer is time shared by the eight Virtual Processors to perform Pro­
gram Counter (PC) indexing and to develop addresses for the Instruction
Register (IR). The PC related portion of the Indexer increments the current
PC value by one during the normal instruction acquisition process, decre -
ments the current PC value by one when the address of the next instruction
needs to be saved (this is due to the three-level look-ahead feature of the
PP), or decrements the current PC value by two when an interrupt occurs
(this is done so that the instruction following the interrupted instruction is
not skipped). The IR address development portion of the Indexer adds vari­
ous combinations of the PC, CM base register, NIR, SWED, and VPR file
under the influence of PP control to develop source, destination, and effec­
tive addresses for the IR. This address development is the primary reason

1-10 Advanced Scientific Computer

for the expansion of the 32-bit SWBD or NIR instruction to the 64-bit IR in­
struction.

1-9 COMMUNICATIONS REGISTER FILE

The Communications Register ICR) file consists of 64 32-bit registers ac­
cessible to all eight Virtual Processors. Each of the 64 CR' s can be ad­
dressed down to the bit level. The CR file holds the necessary data to pro­
vide the PP I ASC system interface, maintenance control for the PP, system
interrupt monitoring and control, VP time slot and priority assignments
(each VP is assigned a high or low priority for use in honoring CM access
requests), real time clock information, CM base operands, and temporary
storage as required by the PP for normal operation.

1-10 READ ONLY MEMORY

The Read Only Memory (ROM) is time shared by the eight Virtual Processors
to reduce Central Memory requirements by providing storage for up to 4K of
32-bit instructions, used primarily for control programs associated with input/
output devices of the ASC system. The ROM is extremely fast (25 nanosec­
ond access time) and is addressed by the PC under the influence of PP Con­
trol. The memory is organized into 16 256-word modules, so that portions
of the contained programs can be modified without complete refabrication of
the memory.

1-11 SINGLE WORD BUFFER CONTROLLER

The Single Word Buffer Controller (SWBC) is time shared by the eight Vir­
tual Processors to provide an interface to the Memory Control Unit (MCU)
and Central Memory (CM) for CM read and write operations. The SWBC ac­
cepts memory access requests from the active VP (assuming the active VP
does not already have a request pending), notifies the MCU when a request
is present, and provides a data and address path to CM to execute the highest
priority request under direction of the MCU. The SWBC/MCU interface
honors all VP's assigned a high priority on a first come, first served basis,
and then honors all VP' s assigned a low priority in the same manner. The
ASC Operating System I software) is responsible for making the priority as­
signments.

1-12 CONTROL

The PP Control is time shared by the eight Virtual Processors to provide
the controls and enables necessary to develop and execute PP instructions.
The center of PP control, the Main Instruction Register (MIR), holds the IR
of the active VP for the duration of the assigned time slot so the Control
logic can expand the IR to 256 bits and distribute the resulting control signals

1-11 Advanced Scientific Computer

throughout the PP. PP Control constantly monitors the CR file for reported
interrupts and the SWBC for the status of the active VP when generating the
controls and enables for instruction execution. The normal operation of the
PP Control logic can be disabled by the Maintenance Logic, for example,
when a VP or the ASC Maintenance Console operator places some portion of
the PP under test. When some portion of the PP is placed under test, the
Maintenance Logic replaces the IR of the active VP as the source of control
data.

1-13 MAINTENANCE LOGIC

The PP Maintenance Logic provides a means of checking the operation of the
other seven major components of the PP (VP' s, AU, Indexer, CR file, ROM,
SWBC, and PP Control). In addition, when the PP is operating normally
(versus the test mode when some portion of the PP is under test), primary
functions of the Maintenance Logic include supplying the PP with the active
VP code (VP code is the number associated with a VP) and the priority of the
active VP as it relates to the SWBC. Control of the PP Maintenance Logic
is provided by a group of registers in the CR file called maintenance regis­
ters. The method of entering data in the maintenance registers is controlled
by the ASC Maintenance Console. When the manual mode of operation is se­
lected, the operator enters data directly into the maintenance registers via
the console. When the semi-automatic mode of operation is selected, a card
reader supplies data to the maintenance registers. When the automatic mode
of operation is selected, an active VP supplies data to the maintenance regis -
ters. The maintenance command repertoire can be used in any of these
three methods and is versatile enough to completely check the PP.

1-14 INSTRUCTION REPERTOIRE

The Peripheral Processor instruction repertoire applies to all eight VP' s.
There are 219 basic instructions (and one no-operation instruction) that fall
into one of the following major instruction groups:

• Stores

• Loads

• Arithmetic

• Logical

• Compare and skip

• Unconditional branches

• Stack

• Set/ reset CR bits

• Test CR bits and skip

1-12 Advanced Scientific Computer

• Shifts

• Test CR bits, set/reset, and skip

• Increment/decrement and test conditional branches

• Arithmetic conditional branches

• Miscellaneous

A listing of the instruction types and the data handled within each of these
major groups is provided in table 1 -1.

1-15 INSTRUCTION FORMAT

The basic Peripheral Processor instruction consists of 32 bits divided into
four fields, as shown in figure 1-7. The operation code field (op-code, bits
0 through 7) is an 8-bit code, usually represented as a two-character hexa­
decimal (base 16) number, used to identify one of 220 (including the no-oper­
ation instruction) valid instructions. Each of the instructions is assigned a
unique hardware mnemonic !versus the software mnemonics listed in table
1 -1 that group instructions together when they perform the same operation
with different data sources) but can be grouped with other instructions, as
shown in the transfer tables in appendix B, when the execution steps involved
are examined.

The R field (bits 8 through 11) is a 4-bit code used to specify a VPR or CR
at the word, halfword, or byte level, depending on the accompanying op­
code. When a VPR needs to be specified, the R field is all that is necessary.
When a CR needs to be specified, the R field must be added to byte 3 of VPR3
so that all 64 CR' s can be addressed down to the byte level (the 4-bit R field
can only address four 32-bit words to the byte level by itself). The R field
also serves as a mask for some instructions when bits within a CR half byte
(hex) need designating.

The T field !bits 12 through 15) is four bits in length and is used to specify
both indirect addressing and whether a VPR halfword is to be added to the
quantity designated by the N field (this add operation is referred to as index­
ing). Since only eight VPR halfwords are available to any one VP, only the
three least significant bits of the T field are used to specify a VPR halfword
and the most significant bit is used to indicate when the current instruction
is indirect. The three least significant bits set to zero reflects no indexing,
rather than indexing with the left half of VPRO. The left half of VPRO can
not be used for indexing.

The N field !bits 16 through 31) consists of 16 bits used to specify an imme­
diate operand, Central Memory address, ROM address, branch address,
VPR, or CR, depending on the accompanying op-code.

1-13 Advanced Scientific Computer

Table 1-1. Peripheral Processor Instructions

Group I Software
Mnemonic

Store Instructions

ST

STA

STH

STB

STL

STR

STF

Load Instructions

LD

LDA

LDI

LDH

LDHI

LDB

LDBI

Description

/
CM j':' VPR or ':'

Store word from (CR j to ~:R or

Store word from VPR to CM absolute

Store halfword from (~:R or j to (~:R or)

Store byte from (~:R or j to (~:R or J

Store from (~:R or j to left half CM

f VCRPR or j Store from t to right half CM

Store file from VPR to CM

f VPR j I CM j Load word to t CR from ~:R or

Load word to VPR from CM absolute

L d . d" d . f VPR or l oa 1mme 1ate wor into t CR

Load halfword to (~:R or j from (~:R or j
Load immediate halfword into (~:R or l
Load byte to (~:R or J from (~:R or l
Load immediate byte into (~:R or j

':'VPR - Virtual Processor Register
CR - Communication Register

CM - Central Memory

1-14 Advanced Scientific Computer

Table 1-1.

Group/Software
Mnemonic

Load Instructions

LDL

LDR

LDF

Peripheral Processor Instructions (Continued)

Description

(continued)

Load to (~:R or J from left half CM

Load to (~:R or J from right half CM

Load file from CM to VPR

Arithmetic Instructions

AD

ADI

ADH

ADHI

ADB

ADBI

ADL

ADR

SU

SUI

SUH

SUH!

SUB

SUB!

SUL

SUR

Add word from (~~Ror J to VPR

Add immediate word to VPR

Add halfword in VPR to VPR

Add immediate halfword to VPR

Add byte in VPR to VPR

Add immediate byte to VPR

Add left half in CM to VPR

Add right half in CM to VPR

. (CM or J Subtract word in VPR from VPR

Subtract immediate word from VPR

Subtract halfword in VPR from VPR

Subtract immediate halfword from VPR

Subtract byte in VPR from VPR

Subtract immediate byte from VPR

Subtract left half in CM from V PR

Subtract right half in CM from VPR

Logical Instructions

OR Logical OR word in I ~:R or J to VPR

1-15 Advanced Scientific Computer

Table 1-1.

Group/Software
Mnemonic

Peripheral Processor Instructions (Continued)

Description

Logical Instructions (continued)

ORH

ORHI

ORB

ORBI

ORL

ORR

EX

EXH

EXHI

EXB

EXBI

EXL

EXR

AN

ANH

ANHI

ANB

ANBI

ANL

ANR

Logical OR halfword in ! ~:R or l to VPR

Logical OR immediate halfword to VPR

. . f VPR or l Logical OR byte in l CR to VPR

Logical OR immediate byte to VPR

Logical OR left half in CM to VPR

Logical OR right half in CM to VPR

Logical exclusive OR word in I ~:R or l to VPR

Logical exclusive OR halfword in ! ~:R or l to VPR

Logical exclusive OR immediate halfword to VPR

Logical exclusive OR byte in ! ~:R or l to VPR

Logical exclusive OR immediate byte to VPR

Logical exclusive OR left half CM to VPR

Logical exclusive OR right half CM to VPR

Logical AND word in I~~ or l to VPR

Logical AND halfword in ! ~:R or l to VPR

Logical AND immediate halfword to VPR

L . 1 A b . f V PR or l V PR og1ca ND yte in l CR to

Logical AND immediate byte to VPR

Logical AND left half in CM to VPR

Logical AND right half in CM to VPR

1-16 Advanced Scientific Computer

Table 1 -1.

Group/Software
Mnemonic

Peripheral Processor Instructions (Continued)

Description

Logical Instructions (continued)

EQ

EQH

EQHI

EQB

EQBI

EQL

EQR

Logical EQUIVALENCE word I ~:R or) to VPR

. [VPR or l Logical EQUIVALENCE halfword CR to VPR

Logical EQUIVALENCE immediate halfword to VPR

. [VPR or l Logical EQUIVALENCE byte CR to VPR

Logical EQUIVALENCE immediate byte to VPR

Logical EQUIVALENCE left half CM to VPR

Logical EQUIVALENCE right half CM to VPR

Compare and Skip Instructions

CE

CEI

CEH

CEHI

CEB

CEBI

CEL

CER

CN

CNI

Compare word I ~:R or J to VPR, skip if equal

Compare immediate word with VPR, skip if equal

Compare halfword [~:R or J to VPR, skip if equal

Compare immediate halfword with VPR, skip if equal

Compare byte [~:R or J to VPR, skip if equal

Compare immediate byte with VPR, skip if equal

Compare left half of CM to VPR, skip if equal

Compare right half CM to VPR, skip if equal

Compare word I ~:R or J to VPR, skip if not equal

Compare immediate word with VPR, skip if not equal

1-17 Advanced Scientific Computer

Table 1-1.

Group/Software
Mnemonic

Peripheral Processor Instructions (Continued)

Description

Compare and Skip Instructions (continued)

CNH

CNHI

CNB

CNBI

CNL

CNR

!VPR or I Compare halfword CR to VPR, skip if not equal

Compare immediate halfword with VPR, skip if not
equal

I VPR or I Compare byte CR to VPR, skip if not equal

Compare immediate byte with VPR, skip if not equal

Compare left half CM to VPR, skip if not equal

Compare right half CM to VPR, skip if not equal

Unconditional Branch Instructions

BC

BCS

BCA

BCAS

BPC

BPCS

BR

BRS

BRSM

Stack Instructions

PUSH

PULL

MOD

Branch unconditionally to CM, base relative

Branch unconditionally to CM relative base, save PC
in VPR

Branch unconditionally to absolute CM

Branch unconditionally to CM absolute, save PC in
VPR

Branch unconditionally to CM, relative PC

Branch unconditionally to CM, relative PC, save PC
in VPR

Branch unconditionally to ROM

Branch unconditionally to ROM, save PC in VPR

Branch unconditionally to absolute ROM, save PC in
fixed CM location

Push word from VPR into stack

Pull word from stack into VPR

Modify stack

1-18 Advanced Scientific Computer

Ta_ble 1-1.

Group/Software
Mnemonic

Peripheral Processor Instructions (Continued)

Description

Set/Reset CR Bits Instructions

VPS

VPR

VPTO

VPTZ

SL

SR

RL

RR

Set VP flag in CR

Reset VP flag in CR

Test VP flag in CR, skip if equal to one

Test VP flag in CR, skip if equal to zero

Set mask bits in left half of CR byte

Set mask bits in right half of CR byte

Reset mask bits in left half of CR byte

Reset mask bits in right half of CR byte

Test CR Under Mask and Skip Instructions

TOL

TOR

TZL

TZR

TAOL

TAOR

TAZL

TAZR

Shift Instructions

SHL

SHA

SHC

Test under mask for any ones in left half of CR byte
and skip if true

Test under mask for any ones in right half of CR byte
and skip if true

Test under mask for any zeros in left half of CR byte
and skip if true

Test under mask for any zeros in right half of CR byte
and skip if true

Test under mask for all ones in left half of CR byte
and skip if true

Test under mask for all ones in right half of CR byte
and skip if true

Test under mask for all zeros in left half of CR byte
and skip if true

Test under mask for all zeros in right half of CR byte
and skip if true

Shift logical word in VPR

Shift arithmetic word in \'PR

Shift cyclic word in VPR

1-19 Advanced Scientific Computer

Table 1-1.

Group/Software
Mnemonic

Peripheral Processor Instructions (Continued)

Description

Test CR Bits, Set/Reset, and Skip Instructions

TSZL

TSZR

TSOL

TSOR

TRZL

TRZR

TROL

TROR

Test under mask for any zeros in left half of CR byte
and set; then skip if true

Test under mask for any zeros in right half of CR
byte and set; then skip if true

Test under mask for any ones i.n left half of CR byte
and set; then skip if true

Test under mask for any ones in right half of CR byte
and set; then skip if true

Test under mask for any zeros in left half of CR byte
and reset; then skip if true

Test under mask for any zeros in right half of CR byte
and reset; then skip if true

Test under mask for any ones in left half of CR byte
and reset; then skip if true

Test under mask for any ones in right half of CR byte
and reset; then skip if true

Increment/ Decrement and Test Conditional Branch Instructions

IBZ

IBN

DBZ

DBN

Increment VPR by one; branch if result equal to zero

Increment VPR by one; branch if result not equal to
zero

Decrement VPR by one; branch if result equal to zero

Decrement VPR by one; branch if result not equal to
zero

Arithmetic Conditional Branch Instructions

Test IVCRPR or J word arithmetically; branch if equal
to zero

TZ

TZH T IVPR or} halfword arithmetically; branch if
est CR (equal to zero

1-20 Advanced Scientific Computer

Table 1-1.

Group/Software
Mnemonic

Peripheral Processor Instructions (Continued)

Description

Arithmetic Conditional Branch Instructions (continued)

TZB

TN

TNH

TNB

TP

TPH

TPB

TM

TMH

TMB

Test I ~:R or l
Test I ~:R or]

Test I ~:R or]

Test I ~:R or j
Test l ~~or l
Test I ~:R or j
Test I ~:R or j
Test I ~:R or j
Test I ~:R or j

byte arithmetically; branch if equal to
zero

word arithmetically; branch if not
equal to zero

halfword arithmetically; branch if not
equal to zero

byte arithmetically; branch if not
equal to zero

word arithmetically; branch if greater
than or equal to zero

halfword arithmetically; branch if
greater than or equal to zero

byte arithmetically; branch if
greater than or equal to zero

word arithmetically; branch if less
than zero

halfword arithmetically; branch if less
than zero

I VPR or l byte arithmetically; branch if less than
Test

CR zero

Miscellaneous Instructions

LDEA Load effective address into VPR

ANAZ Analyze CM

POLL Poll CR and set VPR

EXEC Execute CM

LDMB Load VP base from VPR

NOP No operation

1 -21 Advanced Scientific Computer

0

(A) 111645

7 8

OP-CODE R
FIEL,D

1 1 1 2 15 1 6

T
FIELD

T~
~

N
FIELD

MEMORY ADDRESS DISPLACEMENT
ADDRESSES A CR OR VPR

ADDRESSES A VPR
HALFWORD INDEX

TRUE IND I CATES
~------ INDIRECT ADDRESSING

1 • ADDRESSES A VPR
'---------- 2. PROVIDES A CR ADDRESS

DISPLACEMENT
3. PROVIDES A MASK FOR

CR HEX (4 BIT) OPERATIONS

.__ _______________ PROVIDES THE OPERATION CODE
FOR THE INSTRUCTION

Figure 1 - 7. Peripheral Processor Instruction Format

31

1-16 DATA FORMATS

The Peripheral Processor handles data at the word (32 bits), halfword (16
bits). and byte (8 bits) levels and encounters the indirect cell format when
an instruction (or other indirect cell) specifies indirect addressing. Figure
1-8 presents all four of these types of formats. The sign bits used in the
word, halfword, and byte formats reflect whether the associated data is
positive or negative (in two's complement form). When any of these three
formats is involved in an arithmetic ope ration, any overflow conditions are
ignored. The Peripheral Processor is also capable of addressing CR file
data down to the individual bits, but this is only for testing and setting/re­
setting purposes (the smallest unit of data that can be transferred between
registers is the byte).

The most significant bit of the indirect cell is used during the terminal (last)
level of indirect addressing to reflect the source (Central Memory or ROM)
of a branch address. The T field in the indirect cell serves the same pur­
pose as the T field in the instruction format, and the 24-bit address field
specifies the base operand address subject to modification by the T field.
The operand address developed from the indirect cell always references
Central Memory, whereas the first level of indirect addressing from the
instruction format can reference a CR, VPR. or Central Memory.

1-22 Advanced Scientific Computer

~
WHOLE WORD

I s I INTEGER ILSB I
0 31

HALFWORD

I s I
INTEGER ILSB I 5 I INTEGER ILSB I

0 1 5 1 6 31

BYTE

5 INTEGER LSB S INTEGER LSB S INTEGER LSB S INTEGER LSB

0 7 8 , 5 , 6 23 24 31

INDIRECT CELL FORMAT

ACOR

0 4 7 8 31

(A)1 1 4737A

Figure 1 -8. Peripheral Processor Data Formats

1-1 7 INSTRUCTION PROCESSING

Each of the active Virtual Processors retrieves, expands, and executes
program instructions residing in either Central Memory (CM) or ROM in
a continuous three-step procedure. Refer to the Virtual Processor (VP)
block diagram (figure 1-6) during the following discussion. The first step,
addressing the instruction to be retrieved, involves operation of the Program
Counter (PC). When an instruction terminates in the VP on which this dis -
cussion is based, the PC address is input to either ROM or the Single Word
Buffer Address (SWBA) Register, under the influence of PP Control. ROM
responds to the address by supplying the Next Instruction Register (NIR) with
an instruction and CM responds to the read request from the Single Word Buf­
fer Controller (SWBC) and the SWBA address by supplying the Single Word
Buffer Data (SWBD) Register with an instruction. When another instruction
terminates, the second of three steps (instruction expansion) occurs. The
retrieved instruction, from either the NIR or SWBD, combines with the
Indexer and PP Control to develop the state, control flags, and address in­
formation necessary for execution of the first step of the instruction. All of
this data is input to the Instruction Register (IR) for the third step (instruc­
tion execution). At the next active time slot, the IR data is input to PP Con­
trol, where the instruction is expanded again to perform the execution step.
If the instruction requires more than one step las is the case with most of

1-23 Advanced Scientific Computer

the PP instructions due to their involvement), PP Control updates the IR so
that the next step will be executed at the next active time slot. When the last
step of an instruction is executed by PP Control, the VP is notified so that a
new instr~ction can be expanded into the IR, the following instruction can be
retrieved from one of the two memories, and the third succeeding instruction
can be addressed by the PC. In this manner, all of the active VP' s are able
to maintain a continual flow of instructions so that little time is wasted in
program execution.

1-18 GENERAL CHARACTERISTICS

A condensed listing of Peripheral Processor general characteristics is pro­
vided in table 1-2.

Table 1-2. Peripheral Processor General Characteristics

• Eight medium-power time-shared processors (called Virtual Pro­
cessors)

• Provides system control via ASC Operating System I software)

• Interfaces with ASC system via group of 64 Communications Registers

• Contains 364 synchronizers for asynchronous operation with periph­
eral devices

• Contains built-in maintenance logic to facilitate checkout and trouble­
shooting

• Implemented with ECL2500 series high- speed logic (logic 0 ::::: +400mv,
logic 1 ::::: -400mv)

• Constructed with multilayer etched motherboards and plug-in multi­
layer printed wiring boards

• Basic 32-bit instruction, expanded to 64 bits at execution

• Versatile data-handling instruction set of 219 basic instructions and
one no-operation instruction

• Capable of handling and operating on data in 32, 16, 8, and 1-bit
groups

• Performs following arithmetic operations:

• Addition

• Subtraction (2' s complement)

• Logical AND, OR, EXCLUSIVE OR, and EQUIVALENCE

• Shifts

• Bit setting/resetting

1-24
Advanced Scientific Computer

Table 1-2. Peripheral Processor General Characteristics (Continued)

• Two priority levels for Virtual Processor access requests to Central
Memory

• Monitors and processes following types of interrupts:

• SystemA/C power failure

• Pressing of Operator's Console STOP button

• Central Memory parity error

• Central Memory protect violation

• Disc protect violation

• Illegal Peripheral Processor instruction

• Central Processor interrupt

• Clock rate of 85 nanoseconds

• Contains 4K by 32 bits of Read Only Memory with 25 nanoseconds
access time

• Relies on asynchronous interface with Central Memory for primary
instruction source

1-19 PHYSICAL DESCRIPTION

The Peripheral Processor consists of two Emitter Coupled Logic fECL)
columns in the ASC system complex. Each ECL column contains three
motherboards, with a maximum of 22 logic cards per motherboard, and a
voltage regulator. Figure 1-9 illustrates the placement of the two ECL
columns, the six motherboards and their associated logic cards, and the
voltage regulators. Figure 1-10 shows the actual logic card locations on
the six motherboards. Table 1-3 groups the logic cards with the eight major
Peripheral Processor components.

The motherboards are multilayer etched boards with 22 connectors designed
to accept plug-in multilayer logic cards. The logic card connectors mounted
in the motherboards have pins that extend through to the back of the mother­
boards for use as oscilloscope connections. The input/output lines for the
motherboards are handled by 24 pin card edge connectors usually referred
to as ''spade'' connectors. The wiring to the spade connectors is all coaxial
and is routed around the motherboards to provide access to the pi.ns on the
back. The portion of this coax harness that provides input/output to the
Peripheral Processor is routed to either of the two ECL column side panels
(usually referred to as ''bulkheads''),

1-25 Advanced Scientific Computer

PP2-ECL2

COLUMN

CR1MB
MOTHERBOARD

VPRMB

MOTHERBOARD

CR3MB

MOTHERBOARD

(A)124727 (686- 1072- 13- 4)

PERI P HERAL

PROCESSOR

VOLTAGE

REGULATORS

PP1- ECL1

COLUMN

PCMB

MOTHERBOARD

CR2MB

MOTHERBOARD

Figure 1-9. Peripheral Processor Assemblies

1-26 Advanced Scientific Computer

Motherboard
Motherboards

Locations
CROMB PCMB CR2MB

LA TERM CARD

LB INDEXER! 1)

LC CRCELLY INDEXERIO) CRBASE2

LD PBOCRDIO) PCCARDA(7) PB2CRD(O)

LE CRCELLO(O) PCCARDA(6) CRCELL2(0)

LF CR CELLO(1) PCCARDA(5) CRCELL2(1)

LG PBOCRDll) PCCARDAl4) PB2CRDI 1)

LH CRCELLOl2) PCCARDAl3) CRCELL212)

LI CRCELL0(3) PCCARDAl2) CRCELL213)

LJ PBOCRD(2) PC CARDA(1) PB2CRD12)

LK CRCELL0(4) PCCARDAIO) CRCELL2(4)

LL CR CELLO(5) PCCTL CRCELL215)

LM PBOCRD(3) SWBASY PB2CRDl3)

LN CRCELL0(6) SWBSYNC CRCELL2(6)

LO CRCONTO PPCTL2 CRCONT2

LP MLCTL PPCTLl ML2

LQ ROMCRD(8) MIR MR GB ROMCRD112)

LR ROMCRD19) IRCARD(3) ROMCRDI 13)

LS ROMCRD14) IRCARD12) ROMCRD(6)

LT CRROMRG(O) IRCARD(l) CRROMRG(2)

LU CRMIRLDR IRCARD(O)

LV TERMCARD

Figure 1-10. Peripheral Processor Logic Card Locations (Sheet 1 of 2)

1-27 Advanced Scientific Computer

Motherboard
Motherboard

Locations
CRlMB VPRMB CR3MB

LA TERM CARD

LB ROMCRD(3)

LC CRBASEl ROMCRD(2) CRBASE3

LD PBlCRD(O) ROMCRD(l) PB3CRD(O)

LE CRCELLl(O) ROMCRD(O) CRCELL3(0)

LF CRCELLl(l) ROMMRG CRCELL3(1)

LG PBlCRD(1) PPAUCD(3) PB3CRDI 1)

LH CRCELL1(2) PPAUCD(2) CRCELL3(2)

LI CRCELL1(3) PPAUCD(l) CRCELL313)

LJ PB1CRD(2) PPAUCD(O) PB3CRDl2)

LK CRCELL1(4) CONTAU CRCELL3(4)

LL CRCELL1(5) AU2XFER CRCELL3(5)

LM PB1CRD(3) VPRCONT PB3CRD(3)

LN CRCELL1(6) VPRCARD(7) CRCELL3(6)

LO CRCONTl VPRCARD(6) CRCONT3

LP MLl(l) VPRCARD(5) MLl(O)

LQ ROMCRD(lO) VPRCARD14) ROMCRD(l4)

LR ROMCRD(l l) VPRCARD(3) ROMCRD115)

LS ROMCRD(5) VPRCARD(2) ROMCRD(7)

LT CRROMRG(l) VPRCARD(l) CRROMRG(3)

LU LOGCLK VPRCARD(O)

LV TERMCARD

Figure 1-10. Peripheral Processor Logic Card Locations (Sheet 2 of 2)

1-28 Advanced Scientific Computer

Table 1-3. Peripheral Processor Logic Card Functions

PP
Logic Cards

PP
Logic Cards

Component Component

Virtual CR BASE(1 -3) Communications CRMIRLDR
Processors IRCARD(0-3) Register File CRCONT(0-3)

PCCARDAI0-7) CRCELLY
VPRCARD(O- 7) CRCELLOI0-6)
AU2XFER CRCELLl (0-6)

CRCELL2(0-6)
Arithmetic CONTAU CRCELL3(0-6)

Unit PPAUCD(0-3) PBOCRD(0-3)}
PBlCRD(0-3) Patch-

Indexer INDEXER(O, 1) PB2CRD(0-3) boards
PB3CRD(0-3)

Read Only CRROMRG(0-3)
Memory ROMCRD(0-15) Single Word SWBSYNC

ROMMRG Buffer SWBASY
Controller

pp PCCTL
Control PPCTLl Maintenance MLCTL

PPCTL2 Logic MLllO, 1)
VPRCONT ML2
IRCARDIO -3) MIR MR GB

1 -20 INTEGRATED CIRCUIT TYPES

The Peripheral Processor is implemented with the ECL logic set shown in
figure 1 -11. Refer to appendix E of the ASC System Manual for System No.
1_ (Texas Instruments Incorporated part number 930005-1) for the Boolean
equations and truth tables describing operation of the individual logic modules.

1-29 Advanced Scientific Computer

EL

_1

2
'

~

4

5

6

11

1 2

1 3

1 4

8 N

9

11

1 2

1 3

1 4

16

48

8

9
N

, ,
14

16

GC

(8) 109045

Tiii

PIN EL

5 7

6 8

8 9

9 10

7 11

11 12

, 3

9

8

7

5

2

4

16

7

5

4

2

6
5

7

8
4

9

11

12

13

14

16

2

4

7

8

9

11

, 2

1 3

14

16

7

8
9

11
1 2

1 1

14

16

PIH

12

4

2

1

16

14

13

H

A

98

3H

Q3

4

2

5

4

2

ASC LOGIC SET

Vee - p IN 3 AND 6

v88 - PIN 15

VEE - PIN 10

8

9

11

1 2

1 3

1 4

16

}

EXCEPT FOR
9B.SQ,Q3,H2,
FF\DF ,T.R_ 1SR,
WH CH HAVE
Vee - PIH 3 ONLY

5

7

2

4

14

16

1 2

1 1

9

11

2

5

4

8

7

6

2

16

13

14

1,

, 2

8

9

9

1,

1 2

1 3

14

1 6

5
13

4
1 2

11

14

16

9

14

12

1 3

I 1

11

1 2

9

18

13

1<1

2N

3M

0

A

z
8

3

c 4

5
EN

6

7

DE

A s

A s
8 c

B ~

c

c
AC

~, Q1

G1 QI

a,

Qz

a Qz

Gz 112

....

2

4

5

7

5

7
8

1
2

4

5

7

8

9

16

2

4

7

5

2

4

2

4

8

5
6

7

Figure 1-11. Peripheral Processor ECL Logic Set

1-30 Advanced Scientific Computer

2-1 GENERAL

SECTION II

INSTALLATION

Installation instructions for the Peripheral Processor are provided in the
ASC System Installation Manual, part number 929980-1.

2-1/2-2 Advanced Scientific Computer

3-1 GENERAL

SECTION III

OPERATING INSTRUCTIONS

The two ECL columns that comprise the Peripheral Processor have no con­
trols and indicators other than those associated with the ECL power supply
regulators located on the lower front portion of both ECL columns. Refer
to the ECL Regulators OMI, part number 930194-1, for a description of the
regulator controls and indicators.

Control of Peripheral Processor operations is provided by the ASC Mainte­
nance Console. The external maintenance system described in appendix C
of this manual contains a brief introduction to the ASC Maintenance Console
controls and indicators and how they affect the Peripheral Processor. For
a more detailed discussion of the ASC Maintenance Console, refer to the
ASC Maintenance Console OMI, part number 930009-1.

3-1/3-2 Advanced Scientific Computer

4-1 GENERAL

SECTION IV

PRINCIPLES OF OPERATION

This section provides both a general and detailed description of the Periph­
eral Processor (PP) theory of operation. Descriptions of the PP instruc­
tion repertoire, instruction processing, and instruction transfer table usage
are also included in this section. The general description presented first is
based on the PP detailed block diagram in figure 4-1, but is supplemented
with additional diagrams covering the more involved components of the PP.
Next, the instruction repertoire and instruction processing relate the hard­
ware mentioned in the general description to the instruction set and the
unique method of instruction development. The transfer table introduction
provides a basic understanding of instruction execution and the capability to
trace the data paths involved. A detailed description, accompanied by sim­
plified block diagrams, timing diagrams, flow charts, logic diagrams, and
transfer tables, is presented last. This section should be used with the PP
logic card set provided in Section VII of this manual.

4-2 GENERAL DESCRIPTION

The Peripheral Processor (PP) is composed of the following eight major
components:

• Virtual Processors

• Arithmetic Unit

• Indexer

• Communications Register File

• Read Only Memory

• Single Word Buffer Controller

• Control

• Maintenance Logic

The data path relationships between the PP components are shown in the PP
detailed block diagram of figure 4-1. Distribution of the control necessary
for PP operation is not shown in figure 4-1 (for simplicity); however, the
control paths are discussed in detail in the detailed description of the PP
control. The shaded blocks in figure 4-1 represent data buses that multi­
plex several inputs to a single output. An example of this is the Instruction

4-1/4-2 Advanced Scientific Computer

Register Bus (IRB), used to enable the Instruction Register (IR) of the active
Virtual Processor (VP) to the Main Instruction Register (MIR). Figure 4-1
shows only one input to IRB from one IR, when in reality there are eight in­
puts to IRB (one input for each of the eight IR' s) with an associated control
consisting of the active VP code (number of the active VP).

Figure 4-1 also contains hardware location information in the form of digits
ranging from 1 to 12, in parenthesis next to each data bus and inside each
functional block. These location digits are keyed to the ECL card location
index on the left side of the detailed block diagram. The location of these
cards in the PP ECL columns can be found by referring to the ECL card lo­
cation map in Section I of this manual.

4-3 VIRTUAL PROCESSORS

The eight identical Virtual Processors (VP' s) of the PP, designated VPO
through VP?, each consist of the following registers and their associated
loading and distribution logic:

• Program Counter Register

• Next Instruction Register

• Instruction Register

• Virtual Processor Register File

• Central Memory Base Register

• Single Word Buffer Address Register

• Single Word Buffer Data Register

Each of the eight VP' s shares the other seven components of the PP via the
time sharing method described in the equipment overview in Section I of this
manual. In figure 4-1, one block represents eight of a given type of regis -
ter (there are seven types). Each of eight VP' s uses one register from each
block. The following paragraphs describe each VP register type.

4-4 PROGRAM COUNTER REGISTER. The Program Counter (PC) is a
32-bit register used to address instructions in the Read Only Memory (ROM)
or Central Memory (CM). Bit 0 of the PC specifies the memory source (CM
or ROM) and bits 8 through 31 identify the instruction in the specified source.
The eight PC's exist on the PCCARDA(0-7) cards, with four bits of each PC
on every PCCARDA card as shown in figure 4- 2.

The mode bit (bit 0) of the PC is supplied by PP control and the memory ad­
dress is supplied by the PC indexer (part of the Indexer). The PC value is

4-5 Advanced Scientific Computer

then distributed to the PC indexer (for indexing to the next sequential instruc­
tion), the TN field indexer (for address development of PC relative instruc­
tions), the Single Word Buffer Address register (SWBA, for CM access),
ROM, and the Main Data Bus (MDB, for PC saving instructions), all under
direction of PP control.

4-5 NEXT INSTRUCTION REGISTER. The Next Instruction Register (NIR)
is a 32-bit register used, primarily, to hold instructions retrieved from
ROM prior to their transfer to the Instruction Register (IR). The NIR is
also used for temporary storage of the Single Word Buffer Data register
(SWBD) instruction when the SWBD is required to interface with CM during
the execution of an instruction. The eight NIR's exist on the PCCARDA(0-7)
cards, with four bits of each NIR on every PCCARDA card as shown in figure
4-2. The NIR accepts ROM or SWBD data, under direction of PP control,
and distributes the loaded value to both the TN and R field indexers (for
source, destination, and address development).

4-6 INSTRUCTION REGISTER. The Instruction Register (IR) is a 64-bit
register used to hold the control information necessary to execute a step of

PC

NIR

SWBA

SWBD

~ 4-7 e-1112-1515-1920-2324-27~

PCCARDA(O) PCCARDA(7)

(A) 124728

EACH PCCARDA CONTAINS
4 BITS OF EACH PC, NIR•
SWBA, AND SWBD FOR
ALL 8 VP1S.

Figure 4-2. PCCARDA(0-7) Registers

4-6 Advanced Scientific Computer

an instruction. The control information includes the op-code, state, source,
destination, special control flags, and effective address. The op-code iden­
tifies the type of instruction (store, load, etc.); the state sequences the in­
struction through its various steps; the source (when used) identifies a Com­
munications Register (CR) or Virtual Processor Register (VPR) used in a
data transfer; the destination (when used) identifies a CR or VPR used in a
data transfer; the special control flags provide miscellaneous control (next
instruction source (SWBD or NIR) indicator, interrupt cycle initiation, etc.);
and the effective address (when used) provides a CM or ROM address, im­
mediate data, or possibly a shift count as mentioned in the Arithmetic Unit
detailed description. The eight IR 1 s exist on the IRCARD(0-3) cards, with
16 bits of each IR on every IRCARD (bits 0-15 on IRCARD(O), bits 16-31 on
IRCARD(l), bits 32-47 on IRCARD(2), and bits 48-63 on IRCARD(3)).

The IR accepts op-code, state, and control flag data from PP control, source
and destination data from the TN or R field indexers, and effective address
data from the TN field indexer or the Arithmetic Unit (if a shift instruction
is involved). The loaded IR data is then input to PP control to direct execu­
tion of the instruction.

4-7 VIRTUAL PROCESSOR REGISTER FILE. The Virtual Processor Reg­
ister (VPR) file consists of four 32-bit registers, designated VPRO through
VPR3, used as general purpose accumulator registers. The eight sets of
the VPR file are located on the VPRCARD(0-7) cards, with each card con­
taining four bits of the VPR file for all eight VP 1 s (refer to figure 4-3). The
VPR file accepts data from the Arithmetic Unit (AU) and distributes data to
the TN and R field indexers (for source, destination, and effective address
development) and to the AU (for arithmetic operations and data transfers to
other areas of the PP).

4-8 CENTRAL MEMORY BASE REGISTER. The Central Memory (CM)
Base Register is a 24-bit register, located in the Communications Register
(CR) file and used to hold a base value for base relative instructions. The
CM Base Registers for VPO through VP7 are located in bits 8 through 31 of
the first eight CR 1s. A byte of each of the eight CM base Registers is lo­
cated on each of the three CREASE cards (bits 8-15 on CRBASEl, bits 16-23
on CRBASE2, and bits 24-31 on CRBASE3). The CM Base Register accepts

data from the AU and distributes the CM base value to the TN field indexer
(for address development of base relative instructions) and the Main Data
Bus (MDB, for CR file read operations).

4-9 SINGLE WORD BUFFER ADDRESS REGISTER. The Single Word Buf­
fer Address (SWBA) register is a 32-bit register used to hold the address
necessary to access CM. The eight SWBA 1 s are located on the
PCCARDA(0-7) cards, with four bits of each SWEA on every PCCARDA
card as shown in figure 4-2. The SWBA accepts data from the PC (normal

4-7 Advanced Scientific Computer

BITSY4 - 7,8 - f1,12-f5,16-19,20-23,24-27y

VPRCARD (0) 4 ... VPRCARD (7)

(A) 111682

EACH VPR CARD CONTAINS~ BITS OF EACH

VPR OF ALL~ VP'S.

Figure 4-3. VPRCARD(0-7) VPR File

instruction sequencing), the TN field indexer (for stack pointer modification
during stack instructions (refer to the instruction repertoire of this section)),
and the IR effective address (for CM stores, loads, branches, etc.). The
data loaded in the SWBA is distributed to the Memory Control Unit (MCU,
for CM access) and the MDB (for stack instructions).

4-10 SINGLE WORD BUFFER DATA REGISTER. The Single Word Buffer
Data (SWBD) register is a 32-bit register that provides temporary storage
for data being written to or read from CM. The eight SWBD 's are located
on the PCCARDA(0-7) cards, with four bits of each SWBD on every

4-8 Advanced Scientific Computer

PCCARDA card, as shown in figure 4-2. The SWBD accepts data from CM
when a read is performed, and from the associated PC, SWBA, VPR file, or
Communications Register (CR) file via the MDB and AU when a write is per­
formed. The loaded SWBD data is distributed to CM (for CM write opera­
tions), the TN field indexer (for effective address development), the NIR (for
temporary storage when the instruction source is CM and the SWBD is being
used to do more than hold the next instruction), and the AU via the MDB (for
loads, stores, logicals, etc., involving CM).

4-11 ARITHMETIC UNIT

The Arithmetic Unit (AU) is time shared by the eight Virtual Processors to
perform addition, subtraction, logical functions (AND, OR, EXCLUSIVE OR,
and EQUIVALENCE), data alignment, data shifting, data testing, and bit
setting and resetting. The AU is capable of handling two 32-bit words at one
time (for addition, subtraction, logical functions, or data comparisons) or a
single 32-bit word and operating on it down to the bit level. The data han­
dling portion of the AU is located on the PPAUCD(0-3) cards, with a byte of
each logic function on each of the four PPAUCD cards (byte 0 is on
PPAUCD(O), byte 1 is on PPAUCD(l), byte 2 is on PPAUCD(2), and byte 3
is on PPAUCD(3)). The complete control portion of the AU is located on the
CONTAU card.

The AU accepts one operand from the VPR file and a second operand from
the Main Data Bus (MDB). The MDB data may be supplied by a different
VPR, a Communications Register (CR), the SWBD, or the Main Instruction
Register (MIR) effective address when an immediate operand is involved.
When the AU performs an addition, subtraction (by two's complement), logi­
cal function, poll operation (refer to paragraph 4-61), or shift, the output
data is input to the VPR file over the AU lB bus. When a test is performed
on one of the input operands to the AU, the AU responds with test result con­
trol signals to PP control. When the AU is used for alignment, setting or
resetting of operand bits, or just data transfer, the AU output is transferred
to its destination via the AU2B transfer bus. Functionally, the AU is divided
into the following logic omponents:

• Aligner

• Complement or constant generator

• Unload box

• Double rail generator

• Adder

• Shifter

• Bit picker

4-9 Advanced Scientific Computer

• Test box 1, 2, and 3 logic

• Comparator

• Data manipulator

• Skip taken and branch taken logic

• AU control

The relationships between the listed AU components are shown in figure 4-4,
and a brief description of each is given in the following paragraphs.

4-12 ALIGNER. The aligner is used to perform right-end-around shifts
on the 32-bit MDB input to the AU (CR file, VPR file, SWBD, or MIR effec­
tive address data) in byte increments. This type of operation is necessary
when halfword or byte level instructions involve data groups that are out of
position in relation to the operation desired. An example of this problem is
the addition of byte one of a VPR to byte two of a VPR. In this case, the CR
(the MDB data) is shifted right one byte by the aligner. The aligner is capa­
ble of j,>erforming zero, one, two, or three byte shifts in this manner under
dir~ction of AU control. The aligner output is applied to the complement or
constant generator, the shifter (for 16-bit cyclic shifts), the comparator,
and the AU2B transfer bus. Data on the MDB is transferred to its desired
destination via the AU2B bus, passing through the aligner with no shift.

4-13 COMPLEMENT OR CONSTANT GENERATOR. The complement or
constant generator develops the true form of the 32-bit aligner output for
addition and logical instructions, the complement form of the aligner output
for subtraction instructions, plus one in both halfwords of the 32-bit output
when an increment by one and test (IBZ or IBN) instruction is executing, or
minus one in both halfwords of the output when a decrement by one and test
(DBZ or DBN) instruction is executing. The output of the complement or
constant generator is one of the 32-bit inputs to the adder.

4-14 UNLOAD BOX. The unload box distributes the true and complement
form of the MDB data (from the CR file, VPR file, SWBD, or MIR effective
address) to the shifter, bit picker, data manipulator, test box 1, and test
box 2. In addition, the unload box accepts the active VP code and R field
from AU control and generates the true and complement form of both for the
data manipulator and test box 2.

4-15 DOUBLE RAIL GENERA TOR. The double rail generator develops the
true and complement form of the 32-bit operand input to the AU via the VPRB
bus. The output of the double rail generator is distributed to the adder,
comparator, and test box 3.

4-10 Advanced Scientific Computer

.....

(CR I

{VPR1

(::>WB01

(MIR EA)

l __
ll£VPRCARD

(C)t 24729

CC(o- IJ FROM CONTAU

COMPLIMENT
CONSTANT

GENERATOR
(CCGJ

,___ _____ _._....__ A~":;:~T SHIFTER
(SHFJ

I. TESTS BITS IN RF FOA
ANY ONE OR ALL ZEROS

2. TESTS VP NUMBER
AGAINST INPUT BYTE
FOR SKIP INSTRUCTIONS.

(VPC+RF+AB)

BIT PICKER
(POLL INSTR I

(BPKJ

TEST BOX
NUMBER 3

(TS3)

COMPARATOR
fC::MP1

TEST BOX
NUMBER 1

(TSI)

TEST BOX
NUMBER 2

(TSZ)

DATA
MANIPULATOR

(OMP)

I . BYTE SET, RESET
TEST INSTRUCTIONS.

AU'
TRANSFER

BUS

/AU181

ALL ZEROS

TO
VPR
FILE

PP
CONTifOL

r-------+---11--4'1.- - -1
r-11 I ~~r::~r I

!---,-+-'-,-'-, -----+---------+--J---11.: LOGIC I
1-----''-'-'------+----------l~-!---i.l. __ _J

IDENTICAL

,--1
~+-• T'i~lfN I

LOGIC I
L __ .J

r----------<1-----1-------1-.i- -- ,
I T:~~N I

t---<~''--' ------+-------1--------'l-------11.;I CJ~f~ I

AU.../ANY ZERO (S)

ALL/ANY ONE (5)

VP BIT SET

~---'

I
l
I
L

Au;
TRANSFER

BUS

(AU28)

::· AUZXFER
PCCARDA

I
I
I
I
I

_J

___ _J

CONT AU
(AU CONTROL)

Figure 4-4. Arithmetic Unit Detailed Block Diagram

BRANCH TAKEN

t--------~~IJ" lt:.::'t»bs;TIVE
TO PP CON'JROL

4-16 ADDER. The adder performs addition, subtraction (two's comple­
ment addition), and logical functions (AND, OR, EXCLUSIVE OR, and
EQUIVALENCE) using the two 32-bit words supplied by the complement or
constant generator and the double rail generator. The operation performed
is under direction of AU control, and the resulting output is applied to the
AUlB bus and, ultimately, the VPR file.

4-17 SHIFTER. The shifter performs right and left arithmetic, logical,
and cyclic shifts in increments of one, four, and eight bits on the 32-bit MDB
word supplied by the unload box. In addition, the aligner input to the shifter
is passed through to the output when a 16-bit cyclic shift is executed. Refer
to figure 4-5 for a definition of the three basic shift types used by the PP
When the amount of shift is other than the increments mentioned, the shift
is executed by first performing the largest possible incremental shift with­
out exceeding the desired end amount and then following up with the neces -
sary series of equal or smaller shift increments on the succeeding assigned
time slots. An example would be a shift of 13, which is executed in incre­
ments of 8, 4, and 1, using three time slots. The result of the desired
shift operation, which is under direction of AU control, is output to the VPR
file over the AUlB bus.

4-18 BIT PICKER. The bit picker is used during POLL instructions to
scan a byte of data (from a CR) from the most-significant bit to the least­
significant bit, in order to determine the number of zeros from the most sig­
nificant bit to the first one. The bit picker operates on all four bytes of the
MDB word supplied by the unioad box and PP control selects the count of the
desired byte for transfer to the VPR file over the A Ul B bus. The bit picker
also develops an all-zero signal (indicates when all bits of the byte under ex­
amination are zero) used by the AU control skip taken logic.

4-19 TEST BOX 1, 2, AND 3 LOGIC. The test box logic performs various
tests on the 32-bit words from the unload box and the double rail generator.
The portion (byte, hex, or bit) of the word under test specified by the instruc­
tion requiring the test is selected by the AU control skip and branch-taken
logic. The test box 1 logic utilizes the MDB word supplied by the unload box
during test positive (TP), test negative (TM), test zero (TZ), and test non­
zero (TN) type instructions to test each of the four input bytes for positive,
negative, zero, and nonzero data, respectively. The test box 1 logic is also
used during stack (PUSH, PULL, and MOD) instructions to test for negative
and zero data. The test box 2 logic utilizes the word, R field, and VP code
supplied by the unload box and is used during test-for-any-one (TO, TSO,
and TRO), test-for-any-zero (T Z, TSZ, and TRZ), test-for -all-ones (TAO),
and test-for-all-zeros (TAZ) type instructions. The test box 2 logic is used
to test all eight input hex groups for any one, any zero, all ones, and all
zeros in only those bit positions marked by ones in the R field. In addi-
tion, the test box 2 logic is used during the test VP flag for one (VPTO)

4-12 Advanced Scientific Computer

LOGICAL* (SHL) BIT 0 31

LEFT (LOST)~ I 4- ----_ 4-- 4-14- o•s

BIT 0 31

RIGHT o's --.1 _____..
~ • ~ 1~ (LOST)

ARITHMETIC* (SHA) BIT 0 31

LEFT (LOST) 4---1 4-- 4-- ~ 4-14- o•s

BIT 0 31

RIGHT lsE
___...
~ ~ ----.. 1--. (LOST)

CYCLIC* (SHC) BIT 0 31

LEFT r--1 4--_
4--- ,......_ .-1 ..
• BIT 0 31

Rl~HT LI ~ __.... ___.. __.... 1--;
4

*LEFT SHIFTS ARE SPECIFIED BY A POSITIVE OPERAND AND RIGHT
SHIFTS ARE SPECIFIED BY A NEGATIVE OPERAND,

(A) 124730

Figure 4-5. Peripheral Processor Shift Basics

and test VP flag for zero (VPTZ) instructions to test each of the four in-
put bytes for a set bit and cleared bit, respectively, in the position desig­
nated by the VP code. The te~t box 3 logic utilizes the VPRB bus word
from the double rail generator during the decrement and branch if zero/non­
zero (DBZ and DBN) and increment and branch if zero/nonzero (IBZ and IBN)
instructions to test each of the four input bytes for plus and minus one, re­
spectively. This test box 3 byte information is then used to determine when
a VPR halfword is zero or nonzero. The test box logic outputs are input to
the AU control skip taken for stack logic, branch taken logic, and skip taken
logic for development of the test positive, branch taken, and skip taken con­
trol signals.

4-13 Advanced Scientific Computer

4P------
4-20 COMPARATOR. The comparator performs a bit-for-bit comparison
of the two 32-bit words input to the AU and generates a signalf or each byte
indicating whether or not the two inputs are identical. The results of the
comparis~n are input to the AU control skip taken logfc, where the data
group (word, halfword, or byte) specified by the instruction requiring the
compare is selected.

4-21 DATA MANIPULATOR. The data manipulator sets or resets bits in
the MDB word supplied by the unload box in accordance with the R field or
VP code, depending on the executing instruction. When a set (SL, SR), re­
set (RL, RR), test and set (TSOL, TSOR, TSZL, and TSZR), or test and
reset (TROL, TROR, TRZL, and TRZR) type instruction is executing, the
data manipulator sets or resets (depending on the op-code) bits in all eight
input hex groups marked by ones in the R field. When a set VP flag (VPS)
or reset VP flag (VPR) instruction is executing, the data manipulator sets
or resets, respectively, one bit in each of the input bytes according to the
VP code. The output of the data manipulator is input to the CR file over the
AU2B bus, where the hex (for TS and TR type instructions) or byte (for VPS
and VPR instructions) specified by the instruction requiring the setting or
resetting is selected.

4-22 SKIP TAKEN AND BRANCH TAKEN LOGIC. The skip taken and
branch taken logic, located on the CONTAU card, consists of skip taken for
stack logic, branch taken logic, and skip taken logic. The skip taken for
stack logic utilizes the zero and negative test signals from the test box 1
logic to determine if the instruction following the current stack instruction is
to be skipped (normal operation of a stack instruction) or not (invalid stack
parameter encountered). The output of the skip taken for stack logic is used
by PP control to direct the stack instruction skipping action. The branch
taken logic uses the test box 1 and test box 3 outputs during the test and
branch (TP, TM, TN, and TZ) and increment/decrement test and branch
(IBZ, IBN, DBZ, and DBN) type instructions, respectively, to determine if
the specified branch should be taken. The output of the branch taken logic is
used by PP control to direct the branching action. The skip taken logic de­
termines whether the next instruction should be skipped. To do this, it uses
the comparator outputs for compare (CE and CN) type instructions, the test
box 2 outputs for test and skip (TO, TA, TR, TS, TZL, TZR, and VPT) type
instructions, and the all-zero outputs from the bit picker for the POLL in­
struction. The output of the skip taken logic is used by PP control to direct
the skipping action.

4-23 AU CONTROL. The AU control logic, located on CONTAU, accepts
PP control information in the AUMIR format, shown in figure 4-78 of the PP
control detailed description, translates the AUMIR data to a more usable
form, and distributes the results to the AU components described in the

4-14
Advanced Scientific Computer

previous paragraphs. The aligner control logic (part of AU control) utilizes
the aligner reference and object portions of the AUMIR format to develop the
byte increment shift controls necessary for aligner operation. The aligner
reference and object are also used by the aligner control logic to develop the
byte and halfword signals used by the skip and branch taken logic to determine
what data is specified by the current instruction for testing purposes. The
shifter control logic uses the shift count and op-code portions of the AUMIR
format to develop the shifter controls, the control signal for the aligner that
results in a two byte shift when a cyclic shift of 16 bits is desired, and the
updated shift count for PP control when additional shift is necessary to com­
plete a multistep shift instruction. The remainder of the AU control logic
is primarily concerned with decoding the instruction op-code and state in
order to enable the proper adder, complement or constant generator, data
manipulator, and skip and branch taken logic.

4-24 INDEXER

The Indexer is time shared by the eight Virtual Processors to perform Pro­
gram Counter (PC) indexing and to develop the Instruction Register (IR) ef­
fective address, source address, and destination address. The Indexer is
also involved in miscellaneous operations such as Write Cycle Equality
checking (WCE occurs when the next instruction to be executed is modified
by the current instruction) and stack parameter modification. The Indexer
is functionally divided into the following components (they are described in
the next three paragraphs):

• PC indexer (Il)

• TN field indexer (12)

• Register indexer (13)

The Indexer is located on the INDEXER(O, 1) cards, with 16-bits of each
functional component on both INDEXER cards (bits 0-15 are on INDEXER(O)
and bits 16-31 are on INDEXER(l)). The inputs and outputs of the three
Indexer components are shown in figure 4-6.

4-25 PC INDEXER. The PC indexer is primarily used to increment the
current PC value by one to advance the third level of the PP three-level
pipe. (The PP three-level pipe concept is described in detail in paragraph
4-62.) The incremented result is returned to the PC to locate the next se­
quential instruction. The PC indexer decrements the current PC value by
one when the address of the next instruction needs to be saved (store and
load PC instructions). When an interrupt occurs, the PC indexer decrements
the current PC value by two so that the instruction following the interrupted
instruction is not skipped after the interrupt is honored. If a branch is
taken out of the current instruction stream, the branch address in the Main
Instruction Register (MIR) effective address, rather than the current PC
value, is used for indexing.

4-15 Advanced Scientific Computer

PC
+

MIRE

PC+ BASE} NIR + SWBD +
MIR EA + VPR

SWBD + NIR} + VPR383

(A) 111650

A

!!:!.fil!..

~ INDEXER (11) -PC PC

TN FIELD INDEXER (12) -..... IREA + SA+ DA

-- REGISTER INDEXER (13) -
~ IR

SA+ DA

INDEXER

11 - CONTROLS INCREMENTING AND DECREMENTING THE- PC,

12 - CONTROLS DEVELOPMENT OF THE IR EFFECTIVE ADDRESS,
IR SOURCE ADDRESS, OR IR DESTINATION ADDRESS,

13 - CONTROLS DEVELOPMENT OF THE IR SOURCE OR DESTINATION
REGISTER ADDRESSES,

Figure 4-6. Indexer Block Diagram

4-26 TN FIELD INDEXER. The TN field indexer develops the IR effective
address when the T and N fields of the instruction being indexed specify a
CM or ROM location or an immediate operand. When the T and N fields
specify a register (VPR or CR), the TN field indexer develops a source or
destination address for the IR. The TN field indexer is capable of adding up
to three different items in the development of a CM or ROM address and up
to two different items in the development of an immediate operand, register
operand, or absolute operand. The items that may be involved in the de­
velopment of a memory location include the PC value or CM base value (for
CM addresses only) for PC and base relative instructions, respectively, the
N field of the next instruction (from the SWBD or NIR), and the VPR halfword
specified by the T field of the next instruction. In some cases (WCE test,

4-16 Advanced Scientific Computer

locating a stack pointer, and incrementing the branch address during an un­
conditional branch to ROM and save PC (BRSM) instruction), the TN field
indexer develops a memory address by incrementing the MIR effective ad­
dress. The two items that may be involved in the development of an im­
mediate operand, absolute operand, or register operand include the N field
of the next instruction and the VPR halfword specified by the T field of the
next instruction.

The TN field indexer is also capable of developing an IR effective address
from an indirect cell. The two items that may be involved in the indirect
case include the 24-bit address field in the SWBD and the VPR halfword
specified by the T field of the indirect cell. A miscellaneous operation pro­
vided by the TN field indexer is the modification of the stack word and space
count parameters (refer to paragraph 4-46) input in the SWBD. The output
of the TN field indexer is inserted in the IR effective address, source ad­
dress, or destination address field under direction of PP control.

4-27 REGISTER INDEXER. The register indexer develops the IR source
or destination address specifying a VPR or CR. When a VPR is the source
or destination, the R field of the instruction being indexed (from the SWBD
or NIR) is passed through the register indexer to the IR. When a CR is the
source or destination, the register indexer adds byte 3 of VPR3 to the R
field to develop the desired address. The addition is necessary because the
four-bit R field is not large enough to specify each individual byte of the 64
register CR file. The output of the register indexer is inserted in the IR
source or destination address field under direction of PP control.

4-28 COMMUNICATIONS REGISTER FILE

The Communications Register (CR) file consists of 64 32-bit registers,
sible to all eight VP' s and addressable down to the individual bit level.
mary functions of the CR file include the following:

• PP to ASC system interface

• PP maintenance control

• System control

• Interrupt monitoring and control

• VP time slot assignments

• VP CM priority assignments

• Source of real time clock information

• Source of CM base operands

• Temporary storage area

acces -
Pri-

4-17 Advanced Scientific Computer

The CR file is implemented on four motherboards (CROMB, CRlMB, CR2MB,
and CR3MB), each motherboard containing a byte of all 64 registers. Refer
to figure 4-63 for the card layout in relation to the motherboards. The CR
file is fun~tionally divided into the following components and described in the
next three paragraphs:

• CR file control

• Input synchronizers

• Communications Registers

The relationships between these components is shown in figure 4-7.

4-29 CR FILE CONTROL. The CR file control logic is located on the
CRMIRLDR, CRCONT(0-3), and CRCELLY cards. The CRMIRLDR card
accepts op-code groupings and the IR source and destination addresses from
PP control, and generates write controls capable of addressing from the word
to the hex level and read controls capable of add res sing a word. The
CRCONT(0-3) cards utilize the CRMIRLDR output to distribute the write and
read select enables to the intended CR. The write select provides the PP
software with the capability of writing in any word (down to the individual bit)

SOURCE,
DESTINATION,
ANO OP-CODES
FROM PP CONTROL

SYSTEM ANO
PROGRAMMED
INTERRUPTS

AU2B DATA
(SOFTWARE CONTROL)

PERIPHERAL
DEVICE
GATES

!A) 1.24711

CR FILE
CONTROL

INPUT
SYNCHRONIZERS

COMMUNI­
CATION
REGISTERS

(CR'S)

"'°""-~ ~°,.. t~t OAT .A
BUS
(SOFTWARE
CONTROL)

Figure 4-7. Communications Register File Block Diagram

4-18
Advanced Scientific Computer

of the CR file, with the approval of the CR protect mechanism (the CR protect
mechanism inhibits writing into the first 10 16 words of the CR file when en­
abled). The read select provides the PP software with the capability of read­
ing any word from the CR file. The CRCELLY. card monitors system inter­
rupts (ac power failure, Central Processor interrupt, activation of the ASC
Operator's Console STOP button, disc protect violation, CM parity error,
CM protect violation, or illegal op-code in the selected VP (the selected VP
is the master controller VP used to direct PP operations)) and the software
initiated (programmed) interrupts to control the interrupt associated bytes
of the CR file.

4-30 INPUT SYNCHRONIZERS. The CR file input synchronizers are used
to synchronize gating signals from peripheral devices with the PP clock so
that data from the peripheral devices is not lost at the interface with the CR
file. All of the synchronizers are identical, except for the number of out­
puts, and are located on the CRCELLY card and each CR CONT and CRCELL
card. The single output synchronizers are used with the gating signals as -
sociated with data on one motherboard and the multiple output synchronizers
are used when one gate is associated with data on more than one motherboard.
The peripheral device data may access all CR's except the first eight (inter­
rupt control bytes and the CM base registers) and is continually monitored
by the device associated with the data.

4-31 COMMUNICATIONS REGISTERS. The Communications Registers
(CR's) provide the actual storage capability (64 32-bit registers) for the CR
file data and control information. All 64 CR' s are subject to modification
via the PP software (under the influence of the CR protect mechanism),
whereas the peripheral device data has access to the CR bits as detailed in
the PP Fixed Variable List. Refer to appendix B of this manual for the CR
file map and to the Description of the ASC CR File, part number 930207-1,
for a detailed description of all data in the CR file.

4- 32 READ ONLY MEMORY

The PP Read Only Memory (ROM) provides storage for up to 4096 32-bit
words, used primarily to hold control programs for the input/output devices
of the ASC system. The actual ROM is located on the 16 ROMCRD(0-15)
cards (2 56 32 -bit words per card) and the decoding and merging logic is on
the AU2XFER, CRROMRG(0-3), and ROMMRG cards. Refer to figure 4-8
for a block diagram illustrating the relationships between the logic cards.

The twelve bit ROM address supplied by the PC is applied directly to the
ROMCRD(0-15) cards. The four most significant bits of the address are
used to enable one of the 16 ROMCRD cards and the eight least significant
bits of the address select one of the 256 words on the enabled card. The ad­

dressed word is passed through the merging logic to the NIR. (The merging
logic consists of the ROMMRG and AU2XFER cards when the addressed word

4-19 Advanced Scientific Computer

~------

FOUR
MSB'S

OF ROM
ADDRESS

FROM
RMAB

BUS

EIGHT
LSB'S

OF ROM
ADDRESS

RMAB
BUS

(Al 124732

ROM

(8)
t---81 CRROMMRG(O)

(9)

(5)

(IO) t---- CRROMMRG(1)

(I I)

(6)

(12)

(13) --
(7)

(14)
CRROMMRG(3)

ROMCRD(IS)

ROMMRG/

AU2XFER

"256 32-BIT WORDS
PER ROMCRD

Figure 4-8. Read Only Memory Block Diagram

ROM
INSTRUC­
TION
TO NIR

is on ROMCRD(0-3) and a CRROMRG card and the ROMMRG and AUZXFER
cards when the addressed word is on ROMCRD(4-15).

4-33 SINGLE WORD BUFFER CONTROLLER. The Single Word Buffer
Controller (SWBC) is time shared by the eight Virtual Processors to provide
an interface to the Memory Control Unit (MCU) and Central Memory (CM)
necessary for CM read and write operations. The SWBC accepts memory
access requests from the active VP, notifies the MCU when a request is
present, and provides a data path to CM to execute the highest priority re­
quest under direction of the MCU. Functionally, the SWBC is divided into
the following components:

4-20 Advanced Scientific Computer

• Synchronous logic

• Asynchronous logic

• Two Way Bus

The synchronous logic is located on the SWBSYNC card, the asynchronous
logic is located on the SWBASY card, and the Two Way Bus (TWB) is located
on the PCCARDA(0-7) cards, with four bits of the 32-bit TWB on each
PCCARDA. The relationships between the components of the SWBC are
shown in figure 4-9.

4-34 SYNCHRONOUS LOGIC. The synchronous logic portion of the SWBC
provides the interface between the eight VP' s and the asynchronous logic
portion of the SWBC. When a CM read or write operation is desired by the
active VP, the memory request and VP priority (assigned by software in the
CR file) combine to enable the VP code into either the high priority or low
priority queue on SWBSYNC. At the same time, the memory request en­
ables status information describing the request into the assigned status file
entry. The status information includes the memory zone (three least signifi­
cant bits of the PC), the type of operation (read or write), and the CM pro­
tect enable. Each status file entry has a busy bit associated with the as -
signed VP so that no more than one outstanding memory request can exist
for any one VP. The priority queue and status file data is input to the
asynchronous logic so that any outstanding memory access requests can be
honored.

4-35 ASYNCHRONOUS LOGIC. The SWBC asynchronous logic is the PP
interface with the MCU. The asynchronous logic monitors the synchronous
logic priority queue and status file data, indicates to the MCU when a PP
memory access request is pending, and controls the necessary transfer of
data and address information in order to execute the desired read or write
operation.

The priority queue select logic on SWBASY monitors entries in both synchro­
nous logic priority queues and selects the entry with the highest priority.
Queue entries in the same priority queue are selected on a first come, first
served basis. When a queue entry does exist, the VP code associated with
the selected entry is enabled to the VP code distribution logic and is used to

enable the associated status file entry in the synchronous logic to the asyn­
chronous status file output logic. At the same time, the memory request
control logic issues an access request (AR) signal to the MCU to initiate the
memory cycle. When the MCU responds with the request accepted (RA) sig­
nal, the following takes place: The VP code associated with the request and
the status file data are both input to the MCU, and the write control (other
than the write enable from the MCU) from the VP code distribution logic is
input to the TWB. If a write operation is specified by the status file entry,
the MCU develops a write enable that combines with the other mentioned

4-21 Advanced Scientific Computer

*"' I
N
N

,--
CURRENT
VP CODE ------------4~ -

ASYNCHRONOUS LOGIC

--
I

I
VPC I SOURCE ID

PRIORITY FROM
CR FILE

PRIORITY
QUEUE

SELECT
LOGIC

DISTRIBUTION 1------,r------t..i
LOGIC I

CURRENT
VP CODE ---'----;-----__,~

MEMORY
REQUEST
CONTROL

MEMORY -,... / ~ STATUS

REQUEST ---------~~< STATUS >-------j~ .. ~~F-IL-~E__, STATUS ~ FILE OUTPUT
INFORMATION LOGIC

----~
L - - ______ J L ___ _

-
ACCESS REQUEST (AR)

REQUEST ACCEPTED (RA) I
READ DATA AVAILABEL (RDA)I

READ DATA SAMPLED (RDS)]

INTERRUPT
LOGIC -

REQUEST DATA

I
I

_J

PARITY/
PROTECT

WRITE
ENABLE

-
-

RESPONSE
ID

(B) 124733

SWBD

SWBA

READ ENABLE

READ
ZONE
SELECT

1...iWBA/SWBD READ AND WRITE SELECT

1--__:W~R~l!T!E __ __.~~~~...__.__,._~.,

READ

WRITE/READ -

TWO WAY BUS
(TWB)
AND

MAM B BUS

CM DATA -
CM ADDRESS

- PARITY /PROTECT
INTERRUPTS TO
CR FILE

Figure 4-9. Single Word Buffer Controller Block Diagram

MEMORY
CONTROL

UNIT

(Mcu)

write control signals to execute the write. If a read operation is specified by
the status file entry, the address of the data to be read is input to CM and the
VP code input to the MCU is used to select the zone data in the corresponding
status file entry for use by the TWB. When the· MCU responds to the read
request with the read data available (RDA) signal, the memory request con­
trol logic acknowledges the response with the read data sampled (RDS) sig­
nal and enables the CM read by providing the necessary controls to the TWB.
If a CM parity error or protect violation occurs during the memory cycle,
the MCU response reflecting the error is transferred to the CR file interrupt
logic via the asynchronous logic.

4-36 TWO-WAY BUS. The Two-Way Bus (TWB) and MAMB bus interface
the SWBD and SWBA, respectively, with CM. When a write operation is to
be performed, the write control signals from the asynchronous logic enable
the SWBD over the 32-bit bidirectional TWB to the CM data lines and the
SWBA over the MAMB bus to the CM address lines. During these transfers,
the SWBD data is expanded eight times to match the CM eight word data port.
When a read operation is to be performed, the SWBA is transferred over the
MAMB bus to the CM address lines. When the MCU and CM respond to the
read request, the TWB accepts data from CM (the TWB is normally in the
read mode). In addition, the TWB zone select from the synchronous logic
enables one of the eight words read to the SWBD after the read memory
cycle.

4-37 PERIPHERAL PROCESSOR CONTROL

The Peripheral Processor (PP) control is time shared by the eight Virtual
Processors (VP' s) to provide the controls and enables necessary to execute
PP instructions loaded in the Instruction Registers (!R's). The heart of PP
control, the Main Instruction Register (MIR), is used to hold the expanded
IR of the active VP to control PP operations for the duration of a time slot.
The MIR consists of 256 bits. Words 0 and 1, the IRMIR, are located on
IRCARD(0-3); words 2, 5, and 6, the CRMIR, are located on CRCONT(0-3);
word 3, the VPRMIR, is located on VPRCONT and PCCTL; word 4, the
AUMIR is located on CONTAU; word 7 is the VP codes used by IRCARD(0-3),
and is located on IRCARD(0-3). The remaining PP control logic is lo-
cated on the PCCTL, PPCTLl, PPCTL2, and VPRCONT cards. The control
logic on the CONTAU card of the AU and the CRMIRLDR and CRCONT(0-3)
cards of the CR file is discussed in the general description of the AU and
CR file, respectively.

The major control paths in the PP are shown in figure 4-10, and should be
referenced in the following discussion. The VP code associated with the
next active VP is used to transfer the IR of the next active VP to the 64- bit
IRMIR and to the control logic on VPRCONT associated with the development
of the remaining portions of the MIR.

4-23 Advanced Scientific Computer

CR FILE CONTROL -- VPRCONT CR INTERRUPTS
FILE

t--

P/O•
VPRMIR

AUMIR INPUT ARITHMETIC SHIFT COUNT
CURRENT NEXT P/O* UNIT
VP CODE VP CODE VPRMIR INPUT (AU) ... PCCTL

P/O*VPRMIR INPUT

,j I\. .,
~ READ/WRITE REQUESTS VIRTUAL SWBD/NIR

PROCESSORS DATA

BUFFER AVAILABLE (VP'S)
INSTRUCTION IRCARD MAIN ~ - REGISTERS INSTRUCTION r---

\
(I R'S) R(.GISTER

IRMIR)

~ PPCTLI

SINGLE BUFFER

UFFER
WORD BUFFER AVAILABLE
CONTROLLER

~-
J l AVAIL- (SWBC)

ABLE

SW~~~ SWBD/
NIR DATA

Sf~f~~ NEXT
RUPTS INSTRUCTION

INDEXER -,. CONTROL INDEXER 12, 13

~ PPCTL2 -- -
' ~ l: BUFFER AVAILABLE

INTERRUPTS
SWBD/
NIR DATA

*P/0 MEANS ?ART OF

1

(B) 124734

Figure 4-10. Peripheral Processor Control Bloc_k Diagram

The VPRCONT card utilizes the applied IR data to develop the CR file con­
trol signals necessary for the CRMIRLDR card (referenced in paragraph
4-29) to generate the CRMIR input for the CR fi~e, the AUMIR input for the
AU, and the VPRMIR input (with the aid of the PCCTL card) for the active
VP. Refer to figure 4-78 for the CRMIR, AUMIR, and VPRMIR input for­
mats. When the next clock occurs and the described VP becomes active, the
IR is loaded in the IRMIR, and the CRMIR, AUMIR, and VPRMIR are ex­
panded to the formats shown in figure 4-79. The MIR (IRMIR, CRMIR,
AUMIR, and VPRMIR) is now used to control the operations necessary to ex­
ecute a step of the current instruction. The PCCTL card uses the IRMIR
data and the buffer available signal from the SWBC (indicates that the active
VP has no memory requests pending) to develop additional controls for the
active VP and read and write requests for SWBC. A new read or write re­
quest can only be made when the SWBC is available.

The PPCTLl card uses the IRMIR data, SWBD or NIR data (as determined by
the select signal from the PPCTL2 card) from the active VP, and the SWBC
buffer available signal to develop indexer controls, update the IR state at the
conclusion of the time slot, and generate a signal used to indicate when a
new instruction should be transferred to the IR from the SWBD or NIR (ter­
mination of the current instruction). The PPCTL2 card uses the IRMIR data,
SWBD or NIR data from the active VP, the SWBC buffer available signal, and
the next instruction indicator from PPCTL to update the IR op-code and con­
trol flags at the conclusion of the time slot. The IR also receives update in­
formation from the TN (I2) and R (13) field indexers (source, destination, or
effective address) and the AU (effective address) when a shift instruction is
being executed. Automatic and programmed interrupts recorded by the CR
file are processed by the PPCTL2 card at the conclusion of the instruction
during which the interrupt occurred and by the PPCTLl card when the inter­
rupt is honored by branching to ROM.

4-38 MAINTENANCE LOGIC

The Peripheral Processor (PP) maintenance logic provides a means of
checking the operation of the PP ECL circuitry previously discussed in this
section. In addition, during normal operation of the PP, the maintenance
logic supplies the VP code of the active VP, the Single Word Buffer (SWB)
priority of the active VP, and a Communications Register (CR) indicator
used to enable or disable the CR protect logic provided by PP control. The
checkout capability provided by the maintenance logic is exercised by the
ASC Maintenance Console in the manual mode, a card reader in the semi­
automatic mode, or by a VP in the automatic or normal mode. The main­
tenance system external to the PP (this includes the ASC Maintenance Con­
sole, the card reader, and Test Control Logic) necessary for selecting one

4-25 Advanced Scientific Computer

of the three operating modes and controlling both the manual and semi­
automatic modes is briefly described in appendix C of this manual. In the
automatic mode, any VP is capable of placing any other VP (except the VP
designate4 by the VP SELECT switch on the ASC Maintenance Console) under
test to execute maintenance commands supplied by the controlling VP.

A block diagram showing the interrelationships between the four basic areas
of the maintenance logic is presented in figure 4-11. The "heart" of the
maintenance logic is in the CR file; specifically, the maintenance registers
beginning at bit 17 of word C 16 and extending through word F 16· The data
entered in these registers, either via the ASC Maintenance Console, the
card reader, or the PP software controlling the VP responsible for exercis -
ing the maintenance logic, is used to control the PP maintenance logic during
the execution of maintenance commands. When a maintenance command is
initiated (by the .ASC Maintenance Console in the manual or semi-automatic
modes or by the occurrence of a time slot associated with the VP under test
in the automatic mode), the control information and data from the mainte­
nance registers are distributed to the hardcore maintenance logic on the

STATUS INFORMATION
TO TCL AND DISPLAY
REGISTER DA
MAINTENANCE

TA TO
CON-

SOLE

--

CR FILE

t---- --

MANUAL AND
SEM 1-AUTOMATI
CONTROL AND
DATA FROM TCL

AUTOMATIC
CONTROL AND
DATA FROM
PP SOFTWARE

(A) 124735

c:_ MAINTENANCE

--- REGISTERS

TIMI!: SLOT/PRIORITY;
CR PROTECT

MAINTENANCE
CONTROL/OAT A

MAINTENANCE
SELECTED DATA/

STATUS -

PP
CONTROL

l ~
CONTROL/MIR DATA

HARDCORE
MAINTENANCE

LOGIC

<~L;.~T~ln~~i'J CONTROL

MAINTENANCE DATA_ --
MAINTENANCE VP'S/SWBC/
SELECTED CR FILE/
DATA ROM

Figure 4-11. Peripheral Processor Maintenance Logic Block Diagram

4-26 Advanced Scientific Computer

MLCTL, ML2, and MLl(O, 1) cards. The hardcore maintenance logic uses
the maintenance control and data to direct operation of one of the following
types of maintenance commands:

• Switch register to display register transfer (these are the two
data-holding registers of the maintenance registers)

• PP register (includes any of the PC's, NIR's, IR's, SWBA's,
SWBD's, VPR's, or CR's, the MIR, or an entry in the SWBC)
to display register transfer

• Switch register specified CM word to display register transfer

• Switch register specified ROM word to display register trans­
fer

• Switch register to PP register transfer

• Display register to PP register transfer

• Storage of the display register in CM at the location specified
by the switch register

• Lock or unlock the PC 1 s specified by the maintenance registers

• Set or reset the flip-flops associated with the VP' s specified by
the maintenance registers

• Advance all (or one) of the VP' s specified by the maintenance
registers by the number of time slots specified by the mainte­
nance registers (this is called a burst operation)

• Advance all (or one) of the VP' s specified by the maintenance
registers until they have all completed their current instruc­
tion

The hardcore maintenance logic distributes control gates and enables (and
MIR data, when the current maintenance command transfers data to the
MIR) to PP control, and data to the eight VP's, the SWBC, the CR file, and
the ROM (ROM is supplied data only during the ROM to display register
maintenance command previously mentioned). When the maintenance com­
mand involves a data transfer, PP control provides the VP' s, SWBC, CR
file, or ROM with the control enables necessary to accept maintenance reg­
ister data or to distribute currently held quantities to the display mainte­
nance register. The maintenance commands not involving a maintenance
register transfer are also under direction of PP control, but execute with­
out any other interface to the maintenance logic. By executing the proper
combination of maintenance commands, any area of the PP can be checked
out. The hardcore maintenance logic also reports PP status information
(including the current VP code and time slot) to the Test Control Logic (TCL),
the display register contents directly to the ASC Maintenance Console, and

4-27 Advanced Scientific Computer

maintenance command status information (includes maintenance logic busy,
illegal command, and PC lock indicators) to the CR file maintenance regis­
ters.

4-39 INSTRUCTION REPERTOIRE

The Peripheral Processor (PP) instruction repertoire consists of 219 basic
instructions and one no-op instruction, as shown in the Karnaugh map of
figure 4-12. Each of these instructions (except the no -op) deals with im­
mediate data or data in Central Memory (CM), Read Only Memory (ROM),
the VPR file, or the CR file. The R, T, and N fields of the instruction
(refer to paragraph 1-15) specify the data involved in the instruction as fol­
lows:

• R field addressing - The 4-bit R field (ABCD) is used to
specify a VPR or CR at the word, halfword, or byte level.
When a VPR is specified, the first two bits (AB) identify the
VPR word (00 identifies VPRO, 01 identifies VPRl, etc.), the
third bit (C) identifies the halfword (0 for right and 1 for left),
and the third and fourth together (CD) identify the byte (00 for
byte 0, 01 for byte 1, etc.). When a CR is specified, byte 3 of
VPR3 is added to the R field and the result (ABCDEFGH) iden­
tifies the CR (four bits is not enough to identify 64 registers
down to the byte level). The first six bits (ABCDEF) of the
sum identify the word (000000 identifies CRO, 000001 identifies
CRl, etc.) and the last two bits identify the halfword and byte
as mentioned for the VPR case.

• T field addressing - The 4-bit T field is used to specify the VPR
halfword to be added to the quantity specified by the N field
(indexing). The first bit is used to indicate whether the current
instruction is direct (O) or indirect (1) and the last three bits
specify the VPR halfword involved. The left half of VPRO is
not used, however, because 000 specifies no indexing (0000
and 1000 specify the direct and indirect cases, respectively,
of no indexing, 0001 and 1001 specify the direct and indirect
cases of indexing with the right halfword of VPRO, 0111
and 11111 specify the direct and indirect cases of indexing with
the right halfword of VPR3)).

• N field addressing - The 16-bit N field is used to specify an
immediate operand, CM address (a), branch address ((3), VPR,
or CR. The quantity specified is determined by the op-code of
the instruction. A VPR or CR is identified by the N field as
described in the R field addressing (the four LSB 's identify a
VPR and the eight LSB 's identify a CR).

4-28 Advanced Scientific Computer

C zC 3 - 00 01 11 10

=00

\ J
lll! 01 11 I 0 00 0 I 11 I 0 00 0 I 11 10 00 0 I 11 I 0

BC ST STL STR BCS CE CEL CER BC
00 00 0 I 03 02 10 11 I 3 I 2 30 31 33 32 20 21 23 22

NOP liC SFW SFLH 5FRH u'b~'LP CWE CLHE CRHE ucx
NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB

LO LOL LOR LOA ST STL STR STA CN CNL CNR
04 05 07 06 I 4 I 5 17 16 34 35 37 36 24 25 27 26
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN

LDCM LOCM LDCM LOCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM

01

LO LDL LOR LOA ST STL STR STA
11 oc OD OF OE IC ID 1F IE 3C 30 3F 3E 2C 20 2F 2E

LXW LXLH LXRM LXAB sxw SXLH SXRH SXAB
LDCM LDCM LDCM LOCM STCM STHCM STHCM STCM

LO LDL LOR LOF ST STL STR STF LO LDL LOR LOF STF
OB L~~LH OB OA I B 19 IB 1A 3B 39 3B 3A 28 29 28 2A

LXFW LXP'RH LX~ SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP
LDCM LDCM LDCM LOUF STCM STHCM STHCM STUF LDCM LOCM LDCM LDUF STUF

I 0

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10

00
AN ANL ANR BR AD AOL AOR BCAS ADI ADHI AOBI LOI SHA ANHI ANSI LOI
40 41 43 42 so 51 53 52 70 71 73 72 60 61 G3 62

BAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW
CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORB! LOH\
44 45 47 46 54 55 57 56 74 75 77 7G 114 GS 67 66
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UCB5P IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LDIM

01

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI 5HC EXHI EXBI LDBI
4C 40 4F 4E SC so SF SE 7C 70 7F 7E 6C GD GF 6E

BXW ~~t~u BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB
FM LOU CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LOIM SHFT IMLOU IMLOU LDIM

11

EQ EQL EQR BCA PUSH PULL MOO BPC CEI CEHI CEBI EQHI EQBI
4B 49 4B 4A SB S9 SB SA 7B 79 7B 7A 6B 69 GB 6A

BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB
CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU

I 0

00 0 I 11 10 00 0 I 11 10 00 0 I 11 10 00 0 I 11 10

00
AN ANH ANS TZL AD AOH ADS TSZL RL AN ANH ANB TAZL
co Cl C3 C2 DO DI 03 02 FO FI F3 F2 EO El E"3 E2

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR
C4 cs C7 C6 04 OS 07 06 F4 F5 F7 F6 E4 ES E7 EG

BOVW BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR BOCW BOCH socs TAZR
PPULO PPULO PPULO CRLO UAU UAU UAU CRT SR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO

01

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR
cc co CF CE oc OD OF OE FC FD FF FE EC ED EF EE

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRTSR SK UPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO

11

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA

BQVW BQVH BQVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO

I 0

c 0 c 1 :=" 1 0

00 0 I 11 I 0 00 0 I 11 10 00 0 I 11 I 0 00 0 I 11 I 0

00

LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB
BO BI B3 B2 90 91 9' 92 BO Bl B3 B2 AO Al A3 A2

LVW LVH LVB VPRT svw SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB
LDPPU LOP PU LOP PU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN T" TNH TNB
B4 BS B7 B6 94 9S 97 96 B4 BS B7 BG A4 AS A7 A6

LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB
LDPPU LOP PU LOP PU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT

0 I

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB OBN TM TMH TMB BPCS
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TF~H 'F'MB UV
LDPPU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UC ALP

11

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB
BB B9 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB xoz TFPW TFPH TFPB
LDPPU LDPPU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT

10

(B)124736

Figure 4-12. Peripheral Processor Instruction Set

4-29
Advanced Scientific Computer

The data specified by the T and N fields combines with the instruction op­
code to dictate one of the operand types (the R field may or may not specify
a second operand) listed in table 4-1.

Table 4-1. Peripheral Processor Operand Types

Operand Type Description

Immediate Operand An immediate operand is developed by sign
extending the 16-bit N field and the VPR
halfword specified by the T field to 32 bits
(N32 and T32, respectively), and adding
the results (N32+T32, where T32=0 for

CM Address (a)
Base Relative Branch

CM Absolute Operand
VPR/CR Operand
ROM Branch Address
CM Absolute Branch

PC Relative Branch

no indexing).

A CM address or base relative branch
address is developed by adding the 16-bit
N field (N 16), the 24- bit CM base register
value (B24), and VPR halfword specified
by the T field sign extended to 24 bits (T24)
(Nl6+B24+T24, where T24=0 for no in­
dexing).

These operand types are developed by add­
ing the 16-bit N field to the 24-bit sign ex­
tended VPR halfword specified by the T
field (N 16+T24, where T24=0 for no index­
ing). The LSB' s (four for a VPR operand
and eight for a CR operand) are used in the
VPR/CR operand case as described in the
R field addressing.

A PC relative branch address is developed
by adding the 24-bit sign extended N field,
the 24-bit PC value (PC24), and the 24-bit
sign extended V PR halfword specified by
the T field (N24+Pc24+T24, where T 24:o
for no indexing).

When an indirect instruction retrieves an indirect cell via one of the operands
just described, the indirect cell operand address is developed by adding the
24-bit address field (ADR24, refer to paragraph 1-16) and the 24-bit sign ex­
tended VPR halfword specified by the T field (ADR24+T24). A variation to
the normal T and N field operand development occurs for the augmented in­
structions. In these cases, the three LSB 's of the developed effective

4-30
Advanced Scientific Computer

address (CM or ROM address) are replaced by the active VP code. When
augmenting occurs in combination with indirect, only the first level of in­
direct is augmented.

Each of the basic instruction groups utilizes some portion of the instruction
field addressing and T and N field operand development procedures and is
described in the order listed below:

• Stores

• Loads

• Arithmetic

• Logical

• Compare and skip

• Shifts

• Stack

• Set/reset CR bits

• Test CR bits and skip

• Test CR bits, set/reset, and skip

• Set/reset CR VP flag

• Test CR VP flag and skip

• Arithmetic conditional branches

• Increment/decrement and test conditional branches

• Unconditional branches

• Unconditional branch and load PC

• Unconditional branch to ROM and store PC

• Analyze effective address

• Load effective address

• Load CM base register

• Execute CM

• Te st poll bits

4-40 STORE INSTRUCTIONS (ST, STA, STH, STB, STL, STR, and STF)

The store instructions store the VPR or CR operand specified by the R field
in the VPR, CR, or CM location developed by the T and N fields. Both word
and halfword stores may involve a register to register or register to CM
data transfer (the store CM absolute instruction is legal only on the word

4-31 Advanced Scientific Computer

level, however), but the byte stores can only be a register to register trans -
fer (the PP is capable of modifying CM data at the word and halfword level).
All register to CM stores have an identical augmented counterpart and in­
direct addressing is illegal for the halfword and byte register to register
stores.

A special case store instruction is the store VPR file instruction (STF),
which stores all four VPR' s of the VP executing the instruction in four con­
secutive CM locations, the first of which is specified by the T and N field
operand. If the specified CM address is not a multiple of four, it is forced
to a multiple of four by zeroing the two LSB' s. Augmenting occurs in the
three bits adjacent to the two zeroed LSB's.

4-41 LOAD INSTRUCTIONS (LD, LDA, LDH, LDB, LDL, LDR, LDF, LDI,
LDHI, and LDBI)

The load instructions load the VPR, CR, CM, or immediate operand devel­
oped by the T and N fields into the VPR or CR specified by the R field. Word
and halfword load instructions can use all combinations of both operands,
but byte loads cannot involve a CM operand. An exception is the load CM
absolute instructions, which are legal only on the word level. All CM loads
have an identical augmented counterpart and indirect addressing is undefined
for all immediate and halfword and byte register-to-register loads.

A special case load instruction is the load VPR file instruction (LDF), which
loads all four VPR's with the contents of four consecutive CM locations, the
first of which is specified by the T and N field operand. If the specified CM
address is not a multiple of four, it is forced to a multiple of four by zeroing
the two LSB's. Augmenting· occurs in the three bits adjacent to the two ze­
roed LSB 1 s.

4-42 ARITHMETIC INSTRUCTIONS (AD, ADH, ADB, ADL, ADR, ADI,
ADHI, ADBI, SU, SUH, SUB, SUL, SUR, SUI, SUH!, SUB!)

The arithmetic instructions add/ subtract the VPR, CM, or immediate op­
erand developed by the T and N fields to /from the VPR specified by the R
field. The result of the operation replaces the contents of the VPR specified
by the R field. Word and halfword add/ subtract instructions can use all
combinations of both operands, but byte add/ subtract instructions cannot
involve a CM operand. Indirect add res sing is undefined for all immediate
arithmetic instructions and the halfword and byte arithmetic instructions
involving two VPR operands.

4-32
Advanced Scientific Computer

4-43 LOGICAL INSTRUCTIONS (OR, ORH, ORB, ORL, ORR, ORHI, ORBI,
AN, ANH, ANB, ANL, ANR, ANHI, ANBI, EX, EXH, EXB, EXL,
EXR, EXHI, EXBI, EQ, EQH, EQB, EQL, EQR, EQHI, EQBI)

The logical instructions logically combine (OR, AND, EXCLUSIVE OR, or
EQUIVALENCE) the VPR, CR, CM, or immediate operand developed by the
T and N fields with the VPR specified by the R field. The result of the logi­
cal operation replaces the contents of the VPR specified by the R field. Word
level logical instructions can combine all combinations of both operands ex­
cept for immediate operands; halfword level logical instructions can combine
all combinations of both operands without exception. Byte level logical in­
structions can combine all combinations of both operands except for CM op­
erands. Indirect addressing is undefined for all immediate logical instructions
and for the halfword and byte logical instructions involving two registers.

4-44 COMPARE AND SKIP INSTRUCTIONS (CE, CEH, CEB, CEL, CER,
CEI, CEHI, CEBI, CN, CNH, CNB, CNL, CNR, CNI, CNHI, CNBI)

The compare and skip instructions compare the VPR, CR, CM, or immedi­
ate operand developed by the T and N fields to the VPR operand specified by

the R field. The next instruction is skipped if the comparison for equality
or non-equality evaluates true. Word and halfword compare instructions
can use all combinations of both operands, but byte compare instructions
cannot involve a CM operand. Indirect addressing is undefined for all im­
mediate compare and skip instructions and for the halfword and byte com­
pare and skip instructions involving two registers.

4-45 SHIFT INSTRUCTIONS (SHL, SHA, SHC)

The shift instructions perform right and left logical, arithmetic, and cyclic
shifts (paragraph 4-17) on the VPR word specified by the R field in the direc­
tion and amount of the immediate operand developed by the T and N fields.
The immediate operand is a signed number (positive for left shifts and nega­
tive for right shifts) in the range of +31 to -32. Indirect addressing is unde­
fined for all shift instructions.

4-46 STACK INSTRUCTIONS (PUSH, PULL, MOD)

The stack instructions are used to maintain an operand stack by modifying
the status parameters to reflect any change. The format of the status
parameters is as follows:

SPACE COUNT

STACK POINTER

4-33 Advanced Scientific Computer

The 16-bit word count indicates the number of operands in the stack, the
16-bit space count indicates the number of available 32-bit slots remaining
in the stack (up to a maximum of 32, 76 7), and the 24- bit stack pointer is
the address of the next available slot. Both parameter words are located
in adjacent memory locations.

The push stack instruction reads the first parameter word from the CM ad­
dress developed by the T and N fields, checks the space count for zero, and
terminates execution if the space count is zero (the stack is full). If the
space count is nonzero, the space count is decremented by one, the word
count is incremented by one, and the first parameter word is replaced by the
modified quantities. The second parameter word is read from CM, the con­
tained stack pointer is used to store the VPR word specified by the R field
in the operand stack, and the stack pointer is incremented by one and stored
back in the second parameter word. The next sequential instruction is
skipped.

The pull stack instruction reads the first parameter word from the CM ad­
dress developed by the T and N fields, checks the word count for zero, and
terminates execution if the word count is zero (the stack is empty). If the
word count is nonzero, the word count is decremented by one, the space
count is incremented by one, and the first parameter word is replaced by
the modified parameters. The second parameter word is read from CM,
the contained stack pointer is decremented by one and then used to read the
last operand in the stack into the VPR specified by the R field, and the dec­
remented stack pointer replaces the original. The next sequential instruc­
tion is skipped.

The modify stack instruction reads the first parameter word from the CM
address developed by the T and N fields, adds the modification value in the
VPR specified by the R field to the word count and subtracts the modification
value from the space count (a positive modification value generates a gap of
unused stack locations and a negative modification value deletes the most
recent stack entries), checks both resulting quantities for a negative value,
and terminates execution if either count is negative. If both counts are non­
negative, they replace the original word and space count, the second param­
eter word is read from CM, the modification value is added to the retrieved
stack pointer, and the modified stack pointer replaces the original stack
pointer. The next sequential instruction is skipped.

4-47 SET /RESET CR BIT INSTRUCTIONS (SL, SR, RL, RR)

The set/reset CR bit instructions set or reset (depending on the op-code)
those bits, (marked by ones in the R field), in the right or left half of the CR
byte specified by the T and N fields. The R field is used as a mask in this
group of instructions and indirect addressing is undefined.

4-34
Advanced Scientific Computer

4-48 TEST CR BITS AND SKIP INSTRUCTIONS (TOL, TOR, T ZL, T ZR,
TAOL, TAOR, TAZL, TAZR)

The test CR bits and skip instructions test the bit positions marked by ones
in the R field in the left or right half of the CR byte specified by the T and
N fields for any or all one(s) or zero(s). The desired test (any one, any
zero, all ones, or all zeros) is determined by the op-code. If the test is not
satisfied, the next instruction is executed. If the test is satisfied, the next
instruction is skipped. Indirect add res sing is undefined.

4-·49 TEST CR BITS, SET /RESET, AND SKIP INSTRUCTIONS (TSZL, TSOL,
TRZL, TROL, TSZR, TSOR, TRZR, TROR)

The test CR bits, set/reset, and skip instructions test the bit positions
marked by ones in the R field in the left or right half of the CR byte speci­
fied by the T and N fields for any one or zero. If the desired test is satis -
fied, the next instruction is skipped. Independent of the test, the bit posi­
tions marked by ones in the R field are set or reset (depending on the op­
code). Indirect addressing is undefined.

4-50 SET /RESET CR VP FLAG INSTRUCTIONS (VPS, VPR)

The set/reset CR VP flag instructions set or reset the flag bit in the CR
byte specified by the T and N fields. The flag bit under consideration in the
byte is determined by the number of the executing VP. Indirect addressing
is undefined.

4-51 TEST CR VP FLAG AND SKIP INSTRUCTIONS (VPTO, VPT Z)

The test CR VP flag and skip' instructions test the flag bit in the CR byte
specified by the T and N fields for one or zero and skip the next instruction
if the desired test is satisfied. The flag bit under test in the byte is deter­
mined by the number of the executing VP. Indirect addressing is undefined.

4-52 ARITHMETIC CONDITIONAL BRANCH INSTRUCTIONS (TZ, TZH,
TZB, TN, TNH, TNB, TP, TPH, TPB, TM, TMH, TMB)

The arithmetic conditional branch instructions test the VPR or CR word,
halfword, or byte specified by the R field for zero, nonzero, greater than
zero, or less than zero. If the desired test is satisfied, a PC relative
branch is taken to the location specified by the T and N fields.

4-53 INCREMENT /DECREMENT AND TEST CONDITIONAL BRANCH
INSTRUCTIONS (IBZ, IBN, DBZ, DBN)

The increment/decrement and test conditional branch instructions increment
or decrement by one the VPR halfword specified by the R field and test the

4-35
Advanced Scientific Computer

result for zero or nonzero. If the desired test is satisfied, a PC relative
branch is taken to the location specified by the T and N fields.

4-54 UNCONDITIONAL BRANCH INSTRUCTIONS (BP~, BR, BC, BCA)

The unconditional branch instructions branch to the PC relative, ROM, base
relative, or CM absolute operand address developed by the T and N fields,
as determined by the op-code. The unconditional branch to CM instructions
(PC relative, base relative, and CM absolute) all have an identical aug­
mented counterpart.

4-55 UNCONDITIONAL BRANCH AND LOAD PC INSTRUCTIONS (BPCS,
BCS, BRS, BCAS)

The unconditional branch and load PC instructions branch to the PC relative,
base relative, ROM, or CM absolute operand address developed by the T and
N fields and load the address of the next instruction in the current instruc­
tion stream in the VPR specified by the R field. The most significant bit of
the VPR is set to indicate which instruction stream is currently being ac­
cessed (one for CM and zero for ROM).

4-56 UNCONDITIONAL BRANCH TO ROM AND STORE PC INSTRUCTION
(BRSM)

The unconditional branch to ROM and store PC instruction branches to the
ROM address specified by the T and N fields and stores the address of the
next instruction in the current instruction stream in one of the eight contig­
uous CM locations beginning 'at 20l6' The identity of the VP executing the
instruction is added to the 2016 base to determine the exact CM location.
Indirect addressing is undefined.

4-57 ANALYZE EFFECTIVE ADDRESS INSTRUCTION (ANAZ)

The analyze effective address instruction retrieves an object instruction
from the CM address developed by the T and N fields. The T and N field
operand of the object instruction is developed in the normal manner and the
result is stored in the VPR specified by the R field of the analyze ~nstruction.
The result of the object instruction T and N field operand development is
that the object instruction is effectively in the location of the analyze instruc -
tion, with the following exception: a PC relative branch address is developed
with a PC value that is one greater than it would be. if the PC relative branch
was in the analyze instruction location.

4-58 LOAD EFFECTIVE ADDRESS INSTRUCTION (LDEA)

The load effective address instruction loads the CM effective address devel­
oped by the T and N fields in the VPR specified by the R field.

4-36 Advanced Scientific Computer

4-59 LOAD CM BASE REGISTER INSTRUCTION (LDMB)

The load CM base register instruction loads the CM base register associated
with the active VP with the three least significant bytes of the VPR specified
by the T and N fields. The LDMB instruction may be indirect. When this is
the case, the first level of indirect is through a VPR and any additional levels
use CM. This instruction is exempt from the CR protect mechanism (no
interrupt will occur when the CR protect logic is enabled and this instruction
executes).

4-60 EXECUTE CM INSTRUCTION (EXEC)

The execute CM instruction executes the CM object instruction specified by
the T and N fields as though it were in the location of the original execute
CM instruction, except when the object instruction is a PC relative branch.
When the object instruction is a PC relative branch, the PC value used in the
development of the branch address is one greater than that used if the object
instruction actually replaced the execute CM instruction.

4-61 TEST POLL BITS INSTRUCTION (POLL)

The test poll bits instruction tests the CR byte specified by the T and N
fields for a one in any of the bit positions and skips the next instruction if a
one is found. The number of bit positions to the most significant one is in­
serted in the VPR halfword specified by the R field. (If no one is found, the
VPR halfword is cleared and no skip is taken). Indirect addressing is un­
defined.

4-62 INSTRUCTION PROCESSING

Each of the eight Virtual Processors (VP's) is capable of executing an inde­
pendent program residing in Central Memory (CM) or Read Only Memory
(ROM). The hardware directly involved in retrieving, holding, expanding,
and executing program instructions includes a Program Counter (PC), Single
Word Buffer Address register (SWEA), Single Word Buffer Data register
(SWED), Next Instruction Register (NIR), Instruction Register (IR), and the
time-shared Indexer and Main Instruction Register (MIR).

The PC, SWEA, SWED, NIR, and IR are discussed in the general and de­
tailed description of the VP's, the Indexer (including the PC indexer, TN
field indexer, and register indexer) is discussed in the general and detailed
description of the Indexer, and the MIR is discussed in the general and de­
tailed description of PP control. Refer to figure 4-13 for a diagram relating
all of these components.

The procedure required to retrieve and prepare an instruction for execution
involves three basic steps (N+Z, N+l, and Nin figure 4-13), which give rise
to the phrase "PP three-level pipe". The first basic step, instruction acqui-

4-37 Advanced Scientific Computer

ROM

NIR

(A)124737

(N+Z)

r-
1

I

PC

(N+1)

INDEXER

I
(TN ,REGISTER)

I
L--,

TIME
SLOT
CONTROL

I

IRO

MIR

SWBA

SWBD

INDEXER
(PC) ·

(N)

CENTRAL
MEMORY

(CM)

I

r--1--,
I IR7 I
L-..,. _ _J

____ J

Figure 4-13. Peripheral Processor Instruction Processing

4-38 Advanced Scientific Computer

sition, centers around the PC operation. When PP control determines that
the PP three -leve 1 pipe is to be advanced one level, and the time slot for the
VP being discussed occurs, the PC address is applied to ROM or the SWBD
as directed by PP control. If the instruction source is ROM, ROM imme -
diately responds by transferring the addressed instruction to the NIR. If the
instruction source is CM, the VP issues a read request and CM responds by
returning the addressed instruction to the SWBD. The second basic step, in­
struction expansion, is now possible. When the next PP three-level pipe ad­
vancement occurs, the SWBD or NIR R, T, and N fields (paragraph 1-15)
are expanded by the TN field and register indexers into the source, destina­
tion, and effective addresses for the IR. The dotted line around these two
indexers, in figure 4-13, represents the op-code, state, and control flags
developed by PP control for the IR. The third basic step, instruction execu­
tion, is now possible. When the next time slot occurs for this VP, the IR
data is transferred to the MIR for the duration of the time slot (approximately
8 5 nanoseconds). During this 8 5 nanoseconds, the MIR data is used by PP
control to direct execution of one step of the instruction. If termination of
the instruction occurs at this step, PP control initiates advancement of the
PP three-level pipe so a new instruction can be brought into the IR. If ter­
mination of the instruction does not occur at this step, PP control updates
the IR, at the conclusion of the time slot, to the next step of the multistep
instruction. When the next time slot for this VP occurs, the next step of the
same instruction is executed. The MIR is continually receiving IR data in
various steps of execution from all VP's that are executing programs in this
manner.

The terms N, N+l, and N+2 in figure 4-13 represent three sequential instruc­
tions in the PP three-level pipe at any one time from either ROM or CM.
The instruction from location N has been in the PP three-level pipe during
two level advances (the instructions from locations N-2 and N-1 have both
terminated while N was in the pipe), the instruction from location N+ 1 has
been in the PP three-level pipe during one level advance (termination of
N-1), and the instruction at location N+2 is currently addressed by the PC.
When execution of instruction N terminates, instruction N+ 1 goes through
the indexing phase to the IR, instruction N+2 is retrieved from either ROM
or CM and inserted in the NIR or SWBD, respectively, and the PC indexer
increments the PC to location N+3. This PP three-level pipe advancement
occurs every time an instruction terminates. This rather complicated
method of instruction processing necessitates a few data transfers and time
delaying techniques that interrupt this smooth flow (the dotted line between
the SWBD and NIR in figure 4-13 is one of these interruptions). These sit­
uations are called sequential dependencies and are discussed in the following

paragraphs.

4-63 SEQUENTIAL DEPENDENCIES

Sequential dependencies that do interrupt the smooth flow of the PP three­
level pipe include the following situations:

4-39 Advanced Scientific Computer

• CM instruction requires CM access

• Current instruction modifies next instruction

• Current instruction modifies next instruction index

• Unconditional branch and load PC instruction followed by PC
relative branch

Each of these hazards, with fts associated solution, is described in the fol­
lowing paragraphs.

4-64 CM INSTRUCTION REQUIRES CM ACCESS. This problem occurs
when a VP is executing a program resident in CM and one of the program
instructions is required to read from or write to CM. The problem exists
because the SWBD contains the next instruction to be executed and it is
needed for a CM read or write operation. The solution is provided by trans -
£erring the next instruction to the NIR and setting the NIL bit in the current
instruction to reflect the transfer, The SWBD is now free to engage in the
CM read or write operation without destroying data.

4-65 CURRENT INSTRUCTION MODIFIES NEXT INSTRUCTION. This
problem occurs when the current instruction stores data in the CM location
of the next instruction. The problem exists because the next instruction
already resides in the NIR (due to the saving procedure described in the pre­
vious paragraph) in the unmodified form. The solution is provided by first
comparing the operand address plus one with the current PC value (the PC
has been incremented one location past the address of the next instruction).
This check is called the Write Cycle Equality (WCE) test. If WCE does exist
(the next instruction is modified), the modified data to be stored in the
SWBD is transferred to the NIR. This action replaces the "old" next in­
struction with the "new'' next instruction, but also adds an extra step to the
store instruction.

4-66 CURRENT INSTRUCTION MODIFIES NEXT INSTRUCTION INDEX.
This problem occurs when the current instruction loads data into a CR or
VPR that is used by the next instruction for indexing purposes (address de­
velopment) during the terminating step of the current instruction. The prob­
lem exists because both the indexing and the register loading occur during
the same step, so the next instruction will be indexed with the unmodified
register value. The solution is provided by first checking to see if the reg­
ister to be loaded by the current instruction enters into the indexing of the
next instruction. This check is used to develop the Dependency (D) signal.
If Dependency does exist (the indexing register is to be modified), the load
is executed but the indexing operation is delayed one step. This action al­
lows for the indexing register modification but also adds one step to the cur­
rent instruction.

4-40 Advanced Scientific Computer

4-67 UNCONDITIONAL BRANCH AND LOAD PC INSTRUCTION FOLLOWED
BY PC RELATIVE BRANCH. This problem occurs when an unconditional
branch and load PC instruction attempts to save the address of the next in­
struction at the same time a PC relative branch (next instruction) is in the
indexing phase. The problem exists because the PC relative branch instruc­
tion develops its branch address using the address following the uncondition­
al branch and load PC instruction address as the PC value (the PC was de­
cremented for the save operation) rather than one greater than the branch
address of the unconditional branch and load PC instruction. The problem
can be more readily understood by stepping through the unconditional branch
and load PC instruction.

Step 1

Step 2

The branch address from the IR is transferred to the SWBA to
retrieve the branched to instruction, and the branch address
plus one is temporarily stored in the effective address portion
of the IR. The PC is decremented by one to the address of the
next instruction.

The decremented PC is saved in the designated VPR; the IR
effective address (containing the branch address plus one) is
transferred to the SWBA to retrieve the instruction following
the branched to instruction; and the IR effective address is
incremented by one and stored in the PC. In addition, the in­
struction retrieved in step 1 is indexed into the IR.

If the instruction retrieved in step 1 and indexed in step 2 is a PC relative
branch, the saved PC value would be used in the development of the PC rel­
ative branch address. The solution to this problem is provided by first
checking to see if a PC relative branch does follow the unconditional branch
and load PC instruction. When this is the case, the next instruction BTN
(NIBTN) signal is used to delay the PC relative branch indexing operation un­
til the PC holds the address following the PC relative branch instruction ad­
dress. This procedure modifies step 2 and adds two additional steps to the
execution of the unconditional branch and load PC instruction.

Step 2

Step 3

Step 4

The decremented PC is saved in the designated VPR and the IR
effective address is incremented by one (it is now two greater
than the original branch address) and inserted in the PC.

The PC is decremented by one to point to the instruction follow­
ing the PC re la ti ve branch.

The PC relative branch is indexed and input to the IR, the PC
value is impressed upon memory to retrieve the next instruc­
tion, and the PC value is incremented to complete the PP three­
level advance.

4-41 Advanced Scientific Computer

4-68 INSTRUCTION TRANSFER TABLES

The instruction transfer tables provide a step-by- step summary of instruc­
tion execution for each of the instruction subgroups (refer to appendix A).
Each subgroup has two transfer tables, one for CM source and one for ROM
source instructions. The header information on each of the transfer tables
includes a general description of the subgroup, the subgroup mnemonic and
source, and the hexadecimal representation, software mnemonic, and hard­
ware mnemonic of each instruction in the subgroup. A description of the
transfer table columns is provided in table 4- lA.

