OPERATION AND MAINTENANCE
INSTRUCTIONS
PERIPHERAL PROCESSOR
VOLUME 1 OF 2

Equipment Group
P.O. Box 2909
Austin, Texas 78767

930182-2 ——— ; p—
December 1973 i p—

© Texas Instruments Incorporated 1973

" A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

No disclosure of the information or drawings shall be made to any other person or
organization without the prior consent of Texas Instruments Incorporated.

LIST OF EFFECTIVE PAGES

DATES OF ISSUE FOR ORIGINAL AND CHANGED PAGES ARE:

Page

No.

Title
A Page. ..
Update . . .
iii - xvi ..
1-1 - 1-30.
2-1-2-2 .
3-1 -3-3 .,
4-1 - 4-359
I-1 - I-3..
Update . . .

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

Note: The portion of the text affected by the changes is
indicated by a vertical linc in the outer margins of the

page.

ORIGINAL. ¢ ¢« « v« .o+ .0, ..,.....DECEMBER 1973

Change Page Change Page Change
No. No. No. No. No.

[l eleolNoNeoNoNoNeoNeNe]

*The osterisk indicotes pages chonged, added. or deleted by the current change.

a2

TABLE OF CONTENTS

Paragraph Title Page
INTRODUCTION

SECTION I. GENERAL DESCRIPTION

1-1 General 1-1
1-2 Purpose of Equipment. s e e e e e o e e e 1-1
1-3 Equipment Overview. 1-1
1-4 System Interface 1-5
1-5 Functional Description . . . ¢ ¢ v ot v v v 0o v o0 v v oo 1-5
1-6 Virtual Processors. . « « o v v v o v o o« e s e e 1-7
1-7 Arithmetic Unit C e et e s 1-10
1-8 IndeXeT. ¢ v o v ¢ e v o v o e o o v o o s o s o o s o 1-10
1-9 Communications Register File . . « .« .« v o v 00 v o 1-11
1-10 Read Only Memory et e e e e . 1-11
1-11 Single Word Buffer Controller 1-11
1-12 Control 1-11
1-13 Maintenance LOgiC « v v v ¢ ¢« ¢ ¢ o 0 o o o o 0 s o o oo 0o 1-12
1-14 Instruction Repertoire. et et e e e e e e 1-12
1-15 Instruction Format. o ve e e v e e e e o s e e s 1-13
1-16 Data Formats ¢ oo v oo e e s e e s e e e e e e 1-22
1-17 Instruction Processing« v v o v o o e e e e e 1-23
1-18 General Characteristics + ¢ ¢ ¢ e v e v 0 0 v o v e e e e e 1-24
1-19 Physical Description. « « « v v v v v o v v v v ot v o0 o v o 1-25
1-20 Integrated Circuit Types . « e e e e e e e 1-29
SECTION II. INSTALLATION
2-1 General . . i i v e bttt e e e e e e e e e e s e e e 2-1
SECTION III. OPERATING INSTRUCTIONS
3-1 General 3-1
SECTION IV. PRINCIPLES OF OPERATION
4-1 General ¢ o0 i v it e e e e e 4-1
4-2 General Description . « ¢« ¢ v« ¢ e v v 0 v oo o v v o oo o v 4-1
4-3 Virtual ProCessOorS. « o o o o o o o o o s s 0 0 0 0 0 o s oo 4-5
4-4 Program Counter Register. 4-5
4-5 Next Instruction Register. . . « v v ¢ v v v o 0 s o v 4-6

111 Advanced Scientific Computer

O

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-6 Instruction Register « v o v v o v o v ¢ o o o o o v o s s 4-6
4-7 Virtual Processor Register File. 4-7
4-8 Central Memory Base Register. 4-7
4-9 Single Word Buffer Address Register. 4-7
4-10 Single Word Buffer Data Register e e e o 4-8
4-11 Arithmetic Unit v 00 v it vt v e e v v o e 4-9
4-12 Aligner. et e e e e e e e e e e e e e 4-10
4-13 Complement or Constant Generator. o o e 4-10
4-14 Unload BOX v v v o v v o v o v v o 0 ot o oo oo oo owas 4-10
4-15 Double Rail Generator. c e et e s s s e et s e 4-10
4-16 Adder. . . v v v ot i i ettt e e e e oo e o o e 4-12
4-17 Shifter D 4-12
4-18 Bit Picker. et e e e et e e 4-12
4-19 Test Box 1, 2, and3Log1c............... 4-12
4-20 Comparator. . . .« v v v . et t e e e e e e e e 4-14
4-21 Data Manipulator e e e e e e e e e e 4-14
4-22 Skip Taken and Branch Taken Loglc oo 4-14
4-23 AUControlo oL e s s et e b e e e e e 4-14
4-24 Indexer. . « e v v v v i Gt s s s e s e e s e e 4-15
4-25 PC Indexer 4-15
4-26 TN Field Indexer v v v v v v v c e e s e s e e 4-16
4-27 Register Indexer oo v v v e v v o .. 4-17
4-28 Communications Register File e e e e 4-17
4-29 CR File Control. v e e e a e . e 4-18
4-30 Input Synchronizers e et e e e e 4-19
4-31 Communications Registers. . . « « ¢« v v v v v v v v 4-19
4-32 Read Only Memory. S 4-19
4-33 Single Word Buffer Controller v e e e e 4-20
4-34 Synchronous Logic . « v .. e e e e e s e e e 4-21
4-35 Asynchronous Logic t e e e e e e 4-21
4-36 T Two-Way Bus . . v v v v vt oo o v v oo 4-23
4-37 Peripheral Processor Control e e e e 4-23
4-38 MaintenanceLogic....................... 4-25
4-39 Instruction Repertoire. . . ¢ . « . . . e e e e e . 4-28
4-40 Store Instructions (ST, STA, STH S'I‘B STL STR

and STE) v ¢ v v o v o 0o v v o o o c e e e e e e e e e e 4-31
4-41 Load Instructions (LD, LDA, LDH, LLDB, LDL,

LDR, LDF, LDI, LLDHI, and LDBI) ¢ 4-32
4-42 Arithmetic Instructions (AD, ADH, ADB, ADL,

ADR, ADI, ADHI, ADBI, SU, SUH, SUB, SUL,
SUR, SUI, SUHI, SUBI) « ¢ ¢ ¢t v et ot v ot o oo 4-32

v Advanced Scientific Computer

O

Paragraph Title , Page

TABLE OF CONTENTS (Continued)

4-43 Logical Instructions (OR, ORH, ORB, ORL, ORR,
ORHI, ORBI, AN, ANH, ANB, ANL, ANR,
ANHI, ANBI, EX, EXH, EXB, EXL, EXR,
EXHI, EXBI, EQ, EQH, EQB, EQL, EQR,

EQHI, EQBI) . v v v v v v v i vttt v e o e e ... 4-33
4-44 Compare and Skip Instructions (CE, CEH, CEB

CEL, CER, CEI, CEHI, CEBI, CN, CNH, CNB,

CNL, CNR, CNI, CNHI, CNBIL. v v v v v ¢ e v s o oo 4-33
4-45 Shift Instructions (SHL, SHA, SHC). . « ¢ v ¢ ¢ ¢ ¢ o v . 4-33
4-46 Stack Instructions (PUSH, PULL, MOD). . . « ¢« ¢ .. 4-33
4-47 Set/Reset CR Bit Instructions (SL, SR, RL, RR). .. 4-34
4-48 Test CR Bits and Skip Instructions (TOL, TOR,

TzZL, TZR, TAOL, TAOR, TAzZL, TAZR) 4-35
4-49 Test CR Bits, Set/Reset, and Skip Instructions

(TszLl, TSOL, TRzZL, TROL, TSZR, TSOR,

TRZR, TROR). ¢ ¢ v v v s v o s o s o o o s oo e e e 4-35
4-50 Set/Reset CR VP Flag Instructions (VPS, VPR). ... 4-35
4-51 Test CR VP Flag and Skip Instructions (VPTO,

0 I/ 4-35
4-52 Arithmetic Conditional Branch Instructions (TZ,

TZH, TZB, TN, TNH, TNB, TP, TPH, TPB,

TM, TMH, TMB) . . . i i i i i et et e ot s oo oo 4-35
4-53 Increment/Decrement and Test Conditional Branch

Instructions (IBZ, IBN, DBZ, DBN). e e 4-35
4-54 Unconditional Branch Instructions (BPC, BR, BC

BCA). v i i e it it e i e e Gt e et e e e e e 4-36
4-55 Unconditional Branch and Load PC Instructions

(BPCS, BCS, BRS, BCAS) e e e e e 4-36
4-56 Unconditional Branch to ROM and Store PC

Instruction (BRSM) e e e ee e e e e 4-36
4-57 Analyze Effective Address Instruct1on (ANAZ) e e 4-36
4-58 Load Effective Address Instruction (LDEA). 4-36
4-59 Load CM Base Register Instruction (LDMB) e e e e s 4-37
4-60 Execute CM Instruction (EXEC) e e e e e e e 4-37
4-61 Test Poll Bits Instruction (POLL). e e e e 4-37
4-62 Instruction Processing . . o v ¢ o v o s o o 0 o o o o e e e e 4-37
4-63 Sequential Dependencies+ v o e e e e e e 4-39
4-64 CM Instruction Requires CM AcCCESS . v ¢ s ¢ o o o« 4-40
4-65 Current Instruction Modifies Next Instruction . . . 4-40
4-66 Current Instruction Modifies Next Instruction

Index. « v ¢ v v e 0 v o v o o v e v o0 v . .o 4-40
v

Advanced Scientific Computer

a2

TABLE OF CONTENTS (Continued)

Paragraph Title ' Page
4-67 Unconditional Branch and Load PC Instruction
Followed by PC Relative Branch 4-41
4-68 Instruction Transfer Tables. e e e e .. 4-42
4-69 No Operation Instruction . « v v v v v v v v v vt v v oo o 4-43
4-70 Store Word to Central Memory Instruction 4-45
4-71 Compare Central Memory to VPR Instruction. 4-45
4-72 Indirect Cycle . o v v v v v v v v v v 4-46
4-73 Interrupt Cycle . . v v v i i i i i ittt i ettt et e 4-48
4-74 Detailed Description. « v v v v v v vt v o et et v v v o oo 4-49
4-75 Virtual Processors. « v v v v v v o v v ot oo v s o v v s o 4-49
4-76 Program Counter Register. e e et e e 4-49
4-79 Next Instruction Register. . « « v v v v v e v 0o v vt 4-51
4-80 Instruction Register « . « v v v v v v v vt vt 06 0o 4-52
4-85 Virtual Processor Register File.o v o v . 4-63
4-88 Central Memory Base Register. “ . 4-67
4-91 Single Word Buffer Address Register. « « o o v ¢ . 4-69
4-92 Single Word Buffer Data Register o s a e 4-70
4-93 Arithmetic Unit . . v . v v v i v it vt ittt e v e o 4-72
4-94 Aligner. « « v v v v v v v e s s e e e s e e e ee e e 4-72
4-95 Complement or Constant Generator et e e e e 4-75
4-96 Unload BoxX i v v v ¢ v v v e 00 00 o a e e e e e 4-75
4-97 Double Rail Generator. « « v v v o v v v v v v o v v o v 4-75
4-98 Adder. . . Vi i i i it e e et e e e e e e e 4-78
4-104 Shifter e s e e s s e e e s e e 4-93
4-108 Bit Picker. v ¢ v v o v v v i ot i et ot b et s e e 4-97
4-109 Test Box 1, 2, and 3 Logic « v v v s v v v o o 0 0 s o 4-100
4-113 Comparator. « « v v o ¢ .. 4-104
4-114 Data Manipulator Gt e e e s e e e s 4-104
4-115 Skip Taken and Branch Taken Loglc oo e e 4-106
4-119 AUControl . . . v ot v i vt v v oo u e e e e e 4-116
4-123 Indexer. « 4-129
4-124 PC Indexer e e e e e e c e e e 4-130
4-125 TN Field Indexero v v v v v v ¢t e e s 4-131
4-129 Register Indexer ¢ v v v v v v v v o oo e 4-137
4-130 Communications Register File . v« v v v v ¢ v 0 0 0 ¢ 0 o 4-138
4-131 CRFileControl. . . v v i i ittt vttt i v e a e v 4-138
4-135 Input Synchronizers ¢ v vt v ot o oo v oo 4-151
4-136 CR Registers. « o« « ¢« . Gt e e s s e s e e e e e e e 4-153
4-140 Read Only Memory. e o s s e s e s e s e s e e s 4-161
4-141 ROM Addressing LOgiC v v v v v o v o ¢ ¢ s « & oo o oo 4-161
4-142 ROM Merging Logic v v v o v ¢ v . . c co oo e as 4-161
vi

Advanced Scientific Computer

a2

TABLE OF CONTENTS (Continued)

Paragraph Title Page
4-143 Single Word Buffer Controller¢.... 4-165
4-144 Synchronous LoOgic « ¢ v v v v e o v ot v ot v o v o0 v 4-165
4-147 Asynchronous Logic « o v v v v 0 v v v vt et oo v v . 4-171
4-151 Two Way Bus. « s e s e e e e e e et 4-179
4-154 Peripheral Processor Control Introduction. 4-182
4-155 Peripheral Processor Control oo 4-182
4-156 Detailed Transfer Table AnalysisS « « o ¢ v ¢ o s o « & 4-218
4-195 Maintenance LOGIiC « v v v o v v 0 v v v o v o v o v o0 0 s o 4-289
4-196 Maintenance Registers . . . o v o o v e s o o o o o o o 4-289
4-204 Maintenance Logic Control. « . v v v v v v v v 0o v u 4-295
4-207 Maintenance Logic Data Paths s ¢ ¢ e 0o oo 4-321
4-208 Maintenance Logic/PP Timing . « v « v v v o o e o .. 4-323
4-211 Maintenance Command Transfer Tables. 4-331

INDEX

vii/viii Advanced Scientific Computer

&

LIST OF ILLUSTRATIONS

Figure Title Page
1-1 Peripheral Processor. e e e e .o 1-2
1-2 ASC System Simplified Block Diagram. « . « « v ¢ ¢ s o ¢ &« 1-3
1-3 CR File Time Slot Assignment « « « o « ¢ ¢ 4 ¢ ¢ ¢ o 0 00 0o 1-4
1-4 Simplified System Interface Diagram. « « « « o « ¢ ¢ s o o o« 1-6
1-5 Peripheral Processor Simplified Block Diagram 1-8
1-6 Virtual Processor Simplified Block Diagram. . « « « . « « . 1-9
1-7 Peripheral Processor Instruction Format. « « . . .« v ¢ .. 1-22
1-8 Peripheral Processor Data Formats . « « v v v v v v 0 v v v 1-23
1-9 Peripheral Processor Assemblies. « « v o v ¢ o v 0 v o 0 v v 1-26
1-10 Peripheral Processor Logic Card Locations. « . .« 1-27
1-11 Peripheral Processor ECL Logic Set. . « . v . ¢« v v o 0o v o 1-30
4-1 Peripheral Processor Detailed Block Diagram. 4-3
4-2 PCCARDA(0-7) Registers . v e oo o oo o o e e e e e 4-6
4-3 VPRCARD(0-7) VPR File. oo e e e e e e e s 4-8
4-4 Arithmetic Unit Detailed Block Diagram.o 4-11
4-5 Peripheral Processor Shift Basics . o ¢ v v v 000 v v 0o v 4-13
4-6 Indexer Block Diagram « o « v o o o o o o o o o v o v o o o v oo 4-16
4-7 .Communications Register File Block Diagram. c e e e s e 4-18
4-8 Read Only Memory Block Diagram s e e s e 4-20
4-9 Single Word Buffer Controller Block D1agram e s e e s e 4-22
4-10 Peripheral Processor Control Block Diagram. 4-24
4-11 Peripheral Processor Maintenance Logic