Table 4- lA. Transfer Table Column Description

Column Name Description

Step

Present State

Next State

Transfers

Mode

SWBC

Op Code

Facility

Source-Destination

Conditions

Sequential numbering of instruction states.

State the instruction is currently in.

State the instruction will be in after the next time
slot.

Events that will take place when a time slot occurs
and the proper conditions exist for any given pre­
sent state.

Indicates instruction source CM (M) or ROM
(""1M)).

The OUT column indicates if a CM read or write
request is pas sible (BA) or not (!BA) and the IN
column indicates when a read (RC) or write (WC)
request is being made.

Subgroup mnemonic.

Indicates the hardware involved in performing the
data transfer on the same line of the transfer
column.

Indicates the indexer involved in developing source
and/or destination addresses used in the data
transfer on the same line of the transfer column.

Indicates hardware conditions that must exist for
the events in the transfer column to take place.

4-42 Advanced Scientific Computer

When an instruction is indexed and expanded from the SWBD or NIR to the
IR, PP control is responsible for development of the op-code, initial state,
and control flags and the Indexer is responsible for development of the
source, destination, and effective address es. When a time slot for the
VP being discussed occurs, the IR data is transferred to the MIR for the
duration of the time slot in order to direct the events listed in the transfer
column of the transfer table associated with the IR instruction. If the in­
struction is not complete at the conclusion of the time slot, the IR present
state is modified to reflect the next state via PP control and the VP waits for
the next time slot. When the instruction does terminate (indicated by NIN in
the transfer tables), the PP three-level pipe is advanced one level (a new in­
struction is brought into the IR).

The state information presented in the transfer tables represents six bits in
the IR, three to define the state class and three to define the step within the
state class. Each of the state class bits has a definition, and, when com­
bined with the other two state class bits and three step bits, gives a fair
description of what is actually happening in the PP. Table 4-2 contains
some useful combinations of state class and step, with their associated gen­
eralized descriptions.

The actual state transformation from the present state to the next state is
directed by PP control (paragraphs 4-37 and 4-154), which utilizes the pres­
ent state, various test results (this includes the Write Cycle Equality (WCE)
signal, Dependecny (D) signal, Skip Taken (ST) signal, Branch Taken (BT)
signal, etc.), and the relevent control flags to direct the transformation.
When the current instruction terminates, a signal called NINS is developed
by PP control to indicate the use of the initial state of the next instruction in
the development of the present state. The initial state of an instruction is
primarily determined by the op-code.

The following paragraphs, accompanied by figure 4-1, provide a few exam­
ples of tracing instruction execution in the PP via the transfer tables.

4-69 NO OPERATION INSTRUCTION

Refer to page A-74 of appendix A for a CM source transfer table of the no­
op instruction. The no-op instruction begins execution in state class 3, step
2. If the SWBC buffer is not available (1BA) to the VP executing the no-op
and an interrupt did not occur during the previous instruction (•INTF), the
no-op remains in state class 3, step 2 without initiating any data transfers.
When the buffer does become available, the following events take place dur­
ing the next time slot:

(PC) --- SWBA
(NIL) IR
(PC)+l >PC
0 NIL

4-43 Advanced Scientific Computer

Table 4-2. Instruction States

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

1

0

0

0

1

1

1

0

0

1

1

1

BC*

1

2

>2

1

2

3

1

>l

1

2

3

':' EX-Execution State
BC-Bit Count (Step)

General D.escription

When direct, a branch state with PC in­
dexing and instruction retrieval. When
indirect, the first step of the indirect
cycle.

When direct, a stack instruction skip state
with PC indexing and instruction retrieval.
When indirect, the second step of the in­
direct cycle.

Successive indexing steps of multiple-step
instructions.

Indexing with write cycle compare.

Indexing with no termination inhibits ex­
cept •BA':' and interrupts.

Indexing on 13 ':' with no termination inhibits
except 1BA and interrupts.

Step 1 of multi step instructions.

Successive execution steps of multis'tep
instructions.

Execution with indexing and no write cycle
compare.

Execution with indexing and dependency,
skip, or branch testing.

Indexing on 13 with no termination inhibits
except •BA and interrupts.

LA-Look Ahead (Indexing)
State

13-Branch Address

LC-Last Cycle State
BA-Buffer Available

The PC is transferred over the CMAB bus to the SWBA, the PC indexer uses
the PC value on the CMAB bul!! to increment the PC, the SWBD or NIR (as
determined by the NIL bit of the MIR) is expanded by PP control and the TN
field and register indexers and input to the IR, and the IR NIL bit is zeroed
by PP control to indicate the next instruction will be in the SWBD (because
of the CM instruction source). In addition, a read request is issued by PP

4-44 Advanced Scientific Computer

control to the SWBC to retrei ve the instruction addressed by the SWBA. The
net effect of the described events is advancement of one level in the PP three­
level pipe.

4-70 STORE WORD TO CENTRAL MEMORY INSTRUCTION

Refer to page A-1 of appendix A for a CM source transfer table of the store
word to CM instructions. The store word to CM instructions begin execution
in state class 4, step 1. When the buffer becomes available (BA), the follow­
ing events take place:

(PPU)R~ SWBD
(IR)TN > SWBA
(SWBD) > NIR
1 NIL
(IR)TN+l~IR

If a VPR is specified by the R field, the desired VPR is enabled over the
VPAB bus, over the Main Data Bus (MDB), through the AU aligner, and over
the AU2B bus to the SWBD. If a CR is specified by the R field, the desired
CR is enabled over the CRAB buses, over the MDB, through the AU aligner,
and over the AU2B bus to the SWBD. The IR effective address developed by
the T and N fields is enabled over the CMAB bus to the SWBA; the next in­
struction in the SWBD is saved in the NIR via the CMDB bus; the IR NIL bit
is set by PP control to reflect the save; and the IR effective address is in­
cremented by one by the TN field indexer and stored back into the IR. (This
is done for the WCE test mentioned in paragraph 4-63.) A write request is
issued by PP control to the SWBC to store the VPR or CR to the desired CM
address and the IR state class and step are advanced to three and one, re­
spectively, by PP control.

The next time this instruction receives a time slot, the WCE indicator is
used to determine whether termination of this instruction should occur now
or later. When the buffer is available and the current instruction has not
modified the next instruction h WCE), the PP three-level pipe is advanced
one level as described in the CM source no-op instruction. When the cur­
rent instruction does modify the next instruction (WCE), the SWBD is enabled
over the CMDB bus to the NIR so that the modified instruction replaces the
old instruction. The IR state class and step are advanced to three and two,
respectively, by PP control. At the next time slot, the store word to CM
instruction terminates by advancing the PP three-level pipe.

4-71 COMPARE CENTRAL MEMORY TO VPR INSTRUCTION

Refer to page A-45 of appendix A for a CM source transfer table of the com­
pare CM to VPR instructions. The compare CM to VPR instructions begin
execution in state class 4, step 1. When the buff er becomes available (BA),
the following events take place:

4-45 Advanced Scientific Computer

(IR)TN) SWBA
(SWBD)~ NIR
1 NIL

The IR ef£ective address of the CM quantity to be compared is enabled over
the CMAB bus to the SWBA; the next instruction in the SWBD is saved in the
NIR via the CMDB bus and the IR NIL bit is set by PP control to reflect the
save; and a read request is issued by PP control to the SWBC to retrieve the
CM quantity for comparison. The IR state class and step are advanced to
seven and two, respectively, by PP control.

At the next time slot for which the buffer is available (BA), the retrieved
CM quantity and VPR specified by the R field are both applied to the skip
taken (ST) logic in the AU in the following manner: The desired VPR is
enabled over the VPRB bu.a.es to the AU and the CM quantity in the SWBD is
enabled over both the MDAB bus and the MDB to the AU. If the comparison
is satisfied (a check for equality or inequality, depending on the instruction
in the KSKUCM subgroup), the ST signal is true and the following takes place:

(PC)---> SWBA
(PC)+l) PC
0 NIL

The PC is enabled over the CMAB bus to the SWBA; the PC indexer uses the
PC value on the CMAB bus to increment the PC; the IR NIL bit is zeroed so
that the next instruction previously saved in the NIR is skipped; and q. read
request is is sued by PP control to the SWBC to retrieve the skipped-to in­
struction. The IR state class and step are advanced to three and two, re­
spectively, by PP control. arid the PP three-level pipe is advanced one level
using the skipped-to instruction at the next time slot for which the buffer is
available (BA). If the comparison is not satisfied (-iST), the PP three-level
pipe is advanced one level without taking any skip.

4-72 INDIRECT CYCLE

Refer to page A-72 of appendix A for a CM source transfer table of the in­
direct cycle. The indirect cycle is executed when the next instruction to be
executed (in the SWBD or NIR) has the first bit of its T field set (first indi­
rect cycle) or the indirect cell retrieved from CM has the first bit of its T
field set (multiple level indirect cycle) and the current instruction has com­
pleted execution (NIN in the transfer table). When indirect add res sing is
specified, the indirect cycle(s) is executed to develop the IR source, destina­
tion, or effective address prior to the normal execution of the instruction for
which indirect addressing is defined. This indirect cycle is not valid for the
conditional branch instructions (they have their own unique indirect cycle, as
described in paragraphs 4.:182 and 4-183) or for the instructions for which
indirect addressing is undefined.

4-46 Advanced Scientific Computer

When the next instruction indirect indicator (DB) from PP control indicates
the next instruction is indirect, the ignore indirect indicator (!GI) from PP
control indicates indirect addressing is possible for the next instruction,
and the instruction termination indicator (NINS} indicates that the current
instruction has terminated, the IR DC bit is set by PP control and the indirect
cycle enters execution in state class 2, step 1. If the PPTN flag associated
with the indirect instruction indicates the indirect cell is located in CM
(•PPTN), the following events take place:

(IR)TN--) SWBA
(SWBD) > NIR
1 NIL

The IR effective address developed by the TN field indexer pointing to the
indirect cell is enabled over the CMAB bus to the SWBA; the instruction fol­
lowing the indirect instruction in the SWBD is saved in the NIR via the CMDB
bus and the IR NIL bit is set by PP control to reflect the save; and a read
request is issued by PP control to the SWBC to retrieve the indirect cell.
The IR state class and step are both advanced to two by PP control. If the
PPTN flag associated with the indirect instruction indicates the indirect cell
is located in a register (PPTN), the following events take place:

(PPU)TN~SWBD

SWBD >NIR
1-----~NIL

The VPR or CR specified by the T and N fields is transferred to the SWBD
as follows: If a VPR is specified, the desired VPR is enabled over the
VPAB, over the MDB through the AU aligner, and over the AU2B bus to the
SWBD. If a CR is specified, the desired CR is enabled over the CRAB buss­
es, over the MDB, through the AU aligner, and over the AU2B bus to the
SWBD. The next instruction is saved in the NIR as previously mentioned for
the indirect cell-in-CM. The IR state class and step are both advanced to
two by PP control.

At the next time slot for which the buffer is available (BA) and the next in­
struction indirect indicator signals termination of indirect add res sing (1DB),
the TN field indexer develops an IR source, destination, or effective address
from the SWBD indirect cell and the IR DC bit is zeroed by PP control. The
former indirect instruction now enters its normal execution sequence. If the
next instruction indirect indicator signals another level of indirect address­
ing (DB), the TN field indexer develops the indirect cell address for the IR
from the current indirect cell in the SWBD and PP control sets the IR DC bit
to reflect another level of indirect add res sing. The retrei ving of indirect
cells continues until the termination level is reached (indirect addressing
through a register is only possible at the first level, however).

4-47 Advanced Scientific Computer

4-73 INTERRUPT CYCLE

Refer to page A-76 of appendix A for a CM source transfer table of the inter­
rupt cycle. The interrupt cycle is executed at the conclusion of the instruc­
tion durirrg which a programmed or automatic interrupt occurred. PP con­
trol directs execution of the interrupt cycle, which executes the interrupt
instruction at ROM location 10 16 if an automatic interrupt occurred, or at
ROM location 1116 if a programmed interrupt occurred (the interrupt in­
structions are the branch and save PC type). When the interrupt servicing
routine terminates, control resumes with the instruction following the in­
terrupted instruction. The net result is the squeezing of an interrupt servic­
ing routine in the normal flow of instruction processing after the instruction
during which the interrupt occurred.

When a programmed or automatic interrupt has been recorded and the as­
sociated IR interrupt bit has been set (INT), the current instruction has
terminated (NINS), and the terminated instruction is not execute CM
(IEXCM), the following events take place:

1-----INTF
1 NIL
NO-OP) IR
(PC)+ 1 >PC

The check for •EXCM is necessary because the execute CM instruction has
not really terminated until its object instruction has terminated. PP control
sets the IR INTF bit to initiate the interrupt cycle and the IR NIL bit to in­
dicate that the interrupt instruction to be executed will be retrieved from
ROM. PP control zeros the.IR op-code and the current PC value is incre­
mented by the PC indexer to two instructions past the interrupted instruction.
The IR state class and step are advanced to two and three, respectively, by
PP control. When the interrupted VP receives its next time slot, the follow­
ing events take place:

E.A.------+NIR
(PC)-2 >PC

The IR effective address reflecting the interrupt type (1016 for automatic and
1116 for programmed) is applied to ROM from PP control via the RMAB bus
and the PC value is decremented by two via the PC indexer (the PC indexer.
receives the PC value to be modified via the CMAB bus). The PC value now
points to the instruction following the interrupted instruction and the NIR con­
tains the interrupt servicing instruction. The IR state class and step are
advanced to three and two, respectively, by PP control.

At the next time slot for which the buffer is available (BA), the PP three­
level pipe, with the no-op instruction at the execution level, the interrupt
servicing instruction at the address preparation level, and the instruction
following the interrupted instruction at the acquisition level, is advanced one
level as described in the CM source no-op instruction. In addition, the IR
INTF bit is zeroed to reflect the honored interrupt.

4-48
Advanced Scientific Computer

4-74 DETAILED DESCRIPTION

The remaining paragraphs in this section provide a detailed look at the eight
major components of the PP (VP's, AU, Indexer, CR file, ROM, SWBC, PP
Control, and Maintenance Logic). The detailed descriptions covering the
eight major components are supplemented with detailed block diagrams and
logic diagrams that aid in understanding the logic card diagrams in section
VII of this manual. Timing diagrams are provided for the more involved
timing circuits and transfer tables accompany the PP Control description of
instruction execution.

4-75 VIRTUAL PROCESSORS

Each of the eight Virtual Processors (VP's) of the PP consists of a Program
Counter Register (PC), Next Instruction Register (NIR), Instruction Regis­
ter (IR), Virtual Processor Register File (VPR File), Central Memory Base
Register (CM Base), Single Word Buffer Address Register (SWEA), and a

Single Word Buffer Data Register (SWED). A detailed description of each
register type, supplemented with block diagrams and/or logic diagrams, is
presented in the following paragraphs. The integrated operation of these
areas is described in paragraph 4-62.

4-76 PROGRAM COUNTER REGISTER. Refer to figure 4-14 for a simpli­
fied block diagram of the eight PC's and the associated input and output logic.
The primary function of each PC is to provide the associated VP with a
pointer to the next instruction in Central Memory (CM) or Read Only Mem­
ory (ROM). Secondary functions include distribution of the PC to the MDB,
Indexer 11, Indexer I2, PP Control, and the Single Word Buffer Controller,
in support of the PP three-level pipe.

4-77 PC Loading Logic. During normal PP operation (maintenance logic
not used), the source of the updated PC value is Indexer Il. When a PC is
to be updated, the PC load enable line (PPilPCE) from the PCCTL card per­
mits the decoding of the PC load select lines (PPWMSC(0-2)) to develop the
pointer to the PC of the active VP. The PPWMSC(0-2) lines are also sup­
plied by the PCCTL card and contain the VP number of the active VP. The
developed pointer is used to insert the updated PC value (32 bits) in the PC
of the current 'active VP. Bit 0 of the updated PC value (indicates mode) is
supplied by the PCCTL card, bits 1 ghrough 7 are set to zero, and bits 8
through 31 (the address) are supplied by Indexer Il.

4-78 PC Distribution Logic. When an unconditional branch and save PC
instruction (BPCS, BCS, BRS, or BCAS) or the unconditional branch and
store PC instruction (BRSM) is executing, the PCAB bus is used to route the
PC of the active VP to the MDB. The PC to MDB enable line (PPPCABE)

4-49
Advanced Scientific Computer

~
I
\Jl
0

h
Q.

~
::J
C')
Cb
Q.

g>
ij;·
::J -.
~
(")
0
::i
"t)
t::
Cb ...,

(B)

FROM
PCCTL

FROM
PCCTL

{

PC TO MOB SELECT

PC TO MOB ENABLE

PC TO INDEXER 12
SELECT

~~Li~~DFROM..~P~P_W;.:..:.M~S::..=C~(~O--..llli~
PCCTL

PC LOAD
ENABLE FRO PPI 1 PCE
PCCTL

PC TO ROM
ADD" SELECT

l'C TO "OM
ADDlt ENAllLE

PC TO CM
ADDR SIELl!CT
PC TO CM
ADDR ENA•LE

IR TN ADDR
FROM PPCTL1

PPQVPCD(0-2)

PPPCRBE

PPRMSC(0-2)

PPPCCBE

PITNADDR(B-31)

IR TN ADDR TO CM l'PTACBE
ADDR ENABLE --------'f-~i.I

P/0

CMA•

PPRABC(0-2)~~~~~~

PPPCABE

PPRMSC(0-2)

PC 15

PPQPC7(0-31)

FROM PCCTL L..-----A

{

INDEXER 12 TO CM PTl2RES(0-31)
ACl!I" FROM INDEXER ----'---'t-------------4
INDEXER 12 TD P 2 2N 1 S
CM ADDR ENABLE

FROM
PCCTL IR TN ADDR TO L-------------'-~~~~~~~~~~~~-t-.1

ROM ADDR ENABLE _P_P_T_A_R~B_E~-----~~--~~~-~-~~~~~-~~~~~~-11.i

124738

PIO
RMAB

Figure 4-14. Program Counter Registers

-, PPPCAB(0-3 I)

-.PPPCl2(0-31)

-,PPPCIR(0-31)

-,PPPCCM I (o- 31)

-.PPPCMC 0-31)

-.PPPCMC:1(29-31)

-.PPPCRMl(0-31)

-.PMROMADD(0-31)

TO MOB

TO INDEXER
12

TO .PCCTL AS
EFFECTIVE
ADDRESS

TO INDEXER 11

TO SWBA

TO SWBSYNC

TO INDEXER
11

TO ROM

permits the decoding of the PC to MDB select lines (PPRABC(0-2)) to select
and route the PC of the active VP to the MDB (iPPPCAB(0-31)). When any
instruction is executing, the PCB bus is used to route the PC of the active
VP to Indexer I2 and the PP Control logic used· in performing the Write
Cycle Equality (WCE) test. The PC to Indexer I2 select lines (PPRMSC(0-2))
are decoded and used to select and route the PC of the active VP to Indexer
I2 (where the •PPPCI2(0-31) lines are used in PC relative instructions) and
the PP Control logic on the PCCT L card (where the -iPPPCIR(0-31) lines are
used in performing the WCE test). The CMAB bus is used to route the PC
of the active VP to Indexer Il for indexing, to the associated SWEA for in­
struction location in CM, and to the Single Word Buffer Controller logic for
CM zone selection. In these three cases, the PC to CM address enable line
(PPPCCBE) permits the decoding of the select lines (PPRMSC(0-2)) so that
the necessary distribution is possible. The CMAB bus is also used to route
the IR TN address (PITNADDR(S-31)) to the SWEA when the IR TN address
to CM address enable line (PPTACBE) goes to one or the output of Indexer
I2 (PTI2RES(0-3 l)) to the SWEA when the Indexer I2 to CM address enable
line (PPI2CBE) goes to one (stack instructions). The RMAB bus is used to
route the PC of the active VP to Indexer Il for indexing and to ROM for in­
struction location when the PC to ROM address enable line (PPPCRBE) per­
mits the decoding of the select lines. The RMAB bus is also used to route
the IR TN address to ROM when the IR TN address to ROM address enable
line (PPTARBE) goes to one (branch to ROM type instructions).

4-79 NEXT INSTRUCTION REGISTER. Refer to figure 4-15 for a simpli­
fied block diagram of the eight NIR' s and the associated input and output
logic. The primary function of each NIR is to provide the associated VP
with a 32-bit register for holding words retrieved from ROM. A secondary
function is to provide temporary storage of SWED data when the SWED is
being used during the execution of an instruction. When data is being read
from ROM(PMROM0(0-31)), the ROM to NIR enable line (PNRMCDE) gates
the ROM data to the NIR selection logic. The CM/ROM data to NIR enable
line (PNCDNRE) permits the decoding of the active VP code lines
(PPWA2CSL(0-2)) in order to develop a pointer to the NIR of the active VP.
The pointer is then used to insert the ROM data into the proper NIR. When
data from the SWBD of the active VP is to be transferred to the associated
NIR, the SWED data is applied to the NIR selection logic (instead of ROM
data) and inserted in the proper NIR via the mentioned pointer. During the
execution of all instructions, the NIR data is distributed to Indexers I2 and
I3 over the NIRB bus. The active VP code lines (PPQVPD:2(0-2)) are de­
coded at each execution period and used to select the NIR of the active VP.
The selected NIR is then transferred over the NIRB bus and input to Indexers
I2 and I3 (1PNIRI2R(0-31)) for IR development.

4-51
Advanced Scientific Computer

~------

ACTIVE VP
CODE FROM
PCCTL

PPOVPC< 2(0-2)

ACTIVE VP PPWA2CSL(0-2
CODE
FlllOM f'CCTL

CM/lltOM DATA
TO NI" ENABLE PNCDNRE
F"OM PCCTL

llOM DATA PMROM0(0-31
FNOM ROMMRG

lllOM TO Nlllt PNlllMCDE
ENABLE FlllOM
f'CCTL

(B) tU739

SWBD DATA
(32 BITS)

-,PNIRl2R(0-31) NI" TO >-------- INDEXE"S
12 AND 13

Figure 4-15. Next Instruction Registers

4-80 INSTRUCTION REGISTER. Refer to figure 4-16 for the format of one
of the eight 64-bit IR' s. The IR data is grouped as follows:

• Operation code. (bits 0 through 7)

The eight bit op-code specifies the instruction to be executed. The source
of the op-code is the associated SWBD or NIR when the previous instruction
has terminated, the MIR when the current instruction is not complete or ·
when a test and skip or test and branch instruction evaluates true, or the re­
map logic when the first level of indirect for an indirect or indirect-aug­
mented instruction is through a CR or VPR.

• State classes (bits 8 through 10)

The three state class bits (EX for execute, LA for look ahead, and LC for
last cycle) provide a broad definition of the state of the current instruction
in order for the PP three-level pipe to operate properly. The EX bit indi­
cates the current instruction is in an execution state; the LA bit indicates the
possiblility of indexing the next instruction on this step; the LC bit indicates
that it is possible to terminate the current instruction on this execution
cycle.

• Bit count (bits 11 through 13)

4-52
Advanced Scientific Computer

[_

co cl

BIT 00

r

so s1

BIT 16

I

OM NIL

BIT 32

I

EA EA
1 6 17

BIT 48

(A) 111653

OP CODE

CZ c3 c4 cs

SOURCE ADDRESS

s 2 s3 s /R s /R
4 0 5 1

FLAGS

c6 c7

S /R S /R
6 2 7

~I

,,
3

_/

EX

D
0

STATE
CLASSES

LA

D1

LFAF PPTN INTF ~111 INT' INT 2 EA B

EFFECTIVE ADDRESS

EA EA EA EA EA EA EA EA
1 8 1 9 20 21 22 23 24 25

~

BIT
COUNT

INDIRECT MODE
CYCLE BIT BIT

'I 'r-\

LC BC 0 BC1 BC z DC M

BIT 15

DESTINATION ADDRESS

'
Dz D3 D D5 D6 D7 4

BIT 31

EFFECTIVE ADDRESS

E~ 4 EA 15

BIT 47

\

EA EA EA 2 ~ EA EA EA
26 27 29 30 31

BIT 63

Figure 4-16. Instruction Register Format

The bit count (BCo is the MSB and BC2 is the LSB) is a modifier of the state
class and provides a counter for multiple steps in one state class.

• Indirect cycle bit (bit 14)

The indir~ct cycle bit (DC) is set to indicate that the current instruction in
the IR is an indirect instruction.

• Mode bit (bit 15)

The mode bit (M) is set to indicate the source of the current instruction is ·
Central Memory (CM) and reset to indicate Read Only Memory (ROM).

• Source address (bits 16 through 23)

The eight bit source address specifies a CR or VPR from which data is to be
retrieved.

• Destination address (bits 24 through 31)

The eight bit destination address specifies a CR or VPR in which data is to
be stored.

• Flags (bits 32 through 39)

The object mode bit (OM) is the mode bit for the object instruction pointed
to by an analyze instruction. The next instruction location (NIL) is set to
indicate the next instruction is in the NIR, or reset to indicate the next in­
struction is in the SWBD. The LFAF flag is set when the current instruc­
tion is LDMB indirect and indicates the base value to be loaded is in CM
rather than the VPR specified by the T and N fields. The PPTN flag is set
when the current instruction. is indirect through a CR or VPR specified by
the T and N fields. The interrupt flag (INTF) is set at the last step of ex­
ecution of the current instruction when an automatic or programmed inter­
rupt occurs during the same instruction. The INTF flag is used t~ trap the
VP with the interrupt to an interrupt routine in ROM. The TRAP flag is not
used by the IR, and the INTl flag is set when a programmed interrupt is ini­
tiated (a bit is set in the Interrupt Control byte of the CR file) by the execut­
ing VP. The INT2 flag is set (only in the IR of the selected VP) when any
one of the following occurs: A/C power failure, activation of the STOP but­
ton on the Operator' sConsole, disc protect violation, GP interrupt, CM
parity error in selected VP, CM protect violation in selected VP, illegal
op-code in selected VP.

• Effective Address (bits 40 through 63)

The 24-bit effective address is developed by the TN field indexer (indexer
I2) and indicates an immediate operand, a direct or indirect operand address,
or a direct or indirect branch address. The only exception to this effective
address development occurs when a shift instruction is executing and the cur­
rent shift count update is supplied by the CONTA U card.

4-54
Advanced Scientific Computer

~------,--------
The loading logic and flip-flops for each of the eight IR' s is distributed on
four IRCARD cards (IRCARD(O) through IRCARD(33)), as shown in figure 4-17.
The op-code and state class bits exist on IRCARD(O} and their source de­
pends on the test positive signal from the CONTAU card. If a test and skip
or test and branch instruction evaluates true (skip or branch taken), the test
positive signal (TPOS) enables the op-code of the instruction (located in the
MIR during the test cycle) and the data test states (DT) into the associated
IR. These loading sources are required because the three-level pipe re­
quires updating before the current instruction terminates. If a skip or
branch is not taken, the inverted test positive signal (TPOS) enables the op­
code of a new instruction, remapped instruction, or old partially complete
instruction and the data real states (DR) into the associated IR. The source
and destination addresses exist on IRCARD(l) and they are supplied (as long
as the TPOS signal is true) by the TN field indexer (indexer IZ) or the regis -
ter indexer (indexer 13), depending on the instruction being executed. The
control flags and the first byte of the effective address exist on IRCARD(Z).
If the TPOS signal is true, the DT control flags are inserted in the IR; if the
TPOS signal is true, the DR control flags are inserted in the IR. The first
byte of the effective address is supplied by indexer IZ when the TPOS signal
is true. The second and third bytes of the effective address exist on
IRCARD(3) and are supplied by indexer IZ when the TPOS signal is true.
When a shift instruction is in the process of shifting data in the AU and the
desired shift count has not been completed, the selected shift increment (1,
4, 8, or 16) is inserted in the third byte of the effective address by the
CONTAU card. A more detailed description of the loading and distribution
logic on the IRCARD cards is presented in the following paragraphs.

4-81 IRCARD(O) Loading and Distribution Logic. Refer to figure 4-18 for
a simplified logic diagram of the IR op-code and state loading and distribu­
tion logic. The active VP code lines (IPILVPC(O-Z)) from the MLCTL card
are temporarily stored in a group of three flip-flops on IRCARD(O) during
every execution cycle. The true outputs of the flip-flops are directly applied
to a DE module for decoding purposes and the complement outputs are in­
verted by a group of ZN logic modules (during normal PP processing the
maintenance logic holds one of the two ZN module inputs at one) before being
applied to a second DE module. At the conclusion of the current execution
cycle, the MIR op-code lines (IPICDT(000-007)) from PPCTLZ are applied
to the test positive inputs of the IR flip-flops. At this same time, the new
op-code from the associated SWBD or NIR, the old op-code from an instruc­
tion currently in the MIR, or the remapped op-code from the remapping
logic, is supplied by PPCTLZ (-iPICDR(000-007)) and inverted twice (once
due to the inhibited maintenance logic). The result is applied to the test
positive complement inputs of the IR flip-flops. If the test positive signal
(PACTSPOS) developed by the skip taken and branch taken logic of the AU
indicates an instruction is to be skipped, or control is to branch out of the

4-55
Advanced Scientific Computer

y

t

NOTE:

IRCARD (0)

TPOS MIR TPOS DR

'
[OP CODE l STATES

TP05 TPOS

+

J
INSTR

REMAP
INSTR

OLD MIR
INSTR

OT

ILL
NINS

DR=DATA REAL

DT=DATA TEST

MB
PINS

CARD
LOCATION

(A) 111675

y

x

469

TPOS:

TPOS;

467

466

' T'POs: 2

3 i'POS: '
462

LU

IRCARD (1) I
I

IRCARD (2) I
I

IRCARD (3)

BYTE BYTE

12

'
l SOURCE

I
I
,~

I
I
I

I

BYTE

469

T'POs:

TPOS;

467

13-

'
3

TPOS I TPOS

12 OT

,, It I I • I DESTINATION I FLAGS

13

BYTE

466

i'Pc)s: 4

TPOS; 4

462

LT

I
DR

I TPOs

I
I
I
I

469

TPOS:

TPOS;

467

'
3

BYTE

'

I TPOS

12

BYTE BYTE

12 12

JEFF ADDRE'.ssJ EFF ADDRESS JEFF ADDREss]

UNUSED

466

Ti>Os: 4

N/A

462

LS

I
I
I
I

UNUSED

469

'fPOs:

N/A

467

·~ I

CONT AU

BYTE

466

3 TPos: 4

N/A

462

LR

Figure 4-1 7. Instruction Register Loading Format

ACTIVE VP
CODE FROM

MLCTL

TEST POSITIVE
FROM CONTAU

-,pJLVPC(0-2)

PACTSPOS

(MAINT)l

~
...,PIRXFLG'O

FROM
PPCTL2

O -,plRXBO 0).

TEST POSITIVE
FROM CONTAU

FROM
PPCTL2

MIR OP-CODE
FROM PPCTL2

NEW RE~'filP~~
OP-CODE

FROM PPCTL2

TEST POSITIVE
FROM CONTAU

-,PICDR 000-007

-,PACTSPOS

(MAINT) 1

FROM
PPCTL2

f'-,PJRXFLG 0

~ -,PIRXBl 0)

FROM
PPCTLI

STATES
OT

STATES
{

DR

-,PREXDR

PIRXOEN

PIRYOEN

PIQIR0(0-7)

(MAINT) 1
PIQIR7(0-7)

PIRXI EN

PIQIRO(B-15)

PIRY1 EN

R

PIQIR7(8-15)

NEXT VP CODE
FROM MLCTL PILNVPC(0-2===r:J

OE
1 1~

(B)l 24740

Figure 4-18. Instruction Register (IRCARD (O))

)---'P_:_:IRc.:B=M:.:l.;-R:..;.::0_-__:7--')'-----l• TO MIR

f------j~ TO VPRCONT

L--------l• TO PPCTL 1

PIRBM IR(B-1 5)
IRB TO MIR

TO VPRCONT

TO PPCTLl

current instruction stream, the PACTSPOS signal, combined with the
PIRYFLG(O) and PIRYBO(O) signals (these last two signals are hard wired on
PPCTL2 at a logic one for IRCARD(O)), develop the PIRYOEN signal. The
PIR YOEN_ signal enables the decoding of the VP code in order to generate a
gate for the MIR op-code applied to the test positive inputs of the !R's. The
net result is insertion of the MIR op-code in the IR of the active VP at the
conclusion of the execution cycle. If the test positive signal indicates no
skip or branch is to be taken, the PACTSPOS signal combines with the
PPCTL2 hard-wired signals 1PIRXFLG(O) and 1PIRXBO(O) to develop the
PIRXOEN signal. The PIRXOEN signal enables the decoding of the VP code
and the resulting insertion of the new, old, or remapped op-code in the IR
of the active VP.

The state bits (EX, LA, LC, BC 0 , BC 1, BC2, DC, and M) are inserted in
the second byte of the IR of the active VP at the same time and in a manner
similar to that described for the op-code. If the inverted test positive sig­
nal (IPACTSPOS) indicates a skip or branch is to be taken, the PIRXlEN
signal is developed to enable the decoding of the active VP code (gate gen­
eration) and to permit the insertion of the data test states (IPREXDT,
PRLADT, PRLCDT, 1PRBCODT, -iPRBClDT, PRBC2DT, 1PIDCDT, and
•PIMDT) in the IR of the active VP. If the inverted test positive signal in­
dicates no skip or branch, the PIR Y 1 EN signal is developed to generate the
gate used in inserting the data real states (JPREXDR, PRLADE, PRLCDR,
1PRBCODR, ,PRBClDR, PRBC2DR, 1PIDCDR, and ,PIMDR) in the IR of
the active VP.

The next VP code (PILNVPC(0-2)) from the MLCTL card is decoded and
stored in a group of eight flip-flops at the conclusion of an execution cycle.
The true output of the flip-flop set, due to the decoding process, is used to
enable the op-code and states of the IR associated with the active VP over the
IRB bus at the beginning of the next execution cycle. The enabled data
(PIRBMIR(0-15)) is output to the MIR, the VPRCONT card, and the PPCTLl
card.

4-82 IRCARD (1) Loading and Distribution Logic. The IR loading and dis­
tribution logic on IRCARD(l) is identical to that on IRCARD(O), however, the
data handled and the loading control signals differ as shown in figure 4-19.
Source data from indexer 12 or indexer I3 may be loaded in the first byte of.
IRCARD(l) and destination data from one of the same two sources may be
loaded in the second byte. In order for any data to be loaded in either byte,
the test positive signal must indicate no skip or branch is to be taken
(1PACTSPOS is true). When this is the case and the source address is to be
supplied by indexer 12, the 12 enable signal (PIRYBO(l)) from PPCTL2 per­
mits the development of the PIR YOEN signal. The FIR YOEN signal enables
the decoding of the VP code and the resulting insertion of the 12 source ad­
dress (., PTI2RES(024-03 l)) in the IR of the active VP. When the source

4-58 Advanced Scientific Computer

ACTIVE VP
CODE FROM

MLCTL

TEST POSITIVE
FROM CONTAU

FROM
PPCTL2

, PILVPC(0-2)

PACTSPOS

(MAINT) 1

TEST POSITIVE PACTSPOS
FROM CONTAU

P:c~oL~ I: _.!.P..!l.!CR:..!Y..!B:::O:'...l...1!...)L__ __ ---1 .. L _ _J
{

PIRYFLG I)

ENABLE

SOURCE DATA
FROM INDEXER

12
SOURCE DATA

FROM INDEXER
13

TEST POSITIVE
FROM CONTAU

•PTl2RES 024-031

-,PRI 3RES(02 4-03 1

PACTSPOS

FROM
PPCTL2 ENAB~ •PIRXFLG 1

{

13 ~PIRXB1 1

TEST POSITIVE •PACTSPOS
FROM CONTAU

FROM { 1 PIRYFLG 1

PPCTL2 12 PIRYB1(1)
ENABLE--'--'-'-'-''-=-'-'-'-'----... -t_ _ __J

PIRXOEN

PIRYOEN

{MAINT)

PIRX1EN

PIRY1 EN

PIQIRO
(016-023)

•

PIQIR7
(016-023)

PIQIRO
(024-031)

•

DESTINATION -, PTl2RES(024-031)
DATA FROM ----------'------------------------~
INDEXER 12

DESTINATION
DATA FROM
INDEXER 13

NEXT VP CODE Pl LNVPC(0-2)
FROM MLCTL

(8)124741

(MAINT)

Figure 4-19.

PIQIR7
(024-031)

Instruction Register (IRCARD (1))

PIRBMIR 016-023)
TO MIR

TO VPRCONT

TO PPCTLI

P IRBM IR(024-03 I) TO MIR

TO VPRCONT

TO PPCTLI

address is to be supplied by indexer 13, the I3 enable signal {IPIRXBO(l))
develops the PIRXOEN signal, which in turn enables the I3 source address
(•PRI3RES(024-031)) into the IR of the active VP. The source of the destina­
tion address is determined in a similar manner, except the PIRYBl(l) signal
provides fhe I2 enable and the •PIRXB 1 (1) signal provides the I3 enable.
The source and destination addresses (PIRBMIR(Ol6-031)) and the op-code
and states on IRCARD (0) are distributed simultanedusly.

4-83 IRCARD(2) Loading and Distribution Logic. The control flags and
first byte of effective address loading and distribution logic on IRCARD(2)
(the logic is again identical to that on IRCARD(O)) is shown in figure 4-20.
If the test positive signal is true, the PIRYOEN signal is developed in order
to enable the data test flags (1PIOMDT, 1PINILDT, """lPILFAFDT,
1PIPPTNDT, •PIINTFDT, •PINTlDT, and •PINT2DT) from PPCTL2 into
the IR of the active VP. If the inverted test positive signal is true, the
PIRXOEN signal is developed to enable the data real flags (1PIOMDR,
•PINILDR, 1PILFAFDR, -,PIPPTNDR, 1PIINTFDR, -iPINTlDR, and
•PINT2DR) from PPCTL2 into the IR of the active VP. If the inverted test
positive signal is true and PPCTL2 activates the indexer I2 enable signal
(PIRYB1(2)), the PIRYlEN signal is developed to enable the first byte of the
effective address generated by indexer I2(-iPTI2RES(008-015)) into the IR of
the active VP. The PIRXlEN signal is held to a logic zero at all times by
the •PIRXB1(2) signal from PPCTL2. (This disables all gates associated
with one of the two inputs to the dual flip-flops composing the second byte on
IRCARD(2).) The control flags, the first byte of the effective addres·s
(PIRBMIR(032-047)), and the IR data on IRCARD(O) and IRCARD(l) are
distributed simultaneously ..

4-84 IRCARD(3) Loading and Distribution Logic. The second and third
bytes of effective address loading and distribution logic on IRCARp(3) (the
logic is identical to that on the other IRCARD cards) are shown in figure
4-21. If the inverted test positive signal is true and PPCTL2 activates the
indexer I2 enable signals (PIRYB0(3) and PIRYB1(3)), the PIRYOEN signal
is developed to enable the second byte of the effective address from I2
(IPTI2RES(Ol6-023)) into the IR of the active VP, and the PIRYlEN signal is
developed to enable the third byte of the effective address from I2
{IPTI2RES(024-031)) into the same IR. The PIRXlEN signal is held to a
logic zero at all times by the -iPIRXB0(3) signal from PPCT L2, so one set
of the inputs to the dual flip-flops composing the first byte on IRCARD(3) is
not used. When the shift count needs updating during a shift instruction, the
•PIRXB1(3) signal from PPCTL2 is used to drive the PIRXlEN signal to a
logic one, so a new shift count (IPACSHOB(000-005)) from CONTAU is in­
serted in the IR of the active VP. The second and third bytes of the effec­
tive address (PIRBMIR(048-063)) and the IR data on the other IRCARD cards
are distributed simultaneously.

4-60
Advanced Scientific Computer

ACTIVE VP CODE
FROM MLCTL

TEST POSITIVE FROM
CONT AU

FROM PPCTLZ

TEST POSITIVE
FROM CONTAU

FROM PPCTL2

DATA TEST FLAGS
FROM PPCTL2

DATA REAL FLAGS
FROM PPCTL2

FROM PPCTLZ

TEST POSITIVE
FROM CONTAU

FROM PPCTL2

FIRST BYTE OF
EFFECTIVE ADDRESS

FROM INDEXER 1 2

NEXT UP CODE
FROM MLCTL

(8)1 24742

-, PILVPC(0-2)

(MAINT) ,
PACTSPOS

PIRXOEN

(MAINT) 1

{:
-,PJRXFLG(2\

PIQI R0(032-039)

] Pl RXBO (2)

PIRBMIR(032-~ TO MIR

TO VPRCONT

PACTSPOS PIQIR7(032-039) TO PPCTL1

{:
Pl PYFLG 2)

PIPYB0(2) PIRYOEN

I PIOMOT-, PINT2DT

1.PIOMDR-,PINT2DR

(MAINT) 1

0 PIRX1EN

(MAINT) I

{
"lPIRXB I (2)

-,pJRXFLG (2)

PIQIR0(040-047)

!PACTSPOS

{
PIRYBI (2) PIRBMIR(040-047

TO MIR
PIRY 1 EN

P IRYFLG (2)
TO VPRCONT

} IPT I 2RES (008-0 15) PIOIR7(~40-047) TO PPCTL 1

BLANK

(MAINT) ,
Pl LNVPC(0-2)

Figure 4-20. Instruction Register (IRCARD(2))

ACTIVE VP

CODE FROM
, PILV PC(0-2)

MLCTL

BLANK

(MAINT) 1

'·~f
, PIRXFLG(3)

PPCTL2 I
, PIRXB0(3)

TEST POSITIVE
,PACTSPOS

FROM CONTAU

FROM { I

PIRYFLG(3)

PPCTL2 12
PIRYB0(3)

ENABLE

SECOND BYTE OF -.PT 12 RE S(O 16--023)

!EFFECTIVE ADDRESS

FROM INDEXER 12
BLANK

ZERO

(MAINT) I --..-.!

{

O ,PIRXFLG(3)

p:;T~ SHIFT
UPDATE _ ... _P_IR_X_B_1~(_3);..__.._ ~

ENABLE

TEST POSITIVE
-.PACTSPOS

FROM CONTAU

{

PIRYFLG(3)
FROM I

PPCTL2 12 _P..;.l"°'R"'"Y-"B'-1'-=3'------

ENABLE
THIRD BYTE OF -.PTl2RES(024--031)

EFFECTIVE ADDRESS

FROM INDEXER 12
SHIFT COUNT

FROM CONTAU
-.PACSHOB(000--005

PIRYOEN

(MAINT) 1

PIRX1EN

PIRY1EN

(B) 124743

NEXT VP CODE

FROM MLCTL

(MAINT) 1

PILNVPC(0-2) =8
DE

1

PIQ1R0(048--0SS)

PIQIR7(048--0SS)

PIQIR0(056--063)

PIQIR7(056--063)

Figure 4-21. Instruction Register (IRCARD(3))

PIRBM IR(048-055)
TOMIR

TO VPRCONT

.._ ______ TO PPCTL1

PIRBM IR(056--063)
TO MIR

1------• TO VPRCONT

'-------•TO PPCTLI

4-85 VIRTUAL PROCESSOR REGISTER FILE. Refer to figure 4-22 for a
simplified block diagram of the eight VPR files and the associated input and
output logic. Each of the eight VPR files provides the associated VP with
four 32-bit general accumulator registers that can be addressed to the byte,
halfword, or word level. Each VPR file accepts data from the AU and dis­
tributes data to Indexer I2, Indexer 13, and the AU.

4-86 VPR Loading Logic. Data is input to a VPR of the active VPR file via
the AUlB or AU2B transfer buses of the AU. When the source of data is the
AUlB bus, the appropriate AUlB enable signals (PUWAlPOl(0-3) for VPO
and VPl, PUWA1P23(0-3) for VP2 and VP3, PUWA1P45(0-3) for VP4 and
VPS, or PUWA1P67(0-3) for VP6 and VP?) from the VPRCONT card enable
the decoding of the AUlB word code (PUAWlC(0-2), the word code points to
one VPR out of two VPR files) and determine what portion of the destination
VPR (byte, halfword, or word) is to be used. The decoded pointer is used
to direct the AUlB data (•PAUl0(0-31)) to the destination VPR and the active
AUlB enable signals are used to determine what part of the destination VPR
is to be filled with new data. When the source of data is the AU2B bus, the
appropriate AU2B enable signals (PUWA2P01 (0-3) for VPO and VPl,
PUWA2P23(0-3) for VP2 and VP3, PUWA2P45(0-3) for VP4 and VPS, or
PUWA2P67(0-3) for VP6 and VP?) from the VPRCONT card enable decoding
of the AU2B word code (PUWA2C(0-2)) so that the AU2B data ("'"1PAU20(0-31))
is inserted in the intended portion of the destination VPR (this processing
parallels that for the AUlB bus).

4-87 VPR Distribution logic. The selected VPR data is distributed to the
AU over the VPAB bus in combination with the MDB or over the VPRB 1 and
VPRB2 buses. When VPR data is to be transferred to the AU by way of the
MDB, the MDB enable signal (PURABPOl for VPO and VPl, PURABP23
for VP2 and VP3, PURABP45 for VP4 and VPS, or PURABP67 for VP6 and
VP?) from the VPRCONT card enables the decoding of the MDB word code
(PURABC(0-2)). The resulting pointer enables one VPR of two VPR fil~s
over the VPAB bus to the MDB (-iPUPORlAB(0-31) for VPO and VPl,
1PUP2R3AB(0-31) for VP2 and VP3, •PUP4R5AB(0-31) for VP4 and VPS,
or 1PUP6R7AB(0-31) for VP6 and VP?). When VPR data is to be trans­
ferred to the AU by way of the VPRB 1 and VPRB2 buses, the VPRB 1 enable
signal (PURAlPOl for VPO and VPl, PURA1P23 for VP2 and VP3,
PURA1P45 for VP4 and VPS, or PURA1P67 for VP6 and VP?) from the
VPRCONT card enables the decoding of the VPRBl word code (PURAlC(0-2)).
The resulting pointer enables one VPR of two VPR files over the VPRB 1 bus
to the VPRB2 bus. The VPR input to the VPRB2 bus is inverted by a group
of 4B logic modules and then routed to the AU (PUVPRAl(0-31)).

The VPR file of the active VP is transferred to Indexer I2 via the VPIB 1 bus
and VPR3 of the active VP is transferred to Indexer 13 via the ~VPB bus.

4-63/4-64
Advanced Scientific Computer

FROM

VPRCONT

FROM

PPAUCD

FROM

VPRCONT

FROM

PPAUCD

FROM

VPRCONT

FROM

PPAUCD

FROM

VPRCONT

FROM

PPAUCD

FROM

VPRCONT

(C)l 24744

{
{

{

{

MD B WORD CODE _P_u_R_A_B_c_(o_-_2.._) _______ --1..r---...

MOB ENABLE° PURABPOI DECODE 1--------------.....,
AUIB ~g~~ PUWA!C(0-2)

WRITE AUIB PUWAIPOl(0-3
ENABLE

AU1BDATA -.PAUI0(0-31)

AU2B DATA -iPAU20(0-31

AU2B WORD CODE PUWA2C(o-2

WRITE AU2B
ENABLE

DECODEi------------'

AU WORD CODE P.~U..:.:R"-A.:.:1:..:Co.=0_-.::.2,__ ______ __.~

AU ENA BLEP __ U_R..;..A_I P_O_I ---------.-!

MD B WORD CODE P...:U:;..;R;..;.A~B'-'C'-'("""0--'-2...._ _______ ..

VP!

-,puPORIAB(0-31) ,

VPRB2

12
DECODE

VP CODE

PUQP0~0(0-31)

PUQP7W0(0-31)

VPO OR VP1 r - ----..
VPR TO MOB

I
VPR I

PU VPRA 1 (0-31)
TO I 12
AU I VP PURl2C(0-2) ..-----

'CODE

I
I
i--~

I

DECODE

PUQPO~l(0-31)

PUQP7Wl(0-31)

M DB ENABLE :....P..=U..;..R::.;;.A..;..B~P=-=-2=-3 ________ _..DECODE r----------------
AU1 B WORD PUWAIC0-2 ~~~V~P~2~~~-~~-7----------~+~~..,~P~U~P~2~R!~A~!~~ill)_~VP20RVP31

12 WRITE AUIB ENxge~ PUWAIP23(o-3) '! p~~~~0
0-

31

VPR TO MDBI

AUi B DATA •PAUI0(0-31) PUQP2W3

VP PURl2C(0-2

AU2B DATA -.PAU20(0-31) 0-31 PUQP3WO

lcoDE

I
AU 2 B ~g~~ PUWA2C 0-2 (o-.

3
I)

WRITE AU2B ENABLE PUWA2P23(o-3) DECODE t----------l PUQP3W3

I PUQP0~2(0-3 I)
f-- - ---

AU WORD CODE :...P..=U;..:.R.:..;A...:...:...IC~0,_--=2"'------------1~ 0-31
AU ENABLE EJ.IB.A t P2 DECODE t-________ V.:..:_P..::'..3 ____ __J

MD B WORD CODE :...P..=U;..;.R.:..;A....:..=OC=.>.0:::..-...:2::L.... ______ --1..i

I
I
I

PUQP7W2(0-3 I)