Block Diagram ¢« « o o ¢ o o o o o ¢ o s o v o o oo o 4-26
4-12 Peripheral Processor Instruction Set. . . .« . ¢ 00 v oL 4-29
4-13 Peripheral Processor Instruction Processing . « . « 4-38
4-14 Program Counter Registers. c e e e n e 4-50
4-15 Next Instruction Registers. e e e e e e e e e 4-52
4-16 Instruction Register Format. « . « ¢ v ¢ ¢ e o e v v 0o v o0 oo 4-53
4-17 Instruction Register Loading Format. « . . ¢ ¢ ¢ ¢ 0 o« v o 4-56
4-18 Instruction Register (IRCARD(0)) « ¢ o v v v v v .. . e e e e 4-57
4-19 Instruction Register (IRCARD(1)) « v v v v v v v v v v e v v v 4-59
4-20 Instruction Register (IRCARD(2)) « v ¢ v v v o v v e v 0o o 4-61
4-21 Instruction Register (IRCARD(3)) e e e e e e e 4-62
4-22 Virtual Processor Register Files . v v o ¢ ¢ ¢ o o ¢ o s o 0 o o 4-65
4-23 Central Memory Base Registers. e e e e e e 4-68
4-24 Single Word Buffer Address Registers. 4-69
4-25 Single Word Buffer Data Registers ¢ 000000 4-71
4-26 Aligner Logic on PPAUCDM(0-3) ¢ ¢ v v v o 0 v v v o oo v o 4-73
4-27 Aligner Byte Rotation e e e e o e e e e 4-74

ix

Advanced Scientific Computer

O

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
4-28 "Complement or Constant Generator. .« e e 4-76
4-29 Unload BoxX &« v v v v v v v vt e e e e et e et v ot oo v a e oo 4-77
4-30 Five-Level Look-Ahead Adder ¢ v v v v v v v v v v v v 4-79
4-31 Five-Level Look-Ahead Adder Detailed Block

Diagram . ¢ oo v v v v v v v v v v e et e e e e e e e e e e 4-80
4-32 Adder Level 1 Equation Implementation . « . « v ¢ ¢« v ¢ ¢« . 4-81
4-33 Adder Level 2 Equation Implementation. 4-84
4-34 Adder Level 3 Equation Implementation. 4-87
4-35 Adder Level 4 Equation Implementation 4-90
4-36 Adder Level 5 Equation Implementation. e e e 4-91
4-37 Shifter Logic on PPAUCDM (N). e e e e e e e e e e e 4-94
4-38 Bit Picker Data Flow s e e s s e e e s s 4-98
4-39 Bit Picker Equation Implementation. e e e e 4-99
4-40 Bit Picker Support Logic on PPCTL2 4-101
4-41 Data Manipulator e s e et e e e e oo 4-105
4-42 Data Manipulator Flow Chart . . v v v v v v v v v v v v 0 v . 4-107
4-43 Arithmetic Unit Test Functions. « « v v v v o v v v v v v v v o 4-109
4-44 AU Control on CONTAU. . . & v i v vt vt v vt vt o v oo o 4-117
4-45 Aligner Control Logic on CONTAU e e e e s e 4-118
4-46 Aligner Control Inputs (PALWSWB(0-3) and

PALRSWB(0-3). v v v v v v v v o v v e s s e e e e e e e e e 4-120
4-47 Shift Control Logic on CONTAUo v e e e e 4-122
4-48 Shift Operand/Shift Decode Logic Output. « « « v v v v v v . . 4-123
4-49 Shift Code Update Logic. v v v v v v v v v v v o v v v o v e v v o 4-125
4-50 Program Counter Indexer v v vt v vt v oo v v oo . 4-130
4-51 TN Field Indexer . « v v v v v v i vttt ot it ettt o e o e e 4-132
4-52 OP A Selector e e e e e e e e e e e e e 4-133
4-53 OPBSelector . v .. v v v i i it it et v v 4-135
4-54 OP C Selector . o e e e e e e e e 4-136
4-55 Register Indexer i v v v i ittt vttt v e oo o e o 4-137
4-56 CRMIRLDR Control Logic . « o v o . . . e e e e e e e e 4-139
4-57 CRMIR Input Format From CRMIRLDR e e o e e e s e 4-141
4-58 CRCONT1 Control Loglc................. 4-143
4-59 CRMIR Output Format from CRCONTO0O - CRCONT3 4-144
4-60 CRCELLY Control Logic . « v v v v ¢ v ¢ o v« v e e e e e e 4-147
4-61 Input Synchronizers ¢ 0 i i ittt 4-152
4-62 Input Synchronizer Timing Diagram. « « « o « « ¢« ¢ o o « o o « 4-153
4-63 CR File Card Layout. « « v . v v v v v v v u et e e e 4-154
4-64 CRCELLY Registers. « « v v v v v v vt vt v ot v v v o v o n o 4-155
4-65 CRCELLI(0) Registers v v v v v o v v o v o ot o o o o o o s o . 4-158
4-66 CR File Output Merging Logic (CRABZ Bus)..... “oes 4-160
4-67 Read Only Memory (ROM) . ¢ v v v v v v v v vt v v e v u ... 4-163

X

Advanced Scientific Computer

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
4-68 Single Word Buffer Controller Synchronous Logic 4-167
4-69 Single Word Buffer Controller Registers cee e 4-169
4-70 Single Word Buffer Controller Input/Output

Counters . v v v v v v i i vttt et i e e e e e e e e e 4-170
4-71 Single Word Buffer Controller Asynchronous Logic 4-173
4-72 Active Flag Reset Synchronizer vt vv e .. 4-176
4-73 Write Request Synchronizer. e e e e 4-177
4-74 Read Request Synchronizer vt v i 4-179
4-75 Parity Error Synchronizer. . . . Gttt e e e e e 4-180
4-76 Single Word Buffer Controller TWB and MAMB Buses . . 4-181
4-77 Peripheral Processor Control Block Diagram. 4-183
4-78 MIR Input Format. « « v v v v v v v v v v v v v e e oo o o s e s 4-185
4-79 MIR Output Format. . « v v v v v it i ettt e e v s 4-187
4-80 MIR Op-Code, State Class, and Step Decoding Logic

on PPCTLZ i it ittt it ittt ie e 4-189
4-81 SWBD/NIR Op-Code and T Field Selectlon and

Decoding Logic on PPCTL2. vttt vt vt o v v 4-191
4-82 Store Op-Code Groups. « « v v v v v o s v o o & e e e e e e e 4-193
4-83 Load Op-Code Groups. + « v v v o ¢ ¢ ¢ . e e e e e e 4-194
4-84 Arithmetic and Compare Op-Code Groups 4-195
4-85 Shift, Stack, VP Bit Control, and CR Bit Control

Op-Code GIroups « v v v v v v v v o v o ot v oo oo v o oo oo 4-196
4-86 Conditional and Unconditional Branch Op-Code

L o YD o 4-197
4-87 Logical and Miscellaneous Op-Code Groups« .+ . . 4-198
4-88 Load CR (PILDCR) Op-Code Groups .« . « « « ¢ « o s ¢ o o « & 4-199
4-89 Load VPR (PILDVPR) Op-Code Groups . . « s « v v v o o « & 4-200
4-90 Remapped and Augmented Remapped Op-Code Groups. . . 4-201
4-91 PIRMAPA - " PIAR(1) Remapped Op-Code Groups 4-202
4-92 PIRD(2) Remapped Op-Code Groups .« « « + ¢ v v v v 0 o o o & 4-203
4-93 2 PIRD(3) Remapped Op-Code Groups. . . « « . . . e oo 4-204
4-94 -PIRD (4) Remapped Op-Code Groups. oo ae. 4-205
4-95 APIRD (5) Remapped Op-Code Groups. . « « v ¢« o o v o o o o & 4-206
4-96 Illegal Op-Codes v v v v v v v i v it et ettt e et e s o 4-207
4-97 Unconditional Branch to Central Memory ($XMDR(0))

and Indirect Through CR or VPR (PIPPTNX)

Op-Code Groups « + « v v v v v v v v oo ¢t e e e e 4-208
4-98 Base Relative Unconditional Branch to Central Memory

(MPINBRUCB) and Miscellaneous Central Memory

(OPINBMISC) Op-Code Groups. . « « « o+ + ¢ s « o « e e 4-209

%1 Advanced Scientific Computer

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page
4-99 "Register Indexer Supplied Destination (MPISDR)

Op-Code Groups (Source is Central Memory or

Immediate). ¢ « v v v v v vt e e e e e e e e e e e e e e .o 4-210
4-100 TN Field Indexer Supplied Source (—iPITATNR)

Op-Code Groups . « « « . « © e s e e e s e s e s e s e e s 4-211
4-101 Register Indexer Dependent (PININDCR) Op- Code

Groups « . v v v v v v vt v e e e e e e e e 4-212
4-102 Base Relative Branch to Central Memory (mMPINBCM)

and Register Indexer Specifying CR (PINCRR)

Op-Code Groups « « v v v v v v v v v v et e e e e e 4-213
4-103 TN Field Specifying Central Memory (—:PINCMTN)

Op-Code Groups + « v v v o v v v 0 o o e e e s e e e e e e e 4-214
4-103A Ignore Indirect (IGI) Op-Codes . . . v v vt v v v 0 v v v v v 4-215
4-104 SWBD/NIR Unique Op-Code Groups. . .« « « « « s « « & e 4-216
4-105 PCCTL Detailed Block Diagram . « ¢ v v v v v v v v 0 v v v o 4-219
4-106 PPCTLI1 Detailed Block Diagram « ¢ « v v ¢ v o o v 0 0 v o v 4-221
4-107 PPCTL2 Detailed Block Diagram .« ¢ v v v v v o v o v o v o 4-223
4-108 VPRCONT Detailed Block Diagram . « o o ¢ ¢ ¢ ¢ ¢ o s 0 o o & 4-225
4-109 Peripheral Processor Maintenance Registers 4-290
4-110 Maintenance Register Register Field Format 4-294
4-111 Peripheral Processor Maintenance Logic Control

Detailed Block Diagram . « v v v v v « « T 4-297
4-112 MLCTL Detailed Block Diagram. . .« .« . v v v v v v v oo 4-299
4-113 Maintenance Controller State Diagram. e e e 4-301
4-114 ML2 Detailed Block Diagram . « « ¢ v v v v v v 0o 0 o v v o 0 s 4-307
4-115 ML1(0, 1) Detailed Logic Diagram. « « « v+ ¢ o v ¢ ¢ v s v 0 o 4-309
4-116 Maintenance Related Logic on PCCTL v v v v v v v 4-311
4-117 Maintenance Related Logic on PCCARDA(0-7). 4-312
4-118 Maintenance Related Logic on VPRCONT 4-313
4-119 Maintenance Logic on MIRMRGB. e e e e e e e e e . 4-315
4-120 Maintenance Related Logic on CRCONTl Cee e oo 4-316
4-121 Maintenance Related Logic on SWBSYNC/SWBASY ce e 4-317
4-122 Maintenance Related Logic on AU2XFER04 o0 .. 4-319
4-123 Maintenance Related Logic on IRCARD (0-3). .. .4 4.« 4-320
4-124 Peripheral Processor Maintenance Logic Data Path

Detailed Block Diagram . « « v v v o v v v v v v v v v v o . 4-322
4-125 Maintenance Logic/Peripheral Processor Timing 4-325

xii

Advanced Scientific Computer

i

LIST OF TABLES

Table Title Page
1-1 Peripheral Processor Instructions ¢ v v e v o v o 1-14
1-2 Peripheral Processor General Characteristics 1-24
1-3 Peripheral Processor Logic Card Functions. « 1-29
4-1 Peripheral Processor Operand Types . v v v v v v v v 0 o o 4-30
4-1A Transfer Table Column Description. « + v v v v v v v v v o o 4-42
4-2 Instruction States v v v v i i it i e e e e e e 4-44
4-3 State Class and Step Defined/Actual Relatlonshlps 4-228
4-4 Instruction Transfer Table Analysis Index+ 444 .. 4-228
4-5 Maintenance Register Control Field Breakdown. 4-290
4-6 Maintenance Command Codes. « . v v v v v v v v v v 0 v v v v 4-291
4-7 Maintenance Register F Field Breakdown. « « . ¢ v o v v .. 4-293
4-8 Register Field Register Designation c t e s e e 4-294
4-9 MLCTL Maintenance Command Control Signals. 4-303
4-10 Maintenance Logic Abbreviations .+ . ¢ v v v v v v v v v 0o 4-327
4-11 Maintenance Command Transfer Table Terms. 4-332
4-12 Switch Register to Display Register Maintenance

Command Transfer Table. €t e e s e s e s e 4-335
4-13 PP Register to Display Register Maintenance Command

Transfer Table. O 4-336
4-14 Central Memory to Display Register Maintenance

Command Transfer Table. oottt v v v 4-338
4-15 ROM to Display Register Maintenance Command

Transfer Table. e e e e e e e e e e 4-341
4-16 Switch Register to PP Register Maintenance Command

Transfer Table. c s s s e st e e e e 4-343
4-17 Display Register to PP Reg1ster Malntenance Command

Transfer Table. v vt vt it v i i i ittt i it ia e 4-345
4-18 Display Register to CM Maintenance Command

Transfer Table. e e e e e e e e 4-346
4-19 Lock Program Counter Maintenance Command

Transfer Table. e e e e et e e e e 4-347
4-20 Unlock Program Counter Maintenance Command

Transfer Table. e e e e c o e e e - 4-349
4-21 Reset PP Registers Maintenance Command Transfer

Table . .. v oo v v v v v Gt et e e e e et et e e e e 4-350
4-22 Set PP Registers Maintenance Command Transfer

Table e e s s e e e e e e o e e e o s e oo s 4-351
4-23 PP Burst Maintenance Command Transfer Table. 4-353

xiii

Advanced Scientific Computer

LIST OF TABLES (Continued)

Table Title Page

4-24 ‘PP Cycle Maintenance Command Transfer Table. 4-355

4-25 VP Burst Maintenance Command Transfer Table. 4-356

4-26 VP Continuous Maintenance Command Transfer Table . . 4-358
xiv

Advanced Scientific Computer

INTRODUCTION

PURPOSE OF MANUAL

This manual provides the information and instructions necessary for mainte-
nance personnel to operate and maintain the Peripheral Processor, Texas
Instruments part number 921444-1. This manual is one of a series of man-
uals prepared for the Advanced Scientific Computer (ASC) system.

CONTENT

This manual consists of seven sections and appendices, divided into two
volumes. A brief description of each section is provided in the following
paragraphs.

SECTION I (VOLUME I) GENERAL DESCRIPTION

This section provides a brief functional description of the Peripheral Pro-
cessor, the manner in which the Peripheral Processor interfaces with the
ASC system, and the part the Peripheral Processor plays in the ASC system.
This section also contains a list of general operating characteristics, a brief
introduction to the instruction repertoire, and a paragraph on the unique
method of Peripheral Processor instruction processing.

SECTION II (VOLUME I) INSTALLATION

This section references the ASC System Installation Manual for Peripheral
Processor installation instructions. '-

SECTION III (VOLUME I) OPERATING INSTRUCTIONS

This section references the ASC Maintenance Console OMI for the controls
and indicators related to Peripheral Processor operations and the ECL
Regulators OMI for the controls and indicators associated with the Periph-
eral Processor power supply regulators.

SECTION IV (VOLUME I) PRINCIPLES OF OPERATION

This section provides both a general and detailed description of the Periph-
eral Processor theory of operation. Both descriptions are based on the
eight basic functional areas of the Peripheral Processor. The general de-
scription covers the eight functional areas at the block diagram level and the
detailed description is based on logic diagrams and detailed block diagrams.

XV S
Advanced Scientific Computer

SECTION V (VOLUME II) MAINTENANCE
This section will be provided at a later date.
SECTION VI (VOLUME II) PARTS LISTING
This section will be provided at a later date.
SECTION VII (VOLUME II) DIAGRAMS
This section will be provided at a later date.
APPENDICES (VOLUME II)

This manual contains the following three appendices:
APPENDIX A - Peripheral Processor Transfer Tables
APPENDIX B - Communications Register File Map
APPENDIX C - External Maintenance System

xvi Advanced Scientific Computer

SECTION I
GENERAL DESCRIPTION

1-1 GENERAL

This manual provides operation and maintenance instructions for the Periph-
eral Processor (figure 1-1) manufactured by Texas Instruments Incorporated
as part of the Advanced Scientific Computer (ASC) system.

1-2 PURPOSE OF EQUIPMENT

The Peripheral Processor (PP) is a versatile multiprocessor designed to
control a variety of peripheral devices and perform management functions
for the ASC system. The primary device interfaces of a typical ASC system
are shown in figure 1-2. Within this configuration, the Peripheral Proces-

sor performs the following:
° Controls all ASC operations required to process User Programs
° Communicates with all peripheral devices
° Schedules tasks for the Central Processor

° Fulfills job requests that do not require the high arithmetic
capabilities of the Central Processor

o Provides central control for ASC operational checkout and
maintenance

The Peripheral Processor is readily adaptable to future changes in the
peripheral scheme due to the large file of Communications Registers that
provide the primary interface to the peripherals and the rich instruction
repertoire designed to control these Communications Registers.