I 12

~~~~~~~-~~-~-----------~~~...,~P~U!P~4~R~S~A~B~0-~3U1~--1~VP40RVP51 VP PURl2C(0-2 CODE DECODE 
VPR TO MDBI I 

MOB ENABLE PURABP45 DECODEt---------------

AUIB ~g~~ PUWAIC 0-2 

WRITE AUIB ENABLE PUWAIP45(0-3 DECODE t--------~ 

AUIB DATA _...,~P~A~U~luu~.U...L-------------1~ 
I PUQP0~3(0-31) :---- : AU2B DATA 

AUZB WORD 
CODE 

WRITE AU2B ENABLE 

I PUQP7W3(0-31) 

I 
lwoRD 3 
I VP PURW3C(0-2) r-----
1 CODE I DECODE 

VP6 -.PUP6R7AB(0-31) I "'1p~uii'2o~pn5~wVion-r::::::--.L..---, ____________ _.j_.2!~~!!Z.~~::.!!.L_~VP6 OR VP71 

(0-:31) VPR TO MOB . ,----. 
AUi B DATA PUQP6W3 I 

AU WORD CODE '"-P-=U;..;.R.:..:A...:...:..;1C:::..i.:0::....-..:2:L... ______ --1J ___ _ 

AU ENABLE PURA1P45 DECODEt---------V_P_S _____ ...J 

MD B WORD CODE "'-P-"U'-'R-'"'A'-'=B:..::C=0-...:2:::.L.. ______ __.....f----. 
MOB ENABLE PURABP67 DECODE~---------------

AU!B ~~~ PUWAIC(0-2 

WRITE AUIB ENABLE 

PUQP0~3(0-31) 

PUQP7W3(0-31) 

AU2B DATA (o-31) 
PUQP7WO I 

AU2B WORD (0-:31) I 
CODE "'--~~=-=~::.L--1 ..... 

WRITE AU2B ENABLE DECODE t-------__J PUQP7W3 I 
AU WORD CODE (0-31) 

VP7 I 
AU ENABLE _P_U;..;.R..;..A...c..:..1 :...P.::.67.:._ _______ ___,-.J DECODE 1----------+------J I 

L ____ _J 
--~----------

Figure 4-22. 

4-65/4-66 

-, PUVPWOl2(0--31) 

-,puvPWIT2(0-31 

-,PUVPW212(0-31) 

-iPUVPW312(0-31 

-.PUDEL TA(0--31 

VPRO OF 

ACTIVE VP 

TO INDEXER 12 

VPRI OF 

ACTIVE VP 

TO INDEXER 12 

VPR2 OF 

ACTIVE VP TO 

INDEXER 12 

VPR3 OF 

ACTIVE VP TO 

INDEXER 12 

VPR3 OF 

ACTIVE VP TO 

INDEXER 13 

Virtual Processor 
Register Files 

Advanced Scientific Computer 



During the execution of all instructions, the VPR to Indexer I2 VP code 
(PURI2C(0-2), same as the active VP code) is decoded and used to enable 
the four VPR's of the active VP over the VPIBl bus to the VPIB2 bus on the 
PCCARDA(0-7) cards. The middle two bits of the T field of the instruction 
being executed are used to enable one of the four VPR' s over the VPIB2 bus 
to Indexer I2. The VPR3 VP code (PURW3C(0-2), same as the active VP 
code) is also continuously decoded and used to enable VPR3 of the active VP 

over the AVPB bus to Indexer 13. Indexer 13 uses only byte three of VPR3, 
therefore control at the motherboard level is necessary because all 
VPRCARD cards are identical. 

4-88 CENTRAL MEMORY BASE REGISTER. Refer to figure 4-23 for a 
simplified block diagram of the eight CM base registers and the associated 
input and output logic. Each of the eight CM base registers provides the as­
sociated VP with 24 bits of temporary storage used to hold a base value for 
base relative instructions. The CM base register accepts data from the AU 
and outputs data to Indexer I2. 

4-89 CM Base Register Loading Logic. Data is input to a CM base regis­
ter via the AU2B bus of the AU in byte or multiple byte increments. When 

.data from the AU is to be written to a CM base register, three signals are 
necessary from the CRCONT card. These signals include a write card zero 
(PCWA2B 1 E(O) ), which designates the CM base registers of the CR file; a 
word select (-iPCWA2CB1(3-5)), which selects one of the eight CM base reg­
isters; and a write right (PCWA2CR(l-3)) or left (PCWA2CL(l-3)) hex, which 
is used to select the right or left half of bytes one, two and three of the se­
lected CM base register. In addition, the R field mask signals 
(PCRFDMSK(IJ-3)) from the CONTAU card provide additional control on data 
written to a CM base register when a test and set (TS), test and reset (TR),' 
set (S), or reset (R) instruction is being executed. When a load central 
memory base (LDMB) instruction is executed, all three bytes of the base 
register associated with the active VP are loaded simultaneously. This is 
accomplished by forcing the right and left hex enables and the R field mask 
to all ones. When a TS, TR, S, or R type instruction is being executed and 
data is to be written to the right half of the first byte of a CM base register, 
the write card zero and write right hex of CRBASEl signals combine to en­
able the decoding of the word select signals. The result of the decode is 
masked by the R field so the AU2B data (,PAU20(12-15)) marked by ones in 
the R field is inserted in the right half of the first byte of the intended CM 
base register. When AU2B data is to be written to the left half of the first 
byte of a CM base register, the write left hex of CRBASEl signal replaces 
the write right hex of CRBASE 1 signal so that the net result is data storage 
in the left half of the first byte of the intended CM base register. Data is 
written to the second and third bytes (CRBASE2 and CRBASE3, respectively) 
of the intended CM base register in a similar manner via the PCWA2CR(2), 

4-67 
Advanced Scientific Computer 



{ WORO 5'LECT 
-,pcwA2CB 1 ( 3-5) 

FROM WRITE CARD 
PCWA2BIE(O 

CRCONT ZERO 
PCWA2CR(1) 

WRITE RIGHT 
HEX OF CRBASE 1 

R FIELD MASK PCRFDMSK(0-3) 
Fl'tOM CONTAU 

{WORD SELECT 
-,PCWA2CB1 (~5) 

PCWA2BiE(O) 
FROM WRITE CARD 

CR CONT ZE.-O 
PWCA2CL(I) 

WRITE LEFT 
HEX OF CR BASE I 

8 
(CRBASEt) 

DATA FROM -,PAU20(8-15) 
AU2B OF AU 

FROM 
CR CONT 

{ 

READ WORD PCRABSEl-3(3-5) 

::~::ABLE PCRABB1-3E(O) 
FOR CARD ZERo~~~~~~~~~~ 

NEXT VPC -,PCLVPCB1-3(0-2) 
FROM MLCTL 

(8)124745 

1 5 

E 
c 
0 
D 
E 

16 

D 
E 
c 
0 
D 
E 

D 
E 
c 
0 
D 
E 

(CRBASE2) 

PCWA2BIR(0-7) 

PCWA2B 1 L(0-7) 

23 24 
(CRBASE3) 

31 

Figure 4-23. Central Memory Base Registers 

-.PCRASDOB(0}-31 (0) CR WORD 
TO CRCONT1-3 

... PCR12(8-31) CR WORD 
TO INDEXER 
12 



PCWA2CL(2), PCWA2CR(3), and PCWA2CL(3) signals. When a group of data 
larger than a hex is under consideration (byte or halfword), the proper com­
bination of hex controls enable the desired write oper'ittion. 

4-90 CM Base Register Distribution Logic. CM base register data is read 
in 24-bit groups (the entire CM base register) and is distributed to both In­
dexer I2 over the CRBB bus and to the MDB (and eventually the AU) over the 
CRAB 1 and CRAB2 buses. During the execution of all instructions, the VP 
code of the active VP is decoded and used to enable the selecterl CM base 
register over the CRBB bus to Indexer I2. Indexer I2 requires the CM base 
register of the active VP in case a base relative effective address needs to 
be developed. When CM base register data is required on the MDB, the read 
enable for card zero signals from CRCONTl, CRCONT2, and CRCONT3 
(PCRABBlE(O), PCRABB2E(O), and PCRABB3E(O), respectively), enable 
the decoding of the read select signals (PCRABSE1(3-5) PCRABSE2(3-5) and 
PCRABSE3(3-5)) so that the selected CM base register is enabled over the 
CRABl bus to the CRAB2 bus and eventually to the MDB. 

4-91 SINGLE WORD BUFFER ADDRESS REGISTER. Refer to figure 4-24 
for a simplified block diagram of the eight SWBA' s and the associated input 

PPWMSC(0-2) ...-----. 

PCCTL DECODE 
FROM { ~~ ~g~f VE VP 

CM ADDR TO PMCBMAE 
SWBA ENABLE.----.... L..--_J 

PC, INDEXER 12 
OR IR TN DATA 
FROM CMAB 

.., PPPCMC(0-31) 

SWBA'S 

PMQMA0(0-31) 

PMQMA7(0-3 I) 

;~~CT PMRCMA(0-2) 
FROM SWBASY-----llN 

DE(;ODE 

(8)124746 

-, PMACMEM(0-31) 
PMADDCM(0-31) 

"DDRESS 
TO 
CENTRAL 
MEMORY 

Figure 4-24, Single Word Buffer Address Registers 

4-69 
Advanced Scientific Computer 



and output logic. Each of the eight SWBA's provides the associated VP with 
an address register that supplies Central Memory with an address when a 
read or write operation is to be performed. When PC, Indexer I2, or IR TN 
data tiPPPCMC(0-31 )) is to be written in a SWBA, the CM address to SWBA 
enable signal (PMCBMAE) from PCCTL permits the decoding of the active 
VP code in order to develop a pointer to the SWBA of the active VP. The de­
veloped pointer is then used to insert the source data into the proper SWBA. 
When a memory access request has been accepted by the MCU, the SWBA 
select signals (PMRCMA(0-2)) from the SWBASY card are decoded and used 
to enable the SWBA of the VP making the request over the MAMB bus. The 
selected address is inverted back to its true form and input to Central Mem­
ory. 

4-92 SINGLE WORD BUFFER DATA REGISTER. Refer to figure 4-25 for 
a simplified block diagram of the eight SWBD' s and the associated input and 
output logic. Each of the eight SWBD' s provide the associated VP with a 
data register that is used to hold data to be written to or read from Central 
Memory. The SWBD' s accept data from Central Memory when a read is 
performed and from the associated PC, SWBA, VPR file, or CM base reg­
ister, via the MDB and AU2B bus, when a write is to be performed. The 
SWBD' s distribute data to Indexer I2 via the MDIB bus, to the MDB via the 
MDAB bus, to the associated NIR via the CMDB bus, and to Central Memory 
via the TWB. 

When a read request has been accepted by the MCU and read data is q.vailable 
to the PP, the SWBD load enable signal (PMWCMD) from the SWBASY card 
permits the decoding of the SWBD load select signals (PMWCMC(0-2)) so 
that the Central Memory data word is inserted in the SWBD of the VP making 
the read request. When PC, SWBA, VPR file, or CM base register data is 
to be written to Central Memory, the AU2B bus to SWBD enable signals 
(PMA2MDLE and PMA2MDRE for left half and- right half, respectively) 
from the PCCTL card permit the decoding of the write AU2B bus to SWBD 
select signals (PPWA2C(0-2 )). The resulting pointers are used to enable 
the MDB supplied data over the AU2B bus to the associated SWBD in halfword 
or word groups. During the execution of all instructions, the active VP code 
is continuously decoded and used to enable the associated SWBD over the 
MDIB bus to Indexer I2 for effective address development. When SWBD data 
is to be output to the MDB, the SWBD to MDB enable signal (PMMDABE) 
permits the decoding of the active VP code (PPRABC(0-2)) so that the as so­
ciated SWBD is enabled over the MDAB bus to the MDB. When SWBD data 
is to be transferred to the associated NIR, the SWBD to NIR enable signal 
(PNMDCDE) permits the decoding of the active VP code (PPRMSC(0-2)) so 
that the SWBD is enabled over the CMDB bus to the NIR. When SWBD data 
is to be written to Central Memory, the TWB write selector (PMRCMD(0-2)) 
from SWBASY is decoded and used to enable the SWBD of the VP executing 

4-70 
Advanced Scientific Computer 



FROM 
PCCTL 

FROM 
SWBASY 

FROM 
PCCTL 

(A)124747 

{ 

WRl-icf ~\~~g 
SELECT 

AU2B TO 
SWBD ENABLE 

{ 

SWBD LOAD 
SELECT 

SWBD LOAD 
ENABLE 

PMA2MDLE, 
PMA2MDRE DECODE 

PM WCM C( o- 2 ,p..-----
PMWCMD DECODE 

DATA FROM -, PMQCMMD(0-31) 
CENTRAL 
MEMORY 

AU2B DATA -,PAU 20(0-31) 
FROM AU 

MIR VP CODE 

SWBD TO 
MDB SELECT 

SWBD TO 
MDB ENABLE 

READ SELECT 

SWBD TO 
NIR ENABLE 

TWB WRITE 
SELECTOR 

FROM SWBASY 

DECODE 

PMMDABE DECODE 

PNM DC DE 
DECODE 

DECODE 

SWBD'S 

PMQMD0(0-31) 

• • • 
PMQMD7(0-31) 

Figure 4-25. Single Word Buffer Data Registers 

-, PMDI 2(0-2) 

-, PMDAB(0-31) 

PMDCM: 1 (0-31) 

• • • PMDCM:s(o-31) 
~ 

SWBD TO 
INDEXER I 2 

SWBD TO 
MDB 

SWBD TO 
NIR 

SWBD EX­
PANDED 
8 TIMES 
TO 
CENTRAL 
MEMORY 



the write over the TWB to Central Memory. Refer to the description of the 
Single Word Buffer Controller TWB for additional information on the writing 
process. 

4-93 ARITHMETIC UNIT 

The arithmetic unit (AU) of the PP may be divided into the following major 
functions: 

• Aligner 

• Complement or constant generator 

• Unload box 

• Double rail generator 

• Adder 

• Shifter 

• Bit picker 

• Test box 1, 2, and 3 logic 

• Comparator 

• Data manipulator 

• Skip taken and branch taken logic 

• AU control 

A detailed description supplemented with block diagrams, logic diagrams, 
and/ or equations is provided for each of these functional areas in the follow­
ing paragraphs. 

4-94 ALIGNER. Refer to figure 4-26 for a simplified block diagram of the 
AU aligner. The aligner is used to perform a right end-around (cyclic) 
shift on a data word from a CR, VPR, the SWBD of the active VP, or the 
MIR effective address for immediate operands, in byte increments. The 
amount of shift is controlled by the AU control logic and can be zero, one, 
two, or three bytes, depending on the enabled control line. The selected 
source of input data to the aligner is supplied by the Main Data Bus (MDB) 
and is distributed to the aligner select logic in complemented byte groups. 
The select logic enables the appropriate byte of data to be output as deter­
mined by the enabled shift control line. The selected byte is routed to the 
AU2B transfer bus, the comparator, the shifter, and the complement or 
constant generator. The complemented selected byte is routed only to the 
complement or constant generator. The described data processing occurs 
simultaneously in each of the four PPAUCD cards so that the net result is 
a byte increment data word shift in true and complement form distributed 
throughout the AU. Refer to figure 4-2 7 for two examples of aligner data 
shifting. 

4-72 
Advanced Scientific Computer 



MOB DATA 
FROM CR, 

vb~ ·~r:iB~J. 
(-i PABO) 

FROM 
CON TAU 

tBl 124748 

BYTE 1 

BYTE 3 

BYTE 0 

BYTE 3 

BYTE 1 

BYTE 3 

BYTE 0 

BYTE 1 

BYTE 2 

CYCLE 3 

SELECT 
LOGIC 
(SQIS) 

I 
I 

SHIFT CONTROL 

~----
1 PPAUCD(I) 

I 

SELECT 
LOGIC 
(SQfS I 

r----- TO AU2B TRANSFER BUS 

TO COMPARATOR 
SELECTED BYTE 

I----------..__,.--~ TO SHIFTER 
(PAALIO 1 , 2) 

} 

TO COMPLEMENT OR 
~ONSTANT G~NERATOR 

SELECTED BYTE t----------------1, PA A LI 01) 

TO AU 2B TRANSFER BUS 

TO COMPARATOR 

SELECTED BYTE 

(PAALIO 1 '2 I 

SELECTED BYTE 

(,PAALl01 l 

SHIFT CONTROL 

1--------- - -
J PPAUCD(2) 

SELECT 
LOGIC 
(SQIS) 

I SHIFT CONTROL 

SELECTED BYTE 

(PAALIO 1 , 2 l 

SELECTED BYTE 

(,PAALIOI) 

1-------
1 PPAUCD(3) 

I 

SELECT 
LOGIC 
(SQ•S) 

SELECTED BYTE 

(PAALIO 1 , 2) 

SELECTED BYTE 

hPAALI01) 

TO AU2B TRANSFER BUS 

TO COMPARATOR 

TO AU2B TRAN5FER aus 

TO COMPARATOR 

CYCLE 2 (PAALICC2) 

CYCLE I (PAAL ICC 1 ) 

L-----

Figure 4-26. Aligner Logic on PPAUCD(0-3) 

4-73 
Advanced Scientific Computer 



INPUT DATA 

O 2 3 ._ __ BYTES 

CYCLE 0 
0 

CYCLE 
CONTROL ALIGNER 
INPUTS CYCLE 2 

0 

0 
CYCLE 3 

3 O 2 .... ._ __ BYTES 

OUTPUT DATA 

A. DATA ROTATED ONE BYTE 

INPUT DATA 

0 2 3 ... 1---BYTES 

0 
CYCLE 0 

0 
CYCLE 1 

CONTROL 
INPUTS CYCLE 2 

ALIGNER 
0 

CYCLE 3 

2 3 0 ... .._ __ BYTES 

OUTPUT DATA 

B, DATA ROTATED THREE BYTES 

(A)124749 

Figure 4- 2 7. Aligner Byte Rotation 

4-74 
Advanced Scientific Computer 



4-95 COMPLEMENT OR CONSTANT GENERATOR. Refer to figure 4- 28 
for a simplified block diagram of the complement or constant generator. 
The complement or constant generator accepts true and complement data 
from the aligner in byte groups and generates true and complement data for 
use in the adder when addition or subtraction is to be performed. When the 
adder is to be used for the incrementing and test or decrementing and test 
instructions, the complement or constant generator supplies plus or minus 
one, respectively, to the adder. The function of the complement or constant 
generator is controlled by the AU control logic via the add, subtract, incre­
ment, and decrement lines. The true and complement data supplied by the 
aligner is distributed to the select logic in byte groups. The control lines 
then enable the true form of the input data if an add instruction is being ex­
ecuted or the complement form of the input data if a subtract instruction is 
being executed. When a decrement and test instruction is being executed, 
the select logic and decrement control lines are used to generate the quantity 
FFFFFFFF16 at the true output of the select logic on the word level. When 
an increment and test instruction is being executed, the select logic and in­
crement control lines are used to generate the quantity 00010001 16 at the 
true output of the select logic on the word level. The output data from the 
complement or constant generator is input to the first level of the adder. 
Operation of the complement or constant generator occurs simultaneously 
on each of the four PPAUCD cards (one byte per card) so that the net re-
sult is a 32-bit word output to the adder. 

4-96 UNLOAD BOX. Refer to figure 4-29 for a simplified block diagram 
of the unload box. The unload box is used to develop the true and complement 
form of the VP code from the maintenance logic, the R field from the MIR, 
and the data word from a CR, VPR, the SWBD of the active VP, or the MIR 
effective address for immediate operand instructions. The 3-bit VP code 
from the maintenance logic is decoded into 8 bits (one bit per VP) and each 
of the 8 bits is developed in the true and complement form. The resulting 
VP code data is distributed to the data manipulator and test box 2. The 4-
bit R field from the MIR is also developed in the true and complement form 
for use in the data manipulator and test box 2. Each of the four PPAUCD 
cards are operating on the same VP code and R field simultaneously to im­
plement the byte bit-slice partitioning technique in the AU. The input data 
word to the unload box is supplied by the MDB in complement form. The un­
load box develops the true and complement form for each byte and then dis­
tributes the results to the shifter, bit picker, data manipulator, test box 1, 
and test box 2, Each of the PPAUCD cards are operating on a byte of the 
input data word simultaneously, so that the net result is a 32- bit data word. 

4-97 DOUBLE RAIL GENERATOR. The double rail generator is used to 
develop the true and complement form of the selected data word from the 

4-75 
Advanced Scientific Computer 



FROM 
ALIGNER 

BYTE 0 

BYTE 0 

BYTE 1 

BYTE 1 

BYTE 2 

BYTE 2 

BYTE 3 

BYTE 3 

ADD 

SUBTRACT 

COMPLEMENT OR CONSTANT GENERATOR -------PPAUCD(O) 

(PAALIO 1 (0-7) 
SELECT 
LOGIC 
(SQ•S) 

\"""1PACCOO TO ADDER 
a...-:<~o~-~7~)~)-------1-~Q~(~o~)-11-. 

Q(O) } 

._......,...., .... _. {PACCOO 
co-1)) 

CONTROL 

-------PPAUCD( 1) 

{PAALIO 1{a-1 5 

{IPAALIO 1 
ca-1s)) 

SELECT 
LOGIC 
(SQ•S) 

(-.PACCOO 
l-~(8~-_..;.1~5~)----l~Q~~l~)-1~ TO ADDER 

Q(1) } 

.__ ..... ..-_. i(PACCOO 
(a-1 5)) 

CONTROL 

....._ _____ _ -PPAUCD{2) 

PP'Au"C D W 

{...,PAALIO 1 
(24-31)) 

(PACCOCAD) 

(PACCOCSU) 

CONTROL 

SELECT 
LOGIC 
(SQ•S) 

(...,PACCOO 
Q(3) } 

.._~(2_4_-_3_1~));___.._Q~(~3~)-I.. TO ADDER 

.__ ......... _. (PACCOO 
(24-31 )) 

DECREMENT ___ (P_A_c_c_o_c_D_E_) ___ _ 

C E ENT (PACCOCIN) 
IN R M 1-------------~ 

WHERE, Q(N) = BYTE N FOR ADD, BYTE N FO~ SUBTRACT, FF 16 FOR DECREMENT 
Q(O) AND Q(2) = 00; 6, Q(1) AND Q(3) = 01 16 FOR INCREMENT 

(A) 124750 

Figure 4-28. Complement or Constant Generator 

4-76 
Advanced Scientific Computer 



FROM 
CONT AU 

MOB 
DATA FROM 

CR.iVPR.t 
SWtsD,OK 

MIR EA 

(A) 1247 5 1 

VP CODE 3 TO 8 
(3 BITS) BIT 

(PAQVPC) -
DECODER 
(DE) 

R-FIELD 

(PAQRFLD) 

BYTE 0 

BYTE 1 

BYTE 2 

BYTE 3 

• ' 

(- PABO) 

-
-
--
--

VP CODE 
(8BITS) 

(PAUNLVP) -

DRIVERS 
(1 B'S) 

DRIVERS 
(1 B•s) 

VP CODE 

(PAUNLOP) 

DRIVERS 
( 1 B'S) 

VP C01JE _ 

("1PAUNLOP) 

R-FIELD 

(PAUNLOR) 

R-FIELD 

("1PAUNLOR) 

BYTE 0 

BYTE 0 

BYTE 1 

BYTE 1 

BYTE 2 

BYTE 2 

BYTE 3 

BYTE 3 

• I 

(PAUNLOAB) 
("1PAUNLOAB) 

-
----------
---
---

TO DATA 
MANIPULATOR 
AND TEST 
BOX 2 

TO DATA 
MANIPULATOR 
AND TEST 
BOX 2 

TO SHIFTER, 
BIT PICKER, 
DATA 
MANIPULATOR, 
TEST BOX 1 
AND TEST 
BOX 2 

Figure 4-29. Unload Box 

4-77 
Advanced Scientific Computer 



active VPR file. The data word from the selected VPR is input in byte groups 
to the double rail generator via the VPRB bus. A series of lB logic modules 
provides the necessary drive and true and complement data for use in the ad­
der, the comparator, and test box 3. The four bytes of input data are op­
erated on in parallel by the four PPAUCD cards in order to supply a 32-bit ! 

word. 

4-98 ADDER. Refer to figure 4-30 for a simplified block diagram of the 
five-level look-ahead adder. The adder performs addition, subtraction, and 
logical functions (AND, OR, EXCLUSIVE OR, and EQUIVALENCE) on 32-bit 
data words from the complement or constant generator and the double rail 
generator. The op-code from the MIR may specify adder operation to the 
byte, halfword, or word level. The following paragraphs provide a detailed 
description of each level in the five-level adder, and figure 4-31 presents a 
summary of each level. 

4-99 Adder Level 1. Refer to figure 4-32 for the logic module connections 
required to implement the equations necessary for operation of adder level 1. 
The first level of the adder is used to develop the carry generated functions 
(Di and Di), the carry propagate enables (Ti and Ti), and the logical instruc­
tion outputs (LOGi)• Each PPAUDC card develops these signals for one " 
byte of input data. A carry is generated (developed) whenever the two bits 
being added are both one. This fact results in the following equations: 

where 

Di = ai . bi 

Di = ai • bi = ai + bi 

ai = the quantity at bit position i of the complement or constant 
generator output 

bi = the quantity at bit position i of the double rail generator output 

A carry propagate (transfer) enable is generated whenever one of the two 
bits being added is one. This results in the following equations'. 

a· . b· +a· . b· l l l l 

An exception to the developed equations occurs for halfword instructions be­
cause the carry in the most significant bit of the right halfword must be dis­
abled. This is accomplished with the following carry transfer (T 0 ) and 
carry develop (D 0 ) equations for the most significant bit of the right halfword. 

4-78 
Advanced Scientific Computer 



.. 

ADD, DATA FLOW 

CO=Aj Bj + (Aj Bj + Aj Bj )~j 

CARRY CARRY 
QENERATED PROPOGATED 

'.Q' EVELOP 'r_' RANSFER 

CARRY 
IN 

NOTE. T=TRUE BINARY ADD RESULT 

(Aj @Bi) 

LEVEL 1 GENERATES CARRY GENERATED 
FUNCTIONS (Dj ANDOj) AND 
CARRY PB_OPGATE ENABLES 
(Tj AND Tj) 

("') 

I 
0 

1 s's 

("') 

I 
0 

("') 

I 
0 

0 
.J 
<I: 
<I: a.. 

MOB 

("') 

I 
0 

0 
.J 
<I: 
<I: 
a.. 
r 

PAALICCO ~ 
PAALICCI 

PAALICC2 

PAALICC3 

SUBTRACT 

FROM 
CON TAU 

LEVEL 2 GENERATES BYTE AND RIGHT 
HEX TRANSFER FUNCTIONS AND 
BYTE AND RIGHT HEX DEVELOP 
FUNCTIONS• 

0 
a: 
0 
<I: a.. 

0 
a: 
0 

COMPLE­
MENT OR 
CONSTANT 

ADD ~ 
FROM 

DECREMENT CONTAU 
LEVEL 3 DEVELOPS GROUP CARRIES 

(KG'S) FROM PRECEEDING BYTE 
TG AND DG FUNCTIONS. 

GENERATOR 

LEVEL 4 DEVELOPS INDIVIDUAL BIT 
CARRY TERMS FROM PREVI­
OUSLY GENERATED CARRY 
FUNCTIONS. 

LEVEL 5 PERFORMS FINAL SUMMATION 
OF 'Tj / AND 'PAADDCRY ' AND 
FORMS AU I BUS TO VPR FILE. 

~ 
r 

("') 

I 
0 

ADDER LEVEL 1 
(PAADDTTRj) (PAADDTBRr) 

PADDDj PADDDj 

• ADDER LEVEL ~ 

("') 

I 
0 
'-' 
0 
0 
u 
u 
<I: a.. 

INCREMENT 

(PAADDTG (0-3)) (PAADRTG (0-3)) 

(PAADDDG (0-3)) (PAADDRDG (0-3)) 

(A)111672 

ADDER LEVEL 3 
(PAADDKG (0-3)) 

ADDER LEVEL ~ 

(PAADDCRYj) (PAADDCRYj) 

ADDER LEVEL 2 

AU I OUTPUTS TO VPR 1S PAU 10 (0-31) 

Figure 4-30. Five-Level Look-Ahea.d Adder 

AU CONTROL 
LINES FROM 
CONT AU 

4-79 
Advanced Scientific Computer 



~ 
I 
00 
0 

LOG1 

OlfT~~i 4-
LEVEL 

SUBTRACT CMD'S 
FOR 2'S COMP 

Ir 

I--

LOGj 
OUTPUT 

' 

LOGj 
OUTPUT 

, 
T; ,D[ AND 11 LOGICAL 
GENERATOR I 

I--

LOGj 
OUTPUT 

A24-31 B24-31 

T Dj AND T 
1LOGICAL I 

GENERATOR _l 

---+----+------- ----
2ND 

LEVEL 

3RD 
LEVEL 

~ 

!._. 
4TH 

LEVEL i-----

1 
RHTG&AND I TGo 

RH 0 I AND 
GENERATOR ( ~2 

--
1 j 
KG 3 

GENERATOR 

-1--
Cj 

GENEF-ATOR 

5TH 
LEVEL ~"-~-G~E-N_E_~~~-T_O_R~~--' 

1 
SUM BITS 0-7 

(B) 1116 71 

Figure 4-31. 

,, 1 
RHTG 1 AND T TG1 

r---i RHDGo I AND 

GENERATOR _l DG1 
GEN 

--_t- ,_ 

--

l l 
KG 2 

GENERATOR 

s· 
GENER1ATOR 

1 

---+ 

SUM BITS 8-15 

I l rl RHTG2 AND 
T TGz 

RHDG 2 I AND 

GENERATOR I DG2 
GEN 

+---

KG 1 
GENERATOR 

rl RHTG3 AND I TG3 

RHOG3 I AND 

GENERATOR _l ~R _..__ ....... __ , __ ~ 

KGo 
GENERATOR 

..... -==f--~ 
_.. 

-

Ci 
GENEF-ATOR ,-

s· 
GENE~ATOR 

SUM BITS 16-23 

L,.. 

- c· 
GENEflATOR 

--+-----
- Sj 

GENERATOR 

SUM BITS 24-31 

Five-Level Look-Ahead Adder Detailed Block Diagram 



a· I 

b· I 

b· I 

a. 
I 

N 

2N 

N t---

2N 

Ni-----

2N 

N 

2N 

bi------
a· I 

bi----1 

WHERE, 

N 

2B 

A 

Ti (PAADDTTR) 

Ti {PAADDTBR) 

Di (•PAADDD) 

Di {PAADDD) 

s1 : g~i =:::: ~~g~ ~:~~~r( ~:N~~~~~NT GENERATOR 

Ti .1
1 • BIT POSITION WITHIN A BYTE 

• CA"RY TRANSFER 

~~ : ~~~~~~V~i°~EEN HALFWORDS 
Do = DEVELOP FOR MSB OF HALFWORD 
ASH • TRUE FOR ADD OR SUBTRACT HALFWORD 
SUB = TRUE FOR SUBTRACTION 

-r 
I 

ASH 

I 
I 

I 
I 

ASH 

ASH 

0 

0 

0 

0 

0 

I 
I 
I 

I 
I 
I 
L-

o---
I o---
1 

0----1 

0---
I o---
1 

0----1 

I 
I 

N 

I 
TO (""' PAADDT) 

-. 
A 

~, TO (PAADDT) 

N 1----i I 
At--H I 

I 
N 1----i I 
Al--H I 

I 
N !----' I 
At-- I 
SQ _J 

N t---.----- DO (°"' PAADDD{ 0)) 

I 
A t--t-.,-<.-.>---

~, 
Do (PAADDD:O)) 

N t--1 

N t--

At--+-
__ __, 

I 
I 
I 
I 
I 

SUB I 
ASH A 1--- I 

(8)124752 

I 
L 

__ _. 

SQ _J -

Figure 4-32. Adder Level 1 Equation Implementation (Sheet 1 of 2) 

4-81 Advanced Scientific Computer 



r------, 
I 

2N 

bj---~ 

SOR---"" 
(PAADDCOR) 

18 

T· I 

ST 18 
(PAADDCEX) 

ST 
(PAADDCEQ) 

SD 
(PAADDCAN) 

T· I 

1 8 I 
A i-------""' 

D· I 

I 
I 
I 
I 

1 8 I 
At------~ 

I 

N 

A,___.___. 

A,__ _ __. 

L-~--_J 
WHERE: 

(A) 124753 

LOG = OUTPUT FOR LOGICAL INSTRUCTIONS 

SOR = TRUE FOR LOGICAL ''oR" INSTRUCTIONS 

ST =TRUE FOR LOGICAL "'EXCLUSIVE OR 11 INSTRUCTIONS 

ST = TRUE FOR LOGICAL "'EQUIVALENCE 11 INSTRUCTIONS 

SD = TRUE FOR LOGICAL AND INSTRUCTIONS. 

LOGj 

LOGj 
(PAADDOLO) 

Figure 4-32. Adder Level 1 Equation Implementation (Sheet 2 of 2) 

4-82 
Advanced Scientific Computer 



~-------
T 0 = (ASH) · a 0 • b 0 + (ASH) 

D 0 = SUB· ASH+ a 0 • b 0 • (ASH) 

where, 

ASH = true for add or subtract halfword instructions 

SUB = true for subtract instructions 

All the logical functions, except the OR function, are implemented using the 
carry transfer and develop equations and the logical function enables. The 
OR function is defined by the following equation: 

The exclusive OR function is true only when the two bits compared are dif­
ferent, so the carry transfer equation (Ti) is used. The equivalence function 
is true only when the two bits compared are the same, so the negated carry 
transfer equation (Ti) is used. The AND function is true only when both bits 
compared are ones, so the carry develop equation (Di) is used. The output 
equation for all logical instructions, therefore, is formed as follows: 

where, 

LOGi= output at bit po sit ion i for all logical instructions 

SOR = enable for OR functions 

ST = enable for exclusive OR functions 

ST enable for equivalence functions 

SD = enable for AND functions 

The logical function output data (byte, halfword, or word, as determined by 
the logical instruction op-code) is distributed to the fifth level of the adder, 
where it is gated through to the AUl transfer bus (AUlB). 

4-100 Adder Level 2. Refer to figure 4-33 for the logic module connections 
required to implement the equations nee es sary for operation of adder level 
2. The second level of the adder uses the carry transfer and develop equa­
tions from level 1 to generate the right hex group carries (RHTG and RHDG) 
and byte group carries (TG and DG). The carry equations generated by the 
second level of the adder exist on each of the four PPAUCD cards and ap-
ply to only one byte of data per card. A right hex group carry transfer is 

4-83 
Advanced Scientific Computer 



WHERE; 
RHDG 
RHTG 
TG 
DG 

(A) 124754 

,---------, 
D7 ---------I 
T 6 ----------1 Ni--~-------

RHDG (PAADDRDG) 

0 

I 
L---~c ____ _J 

T4 

TS ------.148 

RHTG (PAADDRTG) 

-

L---.o 

RIGHT HEX GROUP CARRY DEVELOP 
RIGHT HEX GROUP CARRY TRANSFER 
BYTE GROUP CARRY TRANSFER 
BYTE GROUP CARRY DEVELOP 

TG {PAADDTG) 

Figure 4-33. Adder Level 2 Equation Implementation (Sheet 1 of 2) 

4-84 Advanced Scientific Computer 



T 
5 

0 
6 

1 
(A)12475 

98 

98 

98 

5 

N 

N 

o 
3 

o, 

N 

- N Do 

o, 
-Dz 

D3 

04 98 

-
T4 

I 

I 

I 

DG (PAADDDG) 

T3 N 

02 

oo 

T2 GC 

T 
1 

-
TO 

0 

Figure 4-33. Adder Level 2 Equation Implementation (Sheet 2 of 2) 

4-85 
Advanced Scientific Computer 



~------
generated whenever all four carry transfers in the right hex group are true. 
This results in the following equation: 

A right hex group carry develop is generated whenever a carry is developed 
in the right hex group and the carry transfers propagate (propagation is not 
necessary when the MSB of the hex develops the carry) the carry through the 
right hex group. This results in the following equation: 

A byte group carry transfer is generated whenever all eight carry transfers 
in the byte group are true. This results in the following equation: 

A byte group carry develop is generated whenever a carry is developed in a 
byte group and the carry transfers propagate the carry through the byte. 
Propagation is not required if the MSB of the byte develops the carry. This 
results in the following equation: 

DG = Do+D1To+DzToT1+D3ToT1Tz+D4 ToT1 TzT3+D5ToT1 TzT3T4+ 

D6ToT1TzT3T4T5+D7ToT1TzT3T4T5T6 

The equation for DG is implemented by forming DG and using the inverted 
output of the resulting logic network to extract DG. The equation for 00 is 
as follows: 

DG = ToDo+T1DoD1 +TzDoD1Dz+T3DoD1DzD3+ 

T4DoD1DzD3D4+T5DoD1DzD3D4D5+T6DoD1DzD3D4D5D6+ 

DoD1DzD3D4D5D6D7 

This equation is formed by inverting the previous equation for DG, convert­
ing the result to the product of sums form, and multiplying out the resulting 
products. The byte group carries (TG and DG) are used in the third level of 
the adder and the right hex group carries (RHTG and RHDG) are used in the 
fourth level of the adder. 

4-101 Adder Level 3. Refer to figure 4-34 for the logic module connections 
required to implement the equation necessary for operation of adder level 3. 
The third level of the adder uses the byte group carries from the second level 
of the adder to generate the carry into a byte (KG) from a previous byte or 
bytes. A carry is input to a byte whenever a carry is developed in a less 

4-86 Advanced Scientific Computer 



,------, 
KG4 I N I 

T 1 
TG3 

I I TG 2 
T 

TG 1 
_l_ I T 
l A ~ I 

N l T 
ASB I I 

IB 

I N ...__ I '---

I I 
I I 

DG3 I A I l 

I I 
I N ~ I 
I I 

DGz t A I 
I I 
I N 1------1 I 

DG I I A I l 

I I 
....__ 

I N ~ I 
A I I 28 A KG 4 

GC 

WHERE: 
L ______ _J 

ASB = TRUE FOR ADD OR SUBTRACT BYTE 
KG4 • TRUE FOR SUBTRACT 

(AL.L SUBSCRIPTS DESIGNATE A BYTE) 

(A) 124756 

KG 

KG(PAADDKGl 

Figure 4-34. Adder Level 3 Equation Implementation 

4-87 
Advanced Scientific Computer 



significant byte and the carry is propagated through to the byte in question. 
Propagation is not required if the carry is developed in the right adjacent 
byte. This results in the following four equations for the four bytes in a 
word. 

KGo = DG1 + DGzTG1 + DG3TG1 TGz + KG4TG1 TGzTG3 

KG1 = DGz + DG3TG2 + KG4 TGzTG3 

KG2 = DG3 + KG4 TG3 

KG3 = KG4 = true for all subtracts 

When a halfword add or subtract instruction is being executed, carries are 
not propagated from the right halfword to the left halfword, so the carry into 
byte equations must be modified. 

KGo = DG1 + KG4TG1 

KG1 = KG4 

KG2 = DG3 + KG4 TG3 

KG3 = KG4 

When a byte add or subtract instruction is being executed, all carry into byte 
equations are set equal to KG4 (true for subtract instructions). Since the 
PPAUCD cards are identical,. they must contain the same logic yet g~ner­
ate the appropriate KG equation. This is accomplished by implementing the 
KGo equation for the word level instruction and routing inputs to each byte 
via the VPRMB motherboard to develop the appropriate KG equation. The 
KGo equation is modified as follows so that it can be used to develop the cor­
rect halfword and byte level KG equations. 

where, 

KGo = KG4(ASB) + DG1 (ASB) + DGzTG1 (ASB) + DG3 TG1 TGz (ASB) + 

KG4 TG 1 TG2TG3 (ASB) 

ASB = true for add or subtract byte level instructions 

The KG 0 equation for word level instructions is developed because ASB is 
zero. For word level instructions, KG1 is developed by setting TG 1 to one 
and DG1 to zero; KGz is developed by setting TG1 and TGz to one and DG1 
and DGz to zero; KG3 is developed by setting TG1, TGz, and TG3 to one and 
DG1, DGz, and DG3 to zero. The correct KG equations for bytes zero and 
one are developed for halfword instructions by using the control mentioned 
for the word level instructions and setting TG2 to zero for both adds and 

4-88 
Advanced Scientific Computer 



~------
subtracts and DGz to zero for adds and one for subtracts. In reality, TGz 
and DGz are set equal to To and Do, respectively, of byte two for halfword 
instructions. This is done because To of byte two is zero for halfword in­
structions and Do of byte two is zero for halfwo·rd adds and one for halfword 
subtracts. The developed KG equation for each byte is input to the fourth 
level of the adder. 

4-102 Adder Level 4. Refer to figure 4-3 5 for the logic module connections 
required to implement the equations necessary for operation of adder level 
4. The fourth level of the adder uses the carry develop, carry transfer, 
right hex group carry, and the carry into byte equations to generate the carry 
equations for each bit in the 32-bit adder result. Each PPAUCD card gen­
erates the carries for one byte of data. A carry is generated for a bit when­
ever a carry is developed in the word and the carry is propagated through to 
the bit in question. Propagation is not required if the carry is developed in 
the right adjacent bit. This results in the following carry equations for a 
byte of data: 

Co= D1 + DzT1 + D3T1T2 + (RHDG)T1TzT3 + KG(RHTG)T1TzT3 

C1 =Dz + D3Tz + (RHDG)TzT3 + KG(RHTG)TzT3 

Cz = D3 + (RHDG)T3 + KG(RHTG)T3 

C3 = RHDG + KG(RHTG) 

C4 = Ds + D6Ts + D1T5T6 + (KG)T5T6T7 

c 5 = D6 + D7T6 + (KG)T6 T7 

C6 = D7 + (KG)T7 

c 7 =KG 

The results from the carry equations for four bytes of data are input to the 
fifth level of the adder. 

4-103 Adder Level 5. Refer to figure 4-36 for the logic module connections 
required to implement the equations and gating necessary for operation of 
adder level 5. The fifth level of the adder uses the carry equations from 
level 4 and the carry transfer equations from level 1 to generate the sum 
outputs. In addition, level 5 includes the output gating associated with the 
AUl transfer bus for the AU. Each PPAUCD card generates sum outputs for 
one byte of data. The sum output is formed by an exclusive OR between the 
carry (Ci) for a bit and the carry transfer (Ti) for a bit and is expressed by 
the £alloy.ring equation. 

S1· = T. • C . + T. • C . 
1 1 1 1 

where, 

Si = sum output at bit position i 

4-89 
Advanced Scientific Computer 



. --

llHTG 

. 

RHDG 

Dz 

KG 

0 

N 

0 A 

0 

KG 

RHTG 

RHDG SQ 

" 

A 

(PAADD 

GC 

N 

A 

(PAA DD 

GC 

C3 

(PAADDCRY(3)) 

co 

Co 

CRY(O)) 

C4 

CRY (4 )) 

N 

0 A 

T7 

KG 

SQ 

ICQ 

RHTG 

T3 

T2 

RHDG 

03 

Dz 

0 

0 

RHTG 

RHDG 

cs 
(PAADDCRY(S)) 

0 

0 

GC 

N 

A 

SQ 

" 

A 

(PAADD 

c, 
CRY(!)) 

6'"AAl>DCRY 

N 

A 

SQ 

c6 
(PAADDCRY(6)) 

Figure 4-35. Adder Level 4 Equation Implementation 

4-90 Advanced Scientific Computer 



T· I 

C· I 

Tj 

c· I 

LOGj 

SHFTj 

SUM 
CONTROL 

(PAA1XCSM) 

LOGICAL 
CONTROL 

(PAA1XCLO) 

SHIFT 
CONTROL 

(PAA1XCSH) 

(A) 124758 

,...._ S· (PAADDOSM) r----i 
N I N 

2N -- 1 31 

r--- ..___.._. 
N r--

2N --- r--
N t--

1 31 .___ 

..---
N t--

, 31 
...__ 

.....-- ~ 

!...-- N 
1B 

A r- 2N ...___. i.-

r--- ,...--
N t--

1B 

A 2N 
..___ ...__ 

r-- ..--
N t--

1B 

A 2N 
..___.... ..___.._. 

BITS 0-4 OF BYTE 

WHERE: 

Sj =SUM OUTPUT AT BIT POSITION j 
SHFTj =SHIFT OUTPUT AT BIT POSITION i 
LOGj =LOGICAL OUTPUT AT BIT POSITION 

IPAU10: 1) 

(IPAU10: 2) 

(IPAU 1 0 : 3) 

('"1PAU10: 4) 

AU 1B 
OUTPUT 

Figure 4-36. Adder Level 5 Equation Implementation (Sheet 1 of 2) 

4-91 
Advanced Scientific Computer 



r----, S_L ~ \1PAU 10: 1 
Tj --- N ----------"-------..-----1 N -~-------

Cj--- 2N 
I..--

.---
Tj --- NI---' 

1- 31 ......___. 

r---"" 
LOGj N t--

BPKj 

1- 31 

"--

1-31 
"--

.----
N t--

1- 31 
"--

\1PAU10:2) 

(iPAU10:3) 

~ (IPAU10:4) ----t N SUM 
CONTROi,,. 

(PAA!XCSMJ 
18 
A~--....._-+----f-t--+--+--+-----1 ...__ 

r--
L.OGICAI.. 
CONTROl-

(PAA 1 XCl..O J ----t 18 

1-

AJ-----_._-+--<1--+---+-------1 
i..--..i 

1 --I 

18 
SHIFT 

CONTROi.. ---1 

(PAA1XCSH) Ai--------"-t--"'-------
"-- ,_ 

BIT PICK 
CON1ROI. ---I 1 BA 

(PAA1XCBP) -------"----------t 
"--

BITS 5-"-7 OF BYTE 

WHERE: 
BPKj= BIT PICKER OUTPUT AT BIT POSITION i 

(A) 124 759 

1- Q3 .___ 

AU 18 
OUTPUT 

Figure 4-36. Adder Level 5 Equation Implementation (Sheet 2 of 2) 

4-92 Advanced Scientific Computer 



When a sum (add or subtract) is being executed, the Si terms from the adder 
are gated through the AUl transfer bus (AUlB) by the sum enable. When a 
logical function is being executed, the LOGi terms from the first level of the 
adder are gated through A Ul B by the logical enable. When a shift or poll in­
struction is being executed, the SHFTi or BPKi terms, respectively, are 
gated through AUlB by the appropriate enable. 

4-104 SHIFTER. Refer to figure 4-37 for a simplified block diagram of 
one byte of the AU shifter representing the logic on each PPAUCD card. 
The shifter performs right or left arithmetic, logical, or cyclic shifts in in­
crements of 1, 4, or 8 bits on a 32-bit word from the MDB. In addition, the 
shifter and aligner combine to perform right or left cyclic shifts in incre­
ments of 16 bits. The byte of data corresponding to the PPAUCDM card 
number and its right and left adjacent bytes are applied to the shifter bit se­
lect logic to provide for the 1, 4, or 8 bit shifts. The selected byte from 
the aligner on the same PPAUCDM card is applied to the shifter bit select 
logic to provide for the 16 bit shifts. The remainder of the inputs to the 
shifter are supplied by the CONTAU card and provide the control necessary 
to generate a byte of shifted data. 

The byte 0 fix control is used in the shift size and direction logic to generate 
the zero fill in byte zero of the shifter word output for right logical shifts. 
The same control is used in the sign propagation logic to provide sign propa­
gation in byte zero of the shifter word output for right arithmetic shifts. The 
byte 3 fix control is used in the shift size and direction logic to generate the 
zero fill in byte three of the shifter word output for left arithmetic and left 
logical shifts. The shift size controls (1, 4, and 8) are used in both blocks 
of logic to generate the proper enables so that the correct amount of shift and 
sign propagation is gated through the shifter bit select logic. The shift type 
controls (cyclic, arithmetic, and logical) are used in the shift size and di­
rection logic to control whether or not zero fill is necessary in bytes zero and 
three of the shifter word output. The arithmetic shift control and the right 
shift control are used in the sign propagation logic to determine when sign 
propagation is necessary. The shift direction controls (left and right) are 
used in the shift size and direction logic to generate the proper enables so 
that bits from the correct adjacent byte are gated through the shifter bit se­
lect logic. The cyclic shift of 16 control is used in the shifter bit select 
logic to enable the byte from the aligner through to the shifter output. The 
remaining paragraphs on the shifter give a more detailed description of the 
shift size and direction logic, the sign propagation logic, and shifter bit se­
lect logic. 

4-105 Shift Size and Direction Logic. The shift size and direction logic 
uses the inputs shown in figure 4-37 to develop the following equations: 

4-93 
Advanced Scientific Computer 



BYTE N FROM UNLOAD BOX 

FROM 
CONT AU 

(B)l 24 760 

FOOM MA" DATA BUS { 

CYCUC SHIFT OF 1 6 

BYTE 0 FIX 

BYTE 3 FIX 

SHIFT 8 

SHIFT 4 

SHIFT 1 

CYCLIC SHIFT (CS) 

LOGICAL SHIFT (LS) 

ARITHMETIC 
SHIFT (AS) 

LEFT SHIFT (L) 

RIGHT SHIFT (R) 

SELECTED BYTE 
FROM ALIGNER 

(PAUNLOAB) 

RIGHT ADJ ACE NT BYTE (PASH FPO) 

LEFT ADJACENT BYTE (PASHFMO) 

(PASHFSPE) 

(PABCOFX) ~O~ ,R O~SB ENABLES 

(PACCOBC3) (PASHFR IP, 4P ,BP) 

- I ,4 ,OR 8 ENABLES 
(PASHFCB) FOR R (LS+As+cs) - ( PASHFR1 , 4, 8) 
(PASHFC4) ... -(PASHFCI) 

SHIFT - SIZE 
(PASHFCCS) AND 

~O~ ·::.~: ENABLES ... DIRECTION 
LOGIC 

(PASHFCLS) (PASHFL IP, 4P, BP) 

(PASHFCAS) --- 1,4, OR 8 ENABLES 
(PASHFCL) FOR L · (LS+AS+CS) 

("1PASHFCL)- (PASHFL I , 4, 8) 

-
(PAALI02) 

--... --- SIGN 
1,4, ORB ENABLES - PROPAGATION 

LOGIC (PASHFSN I , 2, 3) --
--

Figure 4-37. Shifter Logic on PPAUCD (N) 

... -
-

-
-
-

- OUTPUT - BYTE ... 
(PASH.FO) -

SHIFTER 
BIT 
SELECT 
LOGIC 

---

--



where, 

PASHFRlP = BO B3 • Sl • R. (AS+LS) + Sl. R • CS 

PASHFRl = (AS+ LS+ CS) (R• Sl) 

PASHFR4P = BO • B3 • S4 • R · (AS+LS) + S4 • R ·CS 

PASHFR4 = (AS+LS+CS) (R• S4) 

PASHFR8P = BO • B3 • S8 • R • (AS+LS) + S8 ! R • CS 

BO = byte 0 fix control 

B3 = byte 3 fix control 

Sl = shift 1 bit 

S4 = shift 4 bits 

S8 = shift 8 bits 

R = right shift 

AS = arithmetic shift 

LS = logical shift 

CS = cyclic shift 

This set of equations provides the enables necessary for the shifter bit se­
lect logic to perform right arithmetic, right logical, or right cyclic shifts in 
increments of 1, 4, or 8 bits. A similar set of equations (PASHFLlP, 
PASHFLl, PASHFL4P, PASHFIA, and PASHFL8P) are developed for left 
shifts. The PASHFRlP and PASHFRl equations combine to provide the en­
ables required for all types of right shift of ~ bit. The fir st term in the 
PASHFRl P equation enables zeroing of the fir st bit in byte zero of the shifter 
output word when a right logical or right arithmetic shift of 1 bit is being 
performed (the sign propagation logic overrides all zero fill of byte zero when 
a right arithmetic shift is being performed). This same term in the 
PASHFLlP equation enables zeroing of the last bit in byte three when a left 
logical or left arithmetic shift of 1 bit is being performed. The fir st term 
inthe PASHFRlP (PASHFLlP) equation provides the PPAUCD(l-3) 
(PPAUCD(0-2)) cards with the enables necessary for the shifting of bit 7 
(bit O) from the left (right) adjacent byte to bit 0 (bit 7) of the output byte when 
a right (left) logical or right (left) arithmetic shift of 1 bit is being performed. 
The second term in the PASHFRlP (PASHFLlP) equation enables shifting of 
bit 7 (bit 0) from the left (right) adjacent byte to bit 0 (bit 7) of the output byte 
when a right (left) cyclic shift of 1 bit is being performed. - The PASHFRl 
(PASHFLl) equation enables the shifting of bits 0 through 6 (1 through 7) to 
bits 1 through 7 (O through 6) of the output byte when a right (left) arithmetic, 
right (left) logical, or right (left) cyclic shift of 1 bit is being performed. 

4-95 
Advanced Scientific Computer 



The PASHFR4P (PASHFL4P) and PASHFR4 (PASHFL4) equations combine to 
provide the enables required for all types of right (left) shift or 4 bits. The 
first term in the PASHFR4P (PASHFL4P) equation enables the zeroing of the 
first (last) four bits in byte zero (three) of the shifter output word when a 
right (left) logical or right (left) arithmetic shift of 4 bits is being performed. 
In addition, the first term in the PASHFR4P (PASHFL4P) equation is used on 
the PPAUCD(l-3) (PPAUCD(0-2)) cards to enable the shifting of the four 
last (first) bits from the left (right) adjacent byte to the four first (last) bits 
of the output byte when a right (left) logical or right (left) arithmetic shift of 
4 bits is being performed. The second term in the PASHFR4P (PASHFL4P) 
equation enables the shifting of the four last (first) bits from the left (right) 
adjacent byte to the four first (last) bits of the output byte when a right (left) 
cyclic shift of 4 bits is being performed. The PASHFR4 (PASHFL4) equation 
enables the shifting of the four first (last) bits of the output byte to the four 
last (first) bits of the output byte when a right (left) arithmetic, right (left) 
logical, or right {left) cyclic shift of 4 bits is being performed. 

The PASHFR8P (PASHFL8P) equation provides the enables required for all 
types of right (left) shift of 8 bits. The first term in the PASHFR8P 
(PASHFL8P) equation enables the zeroing of byte 0 (three) when a right (left) 
logical or right (left) arithmetic shift of 8 bits is being performed. In addi­
tion, the first term in the PASHFR8P (PASHFL8P) equation is used on the 
PPA UCD( 1-3) (PPA UCD(0-2)) cards to enable the shifting of the left (right) 
adjacent byte to the output byte when a right (left) logical or right (left) 
arithmetic shift of 8 bits is being performed. The second term in th~ 
PASHFR8P (PASHFL8P) equation enables the shifting of the left (right) adja­
cent byte to the output byte when a right (left) cyclic shift of 8 bits is being 
performed. 

4-106 Sign Propagation Logic. The sign propagation logic uses the inputs 
shown in figure 4-3 7 to develop the following equations: 

PASHFSNl = S8 • AS • R • BO 

PASHFSN2 =(S4 + S8) (AS· R· BO) 

PASHFSN3 = (Sl + S4 + S8) (AS· R· BO) 

This set of equations provides the enables necessary for the shifter bit se­
lect logic to sign extend the quantity being shifted. Examination of the three 
equations indicates that sign propagation occurs only when a right arithmetic 
shift is being performed and the logic using the equations is on the 
PPAUCDM(O) card. When this is the case, the PASHFSN3 equation is used 
to enable the sign of the data to be shifted into the bit 0 of byte 0, the 
PASHFSN2 equation is used to enable the sign of the data to be shifted into 
bits 1 through 3 of byte 0, and the PASHFSNl equation is used to enable the 

4-96 
Advanced Scientific Computer 



sign of the data to be shifted into bits 4 through 7 of byte 0. When sign prop­
agation is necessary, only equation PASHFSN3 is true for a shift of one, 
equations PASHFSN3 and PASHFSNZ are true for a shift of four, and all three 
equations ( PASHFSN3, P ASHFSN2, and PAS HF SN 1) are true for a shift of 
eight. 

4-107 Shifter Bit Select Logic. The shifter bit select logic uses the enables 
from the shift size and direction logic and the sign propagation logic to select 
and gate data from the unload box and the MDB through to the output when a 
shift of 1, 4, or 8 is specified. In addition, the cyclic shift of 16 control 
from the CONTAU card is used to select and gate data from the aligner 
through to the output when a cyclic shift of 16 is specified. The ten pre­
viously-mentioned shift size and direction enables from the shift size and 
direction logic, the three previously-mentioned sign propagation enables 
from the sign propagation logic, and the cyclic shift of 16 enable from the 
CONT AU card are all paired with an appropriate bit of data from one of the 
three data sources. When the control signals from the CONT AU card drive 
an enable signal true, the data bit paired with the true enable is output to the 
proper bit in the output byte. Each PPAUCD card produces a byte of 
shifted data for output to the AU 1 transfer bus in this manner. 

4-108 BIT PICKER. Refer to figure 4-38 for a diagram of the data flow re­
quired for bit picker operation. The bit picker is used during poll instruc­
tions to scan a byte of data (typically from a CR register) from the MSB to 
the LSB in order to determine the number of zeroes from the MSB of the byte 
to the first one. The bit picker accepts the true and complement form of the 
word supplied by the MDB from the unload box. All four bytes of the word 
are operated on in parallel (one byte per PPAUCD card) by the bit picker 
and the necessary selection of the byte specified by the poll instruction is 
supplied by the PPCT L2 card. 

A three-bit code (HG F) is developed by the pit picker on each PPAUCD 
card to indicate the zero count to the fir st one for each byte of the input word. 
The equations formed to generate the three-bit code are based on the unload 
byte table in figure 4-38. In addition, an equation is formed (K) to indicate 
when all bits of a byte are zero. Refer to figure 4-39 for the logic module 
connections required to implement the following equations: 

Fj = a 0a 1 + aoaza3 + aoaza41-5 + aoaza4a6a7 

Gj = ao"a1a 2 + a 0a 1a 3 + a 0a 1a 4a 5a6+ a 0a 1a4a5a 7 

Hj = a 0a 1a 2a 3a 4+ a 0a 1 a 2a 3a 5 + a0a 1a 2a 3 a6 + a 0a 1a 2a 3a 7 

4-97 Advanced Scientific Computer 



r---

M 
D 
B 

'---

"F" 

•G' 

•H'' 

'"K" 

BIT PICKER LOGIC PPAUCD(0-:"3) 

r 
I 

PPAUCDM 15 (0-3) 

r-- -, 
I PPAUCDM 's I 

TRUE 

I UNLOAD 
BOX 

I COMP --I 
L ----

IS TRUE IF: 

t· ODD 
BITS OR 

OR 

IS TRUE IF: 

OR 

OR 

OR 

IS TRUE IF; 

OR 

OR 

OR 

IS TRUE IF: 

F 
~-I 'G'' 

BIT I"'!" PICKER 

I -
t-- I 

I_ - --~ ... " K 

I ~H· .. 
BYTE l·''C:: SELECT 
FOR I •F" VPC 

I 
- _I_ 

13 
...1. AUIB 
I 

I 
·~ _J -t-

BIT CO 

--
DE 
TO 
VPRCRDS 

~ CONTAU 

UNLOAD BYTE 

0 1 2 3 4 5 

0 f ."< x x x 

0 x 0 1 x x 

0 x 0 x 0 1 

0 x 0 x 0 x 

0 0 x x 0 0 

0 0 x x 0 0 

0 0 x 1 x x 

0 0 1 x )l x 

0 0 0 0 1 x 

0 0 0 0 x 1 

0 0 0 0 )C x 

0 0 0 0 x x 

6 

x 

x 

x 

0 

x 

1 

x 

x 

x 

x 

1 

x 

(CONT AU) - D PAA1XCBP }TO PPAUC (1 ,3) 
(BP-AU 1 ENABLE) PPAUCD(O.J.2) 

ARE ZEROt:.D 

7 

x 

x 

x 

1 

1 

x 

x 

x 

x 

x 

x 

1 

v p c 

0 0 0 

H G F 

REFER TO LOGIC 

DIAG PG 12 AND 13 

0 0 0 0 0 0 0 0 

PPCTL2: 

1. DECODES POLL INSTRUCTION 

2. LOOKS AT DESTINATION ADDRESS FOR WHICH HALFWORD 

3. LOOKS AT SOURCE ADDRESS FOR WHICH BYTE TO BE SELECTED FROM THE BIT PICKER 

(A) 111699 

Figure 4-38. Bit Picker Data Flow 

4-98 
Advanced Scientific Computer 



ao 
a, 

a4 

as 

a7 

ao 
a, 

a4 

as 
a6 

ao----1 
a,--­
a3 

lfo 

a,----1 

98 

aa 311 

(8)124761 

a7 

li5 

ii4 

a2 
iio 

(PA8PKOF 
A F· 

I 

as 

a3 

a, 
(PA8PKOK) 

A1-------

0 

(PA8PKOG) 
GI 

PABPKOH) 

ao 
a, 
a2 
a3 

a4 

ao 
a, 
a2 
a3 

il6 

<ao THROUGH a7 HAVE PAUHLOA8 SIGNATURES) 

Figure 4-39. Bit Picker Equation Implementation 

4-99 Advanced Scientific Computer 



where, 

Fj is the LSB of the three-bit code for byte j 

~j is the LSB+l of the three-bit code for byte· j 

Hj is the MSB of the three-bit code for byte j 

Kj is the no ones control signal for byte j 

a 0a 1 a 2a 3a 4 a 5a6a7 is a byte of data from the unload box 

The four sets of H, G, and F lines (one set per PPAUCD card) are input to 
the PPCT L2 card and the four K lines are input to the CONT AU card. The 
K line of the byte specified by the poll instruction is used to determine if the 
next instruction is to be skipped (K=O) or not (=l). The four sets of H, G, 
and F lines are applied to the byte select logic as shown in figure 4-40. Bits 
6 and 7 from the MIR source address are decoded and used to enable the three­
bit code from the specified byte to the AUl transfer bus select logic (men­
tioned in the description of adder level 5) on PPAUCDl and PPAUCD3. 
Bit 6 from the MIR destination address and the AUl transfer bus select logic 
enable signal (PAAlXCBP) from the CONTAU card combine to select the 
right or left halfword three- bit code and to enable the three-bit code of the 
selected halfword to the AUl transfer bus. The result is input to a VPR 
halfword. 

4-109 TEST BOX 1, 2, AND 3 LOGIC. The test box logic is used to per­
form various tests on data from the unload box and double rail generator. 
The test box 1 logic is used during the execution of TP, TM, TZ, and TN 
instructions to test data from the unload box for positive, negative, zero, 
and nonzero data, respectively. In addition, the test box 1 logic is used dur­
ing the execution of stack instructions to test the stack parameters for zero, 
nonzero, negative, and positive data. The test box 2 logic is used during the 
execution of TO (test for any one), TZ (test for any zero), TAO (test for all 
ones), TAZ (test for all zeroes), TSZ (test for any zero and set), TSO (test 
for any one and set), TRZ (test for any zero and reset), and TRO (test for 
any one and reset) type instructions to test data from the unload box in only 
those bit positions specified by the R field (the R field is also supplied by the 
unload box). The test box 2 logic is also used during the execution of VPTO 
and VPTZ (test CR for one and zero, respectively) instructions to test data 
from the unload box only in the bit position of the active VP code. The test 
box 3 logic is used during the execution of IBN (increment and branch if non­
zero), IBZ (increment and branch if zero), DBN (decrement and branch if 
nonzero), and DBZ (decrement and branch if zero) instructions to test data 
from the double rail generator for zero and nonzero data. A detailed de­
scription of each test box is given in the following paragraphs. 

4-100 
Advanced Scientific Computer 



FROM{ MIR 
SOURCE 

ADDRESS 

(A)l 11661 

(D6) PIQMIR (30) 
1B 

Pl I (7) 

PIK (5) 3N 

PIL (I) 

(S6) PIQMIR (22) 

DECODE 
LOGIC 

(S7) PIQMIR (23) ., . 

PABPK INF (0) 

(I) 

(2) 

(3) 

PABPKING (0) 

(1) 

(2) 

(3) 

PABPKINH (0) 

(I) 

_12) 

(3) 

DECODE 
LOGIC 

PATPOLBI 

PATl"OLB2 

TO PPAUCD 
(I) 

PITPOL 
.._ __ _:------ll•H\ PPAUCD 

}
(FOR AU1 .... VPR) 
BYTE ENABLE TO 
GET VPC ONTO 
AUIB 

PAT POLS __(Q}_ 

PATPOLS (I) 

~ n} SE 

~ so 
PATP~S (2) S6 BY 

S6 

PATPOLS (3) 

1 ,1r 

PABPKFO ( 1) --- ...... .. ENABLES THE PABPKG0(1)-- ...... .. PROPER 3 BIT PABPKH0(1) _ - CODE FROM . -- ONE OF THE .. PPAUCDM'S -- SELECTED BY . 
~ 

THE CRtn= .. - FIELD . (I.E. WHICH - BYTE) -- PABPKF0(3) _ -- ---- PABPKG0(3) 

PABPKH0(3) --- --

LECTS 
URCE 
TE 

} 
TO PPAUCDM I 
(AUIB) 

} 
TO PPAUCDM3 
(AU 1B) 

Figure 4-40. Bit Picker Support Logic on PPCTL2 

4-110 Test Box I Logic. The test box I logic accepts VPR or CR data in 
complement form from the unload box when a test instruction is being ex­
ecuted or SWBD data in complement form when a stack instruction is being 
executed. All four bytes of the input data word are operated on in parallel 
by the four PPAUCD cards and the CONTAU card uses the generated sig­
nals as necessary for word, halfword, and byte level instructions. Using 
only the data from the unload box, the test box 1 logic implements the follow­
ing equations to indicate the byte of data tested is zero or nonzero and posi­
tive or negative. 

4-101 Advanced Scientific Computer 



where, 

PATSlOSN (Negative)= ao 

PATSlOSN (Positive) = ao 

~ATSlOZ (Zero) 

PATSlOZ (Nonzero) 

= aoa1aza3a4a5a6a7 

= ao + a 1 + az + a3 + a4 + as + a6 + a? 

The four sets of negative, positive, zero, and nonzero lines (one set per 
PPAUCD card) are input to the CONTAU card for use i.n the skip taken for 
stack logic and the branch taken logic. 

4-111 Test Box 2 Logic. The test box 2 logic uses CR data i.n true and 
complement form and the R field i.n true form, both from the unload box, 
when the R field i.s used as a mask i.n testing a half byte of data. When the 
VP code i.s used as a mask i.n testing one bit, the test box 2 logic uses CR 
data i.n complement form and the decoded VP code i.n true form, both from 
the unload box. All four bytes of the CR word are operated on i.n parallel by 
the four PPAUCD cards and the CONTAU card uses only the generated sig­
nals applicable to the byte specified by the T and N fields of the executing in­
struction. The test box 2 logic implements the following equation to indicate 
that the bi.t specified by the active VP code i.s set. 

where, 

VP Bit Set= (ao+VPo)(a1+VP1)(az+VPz)(a3+VP3)(a4+VP4)(a5 +VPs) 

(a 6+ VP 6)(a 7+ VP 7 ) 

Each term i.n this equation, except the term representing the active VP, i.s 
equal to one because only one VP can be active at any execution time. This 
means the VP bi.t set equation i.s only true when the bit corresponding to the 
active VP i.s set, because the VP element of the active VP term i.s zero. The 
following equations are implemented to indicate that the bi.ts specified by the 
R field i.n the byte of data tested are all zeroes, all ones, any zero, or any 
one. Left and right half byte equations are necessary because the R field i.s 
only four bi.ts. 

All Zeroes (left half)= (a0+R. 0 )(a1+R 1)(az+Rz)(a3+R3) 

All Zeroes (right half)= (a4+Ro)(a5+R1)\a6+Rz)(a7+R3) 

All Ones (left half)= (ao+Ro)(a1+R1)(az+Rz)(a3+R3) 

4-102 
Advanced Scientific Computer 



where, 

All Ones (right half)= (a4+R. 0 )(a5+R1)(a6+Rz)(a7+R3) 

Any Zero (left half) = a 0R 0+a 1R 1+a2R 2+a3R 3 

Any Zero (right half) = a 4R 0+a5R 1+a6Rz+a7R 3 

Any One (left half) = a 0R 0+a 1R 1 +a2Rz+a 3R3 

Any One (right half) = a 4R 0+a 5R 1 +a6Rz+a7R3 

·~-

RoR 1R2R3 ·a.s the R field from the executing instruction 

The all zero equations are true only when the ones in the R field match with 
zeroes in the half byte tested. The all one equations are true only when the 
ones in the R field match with ones in the half byte tested. The any zero 
equations are true only when the ones in the R fi.eld match with at least one 
zero in the half byte tested. The any one equations are true only when the 
ones in the R field match with at least one ane in the half byte tested. The 
four sets of all zero, all one, any zero, any one, and VP bit set lines are 
input to the CONTAU card for use in the skip taken logic. 

4-112 Test Box 3 Logic. The test box 3 logic uses VPR data in true and 
complement form from the double rail generator when increment or decre­
ment and branch if zero or nonzero instructions are being executed. All four 
bytes of the VPR word are operated on in parallel by the four PPAUCD 
cards and the CONTAU card uses only the generated signals applicable to the 
halfword specified by the R field of the executing instruction. The test box 
3 logic implements the following equations to determine when a VPR byte is 
equal to plus or minus one. 

where, 

PATS30Pl = bob1bzb3b4b5b6 

PATS3.0P7 = b 7 

PATS30Ml = bab1 bzb3b4b5b6b7 

A VPR byte of data is equal to plus one only when both the PATS30Pl and 
PATS30P7 equations are true. A VPR byte of data is equal to minus one 
only when the PATS30Ml equation is true. The fou~ sets of PATS30Pl, 
PATS30P7, and PATS30Ml lines (one set per PPAUCD card) are input to 
the CONTAU card for use in the branch taken logic. 

4-103 Advanced Scientific Computer 



4-113 COMPARATOR. The comparator is used during the execution of 
compare and skip if equal (CE) and compare and skip if not equal (CN) in­
structions to perform a comparison between data from the aligner and data 
from the qouble rail generator. The data from the aligner is supplied by a 
CR, VPR, or the SWBD of the active VP and the data from the double rail 
generator is supplied by a VPR. Using the two sources of input data, the 
comparator implements the following equation on each PPAUCD card to 
determine if two bytes of data are identical. 

where, 

PAC020 = (a0b 0+a0b 0 )(a 1 b 1+a1b 1 )(a2b 2+a2b 2 )(a3b 3+a 3'b3 ) 

(a4b4+a4b4) (a 5 b 5+a 5b 5) (a6b6+a6b6) (a7b7+a7b7) 

a 0a 1aza3a4a 5a6a 7 is a byte of data from the aligner 

b 0b 1 b 2b 3b 4b 5b 6b 7 is a byte of data from the double rail generator 

If all bits in the two compared bytes are the same, all eight terms in the 
PAC020 equation evaluate to one and PAC020 is true, Four sets of the 
PAC020 equation and its complement (one set per PPAUCD card) are input 
to the CONTAU card for use in the skip taken logic. 

4-114 DATA MANIPULATOR. The data manipulator is used during the ex­
ecution of set (SL, SR), reset (RL, RR), test and set (TS), and test and re­
set (TR) instructions to set or reset (depending on the op-code) bits in a CR 
byte according to the ones in the R field of the executing instruction. It is 
also used during the execution of set VP flag (VPS) and reset VP flag (VPR) 
instructions to set and reset, respectively, a bit in a CR byte according to 
the decoded VP code. The unload box supplies the data manipulator with CR 
data in true form and the R field and decoded VP code in both true and com­
plement form. Refer to figure 4-41 for a simplified block diagram of the 
data manipulator illustrating the four PPAUCD cards operating on a CR 
word (one byte per PPAUCD card). Each PPAUCD card utilizes a CR 
byte, the R field of the executing instruction, the decoded VP code, and op­
code generated control signals from the CONTAU card to develop the follow­
ing equations (one equation for each bit in the byte): 

Bit 0 = CZL (aoRo) + CPR (ao VPo) + COL (ao+Ro) + CPS (ao+VPo) 

Bit 1 = CZL (a1R1) + CPR (a1VP1) + COL (a1+R1) + CPS (a1+VP1) 

Bit 2 = CZL (azRz) + CPR (az VPz) + COL (az+Rz) + CPS (az+VPz) 

Bit 3 = CZL (a 3R 3 ) + CPR (a 3 VP3 ) + COL (a 3+R 3 ) + CPS (a 3+VP 3 ) 

Bit 4 = CZR (a4Ro) + CPR (a4 VP 4) + COR (a4+Ro) + CPS (a4+VP 4) 

4-104 
Advanced Scientific Computer 



FROfv' 
CONT AU 

FROM 
UNLOAD 

BOX 

FROM 
UNLOAD 

BOX 

FROM 
UNLOAD 

BOX 

FROM 
UNLOAD 

BOX 

PADMPCOL 

PADMPCOR 

PADMPCZL 

PADMPCZR 

PADMPCPS 

PADMPCPR 

PAUNLOAB (0-7) 

{ 
111P_A_U_N..,Liiiiii0iiioioi.R•(iliii0 ... -.;;3;.;;)_ .... 

PAUNLOP (0-7) 

{ 
PAUNLOAB 8-15 

PAUNLOR (0-3) 

PAUNLOP 0-7 

{ 
PAUNLOAB (16-23 

PAUNLOR (0-3) 

PAUNLOP (0-7) 

DM 

LOGIC 

PPAUCD(O) 

OM 

LOGIC 

PPAUCD(1) 

OM 

LOGIC 

PPAUCD(2) 

OM 

LOGIC 

PPAUCD(3) 

PADMPO : 1 (0-7 

TO AU2XFER 

PADMPO : 2(0-7) 

TO PCCARDA (0-1) 

PADMPO : 1 (8-15) 

TO AU2XFER 

PADMPO :2 (8-1 ) 

TO PCCARDA (2-3) 

TO AU2XFER 

PADMPO :2 (16-23) 

TO PCCARDA (4-5) 

TO AU2XFER 

PADMPO :2 (24-31) 

(A) 111664 
TO PCCARDA (6-7) 

Data Manipulator 

where, 

Figure 4-41. 

Bit 5 = CZR (a5R1) + CPR (a5VP5) + COR (a5+R1) + CPS (a5+VP5) 

Bit 6 = CZR (a6Rz) + CPR (a6VP6) + COR (a6+Rz) + CPS (a6+ VP6) 

Bit 7 = CZR (a7R3) + CPR (a7VP7) + COR (a7+R3) + CPS (a7+VP7) 

CZL enables the resetting of bits in the left half of a byte according 
to the R field (TRZL, TROL, and RL instructions) 

CZR enables the resetting of bits in the right half of a byte accord­
ing to the R field (TRZR, TROR, and RR instructions) 

4-105 Advanced Scientific Computer 



~------
COL enables the setting of bits in the left half of a byte according to 
the R field (TSZL, TSOL, and SL instructions) 

COR enables the setting of bits in the right ha:lf of a byte according 
to the R field (TSZR, TSOR, and SR instructions) 

CPR enables the resetting of a bit in a byte according to the decoded 
VP code (VPR instruction) 

CPS enables the setting of a bit in a byte according to the decoded 
VP code (VPS instruction) 

The equations for bits 0 through 3 use the left half byte controls and the equa­
tions for bits 4 through 7 use the right half byte controls. The first term in 
all of the equations is used to reset a CR bit if the corresponding R field bit 
is set; the second term in all of the equations is used to reset a CR bit if the 
corresponding decoded VP code bit is set; the third term in all of the equa­
tions is used to set a CR bit if the corresponding R field bit is set; the fourth 
term in all of the equations is used to set a CR bit if the corresponding de­
coded VP code bit is set. Refer to figure 4-42 for a flow chart of the pro­
cessing accomplished by each of the four types of terms. Four sets of the 
bit 0 through 7 lines (one set per PPAUCD card) are input to the AU2 trans -
fer bus (A U2B) for presentation to the CR byte specified by the executing in­
struction. 

4-115 SKIP TAKEN AND BRANCH TAKEN LOGIC. The skip taken and 
branch taken logic consists of skip taken for stack logic, skip taken logic, 
and branch taken logic (refer to figure 4-43). The skip taken for stack logic 
is used during the execution 'of stack instructions to determine whether the 
next instruction is to be skipped (normal execution of a stack instruction) or 
not (invalid stack parameter encountered). The branch taken logic is used 
during the execution of test and branch (TP, TM, TN, and TZ type instruc­
tions) and increment or decrement test and branch (IBZ, IBN, DBZ, and 
DBN instructions) instructions to determine if a branch should be taken to 
the location specified by the T and N fields (a branch is taken when the test 
performed is true). The skip taken logic is used during the execution of 
compare and skip (CE and CN type instructions) and test and skip (TO, TZ 
(L and R), TA, TS, TR, and VPT type instructions) instructions to determine 
if the next instruction is to be skipped (a skip is taken when the compare or 
test performed is true). A detailed description of the skip taken for stack 
logic, branch taken logic, and stack taken logic is given in the following 
paragraphs. 

4-116 Skip Taken for Stack Logic. The skip taken for stack logic is on the 
CONTAU card and uses push, pull, and modify stack control lines and test 

4-106 
Advanced Scientific Computer 



....... 
0 
-.J 

(TSZL, TSOL ,SL) (TSZR,TSOR,SR) 

NO 

YES 

LET BITj 
OUT:::: 1 

LET BITj 
YES OUT = 0 

LET BITj 
OUT= 1 

WHERE: BIT ~ ~?€~~ ~ ~8(dJ127 )} COL + CZL 

(A) 111663 

Figure 4-42. 

NO NO 

BIT ~(4-7)+(12-15)} COR+CZR 
+ (20-23) + (28-31) 

LET BITj 
OUT= 0 

LET BITj 
OUT= 1 

Data Manipulator Flow Chart (Sheet 1 of 2) 

NO 



~------

RESET VP FLAG 

LET BlTj 

OUT = ! 

(A)t 11662 

LET BIT; 

OUT= Q 

SET VP FLAG 

LET BITi 

OUT • Q. 

WHERE: BITj 

VPC 

<0-1> + ce-1 s) + (15-23) + (2•-31) 

• (0-7) 

LET BITi 

OUT= ! 

Figure 4-42. Data Manipulator Flow Chart (Sheet 2 of 2) 

4-108 Advanced Scientific Computer 



*"" I 
...... 
0 

'° 

p PAUCD(0-3) 

TS1 
(LOGIC) 

TS3 
(LOGIC) 

TS2 
(LOGIC) 

COMPARE 
(LOGIC) 

BIT 
PICKER 
(LOGIC) 

(A) 124761 

I 
l 
T 

I 
1 
T 

I 
I 
l 
I 

I 
I 

..1 

I 
I 
l 
T 

CONT AU SKIP 
TAKEN 
FOR 
STACK - LOGIC IPACSTS -

L_. 

- BRANCH ,PACBT 
TAKEN - LOGIC 

~ 
TEST POSITIVE 

+ - -- -..___ .. SKIP - TAKEN 
LOGIC 

~ 

Figure 4-43. Arithmetic Unit Test Functions 

I 
1-,-
I 
I .__ 
I 
I --
I 
I 
I 
I 
I 
I 

TO 
PCCTL 

TO 
PCCTL 

TO 
PCCTL AND 
IRCARD(0-3) 



signals from the test box 1 logic to determine whether an instruction is to be 
skipped or not. The following equation is implemented to make this decision. 

where, 

PACSTS = (PUL+PATSl OZ(O)) (PUL+PATSl OZ( 1 )) (PSH+PATS 1 OZ(2)) 

(PSH+PATSl OZ (3 )) (MDF+PATS 1 OSN(O)+PATSl OSN(2)) 

PUL is true for pull stack instructions in state class 4 (execute) step 2 

PSH is true for push stack instructions in state class 4 step 2 

MDF is true for modify stack instructions in state class 4 step 2 

PATSl OZ(i) and PA TS 1 OSN(i) are test signals from the test box 1 logic 
for byte i 

The first two terms of the PACSTS equation represent the zero check on the 
word count parameter for pull stack instructions. When the pull stack in­
struction is executing in state class 4 step 2 and the word count is zero 
(PATSlOZ(O) and PATSlOZ(l) are true), the first two terms in the equation, 
and the equation itself, go to one (PACSTS equals one for no skip and zero 
for skip).· When the word count is nonzero, the first and/or second terms in 
the equation go to zero so that a skip is made. When the push stack instruc­
tion is executihg in state class 4 step 2 and the space count is zero 
(PATS10Z(2) and PATS10Z(3) are true), the third and fourth terms in the 
equation go to one so that no skip is made. When the space count is nonzero, 
the third and/or fourth termp in the equation force a skip condition. When 
the modify stack instruction is executing in state class 4 step 2 and either 
the word count or space count is negative (PATSlOSN(O) and/or PATS10SN(2) 
are true), the last term in the equation goes to one so that no skip is made. 
When both the word count and space count are non-negative, the last term in 
the equation forces a skip condition. The PACSTS signal is used on the 
CONTAU card to aid in developing the test positive signal and is also input 
to the PCCTL card. 

4-11 7 Branch Taken Logic. The branch taken logic is on the CONT AU card 
and uses test and branch and increment or decrement test and branch instruc­
tion control lines, along with test signals from the test box 1 logic and test 
box 3 logic, to determine if a branch is to be taken to the location specified by 
the T and N fields. The following equations are implemented to make this de­
cision. 

PACBT = (PACSF1BT)(PACSF2BT)(PACSF3BT)(PACSF4BT) 
(PACSFSBT) 

PACSFlBT = (D Z+LH+(+f)) (DZ+RH+(B)(DN+LH+(+ 1 )) (DN+RH+(+ 1 )) 

4-110 Advanced Scientific Computer 



where, 

PACSF2BT = (IZ+LH+(:-f)) (lZ+RH+(:-f) )(IN+LH+(-1 )) (IN+RH+(-1)) 

PACSF3BT = (TPB+BO+POSO)(TPB+Bl+POSl)(TPB+B2+POS2) 
(TPB+B3+POS3)(TMH+LH+NEGO)(TMR+RB+NEG2) 
(T PH+LR+ POSO) (TPH+ RH+ POS2 )(T MW+ NEGO) 
(TPW+POSO) 

PACSF4BT = (TNW+NZW)(TNH+LH+NZLH)(TNH+RH+NZRH) 
(T Z W + Z W) (TZH + LH + Z LH) (TZH+ RH+ ZRH) 

PACSFSBT = (TNB+BO+NZBO)(TNB+Bl+NZB 1 )(TNB+B2+NZB2) 
(TNB+B 3+NZB3 )(T ZB+BO+ZBO)(T ZB+B 1 +ZBT) 
(T ZB+BZ+Zi32)(T°ZB+B3+ZB3 )(T"MB+BO+NEGO) 
(TMB+B l+NEGl )(TMB+B2+NEG2)(TMB+B3+.,,....,,N=E-=G~3) 

DZ is true for DBZ instructions in step 2 of the execute state 

DN is true for DBN instructions in step 2 of the execute state 

IZ is true for IBZ instructions in step 2 of the execute state 

IN is true for IBN instructions in step 2 of the execute state 

TPB is true for TPB instructions in step 2 of the execute state 

TMH is true for TMH instructions in step 2 of the execute state 

TPH is true for TPH instructions in step 2 of the execute state 

TMW is true for TM instructions in step 2 of the execute state 

TPW is true for TP instructions in step 2 of the execute state 

TNW is true for TN instructions in step 2 of the execute state 

TNH i's true for TNH instructions in step 2 of the execute state 

T ZW is true for T Z instructions in step 2 of the execute state 

T ZH is true for T ZH instructions in step 2 of the execute state 

TNB is true for TNB instructions in step 2 of the execute state 

T ZB is true for T ZB instructions in step 2 of the execute state 

TMB is true for TMB instructions in step 2 of the execute state 

+ 1 is true when the test box 3 logic indicates the applicable halfword 
is equal to plus one 

-1 is true when the test box 3 logic indicates the applicable halfword 
is equal to minus one 

LH is true for instructions involving the left half of a word 

4-111 
Advanced Scientific Computer 



RH is true for instructions involving the right half of a word 

BN is true for instructions involving byte N of a word (N=O, 1, 2, or 3) 

POSN is true when the test box 1 logic indicates byte N is positive 
(N=O, 1, 2, or 3) 

NEGN is true when the test box 1 logic indicates byte N is negative 
(N=O, 1, 2, or 3) 

NZN is true when the test box 1 logic indicates a word (N=W), half­
word (N=LH or RH), or byte (N=BO, Bl, B2, or B3) is nonzero 

ZN is true when the test box 1 logic indicates a word (N=W), half­
word (N= LH or RH), or byte (N=BO, B 1, B2, or B3) is zero 

The equation for PACBT goes to zero whenever a branch is to be taken and 
stays at one if no branch is to be taken. If any one of the five terms in the 
PACBT equation evaluates to zero, a branch is necessary. The PACSFlBT 
equation provides the branch or no- branch decision for the DB Z and DBN in­
structions. When the DBZ instruction is in step 2 of the execute state and 
the left half of the word being tested is equal to plus one (plus one is the 
quantity tested for because the VPR halfword to be decremented has not been 
decremented in step 2 of the execute state), the first term in the PACSFlBT 
equation goes to zero to cause a branch. If the left half of the word being 
tested is not plus one, no branch is taken. The second term performs the 
same function as the fir st when the right half of a word is being tested for a 
DBZ instruction. The third and fourth terms provide the branch or no-branch 
decision for DBN instructions. The PACSFZBT equation provides the branch 
or no-branch decision for the IBZ and IBN instructions in a manner similar 
to that described for the DBZ and DBN instructions. Minus one is tested for 
in the IBZ and IBN instructions because the VPR halfword to be incremented 
has not been incremented in step 2 of the execute state. The PACSF3BT 
equation provides the branch or no-branch decision for the TPB, TMH, TPH, 
TM, and TP instructions. The first four terms apply to the four possible 
bytes that can be used by the TPB instruction. The fifth and sixth terms 
apply to the two possible halfwords that can be used by the TMH instruction 
and the seventh and eighth terms apply to the two possible halfwords that can 
be used by the TPH instruction. The next to last and last terms apply to the 
TM and TP instructions, respectively. The PACSF4BT equation provides 
the branch or no-branch decision for the TN, TNH, T Z, and T ZH instructions 
and the PACSFSBT equation provides the branch or no-branch decision for 
the TNB, TZB, and TMB instructions. In the last three equations, the term 
corresponding to the instruction being performed goes to zero when the quan­
tity being tested for is found. The PACBT signal is used on the CONTACT 
card to aid in developing the test positive signal and is also input to the 
PCCTL card. 

4-112 Advanced Scientific Computer 



4-118 Skip Taken Logic. The skip taken logic is on the CONTAU card and 
uses compare and skip and test and skip instruction control lines along with 
test signals from the test box 2 logic, comparator, and bit picker to deter­
mine if the next instruction is to be skipped. The following equations are 
implemented to make this decision. 

Skip Taken= (PACSF1ST)(PACSF2ST)(PACSF3ST)(PACSF4ST) 
(PACSFSST) (PACSF6ST) (PACSF?ST) (PACSTS) 

PACSFlST = (TS0L+BO+AYOLBO)(TSOL+Bl+AYOLB1) 
(TSOL+B2+AYOLB2) (TSOL+B3+AYOLB3) 
(TSOR+BO+A YORBO)(TSOR+B l+A YORB 1) 
(TSOR+B2+A YORB2) (TSOR+B 3+A YORB3) 
(TSZL+BO+AYZLBO) (TSZL+B l+AYZLBl) 
(TSZL+B2+A YZLB2) (TSZL+B3+A YZLB3) 

PACSF2ST = (TSZR+BO+A Y ZRBO) (TSZR+B l+A Y ZRB 1) 
(TSZR+B2+AYZRB2)(TSZR+B3+AYZRB3) 
(TPOL+BO+AYOBO)(TPOL+Bl+AYOBl) 
(TPOL+B2+AYOBZ)(TPOL+B3+AYOB3) 

PACSF3ST = (C'WN+CNO(CN1)CN2 (CN3) )(CRHN+LH+CNO(CNl)) 
( CRHN+ RH+ ( CN2) CN3) (CHE+ LH +CEO+CE 1) 
(CH'E+RH+CE2+CE3) (CWE+CEO+CE 1 +CE2+CE3) 

PACSF4ST = (TSAZL+BO+ALZLBO)(TSAZL+B l+ALZLB 1) 
(T SAZL+ B 2+ ALZ LB2) (TSAZ L+ B 3+ ALZ LB 3) 
(TSAZR+BO+ALZRBO)(TSAZR+B l+ALZRB 1) 
(TSAZR+B2+ALZRB2)(TSAZR+B3+ALZR33) 
(TSAOL+BO+ALOLBO)(TSAOL+B l+ALOLB 1) 
(TSAOL+ B 2 +ALO LB 2) (TSAOL+ ITT+ ALO LB 3) 

PACSFSST = (CIEW+CEO+CE 1 +CE2+'CE'3) (CIEH+LH+CE"O+CEl) 
( CIEH+ RH+ C E2+ CE3) ( C !EB+ B 0+ CEO) ( CIEB+ B 1+CE1 ) 
(CIEB+ B2+CE2) (CIEB+ B3+CE3) (CINB+ BO+CNO) 
(CINB+Bl+CNI)(CINB+fil+CN"Z)(CINB+ITT+CN3) 

PACSF6ST = (TSAOR+BO+ALORBO) (TSAOR+B 1+ALORB1) 
(TSAOR+B2+ALORB2)(TSAOR+ITT+ALORB3) 
(CINW+CNO(CNl )CN2(CN3)) (CINH+LH+(CNO)CNl) 
(CINH+RH+ (CN"Z)CN3) 

PACSF?ST = (VPTZ+BO+VPZBO)(VPTZ+Bl+VPZBl) 
(VPTZ+B2+ VPZB2)(VPT Z+B3+ VPZB3) 
(VPTO+BO+ VPOBO)(VPTO+B 1+ VPOB 1) 
(VPTO+B2+VPOB2)(VPTO+B3+VPOB3) 

4-113 Advanced Scientific Computer 



~------
where, 

PACSTS is the signal generated by the skip taken for stack logic 

TSOL is true for TSOL, TOL, and TROL instructions in step 2 of the 
execute state 

TSOR is true for TSOR, TOR, and TROR instructions in step 2 of the 
execute state 

TSZL is true for TSZL, T ZL, and TRZL instructions in step 2 of the 
execute state 

TSZR is true for TSZR, T ZR, and TRZR instructions in step 2 of the 
execute state 

TSAZL is true for TAZL instructions in step 2 of the execute state 

TSAZR is true for TAZR instructions in step 2 of the execute state 

TSAOL is true for TAOL instructions in step 2 of the execute state 

TSAOR is true for TAOR instructions in step 2 of the execute state 

TPOL is true for POLL instructions in step 2 of the execute state 

VPTO is true for VPTO instructions in step 2 of the execute state 

VPT Z is true for VPT Z instructions in step 2 of the execute state 

CWN is true for CN instructions in step 2 of the execute state 

CWE is true for CE instructions in step 2 of the execute state 

CHE is true for CEH, CER, and CEL instructions in step 2 of the 
execute state 

CRHN is true for CNH, CNL, and CNR instructions in step 2 :of the 
execute state 

CIEW is true for CE! instructions in step 2 of the execute state 

CINW is true for CNI instructions in step 2 of the execute state 

CIEH is true for CEHI instructions in step 2 of the execute state 

CIEB is true for CEBI and CEB instructions in step 2 of the execute state 

CINB is true for CNB and CNBI instructions in step 2 of the execute state 

CINH is true for CNHI instructions in step 2 of the execute state 

LH is true for instructions involving the left half of a word 

RH is true for instructions involving the right half of a word 

BN is true for instructions involving byte N of a word (N=O, 1, 2, or 3) 

4-114 Advanced Scientific Computer 



GEN is true when the comparator indicates byte N of the compared 
quantities are identical (N=O, 1, 2, or 3) 

CNX is true when the comparator indicates byte X of the compared 
quantities are different (X=O, 1, 2, or 3) 

A YORBN is true when the test box 2 logic indicates the right half of byte 
N has a one in one of the bit positions marked by the R field (N=O, 1, 2, 
or 3) 

A YOLBN is true when the test box 2 logic indicates the left half of byte 
N has a one in one of the bit positions marked by the R field (N=O, 1, 2, 
or 3) 

A YZLBN is true when the test box 2 logic indicates the left half of byte 
N has a zero in one of the bit positions marked by the R field (N=O, 1, 2, 
or 3) 

A YZRBN is true when the test box 2 logic indicates the right half of byte 
N has a zero in one of the bit positions marked by the R field (N=O, 1, 2, 
or 3) 

ALORBN is true when the test box 2 logic indicates the right half of byte 
N has a one in each bit position marked by the R field (N=O, 1, 2, or 3) 

ALOLBN is true when the test box 2 logic indicates the left half of byte 
N has a one in each bit position marked by the R field (N=O, 1, 2, or 3) 

ALZRBN is true when the test box 2 logic indicates the right half of byte 
N has a zero in each ~it position marked by the R field (N=O, 1, 2, or 3) 

ALZLBN is true when the test box 2 logic indicates the left half of byte 
N has a zero in each bit position marked by the R field (N=O, 1, 2, or 3) 

A YOBN is true when the bit picker indicates byte N has at least one one 
(N=O, 1, 2, or 3) 

VPZBN is true when the test box 2 logic indicates the bit in byte N 
marked by the decoded VP code is zero (N= 0, l, 2, or 3) 

VPOBN is true when the test box 2 logic indicates the bit in byte N 
marked by the decoded VP code is one (N= 0, l, 2, or 3) 

The equation for Skip Taken goes to zero whenever an instruction is to be 
skipped and stays at one if no skip is to be made. If any one of the eight 
terms in the Skip Taken equation evaluates to zero, a skip is taken. The 
PACSFlST equation provides the skip or no-skip decision for TSOL, TROL, 
TOL, TSOR, TROR, TOR, TSZL, TRZL, and T ZL instructions. When a 
TSOL, TROL, or TOL instruction is in step 2 of the execute state and the 
left half of byte zero has at least one logical one in the bit position(s) marked 
by the R field, the first term in the PACSFlST equation goes to zero to cause 

4-115 Advanced Scientific Computer 



a skip. If no one(s) are found during the test, no skip is made. The second, 
third, and fourth terms of the same equation provide the skip or no-skip de­
cision for the same instructions when byte one, two, and three, respectively, 
are used .. The middle four terms of the equation provide the skip or no-skip 
decision for the TSOR, TROR, and TOR instructions and the last four terms 
provide the skip or no-skip decision for the TSZL, TRZL, and TZL instruc­
tions. The first four terms of the PACSF2ST equation apply to the TSZR, 
TRZR, and TZR instructions and the last four terms apply to the POLL in­
struction. The first term of the PACSF3ST equation applies to the CN in­
struction; the second and third terms apply to the CNH, CNL, and CNR in­
structions; the fourth and fifth terms apply to the CEH, CER, and CEL in­
structions; and the last term applies to the CE instruction. The first four 
terms of the PACSF4ST equation apply to the TAZL instruction; the middle 
four terms apply to the TAZR instruction; and the last four terms apply to 
the TAOL instruction. The first term of the PACSF5ST equation applies to 
the CEI instruction; the second and third terms apply to the CEHI instruction; 
the fourth through seventh terms apply to the CEBI and CEB instructions; and 
the last four terms apply to the CNB and CNBI instructions. The first four 
terms in the PACSF6ST equation apply to the TAOR instruction, the fifth 
term applies to the CNI instruction, and the last two terms apply to the CNHI 
instruction. The first four terms in the PACSF7ST equation apply to the 
VPTZ instruction and the last four terms apply to the VPTO instruction. 
The developed Skip Taken equation is used on the CONTAU card to aid in de­
veloping the test positive signal. 

The test positive signal is developed utilizing the results of the branch taken 
logic and skip taken (including the skip taken for stack) logic in the following 
manner: 

PACTSPOS = PACBT · Skip Taken = PACBT + Skip Taken 

The PACTSPOS signal is used on the PCCTL and IRCARD(0-3) cards. 

4-119 AU CONTROL. Refer to figure 4-44 for a simplified block diagram 
of the AU control on the CONT AU card. The branch and skip test translator 
block was discussed in detail in paragraphs 4-115 through 4-118. The re­
mainder of the logic on the CON TAU card is functionally divided and dis -
cussed in detail in the following paragraphs. 

4-120 Aligner Control. Refer to figure 4-45 for a simplified block diagram 
of the aligner control logic. The inputs to the aligner control logic 
(PALALIGN, PALRSWB(0-3), and PALWSWB(0-3)) are supplied by the 
AUMIR portion of the MIR via the transformation logic on the VPRCONT card. 
The PALALIGN signal indicates when alignment of data from the MDB 
is necessary and is used on the CONTAU card to set a flip-flop and enable 

4-116 Advanced Scientific Computer 



....... 

....... 
-J 

TEST DATA FROM 
PPAIJCDM -------------------------et 

FROM 
VP RC ONT 

ALIGN 

.,.. __ ..,nF"FF._~~~~~~~~~~~ 

ALIGN ADDRESS 

OP CODE 

~ 

ADDRESS 
DECODE ALIGN 

CONTROL 

SHIFT 
DECODER 

BRANCH AND SKIP 
TEST TRANSLATOR 

OP CODE AND 
STATE DECODING 

SHIFT 
CODE 

UPDATE 

BRANCH TAKEN (BT~ 
SK IP TAK N (ST 

TEST POSITIVE (BT+ST 

CYLIC RIGHT 
(0-3) 

MISCELLANEOUS 
AU CONTROL 

SH I FT CONTROL 

SHIFT CODE 

~>>----------R--FIE~ 

FROM--<~>~--~--~V~P-} MLCTL t:j .>- a 

{B) 111698 

Figure 4-44. AU Control on CONTAU 

TO 
CONTROL 
CARD 
AND IRCARD 

TO 
PPAUCDM 

TO 
IRCARD 

TO 
CR FILE 

TO 
PPAUCDM 



~ 
I ,_. 
,_. 
00 

FROM 
AU 

XFORMATION 
LOGIC ON 
VPRCONT 

CARD 

(B) 111658 

-.PALIGN 

-.PALRSWB (O_l 

-.PALRSWB (1) 

-,PALRSWB (2) 

-,PALRSWB (3) 

-,PALWSWB (0) 

-,PALWSWB (t) 

-,PALWSWB (2) 

-.PALWSWB (3) 

PAROT16 
PO Tl N OF R 0 CONT RO 

AUMIR (+16) + (-16 

• __ r 
L PAQALIGN [ l 1- FF s MOB 

-

I"" 
FF 

READ PACALIOB(0-3) 
ADDRESS 

I/ 
DECODE 

PAQRSWB (0-3) 

~ ~ 
A 

L 
ALIGN PAALICC (0-3) I 

jc:ONTROl G-
SELECT N 

~ E 
R 

PPAUCD(0-3) 
PACALIRB(0-3) 

FF I> WROT< 

SKIP 
,..... ADDRESS ,..... TEST ~--DECODE LOGIC 

J TEST RESULTS > YIELD: 

_l 

} TO PC 

PAQWSWB (0-3) WRITE BRANCH 

~ ADDRESS TEST i--. TEST POSITIVE 
DECODE LOGIC * BRANCH TAKEN 

CTL 

Figure 4-45. Aligner Control Logic on CONTAU 



the aligner control logic. The PALRSWB(0-3) signals combine to represent 
a word (one bit represents a byte) of data that requires aligning (align object). 
The PALWSWB(0-3) signals combine to represent the result of the aligning 
procedure (align reference). Both of these sets· of inputs are temporarily 
stored (for the duration of the current clock) for decoding purposes. Refer 
to figure 4-46 for the possible relationships between the PALRSWB(0-3) and 
PALWSWB(0-3) signals. The read address decode logic on CONTAU utilizes 
the PAQRSWB(0-3) signals to develop the following equations: 

PACALIOB(O) = (PAQRSWB(O)(PAQRSWB(l)(PAQRSWB(2) 
(PAQRSWB(3)) 

PACALIOB(l) = (PAQRSWB(O)(PAQRSWB(l)(PAQRSWB(2) 
(PAQRSWB(3)) 

PACALIOB(2) = (PAQRSWB(O))(PAQRSWB(l))(PAQRSWB(2)) 
(PAQRSWB(3)) 

PACALIOB(3) = (PAQRSWB(O))(PAQRSWB(l))(PAQRSWB(2)) 
(PAQRSWB(3)) 

PACALIOH(O) = (PAQRSWB(O))(PAQRSWB(l))(PAQRSWB(2)) 
(PAQRSWB(3)) 

PACALIOH(l) = (PAQRSWB(O))(PAQRSWB(l))(PAQRSWB(2)) 
(PAQRSWB(3)) 

The write address decode logic on CONTAU uses the PAQWSWB(0-3) signals 
to develop two sets (two sets are required for fan out purposes) of the follow­
ing equations: 

PACALIRB(O) = (PAQWSWB(O))(PAQWSWB(l))(PAQWSWB(2)) 
(PAQWSWB(3)) 

PACALIRB(l) = (PAQWSWB(O))(PAQWSWB(l))(PAQWSWB(2)) 
(PAQWSWB(3)) 

PACALIRB(2) = (PAQWSWB(O))(PAQWSWB(l ))(PAQWSWB (2)) 
(PAQWSWB(3)) 

PACALIRB(3) = (PAQWSWB(O))(PAQWSWB(l))(PAQWSWB(2)) 
(PAQWSWB(3)) 

PACALIRH ( 0) = (PAQWSWB ( 0)) (PAQWSWB (1) )(PAQWSWB (2)) 
(PAQWSWB(3)) 

PACALIRH(l) = (PAQWSWB(O))(PAQWSWB(l))(PAQWSWB(2)) 
(PAQWSWB(3)) 

4-119 
Advanced Scientific Computer 



~ 
9 12 13 16 

AUMIR REFERENCE OBJECT 

(PALWSWB(0-3)) (PALRSWB(0-3)) BYTE 
SHIFT 

0 0 0 0 0 0 Bo-B1 

} 0 0 0 0 0 0 B1-B2 
RIGHT ONE BYTE 

0 0 0 0 0 0 B2· -B3 

0 0 0 0 0 0 B3·-BO 

0 0 0 0 0 0 BO-B2 

} 0 0 0 0 0 0 Bl-B3 
RIGHT TWO BYTES 

0 0 0 0 0 0 B2-BO 

0 0 0 0 0 0 B3-BI 

0 0 0 0 0 LH-RH } HALF WORD SHIFTS 
0 0 0 0 RH-LH 

0 0 0 0 0 0 BO-B3 } 0 0 0 0 0 0 Bl-BO 
RIGHT THREE BYTES 

0 0 0 0 0 0 82-81 

0 0 0 0 0 0 83-82 

(A)I 24762 

Figure 4-46. Aligner Control Inputs (PALWSWB(0-3) and PALRSWB(0-3) 

The PACALIRB(0-3) and PACALIRH(O, 1) signals from the write address de­
code logic are used in the skip taken and branch taken logic to indicate the 
byte and half word of data, respectively, under test. The PACALIOB(0-3), 
PACALIOH(O, 1), PACALIRB.(0-3), and PACALIRH(O, 1) signals are all input 
to the aligner control select logic along with the left and right 16-bit shift 
control lines. These inputs are used by the aligner control select logic to 
develop the no alignment (PAALICCO), right shift one byte (PAALICCl), 
right shift two bytes (PAALICC2), and right shift three bytes (PAALICC3) 
commands for use by the aligner on the PPAUCD(0-3) cards. The follow­
ing equations are implemented to generate these commands. 

PAALICCO = (PAALICCl)("PAALICC2)(PAALICC3) 

PAALICCl = (RBO· OB3+RB1· OBO+RB2· 0Bl+RB3· OB2)PAQALIGN 

PAALICC2 = (RBO• OB2+RB l· OB3+RB2· OBO+RB3· OBl+RHO· OHl 
+RHl· OHO)PAQALIGN+PAROT16 

PAALICC3 = (RBO· OBl+RBl· OB2+RB2. OB3+RB3.0BO)PAQALIGN 

PAROT16 = SHP16+SHM16 

4-120 Advanced Scientific Computer 



where, 

RBN equals PACALIRB (N) 

OBN equals PACALIOB(N) 

RHN equals PACALIRH(N) 

OHN equals PACALIOH(N) 

SHP16 is true for 16-bit cyclic shifts to the left 

SHM16 is true for 16-bit cyclic shifts to the right 

The PAALICC(0-3) signals are input to the four PPAUCDM cards where they 
are used by the aligner to control the byte increment data shift. 

4-121 Shifter Control. Refer to figure 4-47 for a simplified block diagram 
of the shifter control logic. Inputs to the shifter control logic include a shift 
operand (indicates shift count and direction) from the AUMIR and the MIR op­
code (indicates an arithmetic, logical, or cyclic shift). The six-bit shift 
operand is gated into a set of flip-flops with the PAPUGAT:3 signal for use 
in the shift decode logic and the shift code update logic. The shift decode 
logic uses the shift operand data (PAQSHFBI(0-5)) in true and complement 
form and the decoded cyclic shift control lines to generate add (PACSHP16, 
PACSHP8, PACSHP4, and PACSHPl) and subtract (PACSHM16, PACSHM8, 
PACSHM4, and PACSHMl) shift control lines according to the map in figure 
4-48. The add and subtract terms apply to the use of these signals in the 
shift code update logic. The shift decode logic also generates a right shift 
line (PAQSHFBI(O)) by inverting the sign bit of the negated shift operand (the 
sign is positive for left shifts and negative for right shifts) and a zero shift 
line by AND'ing the individually negated bits of the shift operand. The 16-bit 
add and subtract cyclic shift lines (PACSHP16 and PACSHM16) and the zero 
shift line combine to develop the special shift line (PASHFCSP) used in gating 
the aligner output through the shifter. The 16-bit add and subtract cyclic 
shift lines are also used to develop the negated PAROT16 signal used in gen­
erating the two byte shift command in the aligner control logic. The 8-bit 
add and subtract shift lines (PACSHP8 and PACSHM8) combine to develop 
the 8-bit shift line (PASHFC8); the 4-bit add and subtract shift lines 
(PACSHP4 and PACSHM4) combine to develop the 4-bit shift line (PASHFC4); 
the single bit add and subtract shift lines (PACSHPl and PACSHMl) combine 
to develop the single bit shift line (PASHFC 1); the right shift line 
(PAQSHFBI(O)) is inverted to develop the left shift line (PASHFCL). The de­
veloped shift control lines (PASHFCSP, PASHFC8, PASHFC4, PASHFCl, 
and PASHFCL) are distributed to the four PPAUCD cards, where they con­
trol the shifting. 

4-121 Advanced Scientific Computer 



..-
N 
N 

FROM AU{ XFORMATION 
LOGIC ON 
VPRCONT 

(B) 111665 

-.PALSHFB 
(0-5) 

PAPUGAT:_l. 

"'JL' 
FF'S 

MIR 
OP CODE 

BITS 

~HFB"lll f 
,pt>-~S IT{ 5J 

L--

-,PAQOPC (0-5) 

Figure 4-47. 

PASFF345 
(x 0 X, X2 JC3 X4 X5) 

_.. 
PASFF012_:] 2N 

...,PAROT -- INTERNAL 
ALIGN CONTROL 
LOGIC 

~ 

SHIFT 

DECODE 

LOGIC 

l 

CYCLIC + CYCLIC 

DECODE 
LOGIC 

DECODE 
LOGIC 
FOR 

SHIFTS 

(INTERNAL) 

PAAIXCSH 

PASHFCAS 

PASHFCLS 

PASHFCCS 

l 
-.PACSHP16(~ 

-.PACSH M 1 Gf=}]' 

-iPACSHP8 Jill 
-.PACSHM8 \-"Iii 

-,PACSHP4 (+4) 

-.PACSHM4 r-:n 

-.PACSHP1 (+1) 

2B 

r------- 3N -
-.....___ 

-- 2N -
--.. ] 2N . 
--

~-

PASHFCSP -...... 

PASHFC8 ---
PASHFC4 ---
PASHFC1 

TO AU 
PPAUCDM 
(0-3) 
SHIFTER 
LOGIC 

-.PACSHM r-n __J 2N ... 
-,PAQSHFB 1 (0) (MSB) "" PASHFCL -1B 

--
---------

L...., 

-.PACSHFOB (0-5) --~ 
SHIFT v 
CODE 

UPDATE EE-=::J 1-.PACUD--
LOGIC 2N -.. 
AND 

STATUS -CONTROL 
LOGIC 

PACSHFUD ---
Jj 

(TERMINATE• SHIFT)=UPDATE E 

INTERNAL 

(ALL SHIFTS) 

INTERNAL 

(ARITHMETIC) 

TO 
IRCARD 3 
Cl UPDATE 
BITS 

PCCTL 

i"PCTL~ 
PPCTL2 

NABLE 

(LOGICAL) 

(CYCLIC) 

TO PPAUCDM (0-3) 
SHIFTER LOGIC 

INTERNAL 

Shift Control Logic on CONTAU 



X3 X4 X5 ~ ~ 

x 0 x 1 
0 1 0 

0 0 0 
-1 

_, 

-8 -8 

0 0 1 

0 1 , 

0 , 0 

+8 +8 +8 , , 0 

+4 +4 +4 , 1 1 

ADD 16=CS (Xo x, + Xo X2 X3 X4 X5) 

SUB 16=CS (XO X 1) 

, , 0 

-4 

-8 

+8 

+t 

~ TERMINATE 
SHIFT 

, , , , 0 , 

-4 -4 

-8 -8 

MAP OF 

SHIFT OPERAND 

VS 

DECODE OUTPUT 

NOTE Xi= MIR SHIFT CELLS 

CS=CYCLIC SHIFT 

ADD 8=Cs cx 0 x 1 + x 0X2 x 3x 4 XS)+ x 0 x 1 x 2 (X3x4 x 5 ) + x 0 x 1 x 2 x 3 x 4 

SUB 8 =CS {X0 X 1) + x 0 X 1 X 2 

ADD 

SUB 

ADD 

SUB 

(A) 111668 

4=Xo Xt 

4=Xo X 1 

1=X 0 X 1 

1=x0 x 1 

X2 (X3 X5 + X3 X4 + 
X2 X3 

X2 X3 (X4 + X5) 

x2 x3 (X4 +XS) 

X3 X4 X5) 

Figure 4-48. Shift Operand/Shift Decode Logic Output 

4-123 Advanced Scientific Computer 



The 16, 8, 4, and single bit add and subtract lines are also used in the shift 
code update logic illustrated in figure 4-49. The shift code update logic adds 
the current shift operand (X0x 1 x 2xyc4x5) to· the adder· input code 
(A1A2A3A4A5), developed from the 16, 8, 4, and single bit add and subtract 
lines, to generate an updated shift operand (PACSHFOB(0-5)) for the AUMIR 
on IRCARD(3). Figure 4-49 shows the adder input code equations imple­
mented as part of the shift code update logic. The Xo bit is used as a carry 
into the development of PACSHFOB(S) so that two's complement addition 
(subtraction) is performed when a subtract line (PACSHM16, 8, 4, or T) 
from the shift decode logic is true. The status control logic uses the shift 
operand in true and complement form, the cyclic shift control line, and the 
last cycle shift control line to develop the update enable signal (PACSHFUD ). 
The update enable signal is true as long as the current shift operand cannot 
be reduced to zero during the current execution cycle. If the current shift 
operand is 1, 4, or 8 for any shift instruction or 16 for a cyclic shift instruc­
tion, the update enable signal goes to zero. The update enable signal is used 
on the PCCTLl and PCCTL2 cards and its inverse, the shift complete signal 
(PACUD), is used on the PCCTL card. The PACSHFUD signal is generated 
with the following equation: 

where, 

PACSHFUD = (Xo+X1 +X2+X4+X5)(Xo+X1 +X3+X4+X5) 
(Xo+X1 +X2+X3+X4)(Xo+X1 +X2+X4+X5) 
(CS+ x 1+X2+x3 + X4 +x 5) (Xo+ x 1+X2+x3 + X4 +x 5) 
(PAAlXCSH) 

CS = PACSHFCS and is true for cyclic shifts 

PAAlXCSH is true for all shifts 

The arithmetic shift, logical shift, cyclic shift, and all shift control lines 
used by the shifter are generated by decoding the 8-bit op-code from the 
AUMIR. The all shift control line (PAAIXCSH) is implemented with an equa­
tion that goes to one for op-codes of 6016• 6416• or 6C16· The arithmetic 
shift control line (PASHFCAS) is implemented with an equation that goes to 
one for an op-code of 6016; the logical shift control (PASHFCLS) line is im-: 
plemented with an equation that goes to one for an op-code of 6416; the cyclic 
shift control line (PASHFCCS) is implemented with an equation that goes to 
one for an op-code of 6Cl6· These control lines, except for PAAIXCSH, are 
distributed to the four PPAUCD cards to direct the type of shift. The 
PAAIXCSH control line is used by the fifth level of the AU adder to enable 
the output of the shifter through the AUl transfer bus. 

4-122 Op-code Decoding and Support Control. The op-code decoding logic 
on the CONTAU card develops the necessary op-code enables for AU opera­
tion and the support control supplies the current R field and VP code. The 

4-124 Advanced Scientific Computer 



At Az A3 A 4 As i-- ADDER INPUT CODE 

ADD 16 0 0 0 0 A t=ADD 1 6 + SUB 8 + SUB 4 +SUB 1 Xo=PAQSHFB1 : 1 (0) 
SUB 16 0 A2=SUB 16 + ADD 8 + SUB 4 + SUB 1 X 1=PAQSHFB1 : 1 (1) 
ADD 8 0 0 0 0 A3=SUB 16 + SUB 8 +ADD 4 +SUB X2=PAQSHFB1: 1 (2) AUMIR 
SUB 8 0 SHIFT 

A4=SUB 16 + SUB 8 +SUB 4 +SUB X3=PAQSHFB1: 1 (3) OPERAND 
ADD 4 0 0 0 0 CELLS 

As=SUB 16 + SUB 8 + SUB 4 +ADD 1 X4=PAQSHFB1: 1 (4) 
SYMBOL: SUB 4 0 

Xs=PAQSHFB1·. (5) 
ADD 0 0 0 0 

SUB 0 
ADDER 

AC 

Xo A 1 x 1 A2 X2 A3 X3 A4 X4 As Xs Xo 

,j>.. 
I ..... 
N 
\Jl 

~ ,, f ' Ir 'Ir i ,, ,, i ' , j ' , ,, 
A B c A B c A B c A B c A B c 

(1) (2) (3) (4) (S) 
c s c s c s c s c s 

•Ir 1lr 

-,PACSHFOB (0) -.PACSHFOB (1) -,PACSHFOB (2) -,PACSHFOB (3) -,PACSHFOB (4) -,PACSHFOB (S) 

TO IRCARD 3 

(A) 111667 

Figure 4-49. Shift Code Update Logic 



~-------
R field and VP code from the AUMIR are temporarily stored in flip-flops on 
the GONTAU card for the duration of the execution cycle. These two quan­
tities are distributed to the four PPAUGD cards where they are used by the 
unload box and test box 2 logic. The op-code decoding logic utilizes the 8-
bit op-code and the 2-bit state code from the AUMIR to develop the following 
AU control lines (this list does not include those control lines already men­
tioned for the shifter): 

• PAADDGAN - Used by the first level of the adder to enable the 
logical AND function. 

• PAADDGBY - Used by the third level of the adder to develop 
the generalized carry into byte equation. 

• PAADDGEQ - Used by the first level of the adder to enable the 
logical equivalence function. 

• PAADDGEX - Used by the first level of the adder to enable the 
logical exclusive OR function. 

• PAADDGHW - Used by the first level of the adder to develop 
the carry trans£ er and carry develop equations 
for the MSB of the right halfword. 

• PAADDGOR - Used by the first level of the adder to enable the 
logical OR function. 

• PAAlXGBP - Used by the fifth level of the adder to enable the 
output of the bit picker through to the AUl trans-
fer bus (POLL instruction). 

• PAAlXGLO - Used by the fifth level of the adder to enable the 
logical output of the adder through to the AUl 
transfer bus (logical instructions). 

• PAAlGSM - Used by the fifth level of the adder to enable the 
sum output of the adder through to the AUl trans-
fer bus (add, subtract, increment, and decre-
ment instructions). 

• PABGOFX - Used in the shifter to generate zero fill in byte 
zero for right logical shifts and to generate sign 
propagation in byte zero for right arithmetic 
shifts. 

• PABG3FX - Used in the shifter to generate zero fill in byte 
three for left arithmetic and left logical shifts. 

• PAGGHE - Used to enable the skip taken logic for GEH, 
GER, and GEL instructions. 

4-126 
Advanced Scientific Computer 



~ 
• PACCIEB 

• PACCIEH 

• PACCIEW 

• PACCINB 

• PACCINH 

• PACCINW 

• PACCOCAD 

• PACCOCDE 

- Used to enable the skip taken logic for CEB and 
CEBI instructions. 

- Used to enable the .skip taken logic for CEHI 
instructions. 

- Used to enable the skip taken logic for CEI in­
structions. 

- Used to enable the skip taken logic for CNB and 
CNBI instructions. 

- Used to enable the skip taken logic for CNHI 
instructions. 

- Used to enable the skip taken logic for CNI 
instructions. 

- Used in the complement or constant generator 
to enable true data to the adder (add instructions). 

- Used in the complement or constant generator 
to enable minus one to the adder (decrement 
instructions). 

• PACCOCIN - Used in the complement or constant generator 
to enable plus one to the adder (increment in­
structions). 

• PACCOCSU - Used in the complement or constant generator 

• PACCRHN 

• PACCWE 

• PACCWN 

• PACMDF 

• PACPSH 

• PACPUL 

• PACT MB 

to enable complement data to the adder (subtract 
instructions). 

- Used to enable the skip taken logic for CNH, 
CNL, and CNR instructions. 

- Used to enable the skip taken logic for CE in­
structions. 

- Used to enable the skip taken logic for CN in- · 
structions. 

- Used to enable the skip taken for stack logic for 
MOD instructions. 

- Used to enable the skip taken for stack logic for 
PUSH instructions. 

- Used to enable the skip taken for stack logic for 
PULL instructions. 

- Used to enable the branch taken logic for TMB 
instructions. 

4-127 Advanced Scientific Computer 



~ 
• PACTMH 

• PACT MW 

• PACTNB 

• PACTNH 

• PACT NW 

• PACT PB 

• PACT PH 

• PACT POL 

• P.ACTPW 

• PACTSAOL 

• PACTSAOR 

• PACTSAZL 

.. - Used to enable the branch .taken logic for TMH 
instructions. 

- Used to enable the branch.taken logic for TM 
instructions. 

- Used to enable the branch taken logic for TNB 
instructions. 

- Used to enable the. branch taken logic for TNH 
instructions. 

- Used-to enable the branch taken logic for TN 
instructions. 

- Used to enable the branch taken logic for TPB 
instructions. 

- Used to enable the branch taken logic for TPH 
instructions. 

- Used to enable the skip taken logic for POLL 
instructions. 

- Used to enable the branch taken logic for TP 
instructions. 

- Used to enable the skip taken logic for TAOL 
instructions. 

- Used to enable the skip taken logic for TAOR 
instructions. 

- Used to enable the skip taken logic for TAZL 
instructions. 

• PACTSAZR - Used to enable the skip taken logic for TAZR 

• PACTSOL 

• PACTSOR 

• PACTSZL 

• PACTS ZR 

instructions. 

- Used to enable t~e skip taken logic for TSOL, 
T'OL, and TROL instructions.· 

- Used to enable the skip taken logic for TSOR, 
TOR, and TROR instructions. 

- Used to enable the skip taken logic for TSZL, 
TZL, and TRZL instructions. 

- Used to enable the skip taken logic for TSZR, 
T.ZR, and TRZR instructions. 

a.,..,,ft·'· 1, ·,·c»} • I PACTZB d - Useid to enable the branch taken logic for T ZB 
.h , :H:go m:L'i.sJ n::rn:.s"l 9.d:t a. dsn;e o:t beaU - ErMT:JAq e instruc'tlons . 

• arrol:bwI:terd 

fSi}..J128 Advanced Scientific Computer 



• PACTZH 

• PACTZW 

• PACVPTO 

• PACVPTZ 

• PACXDN 

• PACXDZ 

• PACXIN 

• PACXIZ 

- Used to enable the branch taken logic for TZH 
instructions. 

- Used to enable the .branch taken logic for TZ 
instructions. 

- Used to enable the skip taken logic for VPTO 
instructions. 

- Used to enable the skip taken logic for VPTZ 
instructions. 

- Used to enable the branch taken logic for DBN 
instructions. 

- Used to enable the branch taken logic for DBZ 
instructions. 

- Used to enable the branch taken logic for IBN 
instructions. 

- Used to enable the branch taken logic for IBZ 
instructions. 

• PADMPCOL - Used in the data manipulator to enable the setting 
of bits for TSZL, TSOL, and SL instructions. 

• PADMPCOR - Used in the data manipulator to enable the setting 
of bits for TSZR, TSOR, and SR instructions. 

• PADMPCPR - Used in the data manipulator to enable the re-
setting of a bit for VPR instructions. 

• PADMPCPS - Used in the data manipulator to enable the setting 
of a bit for VPS instructions. 

• PADMPCZL - Used in the data manipulator to enable the re-
setting of bits for TRZL, TROL, and RL instruc­
tions. 

• PADMPCZR - Used in the data manipulator to enable the re-

4-123 INDEXER 

setting of bits for TRZR, TROR, and RR in­
structions. 

The indexer section of the PP is composed of a PC indexer (Il), a TN field 
indexer (12), and a register indexer (13). A detailed description with ac­
companying block diagrams on each of the three indexer parts is presented 
in the following paragraphs. 

4-129 Advanced Scientific Computer 



4-124 PC INDEXER. Refer to figure 4-50 for a simplified block diagram 
of the PC indexer (Il). The PC indexer is used to increment or decrement 
the program counters (PC's) of the eight VP's or the effective address de­
veloped in the main instruction register (MIR). The VP PC to be operated 
on by the PC indexer is selected by the VP code (the VP code is the VP num­
ber (0 through 7) of the VP whose instruction is currently at the execution 
level) from the maintenance logic and the indexing action to be taken is con­
trolled by the op-code from the MIR. The source of input to the PC indexer 
(CMAB bus or RMAB bus) is primarily determined by the mode bit from the 
MIR, except for the cases mentioned in the following paragraph. 

When the current instruction is from central memory (CM) and is not a 
BPCS, BCS, BRS, or BCAS instruction in state class 2 step 2 or 3, the 
CMAB bus is enabled for PC indexing. When a BPCS, BCS, BRS, or BCAS 
instruction from CM is executing and is in state class 2 step 2 or 3, the 
RMAB bus is enabled for indexing because the CMAB bus is being used to 
handle other data flow. When the current instruction is from read only mem­
ory (ROM) and is not a BPCS, BCS, BRS, or BCAS instruction in state class 
2 step 2 or 3, the BRSM instruction in state class 2 step 2, or the INTF cell 
is not set in state class 2 step 3, the RMAB bus is enabled for PC indexing. 

MIR 

PITNADDR (00-31) 

PPCPC (0-7) (00-31) 

(PCCARDA) 

1 x 32 

PPPCRBE, , 11 

(PCCTL) C RMAB 

PPCRMI (0-31) 

(PCCARDA) 

'c'' 

+1 -1 -2 

INDEXER 1 

-1 = BPCS + BCS + BRS + BCAS + BRSM 

-2 = INTERRUPT 

+1 =NORMAL PC INCREMENT 

( ) "c'': CONTROL FR OM PP CONTROL 
A 111701 . 

CMAB ''c'' PPPCCBE 

PP PCM I (0-3 I 

(PCCARDAi 

PPll0(8-31) 
TO PC 

\PCCTU 

Figure 4- 50. Program Counter Indexer 

4-130 Advanced Scientific Computer 



When a BPCS, BCS, BRS, or BCAS instruction from ROM is executing in 
state class 2, step 2 or 3, the BRSM instruction from ROM is executing in 
state class 2, step 2, or the INTF cell of the MIR is set in state class 2, step 
3, the CMAB bus is enabled for indexing because the RMAB bus is being used 
to handle other data flow. The effective address in the MIR is used as the 
quantity to be indexed (rather than the PC) when a branch is taken in either 
CM or ROM. When the source of the branch instruction is CM, the CMAB 
bus is enabled for the indexing and when the source of the branch instruction 
is ROM, the RMAB bus is enabled for the indexing. 

The indexing quantities (+ 1, -1, or -2) are hardwired in the PC indexer and 
are used to modify the input from the CMAB or RMAB bus, as shown in figure 
4-50. In the normal case, the input to the PC indexer is incremented by one 
in order to advance the third level of the three level pipe in the PP. When a 
BPCS, BCS, BRS, BCAS, or BRSM instruction is encountered, the input to 
the PC indexer is decremented by one so that the PC value saved points to 
the instruction following the branch and save instruction executed. When an 
interrupt occurs, execution of the current instruction is completed and the 
resulting PC value is decremented by two so that the instruction following the 
interrupted instruction is not lost after the interrupt is honored. The 24-bit 
output of the PC indexer is inserted back in the PC of the current VP for use 
as a pointer to the next instruction to be retrieved from CM or ROM (as de­
termined by bit 0 of the PC). 

The PC indexer controls the setting and resetting of PC bit 0 during the same 
time frame as the indexing of the 24-bit PC value (bit 0 is set to one for CM 
or reset to zero for ROM). When the current instruction is not a conditional 
branch, unconditional branch, or branch and save, bit 0 of the PC will copy 
its elf during the indexing operation. When a conditional or unconditional 
branch instruction is encountered, bit 0 of the PC is set or reset to reflect 
the mode bit of the MIR, if the branch is taken. If a conditional branch is not 
taken, bit 0 of the PC will copy itself. When a branch and save instruction 
is encountered, bit 0 of the PC is set or reset to reflect the mode bit of the 
MIR. 

4-125 TN FIELD INDEXER. Refer to figure 4-51 for a simplified block 
diagram of the TN field indexer (I2). The TN field indexer is used to develop 
the effective address of each instruction from the eight VP' s for use in the 
appropriate VP instruction register (IR). The OP A, OP B, and OP C blocks 
in figure 4-51 are selectors used to gate the proper quantities into the in­
dexer adder. The OP A block selects a base quantity from the active VP 
Central Memory (CM) base register for base relative instructions, a PC 
quantity from the active VP PC for PC relative instructions, or the proper 
combination of plus and minus one for updating the stack parameters when a 
stack instruction is being executed. The OP B block selects the N field of 
the SWBD or NIR, depending on the instruction source or the effective address 

4-131 Advanced Scientific Computer 



~------

''c'' 
... --

--

BASE, PC, 
STACK 

OP A 

NIR ,MIR EA,, 
SWBD 

•'c''* 

t 
OP B 

INDEXER 2 ADDER 

VPR 

-OP C -

SOURCE ,DESTINATION, OR EFFECTIVE ADDRESS TO IR 

*"c'' MEANS CONTROL 

(A)124763 

Figure 4-51. TN Field Indexer 

of the MIR when the WCE test is to be performed. The OP C block selects 
the proper VP register (VPR) halfword quantity, when indexing is required, in 
order to develop an effective address. The outputs of OP A, OP B, and OP C 
are input to the 24-bit indexer adder. During normal operation, the 24-bit 
sum of the inputs to the indexer adder is output to the IR as the source, des -
tination, or effective address of a new instruction to be executed. When the 
stack parameters are to be modified or a WCE test is to be performed, the 
indexer adder performs in a different manner. When the word count and 
space count stack parameters are to be modified, the carry bit between the 
most-significant halfword and the least- significant halfword of the indexer 
adder result is inhibited because the two halfwords contain different stack 
parameters. When the stack pointer parameter is to be incremented, the 
WCE test is to be performed, or the word count and space count parameters 
are to be modified by a modify stack instruction, the carry input to the least­
significant halfword of the indexer adder is set so that the input to the index­
er adder is incremented by one. A more detailed description of the OP A, 
OP B, and OP C portions of the TN field indexer is presented in the following 
paragraphs. 

4-126 OP A Selector. Refer to figure 4-52 for a simplified block diagram 
of the OP A selector. The VP code from the MIR enables the CM base reg­
ister of the active VP to the CRBB bus and the PC of the active VP to the 

4-132 
Advanced Scientific Computer 



CR FILE 

0 

2 
B 
A 

3 s 
E 

4 

5 

6 

7 

>+>-- VPC 
l.V 
l.V 

(A) 1 1 164 9 

c 
R 
B 
B 

VEE 

-,PCRl2(8-31) 

+1 

"c"--.i 

PCB VEE 

-,pppc12co-31) 

-1 

OP A 

PTl20PA(0-31) 

TO INDEXER ADDER 

I. BASE SELECTION ENABLED FOR ALPHA OPERAND DEVELOPMENT AND BASE RELATIVE BRANCHES. 

II. PC SELECTION ENABLED FOR PC RELATIVE BRANCHES. 

Ill. (+1) AND(-!) ENABLED DURING STACK INSTRUCTIONS. 

IV •. VEE ENABLES THE ASSOCIATED BUS 

Figure 4-52. OP A Selector 



PCB bus. Data exists on both of these buses whenever the PP is executing 
instructions; therefore, no control gating is required at this level. The con­
trol necessary to select a base register quantity, a PC quantity, or the prop­
er combination of plus and minus one for stack instructions, is applied to the 
OP A sele~tor block of figure 4-52. When a base relative instruction is to be 
indexed for use in the IR, the op-code of the base relative instruction is used 
to gate the 24-bit CM base quantity through OP A to the indexer adder. When 
a PC relative instruction is to be indexed for use in the IR, the op-code of the 
PC relative instruction is used to gate the 24-bit PC quantity through OP A to 
the indexer adder. When the stack parameters retrieved from CM by a stack 
instruction are to be modified, the op-code and state of the stack instruction 
are used to control the placement of plus and minus one in the output of 
OP A. The result is input to the indexer adder. 

4-127 OB B Selector. Refer to figure 4-53 for a simplified block diagram 
of the OP B selector. The VP code from the maintenance logic enables the 
NIR of the active VP to the NIRB bus and the SWBD of the active VP to the 
MDIB bus. Data exists on both of these buses whenever the PP is executing 
instructions; therefore, no control gating is used at this level. The control 
necessary to select a NIR quantity, a SWBD quantity, or the effective address 
field of the MIR, is applied to the OP B selector block of figure 4-53. When 
the next instruction location flag (NIL) of the MIR indicates the next instruc­
tion is in the NIR and the op-code of the next instruction indicates neither a 
PC relative branch or an immediate operand, the N field of the NIR is gated 
through OP B to the indexer adder. When the NIL indicates that the next in­
struction is in the SWBD and the op-code of the next instruction indicates 
neither a PC relative branch, nor an immediate operand, the N field of the 
SWBD is gated through OP B to the indexer adder. When the source of the 
next instruction is either the NIR or the SWBD and the op-code of the next 
instruction indicates a PC relative branch or an immediate operand, the sign 
bit of the source register is extended 8 bits and gated through OP B along 
with the 16-bit N field of the source register. When a stack instruction is 
executing in 3. state class and step such that a stack parameter is to be mod­
ified, or when an analyze or indirect instruction is passing an indirect cell 
from the SWBD to the IR, the entire 32 bits of the SWBD are gated through 
OP B to the indexer adder. When the effective address of the current instruc­
tion requires incrementing to perform a WCE test, to locate the stack pointer 
parameter during a stack instruction, to locate an instruction following a 
branch location during an unconditional branch and save instruction, or to lo­
cate the next sequential address during a store VPR file instruction, the 24-
bit effective address from the MIR is gated through OP B to the indexer ad­
der. In all of the mentioned cases, only bits 8 through 31 of the OP B output 
are used by the indexer adder. 

4-128 OP C Selector. Refer to figure 4-54 for a simplified block diagram 
of the OP C selector. The VP code from the maintenance logic enables the 

4-134 
Advanced Scientific Computer 



""" I -VJ 
\11 

124764 

8 x 32 N 
I 

R 
B 

VEE 

"c" 

MIR EA 

..,PIMIR0(32-63) 

-,PMDl2(0-31) M 8 X 32 
...................... 1...4 D ~--------.. I 

B 

VEE 

OP B 

PTl20PB(0-31) 

TO INDEXER ADDER 

Figure 4- 53. OP B Selector 



,~ 

~~ 
~(/, 

~ 

OL OR 

1L 1R 

2L 2R 

3L 3R 
,, c,, 

SELECTS A VPRF 

FROM ! OF ~ VP 1S 
SELECTS 1 OF 

4 VPR 1S 

I 
~-------3_2_x_3_2 ____ ..,.llf.l{J~: ______ 4_x_3_2 ____ .,.~~:--------~ 

OP C ~ ------ -"""' 

(TF) 

PUVPRl2L(0-31) 

PTl20PC(0-31) 
SELECTS 
LEFT HALF OR 
RIGHT HALF 
OF VPR 

SIGN EXTENDED RESULT 
. TO INDEXER ADDER 

I. SELECTION CONTROL LOG IC SELECTS WHICH VPR HALFWORD TO USE 

II. OP C IS ENABLED INTO ADDER IF 'f:O + T = 8 

(A) 111696 

Figure 4-54. OP C Selector 

VPR file of the active VP to the VPIB 1 bus, and the middle two bits from the 
T field of the instruction being indexed are used to enable one of the four 
VPR's of the VPR file to the VPIB2 bus. The selected 32-bit VPR quantity 
is input to the OP C selector where the necessary control is provided to se­
lect either the right or left halfword of the VPR, and to enable the selected 
halfword to the indexer adder or to set the input to the indexer adder to zero. 
When the T field of the instruction to be indexed is 0 or 8, a push or pull 
stack instruction is being executed, or the MIR effective address is being 
incremented for a WCE test, the output to the indexer adder from OP C is 
forced to zero (no indexing). When the output to the indexer adder from 
OP C is not forced to zero, the least-significant bit (LSB) from the T field 
of the instruction being indexed is used to select the right (T field LSB of 
one) or left (T field LSB of zero) halfword of the VPR on the VPIB2 bus. 
The selected halfword is sign extended 8 bits and the result is output to the 
indexer adder. An exception to the described OP C selector operation oc­
curs when the word count and space count parameters are to be modified by 
the modify stack instruction. In this case, the two most significant bits from 
the R field (rather than the two middle bits from the T field) of the instruc­
tion being indexed are used to enable one of the four VPR's of the current 
VPR file to the VPIB2 bus. The right or left halfword of the resulting 32-bit 
VPR quantity is selected by bit 2 of the same R field. The selected halfword 
and its one's complement are inserted in bits 0 through 15 and bits 16 through 
31, respectively, of the OP C output before being gated to the indexer adder. 

4-136 Advanced Scientific Computer 



4-129 REGISTER INDEXER. Refer to figure 4-55 for a simplified block 
diagram of the register indexer (13). The register indexer is used to develop 
source and destination addresses for instructions from the eight VP' s for use 
in the appropriate VP IR. The addresses developed specify a VPR or a Com­
munications Register (CR). The VP code from the maintenance logic enables 
VPR3 byte 3 of the active VPR file to the ~ VPB bus, and the NIL flag from 
the MIR is used to select the R field from the SWBD or NIR. These two 
quantities are input to the register indexer, where the op-code of the instruc­
tion being indexed is used for control. When the op-code of the instruction 
being indexed specifies that the R .field is addressing a VPR, the R field in­
put to the register indexer is gated through to the IR as the developed ad­
dress. When the op-code specifies that the R field is addressing a CR, the 
address is developed by summing the input R field and byte 3 of VPR3. The 
result is input to the IR as the developed source or destination address. The 
8-bit developed address from the register indexer is used to specify one of 
four VPR' s down to the byte level or one of 64 CR' s down to the byte level. 
The amount of data addressed (word, halfword, or byte) is determined by the 
op-code of the instruction being indexed. 

(0) 

( f) 

(2) 

(3) 

VPR 
F 

i--------t 

1--------t 

1-------r-"1 

83 '"----....... ..,..... 

VPC 

(A) 1 1 1 695 

PUDELTA(24-31) 

Figure 4-55. 

INDEXER 
13 

TO IR 

SWBD 

PRl30AO(S-11 

R 
F 

+ 

NIR 

"c" 

I. USED WHEN NRF" SPECIFIES A CR OR 
VPR AS A SOURCE OR DESTINATION. 

Register Indexer 

4-137 Advanced Scientific Computer 



4-130 COMMUNICATIONS REGISTER FILE 

The Communications Register (CR) file of the PP is functionally divided into 
CR file control, input synchronizers, and CR registers. A detailed descrip­
tion, suppiemented with block diagrams and/ or logic diagrams, is presented 
for each of these three areas in the following paragraphs. 

4-131 CR FILE CONTROL. Control of the CR file is physically divided in­
to CRMIRLDR card control, CRCONT (O through 3) card control, and 
CRCELLY card control. The CRMIRLDR card receives IR data via the 
VPRCONT card, expands the IR data into the CRMIR input format, and dis­
tributes the expanded control information to the four CRCONT cards. Each 
CRCONT card uses the control information from the CRMIRLDR card to gen­
erate the selects and enables needed for reading from and writing to one of 
b4 bytes of data. The CRCELLY card uses control from CRCONTO and in­
terrupt information from various areas of the PP to control the setting and 
resetting of data in the interrupt associated bytes of the CR file (byte 0 of 
CR' s 0 through 7). A detailed description of the three physical areas of CR 
file control is presented in the following paragraphs. 

4-132 CRMIRLDR Control. Refer to figure 4-5b for a simplified logic dia­
gram of the CRMIRLDR control logic. The CRMIRLDR card accepts source, 
destination, op-code group, and maintenance select data from the VPRCONT 
card, and maintenance data from the AU2B bus, and generates CR read and 
write signals capable of add res sing CR data down to the hex level (this is 
necessary for writing to the CR file; reading is done at the word level). Re­
fer to figure 4-57 for the for:r:nat of the control data distributed to the four 
CRCONT cards. 

When data is to be read from a CR, the source (IPES(0-5)) and destination 
MPED(0-5)) bits from the VPRCONT card are applied to select logic com­
posed of a group of SQ logic modules. If the executing instruction is an in­
direct store of a word via a CR from a VPR or another CR (op-codes of 98 
or 9C), or tests and/or sets /resets bits in a CR byte or half-byte (hex) and 
skips the next instruction if a test made is true (op-codes of 82, 8b, 8A, 8E, 
92, 9b, 9A, 9E, CZ, Cb, CA, CE, D2, Db, DA, DE, E2, Eb, EA, EE, F2, 
Fb, FA, and FE), the destination bits from the VPRCONT card are selected 
and output to the CRCONT cards as the CR read card and word select lines 
(,PCLRW(0-5)). In these cases, the destination is used as the source of the 
read during the indirect cycle (for the indirect stores) or because the source 
contains the R field mask or is identical to the destination (for the test and/ 
or set/reset type instructions mentioned). If the executing instruction is 
different from those mentioned and involves reading from a CR (stores, 
loads, test CR and branches, and test poll bits), the source bits from the 
VPRCONT card are selected and output to the CRCONT cards as the CR read 
card and word select lines. When a maintenance function is being performed, 

4-138 Advanced Scientific Computer 



CR INDIRECT STORES (18 ,9C) -,PELRWB 

CR BYT(8,9,C,D,E,F(2,li,A,IE)) -,PELRWC 

OP-COOES 

FROM 

VPRCONT MAINTENANCE SEL-ECTOR PESL-(2) 

IR DESTINATION ..,PED(0-5) 

IR SOURCE .,PES 0-5) 

AU2B OATA FROM AU ., PAU20(0-5) 

l-OAD VP SASE FROM PEL-WWA 

FROM 
VPRCONT 

~~{ VPRCONT 

(C)l 24765 

VPR TO CR (l-DMB) 

MAINTENANCE SELECTOR PESL-(2) 

IR DESTINATION 

AU2B DATA FROM AU 

IR DESTINATION , PED(3-5) 

CURRENT VP COOE ...,PUVPC(0-2) 

AU2B DATA FROM AU -.PAU20 9-11) 

..., PCL-RW:2(0-S) 

-,PCL-RW:3(0-5) 

..., PCl-RW:4 0-5) 

, PCL-RW 1 {0-S) 

..., PCLWW:1 (0-2) 

..., PCLWW :2(0-2) 

..., PCL-WW:3(0-2) 

, PCLWW 4(0-2) 

, PCL-ww:2(3-s) 

,PCL-WW:3(3-5) 

-. PCL-WW:4(3-5) 

..., PCL-WW I (3-5) 

.. 

CR READ CARD 
AND WORD 

SEL-ECT TO 

CRCONT(0-3) 
CARDS 

CR WRITE CARO 
AND WORD 

SELECT TO 

CRCONT(0-3) 
CARDS 

Figure 4-56. CRMIRLDR Control Logic (Sheet 1 of 2) 

4-139 Advanced Scientific Computer 



~= ... ~~~~RS PESWBXA 

CR ADDR PEA 4) 
CONTROL. 

CR HALF PESWBXB 
WORD 
TRANSFERS 

FROM 
IR ,PED(6) DESTINA-

VPRCONT TION BIT 

CR BYTE PESWBXC 
'TRANSFERS 

IR 
DESTINA- ..,PED(7) 
TION BIT 

INVERTED PD0(7) 
..,PED(7) 

IN.Y.f:J(i~ 
POD(6) 

rut~~ 1PAU20(12-15) 

FROM AU 

MAINTENANCE 
SELECT 
FROM 
VPRCONT 

PESL 

AUXFER - CR, PELWSWRX 

1 B 

~fcfJT~~. } PELWSWLX 

CR - MOB PEA2CRX 
e~~t~~~ FROM ~P-E_C_R_A~BX~------+-+---11., 

AU2B 
~~&~ ..,PAU20(16-19) 

AU 

(8)1 24766 

(WORD) 

(l..H WORD) 

(BYTE 0) 

(BYTE 1) 

(AH WORD) 

(BYTE 2) 

(BYTE 3) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

\ I 
\ \I 

\\ 

/f 
/t 

/ I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

..,PCLWSWL!1 
,PCLWSWR:1 
-iPCTRA2CR: 1 
.., PC TR CRAB: 1 

:2 

:4 

CR WRITE 
BYTE 
SELECT TO 
CRCONT'0-3) 
CARDS 

~fcfJTH~:x 
AU2XFER - CR, 
CR-MDB 
CONTROL.S TO 
CRCONT(0-3) 
CARDS 

Figure 4- 56. CRMIRLDR Control Logic (Sheet 2 of 2) 

4-140 Advanced Scientific Computer 



(READ) 
-. PCLRW(o-s) 

SOURCE 

(A)124767 

DESTINATION 

-i PCLW (0-5) 
(READ AND WRITE) 

(READ) 
-i PCLWSWB(0-3) -., PCLWSWR -i PCTRCRAB 

BYTE LH 

-,PCLWSWL 

RH 
AU2B 

TO 
CR 

CR 
TO 

MOB 

-,PCTRA2CR 
(WRITE) 

Figure 4-57. CRMIR Input Format From CRMIRLDR 

the maintenance selector (PESL(2)) is used to disable selection of the source 
or destination bits from VPRCONT and to enable selection of the AU2B bus 
data hPAU20(0-5)). The AU2B bus data is output to the CRCONT cards as 
the CR read card and word select. 

When data is to be written to a CR, the destination bits from the VPRCONT 
card are split into two groups (bits 0 through 2 and bits 3 through 5) and ap­
plied to select logic composed of 3N and SQ logic modules. If the executing 
instruction is load VP base in CR from VPR (LDMB), the PELWWA signal 
disables the destination bits and enables the active VP code t'iPUVPC(0-2)) 
into bits 3 through 5 of the output. The net result, the CR write card and 
word select, points to the CM base register corresponding to the active VP 
code and is output to the CR CONT cards. If the executing instruction is other 
than LDMB and involves writing into a CR, bits 0 through 2 of the destination 
are selected and output to the CRCONT cards as the CR write card select 
(,PCLWW(0-2)) and bits 3 through 5 of the destination are selected and out­
put to the CRCONT cards as the CR write word select hPCLWW(0-2)). When 
a maintenance function is being performed, the maintenance selector dis­
ables selection of the destination bits and enables selection of AU2B bus data 
(,PAU20(6-ll)). The AU2B bus data is output to the CRCONT cards as the 
CR write card and word select. 

When data is to be written to a CR, the CR address control (PEA(4)) is used 
to enable the logic required in generating the byte select lines 
(,PCLWSWB(0-3)). If a fullword CR write is to be executed, the PESWBXA 
signal from VPRCONT is inverted and used to drive the outputs of the four 
second level 3N logic modules to one (refer to sheet 2 of figure 4-56). The 
3N outputs are inverted and distributed to the associated CRCONT cards 
(,PCLWSWB(O) goes to CRCONTO, 1PCLWSWB(l) goes to CRCONTl, 
,PCLWSWB(2) goes to CRCONT2, and ,PCLWSWB(3) goes to CRCONT3). If 
a halfword CR write is to be executed, the PESWBXB signal from VPRCONT 
combines with bit 6 of the destination (bit 6 indicates left halfword when zero 
and right halfword when one) to develop a left halfword or right halfword sig­
nal. A left halfword write drives the outputs of the first two second-level 3N 

4-141 Advanced Scientific Computer 



logic modules to one and a right halfword write drives the outputs of the last 
two second-level 3N logic modules to one. In both of these cases, the 3N 
outputs are inverted and distributed to the associated CRCONT cards to in­
dicate that two bytes of a CR are to be written to. If a byte CR write is to 
be execut~d, the PESWBXC signal from VPRCONT combines with bits 6 and 
7 of the destination to develop the byte 0, byte 1, byte 2, and byte 3 signals. 
When bits 6 and 7 are both zero, the byte 0 signal drives the first second 