1-3 EQUIPMENT OVERVIEW

The Peripheral Processor structure includes eight identical processors,
designated Virtual Processors (VP's), each capable of executing a separate
program from Central Memory or the Peripheral Processor Read Only
Memory. The Virtual Processors execute programs on a time-sharing
basis under the influence of a time slot table that allocates real time to 16
table entries, each approximately 85 nanoseconds long. The time slot table
is located in Communications Registers (CR's) eight and nine, as shown in
figure 1-3. As real time progresses, the time slots are examined in the
sequence shown in figure 1-3. Each time slot entry consists of an active
bit and a three-bit Virtual Processor identification code. The active bit is

1-1 Advanced Scientific Computer

119189 (686-1072~13-4)

Figure 1-1. Peripheral Processor

1-2 Advanced Scientific Computer

191ndWoY) 31}11U8IIS PAIUBAPY

OPERATORS
CONSOLE

CARD
PUNCHES -—P>

LINE PRINTERS

TAPE
VOLUME
CATALOG

(A)124726

PERIPHE RAL
PROCESSOR
(PP)

CENTRAL
PROCESSOR
(cP)

0y

DISC
STORAGE

DISPLAY
CONSOLE

CARD
READERS

Figure 1-2.

ASC System Simplified Block Diagram

CENTRAL
MEMORY
(cm)

DATA TO DATA

COMMUNI— Cons

CATIONS —

A ANNEL CENTRATOR
TO FIELD
TAPE
INTERFACE
TERM INAL

[

(A) 124725

11

7
yo

15 o

NUMBER OF /

VP ASSIGNED TO
TIME SLOT,

o
9
8
TIME SLOT ASSIGNMENT EXAMPLE
0 31
CR8 8|l 1|9] 2|1of 3|11
CR9 12| s|13] 6 14| 7]15
\O 3y 31
CR FILE TIME SLOT COUNTING SEQUENCE
1§ L}
' '
! !
I
o 3
ACTIVE BIT
TIME SLOT ENTRY FOR
ONE CLOCK
Figure 1-3. CR File Time Slot Assignments

1-4

Advanced Scientific Computer

set to indicate when a Virtual Processor is to use the time slot for program
execution and the three-bit identification code identifies one of eight Virtual
Processors to perform the execution. The example in figure 1-3 is one case
of time slot assignment where each of the Virtual Processors is provided
with two execution periods for one pass through the time slot table. Any
other combination of Virtual Processor time slot assignments can be made;
however, if one Virtual Processor is assigned two consecutive time slots,
the second assignment will be voided due to hardware limitations.

One of the eight Virtual Processors is designated the master Virtual Proces-
sor and is assigned time slot zero. The master Virtual Processor then ex-
ecutes the Master Controller function (this includes making the initial time
slot assignments) of the ASC Operating System (software) and assigns the
remaining controller functions to other Virtual Processors. Any Virtual
Processor not assigned a block of the Operating System can be used to con-
trol the individual jobs required to execute ASC system jobs. This type of
job includes reading cards from one of the system card readers, printing
out a memory buffer on one of the line printers, or initializing a Central
Processor job. Virtual Processors not assigned work remain idle until
activated by the master Virtual Processor.

1-4 SYSTEM INTERFACE

The eight Virtual Processors that make up the Peripheral Processor inter-
face with the Central Processor and all other peripherals in the ASC system
through a group of 64 32-bit registers designated the Communications Reg-
ister (CR) file. Each hardware device in the system is assigned a portion of
the CR file as detailed in Appendix B of this manual. The assigned bits in
the CR file may be set or read by the associated peripheral devices (includ-
ing the Central Processor) and all CR file bits may be set or read by any of
the Virtual Processors.

The CR file provides the data paths for the paper peripheral devices and the
control interface between the Virtual Processors and all units in the system
(refer to figure 1-4). The CR file also monitors and processes system hard-
ware and software interrupts, holds control information necessary to exer-
cise the Peripheral Processor maintenance logic, and serves as the mainte-
nance interface with the system whereby Virtual Processors execute diagnos-
tic programs and monitor data, status, and control bits for each device in
the system.

1-5 FUNCTIONAL DESCRIPTION

The Peripheral Processor (PP) consists of eight identical Virtual Processors
(VP's) and the following major components that are time-shared by the VP's:

Advanced Scientific Computer

FIXED
CONNEC—
TION
LINE D/C
PRIN- You
TERS
,
CARD b/c
READERS
/
D/C
CARD -
PUNCHES
D/C
CENTRAL c
PROCES— |- -
SOR
D/C
HERM INAL Sl L

RANDOM
ACCESS

TO
ROM OR

CENTRAL

VPO MEMOQRY

[e

g—8 P
CR
FILE
>
Ll———————l- VP2
s s
l— o s
64 X 32
BITS
e VPS5
>
. VP6
-)—————» VP7

D/C = DATA AND CONTROL LINES

(A) 124724

Figure 1-4.

Simplified System Interface Diagram

1-6

Advanced Scientific Computer

° Arithmetic Unit

° Indexer

° Communications Register File
. Read Only Memory

° Single Word Buffer Controller
° Control

° Maintenance Logic

A simplified block diagram of the PP detailing the interfaces between the
major components is shown in figure 1-5. A brief description of each com-
ponent is given in the following paragraphs.

1-6 VIRTUAL PROCESSORS

The PP contains eight identical Virtual Processors (VP's), designated VPO
through VP7, used to execute the software necessary to control all ASC sys-
tem operations.

The VP's execute their respective code according to the time-sharing meth-
od provided by the time slot table (described in the equipment overview para-
graph of this section). Since only one of the eight VP's can be active at any
given time, the other seven major components of the PP can be time-shared
between the eight VP's. The net effect is eight separate processors, but
with a considerable savings in logic.

Each VP has a large instruction repertoire (219 basic instructions and one
no-operation instruction) and employs three-level instruction look-ahead to
facilitate high-speed instruction processing. The instruction word retrieved
from either Central Memory or Read Only Memory is 32 bits, but is expanded
to 64 bits within each VP prior to instruction execution. Each of the VP's
consists of the following register types:

° Program Counter Register

° Next Instruction Register

. Instruction Register

° Virtual Processor Register File
. Central Memory Base Register

° Single Word Buffer Address Register
° Single Word Buffer Data Register

Figure 1-6 ties all of the VP register types together, along with some of the
other major PP components. The Program Counter (PC) is a 32-bit register

1-7 Advanced Scientific Computer

CONTROL

i
ARITHMETIC
= UNIT .
pe—————— INDEXER g————
e
8
VIRTUAL
3 PROCESSORS jee—
SINGLE ———
WORD
‘ r — BUF FER
CONTROLLER
— CENTRAL
MEMORY
-
CR
FILE
- ASC
& SysTEM
INTERFACE
& 3 MAINTENANCE
LOGIC
READ
ONLY
- MEMORY

(A) 124723

Figure 1-5. Peripheral Processor Simplified Block Diagram

1-8 Advanced Scientific Computer

)

|

PROGRAM
COUNTER

SINGLE WORD
READ I BUFFER

ONLY ADDRESS REG

MEMORYI

SINGLE

!

—
WORD
BUFFER

CONTROLLER
SINGLE WORD
NEXT BUF FER
INSTRUCTION DATA REG
REG 1 ,

INDEXER ‘ ARITHMETIC
" | I UNIT CENTRAL

— =

MEMORY
L _I — L |
CENTRAL VIRTUAL
MEMORY INSTRUCTION PROCESSOR
BASE REG REGISTER REG FILE
e

CONTROL
NOTE: ALL DASHED BLOCKS ARE TIME—-SHARED AND ARE NOT PART OF A VP
(A) 124722

Figure 1-6. Virtual Processor Simplified Block Diagram

used to hold the address of the next instruction to be retrieved from Central
Memory or Read Only Memory. The program counter is updated by the In-
dexer during each active time slot period to point to the next sequential in-
struction in the executing program. The Single Word Buffer Address (SWBA)
register is a 32-bit register used to hold the address necessary to access
Central Memory. The SWBA accepts PC data during the normal instruction
acquisition process and PP Control data via the Arithmetic Unit when the
executing instruction requires use of Central Memory for a store, load, or
branch type instruction. The Single Word Buffer Data (SWBD) register is a
32-bit register that provides temporary storage of data being written to or
read from Central Memory. The SWBD accepts data from Central Memory

1-9 Advanced Scientific Computer

via the Single Word Buffer Controller when a read operation is being per-
formed or from the VP register addressed by PP Control via the Arithmetic
Unit when a write operation is being performed. When a write is executed,
the SWBD data is input to the Single Word Buffer Controller and eventually,
Central Memory. When a read is executed, the SWBD data is distributed to
the Indexer (for Instruction Register address development) and Arithmetic
Unit (for arithmetic and load type operations).

The Next Instruction Register (NIR) is a 32-bit register used to hold instruc-
tions retrieved from Read Only Memory prior to their transfer to the Instruc-
tion Register via the Indexer. The Instruction Register (IR) is a 64-bit reg-
ister used to hold the expanded instruction developed by the Indexer. The
expanded instruction contains the control information necessary for execution,
and is input to PP Control when the associated VP is active. The Virtual
Processor Register (VPR) file consists of four 32-bit registers, designated
VPRO through VPR3, used as general purpose accumulator registers. The
VPR file is different from the other VP registers in that they can be ad-
dressed on the byte, halfword, or word level. The Central Memory (CM)
Base register is a 24-bit register located in the Communications Register
file and used to hold a base value for base relative address development.

1-7 ARITHMETIC UNIT

The Arithmetic Unit (AU) is time shared by the eight Virtual Processors to
perform addition, subtraction, logical functions (AND, OR, EXCLUSIVE

OR, and EQUIVALENCE), data shifting, data testing, and bit setting and re-
setting. The AU is capable of handling two 32-bit words at one time (for
addition, subtraction, and logical functions) or a single 32-bit word and oper-
ating on it down to the bit level. The data handled by the AU is supplied by
the active VP and the operation performed is under direction of PP Control.
The AU accepts one operand from the VPR file and a second operand from a
different VPR, a Communications Register, or the SWBD.

1-8 INDEXER

The Indexer is time shared by the eight Virtual Processors to perform Pro-
gram Counter (PC) indexing and to develop addresses for the Instruction
Register (IR). The PC related portion of the Indexer increments the current
PC value by one during the normal instruction acquisition process, decre-
ments the current PC value by one when the address of the next instruction
needs to be saved (this is due to the three-level look-ahead feature of the
PP), or decrements the current PC value by two when an interrupt occurs
(this is done so that the instruction following the interrupted instruction is
not skipped). The IR address development portion of the Indexer adds vari-
ous combinations of the PC, CM base register, NIR, SWBD, and VPR file
under the influence of PP control to develop source, destination, and effec-
tive addresses for the IR. This address development is the primary reason

Advanced Scientific Computer

for the expansion of the 32-bit SWBD or NIR instruction to the 64-bit IR in-
struction.

1-9 COMMUNICATIONS REGISTER FILE

The Communications Register (CR) file consists of 64 32-bit registers ac-
cessible to all eight Virtual Processors. Each of the 64 CR's can be ad-
dressed down to the bit level. The CR file holds the necessary data to pro-
vide the PP/ASC system interface, maintenance control for the PP, system
interrupt monitoring and control, VP time slot and priority assignments
(each VP is assigned a high or low priority for use in honoring CM access
requests), real time clock information, CM base operands, and temporary
storage as required by the PP for normal operation.

1-10 READ ONLY MEMORY

The Read Only Memory (ROM) is time shared by the eight Virtual Processors
to reduce Central Memory requirements by providing storage for up to 4K of
32 -bit instructions, used primarily for control programs associated with input/
output devices of the ASC system. The ROM is extremely fast (25 nanosec-
ond access time) and is addressed by the PC under the influence of PP Con-
trol. The memory is organized into 16 256 -word modules, so that portions

of the contained programs can be modified without complete refabrication of
the memory.

1-11 SINGLE WORD BUFFER CONTROLLER

The Single Word Buffer Controller (SWBC) is time shared by the eight Vir-
tual Processors to provide an interface to the Memory Control Unit (MCU)
and Central Memory (CM) for CM read and write operations. The SWBC ac-
cepts memory access requests from the active VP (assuming the active VP
does not already have a request pending), notifies the MCU when a request
is present, and provides a data and address path to CM to execute the highest
priority request under direction of the MCU. The SWBC/MCU interface
honors all VP's assigned a high priority on a first come, first served basis,
and then honors all VP's assigned a low priority in the same manner. The
ASC Operating System (software) is responsible for making the priority as-
signments.

1-12 CONTROL

The PP Control is time shared by the eight Virtual Processors to provide
the controls and enables necessary to develop and execute PP instructions.
The center of PP control, the Main Instruction Register (MIR), holds the IR
of the active VP for the duration of the assigned time slot so the Control
logic can expand the IR to 256 bits and distribute the resulting control signals

Advanced Scientific Computer

throughout the PP. PP Control constantly monitors the CR file for reported
interrupts and the SWBC for the status of the active VP when generating the
controls and enables for instruction execution. The normal operation of the
PP Control logic can be disabled by the Maintenance Logic, for example,
when a VP or the ASC Maintenance Console operator places some portion of
the PP under test. When some portion of the PP is placed under test, the
Maintenance Logic replaces the IR of the active VP as the source of control
data.

1-13 MAINTENANCE LOGIC

The PP Maintenance Logic provides a means of checking the operation of the
other seven major components of the PP (VP's, AU, Indexer, CR file, ROM,
SWBC, and PP Control). In addition, when the PP is operating normally
(versus the test mode when some portion of the PP is under test), primary
functions of the Maintenance Logic include supplying the PP with the active
VP code (VP code is the number associated with a VP) and the priority of the
active VP as it relates to the SWBC. Control of the PP Maintenance Logic

is provided by a group of registers in the CR file called maintenance regis-
ters. The method of entering data in the maintenance registers is controlled
by the ASC Maintenance Console. When the manual mode of operation is se-
lected, the operator enters data directly into the maintenance registers via
the console. When the semi-automatic mode of operation is selected, a card
reader supplies data to the maintenance registers. When the automatic mode
of operation is selected, an active VP supplies data to the maintenance regis-
ters. The maintenance command repertoire can be used in any of these
three methods and is versatile enough to completely check the PP.

1-14 INSTRUCTION REPERTOIRE

The Peripheral Processor instruction repertoire applies to all eight VP's.
There are 219 basic instructions (and one no-operation instruction) that fall
into one of the following major instruction groups:

° Stores
™ Loads
° Arithmetic

° Logical

° Compare and skip
° Unconditional branches
° Stack

° Set/reset CR bits

° Test CR bits and skip

Advanced Scientific Computer

a2

° Shifts
e Test CR bits, set/reset, and skip
° Increment/decrement and test conditional branches
° Arithmetic conditional branches
° Miscellaneous
A listing of the instruction types and the data handled within each of these

major groups is provided in table 1-1.

1-15 INSTRUCTION FORMAT

The basic Peripheral Processor instruction consists of 32 bits divided into
four fields, as shown in figure 1-7. The operation code field (op-code, bits
0 through 7) is an 8-bit code, usually represented as a two-character hexa-
decimal (base 16) number, used to identify one of 220 (including the no-oper-
ation instruction) valid instructions. FEach of the instructions is assigned a
unique hardware mnemonic (versus the software mnemonics listed in table
1-1 that group instructions together when they perform the same operation
with different data sources) but can be grouped with other instructions, as
shown in the transfer tables in appendix B, when the execution steps involved
are examined.

The R field (bits 8 through 11) is a 4-bit code used to specify a VPR or CR

at the word, halfword, or byte level, depending on the accompanying op-
code. When a VPR needs to be specified, the R field is all that is necessary.
When a CR needs to be specified, the R field must be added to byte 3 of VPR3
so that all 64 CR's can be addressed down to the byte level (the 4-bit R field
can only address four 32-bit words to the byte level by itself). The R field
also serves as a mask for some instructions when bits within a CR half byte
(hex) need designating. '

The T field (bits 12 through 15) is four bits in length and is used to specify
both indirect addressing and whether a VPR halfword is to be added to the
quantity designated by the N field (this add operation is referred to as index-
ing). Since only eight VPR halfwords are available to any one VP, only the
three least significant bits of the T field are used to specify a VPR halfword
and the most significant bit is used to indicate when the current instruction
is indirect. The three least significant bits set to zero reflects no indexing,
rather than indexing with the left half of VPRO. The left half of VPRO can
not be used for indexing.

The N field (bits 16 through 31) consists of 16 bits used to specify an imme-
diate operand, Central Memory address, ROM address, branch address,
VPR, or CR, depending on the accompanying op-code.

Advanced Scientific Computer

a2

Table 1-1. Peripheral Processor Instructions

Group/Softv-vare Description
Mnemonic . .
Store Instructions
g CM *
ST Store word from VPR or(~ to { VPR or
CR
CR
STA Store word from VPR to CM absolute
VPR or VPR or
STH Store halfword from {CR } o {CR]
VPR or VPR or
STB Store byte from {CR } {CR }
STL Store from {Z;DR or} to left half CM
STR Store from {ZII:R or} to right half CM
STF Store file from VPR to CM

Load Instructions

' CM
LD Load word to VPR from { VPR or
‘ CR
CR
LDA Load word to VPR from CM absolute
LDI Load immediate word into {ZII:R or }
VPR or VPR or
LLDH Load halfword to {CR } from {CR }
LLDHI Load immediate halfword into {\C[II{DR or}
VPR or VPR or
LDB Load byte to {CR } from {CR }
v
LDBI Load immediate byte into {CE}ZR °r}
*VPR - Virtual Processor Register CM - Central Memory
CR - Communication Register
1-14

Advanced Scientific Computer

Table 1-1. Peripheral Processor Instructions (Continued)
Group/Softv'vare Description
Mnemonic '
IL.oad Instructions (continued)
LDL Load to {ZgR or } from left half CM
LDR Load to { X;’R or } from right half CM
LDF Load file from CM to VPR

Arithmetic Instructions

AD

ADI
ADH
ADHI
ADB
ADBI
ADL
ADR

SU

SUI
SUH
SUHI
SUB
SUBI
SUL
SUR

CM or

VPR } to VPR

Add word from {

Add immediate word to VPR
Add halfword in VPR to VPR
Add immediate halfword to VPR
Add byte in VPR to VPR

Add immediate byte to VPR
Add left half in CM to VPR

Add right half in CM to VPR

CM or

VPR } from VPR

Subtract word in {

Subtract immediate word from VPR
Subtract halfword in VPR from VPR
Subtract immediate halfword from VPR
Subtract byte in VPR from VPR
Subtract immediate byte from VPR
Subtract left half in CM from VPR
Subtract right half in CM from VPR

Logical Instructio

ns

OR

CM
VPR or
CR

Loogical OR word in { to VPR

Advanced Scientific Computer

Table 1-1. Peripheral Processor Instructions (Continued)

Group/Softv.vare Description
Mnemonic '
Logical Instructions (continued)
ORH Logical OR halfword in [zgR °r} to VPR
ORHI Logical OR immediate halfword to VPR
A%
ORB Logical OR byte in ciR Or} to VPR
ORBI Logical OR immediate byte to VPR
ORL Logical OR left half in CM to VPR
ORR Logical OR right half in CM to VPR
CM
EX Logical exclusive OR word in { VPR or; to VPR
CR
EXH Logical exclusive OR halfword in {ZEI:R or ; to VPR
EXHI Logical exclusive OR immediate halfword to VPR
' v
EXB Logical exclusive OR byte in {CII:R °r} to VPR
EXBI Logical exclusive OR immediate byte to VPR
EXL Logical exclusive OR left half CM to VPR
EXR Logical exclusive OR right half CM to VPR
CM
AN Logical AND word in { VPR or | to VPR
CR
ANH Logical AND halfword in \C[;)R or } to VPR
ANHI Logical AND immediate halfword to VPR
ANB Logical AND byte in {ZEI:R °or } to VPR
ANBI Logical AND immediate byte to VPR
ANL Logical AND left half in CM to VPR
ANR Logical AND right half in CM to VPR
1-16

Advanced Scientific Computer

Table 1-1. Peripheral Processor Instructions (Continued)

Group/Softv.vare Description
Mnemonic '
TLoogical Instructions (continued)
CM
EQ Logical EQUIVALENCE word { VPR or ; to VPR
CR

EQH Logical EQUIVALENCE halfword {ZER or } to VPR
EQHI Logical EQUIVALENCE immediate halfword to VPR
EQB Logical EQUIVALENCE byte {Z;)R or} to VPR
EQBI Logical EQUIVALENCE immediate byte to VPR
EQL Logical EQUIVALENCE left half CM to VPR
EQR Logical EQUIVALENCE right half CM to VPR
Compare and Skip Instructions

CM
CE Compare word { VPR or } to VPR, skip if equal

CR
CEI Compare immediate word with VPR, skip if equal

A\

CEH Compare halfword { CllD:\)R or} to VPR, skip if equal
CEHI Compare immediate halfword with VPR, skip if equal
CEB Compare byte {ZIER or} to VPR, skip if equal
CEBI Compare immediate byte with VPR, skip if equal
CEL Compare left half of CM to VPR, skip if equal
CER Compare right half CM to VPR, skip if equal

CM
CN Compare word { VPR or) to VPR, skip if not equal

CR
CNI Compare immediate word with VPR, skip if not equal

1-17

Advanced Scientific Computer

O

Table 1-1. Peripheral Processor Instructions (Continued)

Group/Softv.vare Description
Mnemonic '
Compare and Skip Instructions (continued)
VPR
CNH Compare halfword {CR or } to VPR, skip if not equal
CNHI Compare immediate halfword with VPR, skip if not
equal
v
CNB Compare byte [CII:R or] to VPR, skip if not equal
CNBI Compare immediate byte with VPR, skip if not equal
CNL Compare left half CM to VPR, skip if not equal
CNR Compare right half CM to VPR, skip if not equal
Unconditional Branch Instructions
BC Branch unconditionally to CM, base relative
BCS Branch unconditionally to CM relative base, save PC
in VPR
BCA Branch unconditionally to absolute CM
BCAS Branch unconditionally to CM absolute, save PC in
VPR
BPC Branch unconditionally to CM, relative PC
BPCS Branch unconditionally to CM, relative PC, save PC
in VPR
BR Branch unconditionally to ROM
BRS Branch unconditionally to ROM, save PC in VPR
BRSM Branch unconditionally to absolute ROM, save PC in
fixed CM location
Stack Instructions
PUSH Push word from VPR into stack
PULL Pull word from stack into VPR
MOD Modify stack
1-18

Advanced Scientific Computer

Table 1-1. Peripheral Processor Instructions (Continued)
Group/Software _
. Description
Mnemonic '

Set/Reset CR Bits

Instructions

VPS
VPR
VPTO
VPTZ
SL
SR

RL
RR

Set VP flag in CR
Reset VP flag in CR

Test VP flag in CR, skip if equal to one

Test VP flag in CR, skip if equal to zero

Set mask bits in left half of CR byte

Set mask bits in right half of CR byte

Reset mask bits in left half of CR byte

Reset mask bits in right half of CR byte

Test CR Under Mask and Skip Instructions

TOL

TOR

TZL

TZR

TAOL

TAOR

TAZL

TAZR

Shift Instructions

SHL
SHA
SHC

Test under mask for
and skip if true

Test under mask for
and skip if true

Test under mask for
and skip if true

Test under mask for
and skip if true

Test under mask for
and skip if true

Test under mask for
and skip if true

Test under mask for
and skip if true

Test under mask for
and skip if true

any ones in left half of CR byte
any ones in right half of CR byte
any zeros in left half of CR byte
any zeros in right half of CR byte
all ones in left half of CR byte
all ones in right half of CR byte
all zeros in left half of CR byte

all zeros in right half of CR byte

Shift logical word in VPR

Shift arithmetic word in VPR

Shift cyclic word in VPR

Advanced Scientific Computer

Table 1-1. Peripheral Processor Instructions (Continued)
Group/Software Description

Mnemonic

Test CR Bits, Set

/Reset, and Skip Instructions

TSZL

TSZR

TSOL

TSOR

TRZL

TRZR

TROL

TROR

Test under mask for any zeros in left half of CR byte
and set; then skip if true

Test under mask for any zeros in right half of CR
byte and set; then skip if true

Test under mask for any ones in left half of CR byte
and set; then skip if true

Test under mask for any ones in right half of CR byte
and set; then skip if true

Test under mask for any zeros in left half of CR byte
and reset; then skip if true

Test under mask for any zeros in right half of CR byte
and reset; then skip if true

Test under mask for any ones in left half of CR byte
and reset; then skip if true

Test under mask for any ones in right half of CR byte
and reset; then skip if true

Increment/Decrement and Test Conditional Branch Instructions

IBZ
IBN

DBZ
DBN

Arithmetic Condit

Increment VPR by one; branch if result equal to zero

Increment VPR by one; branch if result not equal to
Zero

Decrement VPR by one; branch if result equal to zero
Decrement VPR by one; branch if result not equal to

zero

ional Branch Instructions

TZ

TZH

word arithmetically; branch if equal

to zero

VPR or
CR

Test {

Test {

halfword arithmetically; branch if

VPR or
equal to zero

CR

1-20

Advanced Scientific Computer

Table 1-1. Peripheral Processor Instructions (Continued)
GI‘OUP/SOftV.vare Description
Mnemonic :

Arithmetic Conditional Branch Instructions (continued)

TZB Test VPR or | byte arithmetically; branch if equal to
CR zZero

TN Test VPR or(word arithmetically; branch if not
CR equal to zero

TNH Test VPR or | halfword arithmetically; branch if not
CR equal to zero

TNB Test VPR or (byte arithmetically; branch if not
CR equal to zero

TP Test VPR or (word arithmetically; branch if greater
CR than or equal to zero

T PH Test VPR or (halfword arithmetically; branch if
CR greater than or equal to zero
VPR or (byte arithmetically; branch if

TEE Test CR } greater than or equal to zero

™™ Test VPR or { word arithmetically; branch if less
CR than zero

TMH Test VPR or (halfword arithmetically; branch if less
CR than zero

TMB Test VPR or | byte arithmetically; branch 1f less than
CR zero

Miscellaneous Instructions

LDEA
ANAZ
POLL
EXEC
LDMB
NOP

Load effective address into VPR

Analyze CM

Poll CR and set VPR

Execute CM

Load VP base from VPR

No operation

1-21 Advanced Scientific Computer

o] 7 8 1112 1516 31

rererrefreryrreprrtrrrrrr T

OP—-CODE

R T . N
FIELD FIELD FIELD

j(Y Vo
1. MEMORY ADDRESS DISPLACEMENT
2. ADDRESSES A CR OR VPR

ADDRESSES A VPR
HALFWORD INDEX

TRUE INDICATES
INDIRECT ADDRESSING

ADDRESSES A VPR
PROVIDES A CR ADDRESS
DISPLACEMENT

PROVIDES A MASK FOR

CR HEX (4 BIT) OPERATIONS

W N

PROVIDES THE OPERATION CODE
FOR THE INSTRUCTION

(A) 111645

Figure 1-7. Peripheral Processor Instruction Format

1-16 DATA FORMATS

The Peripheral Processor handles data at the word (32 bits), halfword (16
bits), and byte (8 bits) levels and encounters the indirect cell format when
an instruction (or other indirect cell) specifies indirect addressing. Figure
1-8 presents all four of these types of formats. The sign bits used in the
word, halfword, and byte formats reflect whether the associated data is
positive or negative (in two's complement form). When any of these three
formats is involved in an arithmetic operation, any overflow conditions are
ignored. The Peripheral Processor is also capable of addressing CR file
data down to the individual bits, but this is only for testing and setting/re-
setting purposes (the smallest unit of data that can be transferred between
registers is the byte).

The most significant bit of the indirect cell is used during the terminal (last)
level of indirect addressing to reflect the source (Central Memory or ROM)
of a branch address. The T field in the indirect cell serves the same pur-
pose as the T field in the instruction format, and the 24-bit address field
specifies the base operand address subject to modification by the T field.
The operand address developed from the indirect cell always references
Central Memory, whereas the first level of indirect addressing from the
instruction format can reference a CR, VPR, or Central Memory.

Advanced Scientific Computer

WHOLE WORD

S INTEGER Ls8
(o] 31
HALFWORD
S INTEGER LsSB | S INTEGER LS8
o 15 16 31
BYTE
S INTEGER LsB{ S INTEGER |LSB | S INTEGER LSB| S INTEGER LsB
7 8 15 16 23 24 31

INDIRECT CELL FORMAT

T ADDR

(A)114737A

Figure 1-8. Peripheral Processor Data Formats

1-17 INSTRUCTION PROCESSING

Each of the active Virtual Processors retrieves, expands, and executes
program instructions residing in either Central Memory (CM) or ROM in

a continuous three-step procedure. Refer to the Virtual Processor (VP)
block diagram (figure 1-6) during the following discussion. The first step,
addressing the instruction to be retrieved, involves operation of the Program
Counter (PC). When an instruction terminates in the VP on which this dis-
cussion is based, the PC address is input to either ROM or the Single Word
Buffer Address (SWBA) Register, under the influence of PP Control. ROM
responds to the address by supplying the Next Instruction Register (NIR) with
an instruction and CM responds to the read request from the Single Word Buf-
fer Controller (SWBC) and the SWBA address by supplying the Single Word
Buffer Data (SWBD) Register with an instruction. When another instruction
terminates, the second of three steps (instruction expansion) occurs. The
retrieved instruction, from either the NIR or SWBD, combines with the
Indexer and PP Control to develop the state, control flags, and address in-
formation necessary for execution of the first step of the instruction. All of
this data is input to the Instruction Register (IR) for the third step (instruc-
tion execution). At the next active time slot, the IR data is input to PP Con-
trol, where the instruction is expanded again to perform the execution step.
If the instruction requires more than one step (as is the case with most of

1-23 Advanced Scientific Computer

O

the PP instructions due to their involvement), PP Control updates the IR so
that the next step will be executed at the next active time slot. When the last
step of an instruction is executed by PP Control, the VP is notified so that a
new instruction can be expanded into the IR, the following instruction can be
retrieved from one of the two memories, and the third succeeding instruction
can be addressed by the PC. In this manner, all of the active VP's are able
to maintain a continual flow of instructions so that little time is wasted in
program execution.

1-18 GENERAL CHARACTERISTICS

A condensed listing of Peripheral Processor general characteristics is pro-
vided in table 1-2.

Table 1-2. Peripheral Processor General Characteristics

° Eight medium-power time-shared processors (called Virtual Pro-
cessors)

° Provides system control via ASC Operating System (software)
° Interfaces with ASC system via group of 64 Communications Registers

° Contains 364 synchronizers for asynchronous operation with periph-
eral devices

° Contains built-in maintenance logic to facilitate checkout and trouble-
shooting

. Implemented with ECL2500 series high-speed logic (logic 0 = +400mv,
logic 1 = -400mv)

° Constructed with multilayer etched motherboards and plug-in multi-
layer printed wiring boards

° Basic 32-bit instruction, expanded to 64 bits at execution

° Versatile data-handling instruction set of 219 basic instructions and
one no-operation instruction

° Capable of handling and operating on data in 32, 16, 8, and 1-bit
groups

° Performs following arithmetic operations:
° Addition
° Subtraction (2's complement)
° Logical AND, OR, EXCLUSIVE OR, and EQUIVALENCE
o Shifts

e Bit setting/resetting

1-24 Advanced Scientific Computer

Table 1-2. Peripheral Processor General Characteristics (Continued)

° Two priority levels for Virtual Processor access requests to Central
Memory

° Monitors and processes following types of interrupts:
e System A/C power failure
° Pressing of Operator's Console STOP button
° Central Memory parity error
° Central Memory protect violation
° Disc protect violation
° Illegal Peripheral Processor instruction
° Central Processor interrupt
° Clock rate of 85 nanoseconds

° Contains 4K by 32 bits of Read Only Memory with 25 nanoseconds
access time

° Relies on asynchronous interface with Central Memory for primary
instruction source

1-19 PHYSICAL DESCRIPTION

The Peripheral Processor consists of two Emitter Coupled Logic (ECL)
columns in the ASC system complex. Each ECL column contains three
motherboards, with a maximum of 22 logic cards per motherboard, and a
voltage regulator. Figure 1-9 illustrates the placement of the two ECL
columns, the six motherboards and their associated logic cards, and the
voltage regulators. Figure 1-10 shows the actual logic card locations on

the six motherboards. Table 1-3 groups the logic cards with the eight major
Peripheral Processor components.

The motherboards are multilayer etched boards with 22 connectors designed
to accept plug-in multilayer logic cards. The logic card connectors mounted
in the motherboards have pins that extend through to the back of the mother-
boards for use as oscilloscope connections. The input/output lines for the
motherboards are handled by 24 pin card edge connectors usually referred
to as ""spade' connectors. The wiring to the spade connectors is all coaxial
and is routed around the motherboards to provide access to the pins on the
back. The portion of this coax harness that provides input/output to the
Peripheral Processor is routed to either of the two ECL column side panels
(usually referred to as '"bulkheads').