level 3N logic module to one; when only bit 7 is one, the byte 1 signal drives 
the second second-level 3N logic module to one; when only bit 6 is one, the 
byte 2 signal drives the third second-level 3N logic module to one; when both 
bits 6 and 7 are one, the byte 3 signal drives the fourth second-level 3N logic 
module to one. In all four of these cases, the 3N outputs are inverted and 
distributed to the associated CRCONT cards to indicate that only one byte of 
a CR is to be written to. When a maintenance function is being performed, 
the maintenance selector disables the outputs of the second level 3N logic 
modules and enables the AU2B bus data hPAU20(12-15)) through to the 
CRCONT cards on the byte select lines. 

When data is to be written to the left hex of a CR byte, the PELWSWLX sig­
nal is developed on the VPRCONT card and applied to select logic composed 
of 2N logic modules on the CRMIRLDR card. During normal processing, the 
select logic inverts the PELWSWLX signal and distributes the result 
t"IPCLWSWL) to the four CRCONT cards. When data is to be written to the 
right hex of a CR byte, the ,PCLWSWR signal is developed in a similar man­
ner. Anytime data is to be written to a CR, the VPRCONT card develops the 
PEA2CRX signal, the 2N select logic on CRMIRLDR inverts it, and the re­
sult (,PCTRA2CR) is distributed to the four CRCONT cards to enable the 
write operation. The ,PCTRCRAB signal is developed in a similar manner 
anytime data is to be read from a CR. When a maintenance function is being 
performed, the maintenance selector disables the left hex, right hex, CR 
write, and CR read signals from VPRCONT and enables the AU2B:bus data 
(,PAU20(16-l 9)) to provide a substitute for these signals. 

4-133 CRCONT Control. Refer to figure 4-58 for a simplified logic diagram 
of the CRCONT 1 control logic (the synchronizers on the CRCONT card are 
discussed in a later paragraph) that applies to byte 1 of the CR file. The con­
trol logic on CRCONTO, CRCONT2, and CRCONT3 is identical to that on 
CRCONTl and applies to CR bytes 0, 2, and 3, respectively. The detailed 
description of the CRCONT cards control logic is based on CRCONT 1; how­
ever, the other three cards perform the same type of processing at the same 
time. Each CRCONT card accepts read and write card and word selectors, 
left and right hex indicators, read and write enables, and the associated byte 
bit from the CRMIRLDR card, to develop the read and write card enables, the 
read and write word selectors, and the write left hex and right hex enables 
for the associated CR byte. This same control information from all four 
CRCONT cards is combined to form the CRMIR output format shown in figure 
4-59. 

4-142 Advanced Scientific Computer 



FROM 
CRMIRLDR 

FROM 
CRMIRLDR 

(B)I 24766 

CR READ 
CARD SELECT ,PCLRW(0-2) 

CR READ ,PCTRCRAB 
ENABLE 

(MAINT)1 

CR WRITE 
CARD AND ,PCLWW(0-5) 

WORD SELECT 

(MAINT) I 

CR WRITE ,PCLWSWB 1 
BYTE 1 

CR FILE INHIBIT 
FROM PPCTL2 

(MAINT)I 

(MAINT)I 

,PCWMOl(I) 

DECODING 
NETWORK 

CR WRITE •PCLWSWL 
LEFT HEX -'--------tl.i 

(MAINT)I 

CR WRITE •PCLWSWR 
RIGHT HEX _:.cc::c::;,,:.;_.::...;.;,,:.;_ ___ ---t~ 

{MAINT) I 

CR BIT B FROM 
CRBASEI AND •PCRABDOB(0-7) 

CRCELL 1 (0-6) 

• 

CR BIT 1 5 FROM • 
CR BASE 1 AND , PCRABDI 5(0-7) 

CRCELL 1 (0-6) 

9B1S 

,PCLRWB1 0-7) •PCQRWB1 0-7 

(MAINT) 1 

(MAINT)I 

,PCQRWCI (3-5) 

(MAINT)I 

PCQWWBI 0-2) 

,PCQWWBI (0-2) 

PCQA 2f'RC::B:.Clf--1 ... 

9B1S 

•PCQWWBI 3-5 

(MAINT)l 

2N 

•PCQWBI L 

(MAINT) I 

(MAINT)1 

Figure 4-58. CRCONT 1 Control Logic 

PCORWBI 0-7 

PCRABSEI (3-5) 

PCORWC 1 ( 3- 5) 

PCWA2B1 E(0-7) 

PCOWWBI (0-5) 

PCWA2CBI 3-5 

PCOWBI L 

PCWA2CL(I) 

PCOWB1 R 

PCWA2CR(1) 

,PCRAB(B-1 5) 

READ CAl'ID 
ENABLES TO MIRMRGB 

READ CARD 
ENABLES TO CRBASEI 
AND CRCELLI {0-6) 

READ WORD SELECT 
TO CRBASEI 
AND CRCELLI (0-6) 

READ WORD SELECT 
TO MIRMRGB 

WRITE CARD ENABLE 
TO CRBASE1 AND 
CRCELLI (0-6) 

WR I TE CARD AND WORD 
SELECT TO MIRMRGB 

WRITE WORD SELECT 
TO CR BASE I AND 
CRCELL1 (0-6) 

WRITE BYTE 1 
TO MIRMRGB 

CR WRITE (AU2 -CR) 
TO MIRMRGB 

WRITE LEFT HEX 
TO MIRMRGB 

WRITE LEFT HEX 
TO CRBASEf AND 
CRCELLI (0-6) 

WRITE RIGHT HEX 
TO MIRMRGB 

WRITE RIGHT 
HEX TO CRBASEI 
AND CRCELLl(0-6) 

SELECTED CR BITS 
B-15 TO MOB 



~------
PCOWSWB(I) PCOWSWB(2) PCOA2RBI PCOA2RB2 

CARO CARO 

PCORWB0(0-7) PCORWBI (0-7) 

PCORWC0(3-5) PCORWCI (3-5) 

SOURCE FROM CRCONT2 SOURCE FROM CRCONT3 

WORD CARO WORD CARO 

PCORWB2(0-7) PCORWB3(0-7) 

PCORWC2 ( 3- 5) PCORWC3(3-5) 

PCOWBOR PCOWB1 R PCOWB2R PCOWB3R 

CARD'WORO CARO/WORD CARD/WORD CARD/WORD 

PCOWWB0(0-7) PCOWWB2(0-7) 

PCOWWBI (0-7) PCOWWB3(0-7) 

(B)I 24769 

Figure 4-59. CRMIR Output Format from CRCONTO - CRCONT3 

4-144 
Advanced Scientific Computer 



When data is to be read from a CR (all CR reads involve a fullword), the CR 
read enable signal (,PCTRCRAB) from CRMIRLDR permits the decoding of 
the three read card select lines hPCLRW(O-Z)) to eight read card enable 
lines. The eight read card enable lines are gated into a group of flip-flops 
(the gate remains set during normal PP processing) for the duration of the 
current execution cycle. The true flip-flop outputs are inverted by a group 
of ZN logic modules and the results (PCRABBlE(0-7)) are distributed to 
CRBASEl and CRCELLl(0-6) (PCRABBlE(O) goes to CRBASEl, 
PCRABB lE(l) goes to CRCELLl (0), etc.). A different group of ZN logic 
modules invert the same flip-flop outputs in order to develop the CRMIR out­
put format for the MIRMRGB card (PCORWBl(0-7)). The read word select 
lines from CRMIRLDR (,PCLRW(3-5)) are gated into a group of flip-flops 
and the complement outputs are inverted by two groups of ZN logic modules 
in order to develop the read word select lines for CRBASEl and 
CRCELLl(0-6) (PCRABSE1(3-5)) and for MIRMRGB (PCORWC1(3-5)). The 
other three CRCONT cards (CRCONTO, CRCONTZ, and CRCONT3) perform 
the same processing at the same time, so the net result is the reading of one 
full CR from the CR file. 

When data is to be written to a CR (it is possible to write single bits when 
the R field is used as a mask on a hex of data), the CR write enable signal 
(,PCTRAZCR) from CRMIRLDR is gated into a flip-flop. The true output of 
the flip-flop and the CR file inhibit signal (,PCWMOI(l)) from the PPCTLZ 
card combine to provide secondary enables for the group of 9B logic modules 
used in developing the write card enable lines. The primary enable is pro­
vided by the CR write byte 1 signal hPCLWSWB(l )) when byte 1 of the CR is 
involved in the write (when byte 0, Z, or 3 is involved in the write, the as­
sociated ,PCLWSWB signal provides the primary enable used in developing 
the write card enable lines for the desired byte). When the primary and sec­
ondary enables are present, the group of 9B logic modules uses the first 
three bits of the CR write card and word select signals (,PCLWW(0-5)) in 
true and complement form to develop the eight write card enable lines. 
These eight lines are inverted by a group of ZN logic modules and distributed 
to the CRBASEl and CRCELLl(0-6) cards (PCWAZBlE(O) goes to CRBASEl, 
PCWAZBlE(l) goes to CRCELLl(O), etc.). The complement outputs of the 
flip-flops used to hold all six bits of the CR write card and word select sig­
nals are inverted and output to the MIRMRGB card as the write card and word 
selector (PCOWWB 1 (0-5)). The last three bits from these same flip-flops 
are inverted and output to CRBASEl and CRCELLl (0-6) as the write word 
selector. The complement outputs of the flip-flops used to hold the write 
enable and the byte 1 enable are inverted and output to the MIRMRGB card 
(PCOAZRB 1 and PCOWSWB(l ), respectively). The left hex hPCLWSWL) 
and right hex (,PCLWSWR) indicators from CRMIRLDR are gated into flip­
flops, inverted twice (once in the flip-flops), and output to CRBASEl and 
CRCELLl (0-6) as the write left hex enable and write right hex enable, re­
spectively. This same process (a different set of 2N logic modules is used 

4-145 
Advanced Scientific Computer 



~-------· 
to provide the second inversion) develops the write left hex (PCOWB 1 L) and 
write right hex (PCOWB IR) signals for MIRMRGB. The other three 
CRCONT cards perform similar processing at the same time, so the net re­
sult may be writing a fullword, halfword, byte, hex, or isolated bits when 
the R field is used as a mask. 

4-134 CRCELLY control. Refer to figure 4-60 for a simplified logic dia­
gram of the CRCELLY control logic that responds to hardware initiated in­
terrupts by setting or resetting bits in the interrupt associated control bytes 
of the CR file (byte 0 of CR' s 0 through 7). This control logic accepts inter­
rupts generated internally by the PP or externally by other components of 
the ASC system and provides the necessary control over the interrupt as -
sociated control bytes of the CR file to carry out the processing of those in­
terrupts. Refer to appendix B of this manual for the format of byte 0 of 
CR's 0 through 7. 

The time slot override control byte and the time slot override reason byte of 
the CR file are under direct control of the CRCELLY control logic when a 
CM parity error, CM protect violation, CM breakpoint (not used), CR pro­
tect violation, or illegal op-code occurs in a VP other than the selected VP 
(the selected VP exercises the PP maintenance logic during normal process­
ing). When one of these conditions exists, the associated signal (-1PMPAOS 
for parity error, -iPMPROS for protect violation, -iPMBPOS for breakpoint, 
-iPXILLC for illegal op-code, or -,PXINHIB for CR protect violation) is used 
to develop the gates for both the override control and· override reason bytes 
and the data for the override reason byte only. The data for the override 
control byte (,PFDDOOCR(O) through, PFDD07CR(O)) is developed by holding 
the inputs to a group of 2N logic modules at the VEE level so that a bit is set 
in the override control byte whenever the associated gate occurs. When a 
parity error, protect violation, or breakpoint occurs, the PYCMVIOL signal 
combines with the ,PYERSWEQ signal (developed as long as the CM violation 
occurs in a VP other than the selected VP) to enable the DE logic module used 
in generating the gates for the override control byte. The PYCMVIOL signal 
also enables the VP code of the VP causing the CM violation (the 
•PMERRC(0-2) signals from SWBASY) through to the mentioned DE module 
and to a group of 2N logic modules for generation of the VP code data in the 
override reason byte. The enabled DE module decodes the applied VP code 
to generate a gate (and hence set the associated bit) for the VP in the over­
ride control byte that caused the CM violation. If a parity error occurred, 
none of the reason data bits in the override reason byte bPFDD05CR( 1) 
through 1PFDD07CR(l)) are affected (all zeroes). If a breakpoint occurred, 
the middle reason data bit is set. If a protect violation occurred, the LSB 
reason data bit is set. The data line for the control bit of the override rea­
son byte (-iPFDDOOCR(l)) is constantly held for a set condition and the data 
line for bit 4 of the override reason byte (-iPFDD04CR(l)) is constantly held 
for a clear condition. The gate lines for the override reason byte are de­
veloped only if the control bit (-,PCQDOOCR(l)) of the current override reason 

4-146 Advanced Scientific Computer 





byte is clear. If it is clear, the mentioned PYCMVIOL and 1PYERSWEQ 
signals combine with the control bit to generate a gate for each bit in the 
override reason byte. The net result is the updating of the override reason 
byte simultaneously with the setting of a bit in the override control byte to 
reflect the VP number and CM violation causing the error. When an illegal 
op-code or CR protect violation occurs, the PYPPVIOL signal replaces the 
PYCMVIOL signal in the development of the override control gate and en­
ables the VP code reflecting the error through a group of 2N logic modules 
to the VP code lines of the override reason byte. If an illegal op-code oc­
curred, the first reason data bit in the override reason byte is set by the 
PYILLC signal; if a CR protect violation occurred, the last two reason data 
bits are set by the 1PYCRVIOL signal. 

In addition to the cases mentioned in the previous paragraph, a bit in the time 
slot override control byte is set when the AUTO INTRPT OFF button on the 
ASC Maintenance Console is pressed and an interrupt external to the PP oc­
curs, the selected VP ca us es a CM violation, an illegal op-code occurs in 
the selected VP, or a CR protect violation occurs in the selected VP when 
the PP is not operating in the normal mode. In these cases, the bit asso­
ciated with the selected VP in the time slot override byte is set. When any 
one of these cases occurs, the -.PYAUTOV signal is developed due to an entry 
in the outstanding events byte and the pres sing of the AUTO INTRPT OFF 
button, while the -.PYAUSWEQ signal is developed due to these two conditions 
only when the selected VP is active (PYCUSWEQ). The -iPYAUTOV signal is 
used to generate the PYVPVIOL signal, which in turn enables the VP code 
reflecting the interrupt (in this case the selected VP code) through a group of 
2N logic modules to the DE logic module used in generating the gate for the 
time slot override control byte. The -,PYAUSWEQ signal enables the same 
DE module to permit the decoding of the applied VP code and the generation 
of the selected VP gate for the time slot override control byte. 

When an interrupt external to the PP occurs (power fail, disc protect viola­
tion, Central Processor (GP) interrupt, or activation of the ASC Operator's 
Console STOP button), the associated synchronizer on CRCELLY is trig­
gered (the synchronizers are discussed in a later paragraph). The triggered 
synchronizer develops a pulse coincident with the second clock after the in­
terrupt (PYPWRFL for power fail, PYDISCPR for disc protect violation, 
PYCPINTR for GP interrupt, or PYSTPSIG for STOP button interrupt). The 
pulse developed by the synchronizer is inverted by a 2N logic module and in­
put to the associated bit of the outstanding events byte (byte 0 of CR 3) as 
data. The same pulse that is used as data by the outstanding events byte is 
inverted and used as a gate to set the bit in the outstanding events byte asso­
ciated with the interrupt. When a CM violation (parity error, protect viola­
tion, or breakpoint) occurs in the selected VP, the interrupt signal combines 
with the select VP CM violation signal (PYERSWEQ) to develop the data and 
gate needed to set the bit in the outstanding events byte that reflects the in­
terrupt. When an illegal op-code occurs in the selected VP, the interrupt 

4-149 Advanced Scientific Computer 



4P-·------
signal combines with the select VP active signal (PYCUSWEQ) to develop the 
data and gate needed to set the illegal op-code bit in the outstanding events 
byte. 

Each bit in the outstanding events byte (-iPCQDOOCR(3) through 
,PCQD07CR(3)) is paired with the associated bit in the interrupt mask 
(-,PCQDOOCR(4) through -,PCQD07CR(4)) on the input lines of a 2B logic mod­
ule. If an outstanding event is recorded and the associated interrupt mask 
bit is set, the corresponding -,PYAUINT signal combines with the select VP 
active signal to generate an interrupt signal f",PXINTRl) for the selected VP. 
When the selected VP responds to the interrupt by pulsing the PINTACK line, 
the PYAUINT line associated with the interrupt is used to develop a pro­
cessed interrupts byte gate so that the bit reflecting the interrupt is set. 
(The data lines to the processed interrupts byte are all constantly held for a 
set condition, so whenever a gate occurs, the associated bit is set.) The 
PYAUINT line associated with the interrupt is also used to develop a corre­
sponding -,PYEVTRES signal, which generates a clearing gate for the out­
standing events bit responsible for the interrupt to the selected VP. The 
same-,PYEVTRES signal is used to generate the gates needed to reset all 
bits in the interrupt mask byte that represent events of a priority equal to or 
lower than the event that caused the interrupt. If a power fail interrupt 
(highest priority) is honored by the selected VP, the -,PYEVTRES(O) signal 
generates a gate for all bits of the interrupt mask byte. (The data lines to 
the interrupt mask byte are all constantly held for a clearing condition, so 
whenever a gate occurs, the associated bit is cleared. ) If a parity error 
(middle priority) is honored, .the 1PYEVTRES(l) signal generates a gate for 
all bits of the interrupt mask byte except for the gate to the power fail bit. 
If the interrupt honored is neither a power fail nor a parity error, the asso­
ciated -,PYEVTRES signal (-iPYEVTRES(2) through -,PYEVTRES(7)) generates 
a gate for only those bits of the interrupt mask with a low priority (CM pro­
tect violation in selected VP, CM breakpoint in selected VP, system STOP 
button interrupt, disc protect violation, illegal op-code in selected VP, and 
CP interrupt). At the conclusion of the software service routine, the pro­
cessed interrupts byte should be reset and the interrupt mask should be re­
stored so interrupt processing can return to normal. 

Each VP may be interrupted by a bit in the interrupt control byte set via soft­
ware (programmed interrupt). When a bit is set in the interrupt control byte, 
the active VP code is decoded and paired with the set bit to develop an inter­
rupt (-iPXINTR2) for the VP designated by programmed interrupt bit. When 
the VP acknowledges the interrupt by pulsing the PINTACK line, the VP code 
reflecting the interrupted VP is decoded to generate a gate to the associated 
bit in the interrupt control byte. The hard wired data lines on CRCELLY to 
the interrupt control byte are all constantly held for a clearing condition, so 
whenever a gate occurs, the associated bit is cleared. 

4-150 Advanced Scientific Computer 



CRCELLY control of the VP availability byte and byte 0 of word 7 is inhib­
ited by hard wiring the gates so that they are constantly disabled. This gives 
software total control over both of these bytes. CRCELLY also disables the 
CR protect logic on the PPCT L2 card when the ·selected VP is active and the 
TEST MODE switch on the ASC Maintenance Console is in the NORMAL po­
sition. When these two conditions occur, the select VP active signal 
(PYCUSWEQ) and the TEST MODE switch NORMAL position signal 
(PXAUMODE) combine to hold the -,PCRPRO line at one (thus disabling the 
CR protect logic on PPCTL2). If either of these two signals does not occur 
and the CR protect bit for the active VP is set (PXCRPROT), the -,PCRPRO 
line enables the CR protect logic on PPCT L2. 

4-135 INPUT SYNCHRONIZERS. The CR file input synchronizers are used 
to synchronize gating signals from external TTL devices with the PP clock 
so that data from the external devices is not lost at the interface with the CR 
file. All of the synchronizers are identical and exist on the CRCELLY card 
and each CRCELL and CRCONT card. The CRCELLY card has four single 
output synchronizers that are used to interface external interrupts (power 
fail, disc protect violation, CP interrupt, or STOP button interrupt) with the 
synchronous control logic used in setting bits in the outstanding events byte. 
Each CRCELL card has ten single output synchronizers that are used to in­
terface data from external devices with a bit or bits in the CR file. Each 
CRCONT card has twelve single output synchronizers, three two output syn­
chronizers, four four output synchronizers, and one five output synchronizer. 
All of these synchronizers are used to interface data from external devices 
with a bit or bits in the CR file. The multiple output synchronizers are used 
when one gate is required to enable data to more than one CR motherboard. 
Refer to the PP Fixed Variable List and the Patch Card specification draw­
ing for the assignment of the synchronizers to ~he bits in the CR file. Section 
XI of the TTL Designer's Manual, ASC part number 930004-1, provides a 
more detailed look at the patch card interface between the synchronizers and 
the CR file gates. 

A simplified logic diagram of the input synchronizers and the associated tim­
ing diagram are shown in figures 4-61 and 4-62, respectively. During the 
quiescent state of the synchronizer (at least two PP clocks after the last syn­
chronous gate), all three inputs to the DE logic module are zero. When an 
asynchronous gate or external interrupt occurs, (the 1$SYBMIN(P} signal 
makes a one-to-zero transition), the zero output of the DE module and the 
inverting output of the lB module combine to set the number two DF flip-flop. 
The flip-flop output drives the number one output of the DE module to one, 
so when the first PP clock occurs, the number one DF flip-flop is set. The 
number one and two DF flip-flops (both are now set) combine to drive the 
number three output of the DE module to one. At the conclusion of the first 
clock, DF flip-flop zero is set and the synchronous gate (1$XSYBMON(P)) 
makes a one-to-zero transition (DF flip-flops zero and one are set). At this 
instant, all three DF flip-flops are set so that the number seven output of the 

4-151 Advanced Scientific Computer 



...... 
U1 
N 

pp{ 
CLOCK 

ASYNCHRONOUS 
GATE FROM 

EXTERNAL 
DEVICE 

MASTER CLEAR 
FROM 

MAINTENANCE 
CONSOLE 

(B)124771 

PC LOCK 

PC LOCK 

,$XSYBMIN(P) 

1 

1B 

0 - r----1 .. 
-- 1B 

1 - OF 
0 

-R- i......-

- 0 -
---- 1 - OF 

I 
DE -.. 

- L.....--1 

~ 

0 ~~ 

----- --
1 - OF -.. 

2 

~ 
-
~ 

1 ~ 
-·__... 

1 
J2N -

Figure 4-61. Input Synchronizers 

2N 

, fXSYBMONJJ'J_ --
WHERE, 

M = BYTE NUMBE 

SYNCHRONOUS 
GATE USED 
BY PP 

N =FANOUT~ 2 p = SYNCHRO IZE 

R (0-3) 
,A, OR 5) 
R NUMBER (0-89) 



DE MODULE 
ENABLE OUTPUT 

ASYNCH_RONOUS GAU: 
( 1SXSYBMIN(P)) 

0 3 

SYNCHRONOUS GATI;. __________ 1_....,,I 
( 1!JXSYBMON(P)J I 

PP CLOCK 

(A)124772 

7 6 4/0 

I 
I 

_ _J 

0 

Figure 4-62. Input Synchronizer Timing Diagram 

DE module is one. When the second clock occurs, the number two DF flip­
flop is cleared and the number six output of the DE module goes to one. At 
the conclusion of the second clock, DF flip-flop one is cleared and the syn­
chronous gate returns to one (the number four output of the DE module is 
now one). The number four output of the DE module combines with the true 
output of the lB module handling the asynchronous gate to clear DF flip-flop 
zero. The synchronizer is now back in its quiescent state. If an :invalid DE 
module output occurs (the number two or number five output goes to one), 
the invalid output is input to a ZN logic module, which in turn clears DF 
flip-flops zero and one. If the MASTER CLEAR button on the Maintenance 
Console is pressed when the PP is operating in the manual mode, all three 
DF flip-flops are cleared. 

4-136 CR REGISTERS. The CR registers consist of 64 32-bit registers 
situated on 32 cards as shown in figure 4-63 (each card is capable of holding 
a byte of data for eight CR's). Refer to the Central Memory Base Register 
portion of the VP detailed theory for a description of the registers on the 
CRBASE cards. The registers on the CRCELLY card are used to process 
hardware detected and software initiated interrupts. The registers on the 
CRCELL cards provide control for and data links to the peripheral equipment, 
in addition to some control over system operation. A detailed description of 
the registers and associated loading and distribution logic on the CRCELLY 

4-153 Advanced Scientific Computer 



(A)l 24773 

CRO 

CR7 

CR8 

CR15 

CRl6 

CR23 

CR2" 

CR31 

CR32 

CR39 

CR"O 

CR55 

CR56 

CR63 

CROMB CR1MB CR2MB CR3MB 

0 7 B 15 '6 23 2 .. 31 

CRCELLY CRBASE1 CRBASE2 CRBASE3 

CRCELLO(O) CRCELLl(O) CRCELL2(0} CRCELL3(0) 

CRCELLO(I) CRCELLI (I) CRCELL2(1) CRCELL3(1) 

CRCELL0(2} CRCELLI (2) CRCELL2(2} CRCELL3(2} 

CRCELL0(3) CRCELL1 (3) CRCELL2(3) CRCELL3(:S) 

CRCELL0(4) CRCELLI(") CRCELL2(") CRCELL3(") 

CRCELL0(5) CRCELLl(5) CRCELL2(5) CRCELL3(5) 

CRCELL0(6) CRCELLI (6) CRCELL2(6) CRCELL3(6) 

Figure 4-63. CR File Card Layout 

card and the CRCELL cards is presented in the following paragraphs. A 
final paragraph is presented to describe the merging of data from the 
CRBASE, CRCELLY, and CRCELL cards to the MDB. 

4-137 CRCELLY Registers. Refer to figure 4-64 for a simplified logic 
diagram of the CRCELLY registers (each register consists of one byte) and 
the associated input and output logic. The PP software is capable of setting 
or resetting every bit in all eight registers, whereas the CRCELLY control 
logic has direct control over only the time slot override control byte, time 
slot override reason byte, interrupt control byte, outstanding events byte, 
interrupt mask byte, and the processed interrupts byte. The software also 
has the capability of monitoring any of the eight CRCELLY registers via the 
MDB. 

4-154 
Advanced Scientific Computer 



..... 
Ln 
Ln 

{ 

WORD SELECT 

CON-'::E WRITE CARD 0 

cRlo'Wfo WRITE RIGHT HEX 

FROM 
CR CON TO 

INHIBIT BYTE 0 
FROM PPCTL2 

R F1£LD MASK 
FROM CONTAU 

DATA FROM AU 28 
OF AU 

DATA FROM 
CRCELL Y CONTROL 

LOGIC 

GATES FROM 
CRCELLY CONTROL 

LOGIC 

{ 
READ BYTE 0 

WORD SELECT 

READ ENABLE 
FOR BYTE 0 

OF CARD 0 

{B)I 24774 

PCWA2CB0(3-5) 

PCWA2BOE 0) 

PCWA2CR 0 

PCRFOMSK(0-3) 

PCWAZCL(O) 

,PAU20(0-7) 

{

PFGDOOCR;0-7) 

PFGD07CR 0-7) 

PCRABSE0(3-5) 

PCRABBOE 0) 

Figure 4-64. CRCELLY Registers 

,PCRABD00(0)-07 (0) BYTE 0 OF 
CARD 0 TO 
CRCONTO 



When the executing instruction requires data to be written to one of the 
CRCELLY registers (via the AU2B bus), the CRCONTO card supplies the 
CRCELLY card with the necessary control lines to locate a hex of data. 
These control lines include a write byte 0 of card 0 (PCWA2BOE(O)) signal 
used to designate the CRCELLY registers, a byte 0 word select 
(PCWA2CB0(3-5)) signal used to select one of the eight CRCELLY registers, 
and the write right (PCWA2CR(O)) and/or left (PCWA2CL(O)) hex signals used 
to select the right and/or left half of the selected byte. The PPCTL2 card 
provides an inhibit byte 0 of CM base load signal (-,PLFAINH) used to enable 
the loading of data into the CRCELLY registers when data is not being loaded 
in a CM base register. The CONTAU card supplies the R field mask signals 
(PCRFDMSK(0-3)} to provide additional control over data written to a 
CRCELLY register when a test and set (TS), test and reset (TR), set (S), or 
reset (R) instruction is being executed. When a TS, TR, S, or R type in­
struction is being executed and data is to be written to the right half of a 
CRCELLY byte, the write byte 0 of card 0 signal, write right hex signal, and 
the complement of the inhibit byte 0 of CM base load signal combine to enable 
the decoding of the word select signals. The result of the decode is masked 
by the R field such that the AU2B data (IPAU20(4-7)), marked by ones in the 
R field, is inserted in the right half of the intended CRCELLY byte. When an 
instruction requires data to be written to the left half of a CRCELLY byte, 
the write left hex signal replaces the write right hex signal so the appropriate 
AU2B data (-iPAU20(0-3)) is inserted in the left half of the intended CRCELLY 
byte. A byte of data from the AU2B bus is written to the intended CRCELLY 
byte when both the left and ri~ht hex signals are activated. 

The CRCELLY control logic supplies separate data and gate lines for each 
bit in all eight of the CRCELLY bytes. When the time slots of a VP are to 
be voided, the associated time slot override control byte data and gate lines 
combine to set the bit in the override control byte reflecting the VP to be 
deactivated. If the control bit of the time slot override reason byte is not 
set, the CRCELLY control logic develops a gate for each bit in the time slot 
override reason byte so new data reflecting the VP number and reason for 
the time slot voiding can be inserted. When an automatic interrupt occurs, 
the outstanding events byte data and gate lines reflecting the interrupt com­
bine to set the associated bit in the outstanding events byte. If the corre­
sponding interrupt mask bit is set and the selected VP acknowledges the re­
corded event, data and gate lines reflecting the event are developed for the 
processed interrupts byte. In addition, data and gate lines for the interrupt 
mask byte bits with a priority equal to or lower than that of the event are de­
veloped to reset those bits, and a gate is developed to reset the event recorded 
in the outstanding events byte that caused the interrupt. When software gen­
erates a programmed interrupt and the executing VP acknowledges that inter­
rupt, a gate and data line are developed to reset the associated bit in the in­
terrupt control byte. The gates developed by the CRCELLY control logic for 

4-156 
Advanced Scientific Computer 



the VP availability byte and byte 7 on CRCELLY are disabled, so software 
has total control over these two bytes. 

When a byte of data is to be read from CRCELLY, the read enable for byte 
0 of card 0 signal (PCRABBOE(O)) permits the decoding of the read byte 0 
word select signals (PCRABSE0(3-5)). The resulting select line enables the 
intended byte over the CRAB 1 bus to the CRAB2 bus on the CRCONTO card. 

4-138 CRCELL Registers. The CR file contains 28 CRCELL cards, each 
card containing a byte of storage capability for eight words. A simplified 
logic diagram of the CRCELLl (O) registers (each register consists of one 
byte) and the associated input and output logic is shown in figure 4-65. The 
other CRCELL cards contain the same logic as that shown in figure 4-65, 
but use different sets of control signals and handle different data. Each of 
the four groups of seven CRCELL cards that have the same byte number 
(CRCELL0(0-6), CRCELLl(0-6), CRCELL2(0-6), and CRCELL3(0-6)) is 
controlled by software via the associated CRCONT card (CRCONTO, 
CRCONTl, CRCONT2, and CRCONT3, respectively). 

Each CRCONT card provides its group of CRCELL cards (and CRCELLY or 
CREASE card, whichever is applicable) with a write card enable (CRCONTO 
develops PCWA2BOE(0-7), CRCONTl develops PCWA2BlE(0-7), CRCONT2 
develops PCWA2B2E(0-7), and CRCONT3 develops PCWA2B3E(0-7)) which 
is used to select one of eight possible cards. A write word select (CRCONTO 
develops PCWA2CB0(3-5), CRCONTl develops PCWA2CB1(3-5), etc.) is 
used to select one of eight bytes on the chosen card. The write left hex and 
right hex selectors (CRCONTO develops PCWA2CL(O) and PCWA2CR(O), 
CRCONT 1 develops PCWA2CL(l) and PCWA2CR(l), etc.) are used to enable 
the write operation to the left and/or right half of the chosen byte. A read 
card enable (CRCONTO develops PCRABBOE(0-7), CRCONT 1 develops 
PCRABBlE(0-7), etc.) is used to select one of eight possible cards. A read 
word select (CRCONTO develops PCRABSE0(3-5), CRCONTl develops 
PCRABSE1(3-5), etc.) is used to select one of eight bytes on the chosen card. 

The write controls from the CRCONT cards direct the storage of the AU2B 
bus data in byte increments (CRCONTO controls -.PAU20(0-7), CRCONTl 
controls -,PAU20(8-15), CRCONT2 controls --.PAU20(16-23), and CRCONT3 
controls -,PAU20(24-31)) and the read controls supply the CRAB2 bus with 
CR file data in byte increments (CRCONTO supplies -iPCRABD00(0-7) through 
1PCRABD07( 0- 7), CR CONT 1 supplies -,PCRABD 08(0-7) through 
-.,PCRABD15(0-7), etc.). The following paragraphs apply to the CRCELLl(O) 
card; however, operation of the other 27 CRCELL cards is identical except 
for the mentioned control and data differences. 

When a test and set (TS), test and reset (TR), set (S), or reset (R) type instruc­
tion is being executed and data is to be written to the right half of a CRCELL 
byte, the write byte 1 of card 1 signal (PCWA2B 1 E( l)) and the write right hex of 

4-157 
Advanced Scientific Computer 



-U"l 
r:r 

WORD SELECT PCWA2CB1(3-'il 

BYTEl 
CONTROL 

FROM 
CRCONTl 

WRITE 
RIGHT HEX 

PCWA2CR(1) 

MAS~';,1.fo~ PCRFDMSK(0-3) 

CON TAU 

WRITE LEFT HEX 
OF BYTE 1 ON CARDI 

FROM CRCONTI 

PCWA2C 1 ) 

INVERTED DATA • {

-oPFDD08CR(8-1 5) 

• 
FROM PERI-

PHERAL DEVICES • 

-,PFDD; SCR(8-1 S) 

INVERTED GATES 
FROM INPUT 

SYNCHRONIZERS 

FROM 
CRCONT1 

(B)l 2477 5 

{ 

w~0 sfilF<:i 

READ ENABLE 
FOR BYTE 1 

OF CARD 1 

PCRABSEI (3-5) 

PCRABBl E(I) 

PFGD08CR(8-t S 

Figure 4-65. 

r:-::~:::.BCR B-t 5) ,PCDOBCR(B-15) } 

!/ PCQDl:SCR(B---,-5-)-ta"-_J,PCDI SjR(e-1 s)~ 
~ ~2N~ 
I. 

CRCELLI (0) REGISTERS 
II 

-,pc RA BOOB( I )- I 5( 1 ) 

CRCELLl (O) Registers 

aYTE 1 OF 
CARDI TO 
PIElllPHERAL 
DEVICES 

BYTE 1 OF 
CARDI TO 
CRCONTI 



byte 1 signal (PCWA2CR{l)) combine to enable the decoding of the word se­
lect signals (PCWA2CB1(3-5)). The result of the decode is masked by the 
R field such that the AU2B data (-,PAU20{12-15)) marked by ones in the R 
field is inserted in the right half of the intended CRCELL byte. When an in­
struction requires data to be written to the left half of a CRCELL byte, the 
write left hex signal replaces the write right hex signal such that the appro­
priate AU2B data (-,PAU20(8-ll)) is inserted in the left half of the intended 
CRCELL byte. A byte of data from the AU2B bus is written to the intended 
CRCELL byte when both the left and right hex signals are activated. In ad­
dition to the PP software, the peripheral devices of the ASC system have 
direct access to the CRCELL registers via the inverted data 
(PFDD08CR(8-63) through PFDD31CR(8-63)) and synchronized gate 
(IPFSD08CR(8-63) through1PFSD31CR(8-63)) lines. Refer to appendix B of 
this manual for the data format of CR' s 8 through 63 (the Description of the 
ASC CR File, part number 930207-1, provides more detailed coverage of the 
same information) and to the PP Fixed Variable List and Patch Card speci­
fication drawing for the assignment of the gate lines to the data in these reg­
isters. 

When the PP software requires data to be read from one of the bytes on the 
CRCELLl (O) card, the read enable for byte 1 of card 1 signal (PCRABB lE{l) 
permits the decoding of the read byte 1 word select signals (PCRABSEl (3-5)). 
The resulting select line enables the intended byte over the CRAB 1 bus to 
the CRAB2 bus on the CRCONT 1 card. The output from each of the 
CRCELLl (O) flip-flops is also inverted by a 2N logic module and routed to 
the applicable peripheral device. 

4-139 CR File Output Merging. Refer to figure 4-66 for a simplified logic 
diagram of the merging logic on CRCONTO, CRCONTl, CRCONT2, and 
CRCONT3. Each of the CRCONT cards uses eight 9B logic modules to se­
lect a byte of data from one of the eight cards having the same byte number 
as the associated CRCONT card. Inputs to each of the 9B logic modules 
consist of eight data lines representing the output from the eight associated 
cards having the same bit (and byte) number. During a CR read operation, 
seven of the eight data lines to each of the 9B modules are held at one (only 
one CR word at a time can be read from the CR file). The remaining line is 
enabled through the 9B module to the MDB on one of the VPRCARD cards. 
Each CR read operation involves a full word, so 32 bits of data are enabled 
through the 9B modules on the CRCONT cards (eight bits per CRCONT card) 
at each read. The output lines -.PCRAB(0-3) are routed to VPRCARD(O), 
1PCRAB(4-7) are routed to VPRCARD{l), 1PCRAB(8-ll) are routed to 
VPRCARD(2), 1PCRAB{l2-15) are routed to VPRCARD(3), 1PCRAB(l6-19) 
are routed to VPRCARD(4), -;PCRAB(20-23) are routed to VPRCARD(5), 
1PCRAB(24-27) are routed to VPRCARD(6), and•PCRAB(28-31) are routed 
to VPRCARD(7). 

4-159 Advanced Scientific Computer 



~ 
.,PCRABDOO(O) 

, 
BIT 0 FROM 

I CRCELLY 

• CRCONTO 

• • • • I 
BIT 0 FROM .,PCRABD00{7) .,PCRAB(O) 

CRCELUl(6) • • • • • • • 
BIT 7 FROM .,PCRABD07(0) • BITS 0-7 OF 

CRCELLV CR WORD TO 

• • MOB ON VPRCARD(O) 

• • AND VPRCARD( I ) 

• • 
BIT 7 FROM ,PCRABD07(7) .,PCRAB(7) 
CRCELL0(6) 

L. 
__ _J 

CRCONTI 
BIT 8 FROM ,PCRABDOB(O) 
CRBASEI 

• • 
• • 

BIT 8 FROM .,PCRABDOB(7) .,PCRAB(B) 
CRCELL1 (6) 

• . . 
BIT 1 5 FROM ,PCRABDI 5(0) BITS 8-1 S OF 
CRBASE1 CR WORD TO 

• MOB ON 

9B 
VPRCARD~2~ AND 
VPRCARD 3 • • 

BIT 15 FROM ,PCRABD1 5(71 ,PCRAB(T 5) 
CRCELLI (6) 

L __ .....J 

BIT 16 FROM ,PCRABDI 6(0) 
r----, CRCONT2 

CRBASE2 I 
I 

BIT 16 FROM 
CRCELL2(6) 

,PCRABD1 6(7) 
I 

.,PCRAB(16) 

BIT 23 FROM ,PCRABD23(0) BITS 16-23 OF 
CRBASE2 • CR WORD TO 

• • MOB ON VPRCARD(4) 
AND VPRCARD(S) 

• 
• 

BIT 23 FROM ,PCRABD23(7) .,PCRAB 23 
CRCELL2(6) 

L--..J 

BIT 24 FROM ,PCRABD24(0) CRCONT3 
CRBASE3 

• • 
• 
• 

BIT 24 FROM .,PCRABD24(7) ,PCRAB(24) 
CRCELL3(6) 

• • 
• 

BIT 31 FROM ,PCRABD31 (0) • BITS 24-31 OF 
CRBASE3 • CR WORD TO 

• • MDB ON VPRCA~D(6) 
AND VPRCARD(7 

• 98 

• • 
BIT 31 FROM 
CRCELL3(6) 

,PCRABD31 (7) ,PCRAB(31) 

L,. __ ..J 

(B)124776 

Figure 4-66. CR File Output Merging Logic (CRABZ Bus) 

4-160 
Advanced Scientific Computer 



4-140 READ ONLY MEMORY 

The Read Only Memory (ROM) of the PP is functionally divided into ROM ad­
dressing logic and ROM merging logic for description purposes. A detailed 
description of these two functional areas is presented in the following para­
graphs. Refer to the ROM simplified block diagram in figure 4-67 for aid in 
following the detailed description. 

4-141 ROM ADDRESSING LOGIC. When the mode bit of the instruction reg­
ister of the active VP indicates that the next instruction is to be retrieved 
from ROM, the ROM address is split into two groups (PMROMADD(20-23) 
and PMROMADD(24-31)) and input to the ROM addressing loigc. Bits 20 
through 23 of the ROM address are decoded to 16 enable lines 
(PMRMSSEN(0-15)) that are used to enable one of the 16 ROMCRD cards. 
Bits 24 through 31 of the ROM address are distributed to each of the 16 
ROMCRD car~, where they are decoded to 256 word select lines 
hMRW000-25~) and applied to 192 diode matrices (capable of holding 256 32-
bit words with a complement bit for each word). Each ROMCRD card re­
sponds to its own set of word select lines with a 32-bit data word and com­
plement bit, which are applied to the ROM merging logic along with the asso­
ciated enable (MRDEN). 

4-142 ROM MERGING LOGIC. The ROM retreived word and complement 
bit associated with the activated enable are output through a group of 9B 
logic gates on the selected ROMCRD card. If the selected ROMCRD card is 
ROMCRD(O), ROMCRD(l), ROMCRD(2), or ROMCRD(3), bits 0 through 7 of 
the retrieved word are input to the merging logic on the AU2XFER card, bits 
8 through 31 of the retreived word are input to the merging logic on the 
ROMMRG card, and the complement bit is input to the complement control 
merging logic on the ROMMRG card. If the selected ROMCRD card is 
ROMCRD(4), ROMCRD(8), or ROMCRD(9), the retrieved word and comple­
ment bit are gated through the merging logic on CRROMRG(O) to the men­
tioned merging logic on AU2XFER and ROMMRG. The CRROMRG(l) card 
provides merging for ROMCRD(5), ROMCRD(lO), and ROMCRD(ll), 
CRROMRG(2) provides merging for ROMCRD(6), ROMCRD(l2), and 
ROMCRD(l3), and CRROMRG(3) provides merging for ROMCRD(7), 
ROMCRD(l4), and ROMCRD(l5). 

The merging logic on the AU2XFER card (9B logic gates) generates the true 
and complement form of bits 0 through 7 of the word from the selected 
ROMCRD card and the merging logic on the ROMMRG card generates the 
true and complement form of bits 8 through 31. On both cards, the true and 
complement data are applied to separate groups of 2N logic gates along with 
the appropriate complement control signal. When the word retrieved from 
the selected ROMCRD card is in true form (the associated complement bit is 

4-161/4-162 Advanced Scientific Computer 





ROM ADDRESS 
FROM RMAB 

(C)12A777 

--------, 
.------ MRSAB(OO- 32_1 - ..--

- l--t-1---------'2!'.P~M~R~M~S~S~D~0~(~0~-~3~1~)1__ _____ ..--~~~--~ 

ROMCRO(O) r-----
I r-

AU2XFER 

(BITS0-7) - ,...._ -
PM R 0 MAD D ( 24 - 31) , _ DE 1 S -.MRW000-25> ., 
_!:.~~~~~:..__:~:__----------,--------T~__.~ :::.~ -

DIODE 
MATRICES 
(256 32-

BIT WORDS 
WITH COMP 

BIT) 

J 
I 

-,PMRMSSCO -.. 

PMROMADD(20-23)_ 
DE

1
S 

- PMRMSSEN(1 5~ .. 
N( 1) 

I 
1~ 

PMRMSSENlO) L ________ _ 

-.r l - ROMCRD(1) [ ----_,_ r -
~ Ni2) :1 ROMCRD(2) [ 

--. 

MRSHB(00-32_1 --
MRDEN 

9B1s I 
I 

-----~_J 
I 

,PMRMSSD1(0-31) 

-,PMRMSSC1 

•PMRMSSD2(0-31) 

----- 9B 1S ------
~ 

~ ,..... __ 
COMPLE­

MENT 
-.PMRMSSC2 CONTROL 

:--t--
L----------------------------~-~J ~L-r _______ ..,...:..:.P~M~R~M:.:.:5~5~0~~3(0~-_::3~1~)----+-+--+-t-t-1 -.. 

PMRMSSl'"N(3_l :J ROMCRD{3) -.PMRMSSC3 L-J...+-+-HH++;_.,_ 

l 
J 

1-----------.J l -.PMRMSD04(00-31) CRROMMRG(O) 

PMRMSSEN(4) : ROMCRD( 4) rt-..,_P_M_R_M_S_C_0_4 _______________ Lf.....=..:--,, 
-,_ r 

-r 1 -.PMRMSDOS(00-31) 1 : r 
PMRMSSEN(81 :J ROMCRD(8) [ -.PMRMSC08 L:. •e's 1--!-.J 

·"I J 1---- I 
---.r 1.._....,_P_M_R_M_s_o_o_9_{_o_o_-_3_1_) ___________ '"-~4--~·,;. ... r---- I 

1--P-M_R_M_S_S_E_N_l(-'9_) _ _.: ROMCRD(9) [ -,PMRMSC09 , ~~ AB 

1

1 
~ f ~ 1--+-----..,_P_M_R_M_s_s_c_4 _____ __ 

"---------------.,1;_.,.J] ,
1 

-,PMRMsoo scoo-3 !_l ~L _ -'.:J 
PMRMSSE~(S) --- ROMCRD(5) -,PMRMSCOS 

~------'--'----'___. ... ,_ rt--------------. 
L--------·-r-----,,_..., PMRM so1o:oo-31) -=-

PMRMssEN(1 o > _JROMCRD(10)[ -,PMRMSC10 --

~ ~l-.!..---------------------1 .. 
-,PMRMSDl 1 (00-31_1 ~ CRROMMRG(1) 

PMRMSSEN(11) J ROMCRD(11) ,- lL-----=911 ---._ h -,PMRMSCt 1 --

...., PMRMSSD4(0-31) 

.., PMRMSSC5 

•PMRMSSD5(0-31) 

-.__ _____ ~ 
"------------J l_ -,PMRMSD06(_00-31_l 

PMRMSSEN(6) : ROMCRD(G) r -,PMRMSC06 1-.--
1PMRMSDI 2(00-31) 

-----
----

98 15 

_BITS 
B-31 

-
., 2N 151 ----

-
r-:t2N

1
5 

---

ROMMRG 

ROMMRG 

PMROM0(0-7_l --- BITS 0-7 
OF ROM 
DATA TO NIR 

-
~ ..; -.PMRMSSD6(0-3 I) -- _ - PMROM(B-31) BITS 8-31 

- OF ROM 

•PMRMSSC6 

-.J L....11---::.iCRROMMRG(2) 

PMRMSSEN(12) :J ROMCRD( 12) L-__ ....,:.:.P...:.M..=R;_M;_S;_C.;...;..1 _2 _____ --11-------
-~ -

-- ~t ~2N'SJ 

1----------~--~ ~L-..,_P_M:.:.:...:_R~M...:....::.S_o_1_3_:(_o_o_-_3_1_1 ___________ __, 

PMRMSSEN(1 3) - ROMCRD(l 3) r -,PMRMSC1 3 
---

L....l-+--1-1-.. 9 B'S -- -.i- -,PMRMSD07(00-31) ~ 

: .. J ROMCRD(7) I J ; L-~- ·---~---S-z~·s r-iL_-._:_P.:..:M.:..:R...:.M:.....:...:S:...C:...0_7 ____ -+-. ____-.J ..., PM RM SS D 7 ( O- 3 1 ) - ___J -J .-----_, ......... ~~~~~___..;_~~~~~~+-~~~~~-~...___ 
1-------------J 1L-'!.:P~M:::...:.R:_:M::.:...:::S=D:...:1_:A:::(:_:0:_:0:_-_:3:....:._I :.._) _________ ___, '-t--1:"'9' CR ROMM RG( 3) 

PMRMSSEN( 1 4) _: ROMCRD( 1 4) [L.:..,!..!P'.:2M!!'.!.!:R~M~S!::C~1.:.4~---------------t----~ 
~ -

PMRMSSENJ.7) 

•PMRMSSC7 
~'·-------------- -----

----~----' ._ ________________ ... -.JM ,'"-__ ..,:...P~M_R_M_s_D_1_s_,_o_o_-_3_1_: __ _. 

PMRMSSEN( 1 r,) -] ROMCRD(1 s: r -,PMRMSC1 5 ----------1:=-.. r'--~...:.....----------~ 

-

Figure 4-67. 

4-163/4-164 

- DATA TO NIR 

Read Only Memory 
(ROM) 

Advanced Scientific Computer 



zero), the true output of the 9B logic gates on the AU2XFER and ROMMRG 
cards is enabled (and inverted) through a group of 2N logic gates for a net 
result of two inversions (the first level of inversion was provided in the 9B 
logic gates of the selected ROMCRD card). The result, therefore, is 32 bits 
of ROM data in true form (PMROM0(0-31)) routed to the NIR of the active 
VP. When the word retrieved from the selected ROMCRD card is in com­
plement form (the associated complement bit is set), the complement output 
of the 9B logic gat·:!S on the AU2XFER and ROMMRG cards is enabled (and 
inverted) through a group of 2N logic gates for a net result of three inver­
sions. The result, as before, is 32 bits of ROM data in true form routed to 
the NIR of the active VP. 

4-143 SINGLE WORD BUFFER CONTROLLER 

The single word buffer controller of the PP is functionally divided into syn­
chronous logic, asynchronous logic, and a two-way bus (TWB). A detailed 
description supplemented with block diagrams and/or logic diagrams is pre­
sented on each of these three functional areas in the following paragraphs. 

4-144 SYNCHRONOUS LOGIC. Refer to figure 4-68 for a simplified block 
diagram of the synchronous logic portion of the single word buffer controller. 
The synchronous logic accepts memory access requests from executing in­
structions, stores the current active VP code in a high or low priority queue 
and the corresponding status data in a status file, and makes the necessary 
queue and file data available to the asynchronous logic portion of the single 
word buffer controller. Refer to figure 4-69 for the registers used by the 
synchronous logic. 

4-145 High and Low Priority Queues. A memory access request is initiated 
when the decoded op-code and state indicate a read request, writ~ request, 
or execute request is necessary (the execute request occurs when an instruc­
tion is to be retrieved from Central Memory). When a request is present, 
the active VP priority bits from the maintenance logic (IPMNPBIT(O, 1)) and 
the PMRC and PMWC lines are combined to develop the high request 
(PMGIC(O)), low request (PMGIC(2), high enable (PMGC:2(0)), and low enable 
(PMGC:2(2)) signals. When a high priority VP is executing, the high request 
signal is used to increment the high priority input counter and the high en­
able signal is used to enable the decoding of the incremented input counter 
result (refer to figure 4-70 for a closer look at the input counter and its eight 
states). The decoded input counter result is used to locate the next available 
entry in the high priority queue. When a low priority VP is executing, a 
similar process occurs in order to locate the next available entry in the low 
priority queue. The next VP code signal from the maintenance logic 
(IPMNVPC(0-2)) is applied to both the high and low priority queue selection 
logic at the end of the previous execution clock period. When a decoded input 

4-165/4-166 Advanced Scientific Computer 





0--~~~~~~~~~~--=-~=-
SWBSYNC I SWBASY 

REQUEST HONORED 

re I PRIORITY 

FROM 

MAINTENANCE 

LOGIC 

INPUT 

l-,.'.:~~~.=..::::...=...._:__~~--. .... -i COUNTER 
HIGH REQUEST 

MEMORY 

ACCESS 

REQUESTS 

FROM 

PCCTL 

NEXT 

VPC FROM 

MAINTENANCE 

LOGIC 

PROTECT 

INDICATOR 

BREAKPOINT 

INDICATOR 

3 LSB S 

OF PC 

SET 

RESET 

(C)12477B 

I 
_(_-,PMN PBITJ..0....1..tJ.l ..... QECODE 

AND 

COMBINE 
~~HIGH 

LOGIC 

• ~ 
:'>LOW 

(PMRC) 

-~~~l~P~M~W~C~~L-~~-j~~ WRITE _ 

{ 

READ - ., 

-~~_ll~P~M~R~C~E~X~)~~~r--11 EXECUTE 

(-.PM NVPC(O- 2)) 

l 
DECODE 

J 

-

I 

HIGH ENABLE 

LOW REQUEST 

LOW ENABLE 

( PMSAV(0-7)) 

READ=-102 

WRITE=Ot 2 

EXECUTE=-112 

t 

..... -
DECODE 

-
I 

SET 

OUTPUT j 
COUNTER L-~~~~~~~~~~~~~....-.,~-

j 1 

VPC SELECT 

R p OF CURRENT 

QUEUE ENTRY -~------i17R1 VPC -

r---l----+-~t-r ---r,,-__,~1 =i= -L-----~~--~.:~ --~,~ --

1 I -SELECT -~ I 

B HIGH 

PRIORITY 

QUEUE 

ENTRIES 

' RESET 

t 

l INPUT 

COUNTER 

SELECT 

RESET 

__. ----

HIGH PRIORITY QUEUE I REQUEST 

HONORED 

DECODE 

I 
r-~~~-.1,..--~~~~~~~~~~~~~~,~ 

OUTPUT 

COUNTER 

J 
j_ 

J. -I -

REQUEST 

HONORED 

VPC 

SELECT 

RP OF 

CURRENT 

QUEUE ENTRY 

LOW PRIORITY QUEUE 

BUSY BIT ... 
TO PCCTL 

Figure 4-68. 
Controller 

4-167/4-168 

l --' -
l 
I 
I 

REQUEST 

HONORED 

SELECTED 

STATUS FILE 

HONORED 

VP CODE 

REQUEST 

HONORED 

READ 

QUEUE 

OUT (VP#) 

Single Word Buffer 
Synchronous Logic 

Advanced Scientific Computer 



ASYNCHRONOUS 

HO H1 

0 1 2 3 4 5 6 7 

0 (NOT USED) (NOT USED) 

(NOT USED) (NOT USED) 

p 
M 
Q 
R {NOT 
D (NOT USED) 
s USED) 

2 

p p 
M M 
Q PMQPID Q PMQRID p B 3 
R (0-2) 

K (0-2) 
T T 

p AR p p 
M M M 

Q Q Q 
M R w 

R Q Q 
RA c 0 0 

4 

(0-1) (0-2) (0-2) 

5 

p p p p 
M M M M 
Q Q Q Q .. A v v 
R c p p 

T 0 1 
(0-2) (0-2) D 

h p 

0.. 
iii 6 

M 
Q PMOSFO (0-6) p 

:J E 
C") R 
Cb 
0.. 
(/) 
C") 

p 
M -. Cb 

:J .... -. 
~ 

Q PMQRSB (0-6) 
p 
R 
R 

C") 

(") 
0 

l\. 
BYTE 0 ONLY ~1 2 4 3 '> 6 7 

~ 
SEQUENCED 

SWB ASY 

c::: .... 
Cb 

(B) 111693 

..... 

SYNCHRONOUS 

H2 

111 

H3 H4 HS H6 H7 

8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

p p p p p 
M M M M M 
Q Q Q Q Q 

PMQSFO (0-6) R R PMQOOVP R PMQ01VP R PMQ02VP R PMQ03VP 
B p p p p 

(0) 0 (0-2) 0 (0-2) 0 (0-2) 0 (0-2) 
(0) ( 1) (2) (3) 

p p p p p 
M M M M M 

SF1 (0-6) Q Q PMQI OVP Q PMQ11VP Q PMQ12VP Q PMQ13VP 
R R R R R 
B p (0-2) p (0-2) p (0-2) p (0-2) 

( 1) 1 1 1 1 
(0) ( 1) (2) (3) 

,. p ,. p p 
M M M M M 

SF2 (0-6) 
Q Q 

PMQ20VP 
Q 

PMQ21VP 
Q 

PMQ22VP 
Q 

R R R R R PMQ23VP 

B p p p p 
(2) 2 (0-2) 2 (0-2) 3 (0-2) 2 (0-2) 

(0) ( 1) (2) (3) 

p p p p p 
M M M M M 

SF3 (0-6) 
Q Q PMQ30VP Q PMQ31VP Q PMQ32VP Q PMQ33VP 
R R R R R 
B p (0-2) p (0-2) p (0-2) p (0-2) 

(3) 3 3 3 3 
(O) ( 1 ) (2) (3) 

p p p p p p p p p 
M M M M M M M M M 

SF4 (0-6) Q Q Q Q Q Q Q Q Q 

R N N N N N N N N 

B 0 I 0 I 0 I 0 0 

(4) c c c c c c c c 
(0-1°)ol (0-1) (0-11 1 (0-1) 1 (0-1) 2 (0- 1) 2 (0-1) 3 (0-1) 3 

p _,,1 
M v v 

SF5 (0-6) 
Q HI PRIORITY COUNTERS LO 
R 

PRIORITY PMQVPI 
B 

(c,) NOT USED COUNTERS (0-2) 

p 
M 

SF6 (0-6) Q 
R 
B 

(6) 
NOT USED 

p 
M 

SF7 (0-6) Q 
R 
B 

(7) 
NOT USED 

~'---- -v-1 3~SB Pl Bl R,W,C 

Figure 4-69. Single Word Buffer Controller Registers 

h 

> 

> 

I _, 

HI 
PRIORITY 
QUEUE 

LO 
PRIORITY 
QUEUE 



PMQNICO(O) 

0 

0 

0 

0 

PMQNOCO(O) 

0 

0 

0 

0 

0 

0 

(A)t24779 

INPUT COUNTER 

PMQNIC0(1) PMNQNJC1 (0) 

0 0 

0 

0 0 

0 

0 

0 

OUTPUT COUNTER 

PMQNOC0(1) 

0 

0 

0 

0 

0 

0 

PMQNOC1 (0) 

0 

0 

0 

0 

0 

0 

PMNQNIC1 (1) 

0 

0 

0 

0 

PMQNOC1 ( 1) 

0 

0 

0 

0 

0 

0 

SPECIFIES (0 = PMQNOCO) 
OUTPUT 
COUNTER 1 = PMQNOC1 

MSB OF INPUT COUNTER 

COUNTER 
STATE 

0 

2 

3 

4 

5 

6 

7 

COUNTER 
STATE 

0 

2 

3 

4 

5 

6 

7 

Figure 4-70. Single Word Buffer Controller Input/Output Counters 

counter result is detected, the VP code is inserted in the next available entry 
of the appropriate queue and the request present (RP) flag associated with 
the filled entry is set using the decoded input counter result. Each queue 
(high priority and low priority) has eight entries. Queue overflow is not a 
problem because each VP can have only one entry (the reason for this is 
described later). An individual output counter is associated with each of the 
two priority queues and is used in the asynchronous logic as a pointer to the 
current entry under examination and in the synchronous logic as part of a 
pointer to the current RP bit (refer to figure 4-68). When a memory access 
request has been processed by the asynchronous logic, the output counter of 
the appropriate queue is incremented to point to the next queue entry and the 
RP bit of the entry just processed is reset. Besides being used in the asyn­
chronous logic, the output counter result is combined with the output counter 

4-170 Advanced Scientific Computer 



bit of the input counter in order to develop a pointer to the next RP bit. The 
selected RP bit is input to the asynchronous logic, where it is used to deter­
mine if more entries exist (RP set) in the current queue under examination. 
When all entries in the high priority queue have been processed (RP of the 
high priority queue reset), entries in the low priority queue are processed. 

4-146 Status File. The status file consists of eight registers, each regis­
ter corresponding to a specific VP number. A status file entry is made 
simultaneously with each high or low priority queue entry and includes the 
three LSB 's of the PC (identify the memory zone specified by the PP), a 
protect indicator (PMPI) from the CR file, a breakpoint indicator (PMBI, not 
used by the PP), and the memory access request type bits (specify read, 
write, or execute). In addition, a busy (B) bit is set whenever a status file 
entry is made. When a memory access request occurs, the next VP code 
and the PMRC and PMWC lines combine to develop a pointer to the status 
file entry corresponding to the VP that made the request. Using the de­
veloped status file pointer, the entry data is inserted into the status file and 
the associated busy bit is set. During the succeeding execution clock periods, 
the decoded next VP code is used to select the busy bit of the active VP. The 
result is input to the PCCTL card, where it is used to develop the buffer avail­
able (BA) signal. If the busy bit is set (BA is true), the status file is not 
available for new data so an additional memory access request cannot be 
made by the active VP. This checking of the BA signal is necessary because 
only one entry in the status file is allotted to each VP. When the asynchro­
nous logic is processing an entry in one of the synchronous logic priority 
queues, the VP number of the queue entry is routed back to the synchronous 
logic, where it is decoded and used as a pointer to an entry in the status file. 
The selected entry data hPMSF0(0-6)) is input to the asynchronous logic. 
When a read request is being processed, the number of the VP making the 
request (PMRQ0(0-2)) is input to the synchronous logic from the q.synchro­
nous logic. The VP number is decoded and used as a pointer in selecting 
the proper zone bits (three LSB' s from the PC) from the status file. The 
zone data (PMRCMB(0-2)) is input to the PCCARDA(0-7) cards, where it is 
used to enable the reading of one of eight memory zones via the two way bus 
(TWB). When a memory access request has been processed, the 
PMWCLR(0-7) signals from the asynchronous logic are used to reset the busy 
bit in the status file entry corresponding to the honored request. 

4-14 7 ASYNCHRONOUS LOGIC. Refer to figure 4-71 for a detailed block 
diagram of the asynchronous logic portion of the single word buffer controller. 
The asynchronous logic accepts memory access request data (VP codes, pri­
ority queue output counter results, RP bits, and status file data) from the 
synchronous logic, indicates to the Memory Control Unit (MCU) when a mem­
ory access request is being made by the PP, and controls the necessary 
transfer of data and address information in order to complete the requested 

4-171/4-172 
Advanced Scientific Computer 





TWB ENABLE 
FOR WRITE PMTWBE PMWDI WRITE GATE 

FROM PCCARDA.:_:.::...:....:.:...::.:=----------------i·~ INDICATOR TOMCU 

HIGH 

PRIORITY 

QUEUE 
{ 

(PMQOOVP(o-2 

(jQ13VP(o-z)) 

HIGH 

PRIORITY 

SELECT 

LOGIC 

•PMVPC00(0-2) 

•PMVPC01(0-2 
TO SWBSYNC 

I--"( PM:....:.:.:...:.;VP"-'O~(o"--;2"--- ST A TU S FI LE 

~---P_M_Rc_M_D_(o-_2)'----- VP ID FOR 
TWB WRITES 

PMSID(0-2) 
SOURCE ID 

TO MCU 

HIGH PRIORITY 

OUTPUT 

COUNTER 

LOW PRIORITY 

Ol!TPUT 

COUNTER 

( 
-, PMQOCO(O. 1 )) 

-,pMQOC 1(0, 1) 

., PMQOC2(0, I) 

, PMQOC3(0 1 

PMSOO(O· 3) 

PMSOl(0-3) 

PMS02(0-3) 

PMS03(0-3) 

'PMVPC02(0-2) 

~PM VPC03(0-2) 

-.PMPRP 

PMGPOF: 

PRIORITY 

OUTPUT REG 

ASYNCHRONOUS WRITE QUEUE 

OUTPUT REG 

PMSTRB(I) 

1--'-P.:_:M;.::G::.:.P..:0"-'R---l~ (INTERNAL) 

LOW PRIORITY { 
PMQ20VP o-2 

QUEUE 
PMQ33VP 0-2 

LOW 

PRIORITY 

SELECT 

LOGIC PMS(!0(0-_3_) -------eot 
PMS0.3(0-3) 

PMG~0(0-3) 

PMC03(o-J) 
TO SWBSYNC 

PRIORITY QUEUES 

HIGH PRIORITY 

RP BITS 

LOW PRIORITY 

RP BITS 

SELECTED 

STATUS FILE 

BITS 

REQUEST 

ACCEPTED 

FROM MCU 

READ DATA 

AVAILABLE 

FROM MCU 

PROTECT 

RESPONSE 

FROM MCU 

PARITY ERROR 

FROM MCU 

WRITE GATE 

FROM MCU 

RESPONSE ID 

(C)12.C7kl'OM MCU 

PMRPI 0 I 

(PMRPl(2 ,3)) 

-.PMSFO O~ 

PMGPOR 

MMRA 

PMQMR 

PMGMC I 

PMSTRB(3) 

MMl'IDA 

MM-

STATUS FILE 

OUTPUT REG 

c 
0 

M 

B 

I 

N 

E 

PMSPRY(0-3) 

REQUEST 

PRESENT 

PMGPOR 

ASYNCHRONOUS STATUS 

PMPRP 

PM GM RR 

MEMORY REQUEST 

CONTROL REG (1 WHEN RA/AR IDENTICAL) 

-,PMXORA 

1-'-PM:=GM::=;Ro.:,:R'---1._(1 NTERNA L) 

PMAVAIL(3) l-'-'.;,=.;..:.:.;:o=<--.--(1 NT ER NA L) 

TWB READ 

-.PM RDA 

PMGOC o-3 

-.PMZE -7 

TO SWBSYNC 

OUTPUT COUNTERS 

ZONE ENABLES 

TOMCU 

1------'Pc..:M.:.:,W.::,..:.T ____ _. (INTERNAL) 

.fMGATS 2 

-.MMPA 

PROTECT 

RESPONSE 

RESPONSE 

-.PMGATS I 

PMPR 

PMRA 

PMQMRC(I) 

-.PM PROS TO CR 
1--------------L-------------L------FILE 

MMPA PMSTRB(2) .. 
(INTERNAL) 

TO PCCARDA 
M::!..!:M:!.lW::;G~------'-'PM~T.!!W_,,B:::;E"'N'------l•• TW B 

MMRID(0-2) 

PMQACT 

PMGATS(I) 

PMSTRB(l 

PROTECT 

ID REC 

PMAVAIL 

--,PMXORA 

PMXORA 

READ QUEUE 

OUTPUT REG 

PMGATS(3) 

(PMPR)• PMPER 

PMXORN A PMGMC(O) 

RESPONSE 

10 REC 

l--------41~p 
MQ 

~ 
D 

(0-2) 
PMCATS(2) 

PMSTRB(O) 

(PMGMC(I)) 

PMSTRB(I) 

PMSTRB(2) 

PMSTRB(J 

PMRCMA 0-2 

PMWCLR(0-7 

PMRQO o-2 

PMWCMC(0-2) 

PMWCLR 0-7 

PMWCMO 

-.PMERRC 0-2 

VP ID FOR SWBA 

ON PCCARDA(0-7) 

TO SWBSYNC 

STATUS FILE 

BUSY BITS 

(WRITE) 

ZONE SELECT 

TO SWBSYNC 

FOR READ 

!IWBD LOAD 

Sl!:LIECT TO 

PCCARDA(0-7) 

TO SWBSYNC 

STATUS FILE 

BUSY BITS (READ) 

SWBD LOAD 

ENABLE TO 

PCCRDA(0-7) 

TO CR FILE 

Figure 4-71. Single Word Buffer 
Controller Asynchronous Logic 

4-173/4-174 
Advanced Scientific Computer 



memory access process (read, write, or execute). In short, the asynchro­
nous logic provides the required interface between the PP and the Central 
Memory MCU. Refer to figure 4-69 for the registers used by the asynchro­
nous logic. 

4-148 General Request Processing. The eight high and low priority queue 
entries from the synchronous logic are applied to separate blocks of select 
logic where the respective output counters are used to select two of the eight 
entries from each of the queues. Two entries are selected from each of the 
queues because the first two bits of each output counter apply only to the 
first four queue entries of the respective queues and the last two bits of each 
output counter apply only to the last four queue entries of the respective 
queues. For this reason, entries from the first and last half of each queue 
are applied to th.e high or low priority select logic. The high and low prior­
ity RP bits from the synchronous logic are input to a combinational logic 
network that develops the set of signals (PMSPRY(0-3)) used in selecting one 
of the four queue entries applied to the high or low priority select logic. 
The combinational logic network develops the PMSPRY(0-3) signals such 
that the high priority queue entries are processed before any low priority 
queue entry. The VP code of the queue entry enabled through the high or low 
priority select logic is applied to the priority output register (PMQVP0(0-2)) 
in complement form and to the synchronous logic in true form. The synchro­
nous logic uses the enabled VP code to select one of the eight status file en­
tries for use in the asynchronous logic. In the asynchronous logic, the se­
lected status file entry is applied to the status file output register 
(PMQSF0(0-6)). In addition to the PMSPRY(0-3) signals, the combinational 
logic network develops a request present signal that indicates when any one 
of the priority queue RP bits is set. 

When the asynchronous logic is ready to accept another memory access re­
quest (PMGPOR is one and PMQMRC(O) (request accepted) equals: 
PMQMRC(l) (access request)), the active flag output register (PMQACT) is 
set, the selected VP code is gated into the priority output register 
(PMQVP0(0-2)), the selected status file data (-iPMSF0(0-6)) is gated into the 
status file output register (PMQSF0(0-6)), the appropriate synchronous logic 
output counter is incremented by one of the PMGOC(0-3) signals, and the RP 
bit of the current request is reset by one of the PMGOO, PMGOl, PMG02, or 
PMG03 signals. In addition, the access request (AR) register (PMQMRC ( 1 )) 
is toggled to indicate to the MCU that the PP is making a memory access re­
quest. The active flag reset synchronizer is strobbed via PMSTRB(O) to de­
termine if additional memory request entries exist in the priority queues 
(refer to figure 4-72 for a timing diagram of the active flag reset synchro­
nizer operation). The PMGMRR gate, developed when the previous request 

4-175 Advanced Scientific Computer 



PMQACT 

PMGPOR 

PMSTRB(O) 

•PMGATS(O) 

CLOCK 

_J 
I 
I 

SECOND REQUEST 
PENDING --, __ _ 

I 

_.11~>--------nu'-------
1 5'l : 1 __ _:---
I 

i 
RA TOGGLED 

BY MCU 

1 
I 

JI 
f RA TOGGLED 

FIRST REQUEST 
(AR TOGGLED) 

SECOND REQUEST 
(AR TOGGLED) 

l BY MCU 

PRIORITY QUEUES 
EMPTY 

(A)124781 

Figure 4-72. Active Flag Reset Synchronizer 

has been handled, is used to enable the VP code in the priority output regis -
ter into the asynchronous VP code input register (PMQVPID(0-2)) and the 
status file entry in the status file output register into the asynchronous status 
file input register (PMQRSB(0-6)). The VP code gated into the asynchronous 
VP code input register is used by the MCU to indicate the source of the re -
quest and by the PCCARDS(0-7) cards as a TWB write selector (PMRCMD(0-2)) 
and a singleword buffer address (SWBA) register selector (PMRCMA(0-2)). 
On the SWBASY card, the same VP code is applied to the write queue output 
register (PMQWQ0(0-2)). The status file entry gated into the asynchronous 
status file input register is used by the MCU and the SWBASY card. When 
a write request is made, the three LSB's from the PC (-iPMQRSB(0-2)) are 
decoded to eight lines (IPMZE(0-7)) and input to the MCU where they are 
used to enable one of eight zones in Central Memory. When a read request. 
is made, bit 5 of the status file entry disables the zone enable transfer. The 
protect enable (PMPE) and breakpoint enable (PMBE) signals (the breakpoint 
enable signal is not used by the MCU when the PP is requesting access) are 
direct inputs to the MCU. Bits 5 and 6 of the status file entry (indicate read, 
write, or execute) are input to the MCU as the protect mode ID (PMPM(0-1 )). 
This two-bit code is used by the MCU to define the protected memory seg­
ment when the protect enable (PE) bit is set. The complement of bit 5 
(-iPMQRSB(S)) is used by the SWBASY card to determine whether a read or 
write access is being made. 

4-176 
Advanced Scientific Computer 



4-149 Write Request Processing. When bit 5 from the status file entry in­
dicates a write request is being made, and the MCU responds by toggling the 
request accepted signal (MMRA), the request accepted (RA) flag (PMQMRC(O )) 
is toggled and the PMSTRB(l) strobe is developed. The PMSTRB( 1) strobe 
is used to gate the VP code in the asynchronous VP code input register into 
the write queue output register (PMQWQO (0-2)) and to initiate the write re -
quest synchronizer (refer to figure 4- 73). The MCU reacts to the PP write 
request by developing a write gate (MMWG) for the asynchronous logic. The 
asynchronous logic uses this write gate to generate a TWB enable signal 
(PMTWBEN) for use on the PCCARDA(O-&) cards. The PMTWBEN signal 
and the previously mentioned TWB write selector signals (PMRCMD(0-2) 
combine to provide the control necessary to write the contents of the selected 
SWBD to Central Memory (the address to be written to in the enabled zone is 
supplied by the SWBA selected by the previously mentioned PMRCMA(0-2) 
signals). The TWB enable signal on the PCCARDA(0-7) cards (PMTWBE) is 
routed back to the asynchronous logic, where it is used to develop the write 
gate indicator response (PMWDI) for the MCU. When the PMGA TS( 1) signal 
from the write request synchronizer responds to the PMSTRB(l) strobe, the 
VP code in the write queue output register is decoded (PMWCLR(0-7)) and 
input to the synchronous logic. The synchronous logic uses the PMWCLR(O- 7) 
signals to reset the busy bit in the status file entry that results in the de­
scribed write request. 

PMSTRB(1)~---~~~~~~~~~~~~~~-n~~~~~~~~~~~~~~-
I 
I 
I 

-, PM GA TS ( 1 )----'-----

(A)l 24782 

1 

I 
I 
I 

CLOCK__n.......__: _n_n __ n _ ____.n _ ___.n ___ 
I 

L RA TOGGLED BY MCU 
DUE TO WRITE REQUEST 

I 

__J 

Figure 4-73. Write Request Synchronizer 

4-177 Advanced Scientific Computer 



~------
When the write request requires access to a protected area of the Central 
Memory (the protected area is defined by the protect mode ID only when the 
protect indicator is set by the PP), the MCU responds with a protect re­
sponse signal (MMPR) to the asynchronous logic (MMPR is only valid when 
AR equals RA). The MMPR and PMSTRB(l) signals combine to set the pro­
tect response register (PMQPR) with the toggling of RA. The set protect 
response register is used to gate the VP code from the write queue output 
register into the protect ID register (PMQPID) and to set the protect flag 
(PMQPRT) when the synchronizer signal (-iPMGATS(l)) from the write re­
quest synchronizer occurs. The VP code from the protect ID register and 
the set protect flag are used in the time slot override reason byte and out­
standing events byte of the CR file for interrupt purposes. The protect flag 
is reset at the next clock pulse and the protect response register is reset 
when the next request is made (MMPR goes to zero). 

4-150 Read Request Processing. When bit 5 from the status file entry dis -
ables the zone enable transfer to the MCU to indicate that a read request is 
being made, and the MCU responds by toggling the request accepted signal 
(MMRA), the asynchronous logic must wait for a read data available (RDA) 
signal from the MCU. At this time, the response ID from the MCU (MMRID, 
developed from the previously mentioned source ID signal) is applied to the 
read queue output register (PMQRQ0(0-2)) in the asynchronous logic and the 
zone select logic in the synchronous logic. The selected zone from the sta­
tus file in the synchronous logic is used by the TWB on the PC CARDA (0-7) 
cards to enable one of the eight Central Memory zones during the reading 
process. When the MCU toggles the RDA bit via the MMRDA signal to sig­
nify the start of the reading process, the PMSTRB(3) strobe is developed 
and used to toggle the read data sampled (RDS) register (PMQRDS). In ad­
dition, the PMSTRB(3) strobe initializes the read request synchronizer op­
eration (refer to figure 4-74 for a timing diagram), supplies th~ TWB read 
gate (PMWCMA) to the PCCARDA(0-7) cards, and gates the response ID into 
the read queue output register. The response ID gated in the read queue 
output register is used on the PCCARDA(0-7) cards to select the SWBD used 
in the read operation (the PMWCMC(0-2) signals). When the read request 
synchronizer responds with the PMGATS(3) signal, the response ID in the 
read queue output register is decoded (PMWCLR(0-7)) and input to the syn­
chronous logic where it is used to reset the busy bit in the status file entry 
that caused the described read request. The PMGATS(3) signal is also used 
on the PCCARDA(0-7) cards to enable the loading of the data read into the 
selected SWBD (the PMWCMD signal). 

When the read request requires access to a protected area of Central Mem­
ory, the asynchronous logic processes the protect response from the MCU 
as described for a write request. When the read request results in a parity 
error, the MCU responds with a parity error signal (MMPA) to the asyn­
chronous logic. The parity error signal is used to strobe (PMSTRB(2)) the 

4-178 Advanced Scientific Computer 



PMSTRB(3) 

PMGATS(3) 

·CLOCK 

(A)1 24784 

I 
14-- RDA TOGGLED BY MCU 

Figure 4-74. Read Request Synchronizer 

parity error synchronizer. Refer to figure 4-75 for a timing diagram of the 
parity error synchronizer. When the parity error synchronizer responds 
with the PMGATS(2) and 1PMGATS(2) signals, the parity flag (PMQPER) is 
set, the response reset flag (PMQPRR) is set, and the response ID is gated 
into the response ID register (PMQRID). The parity flag and the VP code 
from the response ID register are used in the time slot override reason 
byte and outstanding events byte of the CR file for interrupt purposes. The 
response reset flag indicates to the MCU that the asynchronous logic has re­
ceived the parity error signal. The parity flag is reset at the next clock 
pulse and the response reset flag is reset when the parity error signal goes 
to zero. 

4-151 TWO WAY BUS. Refer to figure 4-76 for a simplified block diagram 
of the TWB (the MAMB bus is also included because the singleword buffer 
controller provides the control for MAMB). For write operations, the TWB 
accepts data from the SWBD of the VP executing the write and inputs that 
same data to the eight zones of Central Memory. For read operations, the 
TWB accepts data from the eight zones of Central Memory and inputs data 
from the selected zone to the SWBD of the VP executing the read. For both 
write and read operations, the MAMB supplies Central Memory with the ad­
dress from the SWBA of the VP executing the write or read. 

4-179 
Advanced Scientific Computer 



PMSTRB(2) 

~PMGATS(2) ------------------------------. 

CL.OCK 

I 
~ MMPA SET BY MCU (PARITY ERROR) 

(A)l 24783 

Figure 4-75. Parity Error Synchronizer 

4-152 Write Operations. When a write request has been accepted by the 
MCU, the three SWBA select lines (PMRCMA(0-2)) from the asynchronous 
logic are decoded to eight lines (PMACMMD(00-07)) and used to enable the 
SWBA of the VP executing the write through to Central Memory. The TWB 
write selector (PMRCMD(0-2)) from the asynchronous logic is decoded and 
used to enable the SWBD of the VP executing the write through the TWB write 
selection logic. The selected SWBD is expanded to eight identical words and 
enabled through a group of 2N logic gates to Central Memory via the TWB 
write enable signal (PMTWBEN). 

4-153 Read Operations. When a read request has been accepted by the 
MCU, the SWBA select lines from the asynchronous logic are decoded and 
used to enable the SWBA of the VP executing the read through to Central 
Memory (same process as for write operations). The TWB zone select lines 
(PMRCMB(0-2)) from the synchronous logic are decoded and used to enable 
one of the eight sets of word lines from Central Memory in the TWB read 
select logic. The TWB write enable signal is disabled to prevent a write op­
eration and the selected word from Central Memory is gated into a group of 
flip-flops (via the PMWCMA signal from the asynchronous logic) when the 
MCU toggles the RDA bit. When the read request synchronizer on SWBASY 
responds to the RDA toggle, the SWBD load enable signal (PMWCMD) permits 

4-180 
Advanced Scientific Computer 



SWBD LOAD 
SELECT FROM 

SWBASY 

SWBD LOAD 
ENABLE FROM 

SWBASY 

TWB WRITE 
SELECTOR 

FROM SWBASY 

,j:>. 

...... TWB ZONE 
00 SELECT 
...... FROM SWBSYNC 

TWB WRITE 
ENABLE FROM 

SWBASY 

TWB READ 
GATE FROM 

SWBASY 

)::,. 
Q. 
~ 
:::s 
("') 
Cb 
Q. 
g> SWBA 

t;;· SELECT 
FROM 

:::s SWBASY ..... -. 
~ 
g (B) 124785 

~ c:: ..... 
Cb 
~ 

PMWCMC(0-2) 
D 
E PMCMMDC10-7) c 

PMWCMD 0 
D 
E 

PMRCMD(0-2) 

PMRCMB(0-2) 

PMTWBEN 

PMWCMA 

D 
PMRCMAI0-2) E 

c 
0 
D 
E 

Figure 4-76. 

SWBD'S 

P~Q~D~(0.:.3..!) 

-- ---
-.PMDCM(0-31) 

2N'S 

- ---
PMQMD7{0-31) PMDCMD(00-07) 

D 
E 
c 
0 
D 
E 

D 
~ PMDCMB(00-07) 

0 
D 
E 

PMTWBE 

SWBA'S PMACMMD(00-07 l 

IPMACME!\.1f0-31 1 

MAMB 

PMQMA7(0-31) 

PMDCM: I (0-31) 

• BIT WORDS 
TO OR } 

EIGHT 32-

~-+--...... ---------------'P~M--=D~C~M"""-:~a.o~-~3~1.._~ !ri:i~ CEN­
MEMORY 

-.PMCMMD(0-31) 

.,PMQCMMD(0-31) 
FF ' S 1-------------'-----'--. 

ADDRESS 
2N'5 1---------- TO CENffiAL 

MEMORY 

Single Word Buffer Controller TWB and MAMB Buses 



the decoding of the SWBD load select signals (PMWCMC(0-2)) so that the se­
lected word from Central Memory is inserted in the SWBD of the VP execut­
ing the read. 

4-154 PERIPHERAL PROCESSOR CONTROL INTRODUCTION 

The heart of PP control is the Main Instruction Register (MIR), but is physi­
cally situated on the VPRCONT, PCCTL, PPCTLl, PPCTL2, CONTAU, 
CRMIRLDR, CRCONT(0-3), and IRCARD(0-3) cards. The interrelationships 
between these control cards and the cards whose responses are directly in­
volved in the control (SWBSYNC, PPAUCDM(0-3), CRCELLY, INDEXER(O, 1), 
and PCCARDS(0-7)) are shown in figure 4-76. A description of the major 
control lines is given in the fallowing paragraphs and a more detailed discus -
sion of instruction execution, supplemented with detailed block diagrams and 
transfer tables, follows the block diagram discussion. 

4-155 PERIPHERAL PROCESSOR CONTROL. Refer to figures 4-77 and 
4-16 (Instruction Register format) for aid in following this description. One 
PP clock prior to the command execution time on which this discussion is 
based, the next VP code (VPC) lines from the MLCTL card enable the con­
tents of the next Instruction Register (IR) over the IRB bus to the IRMIR and 
the VPRCONT and PPCTLl cards. The PPCTLl card uses the next IR data 
to modify the five LSB' s of the new effective address (EA) if a store VP file 
(STF), load VP file (LDF), or unconditional branch to ROM (BRSM) instruc­
tion is to be executed during the command execution period. The PPCTLl 
card also sets both interrupt (automatic and programmed) bits in order to 
enable the development of th~ 20 16 CM address (if the BRSM instruction is in 
the appropriate state) and sets the interrupt trap bit if termination of the pre­
vious instruction caused the INTF bit to set. All of this data is applied to the 
IRMIR. The next IR data is also used by the VPRCONT card to generate the 
remainder of the MIR shown in the A UMIR, CRMIR, and VPRMIR formats in 
figure 4-78. This is done to minimize the delay in developing the controls 
necessary to execute the new instruction when the command execution clock 
occurs. 

The VPRCONT card supplies the PCCTL card with the data bus enable and 
select lines shown in the PCCTL portion of the VPRMIR format of figure 
4-78, the CONTAU card with the data shown in the AUMIR format of figure · 
4-78, and the CRMIRLDR card with the source, destination, and op-code 
groupings necessary to develop the CRMIR format of figure 4-78. When the 
clock signaling command execution time occurs, the next IR data from the 
IRB bus and the mentioned bits supplied by PPCTLl are loaded into the 
IRMIR. At the same time, the VPRCONT card supplies the VPRCARD(0-7) 
cards with the data bus enable and select lines shown in the VPRCONT por­
tion of the VPRMIR format of figure 4-78. The PCCTL card distributes the 
PCCTL portion of the VPRMIR (except for the EA and immediate (IM) to MDB 

4-182 
Advanced Scientific Computer 



M LC1 L VP CODE 

l f DATA BUS 
~ ENABLES ---, Pl RB MIR - VPRCARD 

(0-31 34 '36. 58-63) - (0-7) .. VPRCONT 

~ MOB 

I~ 
AUMIR 

INHIBIT EAllM INPUT - CONT AU 
VPR LOAD SELECT 

~ -

~ 
TOSTDAl t---

-PIQMIR v, (0-63) 

MLCTL SOURCE/DES TINA Tl ON 
VP CODE TEST OP-CODE GROUPS -RESULTS -

{ PIO l ,, NEXT VPRMIR 
VP CODE 

~ ~ FROM 
MLCn.. - VP CODE/ 

PIQMIR v ·- PCCTL DATA BUS 
VP CODE (8-15,34-36,40-63) ENABLES --

I ·~ ~ MODIFIED EA/ PCCARDA .v I\ 12 VPR SELECT/ (0-7) 
IR(O) OP-CODE PC BA ...lli.IE_RRl.J.eTS 12 MDF STACK -

GROUPS/D - 'I . ....., . -.PIMIRIN(37-39, 59-63) /' 7 

l • ~TA TEST/ READ/ REAL, 12, II . 
-.PIRBMIRB WRITE SHIFT COUNT REQUESTS • (0-35. 40-58) 

SWBD/ -- - r--< WCE NIR -r r T r - IRB IRMIR 
•• DATA • OP-CODE 

,, . GROUPS --.plft•MIRAJO-f 5) -• PIRBMIRBJ: 6, 38, 39. 59-63) 
..J --• -- PPCTL1 

PIQMIR "' -• (0-15,20-22,33,37-63) ~ 

IR(7) 

• IJ 

~rlFTrE BA 
'-INTF POAT 

PPTN 
IGI 
DB 

D PC/TN/R 
SWBD/INIR , INDEXER 

DATA/SELECT MIR CONTROLS ,.... EA ----
s~"h, 

INDEX1R 
(0, 1 t----i 

PIQMIR -(0-15,22-30,32-63) - PPCTL2 

""' 
j~ j~ ~ IJ 

NINS INTERRUPTS/CR PROTECT 

-···-... ,.. ... ·n4TA 
BA 
POLLED BYTES 

~ ~ 

(B)f 24786 

CRMIRLDR 

SWBSYNC 

PIO VPRMIR -- STAT\JS Fl 
PRIORITY 

PIO VPRMIR-- - QUEUES 
MIRMRGB -

AUMIR _ 

POLL BYTE/ -
HALF WORD 

PIO j SELECT_ CRMIR - PRMIF< 
CONTROL_ 

PPAUCD - (0-3) 

t-----1 

CRMIR 
INPUT - CRCONT _,J 

CR FILE - (0-3) , 
INHIBIT 

v - PIO 
CRMIR 

It OUTPUT 

CRBASE1-3/ 
CRCEU..0-3 t-----

PIO (0-6) 
CRMIR 
OUTPUT 

' INTERRUPT 
ACK/CR 

VIOLATION -v CRCELLY 

.)I 

~ 

..) 

Figure 4-77. Peripheral Processor 
Control Block Diagram 

4-183/4-184 
Advanced Scientific Computer 



Ill Ill 
0 0 

l: ~ 

t t 
a. 0 
> l: 

*"' ...... 3 VPRMIR 
00 
Ul 

4 AUM IR 

(A) 111655 

Ill Ill a: 0 a. 
l: LLJ >LLJ 
t~ t~ 
a: ::i a: ::i 
a.o a. 0 
>lll >lll 

OP CODE 

a: 
a. 
> 

::i 
< 

a: 
a. 
> 

t 
N 
::i 
< 

0 

1 

7 

O:z 
a.o 
>-
t~ 
N~ 
.I-

-!fl 
::Jl.LJ 
<(0 

z 
(j 

z 
0 

I-
O:<( 
a.z 
>-
t§ 
NO 

.LLJ 
-1-
::i>-
<(Ill 

...I ALIGN 
<( REFERENCE 

I I 
COPIES OF IR 

VPC FROM IRIS 

Figure 4-78. 

Ill 
0 
l: 

t 

!O !O 
< <I. 
l: l: 
u a: 

t t 

CD !O 
0 0 
l: l: 

t t :{:})}:}LOCATED ON VPRCONT CARD 

N 
1-
l/l 
I 

u x ALIGN 
OBJECT R FIELD SHIFT OPERAND ...I u; 

11 kXJ 

MIR Input Format 



enables), the EA to CMAB and PC to RMAB enables, and the VPC from 
MLCTL to PCCARDA(0-7). The EA and IM to MDB enables are input to the 
MIR to MDB select logic on IRCARD(2, 3). The CONTAU card utilizes the 
AUMIR format to supply the PPAUCD(0-3) cards with the control lines nec­
essary to execute the desired arithmetic operation, and the PPAUCD(0-3) 
cards feed test data back to CONTAU when a skip or branch decision needs to 
be made. The CRMIRLDR developed CRMIR format is input to the 
CRCONT(0-3) cards, which in turn, develop the CRMIR output format (shown 
in figure 4-79) necessary to control reading from or writing to the CR file. 
(The CR file consists of the CRCELLY, CRBASE(l-3), CRCELL0(0-6), 
CRCELLl(0-6), CRCELL2(0-6), and CRCELL3(0-6) cards.) 

The loaded MIR data is distributed to the INDEXER(O, 1), PCCTL, PPCTLl, 
and PPCTL2 cards, in addition to the MIR to Main Data Bus (MDB) select 
logic on IRCARD(2, 3). The majority of the MIR and SWBD/NIR op-code de­
coding logic is contained on PPCTL2. Refer to figures 4-80 and 4-81 for a 
closer look at the op-code groups involved in the decoding, and to figures 4-82 
through 4-104 for the Karnaugh map groupings of the same signals. In addi­
tion to being used on PPCTL2, the MIR op-code groups are input to PCCTL 
and PPCTLl for further development of control lines. The PCCTL card 
uses MIR op-code groupings and the dependency indicator (D, the signal gen­
erated to indicate that the current instruction must complete execution before 
the SWBD /NIR instruction can be indexed) from PPCT L2; the MIR state class 
and step, DC bit, mode digit, LFAF bit, PPTN bit, and INTF bit from 
IRCARD(O, 2); the test results generated by CONTAU from the mentioned test 
data supplied by PPAUCDM(0-3); the interrupt lines from CRCELLY; the 
mode digit from the current PC value on PCCARDA(O); the write cycle equal­
ity indicator (WCE, the signal generated by PCCTL to indicate the EA of the 
current instruction is identical to the address of the next instruction to be ex­
ecuted) developed on PCCTL from the MIR EA and the current PC value on 
PCCARDA(2-7); the buffer available indicator (BA, the signal generated by 
the SWBSYNC card to reflect whether or not the status file entry for the ex­
ecuting VP is occupied) from SWBSYNC. The PCCTL card responds with 
data bus enables for PCCARDA(0-7) that are not included in the VPRMIR for­
mat (CMDB to NIR, PC load and mode control, CMAB to SWBA, ROM to 
CMDB, SWBD to CMDB, data manipulator to AU2B, and aligner to AU2B). 
In addition, PCCTL uses the same inputs to generate read and write requests 
for SWBSYNC and routes the WCE indicator to PPCTLl. 

The PPCTLl card uses MIR data (including MIR op-code groups from 
PPCTL2); SWBD/Nffi data and select lines (including SWBD/NIR op-code 
groups from PPCTL2); the WCE indicator from PCCTL; the BA indicator 
from SWBSYNC; the shift update indicator (this signal is developed to reflect 
when additional data shift is necessary to complete the shift specified by a 
shift instruction) from CONTAU; the dependency (D), ignore indirect (IGI, 
the signal generated to indicate the next instruction is illegal for the indirect 

4-186 Advanced Scientific Computer 



...... 
00 
-.] -,j:>. 
I 

...... 
00 
00 

MIR REG {SEE INPUT FORMAT) 

4 AUMIR 

CONT AU 
VP CODE 

PADVPC 
(0-2) 

(SEE INPUT FORMAT) VPRCONT PCCTL CR BASE 

3 VPRMIR 

IR CRD(O) IR CRD(2) 
0 VP CODE 0 VP CODE 

7 IRVPCODE[)<J M 
5 

6 CR MIR 
MERGE 

OUTPUT 

2 

(A) 1I1656 

BYTE 

M 
I 

l><l 
DESTINATION CRMBO 

WO 

WO 

0 0 
x x 
L1I L1I 
J: J: 

.J a: 

I I I 

IR CRD(t) 
0 0 0 0 0 0 0 0 0 VP CODE 0 

M 
SOURCE CRM BO 

A2-CRCONT I 

CARD M 
SOURCE CRMB2 

I I I 1 I 

CARD e><:l 
x x 
111 L1I 
J: J: 

VP CODE VP CODE VP CODE I I 

PUOVPCI PPOVPC l~COVPCB~ 
(0-2) - (0-2) - (0-2) ~ 

IR CRD(3) 
VP CODE 

WO 

WO 

N N 
x x 
L1I L1I 
J: J: 

0 0 0 0 0 0 0 0 

SOURCE CRM B 1 

CARD 

SOURCE CRMB3 

CARD 

..., ..., 
x x 
L1I L1I 
J: J: 

DESTINATION CRMBI .J a: DESTINATION CRMB2 .J a: DESTINATION CRMB3 .J a: 

I I I I I I I I I 

Figure 4-79. MIR Output Format 





M Ill• eP-CODE; 
FROM lltCARD(O) 

FROM IRCARD(O) l STATE 
CLASS 

STEP 
(8)124787 

PIQMIR(0-7) 

PIQMIR(B-1 O) 

PIQMIR( 11-1 3) 

MIR 

-- OP-CODE -
DECODING 

LOGIC 

-.PIJSTCM 

...., PIJSTHCM 

-,.PIJSTUF 

;PIJSTPTP 

-,PUSLHCM 

-,PIJSRHCM 

-.PIJLDCM 

-.PIJLDIM 

-,PIJLDPPU 

-,PIJLDUF 

-.PIJLDLFA 

-.PIJCMAU 

-iPIJUAU 

>PIJIMAU 

-,PIJSKIJCM 

-,PIJSKUPP 

-,PIJSKUIM 

-,PIJUCSRT 

-,PIJUCT 

-.PIJCBA T 

-.PIJCBIMD 

-,PIJUCB 

-,PIJUCBLP 

-,PIJUCBSP 

-.PIJCRSRT 

...,PIJCRTSR 

-,PIJCRLO 

-,PIJTPOL 

-, PIJPUSH 

-.... -------
-------------------
----------
-------------
------

RIGHT HALFWORD STORES 

STORES TO 
PCCTL AND 
PPCTLI 

CM LOADS 

IMMEDIATE LOADS 

REG TO REG LOADS 
LOADS TO PCCTL 
AND PPCTL1 

VP BASE LOAD 

ADO OR SUBTRACT CM ANO VPR 

ADD OR SUBTRACT VPR AND VPR 

IMMEDIATE ADD AND SUBTRACTS 
} ARITHMETIC TO 

PCC11- AND PPCTL1 

VPR: VPR COMPARES 

CM: VPR COMPARES } 
COMPARES TO PCCTL 
AND PPCTLI 

I MM EDI ATE COMPARES 

SET OR RESET VP FLAG} 

TEST CR IN VP BIT 
VP BIT CONTROL 

TEST AND BRANCH } 

INCREMENT/DECREMENT TEST AND BRANCH 

UNCONDITIONAL.BRANCHES } 

UNCONDITIONAL BRANCH AND SAVE PC 

UNCONDITIONAL BRANCH TO ROM 

CONDITIONAL BRANCHES 
TO PCCTL AND PPCTL1 

SET OR RESET CR BITS } 

TEST AND SET OR RESET CR BITS 

TEST CR FOR ALL ONES OR ZEROS 

POLL CR 

CR BIT CONTROL 
TO PCCTL AND PPCTL1 

..,PIJPULL 
--- PUSH STACK } 

STACKS TO PCCTL 
J---....::..!.!....!:::..:....;:.==------~~ PULL STACK AND PPCTL1 

-,PIJMDF 
!-------=------------~ MODIFY STACK 

-,PIJCMLOU 

-,PIJIMLOU 

-,PIJPPULO 

...., PIJSHFT 

-,PIJNOOP 

...,PIJEXCM 

-,PIJANCM 

.., PIJLEA 

~ CM AND VPR LOGICALS } 

LOGICALS TO 1---__:_:.....:..::....:..:....:..:...:..:..:...: _____ ~-e IMMEDIATE LOGICALS PCCTL AND PPCTL1 

1---....:::!.!....!!~:....>:::.-"=-----1~- REG TO REG LOGICALS 

1---_;_-----------i--=-~ SHIFTS} SHIFTS TO PCCTL AND PPCTL1 

~ NO-OP } 

1---__:___:_ _______ -1_,._ EXECUTE CM MISCELLANEOUS TO 

PCCTL AND PPCTL1 1-----!::.....:..::.:....::..:..:...::... ______ ..-~ ANALYZE CM 

1---------------i~- LOAD EFFECT I VE ADDRESS 

I L - -------
L -------

r-- - --
I I -
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

_J I 
_ _J 

..., PISl CM 

=> ..., PILEA 

PIRMAPA 

PIAUGMPA 

..., PIRD(2) 

-,PIRD(3) 

.., PIRD(4) 

-iPIRD(5) 

PILDVPR 

PILDCR 

PIAR(1) 

--

STATE 

CL.Ass 

AND 

STEP 

DECODING 

LOGIC 

---
---
---
--
---
---
---
---
---

OP-CODE GROUPS 
USED INTERNALLY 
BY PPCTL2 

REMAPPED 

AUGMENTED REMAPPED 

BIT 2 OF REMAPPED 
OP-CODE 

BIT 3 OF REMAPPED 
OP-CODE 

BIT 4 OF REMAPPED 
OP-CODE 

BIT 5 OF REMAPPED 
OP-CODE 

LOAD VPR OP-CODES 

LOAD CR OP-CODES 

BIT I OF REMAPPED 
OP-CODE 

PICL(2, 4, 7) --------· STATE CLASS 

PI BC ST( 1 - 4 , 6) -------.- STEP 

PICZS( 1-4 ,6) 

STATE 
PIC4S( 1- 4) CLASS 

AND 
STEP 

SPECIAL OP-CODE 
GROUPS USED 
INTERNALLY BY 
PPCTL2 

STATE 
CL.ASSES 
AND 
STEPS 
USED 
1NTER-
NALLY 
BY 
PPCTL2 

PIC7S(1, 2) } COMBINATIONS 

Figure 4-80. MIR Op-Code, State 
Class, and Step Decoding Logic on 
PPCTL2 

4-189/4-190 
Advanced Scientific Computer 



(C) 124788 

DIRECT BIT 

FROM IRCARD(O) 

NIL FROM 

IRCARD(2) 

STATE CLASS 

AND STEP 

FROM PPCTL2 

ANAZ AND 

EXEC OP-CODES 

FROM PPCTL2 

N IR OP-CODE FROM PCCARDA(O, f) 

SWBD OP-CODE FROM PCCARDA(O, 1) 

FR"" PCCARDA(J) { 

FR"" PCCRDA(l) { 

NIR 

T FIELD 

INDIRECT 

BIT 

SWBD 

T FIELD 

INDIRECT 

BIT 

SWBD 

T FIELD 

BITS 

NIR 

T FIELD 

BITS 

-.PIDC 
PIQMIR(14) 

fB l PID_C_ 

1 
-.PINIL 

PIOMIR(33) 

~IL 
PIC2S(21 

"'PIC2S(.C) 

-.PIC2S(6) :J 2N 

-
-.PIEXCM --
-.PIANCM :J 2B 

:... PNIR12R(0-7) 

-, PM D 12J.O TI_ 

-.PNIRl2R(12) -- 2N 

' 
-iPMD12(12) 

2N 
1 

-.PMDl2(13-15) 

PNIRl2R(13-15) 

{ SWBD/NIR OP-CODE 

GROUPS TO PPCTL1 

r 

.....,,...-- ..-
-.$XINC PINC(0-7) 

---1 __.., ,_ 
-------
---

1--. 

1--. 
,_ 

l.ix1NC PINC(0-7) 

SQ r---1 so 
~ ---

r--,_ -.PIT(O) -....., 

,_ 
PIT(O) 

SQ 
T FIELD --- OF NEXT 

INSTRUCTION 

USED 
r---

PIT(l-3) INTERNALLY 

BY PCCTL2 

1-

-, PIT(l-3) 
1- SQ --- -.PINCRR R FIELD SPECIFYING CR -

_-.PIN~ BASE RELATIVE BRANCH TO CM -
-.. -.PINCMTN TN FIELD SPECIFYING CM -

REG INDEXER DEPENDENCY _PININDCR -
-,PfTATNR 

TN FIELD INDEXER SOURCE ---
REG INDEXER DESTINATION - -,PISDR 

~PINBRUCB SWBD/NIR OP-CODE GROUPS BASE RELATIVE UNCOND BRANCH TO CM ---USED INTER NALL y BY PPCTL2 
-.-.PINBMISC CM MISCELLANEOUS 

:sxMDR(O) UNCOND BRANCH TO CM -
INDIRECT THROUGH CR/VPR -.PIPPTNX 

ILLEGAL OP~OOE ::: -.PILLCX 
'- --

..... PINNOOP --Pl NU CB ---PINUCBLP ---PINUCBSP ---PINCBAT --PINCBIMD ----
SWBD/ 

,PINSTCM --NIR --.PINSTHCM OP-C<X>E ---DECODING -.PINSTUF .. LOGIC -.PINSTPTP 

-- .... - -.PINSTUHB • -.PINLDCM ----.PINLDIM __.... --.PINLDPPU ---.PINLDUF -----.PINLDLFA ----.PINLDUHB ----.PINCMAU ---•PINUAU -----.PINIMAU ----iPINUAUHB ---...,PINSKUCM -----.PIN SK UPP ----iPINSKUIM ----.PINUCSRT ----,PINUCT • -.PINC BAT .. 
-.PINCBIMD ----.PINUCAS --.PINCRSRT ----.PINCRTSR ----,PIN CR LO --.. -.PINT POL -.. 
-,PIN PUSH ----.PIN PULL ---.PINMDF ---,PINCMLOU ----.PINIMLOU -.. 
-.PINPPULO ----.PINSHFT ---.PINOOP ----.PINEXCM ---,PINANCM ----,p1NLEA -.. -,PINUXV ----iPINLSKHB ---

NO-OP 

UNCONDITIONAL BRANCHES 

UNCONDITIONAL BRANCH AND SAVE PC 

UNCONDITIONAL BRANCH TO ROM 

TEST AND BRANCH 

I NCREMENT/DECREMENT TEST AND BRANCH 

FULL WORD STORES TO CM 

HALFWORD STORES TO CM 

VPR FILE STORES 

REG TO REG STORES 

HALFWORD ANO BYTE REG TO REG STORES 

CM LOADS 

IMMEDIATE LOADS 

REG TO REG LOADS 

VPR FILE LOADS 

VP BASE LOADS 

HALFWORD AND BYTE REG TO REG LOADS 

ADD/SUB CM ANO VPR 

ADD/SUB VPR AND VPR 

IMMEDIATE ADD/SUB 

ADD/SUB VPR AND VPR (HALFWORD AND BYTE) 

CM:VPR COMPARES 

VPR: VPR COM PARES 

IMMEDIATE COMPARES 

SET /RESET VP FLAG 

TEST CR IN VP BIT 

TEST AND BRANCH 

INCREMENT /DECREMENT TEST AND BRANCH 

UNCONDITIONAL BRANCH TO ROM 

SET /RESET CR BITS 

TEST AND SET/RESET CR BITS 

TEST CR FOR ALL ONES/ZEROS 

POLL CR 

PUSH STACK 

PULL STACK 

MODIFY STACK 

CM/VPR LOGICALS 

IMMEDIATE LOGICALS 

REG/REG LOGICALS 

SHIFTS 

NO-OP 

EXECUTE CM 

ANALYZE CM 

LOAD EFFECTIVE ADDRESS 

UNCONDITIONAL BRANCH,PC RELATIVE 

REG/REG HALFWORD AND BYTE 

LOGICALS,COMPARES ,AND ARITHMETICS 

NIR/SWBD 

OP-CODE GROUPS 

TO PCCTL1 

SWBD/NIR 

OP-COOE GROUPS 

USED INTERNALLY 

BY PPCTL2 

Figure 4-81. SWED /NIR Op-Code and 
T Field Selection and Decoding Logic 
on PPCTLZ 

4-191/4-192 
Advanced Scientific Computer 



01 II 10 

00 STCM STCM 

_Q_Q_ 0 I II I 0 ~00 01 II 10 00 01 11 10 00 0 I 11 I 0 

00 
BC ST STL STR 

1~ 
CE CEL CER BC 

00 01 03 02 I 0 II 13 I 2 30 31 33 32 20 21 2.l 2'~ 

NOP UC SFW SFLH SFRH LI CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM STHCM UC SKUCM SKUCM SKUCM UCB 

LO LOL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 14 Is 17 16 34 3S 37 16 24 25 27 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

LOCM LOCM LOCM LOCM .STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

01 

LO LOL LOR LOA ST STL STR STA 
oc oo OF OE IC 10 1F 1 E 3C 30 3F 'JE 2C 20 2F 2E 

LXW LXLH LXRlrt LXAB sxw SXLH SXRH SXAB II 

LOCM LDCM LDCM LDCM STCM STHCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LOF STF 
OB L~~L~ OB OA I B 19 IB IA 3B 39 3B 3A 28 2q 28 2A 

LXFW LXP'RH Lx""· SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM STUF LDCM LDCM LOCM LOUF STUF 

10 

STHCM __) c oc 1 =OI~ STUF 7 
00 01 11 10 00 01 11 10 00 01 11 1 0 O(l 01 11 1) ( 

00 
AN ANL ANR BR AD AOL ADR BCAS ADI ADHI ADBI LOI SHA ANHI ANBI LOI 
40 41 43 42 so S1 S3 52 70 71 73 72 60 61 63 62 

BAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LOIM 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LDHI 
44 4S 47 46 S4 SS S7 56 74 75 77 76 114 65 67 66 
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UCBSP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LDIM 

01 

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LDBI 
4C 40 4F 4E SC so SF SE 7C 70 7F 7E 6C 60 6F 6E 

1c:!i~~u ~XLH BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
MLOU CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LOIM SHFT IMLOU IMLOU LOIM 

11 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
4B 49 4B 4A SB S9 SB SA 7B 79 7B 7A 68 69 68 6A 

BQW BQLH BQRH UCA PSH PUL MOF u CIEW CIEH CIEB BQIH BQIB 
CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

I 0 

_Q_O 0 I II 10 00 01 II 10 00 01 II I 0 00 01 11 10 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANS TAZL 
co C1 C3 CZ DO 01 03 02 FO F 1 F3 F2 EO El F:3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPUl:.0 CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 cs C7 C6 04 OS 07 06 F4 F5 F7 F6 E4· ES E7 E6 

BOVW BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR BOCW BOCH BOCB TAZR 
PPULO PPULO PPULO CRLO UAU UAU. UAU CRTSR LOLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc CD CF CE DC DD OF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRTSR SK UPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB 1AOL 
CB C9 CB CA DB 09 DB CA FB F9 FB FA EB E9 EB EA 

BQVW BQVH BQVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BOCH BQCB TAOL 
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

1 0 

STPTP -

00 0 I II 10 00 )j 0 1 11 I 0 00 0 I II 10 00 0 I 11 10 

00 

LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO B 1 B3 B2 90 91 9~ 92 BO Bl B3 B2 AO Al A3 A2 

LVW LVH LVB VPRT SVW SVH s~~~Pi .;,RZL TZW TZH TZB XIZ TFZW TFZH TFZB 
LDPPU LDPPU LDPPU UCSRT STPTP STPTP RTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN T" TNH TNB 
B4 BS B7 B6 94 9S 97 96 B4 BS B7 B6 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW SFVH SFVB ~RZR TNW TNH TNB XIN TFNW TFNH TFNB 
LOP PU LOP PU LOP PU UCSRT STPTP STPTP STPTP RTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT 

0 I 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AO AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH i.f~~ ~'i~':. 
TMW TMH TMB XON TFMW TFMH Tf""MO UV 

LDPPU LDPPU LDPPU UCT STPTP STPTP CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCBLP 
11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB OBZ TP TPH TPB 
BB 89 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA 
LCW LCH LCB VPTZ sew SCH s~~~Pj ici.'i~'R TPW TPH TPB xoz TFPW TFPH TFPB 

LDPPU LOP PU LOP PU UCT STPTP STPTP CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 
10 

(A)t 24789 

Figure 4-82. Store Op-Code Groups 

4-193 Advanced Scientific Computer 



C 2C 3 - 00 01 11 10 

c6 c 7 LDCM CoC 1 =00 
C4C5 

\ ~ 00 01 11 10 01 11 10 00 01 11 10 00 01 11 10 

11 ST 

~ 
STR l!ICS CE CEL CER BC 

00 00 01 03 10 1 3 12 30 31 33 32 20 21 23 22 
NOP SFW ~FRH u~~'LPj CWE CLHE CRHE ucx 

NOOP STCM THCM SKUCM SKUCM SKUCM UCB 

01 LO LDL LOR LOA ST STL ~ STA CN CNL CNR 
04 05 07 06 1 4 15 1 7 

~? 
34 35 37 36 24 25 27 26 

LW LLH LRH LAB SW SLH SRH CWN CLHN CRHN 
LDCM LDCM LDCM LDCM STCM STHCM STHCM CM SKUCM SKUCM SKUCM 

LO LDL LOR LOA ST STL STR ST~ 
11 QC OD OF OE tc 10 IF IE 

~ 
30 3F 3E 2C 20 2F 2E 

LXW LXLH LXRM LXAB sxw SXLH SXRH SXAB 
LDCM LDCM LDCM LDCM STCM 5THCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR 
LDF] 

STF 

10 08 L~~L~ OB OA 1 B 19 1B IA 38 39 38 3A 28 29 28 2A 
LXFW LXP'RH LXVP' SXFW :.r~a-~ SXFRH SXVP LFW LFLH LFRH LVP SVP 
LOCM LDCM LDCM LDUF STCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

LDUF....,. c 0 c =01 ~ LDUF 
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10 

AN ANL ANR BR AD AOL ADR BCAS ADI ADHI ADBI w SHA ANHI ANBI LOI 
40 41 43 42 50 51 53 52 70 71 73 60 61 63 62 

SAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH SAIS LFIW 
CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

00 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUSI LOHI SHL ORHI ORSI LDHI 
44 45 47 46 54 55 57 56 74 75 77 76 114 65 67 66 
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIS LIM SHL BOIH BOIB LFIH 

01 

CM LOU CM LOU CM LOU UCB LP CMAU CMAIJ CMAU UCBSP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

EX EXL EXR SCA EXEC LOEA ANAZ BPC CNI CNHI CNBI LOBI SHC EXHI EXBI LOBI 
4C 40 4F 4E SC SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

t:~t~u ~~t~u l!IXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM 

11 

10 
EQ EQL EQR SCA PUSH PULL MOD BPC CEI CEHI CEBI 

7~ 
EQHI EQBI 

~ 48 49 48 4A S8 S9 SB SA 78 79 78 68 69 68 
BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 

CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

c c = 11 LDLFA -c:= __J 
0 LDIM 

0 01 11 10 00 01 11 10 01 11 10 00 01 11 10 

AN ANH ANS 
00 co Cl C3 

BAVW BAVH BAVB 
PPULO PPULO PPULO 

TZL AD AOH ADB TSZL RL AN ANH ANS TAZL 
C2 DO 01 03 02 Ft F3 F2 EO E 1 F3 E2 
TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB 
01 C4 cs C7 

eovw BOVH BOVB 
PPULO PPULO PPULO 

TZR SU SUH SUB TSZR PULL RR OR ORH ORB TAZR 
C6 04 OS 07 06 FS F7 F6 E4· ES E7 E6 

TZR MVW MVH MVB TSZR TPOL CBZR BOCW BOCH BOCB TAZR 
CRLO UAU ·UAU UAU CRTSR TPOL CRSRT PPULO PPULO PPULO CRLO 

EX EXH EXB 
11 cc CD CF 

BXVW BXVH BXVB 
PPULO PPULO PPULO 

TOR CN CNH CNB TSOR CN CNH CNS SR EX EXH EXB TAOR 
CE DC DD OF DE FC FD FF FE EC ED EF EE 
TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 

CRLO SKUPP SK UPP SK UPP CRTSR SK UPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

EQ EQH EQB 
10 C8 C9 CB 

BQVW BQVH BQVB 
PPULO PPULO PPULO 

TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB 1 AOL 
CA DB 09 OB DA FB F9 FB FA EB E9 EB EA 
TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 

CRLO SKUPP SKUPP SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

LDPPU c c 10 

01 * 0 1 = 

00 11 10 00 01 11 10 00 01 11 10 00 01 11 10 

LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO B 1 B3 B2 90 91 9' 92 8(1 Bt 83 82 AO At A3 A2 

LVW LVH LVB VPRT svw SVH SVB TRZL TZW TZH TZB X1Z TFZW TFZH TFZB 
LOP PU LDPPU LOP PU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

00 

LD LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
B4 BS B7 B6 94 95 97 96 84 85 87 86 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB X1N TFNW TFNH TFNB 
LDPPU LDPPU LOP PU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

01 

11 
LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC SD BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
LOP PU LOP PU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT UCB LP 

LD LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BB B9 BB BA 9B 99 98 9A BB 89 BB BA AB A9 AB AA 

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 
LOP PU LDPPU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

10 

(A)124790 

Figure 4-83. Load Op-Code Groups 

4-194 
Advanced Scientific Computer 



C 2C 3 - 00 01 

00 

01 

11 

10 

00 

01 

11 

10 

00 

01 

I 1 

I 0 

00 

01 

I 1 

10 

\ l 
_QQ 0 I II 

00 0 I 03 
NOP 

NOOP 

LO LDL LOR 
04 05 07 
LW LLH LRH 

LDCM LDCM LDCM 

LO LDL LOR 
oc OD OF 

LXW LXLH Llll:llltl 
LDCM LDCM LDCM 

LO LDL LOR 
08 L~~L~ OB 

LXFW LXP'RH 
LDCM LDCM LDCM 

00 01 11 

AN ANL ANR 
40 41 43 

BAW BALH BARH 
CMLOU CMLOU CMLOU 

10 

BC 
02 
UC 
UCB 

LOA 
06 
LAB 

LDCM 

LOA 
OE 

LXAB 
LDCM 

LDF 
OA 

LXVI',. 
LDUF 

10 

BR 
42 
UR 
UCB 

OD 01 

ST STL 
I 0 II 

SFW SFLH 
STCM STHCM 

ST STL 
14 15 
SW SLH 

STCM STHCM 

ST STL 
IC ID 

sxw SXLH 
STCM STHCM 

ST STL 
18 19 

SXFW SXFLH 
STCM STHCM 

CMAU 

oo ~lo 1 

AD 
so 
AW 

CMAU 

AOL 
S1 

ALH 
CMAU 

OR ORL ORR BRS SU SUL 
SS 

MLH 
44 4S 47 46 S4 
BOW BOLH BORH URV MW 

CMLOU CMLOU CMLOU UCBLP CMAU 

EX EXL EXR BCA 
4C 40 4F 4E 

1c:!.t~u '65~t~ ~~~~u uJ~: 
EQ EQL EQR 
4B 49 4B 

llQW BQLH BQRH 
CMLOU CMLOU CMLOU 

BCA 
4A 
UCA 
UCB 

EXEC 
5C 

EXCM 
EXCM 

PUSH 
SB 

PSH 
PUSH 

CMAU 

LDEA 
SD 

LEA 
LEA 

PULL 
S9 

PUL 
PULL 

UAU 

00 0 I II 

AN ANH ANB 
CO Cl C3 

BAVW BAVH BAVB 
PPULO PPULO PPULO 

OR ORH ORB 
C4 CS C7 

BOVW BOVH BOVB 
PPULO PPULO PPULO 

10 

TZL 
C2 
TZL 

CRLO 

TZR 
C6 
TZR 

CRLO 

oo ~lo1 
AD 
DO 

AVW 
UAU 

SU 
04 
MVW 
UAU 

ADH 
01 

AVH 
UAU 

SUH 
OS 

MVH 
UAU 

II 

STR 
13 

SFRH 
STHCM 

STR 
17 

SRH 
STHCM 

STR 
IF 

SXRH 
STHCM 

STR 
1B 

SXFRH 
STHCM 

11 

ADR 
S3 

ARH 
CMAU 

SUR 
S7 

MRH 
CMAU 

ANAZ 
SF 

ANCM 
ANCM 

MOD 
SB 

MDF 
MDF 

=00 

I 0 

BCS 
I 2 

u~~'{_p 

STA 
16 

SAB 
STCM 

STA 
IE 

SXAB 
STCM 

STF 
1A 

SXVP 
STUF 

10 

BCAS 
S2 

UCAV 
UCBLP 

BRSM 
S6 

UCAS 
UCBSP 

BPC 
SE 
ux 
UCB 

BPC 
SA 
u 
UCB 

C 0 c =11 

I I 10 

ADB 
03 

AVB 
UAU 

SUB 
07 

MVB 
UAU 

TSZL 
02 

TSZL 
CRTSR 

TSZR 
06 

TSZR 
FRTSR 

EX EXH EXB 
CC CD CF 

BXVW BXVH BXVB 
PPULO PPULO PPULO 

TOR 
CE 
TOR 

CRLO 

CN CNH CNB TSOR 

EQ EQH EQB 
CB C9 CB 

BQVW BQVH BQVB 
PPULO PPULO PPULO 

00 0 I 11 

LO LOH LOB 
80 81 B3 

LVW LVH LVB 
LDPPU LDPPU LDPPU 

LO LOH LOB 
84 BS 87 

LFVW LFVH LFVB 
LDPPU LDPPU LDPPU 

LO LOH LOB 
BC SD BF 

LFCW LFCH LFCB 
LDPPU LDPPU LDPPU 

LO LOH LOB 
BB B9 BB 

LCW LCH LCB 
LDPPU LOP PU LOP PU 

DC DD OF DE 

~:~~ s~'GN,,'/. s~'GN,,~ ci\~"ii 
TOL CE CEH CEB TSOL 
CA DB 09 DB DA 

c1.'l.'o s~'G~"{. ~i<"J~ ~i<"J~Pj c!~-?~R 

10 00 0 I 11 10 

VPR ST STH STB TRZL 
82 90 91 9~ 92 

VPRT svw SVH SVB TRZL 
UCSRT STPTP STPTP STPTP CRTSR 

VPS ST STH STB TRZR 
B6 94 9S 97 96 

VPST SFVW SFVH SFVB TRZR 
UCSRT STPTP STPTP STPTP CRTSR 

VPTO ST STH STB TROR 
SE 9C 90 9F 9E 

VPTO SFCW SFCH SFCB TROR 
UCT STPTP STPTP STPTP CRTSR 

VPTZ ST STH STB TROL 
BA 9B 99 9B 9A 

VPTZ sew SCH SCB TROL 
UCT STPTP STPTP STPTP CRTSR 

(A) 124791 

00 

CE 
30 

CWE 
SKUCM 

CN 
34 

CWN 
SKUCM 

3C 

LO 
38 

LFW 
LDCM 

00 

ADI 
70 

AIW 
IMAU 

SUI 
74 

MIW 
IMAU 

II 

SKUCM 

QI·-* II 

CEL ~ 31 
CLHE CRHE 
SKUCM SKUCM 

CNL CNR 
3S 37 

CLHN CRHN 
SKUCM SKUCM 

30 3F 

LDL LOR 
39 3B 

LFLH LFRH 
LDCM LDCM 

IMAU 

01# 11 

ADHI 
71 

AIH 
IMAU 

SUHI 
7S 

MIH 
IMAU 

"~~I 
AIB 

IMAU 

SUBI 
77 
MIB 

IMAU 

CNI CNHI CNBI 
7C 70 7F 

CINW CINH CINB 
SKUIM SKUIM SKUIM 

CEI CEHI 
7B 79 

CIEW CIEH 
SKUIM SKUIM 

CEBI 
7B 

CIEB 
SKUIM -, 

SKUIM 
00 

FO 

LOMB 
F4 
LFA 

LDLFA 

01 I I 

F1 

PULL 
FS 

TPOL 
TPOL 

F3 

F7 

I 0 

BC 
32 

ucx 
UCB 

36 

3E 

LDF 
3A 

LVP 
LOUF 

10 

LOI 
72 

LIW 
LDIM 

LDHI 
76 

LIM 
LDIM 

LDBI 
7E 

LIB 
LDIM 

7A 

10 

RL 
F2 

CBZL 
CRSRT 

RR 
F6 

CBZR 
CRSRT 

CN CNH CNB SR 
FC FD FF FE 

CCNW CCNH CCNB CBOR 
SKUPP SKUPP SKUPP CRSRT 

00 

20 

24 

2C 

26 

00 

SHA 
60 

SHA 
SHFT 

SHL 
114 

SHL 
SHFT 

SHC 
6C 

SHC 
SHFT 

66 

00 

10 

0 I 11 

21 23 

2S 27 

20 2F 

29 2B 

01 11 

ANHI ANBI 
61 63 

BAIH BAIB 
IMLOU IMLOU 

10 

22 

26 

2E 

STF 
2A 

SVP 
STUF 

1 0 

LOI 
62 

LFIW 
LDIM 

ORHI ORBI LDHI 
6S 67 66 

BOIH BOIB LFIH 
IMLOU IMLOU LDIM 

EXHI EXBI LDBI 
60 6F 6E 

BXIH BXIB LFIB 
IMLOU IMLOU LDIM 

EQHI EQBI 
69 6B 

BQIH BQIB 
IMLOU IMLOU 

01 II 

6A 

10 

AN ANH ANB TAZL 
EO EI E" 3 E 2 

BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO 

OR ORH ORB 
E4· E5 E7 

BOCW BOCH SOCS 
PPULO PPULO PPULO 

TAZR 
E6 

TAZR 
CRLO 

EX EXH EXB TAOR 
EC ED EF EE 

BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO 

CE CEH CEB SL EQ EQH EQB TAOL 
FB F9 FB FA EB E9 EB EA 

CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 
SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

~ SKUPP 
00 01 11 10 00 01 11 10 

TZ TZH TZB IBZ TZ TZH TZB 
BO Bl B3 B2 AO A1 A3 A2 

TZW TZH TZB XIZ TFZW TFZH TFZB 
CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

TN TNH TNB IBN TN TNH TNB 
B4 BS B7 B6 A4 AS A7 A6 

TNW TNH TNB XIN TFNW TFNH TFNB 
CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE AC AD AF AE 

TMW TMH TMB XDN TFMW TFMH TF"MB UV 
CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCBLP 

TP TPH TPB DBZ TP TPH TPB 
BB B9 BB BA AB A9 AB AA 
TPW TPH TPB XDZ TFPW TFPH TFPB 

CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

Figure 4-84. Arithmetic and Compare Op-Code Groups 

4-195 Advanced Scientific Computer 



0 I 11 10 

00 _Q_I II I 0 00 01 I I 10 00 01 I I I 0 00 01 11 I 0 

00 
BC ST STL STR BCS CE CEL CER BC 

00 0 I 03 02 I 0 I I I 3 I 2 30 3 I 33 32 20 2 I 23 22 
NOP UC SFW SFLH SFRH u~~~P CWE CLHE CRHE ucx 

NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LO LDL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 I 4 Is I 7 I 6 34 3S 37 36 24 25 27 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

LDCM LDCM LOCM LDCM .STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

01 

LO LDL LOR LOA ST STL STR STA 
oc OD OF OE IC ID IF IE 3C 3D 3F 3E 2C 2D 2F 2E 

LXW LXLH Lll:l .. I LXAB sxw SXLH SXRH SXAB 
I I 

LDCM LDCM LOCM LOCM STCM 5THCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OB L~~LH OB OA I B 19 IB IA 3B 39 38 3A 28 29 28 2A 

LXFW LXP'RH LXVP'. SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

10 

PUSH PULL SHFT c 0 c 1 =01 MDF 

_2.0 01 11\ 10 00 \ 0, ,, 10 I ao 01 11 I 0 ooJI 01 , 1 10 

00 
AN ANL ANR N: AD AOL ADR 

B~ 
ADI ADHI ADBI LOI SHA ANHI ANBI LOI 

40 41 43 2 so 51 53 52 70 71 73 72 60 61 63 62 
BAW BALH BARH R AW ALH ARH UC AIW AIH AIB LIW SHA BAIH BAIB LFIW 

CM LOU CM LOU CM LOU CB CMAU MAU CMAU UC P IMAU IMAU IMAU LDIM SHFT IMLOU !Ml.OU LDIM 

OR ORL ORR i SU t;_UL SUR l;lr SUI SUHI SUSI LDHI SHL ORHI ORBI LDHI 

44 45 47 4 S4 ~~ 57 6 74 75 77 76 114 6S 67 66 
BOW BOLH BORH URV MW MRH AS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU CM LOU UCBL CMAU c ~Al) CMAU BSP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

01 

EX EXL EXR BCA 

tic 

Lp_EA 

Ai 

BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LOB\ 
4C 40 4F 4E c 

~-
SF SE 7C 7D 7F 7E 6C 60 6F 6E 

BXW ~XLH BXRH UCAX M AN ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
MLOU MLOU CM LOU UCB M AN UCB SKUIM SKUIM SKU~M LOIM SHFT IMLOU IMLOU LDIM 

, , 

EQ EQL EQR BCA PUSH PULL MO~ BPC CEI CEHI CESI EQHI EQBI 

4B 49 4B 4A 5B S9 SB SA 7B 79 7B 7A 68 69 6B 6A 

c~t°oy BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 
CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

, 0 

CRLO CRLO c c , I 

,, ~10 
0 , = 

~o 00 0, 00 01 11 10 00 01 ,, 10 00 0 I I, 

00 
AN ANH ANB ~ AD ADH ADB TSZL RL AN ANH ANB ITAZLI 
co Cl C3 C2 DO 01 03 02 FO Fl F3 F2 EO El E3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH 8ACB TAZL 
PPULO PPULO PPULO CRLO UAU UJllU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 C5 C7 C6 04 OS 07 06 F4 FS F7 F6 E4 ES E7 E6 

BOVW BOVH BOVB TZR MVW MVH MVB 1ciSZR LFA TPOL CBZR eocw BOCH BOCB TAZR 

PPULO PPULO PPULO CRLO UAU UAU UAU RTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN l CNB SR EX EXH EXB TAOR 

cc CD Cl" CE DC DD OF DE FC FF FE EC ED EF EE 
Bxvw BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW H CCN8 C80R BXCW BXCH BXCB TAOR 

PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SKUPP pp SKUPP CRSRT PPULO PPULO PPULO CRLO 
I, 

EQ EQH EQ8 TOL CE CEH CEB TSOL CE CEH CE8 SL EQ EQH EQB TAOL 
CB C9 CB CA DB 09 DB DA 

F!i_ 
F9 FB FA EB E9 EB EA 

BQVW BQVH BQVB TOL CVEW CVEH CVE8 TSOL CCE CCEH ~~G~P CBOL BQCW BQCH BQCB TAOL 
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRTSR SKU SK UPP CRSRT PPULO PPULO PPULO CRLO 

, 0 

UCSRT c c =10 z 0 ~ 
00 0, 11 ') 10 00 0 1 , , 10 00 0, , , 10 00 0, I, I 0 

0 TP L CRSRT 

LO LOH LOB VPR ST STH ST8 TRZL TZ TZH TZ8 IBZ TZ TZH TZB 
80 B 1 B3 82 90 9, 9~ 92 BO 81 B3 B2 AO Al A3 A2 

LVW lb.!LVH LVB VPRT (§_~~~p SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
LOP PU DPPIJ LDPPU UCSRT STPTP STPTP CRT SR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

00 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
84 85 B7 B6 94 9S 97 96 84 BS B7 B6 A4 AS A7 A6 

LFVW LFVH LFVB l1Y!.sT SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LDPPU LDPPU LOP PU SRT STPTP STPTP STPTP CRTSR CBAT CBAT C!IAT CBIMD CBAT CBAT CBAT 

01 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
LOP PU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCBLP 

11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
88 89 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA 

LCW LCH LCB VPTZ sew s~~!j!'"' see TROL TPW TPH TPB xoz TFPW TFPH TFPB 
LOP PU LOP PU LDPPU UCT STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

10 

~ 
UCT 

(A)t 24792 

Figure 4-85. Shift, Stack, VP Bit Control, and CR Bit 
Control Op-Code Groups 

4-196 Advanced Scientific Computer 



C 2C 3 - 00 01 11 10 

UCB UCBLP UCB 

j 
\ j j 10i OJl 0 1 11 ~b 00 01 11 10 J; 00 01 11 00 0 1 11 10 

BC ST STL STR BCS CE CEL CER BC 
00 01 03 02 10 11 1 3 1 2 30 31 33 32 20 21 23 22 
NOP UC SFW SFLH SFRH u~~'L~ 

CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

00 

LD LDL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 14 1 S 1 7 16 34 3S 37 36 24 2S 27 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

LDCM LDCM LDCM LDCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

01 

LD LDL LOR LOA ST STL STR STA 
oc OD OF OE 1C 10 1F 1 E 3C 30 3F 3E 2C 20 ZF 2E 

LXW LXLH LXRi.t LXAB sxw SXLH SXRH SXAB 
11 

LOCM LDCM LDCM LDCM STCM 5THCM STHCM STCM 

LD LDL LDR LDF ST STL STR STF LD LDL LOR LDF STF 
OB L~~Lft OB OA 1 B 19 1B 1A 3B 39 38 JA 28 2q 28 2A 

LXFW LXl'"RH LX~ SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LOCM LDCM LDCM LDUF STCM STHCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

10 

UCB UCB LP 0 1 UCBLP c c 
\ 0 1 = 

1 oJ 00 01 11 ~ _l_Q_ oo_L_o1 11 00 01 11 10 00 01 11 1 0 

00 

AN ANL ANR BR [[ AOL ADR BCAS ADI ADHI ADBI LDI SHA ANHI ANSI LOI 
40 41 43 42 S1 S3 S2 70 71 73 72 60 61 63 62 

BAW BALH c~t~'t UR ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CMLDU CM LOU UCB AU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDJM 

OR DRL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LDHI 
44 4S 47 46 S4 SS S7 S6 

~r 
75 77 76 114 6S 67 66 

BOW BOLH BORH URV MW MLH MRH UCAS IW MIH MIS LIM SHL BOIH 8018 LFIH 
CM LOU CM LOU CMLO CBLP MAU CMAU CMAU UCBSP AU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

01 

EX EXL EXR BCA EXEC LDEA ANAZ BPC c~ CNHI CNBI LDBI SHC EXHI EXBI LDBI 
4C 40 4F 4E SC SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

lc~~"6u ~XLH i~~~u UCAX EXCM LEA ANCM ux CINW ~NH CINB LIB SHC BXIH BXIB LFIB 
MLOU UCB EXCM LEA ANCM UCB SKUIM UIM SKUJM LOIM SHFT IMLOU IMLOU LDIM 

11 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI c~ CEBI EQHI EQBI 
4B 49 4B 4A SB 59 SB SA 7B 79 7B 7A 68 69 6B 6A 

BQW BQLH i.'.:i~~u UCA PSH PUL MDF u CIEW CIEH ~EB BQIH BQIB 
CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM UIM IMLOU IM LOU 

1 0 

UCB~ c c =11 ~~ " 0 UCB UCBSP 
_QO 01 11 10 00 0·1 11 10 00 01 11 10 00 01 11 1 0 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TAZL 
co C1 C3 C2 DO 01 03 02 FO F1 F3 F2 EO E 1 E"3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 cs C7 C6 04 DS 07 06 F4 FS ~-7 F6 E4 ES E7 E6 

BOVW BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR BOCW BOCH BOCB TAZR 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc CD CF CE DC DD DF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EO EOH EOB TAOL 
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 

BQVW BQVH BQVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 
PPULO PPULO PPULO CRLO SKUPP SKUPPj SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

1 0 

c c 10 
CBIMD UCBLP 

0 1 = 

' ~11 00 0 I 11 10 00 0 1 11 10 00 0 1 11 <l1 0 00 0 1 1 0 

00 

LD LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH 

T~ BO 81 B3 82 90 91 93 92 BO B1 B3 B2 AO A1 A2 
LVW LVH LVB VPRT SVW SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH 

LDPPU LDPPU LDPPU UCSRT STPTP STPTP STPTP CRT SR CBAT CBAT CBAT CBIMD CBAT CBAT CBA 

LD LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN HJ TNH TNB 

L'i 84 85 87 86 94 9S 97 96 B4 BS B7 B6 A4 AS A7 
LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LDPPU LOP PU LDPPU UCSRT STPTP STPTP STPTP CRTSR CBAT CSAT CBAT CBIMD CBAT CBAT CBAT 

01 

LD LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
SC SD SF SE 9C 90 9F 9E BC BD BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TF'MB UV 
LDPPU LDPPU LDPPU UCT STPTP STPTP STPTP CRT SR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCBLP 

11 

LD LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BB 89 BB BA 98 99 9B 9A BB 89 BB BA A8 A9 AB AA 
LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB xoz TFPW TFPH TFPB 

LDPPU LDPPU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 
1 0 

~ CBAT 

(A)t 24793 

Figure 4-86. Conditional and Unconditional Branch Op-Code Groups 

4-197 Advanced Scientific Computer 



C 2C 3 - 00 

C5C 7 

NOOP 

~(01 
00 01 
NOP 

00 

NOOP 

LO LDL 
04 OS 01 
LW LLH 

LDCM LDCM 

LO LDL 
II oc 00 

LXW LXLH 
LDCM LDCM 

LO LDL 
OB L~~L~ LXFW 

LDCM LOCM 
10 

II 

03 

LOR 
07 

LRH 
LOCM 

LOR 
OF 

LXRM 
LOCM 

LOR 
OB 

LXP'RH 
LOCM 

10 00 

BC ST 
02 10 
UC SFW 
UCB STCM 

LOA ST 
06 14 

LAB SW 
LOCM .STCM 

LOA ST 
OE IC 

LXAB sxw 
LOCM STCM 

LDF ST 
OA IB 

LXYP'· SXFW 
LDUF STCM 

CM LOU 

_.Q.O ~l 01 

EXCM 
I 

00 

01 

II 

10 

10 

AN ANL ANR BR 
40 41 43 42 

BAW BALH BARH UR 
1£_MLOU CMLOU CMLOU UCB 

OR ORL ORR BRS 
44 4S 47 46 
BOW BOLH BORH URV 

E_MLOU CMLOU CMLOU IJcBLP 

EX EXL EXR BCA 
4C 40 4F 4E 

l!ii~u ~~t~u ~~~~lj uJt: 
EQ EQL EQR 
48 49 4B 

c~~ou c~6'u ~~~~u 

BCA 
4A 
UCA 
UCB 

00 

~~g 
AW 
MAU 

EXEC 
5C 

EXCM 
EXCM 

PUSH 
SB 

PSH 
PUSH 

01 

01 

STL 
II 

SFLH 
STHCM 

STL 
IS 

SLH 
STHCM 

STL 
ID 

SXLH 
STHCM 

STL 
19 

~.f'J"t~ 

01 

AOL 
51 

ALH 
CMAU 

SUL 
55 

MLH 
CMAU 

LDEA 
SD 

LEA 
LEA 

7 
LEA 

_.ll_Q_ 01 II 10 00 01 

AN ANH ANB TZL AD ADH 
co Cl C3 C2 DO DI 

BAVW BAVH BAVB TZL AVW AVH 
PPULO PPULO PPULO CRLO UAU Ull\U 

00 

OR ORH ORB TZR SU SUH 
01 C4 cs C7 C6 04 05 

BOVW BOVH BOVB TZR MVW MVH 
PPULO PPULO PPULO CRLO UAU UAU 

EX EXH EXB TOR CN CNH 
cc CD Cl' CE oc DD 

BXVW BXVH BXVB TOR CVNW CVNH II 
PPULO PPULO PPULO CRLO SKUPP SK UPP 

EQ EQH EQB TOL CE CEH 
I 0 CB C9 CB CA DB 09 

BQVW BQVH BQVB TOL CVEW CVEH 
PPULO PPULO PPULO CRLO SKUPP SKUPP 

lfPPULO 
00 01 II 10 00 01 

LO LOH LOB VPR ST STH 
BO BI 83 82 90 91 

LVW ILLVH LVB VPRT ls~~~P SVH 
LDPPU DPPU LDPPU UCSRT STPTP 

00 

LO LOH LOB VPS ST STH 
84 85 87 86 94 95 

LFVW .LFVH LFVB VPST SFVW SFVH 01 
LDPPU LOP PU LOP PU UCSRT STPTP STPTP 

LO LOH LOB VPTO ST STH 
BC BO BF BE 9C 90 

LFCW LFCH LFCB VPTO SFCW SFCH 
II 

LOP PU LOP PU LOP PU UCT STPTP STPTP 

LO LOH LOB VPTZ ST STH 
88 89 BB BA 98 99 
LCW LCH LCB VPTZ sew SCH 

10 

LOP PU LOP PU LOP PU UCT STPTP STPTP 

(A)124794 

II 

=00 

II 10 00 01 II 

STR BCS CE CEL CER 
13 12 30 31 33 

SFRH u~~'t~ CWE CLHE CRHE 
STHCM SKUCM SKUCM SKUCM 

STR STA CN CNL CNR 
17 16 34 3S 37 

SRH SAB CWN CLHN CRHN 
STHCM STCM SKUCM SKUCM SKUCM 

STR STA 
IF IE 3C 30 3F 

SXRH SXAB 
STHCM STCM 

STR STF LO LDL LOR 
IB IA 38 39 3B 

SXFRH SXVP LFW LFLH LFRH 
STHCM STUF LDCM LDCM LDCM 

c 0 c 1 =O 1 ANCM 

11 10 I oo 01 II 

:~i ~ 
CMAU 'J(e~"i> 

ANAZ 
SF 

ANCM 
ANCM 

BPC 
5E 
ux 
UCB 

MOD BPC 
SB SA 

MDF U 
MDF UCB 

II 10 

ADB TSZL 
03 02 

AVB TSZL 
UAU CRTSR 

SUB TSZR 
07 06 

MVB TSZR 
UAU FFHSR 

CNB TSOR 
OF DE 

CVNB TSOR 
SK UPP CRTSR 

CEB TSOL 
DB DA 

CVEB TSOL 
SK UPP CRTSR 

CoC1 =10 

II 10 

STB TRZL 
9~ 92 

SVB TRZL 
STPTP CRTSR 

STB TRZR 
97 96 

SFVB TRZR 
STPTP CRTSR 

STB TROR 
9F 9E 

SFCB TROR 
STPTP CRTSR 

STB TROL 
98 9A 
see TROL 

STPTP CRTSR 

ADI 
70 

AIW 
IMAU 

SUI 
74 

MIW 
IMAU 

ADHI 
71 

AIH 
IMAU 

SUHI 
75 

MIH 
!MAU 

ADBI 
73 

AIB 
IMAU 

SUBI 
77 

MIB 
IMAU 

CNI CNHI CNBI 
7C 70 7F 

CINW CINH CINB 
SKUIM SKUIM SKUIM 

CEI CEHI CEBI 
78 79 7B 

CIEW CIEH CIEB 
SKUIM SKUIM SKUIM 

00 01 II 

FO Fl F3 

LOMB PULL 
F4 F5 F7 
LFA TPOL 

LDLFA TPOL 

CN CNH CNB 
FC FD FF 

CCNW CCNH CCNB 
SKUPP SKUPP SKUPP 

CE CEH CEB 
F8 F9 FB 

CCEW CCEH CCEB 
SKUPP SK UPP SKUPP 

00 0 I II 

TZ TZH TZB 
BO Bl B3 

TZW TZH TZB 
CBAT CBAT CBAT 

TN TNH TNB 
B4 BS B7 

TNW TNH TNB 
CBAT CBAT CBAT 

TM TMH TMB 
BC BO BF 

TMW TMH TMB 
CBAT CBAT CBAT 

TP TPH TP8 
BB B9 BB 
TPW TPH TPB 

CBAT CBAT CBAT 

10 

BC 
32 

ucx 
UCB 

36 

3E 

LDF 
3A 

LVP 
LDUF 

10 
LOI 
72 

LIW 
LDIM 

LDHI 
76 

LIM 
LDIM 

LDBI 
7E 

LIB 
LDIM 

7A 

10 

RL 
F2 

CBZL 
CRSRT 

RR 
F6 

CBZR 
CRSRT 

SR 
FE 

CBOR 
CRSRT 

SL 
FA 

CBOL 
CRSRT 

I 0 

IBZ 
B2 

XIZ 
CBIMD 

IBN 
B6 

XIN 
CBIMO 

DBN 
BE 
XDN 

CBIMD 

DBZ 
BA 

XDZ 
CBIMD 

00 

20 

24 

2C 

28 

00 

SHA 
60 

SHA 
SHFT 

SHL 
114 

SHL 
SHFT 

10 

0 I 11 

21 23 

25 27 

20 2F 

29 2B 

IMLOU 

01 ~ 11 

ANHI ANBI 
61 63 

BAIH BAIB 
IMLOU IMLOU 

10 

22 

26 

2E 

STF 
2A 

SVP 
STUF 

10 

LOI 
62 

LFIW 
LDIM 

ORHI ORBI LDHI 
65 67 66 

BOIH BOIB LFIH 
IMLOU IMLOU LDIM 

SHC EXHI EXBI LDBI 
6C 60 6F 6E 

SHC BXIH BXIB LFIB 
SHFT IMLOU IMLOU LDIM 

68 

00 

AN 
EO 

BACW 
PPULO 

OR 
E4· 

BOCW 
PPULO 

EX 
EC 

BXCW 
PPULO 

EQ 
EB 

BQCW 
PPULO 

EQHI EQBI 
69 6B 

BQIH BQIB 
IMLOU IMLOU 

01 11 

ANH ANB 
El F3 

BACH BACB 
PPULO PPULO 

ORH ORB 
ES E7 

BOCH BOCB 
PPULO PPULO 

EXH EXB 
ED EF 

BXCH BXCB 
PPULO PPULO 

EQH EQB 
E9 EB 

BQCH P~tTC'o PPULO 

~ PPULO 
00 01 II 

TZ TZH TZB 
AO Al A3 

TFZW TFZH TFZB 
CBAT CBAT CBAT 

TN TNH TNB 
A4 AS A7 

TFNW TFNH TFNB 
CBAT CBAT CBAT 

TM TMH TMB 
AC AD AF 

TFMW TFMH TFMB 
CBAT CBAT CBAT 

TP TPH TPB 
AB A9 AB 

TFPW TFPH TFPB 
CBAT CBAT CBAT 

GA 

10 

TAZL 
E2 

TAZL 
CRLO 

TAZR 
E6 

TAZR 
CRLO 

TAOR 
EE 

TAOR 
CRLO 

TAOL 
EA 

TAOL 
CRLO 

10 

A2 

A6 

BPCS 
AE 
UV 

UCBLP 

AA 

Figure 4-87. Logical and Miscellaneous Op-Code Groups 

4-198 Advanced Scientific Computer 



01 11 10 

c 0 c 1 ~oo 

00 0 I II 10 00 0 I 11 10 00 0\ 11 10 00 0 I \\ \ 0 

'IC ST STL STR BCS CE CEL CER BC 
00 00 01 03 02 I 0 11 I 3 \ 2 30 31 33 32 20 2 1 23 - -

NOP UC SFW SFLH SFRH u~C..'LP! CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LO LOL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 I 4 Is 17 16 34 3S 37 36 24 25 Z7 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

LDCM LOCM LDCM LOCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

01 

LO LOL LOR LOA ST STL STR STA 
oc OD OF OE IC ID 1 F IE 3C 30 3F 3E 2C 20 LF 2E 

LXW LXLH LXRH LXAB sxw SXLH SXRH SXAB 11 

LDCM LDCM LDCM LDCM STCM STHCM STHCM STCM 

LO LOL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OB L~~L~ OB QA I B 19 IB 1A 3B 39 3B 3A 28 2q 2B 2A 

LXFW LXl'"RH LX~ SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM STUF LOCM LDCM LDCM LDUF STUF 

10 

c 0 c 1 c:=Q 1 

00 01 11 10 00 01 11 10 00 01 \I I 0 00 0 \ I\ 10 

00 
AN ANL ANR BR AD AOL ADR BCAS ADI ADHI AOBI LOI SHA ANH\ ANBI LOI 
40 41 43 42 so S1 S3 sz 70 71 73 72 60 61 63 62 

BAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LOIM 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI DRBI LOHI 
44 4S 47 46 S4 SS S7 S6 74 7S 77 76 64 6S 67 66 
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UCBSP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LOIM 

01 

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LDBI 

4C 40 4F 4E SC SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

lc~~~u ~XLH BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
MLOU CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM 

II 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 

4B 49 4B 4A SB S9 SB SA 7B 79 7B 7A 6B 69 68 6A 
BOW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 

CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 
I 0 

_Q_Q_ _Q_I 11 10 00 01 11 10 00 0 I 11 10 00 0 I 11 10 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TAZL 
co Cl C-3 CZ DO DI 03 02 FO F1 F3 F2 EO El E"3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 

C4 cs C7 C6 04 OS 07 06 F4 FS F7 F6 E4· ES E7 E6 
BOVW BOVH BOVB TZR MVW MVH MVB t:~~~~ LFA TPOL CBZR BOCW BOCH BOCB TAZR 

PPULO PPULO PPULO CRLO UAU UAU UAU LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 

cc CD Cl'" CE DC DD OF DE FC FD FF FE EC ED EF EE 
BXVW BXVH BXVB TOR CVNW CVNH CVNB c~W~ CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 

PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP SK UPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 
11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL 
CB C9 CB CA DB 09 OB DA FB F9 FB FA EB E9 EB EA 

BOVW BQVH BQVB TOL CVEW CVEH CVEB t~~J-R CCEW CCEH ~~5~pj CBOL BQCW BOCH BQCB TAOL 
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP SKUPP SK UPP CRSRT PPULO PPULO PPULO CRLO 

10 

00 0 I 11 I 0 00 0 I 11 I 0 00 01 11 10 00 01 11 10 

00 
LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO BI B3 BZ 90 91 9> 92 BO B1 B3 B2 AO A1 A3 A2 

LVW LVH LVB VPRT svw SVH SST~~p TRZL TZW TZH TZB XIZ TFZW TFZI-! TFZB 

LDPPU LOP PU LDPPU UCSRT STPTP STPTP RTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
B4 BS B7 B6 94 9S 97 96 84 BS B7 86 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW SFVH SFVB 1£!RZR TNW TNH TNB XIN TFNW TFNH TFNB 
LOP PU LOP PU LDPPU UCSRT STPTP STPTP STPTP RTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

01 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
LOP PU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCBLP 

11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB OBZ TP TPH TPB 
BB B9 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA 

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 
LOP PU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

10 

(A)124795 

Figure 4-88. Load CR (PILDCR) Op-Code Groups 

4-199 
Advanced Scientific Computer 



~------
01 11 1 0 

-oo 

...l2.ll 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10 

BC ST STL STR BCS CE CEL CER BC 
00 00 01 03 02 10 11 13 1 2 30 31 33 32 20 21 23 22 

NOP UC SFW SFLH s'v.i~~ u'i:~'f_Pj CWE CLHE CRHE ucx 
HOOP UCB STCM STHCM SKUCM SKUCM SKUCM UCB 

LO LOL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 14 1 S 17 16 34 3S 37 36 24 25 27 26 
LW LLH LRH LAB SW SLH SRH SAS CWN CLHN CRHN 

LDCM LDCM LDCM LDCM .STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

01 

LO LDL LOR LOA ST STL STR STA 
oc OD OF OE 1C 10 1F 1 E 3C 30 3F 3E 2C 20 2F 2E 
LXW LXLH Lll:Rlll LXAB sxw SXLH SXRH SXAB 

11 

LDCM LDCM LDCM LDCM STCM STHCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OB L~~L~ OB OA 18 19 18 1A 3B 39 38 3A 28 29 28 2A 

LXFW LXl"RH LX-· SXFW ~Mt~ SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LOUF STCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

10 

00 _Q_1 _ll 10 _Q_Q_ 01 11 10 00 01 11 1 0 00 01 11 10 

00 
AN AHL AHR BR AD AOL AOR BCAS ADI AOHI ADBI 'ff s:~ ANHI ANSI LOI 
40 41 43 42 so S1 S3 S2 70 71 73 61 63 62 

BAW BALH c~~~u UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LOHI 
44 4S 47 46 S4 SS S7 S6 74 7S 77 76 114 65 67 66 
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU CM LOU UCBLP CMAU CMAU CMAU UCBSP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

01 

EX EXL EXR SCA EXEC LDEA ANAZ BPC CHI CNHI CNBI LDBI SHC EXHI EXBI LDBI 
4C 40 4F 4E !SC SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

F~~u ~XLH ~~~~~ UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
MLOU UCB EXCM LEA ANCM UCB SKU1M SKUIM SKUtM LDIM SHFT IMLOU IMLOU LDIM 

, 1 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
4B 49 48 4A SB S9 SB SA 7B 79 7B 7A 6B 69 6B 6A 

BQW BQLH ~~~~u UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 
CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

10 

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TAZL 
co C1 C3 C2 DO 01 03 02 FO F1 F3 F2 EO E1 E3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU su·H SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 C!S C7 C6 04 OS 07 06 F4 FS F7 F6 E4· ES E7 E6 

BOVW BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR BOCW BOCH BOCB TAZR 
PPULO PPULO PPULO CRLO UAU UAU UAU RTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc CD CF CE DC DD OF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRTSR SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL 
CB cg CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 

BQVW ~tto BOVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BOCH BOCB TAOL 
PPULO PPULO CRLO SKUPP SKUPP SK UPP CRTSR SK UPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

, 0 

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10 

00 
LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO B1 B3 B2 90 91 9~ 92 BO B1 B3 B2 AO A1 A3 A2 

LVW L!..JLVH LVB VPRT svw SVH s~'i>1h TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
OPPU DPPU LDPPU UCSRT STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
B4 BS B7 B6 94 9S 97 96 B4 BS B7 B6 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LDPPU LOP PU LOPPU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

01 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB V.frii1 SFCW SFCH SFCB TROR TMW TMH TMB XON TFMW TFMH 
ri:..t"T"' 

UV 
LDPPU LDPPU LOP PU STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT UCBLP 

11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BB B9 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA 
LCW LCH LCB x;Tz sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 

LOP PU LDPPU LOP PU CT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT 
10 

(A)t 24796 

Figure 4-89. Load VPR (PILDVPR) Op-Code Groups 

4-200 Advanced Scientific Computer 



00 

QI 

11 

10 

00 

01 

11 

I 0 

00 

01 

11 

I 0 

00 

01 

11 

10 

01 II 1 0 

CoC 1 =DO 

PIAUGMPA 

_Q_Q_ 0 I II 10 00 -0 I II 10 00 01 II 10,, 00 0 I 11 10 

BC ~6 .., STL STR BCS CE CEL CER 1r 00 0 I 03 02 II I 3 I 2 30 31 33 20 21 23 22 
NOP UC SFW SFLH SFRH u~~t~ CWE CLHE CRHE ucx 

NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LO LDL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 14 I 5 , 7 16 34 35 37 36 24 25 27 26 

~~M 'n'c,~ ~~ 'n~'!. ..5,_i~M ~~ _:;_~~M 
SAB CWN CLHN CRHN 
STCM SKUCM SKUCM SKUCM 

LO LDL LOR LOA ST STL STR STA 
oc OD OF OE IC ID IF IE 3C 30 3F 3E 2C 20 2F 2E 

LXW LXLH LXRi.t LXAB SXW SXLH SXRH SXAB 
LDCM LDCM LDCM LDCM STCM 5THCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OB L~~L~ OB QA IB 19 IB IA 38 39 3B 3A 28 29 28 2A 

LXFW LXl"RH LXVP' SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM STUF LOCM LDCM LDCM LOUF STUF 

COCI =01 ,}-:
1 
PIAUGMPA 

00 01 II 10 00 01 II _J_Q_ 00 01 11 I 0 00 0, , , 10 

AN ANL ANR 
40 41 43 

BAW BALH BARH 
CM LOU CM LOU CM LOU 

OR ORL ORR 
44 45 47 
BOW BOLH BORH 

CM LOU CM LOU CM LOU 

EX EXL EXR 
4C 40 4F 

1c~lrnu i6'1XLH BXRH 
MLOU CM LOU 

EQ EQL EQR 
4B 49 4B 

BQW BQLH BQRH 
CM LOU CM LOU CM LOU 

_Q_O 0 I II 

AN ANH ANB 
CO CI C3 

BAVW BAVH BAVB 
PPULO PPULO PPULO 

OR ORH ORB 
C4 CS C7 

BOVW BOVH BOVB 
PPULO PPULO PPULO 

EX EXH EXB 
CC CD Cl'" 

BXVW BXVH BXVB 
PPULO PPULO PPULO 

BR 
42 
UR 
UCB 

BRS 
46 

URV 
UCB LP 

BCA 
4E 

UCAX 
UCB 

BCA 
4A 
UCA 
UCB 

10 

TZL 
C2 
TZL 

CRLO 

TZR 
C6 
TZR 

CRLO 

TOR 
CE 
TOR 
CRLO 

TOL 
CA 
TOL 

CRLO 

AD 
50 
AW 

CMAU 

SU 
54 

MW 
CMAU 

EXEC 
SC 

EXCM 
EXCM 

PUSH 
SB 

PSH 
PUSH 

00 

AD 
DO 

AVW 
UAU 

SU 
04 

MVW 
UAU 

AOL 
51 

ALH 
CMAU 

SUL 
55 

MLH 
CMAU 

LOEA 
SD 

LEA 
LEA 

PULL 
S9 

PUL 
PULL 

01 

ADH 
DI 

AVH 
UAU 

SUH 
OS 

MVH 
UAU 

ADR 
53 

ARH 
CMAU 

SUR 
57 

MRH 
CMAU 

ANAZ 
SF 

ANCM 
ANCM 

MOD 
5B 

MDF 
MDF 

11 

ADB 
03 

AVB 
UAU 

SUB 
07 

MVB 
UAU 

BCAS 
52 

UCAV 
UCBLP 

BRSM 
56 

UCAS 
UCBSP 

BPC 
SE 
ux 
UCB 

BPC 
SA 
u 
UCB 

10 

TSZL 
02 

TSZL 
CRTSR 

TSZR 
06 

TSZR 
CRTSR 

CN CNH CNB TSOR 
DC DD OF DE 

~:uN~Pj s~'G~~ s~~":,~ c~~~~ 
CE 
DB 

~~VEW 
:..KLIPP 

CEH CEB TSOL 
09 DB DA 

CVEH CVEB TSOL 
SKUPP SKUPP CRTSR 

~Pl RM APA 
~r 

.. 00 001' 0 I 1 I 1 0 0 I 11 10 

LO LOH LOB VPR ST STH STB TRZL 
BO BI B 3 B2 90 91 9~ 92 

L~::u L~~ L~~=u iJ6::T s~~~p ~-f:+ip SVB TRZL 
STPTP CRTSR 

LO LOH LOB VPS ST STH STB TRZR 
84 BS B7 B6 94 95 97 96 

/::6;f~ 1::6;/~u t~~=u ,J;;;T ;i:~ ~%~~ s%~i J:;:gR 
LO LOH LOB 
BC BO BF 

LFCW LFCH LFCB 
LDPPU LDPPU LDPPU 

LO 
BB 