1-25 Advanced Scientific Computer

PP2-ECL2
COLUMN

CRIMB
MOTHERBOARD

VPRMB
MOTHERBOARD

CR3MB
MOTHERBOARD

(A)124727 (686—1072—-13-4)

Figure 1-9.

PPI-ECL}
COLUMN

CROMB
MOTHERBOARD

PCMB
MOTHERBOARD

CR2MB
MOTHERBOARD

PERIPHERAL.
PROCESSOR
VOLTAGE
REGULATORS

Peripheral Processor Assemblies

1-26

Advanced Scientific Computer

Motherboard Motherboards
Locations CROMB PCMB CR2MB
LA TERMCARD
LB INDEXERI(1)
LC CRCELLY INDEXER(0) CRBASE?2
LD PBOCRDI(0) PCCARDA(T) PB2CRD(0)
LE CRCELLO(0) PCCARDA(6) CRCELLZ2(0)
LF CRCELLO(1) PCCARDA(5) CRCELL2(1)
LG PBOCRD(1) PCCARDA(4) PB2CRD(1)
LH CRCELLO0(2) PCCARDAI(3) CRCELL2(2)
LI CRCELLO(3) PCCARDA(2) CRCELL2(3)
LJ PBOCRD(2) PCCARDA(1) PB2CRDI(2)
LK CRCELLO(4) PCCARDA(0) CRCELL2(4)
LL CRCELLO(5) PCCTL CRCELIL2/5)
LM PBOCRD(3) SWBASY PB2CRD(3)
LN CRCELLO0(6) SWBSYNC CRCELL2(6)
L.O CRCONTO PPCTIL2 CRCONT?2
LP MLCTL PPCTLI ML.2
O ROMCRD(8) MIRMRGB ROMCRDI(12)
LR ROMCRDI(9) IRCARD(3) ROMCRD(13)
LS ROMCRD(4) IRCARDI(2) ROMCRD(6)
LT CRROMRG(0) IRCARD(1) CRROMRG(2)
LU CRMIRLDR IRCARD(0)
Lv TERMCARD
Figure 1-10. Peripheral Processor Logic Card Locations (Sheet 1 of 2)

1-27

Advanced Scientific Computer

i

Motherboard Motherboard

Locations CR1MB VPRMB CR3MB
LA TERMCARD
LB ROMCRD(3)
LC CRBASE1 ROMCRD(2) CRBASE3
LD PB1CRD(0) ROMCRD(1) PB3CRD(0)
LE CRCELLI1(0) ROMCRD(0) CRCELL3(0)
LF CRCELLI(1) ROMMRG CRCELL3(1)
LG PB1CRD(1) PPAUCD(3) PB3CRDI(1)
LH CRCELL1(2) PPAUCD(2) CRCELL3(2)
LI CRCELLI1(3) PPAUCD(1) CRCELL3(3)
LI PBICRD(2) PPAUCD(0) PB3CRD(2)
LK CRCELL1(4) CONTAU CRCELL3(4)
LL CRCELLI1(5) AU2XFER CRCELL3(5)
LM PB1CRD(3) VPRCONT PB3CRD(3)
LN CRCELLI1(6) VPRCARD(7) CRCELL3(6)
LO CRCONT1 VPRCARD(6) CRCONT3
LP MLl(i) VPRCARD(5) ML1(0)
LO ROMCRD(10) VPRCARD(4) ROMCRD(14)
LR ROMCRD(11) VPRCARD(3) ROMCIiD(lS)
LS ROMCRD(5) VPRCARD(2) ROMCRD(7)
LT CRROMRG(1) VPRCARD(1) CRROMRG(3)
LU LOGCLK VPRCARD(0)
Lv TERMCARD

Figure 1-10. Peripheral Processor Logic Card Locations (Sheet 2 of 2)

1-28

Advanced Scientific Computer

Table 1-3. Peripheral Processor Logic Card Functions
PP PP
Logi .
Component ogic Cards Component Logic Cards
Virtual CRBASE(1-3) Communications | CRMIR LDR
Processors | IRCARD(0-3) Register File CRCONT(0-3)
PCCARDA(0-7) CRCELLY

VPRCARD(0-7)

CRCELLO(0-6

)
AU2XFER CRCELLI1(0-6)
CRCELL2(0-6)
Arithmetic | CONTAU CRCELLS3(0-6)
Unit PPAUCD(0-3) PBOCRD(0-3)
PB1CRD(0-3)| Patch-
Indexer INDEXER(O, 1) PB2CRD(0-3)| boards
PB3CRD(0-3)
Read Only | CRROMRG(0-3)
Memory ROMCRD(0-15) Single Word SWBSYNC
ROMMRG Buffer SWBASY
Controller
PP PCCTL
Control PPCTLI1 Maintenance MLCTL
PPCTL2 Logic ML1(0,1)
VPRCONT ML2
IRCARD(0-3) MIRMRGB

1-20 INTEGRATED CIRCUIT TYPES

The Peripheral Processor is implemented with the ECL logic set shown in

figure 1-11.

Refer to appendix E of the ASC System Manual for System No.

2 (Texas Instruments Incorporated part number 930005-1) for the Boolean

equations and truth tables describing operation of the individual logic modules.

1-29

Advanced Scientific Computer

13

TR
EL PIN EL PIN
1 5 12
2‘ 6 4
3 8
4 9 10 1
5 7 11 16
[11 12 14
13 13
Nl 7 <4
11—
A — 8 8 —+—IN —4— 4
9 4
N — 7
12 - 11—
Ab4-5
12 4
N}b—+4—2 13—
13 4+
A4 4 14 44
16 +A 12
N L16 A
14 4+ 1 4
A [—l el
B 98B
—
7 44N — S
8 4+— N 7 & ——
9 —+— 9 —— .
(R
‘2——L:- 5 :;_ 4
13
13 4 [N] 4]
14 — - 2
14 —4— 16
16 ——1 1 —
1 A 2
hnned
4B 3N
)
8 6 0
° N s
1 7
14
-
A 4
16 O
— B E} [N}
-~
Limm 11
=t
12
H
12 A ey
- 13 NI
HvHAH '
| 16 | |
12 A —
e 9 V) -
L“N - 2
2 A
N et
1
A
GC Q3
(B) 109048

Figure 1-11.

ASC LOGIC SET

Vecc — PIN 3 AND
VBB — PIN 1
VEg — PIN 1

6
S
o

12

13
14

I

IS

b

| l |
T llzl

T

I

1

I

w

12

=T

J

A

1

13
14

X
N

wHicH
Vee — PIN 3 ONLY

EXCEPT FOR
98,5Q,Q3,H2,
FF.DF ,T

R SR,
HAVE

i

16 — 2 11 - 4
14—
12 — -5 12 — —4— 8
13 — - 4
13 —
9 PN 14 i
11 l_ 7 —— 2
16 — I
2B
3M
ey ol 5
6 N 5
13
. — A 17
8 A 04-— 2P 8
- 4 12 B
3p-9
9 N M
1 RN b 416
12 A 54
14 —EN
6 2
13 +—4 NHH 2
14 —4—od — 4
16 T A DE
1 N
2
A
sQ
4 K 16 {4A g} 7
11_!!5”Q . 94A T 5
9 4611 ! 14dg Cc} 2
8 — B2, 1248 Tl a
7 —| 621 13 4¢
12—-: 1143
13 —
12 AC
14 4Gy 2
|6—bzz
1 —4G
ZZQJ—Z
S 4=
11 — 2
12 -
DOF
9 — 8
16
1 - S
13 - 6
14 r—7

Peripheral Processor ECL Logic Set

1-30

Advanced Scientific Computer

o]
J\{ﬂfp

SECTION II
INSTALLATION
2-1 GENERAL

Installation instructions for the Peripheral Processor are provided in the
ASC System Installation Manual, part number 929980-1.

2-1/2-2 Advanced Scientific Computer

S~

SECTION III
OPERATING INSTRUCTIONS

3-1 GENERAL

The two ECL columns that comprise the Peripheral Processor have no con-
trols and indicators other than those associated with the ECL power supply
regulators located on the lower front portion of both ECL columns. Refer
to the ECL Regulators OMI, part number 930194-1, for a description of the
regulator controls and indicators.

Control of Peripheral Processor operations is provided by the ASC Mainte-
nance Console. The external maintenance system described in appendix C
of this manual contains a brief introduction to the ASC Maintenance Console
controls and indicators and how they affect the Peripheral Processor. For
a more detailed discussion of the ASC Maintenance Console, refer to the
ASC Maintenance Console OMI, part number 930009-1.

3-1/3-2 Advanced Scientific Computer

a2

SECTION IV
PRINCIPLES OF OPERATION

4-1 GENERAL

This section provides both a general and detailed description of the Periph-
eral Processor (PP) theory of operation. Descriptions of the PP instruc-
tion repertoire, instruction processing, and instruction transfer table usage
are also included in this section. The general description presented first is
based on the PP detailed block diagram in figure 4-1, but is supplemented
with additional diagrams covering the more involved components of the PP.
Next, the instruction repertoire and instruction processing relate the hard-
ware mentioned in the general description to the instruction set and the
unique method of instruction development. The transfer table introduction
provides a basic understanding of instruction execution and the capability to
trace the data paths involved. A detailed description, accompanied by sim-
plified block diagrams, timing diagrams, flow charts, logic diagrams, and
transfer tables, is presented last. This section should be used with the PP
logic card set provided in Section VII of this manual.

4-2 GENERAL DESCRIPTION

The Peripheral Processor (PP) is composed of the following eight major
components:

° Virtual Processors

. Arithmetic Unit

. Indexer

° Communications Register File
° Read Only Memory

° Single Word Buffer Controller
° Control

° Maintenance Logic

The data path relationships between the PP components are shown in the PP
detailed block diagram of figure 4-1. Distribution of the control necessary
for PP operation is not shown in figure 4-1 (for simplicity); however, the
control paths are discussed in detail in the detailed description of the PP
control. The shaded blocks in figure 4-1 represent data buses that multi-
plex several inputs to a single output. An example of this is the Instruction

4-1/4-2 Advanced Scientific Computer

L L 77 7 77 A3 MANDATABUS (MDBY P 22 L 7 P2 277777 22 22272727 2 < 77777777777 77 Ll T 77 77777777 777 77 772222 222227
MAINT/ - }
4 IAIN TS P/O PCAB MAINT ARITHMETIC UNIT A
] Maas INDE XER . i @]
. : rUCB
= | seeTioN o[maNTACE | g
4)
—_— —_— MAMB (4) M ¢
SINGLE WORD —l 544) . * i T comaqr(;:'?(?c) - %
I BUFFER CONTROLLER swa = S[NGLEAWE?RREDSS PC INDEXER @ N(R;;B /
£ BUFFER AD —
I ¥ REGISTER (SWBAY an - (a) Au28 T GENERATOR A [
I | - @ 2) N T | G2 [2)
I e o | (AU (6) ()]
ASYN— N=) ————j
! ChroNous 'gmnomus 4 MAINT (4) @ = INsTRUG- ' ‘ (6) ;
Iyt TIO
l tosic | wLosic __'.‘—‘ YEINT — (a) REGISTER (NIR) I g
TO ' I l (4)TWB I (4) AUZ? (6) /
A mrtem—] READ ONLY)
MEmory | ws SINGLE WORD | (4 MEMORY | vp | = %
BUFFER DATA CODE
I -' (swsp) (ROM) (7) FeB AU v
REGISTER (4 ' cMDB TR (4 wéoos CONTROL
I Be st K s /
DIRECTION (a)]
| | I CONTROL. } . p———C- 10 ALL BUSES r"' ” 1 ;’
3 [
| n | | | ' ¢
(4) ; CONTROL L 11
) l I AND } ' |
J | I REMOTE [/
EAD ONL)
- — Y cTION — ___U I ADDER/SHIFTER ::
—— MAINTENANCE (AUT) D
I LOGIC H CONTROL SECTION I €3 I
CR FILE SECTION | SECTION - L L — e | e e — —
Lo — (124 r M u (6) 9
| o SREB mols INDEXER SECTION | | T T T T T T ee—e— -
VP CODE I }/:)RBZ
o . {oNuy I
31 %
| RS . ' i 4
b — —— e — —] 1(a) l ¥ I Au18 1
T - + ™ L e
- l [INDEXER TNOEXER . 4 vp CobE] [l [1 VPRE ¢
1. ECL CARD LOCATION CODES p H = - (12) (3 a3) (5 l 9 b . d s |
j—- — - _4—_' ‘ — —] WRITE | (9) ‘ READ %
1 GREBNL crease g { BUS BUS
2] SRSEEw | L o - MDAB INSTRUCTION MAINT I VP CODE %
4) PCCARDA MAINTENANCE o S REGISTER Y
5) AU2XFER REGISTERS 1 —d (4 (IR) -
&) PPAUCD) (8) f |
7 ROMAggROMRG +ROMRG P —— e — wwr [© VIRTUAL PROCESSOR ¢
8y VERCARD 133 B l MAIN REGISTER (VPR) %
{8} MR | = @ | e e
110 GO MLz ML1C0, 1) S — g (MIR)) 4
2. ALL SECTIONS NOT C)) |
ENCLOSED BY DOTTED CRAB1 d -y
LINES FALL WITHIN %
VIRTUAL PROCESSOR (2) - MR e JIAH MRAB . vPAB
ZECTION. MERGE 5 " 1s) %S L . (9) (
; ?RABZ (10) MAINT [
1
) 4
. (9) (9) 9) d
(¢1mesoa WL T 777 7777722222727 7 T T I 77727777777 7T T T T 777 7777272 7 77787 7 7 7 7 77777 7777 7.7 77 L7777 7777777

MAIN DATA BUS

Figure 4-1. Peripheral Processor
Detailed Block Diagram

4-3/4-4 .
Advanced Scientific Computer

Register Bus (IRB), used to enable the Instruction Register (IR) of the active
Virtual Processor (VP) to the Main Instruction Register (MIR). Figure 4-1
shows only one input to IRB from one IR, when in reality there are eight in-
puts to IRB (one input for each of the eight IR's) with an associated control
consisting of the active VP code (number of the active VP),

Figure 4-1 also contains hardware location information in the form of digits
ranging from 1 to 12, in parenthesis next to each data bus and inside each
functional block. These location digits are keyed to the ECL card location
index on the left side of the detailed block diagram. The location of these
cards in the PP ECL columns can be found by referring to the ECL card lo-
cation map in Section I of this manual.

4-3 VIRTUAL PROCESSORS

The eight identical Virtual Processors (VP's) of the PP, designated VPO
through VP7, each consist of the following registers and their associated
loading and distribution logic:

° Program Counter Register

° Next Instruction Register

° Instruction Register

° Virtual Processor Register File
° Central Memory Base Register

° Single Word Buffer Address Register
° Single Word Buffer Data Register

Each of the eight VP's shares the other seven components of the PP via the
time sharing method described in the equipment overview in Section I of this
manual. In figure 4-1, one block represents eight of a given type of regis-
ter (there are seven types). Each of eight VP's uses one register from each
block. The following paragraphs describe each VP register type.

4-4 PROGRAM COUNTER REGISTER. The Program Counter (PC) is a
32-bit register used to address instructions in the Read Only Memory (ROM)
or Central Memory (CM). Bit 0 of the PC specifies the memory source (CM
or ROM) and bits 8 through 31 identify the instruction in the specified source.
The eight PC's exist on the PCCARDA(0-7) cards, with four bits of each PC
on every PCCARDA card as shown in figure 4-2.

The mode bit (bit 0) of the PC is supplied by PP control and the memory ad-
dress is supplied by the PC indexer (part of the Indexer). The PC value is

4-5 Advanced Scientific Computer

O

then distributed to the PC indexer (for indexing to the next sequential instruc-
tion), the TN field indexer (for address development of PC relative instruc-
tions), the Single Word Buffer Address register (SWBA, for CM access),
ROM, and the Main Data Bus (MDB, for PC saving instructions), all under
direction of PP control.

4-5 NEXT INSTRUCTION REGISTER. The Next Instruction Register (NIR)
is a 32-bit register used, primarily, to hold instructions retrieved from
ROM prior to their transfer to the Instruction Register (IR). The NIR is

also used for temporary storage of the Single Word Buffer Data register
(SWBD) instruction when the SWBD is required to interface with CM during
the execution of an instruction. The eight NIR's exist on the PCCARDA(0-7)
cards, with four bits of each NIR on every PCCARDA card as shown in figure
4-2. The NIR accepts ROM or SWBD data, under direction of PP control,
and distributes the loaded value to both the TN and R field indexers (for
source, destination, and address development).