~~~u 

LOH LOB
B9 BB

LCH LCB
LDPPU LOPPU

VPTO
BE

VPTO
UCT

ST
9C

SFCW
STPTP

STH STB TROR
90 9F 9E

SFCH SFCB TROR
STPTP STPTP CRTSR

VPTZ ST STH STB TROL
BA 9B 99 9B 9A

Y,";;~7 s5r'i>~P si~~P s~~~P ci'i~'R

ADI
70

AIW
IMAU

SUI
74

MIW
IMAU

CNI
7C

CINW
SKUIM

CEI
78

CIEW
SKUIM

00

FO

LOMB
F4
LFA

LOLFA

ADHI
71

AIH
IMAU

SUHI
75

MIH
IMAU

CNHI
70

CINH
SKUIM

CEHI
79

CIEH
SKUIM

01

F1

PULL
FS

TPOL
TPOL

ADBI
73

AIB
IMAU

SUBI
77

MIB
IMAU

CNBI
7F

CINB
SKUIM

CEBI
7B

CIEB
SKUIM

11

F3

F7

CN CNH CNB
FC FD FF

s<fc~~~ s<fc~~':, s<fc~~':,

LOI
72

LIW
LDIM

LDHI
76

LIM
LDIM

LDBI
7E

LIB
LDIM

7A

10

RL
F2

CBZL
CRSRT

RR
F6

CBZR
CRSRT

SR
FE

CBOR
CRSRT

SHA ANHI ANBI
60 61 63

SHA BAIH BAIB
SHFT IMLOU IMLOU

SHL ORHI ORBI
114 65 67

SHL BOIH BOIB
SHFT IMLOU IMLOU

SHC EXHI EXBI
6C 60 6F

SHC BXIH BXIB
SHFT IMLOU IMLOU

EQHI EQBI
6B 69 6B

BQIH BQIB
IMLOU IMLOU

00 01 11

~ A~~ ~N3B
BACW BACH BACB

PPULO PPULO PPULO

OR ORH ORB
E4· ES E7

BOCW BOCH BOCB
PPULO PPULO PPULO

LOI
62

LFIW
LDIM

LDHI
66

LFIH
LDIM

LDBI
6E

LFIB
LDIM

6A

10

TAZL
E2

TAZL
CRLO

TAZR
E6

TAZR
CRLO

EX EXH EXB TAOR
EC ED EF EE

BXCW BXCH BXCB TAOR
PPULO PPULO PPULO CRLO

CE CEH CEB SL EQ EQH EQB TAOL
FB F9 FB FA EB E9 EB EA

~.fJt'~ ~.fJ~p ~~G~P g,f~.fr ~~J~ ~~J~o ~~~o t~E5

~ PIRMAPA-=:Jf
00

TZ
BO

TZW
CBAT

TN
B4

TNW
CBAT

TM
BC

TMW
CBAT

TP
BB
TPW

CBAT

0 I

TZH
Bl

TZH
CBAT

TNH
B5
TNH

CBAT

TMH
BO
TMH

CBAT

TPH
89

TPH
CBAT

II

TZB
B3

TZB
CBAT

TNB
B7

TNB
CBAT

TMB
BF

TMB
CBAT

TPB
BB
TPB

CBAT

10

IBZ
B2

XIZ
CBIMD

IBN
B6

XIN
CBIMD

DBN
BE

XDN
CBIMD

DBZ
BA

XDZ
CBIMD

00

TZ
AO

TFZW
CBAT

Ti~

A4
TFNW
CBAT

TM
AC

TFMW
CBAT

TP
AB

TFPW
CBAT

01

TZH
A1

TFZH
CBAT

TNH
AS

TFNH
CBAT

TMH
AD

TFMH
CBAT

TPH
A9

TFPH
CBAT

11

TZB
A3

TFZB
CBAT

TNB
A7

TFNB
CBAT

TMB
AF

TFMB
CBAT

TPB
AB

TFPB
CBAT

10

A2

A6

BPCS
AE
UV

UCB LP

AA

(A)t 24797

Figure 4-90. Remapped and Augmented Remapped Op-Code Groups

4-201 Advanced Scientific Computer

C 2C 3 - 00 01 11 1 0

CoC1 =00

\ J
_Q_Q Ul 11 10 00 01 11 10 00 01 11 10 00 01 11 10

BC ST STL STR BCS CE CEL CER BC
00 00 01 03 02 10 11 13 1 2 30 31 33 32 20 21 23 22

NOP UC SFW SFLH SFRH u~~y_~ CWE CLHE CRHE ucx
HOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB

LO LDL LOR LOA ST STL STR STA CN CNL CNR
04 OS 07 06 14 1 S 17 16 34 3S 37 36 24 25 27 26
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN

LOCM LOCM LDCM LDCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM

01

LO LDL LOR LOA ST STL STR STA
oc OD OF OE IC 10 1 F t E 3C 30 3F 3E 2C 20 2F ZE

LXW LXLH Lll:Rlrl LXAB sxw SXLH SXRH SXAB
11

LDCM LDCM LDCM LDCM STCM STHCM STHCM STCM

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF
OB L~~L~ OB OA 1 B 19 tB 1A 3B 39 3B 3A 2B 29 28 2A

LXFW LXl"RH LXVP· SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP
LDCM LDCM LDCM LOUF STCM STHCM STHCM STUF LDCM LDCM LDCM LDUF STUF

10

c 0 c 1 =01

00 01 11 10 00 01 11 10 00 01 11 1 0 00 01 11 1 0

00
AN AHL AHR BR AD AOL AOR BCAS ADI ADHI ADBI LOI SHA ANHI ANBI LDI
40 41 43 42 so S1 S3 S2 70 71 73 72 60 61 63 62

BAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW
CMLDU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LDIM

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBJ LDHI SHL ORHI ORBI LDHI
44 4S 47 46 S4 SS s7 S6 74 7S 77 76 114 6S 67 66
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UCBSP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LOIM

01

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LDBI
4C 40 4F 4E 5C so SF SE 7C 70 7F 7E 6C 6D 6F 6E

lc~~~u ~XLH BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB
MLOU CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM

11

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI
4B 49 4B 4A SB S9 SB sA 7B 79 7B 7A 6B 69 6B 6A

BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB
CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IM LOU

10

...ll.Q_ 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10

00
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TAZL
co Cl C3 C2 DO 01 03 02 FO Fl F3 F2 EO El I' 3 E2

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR
C4 cs C7 C6 04 Os 07 06 F4 FS F7 F6 E4 Es E7 E6

BOVW BOVH BOVB TZR MVW MVH MVB 1ciSZR LFA TPOL CBZR BOCW BOCH BOCB TAZR
PPULO PPULO PPULO CRLO UAU UA!J UAU RTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO

01

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR
cc CD Cl" CE DC DD OF OE FC FD FF FE EC ED EF EE

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO

11

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB -rAOL
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA

BQVW BOVH BQVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BOCH BQCB TAOL
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRT SR SK UPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO

10

CoC1=10

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 1 0

00

LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB
BO B 1 B3 B2 90 91 9> 92 BO 81 83 B2 AO At A3 AZ

LVW LVH LVB VPRT svw SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB
LOP PU LDPPU LOP PU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB 18N Tl~ TNH TNB
B4 BS B7 B6 94 95 97 96 B4 BS 87 86 A4 AS A7 A6

LFVW LFVH LFVB VPST SFVW SFVH SFV8 TRZR TNW TNH TNB XIN TFNW TFNH TFNB
LOP PU LOP PU LOP PU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT

01

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB 08N TM TMH TM8 BPCS
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV
LOP PU LDPPU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCB LP

11

LO LOH LOB VPTZ ST STH STB TROL TP TPH TP8 08Z TP TPH TPB
BB B9 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA
LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB

LOP PU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT
10

(A)t 24798

Figure 4-91. PIRMAPA · ,PIAR(l) Remapped Op-Code Groups

4-202 Advanced Scientific Computer

-2.!L 0 I 11 10 00

BC ST
00 00 0 I 03 02 I 0

NOP UC SFW
NOOP UCB STCM

LO LDL LOR LOA ST
04 OS 07 06 'I 4 01
LW LLH LRH LAB SW

LDCM LDCM LDCM LDCM STCM

LO LDL LOR LOA ST
oc OD OF OE IC

LXW LXLH L.XRM LXAB sxw
11

LDCM LDCM LDCM LDCM STCM

LO LDL LOR LDF ST
OB L~~L~ OB OA 1B

LXFW LXP'RH LXVP'. SXFW
LDCM LDCM LDCM LDUF STCM

10

it AUGMENTED
00 01 11 10 00

AN ANL ANR BR AD
00 40 41 43 42 50

BAW BALH BARH UR AW
CM LOU CM LOU CMLOU UCB CMAU

OR ORL ORR BRS SU
01 44 4S 47 46 54

BOW BOLH BORH URV MW
CM LOU CM LOU CM LOU UCB LP CMAU

EX EXL EXR BCA EXEC
4C 40 4F 4E 5C I I

~~~~u ~XLH BXRH UCAX EXCM 
MLOU CM LOU UCB EXCM 

EQ EQL EQR BCA PUSH 
4B 49 4B 4A SB 

BQW BQLH BQRH UCA PSH 10 
CM LOU CM LOU CM LOU UCB PUSH 

00 01 11 10 00 

AN ANH ANB TZL AD 
00 co C1 C3 C2 DO 

BAVW BAVH BAVB TZL AVW 
PPULO PPULO PPULO CRLO UAU 

OR ORH ORB TZR SU 
01 C4 cs C7 C6 04 

BOVW BOVH BOVB TZR MVW 
PPULO PPULO PPULO CRLO UAU 

EX EXH EXB TOR CN 
cc CD CP' CE DC 

BXVW BXVH BXVB TOR ~:if~ PPULO PPULO PPULO CRLO 
11 

EQ EQH EQB TOL CE 
10 CB C9 CB CA DB 

BOVW BQVH BQVB TOL CVEW 
PPULO PPULO PPULO CRLO SKUPP 

00 0 I 11 10 00 

LO LOH LOB VPR ST 
00 BO B1 B3 B2 90 

LVW LVH LVB VPRT svw 
LOP PU LOP PU LDPPU UC5RT STPTP 

LO LOH LOB VPS ST 
B4 BS B7 B6 94 

LFVW LFVH LFVB VPST SFVW 01 

LOP PU LDPPU LDPPU UCSRT STPTP 

LO LOH LOB VPTO ST 
11 BC BO BF BE 9C 

LFCW LFCH LFCB VPTO SFCW 
LDPPU LOP PU LOPPU UCT STPTP 

LO LOH LOB VPTZ ST 
BB B9 BB BA 9B 
LCW LCH LCB VPTZ sew 10 

LOP PU LOP PU LOP PU UCT STPTP 

(A)t 24799 

01 

01 

STL 
II 

SFLH 
STHCM 

STL 
Is 

SLH 
STHCM 

STL 
ID 

SXLH 
STHCM 

STL 
19 

SXFLH 
STHFM 

01 

AOL 
51 

ALH 
CMAU 

SUL 
SS 

MLH 
CMAU 

LDEA 
SD 

LEA 
LEA 

PULL 
59 

PUL 
PULL 

01 

ADH 
01 

AVH 
UAU 

SUH 
OS 

MVH 
UAU 

CNH 
DD 

CVNH 
SK UPP 

CEH 
09 

CVEH 
SKUPP 

01 

STH 
91 
5VH 

STPTP 

STH 
9S 

SFVH 
STPTP 

STH 
90 

SFCH 
STPTP 

STH 
99 

SCH 
STPTP 

11 10 

STR BCS 
I 3 I 2 

SFRH u~~~Pj STHCM 

STR STA 
17 I 6 

SRH SAB 
STHCM STCM 

STR STA 
1F IE 

SXRH SXAB 
STHCM STCM 

STR STF 

S~~R.~ 1A 
SXVP 

STHCM STUF 

c 0 

11 

c 

ADR 
53 

ARH 
CMAU 

SUR 
S7 

MRH 
CMAU 

ANAZ 
SF 

ANCM 
ANCM 

MOD 
SB 

MDF 
MDF 

11 

ADB 
03 

AVB 
UAU 

SUB 
07 

MVB 
UAU 

CNB 
OF 

CVNB 
SK UPP 

CEB 
OB 

CVEB 
SK UPP 

11 

STB 
9~ 

SVB 
STPTP 

STB 
97 

SFVB 
STPTP 

STB 
9F 

SFCB 
STPTP 

STB 
9B 

SCB 
STPTP 

=01~ 
10 

BCAS 
52 

UCAV 
UCBLP 

BRSM 
56 

UCAS 
UCBSP 

BPC 
SE 
ux 
UCB 

BPC 
SA 
u 
UCB 

10 

T5ZL 
02 

TSZL 
CRTSR 

TSZR 
06 

1ciSZR RTSR 

TSOR 
OE 

TSOR 
CRTSR 

TSOL 
DA 

TSOL 
CRTSR 

10 

TRZL 
92 

TRZL 
CRTSR 

TRZR 
96 

TRZR 
CRTSR 

TROR 
9E 

TROR 
CRTSR 

TROL 
9A 

TROL 
CRTSR 

I I 10 

00 01 11 10 00 01 11 10 

CE CEL CER BC 
30 31 33 32 20 21 23 22 

CWE CLHE CRHE ucx 
SKUCM SKUCM SKUCM UCB 

CN CNL CNR 
34 3S 37 36 24 25 27 26 

CWN CLHN CRHN 
SKUCM SKUCM SKUCM 

3C 30 3F 3E 2C 20 2F 2E 

LO LDL LOR LDF STF 
3B 39 3B 3A 2B 29 2B 2A 

LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STUF 

AUGMENTED 
00 01 11 1 0 00 01 11 1 0 

ADI ADHI ADBI LOI SHA ANHI ANBI LOI 
70 71 73 72 60 61 63 62 

AIW AIH AIB LIW SHA BAIH BAIB LFIW 
IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

SUI SUHI SUBI LDHI SHL ORHI ORBI LDHI 
74 75 77 76 114 6S 67 66 

MIW MIH MIB LIM SHL BOIH BOIB LFIH 
IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

CNI CNHI CNBI LDBI SHC EXHI EXBI LDBI 
7C 70 7F 7E 6C 60 6F 6E 

CINW CINH CINB LIB SHC BXIH BXIB LFIB 
SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM 

CEI CEHI CEBI EQHI EQBI 
7B 79 7B 7A 6B 69 6B 6A 

CIEW CIEH CIEB BQIH BQIB 
SKUIM SKUIM SKUIM IMLOU IMLOU 

00 01 II 10 00 01 11 10 

RL AN ANH ANB TAZL 
FO F1 F3 F2 EO E1 E"3 E2 

CBZL BACW BACH BACB TAZL 
CRSRT PPULO PPULO PPULO CRLO 

LOMB PULL RR OR ORH ORB TAZR 
F4 FS F7 F6 E4· ES E7 E6 

LFA TPOL CBZR BOCW BOCH BOCB TAZR 
LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

CN CNH CNB SR EX EXH EXB TAOR 
FC FD FF FE EC ED EF EE 

CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

CE CEH CEB SL EQ EQH EQB TAOL 
FB F9 FB FA EB E9 EB EA 

CCEW CCEH CCEB CBOL BQCW BOCH BOCB TAOL 
5KUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

00 0 I 11 10 00 01 11 10 

TZ TZH TZB IBZ TZ TZH TZB 
BO B1 B3 B2 AO Al A3 A2 

TZW TZH TZB XIZ TFZW TFZH TFZB 
CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

TN TNH TNB IBN TN TNH TNB 
B4 BS B7 B6 A4 AS A7 A6 

TNW TNH TNB XIN TFNW TFNH TFNB 
CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE AC AD AF AE 

TMW TMH TMB XDN TFMW TFMH TFMB UV 
CBAT CSAT CBAT CBIMD CBAT CBAT CBAT UCB LP 

TP TPH TPB DBZ TP TPH TPB 
BB B9 BB BA AB A9 AB AA 
TPW TPH TPB XDZ TFPW TFPH TFPB 

CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

Figure 4-92. IPIRD(2) Remapped Op-Code Groups 

4-203 
Advanced Scientific Computer 



~ 
C zC 3 - 00 01 11 10 

C5 C 7 Co C 1 =00 
C4C5 

\ l 
00 ·01 11 10 00 01 11 , 0 00 0, 1, , 0 00 01 11 10 

BC ST STL STR BCS CE CEL CER BC 
00 00 01 03 02 10 11 , 3 , 2 30 31 33 32 20 21 2 l 2 2-

NOP UC SFW SFLH SFRH u~~t"i CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LO LDL LOR LOA ST STL STR STA CN CNL CNR 
01 04 05 07 06 14 , 5 17 16 34 3S 37 36 24 25 27 26 

LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 
LDCM LDCM LDCM LOCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

LO LDL LOR LOA ST STL STR STA 
, 1 oc OD OF OE IC 10 IF 1 E 3C 30 3F 3E 2C 20 2F 2E 

LXW LXLH LXRH LXAB sxw SXLH SXRH SXAB 
LOCM LOCM LDCM LDCM STCM 5THCM STHCM STCM 

I LO LOL LOR LDF ST STL STR STF LO LDL LOR LOF STF 
08 L~fL~ OB OA 1 B 19 1B IA 38 39 3B 3A 28 29 28 2A 

10 l~XFW LXl"RH LXVP'. SXFW SXFLH SXFRH ~~~~ LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM LOCM LDCM LOCM LDUF STUF 

AUGMENTED~ll"" c 0 c 1 ~01 

00 01 11 10 00 0, 11 10 00 01 11 1 0 00 01 11 1 0 

AN ANL ANR BR AD 

~ 
ADR BCAS ADI ADHI ADBI LOI SHA ANHI ANSI LOI 

00 40 41 43 42 so 53 52 70 71 73 72 60 61 63 62 
BAW BALH BARH UR AW ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 

CM LOU CM LOU CM LOU UCB CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

OR ORL ORR BRS SU SUL ~ BRSM SUI SUHI SUSI LDHI SHL ORHI ORSI LDHI 
01 44 45 47 46 54 55 S6 74 7S 77 7G 84 6S G7 66 

BOW BOLH BORH URV MW MLH ~AS MIW MIH MIB LIM SHL BOIH 8018 LFIH 
CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU BSP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

EX EXL EXR BCA EXEC LOEA ANAZ BPC CHI CNHI CNBI LDBI SHC EXHI EXBI LDBI 
11 4C 40 4F 4E 5C so SF SE 7C 70 7F 7E 6C GD GF GE 

BXW ~XLH BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 

FM LOU MLOU CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 

1 0 48 49 48 4A SB S9 SB SA 78 79 7B 7A 68 69 GB GA 
BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 

CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

C 0 c 1 =-1 t 

_Q_O 01 11 10 00 01 , 1 10 00 01 11 10 00 0, 11 10 

AN ANH ANB TZL AD ADH ADS TSZL RL AN ANH ANS TAZL 
co Cl C3 CZ DO 01 03 02 FO F1 F3 F2 EO El E" 3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

00 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 cs C7 CG 04 OS 07 DG F4 FS F7 FG E4 ES E7 EG 

sovw BOVH BOVB TZR MVW MVH MVB lc~SZR LFA TPOL CBZR BOCW BOCH BOCB TAZR 
PPULO PPULO PPULO CRLO UAU UAU UAU RTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

11 
EX EXH EXB TOR CN CNH CNS TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc co CF CE DC DD OF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR ~:.r:~ CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SK UPP SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL 
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 

BQVW BQVH eave TOL S~VEW ~VEH CVEB TSOL 1,f.fLEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 
PPULO PPULO PPULO CRLO KUPP KUPP SK UPP CRTSR pp SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

10 

00 0 1 , 1 10 00 0, 11 10 00 01 , , 10 00 0 I 11 1 0 

LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH T28 
BO B 1 B3 B2 90 91 9' 92 BO 81 83 82 AO A1 A3 AZ 
LVW LVH LVB VPRT svw 1s-f~-rp SVB TRZL TZW T2H TZB XIZ TFZW TFZH TFZB 

LOP PU LOP PU LDPPU UCSRT STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 
00 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN HI TNH TNB 
B4 BS B7 BG 94 9S 97 9G 84 BS 87 BG A4 AS A7 A6 

LFVW .LFVH LFVB UV~~~ SFVW lsSFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LDPPU LOP PU LDPPU STPTP TPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

01 

11 
LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
LOP PU LDPPU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT UCB LP 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BB B9 BB BA 98 99 9B 9A BB 89 BB BA AB A9 AB AA 

LCW LCH LCB VPTZ s~~~,J SCH see TROL TPW TPH TPB xoz TFPW TFPH TFPB 
LOP PU LOP PU LOP PU UCT STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

10 

(A)t 24800 

Figure 4-93. 1PIRD(3) Remapped Op-Code Groups 

4-204 
Advanced Scientific Computer 



C zC 3 - 00 01 , , 10 

Co C 1 

\ l 
__QJl._ 0, 11 10 00 01 11 I 0 00 01 11 I 0 00 0 I 11 10 

BC ST STL STR BCS CE CEL CER BC 
00 00 0 I 03 02 I 0 11 I 3 I 2 30 31 33 32 20 21 23 22 

NOP UC SF'W SF'LH SFRH 
u'2'i.'LP 

CWE CLHE CRHE ucx 
NOOP UCB STCM 5THCM STHCM SKUCM SKUCM SKUCM UCB 

LO LDL LOR LOA ST STL STR STA CN CNL CNR 
04 05 07 06 I 4 15 17 16 34 35 37 36 24 25 27 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

01 

LDCM LDCM LDCM LOCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

LD LDL LOR LOA ST STL STR STA 
11 QC OD OF' OE IC ID IF IE 3C 30 3F 3E 2C 20 2F 2E 

LXW LXLH LXRi.t LXAB sxw SXLH SXRH SXAB 
LDCM LDCM LDCM LDCM STCM 5THCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
08 L~~Lt1 

OB OA 18 19 IB IA 38 39 3B 3A 2B 29 2B 2A 
LXFW LXl'RH LXVI". SXFW SXFLH N~~:j SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LOUF STCM STHCM STUF LDCM LDCM LOCM LDUF STUF 

10 

~AUGMENTED coc1 =01 '-AUGMENTED 

00 01 II I 0 00 QI 11 10 00 01 11 10 00 QI 11 10 

AN ANL ANR BR AD AOL ADR 
BC~ ADI ADHI ADBJ LOI SHA ANHI ANBI LOI 

40 41 43 42 50 51 53 52 70 71 73 72 60 61 63 62 
BAW BALH BARH UR AW ALH ARH UCA AIW AIH AIB LIW SHA BAIH BAIB LFIW 

CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCB IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

00 

OR ORL ORR BRS SU SUL SUR i SUI SUHI SUB! LDHI SHL ORHI ORBI LDHI 
44 45 47 46 54 55 57 74 75 77 76 64 65 67 66 
BOW BOLH BORH URV MW MLH MRH MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UC P IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LOIM 

01 

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LDBI 
4C 40 41" 4E SC 50 SF SE 7C 70 71" 7E 6C 60 6F 6E 

BXW ic8~~~u SXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
MLOU CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKU•M LDIM SHFT IMLOU IMLOU LDIM 

11 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
4B 49 4B 4A S8 S9 5B SA 78 79 7B 7A 6B 69 6B 6A 

BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 
CM LOU CM LOU CM LOU UCB PUSH PULL MOF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

I 0 

00 0 1 II 10 00 0 I 11 10 00 QI II 10 00 0 I 11 I 0 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TAZL 

co Cl C3 C2 DO DI 03 02 FO F 1 F3 F' 2 EO EI E" 3 E2 
BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 

PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 

C4 cs C7 C6 04 05 07 06 F4 F5 F7 F6 E4 ES E7 E6 
eovw BOVH so vs TZR MVW MVH MVB TSZR LFA TPOL CBZR BOCW BOCH socs TAZR 

PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

0 I 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 

cc CD Cl' CE DC DD OF DE FC F'D F'F FE EC ED EF EE 
BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRT SR SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL 

CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 
BQVW BQVH BQVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 

PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRT SR SK UPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

I 0 

CoC1 =10 

00 0 I 11 IQ 00 0 I 11 10 00 O I 11 10 00 0 I 11 1 0 

00 
LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO Bl 83 B2 90 91 9' 92 BO Bl B3 B2 AO Al A3 A2 

LVW LVH LVB VPRT svw SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZ~ TFZB 

LDPPU LOP PU LDPPU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

LD LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN Hl TNH TNB 
B4 BS B7 B6 94 9S 97 96 B4 B5 B7 B6 A4 AS A7 A6 

LFVW LFVH LFVS VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 

LDPPU LDPPU LOP PU UCSRT STPTP STPTP STPTP CRT SR CBAT CSAT CBAT CBIMD CBAT CBAT CBAT 
01 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
LDPPU LDPPU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCB LP 

11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
8B B9 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA 

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 

LOP PU LDPPU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

I 0 

(A)124801 

Figure 4-94. IPIRD(4) Remapped Op-Code Groups 

4-205 Advanced Scientific Computer 



00 

01 

II 

10 

. \ l 
_Q_Q_ • 0 I II 

00 
NOP 

NOOP 

LO 
04 
LW 

LDCM 

LO 
oc 

LXW 
LDCM 

LO 
OB 

LXFW 
LDCM 

01 

LDL 
05 

LLH 
LDCM 

LDL 
OD 

LXLH 
LDCM 

03 

LOR 
07 
LRH 

LDCM 

LOR 
OF 

LlliRM 
LDCM 

LDL LOR 

L~~L~ L~:RH 
LDCM LDCM 

10 

BC 
02 
UC 
UCB 

LOA 
06 
LAB 

LDCM 

LOA 
OE 

LXAB 
LDCM 

AUGMENTED 
00 01 II 10 

AN ANL ANR BR 
40 41 43 42 

BAW BALH BARH UR 00 
CM LOU CM LOU CMLOU UCB 

OR ORL ORR BRS 
01 44 45 47 46 

BOW BOLH BORH URV 
CM LOU CM LOU CM LOU UCB LP 

EX EXL EXR BCA 
4C 40 4F 4E II 

lc~xw ~XLH BXRH UCAX 
MLOU ICMLOU CM LOU UCB 

EQ EQL EQR BCA 
4B 49 4B 4A 

BQW BQLH BQRH UCA I 0 

CM LOU CM LOU CM LOU UCB 

Jl..Q. ...Q_I II 10 

AN ANH ANB TZL 
00 co Cl C3 C2 

BAVW BAVH BAVB TZL 
PPULO PPULO PPULO CRLO 

~ ORH ORB TZR 
01 C4 C5 C7 C6 

BOVW p~'(.'t, eave TZR 
PPULO PPULO CRLO 

EX EXH EXB TOR 
cc CD Cl" CE 

BXVW i;,xvH BXVB TOR 
PPULO PULO PPULO CRLO 

II 

EQ EQH EQB TOL 
10 CB C9 CB CA 

BQVW BQVH BQVB TOL 
PPULO PPULO PPULO CRLO 

00 0 I II 10 
r---

LO LOH LOB VPR 
BO Bl B3 B2 

h.~::u IL LVH LVB VPRT 
DPPU LDPPU UCSRT 

00 

LO LOH LOB VPS 
B4 BS B7 B6 

LFVW LFVH LFVB VPST 01 
LDPPU LOP PU LDPPU UCSRT 

LO LOH LOB VPTO 
11 BC BO BF BE 

LFCW LFCH LFCB VPTO 
LDPPU LDPPU LDPPU UCT 

LO LOH LOB VPTZ 
BB 99 BB BA 
LCW LCH LCB VPTZ 

I 0 

LDPPU LOP PU LDPPU UCT 

(A)t 24802 

01 11 

=00 

00 01 11 10 00 01 II 

ST STL STR BCS CE CEL CER 
I 0 I I I 3 I 2 30 3 I 3 3 

sVc~ sVtt'tM s%~':.i u~~'LPI s~~€M ;~~€M ;:~€M 
ST STL STR STA 
I 4 I 5 17 I 6 
SW SLH SRH SAB 

.STCM STHCM STHCM STCM 

ST STL STR STA 
IC ID IF IE 

;+c~M s\~ s\~~ ~~'6~ 

00 0 I II 10 

AD AOL ADR BCAS 
50 51 53 52 
AW ALH ARH UCAV 

CMAU CMAU CMAU UCBLP 

SU SUL SUR BRSM 
54 5S S7 S6 

MW MLH MRH UCAS 
CMAU CMAU CMAU UCBSP 

EXEC LDEA ANAZ BPC 
!IC SD SF SE 

EXCM LEA ANCM ux 
EXCM LEA ANCM UCB 

PUSH PULL MOD BPC 
SB S9 SB SA 

PSH PUL MDF u 
PUSH PULL MDF UCB 

00 01 II 10 

AD ADH ADB TSZL 
DO DI 03 02 

AVW AVH· AVB TSZL 
UAU U.AU UAU CRTSR 

SU SUH SUB TSZR 
04 OS 07 06 

MVW MVH MVB jc~\2;;~ UAU UAU UAU 

CN CNH CNB TSOR 
DC OD OF DE 

~:S~PI CVNH CVNB TSOR 
SKUPP SK UPP CRTSR 

CE CEH CEB TSOL 
DB 09 DB DA 

CVEW CVEH CVEB TSOL 
SKUPP SKUPP SK UPP CRTSR 

00 0 I II I 0 

ST STH STB TRZL 
90 91 9~ 92 

ls~~~p h_;:.rp SVB TRZL 
STPTP CRTSR 

ST STH STB TRZR 
94 9S 97 96 

SFVW SFVH SFVB TRZR 
STPTP STPTP STPTP CRTSR 

ST STH STB TROR 
9C 90 9F 9E 

SFCW SFCH SFCB TROR 
STPTP STPTP STPTP CRTSR 

ST STH STB TROL 
9B 99 99 9A 

s\~~P SCH see TROL 
STPTPj STPTP CRTSR 

CN CNL CNR 
34 35 37 

CWN CLHN CRHN 
SKUCM SKUCM SKUCM 

3C 

LO 
3B 

LFW 
LDCM 

00 

ADI 
70 

AIW 
IMAU 

SUI 
74 

MIW 
IMAU 

CNI 
7C 

CINW 
SKUIM 

CEI 
7B 

CIEW 
SKUIM 

00 

FO 

LOMB 
F4 
LFA 

LDLFA 

CN 
FC 

CCNW 
SKUPP 

CE 
FB 

CCEW 
SKUPP 

00 

TZ 
BO 

TZW 
CBAT 

TN 
94 

TNW 
CBAT 

TM 
BC 

TMW 
CBAT 

TP 
BB 
TPW 

CBAT 

30 

LDL 
39 

LFLH 
LDCM 

01 

ADHI 
71 

AIH 
IMAU 

SUHI 
7S 

MIH 
IMAU 

CNHI 
70 

CINH 
SKUIM 

CEHI 
79 

CIEH 
SKUIM 

01 

F1 

PULL 
FS 

TPOL 
TPOL 

CNH 
FD 

CCNH 
SK UPP 

CEH 
F9 

CCEH 
SK UPP 

0 I 

TZH 
Bl 

TZH 
CBAT 

TNH 
BS 

TNH 
CBAT 

TMH 
BO 
TMH 

CBAT 

TPH 
99 

TPH 
CBAT 

3F 

LOR 
39 

LFRH 
LDCM 

11 

ADBI 
73 

AIB 
IMAU 

SUBI 
77 

MIB 
IMAU 

CNBI 
7F 

CINB 
SKUIM 

CEBI 
7B 

CIEB 
SKUIM 

II 

F3 

F7 

CNB 
FF 

CCNB 
SKUPP 

CEB 
FB 

CCEB 
SKUPP 

II 

TZB 
93 

TZB 
CBAT 

TNB 
97 

TNB 
CBAT 

TMB 
BF 

TMB 
CBAT 

TPB 
BB 
TPB 

CBAT 

10 

BC 
32 

ucx 
UCB 

36 

3E 

LDF 
3A 

LVP 
LOUF 

I 0 

LOI 
72 

LIW 
LDIM 

LDHI 
76 

LIM 
LDIM 

LDBI 
7E 

LIB 
LDIM 

7A 

I 0 

RL 
F2 

CBZL 
CRSRT 

RR 
F6 

CBZR 
CRSRT 

SR 
FE 

CBOR 
CRSRT 

SL 
FA 

CBOL 
CRSRT 

10 

IBZ 
92 

XIZ 
CBIMO 

IBN 
96 

XIN 
CBIMD 

DBN 
BE 
XDN 

CBIMD 

DBZ 
BA 

XDZ 
CBIMO 

00 

20 

24 

2C 

28 

00 

SHA 
60 

SHA 
SHFT 

SHL 
114 

SHL 
SHFT 

SHC 
6C 
SHC 

SHFT 

68 

00 

AN 
EO 

BACW 
PPULO 

"'IT 
BOCW 
PPULO 

EX 
EC 

BXCW 
PPULO 

EQ 
EB 

BQCW 
PPULO 

00 

TZ 
AO 

TFZW 
CBAT 

TN 
A4 

TFNW 
CBAT 

TM 
AC 

TFMW 
CBAT 

TP 
AB 

TFPW 
CBAT 

0 I 

21 

25 

20 

29 

01 

ANHI 
61 

BAIH 
IMLOU 

ORHI 
6S 

BOIH 
IMLOU 

EXHI 
60 

BXIH 
IMLOU 

EQHI 
69 

BQIH 
IMLOU 

0 I 

ANH 
E1 

BACH 
PPULO 

ORH 
ES 

BOCH 
PPULO 

EXH 
ED 

BXCH 
PPULO 

EQH 
E9 

BOCH 
PPULO 

0 I 

TZH 
Al 

TFZH 
CBAT 

TNH 
AS 

TFNH 
CBAT 

TMH 
AD 

TFMH 
CBAT 

TPH 
A9 

TFPH 
CBAT 

10 

11 

23 

27 

2F 

2B 

11 

ANBI 
63 

BAIB 
IMLOU 

ORBI 
67 

BOIB 
IMLOU 

EXBI 
6F 

BXIB 
IMLOU 

EQBI 
69 

BQIB 
IMLOU 

II 

ANB 
c3 

BACB 
PPULO 

ORB 
E7 

BOCB 
PPULO 

EXB 
EF 

BXCB 
PPULO 

EQB 
EB 

BQCB 
PPULO 

11 

TZB 
A3 

TFZB 
CBAT 

TNB 
A7 

TFNB 
CBAT 

TMB 
AF 

TFMB 
CBAT 

TPB 
AB 

TFPB 
CBAT 

10 

22 

26 

2E 

STF 
2A 

SVP 
STUF 

1 0 

LOI 
62 

LFIW 
LDIM 

LDHI 
66 

LFIH 
LOIM 

LDBI 
6E 

LFIB 
LDIM 

6A 

10 

TAZL 
E2 

TAZL 
CRLO 

TAZR 
E6 

TAZR 
CRLO 

TAOR 
EE 

TAOR 
CRLO 

TAOL 
EA 

TAOL 
CRLO 

I 0 

A2 

A6 

BPCS 
AE 
UV 

UCB LP 

AA 

Figure 4-95. 1PIRD(5) Remapped Op-Code Groups 

4-206 Advanced Scientific Computer 



C 2C 3 - 00 0 I 11 1 0 

=00 

\ l 
__Q_Q_ 0 I II 10 00 01 11 I 0 00 0 I I I 10 00 0 I 11 10 

BC ST STL STR BCS CE CEL CER BC 
00 00 0 I 03 02 I 0 11 1 3 1 2 30 31 33 32 20 2 I 23 22 

NOP I UC SFW SFLH 5FRH ulf:~'LPl CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LD LDL LOR LOA ST STL STR STA CN CNL CNR 
04 05 07 06 I 4 I 5 17 16 34 35 37 36 24 25 27 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

LDCM LOCM LDCM LOCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

0 I 

LO LDL LOR LOA ST STL STR STA 
oc OD OF OE 1C ID IF IE 3C 30 3F 3E 2C 20 2F 2E 

LXW LXLH LXRM LXAB sxw SXLH SXRH SXAB 
I I 

LDCM LDCM LDCM LDCM STCM STHCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OB L~~L~ OB OA I B 19 IB IA 3B 39 3B 3A 28 2g 28 2A 

LXFW LXFRH LX~ SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LOUF STCM STHCM STHCM STUF LOCM LOCM LDCM LDUF STUF 

10 

c 0 c 1 =o1 

00 0 I II 10 00 0 I II I 0 00 01 I 1 1 0 on 0 I 11 1 0 

00 
AN ANL ANR BR AD AOL ADR BCAS ADI AOHI ADBI LOI SHA ANHI ANBI LOI 
40 41 43 42 50 51 53 52 70 71 73 72 60 61 63 62 

BAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LOHI 
44 45 47 46 54 55 57 56 74 75 77 76 114 65 67 66 
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UCBSP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LDIM 

0 I 

EX EXL EXR BCA EXEC LDEA A.NAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LOBI 
4C 40 4F 4E SC 50 SF SE 7C 70 7F 7E 6C 60 6F 6E 

1c:~~u jc8~t~u BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUtM LDIM SHFT IMLOU IMLOU LDIM 

I I 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EOBI 
4B 49 4B 4A SB S9 5B SA 7B 79 7B 7A 68 69 6B 6A 

BOW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH ~~5r..s BQIH BQIB 
CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM IMLOU IMLOU .__..... I 0 

_Q_O 0 I II 10 00 01 II I 0 00 0 I II 10 00 0 I 1 I I 0 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TA.ZL 
co Cl C3 CZ DO 01 03 02 FO Fl F3 F2 EO E1 E3 E2 

BAVW BAVH BA.VB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO UAU UAU UAU CRT SR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TA.ZR 
C4 cs C7 C6 04 OS 07 06 F4 FS ,·7 F6 E4 ES E7 E6 

BOVW BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR BOCW BOCH BOCB TA.ZR 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc CD CF CE DC DD OF DE FC FD FF FE EC ED EF EE 

axvw BXVH BXVB TOR CVNW CVNH CVNS TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SK UPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

I I 

EO EOH EOB TOL CE CEH CEB TSOL CE CEH CEB SL EO EOH EOB TAOL 
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 

BQVW BQVH BQVB TDL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB 1AOL 
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

I 0 

00 0 1 I I 10 00 01 I I 10 00 0 I 11 10 00 01 11 10 

00 
LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO BI B3 B2 90 91 9' 92 BO Bl B3 B2 AO A1 A3 AZ 

LVW LVH LVB VPRT svw SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
LDPPU LDPPU LDPPU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN n• TNH TNB 
B4 BS B7 B6 94 9S 97 96 B4 BS B7 B6 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LDPPU LDPPU LOP PU UCSRT STPTP STPTP STPTP CRT SR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT ..__ 01 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BD BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
LDPPU LDPPU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CSIMD CBAT CBAT CBAT UCBLP 

11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH 
TPB'I L.:J BB B9 BB BA 9B 99 9B 9A BB B9 BB BA AB A9 AB 

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 
LDPPU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

I 0 

(A) 1 24803 

Figure 4-96. Illegal Op-Codes 

4-207 Advanced Scientific Computer 



C zC 3 - 00 01 , , 10 

\ l 
$XMDR(O) 

=00 

_Q_Q_ • 0, 11 ~ lll 00 0, 11 10 00 01 , 1 10 00 0, 11 10 

Tc ST STL STR ~~s CE CEL CER 1f 00 01 03 02 I 0 II I 3 30 3, 33 20 21 23 22 
NOP UC SFW SFLH s%~~ u~~Y..~ 

CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM SKUCM SKUCM SKUCM UCB 

00 

,, 

- ! ! LO LDL LOR LOA ST STL STR CN CNL CNR 
04 OS 07 06 I 4 Is 17 34 3S 37 24 25 27 26 
LW LLH LRH LAB SW SLH SRH s ... CWN CLHN CRHN 

LDCM LDCM LDCM LDCM STCM STHCM STHCM ST M SKUCM SKUCM SKUCM 

LO LDL LOR LOA ST STL STR sli 73E oc OD OF OE IC ID IF 1 E 3C 30 3F 2C 20 ZF ZE 
LXW LXLH LXRM LXAB SXW SXLH SXRH SXAB 

LDCM LDCM LDCM LDCM STCM STHCM STHCM STC 

01 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OB L~~L~ OB OA I B 19 18 IA 3B 39 38 3A 28 29 28 ZA 

LXFW LXP'RH LXVP'" SXFW SXFLH SXFRH SXVP LFW LFLH LFRHi LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM STUF LDCM LDCM LDCM LOUF STUF 

10 

PIPP~NX c 0 c 1 =0 1 --;..:$XMDR(O~ 
00 01 11 In 00 01 11 --1..ll_ ..4 00 01 11 1 0 DO 01 11 1 0 

AN ANL ANR BR AD AOL ADR BCAS ADI ADHI ADBI LOI SHA ANHI ANBI LOI 
40 41 43 42 50 51 53 52 70 71 73 72 60 61 63 62 

BAW BALH c~~~u UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

00 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LDHI 
44 4S 47 46 S4 SS S7 S6 74 7S 77 76 154 6S 67 66 
BOW BOLH BORH µg:rp 1c~.tG MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU CM LOU CMAU CMAU UCBSP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LDIM 

01 

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LOBI 
4C 40 4F 4E !5C SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

(c:~~u ~XLH 6'.!~~u UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
f'MLOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LOIM SHFT IMLOU IMLOU LOIM 

II 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI GEHi CEBI EQHI EQBI 
4B 49 4B 4A 58 59 58 SA 7B 79 7B 7A 6B 69 6B 6A 

BQW BQLH g~~~L UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 
CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

10 

$XMDR(O) 
~,. 

00 _Q_I 11 10 00 01 11 10 00 01 11 10 00 0 I 11 10 

AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TAZL 
co Cl C3 C2 DO 01 03 02 FO Fl F3 F2 EO El E3 E2 

BAVW ~IAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PULO PPULO CRLO UAU UAU . UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

00 

OR ORH ORB TZR SU SUH SUB TSZR L~~ PULL RR OR ORH ORB TAZR 
C4 cs C7 C6 04 OS 07 06 FS F7 F6 E4· ES E7 E6 

BOVW BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR eocw BOCH BOCB TAZR 
PPULO PPULO PPULO CRLO UAU UAU UAU jcRTSR LOLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc CD Cl" CE DC DD OF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR ~:Jl~PJ CVNH CVNB TSOR s~'fi~~ CCNH CCNB CBOR excw BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SK UPP SK UPP CRTSR SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL 
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 

BQVW BQVH BQVB TOL ~JVEW CVEH CVEB TSOL ~,fJ~Pj CCEH CCEB CBOL BQCW BQCH BQCB TAOL 
PPULO PPULO PPULO CRLO KLIPP SK UPP SK UPP CRTSR SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

10 

~ ~PIPPTNX~ c 0 c 1 =10 ~ PIPPTNX _3 
oo_J 01 I 1 10 ,00 01 II 10 00 01 11 10 00 0 1 I I 1 0 

~ LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO Bl B3 B2 90 9 I 9~ 92 BO Bl B3 B2 AO Al A3 A2 

LVW IJ_~VH LVB VPRT ls~~~P ~.f:i'p SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
LDPPU DPPU LDPPU UCSRT STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

00 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
B4 BS B7 B6 94 9S 97 96 84 BS B7 B6 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW ~FVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LDPPU LOP PU LDPPU UCSRT STPTP TPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

01 

I I 
LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TF'MR UV 
LDPPU LOP PU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCB LP 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BB B9 BB BA 9B 99 98 9A BB B9 BB BA AB A9 AB AA 
LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 

LDPPU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 
10 

(A)124804 

Figure 4-97. Unconditional Branch to Central Memory ($XMDR(O)) and 
Indirect Through CR or VPR (PIPPTNX) Op-Code Groups 

4-208 
Advanced Scientific Computer 



01 II 10 C 2C 3 - 00 

C5 C 7 
"""I PINBRUCB -, PINBRUCB 

. \ l 
~b IO_i_ 00 a 1 II _Q_Q ...Q.1 II 00 01 11 10 00 0 I 11 I G 

BC ST STL STR BCS CE CEL CER BC 
00 00 01 03 02 10 ,, , 3 , 2 30 31 33 32 20 21 23 22 

NOP UC SFW SFLH SFRH u~~tP CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LO LDL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 , 4 , s 17 16 34 3S 37 3G 24 25 27 2G 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

LDCM LDCM LDCM LDCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

01 

LO LDL LOR LOA ST STL STR STA 
QC OD OF OE IC ID IF IE 3C 30 3F 3E 2C 20 2F 2E 

LXW LXLH LXRll LXAB sxw SXLH SXRH SXAB 
LDCM LDCM LDCM LDCM STCM STHCM STHCM STCM 

11 

LO LDL LOR LDF ST STL STR STF LO LDL LOR 
II LDF 

STF 
OB L~~L~ 08 OA 1 B 19 18 IA 38 39 38 3A 2B 29 28 2A 

LXFW LXl"RH LXVP': SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

10 

~-,PINBMISC~ c 0 c 1 =OI -iPINBMISC 11 
00 01 ,, 
AN ANL ANR 

00 40 41 43 
BAW BALH BARH 

CM LOU CM LOU CM LOU 

OR ORL ORR 
QI 44 45 47 

BOW BOLH 80RH 
CM LOU CM LOU CM LOU 

EX EXL EXR 
4C 40 4F 11 

1c:~~u ~~t~u BXRH 
CM LOU 

EQ EQL EQR 
4B 49 48 

BOW BQLH BQRH 1 a 
CM LOU CM LOU CM LOU 

Q_Q_ _Q_I II 

AN ANH ANB 
00 co Cl C3 

BAVW BAVH BAVB 
PPULO PPULO PPULO 

OR ORH ORB 
01 C4 cs C7 

eovw BOVH BOVB 
PPULO PPULO PPULO 

EX EXH EXB 
cc CD CF 

BXVW BXVH BXVB 
, , 

PPULO PPULO PPULO 

EQ EQH EQB 
10 CB C9 CB 

BQVW BQVH BQVB 
PPULO PPULO PPULO 

00 0, , , 
LO LOH LOB 

00 BO 81 B3 
LVW LVH LVB 

LOP PU LDPPU LDPPU 

LO LOH LOB 
B4 BS 87 

LFVW LFVH LFVB 01 
LOP PU LOP PU LDPPU 

LO LOH LOB 
11 BC BO BF 

LFCW LFCH LFCB 
LOP PU LDPPU LDPPU 

LO LOH LOB 
BB B9 BB 
LCW LCH LCB 

, 0 

LDPPU LOP PU LDPPU 

(A)l 24805 

Figure 4-98. 

IQ 00 01 11 10 00 01 11 1 0 00 0 11 1 0 

BR AD AOL ADR BCAS ADI ADHI A Del LOI SHA ANHI ANSI LOI 
42 so 51 53 52 70 71 73 72 GO 61 63 62 
UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

BRS SU SUL SUR BRSM SUI SUHI SUSI LDHI SHL ORHI ORSI LDHI 
46 S4 SS S7 S6 74 75 77 76 84 G5 67 GG 

URV MW MLH MRH UCAS MIW MIH MIB LIM SHL 801H BOIS LFIH 
UCB LP CMAU CMAU CMAU UCBSP IMAU IMAU IMAU LOIM SHFT IMLOU IMLOU LDIM 

BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LDBI 
4E 5C SD SF SE 7C 70 7F 7E 6C 60 GF GE 

UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM 

BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
4A SB S9 SB SA 7B 79 7B 7A GB 69 GB GA 
UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 
UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

IQ 00 01 II 10 00 0 I 11 10 00 01 11 10 

TZL AD ADH ADB TSZL RL AN ANH ANB TAZL 
C2 DO 01 03 02 FO Fl F3 F2 EO Et F3 E2 
TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 

CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C6 04 OS 07 06 F4 FS F7 F6 E4· ES E7 E6 
TZR MVW MVH MVB lc~~~i LFA TPOL CBZR BOCW BOCH BOCB TAZR 
CRLO UAU UAU UAU LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
CE DC DD OF DE FC FD FF FE EC ED EF EE 
TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW SXCH BXCB TAOR 
CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL 
CA 08 09 DB DA FB F9 FB FA EB E9 EB EA 
TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 

CRLO SKUPP SKUPP SK UPP CRTSR SK UPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

CoC1=10 

10 00 0, , , I 0 00 0 I II 10 00 a, II 10 

VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
82 90 91 9~ 92 BO Bl 83 B2 AO Al A3 A2 

VPRT svw SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
B6 94 9S 97 96 B4 BS B7 BG A4 AS A? AG 

VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCB LP 

VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BA 9B 99 98 9A BS B9 BB BA AB A9 AB AA 

VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 
UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

Base Relative Unconditional Branch to Central Memory 
(1PINBRUCB) and Miscellaneous Central Memory 

('1PINBMISC) Op-Code Groups 

4-209 Advanced Scientific Computer 



C 2C 3 - 00 01 11 10 

:::OO 

\ l 
00 0 I II 10 00 0 I 11 10 00 0 I 11 10 00 0 1 11 1 0 

BC ST STL STR BCS CE co'.L ~ BC 
00 00 01 03 02 I 0 11 I 3 1 2 30 31 33 32 20 2 1 23 22 

NOP UC SFW SFLH SFRH u~'ii'i_~ 
CWE CLHE CRHE ucx 

NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LO LOL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 14 IS 17 16 34 3S 37 36 24 2S 27 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

LOCM LOCM LDCM LDCM .STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

01 

LO LOL LOR LOA ST STL STR STA 
QC OD OF OE IC 10 IF 1 E 3C 30 3F 3E 2C 20 2F 2E 

LXW LXLH LXRi.t LXAB sxw SXLH SXRH SXAB 
11 

LDCM LDCM LDCM LDCM STCM 5THCM STHCM STCM 

LO LDL LOR f LDF 
ST STL STR STF LO LDL LOR LDF STF 

OB L~~~!1 OB OA I B 19 18 IA 3B 39 3B 3A 28 29 28 2A 

t~= 
LXl"RH LXVft· SXFW lf~€~ SXFRH SXVP LFW LFLH LFRH LVP SVP 

LDCM LDCM LDUF STCM STHCM STUF LDCM LDCM LDCM LDUF STUF 
10 

c 0 c 1 =01 

QO 01 11 10 00 0 I 11 ti!. 00 01 11 10 00 0 I 11 1 0 

00 
AN ANL ANR BR AD AOL AOR BCAS ADI ADHI ADBI LOI SHA ANH! ANBI LOI 
40 41 43 42 so SI S3 S2 70 71 73 72 60 61 63 62 

BAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LDHI 
44 4S 47 46 S4 SS S7 S6 74 7S 77 76 94 65 67 66 
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

01 

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UCBSP !MAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

EX EXL EXR BCA EXEC• LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LOB\ 

4C 40 4F 4E 5C SD SF SE 7C 70 7F 7E GC 60 6F GE 

~:t~u ~XLH 
BXRH UCAX EXCM LEA ANC"'I ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 

!CMLOU CM LOU UCB EXCM LEA ANCr.t UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM 

11 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
48 49 4B 4A SB S9 SB SA 78 79 7B 7A 68 69 GB 6A 

BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BCIH BCIB 
CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

I 0 

00 _Q_I 11 10 00 01 11 10 00 01 11 10 00 01 11 I 0 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANB TAZL 
co C1 C3 C2 DO DI 03 02 FO Fl F3 FZ EO E 1 E"3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO UAU U"'U UAU CRT SR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 cs C7 C6 04 05 07 06 F4 FS F7 FG E4 ES E7 EG 

BOVW BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR aocw BOCH BOCB TAZR 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc CD Cl' CE DC DD OF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB !AOL 
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 

BQVW BCVH BQVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRT SR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

10 

c 0 c 1 ::0 t 0 

00 0 I 11 10 00 0 I 11 10 00 0 1 11 10 00 0 1 11 10 

00 
LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO BI B3 B2 90 91 9~ 92 BO Bl B3 B2 AO Al A3 AZ 

LVW l!..~VH LVB VPRT 1,;;i-~~p SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
LOP PU DPPU LDPPU UCSRT STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
84 BS B7 86 94 95 97 96 B4 BS B7 BG A4 AS A7 AG 

LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LOP PU LOP PU LOP PU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

0 I 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC 80 BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
11 

LOP PU LOP PU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCB LP 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BB B9 88 BA 9B 99 9B 9A BB B9 BB BA AB A9 AB AA 

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB xoz TFPW TFPH TFPB 
LDPPU LOP PU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT 

10 

(A) I 24806 

Figure 4-99. Register Indexer Supplied Destination ("1PISDR) Op-Code 
Groups (Source is Central Memory or Immediate) 

4-210 
Advanced Scientific Computer 



~------------
C 2C 3 - 00 01 t 1 1 0 

C5 C 7 
Co C 1 -:::QQ 

\ J 
_QQ 0 t 11 t 0 00 0 t It t 0 00 01 t 1 t 0 00 01 t t to 

BC ST STL STR BCS CE CEL CER BC 
00 00 0 1 03 02 10 11 1 3 t 2 30 31 33 32 20 2 t 23 22 

NOP UC SFW SFLH 5FRH u~'i.~Pi 
CWE CLHE CRHE ucx 

NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LO LDL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 1 4 1 s t 7 t 6 34 3S 37 '6 24 25 ?.7 26 
LW LLH LRH LAB SW SLH SRH SAS CWN CLHN CRHN 

01 

LDCM LDCM LDCM LOCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

LD LDL LOR LOA ST STL STR STA 
It oc OD OF OE IC 10 1F t E 3C 30 3F 1E zc 20 2F ZE 

LXW LXLH LXRH LXAB sxw SXLH SXRH SXAB 
LDCM LDCM LDCM LDCM STCM 5THCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OB L~~L~ OB OA 1 B 19 16 1A 3B 39 36 3A 28 zg 28 2A 

LXFW LXl'"RH LXVP'· SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LOCM LOCM LOUF STCM STHCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

10 

c 0 c 1 =01 

00 01 11 10 00 01 It t 0 00 01 11 10 00 0 t t t 0 

00 
AN ANL ANR BR AD AOL ADR BCAS ADI AOHI ADBI LOI SHA ANHI ANSI LOI 
40 41 43 42 so S1 S3 S2 70 71 73 72 60 61 63 62 

BAW BALH c'::~u UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORB! LDHI 
44 4S 47 46 S4 SS S7 S6 74 7S 77 76 64 65 67 66 
BOW BOLH ~~~gu URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

CM LOU CM LOU UCB LP CMAU CMAU CMAU UCBSP !MAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

01 

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LOB! 
4C 40 4F 4E 5C SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

BXW jc8~tgu BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
ICMLOU CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LOIM 

11 

EQ EQL EQR 8CA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
4B 49 46 4A SB S9 SB SA 7B 79 76 7A 68 69 6B 6A 

BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BCIH BQIB 10 
CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

_Q_Q_ 0 1 11 10 00 0 t 11 t 0 00 01 11 10 00 01 11 10 

AN ANH AN8 TZL AD ADH AOB TSZL RL AN ANH ANB iAZL 
00 co Ct C3 C2 DO DI 03 02 FO Ft F3 F2 EO Et E" 3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH p~~1_~ TAZL 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 cs C7 C6 04 OS 07 06 F4 FS F7 F6 E4· ES E7 E6 

BOVW BOVH BOVB TZR MVW MVH MV8 TSZR LFA TPOL CBZR BOCW BOCH pi:.~t~ TAZR 
PPULO PPULO PPULO CRLO UAU UAU UAU RTSR LDLFA TPOL CRSRT PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNB SR EX EXH EXB TAOR 
cc CD CF CE DC DD OF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH pi:.'0t~ TAOR 
PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRTSR SKUPP SKUPP SKUPP CRSRT PPULO PPULO CRLO 

t 1 

EQ EQH EQB TOL CE CEH CE8 TSOL CE CEH CEB SL EQ EQH EQB 1 AOL 
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 

BCVW :~\'.:'o :..~x~ TOL CVEW CVEH CVEB TSOL CCEW CCEH ~~5~F CBOL BQCW BQCH ~~C1g TAOL 
PPULO CRLO SKUPP SKUPP SK UPP CRTSR SKUPP SK UPP CRSRT PPULO PPULO CRLO 

t 0 

00 0 1 t 1 to 00 0 t It t 0 00 0 1 11 t 0 00 0 t t 1 t 0 

00 

LD LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO Bl B3 B2 90 9 t 9' 92 Bu B1 B3 82 AO At A3 A2 

LVW LVH LVB VPRT svw SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZ~ TFZB 
LOP PU LOP PU LDPPU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD C8AT CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
B4 BS B7 B6 94 9S 97 96 84 BS B7 B6 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LDPPU LOP PU LOP PU UCSRT STPTP STPTP STPTP CRT SR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

0 t 

LO LOH LOB VPTO ST STH ST8 TROR TM TMH TMB DBN TM TMH TMB BPCS 
BC BO BF BE 9C 90 9F 9E BC BD BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMB UV 
LOP PU LOP PU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CB IMO CBAT CBAT CBAT UCBLP 

t t 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BB 89 BB BA 9B 99 9B 9A 88 B9 BB BA AB A9 AB AA 

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XDZ TFPW TFPH TFPB 
LDPPU LOP PU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

to 

(A) 1 24807 

Figure 4-100. TN Field Indexer Supplied Source (•PITA TNR) Op-Code 
Groups 

4-211 
Advanced Scientific Computer 



C 2C 3 - 00 

C5 C 7 

'\ l 
...llJL 

00 00 
HOP 

HOOP 

LO 
04 01 
LW 

LOCM 

LO 
II oc 

LXW 
LDCM 

LO 
OB 

LXFW 10 
LDCM 

~o 

AH 
00 40 

BAW 
CM LOU 

OR 
01 44 

BOW 
CM LOU 

II 
EX 
4C 

01 

01 

LOL 
05 

LLH 
LOCM 

LDL 
OD 

LXLH 
LDCM 

LDL 

L~~L~ 
LDCM 

01 

AHL 
41 

BALH 
CM LOU 

ORL 
45 

llOLH 
CM LOU 

EXL 
40 

1c:t~u ~XLH MLOU 

EQ EQL 
4B <19 

c~~~ BQLH 
CM LOU 

I 0 

_QJl_ _!!_I 

AH ANH 
00 co Cl 

BAVW BAVH 
PPULO PPULO 

OR ORH 
01 C4 cs 

BOVW BOVH 
PPULO PPULO 

EX EXH 
cc CD 

BXVW BXVH 11 
PPULO PPULO 

EQ EQH 
10 CB C9 

BQVW BQVH 
PPULO PPULO 

00 01 

LO LOH 
00 BO Bl 

IL:;::u 
I- LVH 

DPPU 

LO LOH 
B4 BS 

LFVW ·LFVH 
01 

LOP PU LOP PU 

LO LOH 
II BC BO 

t~:U LFCH 
LDPPU 

LO LOH 
BB B9 

LCW LCH 
10 

LOP PU LOP PU 

(A}12.4808 

II 

03 

LOR 
07 
LRH 

LDCM 

LOR 
OF 

LXllM 
LDCM 

LOR 
OB 

LXl"RH 
LDCM 

II 

AHR 
43 

BARH 
CM LOU 

ORR 
47 

llORH 
CM LOU 

EXR 
4F 

BXRH 
CM LOU 

EQR 
48 

BQRH 
CM LOU 

II 

AHB 
C3 

BAVB 
PPULO 

ORB 
C7 

BOVB 
PPULO 

EXB 
Cl' 

BXVB 
PPULO 

EQB 
CB 

BQVB 
PPULO 

II 

LOB 
B3 

LVB 
LDPPU 

LOB 
B7 

t~~~L 
LOB 
BF 

t&;:.. 
LOB 
BB 

LCB 
LOP PU 

Figure 4-101. 

01 II 10 

=00 

10 on cu_ ..u.. 10 00 01 II I 0 00 01 11 10 

BC ST STL STR llCS CE CEL CER BC 
02 10 II 13 12 30 31 33 32 20 21 23 22 
UC SFW SFLH sSJi':;'t u~Cfs'{_p CWE CLHE CRHE ucx 
UCB STCM STHCM SKUCM SKUCM SKUCM UCB 

LOA ST STL STR STA CH CHL CNR 
06 14 15 17 16 34 35 37 36 24 25 27 26 

LAB SW SLH SRH SAB CWN CLHN CRHN 
LOCM .STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

LOA ST STL STR STA 
OE IC ID IF IE 3C 30 3F 3E 2C 20 2F 2E 

LXAll SXW SXLH s~~':;~ SXAB 
LDCM STCM STHCM STCM 

LDF ST STL STR 
rTF 

LO LDL LOR LDF STF' 
OA IB 19 S~~R.~ IA 3B 39 38 3A 28 29 2B 2A 

LXVP'. SXFW ;.r~t~ SXVP LFW LFLH LFRH LVP SVP 
LOUF STCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

10 00 01 II 10 00 01 II I 0 00 01 11 10 

BR AD AOL AOR BCAS ADI ADHI ADBI LOI SHA AHHI ANBI LOI 
42 50 SI 53 52 70 71 73 72 60 61 63 62 
UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH I~~~~ LFIW 
UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LOIM SHFT IMLOU LDIM 

BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LOHI 
46 54 S5 57 S6 74 7S 77 76 114 65 67 66 

URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH .~~'J'~ LFIH 
UCB LP CMAU CMAIJ CMAU UCBSP IMAU IMAU IMAU LDIM SHFT IMLOU LOIM 

BCA EXEC LOEA AHAZ BPC CHI CHHI CHBI LDBI SHC EXHI EXBI LDBI 
4E SC SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

UCAX EXCM LEA AHCM ux CIHW CIHH CIHB LIB SHC BXIH BXIB LFIB 
UCll EXCM LEA AHCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOI.> LOIM 

BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
4A SB S9 SB SA 78 79 78 7A 6B 69 68 6A 
UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BQIB 
UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

10 00 01 II 10 00 01 II 10 00 01 II I 0 

TZL AD ADH AOB TSZL RL AN ANH ANB TAZL 
C2 DO 01 03 02 FO Fl F3 F2 EO El E'3 E2 
TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 

CRLO UAU u"'u "UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C6 04 OS 07 06 F4 FS F7 F6 E4· ES E7 E6 
TZR MVW MVH MVB iciSZR LFA TPOL CBZR BOCW BOCH BOCB TAZR 
CRLO UAU UAU UAU RTSR LOLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

TOlt CN CNH CHB TSOR CN CHH CNB SR EX EXH EXB TAOR 
CE DC DD OF OE FC FD FF FE EC ED EF EE 
TOR CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
CRLO SKUPP SKUPP SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB TAOL 
CA DB 09 DB DA FB F9 FB FA EB E9 EB EA 
TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 

CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

CoC I =10 

10 00 01 11 10 00 01 II 10 00 0 I 11 10 

VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
B2 90 91 9~ 92 BO Bl 83 82 AO Al A3 A2 

VPRT .§_~~~p SVH SVB TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
UCSRT STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

VPS ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
B6 94 9S 97 96 84 BS B7 B6 A4 AS A7 AG 

Jt~~T r:.FVW SFVH SFVB ~RZR TNW TNH TNB XIN TFNW TFNH TFNB 
TPTP STPTP STPTP RTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

VPTO ~FCW SFCH ~.:;.rp icTROR TMW TMH TMB XDN TFMW TFMH TFMB t-i~~LP UCT TPTP STPTP RTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT 

VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BA 9B 99 98 9A BB 89 BB BA AB A9 AB AA 

VPTZ sew SCH see TROL TPW TPH TPB XDZ TFPW TFPH TFPB 
UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT 

Register Indexer Dependent (PININDCR) Op-Code Groups 

4-212 Advanced Scientific Computer 



C zC 3 - 00 0 I 

-., PINBCM PINCRR 

\00 0 I 11 ~ ...l.ll. -= ~ Loi 
BC ST STL 

00 00 0 I 03 02 I 0 II 
NOP UC SFW SFLH 

NOOP UCB STCM STHCM 

LO LDL LOR LOA ST STL 
04 OS 07 06 14 IS 0 I 
LW LLH LRH LAB SW SLH 

LDCM LDCM LDCM LDCM STCM STHCM 

LO LDL LOR LOA ST STL 
11 QC OD OF OE IC ID 

LXW LXLH LXRM LXAB sxw SXLH 
LOCM LDCM LDCM LDCM STCM STHCM 

LO LDL LOR LDF r ST 
STL 

OB L~~I,.~ OB QA IB 19 
LXFW LXl'"RH LXVP'- SXFW SXFLH 
LDCM LDCM LDCM LDUF STCM STHCM 

10 

'L PINCRR ~ 
00 01 II 10 00 0 I 

AN ANL ANR BR AD AOL 
00 40 41 43 42 so SI 

BAW BALH BARH UR AW ALH 
CM LOU CM LOU CM LOU UCB CMAU CMAU 

OR ORL ORR BRS SU SUL 
0 I 44 4S 47 46 S4 SS 

BOW BOLH BORH URV MW MLH 
CM LOU CM LOU CM LOU UCB LP CMAU CMAU 

EX EXL EXR BCA EXEC LDEA 
4C 40 4F' 4E SC SD 11 

~:{~u ~XLH BXRH UCAX EXCM LEA 
MLOU CM LOU UCB EXCM LEA 

EQ EQL EQR BCA PUSH PULL 
4B 49 4B 4A SB S9 

BQW BQLH BQRH UCA PSH PUL I 0 

CM LOU CM LOU CM LOU UCB PUSH PULL 

_Q_O 01 11 I 0 00 0 I 

AN ANH ANB TZL AD ADH 
00 co Cl C3 C2 DO DI 

BAVW BAVH BAVB TZL AVW AVH 
PPULO PPULO PPULO CRLO UAU u•u 

OR ORH ORB TZR SU SUH 
01 C4 cs C7 C6 04 OS 

BOVW BOVH BOVB TZR MVW MVH 
PPULO PPULO PPULO CRLO UAU UAU 

EX EXH EXB TOR CN CNH 
cc CD CP' CE DC DD 

BXVW BXVH BXVB TOR CVNW CVNH 11 
PPULO PPULO PPULO CRLO SKUPP SK UPP 

EQ EQH EQB TOL CE CEH 
I 0 CB C9 CB CA DB 09 

BQVW BQVH BQVB TOL CVEW CVEH 
PPULO PPULO PPULO CRLO SKUPP SKUPP 

PINCRR 

00 0 I 11 I 0 00 0 I 

00 
LO 

~ 
LOB VPR ST 

~ BO B3 B2 90 
LVW 

I 
LVB VPRT svw 

LDPPU L LOPPU UCSRT STPTP p 

LO LOH LOB VPS ST STH 
84 BS 87 86 94 95 

LFVW LFVH LFVB V!~;{l SFVW SFVH 
LDPPU LDPPU LOPP STPTP STPTP 

01 

LO LOH LOB VPTO ST STH 
II BC SD BF BE 9C 90 

LFCW LFCH ct~~ VPTO SFCW SFCH 
LDPPU LOP PU UCT STPTP STPTP 

LO LOH LOB VPTZ ST STH 
88 B9 BB BA 98 99 
LCW LCH LCB VPTZ sew s~~~'"' LDPPU LOP PU LOP PU UCT STPTP 

10 

(A) 1 24809 

coc1 =oo PINBCM 

11 1o_J~ 
STR BCS 
I 3 I 2 

s~~~ u~'ii~P 
STR STA 
17 16 

SRH SAB 
STHCM STCM 

STR STA 
1 F IE 

SXRH SXAB 
STHCM STCM 

STR STF 
IB 1A 

SXFRH SXVP 
STHCM STUF 

c 0 

II 

C 1 =O 1 

I 0 

ADR BCAS 
S3 S2 

ARH UCAV 
CMAU UCBLP 

SUR BRSM 
S7 S6 

MRH UCAS 
CMAU UCBSP 

ANAZ BPC 
SF' SE 

ANCM ux 
ANCM UCB 

MOD BPC 
SB SA 

MDF u 
MDF UCB 

= 

II IQ 

ADB TSZL 
03 02 

AVB TSZL 
UAU CRTSR 

SUB TSZR 
07 06 

MVB TSZR 
UAU icRTSR 

CNB TSOR 
OF' DE 

CVNB TSOR 
SK UPP CRTSR 

CEB TSOL 
DB DA 

CVEB TSOL 
SK UPP CRTSR 

c c 0 I = I 0 

II 10 

STB TRZL 
9~ 92 

SVB TRZL 
STPTP CRTSR 

STB TRZR 
97 96 

SFVB iJRZR 
STPTP RTSR 

STB TROR 
9F 9E 

~,"~,". lcTROR 
RTSR 

STB TROL 
9B 9A 

SCB TROL 
STPTP CRTSR 

00 O I 

CE CEL 
30 31 

CWE CLHE 
SKUCM SKUCM 

CN CNL 
34 3S 

CWN CLHN 
SKUCM SKUCM 

3C 30 

LO LDL 
3B 39 

LFW LFLH 
LDCM LDCM 

~ 
00 0 I 

ADI ADHI 
70 71 

AIW AIH 
!MAU IMAU 

SUI SUHI 
74 7S 

MIW MIH 
IMAU IMAU 

CNI CNHI 
7C 70 

CINW CINH 
SKUIM SKUIM 

CEI CEHI 
7B 79 

CIEW CIEH 
SKUIM SKUIM 

00 01 

F'O Fl 

LOMB PULL 
F4 F'S 
LFA TPOL 

LDLFA TPOL 

CN CNH 
F'C F'D 

CCNW CCNH 
SKUPP SKUPP 

CE CEH 
FB F9 

CCEW CCEH 
SK UPP SKUPP 

00 0 I 

TZ TZH 
BO Bl 

TZW TZH 
CBAT CBAT 

TN TNH 
B4 BS 

TNW' TNH 
CBAT CBAT 

TM TMH 
BC BO 

TMW TMH 
CBA.T CBAT 

TP TPH 
BB B9 

TPW TPH 
CBAT CBAT 

11 10 

-., PINBCM 

\ 
11 ;110 00 0 I 11 I 0 

CER 6c 
33 32 20 21 23 22 

CRHE ucx 
SKUCM UCB 

CNR 
37 36 24 25 27 26 

CRHN 
SKUCM 

3F 3E 2C 20 2F 2E 

LDRl 
LDF STF 

3B 3A 28 2g 2B 2A 
LFRH LVP SVP 
LDCM LDUF STUF 

PINCRR 
11 I 0 00 0 I 11 I 0 

ADBI LOI SHA ANH! ANBI LOI 
73 72 60 61 63 62 

AIB LIW SHA BAIH BAIB LFIW 
IMAU LDIM SHFT IMLOU IMLOU LDIM 

SUBI LDHI SHL ORHI ORBI LDHI 
77 76 114 6S 67 66 

MIB LIM SHL BOIH BOIB LFIH 
IMAU LOIM SHFT IMLOU IMLOU LOIM 

CNBI LDBI SHC EXHI EXBI LDBI 
7F 7E 6C 60 6F 6E 

CINB LIB SHC BXIH BXIB LFIB 
SKUIM LOIM SHFT IMLOU lMLOU LDIM 

CEBI EQHI EQBI [l 7B 7A 6B 69 6B 
CIEB BQIH BQIB 
SKUIM IMLOU IMLOU 

PINCRR 
II I 0 00 01 11 I 0 

RL AN ANH ANB TAZL 
F3 F2 EO EI E"3 E2 

CBZL BACW BACH BACB TAZL 
CRSRT PPULO PPULO PPULO CRLO 

RR OR ORH ORB TAZR 
F7 F'6 E4- ES E7 E6 

CBZR BOCW BOCH BOCB TAZR 
CRSRT PPULO PPULO PPULO CRLO 

CNB SR EX EXH EXB TAOR 
FF F'E EC ED EF' EE 

CCNB CBOR BXCW BXCH BXCB TAOR 
SKUPP CRSRT PPULO PPULO PPULO CRLO 

CEB SL EQ EQH EQB TAOL 
F'B FA EB E9 EB EA 

CCEB CBOL BQCW BOCH BQCB TAOL 
SKUPP CRSRT PPULO PPULO PPULO CRLO 

PINCRR 
-~01 II I 0 00 11 10 

TZB IBZ TZ TZH TZB 
B3 82 AO Al A3 A2 

TZB XIZ TFZW TFZH TFZB 
CBAT CBIMD CBAT CBAT CBAT 

TNB IBN TN TNH TNB 
B7 86 A4 AS A7 A6 

TNB XIN TFNW TFNH TFNB 
CBAT CBIMO CBAT CBAT CBAT 

TMB DBN TM TMH TMB BPCS 
BF BE AC AD AF AE 

TMB XDN TFMW TFMH TFMB 
l!_~~LP CBAT CBIMD CBAT CBAT CBAT 

TPB DBZ TP TPH TPB 
BB BA AB A9 AB AA 

TPB XOZ TFPW TFPH TF'PB 
CBAT CBIMO CBAT CBAT CBAT 

Figure 4-1 OZ. Base Relative Branch to Central Memory (1PINBCM) and 
Register Indexer Specifying CR (PINCRR) Op-Code Groups 

4-213 
Advanced Scientific Computer 



C zC 3 - 00 

\ l 
00 0 t tt to 

BC 
00 00 0 t 03 02 

NOP UC 
NOOP UCB 

LO LOL LOR LOA 
04 OS 07 06 Ot 
LW LLH LRH LAB 

LDCM LDCM LDCM LDCM 

LO LDL LOR LOA 
oc OD OF OE 

LXW LXLH LXRM LXAB 
tt 

LDCM LDCM LDCM LDCM 

LO LDL LOR LDF 
08 L~~L~ OB QA 

LXFW LXl"RH LXVP' 
LDCM LDCM LDCM LDUF 

to 

00 _Q_t _u_ to 

AN ANL ANR BR 
00 40 41 43 42 

BAW BALH BARH UR 
CM LOU CM LOU CM LOU UCB 

OR ORL ORR BRS 
ot 44 4S 47 46 

BOW BOLH BORH t.ig:~p CM LOU CM LOU CM LOU 

EX EXL EXR SCA 
4C 40 4F 4E t t 

ic:~t~u ~XLH g~~~u UCAX 
ICMLOU UCB 

EQ EQL EQR BCA 
48 49 4B 4A 

BQW BQLH g~~~L UCA 
CM LOU CM LOU UCB 

t 0 

_Q_O _Q_t tt to 

AN ANH ANS TZL 
00 co Ct C3 C2 

BAVW BAVH BAVB TZL 
PPULO PPULO PPULO CRLO 

OR ORH ORB TZR 
ot C4 cs C7 C6 

eovw BOVH eove TZR 
PPULO PPULO PPULO CRLO 

EX EXH EXB TOR 
cc CD CF CE 

BXVW BXVH exve TOR t t 
PPULO PPULD PPULO CRLO 

EQ EQH EQB TOL 
t 0 ca C9 CB CA 

BQVW BQVH BQVB TOL 
PPULO PPULO PPULO CRLO 

00 0 I ti to 

LO LOH LOB VPR 
00 80 St 83 82 

LVW I~ LVH LYB VPRT 
LOP PU DPPU LDPPU UCSRT 

LO LOH LOB _ VPS 
84 85 87 86 

LFVW LFVH LFVB VPST 0 t 

LDPPU LOP PU LDPPU UCSRT 

LO LOH LOB VPTO 
1 t ec 80 BF SE 

LFCW LFCH LFCB VPTO 
LOP PU LDPPU LOP PU UCT 

LD LOH LOB VPTZ 
88 B9 88 SA 
LCW LCH LCB VPTZ 

to 

LDPPU LOP PU LDPPU UCT 

(A)124810 

Figure 4-103. 

Qt tt 10 

=00 

00 Qt tt 10 00 01 11 10 00 0 t 11 1 0 

ST STL STR ecs CE CEL C~R BC 
t 0 It t 3 t 2 30 3 t 32 20 2 t 23 22 

SFW SFLH SFRH 
u'b"e'L,. 

CWE CLHE CRHE ucx 
STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

ST STL STR STA CN CNL CNR 
t 4 t S t 7 t 6 34 3S 37 36 24 25 27 26 
SW SLH SRH SAS CWN CLHN CRHN 

.STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

ST STL STR STA 
tC ID tF tE 3C 30 3F 3E 2C 20 2F 2E 

sxw SXLH SXRH SXAB 
STCM STHCM STHCM STCM 

ST STL STR STF LO LDL LOR L3r;[ l STF 
t 8 t9 ta tA 38 39 38 28 29 28 2A 

SXFW ;:~€~ SXFRH SXVP LFW LFLH LFRH LVP SVP 
STCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

_ILO _ ~t tt to 00 Ot t t 1 0 00 0 t t 1 1 0 

AD AOL -A_DR BCAS ADI ADHI ADBI LOI SHA ANH! ANSI LOI 
50 St 53 52 70 7t 73 72 60 6 t 63 62 
AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 

CMAU CMAU CMAU UCBLP !MAU IMAU IMAU LDIM SHFT IMLOU IMLOU LOIM 

SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORSI LOHI 
S4 SS S7 S6 74 7S 77 76 114 6S 67 66 

t::~:.'i MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIS LFIH 
CMAU CMAU UCBSP !MAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

EXEC LDEA ANAZ BPC CNI CNHI CNBI LDBI SHC EXHI EXBI LO Bl 
5C SD SF SE 7C 70 7F 7E 6C 60 6F 6E 

EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 
EXCM LEA ANCM UCB SKUIM SKUIM SKUIM LDIM SHFT IMLOU IMLOU LDIM 

PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
SB S9 SB SA 78 79 7B 7A 68 69 6B 6A 

PSH PUL MDF LI CIEW CIEH CIEB BQIH BQIB 
PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

C 0 c 1 =11 

00 0 t tt t 0 00 ot ti t 0 00 ot t t t 0 

AD ADH ADS TSZL RL AN ANH ANS TAZL 
DO Dt 03 02 FO Ft F3 F2 EO Et E3 E2 

AVW AVH -Ave TSZL CBZL BACW BACH BACB TAZL 
UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

SU SUH sue TSZR LOMB PULL RR OR ORH ORB TAZR 
04 OS 07 06 F4 FS ,-7 F6 E4· ES E7 E6 
MVW MVH MVB !c~~~':i 

LFA TPOL CBZR BOCW BOCH BOCB TAZR 
UAU UAU UAU LDLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

CN CNH CNB TSOR CN CNH CNS SR EX EXH EXB TAOR 
DC DD OF DE FC FD FF FE EC ED EF EE 

CVNW CVNH CVNB TSOR CCNW CCNH CCNB CBOR BXCW BXCH BXCB TAOR 
SKUPP SK UPP SK UPP CRTSR SK UPP SKUPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB lAOL 
DB 09 DB DA FB F9 FB FA ES E9 EB EA 

CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BQCH BQCB TAOL 
SKUPP SKUPP SK UPP CRTSR SK UPP SK UPP SKUPP CRSRT PPULD PPULO PPULO CRLO 

CoC1 =10 

00 0 t t t to 00 0 t tt t 0 00 0 t t t 10 

ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
90 9 t 9~ 92 BO Bt B3 B2 AO Al A3 A2 

Is~~~ .. SVH sve TRZL TZW TZH TZB XIZ TFZW TFZH TFZB 
STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

ST STH STB TRZR TN TNH TNB IBN TN TNH TNB 
94 9S 97 96 84 es B7 86 A4 AS A7 A6 

SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
9C 90 9F 9E BC BD BF BE AC AD AF AE 

SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TF'MH TF'MB UV 
STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT UCB LP 

ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
98 99 98 9A 88 B9 BB BA AB A9 AB AA 
sew SCH see TROL TPW TPH TPB XDZ TFPW TFPH TFPB 

STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

TN Field Specifying Central Memory (IPINCMTN) 

Op-Code Groups 

4-214 Advanced Scientific Computer 



C 2C 3 - 00 01 11 10 

Co C 1 ~oo 

\ j 
_Q_Q__ OI 11 I 0 00 0 I 11 10 00 01 11 I 0 00 01 11 I 0 

BC ST STL STR BCS CE CEL CER BC 
00 00 01 03 02 1 0 11 I 3 I 2 30 31 33 32 20 21 2.J 22 

NOP UC SFW SFLH 5FRH 
u'!:'i.'Lf'j 

CWE CLHE CRHE ucx 
NOOP UCB STCM STHCM STHCM SKUCM SKUCM SKUCM UCB 

LD LOL LOR LOA ST STL STR STA CN CNL CNR 
04 OS 07 06 14 I 5 17 16 34 3S 37 36 24 25 27 26 
LW LLH LRH LAB SW SLH SRH SAB CWN CLHN CRHN 

0 I 

LDCM LOCM LDCM LDCM STCM STHCM STHCM STCM SKUCM SKUCM SKUCM 

LD LDL LOR LOA ST STL STR STA 
oc OD OF OE TC ID 1 F IE 3C 30 3F 3E zc 20 2.F 2E 

LXW LXLH LXRtt LXAB sxw SXLH SXRH SXAB 
11 

LOCM LDCM LDCM LDCM STCM 5THCM STHCM STCM 

LO LDL LOR LDF ST STL STR STF LO LDL LOR LDF STF 
OS L~~L~ OB OA 1 S 19 TB IA 3S 39 3B 3A 28 2q 2-B 2A 

LXFW LXFRH LXVP' SXFW SXFLH SXFRH SXVP LFW LFLH LFRH LVP SVP 
LDCM LDCM LDCM LDUF STCM STHCM STHCM STUF LDCM LDCM LDCM LDUF STUF 

10 

c 0 c 1 =oQ 1 

00 01 11 10 00 01 11 I 0 00 0 I 11 I 0 00 0 I 11 10 

00 
AN ANL ANR BR AD AOL ADR BCAS ADI ADHI ADBI LOI SHA ANHI ANSI LOI 
40 41 43 42 50 51 S3 52 70 71 73 72 60 61 63 62 

BAW BALH BARH UR AW ALH ARH UCAV AIW AIH AIB LIW SHA BAIH BAIB LFIW 
CM LOU CM LOU CM LOU UCB CMAU CMAU CMAU UCBLP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

OR ORL ORR BRS SU SUL SUR BRSM SUI SUHI SUBI LDHI SHL ORHI ORBI LOHI 
44 45 47 46 54 55 57 56 74 75 77 76 64 6S 67 66 
BOW BOLH BORH URV MW MLH MRH UCAS MIW MIH MIB LIM SHL BOIH BOIB LFIH 

01 

CM LOU CM LOU CM LOU UCB LP CMAU CMAU CMAU UCBSP IMAU IMAU IMAU LDIM SHFT IMLOU IMLOU LDIM 

EX EXL EXR BCA EXEC LDEA ANAZ BPC CNI CNHI CNBJ LDBI SHC EXHI EXBI LDBI 
4C 40 4F 4E SC SD SF 5E 7C 70 7F 7E 6C 60 6F 6E 

~~i~u ~,;:t~u 
BXRH UCAX EXCM LEA ANCM ux CINW CINH CINB LIB SHC BXIH BXIB LFIB 

CM LOU UCB EXCM LEA ANCM UCB SKUIM SKUIM SKUtM LDIM SHFT IMLOU IMLOU LDIM 

11 

EQ EQL EQR BCA PUSH PULL MOD BPC CEI CEHI CEBI EQHI EQBI 
4S 49 4B 4A 5B 59 SB SA 7S 79 78 7A 68 69 68 6A 

BQW BQLH BQRH UCA PSH PUL MDF u CIEW CIEH CIEB BQIH BOIS 10 
CM LOU CM LOU CM LOU UCB PUSH PULL MDF UCB SKUIM SKUIM SKUIM IMLOU IMLOU 

_Q_O 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10 

00 
AN ANH ANB TZL AD ADH ADB TSZL RL AN ANH ANS TAZL 
co Cl C3 C2 DO DI 03 02 FO Fl F3 F2 EO EI E"3 E2 

BAVW BAVH BAVB TZL AVW AVH AVB TSZL CBZL BACW BACH BACB TAZL 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR CRSRT PPULO PPULO PPULO CRLO 

OR ORH ORB TZR SU SUH SUB TSZR LOMB PULL RR OR ORH ORB TAZR 
C4 cs C7 C6 04 OS D7 06 F4 FS e-7 F6 E4 ES E7 E6 

eovw BOVH BOVB TZR MVW MVH MVB TSZR LFA TPOL CBZR BOCW BOCH BOCB TAZR 
PPULO PPULO PPULO CRLO UAU UAU UAU CRTSR LOLFA TPOL CRSRT PPULO PPULO PPULO CRLO 

01 

EX EXH EXB TOR CN CNH CNB TSOR CN CNH CNS SR EX EXH EXB TAOR 
cc CD CF CE ric DD OF DE FC FD FF FE EC ED EF EE 

BXVW BXVH BXVB TOR CVNW CVNH CVNB TSOR s~'G~~ CCNH CCNB CBOR ~;uc~ol BXCH BXCB c1;,i"i,~ PPULO PPULO PPULO CRLO SKUPP SKUPP SK UPP CRT SR SKUPP SKUPP CRSRT PPULO PPULO 
11 

EQ EQH EQB TOL CE CEH CEB TSOL CE CEH CEB SL EQ EQH EQB T:iy 
CB C9 CB CA DB 09 DB DA FB F9 FB FA EB E9 EB 

BCVW BQVH BOVB TOL CVEW CVEH CVEB TSOL CCEW CCEH CCEB CBOL BQCW BOCH BQCB TAOL 
PPULO PPULO PPULO CRLO SKUPP SK UPP SK UPP CRTSR SKUPP SK UPP SKUPP CRSRT PPULO PPULO PPULO CRLO 

1 0 

00 0 1 11 10 00 0 1 11 10 00 0 1 11 I 0 00 01 11 10 

00 
LO LOH LOB VPR ST STH STB TRZL TZ TZH TZB IBZ TZ TZH TZB 
BO B 1 B3 B2 90 91 9' 92 BO Bl 83 B2 AO Al A3 A2 

LVW LVH LVB VPRT svw SVH SVB TRZL TZW TZH T2B XIZ TFZW TFZH TFZB 
LDPPU LOP PU LDPPU UCSRT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH TNB IBN Tl< TNH TNB 
B4 SS B7 S6 94 95 97 96 B4 BS B7 86 A4 AS A7 A6 

LFVW LFVH LFVB VPST SFVW SFVH SFVB TRZR TNW TNH TNB XIN TFNW TFNH TFNB 
LOP PU LOP PU LDPPU UCSRT STPTP STPTP STPTP CRT SR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

01 

LO LOH LOB VPTO ST STH STB TROR TM TMH TMB DBN TM TMH TMB BPCS 
SC BO BF BE 9C 90 9F 9E BC BO BF BE AC AD AF AE 

LFCW LFCH LFCB VPTO SFCW SFCH SFCB TROR TMW TMH TMB XDN TFMW TFMH TFMR UV 
LOP PU LOP PU LOP PU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMO CBAT CBAT CBAT UCF3LP 

11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH TPB DBZ TP TPH TPB 
BS B9 BB BA 9S 99 98 9A BB B9 BB BA AS A9 AB AA 

LCW LCH LCB VPTZ sew SCH SCB TROL TPW TPH TPB XD2 TFPW TFPH TFPB 
LOP PU LOP PU LDPPU UCT STPTP STPTP STPTP CRTSR CBAT CBAT CBAT CBIMD CBAT CBAT CBAT 

10 

(A)126211 

Figure 4-103A. Ignore Indirect (IGI) Op-Codes 

4-215 Advanced Scientific Computer 



C 2C 3 - 00 

C5 C 7 

\ l 
__QJl_ 

00 00 
NOP 

NOOP 

LO 
04 01 
LW 

LDCM 

LO 
11 QC 

LXW 
LDCM 

LO 
OB 

LXFW 10 
LDCM 

00 

AN 
00 40 

BAW 
CM LOU 

OR 
01 44 

BOW 
CM LOU 

EX 
4C II 

_j) I 

01 

LDL 
OS 
LLH 

LDCM 

LDL 
00 

LXLH 
LDCM 

LDL 

L~~1:!1 
LDCM 

01 

ANL 
41 

BALH 
CM LOU 

ORL 
4S 

BOLH 
CM LOU 

EXL 
40 

BXW ~XLH 
E_MLOU MLOU 

EQ EQL 
48 49 

BQW BQLH I 0 

CM LOU CM LOU 

_Q_Q_ .JU. 

AN ANH 
00 co Cl 

BAVW BAVH 
PPULO PPULO 

OR ORH 
01 C4 cs 

BOVW BOVH 
PPULO PPULO 

EX EXH 
cc CD 

BXVW BXVH II 

PPULO PPULO 

EQ EQH 
I 0 CB C9 

BQVW BQVH 
PPULO PPULO 

II IQ 

BC 
03 02 

UC 
UCB 

LOR LOA 
07 06 

LRH LAB 
LDCM LOCM 

LOR LOA 
OF OE 

LXRM LXAB 
LDCM LDCM 

LOR LDF 
OB QA 

LXl"RH LXV1". 
LDCM LDUF 

11 10 

ANR BR 
43 42 

BARH UR 
CMLOU UCB 

ORR BRS 
47 46 

BORH URV 
CM LOU UCB LP 

EXR BCA 
4F 4E 

BXRH UCAX 
CM LOU UCB 

EQR BCA 
48 4A 

BQRH UCA 
CM LOU UCB 

..., 
II 10 

ANB TZL 
C3 C2 

BAVB TZL 
PPULO CRLO 

ORB TZR 
C7 C6 

BOVB TZR 
PPULO CRLO 

EXB TOR 
CF CE 

BXVB TOR 
PPULO CRLO 

EQB TOL 
CB CA 

BQVB TOL 
PPULO CRLO 

01 

=00 

00 01 II 10 00 0 I 

ST STL STR BCS CE CEL 
10 II 13 I 2 30 31 

SFW SFLH SFRH u~'iiY.P CWE CLHE 
STCM 5THCM STHCM SKUCM SKUCM 

ST STL STR STA CN CNL 
14 IS 17 16 34 3S 
SW SLH SRH SAB CWN CLHN 

.STCM STHCM STHCM STCM SKUCM SKUCM 

ST STL STR STA 
IC ID IF 1 E 3C 30 

sxw SXLH SXRH SXAB 
STCM STHCM STHCM STCM 

ST STL STR STF LO LDL 
18 19 IB IA 38 39 

SXFW SXFLH SXFRH SXVP LFW LFLH 
STCM STHCM STHCM STUF LDCM LDCM 

00 01 11 10 00 01 

AD AOL ADR BCAS ADI ADHI 
50 51 53 52 70 71 
AW ALH ARH UCAV AIW AIH 

CMAU CMAU CMAU UCBLP IMAU IMAU 

SU SUL SUR BRSM SUI SUHI 
S4 SS S7 S6 74 7S 

MW MLH MRH UCAS MIW MIH 
CMAU CMAU CMAU UCBSP IMAU IMAU 

EXEC LDEA ANAZ BPC CNI CNHI 
!IC SD SF SE 7C 70 

EXCM LEA ANCM ux CINW CINH 
EXCM LEA ANCM UCB SKUIM SKUIM 

PUSH PULL MOD BPC CEI CEHI 
SB S9 SB SA 7B 79 

PSH PUL MDF u CIEW CIEH 
PUSH PULL MDF I UCB SKUIM SKUIM 

PINUAUHB ~ 
01~ 

o I = -,P NUXV 
00 II 10 00 01 

c c 11 

AD ADH ADB TSZL 
DO DI 03 02 FO Fl 

AVW AVH AVB TSZL 
UAU UAU UAU CRTSR 

SU SUH SUB TSZR LOMB PULL 
04 OS 07 06 F4 FS 
MVW MVH MVB ~iszR LFA TPOL 
UAU UAU UAU RTSR LDLFA TPOL 

CN CNH CNB TSOR CN CNH 
DC DD OF OE FC FD 

~:.7~ CVNH s~"u~S,., TSOR CCNW CCNH 
SK UPP CRTSR SKUPP SKUPP 

CE CEH CEB TSOL CE CEH 
DB 09 DB DA FB F9 

CVEW CVEH CVEB TSOL CCEW CCEH 
SKUPP SK UPP SK UPP CRTSR SKUPP SK UPP 

~PINLSKHB.=::Ji c 
0 

II 

c =10 

00 01 11 IQ 00 01 10 00 01 

LO LOH LOB VPR ST STH STB TRZL TZ TZH 
00 BO Bl B3 B2 90 91 9> 92 BO Bl 

LVW LVH LVB ~PRT svw SVH s~~~ TRZL TZW TZH 
LOP PU LDPPU LDPPU CSRT STPTP STPTP CRTSR CBAT CBAT 

LO LOH LOB VPS ST STH STB TRZR TN TNH 
84 BS B7 BS 94 9S 97 9S B4 BS 

LFVW .LFVH LFVB ~PST SFVW SFVH SFVB TRZR TNW TNH 
LDPPU LOP PU LOP PU CSRT STPTP STPTP STPTP CRTSR CBAT CBAT 

01 

LO LOH LOB VPTO ST STH STB TROR TM TMH 
BC BO BF BE 9C 90 9F 9E BC BO 

LFCW LFCH LFCB VPTO SFCW SFCH ~-r,;~ TROR TMW TMH 
LOP PU LOP PU LDPPU UCT STPTP STPTP CRTSR CBAT CBAT 

11 

LO LOH LOB VPTZ ST STH STB TROL TP TPH 
BB B9 BB BA 9B 99 9B 9A BB B9 

LCW LCH LCB VPTZ S'{~'1-P SCH S~~~F TROL TPW TPH 
LOP PU LOP PU LOP PU UCT STPTP CRTSR CBAT CBAT 

10 

~ ~ 
-., PINLDUHB -.PINSnJHB 

(A)124811 

11 10 

11 I 0 00 0 I 11 1n 

CER BC 
33 32 20 21 23 22 

CRHE ucx 
SKUCM UCB 

CNR 
37 36 24 25 27 26 

CRHN 
SKUCM 

3F 3E 2C 20 2F 2E 

LOR LDF STF 
3B 3A 28 29 28 2A 

LFRH LVP SVP 
LDCM LDUF STUF 

11 I 0 00 OI 11 1 c 

ADBI LOI SHA ANHI ANBI LOI 
73 72 60 61 63 62 

AIB LIW SHA BAIH BAIB LFIW 
IMAU LDIM SHFT IMLOU IMLOU LDIM 

SUBI LDHI SHL ORHI ORBI LDHI 
77 7S 114 S5 S7 66 

MIB LIM SHL BOIH BOIB LFIH 
IMAU LDIM SHFT IMLOU IMLOU LOIM 

CNBI LDBI SHC EXHI EXBI LDBI 
7F 7E SC SD 6F SE 

CINB LIB SHC BXIH BXIB LFIB 
SKUIM LDIM SHFT IMLOU IMLOU LDIM 

CEBI EQHI EQBI 
7B 7A SB S9 SB 6A 

CIEB BQIH BQIB 
SKUIM IMLOU IMLOU 

II 10 00 01 11 10 

RL AN ANH ANB TAZL 
F3 F2 EO El E3 E2 

CBZL BACW BACH BACB TAZL 
CRSRT PPULO PPULO PPULO CRLO 

RR OR CRH ORB TAZR 
F7 FS E4· ES E7 E6 

CBZR BOCW BOCH BOCB TAZR 
CRSRT PPULO PPULO PPULO CRLO 

CNB SR EX EXH EXB TAOR 
FF FE EC ED EF EE 

CCNB CBOR BXCW BXCH BXCB TAOR 
SKUPP CRSRT PPULO PPULO PPULO CRLO 

CEB SL EQ EQH EQB TAOL 
FB FA EB E9 EB EA 

CCEB CBOL BQCW BQCH BQCB TAOL 
SKUPP CRSRT PPULO PPULO PPULO CRLO 

~PINLSKHB~ 
II I 0 00 0 I 11 10 

TZB IBZ TZ TZH TZB 
B3 B2 AO Al A3 A2 
TZB XIZ TFZW TFZH TFZB 

CBAT CBIMO CBAT CBAT CBAT 

TNB IBN TN TNH TNB 
B7 B6 A4 AS A7 A6 

TNB XIN TFNW TFNH TFNB 
CBAT CBIMD CBAT CBAT CBAT 

TMB DBN TM TMH TMB r-;PCS 
BF BE AC AD AF AE 

TMB XDN TFMW TFMH TF"MB l:!_~BVLP CBAT CBIMD CBAT CBAT CBAT 

TPB DBZ TP TPH TPB 

~ BB BA AB A9 AB 
TPB XDZ TFPW TFPH TFPB 

CSAT CBIMD CBAT CBAT CBAT 

7 
-, PINUXV 

Figure 4-104. SWBD /NIR Unique Op- Code Groups 

4-216 Advanced Scientific Computer 



case), and indirect indicator (DB, the signal generated to indicate the instruc­
tion being loaded in the IR of the active VP is indirect) from PPCT L2. The 
PPCTLl card responds with indexing controls for INDEXER(O, 1 ); an EA sub­
ject to modifications if an interrupt has occurred or a BRSM instruction is 
in the process of saving the PC, the VPR select lines ultimately used by the 
TN field indexer, and a modify stack parameter enable, all input to 
PCCARDA(0-7); a next instruction indicator (NINS) for PPCTL2; state class 
and step data test and data real information for the IR of the active VP on 
IRCARD(0-3). The PPCTL2 card uses MIR data; SWBD/NIR data from 
PCCARDA(0-7); the shift update indicator from CONTAU; the buffer available 
indicator (BA) from SWBSYNC; the next instruction indicator (NINS) from 
PPCTLl. The PPCTL2 card responds with D, DB, and !GI for PPCT Ll; the 
inhibit CR file signal for CR CONT (O- 3 ); the inhibit VPR load signal for 
VPRCONT; the op-code, DC, mode, object mode, next instruction location 
(NIL), interrupt, LFAF, and PPTN data test and data real information, the 
TN and R indexer source and destination enables, the EA byte enables, and 
the shift count for the IR of the active VP on IRCARD(0-3). In addition, 
PPCTL2 monitors interrupts and the CR protect enable from CRCELLY and 
data generated by the bit picker on PPAUCD(0-3). When an automatic or 
programmed interrupt occurs, the PPCT L2 card re spends by setting the ap­
propriate interrupt data real bit in the associated IR. At the conclusion of 
the instruction during which the interrupt occurred, the INTF bit of the same 
IR is set by PPCTL2 so the interrupt cycle is initiated and the interrupt can 
be acknowledged. When CRCELL Y supplies a CR protect enable to PPCT L2 
and PPCTL2 detects an attempt to write in one of the first 10 16 CR's, a pro­
tect violation signal is directed back to CRCELLY for interrupt purposes. 
This same signal is also used in the development of the CR file and VPR load 
inhibit signals previously mentioned. The bit picker on PPAUCD(0-3) sup­
plies PPCT L2 with the bit pick count on all four bytes of the data input to the 
arithmetic unit via the MDB. When a POLL instruction is being executed, 
PPCTL2 utilizes the MIR source data to select the desired byte fo.r use on 
PPAUCD(0-3). 

The MIRMRGB card of the PP is used as a maintenance tool to monitor the 
AUMIR merge, VPRMIR merge, and CRMIR merge formats of figure 4-79, 
in addition to the SWBC status file and priority queue information. The 
AUMIR merge format is supplied by CONTAU and consists of the AUMIR for­
mat developed by VPRCONT and the active VPC supplied by MLCT L. The 
VPRMIR merge format is supplied by VPRCONT, PCCTL, and CRBASE2. 
The first part of the format is identical to the VPRMIR input format de­
veloped by VPRCONT and PCCTL and the last three blocks of data contain 
the active VPC being used by the VPRCONT, PCCTL, and CRBASE2 cards, 
respectively. The three words of CRMIR merge format are supplied by the 
CRCONT(0-3) cards and are described in detail in the CRCONT portion of 
the CR file detailed theory. The monitoring of the SWBS YNC data is con­
trolled by the maintenance logic and gives the operator the capability of 

4-217 
Advanced Scientific Computer 



viewing the contents of any one status file entry and four priority queue en­
tries of the same queue, all at one time. If desired, the priority queue en­
tries may be replaced by the contents of the high and low input and output 
priority q~eue counters. The IRVPCODE format shown in figure 4-79 is not 
input to the MIRMRGB card, but contains the VPC used by IRCARD(0-3) and 
is developed by IRCARD(0-3 ). 

4-156 DETAILED TRANSFER TABLE ANALYSIS. The remainder of the de­
tailed theory on the control section of the PP consists of a step- by-step de­
scription of execution of each of the instruction groups in the PP repertoire. 
Each instruction group description is accompanied by a unique transfer table 
(appendix A) and references to control signals presented in the detailed block 
diagrams of figures 4-105 through 4- 108. Separate descriptions are pre­
sented for the instruction groups that are valid in both CM and ROM. The 
following abbreviations are used throughout the transfer tables and are listed 
here for reference. 

• BA 

• BT 

• D 

• DB 

• DC 

• EXCM 

Buffer available is set to indicate the status file en­
try for the active VP is ready to accept another CM 
request. 

Branch taken is set to indicate the branch in question 
is to be taken. 

Dependency is set to indicate the current instruction 
must complete execution before the SWBD/NIR in­
struction can be indexed. 

Next indirect is set to indicate the instruction being 
loaded in the IR of the active VP is indirect. 

The IR DC bit is set when the current instruction in 
the MIR terminates and the DB bit is true. 

EXCM is set to indicate the current instruction is 
execute central memory. 

• IGI Ignore indirect is set to indicate the next instruction 
is illegal for the indirect case. 

• INT Interrupt is set to indicate an automatic or program­
med interrupt has occurred. 

• INTF The IR INTF bit is set at the termination of the cur­
rent instruction if an interrupt has occurred during 
the instruction. 

• KNOOP KNOOP is set to indicate the next instruction is no-op. 

• LF AF The IR LF AF bit is set to indicate the base value in­
volved in the LDMB indirect instruction is supplied 
by CM rather than a VPR. 

4-218 Advanced Scientific Computer 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~R~O=M~A~D~D~R~E==S~S~~~~~~~~~~~~~~~r.R~O=M~:A:D:D:R~E:S::S,-~~~~~~~~~~~~~R~OM~C~A~R:D~(:8~1~5)~~~~~~~~~~~ ~ UNES FROM PMROMADD(Z0-23) DECODONG PMRMSS'N(•-'5 ENABLE UNES 

FROM

VPRCONT

FROM

VPRCONT {

12 TO CM

ENAB

AB

LE

PC TO CM

ENAB

EA TO RM
ENAB

AB

LE

AB

LE

MOAB TOM

ENAB

DB

MIREA TOM

ENAB

LE

DB

LE

MIR IM

MOB ENAB

TO

VP

FROM MLCT

PC TOM

ENAB

SWBA

MOB ENAB

LE

c
L

DB

LE

TO

LE

ODE MIR OP-C

GROUPS FROM PPC TL2

FLIP

FLOPS

-.PPTRl2CB ...
t---

-.PPTRPCCB
~

t--
-.PPTRTARB --

t---
'-.PMTRMDA8 --

t--
-.PITREAAB ...

t--
-.PITRIMAB --

r---

{'PPVPC(D)
......

t---
-.PPVPC(I) --

t--
-.PPVPC(2) ---

t--
-.PPTRPCAB --

t---
-,PMTRMAAB

.___

MIR

MIR STATE/STEP

FROM IRCARD(O)

PIQMIR(S-13) -- STATE/STEP

FROM

CONT AU

ROM MIR MODE F
IRCAR

MIR INTF
FROMIRCAR

SKIP TA
FOR ST

D(O)
BIT
D(2)

KEN

KEN
ACK

SHIFT UPD ATE

TIVE

- DECODING

LOGIC

C2S3

PIOMIR(ill

PIQMIRj_36)

..,PACBT

-.PACSTS

-.PA CUD

~PACTSPOS {

BRANCH TA

TEST POSI

P/O SKIP TA KEN -.PACSFIS'fL-.PACSF2ST

(C)124812

CURRENT PCM
BIT FROM PCCAR

ODE ..,PPPCl~O)

MIR EA FROM
IRCARD(2,3)

PC VALUE FROM
PCCARDA(2-7)

DA(O)

PIQMIR(40-63) _...
~

PPPCIR(S--31) _. -
WCE

COMPARE

LOGIC

PICIMED(3)
PCCAROA(S) LOGIC MIR EA/IM TO MOB

DEPENDENCY PPD
ENABLE TO IRCARD(3)

FROM PPCTL2

}
PP12CBE 12 TO CMAB ENABLE -

TO PPPCCBE -- PC TO CMAB ENABLE - PCCARDA(0-7) PPTARBE -- EA TO RMAB ENABLE -PMMDABE MOAB TO MOB ENABLE --Pl~ADj_2) -- MIR EA TO MOB ENABLE} ~ TO

{'PXONTRO PIQIM EDj_2) _... MIR IM TO MOB ENABLE IRCAR0(2) INTERRUPTS
PPQVPCWil

~} FROM CRCELLY

-.PXINTR2 PPQVPC(I) VPC

PCCROA(0-7)
PPQVPC(2)

.....
PPOPCCB -- PC TO CMAB ENABLE

PIOIMED -- MIR IM TO MOB ENABLE
NIR AVAILABLE -

PINILM PPOl2CB ...- 12 TO CMAB ENABLE P/O VPRMIR OR ROM SOURCE ~

FROM PPCTL2 Pl OE FAD -- MIR EA TO MOB ENABLE > TO

PPOMDAB
...- MOAB TO MOB ENABLE

MIRMRGB
MIR DC BIT PIQMIRJl<U.

FROM IRCARD(O) PPOVPC_(o}

~}VPC PPOVPCj_l) { "'" PIQMIR(35)
PPOVPC(2)

FROM PPTN
PPOTARB

IRCARD(2) -- EA TO RMAB ENABLE
MIR PIQMIR(34) PPPCABE PC TO MOB ENABLE

} TO LFAF -
PCCAROA(0-7)

BA FROM PMAVB

SWBSYNC PMMAABE -- SWBA TO MOB ENABLE -
PPOPCAB -- SWBA TO MOB ENABLE } P/O VPRMIR PPQVPCD(0--2) _. PPOMAAB -- PC TO MOB ENABLE TO MIRMRGB -- PPRABC(0--2) --

PPRM scJ_o--21_ : --- ACTIVE VPC - 2B
PPWM sc_io-21_ _: > TO PCCARDA(0-7) - PPTACBE

- EA TO CMAB ENABLE JTO PCCARDA(O->)

PPWAZCJ_o-21_ = PPPCRBE
~ PC TO RMAB ENABLE ..-

VPC --PNRMCDE
- ROM TO "'" ENABLE I PPQV PC J_o--21_ --PNMDCDE = SWBD TO NOR ENABLE Jr DISTRIBUTION

LOGIC

l

UCSRT DATA MANOPULATOft } PA2ADMEN -ROM/SW BO t-"" CRSRT -- TO AUZB ENABLE AUZB BUS -
TO PCCARDA(0-7)

TO NIR CRT--5._R_.,
SELECT - ALIGNER TO ENABLE

LOGIC PA2ALEN --LOGIC t--- - AU2B ENABLE

L.,
LEFT HALF ENABLE PIWCE WCE TO

~
PMA2MDLE

TO PCCARDA(0-3) -PPCTLI AU2B TO -- SWBD -- ENABLE
RIGHT HALF ENABLE r PMA2MDRE -- LOGIC ... TO PCCARDA(4-7) INTERNAL DC

PPTN --

-

...

r---9 ..

-

t-~ -
I--

-

-

_...

r--~
~

-
~ ------.... --
-, --..... ---

--.... -

READ

CYCLE

LOGIC

CM/ROM

TO NIR

ENABLE
LOGIC

PC

LOAD

ENABLE

LOGIC

CMAB

TO

SWBA

ENABLE

LOGIC

WRITE

CYCLE

LOGIC

PC

MOOE

LOGIC

-.PMRC

PNC ON RE

PPllPCE

~CBMAE

--PMwc

-.PPII~ql_

..

...... -

~

READ CYCLE

COMMAND TO

SWBSYNC

CM/ROM DATA

TO NIR ENABLE

TO PCCAROA(0--7)

PC LOAD ENABLE

TO PCCARDA(0-7)

CMAB TO SWBA

ENABL.E TO

PCCARDA(0--7)

WRITE CYCLE

COMMAND TO

SWBSYNC

PC MODE

CONTROL TO

PCCARDA(O)

Figure 4-105. PCCTL Detailed Block
Diagram

4-219/4-22v
Advanced Scientific Computer

MIR STATE

CLASS AND

STEP FROM

IRC.i:\RDIO)

SHIFT UP DATE

FROM CONTAU

MIR OP-CODE

GROUPS FROM PPCTL2

SWB'NIR

OP-CODE GROUP

FROM PPCTL2
MIR DC BIT

FROM IRCARD(O)

BUFFER AVAILABLE

(BA) FROM SWBSYNC

MIR MODE BIT

FROM IRCARD(O)

INITAL STATE {
LINES FRC>l\1

PPCTLZ

DEPENDENCY FR<>.1

PPCTL2

INDIRECT INDICAT~

FROM PPCTL2

IGNORE INDIRECT FROM

PPCTLZ

MIR PPTN BIT

FROM PPCTL2

.-----J MIR STATE
PIQMIR(B-13)

- CLASS AND STEP -l DECO.DING LOGIC

PACSHFUD

PICMIR(14)

PMAVB

PIClhHl!ilil

PININSM

PININSS2

Pllill'iS.SJ

PPD

PIDB

PllGI

PIPPTN

PIQMIR(ll)
MIR NIL BIT

FR<>.1 IRCARD(2)

SWBO N FIELD

SIGN BIT FROM

PCCARDA(4)

NIR N FIELD SIGN

BIT FRCM PCCARDA(4)

PMRSG~ltl

PNRRSGN(16)
-~ SELECT

LOGIC

-

MIR SOURCE BITS

FRCM IRCARD(I)

MIA OP-CODE

FRCM IRCARD(O)

SWBD T-FIELD}

PICMl'!120 21 2ll,

P!QMl'!!!J-l2_

-,PMDl~5 6 7 13 14

.,PNIR121t.J.5 6 13 14

.l.K!~

J
OP"-CODE - DECODING

LOGIC

1~

....

..... NEXT INSTRUCTION

~
(NINS)

LOGIC ~

i-.-

-
EXECUTE

(EX)
::

STATE -
LOGIC

......
....

.--t: [
t-

.. LAST CYCLE

(LC) .. STATE ... LOGIC

..;

~ --

Leo

~
LOOK 1'.HEAO

(LA) - STATE

LOGIC .:;.

~ r-;-.; VPR SELECT

LOGIC - FOR INDEXER

J: 12 -
INDEXER

BITS FRCM PCCARDA(3)

NIR T-FIELD BITS

FROM PCCARDA(3)
SWBOINIR SELECT)

FROM PPCTL2

SWBD R FIELD

FROM PCCARDA(2)
.,...,. Dl2(8-l 1) -~ ~<><·-·~ SELECTED R

f"IELD TO

~

... 12

DISABLE

~
LOGIC

NI" R FIELD

FROM PCCARDA(2)

NEXT IR OP-CODE

FROM IRCARD(O)

NEXT IR MOOE

FROM IRCARD(O)

NEXT VPC

FROM MLCTL

NEXT IR STATE I

STEP FROM IRCARD(O)

(D)l24813

NEXT IR EA

Lse•s F'RCM

IRCARD(3)

-,PNIRl:IR(B-11)

.,PIREIMIRA(0-7)

.,PIRBMIR~I~

PXSPLVPC(0-2)

~PIRBMIRA(S-13)

~PIREIMIRB(59-63)

c

1 OP-CODE DECODING

LOGIC J

STATE/

DECODING

LOGIC

INDEXER(!) INDEXER

12 CARRY

LOGIC .J

NEXT INTF BIT PIRSMIR'!lleJ. ...,

FROM IRCARD(2) ~ TRAP

NEXT INTI ;INT2

BITS F"ROM

IRCARD(2)

C7SJ
SETTING

LOGIC

.... BRSM. FILE ANC

AUGMENT F"I LE

..a EFFECTIVE ADR

MODIFICATION

'--- LOGIC

PIREIMIRB(38 39

BRSM

CM2016

ENABLE LOGIC

PININS
NEXT INSTRUCTION TO IR, TO PPCTL2

DATA ~E:AL
""'PREXOR EX STATE:

TO IRCARO(O)

'"'PAEXOT
O.ATA TEST

E>C STATE

TO IRCARD(9)

PRLCDT DATA TEST

l
--- LC STATE

TO IRCARD(O)

DATA REAL
PR LC DR LC STATE

TO IRCARD(O)

DATA REAL
PP LA DR

LA STATE
·~

TO IRCARD(O)

DATA TEST
PRLADT - LA STATE

TO IRCARD(O)

..,PTSIGNl2(1!.l., SIGN OF NEXT INSTRUCTION

N FIELD TO INDEXER(O)

PUTFLDI VPR SELECT
PUTFLDZ ..- F"OR IZ TO

PCCARDA(o-7)

VPR RIGHT HALFWORD
PTl2SRH

SELECT FOR 12 TO

INDEXER(O. 1)

.,PTIOPCE 12 DISABLE

- TO INOEXER(O.I)

INDEXER (0) TO (!)CARRY
PTIZKGEN

.... ENABLE TO INDEXER(O)

PTUKIN, CARRY INPUT ENABLE

TO INDEXER(!)

.,pfMIRl~37J.- INTERRUPT TRAP TO
IRCARD(Z) (MIR)

.,p1MIRIN('9~ :::':~~~ ~.:l~)SB 1S TO

., PIMIRIN(lill ,Jt) CM ADDR 2o 16 TO SWBA

ENABLE TO IRCARD(2)
(MIR)

MtR INTF BIT PtNTF'
FROM PPCTL2

INTERl"lUPT

INDICATOR
F'INTR~

F"ROM PPCTL2

WRITE CYCLE

ECll.IALITY FROM PIWCE

PCCTL

MA!NT PC CONTROL
P~OCKPC

FROM MLCTL

MIR INTERRUPT AND s
TRAP BITS F"RCIM IRCARD(Z)

MIR EFFECTIVE AODR

FROM IRCARD(2, 3)

~ --.... BCo

STEP ----
LOGIC

--

:!'
- BC1

STEP - LOGIC ...
::

....
::
--
...

Bez -- STEP - LOGIC
--

UCBLP

UCBSP -

C2S2 - INDEXER

C2S3 ... It LOAD

ENABLE

LOGIC

UCBLP

JCBSP - INDEXER

- II INCREMENT/

DECREMENT - LOGIC

.... MIR 'SWBO

NIR TO INDEXER 12

ENABLE

.... LOGIC

PULL

...f!.!..SH - STACK

c•sz PARAMETER

C4SS MODIFICATION

I. LOGIC

- PC'CR BASE TO

INDEXER

12 ENABLE

~ LOGIC

MDF .J MOOIFY -
STACK

PARAMETER
C4S2

LOGIC

~
C2S>--, MIR

EFFECTIVE p1.'il!!!.I.!!.. -
ADDRESS - MODIFICATION LOGIC

""PRBCOOR

"'\PRBCODT

""PRBCfDflt

"'PRBC10T

PRBC2DR

PRBC2DT

PPINDXMA

PPINDX1' R

PPMINUSI

PPPLUSI

PPM NU SK

...

...

.....

--
....

.....

....

DATA REAL

BCo BIT TO

IRCARD(O)

DATA TEST

BCo BIT TO

IRCARD(O)

DATA REAL

ec 1 BIT TO

IRCARD(O)

DATA TEST

Bet BIT TO
IRCARD(O)

DATA REAL

l!IC2 BIT TO
IRCARD(O)

DATA TEST

BC2 BIT TO

IRCARD(O)

CMAB BUS TO II

ENABLE. TO INDEXER(O. I)

RMAB BUS TO 11

ENABLE, TO INOEXER(O. I)

-

-
}

PC INCREMENT/

DECREMENT CONTROLS

TO INDEXER(O, I)

PftOEL TEN(O, I) REGISTER INDEXER

PT12SNRL -PTl2SIR ...
PT12SSGN -
PT12SMDM

PTIZSMDL ..
PTIZPSH

-
PTl2PUL -

-., PT125TK1
PTIZSBAS -

PT12SPC

PUl2SRHT -
PITNADOR(l-Jl2,

CR ENABLE TO INDEXER(O, I)

NIR ENABLE

} MIR ENABLE MIR/SWBO/NIR

SIGN EXTl!:NSION TO INDEXER 12

ENABLE ENABLE LINES,

TO INOEXl!:R(O, I)
SWBD ENABLES

WORO COUNT INCRl!:MENT TO INDEXER(O)

SPACE COUNT INCREMENT TO INDEXER(!)

WORD/SPACE COUNT OECREMIENT TO INDEXER(O.I)

CR BASE

EN•8LE

PC BASE

ENABLI!:

}

CR/PC BASIE TO

12 ENABLE LINl!:S.

TO INDEXl!:R(O.I)

MODIFY $1'"ACK PAfltAMIETER

ENA8LI!: TO PCCARA(0-7)

MOOIF"IED EF"FECTIVE

ADOR TO CAMB RMAB ON

PCCAROA(Z-7)

Figure 4-106. PPCTLl Detailed Block
Diagram

4-221/ 4-222
Advanced Sci en ti fie Computer

(C)l2014

MIR OP--CODE PIQMIR(0-7)
MIR l

OP-CODE ~~i;,~:;C~~;CCTL SWBO/NIR OP-CODE
GROUPS TO PPCTL1 DECODING Jt-----~-------_AND PP(;IJ. I

LOGIC ANCM.EXC--Mr------. ~----1-H1------------E-1~1L---'---------------------------.
-, •PCWMOI -- CR FILE INHIBIT

INDIRECT CR FILE r----~--- TO CRCONT(C>-3)

T.Jll.)_ ~::.~~~~ PIDB INDICATOR INHIBIT

BIT~~::s1:1~:;~~~ _P~IQ_M_l~_2_4_-2=6-28-~!<:l"t---------+-----.., T ~ LOGIC TO PPCTL1 PXINHIB LOGIC

FROM IRCARD(O) -----~~-----

{INTERNAL)

• PIRXBO'!l' - B } IR SOURCE -t---~~~~--...,~- 13 ENA LE SOURCE ENABLES

I------' AND 1----'"P~IR~Y~'!Q(J~LJ..-,. _ _, __ 12 ENABLE TO IRCARD(I)

DESTINATION •PIRXBl(I) }
r--l--l--l-+-+-----i ENABLE PIRYB!.i1) 13 ENABLE OESTINAT7~ ENABLES

LOGIC 12 ENABLE TO IRCARD I

PUINHIB

r--.__ __ _
INHIBIT LINE

-- TO YPRCONT
PIRYB1(Z)

BYTE 1 } C2S2

C2S4

MIR .I C2S6 MIR STATE CLASS PlQMIR(8-l 3) .- DEPENDENCY
AND STEP FR CM IRCARD(O) --------t----STATE CLASSl-....-J..--~--<~~1---l----------'--+---+-r--+-+---~-i LOGIC

- AND STEP J
DECODER

C2S2

MIR DC BIT CZSA

FROM IRCARD(O) _P~IQ~M-1'!(_1 :!l~--;---.-----_L'__---C-2_56 __ -+--+--+--1

FR::
11:~~~;~ ~P~IQ~M_l~~3~:!2_~--~--~--'t--.--,L"--------+-+-+--1f--i_... (INTERNAL) \L. ANCM ,EXCM

SWBD OP-COOE ANO T FIELD -,PMDl!(,,0-7 12-1~
FROM PCCARDA(O. 1,3)

NIR OP-<:OOE AND T FIELD •P"'!J..lllZ!il-7 ~
FROM PCCARDA(O, 1.3)

·K TFIELD

SWB2/NIR
SELECTOR

NEXT OP CODE

v
SWBO/NIRJ-
OP--CODE

DECOOING

LOGIC

IGNORE
INDIRECT

LOGIC

C2S2

PPD

PllGI

DEPENDENCY
TO PPCTLf

IGNORE INDIRECT

L TO PPCTL1
..-----,i---'-P_IDC_D_R ___

DIRECT -- BIT

LOGIC

..,, PIOCDT

MIR OP-CODE ~

M

1

:,,o;:~~~A~':r2~ ..:.P_.IQ::;M=.l"!f,_.l::::~"--------------+-+-+-+---if--------~-t--t-+-i SWBO NIR OP-CO~ j ~~~-2~~
l-+-+---4-----------+-+-+--+-+...:::..:.=:"-'-'~-"'--"-"-"-"-... SELECTION

BUFFER AVAILABLE PMAYB
(BA) FROM SWBSYNC -'-'-"-'--=-----------------1 REMAP

LOGIC

l

czsz

LO/

REMAPPED ~

1--+--t-+-+--i~O~P_-~C~O~D~E-----~V./_,,,.,,
DATA TEST

MIR.------ OP-CODE TO
OP-CODE IRCARD(O)

...
MOOE

DIGIT

LOGIC

"EMAP/
REMAP AUG

..,PIMDR DATA REAL MOOE
~ DIGIT TO IRCARD(O)

•PIMDT OAT" TEST MODE

DATA REAL DIRECT
BIT TO IRCARO{O)

DATA TEST DIRECT
BIT TO IRCARO{O)

IR

E:~~~;~~E t--P_IR_Y_~~3_) __ _.,_ BYTE 2

EFFECTIVE

ADDRESS BYTE
ENABLES TO

IRCAR0{2 ,3) ENABLE

LOGIC PIRYBl(3) BYTE 3

•PIOMOR DATA REAL OBJECT t--------.•• MODE TO IRCAR0{2)

OBJECT
~ MOOE

LOGIC

PINIBTN
INSTRUCTION t--------Q

RESET NEXT INSTRUCTION BTN

TO PPCTLI AND PCCTL
t--+-- BTN LOGIC

-- INDIRECT

THROUGH

CR/VPR

LOGIC

..,PIPPTNDT
I

-.PIPPTNC>flt

DATA TEST PPTN

BIT TO IRCARD(2)

DATA REAL PPTN

BIT TO IRCARD(Z)

t-++--..._ ___ _
DATA TEST OBJECT
MOOE TO IRCARD(2)

INITIAL

MIR PPTN BIT TO PPCTLI

INITIAL
STATE LINES

TO PPCTLI

PININSM - INITIAL STATE LINES
i--------- TO PPCTLI ~ s:~~·

~..__ __ __.

MIR MODE DIGIT

FROM IRCARD(O)

BITS 0-3 OF M"'

PIQMJR'15' l.__ ______ 0_1G_1T_T_o_1_A_CAR_D_<_o_i ___________ t--------J
...:...:==~~"-"'"-'--'"------lt--------------t---t--t------------.-•"-t._____ ~------------------------+----------,}
~p~~...,,,"'-Jl~R~~~u~-~27uQ_-+------------+--+--+--i---..r----~(INT1ERNAL,,_ _________________________________ -+--------t1-1t--' -- NIL

LOGIC
DEST F"OM IRCARD(t)

CR PROTECT ENABLE

FROM CRCELLY
MIR LFAF BIT

F"OM IRCARO(Z)

MIR INTF BIT
FROM IRCAR0(2)

MIR EX BIT

FRCM IRCARO(O)

SHIFT UPDATE

FRCM CONTAU

MIR HALF WORD

DESTINATION BIT

FROM IRCARD(I)

LDCR ~ PR~T:CT 1--'--~·~P~X~IN~H~IB=-~~• ~:::~~CT '---+--+-+-+------i--~
•PCRPRO LOGIC TO CRCELLY '"-----+---+--+--+-------

~------" PIQMl'!.{_:M)

PIQMll!!!l_

PACSHFUO

PIQMIR(30)

EXCM
•PINTFDR DATA REAL}

~ ~ PINTFDT INTF BIT TO

... ------------+--+---- INTERRUPT I---'-"-'-'-'-=-'--~--• ?NA_/l°BWST IACARD[2)
MONITORING

SHFT

r-POL

LOGIC ~liif

PINTRPT

~------"

SHIFT

UPDATE

LOGIC

PATPOLB1
POLL

HALFWORD

SELF::CTION
--i..__L_OG_ic_...r---P-A_T_Po_L_B_3_~

:~b~"...;uo...: l PINTACK

TO PPCTL1

SHIFT COUNT
ENABLE TO
IRCAR0(3)

POLL LEFT HALF ENABLE
TO PPAUCD(I)

POLL RIGHT HALF ENABLE
TO PPAUCD(3)

MIR INTF BIT
TO PPCTL1

INTERRUPT ACKNOWLEDGE
TO CRCELLY

MIR SOURCE

BYTE BITS FROM

IRCARD(1)

PIQMIR(22. 23)

MIR

NIL

SOURCE
BYTE

LOLFA

CZSI

~-----

LFAF

F~G

LOGIC

•PINILOR

..,PILFAFDT _.

•PILFAFDR _.

-.PLFAINH .._ _____________ __::::...:_:::.;_c.:~

PATPOLS(C>-l)

DATA REAL NIL

BIT TO IRCAltD(Z)

DATA TEST LFAF

BIT TO IRCARD(2)

DATA ltEAL LFAF

BIT TO IRCAltD(2)

BIT 0 INHIBIT FOR CMllA5E
LOADS TO CRCELLY

•• ::~~'{_P_,.._B_P_K_1N_F_l_o-_1""")--·-~-4f"--.. I
BYTE COUNT P .. BPKING(0-3) ' -C-~ PABPKF~J,! 3) } FROM ---------91 SELECT >-----'"'"'-=-'-"--""'"'-"'-"-

PPAUCD(0-3) P .. BPKINH(O-l) _., LOGIC PABPKGO(I ,3) a
PABPKHO(I ,]) ..

SELECTED POLL

COUNT TO

PPAUCD(I ,3)

Figure 4-107. PPCTLZ Detailed Block
Diagram

4-223/4-224 Advanced Scientific Computer

VP CODE

FROM MLCTL

NEXT

IR

OP-CODE

NEXT IR:

DC BIT

NEXT

VP IR

DATA

FROM

NEXT

IR

STEP

IRCARD(O, I) NEXT IR

(c) 1ua1s

STATE

NEXT IR

SOURCE

NEXT IR

DESIGNATION

NEXT IR

MODE BIT

NEXT IR

LFAF BIT

FROM IRCARD(2)

INHIBIT VPR

LOADING FROM

PPCTL2

BRANCH TAKEN

FOR 092./IBZ

INSTRUCTIONS FROM

CONTAU

NEXT IR

5 LSB's OF EA

FROM IRCARD(3)

NEXT IR INTF

BIT FROM IRCARD(2)

l J } -.PULVPC(0-2)
FF'S 1

4 OP-CODE l
-,PIRBMIR(0-7)

DECODING J
LOGIC

-.PIRBMIR(14)

~
STEP l -.PIRBMIR(11-13)

DECODING J
LOGIC

-.PIRBMIR(S-10)

-.PIRBM1fil!6-23)

-PIRBMIR(24-31)

-.PIRBMl'llJS)

-.PIRBMIR(34)

PUINHIB

-,PACSPBT

,PIRBMl'!iU-63)

-.PIRBMIR(3ti)

PUVPC(0-2)

CvpcooE TO
PURl2C(>J-2) VAO• 00.V~}

CRMIRLDR DISTRIBUTION FILE SELECT TO
LOGIC PURW3C(0-2) ll.VPB BUS VPRCARD(0-7) -- VPR3 SELECT

COM BINA-.... TIONAL
PURA! PO!

} VPR TO VPRB1

~oGIC PURA°IP67 ENABLE LINES

TO VPRCARD(0-7) PURABPOI

=}
VPAB TO MOB

ENABLE LINES
PURA.BP67 -- \!PR

TO VPRCARD(0-7)
TO MDB ENABL.£ - LOGIC

--
-- PURABC(0-2) VPR TC MDB WORD

SELECT TO VPRCAR0(0-7)

-- VPR TO

MOB WORD SELECT
(20,21) LOGIC

--
~8 29_L_

..... PUR ... !C(0-2) VPR TO VPRB WORD

VPR TO - SELECT TO VPRCARD(0-7) - VPRB WORD
_f._20 2\.l..- SELECT

_J._28 29) LOGIC

_J._28,29) Puw ... 2so-~ ... U2B TO VPR WORD

... UI B/AU2B SELECT TO YPRCARD(0-7) PUWAl~0-2) _., TOVPR AU1B TO VPR WORD

'\WORD SELECT TO VPRC ... RD(0-7)

..... SELECT

-- LOGIC

__,. L.
... U111/AU2B

.:Ii TO VPR
--i_ENAllLE LOGI

~ J __ ~ AU1B u2a

-- BYTE SELECT
AU2B TC

LOGIC
~ VPA BYTE/

~

WORD EN ... BLE

LOGIC ~

l AUIB TO
~ ~

L VPR BYTE -- WORD ENABLE

LOGIC

_E.X _.J'" COMBINA-
PEA._14). CR WRITE

S2 TION ... L ENABLE TO CRMIRLDR
LOGIC

-- t-t-I-!' CR FILE MOAB TO

MOB -.PMTRMOA.B MO ... B TO MOB
~ TO MOB

ENABLE
ENABLE TO PCCTL EN ... BLE ~

~ LOGIC LOGIC

..... LOAD VP
AU2B TO CR

PEA2CRX - ... BASE TO
FILE ENABLE

CR ENABLE

-- LOGIC
LOGIC

.- =:!f CR INDIRECT
CR WRITE Pi;J._W__j_W LX

CONTROLS

>TO ~~TORE READ ::11 LEFTH~ NABLE LO CRMIRLDR N ... BLE LOGIC

-- TEST SET CR WRITE PELWSWRX
RESET CR _:i, RIGHT HEX~ ~

BIT READ,I~ - NABLE LOGI
ENABLE LOGI

PUOVPC<(O-ll .- VP CODE
PUOVPAB - VPR-MDB ENABLE
PUORWAB(4)

-} VPR-MDB
PUORWAB(S) .- WORD SELECT

PUORWVB(4)
-} VPR-VPRB

PUORWVB(S) .- WORD SELECT

PUOWW(4)
.-} AU2B-- VPR

PUOWW....(21 -- WORD SELECT

PUOA1VP .- AUIB- VPR PIO
ENABLE > VPRMIR PUOA2VP

~ AUZB- VPR
TO

PUOWSW~o-:u_ _
EN.a.BLE

MIRMRGB AU! BiAU2B

-VPR BYTE

SELECT

...

,PED(0-7) -- DESTINATION BITS TO
CRMIRLDR

-.PE~0-5) -- SOURCE lllTS TO
CRMIRLOR

~""'."~!> -} '"'"- v~
, WORD BYTE

PUWA2~7(J-3) • ~~~~~~~(~~)

P!,l'l1A1 P01'l!:::il -} '"'~'"" WORD BYTE

PUWAI P67(0-3)
EN ... BLES TO

• VPRCARD(0-7)

PECRABX CR FILE TO MOB

EN ... BLE TO

CRMIRLDR

PELWW, -

.,PELRWB CONTROLS

(> TO

CRMIRLDR

..,F'ELRWC

.., PALLC

- COM BINA-

.... TIONAL
LOGIC

-- ALIGNER -- ENABLE

.... LOGIC

(30,31) ALIGNER

(22 23)--
REFERENCE

LOGIC

-- ALIGNER

OBJECT
(22,23)

LOGIC

~

_J M~~R E~:;~E
-- LOGIC

12 TO CMAB

ENAllLE

LOGIC

.....
l[A TO RMAB

ENABLE
~ LOGIC

.-,..

... l'C TO CMAB

ENAllLE
~

LOGIC

i-+--
f--

... IR l
IMMEDIATE

TOMDll d
EN ... llLE LOGI

.....
PC TOMDll

l:NAllLE

~ LOGIC

swB"' TO

MOB ENABLE

LOGIC

J
I CR WORD 1 WRITE

1 ENABLE J LOGIC

J CR HALF l
~ WORD WRITE l ENABLE J

LOGIC

1
CR llYTE l WRITE
ENABLE J LOGIC

-. PALEXST2

-iPA.L.A.LIGN

-.PALWSWEl{0-3)

..,PALRSWB(0-3)

-.PALOPC~0-7)

..,~LRF' nrn...•

..,PALSHF~O-~

-,pfTR~AAB

..,PPTRIZCB

,PPTRTARB

PPTRPCCB

,PITRIMAB

-,PPTRPCAB

.,PMTRMAAB

PESWBXA

PESWBXB

PESWBXC

LAST CYCLE

-- E

-- A

A

A

• 0

R

-- s

'1

-

--

>

-

~

.... >

--

XECUTE STEP 2

LIGNER EN ... BLE

LIGNER REFERENCE

LIGNER OBJECT

P-CODE

FIELD

HIFT COUNT

CONTROLS

TO

PCCTL

CONTROLS

TO

CRMIRLDR

CONTROLS

TO

CONT AU

Figure 4-108. VPRCONT Detailed
Block Diagram

4-225/4-226
Advanced Scientific Computer

• M

• NIB TN

• NIL

• NINS

• PPTN

• RC

• ST

• UD

• WC

• WCE

Mode is set to indicate the current instruction source
is CM and reset to indicate ROM.

Next instruction BTN is set to indicate the current
unconditional branch and load PC instruction is fol­
lowed by a PC relative branch instruction.

Next instruction location is set to indicate the source
of the next instruction is the NIR and reset to indi­
cate SWBD.

Termination is set to indicate completion of the cur­
rent instruction.

The IR PPTN bit is set to indicate the instruction is
indirect through a CR or VPR.

Read command is set to indicate the initiation of a
CM read cycle.

Skip taken is set to indicate the next instruction is to
be skipped.

Shift update is set to indicate additional data shift is
necessary to complete the shift specified by a shift
instruction.

Write command is set to indicate the initiation of a
CM write cycle.

Write cycle equality is set to indicate the EA of the
current instruction is identical to the address of the
next instruction to be executed.

Prior to each step description under all of the instruction groups, the IR con­
taining the instruction that is the subject of the description is enabled into the
MIR at the beginning of the command execution time (this signals the start of
the active period for the VP associated with the IR). During the active per­
iod, the same IR is updated with data real, data test, TN field indexer, R
field indexer, and shift count information necessary to carry out complete
execution of the original instruction or initiation of a new instruction. When
a VP register (PC, SWBD, IR, etc.) is mentioned in a step description, the
register associated with the active VP is the one being referenced. The
state class (EX, LA, and LC) and step (BCo, BC1, and BCz) data in the
transfer tables do not represent the actual IR contents but reflect the state
class and step definitions presented in the IR portion of the VP detailed
theory. Table 4-3 shows the relationships of the state class and step defini­
tions to the actual inputs to (from PPCTLl) and contents of the IR. Table 4-4
contains the instruction groups (stores, loads, etc.), the subgroup mnemon­
ics associated with each group, and the paragraph number associated with
each subgroup transfer table analysis.

4-227 Advanced Scientific Computer

Table 4- 3. State Class and Step Defined/ Actual Relationships

State Class Step

IR Inputs IR Inputs

...,p p p -,p -,p p

R R R R R R
L ' L IR B B B B IR E

Definition. c Definition c c c Contents x A c Contents
D(D) D(D) D(D) 0 1 2

R(T) R(T) R(T) D(D) D(D) D(D)
R(T) R(T) R(T)

0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

0 1 1 1 1 1 0 0 0 2 0 0 1 1 1 1 0 0 0

1 0 0 0 0 0 1 1 1 3 0 1 0 1 0 0 0 1 1

1 1 1 0 1 1 1 0 0 4 0 1 1 1 0 1 0 1 0

5 1 0 0 0 1 0 1 0 1

6 1 0 1 0 1 1 1 0 0

7 1 1 0 0 0 0 1 1 1

8 1 1 1 0 0 1 1 1 0

Table 4-4. Instruction Transfer Table Analysis Index

Instruction
Subgroup Mnemonic /Definition

Paragraph
Groups Number

Store KSTCM/Store Word to CM . 4-157

KSTHCM/Store Halfword to CM 4-158

KSTPTP /Store Register to Register 4-159

KSTUF /Store UPR File 4-160

Load K LDCM/ Load From CM 4-161

K LDIM/ Load Immediate 4-162

KLDPPU/Load Register to Register 4-163

KLDUF /Load VPR File 4-164

K LD LF A/ Load CM Base Register 4-165

Add/Subtract KCMAU /Add/Subtract CM to/from VPR 4-166

4-228 Advanced Scientific Computer

Table 4-4. Instruction Transfer Table Analysis Index (Continued)

Instruction
Subgroup Mnemonic/Definition

Paragraph
Groups Number

Add/Subtract KIMAU /Add/Subtract Immediate to/from
(Continued) VPR 4-167

KUAU /Add/Subtract VPR to/from VPR 4-168

Logical K CM LOU/ Logical CM to VPR 4-169

KIMLOU /Logical Immediate to VPR 4-170

KPPULOU /Logical VPR/CR to VPR 4-171

Shift KSHFT /Shift 4-172

CR Bit Test/ KUCSRT /Set/Reset CR VP Flag 4-173
Control

KUCT /Test CR VP Flag and Skip 4-174

KCRSRT /Set/Reset CR Bits 4-175

KCRTSRT /Test CR Bits, Set/Reset and
Skip 4-176

KCRLO/Test CR Bits and Skip 4-177

Poll KTPOL/Test Poll Bits 4-178

Compare KSKUCM/Compare CM to VPR 4-179

KSKUIM/Compare Immediate to VPR : 4-180

KSKUPPU /Compare VPR/CR to VPR 4-181

Branch K CBAT /Arithmetic Conditional Branch 4-182

KCBIMDT /Increment/Decrement Condi-
tional Branch 4-183

KUCB/Unconditional Branch 4-184

KUCBLPC/Unconditional Branch and Load
PC 4-185

KUCBSPC/Unconditional Branch to ROM,
Save PC 4-186

4-229 Advanced Scientific Computer

Table 4-4. Instruction Transfer Table Analysis Index (Continued)

Instruction
Subgroup Mnemonic /Definition

Paragraph

Groups Number

Stack KPUSH/Push Stack 4-187

KPULL/Pull Stack 4-188

KMDF/Modify Stack 4-189

Miscellaneous KEXCM/Execute CM 4-190

KLEA/Load Effective Address 4-191

KNDIREC/Indirect Cycle 4-192

KNOOP /No Operation 4-193

INTRPT /Interrupt Cycle 4-194

4-157 Store Word to CM (KSTCM). This instruction group stores the R
field specified VPR or CR word to CM at the EA developed by the T and N
fields. Execution of the KSTCM instruction group originating from CM is
shown in the transfer table on page 1 of appendix A.

Step 1 The multistep CM source KSTCM instructions begin ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBS YNC indicates buffer availabil­
ity and the word to be stored is from a VPR, the appro­
priate VPAB to MDB enable (PURABPOl, PURABP23,
PURABP45, or PURABP67) and the VPR to MDB word
select (PURABC(0-2)) from VPRCONT enable the desired
VPR to the MDB. If the word to be stored is from a CR,
the MIR source bits (-iPES(0-5)) routed through VPRCONT
are used to select the CR word to be read and the CR file
to MDB enable (PECRABX from VPRCONT) transfers the
desired CR to the MDB. The aligner enable (PA2ALEN)
from PCCTL transfers the VPR/CR over AU2B and the
AU2B to SWBD enables (PMA2MDLE and PMA2MDRE)
from PCCTL permit completion of the VPR/CR to SWBD
transfer. At the same time, the MIR EA is passed
through PPCTLl and enabled over CMAB to SWBA via the
EA to CMAB enable (PPTACBE) on PCCTL; the SWBD is
transferred over CMDB to the NIR via the SWBD to NIR
enable (PNMDCDE) from PCCTL (to make room for the

4-230 Advanced Scientific Computer

Step 2

VPR/CR); the data real NIL bit from PPCTL2 is set in
the IR to indicate the next instruction is in the NIR; the
MIR EA is indexed by one and input to the IR for the WCE
test by enabling the MIR EA to the TN field indexer (via
PTIZSIR on PP CT Ll) and generating the carry input en­
able (PTIZKIN on PPCT Ll); a write request (-iPMWC) is
made from PCCTL to write the desired VPR/CR to the
CM location specified by the MIR EA; and the state class
and step data real logic on PPCT Ll inputs state class 3,
step 1 to the IR.

When the BA signal from SWBSYNC indicates buffer avail­
ability but the WCE logic on PCCTL evaluates true, the
SWBD (containing the stored VPR/CR) is transferred to
the NIR via the SWBD to NIR enable (PNMDCDE) and NIR
load enable (PNCDNRE) from PCCT L. The state class
and step data real logic on PPCTLl inputs state class 3,
step 2 to the IR (step 3 of this instruction group). If WCE
is not true, the PP three-level pipe is advanced one level,
with the aid of the NINS (PININS) enable from PPCTLl,
as described in subparagraphs (1) through (5) below:

(1) The NIR-to-IR transfer is accomplished by enabling
the following:

• The NIR op-code through the data real logic on
PPCT L2 to the IR.

• The developed data real state class and step on
PPCT Ll to the IR.

• The developed data real DC bit, M digit, and
flags on PPCTL2 to the IR.

• The outputs of the TN and R field indexers to the
source and destination fields of the IR as deter­
mined by the source enables (.PIRXBO(l) for R
and PIR YBO (1) for TN) and destination enables
(-,PIRXB 1 (l) for R and PIRYB 1 (1) for TN) sup­
plied by PPCTL2.

• The output of the TN field indexer or shift update
logic on CONTAU to the EA of the IR as deter­
mined by the TN field indexer byte enables
(PIRYB1(2), PIRYB0(3), and PIRYB1(3)) or the
shift count enable (-iPIRXB 1 (3)) supplied by
PPCTL2.

4-231
Advanced Scientific Computer

Step 3

(2) The PC is transferred to the SWBA by the developed
PC to CMAB enable (PPPCCBE) and CMAB to SWBA
enable (PMCBMAE) from PCCTL.

(3) The PC is incremented by one by fir st enabling the
PC to the PC indexer (via PPINDXMA from PPCT Ll),
then supplying the PC indexer with the increment by
one signal (PPPLUSl from PPCTLl), and finally
enabling the PC indexer result to the PC via
PPilPCE from PCCTL.

(4) The NIL bit of the IR is zeroed via the data real logic
on PPCTL2 to indicate the next instruction is in the
SWBD.

(5) The PCCTL card issues a read request (-,PMRC) to
fetch the next instruction.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of this instruction group using the in­
struction retrieved from the VPR/CR in step 1.

Execution of the KSTCM instruction group originating from ROM is shown in
the transfer table on page 5 of appendix A.

Step 1 The single step ROM source KSTCM instructions begin
execution in state class 7, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availabil­
ity, the desired VPR/CR is transferred to the SWBD, the
MIR EA is transferred to the SWBA, and a write request
is issued, all as described in step 1 of the CM source
KSTCM instruction group. At this same time, .. the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group, with
the following exceptions: the PC is applied to RMAB and
ROM instead of the SWBA via the PC to RMAB enable
(PPPCRBE) from PCCTL (the PC to CMAB enable is still
used, however, because of the PC indexing operation) and
the NIL bit of the IR is set via the data real logic on
PPCT L2 to indicate the next instruction is in the NIR.

4-158 Store Halfword to CM (KSTHCM). This instruction group stores a
VPR or CR halfword, specified by the R field, to the left or right half of the
CM location developed by the T and N fields. Execution of the KSTHCM in­
struction group originating from CM is shown in the transfer table on page 2
of appendix A.

4-232 Advanced Scientific Computer

' Step 1

Step 2

The multistep CM source KSTHCM instructions begin ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availabil­
ity, the MIR EA from PPCTLl is enabled over CMAB to
SWBA via the EA to CMAB enable (PPT ACBE) on
PCCT L; the SWBD is saved in the NIR via the SWBD to
NIR enable (PNMDCDE) from PCCT L; the IR NIL bit is
set via the data real logic on PPCT L2 to indicate the next
instruction is in the NIR; a read request (•PMRC) is made
from PCCTL to read the word addressed by the MIR EA;
and the state class and step data real logic on PPCTLl
inputs state class 4, step 2 to the IR.

When the BA signal from SWBSYNC indicates buffer
availability and the halfword to be stored is from a VPR,
the appropriate VPAB to MDB enable (PU RABPOl,
PURABP23, PURABP45, or PURABP67) and VPR to
MDB word select (PURABC(0-2)) from VPRCONT enable
the VPR containing the desired halfword to the MDB. If
the halfword to be stored is from a CR, the MIR source
bits (-iPES(0-5)) from VPRCONT are used to select the
CR containing the desired halfword and the CR file to
MDB enable (PEACRABX) from VPRCONT transfers the
selected CR to the MDB. The aligner enable
f-,PALALIGN from VPRCONT) combines with the aligner
object (-iPALRSWB(0-3) from VPRCONT) and aligner ref­
erence (--,PALWSWB(0-3) from VPRCONT) to rotate, if
necessary, and transfer the MDB word to the AUZB.
(Rotation is necessary if the register halfword is to be
stored in the opposite halfword of the CM destination.)
The appropriate AUZB to SWBD enable (PMAZMDLE for
left halfword stores and PMAZMDRE for right halfword
stores) from PCCTL transfers the VPR/CR halfword to
the SWBD to complete the VPR/CR to SWBD transfer.
At the same time, the MIR EA from PPCTLl is enabled
over CMAB to SWBA via the EA to CMAB enable
(PPTACBE) on PCCTL, the MIR EA is indexed by one
and input to the IR for the WCE test by enabling the MIR
EA to the TN field indexer (via PTIZSIR on PPCTLl) and
generating the carry input enable (PTIZKIN on PPCT Ll),
a write request (--,PMWC) is made from PCCTL to write
the register and remaining CM halfwords to the CM loca­
tion specified by the MIR EA, and the state class and step
data real logic on PPCTLl inputs state class 3, step 1 to
the IR.

4-233 Advanced Scientific Computer

Step 3

Step 4

Identical to step 2 of the CM source KSTCM instruction
group.

Identical to step 3 of the CM sourc~ KSTCM instruction
group.

Execution of the KSTHCM instruction group originating from ROM is shown
in the transfer table on page 6 of appendix A.

Step 1

Step 2

The multistep ROM source KSTHCM instructions begin
execution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBS YNC indicates buffer availabil­
ity, the MIR EA from PPCTLl is enabled over CMAB to
SWBA via the EA to CMAB enable (PPT ACBE) on
PCCTL, the state class and step data real logic on
PPCTLl inputs state class 7, step 1 to the IR, and a read
request (-,PMRC) is made from PCCTL to read the word
addressed by the MIR EA.

When the BA signal from SWBSYNC indicates buffer
availability, the desired VPR/ CR halfword is transferred
to 'the SWBD, the MIR EA is transferred to the SWBA,
and a write request is made, all as described in step 2
of the CM source KSTHCM instruction group. In addition,
the PP three-level pipe is advanced one level as de­
scribed in step 2 of the GM source KSTCM instruction
group, with the following exceptions: the PC is applied to
RMAB and ROM instead of the SWBA via the PC to RMAB
enable (PPPCRBE) from PCCTL (the PC to CMAB enable
is still used, however, because of the PC indexing opera­
tion) and the NIL bit of the IR is set via the dat:a real
logic on PPCTL2 to indicate the next instruction is in the
NIR.

4-15 9 Store Register-to-Register (KSTPTP). This group of instructions
stores a VPR or CR word, halfword, or byte, as specified by the R field, to
the VPR or CR word, halfword, or byte specified by the T and N fields. Ex­
ecution of the KSTPTP instruction group originating from CM is shown in the
transfer table on page 3 of appendix A.

Step 1 The single step CM source KSTPTP instructions begin
execution in state class 7, step 2, as determined by the
state class and step data real logic on PPCT LL When
the BA signal from SWBSYNC indicates buffer availabil­
ity but the D logic on PPCT L2 indicates the next instruc­
tion depends on the current instruction, the VPR or CR
containing the data to be transferred is enabled to both

4-234
Advanced Scientific Computer

~----------

Step 2

AUlB and AU2B as described in step 2 of the CM source
KSTHCM instruction group. If the data is to be stored in
a VPR, the appropriate AU 1 B to VPR byte enables
(PUWAlPOl(0-3), PUWA1P2.3(0-3), PUWA1P45(0-3), or
PUWA1P67(0-3)) combine with the AUlB to VPR word se­
lect (PUWAlC(0-2)), both from VPRCONT, to transfer
the VPR/CR data to the desired VPR. If the data is to be
stored in a CR, the AU2B to CR file enable (PEA2CRX),
destination bits (-iPED(0-7)), and word (PESWBXA), half­
word (PESWBXB), byte (PESWBXC), and hex
(PELWSWLX for left hex and PELWSWRX for right hex)
enables from VPRCONT combine to transfer the VPR/CR
data to the desired CR. The state class and step data
real logic on PPCTLl inputs state class 3, step 2 to the
IR. If the next instruction does not depend on the current
instruction (ID), the previously described VPR/CR to
VPR/CR transfer is enabled and the PP three-level pipe
is advanced one level as described in step 2 of the CM
source KSTCM instruction group, with the following ex­
ception: the SWBD is the source of the next instruction
so it rnust be used in the indexing cycle.

The PP three-level pipe is advanced one level using the
SWBD as the source of the next instruction.

Execution of the KSTPTP instruction group originating from ROM is shown
in the transfer table on page 7 of appendix A, and is identical to the KSTPTP
instruction group except for the source of the next instruction (ROM) used in
the three-level pipe advance and the setting of the NIL bit to indicate NIR.

4-160 Store VPR File (KSTUF). This instruction group stores the VPR
file in four consecutive CM locations beginning at the EA developed by the T
and N fields. If the EA is not a multiple of four, it is forced to a multiple of
four. Execution of the KSTUF instruction group originating from CM is
shown in the transfer table on page 4 of appendix A.

Step 1 The multistep CM source KSTUF instructions begin ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availabil­
ity, the appropriate VPAB to MDB enable (PURABPOl for
VPO and VPl, PURABP23 for VP2 and VP3, PURABP45
for VP4 and VPS, and PURABP67 for VP6 and VP?) and
VPR to MDB word select (PURABC(0-2)) from VPRCONT
enable VPRO to the MDB. The aligner enable
(-iPALALIGN) from VPRCONT transfers VPRO to AU2B
and the AU2B to SWBD enables (PMA2MDLE and

4-235 Advanced Scientific Computer

Step 2

Step 3

Step 4

PMAZMDRE) from PCCTL permit completion of the
VPRO to SWBD transfer. The MIR EA, with the last two
bits set to zero by the 1PIMIRIN(62, 63) lines from
PPCTLl, is enabled over CMAB to SWBA via the EA to
CMAB enable (PPTACBE) on PCCTL, the SWBD is trans­
ferred over CMDB to the NIR via the SWBD to NIR enable
(PNMDCDE) from PCCTL in order to make room for
VPRO, the IR NIL bit is set via the data real logic on
PPCT LZ to indicate the next instruction is in the NIR, a
write request (-iPMWC) is made from PCCTL to write
VPRO to CM, and the state class and step data real logic
on PPCT Ll inputs state class 4, step 2 to the IR.

When the BA signal from SWBSYNC indicates buffer
availability and no WCE exists (as indicated by PCCTL),
VPRl is written to CM at the location specified by the
MIR EA (with the last two bits set to one) in a manner
similar to that described in step 1. If the WCE logic
evaluates true (the MIR EA with the last two bits zeroed
is identical to the address of the next instruction), VPRl
is written to CM as mentioned and VPRO is saved in the
NIR via the SWBD to NIR enable (PNMDCDE) from
PCCT L. In either case (-,WCE or WCE), the state class
and step of the IR are advanced to four and three, re­
spectively.

When the BA signal from SWBS YNC indicates buffer
availability and no WCE exists, VPRZ is written to CM
at the location specified by the MIR EA (with the last two
bits set to two) in a manner similar to that described in
step 1. If the WCE logic evaluates true (the MIR EA with
the last two bits set to one is identical to the address of
the next instruction), VPRZ is written to CM as mentioned
and VPRl is saved in the NIR via the SWBD to NIR enable
(PNMDCDE) from PCCTL. In either case, the state class
and step of the IR are both advanced to four.

When the BA signal from SWBSYNC indicates buffer
availability and no WCE exists, VPR3 is written to CM
at the location specified by the MIR EA (with the last two
bits set to three) and the MIR EA is indexed by one and
input to the IR for the next WCE test by enabling the MIR
EA to the TN field indexer (via PTIZSIR on PPCTLl) and
generating the carry input enable (PTIZKIN on PPCT Ll).
If the WCE logic evaluates true (the MIR EA with the last
two bits set to two is identical to the address of the next
instruction), VPR3 is written to CM as mentioned, VPRZ

4-236 Advanced Scientific Computer

Step 5

Step 6

is saved in the NIR via the PNMDCDE enable from
PCCT L, and the MIR EA is indexed by one and input to
the IR as previously described. In either case (IWCE or
WCE), the state class and step of the IR are advanced to
three and one, respectively.

When the BA signal from SWBSYNC indicates buffer
availability and no WCE exists, the PP three-level pipe
is advanced one level as de scribed in step 2 of the CM
source KSTCM instruction group. When WCE does exist,
VPR3 is saved in the NIR via the PNMDCDE enable from
PCCTL and the state class and step of the IR are advanced
to three and two, respectively.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group.

Execution of the KSTUF instruction group originating from ROM is shown in
the transfer table on page 8 of appendix A.

Step 1

Step 2

Step 3

Step 4

The multistep ROM source KSTUF instructions begin ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBS YNC indicates buffer availabil­
ity, VPRO is written to CM and the state class and step
of the IR are updated as de scribed in step 1 of the CM
source KSTUF instruction group.

When the BA signal from SWBSYNC indicates buffer
availability, VPRl is written to CM and the state class
and step of the IR are updated as de scribed in step 2 of
the CM source KSTUF instruction group.

When the BA signal from SWBSYNC indicates buffer
availability, VPR2 is written to CM as described in step
3 of the CM source KSTUF instruction group and the IR
state class and step are advanced to seven and one, re­
spectively, by the data real logic on PPCT Ll.

When the BA signal from SWBSYNC indicates buffer
availability, VPR3 is written to CM as de scribed in step
4 of the CM source KSTUF instruction group and the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group, with
the following exceptions: the PC is applied to RMAB and
ROM instead of the SWBA via the PC to RMAB enable
(PPPCRBE) from PCCT L (the PC to CMAB enable is still

4-237 Advanced Scientific Computer

used, however, because of the PC indexing operation) and
the IR NIL bit is set via the PPCTL2 data real logic to
indicate the next instruction is in the NIR.

4-161 Load from CM (KLDCM). This group of instructions loads the word
or halfword specified by the T and N fields into the register specified by the
R field. Execution of the KLDCM instruction group originating from CM is
shown in the transfer table on page 9 of appendix A.

Step 1

Step 2

The multistep CM source KLDCM instructions begin ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availabil­
ity, the MIR EA from PPCTLl is enabled over CMAB to
SWBA via the EA to CMAB enable (PPT ACBE) on
PCCT L, the SWBD is transferred over CMDB to the NIR
via the PNMDCDE enable from PCCTL to make room for
the CM word to be read, the IR NIL bit is set to one by
the data real logic on PPCT L2 to indicate the next instruc­
tion is in the NIR, a read request (,PMRC) is issued
from PCCTL to retrieve the CM word addressed by the
MIR EA, and the state class and step of the IR are ad­
vanced to seven and two, respectively, by the data real
logic on PPCTLl.

When the BA signal from SWBSYNC indicates buffer
availability but the dependency (D) logic on PPCTL2 in­
dicates the next instruction requires complete execution
of the current instruction before indexing, the SWBD to
MDB enable (PMMDABE) and word select (PPRABC(0-2))
from PCCTL combine to enable the active SWBD to the
MDB, and the aligner enable hPALALIGN from
VPRCONT) transfers the MDB to AUlB and AU2B (if a
CM halfword is to be loaded in the opposite half of the
destination register, the aligner object (-iPALRSWB(0-3))
and aligner reference (-iPALWSWB(0-3)) combine to ro­
tate the CM MDB word before it is transferred to AU 1 B
and AU2B). If the CM data is to be stored in a VPR, the
appropriate AUlB to VPR byte enables (PUWAlPOl(0-3)
for VPO and VPl, PUWA1P23(0-3) for VP2 and VP3,
PUWA1P45(0-3) for VP4 and VP5, and PUWA1P67(0-3)
for VP6 and VP?) combine with the AUl B to VPR word
code (PUWAlC(0-2)), both from VPRCONT, to complete
the SWBD to VPR transfer. If the CM data is to be
stored in a CR, the AU2B to CR file enable (PEA2CRX),
destination bits (-iPED(0-7)), and word (PESWBXA) and

4-238 Advanced Scientific Computer

Step 3

halfword (PESWBXB) enables from VPRCONT combine to
complete the SWBD to CR transfer. The IR state class
and step are advanced to three and two, respectively, by
the data real logic on PPCT LI. If there is no dependency
hD) between the next and current instructions, the SWBD
is transferred to the desired register as described above
and the PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group.

Execution of the KLDCM instruction group originating from ROM is shown
in the transfer table on page 14 of appendix A.

Step 1

Step 2

Step 3

The multistep ROM source KLDCM instructions begin
execution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availabil­
ity, the MIR EA from PPCTLl is enabled over CMAB to
SWBA via the EA to CMAB enable (PPTACBE) on
PCCTL, a read request (,PMRC) is issued from PCCTL
to retrieve the CM word addressed by the MIR EA, and
the state class and step of the IR are advanced to seven
and two, respectively, by the data real logic on PPCTLl.

Identical to step 2 of the CM source KLDCM instruction
group, with the following exception: the PP three-level
pipe is advanced one level as described in step 1 of the
ROM source KSTCM instruction group when dependency
does not occur.

Identical to step 3 of the CM source KLDCM instruction
group except for the PP three-level advance difference
due to the ROM source.

4-162 Load Immediate (KLDIM). This group of instructions loads the im­
mediate operand (word, halfword, or byte) indicated by the T and N fields
into the register specified by the R field. Execution of the KLDIM instruc­
tion group originating from CM is shown in the transfer table on page 10 of
appendix A.

Step 1 The single step CM source KLDIM instructions begin ex­
ecution in state class 7, step 2, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availabil­
ity but the dependency logic on PPCTL2 indicates the

4-239 Advanced Scientific Computer

Step 2

immediate operand to register transfer must be complete
before indexing, the MIR immediate to MDB enables
(PIQIMED(2) and PIQIMED(3)) from PCCTL transfer the
immediate operand to the MDB, the immediate operand
is transferred to the desired VPR/CR from the MDB in
the manner described for the CM word in step 2 of the
CM source KLDCM instruction group, and the state class
and step of the IR are advanced to three and two, re spec­
tively, by the data real logic on PPCTLl. If no depen­
dency exists, the immediate operand to VPR/CR transfer
mentioned above is enabled and the PP three-level pipe is
advanced one level as described in step 2 of the CM source
KSTCM instruction group, with the following exception:
the next instruction source is the SWBD rather than the
NIR.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KLDIM instruction group originating from ROM is shown in
the transfer table on page 15 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KLDIM instruction
group, with the following exceptions: the BA signal from
SWBS YNC is not necessary for instruction execution and
the PP three-level pipe is advanced one level as described
in step 1 of the ROM source KSTCM instruction group
when dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-16 3 Load Register-to- Register (KLDPPU}, This group of instructions
loads (word, halfword, or byte) the register specified by the T and N fields
into the register specified by the R field. Execution of the KLDPPU instruc­
tion group originating from CM is shown in the transfer table on page 11 of
appendix A.

Step 1 The single step CM source KLDPPU instructions begin
execution in state class 7, step 2, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availabil­
ity but the dependency logic on PPCTL2 evaluates true
and the source of the word to be loaded is a VPR, the ap­
propriate VPAB to MDB enable (PURABPOl, PURABP23,

4-240
Advanced Scientific Computer

Step 2

PURABP45, or PURABP67) and VPR to MDB word select
(PURABC(0-2)) from VPRCONT enable the VPR contain­
ing the desired data to the MDB. If the source of the word
to be loaded is a CR, the MIR source bits (IPES(0-5))
from VPRCONT are used to select the CR containing the
data to be loaded and the CR file to MDB enable
(PEACRABX) from VPRCONT transfers the selected CR
to the MDB. The aligner enable (-iPALALIGN from
VPRCONT) combines with the aligner object
(-iPALRSWB(0-3) from VPRCONT) and aligner reference
(-iPALWSWB(0-3) from VPRCONT) to align the MDB data
(alignment is necessary if the halfword or byte on the
MDB is to be loaded in a different halfword or byte of the
destination register) and transfer it to AUlB and AU2B.
The VPR/CR data is now loaded in the destination
VPR/CR as described in step 1 of the CM source
KSTPTP instruction group and the IR state class and step
are advanced to three and two, respectively, by the data
real logic on PPCTLl. If dependency does not exist, the
register to register transfer is enabled as described
above and the PP three-level pipe is advanced one level
as described in step 2 of the CM source KSTCM instruc­
tion group, with the following exception: the next instruc­
tion source is the SWBD rather than the NIR.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KLDPPU instruction group originating from ROM is shown
in the transfer table on page 16 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KLDPPU instruction
group, with the following exceptions: the BA signal from
SWBSYNC is not necessary for instruction execution and
the PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group when dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-164 Load VPR File (KLDUF). This instruction group loads the VPR file
with the contents of four consecutive CM locations, the first of which is
specified by the EA developed by the T and N fields. If the EA is not a mul­
tiple of four, it is forced to a multiple of four during execution. The KLDUF
instruction group originating from CM is shown in the transfer table on page
12 of appendix A.

4-241 Advanced Scientific Computer

Step 1

Step 2

Step 3

Step 4

Step 5

The multistep CM source KLDUF instructions begin ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBS YNC indicates buffer availabil­
ity, the MIR EA, with the last two bits set to zero by the
-,PIMIRIN(62, 63) lines from PPCTLl, is enabled over
CMAB to SWBA via the EA to CMAB enable (PPTACBE)
on PCCT L, the SWBD is transferred over CMDB to the
NIR via the PNMDCDE enable from PCCTL to make rootn
for the first CM word to be read, the IR NIL bit is set to
one by the data real logic on PPCT L2 to indicate the next
instruction in the NIR, a read request (IPMRC) is issued
from PCCTL to retrieve the CM word addressed by the
MIR EA, and the state class and step of the IR are ad­
vanced to four and two, respectively, by the data real
logic on PPCTLl.

When the BA signal from SWBSYNC indicates buffer
availability, the SWBD (containing the CM word read) is
transferred to VPRO in a. manner similar to that de­
scribed in step 2 of the CM source KLDCM instruction
group for SWBD to VPR transfers, the MIR EA with the
last two bits set to one is transferred to the SWBA in a
manner similar to that described in step 1, a read re­
quest (-iPMRC) is issued from PCCTL to retrieve the
second word of the VPR file group, and the state class
and step of the IR are advanced to four and three, re­
spe cti vel y.

Identical to step 2 except for the following: SWBD is
transferred to VPRl, the third word of the VPJ;l file
group is retrieved from CM, and the state class and step
of the IR are both advanced to four.

Identical to step 2 except for the following: SWBD is
transferred to VPR2, the fourth word of the VPR file
group is retrieved from CM, and the state class and step
of the IR are advanced to seven and two, respectively.

When the BA signal from SWBS YNC indicates buffer
availability but the next instruction is dependent (D) on
the current instruction, the SWBD is transferred to VPR3
and the state class and step of the IR are advanced to
three and two, respectively. If dependency does not exist,
the SWBD is transferred to VPR3 and the PP three-level
pipe is advanced one level as described in step 2 of the
CM source KSTCM instruction group.

4-242 Advanced Scientific Computer

Step 6 The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group.

Execution of the KLDUF instruction group originating from ROM is shown
in the transfer table on page 17 of appendix A.

Setp 1

Step 2

Step 3

Step 4

Step 5

Step 6

Identical to step 1 of the CM source KLDUF instruction
group except for the following: the SWBD to NIR transfer
and the setting of the IR NIL bit are not necessary be­
cause the instruction source is ROM.

Identical to step 2 of the CM source KLDUF instruction
group.

Identical to step 3 of the CM source KLDUF instruction
group.

Identical to step 4 of the CM source KLDUF instruction
group.

Identical to step 5 of the CM source KLDUF instruction
group except for the following when dependency does not
exist: the PP three-level pipe is advanced one level as
described in step 1 of the ROM source KSTCM instruction
group.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-16 5 Load CM Base Register (KLDLF A). This instruction loads the CM
base register associated with the active VP with the three least significant
bytes of the VPR specified by the T and N fields. If the MIR LFAF bit is set,
the source of the load is the CM location specified by the T and N fields.
Execution of the KLDLFA instruction originating from CM is shown in the
transfer table on page 13 of appendix A.

Step 1 The multistep CM source KLDLF A instruction begins ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT LL Initially,
the IR LFAF flag is checked to determine the source of
the load. If the flag is not set (,LF AF), the IR state
class and step are advanced to seven and two, respec­
tively, by the data real logic on PPCTLl. If the flag is
set (LFAF), the availability of the SWB is checked.
When the BA signal from SWBSYNC indicates buffer
availability, the MIR EA from PPCT Ll is enabled over
CMAB to SWBA via the EA to CMAB enable (PPTACBE)

4-243 Advanced Scientific Computer

Step 2

Step 3

on PCCTL, the SWBD is transferred over CMDB to the
NIR via the PNMDCDE enable from PCCTL to make room
for the CM word to be read, the IR NIL bit is set to one
by the data real logic on PPCT L2 to indicate the next in­
struction is in the NIR, a read request hPMRC) is is sued
from PCCTL to retrieve the CM word addressed by the
MIR EA, and the IR state class and step are advanced to
seven and two, respectively, by the data real logic on
PPCTLl.

When the BA signal from SWBSYNC indicates buffer
availability but the next instruction is dependent on the
current instruction (D) and the MIR LF AF bit is not set,
the appropriate VPAB to MDB enable (PU RAB PO 1,
PURABP23, PURABP45, or PURABP67) and VPR to
MDB word select (PURABC(0-2)), both from VPRCONT,
enable the VPR containing the desired data to the MDB.
The aligner enable (-iPALALIGN from VPRCONT) trans­
fers the selected VPR to AU2B and the AU2B-to-CR file
e;nable (PEA2CRX), load CM base enable (PELWW A),
and word enable (PESWBXA), all from VPRCONT, com­
bine with the byte zero inhibit for CM base load signal
(aPLFAINH) from PPCTL2 to c~mplete the VPR to CM
base register transfer. The state class and step of the
IR are advanced to three and two, respectively, by the
data real logic on PPCTLl. If dependency does not exist
and the MIR LFAF bit is not set, the selected VPR data
is transferred to the CM base register as previously
mentioned and the PP three-level pipe is advanced one
level as described in step 2 of the CM source KSTCM
instruction group. If the next instruction is dependent on
the current instruction and the MIR LF AF bit is set, the
SWBD to MDB enable (PMMDABE) and word select
(PPRABC(0-2)), both from PCCTL, combine to enable
the SWBD to the MDB. The remainder of the data trans­
fer, from MDB to CM base register, is identical to that
previously mentioned in this step, as is the state class
and step advance. If dependency does not exist and the
MIR LFAF bit is set, the SWBD is transferred to the CM
base register as previously mentioned and the PP three­
level pipe is advanced one level as described in step 2 of
the CM source KSTCM instruction group.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group.

4-244
Advanced Scientific Computer

Execution of the KLDLFA instruction group originating from ROM is shown
in the transfer table on page 18 of appendix A.

Step 1

Step 2

Step 3

Identical to step 1 of the CM source KLDLF A instruction
except for the following: the· SWBD to NIR transfer and
the setting of the IR NIL bit are not necessary when
LF AF is set because the instruction source is ROM.

Identical to step 2 of the CM source KLDLF A instruction
except for the following when dependency does not exist;
the PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-166 Add/Subtract CM To/From VPR (KCMAU). This group of instruc­
tions adds/ subtracts the word or halfword operand specified by the T and N
fields to/from the VPR contents specified by the R field. Execution of the
KCMAU instruction group originating from CM is shown in the transfer table
on page 19 of appendix A.

Step 1

Step 2

The multistep CM source KCMAU instruction group be­
gins execution in state class 4, step 1, as determined by
the state class and step data real logic on PPCT Ll.
When the BA signal from SWBS YNC indicates buffer
availability, the MIR EA is transferred to the SWBA, the
SWBD is transferred to the NIR, the IR NIL bit is set, a
read request is is sued, and the IR state class and step
are updated, all as described in step 1 of the C.M source
KLDLFA instruction.

When the BA signal from SWBSYNC indicates buffer
availability but the dependency (D) logic on PPCTL2 in­
dicates the next instruction requires complete execution
of the current instruction before indexing, the SWBD and
desired VPR are added/ subtracted in the following man­
ner:

e The appropriate VPR to VPRBl enable (PURAlPOl
for VPO and VPl, PURA1P23 for VP2 and VP3,
PURA1P45 for VP4 and VPS, or PURA1P67 for VP6
and VP7) and word select (PURAlC(0-2)), both from
VPRCONT, combine to transfer the desired VPR to
the Arithmetic Unit (AU).

4-245 Advanced Scientific Computer

Step 3

e The SWBD to MDB enable (PMMDABE) and word se­
lect (PPRABC(0-2)), both from PCCTL, combine to
enable the SWBD to the MDB, and therefore the AU.

• The aligner enable (,PALALIGN), aligner reference
(,PALWSWB(0-3)), aligner object (,PALRSWB (0-3)),
and MIR op-code from VPRCONT are used by
CONTAU to align the SWBD data, if necessary,
(alignment is required if the CM and VPR halfwords
involved are in opposite halves); add or subtract the
SWBD and VPR as determined by the MIR op-code;
and enable the result to AUlB.

• The appropriate AUlB to VPR byte enables
(PUW Al PO 1 (0-3), PUW AlP23 (0-3), PUW Al P45(0-3),
or PUWA1P67(0-3)) and word select (PUWAlC(0-2)),
both from VPRCONT, combine to transfer the A Ul B
result to the VPR whose contents are added/ sub­
tracted.

The IR state class and step are advanced to three and
two, respectively, by the data real logic on PPCTLl.
When dependency does not exist, the contents of the R
field specified VPR are replaced by the sum/difference
of the VPR and SWBD as previously mentioned in this
step and the PP three-level pipe is advanced one level as
described in step 2 of the CM source KSTCM instruction
group.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group.

Execution of the KCMAU instruction group originating from ROM is shown
in the transfer table on page 22 of appendix A.

Step 1

Step 2

Step 3

Identical to step 1 of the CM source KCMAU instruction
group except that the SWBD to NIR transfer and the set­
ting of the IR NIL bit are not necessary because the in­
struction source is ROM.

Identical to step 2 of the CM source KCMAU instruction
group except that, when dependency does not exist, the
PP three -level pipe is advanced one level as de scribed
in step 1 of the ROM source KSTCM instruction group.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-246 Advanced Scientific Computer

4-167 Add/Subtract Immediate to/from VPR (KIMAU). This group of in­
structions adds/ subtracts the word, halfword, or byte immediate operand
developed by the T and N fields to/from the VPR contents specified by the
R field. Execution of the KIMAU instruction group originating from CM is
shown in the transfer table on page 20 of appendix A.

Step 1

Step 2

The single step CM source KIMAU instruction group be­
gins execution in state class 7, step 2, as determined by
the state class and step data real logic on PPCTLl.
When the BA signal from SWBSYNC indicates buffer
availability, but the dependency (D) logic on PPCT L2 in­
dicates the next instruction requires complete execution
of the current instruction before indexing, the immediate
operand and de sired VPR are added/ subtracted in the fol­
lowing manner: The desired VPR is transferred to the
AU via VPRB as described in step 2 of the CM source
KCMAU instruction group; the MIR immediate to MDB
enables (PIQIMED(2) and PIQIMED(3)) from PCCTL
transfer the immediate operand to the MDB; the aligner
enable (,PALALIGN), aligner reference
(iPALWSWB(0-3)), aligner object (,PALRSWB(0-3)), and
MIR op-code, all from VPRCONT, combine to align the
immediate operand if necessary (alignment is required if
the halfwords or bytes involved are in different parts of
their respective words), add or subtract the immediate
operand and VPR as determined by the MIR op-code, and
enable the result to AUlB; the AUlB result is transferred
to the source VPR as described in step 2 of the CM source
KCMAU instruction group. The IR state class and step
are advanced to three and two, respectively, by the data
real logic on PPCTLl. When dependency does not exist,
the contents of the VPR specified by the R field are re­
placed by the sum/difference of the VPR and the immedi­
ate operand as previously mentioned in this step and the
PP three -level pipe is advanced one level as de scribed
in step 2 of the CM source KSTCM instruction group,
with the following exception: the source of the next in­
struction is the SWBD rather than the NIR.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KIMAU instruction group originating from ROM is shown in
the transfer table on page 23 of appendix A.

4-247 Advanced Scientific Computer

~-------
Step 1

Step 2

Identieal to step 1 of the CM source KIMAU instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not necessary for instruction execution and
the PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group when dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-168 Add/Subtract VPR to/from VPR (KUAU). This group of instructions
adds/ subtracts the VPR word, halfword, or byte specified by the T and N
fields to/from the VPR specified by the R field. Execution of the KUAU in­
struction group originating from CM is shown in the transfer table on page
21 of appendix A.

Step 1 The single step CM source KUAU instruction group be­
gins execution in state class 7, step 2, as determined by
the state class and step data real logic on PPCTLl.
When the BA signal from SWBSYNC indicates buffer
availability but the dependency (D) logic on PPCTL2 indi­
cates the next instruction requires complete execution of
the current instruction before indexing, the two VPR
quantities are added/ subtracted in the following manner:
The VPR specified by the R field (destination of the addi­
tion/ subtraction) is transferred to the AU via VPRB as
described in step 2 of the CM source KCMAU instruction
group; the VPR specified by the T and N fields is input to
the AU over the MDB via the appropriate VPAB to MDB
enable (PURABPOl, PURABP23, PURABP45, or
PURABP67) and VPR to MDB word select (PURABC(0-2))
from VPRCONT; the two VPR quantities are added/sub­
tracted in the AU as described in step 1 of the CM source
KIMAU instruction group; the result of the arithmetic op­
eration is input to the VPR specified by the R field as de­
scribed in step 2 of the CM source KCMAU instruction
group. The IR state class and step are advanced to three
and two, respectively, by the data real logic on PPCTLl.
When dependency does not exist, the contents of the VPR
specified by the R field are replaced by the sum/differ­
ence of the T and N field VPR and R field VPR as pre­
viously mentioned in this step. The PP three-level pipe
is advanced one level as described in step 2 of the CM
source KSTCM instruction group except that the source
of the next instruction is the SWBD rather than the NIR.

4-248 Advanced Scientific Computer

Step 2 The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KUAU instruction group originating from ROM is shown in
the transfer table on page 24 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KUAU instruction
group, except that the BA signal from SWBSYNC is not
necessary for instruction execution and the PP three­
level pipe is advanced one level as described in step 1 of
the ROM source KSTCM instruction group when depen­
dency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-169 Logical CM to VPR (KCMLOU). This group of instructions logically
combines (AND, OR, EXCLUSIVE OR, or EQUIVALENCE) the word or half­
word CM operand specified by the T and N fields with the contents of the VPR
specified by the R field. The result replaces the original contents of the
VPR. Execution of the KCMLOU instruction group originating from CM is
shown in the transfer table on page 25 of appendix A.

Step 1

Step 2

The multistep CM source KCMLOU instruction group
begins execution in state class 4, step 1, as determined
by the state class and step data real logic on PPCT Ll.
When the BA signal from SWBSYNC indicates buffer
availability, the MIR EA is transferred to the SWBA, the
SWBD is transferred to the NIR, the IR NIL bit is set, a
read request is is sued, and the IR state class and step
are advanced to seven and two, respectively, all as de­
scribed in step 1 of the CM source KLDCM instruction
group.

When the BA signal from SWBS YNC indicates buffer
availability but the dependency (D) logic on PPCTL2 in­
dicates that the next instruction requires complete execu­
tion of the current instruction before indexing, the SWBD
and desired VPR are logically combined in the following
manner: The VPR and SWBD are input to the AU as de­
scribed in step 2 of the CM source KCMAU instruction
group; the AU performs the necessary alignment and ex­
ecutes the desired logical operation (this depends on the
MIR op-code) as described in step 2 of the CM source
KCMAU instruction group; the AU result is transferred
to the VPR involved in the logical operation as described

4-249 Advanced Scientific Computer

~------

Step 3

in step 2 of the CM source KCMAU instruction group.
The IR state class and step are advanced to three and
two, respectively, by the data real logic on PPCTLl.
When dependency does not exist, the contents of the VPR
specified by the R field are replaced by the result of the
logical operation as previously mentioned in this step and
the PP three-level pipe is advanced one level as described
in step 2 of the CM source KSTCM instruction group.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction .
group.

Execution of the KCMLOU instruction group originating from ROM is shown
in the transfer table on page 28 of appendix A.

Step 1

Step 2

Step 3

Identical to step 1 of the CM source KCMLOU instruction
group except that the SWBD to NIR transfer and the setting
of the IR NIL bit are not necessary because the instruction
source,is ROM.

Identical to step 2 of the CM source KCMLOU instruction
group except that, when dependency does not exist, the
PP three-level pipe is advanced one level as described in
step 1 of the ROM source· KSTCM instruction group.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-170 Logical Immediate to VPR (KIMLOU). This group of instructions
logically combines (AND, OR, EXCLUSIVE OR, or EQUIV ALEN CE) the half­
word or byte immediate operand specified by the T and N fields with the con­
tents of the VPR specified by the R field. The result replaces the original
contents of the VPR. Execution of the KIMLOU instruction group originating
from CM is shown in the transfer table on page 26 of appendix A.

Step 1 The single step CM source KIMLOU instruction group
begins execution in state class 7, step 2, as determined
by the state class and step data real logic on PPCTLl.
When the BA signal from SWBSYNC indicates buffer
availability but the dependency (D) logic on PPCTL2 indi­
cates the next instruction requires complete execution of
the current instruction before indexing, the immediate
operand and desired VPR are logically combined in the
following manner: The immediate operand and VPR are
input to the AU as described in step 1 of the CM source
KIMAU instruction group; the AU performs the necessary

4-250 Advanced Scientific Computer

Step 2

alignment and executes the de sired logical operation (this
depends on the MIR op-code) as described in step 1 of the
CM source KIMAU instruction group; the AU result is
transferred to the VPR involved in the logical operation
as described in step 2 of the CM source KCMAU instruc­
tion group. The IR state class and step are advanced to
three and two, respectively, by the data real logic on
PPCT Ll. When dependency does not exist, the contents
of the VPR specified by the R field are replaced by the
result of the logical operation as previously mentioned in
this step. The PP three-level pipe is advanced one level
as described in step 2 of the CM source KSTCM instruc­
tion group, with the following exception: the source of
the next instruction is the SWBD rather than the NIR.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KIMLOU instruction group originating from ROM is shown
in the transfer table on page 29 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KIMLOU instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not necessary for instruction execution and
the PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group when dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-171 Logical VPR/CR to VPR (KPPULOU). This gr°oup of instructions
logically combines (AND, OR, EXCLUSIVE OR, or EQUIVALENCE) the word,
halfword, or byte of the VPR/CR specified by the T and N fields with the
VPR specified by the R field. The result -replaces the original contents of
the VPR specified by the R field. Execution of the KPPU LOU instruction
group originating from CM is shown in the transfer table on page 2 7 of ap­
pendix A.

Step 1 The single step CM source KPPULOU instruction group
begins execution in state class 7, step 2, as determined
by the state class and step data real logic on PPCT Ll.
When the BA signal from SWBSYNC indicates buffer
availability but the dependency (D) logic on PPCTL2 indi­
cates the next instruction requires complete execution of
the current instruction before indexing, the VPR/CR

4-251 Advanced Scientific Computer

Step 2

specified by the T and N fields is logically combined with
the VPR specified by the R field in the following manner:
The VPR specified by the R field is input to the AU via
VPRB as described in step 2 of the· CM source KCMAU
instruction group; if the T and N fields specify a VPR, it
is input to the AU via the MDB as described in step 1 of
the CM source KUAU instruction group; if the T and N
fields specify a CR, the MIR source bits (iPES(0-5))
from VPRCONT are used to select the CR containing the
data for the logical operation and the CR file to MDB en­
able (PEACRABX) from VPRCONT transfers the selected
CR to the MDB; the AU performs the necessary alignment
and executes the desired logical operation (this depends
on the MIR op-code) as described in step 1 of the CM
source KIMAU instruction group; the AU result is trans­
ferred to the VPR specified by the R field as de scribed
in step 2 of the CM source KCMAU instruction group.
The IR state class and step are advanced to three and
two, respectively, by the data real logic on PPCTLl.
When dependency does not exist, the contents of the VPR
specified by the R field are replaced by the result of the
logical operation as previously mentioned in this step.
In addition, the PP three-level pipe is advanced one level
as described in step 2 of the CM source KSTCM instruc­
tion group except that the source of the next instruction
is the SWBD rather than the NIR.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KPPU LOU instruction group originating from ROM is shown
in the transfer table on page 30 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KPPULOU instruc­
tion group, with the following exceptions: The BA signal
from SWBSYNC is not necessary for instruction execution
and the PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group when dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-172 Shift (KSHFT). This group of instructions performs right and left
logical, arithmetic, and cyclic shifts on the VPR word specified by the R
field. The amount of shift is specified by the immediate operand developed

4-252 Advanced Scientific Computer

by the T and N fields. Execution of the KSHFT instruction group originating
from CM is shown in the transfer table on page 31 of appendix A.

Step 1

Step 2

The single step CM source ~SHFT instruction group be­
gins execution in state class 7, step 2, as determined by
the state class and step data real logic on PPCTLl. The
VPR is input to the AU via VPRB as described in step 2
of the CM source KCMAU instruction group and the MIR
op-code and shift count from VPRCONT are input. to the
AU to control the shift. If shift update is necessary, as
indicated by the PACSHFUD signal from CONT AU when it
takes more than the current shift cycle to complete the
desired shift, the AU responds by executing a shift of 1,
4, or 8 (or 16, if a cyclic shift is executing) and generat­
ing an updated shift count. The result of the shift is
transferred to the VPR specified by the R field as de­
scribed in step 2 of the CM source KCMAU instruction
group and the updated shift count (,PACSHFOB(0-5)) from
CONT AU is input to the IR EA via the shift count enable
l1PIRXB1(3)) from PPCTL2. The IR state class and step
are returned to seven and two, respectively, by the data
real logic on PPCTLl. When the BA signal from
SWB~YNC indicates buffer availability and the shift up­
date signal from CONTAU indicates only one cycle of
shift update is remaining (,UD), the last shift cycle is
executed as previously mentioned in this step (except no
shift count is returned to the IR) and the PP three-level
pipe is advanced one level as described in step 2 of the
CM source KSTCM instruction group, with the following
exception: The source of the next instruction is the
SWBD rather than the NIR. If the dependency fD) logic
on PPCTL2 indicates the next instruction requires com­
plete execution of the current instruction before indexing ·
when the last shift cycle is to be executed (,UD), the last
shift cycle is executed as previously mentioned in this
step and the IR state c!as s and step are advanced to three
and two, respectively, by the data real logic on PPCTLl.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KSHFT instruction group originating from ROM is shown in
the transfer table on page 32 of appendix A.

Step 1 Identical to step 1 of the CM source KSHFT instruction
group, with the following exceptions: the BA signal from

4-253 Advanced Scientific Computer

~-------

Step 2

SWBSYNC is not necessary to advance the PP three-level
pipe and the PP three-level pipe is advanced one level as
described in step 1 of the ROM source KSTCM instruction
group when dependency does not exist at the last shift
cycle.

The PP three-level pipe is advani::ed one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-173 Set/Reset CR VP Flag (KU CSR T). This group of instructions sets I
resets the flag bit in the CR byte specified by the T and N fields. The flag
bit under consideration is determined by the number of the executing VP.
Execution of the KUCSRT instruction group originating from CM is shown in
the transfer table on page 32 of appendix A.

Step 1 The single step CM source KUCSRT instruction group
begins execution in state class 7, step 2, as determined
by the state class and step data real logic on PPCTLl.
When the BA signal from SWBS YNC indicates buffer
availability but the dependency (D) logic on PPCTL2 indi­
cates the next instruction requires complete execution of
the current instruction before indexing, the CR byte spec­
ified by the T and N fields is modified in the following
manner: The MIR source bits (,PES(0-5)) from
VPRCONT are used to select the CR containing the de­
sired byte and the CR file to MDB enable (PEACRABX)
from VPRCONT transfers the selected CR to the MDB;
the AU data manipulator uses the selected CR, the MIR
op-code from VPRCONT, and the VPC from MLCTL to
set/reset the bit in each of the four CR bytes associated
with the number of the executing VP; the desired byte of
the data manipulator result on AU2B is transferred back
to the source CR via the destination bits (,PED(0-7)),
AU2B to CR file enable (PEA2CRX), and CR byte write
enable (PESWBXC), all from VPRCONT. The IR state
class and step are advanced to three and two, respec­
tively, by the data real logic on PPCT Ll. When depen­
dency does not exist, the T and N field specified CR byte
is modified as previously mentioned in this step and the
PP three-level pipe is advanced one level as de scribed in
step 2 of the CM source KSTCM instruction group, with
the following exception: The source of the next instruc­
tion is the SWBD rather than the NIR.

4-254 Advanced Scientific Computer

Step 2 The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KUCSRT instruction group originating from ROM is shown
in the transfer table on page 35 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KUCSRT instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not necessary for advance of the PP three­
level pipe and the PP three-level pipe is advanced one
level as described in step 1 of the ROM source KSTCM
instruction group when dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-255 Advanced Scientific Computer

4-1 74 Test CR VP Flag and Skip (KUCT). This instruction group tests the
flag bit in the CR byte specified by the T and N fields for one I zero and skips
an instruction if the test is satisfied. The flag bit under test is determined
by the number of the executing VP. Execution of the ~UCT instruction group
originating from CM is shown in the transfer table on page 34 of appendix A.

Step 1

Step 2

The single step CM source KUCT instruction group begins
execution in state class 7, step 2, as determined by the
state class and step data real logic on PPCTLl. When the
BA signal from SWBSYNC indicates buffer availability,
the AU makes the skip taken (ST) decision in the following
manner: The CR containing the byte to be tested is input
to the AU as described in step 1 of the CM source
KUCSR T instruction group; the AU test box 2 logic uses
the selected CR and the VPC from MLCTL to determine
if the bit in question in all four bytes of the CR are set;
the skip taken (ST) logic on CONT AU uses the test box 2
output, the MIR op-code from VPRCONT (to indicate
whether zero or one is being tested for), and the aligner
reference (IPALWSWB(0-3)) from VPRCONT (to indicate
which byte is being tested) to develop ST. If the test per­
formed was not satisified nsT), the PP three-level pipe
is advanced one level as described in step 2 of the CM
source KSTCM instruction group except that the source
of the next instruction is the SWBD rather than the NIR.
If the test performed was satisfied (ST), the instruction
in the SWBD is skipped by reading the next instruction
into the SWBD (by transferring the PC to the SWBA and
issuing a read request) and incrementing the PC (both of
these operations are described in step 2 of the CM source
KSTCM instruction group). The IR state class: and step
are advanced to three and two, respectively, by the data
real logic on PPCTLl.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KUCT instruction group originating from ROM is shown in
the transfer table on page 36 of appendix A.

Step 1 Identical to step 1 of the CM source KUCT instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not necessary to read from ROM; the PP
three-level pipe is advanced one level as described in
step 1 of the ROM source KSTCM instruction group when
no instruction is skipped; the PC is applied to ROM rather
than the SWBA when an instruction is to be skipped.

4-256 Advanced Scientific Computer

Step 2 The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-1 75 Set/Reset CR Bits (KCRSR T). This instruction group sets I resets the
bit positions in the left or right half of the CR byte specified by the T and N
fields in accordance with the mask provided by the R field. Execution of the
KCRSR T instruction group originating from CM is shown in the transfer table
on page 37 of appendix A.

Step 1

Step 2

The single step CM source KCRSR T instruction group be­
gins execution in state class 7, step 2, as determined by
the state class and step data real logic on PPCTLl. When
the BA signal from SWBSYNC indicates buffer availability
but the dependency (D) logic on PPCTL2 indicates the next
instruction requires complete execution of the current in­
struction before indexing, the AU sets I resets the CR bits
in the following manner: The test/ set/ reset CR bit enable
(,PELR WC) from VPRCONT permits use of the MIR des­
tination bits (,PED(0-5)) in the selection of the CR contain­
ing the desired half byte and the CR file to MDB enable
(PEACRABX) from VPRCONT transfers the selected CR
to the MDB; the AU data manipulator uses the selected
CR and the MIR op-code and source bits (R field) from
VPRCONT to set/reset bits in each half byte of the CR
using the R field mask; the desired half byte is transferred
back to the source CR via the destination bits (,PED(0-7)),
A U2B to CR file enable (PEA2CRX), CR byte write enable
(PESWBXC), and appropriate CR hex write enable
(PELWSWLX for left hex and PELWSWRX for right hex),
all from VPRCONT. The IR state class and step are ad­
vanced to three and two, respectively, by the data real
logic on PPCTLl. When dependency does not exist, the
CR half byte bit positions are set/ reset as previously
mentioned in this step and the PP three-level pipe is ad­
vanced one level as described in step 2 of the CM source
KSTCM instruction group except that the source of the
next instruction is the SWBD rather than the NIR.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KCRSR T instruction group originating from ROM is shown
in the transfer table on page 41 of appendix A.

Step 1 Identical to step 1 of the CM source KCRSR T instruction
group, with the following exceptions: The BA signal from

4-257 Advanced Scientific Computer

Step 2

SWBSYNC is not necessary to read from ROM and the PP
three-level pipe is advanced one level, as described in
step 1 of the ROM source KSTCM instruction group, when
dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-1 76 Test CR Bits, Set/Reset and Skip (KCR TSR T). This instruction group
tests the bit positions marked by ones in the R field in the left or right half
of the CR byte specified by the T and N fields for any one/zero. If the test
is satisfied, the next instruction is skipped. Independent of the test, the bit
positions marked by the R field are set to one I zero. Execution of the
KCR TSR T instruction group originating from CM is shown in the transfer
table on page 38 of appendix A.

Step 1 The single step CM source KCR TSR T instruction group
begins execution in step class 7, step 2, as determined
by the state class and step data real logic on PPCTLl.
When the BA signal from SWBSYNC indicates buffer avail­
ability, the AU develops the skip taken (ST) decision in
the following manner: The CR containing the half byte to
be operated on is transferred to the AU via the MDB as
described in step 1 of the CM source KCRSR T instruction
group; the AU test box 2 logic uses the selected CR and
the MIR source bits (R field) from VPRCONT to determine
if there are any ones I zeroes in the R field marked bits
in each of the CR half bytes; the skip taken (ST) logic on
CONT AU uses the test box 2 outputs, the MIR op-code
from VPRCONT (to determine whether ones or zeroes
are being tested for and to indicate the half byte being
tested), and the aligner reference (,PALWSWB(0-3)) from
VPRCONT (to indicate which byte is being tested) to de­
velop ST. Independent of the development of the ST signal,
the AU data manipulator uses the selected CR and the
MIR op-code and source bits (R field) from VPRCONT to
set/ reset bits in each half byte of the CR word using the
R field as a mask. The desired half byte from the data
manipulator is transferred back to the source CR via the
destination bits (,PED(0-7)), AU2B to CR file enable
(PEA2CRX), CR byte write enable (PESWBXC), and ap­
propriate CR hex write enable (PELWSWLX for left hex
and PELWSWRX for right hex), all from VPRCONT. If
the test performed was satisfied (ST), the instruction in
the SWBD is skipped by reading the next instruction into
the SWBD (by transferring the PC to the SWBA and issuing

4-258 Advanced Scientific Computer

Step 2

a read request) and incrementing the PC (both of these
operations are described in step 2 of the CM source
KSTCM instruction group). The IR state class and step
are advanced to three and two, respectively, by the data
real logic on PPCTLl. If the test performed was not
satisfied and no dependency exists (,D), the PP three­
level pipe is advanced as described in step 2 of the CM
source KSTCM instruction group, with the following ex­
ception: The source of the next instruction is the SWBD
rather than the NIR. If the test performed was not satis­
fied and dependency does exist, the IR state class and
step are advanced to three and two, respectively.

When the BA signal indicates buffer availability, the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group, ex­
cept for the SWBD source difference.

Execution of the KCR TSR T instruction group originating from ROM is shown
in the transfer table on page 42 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KCR TSR T instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not required when reading from ROM and
the PC is applied to ROM (via the PPPCRBE enable from
PCCTL) rather than the SWBA prior to a read cycle.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-177 Test CR Bits and Skip (KCRLO). This instruction group tests the bit
positions (marked by ones in the R field) in the left or right half of the CR
byte specified by the T and N fields for any or all of one(s)/zero(s). If the
test is satisfied, the next instruction is skipped. Execution of the KCRLO
instruction group originating from CM is shown in the transfer table on page
39 of appendix A.

Step 1 The single step CM source KCRLO instruction group be­
gins execution in state class 7, step 2, as determined by
the state class and step data real logic on PPCTLl. When
the BA signal from SWBSYNC indicates buffer availability,
the AU develops the skip taken (ST) decision in the follow­
ing manner: The CR containing the half byte to be tested
is transferred to the AU via the MDB as described in step
1 of the CM source KCRSR T instruction group; the AU
test box 2 logic uses the selected CR and the MIR source
bits (R field) from VPRCONT to determine if there are

4-259 Advanced Scientific Computer

~------

Step 2

any or all one(s)/zero(s) in the R field marked bit posi­
tions in each of the CR half bytes; the skip taken (ST)
logic on CONTA U uses the test box 2 outputs, the MIR
op-code from VPRCONT (to determine whether any or
all one(s)/zero(s) are being tested for and to indicate the
half byte being tested), and the aligner reference
(,PALWSWB(0-3)) from VPRCONT (to indicate which byte
is being tested) to develop ST. If the test performed was
satisfied (ST), the instruction in the SWBD is skipped by
reading the next instruction into the SWBD (by transfer­
ring the PC to the SWBA and issuing a read request) and
incrementing the PC (both .of these operations are de­
scribed in step 2 of the CM source KSTCM instruction
group). The IR state class and step are advanced to three
and two, respectively, by the data real logic on PPCTLl.
If the test performed was not satisfied (,ST), the PP
three-level pipe is advanced as described in step 2 of the
CM source KSTCM instruction group, with the following
exception: The source of the next instruction is the
SWBD rather than the NIR.

When the BA signal indicates buffer availability, the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group, ex­
cept for the SWBD source difference.

Execution of the KCRLO instruction group originating from ROM is shown in
the transfer table on page 43 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KCRLO instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not required when reading from ROM and
the PC is applied to ROM (via the PPPCRBE enable from
PCCTL) rather than the SWBA prior to a read cycle.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-178 Test Poll Bits (KTPOL). This instruction tests the CR byte specified
by the T and N fields for a one in any of the bit ,positions and skips the next
instruction if a one is found. The binary representation of the number of bit
positions to the most significant one is inserted in the VPR halfword specified
by the R field. (If a one is not found, the VPR halfword is cleared and no
skip is taken.) Execution of the KT POL instruction originating from CM is
shown in the transfer table on page 40 of appendix A.

Step 1 The single step CM source KTPOL instruction begins
execution in state class 7, step 2, as determined by the

4-260
Advanced Scientific Computer

Step 2

state class and step data real logic on PPCTLl. When
the BA signal from SWBSYNC indicates buffer availability,
the AU develops the skip taken (ST) decision in the follow­
ing manner: The CR containing the byte to be polled is
transferred to the AU via the MDB as described in step 1
of the CM source KUCSR T instruction group; the AU bit
picker logic develops the count to the most significant one
and an all zero indicator for each of the four CR bytes;
the skip taken logic on CONTA U uses the all zero indica­
tors from the bit picker, the MIR op-code from VPRCONT
(to determine a POLL instruction is executing), and the
aligner reference (,PALWSWB(0-3)) from VPRCONT (to
indicate which byte is being polled) to develop ST. Inde­
pendent of the development of the ST signal, PPCT L2
selects the byte bit picker count specified by the T and N
fields (using the MIR source bits) and transfers the re­
sult to both halves of A Ul B. The byte count is trans­
ferred to the VPR halfword specified by the R field via the
appropriate AUlB to VPR byte enables (PUWAlPOl(0-3),
PUWA1P23(0-3), PUWA1P45(0-3), or PUWA1P67(0-3))
and the AUlB to VPR word select (PUWAlC(0-2)), both
from VPRCONT. If a one was found during the poll (ST),
the instruction in the SWBD is skipped by reading the
next instruction into the SWBD (by transferring the PC to
the SWBA and issuing a read request) and incrementing
the PC (both of these operations are described in step 2
of the CM source KSTCM instruction group). The IR
state class and step are advanced to three and two, re­
spectively, by the data real logic on PPCTLl. If no one
was found during the poll and no dependency ex.ists (ID),
the PP three-level pipe is advanced as descrihed in step
2 of the CM source KSTCM instruction group, with the
following exception: The source of the next instruction
is the SWBD rather than the NIR. If no one was found
during the poll and dependency does exist, the IR state
class and step are advanced to three and two, respectively.

When the BA signal indicates buffer availability, the PP
three-level pipe is advanced one level as described in step
2 of the CM source KSTCM instruction group, except for
the SWBD source difference.

Execution of the KT POL instruction originating from ROM is shown in the
transfer table on page 44 of appendix A.

Step 1 Identical to step 1 of the CM source KTPOL instruction,
with the following exceptions: The BA signal from

4:..261 Advanced Scientific ComputfJr

Step 2

SWBSYNC is not necessary to read from ROM and the PC
is applied to ROM (via the PPPCRBE enable from PCCT L)
rather than the SWBA prior to a read cycle.

The PP three-level pipe is advance·d one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-1 79 Compare CM to VPR (KSKUCM). This instruction group compares the
CM word or halfword specified by the T and N fields with the VPR specified
by the R field and skips the next instruction if the two quantities compared
are equal/ not equal. Execution of the KSKUCM instruction group originating
from CM is shown in the transfer table on page 45 of appendix A.

Step 1

Step 2

The multistep CM source KSKUCM instructions begin
execution in state class 4, step 1, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availability,
the MIR EA from PPCT Ll is enabled over CMAB to
SWBA via the EA to CMAB enable (PPTACBE) on PCCTL
and the CMAB to SWBA enable (PMCBMAE) on PCCTL,
the SWBD is transferred over CMDB to the NIR via the
PNMDCDE and PNCDNRE enables from PCCTL to make
room for the CM word to be read, the IR NIL bit is set
to one by the data real logic on PPCTL2 to indicate the
next instruction is in the NIR, a read request (,PMRC)
is issued from PCCTL to retrieve the CM word addressed
by the MIR EA, and the IR state class and step are ad­
vanced to seven and two, respectively, by the data real
logic on PPCTLl.

When the BA signal from SWBSYNC indicates buffer
availability, the AU develops the skip taken (ST) decision
in the following manner: The appropriate VPR to VPRBl
enable (PURAlPOl, PURA1P23, PURA1P45, or
PURA1P67) and word select (PURAlC(0-2)), both from
VPRCONT, combine to enable the desired VPR to the AU;
the SWBD to MDB enable (PMMDABE) and word select
(PPRABC(0-2)), both from PCCTL, combine to enable
the SWBD to the AU via the MDB; the AU comparator
uses the VPR and CM word to determine if each of the
four bytes compared are identical; the skip taken (ST)
logic on CONTAU utilizes the comparator outputs, the
MIR op-code from VPRCONT (to determine if the instruc­
tion is a skip if equal or skip if not equal), and the aligner
reference (,PALWSWB(0-3)) from VPRCONT (to indicate
which halfword is being compared) to develop ST. If the
comparison was satisfied (ST), the instruction in the

4-262
Advanced Scientific Computer

Step 3

SWBD is skipped by reading the next instruction into the
SWBD (by transferring the PC to the SWBA and issuing
a read request) and incrementing the PC (both of these
operations are described in step 2 of the CM source
KSTCM instruction group). The IR state class and step
are advanced to three and two, respectively, by the data
real logic on PPCTLl. If the comparison was not satis­
fied ('1ST), the PP three-level pipe is advanced as de­
scribed in step 2 of the CM source KSTCM instruction
group.

When the BA signal indicates buffer availability, the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group.

Execution of the KSKUCM instruction group originating from ROM is shown
in the transfer table on page 48 of appendix A.

Step 1

Step 2

Step 3

Identical to step 1 of the CM source KSKUCM instruction
group except for the following: The SWBD to NIR trans­
fer and the setting of the IR NIL bit are not necessary be­
cause the instruction source is ROM.

Identical to step 2 of the CM source KSKUCM instruction
group except for the following: The PC is applied to ROM
(via the PPPCRBE enable from PCCTL) rather than the
SWBA prior to a read cycle.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-180 Compare Immediate to VPR (KSKUIM). This instruction group com­
pares the word, halfword, or byte immediate operand specified by the T and
N fields with the VPR specified by the R field and skips the next instruction
if the two quantities compared are equal/not equal. Execution of the KSKUIM
instruction group originating from CM is shown in the transfer table on page
46 of appendix A.

Step 1 The single step CM source KSKUIM instruction group be­
gins execution in state class 7, step 2, as determined by
the state class and step data real logic on PPCTLl. When
the BA signal from SWBSYNC indicates buffer availability,
the AU develops the skip taken (ST) decision in the follow­
ing manner: The VPR containing data to be compared is
input to the AU as described in step 2 of the CM source
KSKUCM instruction group; the immediate to MDB enables
(PIQIMED(2) and PIQIMED(3)) from PCCTL transfer the
MIR immediate operand to the AU via the MDB; the AU

4-263
Advanced Scientific Computer

Step 2

comparator uses the immediate operand and the VPR to
determine if each of the four bytes compared are identical;
the skip taken (ST) logic on CONTAU uses the comparator
outputs, the MIR op-code from VPRCONT (to determine if
the instruction is a skip if equal or skip if not equal), and
the aligner reference (,PALWSWB(0-3)) from VPRCONT
(to indicate which halfword or byte is the subject of the
instruction) to develop ST. If the comparison was satis -
fied (ST), the instruction in the SWBD is skipped by read­
ing the next instruction into the SWBD (by transferring the
PC to the SWBA and issuing a read request) and incre­
menting the PC (both of these operations are described in
step 2 of the CM source KSTCM instruction group). The
IR state class and step are advanced to three and two,
respectively, by the data real logic on PPCTLl. If the
comparison was not satisfied (,ST), the PP three-level
pipe is advanced as described in step 2 of the CM source
KSTCM instruction group, with the following exception:
The source of the next instruction is the SWBD rather
than the NIR.

When the BA signal indicates buffer availability, the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group, except
for the SWBD source difference.

Execution of the KSKUIM instruction group originating from ROM is shown in
the transfer table on page 49 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KSKUIM instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not necessary to read from ROM and the PC
is applied to ROM (via the PPCRBE enable from PCCT L)
rather than the SWBA prior to a read cycle.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-181 Compare VPR/ CR to VPR (KSKUPPU). This instruction group com­
pares the VPR/ CR word, halfword, or byte specified by the T and N fields
with the VPR specified by the R field and skips the next instruction if the two
quantities compared are equal/not equal. Execution of the KSKUPPU instruc­
tion group originating from CM is shown in the transfer table on page 4 7 of
appendix A.

Step 1 The single step CM source KSKUPPU instruction group
begins execution in state class 7, step 2, as determined

4-264 Advanced Scientific Computer

Step 2

by the state class and step data real logic on PPCT Ll.
When the BA signal from SWBSYNC indicates buffer avail­
ability, the AU develops the skip taken (ST) decision in
the following manner: The VPR specified by the R field is
input to the AU as described in step 2 of the CM source
KSKUCM instruction group; if the T and N fields specify
a VPR, the appropriate VPAB to MDB enable (PURABPOl,
PURABP23, PURABP45, or PURABP67) and VPR to MDB
word select (PURABC(0-2)), both from VPRCONT, trans­
fer the selected VPR to the AU via the MDB; if the T and
N fields specify a CR, the MIR source bits ("1PES(0-5))
from VPRCONT are used to select the CR containing the
data to be compared and the CR file to MDB enable
(PEACRABX) from VPRCONT transfers the selected CR
to the AU via the MDB; the aligner enable (,PALALIGN),
aligner reference (,PAL WSWB (0-3)), and aligner object
(,PALRSWB(0-3)), all from VPRCONT, combine to align
the MDB VPR/ CR if necessary (alignment is required if
the halfwords or bytes involved in the comparison are in
different parts of their respective words); the AU com­
parator uses the aligned VPR/CR and the R field specified
VPR to determine if each of the four bytes compared are
identical; the skip taken (ST) logic on CONTA U uses the
comparator outputs, the MIR op-code from VPRCONT (to
determine if the instruction is a skip if equal or skip if
not equal), and the aligner reference from VPRCONT (to
indicate which halfword or byte is the subject of the in­
struction) to develop ST. If the comparison was satisfied
(ST), the instruction in the SWED is skipped by reading
the next instruction into the SWED (by transferring the
PC to the SWEA and issuing a read request) and increment­
ing the PC (both of these operations are described in step
2 of the CM source KSTCM instruction group). The IR
state class and step are advanced to three and two, re -
spectively, by the data real logic on PPCTLl. If the
comparison was not satisfied (,ST), the PP three-level
pipe is advanced as described in step 2 of the CM source
KSTCM instruction group except that the source of the
next instruction is the SWED rather than the NIR.

When the BA signal indicates buffer availability, the PP
three-level pipe is advanced one level as described in step
2 of the CM source KSTCM instruction group, except for
the SWED source difference.

Execution of the KSKUPPU instruction group originating from ROM is shown
in the transfer table on page 50 of appendix A.

4-265
Advanced Scientific Computer

~------
Step 1

Step 2

Identical to step 1 of the CM source KSKUPPU instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not necessary to read from ROM and the PC
is applied to ROM (via the PPCRBE enable from PCCTL)
rather than the SWBA prior to a read cycle.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-182 Arithmetic Conditional Branch (KCBAT). This instruction group tests
the VPR/CR word, halfword, or byte specified by the R field for zero, non­
zero, greater than zero, or less than zero. If the test is satisfied, a PC
relative branch is taken as specified by the T and N fields. Execution of the
KCBA T instruction group originating from CM is shown in the transfer table
on page 51 of appendix A.

Step 1 The single step CM source KCBAT instruction group be­
gins execution in state class 7, step 2, as determined by
the state class and step data real logic on PPCTLl. Prior
to any decision making, the AU develops the branch taken
(BT) decision in the following manner: If the R field
specifies a VPR, the VPR is input to the AU over the
MDB via the appropriate VPAB to MDB enable
(PURABPOl, PURABP23, PURABP45, or PURABP67)
and word select (PURABC(0-2)) from VPRCONT; if the
R field specifies a CR, the MIR source bits (,PES(0-5))
from VPRCONT are used to select the CR containing the
data to be tested and the CR file to MDB enable
(PEACRABX) from VPRCONT transfers the selected CR
to the AU via the MDB; the AU test box 1 logic uses the
input VPR/ CR to develop zero, nonzero, negative, and
positive indicators for each of the four bytes; the branch
taken (BT) logic on CONTAU uses the test box 1 outputs,
the MIR op-code from VPRCONT (to determine if the test
is for zero, nonzero, negative, or positive), and the
aligner reference from VPRCONT (to indicate which half­
word or byte is the subject of the instruction) to develop
BT. If the test is not satisfied (,BT) when the BA signal
from SWBSYNC indicates buffer availability, the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group, with
the following exception: The source of the next instruc­
tion is the SWBD rather than the NIR. If the test is sat­
isfied (BT) and the KCBAT instruction is indirect (DC),
the IR state class and step are advanced to two and one,
respectively, by the data real logic on PPCTLl. If the

4-266
Advanced Scientific Computer

Step 2

Step 3

Step 4

test is satisfied and the KCBA T instruction is direct, the
IR state class and step are both advanced to two.

When the BA signal indicates buffer availability, the MIR
EA from PPCTLl is enabled over CMAB to the SWBA via
the EA to CMAB enable (PPTACBE) and the CMAB to
SWBA enable (PMCBMAE), both on PCCTL. A read re­
quest (IPMRC) is issued from PCCTL to retrieve the in­
direct cell addressed by the MIR EA and the IR state
class and step are both advanced to two.

When the BA signal indicates the buffer is available and
the MIR DC bit indicates the current MIR data is not in­
direct, the branch address (MIR EA) from PPCTLl is
transferred to the SWBA via the PPTACBE and PMCBMAE
enables on PCCTL and the branch address plus one is
transferred to the PC by enabling CMAB to the PC indexer
via PPINDXMA on PPCTLl, supplying the PC indexer
with the increment by one signal (PPPL US 1 from
PPCTLl), and enabling the PC indexer result to the PC
via PPilPCE on PCCTL. A read request (IPMRC) is
issued from PCCTL to retrieve the branched to instruc­
tion and the IR state class and step are advanced to three
and two, respectively. When the MIR instruction is in­
direct (DC) but the SWBD/NIR indirect indicator from
PPCTL2 indicates the SWBD instruction is not indirect
(IDB), the IR data is modified as follows: The DC bit is
cleared by the data real logic on PPCTL2 (IPIDCDR) and
the EA is updated by the TN indexer output via the byte
enables (PIRYB1(2), PIRYB0(3), and PIRYB1(3)) from
PPCT L2. The remainder of the IR data is not changed.
When the MIR instruction is indirect (DC) and the SWBD/
NIR indirect indicator from PPCTL2 indicates the SWBD
instruction is also indirect (DB), the IR data is modified
as follows: The DC bit is set by the data real logic on
PPCTL2, the state class and step are advanced to two
and one, respectively, by the data real logic on PPCT Ll,
and the EA is updated by the TN indexer output via the
byte enables previously mentioned.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group except that the source of the next instruction is the
SWBD rather than the NIR.

Execution of the KCBAT instruction group originating from ROM is shown in
the transfer table on page 53 of appendix A.

4-267 Advanced Scientific Computer

~-------
Step 1

Step 2

Step 3

Step 4

Identical to step 1 of the CM source KCBA T instruction
group, with the following exceptions: The BA signal from
SWBSYNC is not necessary to read from ROM and the PP
three-level pipe is advanced one level as described in
step 1 of the ROM source KSTCM instruction group when
no branch is to be taken.

Identical to step 2 of the CM source KCBAT instruction
group.

Identical to step 3 of the CM source KCBAT instruction
group, with the following exceptions when the current MIR
data is not indirect: The branch address (MIR EA) from
PPCTLl is transferred to ROM via the PPTARBE enable
on PCCTL, the brancb address plus one is developed by
enabling RMAB to the PC indexer via PPINDXMR on
PPCTLl (rather than PPINDXMA), and the BA signal is
not necessary to read from ROM.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-183 Increment/Decrement Conditional Branch (KCBIMDT). This instruc­
tion group increments/decrements by one the VPR halfword specified by the
R field and takes a PC relative branch as specified by the T and N fields if
the result is zero/nonzero. Execution of the KCBIMDT instruction group
originating from CM is shown in the transfer table on page 52 of appendix A.

Step 1 The single step CM source KCBIMDT instruction group
begins execution in state class 7, step 2, as determined
by the state class and step data real logic on PPCTLl.
Initially, the AU develops the branch taken (BT.) decision
in the following manner: The appropriate VPR to VPRB
enable (PURAlPOl, PURAlP23, PURA1P45, or
PURA1P67) and the word select (PURAlC(0-2)), both
from VPRCONT, combine to transfer the VPR containing
the halfword to be incremented/ decremented to the AU;
the AU test box 3 logic uses the input VPR to develop plus
one and minus one indicators for each of the four bytes;
the branch taken (BT) logic on CONTAU uses the test box
3 outputs, the MIR op-code from VPRCONT (to determine
if the instruction is an increment or decrement and wheth­
er the test is for zero or nonzero), and the aligner refer­
ence from VPRCONT (to indicate which half of the VPR
is under consideration) to develop BT. In addition to the
development of BT, the AU uses the MIR op-code to add
or subtract one from each half of the input VPR. The

4-268
Advanced Scientific Computer

Step 2

Step 3

Step 4

Step 5

resulting VPR halfword specified by the R field is trans­
ferred back to its source via the appropriate A Ul B to VPR
byte enables (PUWAlPOl(0-3), PUWA1P23(0-3),
PUWA1P45(0-3), or PUWA1P67(0-3)) and word select
(PUWAlC(0-2)), both from VPRCONT. When the BA sig­
nal from SWBSYNC indicates buffer availability, but the
test is not satisfied (,BT) and the next instruction is not
dependent (,D) on the modified VPR, the PP three-level
pipe is advanced one level as described in step 2 of the
CM source KSTCM instruction group, with the following
exception: The source of the next instruction is the SWBD
rather than the NIR. When dependency does exist and the
test is not satisfied, the IR state class and step are ad­
vanced to three and two, respectively, by the data real
logic on PPCTLl. When the test is satisfied (BT) but the
current instruction is indirect (DC), the IR state class
and step are advanced to two and one, respectively. When
the test is satisfied and the current instruction is not in­
direct, the IR state class and step are both advanced to
two.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

When the BA signal indicates buffer availability, the MIR
EA from PPCTLl is enabled over CMAB to the SWBA via
the. EA to CMAB enable (PPTACBE) and the CMAB to
SWBA enable (PMCBMAE), both from PCCTL. A read
request (,PMRC) is issued from PCCTL to retrieve the
indirect cell addressed by the MIR EA and the .IR state
class and step are both advanced to two. ·

Identical to step 3 of the CM source KCBAT instruction
group.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group except that the source of the next instruction is the
SWBD rather than the NIR.

Execution of the KCBIMDT instruction group originating from ROM is shown
in the transfer table on page 54 of appendix A.

Step 1 Identical to step 1 of the CM source KCBIMDT instruc­
tion group, with the following exceptions: The BA signal
from SWBSYNC is not necessary to read from ROM and
the PP three-level pipe is advanced one level as described
in step 1 of the ROM source KSTCM instruction group
when no branch is to be taken.

4-269 Advanced Scientific Computer

Step 2

Step 3

Step 4

Step 5

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

Identical to step 3 of the CM source KCBIMDT instruction
group.

Identical to step 3 of the ROM source KCBA T instruction
group.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-184 Unconditional Branch (KUCB). This instruction group branches (PC
relative, base relative, CM absolute, and ROM) as specified by the T and N
fields. Execution of the KUCB instruction group originating from CM is
shown in the transfer table on page 5 5 of appendix A.

Step 1

Step 2

The branch CM source KUCB instruction group begins
execution in state class 2, step 2, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availability
and the current instruction is not indirect (,DC), the
branch address (MIR EA) from PPCTLl is transferred to
the SWBA via the PPTACBE and PMCBMAE enables on
PCCTL and the branch address plus one is transferred to
the PC by enabling CMAB (branch address) to the PC
indexer via PPINDXMA on PPCTLl, supplying the PC
indexer with the increment-by-one signal (PPPLUSl from
PPCT L 1), and enabling the PC indexer result to the PC
via PPil PCE on PCCTL. A read request (iPMRC) is
issued from PCCTL to retrieve the branched to instruc­
tion and the IR state class and step are advanced to three
and two, respectively, by the data real logic on PPCTLl.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group except that the source of the next instruction is
the SWBD rather than the NIR.

Execution of the KUCB instruction group originating from ROM is shown in
the transfer table on page 57 of appendix A.

Step 1 Identical to step 1 of the CM source KUCB instruction
group, except for the following: The branch address
(MIR EA) from PPCT Ll is transferred to ROM via the
PPTARBE enable from PCCTL, the branch address plus
one is developed by enabling RMAB to the PC indexer via

4-270 Advanced Scientific Computer

Step 2

PPINDXMR on PPCTLl (rather than PPINDXMA), and the
BA signal is not necessary to read from ROM.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-185 Unconditional Branch and Load PC (KUCBLPC). This instruction
group branches (PC relative, base relative, CM absolute, and ROM) as
specified by the T and N fields and loads the address of the next instruction
in the stream in the VPR specified by the R field. The most significant bit
of the VPR is set to indicate which instruction stream is currently being
accessed (one for CM and zero for ROM). Execution of the KUCBLPC in­
struction group originating from CM is shown in the transfer table on page
56 of appendix A.

Step 1

Step 2

The branch CM source KUCBLPC instruction group be­
gins execution in state class 2, step 2, as determined by
the state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availability
and the current instruction is not indirect (,DC), the
branch address (MIR EA) from PPCTLl is transferred to
the SWBA via the PPTACBE and PMCBMAE enables from
PCCTL. The branch address is incremented by one in
the IR by enabling the MIR EA to the TN field indexer
(via PTI2SIR from PPCTLl), generating the carry input
enable (PTI2KIN on PPCTLl) for the TN field indexer,
and transferring the TN field indexer result to the IR EA
via the EA byte enables (FIR YB 1 (2), FIR YBO (3), and
PIRYB1(3)) from PPCTL2. The PC is decremented by
one by enabling the PC to RMAB (via PPPCRBE on
PCCTL), enabling RMAB to the PC indexer (vfa
PPINDXMR on PPCTLl), supplying the PC indexer with
the decrement by one signals (PPMINUSl and
PPMNUSK from PPCTLl), and enabling the PC indexer
result to the PC via PPil PCE from PCCTL. A read
request PPMRC) is issued from PCCTL to retrieve the
branched to instruction and the IR state class and step
are advanced to seven and three, respectively, by the
data real logic on PPCTLl.

When the BA signal indicates buffer availability, if the
dependency logic on PPCTL2 (PPD) indicates the next in­
struction is not dependent (,D) on the VPR to be loaded
with the PC and the next instruction BTN logic on PPCTL2
(PINIB TN) indicates the instruction following the current
KUCBLPC instruction is not a PC relative branch, the PC
value that follows the current instruction is transferred to

4-271 Advanced Scientific Computer

~------
the VPR specified by the R field in the following manner:
The PC is enabled to the MDB over PCAB via PPPCABE
on PCCTL; the MDB data is passed through the AU aligner
to A U2B and the appropriate A U2B to VPR byte enables
(PUWA2P01 (0-3), PUWA2P23(0-3), PUWA2P45(0-3), or
PUWA2P67(0-3)) and word select (PUWA2C(0-2)), both
from VPRCONT, transfer the A U2B data to the destination
VPR. The MIR EA (containing the original branch address
plus one) is transferred to the SWBA (as described in step
1 of this instruction group) and incremented by one and
transferred to the PC (as described in step 1 of the CM
source KUCB instruction group). The MIR mode bit is
transferred to the PC via the ,PPilO(O) signal from
PCCTL, the NIL bit is zeroed to indicate the next instruc­
tion is in the SWBD via the ,PINILDR signal from PPCTL2,
a read request (,PMRC) is issued by PCCTL to retrieve
the instruction following the branched to instruction, and
the branched to instruction is transferred to the IR with
the aid of the next instruction indicator (PININS) from
PPCTLl in the following manner: The SWBD op-code is
enabled through the data real logic on PPCTL2 to the IR;
the data real state class and step developed on PPCTLl
are enabled to the IR; the data real DC bit, M digit, and
flags developed on PPCTL2 are enabled to the IR; the out­
puts of the TN and R field indexers are input to the source
and destination fields of the IR via the source enables
(,PIRXBO(l) for R and FIR YBO (1) for TN) and destination
enables (,PIRXBl (1) for R and PIRYBl (1) for TN) supplied
by PPCTL2; the output of the TN field indexer .or shift
update logic on CONT AU is input to the EA of the IR via
the TN field indexer byte enables (FIR YBl (2), FIR YB0(3),
and PIRYB1(3)) or shift count enable (,PIRXB1(3)) supplied
by PPCTL2. If dependency does exist and the instruction
following the current KUCBLPC instruction is not a PC
relative branch, the PC value that follows the current in­
struction is transferred to the VPR specified by the R
field as previously described in this step. The IR state
class and step are both advanced to three. When a PC
relative instruction does follow the current KUCBLPC
instruction (NIBTN), the PC following the current instruc­
tion is transferred to the VPR specified by the R field as
previously described in this step, the branch address
(containing the original branch address plus one) plus one
is transferred to the PC by enabling the branch address
(MIR EA) to CMAB via PPTACBE on PCCTL, transferring

4-272
Advanced Scientific Computer

~------

Step 3

Step 4

Step 5

CMAB to the PC indexer via PPINDXMA on PPCTLl,
supplying the PC indexer with the increment by one sig­
nal (PPPLUSl from PPCTLl), and enabling the PC indexer
result to the PC via PPilPCE on PCCTL, the SWBD is
transferred to the NIR over CMDB via PNMDCDE and
PNCDNRE from PCCTL, the MIR mode bit is transferred
to the PC via the ,PPilO(O) signal from PCCTL, and the
IR NIL bit is set to one via ,PINILDR from PPCTL2 to
indicate the next instruction is in the NIR. The IR state
class and step are advanced to two and three, respec­
tively.

The MIR EA (containing the original branch address plus
one) is transferred to the SWBA and incremented by one
and transferred to the PC (both as described in step 1 of
the CM source KUCB instruction group). The MIR mode
bit is transferred to the PC, a read request is issued, the
IR NIL bit is zeroed, and the branched to instruction is
transferred to the IR, all as described in step 2 of this
instruction group.

The PC is decremented by one as described in step 1 of
this instruction so the instruction following the branched
to instruction is not missed in the NIBTN case. The IR
state class and step are advanced to three and two, re -
spectively, by the data real logic on PPCTLl.

The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group.

Execution of the KUCBLPC instruction group originating from ROM is shown
in the transfer table on page 58 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KUCBLPC instruc­
tion group, except for the following: The branch address
(MIR EA) from PPCTLl is transferred to ROM via the
PPTARBE enable from PCCT L, the PC is decremented
by one by enabling the PC to CMAB (rather than RMAB)
via PPPCCBE on PCCTL and CMAB to the PC indexer
via PPINDXMA on PPCT Ll, and the BA signal is not
necessary to read from ROM.

When dependency does not exist and the instruction follow­
ing the KUCBLPC instruction is not PC relative
(,D·,NIBTN), the PC value that follows the current in­
struction is transferred to the VPR specified by the R
field as described in step 2 of the CM source KUCBLPC
instruction group; the MIR EA (branch address plus one)
is transferred to ROM via the PPTARBE enable from

4-273 Advanced Scientific Computer

Step 3

Step 4

Step 5

PCCTL and is incremented by one and inserted in the PC
by enabling RMAB (branch address plus one) to the PC
indexer via PPINDXMR on PPCTLl, supplying the PC
indexer with the increment by one. signal (PPPLUSl from
PPCTLl), and enabling the PC indexer result to the PC
via PPil PCE on PCCTL; the MIR mode bit is transferred
to the PC via the IPPilO(O) signal from PCCTL; the IR
NIL bit is set via IPINILDR on PPCTL2 to indicate the
next instruction is in the NIR; and the branched to instruc­
tion is transferred to the IR as described in step 2 of the
CM source KUCBLPC instruction group, except that the
source of the branched-to instruction is the NIR rather
than the SWED. If dependency does exist and the instruc­
tion following the current KUCBLPC instruction is not a
PC relative instruction (D· INIBTN), the PC value follow­
ing the current instruction is transferred to the VPR
specified by the R field as described in step 2 of the CM
source KUCBLPC instruction group and the IR state class
and step are both advanced to three. When a PC relative
instruction does follow the current KUCBLPC instruction
(NIBTN), the PC is loaded in the specified VPR, the branch
address (equal to the original branch address plus one)
plus one is transferred to the PC, the MIR mode bit is
transferred to the PC and the IR state class and step are
advanced to two and three, respectively, all as described
in step 2 of the CM source KUCBLPC instruction group.

The MIR EA (containing the original branch address plus
one) is transferred to ROM and is incremented by one and
transferred to the PC (both as described in step 2 of this
instruction group). The MIR mode bit is transferred to
the PC, the IR NIL bit is set, and the branched to instruc­
tion is transferred to the IR, all as described in step 2 of
this instruction group.

The PC is decremented by one by enabling the PC to CMAB
via PPPCCBE on PCCTL, enabling CMAB to the PC in­
dexer via PPINDXMA on PPCTLl, supplying the PC in­
dexer with the decrement by one signal (PPMINUSl from
PPCTLl), and enabling the PC indexer result to the PC
via PPil PCE from PCCTL. The IR state class and step
are advanced to three and two, respectively.

The PP three-level pipe is advanced one level as de­
scribed in step l of the ROM source KSTCM instruction
group.

4-274
Advanced Scientific Computer

4-186 Unconditional Branch to ROM, Store PC (KUCBSPC). This instruction
branches to the ROM address specified by the T and N fields and stores the
address of the next instruction in the stream in one of the eight contiguous
CM locations beginning at 2016· The identity of the VP executing the instruc­
tion determines the exact CM location. The mode digit of all KUCBSPC in­
structions is cleared to indicate ROM, so only one transfer table (page 59 of
appendix A) is applicable.

Step 1

Step 2

Step 3

The branch ROM source KUCBSPC instruction begins ex­
ecution in state class 2, step 2, as determined by the
state class and step data real logic on PPCT Ll. The
branch address (MIR EA) from PPCTLl is transferred
to ROM via the PPTARBE enable from PCCT L, the branch
address is incremented by one and inserted back into the
IR for temporary storage as described in step 1 of the CM
source KUCBLPC instruction group, and the PC is de­
cremented by one to locate the address to be stored as
described in step 4 of the ROM source KUCBLPC instruc­
tion group. The IR state class and step are advanced to
seven and three, respectively, by the data real logic on
PPCTLl.

When the BA signal from SWBSYNC indicates buffer avail­
ability, the PC is transferred to the SWBD in the following
manner: The PC is enabled to the MDB over PCAB via
PPPCABE on PCCTL; the MDB data is passed through the
AU aligner to A U2B and the A U2B to SWBD enables
(PMA2MDLE and PMA2MDRE) from PCCTL transfer the
AU2B data to the SWBD. The MIR EA (PITNADDR(S-31))
reflecting the VP number from PPCTLl is transferred to
the SWBA via the PPTACBE and PMCBMAE enables from
PCCTL and the MIR mode bit is transferred to: the PC via
the ,PPilO(O) signal from PCCTL. A write request
(,PMWC) is issued from PCCTL to store the PC value
following that for the current instruction at the CM ad­
dress specified by the MIR EA and the IR state class and
step are advanced to two and three, respectively, by the
data real logic on PPCT Ll.

The MIR EA (containing the original branch address plus
one) is transferred to the PC in the following manner:
The MIR EA is enabled over CMAB via the PPTACBE en­
able from PCCT L and input to the PC indexer via the
PPINDXMA enable on PPCTLl; the MIR EA is passed
through the PC indexer without modification due to the
zeroed PPPLUSl and PPMINUSl signals from PPCTLl;
the PC indexer output is input to the PC via the PP! 1 PCE
load enable from PCCTL.

4-275
Advanced Scientific Computer

~------
Step 4 The PP three-level pipe is advanced one level as de­

scribed in step 1 of the ROM source KSTCM instruction
group.

4-187 Push Stack (KPUSH). This instruction stores the VPR specified by
the R field in the CM stack specified by the T and N fields at the location
specified by the stack pointer retrieved from the stack parameters. The
space count parameter is decremented and the word count parameter is in­
cremented to reflect the push operation. If the stack is full, it remains un­
modified and the next instruction executes. If the push operation does take
place, the next instruction is skipped. Execution of the KPUSH instruction
originating from CM is shown in the transfer table on page 60 of appendix A.

Step 1

Step 2

The multistep CM source KPUSH instruction begins ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCTLl. When
the BA signal from SWBSYNC indicates buffer availability,
the MIR EA is transferred to the SWBA, the SWBD is
saved in the NIR, the IR NIL bit is set to reflect the save,
and a read request is issued to retrieve the word count
and space count for the stack, all as described in step 1
of the CM source KSKUCM instruction group. The IR
state class and step are advanced to four and two, re­
spectively, by the data real logic on PPCTLl.

When the BA signal indicates buffer availability, the. space
count is checked for zero in the following manner: The
SWBD (containing the word count and space count) is
transferred to the MDB over MDAB via the PMMDABE
enable from PCCTL; the AU test box l logic uses the MDB
data to determine if each of the four bytes is zero; the
skip taken for stack logic (ST) on CONTAU use·s the test
box 1 byte zero indicators and the Mffi op-code from
VPRCONT (to determine if a push, pull, or modify stack
instruction is executing) to develop the skip taken (ST)
signal. If the space count is zero (,ST), the IR state
class and step are advanced to three and two, respectively,
by the data real logic on PPCT Ll. If there is room to
execute the push (ST), the TN field indexer increments the
word count and decrements the space count (both param­
eters are in the SWBD) via PTI2PSH and ,PTI2STK1 from
PPCTLl. The result is transferred to the SWBA (for
temporary storage) over CMAB via the PPI2CBE and
PMCBMAE enables from PCCTL. The IR NIL bit is
zeroed via ,PINILDT from PPCTL2 to reflect the skip of
the NIR instruction and the IR state class and step are
advanced to four and three, respectively.

4-276
Advanced Scientific Computer

Step 3

Step 4

Step 5

Step 6

When the BA signal indicates buffer availability, the PP
three -level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group.

The MIR EA from PPCT Ll is enabled over CMAB to the
SWBA via PPTACBE and PMCBMAE from PCCTL and is
incremented by one (to locate the address of the stack
pointer) and inserted in the IR by enabling the MIR EA to
the TN field indexer (via PTI2SIR from PPCT Ll), generat­
ing the carry input enable (PTI2KIN on PPCT Ll) for the
TN field indexer, and transferring the TN field indexer
result to the IR EA via the EA byte enables (PIR YB 1 (2),
PIRYB0(3), and PIRYB1(3)) from PPCTL2. The SWBA
is transferred to the SWBD by enabling the SWBA to the
MDB (via PPOMAAB on PCCTL) over MAAB, passing the
MDB data through the AU aligner to A U2B, and transfer­
ring the A U2B data to the SWBD via the PMA2MDLE and
PMA2MDRE enables from PCCTL. A write request
(IPMWC) is issued from PCCTL to update the modified
word and space count and the IR state class and step are
both advanced to four.

When the BA signal indicates buffer availability, the MIR
EA (locating the stack pointer) from PPCTLl is enabled
over CMAB to the SWBA via the PPTACBE and PMCBMAE
enables from PCCTL. A read request (,PMRC) is issued
from PCCTL to retrieve the stack pointer and the IR state
class and step are advanced to four and five, respectively.

When the BA signal indicates buffer availability, the SWBD
(stack pointer) is transferred to the SWBA in the following
manner: The SWBD is input to the TN field indexer via
the PTI2SMDM and PTI2SMDL enables from PPCTLl; the
input SWBD is passed through the TN field indexer without
modification and enabled to the SWBA over CMAB via
PPI2CBE and PMCBMAE on PCCTL. The VPR specified
by the R field is transferred to the SWBD by enabling the
desired VPR to the MDB via the appropriate VPR to MDB
enable (PURABPOl, PURABP23, PURABP45, or
PURABP67) and word select (PURABC(0-2)), both from
VPRCONT, pas sing the MDB data through the AU aligner
to AU2B, and enabling the AU2B data to the SWBD via the
PMA2MDLE and PMA2MDRE enables from PCCTL. A
write request (,PMWC) is issued from PCCTL to add the
VPR to the stack and the IR state class and step are ad­
vanced to four and six, respectively.

4-277 Advanced Scientific Computer

~------
Step 7

Step 8

Step 9

Step 10

When the BA signal indicates buffer availability, the SWBA
(stack pointer) is transferred to the SWBD as described in
step 4 of this instruction. The IR state class and step are
advanced to four and seven, respectively.

The stack pointer (SWBD) is incremented by one and tem­
porarily saved in the SWBA in the following manner: The
SWBD is input to the TN field indexer via the PTI2SMDM
and PTI2SMDL enables from PPCTLl; the input SWBD is
incremented by one via the PTI2KIN (carry input) and
PTI2GEN enables from PPCTLl; the result i.s transferred
to the SWBA over CMAB via the PPI2CBE and PMCBMAE
enables from PCCTL. The IR state class and step are
advanced to four and eight, respectively.

The updated stacker pointer (in the SWBA) is transferred
to the SWBD as described in step 4 of this instruction and
the stack pointer address from PPCTLl (the MIR EA
calculated in step 4 of this instruction) is enabled over
CMAB to the SWBA via PPTACBE and PMCBMAE from
PCCTL. A write request (,PMWC) is issued from PCCTL
to insert the updated stack pointer in the second param­
eter word of the stack and the IR state class and step are
advanced to two and one, respectively.

When the BA signal indicates buffer availability, the PC
is input to .the SWBA and is incremented by one as de­
scribed in step 2 of the CM source KSTCM instruction
group. A read request is issued to retrieve the skipped
to instruction and the IR state class and step are advanced
to three and two, respectively.

Execution of the KPUSH instruction originating from ROM is show:n in the
transfer table on page 63 of appendix A.

Step 1

Step 2

The multistep ROM source KPUSH instruction begins ex­
ecution in state class 4, step 1, as determined by the state
class and step data real logic on PPCTLl. When the BA
signal from SWBSYNC indicates buffer availability, the
MIR EA from PPCTLl is enabled over CMAB to the SWBA
via the PPTACBE and PMCBMAE enables from PCCTL,
a read request (,PMRC) is issued from PCCTL to retrieve
the word count and space count for the stack, and the IR
state class and step are advanced to four and two, re­
spectively, by the data real logic on PPCTLl.

Identical to step 2 of the CM source KPUSH instruction,
with the following exception: The IR NIL bit is not zeroed
because the instruction source is ROM.

4-278 Advanced Scientific Computer

Step 3

Step 4

Step S

Step 6

Step 7

Step 8

Step 9

Step 10

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

Identical to step 4 of the CM·source KPUSH instruction.

Identical to step S of the CM source KPUSH instruction.

Identical to step 6 of the CM source KPUSH instruction.

Identical to step 7 of the CM source KPUSH instruction.

Identical to step 8 of the CM source KPUSH instruction.

Identical to step 9 of the CM source KPUSH instruction.

The PC is input to ROM over RMAB via the PC to RMAB
enable (PPPCRBE) from PCCTL and is incremented by
one by enabling the PC to the PC indexer (via
PPINDXMR from PPCTLl), supplying the PC indexer
with the increment by one signal (PPPLUSl from
PPCTLl), and enabling the PC indexer result to the PC
via PPilPCE from PCCTL. The IR state class and step
are advanced to three and two, respectively, by the data
real logic on PPCTLl.

4-188 Pull Stack (KPULL). This instruction retrieves the word located by
the stack pointer minus one from the CM stack specified by the T and N
fields and saves the result in the VPR specified by the R field. The space
count is incremented, the word count is decremented, and the stack pointer
is decremented to reflect the pull operation. If the stack is initially empty,
it remains unmodified and the next instruction executes. If the pull opera­
tion does take place, the next instruction is skipped. Execution of the KPULL
instruction originating from CM is shown in the transfer table on page 61 of
appendix A.

Step 1

Step 2

Step 3

Identical to step 1 of the CM source KPUSH instruction.

Identical to step 2 of the CM source KPUSH instruction,
except for the following: The skip taken for stack logic
on CONT AU develops the skip taken decision (ST or I ST)
by testing the word count (rather than the space count) for
zero; if a pull is to be executed, the TN field indexer de­
crements the word count and increments the space count
(rather than the opposite) via PTI2PUL and IPTI2STK1
from PPCTLl.

When the BA signal from SWBSYNC indicates buffer avail­
ability, the PP three-level pipe is advanced one level as
described in step 2 of the CM source KSTCM instruction
group.

4-279
Advanced Scientific Computer

~~-----
Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Identical to step 4 of the CM source KPUSH instruction.

Identical to step 5 of the CM source KPUSH instruction.

When the BA signal indicates buffer availability, the
stack pointer (in the SWBD) is decremented to locate the
last word in the stack and transferred to the SWBA in the
following manner: The SWBD is input to the TN field
indexer via the PTI2SMDM and PTI2SMDL enables from
PPCTLl; the input SWBD is decremented by one via the
IPTI2STK1 and PTI2KGEN enables from PPCTLl; the re­
sult is transferred to the SWBA over CMAB via the
PPI2CBE and PMCBMAE enables from PCCTL. A read
request (IPMR C) is is sued from PC CT L to retrieve the
last word in the stack and the IR state class and step are
advanced to four and six, respectively.

When the BA signal indicates buffer availability, the last
word in the stack is transferred to the VPR specified by
the R field in the following manner: The SWBD is trans -
ferred to the MDB over MDAB via the PMMDABE enable
from PCCTL; the MDB data is passed through the AU
aligner to A U2B; the appropriate A U2B to VPR byte en­
ables (PUWA2PO 1 (0-3), PUWA2P23 (0-3), PUWA2P45 (0-3),
or PUWA2P67(0-3)) combine with the word select
(PUWA2C(0-2)), both from VPRCONT, to transfer the
A U2B data to the desired VPR. The IR state class and
step are advanced to four and seven, respectively.

Identical to step 9 of the CM source KPUSH instruction.

Identical to step 10 of the CM source KPUSH instruction.

Execution of the KPULL instruction originating from ROM is shown in the
transfer table on page 64 of appendix A.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Identical to step 1 of the ROM source KPUSH instruction.

Identical to step 2 of the CM source KPULL instruction,
except for the following: The IR NIL bit is not zeroed
because the instruction source is ROM.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

Identical to step 4 of the CM source KPUSH instruction.

Identical to step 5 of the CM source KPUSH instruction.

Identical to step 6 of the CM source KPULL instruction.

Identical to step 7 of the CM source KPULL instruction.

4-280 Advanced Scientific Computer

Step 8

Step 9

Identical to step 9 of the CM source KPUSH instruction.

Identical to step 10 of the ROM source KPUSH instruction.

4-1_89 Modify Stack (KMDF). This instruction '.mo~ifies the parameters of
the CM stack specified by the T and N fields by the amount contained in the
VPR halfword specified by the R field. If the modification value is positive,
a gap of unused stack locations is created. If the modification value is neg­
ative, the most recent stack entries are deleted. The modification value is
added to the word count and stack pointer and subtracted from the space
count. If either of the counts is negative after the modification, the stack
parameters remain unmodified and the next instruction is executed. If both
counts are non-negative after the modification, the modify operation does
take place and the next instruction is skipped. Execution of the KMDF in­
struction originating from CM is shown in the transfer table on page 62 of
appendix A.

Step 1

Step 2·

Step 3

Identical to step 1 of the CM source KPUSH instruction.

When the BA signal from SWBSYNC indicates buffer avail­
ability, the word and space count parameters are modified
by the VPR halfword in the following manner: The SWBD
is input to the TN field indexer via the PTI2SMDM and
PTI2SMDL enables from PPCTLl; the desired VPR is
input to the TN field indexer via the PUTFLDl and
PUTFLD2 select lines from PPCT Ll; the TN field indexer
uses the halfword select (PTI2SRH from PPCT Ll) to en­
able the desired VPR halfword, PUI2SRHT and ,PTI2SVPL
fro.m PPCTLl to develop the desired halfword and its one's
complement, and the carry input (PTI2KIN from PPCT Ll)
to develop the two's complement from the one's comple­
ment, all in order to add the modification value to the
word count (most significant half of the SWBD) and sub­
tract the modification value from the space count (least
significant half of the SWBD); the result is transferred to
the SWBA over CMAB via the PPI2CBE and PMCBMAE
enables from PCCT L. The IR state class and step are
advanced to seven and two, respectively, by the data real
logic on PPCTLl.

The modified word and space count are both checked for
negative quantities as follows: The SWBA (containing both
counts) is transferred to the MDB over MAAB via
PMMAABE from PCCTL; the AU test box 1 logic uses
the MDB data to determine if each of the four bytes is
negative; the skip taken for stack logic on CONT AU
utilizes the test box 1 byte negative indicators and the
MIR op-code from VPRCONT to develop the skip taken
(ST) signal. If one of the count parameters was negative

4-281 Advanced Scientific Computer

~------

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

after the modification (,ST), the PP three-level pipe is
advanced one level as described in step 2 of the CM
source KSTCM instruction group. If neither of the count
parameters is negative, the IR NIL bit is zeroed via
,PINILDT from PPCTL2 to reflect the skip of the NIR
instruction and the IR state class and step are advanced
to four and three, respectively.

Identical to step 4 of the CM source KPUSH instruction.

Identical to step 5 of the CM source KPUSH instruction.

When the BA signal indicates buffer availability, the
stack pointer (in the SWBD) is modified by the desired
VPR halfword in the following manner: The SWBD is in­
put to the TN field indexer via the PTI2SMDM and
PTI2SMDL enables from PPCTLl; the desired VPR is
input to the TN field indexer via the PUTFLDl and
PUTFLD2 select lines from PPCTLl; the TN field indexer
uses the VPR halfword select (PTI2SRH from PPCTLl)
and PTI2KGEN from PPCTLl to add the SWBD to the sign
extended VPR halfword; the result is transferred to the
SWBA over CMAB via the.PPI2CBE and PMCBMAE en­
ables from PCCTL. The IR state class and step are ad­
vanced to four and six, respectively.

Identical to i:itep 9 of the CM source KPUSH instruction.

Identical to step l 0 of the CM source KPUSH instruction.

When the BA signal indicates buffer availability, the PP
three-level pipe is advanced one level as described in
step 2 of the CM source KSTCM instruction group except
that the source of the next instruction is the SWBD rather
than the NIR.

Execution of the KMDF instruction originating from ROM is shown in the
transfer table on page 65 of appendix A~

Step l

Step 2

Step 3

Step 4

Identical to step l of the ROM source KPUSH instruction.

Identical to step 2 of the CM source KMDF instruction.

Identical to step 3 of the CM source KMDF instruction,
except as follows: When one of the count. parameters is
negative (,ST), the PP three-level pipe is advanced one
level as described in step l of the ROM source KSTCM
instruction group; when both count parameters are non­
negative, the IR NIL bit is not zeroed because the instruc­
tion source is ROM.

Identical to step 4 of the CM source KPUSH instruction.

'4-282
Advanced Scientific Computer

~-----~
Step 5

Step 6

Step 7

Step 8

Step 9

Identical to step 5 of the CM source KPUSH instruction.

Identical to step 6 of the CM source KMDF instruction.

Identical to step 9 of the CM source KPUSH instruction.

Identical to step 10 of the ROM source KPUSH instruction.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-190 Execute CM (KEXCM). This instruction executes the CM instruction
specified by the T and N fields (object instruction) as if it were in the loca­
tion of the original KEXCM instruction, except when the object instruction
is a PC relative branch. When the object instruction is a PC relative branch,
the PC value used in the development of the branch address is one greater
than that used if the object instruction actually replaced the KEXCM instruc­
tion. Execution of the KEXCM instruction originating from CM is shown in
the transfer table on page 66 of appendix A.

Step 1

Step 2

The multistep CM source KEXCM instruction begins ex­
ecution in state class 4, step 1, as determined by the
state class and step data real logic on PPCTLl. When
the BA signal from SWBSYNC indicates buffer availability,
the MIR EA is transferred to the SWBA, the SWBD is
saved in the NIR, and a read request is issued to retrieve
the object instruction, all as described in step 1 of the
CM source KSKUCM instruction group. The IR state
class and step are both advanced to two by the data real
logic on PPCTLl.

When the object instruction has been successfully retrieved
from CM (BA), it (in the SWBD) is indexed and input to
the IR in the following manner: the SWBD op-qode is en­
abled through the data real logic on PPCTL2 to the IR;
the data real state class and step developed on PPCTLl
are enabled to the IR; the data real DC bit, M digit, and
flags developed on PPCT L2 are enabled to the IR; the
outputs of the TN and R field indexers are enabled to the
source and destination fields of the IR as determined by
the source enables (,PIRXBO(l) for Rand PIRYBO(l) for
TN) and destination enables (,PIRXB 1 (1) for R and
PIRYBl(l) for TN) supplied by PPCTL2; the output of the
TN field indexer or shift update logic on CONTAU is en­
abled to the IR EA as determined by the TN field indexer
byte enables (PIR YB 1 (2), FIR YBO (3), and FIR YB 1 (3)) or
shift count enable (,PIRXBl (3)) supplied by PPCTLZ.
The IR NIL bit is set in the operation just described to
reflect the saving of the next instruction in the NIR in the

4-283 Advanced Scientific Computer

previous step. At the next execution clock, the object
instruction begins execution.

Execution of the KEXCM instruction originating from ROM is shown in the
transfer table on page 69 of appendix A.

Step 1

Step 2

The multistep ROM source KEXCM instruction begins
execution in state class 4, step l, as determined by the
state class and step data real logic on PPCT Ll. When
the BA signal from SWBSYNC indicates buffer availability,
the MIR EA is transferred to the SWBA and a read re -
quest is is sued to retrieve the object instruction, both as
described in step 1 of the CM source KSKUCM instruction
group. The IR state class and step are both advanced to
two by the data real logic on PPCTLl.

Identical to step 2 of the CM source KEXCM instruction,
except the IR NIL bit is set because the instruction source
is ROM (not because an instruction was saved in the NIR).

4-191 Load Effective Address (KLEA). This instruction loads the effective
address developed by the T and N fields in the VPR specified by the R field.
Execution of the KLEA instruction originating from CM is shown in the trans -
fer table on page 68 of appendix A.

Step 1 The single step CM source KLEA instruction begins ex­
ecution in state class 7, step 2, as determined by the
state class and step data real logic on PPCTLl. When
the BA signal from SWBSYNC indicates buffer availability
and dependency logic (PPD) on PPCTL2 indicates the VPR
to be loaded is not involved in the next instruction nn),
the MIR EA developed by the TN field indexer is trans -
fer red to the VPR specified by the R field as follows: The
MIR EA is enabled to the MDB via the PIQEFAD(2) and
PICIMED(3) enables from PCCTL; the MDB data is passed
through the AU aligner to AU2B and the appropriate AU2B
to VPR byte enables (PUWA2P01(0-3), PUWA2P23(0-3),
PUWA2P45(0-3), or PUWA2P67(0-3)) and word select
(PUWA2C(0-2)), both from VPRCONT, transfer the AU2B
data to the desired VPR. The PP three-level pipe is ad­
vanced one level as described in step 2 of the CM source
KSTCM instruction group, with the following exception:
The source of the next instruction is the SWBD rather than
the NIR. When dependency does exist (D), the MIR EA is
transferred to the desired VPR as previously mentioned
in this step and the IR state class and step are advanced
to three and two, respectively, by the data real logic on
PPCTLl.

4-284 Advanced Scientific Computer

Step 2 The PP three-level pipe is advanced one level as de­
scribed in step 2 of the CM source KSTCM instruction
group, except for the SWBD source difference.

Execution of the KLEA instruction originating from ROM is shown in the
transfer table on page 71 of appendix A.

Step 1

Step 2

Identical to step 1 of the CM source KLEA instruction,
except for the following: The PP three-level pipe is ad­
vanced one level as described in step 1 of the ROM source
KSTCM instruction group when dependency does not exist.

The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group.

4-192 Indirect Cycle (KNDIREC). The indirect cycle is executed when the
next instruction to be executed (in the SWBD or NIR) has the first bit of its
T field set (first indirect cycle), or the indirect cell retrieved from CM has
the first bit of its T field set (multiple level indirect cycle), and the current
instruction has completed execution (as indicated by PININS on PPCTLl).
This indirect cycle is not valid for the conditional branch instructions (they
have their own unique indirect cycle, as described in the KCBAT and
KCBIMDT instruction groups) or the instructions for which indirect is unde­
fined (this applies to the instructions for which the ignore indirect signal
(PIIGI) from PPCTL2 is true). Execution of the CM indirect cycle is shown
in the transfer table on page 72 of appendix A.

Step 1 When the SWRD/NIR indirect indicator (PIDB) from
PPCTL2 indicates the next instruction is not indirect
(,DB), or the ignore indirect signal (PIIGI) from PPCTL2
indicates indirect is undefined for the SWBD/N.IR instruc­
tion (IGI), and the instruction termination signal (PININS)
from PPCTLl indicates the current instruction has com­
pleted execution (NINS), the IR DC bit is cleared via
,PIDCDR from PPCTL2 to indicate the SWBD/NIR in­
struction being transferred to the IR is not indirect. The
IR NIL bit is cleared via ,PINILDR from PPCTL2 to in­
dicate the read cycle initiated to retrieve the instruction
following the SWBD/NIR instruction involves CM, and the
SWBD/NIR instruction begins execution at the next as­
signed clock. When the SWBD/NIR indirect indicator
indicates indirect and indirect is possible (DB· ,IGI) on
termination of the current instruction, the IR DC bit is
set and the IR state class and step are advanced to two
and one, respectively, by the data real logic on PPCTLl.

4-285 Advanced Scientific Computer

Step 2

Step 3

When the BA signal from SWBSYNC indicates buffer avail­
ability and the MIR PPTN flag indicates the indirect cell
is not (,PPTN) located in a register (VPR or CR), the
MIR EA containing the indirect cell address is transferred
to the SWBA, the SWBD is saved in the NIR, the IR NIL
bit is set to reflect the save, and a read request is issued
to retrieve the indirect cell, all as described in step 1 of
the CM source KSKUCM instruction group. The IR state
class and step are both advanced to two. When the MIR
PPTN flag indicates the indirect cell is in a VPR or CR
(PPTN), the SWBD is saved in the NIR, the NIL bit is
set to reflect the save, and the register specified by the
T and N fields is transferred to the SWBD in the following
manner: If the indirect cell is located in a VPR, the ap­
propriate VPR to MDB enable (PURABPOl, PURABP23,
PURABP45, or PURABP67) combines with the VPR to
MDB word select (PURABC(0-2)) to transfer the desired
VPR to the MDB; if the indirect cell is located in a CR ..
the MIR source bits (,PES(0-5)), or the MIR destination
bits (,PED(0-5)) in the case of an indirect store to a CR,
combine with the CR file to MDB enable (PEACRABX),
both from VPRCONT, to transfer the desired CR to the
MDB; the MDB data is passed through the aligner to the
AU2B bus and the AU2B to SWBD enables (PMA2MDLE
and PMA2MDRE) from PCCTL enable completion of the
register to SWBD transfer. The IR state class and step
are both advanced to two.

When the BA signal indicates buffer availability (this check
is only necessary when the indirect cell is in CM (,PPTN)),
the TN field indexer uses the indirect cell (in the SWBD)
to develop an EA, source, or destination for the IR (as
determined by the source enable (FIR YBO (1)), destination
enable (PIRYBl(l), or EA enables (PIRYB1(2), PIRYB0(3),
and PIRYB1(3))). If the T field of the indirect cell indi­
cates multiple level indirect addressing (DB), the IR DC
bit is set via ,PIDCDR from PPCTL2 and the IR state
class and step are returned to two and one, respectively.
If the terminal level of indirect addressing has been
reached (,DB), the IR DC bit is cleared via ,PIDCDR and
the original indirect instruction begins execution at the
next time slot.

Execution of the ROM indirect cycle is shown in the transfer table on page 73
of appendix A.

4-286 Advanced Scientific Computer

Step 1

Step 2

Step 3

Identical to step 1 of the CM indirect cycle, except for
the following: The NIL bit is set (rather than cleared)
when there is no indirect cycle to reflect the ROM in­
struction source.

Identical to step 2 of the CM indirect cycle, except for
the following: The saving of the SWBD and setting of the
IR NIL bit is not necessary because of the ROM instruc­
tion source.

Identical to step 3 of the CM indirect cycle.

4-193 No Operation (KNOOP). The no operation (no-op) instruction is a de­
fault condition that jumps to the next instruction in the PP three-level pipe.
Execution of the KNOOP instruction originating from CM is shown in the
transfer table on page 74 of appendix A.

Step 1 When the BA signal from SWBSYNC indicates buffer
availability, the PP three-level pipe is advanced one
level as described in step 2 of the CM source KSTCM
instruction group (assuming no interrupt (,INTF) occurs
during the execution clock), except for the following:
The source of the next instruction is the SWBD rather
than the NIR.

Execution of the KNOOP instruction originating from ROM is shown in the
transfer table on page 75 of· appendix A.

Step 1 The PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group, assu~ng no interrupt (,INTF) occurs during the
execution clock.

4-194 Interrupt Cycle (INTRPT). The interrupt cycle is executed at the
conclusion of the instruction during which a programmed or automatic inter -
rupt occurred. In general, the interrupt cycle directs PP control to ROM
location 10 16 if an automatic interrupt occurs or ROM location 11 16 if a pro­
grammed interrupt occurs. Execution of the CM interrupt cycle is shown in
the transfer table on page 76 of appendix A.

Step 1 If an automatic or programmed interrupt has not occurred
at the conclusion of the current instruction (,INT· NINS),
the PP three-level pipe is advanced one level as described
in step 2 of the KSTCM instruction group. If an automatic
or programmed interrupt has occurred (INT), the MIR
INTF bit is not set (,INTF), the current instruction has
terminated (NINS), and the current instruction is not ex­
ecute CM (,EXCM), the IR INTF bit is set via ,PINTFDR
from PPCTL2 to initiate the interrupt cycle, the IR NIL

4-287 Advanced Scientific Computer

Step 2

Step 3

bit is set via ,PINILDR from PPCTLZ to point to the in­
struction retrieved from ROM locations 10 16 or l l l6'
the IR op-code is forced to the no-op case via the data
real logic on PPCTLZ, and the PG is incremented by one
as described in step 2 of the CM source KSTCM instruc­
tion group. The IR state class and step are advanced to
two and three, respectively, by the data real logic on
PPCTLl.

The MIR EA, 10 16 if an automatic interrupt has been re­
corded or 11 16 if a programmed interrupt has been re­
corded, is transferred to the NIR via the PPTARBE and
PNCDNRE enables from PCCTL. The PC is decremented
by two to point to the instruction following the interrupted
instruction in the following manner: The PC is transferred
to the PC indexer over CMAB via PPPCCBE and
PPINDXMA from PCCTL and PPCTLl, respectively; the
PC indexer decrements the input quantity via the zeroed
PPPLUSl and PPMINUSl signals and the set PPMNUSK
signal, all from PPCTLl; the PC indexer result is trans­
ferred back to the PC via PPil PCE from PCCTL. The
IR state class and step are advanced to three and two,
respectively.

When the BA signal from SWBSYNC indicates buffer avail­
ability, the PP three-level pipe is advanced one level as
described in step 2 of the CM source KSTCM instruction
group (this procedure transfers the ROM service instruc­
tion to the IR for execution). The IR INTF bit is zeroed
via ,PINTFDR from PPCTL2 to indicate the interrupt
processing is complete.

Execution of the ROM interrupt cycle is shown in the transfer table on page
77 of appendix A.

Step 1 If an automatic or programmed interrupt has not occurred
at the conclusion of the current instruction (,INT· NINS),
the PP three-level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group. If an automatic or programmed interrupt has oc -
curred (INT), the MIR INTF bit is not set (,INTF), the
current instruction has terminated (NINS), and the cur­
rent instruction is not execute CM (,EXCM), the IR
INTF bit is set via ,PINTFDR from PPCTLZ to initiate
the interrupt cycle, the IR op-code is forced to the no-op
case via the data real logic on PPCTLZ, the PC is ap­
plied to ROM via PPPCRBE on PCCTL, and the PC is
incremented by one via the RMAB to PC indexer enable

4-288
Advanced Scientific Computer

Step 2

Step 3

(PPINDXMR from PPCTLl), the PC indexer increment
by one signal (PPPLUSl from PPCTLl), and the PC load
enable (PPilPCE from PCCTL). The IR state class and
step are advanced to two and three, respectively, by the
data real logic on PPCTLl.

Identical to step 2 of the CM interrupt cycle.

The PP three -level pipe is advanced one level as de­
scribed in step 1 of the ROM source KSTCM instruction
group (this procedure transfers the ROM service instruc­
tion to the IR for execution) and the IR INTF bit is zeroed
via ,PINT FDR from PPCT L2 to indicate the interrupt
processing is complete.

4-195 MAINTENANCE LOGIC

Control of the PP maintenance logic centers around the CR file maintenance
registers, which are controlled by the external maintenance system de­
scribed in appendix C of this manual. The data entered in the maintenance
registers (via the ASC Maintenance Console in the manual mode, the card
reader in the semi-automatic mode, or PP software in the automatic mode)
is interpreted by the hardcore maintenance logic (located on the MLCTL,
ML2, and MLl (0, 1) cards) and distributed to the remainder of the PP in
order to execute the desired operation. The maintenance command repertoire
provides the necessary range of operations so that any area of the PP can be
checked out by executing the proper combination of maintenance commands.
The following paragraphs give a detailed description of the PP maintenance
logic by covering the maintenance registers, the maintenance logic control
circuitry, the maintenance logic data path structure, the maintenance logic
timing as it relates to the determination of the active VP, and the maintenance
command transfer tables.

4-196 MAINTENANCE REGISTERS. The CR file maintenance registers, be­
ginning at bit 17 of word c 16 in the CR file and extending through word Fl6'
accept data from the Test Control Logic (TCL) in the manual or semi-auto­
matic modes or from the PP ECL circuitry (PP software) in the automatic
mode. The maintenance registers are divided into seven basic fields, as
shown in figure 4-109. The control field contains the maintenance command
to be executed and the status of the maintenance logic and the remaining fields
contain the indicators and data necessary for execution of the command. A
description of the basic maintenance register fields is given in the following
paragraphs.

4-197 Control Field. The maintenance register control field consists of
bits 24 through 31 of CR file word c 16. A descriptive breakdown of each
bit or bit group in the control field is presented in table 4-5. A list of com­
mand codes (part of the control field) with the associated PP reaction is de­
tailed in table 4-6.

4-289
Advanced Scientific Computer

CR FILE
WORD

(A)124816

0 7 8

BURST I

1 7 23 24

15 161
F l CONTROL

v l REGISTER

SWITCH REGISTER

DISPLAY REGISTER

Figure 4-109. Peripheral Processor Maintenance Registers

Table 4-5. Maintenance Register Control Field Breakdown

Bit(s) Name Description

31

24 Busy Set by the maintenance logic on the clock imme­
diately following receipt of any nonzero command
code in bits 28 through 31 of the control field.
Reset by the maintenance logic on the clock im­
mediately following completion of the command.
Resetting does not occur if the command is il­
legaL

25 PC Lock Set by the maintenance logic at the completion
of command code 8 to reflect a locked program
counter. Reset by the maintenance logic at the
completion of command code 9 to reflect an un­
locked program counter.

26 Illegal Set by maintenance logic if an illegal command
is inserted in the maintenance registers.

27 Spare Not used.

28-31 Command Code Set to one of 15 possible codes (l-F 16) to initiate
a maintenance command. At completion of the
command, the command code bits are reset.

4-290
Advanced Scientific Computer

Table 4-6. Maintenance Command Codes

Code Description

"O This is a no-op command inserted in the command code field at
the completion of any command, unless the command is illegal
or can not be completed.

1 (SR)-DR The switch register is transferred to the display
register via the hardcore maintenance logic.

2 (REG)-DR The PP register specified by the register field is
transferred to the display register. This command is illegal if
the register field specifies the MIR in the automatic mode.

3 ((SR))cM- DR The CM word addressed by the switch register
is transferred to the display register. The VP portion of the
register field is used by the SWBC in making the read request.

4 ((SR))ROM-DR The ROM word addressed by the switch reg­
ister is transferred to the display register. The VP portion of
the register field is used to specify the NIR used in making the
read.

5 (SR)-REG The switch register is transferred to the PP reg­
ister specified by the register field. If the register field spec­
ifies a CR or VPR, the portion of the destination register affected
is controlled by the F field. This command is illegal if the reg­
ister field specifies a SWBC or MIR in the automatic mode. If
the register field specifies SWBCs or SWBC 9 , command code 5
reacts differently and controls the asynchronous portion of the
SWBC.

6 (DR)-REG The display register is transferred to the PP reg­
ister specified by the register field. If the register field spec­
ifies a CR or VPR, the portion of the destination register affected
is controlled by the F field. This command is illegal if the reg­
ister field specifies a SWBC or MIR in the automatic mode.

7 (DR)-(SR)cM The display register is stored in CM at the
address specified by the switch register. The VP portion of
the register field is used by the SWBC in making the write re­
quest.

8 This command locks the PC's of the VP' s designated by the V
field. When this command occurs, the designated PC's are held
at their current value until command code 9 is issued.

9 This command unlocks the PC's designated by the V field.

4-291 Advanced Scientific Computer

~-------
Table 4-6. Maintenance Command Codes (Continued)

Code Description

A 16 This command resets the data holding flip-flops (PC, NIR,
SWBD, SWBA, VPR, IR, and CM base) of the VP' s designated
by the V field.

B16 This command sets the data holding flip-flops (PC, NIR, SWBD,
SWBA, VPR, IR, and CM base) of the VP' s designated by the V
field.

c 16 (PP Burst) In the automatic mode, the VP' s designated by the
V field are subject to advancement, along with the VP' s that are
active, under the influence of the time slot table. Counting be­
gins at time slot zero and continues until the number of executed
time slots equals the value in the burst field. In the semi-auto­
matic and manual modes the reaction to command c 16 depends
on whether or not the SWB has been placed under test by the
register field or SWB LOCK switch on the ASC Maintenance
Console, respectively. If the SWB is not under test, the PP is
advanced the number of time slots indicated by the burst field
(this is equivalent to normal PP operation except that it occurs
for a limited time). If the SWB is under test, the SWB is ad­
vanced (entries are made in the SWBC for the VP' s requiring
memory access) the number of time slots indicated by the burst
field.

D16 (PP Cycle) In the automatic mode, the VP' s designated by the
V field are advanced, along with the active VP' s, under the in­
fluence of the time slot table until all V field designated VP' s
have completed their current instruction. If more than one VP
is designated by the V field, termination of advancement of the
designated VP' s does not necessarily occur at the same time.
In the semi-automatic mode, the VP' s are advanced as in the
automatic mode until time slot zero is reached. When time slot
zero is reached, advancement is stopped. In the manual mode,
the one VP designated by the V field is advanced (independent of
the time slot table) until its current instruction is completed.

E 16 (VP Burst) This command is illegal in the automatic and semi­
automatic modes. In the manual mode, the single V field spec­
ified VP is advanced (independent of the time slot table) as in­
dicated by the burst field.

F16 (VP Continuous) This command is illegal in the automatic and
semi-automatic modes. In the manual mode, the VP designated

4-292 Advanced Scientific Computer

Table 4-6. Maintenance Command Codes (Continued)

Code Description

Ff6 by the V field is advanced (independent of the time slot table)

(Cont.) until a new maintenance command code is received. If the new
command is other than F16• then, in addition to halting the de-
signated VP, the new command is performed.

4-198 F Field. The maintenance register F field consists of bits 17 through
23 of CR file word Ci6· The F field is used during the execution of mainte­
nance command codes 5 and 6 when a portion of a CR or VPR needs specify­
ing. Refer to table 4-7 for the manner in which the maintenance logic inter -
prets the F field (the X's indicate don't cares).

Table 4-7. Maintenance Register F Field Breakdown

F Field CR/VPR Portion

xxxxooo Byte 0

XXXXOOl Byte 1

XXXXOlO Byte 2

XXXXOll Byte 3

XXXXlOO Left Half Word

XXXXlOl Right Half Word

XXXXllO l
XXXXlll

Whole Word

4-199 Burst Field. The maintenance register burst field consists of bits 0
through 7 of CR file word Di6· The burst field is used in conjunction with
maintenance command codes c 16 and E 16 to specify the number of time slots
of advancement.

4-200 V Field. The maintenance register V field consists of bits 8 through
15 of CR file word Di6· The V field is used by maintenance command codes
8, 9, A16• B16• C16• D16• E16• and F16 to designate the VP' s under test.
In the manual mode, only one of the bits will be set.

4-201 Register Field. The maintenance register register field consists of
bits 16 through 31 of CR file word Dl6• as shown in figure 4-110. The VP,
group, and selection portions of the register field designate a register used

4-293 Advanced Scientific Computer

~------

(A)124817

16 17 19 20

GROUP SWB
TEST SELECTION

31

Figure 4-110. Maintenance Register Register Field Format

by the data transfer maintenance command codes 2, 5, and 6. Bit 16 is not
used and the SWB test portion of the register field is used in conjunction with
command code c 16 in the semi-automatic mode to affect interpretation of
conunand code c 16 . A setting of 102 places the SWB under test, 01 2 places
the SWB in the normal condition, and 00 2 and 11 2 have no effect. The VP,
group, and selection portions of the register field designate a register as
detailed in table 4-8. If the group and selection designate SWBC8 or SWBC9
in conjunction with command code 5, then the command is interpreted dif­
ferently and controls the asynchronous portion of the SWBC (SWBC8 stops
the asynchronous-MCU interface on an even state and SWBC9 stops the inter­
face on an odd state).

Table 4-8. Register Field Register Designation

VP Group Setection Designated Register

0-7 0000 Not Used PC in VP(0-7)

0-7 XOOl Not Used NIR in VP(0-7)

0-7 XOlO 0, 1 IR(O, 1) in VP(0-7)

0-7 XOl l Not Used SWBA in VP(O- 7)

0-7 XlOO Not Used SWBD in VP(0-7)
:

0-7 XlOl 0-3 VPR(0-3) in VP(0-7)

Not Used XllO 0-63 CR(0-63)

Not Used Xl 11 0-9 SWBC(0-9)

Not Used 1000 0-7 MIR (0-7)

4-202 Switch Register Field. The maintenance register switch register
field consists of all 32 bits of CR file word E 16. The switch register field
provides data for maintenance command codes 1 and 5 and a memory ad­
dress for command codes 3, 4, and 7.

4-294 Advanced Scientific Computer

4-203 Display Register Field. The maintenance register display register
field consists of all 32 bits of CR file word Fl6· The display register field
provides data for maintenance command codes 6 and 7 and is used as the
destination register in command codes 1, 2, 3,. and 4.

4-204 MAINTENANCE LOGIC CONTROL. The maintenance logic control
circuitry is primarily concerned with determining when the PP is executing
in the test mode or the normal active mode and controlling the execution of
maintenance commands when the test mode is selected. Figure 4-111 is a
detailed block diagram of the maintenance logic control system and illustrates
the logic cards and major interface signals involved. For presentation pur­
poses, the maintenance logic control system is divided into hardcore mainte­
nance logic and maintenance/PP interface logic. The hardcore maintenance
logic consists of the CR file maintenance registers and the MLCTL, ML2,
and MLl (0, 1) cards; the maintenance/PP interface logic consists of the re­
maining cards in figure 4 -111.

4-205 Hardcore Maintenance Logic. The hardcore maintenance logic accepts
maintenance register data from the Test Control Logic (TCL) in the manual
or semi-automatic (card) modes or from a controlling VP (PP software) in
the automatic mode; mode, VP select, automatic interrupt off, and SWB
lock ASC Maintenance Console switch indications from the TCL; the ASC
Maintenance Console master clear switch indication from the Power Control
Unit; and the CR protect byte, CM protect byte, SWB priority halfword, and
time slot table from the CR file. In return, the hardcore maintenance logic
distributes the VP code, next VP code, test mode indicator, master clear,
current priority, CR protect enable, CM protect enable, and maintenance
command control signals to the maintenance/PP interface logic; the current
time slot, current VP code, current VP active indication, compare error,
and SWB lock illumination signals to the TCL; the display register data to
the ASC Maintenance Console; and the busy, PC lock, and illegal gate to the
patchboard for use in setting or resetting those bits in the CR file mainte­
nance registers.

The MLCT L card, detailed in figure 4-112, provides the majority of the
hardcore maintenance control interface with the remainder of the PP. A
new maintenance command from the TCL (PXCONTD(4-7) in manual or semi­
automatic modes) is enabled through MLCTL to the CR file. PP software
enters maintenance commands directly in the CR file maintenance registers
when the busy bit of the maintenance registers indicates a new command can
be accepted. When the current command completes execution, the new com­
mand is inserted in the appropriate maintenance register bits and made
available to MLCTL as the new current command. At this point in time,
the zeroed current state and presence of the new command combine to set
the busy bit to indicate execution of a maintenance command is in progress.
A state diagram of the three flip-flop maintenance controller used to execute

4-295/4-296 Advanced Scientific Computer

SWB LOCK ILLUM !NATION
TO TCL AND

DISPLAY REGISTER,
BUSY BIT,

PC LOCK, AND
ILLEGAL

GATES TO
PATCHBOARD

TCL
CONTROLS

AND
MAINTENANCE

COMMAND

TCL
MAINTENANCE

REGISTER DATA

pp
SOFTWARE

MAl"TEMANCIE
REGISTER DATA

COMPARE ERROR
CURRENT TIME SL.DT

CUftWENT VPC
CURltENT VP ACTIVE

TO TCL

DISPLAY
REGISTER

TO
MAINTENANCE

CONSOLE

(C)124.818

-

~

-

REG FIELD VPC ,GROUP ,swe
MAINT CMD
CR PROTECT BYTE .. -

MAINT CMD
PC LOCK
BUSY
ILLEGAL

~

MLCTL

BUFFER AVAIL
TEST VP ACTIVE
BURST IN PROGRESS
TIME SLOT SCAN
REG FIELD SELECT.
VP ACTIVE
SELECTED VP

MOOE
VP SELECT
SET/RESET
AUTO INTPT OFF
LOAD BURST

REG FIELD SEL
F FIELD

., ~~~ SLOT COUNTER
...... ~~~~~~~~~

~

CR
FILE

MAINTENANCE
REGISTERS

SWITCH REG
DISPLAY REG

V FIELD
BURST COUNT

-

--.

TIME
SLOT

COUNTE;t

ML1(0 ,1)

CM PROTECT BITS·-------­
SWB PRIORITIES
TIME SLOTS

ML2

·~ NEXT TIME SLOT
SR/DR IDENTICAL

ROM CONTROL
READ/WRITE
MASTER CLEAR
TEST MOOE
AU2B-NIR ,PC ,SWBA,SWBC