4-6 INSTRUCTION REGISTER. The Instruction Register (IR) is a 64-bit
register used to hold the control information necessary to execute a step of

//A/
/A //
d L A
d 1 e
/) <dpZdh®
/% - ////////
//A NIR / // 4/vp7
/ SWBA // //5
W <
/// SWBD Ve 2
‘_0‘/4, 4-7 8-11 12—15l1 6—19 20— 23 24— 2728—3 vPo EACH PCCARDA CONTAINS
PCCARDA(0) PCCARDA(7) 4 BITS OF EACH PC, NIR,

SWBA , AND SWBD FOR
ALL 8 VP's,

(A) 124728

Figure 4-2. PCCARDA(0-7) Registers

4-6 Advanced Scientific Computer

an instruction. The control information includes the op-code, state, source,
destination, special control flags, and effective address. The op-code iden-
tifies the type of instruction (store, load, etc.); the state sequences the in-
struction through its various steps; the source (when used) identifies a Com-
munications Register (CR) or Virtual Processor Register (VPR) used in a
data transfer; the destination (when used) identifies a CR or VPR used in a
data transfer; the special control flags provide miscellaneous control (next
instruction source (SWBD or NIR) indicator, interrupt cycle initiation, etc.);
and the effective address (when used) provides a CM or ROM address, im-
mediate data, or possibly a shift count as mentioned in the Arithmetic Unit
detailed description. The eight IR's exist on the IRCARD(0-3) cards, with
16 bits of each IR on every IRCARD (bits 0-15 on IRCARD(0), bits 16-31 on
IRCARD(1), bits 32-47 on IRCARD(2), and bits 48-63 on IRCARD(3)).

The IR accepts op-code, state, and control flag data from PP control, source
and destination data from the TN or R field indexers, and effective address
data from the TN field indexer or the Arithmetic Unit (if a shift instruction

is involved). The loaded IR data is then input to PP control to direct execu-
tion of the instruction.

4-7 VIRTUAL PROCESSOR REGISTER FILE. The Virtual Processor Reg-
ister (VPR) file consists of four 32-bit registers, designated VPRO through
VPR3, used as general purpose accumulator registers. The eight sets of
the VPR file are located on the VPRCARD(0-7) cards, with each card con-
taining four bits of the VPR file for all eight VP's (refer to figure 4-3). The
VPR file accepts data from the Arithmetic Unit (AU) and distributes data to
the TN and R field indexers (for source, destination, and effective address
development) and to the AU (for arithmetic operations and data transfers to
other areas of the PP).

4-8 CENTRAL MEMORY BASE REGISTER. The Central Memory (CM)
Base Register is a 24-bit register, located in the Communications Register
(CR) file and used to hold a base value for base relative instructions. The
CM Base Registers for VPO through VP7 are located in bits 8 through 31 of
the first eight CR's. A byte of each of the eight CM base Registers is lo-
cated on each of the three CRBASE cards (bits 8-15 on CRBASE1, bits 16-23
on CRBASE2, and bits 24-31 on CRBASE3). The CM Base Register accepts
data from the AU and distributes the CM base value to the TN field indexer
(for address development of base relative instructions) and the Main Data
Bus (MDB, for CR file read operations).

4-9 SINGLE WORD BUFFER ADDRESS REGISTER. The Single Word Buf-
fer Address (SWBA) register is a 32-bit register used to hold the address
necessary to access CM. The eight SWBA's are located on the
PCCARDA(0-7) cards, with four bits of each SWBA on every PCCARDA
card as shown in figure 4-2. The SWBA accepts data from the PC (normal

Advanced Scientific Computer

/
VPRO
/
P
; VPR1
]
— VPR2]
]
VPR3 o
BITSO — jA - 78 — 1,12~-1516 — 19,20-2324 — 2728 - 31
VPRCARD (0) «@- #» VPRCARD (7)
EACH VPR CARD CONTAINS 4 BITS OF EACH
VPR OF ALL 8 VP'S.
(A) 111682

Figure 4-3. VPRCARD(0-7) VPR File

instruction sequencing), the TN field indexer (for stack pointer modification
during stack instructions (refer to the instruction repertoire of this section)),
and the IR effective address (for CM stores, loads, branches, etc.). The
data loaded in the SWBA is distributed to the Memory Control Unit (MCU,

for CM access) and the MDB (for stack instructions).

4-10 SINGLE WORD BUFFER DATA REGISTER. The Single Word Buffer
Data (SWBD) register is a 32-bit register that provides temporary storage
for data being written to or read from CM. The eight SWBD's are located

on the PCCARDA(0-7) cards, with four bits of each SWBD on every

4-8 Advanced Scientific Computer

O

PCCARDA card, as shown in figure 4-2. The SWBD accepts data from CM
when a read is performed, and from the associated PC, SWBA, VPR f{ile, or
Communications Register (CR) file via the MDB and AU when a write is per-
formed. The loaded SWBD data is distributed to CM (for CM write opera-
tions), the TN field indexer (for effective address development), the NIR (for
temporary storage when the instruction source is CM and the SWBD is being
used to do more than hold the next instruction), and the AU via the MDB (for
loads, stores, logicals, etc., involving CM).

4-11 ARITHMETIC UNIT

The Arithmetic Unit (AU) is time shared by the eight Virtual Processors to
perform addition, subtraction, logical functions (AND, OR, EXCLUSIVE OR,
and EQUIVALENCE), data alignment, data shifting, data testing, and bit
setting and resetting. The AU is capable of handling two 32-bit words at one
time (for addition, subtraction, logical functions, or data comparisons) or a
single 32-bit word and operating on it down to the bit level. The data han-
dling portion of the AU is located on the PPAUCD(0-3) cards, with a byte of
each logic function on each of the four PPAUCD cards (byte 0 is on
PPAUCD(0), byte 1 is on PPAUCD(1), byte 2 is on PPAUCD(2), and byte 3
is on PPAUCD(3)). The complete control portion of the AU is located on the
CONTAU card.

The AU accepts one operand from the VPR file and a second operand from
the Main Data Bus (MDB). The MDB data may be supplied by a different
VPR, a Communications Register (CR), the SWBD, or the Main Instruction
Register (MIR) effective address when an immediate operand is involved.
When the AU performs an addition, subtraction (by two's complement), logi-
cal function, poll operation (refer to paragraph 4-61), or shift, the output
data is input to the VPR file over the AU1B bus. When a test is performed
on one of the input operands to the AU, the AU responds with test result con-
trol signals to PP control. When the AU is used for alignment, setting or
resetting of operand bits, or just data transfer, the AU output is transferred
to its destination via the AU2B transfer bus. Functionally, the AU is divided
into the following logic omponents:

. Aligner

° Complement or constant generator
. Unload box

° Double rail generator

° Adder

° Shifter

. Bit picker

4-9 Advanced Scientific Computer

O

° Test box 1, 2, and 3 logic

. Comparator

° Data manipulator

° Skip taken and branch taken logic
° AU control

The relationships between the listed AU components are shown in figure 4-4,
and a brief description of each is given in the following paragraphs.

4-12 ALIGNER. The aligner is used to perform right-end-around shifts
on the 32-bit MDB input to the AU (CR file, VPR file, SWBD, or MIR effec-
tive address data) in byte increments. This type of operation is necessary
when halfword or byte level instructions involve data groups that are out of
position in relation to the operation desired. An example of this problem is
the addition of byte one of a VPR to byte two of a VPR. In this case, the CR
(the MDB data) is shifted right one byte by the aligner. The aligner is capa-
ble of performing zero, one, two, or three byte shifts in this manner under
dircction of AU control. The aligner output is applied to the complement or
constant generator, the shifter (for 16-bit cyclic shifts), the comparator,
and the AU2B transfer bus. Data on the MDB is transferred to its desired
destination via the AUZ2B bus, passing through the aligner with no shift.

4-13 COMPLEMENT OR CONSTANT GENERATOR. The complement or
constant generator develops the true form of the 32-bit aligner output for
addition and logical instructions, the complement form of the aligner output
for subtraction instructions, plus one in both halfwords of the 32-bit output
when an increment by one and test (IBZ or IBN) instruction is executing, or
minus one in both halfwords of the output when a decrement by one and test
(DBZ or DBN) instruction is executing. The output of the complement or
constant generator is one of the 32-bit inputs to the adder.

4-14 UNLOAD BOX. The unload box distributes the true and complement
form of the MDB data (from the CR file, VPR file, SWBD, or MIR effective
address) to the shifter, bit picker, data manipulator, test box 1, and test
box 2. In addition, the unload box accepts the active VP code and R field
from AU control and generates the true and complement form of both for the
data manipulator and test box 2.

4-15 DOUBLE RAIL GENERATOR. The double rail generator develops the
true and complement form of the 32-bit operand input to the AU via the VPRB
bus. The output of the double rail generator is distributed to the adder,
comparator, and test box 3.

4-10 Advanced Scientific Computer

Ii-%

13)ndwoy 31411UaIIS PIUBAPYY

CONTAU
(AU CONTROL)

=

p————

cC(o-3) FROM CONTAU
rF————— _
| (CR
I (VPR I COMPLIMENT
— ALIGNER CONSTANT ADDER
5 ™MDB (AL, GENERATOR ADD)
| _(sweo, | (ccé) o
| (MIR EA) I
‘ > z @ x
o < o W S
ot ol ol ol ¢
VPR FILE DATA
I -] {eveuic 1g FROM CONTAU
OR Q SHIFY)
L — —— —— —‘ ADJACENT SHIFTER AU 1
¥VPRCARD __BYTES (SHF) TRANSFER TO
BUS > ver
UNLOAD (VPC+RE+AB) FILE
Law{ BOX
(UNL)
RF
alwl o v
e e HEREERRE
CONTAU (VPC (3 BITS)
(DECODE TO 8 BITS) FROM CONTAU
BIT PICKER
(POLL INSTR)
(8PK)
(AU1IB PP
N CONTROL b
5OUBLE ALL ZEROS
AL
GENERA-
TOR (DRG) -——
- 1
b
| BRANCH
- TAKEN
TEST BOX =] LoGIC
el NUMBERD o |
3))
-l__
™ skip |
—®1 COMPARATOR IDENTICAL o TAKEN
feMP) ™) Losic |
0) o — =1
I SKIP
TEST BOX [> @@ | T’F\gEN I
NUMBER 1 | STACK
Ts1) <o - ogic |
min) |
TEST BOX ALL/ANY ZERO (S)
NUMBER 2
(Ts2) ALL/ANY ONE (S)
VP BIT SET
/,,/’
1. TESTS BITS IN RFp FOR
ANY ONE OR ALL ZEROS DATA ' I
2. TESTS VP NUMBER MANIPULATOR
AGAINST INPUT BYTE (OMP)
FOR SKIP INSTRUCTIONS . I AU 2
TRANSFER
1 BUS
/ | (AU2B) |
1. BYTE SET RESET | |
TEST INSTRUCTIONS . I
& AUZXFER
(€)124729 PCCARDA

Figure 4-4. Arithmetic Unit Detailed Block Diagram

BRANCH TAKEN,
SKIP TAKEN

AND TEST POSITIVE
TO PP CONTROL

CONTROL,
TOo -
PPAUCD(0-3)

g

4-16 ADDER. The adder performs addition, subtraction (two's comple-
ment addition), and logical functions (AND, OR, EXCLUSIVE OR, and
EQUIVALENCE) using the two 32-bit words supplied by the complement or
constant generator and the double rail generator. The operation performed
is under direction of AU control, and the resulting output is applied to the
AUIB bus and, ultimately, the VPR file.

4-17 SHIFTER. The shifter performs right and left arithmetic, logical,
and cyclic shifts in increments of one, four, and eight bits on the 32-bit MDB
word supplied by the unload box. In addition, the aligner input to the shifter
is passed through to the output when a 16-bit cyclic shift is executed. Refer
to figure 4-5 for a definition of the three basic shift types used by the PP
When the amount of shift is other than the increments mentioned, the shift
is executed by first performing the largest possible incremental shift with-
out exceeding the desired end amount and then following up with the neces-
sary series of equal or smaller shift increments on the succeeding assigned
time slots. An example would be a shift of 13, which is executed in incre-
ments of 8, 4, and 1, using three time slots. The result of the desired
shift operation, which is under direction of AU control, is output to the VPR
file over the AU1B bus.

4-18 BIT PICKER. The bit picker is used during POLL instructions to
scan a byte of data (from a CR) from the most-significant bit to the least-
significant bit, in order to determine the number of zeros from the most sig-
nificant bit to the first one. The bit picker operates on all four bytes of the
MDB word supplied by the unload box and PP control selects the count of the
desired byte for transfer to the VPR file over the AU1B bus. The bit picker
also develops an all-zero signal (indicates when all bits of the byte under ex-
amination are zero) used by the AU control skip taken logic.

4-19 TEST BOX 1, 2, AND 3 LOGIC. The test box logic performs various
tests on the 32-bit words from the unload box and the double rail generator.
The portion (byte, hex, or bit) of the word under test specified by the instruc-
tion requiring the test is selected by the AU control skip and branch-taken
logic. The test box 1 logic utilizes the MDB word supplied by the unload box
during test positive (TP), test negative (TM), test zero (TZ), and test non-
zero (TN) type instructions to test each of the four input bytes for positive,
negative, zero, and nonzero data, respectively. The test box 1 logic is also
used during stack (PUSH, PULL, and MOD) instructions to test for negative
and zero data. The test box 2 logic utilizes the word, R field, and VP code
supplied by the unload box and is used during test-for-any-one (TO, TSO,
and TRO), test-for-any-zero (TZ, TSZ, and TRZ), test-for-all-ones (TAO),
and test-for-all-zeros (TAZ) type instructions. The test box 2 logic is used
to test all eight input hex groups for any one, any zero, all ones, and all
zeros in only those bit positions marked by ones in the R field. In addi-
tion, the test box 2 logic is used during the test VP flag for one (VPTO)

Advanced Scientific Computer

LOGICAL * (SHL) BIT O , 31

LEFT (LOST) -@— - we— @ - -@— |=@— 0'S
BIT 0O 31

RIGHT ofs —e»| —e» —e —e» —e —e |—e (LOST)

ARITHMETIC* (SHA) BIT o 31

LEFT (LOST)‘_ - P — - -— - | —-— o's
BIT O 31

RIGHT s —e —e —e — —e | —® (LosT)

CYCLIC* (SHC)

BIT O 31
LEFT r—l -— o eo— e - 41
-
BIT O 31
RIGHT E’ —_—. —e — — — —1
-

*LEFT SHIFTS ARE SPECIFIED BY A POSITIVE OPERAND AND RIGHT
SHIFTS ARE SPECIFIED BY A NEGATIVE OPERAND.

(A) 124730

Figure 4-5. Peripheral Processor Shift Basics

and test VP flag for zero (VPTZ) instructions to test each of the four in-

put bytes for a set bit and cleared bit, respectively, in the position desig-
nated by the VP code. The test box 3 logic utilizes the VPRB bus word
from the double rail generator during the decrement and branch if zero/non-
zero (DBZ and DBN) and increment and branch if zero/nonzero (IBZ and IBN)
instructions to test each of the four input bytes for plus and minus one, re-
spectively. This test box 3 byte information is then used to determine when
a VPR halfword is zero or nonzero. The test box logic outputs are input to
the AU control skip taken for stack logic, branch taken logic, and skip taken
logic for development of the test positive, branch taken, and skip taken con-
trol signals.

Advanced Scientific Computer

@
4-20 COMPARATOR. The comparator performs a bit-for-bit comparison
of the two 32-bit words input to the AU and generates a signalfor each byte
indicating whether or not the two inputs are identical. The results of the
comparison are input to the AU control skip taken logic, where the data

group (word, halfword, or byte) specified by the instruction requiring the
compare is selected.

4-21 DATA MANIPULATOR. The data manipulator sets or resets bits in
the MDB word supplied by the unload box in accordance with the R field or
VP code, depending on the executing instruction. When a set (SL, SR), re-
set (RL, RR), test and set (TSOL, TSOR, TSZL, and TSZR), or test and
reset (TROL, TROR, TRZL, and TRZR) type instruction is executing, the
data manipulator sets or resets (depending on the op-code) bits in all eight
input hex groups marked by ones in the R field. When a set VP flag (VPS)
or reset VP flag (VPR) instruction is executing, the data manipulator sets
or resets, respectively, one bit in each of the input bytes according to the
VP code. The output of the data manipulator is input to the CR file over the
AU2B bus, where the hex (for TS and TR type instructions) or byte (for VPS
and VPR instructions) specified by the instruction requiring the setting or
resetting is selected.