~~~~t~Li·e~cSWBA-MDB --
AU2B - SWBD ENABL~ 

LOAD MIR 
MASTER CLEAR 
NEXT VPC 
REG FI ELD VPC 
TEST MODE 
AU2B -VPR 
VPR -MOB 

VPR SELECT 

MASTER CLEAR 
REG FIELD VPC 

-

--
--

PCCTL 

VPRCONT 

~~= = :.."1Jt1 ~M7R~~DB 
nsT MODE --------

I'- IR/MIR SELECT 

MASTER CLEAR 
«EAO ENABLE 
WRITE ENABLE 
TEST MODE 

CR SELECT 
BYTE ENABLES 

.. 

---

-.. 

MIRMRGB 

CRCONT 
(0-3) 

MASTER CLEAR 
TEST MODE 
ROM ADDR. CONTROL 
REG FIELD VPC 
AU2B-PC SWBA NIR SWBD 
PC. SWBA ,N°IR. SWBD -·MOB--

PC LOCK 
NEXT VPC .. -

PPCTL1 

TEST MODE 

--.. 

--
AUTO INTRPT. OFF 
MASTER CLEAR 
VP SELECT 
TRUE VPC 
CR PROTECT 
AUTO MOOE 

-
IR SET/RESET CONTROLS 

NEXT VPC ,MASTER CLEAR--

PC CARDA 
(Q-7) 

AU 2XFER 

IRCARD 
{0-3) 

VPR SFT/RESET CONTROLS 
AU 28 - VP~VPR - MDB CONTROLS .. 

-.;;; -

TEST MOOE --

______ .. 
MASTER CLEAR 
NEXT VPC 
SWB LOCK/TEST 
READ/WRITE TEST DATA 

--"'- ASYNCHl'IONOUS CONTROL 

READ/WRITE 
TEST MODE 

SWB SELECT 

BREAKPOINT 
PRIORITY 
CM PROTECT 

----
--

SWBSYNC/ 
SWBASY 

-------

VPRCARD 
(0-7) 

CRMIRLDR 

-- g~R~E~~;;w..:6~~ SELECT .. CRBASE1-3 t--------------------........ CRCELLO- 3 
(o-GJ 

(CR FILE) 

MASTER CLEAR 
NEXT VPC -

______ .. 

CONT AU 

Figure 4-111. Peripheral Processor 
Maintenance Logic Control Detailed 
Block Diagram 

4-297/4-298 
Advanced Scientific Computer 



MAINT 

CONSOLE 

CONTROLS 

FROM TCL 

MAINT CONSOLE 

MASTER CLEAR 

FROM PCU 

MAINT COMMAND CODE 

FROM CR FILE 

REGISTER FIELD 

VPC FROM 

CR FILE 

REGISTER FIELD 

GROUP FROM 

CR FILE 

SWBC BUFFER AVAIL 

FROM ML2 

VP SELECT 

MANUAL MODE 

CLK ,REV,BST 

PP OF MANUAL 

SELECT 

CARD STEP 

CARD AUTO 

ROTARY SWITCHES 

SEATED 

AUTO INTERRUPT 

OFF 

LOCK SWB 

(SEMl-AUTOMODE.INTERNAL) 
REGISTER FIELD SWB TEST 

BITS FROM CR FILE 

MANUAL MOD~(INTERNAL) 
VP UNDER TEST ACTIVE FROM ML2 

BURST COMMAND IN s 
PROGRESS FROM M L2 

REGISTER FIELD 
SELECTION FROM M L2 
VP ACTIVE FROM ML2 

START OF TIME 

SLOT SCAN FROM 

ML2 

SELECTED VPC FROM ML2 

INSTRUCTION TERMINATION 

FROM PPCTLI 

TEST POSITIVE FROM CONTAU 

(D)124819 , 

CR PROTECT BYTE 

FROM CR FILE 

PXMASCLR 

TO CRCELLY ,CRCONT(0-3),CRBASEl-3 } -,PC RES ..... CRCE L L0-3(0--£) 
RESET 

.- TO PCCARDA(0-7),IRCARD(0-3),SWBASY, -,PPRES FF'S 
-- SWBSYNC,PCCTL,MIRMRGB 

COMMAND 
-,PXMCOP(o-1s.i_. PXMP 

COMBINATIONAL 
MAINTENANCE 

LOGIC 
PCD28-31CR(12) COMMAND -- DECODE 

LOGIC PXMOP(0-15) 

-.PXVPK(O-~ __ PCDl7 19CR(l3) TO~CTL } 
.,p XU VPceiO-~ 

REG 
TO VPRCONT FIELD 

PILVPK{0-2) - TO MIRMRGB VPC 

GROUP 
PCD20-23CR(l 3) -- DECODE 

LOGIC 

-.PXBAJ 

PXSELSW(0-2) --~ PXV~SW(O '.l_ TO ML' } V• 

PXVPCSW(o-3[ SELECT ... -- -- TO CRCELLY SWITCH 
PXMANM -- PXAMO - PXMAMO r- --

MODE PXCM PXPPMODE __... ..... - DECODE 

~ -- LOGIC 
PXCARDST -- -- PXPCMO 

~ 
PXVPCMO --

PXCARDAU -- PXVMO - --
PXLOOK 

r---\____. 
-- } AUTO PXAUIOFF 
._TO ML2 INTRP 

~~"'[Q£F -- FF PXIROFF .... TO CRCELLY OFF -

PXLCKSWB ...... FF 
SWB LOCK 

-.PXBFRLCK.-
~ ILLUMINA-

PXCM SWB 
TION TO - COMBINE 

-.P.Jd!74 25CR_D:tl_ TCL -- LOGIC 
PXMAMO --

-,PXVFJUT 

PXCBCRUN 

-.FXWSPBRi_2~ 

-.pxs~ 

PXTSCST(Ql 

(ONTERNAL) { 

PXADVN 

PXVJEQVR 

~ RUN 

FLAG -.PXMRFl.cG 
ST (6) 

-.PU RES 
-... ~~N~A:CONT } c=:i C~BON• ,PFSBQ-,CR(") 

DISPLAY -,PFDD24CR(12) -- BUSY BIT TO CR FILE 

LOGIC ---.. 
REGISTER 

ISTBY TO PP RESET GATES TO -- -.PFSH__Q§_CRJ.12) -- HEX 6 OF WORD 12 GATE TO PA -- LOG CLOCK FF'S PATCH BOARD 
-,PFDD25CRj_t2) CURRENT STATE (ST(0-7)) COMBINE PC LOCK -,PXMCCRES 

LOGIC --TO ML2 - r---9'1 TO CR FILE 

~ OLLEGAL } -,PFDD26CR( 12) .. COMMAND NEXT FFS(0-2) CONTROL -- STATE FFR(0--2) - FF'S (CFFD) -- TO ML2 ~ ---GENERATOR AND DECODE ..... TO CONTAU -- LOGIC 

--- TOMLl(0,1) 

~ TD MIRMRGB 
j 11 • MAINTENANCE 

--... -- TO PCCTL 
~ 

CONTROL 

DECODE --- TO CRCONT(0-3) 

-- LOGIC -TO SWBSYNC 
~ - TO PPCTLI -- TO SWBASY --PXNTM 
~ ..... .. TD VPRCONT 

PXAUMODE ..... TO CRCELLY } AUTO 
-,PXMCOPN -.PXQNTM ~ 

PXAM MODE -- TO IRCARD(Q-3) -- TO ML2 
~ 

PXMVUT 
-.PXUTM ---- TEST TO VPRCONT 

--. (INTERNAL) (INTERNAL) PXVPRN -,PXMCRUN 
~ --- MODE PILTM ..... TO MIRMRGB 

GENERATOR --. (INTERNAL) PXJACT 
~ -.PXTMP TO PCCTL ..... 

-- -,PXCTM TO CRCONT(0-3) 

MANUAL BUT NOT CLl<,REV, BST PXCVACT 
(INTERNAL) PXVM -- --PP TO ML2 

.., PU LVPC~t) -- TO VPRCONT ' 
-.PILVPC(O-~:: TO IRCARD(0-3) 

(5,U .... -.PPVPC(0-2) ...... TO PCCTL 
-.PALVPC(0-2) SWBC -- ILLEGAL 

-.PCLVPCBl(o-:il 
TO CONTAU 

MAINT PXILL 
TO CRBASEI > NEXT VPC 

-.PCLVPC82(0-;: -- COMMAND .... TO CRBASE2 LOGIC 
-,PCLVPCB3(0-~ r ., PMNVPC(0-2)...., 

TO CRBASE3 

TO SWBSYNC 

PXSPLVPC(O-~ 
TO PPCTLI 

~ 

MAINT COMMAND PXCONTD(4-7) .... 
FROM TCL COMMAND 

-.PFDD28-31CR.i_l2 
ENABLE 

(NEXT STATE ..... 
FFR(O) 

~ LOGIC 
ZERO, INTERNAL) --- PXSTBST 

----- COMBINE 
FXVPADV 

LOGIC -- r---
PXEQMM --

Pl LN VPCj_0-2_l NEXT VPC - FF'S PXQ\JTV(0-7) 
~ COMPARE -- ..... -.PXADVN --- TD IRCARD(0-3) .... LOGIC 

TCHBOARD 

MAINT COMMAND 

TO CR FILE 

(INTERNAL) 

_[:___ LOGIC 

~CTO 
-

CR ...... 1 
--~ -- DECODE 

J -.PXVPCTR(0-2) 

l~ PXS VPC(0-2) __ VPC TO 

[ 
MLl(0, 1) 

-e COMPARE 

LOGIC 
PXVJECVR __ (INTEFINAL) 

PXNINS -- --
COMBINE 

LOGIC t::f DECODE 

-.PACTPOS --
(INTERNAL) PXCVACT 

_.LE 

L......-.r 
COMPARE 

-.PCD08 15CR(19) -- LOGIC 

-

,..------., 

~ 
CF'S 

-- G 
,____ 

PCRPRO __... 

P XQCPF(0--7) 
~ COMP.llRE 

L--. LOGIC 

CR PROTECT 

TO CRCELLY 

Figure 4-112. 

4-299/4-300 

PXVPRN -- (INTERNAL) 

MLCTL Detailed Block 
Diagram 

Advanced Scientific Computer 



the new maintenance command is shown in figure 4-113. Each of the three 
bits in the controller takes on a significant meaning as the command prog­
resses to completion: The first bit is true when the controller is busy, the 
second bit is true for execution states, and the .third bit is true for the sec­
ond step of a two step command. 

Beginning in the ready state, the executing command can take one of three 
steps. If the automatic mode has been chosen and the maintenance logic is 
waiting for a time slot, the controller is advanced to step 1 of the wait state. 
If the manual or semi-automatic modes have been chosen and the proper ASC 
Maintenance Console pushbutton has been pressed to initiate the command, 
or the lock/unlock PC commands are initiated in any mode, the controll~r 

EXECUTION 
OR 

ILLEGAL 

L--
(A)l24820 

r 
I 
I 
I 

READY 
--, 

I 
I 
I 
I 

_ _J 

r--------......., 

WAIT 

L __ 
- - _J 

Figure 4-113. Maintenance Controller State Diagram 

4-301 Advanced Scientific Computer 



is advanced to step 1 of the execute state. If the command is illegal, the 
controller is advanced to step 2 of the execute state (this is also the illegal 
state). In the first case, the controller remains in step 1 of the wait state 
until the VP specified by the register field is identical to the VP that will re­
ceive a time slot in two clock periods (this is for the data transfer type main­
tenance commands), or until time slot zero occurs (this is for the type of 
maintenance commands that release the VP' s under test to execute for some 
period of time). When either of these situations arises for the associated 
types of commands, the controller is advanced to step 1 of the execute state. 
In step 1 of the execute state, the MLCTL and ML2 cards combine to develop 
the controls to lock or unlock the specified PC(s), to enable the specified 
data transfer, or to release the VP' sunder test for the period of time spec­
ified by the command code. In addition, the controller is returned to the 
ready state and the busy bit is cleared if a PC(s) was locked or unlocked or 
the specified data transfer did not involve either CM or ROM. At the com­
pletion of a run command (VP' s under test released for a specified period of 
time), the controller is prepared for a new command in the same manner. 
If a memory is involved in the data transfer command, the controller is ad­
vanced to step 2 of the wait state. If data is being read from CM, the wait 
is necessary for some indication that the read data is available. If data is 
being written to CM, the wait is necessary until the SWB is available for the 
write. If data is being read from ROM, the wait is necessary in the auto­
matic mode for the next time slot assigned to the VP under test. In the 
manual and semi-automatic modes, the second wait state is necessary only 
because two data transfers are necessary to perform the read and read data 
transfer. When the mentioned conditions occur for the memory commands, 
the controller is advanced to step 2 of the execute state to complete the com­
mand and prepare the controller for the next command. When the controller 
is advanced to step 2 of the execute state due to an illegal command, the con­
troller remains in the same state until the illegal conditions are removed by 
entering a legal command in the maintenance registers. When this happens, 
the controller is returned to its ready state. 

In addition to controlling execution of the maintenance commands and provid­
ing the majority of the control signals necessary to make the execution pos­
sible (refer to table 4-9 for a list of these control signals and their functions), 
the MLCTL card provides the remainder of the hardcore maintenance logic 
and the maintenance/PP interface logic with other essential controls. The 
MLCTL card uses the ASC Maintenance Console switch settings to supply the 
ML2 card with the mode, the VP select VP code, the automatic interrupt off 
indicator, and the master clear. The maintenance command and its state 
are reflected in the busy, PC lock, and illegal command status indicators 
returned to the maintenance registers. The MLl (0, 1) cards are supplied 
with the current VP code from the final level of selection and delay circuitry 
on MLCTL. The MLCTL card supplies the maintenance/PP interface logic 
cards with the register field VPC, VP select VP code, mode, automatic in­
terrupt off indicator, master clear, test mode indicator, three next VP codes, 
and current CR protect indicator. 

4-302 Advanced Scientific Computer 



Table 4-9. MLCTL Maintenance Command Control Signals 

Destination Card Signature Description 

CONTAU PXAPGATE Disables all normal control flip-
flops in the test mode. 

CRCELLY 1PXTRIRMC Enables data to be read from the 
IR (this signal is inverted by 
CRCELLY and passed to 
MIRMRGB). 

1PXTRMCIR Enables data to be loaded in the 
IR (this signal is inverted by 
CRCELLY and passed to 
MIRMRGB). 

CRCONT(0-3) PXCMGATE Enables all test mode control flip-
flops. 

PXCPGATE Disables all normal control flip-
flops in the test mode. 

1PXTRCRMC Enables data to be read from the 
CR file. 

lPXTRMCCR Enables data to be loaded in the 
CR file. 

IRCARD(0-3) PIUPGATE Enables all flip-flops concerned 
with the next VP code. 

MIRMRGB PIPUGATE Enables all test mode control flip-
flops. 

PITRMCMR Enables data to be loaded in the 
MIR. 

PITRMRMC Enables data to be read from the 
MIR. 

MLl(O, 1) PXSRA2EN:l, 2 Selects the switch register when 
true and the display register when 
false, and enables the selected 
register to the AUZXFER bus. 

PXSRDREN:l, 2 Selects the switch register when 
true and the MDB when false, and 
enables the selected data to the 
display register. 

4-303 Advanced Scientific Computer 



Table 4-9. MLCTL Maintenance Command Control Signals (Continued) 

Destination Card Signature 

ML2 1PXCBLOAD 

PCCTL 

PPCTLl 

SWBASY 

PXTSCSTP 

PXVPRES 

PXVPSET 

PXCMRC 

lPXCMWC 

PXPMGATE 

PXPPGATE 

1PXROMNR 

lPXTRMAMC 

lPXTRMCMA 

lPXTRMCMD 

1PXTRMCNR 

lPXTRMCPC 

1PXTRMDMC 

_1PXTRNRMC 

1PXTRPCMC 

PP LOCK PC 

PMCMTLE2 

PMMME 

PMMMT 

Description 

Enables the loading of the burst 
field in the clock burst counter. 

Stops the time slot counter. 

Reset control developed for com­
mand code Al6' 

Set control developed for command 
code B16· 

Read request. 

Write request. 

Enables all test mode control flip­
flops. 

Disables all normal control flip­
flops in the test mode. 

Enables ROM data into a NIR. 

Enables the SWBA to MDB trans­
fer. 

Enables the AU2B to SWBA trans­
fer. 

Enables the AU2B to SWBD trans­
fer. 

Enables the AU2B to NIR transfer. 

Enables the A U2B to PC transfer. 

Enables the SWBD to MDB transfer. 

Enables the NIR to MDB transfer. 

Enables the PC to MDB transfer. 

Locks the PC(s) when true and un­
locks the PC(s) when false. 

Enables asynchronous control of the 
SWBC. 

Stops the PP asynchronous /MCU 
interface on an even state. 

Stops the PP asynchronous /MCU 
interface on an odd state. 

4-304 Advanced Scientific Computer 



~------
Table 4-9. MLCTL Maintenance Command Control Signals (Continued) 

Destination Card Signature 

SWBSYNC PMCMTLEl 

VPRCONT 

PMLTMR 

PMLTMW 

PMTRMCBC 

lPITRMCMR 

1PXTRMCVP 

1PXTRVPMC 

PXUPGATE 

PXUMGATE 

Description 

Enables test mode control of the 
SWBC data. 

Enables data to be read from the 
SWBC. 

Enables data to be written to the 
SWBC. 

Locks the SWBC for the test mode. 

Enables the A U2B to MIR transfer. 

Enables the AU2B to VPR transfer. 

Enables the VPR to MDB transfer. 

Disables all normal control flip­
flops in the test mode. 

Enables all test mode control flip­
flops. 

The ML2 card, detailed in figure 4-114, supplies the MLCTL card with some 
of the signals necessary for the maintenance controller operation, the 
MLl (0, l) cards with the current time slot entry, the T CL with PP status 
indicators, and the maintenance/PP interface logic with the remaining 
maintenance controls not supplied by MLCTL. The individual signals sup­
plied to MLCTL include the VP code and active indicator to be used at the 
third succeeding time slot, the SWBC availability indicator to be used at the 
second succeeding time slot, an indication of whether or not the VP under 
consideration in two time slots is under test, the register field se:lection 
bits, an indication of whether or not a burst type command is in progress, 
and an indication of when a new time slot table scan is starting. The PP 
status indicators supplied to the TCL include the time slot number associated 
with the current VP, the current VP code, an indication of whether or not 
the current VP is active, and the compare error signal used to reflect when 
the contents of the switch and display registers are identical. The mainte­
nance control supplied to the maintenance/PP interface logic includes the 
register selection controls developed from the register field selection bits, 
the CR and VPR byte and halfword enables developed from the F field, and 
the register reset and set controls developed from the signal supplied by 
MLCTL when command codes A16 and Bl6• respectively, are detected. 