4-22 SKIP TAKEN AND BRANCH TAKEN LOGIC. The skip taken and
branch taken logic, located on the CONTAU card, consists of skip taken for
stack logic, branch taken logic, and skip taken logic. The skip taken for
stack logic utilizes the zero and negative test signals from the test box 1
logic to determine if the instruction following the current stack instruction is
to be skipped (normal operation of a stack instruction) or not (invalid stack
parameter encountered). The output of the skip taken for stack logic is used
by PP control to direct the stack instruction skipping action. The branch
taken logic uses the test box 1 and test box 3 outputs during the test and
branch (TP, TM, TN, and TZ) and increment/decrement test and branch
(IBZ, IBN, DBZ, and DBN) type instructions, respectively, to determine if
the specified branch should be taken. The output of the branch taken logic is
used by PP control to direct the branching action. The skip taken logic de-
termines whether the next instruction should be skipped. To do this, it uses
the comparator outputs for compare (CE and CN) type instructions, the test
box 2 outputs for test and skip (TO, TA, TR, TS, TZL, TZR, and VPT) type
instructions, and the all-zero outputs from the bit picker for the POLL in-
struction. The output of the skip taken logic is used by PP control to direct
the skipping action.

4-23 AU CONTROL. The AU control logic, located on CONTAU, accepts
PP control information in the AUMIR format, shown in figure 4-78 of the PP
control detailed description, translates the AUMIR data to a more usable
form, and distributes the results to the AU components described in the

4-14 Advanced Scientific Computer

O

previous paragraphs. The aligner control logic (part of AU control) utilizes
the aligner reference and object portions of the AUMIR format to develop the
byte increment shift controls necessary for aligner operation. The aligner
reference and object are also used by the aligner control logic to develop the
byte and halfword signals used by the skip and branch taken logic to determine
what data is specified by the current instruction for testing purposes. The
shifter control logic uses the shift count and op-code portions of the AUMIR
format to develop the shifter controls, the control signal for the aligner that
results in a two byte shift when a cyclic shift of 16 bits is desired, and the
updated shift count for PP control when additional shift is necessary to com-
plete a multistep shift instruction. The remainder of the AU control logic
is primarily concerned with decoding the instruction op-code and state in
order to enable the proper adder, complement or constant generator, data
manipulator, and skip and branch taken logic.

4-24 INDEXER

The Indexer is time shared by the eight Virtual Processors to perform Pro-
gram Counter (PC) indexing and to develop the Instruction Register (IR) ef-
fective address, source address, and destination address. The Indexer is
also involved in miscellaneous operations such as Write Cycle Equality
checking (WCE occurs when the next instruction to be executed is modified
by the current instruction) and stack parameter modification. The Indexer
is functionally divided into the following components (they are described in
the next three paragraphs):

° PC indexer (I1)
° TN field indexer (I2)
° Register indexer (I3)

The Indexer is located on the INDEXER(O0, 1) cards, with 16-bits of each
functional component on both INDEXER cards (bits 0-15 are on INDEXER(O0)
and bits 16-31 are on INDEXER(1)). The inputs and outputs of the three
Indexer components are shown in figure 4-6.

4-25 PC INDEXER. The PC indexer is primarily used to increment the
current PC value by one to advance the third level of the PP three-level
pipe. (The PP three-level pipe concept is described in detail in paragraph
4-62.) The incremented result is returned to the PC to locate the next se-
quential instruction. The PC indexer decrements the current PC value by
one when the address of the next instruction needs to be saved (store and
load PC instructions). When an interrupt occurs, the PC indexer decrements
the current PC value by two so that the instruction following the interrupted
instruction is not skipped after the interrupt is honored. If a branch is
taken out of the current instruction stream, the branch address in the Main
Instruction Register (MIR) effective address, rather than the current PC
value, is used for indexing.

4-15 Advanced Scientific Computer

FROM THRU TO
PC = PC INDEXER (i11) —g» PC
+
MIR EA
PC + BASE
NIR + SWBD + 12 - IR
B Ea t VPR el TN FIELD INDEXER (12) EA + SA + DA
sSwWBD + NIR — -
REGISTER INDEXER (13) IR
+ VPR3B3 SA+ DA
INDE XE R
11 — CONTROLS INCREMENTING AND DECREMENTING THE PC,
12 — CONTROLS DEVELOPMENT OF THE IR EFFECTIVE ADDRESS,
IR SOURCE ADDRESS, OR IR DESTINATION ADDRESS.
I3 — CONTROLS DEVELOPMENT OF THE IR SOURCE OR DESTINATION
REGISTER ADDRESSES,
(A) 111650

Figure 4-6. Indexer Block Diagram

4-26 TN FIELD INDEXER. The TN field indexer develops the IR effective
address when the T and N fields of the instruction being indexed specify a
CM or ROM location or an immediate operand. When the T and N fields
specify a register (VPR or CR), the TN field indexer develops a source or
destination address for the IR. The TN field indexer is capable of adding up
to three different items in the development of a CM or ROM address and up
to two different items in the development of an immediate operand, register
operand, or absolute operand. The items that may be involved in the de-
velopment of a memory location include the PC value or CM base value (for
CM addresses only) for PC and base relative instructions, respectively, the
N field of the next instruction (from the SWBD or NIR), and the VPR halfword
specified by the T field of the next instruction. In some cases (WCE test,

4-16 Advanced Scientific Computer

a2

locating a stack pointer, and incrementing the branch address during an un-
conditional branch to ROM and save PC (BRSM) instruction), the TN field
indexer develops a memory address by incrementing the MIR effective ad-
dress. The two items that may be involved in the development of an im-
mediate operand, absolute operand, or register operand include the N field
of the next instruction and the VPR halfword specified by the T field of the
next instruction.

The TN field indexer is also capable of developing an IR effective address
from an indirect cell. The two items that may be involved in the indirect
case include the 24-bit address field in the SWBD and the VPR halfword
specified by the T field of the indirect cell. A miscellaneous operation pro-
vided by the TN field indexer is the modification of the stack word and space
count parameters (refer to paragraph 4-46) input in the SWBD. The output
of the TN field indexer is inserted in the IR effective address, source ad-
dress, or destination address field under direction of PP control.

4-27 REGISTER INDEXER. The register indexer develops the IR source
or destination address specifying a VPR or CR. When a VPR is the source
or destination, the R field of the instruction being indexed (from the SWBD
or NIR) is passed through the register indexer to the IR. When a CR is the
source or destination, the register indexer adds byte 3 of VPR3 to the R
field to develop the desired address. The addition is necessary because the
four-bit R field is not large enough to specify each individual byte of the 64
register CR file. The output of the register indexer is inserted in the IR
source or destination address field under direction of PP control.

4-28 COMMUNICATIONS REGISTER FILE

The Communications Register (CR)file consists of 64 32-bit registers, acces-
sible to all eight VP's and addressable down to the individual bit level. Pri-
mary functions of the CR file include the following:

° PP to ASC system interface

° PP maintenance control

° System control

° Interrupt monitoring and control
° VP time slot assignments

. VP CM priority assignments

° Source of real time clock information
° Source of CM base operands
° Temporary storage area

4-17

Advanced Scientific Computer

a2

The CR file is implemented on four motherboards (CROMB, CRIMB, CRZMB,
and CR3MB), each motherboard containing a byte of all 64 registers. Refer
to figure 4-63 for the card layout in relation to the motherboards. The CR
file is functionally divided into the following components and described in the
next three paragraphs:

° CR file control
° Input synchronizers
° Communications Registers

The relationships between these components is shown in figure 4-7.

4-29 CR FILE CONTROL. The CR file control logic is located on the
CRMIRLDR, CRCONT(0-3), and CRCELLY cards. The CRMIRLDR card
accepts op-code groupings and the IR source and destination addresses from
PP control, and generates write controls capable of addressing from the word
to the hex level and read controls capable of addressing a word. The
CRCONT(0-3) cards utilize the CRMIRLDR output to distribute the write and
read select enables to the intended CR. The write select provides the PP
software with the capability of writing in any word (down to the individual bit)

SOURCE ,
DESTINATION

.
AND OP—CODES —— g INTERRUPT
FROM PP CONTROL CONTROL
CR FILE .
SYSTEM AND CONTROL
PROGRAMMED P
INTERRUPTS
(9] T
WRITE
SELECT 5 - READ
SELECT
AU2B DATA
TO PP
(SOFTWARE CONTROL) MAIN DATA
’ (Bgoss'r A
WARE
COMMUNI—
CATION CONTROL)
PERIPHERAL REGC'RS'TERS
DEVICE DATA (CR’S)
PERIPHERAL * INPUT TO PERI—
DEVICE SYNCHRONIZERS 63 PHERAL
GATES DEVICES
(A) 124731

Figure 4-7. Communications Register File Block Diagram

4-18 Advanced Scientific Computer

O

of the CR file, with the approval of the CR protect mechanism (the CR protect
mechanism inhibits writing into the first 10y, words of the CR file when en-
abled). The read select provides the PP software with the capability of read-
ing any word from the CR file. The CRCELLY card monitors system inter-
rupts (ac power failure, Central Processor interrupt, activation of the ASC
Operator's Console STOP button, disc protect violation, CM parity error,
CM protect violation, or illegal op-code in the selected VP (the selected VP
is the master controller VP used to direct PP operations)) and the software
initiated (programmed) interrupts to control the interrupt associated bytes

of the CR file.

4-30 INPUT SYNCHRONIZERS. The CR file input synchronizers are used
to synchronize gating signals from peripheral devices with the PP clock so
that data from the peripheral devices is not lost at the interface with the CR
file. All of the synchronizers are identical, except for the number of out-
puts, and are located on the CRCELLY card and each CRCONT and CRCELL
card. The single output synchronizers are used with the gating signals as-
sociated with data on one motherboard and the multiple output synchronizers
are used when one gate is associated with data on more than one motherboard.
The peripheral device data may access all CR's except the first eight (inter-
rupt control bytes and the CM base registers) and is continually monitored
by the device associated with the data.

4-31 COMMUNICATIONS REGISTERS. The Communications Registers
(CR's) provide the actual storage capability (64 32-bit registers) for the CR
file data and control information. All 64 CR's are subject to modification
via the PP software (under the influence of the CR protect mechanism),
whereas the peripheral device data has access to the CR bits as detailed in
the PP Fixed Variable List. Refer to appendix B of this manual for the CR
file map and to the Description of the ASC CR File, part number 930207-1,
for a detailed description of all data in the CR file.

4-32 READ ONLY MEMORY

The PP Read Only Memory (ROM) provides storage for up to 4096 32-bit
words, used primarily to hold control programs for the input/output devices
of the ASC system. The actual ROM is located on the 16 ROMCRD(0-15)
cards (256 32-bit words per card) and the decoding and merging logic is on
the AU2XFER, CRROMRG(0-3), and ROMMRG cards. Refer to figure 4-8
for a block diagram illustrating the relationships between the logic cards.

The twelve bit ROM address supplied by the PC is applied directly to the
ROMCRD(0-15) cards. The four most significant bits of the address are
used to enable one of the 16 ROMCRD cards and the eight least significant
bits of the address select one of the 256 words on the enabled card. The ad-
dressed word is passed through the merging logic to the NIR. (The merging
logic consists of the ROMMRG and AU2XFER cards when the addressed word

4-19 Advanced Scientific Computer

ROM

ROMCRD (0)*®

M -
e e] ROMMRG/
(2) - AU2XFER
Msa's T T T -
AgDRREOS'g e — J.”..d
RMAB S
BUS (4)

——®» CRROMMRG(0) —A

SE—
(9)
e — — — R ——
BT S I
OF ROM e — — F—& INCS)TRU(,‘"
TION
ADDRESS e CRROMMRG(1) L - TO NIR
MAB (10)
p———
L_' (1)
S

—® CRROMMRG(2) [®™

| (3] |]
—

b — —

(14) F——®" CRROMMRG(3) @™

r—-——.-—n

ROMCRD (15)

*256 32—BIT WORDS
PER ROMCRD

(A) 124732
Figure 4-8. Read Only Memory Block Diagram

is on ROMCRD(0-3) and a CRROMRG card and the ROMMRG and AU2XFER
cards when the addressed word is on ROMCRD(4-15).

4-33 SINGLE WORD BUFFER CONTROLLER. The Single Word Buffer
Controller (SWBC) is time shared by the eight Virtual Processors to provide
an interface to the Memory Control Unit (MCU) and Central Memory (CM)
necessary for CM read and write operations. The SWBC accepts memory
access requests from the active VP, notifies the MCU when a request is
present, and provides a data path to CM to execute the highest priority re-
quest under direction of the MCU. Functionally, the SWBC is divided into
the following components:

4-20 Advanced Scientific Computer

o

° Synchronous logic
° Asynchronous logic
. Two Way Bus

The synchronous logic is located on the SWBSYNC card, the asynchronous
logic is located on the SWBASY card, and the Two Way Bus (TWB) is located
on the PCCARDA(0-7) cards, with four bits of the 32-bit TWB on each
PCCARDA. The relationships between the components of the SWBC are
shown in figure 4-9.

4-34 SYNCHRONOUS LOGIC. The synchronous logic portion of the SWBC
provides the interface between the eight VP's and the asynchronous logic
portion of the SWBC. When a CM read or write operation is desired by the
active VP, the memory request and VP priority (assigned by software in the
CR file) combine to enable the VP code into either the high priority or low
priority queue on SWBSYNC. At the same time, the memory request en-
ables status information describing the request into the assigned status file
entry. The status information includes the memory zone (three least signifi-
cant bits of the PC), the type of operation (read or write), and the CM pro-
tect enable. Each status file entry has a busy bit associated with the as-
signed VP so that no more than one outstanding memory request can exist
for any one VP. The priority queue and status file data is input to the
asynchronous logic so that any outstanding memory access requests can be
honored.

4-35 ASYNCHRONOUS LOGIC. The SWBC asynchronous logic is the PP
interface with the MCU. The asynchronous logic monitors the synchronous
logic priority queue and status file data, indicates to the MCU when a PP
memory access request is pending, and controls the necessary transfer of
data and address information in order to execute the desired read or write
operation.

The priority queue select logic on SWBASY monitors entries in both synchro-
nous logic priority queues and selects the entry with the highest priority.
Queue entries in the same priority queue are selected on a first come, first
served basis. When a queue entry does exist, the VP code associated with
the selected entry is enabled to the VP code distribution logic and is used to
enable the associated status file entry in the synchronous logic to the asyn-
chronous status file output logic. At the same time, the memory request
control logic issues an access request (AR) signal to the MCU to initiate the
memory cycle. When the MCU responds with the request accepted (RA) sig-
nal, the following takes place: The VP code associated with the request and
the status file data are both input to the MCU, and the write control (other
than the write enable from the MCU) from the VP code distribution logic is
input to the TWB. If a write operation is specified by the status file entry,
the MCU develops a write enable that combines with the other mentioned

Advanced Scientific Computer

2%

431Ndwoy 21413Ua198 paduerpyy

CURRENT

SYNCHRONOUS LOGIC

- T 71

VP CODE

PRIORITY FROM
CR FILE

MEMORY REQUEST P PRIORITY

FROM PP CON-—-
TROL

CURRENT
VP CODE

MEMORY
REQUEST

STATUS
INFORMATION

(B) 124733

ASYNCHRONOUS LOGIC

r— 71

HIGH I ONORED|
PRIORITY - HOuoR
QUEUE PRIORITY - VPC I SOURCE ID .
QUEUE DISTRIBUTION P
HES e
9 I - |
SELECT | I |
ACCESS REQUEST (AR)
' I | L
mEmory REQUEST ACCEPTED (RA)
REQUEST L (RDA
oqloW | I REQUEST |READ DATA AVAILABEL (RDA)|
QUEUE I l READ DATA SAMPLED (RDS) |
- || e
INTERRUPT PR
I l LOGIC .- I
' I STATUS T DATA |
STATUS e REQUEST D -
FILE oUTPUT
I l LOGIC I
WRITE
| | l ENABLE
| L _J
—_— e — —— — —_ — — e — | ——— —— — — RESPONSE
1D
READ ENABLE
READ SWBA/SWBD READ AND WRITE SELECT
ZONE
SELEcT] B §
| WRITE - PARITY/PROTECT
SWBD > g» CM DATA [@» INTERRUPTS TO
READ CR FILE
-
TWO WAY BUS
(TwB)
MAME BUS CM ADDRESS
L -
swea |WRITE/READ

Figure 4-9. Single Word Buffer Controller Block Diagram

MEMORY
CONTROL
UNIT

(mcu)

¢

write control signals to execute the write. If a read operation is specified by
the status file entry, the address of the data to be read is input to CM and the
VP code input to the MCU is used to select the zone data in the corresponding
status file entry for use by the TWB. When the MCU responds to the read
request with the read data available (RDA) signal, the memory request con-
trol logic acknowledges the response with the read data sampled (RDS) sig-
nal and enables the CM read by providing the necessary controls to the TWB,
If a CM parity error or protect violation occurs during the memory cycle,
the MCU response reflecting the error is transferred to the CR file interrupt
logic via the asynchronous logic.