The MLl (0, 1) cards, detailed in figure 4-115, provide the hardcore mainte­
nance logic data handling capabilities, but also supply some support to the 

4-305/4-306 Advanced Scientific Computer 





FROM 

MLCTL 
{ 

MASTER SET 

MASTER CLEAR 

V FIELD FROM 

CR FILE 

VP SELECT 

F'ROM MLCTL 

AUTOMATIC MOOE 

FROM MLCTL 

CONTROLS 
VP FF {ESET 

FROM MLCTL SET 

--iPXMCCSET -
-.PXMCCRES ---
-, PCD08-15CR(13) 

PXVPSSW(0-2) 

PXAM 

PXVPRES 

PXVPSET 

(INTERNAL){ 

-.PXMCRESZ 

-.PXMCSETZ 

(C)124821 

(INTERNAL) 

MANUAL MODE 

FROM MLCTL 

TIME SLOT VP 

CODE FROM 

MLl(0, 1) 

DESIGNATED VP 

ACTIVE FROM 

MLl(O) 

AUTO INTERRUPT OFF 

FROM MLCTL 

TIME SLOT OVERRIDE 

FOR ASSIGNED VP 

FROM CRCELL Y 

TIME SLOT COUNTER 

STOP FROM MLCTL 

BURST COUNT 

FROM CR FILE 

LOAD BURST 

COUNT FROM 

MLCTL 

PXTSCST_io_l 

PXVM 

PXVPTSJ.0-& 

PXACTS 

PXAUIOFF 

..., PXVPTOV 

PXTSCSTP 

PCD00-07CR(13) 

PXCBLOAD 

(INTERNAL) -.PXMCSET2 
MASTER CLEAR --

SET 

PISTRIBUTION 

LOGIC ..., PXMCRES2.- (INTERNAL) -
-- ... 
~ 

2N'S 

~ -- PXVUTS(0-7) -
~ 

--DECODERH ~ 

2N'S (..,PXVPSEL(0-7)) 

BJ 
PXVRES 

SET/RESET 

LOGIC FOR 

CMOS A• B 

... PXVSET 

V FIELD 
~ COMBINING 

LOGIC 

_... 
~ 

2B L ---
IB [ 

~ ---
1. 

2N 

(INTERNAL) PXVPADJ 

~ 
PXTSCST(O) 

TIME SLOT 
_... COUNTER -- (4-BIT) PA -1) 

1 
PP CLOCK 

~ 
BURST COUNT 

r------""l.,PXCSWB 0-3) 
F FIELD 

TO CRCONT(0-3) } F FIELD -, PCD21-23CR(l 2) -.PXUSWB{_0-3_l __ DECODE AND TO VPRCONT 
FROM CR FILE - --

COMBINE -.PXPSWB(0,2) -- TO PCCTL 2N'S LOGIC --

} 
.,pxcw_io-s_l -- TO CRCONT(l>-3) 

TO PCCAROA(O-,,,} 
~ 

.,ppRESEN(~7]_ 
IRCARD(0-3) 

REGISTER -.PXW_fil>BRC_2-SJ: TO MLCTL 

-.PURESEN(0-7~ RESET 
FIELD -, PCD26-31CR(l3) SELECTION -.PXUW(3-5) _ ... 

):PcRESEN(0-7r 

TO VPRCARD(0-7) SELECTION DISTRIBUTION - TO VPRCONT 
CONTROLS PMLKW_i0-2) 

TO CRBASEl-3 FROM LOGIC -- TO SWBSYNC ~ 
~ 

PILKWj_<>-Zi CR FILE --- TO MIRMRGB 
TO PCCAROA(O-').} 

~ 

-iPPSETEN_i0-7~ IRCARD(0-3) 

-.PUSETEN_(_0-7J.... TO VPRCARD(0-7) SET 

~CSETEN(0-7~ CONTROLS BUFFER AVAILABLE TO CRBASEl-3 PPBA __.r---i -- FROM PCCTL - ---
iB ,DECODE 

FF'S - BUFFER -- FF _... AVAILABLE -.PX BAJ ----- SELECTED - ~..___ -
~ COMPARE 

~E 
-ex'w'P~l -- VPC TO LOGIC 

VP ~ MLCTL -- CODE _J 
E SELECT LDECODE 

LOGIC PXVPCU~l-2) -- - --CONSECUTIVE 
~ 

~E 
--, PXVPADJ --- (INTERNAL) ,......, 

~ 
VP COMPARE ~ 

PXVPCJ(0-2) -- LOGIC c SELECTED 

VP DECODE SELECTED VP 

~ VP SELECT PXVPJUT 
AND COMPARE UNDER TEST 

TO SELECTED PXSEVPTR r TO VP UNDER TO MLCTL 
VP COMPARE 

TEST LOGIC --~ LOGIC 

SELECTED VP 

PXVPJSEL IDENTICAL TO -- FF --
~ 

- - VP SELECT 

TO MLCTL 

~ .,PXSJACT --
VP ACTIVE 

TO MLCTL 

----
L-_. ACTIVE 

_... VP SWITCH AND 

LOGIC CURRENT VP DISPLAY REG SR/DR 
PXACTCUR _... PXCMPSFJ.0-5) COMPARE PXCMPERR 

FF FF ACTIVE TO TCL CONTENTS --
IDENTICAL FROM MONITORING 

MLl(O, I) LOGIC 

c: ~ 
-,PXACTINH 

-- TIME SLOT COUNTER STATE 

ZERO TO MLCTL PXQTSCURj_O-l)_ CURRENT TIME 
FF FF -- FF - FF ~ SLOT TO TCL 

CURRENT TIME SLOT NUMBER --- TO MLl(0,1) 

BYTE AND 

HALFWORD 

CONTROLS 

REGISTER 

SELECTION 

CONTROLS 

BUFFER AVAILABLE 

FOR VPJ TO 

MLCTL 

CURRENT VPC 

TO TCL 

COMPARE ERROR 

TOTCL 

PRELOAD VALUE BURST COMMAND 

--- CLOCK BURST PXCBRUN MODIFICATION ~ 

PXCBCT_i0-8}_ --- LOGIC 

~ 
COUNTER - (9-BITS, 

NON-CYCLIC) 

' PP CLOCK 

_... 
STATE --ZERO 

DECODER r---

..., PXCBRUN 

IN PROGRESS 

TO MLCTL 

4-307/4-308 

Figure 4-114. ML2 Detailed Block 
Diagram 

Advanced Scientific Computer 



FROM ~~i;~ -'°'..:"..:~.;.llO..:..:M_C:,;(..:0_-_;3_1:...)---------~ 

SWITCH REGISTER -,PC000-3 t C"( I A) 
" FROM CR FILE 

MDB/SWITCH 
REGISTER TO PXSRDREN 

DISPLAY REGISTER -------t--ill .. 
EllA&El"ROM 

MLCTL 

DISPLAY REGISTER 
FROM CR Fl L.E 

SWITCH REG/DISPLAY 
REG TO AU2XFER 

ENABLE FROM 
MLCTL 

CURRENT VPC 
FROM MLCTL 

PXSRA2EN 

PXSVPC(0-2) 

BREAKPOINT -.pcooo-01cR( 19' 
CONTROL BYTE 
FROM CR FILE 

CM PROTECT •PCDI 6-23CR· 19) 
CON11'0L BYTE 
FROM CR FILE 

DECODE 

COMPARE 
SR TO DR 

LOGIC 

IPJl'l"OD00-3 t CR(t 5) 

PXCMPSF(0-5) 

DISPLAY RIEGISTE" 
DATA TO C" P'IL.E 

SWITCH AND DISPLAY 
REGISTER CONTENTS 
I DEN Tl CAL TO ML2 

PFMCDO : I (0- 31 ) TO AUZXFER } SWITCH 
REG/ 

1-------:...P:...F...:M.::C.::ao.::.::;.::2.>.;(0;_-..:•:..:1..:.>_. TO PCCARDA(0-7) ~~VLAY 

PPROMMC(0-31) 

PXDR0(0-31) 

-iPMBI 

-.PMPI 

SWITCH REGISTER 
TO PCCARDA(0-7) 

DISPLAY REGISTER 
TO MAINTENANCE 
CONSOLE 

CURRENT BREAKPOINT 
INDICATOR TO 
SWBSYNC 

CURRENT CM PROTECT 
INDICATOR TO 
SWBSYNC 

MSB OF SWB -.pcooo. 02 •... 14CRl16) } 
PRIORITIES ~-"C..::::.::.;~.:::..;.:....:..:....:...:..::c.;,.;..:..;. ___ -f--------------11 .. 

FROM CR FILE 

~.8:..fi~~~-~__.:...P..:C.::DO:...;_l~,0;_3;_•~·--'·..:'..:5..:C_R~(l:...6..:)--19! ~~--------------------'--~__,~ 
FROM CR FILE 

CURRENT SWB 
PRIORITY TO 
SWBSYHC 
loo. 01 •HIGH 

0, 11 •LDW) 

cou.T~.f ~~J: ___ P_x_Ts_c_o_(~o--_•~> .. 
ML2 

DECODE 

~~~: ~~~ __ '"'_P:..c_oo__.:...o_.:..o_•..:·..:·..:·_· _•_•_c_R(:...o_•..:·_o_9_) __ +t_. ~TS MSB OF CURRENT 
TIME SLDT TO MU

CR FILE

VPC OF TIME
SLOTS FROM

CR FILE

-ipcoo1 OS, •. 29CR(OB,09)

"""'PCDOZ, 06, .•. 30CR(08, 09)

-,PCD03,07, ••. 31CR(08,0

Figure 4-115.

"XV .. TS(O)

"XV .. TS(I)

"XVPTS(Z)

MLl (0, 1) Detailed Logic Diagram

v..ccw
CUIHll:NT
TIMIE SLOT
TOMU

4-309
Advanced Scientific Computer

~-------
control circuitry on MLZ and SWBSYNC. The MLl (0, 1) to MLZ interface
consists of the time slot data pointed to by the time slot counter on MLZ and
the MLl (0, 1) to SWBSYNC interface includes the current priority, CM pro­
tect indicator, and breakpoint indicator (not used) selected with the current
VP code.·

4-206 Maintenance/PP Interface Logic. The maintenance/PP interface
logic that involves control is located on the PCCT L, VPRCONT, MIRMRGB,
CRCONT(0-3), CONTAU, PPCTLl, CRCELLY, SWBSYNC, SWBASY,
PCCARDA(0-7), VPRCARD(0-7), IRCARD(0-3), AUZXFER, CRMIRLDR,
CRBASEl-3, and CRCELL0-3(0-6) cards. The primary purpose of the main­
tenance/PP interface logic on each of these cards is to accept and interpret
maintenance related control signals from the hardcore maintenance logic so
the desired maintenance operation can be performed. A few of the signals
supplied by the hardcore maintenance logic to the maintenance I PP interface
logic in figure 4-111 are essential to normal PP operation and do not involve
maintenance control (these include the CM protect indicator, CR protect in­
dicator, and SWBC priority).

The maintenance related logic on the PCCTL card, detailed in figure 4-116,
is enabled by the test mode indicator (1PXTMP) simultaneously with the dis -
abling of the normal control flip-flops (via PXPPGATE). The gates to all of
the test mode flip-flops are continuously held to a logic one by the
PXPMGA TE signal, so when the hardcore maintenance logic indicates test
mode operation, the maintenance control signals are interpreted and routed
to their destination. The majority of the control signals developed on
PCCTL are input to the PCCARDA(0-7) cards (refer to figure 4-117) to read
from and write to the SWBD, SWBA, PC, and NIR. The PCCTL card also
supplies PCCARDA(0-7) with the controls necessary to read from ROM. The
PCCTL card contains the logic to transfer the test mode indicator to
SWBSYNC and to develop the maintenance read and write request signals for
SWBSYNC. The master clear signal input to PCCTL is used to clear both
the normal and test mode control flip-flops.

The maintenance related logic on the VPRCONT card, detailed in figure 4-118,
is enabled and the normal control logic is disabled in a manner similar to that
described for PCCT-L. In the test mode, the register field VP code combines
with the VPR to MDB enable to develop one of four possible VPR to MDB en­
ables for VPRCARD(O- 7), with the three LSB' s of the register field selection
bits to develop the VPR to MDB word select and the AUZB to VPR word se­
lect, both for VPRCARD(0-7), and with the AUZB to VPR enable and the in­
dividual byte enables to develop the A UZB to VPR byte enables for
VPRCARD(0-7). The MIR load enable combines with the two LSB' s of the
register field selection bits to develop the CRMIR load enable (for
CRMIRLDR), VPRMIR load enable, and AUMIR load enable. Each of these
MIR type enables gates AUZB data through to the associated MIR control flip­
flops.

4-310 Advanced Scientific Computer

NOltMAL~CTL

CONTROL GATE

l"NOMMLCTL

MASTElll CLEAlll

F"OM MLCTL

TEST MODE

PCCTL GATE
FROM MLCTL

TEST MOOE

INDICATOR FROM

ML.CTL

ROM TO NIR

ENABLE FROM

MLCTL

-'"~~{"""' AU2B TO HALF

SWBO ENABLES RIGHT

FROM M L2 HALF

FROM

MLCTL

AU2B TO SWBO

ENABLE FROM

MLCTL

AU2B TO PC

ENABLE FROM

MLCTL

AU2B TO SWBA

ENABLE FROM

MLCTL

AU2B TO NIR

ENABLE FROM

MLCTL

SWBO TO

MOB

ENABLE

PC TOMDB

ENABLE

SWBA TO

MOB

ENABLE

NIR TO

MOB

ENABLE

REGISTER

FIEL.D VPC

MAINT READ

REQUEST

BUFFER AVAILABLE

FROM SWBSYNC

MAINTENANCE
WllllTE lllEQUEST

P'ROM MLCTL

PXPPGATE

-.PPR ES

PXPMGATE

..,PXTMP

-.PXROMNR

., PXPSWB(O)

-,PXPSWB(2\

-,PXTRMCMO

-,PXTRMCPC FF

-,PXTRMCMA
FF

-,PXTRMCNR
FF

-,PXTRMOMC

-,PXTRPCMC

-.PXTRMAMC

.,PXTRNRMC

-,PXVPK(IJ-2)

PPCMARAB

PXQRMNR

PNRMCDE
ROM

PNMDCDE MAINTENANCE I-~~~~~~~-'-'"-"''-=--'"'-''-__.
CONTROL

LOGIC

AU2B TO

PC ENABLE
LOGIC

AU2B TO

NIR ENABLE

LOGIC

PC TO MOB

ENABLE LOGIC

NIR TO MOB

ENABLE LOGIC

REGISTER

FIELD VPC

DISTRIBUTION

LOGIC

PNCDNRE

LEFT HALF PMA2MDLE
AU28 TO

SWBO LOGIC

RIGHT HALF
PMA2MDRE

AU2B TO

SWBO LOGIC

PA2FMCEN

PPA2PCE

AU2B TO

SWBA PMA2MAE

ENABLE

LOGIC

PNA2NRE

SWBO

TO MOB PMMOABE
ENABLE

LOGIC

PPPCABE

SWBA

TO MOB PMMAABE

ENABLE

LOGIC

PNNRABE

PPRABC 0-2)

PPWA2C(0-2)

...:.P~X~C~M~R~C"-~~~~~~~~~-9j MAINTENANCE

READlllEQUES:'rl-~~~~~~~~~~~~~-­
""PMRC

PMAVB LOGIC

-.PXCMWC "'PMWC

(INTERNAL, DISABLES ALL

NORMAL FF GATES IN TEST MODE)

(INTERNAL, CLEARS ALL NORMAL
ANO TEST MOOE FF'S)

(INTERNAL, ENABLES ALL TEST

MODE FF 1S)

TEST MODE

INDICATOR TO

SWBSYNC

"""'°"" } ENABLE
TO

ROM TO NIR ENABLE PCCARDA

SWBO TO NIR (0-7)
ENABLE

LOAD NIR ENABLE

LEFT HALF

}
AU2B TO

SWBD ENABLE TO

PCCARDA

RIGHT HALF
(G-7)

AU28 TO

SWBD ENABLE

TEST MODE DATA
ENABLE TO PCCAROA(O 7)

AND AU2XFER

AU28 TO PC

ENABLE TO

PCCARDA(0-7)

AU2B TO SWBA

ENABLE TO
PCCARDA(".l- 7)

AU2B TO NIR

ENABLE TO
PCCAROA(0-7)

SWBO TO MOB

ENABLE TO

PCCAROA(0-7)

PC TO MOB

ENABLE TO

PCCAROA(C>-7)

SWBA TO MOB

ENABLE TO
PCCAROA(O- 7)

NIR TO MOB

ENABLE TO

PCCAROA(0-7)

} VPCTO
PCCAROA(C>-7)

"EAD REQUEST

TO SWBSYNC

WRITE REQUEST

TO SWBSYNC

Figure 4-116. Maintenance Related Logic on PCCTL

4-311 Advanced Scientific Computer

s:J~~t~~s~x
FROM MLl(O, 1)

TEST MODE
ENABLE FROM

PCCTL

PP'MCDO 0-31

PA2FMCEN

AU2111

~'i,~1: ~ PAUZ0(0-31)
LOGIC

REGISTE~ FIELD
VPC FROM PCCTL ~P~PW:..;.:~A~2..:C~(~0_-=2.:.)~-ll.io

E
c

0
AU2B TO PC

ENABLE FROM
PCCTL

_P:;.:;P:;:A::;2:;.P..::C::E:......--.+-... E DE

D
E
c

0

PC TO ~~JIME~~~~~ _:_P.:.P.:.P..:C::.A:.:B:,:E:,__..+.+-.. E DE

AU2B TO SWBA PMA2MAE
ENABLE FROM PCCTL

D
E

c
0

D
E E

D
E

c
0

SWBA TO MOB
ENABLE FROM PCCTL _P:,..::M:.:M:.:AA=.:::B:,::E;...__1-1_. .. E DE

SWBD TO MOB PMMDABE
ENABLE FROM PCCTL

0

EC

0
0

E E

D
E

c
0

ENABLE ~~g~ 1;.~6'f~;_P,;;N;;,.A;:2:;,N.:.;R.:.;E:__-1--.. E OE

D
E

c
0

NIR TO MOB PNNRABE D ENABLE FROM PCCTL __;...;.;;=:...:.=.::.... _____ E E

ROM ADDRESS
FROM ML1(0,1)

MAINTENANCE
COMMAND TO
ROM ENABLE
FROM PCCTL

PPROM MC(0-31) -

PXQRMNR -

MAINTENANCE
ROM

ADDRESS
LOGIC

8

SWBO'S

-, PAU20: 6(0-31)

""'IPPPCAB(0-31 l

-, PMAAB(0-31)

oPMDAB(0-31)

-,PNIRAB(0-31)

AU2B DATA TO SWBSYNC,
SWBASY, AND IRCARD(0-3)

SELECTED PC TO
MOB ON
VPRCARD(0-7 l

SELECTED SWBA
TO MOB ON
VPRCARD\0-7)

SELECTED SWBD
TO MOB ON
VPRCARD\ 0-)

SELECTED NIR
TO MOB ON
VPRCARD(0-7)

PMROMADD(0-31 l_ ROM ADDRESS
TO ROM --

MAF~1i": ~~a~~ -•...;P::.P::.R;.;.E=S---------1 .. ~ (INTERNAL, CLEARS TWO WAY BUS FF' S)

FROM
ML2

{

REGISTERS
RESET

REGISTERS
SET

\B)l24B24

..,::.P::.P::.R=E.::S.::E::.N;.;.<.::0-...;7..:l __ ~ (INTERNAL, CLEARS I OF B PC•S, SWBA'S, SWBD'S, AND NIR'S)

""'...;P...;P::.S.::E.::T..;.;;;E.;.;N"'(0;;-..;.7,,_) __ ... ~ (INTERNAL, SETS 1 OF 8 PC'S, SWBA 0 S, SWBD'S, AND NIR'S)

Figure 4-117. Maintenance Related Logic on PCCARDA(0-7)

4-312 Advanced Scientific Computer

~------
NORMAL VPRCONT

CONTROL GATE

FROM MLCTL

MASTER CLEAR

FROM MLCTL

TEST MODE

VPRCONT GATE

FROM MLCTL

NEXT VPC

FROM MLCTL

REGISTER FIELD

VPC FROM MLCTL

VPR TO MOB
ENABLE FROM

MLCTL

TEST MODE

INDICATOR

FROM MLCTL

REGISTER
SELECTION BITS

FROM ML2

AU2B TO VPR

ENABLE FROM
MLCTL

BYTE ENABLES

FROM MLCTL

LOAD MIR
COMMAND ENABLI;:

FROM MLCTL

MAINTl;:NANCI;:

DATA FROM

AU2B

(B)l:M825

....:P ... xu P..,G=:A:.;TuE._ ___________ _,., .. (INTERNAL,DISABLES ALL NORMAL FF

GATES IN TEST MODE)

~PURES (INTERNAL,CLl;:ARS ALL NORMAL

AND TEST MODE FF'S)

.....;,P,,.)(U....,M=G::;;A,.TuE._ ___________ -t ... (INTERNAL,ENABLE TEST MODE FF'S)

,.;.P,,U:..:L:.V:.;PC:...:::.ll(0--~2"'l-----------I .. -. (INTERNAL,REFER TO FIGURE 4-108 FOR NORMAL USE)

, PXUVPC(0--21_ PXQUVPC(0, 11.. PURABPOI

j FF'S VPR TO .
..i MOB .

ENABLE .
~PXTRVPMC -

FF
LOGIC PURABP67

.,PXUTM
FF

VPR TO
, PXQUVPC(2) MOB WORD PURABC(0-2)

~

SELECT
,pxuw(rs) ,pxQUW(4,S) -e LOGIC FF'S

-AU2B TO
-, PXQUVPC(2) VPR WORD PUWA2C(0-2)

SELECT
-, PXQUW(4,S) LOGIC

PXQUVPC(O. 1 l_

DECODE
,PXTRMCVP

FF E

~ AU2B TO ~-~~"~'1 . ~

VPR WORD .
, PXUSWB(0--32._

....
SELECT .

FF'S LOGIC
PUWA2P67(0--3J..

, PXQUW(rS) -- PESL(2) ...
DECODE

PESi.,ru_

-.PITRMCMR PESL(4) FF

, PAU20(0--28) PEZ(0--20)
~

MAINTENANCE

VPRMIR

~ LOGIC

~ MAINTENANCE
AUMIR ~

PEZ(0--28) LOGIC

Figure 4-118. Maintenance Related Logic on VPRCONT

VPR TO MOB

ENABLES TO

VPRCARD(0-7)

VPR TO MOB

WORD SELECT
TO VPRCARD(0-7)

AU2B TO VPR

WORD SELECT

TO VPRCARD(0-7)

AU2B TO VPR

BYTE ENABLES

TO VPRCARD(0-7)

MAINTENANCE

ENABLE TO

CRMIRLDR

VPRMIR TO

VPRCARD(0--7)

AND PCCTL

AUMIR

TO
CONT AU

4-313 Advanced Scientific Computer

The maintenance logic on the MIRMRGB card, detailed in figure 4-119, is
primarily concerned with transferring and expanding the maintenance con­
trols necessary for handling the IR' s and MIR located on IRCARD(0-3). The
register field VP code, read and write IR and MIR enables, and test mode
indicator l:l.re all gated through a single level of flip-flops on MIRMRGB to
IRCARD(0-3). The three LSB' s of the register field selection bits are ex­
panded to develop the MIR word 0, 1, and 7 read and write enables. The
LSB of the same field is passed to IRCARD(0-3) in true and complement form
to develop the IR left and right half read and write enables (only half of the.
selected 64-bit IR can be read from or written to at one time because the
maintenance logic data transfers can handle only 32 bits). The MIR read en­
able combines with the three LSB' s of the register field selection bits to
develop the MIR read enables necessary for selection of MIR words two
through six.

The maintenance related logic on the CRCONT(0-3) cards, detailed in figure
4-120, expands the hardcore maintenance logic control signals concerning
the CR file to produce the CR file read and write card and word select con­
trols. In the test mode, the three MSB' s of the register field selection bits
combine with the maintenance CR file read enable to develop the CR read
card enable. The same bits combine with the CR file write enable and as­
sociated byte enable to develop the CR write card enable. The three LSB' s
from the same maintenance register field are enabled by the test mode in­
dicator for the development of the CR read and write word select. The read
and write card and word select signals developed on each of the CRCONT
cards are distributed to the associated CR file data holding cards (CRCONTO
controls go to CRCELLY and CRCELL0(0-6), CRCONTl controls go to
CRBASEl and CRCELLl(0-6), etc.).

The maintenance related logic on the SWBSYNC and SWBASY cards, detailed
in figure 4-121, provides the control necessary to read from and write to the
SWBC flip-flops in the test mode. In addition, the asynchronous control logic
adds the option of stopping the SWBC/MCU asynchronous interface at different
steps in the communication procedure (communications between the SWBC
and MCU are described in both the general and detailed SWBC theory). The
priority, CM protect, and breakpoint (not used) signals input to SWBSYNC
are essential to normal PP operations and are included in figure 4-121 only
because they are developed by the maintenance logic. When maintenance
data is to be written to the SWBC, the write enable (PMLTMW), SWB lock/
test control (PMTRMCBC, this signal indicates when the SWB LOCK switch
on the ASC Maintenance Console is in the lock position when the manual mode
has been selected or when the SWB is under test in the semi-automatic mode),
and three LSB' s of the register field selection bits (PMLKW(0-2)) combine to
enable AU2B data into the selected SWBC flip-flops. Refer to figure 4-69
for a map of the synchronous and asynchronous flip-flops that are affected
when,SWBC0 through SWBC7 are selected as the destination of the write.
When data is to be read from the SWBC, the read enable (PMLTMR) combines

4-314 Advanced Scientific Computer

TEST MODE
MIRMRGB GATE

FROM MLCTL.

Pll"UGATE
(INTERNAL, ENABLES ALL FF 'S)

-.PIMIRRS MASTER CLEAR
.FRO"' MLCTL (INTERNAL, RESETS ALL FF' S)

REGISTER FIELD
VPC FROM MLCTL PILVPK(0-2) ~st---------------P_l_Q_v_P_K_(~o_-_2-'-)~~~

LOAD IR ENABLE
FROM CRCELLY _P_l_T_R_M_C_l_R ___ ~.,. FF ~----------------P-LQ_M_C_l_R_--1~~

READ IR ENABLE
FROM CRCELLY _P_l_T_R_l_R_M_c __ -1~ .. FF ~----------------P_1_a_1_R_M_c_ ~~

LOAD MIR ENABLE
FROM MLCTL _P_l_T_R_M_C_M_R __ 4~.. FF ~----------------P_l_Q_M_C_M_R_~~~

READ MIR ENABLE
FROM MLCTL

REGISTER FIELD
SELECTION FROM

ML2

PITRMRMC

PILKW(0-2)

TEST MOOE Pl L TM
INDICATOR TO --------1-i

MLCTL

FF

FF

(2)

COMBI-
NATIONAL
LOGIC

0
E c
0

L---11111 E ~

WORD 2 OF MIR P __ 1M_1R_A_B_2..:c_o_-_3_1...;.) ______ -lllll
FROM CRCONT(0-3)

ws~~CJN°-! ~~R :c~~~p __ 1 M_l_RA_B_3-'(_0_-_3_1_) _______ 9t

PIQMRMC

PIKWMRSO

PIKWMRSI

PIKWMRS7

PIKWIRLH

oPIKWIRLH

PIOTM

•PIMRAB(0-31)

WORD S %~oli~\f~_?~ P:.;IM:::.;,l:,:RA:.;:B:.:;5=0--..:3;.;l;,..:)~------91t

WORD 6 %~olr~\ff?~ P_l;;.M;,;.:.;IR..::A=B,;;6~(0;:_-.;;3..:l..:.) ______ -11111

swa5s~~c5I~bu;JJ}.~ ""'_P_M_a_o_M_c....;c_o_-_3_1_> ______________ _.

(B)l 2•826

REGISTER FIELD
VPC TO IRCARD(0-3)

LOAD IR ENABLE
TO IRCARD(0-3)

READ IR ENABLE
TO I RCAR0(0-3)

LOAD MIR ENABLE
TO IRCAR0(0-3)

READ MIR ENABLE
TO IRCAR0(0-3)

MIR WORD 0 ENABLE
TO IRCARD(O, 1)

MIR WORD 1 ENABLE
TO IRCAR0(2, 3)

MIR WORD 7 ENABLE
TO IRCAR0(0-3)

IR LEFT HALF
ENABLE TO IRCARO(O, 1)

IR RIGHT HALF
ENABLE TO IRCARD(2,3\

TEST MOOE INDICATOR
TO IRCARD(0-3)

TO MDB ON
VPRCAR0(0-7)

Figure 4-119. Maintenance Logic On MIRMRGB

4-315 Advanced Scientific Computer

*'" I
\.>.> -CJ'

NORMAL CRCONT(0-3) PXCPGATE CONTROL GATE-......;..~.;;.;..;..;..;;;;;.,_ ______________ _.., (INTERNAL., DI SABLES ALL.
NORMAL FF GATES IN TEST MODE)

FROM MLCTL

MASTER CL.EAR -. PCRES
FROM MLCTL. --;;._------------------11~

{INTERNAL., CL.EARS ALL NORMAL
AND TEST MODE FF1 S)

TEST MODE
Cl'tCONT(o-... 3)

GA TE FROM MLCTL.

CR SELECT
FROM ML2

READ CR CONTROL
FROM MLCTL

TEST MODE
INDICATOR FROM

MLCTL

PXCMGATE

-iPXCW 0-5

-.PXTRCRMC

-.PXCTM

WRITE CR CONTROL -, PXTRMCCR
FROM ML.CTL.

BYTE! WRITE
CONTROL FROM

ML2

(A)t 24827

FF 1 S

FF

FF

FF

FF

\0-2)

{INTERNAL., ENABLES ALL TEST
MODE FF1S)

DECODE

2N'S
E

{3-5) 2N 1 S

0-2)

DECODE

28 2N 1 S
E

(3-5) 2N 1 S

PCRABB1 E 0-7

PCRABSE! {3-5)

PCWA2B 1 E{0-7

PCWA2CB1 {3-5)

Figure 4-120. Maintenance Related Logic on CRCONTl

READ
CARD
ENABLES

TO
CRBASE1
AND
CRCEL.L.1 {0-6)

READ
WORD
SELECT

WRITE
CARD
ENABLES

TO
CRBASE1
AND
CRCELL.1 (0-6)

WRITE
WORD
SELECT

_..r-­-'-'-""'""'-'-!...:...:,.__,,'-""'-~'-----'------lf--------------.... _

t--...-....<t-------r-o (29-31) _.. DF'S t--

• ~ ~
0

(16, 17 ,20,21) ------.... - HIGH

PRIORITY

OUTPUT

.---------------------f----~(~4~)'--~COUNTER

I
I
I
I
I
I
I
I
I
I
I
I

(l-3)cj PROTECT ID l
REGISTER

i::A-1 QLKW (0-2 r---D 1---+---+......--'-(4-'-)-t (PM Q PIO (0-2))

E LL-------~--\ D -......_
I---+-~---- E E -....___

~r--;-
E
c
0
D

r--._~------..+---J.....~----~~O=-i...l~U--~-, HIGH ~ORITYQUEUE

R~ VPC

1-------._E E t-­.._ I'-~~~~~~~--...__ I

--

1-+---(_4_) __ ..-._ HIGH

(18,19,22,23) _: PRIORITY

PMGl~O) __: INPUT CNTR
READ/

PMGC(O) AND DECODE
I---+----+-+---~--~--... LOGIC WRITE

REQUEST ~

PROCESS­ PMGIC(2)
LOW ING LOGIC t---t---+___,~+----------

l---+--+--it--+-PM-G_C_(2_) ___ ~... PRIORITY

..._ ___ __, (26 ,27 ,30,31) -- INPUT CNTR

•J ___ _,,

I -'
----'

_,
I

LOW PRIORITY QUEk.JE

PT

PRIORITY

OUTPUT
(24, 25. 28. 2~ COUNTER

•PMBOMC(16-3t)

1
FIRST OR LAST FOUR

(4) ::AND DECODE
l'-+-------11~ LOGIC ~pr VPC

HIGH OR LOW PRIORITY t
QUEUE ENTRIES, INPUT

AND OUTPUT COUNTERS 1
p OR CURRENT VPC

I ENTRY TO MIRMRGB I
r--+-~<1~6_-~19"-'-',2~0-'---2_3~·2_4_-_2_1~.2_8_-_3_1~)------~ I

~-+-~~~~~~(2~.3)~~~ ~bJ._I~--
<o-5) I

FROM

MLI

(0, 1)

(29-31)
(8-15)

(0-7)

--

STATUS FILE

I

~ I
I
I

TEST MODE IN­

DICATOR FROM

PCCTL

3 LSB'S OF PC --
PPCMARA--....;;.B lB L-----911tSTATUS

!---+--------... FILE 3 1---t----"~--+---------------~ 1 - LSB
I
I '-------SELECT

FROM -. :...P.:..P..::C:..:.M:..:.C::::::i.;.:::2:.:9;...-..::3..:..l_l,__ ______ ..,. _ LOG! c
PCCARDA(7)

MASTER CLEAR

FROM MLCTL
PPR ES RESETS

- ALL FF S

-sw-ec-
ASYNCHRONOUS PMCMTLE2

v I
l (0-7)

---r--- ------------iPMQMTE _. - INTERNAL,USED TO DEVELOP

PARITY, PROTECT, AND ACTIVE
ENABLE FLAG GATES

PARITY ERROR

jRESPONSE RESET

FROM

MLCTL

CONTROLS FOR n FF r -- FLAG RESET

STATUS FILE ENTRY

TO MIRMRGB

I
I
I
I
I
I
I
I
I

_ _!,W~Y~_J
SW BA SY

~QLTMW

~MQLKW(0-2

i-'PMQL TMR

1 - LOGIC J RA BIT J
'------------1...---~ l GATE LOGIC ..--------.,

-eJJASYNCHRONOUSJ

ASYNCHRONOUS{PMMME -- 1-----------+--1 COMBINA- PMOSA

swBc8 AND I~ L._. TIONAL

SWBC9 WITH ,..... LOGIC t--"l
SR- REG .:...P.:...M.:...M_M_T ______ -+----~ j

COMMAND LD

(D)124829

MASTER CLEAR

FROM MLCTL ,~P~P~R~E~S=---------------~ RESETS
ALL FF'S

1
..----------e-,_ READ LOGIC

..-----------~--·__,1..I AR BIT J J J PARITY ERROR GATE LOGIC
~----~---~~ ... SYNCHRONIZER

PMESA

STROBE LOGIC

c
0
D
E -
-

V-~1) ACTIVE FLAG
OUTPUT REGISTER

(PMQACT)

D ~ (2-4) V-~ PRIORITY OUTPUT

E REGISTER

g (PMQVP0(0-2)
D
E - (1-7) V-~ STATUS FILE

OUTPUT REGISTER

(PMQSFO(o-6))

(T-7)~

ASYNCHRONOUS

VPC INPUT

REGISTER

(PMQVPID(0-2))

ASYNCHRONOUS

STATUS FILE

INPUT REGISTER

(PMQRSB(0-6))

(Z-4)h~ READ QUEUE

OUTPUT REGISTER

(PMQRQQ(0-2))

(5--7)lf'-1~ WRITE QUEUE

OUTPUT REGISTER

(PMQWQOJ_O-lli

(4) ID REGISTER
(5--7)n~ RESPONSE

'-....;.(P_M_QR __ 1_0_(0-_2_)) __ _.

{O) Ir"~ PROTECT RE­
SPONSE REGISTER

~MQPRJ.

(O) r.-~
PROTECT

FLAG

(PMQPRT)

(O) y-

~
RESPONSE

RESET FLAG

{PMQPRR)

(0) l--'"" ~ PARITY FLAG

(PMQPER)

(O, I ~ RA AND AR BITS

(PMQMRC(O. 1)) ~ ji
------1

(O) I ~(2 RDS BIT 1
~ (PMQRDS) ~~~~~~~

\
\
\
\
I

I
I
I
I
I

~

\
\
\
\
\
\
\
\
\

l''°'BOMrO-')
I SELECTED ASYNCHRONOUS

I
I
I

REGISTER CONTENTS TO

MIRMRGB

I
I
I
I
I

Figure 4-121. Maintenance Related
Logic on SWBSYNC/SWBASY

4-317/4-318
Advanced Scientific Computer

~------
with the three LSB' s of the register field selection bits to select one of the
eight SWBC flip-flop combinations (SWBCo through SWBC7) for output to the
MDB. When the asynchronous SWBC/MCU interface is to be temporarily
halted for examination, the PMCMT LE2, PMMME, and PMMMT control
signals combine to disable the memory access request (AR) flip-flop gate or
the memory request accepted (RA) flip-flop gate when SWBC9 or SWBCs,
respectively, is used in conjunction with maintenance command code 5.

The maintenance related logic on the IRCARD(O- 3) cards, detailed in figure
4-123, interprets the IR and MIR read and write control signals supplied by
the MIRMRGB card. When data is to be written to half of one of the eight
IR' s, the three LSB' s of the register field selection bits (PIQVPK(0-2)), the
write IR enable (PIQMCIR), and the desired left (PIKWIRLH) or right

(,PIKWIRLH) half enable combine to transfer AU2B data into the left or
right half of the desired IR. When data is to be read from half of one of
the eight IR' s, the three LSB' s of the register field selection bits, the read
IR enable (PIQIRMC), and the left or right half enable combine to perform
the read. When data is to be written to or read from the IRMIR (words 0 and
1 of the MIR) or word 7 of the MIR, the PIQMCMR signal enables a write,
the PIQMRMC signal enables a read, and the PIKWMRSO, PIKWMRSl, and
PIKWMRS7 signals select word 0, 1, or 7, respectively.

The maintenance related logic on the CRMIRLDR card, detailed in figure
4-56 of th~ CR file detailed theory, is enabled by the previously mentioned
CRMIR load enable developed by VPRCONT to insert the AU2B test data in
the CRMIR flip-flops. The maintenance logic on the AU2XFER card, detailed
in figure 4-122, enable·s maintenance data to the AU2B bus under control
of the test mode indicator supplied by PCCTL. The logic on the
VPRCARD(0-7) cards that responds to the VPR read and write maintenance
controls is also used during normal PP processing and is described in the
VPR file portion of the VP detailed theory. The control lines in figure 4-111
extending to the CONTAU, CRCELLY, and PPCTLl cards are.discussed in
the detailed theory covering AU control, CR file control, and PP control,
respectively.

TEST MODE ENABLE
FROM PCCTL

SWITCH/DISPLAY
REGISTER RAT.\
FROM ML1(0, I)

(A)l24828

PA2FMCEN

PFMCD0(0-31)

31'5

1

-,PAU20: I (0-3 I) --
-,PAU20:2(0-19) --.

-,PAU20: 3(0-31)

AU2B DATA TO CRCELLY,
CRBASE 1-3.
CRCELL0-3(0-6)

AU2B DATA TO
CRMIRLDR

AU2B DATA TO VPRCONT
AND VPRCARD(0-7)

Figure 4-122. Maintenance Related Logic on A U2XFER

4-319 Advanced Scientific Computer

"EGISTE"
l"IEU) YPC "IQ;::..:.Y.;..".:.;K;:;(0=..--2::::.!..) ______ ... -r---

l"l'IOM M IRNIMI• -. 1-------~

TEST MODE PIOTM 2Nfs --- - DECODE f--INDICATOR ;=...:,.:;:_ ___ ..--~I--~ ,-----..., ~
Fl'IOM Ml"MltGB_ L.....-

LOAD IR -- IR L.EFT
FROM MF:~~~~ Pl.;:Q.;..M;.;C;;.;l..;..R;.__ __ l-_-1-_ - ~~~ t----J

IR LEFT HALF PIKWIRLH LOGIC
LOAD ENABLE

FROM MIRMRGB

v1 /7 I\
AU2B DATA ~ / '\

PCCARDA[o".?~ .., PAU20(0-31) r--++-11_ .. =_ ,.i. I ·:~' \ ",PIRAB(0-31)

HAl[!FRJ~~I -.PAU20(3~62_ v ...

SELECTED
IR LE,.T HALI"
TO MDB ON
VPRCA"D(0-7)

l ~---¥.- - '\
"J"--~ 132 3' fSELECTED I T ~-§ .. " RIGHT HALF)

(<PIKWIRLH) __ L _______ _J

48
DECODE ~

t------1..iE

MASTER CLEAR
FROM MLCTL .,p-'-1 R:.;,.:;.E::::;S ___ +--------~ -- (INTERNAL, CLEARS ALL FF'S EXCEPT THOSE USE -
F~i~E~n P..:.P..:.R:.:E::..:S::..:E:.:N.:.i!i!o..::0;..-..:.7+-----.....,--..

FRO~R ~u .., P.:.P_.S._E"-'T,_.E,,,N.,W._.0;..-..:.7+-------­

NE~~O~~ rt~f PIU=-P.::GA:;:....:.T.:E.___-+---------

-- (INTERNAL, CLEARS 1 OF 8 IRIS)

-- (INTERNAL, SETS I OF 8 IR'S) ---- (INTERNAL, GATES ALL FF'S CONCERNED WITH NE ~

LOAD MIR
ENAB~f R:::.~~ PIQ::M:;:.::C::.:M::.:R.:.__~----llM

MIR

MIR WORD O WORD

ENA.BrJFR:::.~~ Pl~KW=M~R~S::;O~-+-....---' E:J:fE ~
MIR WORD 1 PIKWMRSI L.DGIC

ENABLE FROM
MIRMRGB

DA.TA.~~~ (6!-~f032-63) •
PCCARDA(0-7) -"'-'-'..:.:'""-'""""'-i--+--i!-------.. <:

v MIR WORD 0
1----~

MIR WORD 1

NEXT vpc P1LvPCco-2> r L ._ ;-1
FROM MLCTL =..:...=:.i..:._:.!...-4--...J.~-~l FF1S Jt---------411!V 1

MIR
WORD

READ L--~--.. '!,• ~i:A.°oR ____________ _,

FRO~·~ F:~=~~ PIQ=M:..:.R:..:.M;,;.C;:;_ ________ ~1'cE

RE~gR~I~ Pl.;..K:..:.W;.;M.;...:.;R.;;;S..;..7 _____ -t~

ENABLE FROM -----'
MIRMRGB

(B)I 24830

""'PIMIRAB(O-lll l.

D BY THE 8 IR 15)

XT VPC)

SELECTED
Ml" WO"D
TO MDB ON
V PltCARD(0-7)

Figure 4-123. Maintenance Related Logic on IRCARD(0-3)

4-320 Advanced Scientific Computer

4-207 MAINTENANCE LOGIC DATA PATHS. The maintenance logic data
path structure provides the maintenance logic with the data paths necessary

to carry out execution of the maintenance command codes 1 through 7. Fig­
ure 4-124 shows the logic cards and the type of ·data that is transferred be­
tween the logic cards in the maintenance data path system. Most of the lines
connecting the logic cards in figure 4-124 have a capacity of 32 bits, the only
exceptions being A UMIR input, CRMIR input, and VPRMIR input lines supplied
by the VPRCONT and CRMIRLDR cards and the CRMIR line input to the
MIRMRGB card. These MIR type formats are described in the PP control
detailed theory.

In the manual or semi-automatic modes of operation, data is entered in the
PP maintenance logic system via the switch register portion of the mainte­
nance registers. In the automatic mode of operation, PP software is capable
of entering data in either the switch register or display register. Both the
switch and display register plus MDB data are applied to the MLl (0, 1) card,
as shown in figure 4-115. In the case of maintenance command code 1 (switch
register transferred to the display register), maintenance logic control en­
ables the switch register data through MLl (0, 1) back to the display register.
In the case of maintenance command codes 2, 3, or 4, the MDB data is se­
lected for transfer to the display register. For commands 3 and 4, this data
transfer represents the retrieval of CM and ROM data, respectively. In the
case of command codes 3, 4, 5, 6, and 7, switch or display register data is
transferred through the MLl (0, 1) cards to the A U2XFER or PCCARDA(O- 7)
cards. For commands 3, 4, and 7, this data transfer routes an address to
the associated memory. For command 7, this transfer is used a second
time when the display register is written to CM. In addition to the mentioned
data transfers that occur under direction of the maintenance logic control,
the display register is continuously applied to the ASC Maintenance Console
in case the DISPLAY REGISTER switch is pressed and the switch register is
continuously applied to the ROM address logic on PCCARDA(0-7) in case data
is to be read from ROM.

The PCCARDA(0-7) cards, shown in figure 4-11 7, accept switch register
data in case a maintenance ROM read is to be performed and switch or dis­
play register data when a transfer to one of the associated PP registers is
desired. When ROM data is to be retrieved (command 4), the switch regis­
ter address is enabled through PCCARDA(0-7) to the ROMCRD(0-15) cards.
When ROM responds to the address, the retrieved word is transferred back
to the NIR on PCCARDA(0-7) associated with the VP specified by the mainte­
nance registers. When switch or display register data is to be written to one
of the PC's, SWBA's, SWBD's, or NIR's (commands 5 and 6), the input data
is enabled into the desired register via maintenance logic control. The
switch or display register data is also distributed to the SWBSYNC/SWBASY
and IRCARD(0-3) cards from PCCARDA(0-7). When PC, NIR, SWBA, or
SWBD data is to be transferred to the display register (commands 2, 3, or
4), maintenance logic control enables the desired PCCARDA(0-7) register to
the MDB for input to the MLl (0, 1) cards.

4-321 Advanced Scientific Computer

,j:>.
I

w
N
N

DISPLAY
REGISTER TO

MAINTENANCE
CONSOL.E

DR

SR/MDB

r-----,
CR FILE

I I

AUZXFER
(P/O AU2B)

SR/OR

SR ROM ADOR

TO NJR

TCL....l_ ~---------. SA DATA SWl'tcH ltEG (SR) 1-_:::__~,......_---',.....l----'l__.:s~R~/'._'.D:'.'.R:'.__.,r-~~;:;;;:;Air.;:::~-,
PCCARDA(0-7 SR DR

DR MLl(O,I) SR ROM (P/OAU2B,PC,
PP D•~LAY "EG (bR) t---.... 1..-....,,.....-J---------1..._,!N~IR!;.:.,!S~W:.!;B~A~,_;s~w~B!?_D~J

SOFTWARE--....~-------..J
DATA MOB

SR OR

~---

LEFT OR PC
RIGHT HALF NIR

OF IR, SWBA

MIR WORD SWBD

0,1, OR 7

VPRCARDl0-7)

(VPR F'ILE)

VPRCONT

CRMIRLDR

P O VPRMIR INPUT

AMIR INPUT

CRMIR INPUT

CR
FILE
DATA r-------. ,.....-.a...-..,

CR BASE 1-3
CRCELL0-3

o..,;

ROFYICRD(0-15)

(ROM)

SELECTED
MIR WORD

OR SWBC

DATA

C"CONT(0-3) t--t-----1,..._--,

CRMIR

MIRMRGB

CR FILE DATA

MAIN DATA BUS (MOB) ON VPl'RCARD(0-7l

<•> 1z•n1

Figure 4-124. Peripheral Processor Maintenance Logic Data Path Detailed Block Diagram

VPR

FILE
DATA

The SWBSYNC and SWBASY cards, shown in figure 4-122, accept AU2B bus
switch or display register data from PCCARDA(0-7). When a SWBC is spec­
ified as the destination in conjunction with command codes 5 or 6, the input
switch or display register data is enabled into the desired combination of
SWBC synchronous and asynchronous flip-flops. When SWBC data is to be
transferred to the display register (command 2), the desired data is enabled
through the MIRMRGB card to the MDB for transfer to the MLl (0, 1) cards.
The IRCARD(0-3) cards, shown in figure 4-123, also accept AU2B bus switch
or display register data from PCCARDA(0-7). When half of an IR or words
0 or 1 of the MIR is specified as the destination in conjunction with command
codes 5 or 6, the input switch or display register data is enabled into the
desired IRCARD(0-3) register. When data from one of the same registers
(or the VP code in the register as signed as MIR word 7) is to be transferred
to the display register (command 2), the desired register is transferred to
the MDB for input to the MLl(O, 1) cards.

The AU2XFER card, shown in figure 4-121, accepts switch or display reg­
ister data from the MLl (0, 1) cards when a CR or VPR or the A UMIR,
CRMIR, or VPRMIR is specified as the destination register in conjunction
with command codes 5 or 6. When maintenance data is to be written to a
VPR, the switch or dis play register data is enabled into the desired VPR on
the VPRCARD(0-7) cards. When maintenance data is to be written to a CR,
the switch or display register data is enabled into the desired CR on the
CRBASEl-3, CRCELLY, or CRCELL0-3(0-6) cards. Switch or display
register data is enabled into the A UMIR or VPRMIR logic on VPRCONT or
the CRMIR logic on CRMIRLDR when one of the MIR type registers is spec­
ified as the destination. The input forms of AUMIR, CRMIR, and part of
VPRMIR are transferred to CONTACT, CRCONT(0-3), and PCCTL, respec­
tively, during normal processing of the PP.

The MIRMRGB card, shown in figure 4-119, monitors the output forms of
AUMIR, CRMIR, and VPRMIR. When the AUMIR, part of the CRMIR (the
complete CRMIR output format consists of three 32-bit words), or VPRMIR
is specified in conjunction with command code 2, the maintenance logic
control on MIRMRGB enables the desired portion of the MIR to the MDB for
input to MLl (0, 1). When a CR or VPR is specified in conjunction with com­
mand code 2, the maintenance logic control enables a VPR from VPRCARD(0-7)
or a CR from CRCONT(0-3) to the MDB for input to MLl (0, 1).

4-208 MAINTENANCE LOGIC/PP TIMING. The PP maintenance logic, in
addition to providing the controls and data paths necessary to execute main­
tenance commands, provides the remainder of the PP with the current VP
code and an indication of whether the PP is operating in the normal mode or
under control of the maintenance logic. A timing diagram illustrating the
procedure involved in determining and distributing the current VP code and
mode of operation (normal or test) is presented in figure 4-125. The abbre­
viations that occur in the diagram are explained in table 4-10.

4-323/4-324 Advanced Scientific Computer

VP SELECT VPC

AUTO·Tso*

V FIELD VPC

MAN•PPBST41

PPBST+AUTO •Tso"'

TS STOP=AUTO•MCRFLG•

((C+E)•CBCRN)• (D•VPADV)*

PP CLOCK

PPBST+AUTO•TSO*

TIME SLOT
(TS)

SELECTION
LOGIC ON

ML.2

ACTIVE

BIT

*THE ABBREVIATIONS ON THIS DIAGRAM ARE

EXP~INED IN THE ASSOCIATED TEXT.

(C) I 24832

REG FIELD VPC

.,pxvPCTR(0-2)

PXTV PCD(0-2)

0
DETERMINE VPC ANO IF

ASSOCIATED VP IS ACTIVE

ACTTR = PXACTTR • TSOV • ((MAN·PPBST·TSO ,4 ,8, 12) +
(MAN•PPBST) r (ADJ•ACT J)]+

PXACTTR·AUTO·SEVPTR·""'A-U-IO_F_F_• ((MAN•PlS'EiH)­

(ADJ·ACTJ)+ MAN•P'PiiST•TS0,4,8, 12]*

(ML2)

+
(ML2)

ACTIVE

OVERRIDE

LOGIC ON

ML.2

FF'S
(MLCTL)

FF'S

(CRCELLY)

FF1 S

(MLCTL)

FF 1 S
(CRCELLY)

PILNVPC(0-2)
FF 1 S

(IRCARD)

FF'S

fl

REG FIELD

VPCTO

MAINTENANCE

LOGIC CONTROL

0
MAKE NORMAL/

TEST MODE

DECISION

n

.., PXLNTM=MCOPN ·ACT J •

(VP.:iUT+MCRUN)*

FF
(ML.2)

PXJACT

TEST

MODE/
NORMAL

LOGIC ON

MLCTL

FF'S

(MLCTL)

IR SELECT

LOGIC ON

IRCARD(0-3)

0
SELECT IR FOR NEXT CLOCK

AND DISTRIBUTE NEXT VPC,

TEST MODE INDICATOR, AND

NORMAL MIR GATE

FF'S
(MLCTL)

FF 1 S

(CRCELLY)

FF'S

IRCARD

VPRCONT

PCCTL

CONT AU

SWBSYNC

CR BASE

I
SL

FF S

IRCARO
CONT AU

CR CONT

PCCTL

VPRCONT

FF'S

IRCARD
VPRCONT

PCCTL

MIRMRGB

CR CONT

PXSVPC(0-2) CURRENT VPC TO MLl(tJ,1)

CM PROTECT/PRIORITY

LOGIC

CURRENT VPC TO CRCELLY

CR FILE INTERRUPT LOGIC

NEXT VPC TO PPCTLI

AUGMENT LOGIC

IR DATA TO IRMIR, VPRCONT

AND PPCTLI

CURRENT VPC TO IR LOADING,

VPRMIR,AU, SWBC, AND

CM BASE REGISTERS

COMMAND EXECUTION PERIOD

NORMAL OPERATION GATE

TO IRMIR, AUMIR, CRMIR,

AND VPRMIR

CURRENT TEST MODE IN­

DICATOR TO IR, MIR, PC,

SWBA, SWBD, NIR, VPR,

AND CR MAINTENANCE

LOGIC

Figure 4-125. Maintenance Logic/
Peripheral Processor Timing

4-325/4-326 Advanced Scientific Computer

Abbreviated
Term

ACTJ

ACTTR

ADJ

AUIOFF

AUTO

CBCRN

MAN

MCOPN

Table 4-10. Maintenance Logic Abbreviations

Signature

PXACTSJ

PXACTJDl

PXVPADJ

PXAUlOFF

PXAM

PXCBCRN

PX MAMO

PXMCOPN

Description

The active bit associated with VPJ (VPJ
will be the active VP on the second suc­
ceeding clock period).

The active bit associated with VPTR (VPTR
will be the active VP on the third succeed­
ing clock period).

Indicates when VPJ and VPTR are identi­
cal (one VP assigned to two consecutive
time slots).

Indicates the status of the AUTO INTER­
RUPT OFF switch on the ASC Maintenance
Console.

Indicates when the PP is operating in the
automatic or normal mode.

Indicates when the clock burst counter is
counting (burst in progress) in conjunction
with maintenance command codes c 16 and

E16·

Indicates when the PP is operating in the
manual mode.

Indicates when maintenance command
codes 1 through 7 and A 16 and B 16 are
ready to execute. In effect, this signal
reserves the second succeeding clock per­
iod for execution of the command. When
one of the mentioned commands has been
entered in the maintenance registers
(either via TCL or PP software), the
PXMCOPN signal follows the PXEQMM
signal, where,

PXEQMM=AUTO+(TSO+AUTO)· PXVJEQVR

The PXVJEQVR signal indicates when VP3
is identical to the VP specified by the reg­
ister field.

4-327 Advanced Scientific Computer

Table 4-10. Maintenance Logic Abbreviations (Continued)

Abbreviated
Term

MCRFLG

MCRUN

PPB ST

SEVPTR

TSOV

Signature

PXMCRFLG

PXMCRUN

PX PPM ODE

PXSEVPTR

PXVPTOV

Description

Indicates when maintenance command
code F 16 is running in the continuous
mode. This signal is reset as soon as
a new maintenance command is received.

Indicates when a maintenance controlled
run or burst is executing (commands C16•
D16, E16, and F16).

PXMCRUN=[((C+E)· CBCRN· ST6)

where;

+(D• PXVPADV · PXVPRN)
+(0· STO• MCRFLG)]
• [C· PXSWBCHK]

ST signifies state.

0, C, D, and E are command codes.

PXVPADV is true if the VP' s under test
have not completed their current in­
struction.

PXVPRN is true if VP J is still ex­
ecuting the instruction that was ex­
ecuting when maintenance command
code D16 was initiated.

PXSWBCHK is true when the S'WBC is
locked in the manual mode or placed
under test in the semi-automatic mode.

Indicates when the ASC Maintenance Con­
sole MANUAL SELECT switch is set to
the CLK PP, REV PP, or BST PP posi­
tions in the manual mode of operation.

Indicates when the VP SELECT VP is
identical to VPTR.

Indicates when a time slot assigned to an
active VP is overriden (reasons for time
slot override are discussed in the CR file
detailed theory).

4-328 Advanced Scientific Computer

Table 4-1 O. Maintenance Logic Abbreviations (Continued)

Abbreviated
Term

TS0,4,8, 12

VPADV

VP JUT

0-7,C,D,E

Signature

(none)

PXVPADV

PXVPJUT

,PXCF4,
PXMPCE,
PXMOP(l3)

Description

Indicates the occurrence of time slot
0, 4, 8, or 12.

Indicates when the VP' s under test have
not completed their current instructl.on
(this signal is used in conjunction with
command code D 16).

Indicates when VPJ is under test (the
VP' s under test are marked by logical
one's in the V field).

Indicates the occurrence of maintenance
command codes 0 through 7, C, D, or E in
the command code field of the maintenance
registers.

4-209 VP Code Timing Logic. The VP code select logic on ML2 accepts
mode and time slot data for use in selecting one of three VP code sources
as the supplier of the active VP on the third succeeding clock. When the
manual mode has been selected and a PP burst operation has not been
chosen (MAN• PPBST), the V field specified VP code is enabled in the de­
velopment of VPTR (PXVPCTR(0-2), the active VP code on the third suc­
ceeding clock). When the automatic or normal mode has been selected and
the current time slot under consideration is time slot zero (AUTO• TSO),
the VP code associated with the VP SELECT switch setting (on the ASC
Maintenance Console) is used in the development of VPTR· When the manual
mode has been selected in conjunction with a PP burst operation or the nor­
mal mode has been selected and the current time slot is other than time slot
zero, the VP code used in the development of VPTR is retrieved from the
time slot table in accordance with the current time slot counter value. The
time slot counter is clocked by the PP clock in the normal mode or in the
semi-automatic or manual modes when a PP burst (command C16), PP cycle
(command n 16), VP burst (command E 16), or VP continuous (command F 16)
maintenance command has been is sued.

A second level of VP code selection is provided on the MLCTL card. When
the semi-automatic or manual mode of operation has been selected and the
maintenance command entered in the command field is 0 through 7, the VP
code select logic on MLCTL overrides the VP code developed on ML2 and
substitutes the register field VP code. This override feature is necessary
because the VP code associated with commands 2 through 7 (command 0 and
1 do not require a VP code) is determined by the register field and not the V

4-329 Advanced Scientific Computer

field. The register field VP code is also delayed one clock through a set of
flip-flops and distributed to the maintenance logic control circuitry for use
with commands 2 through 7. In all other cases of mode and maintenance
command, the VP code developed on ML2 is selected by MLCTL. The out­
put of the VP code select logic on MLCT L must now be clocked through
three levels of flip-flops before use as the current VP code. As shown in
figure 4-125, during the clock period immediately preceding the command
execution period, the next VP code is used to select the Instruction Register
(IR) for insertion in the Main Instruction Register (MIR) and to perform any
effective address augmenting that is necessary. During the command exe­
cution period, the current VP code is distributed throughout the PP to con­
trol and monitor instruction execution.

4-210 Normal/Test Mode Timing Logic. The VP active bit logic on ML2
accepts mode and time slot data to determine if a VP will be active during
the third succeeding clock (assuming the active indication is not overridden
by logic to be described later). When the manual mode has been selected but
a PP burst operation has not been chosen or the normal mode has been se­
lected and the current time slot under consideration is time slot zero, the
PXACTTR (ac'tive bit) signal is set to a logical one. When the manual mode
has been selected in conjunction with a PP burst operation or the normal
mode has been selected and the current time slot is other than time slot zero,
the active indicator is retrieved from the time slot table in accordance with
the current time slot counter value. The resulting PXACTTR signal is input
to the active override logic on ML2.

The active override logic on ML2 implements the equation shown in figure
4-125. Basically, the logic implementation controls the disabling of the
active indicator for a VP under the direction of the time slot override byte
of the CR file. If the VP under consideration is the selected VP, however,
the AUTO INTERRUPT OFF switch on the ASC Maintenance Console must
be activated before the active indicator can be overridden. Independent of
any consideration for the selected VP, the active indicator is overridden on
three out of every four clock periods when a VP burst or VP continuous
maintenance command is issued (these two commands are legal only in the
manual mode). This is accomplished by enabling the active indicator only on
time slots 0, 4, 8, and 12. Finally, the active indicator is overridden in
the normal mode or the PP burst option of the manual mode when a VP is
assigned to two consecutive time slots and is active in both (in this case,
the active indicator is overridden on the second of the two time slots, be­
cause updating of an IR requires the full command execution period). The
active indicator, modified by the override logic, is delayed one clock period
by a single flip-flop and then input to the test mode/normal logic on MLCTL.
The test mode/ normal logic develops the '"1 PXLNTM signal to indicate when
VPJ will execute in the normal case (versus the test mode case). The first
term in the equation shown in figure 4-125, MCOPN, is used to switch oper­
ation to the test mode case_ when maintenance commands 1 through 7 and

4-330
Advanced Scientific Computer

A16 and B 16 are ready to execute for the cases listed in table 4-9. The sec­
ond term in the equation (ACTJ) represents the active indicator previously
discussed in detail. The third and last term in the equation (VPJUT +
MCRUN) is used to switch operation to the test mode case when VPJ is going
to execute commands 1 through B16 or hold operation to the normal mode
when a burst or run command is scheduled (commands c 16 through F 16).
The output of the test mode/normal logic on MLCTL is delayed one clock and
distributed to PP control as the test mode indicator and normal MIR gate.
When normal operation is to occur, the normal MIR gate enables the transfer
of the selected IR control data into the various MIR areas (AUMIR, CRMIR,
IRMIR, and VPRMIR) with the occurrence of the clock signaling the command
execution period. When test mode operation is to occur, the test mode indi­
cator combines with the maintenance logic controls necessary to execute the
current maintenance command.

The net result of the normal/test mode timing logic is selection of either
PP control or maintenance logic control for all command execution periods.
In the normal mode of operation, the active VP' s execute under the influence
of the time slot table and any maintenance commands execute either in the
time slot associated with the VP under test or in the first available time slot
that is not associated with an active VP. In the manual and semi-automatic
modes of operation, initiation of the maintenance commands is controlled by

the ASC Maintenance Console.

4-211 MAINTENANCE COMMAND TRANSFER TABLES. The maintenance
command repertoire consists of 15 basic command codes and a no-op. This
paragraph presents the general concepts necessary for a full understanding
of the maintenance command transfer tables and the remaining paragraphs in
this section provide a step-by-step analysis for each of the 15 command
codes. The maintenance command transfer tables are an abbreviated form
of the transfer tables associated with the PP instruction repertoire and dis­
cussed in the PP control detailed theory, but they present the same type of
information. Each of the maintenance commands begins execution with the
maintenance controller in state zero, performs the desired operation in a
series of nonzero states, and returns the maintenance controller to state zero
at completion. The maintenance controller remains in the ready state (state
zero) until a new command is entered in the maintenance registers. The ab­
breviated terms used in the maintenance command transfer tables and their
actual logic card signatures and associated descriptions are listed in table
4-11. The no-op maintenance command (command zero) is not discussed in
the following paragraphs because it is the result of zeroing the command
code field and represents the lack of a valid maintenance command. In cases
where a time slot is selected for test mode operation and the maintenance
command is no-op, the PP and maintenance logic remain idle.

4-331
Advanced Scientific Computer

Table 4-11. Maintenance Command Transfer Table Terms

Abbreviated
Term

AMO

BAJ

CBCLOAD

CBCRN

ILL

LPCF

MCOPN

MCRFLG

MCRUN

QCPF(0-7)

QLDR

QSRA2

Signature Description

PXAMO Indicates selection of the automatic mode.

PXBAJ Developed on ML2 to indicate when the SWB
is available to VP J·

PXCBCLOAD Developed on MLCTL to enable the loading
of the bur st counter for commands C 16 and

PXCBCRN

PX ILL

PXQLPCF

PXMCOPN

PXMCRFLG

PXMCRUN

E 16·

Developed on ML2 to indicate when the
clock burst counter is counting (burst in
progress).

Developed on MLCT L to indicate when an
illegal command exists in the maintenance
registers.

A flip-flop on MLCTL set to indicate lock­
ing of a PC(s) and reset to indicate unlock­
ing of a PC(s).

Developed on MLCTL to indicate when VPJ
is ready to execute command codes 1
through 7 and A16 and B16·

Developed on MLCTL to indicate when
command code F 16 is running in the con­
tinuous mode.

Developed on MLCT L to indicate when a
maintenance controlled run or burst is
executing (commands Cl6• Dl6• El6• and
F 16).

PXQCPF(0-7) A group of flip-flops on MLCTL initially
zeroed when command D 16 is is sued and
then set as the active VP' s complete their

PXQLDR

PXQSRA2

current instruction.

A flip-flop on MLCTL set to develop the
gate necessary for loading display regis -
ter data in the CR file.

A flip-flop on MLCTL set to enable switch
register data to the A U2B bus and reset to
enable display register data to the AU2B
bus.

4-332 Advanced Scientific Computer

~------
Table 4-11. Maintenance Comm.and Transfer Table Terms (Continued)

Abbreviated
Signature Description

Term

QSRDR PXQSRDR A flip-flop on MLCTL set to enable switch
register data to the display register and
reset to enable MDB data to the display
register.

QVPRES PXQVPRES A flip-flop on MLCTL set to enable the
resetting of the data holding registers
associated with the VP(s) designated by
the V field.

QVPSET PXQVPSET A flip-flop on MLCT L set to enable the re-
setting of the data holding registers asso-
ciated with the VP(s) designated by the V
field.

RC PXQMRC A flip-flop on MLCT L set to initiate a CM
read request.

TRMCMA PXTRMCMA Developed on MLCTL to enable AU2B data
to the desired SWBA.

TRMDMC PXTRMDMC Developed on MLCTL to enable the de-
sired SWBD to the MDB.

TRROMNR PXROMNR Developed on MLCTL to enable ROM data
into the desired NIR.

TSCST(O) PXTSCST(O) Developed on ML2 to indicate when time
slot zero is under examination.

VJEQVR PXVJEQVR Developed on MLCTL to indicate when VPJ
is identical to the VP specified by the reg-
ister field.

VPADV PXVPADV Developed on MLCTL to indicate the VP' s
under test have not completed their current
instruction.

VP JUT PXVPJUT Developed on MLCTL to indicate when VPJ
is under test.

VPRN PXVPRN Developed on MLCTL to indicate VPJ is
still executing the instruction that was ex-
ecuting when maintenance command code
D16 was initiated.

WC PXQMWC A flip-flop on MLCTL set to initiate a CM
write request.

4-333 Advanced Scientific Computer

~------
4-212 Switch Register to Display Register Command. This maintenance
command transfers the contents of the switch register to the display reg­
ister. Execution of command code 1 is shown in the transfer table of table
4-12.

Step 1

Step 2
(State 4)

Step 3
(State 6)

When command code 1 is entered in the maintenance reg­
isters, the CR file busy bit is set via the1PFDD24CR(12)
signal from MLCTL and the mode is examined. If the
manual or semi-automatic mode has been selected, the
MCOPN flag is set and the maintenance controller is ad­
vanced to state 6. If the automatic mode has been selected
but VPJ (VPJ will be the current VP on the second suc­
ceeding clock) is not the VP specified by the register field
(V JEQVR), the maintenance controller is advanced to
state 4. If VPJ is identical to the VP specified by the
register field, the MCOPN flag is set to save the second
succeeding time slot for the actual data transfer described
in step 3 and the maintenance controller is advanced to
state 6.

Command code 1 remains in state 4 when the automatic
mode has been selected until VPJ is identical to the VP
specified by the register field (VJEQVR). When the
equality occurs, the MCOPN flag is set to save the second
succeeding time slot for the data transfer and the mainte­
nance controller is advanced to state 6.

On the first clock after reaching state 6 in the manual or
semi-automatic modes, or the second clock after reaching
state 6 in the automatic mode, the following maintenance
control signals are activated: The QSRDR flip-flop is set
to enable the switch register to display registe:r transfer
via the PXSRDREN signal from MLCTL and the QLDR
flip-flop is set to develop the CR file gates for the display
register (,PFSBO -3CR (15) from MLCT L). In addition,
the busy bit and command code field are zeroed via the
,PFDD24CR(12) and ,PFDD28-31CR(l2) signals, respec­
tively, from MLCTL.

4-213 PP Register to Display Register Command. This maintenance com­
mand transfers the contents of the PP register (PC, NIR, IR, SWBA, SWBD,
VPR, CR, SWBC, or MIR) specified by the register field to the display reg­
ister. This command is illegal if the register field specifies the MIR in the
automatic mode. Execution of command code 2 is shown in the transfer
table of table 4-13.

Step 1 When command code 2 is entered in the maintenance reg­
isters, the CR file busy bit is set via the ,PFDD24CR(12)

4-334
Advanced Scientific Computer

~
I

w
w
U1

Table 4-12. Switch Register to Display Register Maintenance Command Transfer Table

Description: (SR) -DR Mnemonic: XSD Code: 1

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 1 0 0 1 - BUSY VJEQVR•AMO

1 1 0 1 - BUSY VJEQVR+AMO
1 - MCOPN

2 1 0 0 1 0 0 VJEQVR·AMO

1 1 0 1 -MCOPN VJEQVR•AMO

3 1 1 0 0 0 0 1 -QSRDR SR/MDB -DR
1 -QLDR
0 -BUSY
0 -COMMAND

Table 4-13. PP Register to Display Register Maintenance Command Transfer Table

Description: (REG) -DR Mnemonic: XRD Code: 2

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 1 0 0 1 - BUSY V JEQVR• AMO· ILL

1 1 0 1 -BUSY VJEQVR+AMO
1 -MCOPN

1 1 1 1 -BUSY ILL
1 -ILLEGAL

2 1 0 0 1 0 0 VJEQVR•AMO

1 1 0 1 -MCOPN VJEQVR 0 AMO

3 1 1 0 0 0 0 0 -QSRDR SR/MDB -DR
1 -QLDR
1 -TR MC MDB -
0 -BUSY
0 -COMMAND

4 1 1 1 1 1 1 ILL

0 0 0 0 -ILLEGAL ILL
0 -BUSY
0 -COMMAND

Step 2
(State 4)

Step 3
(State 6)

Step 4
(State 7)

signal from MLCTL and the mode and illegal flag are ex­
amined. If the command is illegal, the CR file illegal bit
is set via the 1PFDD26CR(12) signal from MLCTL and the
maintenance controller is advanced to state 7. If the com­
mand is not illegal and the manual or semi-automatic mode
has been selected, the MCOPN flag is set and the mainte­
nance controller is advanced to state 6. If the automatic
mode has been selected but VP J is not the VP specified by
the register field, the maintenance controller is advanced
to state 4. If VPJ is identical to the VP specified by the
register field, the MCOPN flag is set to save the second
succeeding time slot for the actual data transfer described
in step 3 and the maintenance controller is advanced to
state 6.

Command code 2 remains in state 4 when the automatic
mode has been selected until VPJ is identical to the VP
specified by the register field. When the equality occurs,
the MCOPN flag is set to save the second succeeding time
slot for the data transfer and the maintenance controller
is advanced to state 6.

On the first clock after reaching state 6 in the automatic
or semi-automatic modes, or the second clock after
reaching state 6 in the automatic mode, the PP register

to display register transfer is enabled in the following
manner: The appropriate PP register to MDB enable
(PXTRPCMC for the PC, PXTRNRMC for the NIR, etc.)
from MLCTL transfers the register data to the MDB;
the QSRDR flip-flop is reset to enable the MDB data to
the display register; the QLDR flip-flop is set to gate the
data into the display register. In addition, the busy bit
and command code field are zeroed via the IPFDD24CR(l2)
and IPFDD28-31CR(l2) signals, respectively, from
MLCTL.

The illegal form of command code 2 remains in state 7
until the illegal flag is cleared by zeroing the command.
When this is done, the illegal flag is cleared via the
1PFDD26CR(l2) signal from MLCTL and the busy bit and
command code field are cleared as described in the pre­
vious step.

4-214 Central Memory to Display Register Transfer. This maintenance
command transfers the CM word addressed by the switch register to the
display register. Execution of command code 3 is shown in the transfer
table of table 4-14.

4-337 Advanced Scientific Computer

,j::..
I

w
w
00

Table 4-14. Central Memory to Display Register Maintenance Command Transfer Table

Description: ((SR))cM -DR Mnemonic: XCD Code: 3

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 1 0 0 1 -BUSY AMO· (VJEQVR+BAJ)

1 1 0 1 - BUSY V JEQVR· BAJ +AMO
1 -MCOPN

2 1 0 0 1 0 0 AMO· (V JEQVR +BAJ)

1 1 0 1 --MCOPN VJEQVR·BAJ

3 1 1 0 1 0 1 1 - QSRA2 RC SR/DR -AU2B
1 -TRMCMA AU2B

4 1 0 1 1 0 1 AMO· (VJEQVR+BAJ)

1 1 1 1 -MCOPN VJEQVR• BAJ+AMO

5 1 1 1 0 0 0 0 -QSRDR SR/MDB -DR
1 -TRMDMC MDB
1 -QLDR
0 -BUSY
0 -COMMAND

Step 1

Step 2
(State 4)

Step 3
(State 6)

Step 4
(State 5)

Step 5
(State 7)

When command code 3 is entered in the maintenance reg­
isters, the CR file busy bit is set via the 1PFDD24CR(12)
signal from MLCTL and the mode and buffer available
signal are examined. If the manual or semi-automatic
mode has been selected, the MCOPN flag is set and the
maintenance controller is advanced to state 6. If the
automatic mode has been selected, but VPJ is not the VP
specified by the register field, or the SWBC is not avail­
able to VPJ (BAJ), the maintenance controller is advanced
to state 4. If VPJ is identical to the VP specified by the
register field and the buffer is available to VPJ• the
MCOPN flag is set to save the second succeeding time
slot for the address transfer described in step 3 and the
maintenance controller is advanced to state 6.

Command code 3 remains in state 4 when the automatic
mode has been selected until VPJ is identical to the VP
specified by the register field and the SWBC is available
to VPJ· When this is the case, the MCOPN flag is set
to save the second succeeding time slot for the address
transfer and the maintenance controller is advanced to
state 6.

On the first clock after reaching state 6 in the manual or
semi-automatic mode, or the second clock after reaching
state 6 in the automatic mode, the switch register to
SWBA address transfer is accomplished in the following
manner: The QSRA2 flip-flop is set to enable the switch
register data to the A U2B bus; the PXTRMCMA enable
from MLCTL is developed to transfer the AU2B address
to the SWBA associated with the VP specified by the reg­
ister field; and a read request is initiate-cl by MLCTL to
retrieve the addressed word. The maintenance controller
is advanced to state 5.

When the manual or semi-automatic mode has been se­
lected, the maintenance controller is advanced from
state 5 to state 7 on the first clock. In the automatic
mode, the maintenance controller is advanced from
state 5 to state 7 only after VPJ is identical to the VP
specified by the register field and the SWBC is available
to VPJ (read cycle complete). The MCOPN flag is set to
save the second succeeding time slot for the data transfer
described in step 5.

On the first clock after reaching state 7 in the manual or
semi-automatic mode, or the second clock after reaching
state 7 in the automatic mode, the retrieved CM word is

4-339 Advanced Scientific Computer

transferred to the display register in the following man­
ner: The PXTRMDMC enable from MLCTL is developed
to transfer the retrieved CM word from the SWBD associ­
ated with the VP specified by the register field to the
MDB; the QSRDR flip-flop is reset to enable the MDB data
to the display register; the QLDR flip-flop is set to gate
the transferred data into the display register. The busy
bit and command code field are cleared via the
lPFDD24CR(l2) and 1PFDD28-31CR(l2) signals, respec­
tively, from MLCTL.

4-215 ROM to Display Register Transfer. This maintenance command
transfers the ROM word addressed by the switch register to the display
register. Execution of command code 4 is shown in the transfer table of
table 4-15.

Step 1

Step 2
(State 4)

Step 3
(State 6)

When command code 4 is entered in the maintenance reg­
isters, the CR file busy bit is set via the 1PFDD24CR(l2)
signal from MLCTL and the mode is examined. If the
manual or semi-automatic mode has been selected, the
MCOPN flag is set and the maintenance controller is ad­
vanced to state 6. If the automatic mode has been se­
lected but VPJ is not the VP specified by the register
field, the maintenance controller is advanced to state 4.
If VPJ is identical to the VP specified by the register
field, the MCOPN flag is set to save the second succeed­
ing time slot for the address transfer described in step 3
and the maintenance controller is advanced to state 6.

Command code 4 remains in state 4 when the automatic
mode has been selected until VPJ is identical t.o the VP
specified by the register field. When the equality occurs,
the MCOPN flag is set to save the second succeeding time
slot for the address transfer and the maintenance control­
ler is advanced to state 6.

On the first clock after reaching state 6 in the manual or
semi-automatic mode, or the second clock after reaching
state 6 in the automatic mode, the PXROMNR enable is
developed on MLCTL to direct a ROM read in the follow­
ing manner: The switch register ROM address is applied
to ROM over RMAB via the PPMCRBE enable from
PCCTL; the data from ROM is transferred to the NIR as -
sociated with the VP specified by the register field over
CMDB via the PNRMCDE and PNCDNRE enables from
PCCT L. The maintenance controller is advanced to
state 5.

4-340 Advanced Scientific Computer

Table 4-15. ROM to Display Register Maintenance Command Transfer Table

Description: ((SR))ROM-DR Mnemonic: XMD Code:· 4

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

I 0 0 0 1 0 0 I-BUSY VJEQVR•AMO

I 1 0 I-BUSY VJEQVR+AMO
I-MCOPN

2 1 0 0 I 0 0 VJEQVR·AMO

I I 0 I-MCOPN VJEQVR•AMO

3 I 1 0 I 0 I I-TRROMNR RMAB
CMDB

4 1 0 I 1 0 1 VJEQVR·AMO

--
1 1 1 1-MCOPN VJEQVR+AMO

5 1 1 I 0 0 0 I-TRNRMC MDB
O-QSRDR SR/MDB-DR
I-QLDR
0 -BUSY
0-COMMAND

Step 4
(State 5)

Step 5
(State 7)

When the manual or semi-automatic mode has been se­
lected, the maintenance controller is advanced from state
5 to state 7 on the first clock. In the automatic mode, the
maintenance controller is advanced from state 5 to state 7
only after VPJ is identical to the VP specified by the reg­
ister field. When this is the case, the MCOPN flag is set
to save the second succeeding time slot for the data trans -
fer described in step 5.

On the first clock after reaching state 7 in the manual or
semi-automatic mode, or the second clock after reaching
state 7 in the automatic mode, the word retrieved from
ROM is transferred to the display register in the follow­
ing manner: The PXTRNRMC enable from MLCTL is
developed to transfer the ROM word from the NIR associ­
ated with the VP specified by the register field to the MDB;
the QSRDR flip-flop is reset to enable the MDB data to the
display register; the QLDR flip-flop is set to gate the
transferred data into the display register. The busy bit
and command code field are cleared via the 1PFDD24CR(12)
and 1PFDD28-31CR(l2) signals, respectively, from
MLCTL.

4-216 Switch Register to PP Register Command. This command transfers
the contents of the switch register to the PP register (PC, NIR, IR, SWBA,
SWBD, VPR, CR, SWBC, or MIR) specified by the register field. This
command is illegal if the register field specifies a SWBC or MIR in the auto­
matic mode. Execution of command 5 is shown in the transfer table of table
4-16.

Step 1

Step 2

Step 3
(State 6)

Step 4

Identical to step 1 of command code 2.

Identical to step 2 of command code 2.

On the first clock after reaching state 6 in the manual or
semi-automatic mode, or the second clock after reaching
state 6 in the automatic mode, the switch register is
transferred to the de sired PP register in the following
manner: The QSRA2 flip-flop is set to enable the switch.
register to the A U2B bus; the appropriate A U2B to PP
register enable (PXTRMCPC for PC's, PXTRMCNR for
NIR' s, etc.) from MLCTL combines with the register
field VP code to transfer AU2B data to the desired PP
register. The busy bit and command code field are
cleared via the 1PFDD24CR(12) and 1PFDD28-31CR(12)
signals, respectively, from MLCTL.

Identical to step 4 of command code 2.

4-342
Advanced Scientific Computer

Table 4-16. Switch Register to PP Register Maintenance Command Transfer Table

Description: (SR)-REG Mnemonic: XSR Code: 5

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 1 0 0 1-BUSY V JEQVR· AMO· ILL

1 1 0 1-BUSY VJEQVR+AMO
1 -MCOPN

1 1 1 1-BUSY ILL
1--ILLEGAL

2 1 a a 1 a a VJEQVR·AMO

1 1 a 1-MCOPN VJEQVR•AMO

3 1 1 a a a a l-QSRA2 SR/DR-AU2B
1-TRMC. AUZB --
a-BUSY
a-COMMAND

4 1 1 1 1 1 1 ILL

a a a a-ILLEGAL ILL
a~BUSY

a-COMMAND

4-217 Display Register to PP Register Command. This command transfers
the contents of the display register to the PP register (PC, NIR, IR, SWBA,
SWBD, VPR, CR, SWBC, or MIR) specified by the register field. This com­
mand is illegal if the register field specifies a SWBC or MIR in the automatic
mode. Execution of command code 6 is shown in the transfer table of table
4-17.

Step 1

Step 2

Step 3

Step 4

Identical to step 1 of command code 2.

Identical to step 2 of command code 2.

Identical to step 3 of command code 5 except the QSRA2
flip-flop is reset to enable the display register to the
AU2B bus.

Identical to step 4 of command code 2.

4-218 Display Register to CM Command. This maintenance command trans­
fers the contents of the display register to CM at the address specified by the
switch register. Execution of command code 7 is shown in the transfer table
of table 4-18.

Step 1

Step 2

Step 3

Step 4

Step 5
(State 7)

Identical to step 1 of command code 3.

Identical to step 2 of command code 3.

Identical to step 3 of command code 3 except no read re­
quest is initiated.

Identical to step 4 of command code 3.

On the first clock after reaching state 7 in the manual or
semi-automatic mode, or the second clock after reaching
state 7 in the automatic mode, the display register data is
written to CM at the address established in step 3 in the
following manner: The QSRA2 flip-flop is reset to enable
display register data to the AU2B bus; the PXTRMCMD
enable from MLCTL is developed to transfer AU2B data
to the SWBD associated with the VP specified by the reg­
ister field; a write request (PXQMWC) is initiated by
MLCTL to store the SWBD (display register) at the ad­
dress specified by the SWBA (switch register). The busy
bit and command code field are cleared via 1PFDD24CR(l2)
and PFDD28- 31CR(l2) signals, respectively, from
MLCTL.

4-218 Lock Program Counter (PC) Command. This maintenance command
locks the PC's of the VP' s designated by the V field (the PC's are held at
their current value). Execution of command code 8 is shown in the transfer
table of table 4-19.

4-344
Advanced Scientific Computer

Table 4-17. Display Register to PP Register Maintenance Command Transfer Table

Description: (DR)-REG Mnemonic: XDR Code: 6

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 I 0 0 I-BUSY V JEQVR• AMO. ILL

I 1 0 I-BUSY VJEQVR+AMO
I-MCOPN

I I I I-BUSY ILL
I-ILLEGAL

2 1 0 0 I 0 0 VJEQVR 0 AMO

1 I 0 1-MCOPN VJEQVR•AMO

3 1 I 0 0 0 0 O-QSRA2 SR/DR-AU2B
1-TRMC AU2B --
0-BUSY
0-COMMAND

4 1 1 1 1 I 1 ILL

0 0 0 O--ILLEGAL ILL
O-BUSY
0,----COMMAND

Table 4-18. Display Register to CM Maintenance Command Transfer Table

Description: (DR)-(SR)cM Mnemonic: XDC Code: 7

Present Next
Transfers SWBC Facility Transfer Conditions Step

State State

1 0 0 0 1 0 0 I-BUSY AMO· (VJEQVR+BAJ)

1 1 0 1-BUSY VJEQVR• BAJ+AMO
1-MCOPN

2 1 0 0 1 0 0 AMO· (VJEQVR+BAJ)

1 1 0 1-MCOPN VJEQVR· BAJ

3 1 1 0 1 0 1 l-QSRA2 SR/DR-AU2B
1-TRMCMA AU2B

4 1 0 1 1 0 1 AMO• (VJEQVR+BAJ)

-
1 1 1 1-MCOPN V JEQVR • BAJ +AMO

5 1 1 1 0 0 0 O-QSRA2 WC SR/DR-AU2B
1-TRMCMD AU2B
O-BUSY
0-COMMAND

Table 4-19. Lock Program Counter Maintenance Command Transfer Table

Description: Lock PC Mnemonic: LPC Code: 8

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 1 1 0 1 -BUSY

z 1 1 0 0 0 0 I-LPCF
0-BUSY
0-COMMAND

~------'------
Step 1

Step 2
(State 6)

When command code 8 is entered in the maintenance reg­
isters, the CR file busy bit is set via the lPFDD24CR(l2}
signal from MLCTL and the maintenance controller is ad­
vanced to state 6.

Following the fir st clock after reaching state 6, the LPCF
flip-flop is set to initiate the locking of PC's designated by
the V field. In the manual mode, the PC associated with
the VP selected by the ASC Maintenance Console VP
SELECT switch is locked. In the semi-automatic and
automatic modes, the PC's associated with the VP' s de­
signated by the V field are locked under influence of the
time slot table. The busy bit and command code field are
cleared via the 1PFDD24CR(l2) and lPFDD28-31CR(l2)
signals, respectively, from MLCTL.

4-220 Unlock PC Command. This maintenance command unlocks the PC's
of the VP' s designated by the V field. Execution of command code 9 is shown
in the transfer table of table 4-20.

Step 1

Step 2

Identical to step 1 of command code 8.

Identical to step 2 of command code 8 except the LPCF
flip-flop is reset to unlock the PC's designated by the V
field.

4-221 Reset Registers Command. This maintenance command resets the
PC, NIR, SWBD, SWBA, VPR, IR, and CM base registers of the VP' s
designated by the V field. Execution of command code A 16 is shown in the
transfer table of table 4-21.

Step 1

Step 2
(State 6)

When command code A 16 is entered in the maintenance
registers, the CR file busy bit is set via the ,PFDD24CR (12)
signal from MLCTL and the maintenance controller is ad­
vanced to state 6.

On the first clock after reaching state 6, the QVPRES
flip-flop on MLCTL is set. The resulting PXVPRES
signal combines with the V field on ML2 to reset the
PC's, NIR' s, SWBD' s, SWBA' s, VPR' s, IR' s, and CM
base registers associated with the VP' s designated by the
V field. The busy bit and command code field are cleared
via the ,PFDD24CR(l2) and 1PFDD28-31CR(l2) signals,
respectively, from MLCTL.

4-222 Set Registers Command. This maintenance command sets the PC,
NIR, SWBD, SWBA, VPR, IR, and CM base registers of the VP' s designated
by the V field. Execution of command code Bl 6 is shown in the transfer table
of table 4-22.

4-348
Advanced Scientific Computer

Table 4-20. Unlock Program Counter Maintenance Command Transfer Table

Description: Unlock PC Mnemonic: UPC Code: 9

Present Next
Transfers SWBC Facility Transfer Conditions Step

State State

1 0 0 0 1 1 0 1-BUSY

2 1 1 0 0 0 0 0-LPCF
0-BUSY
0-COMMAND

Table 4-21. Reset PP Registers Maintenance Command Transfer Table

Description: Reset Registers Mnemonic: RST Code: A16

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

I 0 0 0 I I 0 I-BUSY

2 I I 0 0 0 0 1-QVPRES
0-BUSY
0-COMMAND

"" I

VJ
\.11
.......

Table 4-22. Set PP Registers Maintenance Command Transfer Table

Description: Set Registers Mnemonic: SET Code: B16

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 1 1 0 1-BUSY

2 1 1 0 0 0 0 1-QVPSET
0 -BUSY
0-COMMAND

Step 1

Step 2

Identical to step 1 of command code A16·

Identical to step 3 of command code Bl 6 except the QVPSET
flip-flop is set and the resulting PXVPSET signal is de­
veloped to set the mentioned registers.

4-223 PP Burst Command. In the automatic mode, this maintenance com­
mand advances the VP' s designated by the V field, along with those that are
active, under the influence of the time slot table. Counting begins at time
slot zero and continues until the number of examined time slots equals the
burst count. In the manual or semi-automatic mode, the PP is advanced the
number of time slots indicated by the burst field. Execution of command
code C16 is shown in the transfer table on table 4-23.

Step 1

Step 2
(State 4)

Step 3
(State 6)

When command code c 16 is entered in the maintenance
registers, the CR file busy bit is set via the 1PFDD24CR (12)
signal from MLCTL and the mode is examined. If the
manual or semi-automatic mode has been selected, the
PXCBCLOAD control on MLCTL is developed to enable
the loading of the burst counter with the burst field. The
maintenance controller is advanced to state 6. If the
automatic mode has been s.elected but the current time
slot is not time slot zero (TSCST(O)), the maintenance
controller is advanced to state 4. If time slot zero is
current in the automatic mode, the PXCBCLOAD control
is developed to enable loading of the burst counter and
the maintenance controller is advanced to state 6.

Command code C16 remains in state 4 when the automatic
mode has been selected until time slot zero is current.
When time slot zero is current, the PXCBCLOAD control
is developed to enable loading of the burst counter and the
maintenance controller is advanced to state 6.

As soon as the burst counter is loaded, the PXCBCRN
signal is developed to indicate that the burst counter is
counting on each clock. When PXCB CRN goes to logical
one, the PXMCR UN control is developed on MLCTL to
advance all active VP' s, including those under test, under
the influence of the time slot table. Advancement con­
tinues with each clock as long as the burst counter remains
in a nonzero state. When the burst is complete, as indi­
cated by a cleared PXCBCRN control on ML2, the busy
bit and command code field are cleared via the
1PFDD24CR(l2) and lPFDD28-31CR(l2) signals, respec­
tively, from MLCTL.

4-352 Advanced Scientific Computer

Table 4-23. PP Burst Maintenance Command Transfer Table

Description: PP Burst Mnemonic: CLK Code: C16

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 I 0 0 I-BUSY TSCST(O)·AMO

I I 0 I-BUSY TSCST(O)+AMO
I-CBCLOAD

2 I 0 0 I 0 0 TSCST(O)•AMO

I 1 0 I-CBCLOAD
(

TSCST(O)•AMO

3 I I 0 1 1 0 1-MCRUN CBCRN

0 0 0 0-BUSY CBCRN
0--COMMAND

~------
4-224 PP Cycle Comm.and. In the automatic mode, this maintenance com­
mand advances the VP' s designated by the V field, along with those that are
active, under the influence of the time slot table until all V field designated
VP' s have completed their current instruction. In the. semi-automatic mode,
the VP' s are advanced as in the automatic mode until time slot zero is
reached. In the manual mode, the one VP designated by the V field is ad­
vanced until its current instruction is complete. Execution of command code
D16 is shown in the transfer table of table 4-24.

Step 1

Step 2
(State 6)

When command code n 16 is entered in the maintenance
registers, the CR file busy bit is set via the ~PFDD24CR(l2)
signal from MLCTL and the PXQCPF(0-7) flags are
cleared. The maintenance controller is advanced to state
6.

The cleared PXQCPF(0-7) flags combine with the VP' s
under test and VPJ to develop PXVPADV and PXVPRN,
respectively (both of these controls are described in
table 4-10). As long as both of these controls are logical
one, the PXMCR UN control is developed to advance the
VP' s under test (and all other active VP' s in the automatic
and semi-automatic modes). In the automatic and semi­
automatic modes, as the VP' s under test complete their
instructions, the PXV PRN signal clears the PXMCR UN
control so no additional advancement of these VP' s is
made. When the last VP under test completes its instruc­
tion and time slot zero occurs, the PXVPADV signal
clears the PXMCR UN control for the remainder of the
maintenance command. In the automatic case, the PP
continues running in wait for another maintenance com­
mand. In the semi-automatic case, the PP stops. In the
manual mode only one VP is selected for advaricement, so
when that VP completes its current instruction the PP is
stopped. In all three cases of mode, the busy bit and
command code field are cleared when the PXVPADV
signal goes to zero.

4-225 VP Burst Comm.and. In the manual mode (this command is illegal in
the automatic and semi-automatic modes), the single VP specified by the V
field is advanced the number of steps indicated by the burst field. Execution
of command code E 16 is shown in the transfer table of table 4-25.

Step 1 When command code E 16 is entered in the maintenance
registers, the CR file busy bit is set via the 1PFDD24CR(l2)
signal from MLCTL and the PXCBCLOAD control is de­
veloped to load the burst counter with twice the burst field.
The maintenance controller is advanced to state 6. If com­
mand code E16 is entered in the maintenance registers in

4-354 Advanced Scientific Computer

Table 4-24. PP Cycle Maintenance Command Transfer Table

Description: PP Cycle Mnemonic: CYC Code: D16

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 0 0 0 1 1 0 1-BUSY
O-QCPF(0-7)

2 1 1 0 1 1 0 1-MCRUN VPADV•VPRN

0 0 0 0-BUSY VPADV
0-COMMAND

Table 4-25. VP Burst Maintenance Command Transfer Table

Description: VP Burst Mnemonic: VPBST Code: E16

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

1 a a a 1 1 a I-BUSY ILL
1-CBCLOAD

1 1 1 I-BUSY ILL
I-ILLEGAL

2 1 1 a 1 1 a 1-MCRUN CBCRN

a a a a-BUSY CBCRN
a-COMMAND

3 1 1 1 1 1 1 ILL

a a a a-ILLEGAL ILL
a-BUSY
a-COMMAND

Step 2
(State 6)

Step 3

an illegal mode, the CR file illegal bit is set via the
1PFDD26CR(12) signal from MLCTL and the maintenance
controller is advanced to state 7.

As soon as the burst counter is loaded, the PXCBRN sig­
nal is developed to indicate the burst counter is counting
on each clock. When PXCBCRN goes to a logical one,
the PXMCR UN control is developed on MLCTL to advance
the VP SELECT switch VP. The active override logic on
ML2 disables advancement of the test VP except on every
fourth clock, so a burst field of eight (doubled to 16 be­
fore being loaded in the burst counter) will advance the
test VP four steps. When the burst is complete, as indi­
cated by a cleared PXCBCRN signal on ML2, the busy bit
and command code field are cleared via the
IPFDD24CR(l2) and IPFDD28-31CR(l2) signals, respec­
tively, from MLCTL.

Identical to step 4 of command code 2.

4-226 VP Continuous Command. In the manual mode (this command is il­
legal in the automatic and semi-automatic modes), the VP selected by the
VP SELECT switch on the ASC Maintenance Console and specified by the
V field is advanced until a new maintenance command code is received. If
the new command is other than Fl6• then, in addition to halting the speci­
fied VP, the new command is performed. Execution of command code F 16
is shown in the transfer table of table 4-26.

Step 1

Step 2
(State 6)

When command code F 16 is entered in the maintenance
registers, the CR file busy bit is set via the
1PFDD24CR(l2) signal from MLCTL. If command code
F 16 is entered in the maintenance registers in :an illegal
mode, the CR file illegal bit is set via the
1PFDD26CR(l2) signal from MLCTL and the maintenance
controller is advanced to state 7; otherwise, the mainte­
nance controller is advanced to state 6.

When state 6 is reached and the PXMCRFLG signal indi­
cates the previous maintenance command was not F 16
(MCRFLG), the PXMCRFLG signal goes to a logical one,
the maintenance controller is returned to state zero, and
the busy bit and command code field are cleared. This
new set of conditions is used to develop the PXMCR UN
control, which in turn, advances the VP under test until
a new maintenance command is entered in the mainte­
nance registers. When a new command code F16 is re­
ceived, step 1 is executed as previously mentioned and
step 2 clears PXMCRFLG to stop advancement of the VP
under test.

4-357 Advanced Scientific Computer

*"" I

w
IJ1
00

Table 4-26. VP Continuous Maintenance Command Transfer Table

Description: VP Continuous Mnemonic: VPCNT Code: F16

Step
Present Next

Transfers SWBC Facility Transfer Conditions
State State

--1 a a a 1 1 a 1-BUSY ILL

1 1 1 1-BUSY ILL
1-ILLEGAL

2 1 1 a a a a 1-MCRFLG MCRFLG

a-MCRFLG MCRFLG

a-BUSY
a-COMMAND

3 a a a xxx 0-MCRFLG MCRFLG(a+F)

4 1 1 1 1 1 1 ILL

a a a a-ILLEGAL ILL
a.-------B US Y
a-COMMAND

Step 3

Step 4

When a maintenance command other than Fi6 is entered
in the maintenance registers after the first F 16• the
PXMCRF LG signal is cleared to stop advancement of the
VP under test and the new command is executed as de­
tailed in its associated transfer table.

Identical to step 4 of command code 2.

4-359/4-360 Advanced Scientific Computer

~------
INDEX

Adder
Aligner

Subject

Arithmetic Unit (AU)
AU Control
Augmenting
AU2XFER

Bit Picker
Branch Taken Logic

Central Memory Base Register
Communications Register (CR) File
Comparator
Complement or Constant Generator
CONT AU
CR File Control
CR File Synchronizers
CR Protect
CRBASE (1-3)
CRCELL0-3(0-6)
CRCELLY

CRCONT(0-3)

CRMIRLDR
CRROMRG(0-3)
CROMB
CR I MB
CR2MB
CR3MB

Data Formats
Data Manipulator
Dependency
Double Rail Generator

Indexer
INDEXER (0, 1)
Indirect Instructions
Instruction Format
Instruction Op-Code Groupings

I-1

Page

4-12, 4-78
4-10, 4-72
1-10, 1-29, 4-9, 4-72
4-14, 4-116
4-30
1-28, 1-29, 4-19, 4-161, 4-319

4-12, 4-97
4-14, 4-106, 4-110

1-7, 4-7, 4-67
1-11, 1-29, 4-17, Appendix B
4-14, 4-104
4-10, 4-75
1-28, 1-29, 4-9, 4-119
4-18, 4-138
4-18, 4-151
4-151, 4-217
1-27, 1-28, 1-29, 4-67, 4-154
1-27, 1-28, 1-29, 4-154, 4-157
1-27, 1-29, 4-18, 4-146, 4-153,
4-154
1-27, 1-28, 1-29, 4-18, 4-142,
4-159, 4-314
1-27, 1-29, 4-18, 4-138
1-27, 1-28, 1-29, 4-19, 4-163
1-27, 4-154
1-28, 4-154
1-27, 4-154
1-28, 4-154

1-22
4-14, 4-104
4-40, 4-218
4:_ 10, 4-75

1-10, 1-29, 4-15, 4-129
1-27, 1-29, 4-15
1-22, 4-28, 4-46
1-13
4-193-216

Advanced Scientific Computer

INDEX (Continued)

Subject

Instruction Processing
Instruction Register
Instruction Repertoire
Instruction Transfer Tables

Interrupts
IRCARD(0-3)

Main Instruction Register
Maintenance Command Codes
Maintenance Command Transfer

Tables
Maintenance Logic
Maintenance Logic Control
Maintenance Logic Data Paths
Maintenance Registers
MIRMRGB
MLCTL
MLl (0, 1)
ML2

Next Instruction Register

PC Indexer
PCCARDA(0-7)
PCCTL

PCMB
Peripheral Processor
Peripheral Process or Control
PPAUCD(0-3)
PPCTLl
PPCTL2

Program Counter (PC)

Read Only Memory
Register Indexer
ROMCRD(0-15)
ROMMRG

I-2

1-23, 4-37
1-7, 4-6, 4-52
1-12, 4-28
4-42, 4-218, 4-227-289,
Appendix A
4-48, 4-54, 4-146, 4-217
1-27, 1-29, 4-6, 4-23, 4-55, 4-58
4-60, 4-321

4-23, 4-182
4-291
4-331

1-12, 1-29, 4-24, 4-289
4-295
4-316
4-24, 4-289
1-27. 1-2 9, 4-217, 4-314
1-2 7, 1-29, 4-295
1-27, 1-29, 4-305, 4-309
1-2 7' 1-29, 4-305, 4-307

1-7' 4-6, 4-51

4-15, 4-130
1-27, 1-29, 4-6, 4-310
1-27, 1-29, 4-23, 4-182, 4-219,
4-310
1-26, 1-27
1-1, 1-5, 4-1
1-11, 1-29, 4-23, 4-182
1-27, 1-29, 4-9
1-27, 1-29, 4-23, 4-186, 4-221
1-27, 1-29, 4-23, 4-186, 4-191,
4-223
1-7, 4-5, 4-49

1-10, 1-29, 4-19, 4-117
4-17, 4-137
1-27, 1-28, 1-29, 4-19, 4-161
1-28, 1-29, 4-19, 4-165

Advanced Scientific Computer

INDEX (Continued)

Subject

Shifter
Single Word Buffer Address

Register (SWBA)
Single Word Buffer Controller

(SWBC)
Single Word Buffer Data Register

(SWBD)
Skip Taken Logic
SWBASY
SWBC Asynchronous Logic
SWBC Registers
SWBC Synchronous Logic
SWBSYNC

Test Box 1 Logic
Test Box 2 Logic
Test Box 3 Logic
Time Slot Table
TN Field Indexer
Two Way Bus

Unload Box

Virtual Processor
Virtual Processor Register File
VPRCARD(0-7)
VPRCONT

VPRMB

Write Cycle Equality

I-3 /I-4

4-12, 4-93
1-7, 4-7, 4-70

1-11, 1-29, 4-20, "4-165

1-7, 4-8, 4-70

4-12, 4-106, 4-113
1-27, 1-29, 4-20, 4-314
4-21, 4-171, 4-173
4-169
4-21, 4-167
1-27, 1-29, 4-21, 4-314

4-12, 4-100, 4-101
4-12, 4-100, 4-102
4-12, 4-100, 4-103
1-1
4-16, 4-131
4-23, 4-179

4-10, 4-75

1-7, 1-29, 4-5, 4-49
1-7, 4-7, 4-63
1-28, 1-29, 4-8
1-28, 1-29, 4-23, 4-182, 4-225,
4-310
1-26, 1-28

4-15, 4-40, 4-227

Advanced Scientific Computer

TEXAS INSTRUMENTS
INCORPORATED

EQUIPMENT GROUP
AUSTIN , TEXAS

PU BLI CA Tl ON UPDATE

TYPE OF CHANGE

0 IMMEDIATE
(MAY CAUSE PERSONAL IN.nJRY OR
EQUIPMENT DAMAGE/FAILURE)

Q ROUTINE
(BATCH PROCESSED)

PUBLICATION

PROGRAM __ A_s_c __ PUBLICATION NO. 930182-2

TITLE __ ._O_l\.f__;;I~:_P__;;e_r_i~p_h_e_r--"'a_l_P_r_o_c_e-"-s_s_o_r _____ _

DATEDec., 1973 JOSNO. 930182

SUBMITTED BY

NAME -----------

ADDRESS ----------------------

MAIL STATION DATE ---------

LIST PAGE AND PARAGRAPH OR FIGURE NUMBERS AND DESCRIBE RECOMMENDED CHANGES.

FORWARD CHANGES BV FOLDING THIS SHEET AND STAPLING. RETIJRN ADDRESS IS ON BACK OF SHEET.

TEXAS INSTRUMENTS INCORPORATED

EQUIPMENT GROUP

P ,0. BOX 2909

AUSTIN, TEXAS 78767

ATTENTION: TECHNICAL. DATA BRANCH

MAIL. STATION 21 46

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	2-01
	2-02
	3-01
	3-02
	4-001
	4-002
	4-003
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	4-143
	4-144
	4-145
	4-146
	4-147
	4-149
	4-150
	4-151
	4-152
	4-153
	4-154
	4-155
	4-156
	4-157
	4-158
	4-159
	4-160
	4-161
	4-162
	4-163
	4-165
	4-166
	4-167
	4-169
	4-170
	4-171
	4-172
	4-173
	4-175
	4-176
	4-177
	4-178
	4-179
	4-180
	4-181
	4-182
	4-183
	4-185
	4-186
	4-187
	4-188
	4-189
	4-191
	4-193
	4-194
	4-195
	4-196
	4-197
	4-198
	4-199
	4-200
	4-201
	4-202
	4-203
	4-204
	4-205
	4-206
	4-207
	4-208
	4-209
	4-210
	4-211
	4-212
	4-213
	4-214
	4-215
	4-216
	4-217
	4-218
	4-219
	4-221
	4-223
	4-225
	4-227
	4-228
	4-229
	4-230
	4-231
	4-232
	4-233
	4-234
	4-235
	4-236
	4-237
	4-238
	4-239
	4-240
	4-241
	4-242
	4-243
	4-244
	4-245
	4-246
	4-247
	4-248
	4-249
	4-250
	4-251
	4-252
	4-253
	4-254
	4-255
	4-256
	4-257
	4-258
	4-259
	4-260
	4-261
	4-262
	4-263
	4-264
	4-265
	4-266
	4-267
	4-268
	4-269
	4-270
	4-271
	4-272
	4-273
	4-274
	4-275
	4-276
	4-277
	4-278
	4-279
	4-280
	4-281
	4-282
	4-283
	4-284
	4-285
	4-286
	4-287
	4-288
	4-289
	4-290
	4-291
	4-292
	4-293
	4-294
	4-295
	4-296
	4-297
	4-299
	4-301
	4-302
	4-303
	4-304
	4-305
	4-306
	4-307
	4-309
	4-310
	4-311
	4-312
	4-313
	4-314
	4-315
	4-316
	4-317
	4-319
	4-320
	4-321
	4-322
	4-323
	4-324
	4-325
	4-327
	4-328
	4-329
	4-330
	4-331
	4-332
	4-333
	4-334
	4-335
	4-336
	4-337
	4-338
	4-339
	4-340
	4-341
	4-342
	4-343
	4-344
	4-345
	4-346
	4-347
	4-348
	4-349
	4-350
	4-351
	4-352
	4-353
	4-354
	4-355
	4-356
	4-357
	4-358
	4-359
	4-360
	I-01
	I-02
	I-03
	I-04
	replyA
	replyB