4-36 TWO-WAY BUS. The Two-Way Bus (TWB) and MAMB bus interface
the SWBD and SWBA, respectively, with CM. When a write operation is to
be performed, the write control signals from the asynchronous logic enable
the SWBD over the 32-bit bidirectional TWB to the CM data lines and the
SWBA over the MAMB bus to the CM address lines. During these transfers,
the SWBD data is expanded eight times to match the CM eight word data port.
When a read operation is to be performed, the SWBA is transferred over the
MAMB bus to the CM address lines. When the MCU and CM respond to the
read request, the TWB accepts data from CM (the TWB is normally in the
read mode). In addition, the TWB zone select from the synchronous logic
enables one of the eight words read to the SWBD after the read memory
cycle.

4-37 PERIPHERAL PROCESSOR CONTROL

The Peripheral Processor (PP) control is time shared by the eight Virtual
Processors (VP's) to provide the controls and enables necessary to execute
PP instructions loaded in the Instruction Registers (IR's). The heart of PP
control, the Main Instruction Register (MIR), is used to hold the expanded
IR of the active VP to control PP operations for the duration of a time slot.
The MIR consists of 256 bits. Words 0 and 1, the IRMIR, are located on
IRCARD(0-3); words 2, 5, and 6, the CRMIR, are located on CRCONT(0-3);
word 3, the VPRMIR, is located on VPRCONT and PCCTL; word 4, the
AUMIR is located on CONTAU; word 7 is the VP codes used by IRCARD(0-3),
and is located on IRCARD(0-3). The remaining PP control logic is lo-
cated on the PCCTL, PPCTLl, PPCTL2, and VPRCONT cards. The control
logic on the CONTAU card of the AU and the CRMIRLDR and CRCONT(0-3)
cards of the CR file is discussed in the general description of the AU and
CR file, respectively.

The major control paths in the PP are shown in figure 4-10, and should be
referenced in the following discussion. The VP code associated with the
next active VP is used to transfer the IR of the next active VP to the 64-bit
IRMIR and to the control logic on VPRCONT associated with the development
of the remaining portions of the MIR.

Advanced Scientific Computer

ve-v

481ndw oY) 21411Ud19S PAIUBAPY

CR FILE CONTROL

INTERRUPTS

o VPRCONT CR
FILE
—
P/O*
VPRMIR
AUMIR INPUT ARITHMETIC SHIFT COUNT
CURRENT NEXT p/OF UNIT
VP CODE VP CODE VBRMIR INPUT (AU)
- peeTL P/O * VPRMIR INPUT
READ/WRITE REQUESTS VIRTUAL SWBD/NIR
PROCESSORS DATA
BUFFER AVAILABLE (VP'S)
INS TRUCTION IRCARD MAIN
REGISTERS INSTRUCTION
(IR%s) RFGISTER —
IRM IR)
-—— g PPCTL1
SINGLE ABUFFER
WORD BUFFER v B
BA‘(,FA';ES —ﬁ CONTROLLER
ABLE (swBc)
SWBD, SWBD/
NIR IR DATA
i B
NEXT
RUPTS INSTRUCTION
INDEXER
CONTROL. 12,13
PPCTL2 L > INDEXER
BUFFER AVAILABLE
swBD/
INTERRUPTS IR DATA
*P/O MEANS PART OF
(B) 124734

Figure 4-10.

Peripheral Processor Control Block Diagram

o

The VPRCONT card utilizes the applied IR data to develop the CR file con-
trol signals necessary for the CRMIRLDR card (referenced in paragraph
4-29) to generate the CRMIR input for the CR file, the AUMIR input for the
AU, and the VPRMIR input (with the aid of the PCCTL card) for the active
VP. Refer to figure 4-78 for the CRMIR, AUMIR, and VPRMIR input for-
mats. When the next clock occurs and the described VP becomes active, the
IR is loaded in the IRMIR, and the CRMIR, AUMIR, and VPRMIR are ex-
panded to the formats shown in figure 4-79. The MIR (IRMIR, CRMIR,
AUMIR, and VPRMIR) is now used to control the operations necessary to ex-
ecute a step of the current instruction. The PCCTL card uses the IRMIR
data and the buffer available signal from the SWBC (indicates that the active
VP has no memory requests pending) to develop additional controls for the
active VP and read and write requests for SWBC. A new read or write re-
quest can only be made when the SWBC is available.

The PPCTLI1 card uses the IRMIR data, SWBD or NIR data (as determined by
the select signal from the PPCTL2 card) from the active VP, and the SWBC
buffer available signal to develop indexer controls, update the IR state at the
conclusion of the time slot, and generate a signal used to indicate when a
new instruction should be transferred to the IR from the SWBD or NIR (ter-
mination of the current instruction). The PPCTL2 card uses the IRMIR data,
SWBD or NIR data from the active VP, the SWBC buffer available signal, and
the next instruction indicator from PPCTL to update the IR op-code and con-
trol flags at the conclusion of the time slot. The IR also receives update in-
formation from the TN (I2) and R (I3) field indexers (source, destination, or
effective address) and the AU (effective address) when a shift instruction is
being executed. Automatic and programmed interrupts recorded by the CR
file are processed by the PPCTL2 card at the conclusion of the instruction
during which the interrupt occurred and by the PPCTLI] card when the inter-
rupt is honored by branching to ROM.

4-38 MAINTENANCE LOGIC

The Peripheral Processor (PP) maintenance logic provides a means of
checking the operation of the PP ECL circuitry previously discussed in this
section. In addition, during normal operation of the PP, the maintenance
logic supplies the VP code of the active VP, the Single Word Buffer (SWB)
priority of the active VP, and a Communications Register (CR) indicator
used to enable or disable the CR protect logic provided by PP control. The
checkout capability provided by the maintenance logic is exercised by the
ASC Maintenance Console in the manual mode, a card reader in the semi-
automatic mode, or by a VP in the automatic or normal mode. The main-
tenance system external to the PP (this includes the ASC Maintenance Con-
sole, the card reader, and Test Control Logic) necessary for selecting one

Advanced Scientific Computer

of the three operating modes and controlling both the manual and semi-
automatic modes is briefly described in appendix C of this manual. In the
automatic mode, any VP is capable of placing any other VP (except the VP
designated by the VP SELECT switch on the ASC Maintenance Console) under
test to execute maintenance commands supplied by the controlling VP.

A block diagram showing the interrelationships between the four basic areas
of the maintenance logic is presented in figure 4-11. The "heart' of the
maintenance logic is in the CR file; specifically, the maintenance registers
beginning at bit 17 of word C1¢ and extending through word Fj1¢. The data
entered in these registers, either via the ASC Maintenance Console, the
card reader, or the PP software controlling the VP responsible for exercis -
ing the maintenance logic, is used to control the PP maintenance logic during
the execution of maintenance commands. When a maintenance command is
initiated (by the ASC Maintenance Console in the manual or semi-automatic
modes or by the occurrence of a time slot associated with the VP under test
in the automatic mode), the control information and data from the mainte -
nance registers are distributed to the hardcore maintenance logic on the

STATUS INFORMATION
TO TCL AND DISPLAY
REGISTER DATA TO g
MAINTENANCE CON-—
SOLE

PP
TIME SLOT/PRIORITY/ CONTROL
CR PROTECT
CR FILE 1
p———— CONTROL/MIR DATA
MANUAL AND MAINTENANCE
SEMI-AUTOMATIC CONTROL/DATA HARDCORE
CONTROL AND —8 MAINTENANCE —8»{ MAINTENANCE
DATA FROM TCL LOGIC
(MLCTL, ML2,
AUTOMATIC AND ML1(0, 1) CONTROL
CONTROL AND
DATA FROM —@ REGISTERS MAINTENANCE
PP SOFTWARE SELECTED DATA/
STATUS
MAINTENANCE DATA
o
MAINTENANCE VP's /SWBC/
SELECTED CR FILE/
DATA ROM

(A) 124735

Figure 4-11. Peripheral Processor Maintenance Logic Block Diagram

4-26 Advanced Scientific Computer

[0

MLCTL, ML2, and ML1(0, 1) cards. The hardcore maintenance logic uses
the maintenance control and data to direct operation of one of the following
types of maintenance commands:

° Switch register to display register transfer (these are the two
data-holding registers of the maintenance registers)

° PP register (includes any of the PC's, NIR's, IR's, SWBA's,
SWBD's, VPR's, or CR's, the MIR, or an entry in the SWBC)
to display register transfer

° Switch register specified CM word to display register transfer

° Switch register specified ROM word to display register trans-
fer

° Switch register to PP register transfer
° Display register to PP register transfer

e Storage of the display register in CM at the location specified
by the switch register

. Lock or unlock the PC's specified by the maintenance registers

° Set or reset the flip-flops associated with the VP's specified by
the maintenance registers

° Advance all (or one) of the VP's specified by the maintenance
registers by the number of time slots specified by the mainte-
nance registers (this is called a burst operation)

° Advance all (or one) of the VP's specified by the maintenance
registers until they have all completed their current instruc-
tion

The hardcore maintenance logic distributes control gates and enables (and
MIR data, when the current maintenance command transfers data to the
MIR) to PP control, and data to the eight VP's, the SWBC, the CR file, and
the ROM (ROM is supplied data only during the ROM to display register
maintenance command previously mentioned). When the maintenance com-
mand involves a data transfer, PP control provides the VP's, SWBC, CR
file, or ROM with the control enables necessary to accept maintenance reg-
ister data or to distribute currently held quantities to the display mainte-
nance register. The maintenance commands not involving a maintenance
register transfer are also under direction of PP control, but execute with-
out any other interface to the maintenance logic. By executing the proper
combination of maintenance commands, any area of the PP can be checked
out. The hardcore maintenance logic also reports PP status information
(including the current VP code and time slot) to the Test Control Logic (TCL),
the display register contents directly to the ASC Maintenance Console, and

4-217 Advanced Scientific Computer

O

maintenance command status information (includes maintenance logic busy,
illegal command, and PC lock indicators) to the CR file maintenance regis-
ters.

4-39 INSTRUCTION REPERTOIRE

The Peripheral Processor (PP) instruction repertoire consists of 219 basic
instructions and one no-op instruction, as shown in the Karnaugh map of
figure 4-12. Each of these instructions (except the no-op) deals with im-
mediate data or data in Central Memory (CM), Read Only Memory (ROM),
the VPR file, or the CR file. The R, T, and N fields of the instruction
(refer to paragraph 1-15) specify the data involved in the instruction as fol-
lows:

° R field addressing - The 4-bit R field (ABCD) is used to
specify a VPR or CR at the word, halfword, or byte level.
When a VPR is specified, the first two bits (AB) identify the
VPR word (00 identifies VPRO, 01 identifies VPRI1, etc.), the
third bit (C) identifies the halfword (0 for right and 1 for left),
and the third and fourth together (CD) identify the byte (00 for
byte 0, 01 for byte 1, etc.). When a CR is specified, byte 3 of
VPR3 is added to the R field and the result (ABCDEFGH) iden-
tifies the CR (four bits is not enough to identify 64 registers
down to the byte level). The first six bits (ABCDEF') of the
sum identify the word (000000 identifies CR0O, 000001 identifies
CRI1, etc.) and the last two bits identify the halfword and byte
as mentioned for the VPR case.

° T field addressing - The 4-bit T field is used to specify the VPR
halfword to be added to the quantity specified by the N field
(indexing). The first bit is used to indicate whether the current
instruction is direct (0) or indirect (1) and the last three bits
specify the VPR halfword involved. The left half of VPRO is
not used, however, because 000 specifies no indexing (0000
and 1000 specify the direct and indirect cases, respectively,
of no indexing, 0001 and 1001 specify the direct and indirect
cases of indexing with the right halfword of VPRO, 0111
and 11111 specify the direct and indirect cases of indexing with
the right halfword of VPR3)).

° N field addressing - The 16-bit N field is used to specify an
immediate operand, CM address (@), branch address (p), VPR,
or CR. The quantity specified is determined by the op-code of
the instruction. A VPR or CR is identified by the N field as
described in the R field addressing (the four LSB's identify a
VPR and the eight LSB's identify a CR).

4-28 Advanced Scientific Computer

CgC
6~7 CpCy =00
CaCs l
| 01 11 10 00 01 11 10 00 01 11 10 00 01 1 10
BC sT sTL STR BCS CE CEL CER B8C
00 00 01 03 02 10 11 13 12 30 31 33 32 20 21 23 22
NOP uc SFW | SFLH | SFRH | ucv CWE | CLHE | CRHE ucx
NOOP ucB | sTCM |STHCM|sSTHCM| uCBLP| |skucM]|sKuCM|skucM| ucs
1 LD LDL LDR LDA ST sTL | STR STA CN CNL CNR
o 04 05 07 06 14 15 17 16 34 35 37 36 24 2s 27 26
Lw LLH LRH LAB SW SLH SRH SAB CWN |CLHN | CRHN
LDCM | LOCM | LDCM | LDCM | STCM |STHCM|STHCM| STCM||SKUCM|SKUCM|SKUCM
LD LDL LDR LDA sT STL STR STA
11 ocC 0D oF OE 1C 10 1F 1E 3c 3D 3F 3E 2c 2D 2F 2E
LXxw | LXLH | LXRH [LXAB SXW | SXLH | SXRH | sxAB
LDCM { LOCM | LOCM |LDCM | STCM |STHCM|{STHCM} STCM
LD LoL LDR LDF ST STL STR STF LD LDL LDR LDF STF
08 09 8 0A 18 19 18 1A 38 39 38 3A 28 29 28 2A
10 LXFW | LXFLHILXFRH| LXVP | SXFW | SXFLH] SXFRH} SXVP LFW | LFLH | LFRH LVP SvP
LocM | LocM] LocMm| LbuF | sTCM |STHCM]STHCM| STUF || LDCM | LDCM | LDCM | LDUF STUF
CyCy =01
90 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
AN ANL ANR BR AD ADL ADR | BCAS ADI ADHI1 | ADBI LDI sHA | ANHI | ANBI | LDI
00 40 41 43 42 50 51 53 52 70 71 73 72 60 61 63 62
BAW | BALH | BARH UR AW ALH ARH ucAv]|| Alw AlH AIB Liw SHA BAIH | BAIB | LFIw
CMLOU|CMLOU|CMLOU] ucB CMAU | CMAU | CMAU jucsLP|]| IMAU IMAU | IMAU LDIM SHFT | IMLOU|IMLOU| LDIM
OR ORL ORR BRS su suL SUR | BRSM sul SuH!I | susi LDHI SHL | ORHI { ORBI | LDHI
o1 44 45 47 46 54 55 57 56 74 75 77 76 64 65 67 66
80W | BOLH |BORH | URV MW MLH | MRH | UCAS MIW | MIH MiB LIM SHL [BOIH | BOIB fLFIH
cMLouf{cMLOuU |[cMLOU|uCBLP |CMAU |CMAU |cMAU jucsspP||IMAU | IMAU | IMAU |LDIM SHFT | tMLOU| IMLOU |LDIM
EX EXL EXR BCA EXEC | LDEA| ANAZ | BPC CNI CNHI | cNBi | LDBI SHC EXHI | ExBI | LDBI
" AC 4D AF 4E 5C 50 SF SE 7C 70D 7F 7E 6C 6D 6F 6E
BXW [BXLH | BXRH JucAx | EXCM | LEA | ANCM uXx CINW | CINH | ciNB | LIB SHC BXIH | BX1B |LFIB
lcmLou fcMLou |[cMmLoul uce | EXCM | LEA | ANCM | ucB ||SKUIM |SKUIM |SKUIM | LDIM | SHFT [IMLOU [IMLOU | LDIM
EQ EQL EQR BCA | PUSH | PULL | MOD | BPC CEI CEHI | CEBI EQHI | EQ@BI
10 48 49 48 4A 58 59 5B SA 78 79 78 7A 68 69 68 6A
BQW BQLH | BQRH UCA | PSH PUL MDF U ClEW |ClEH | CcIlEB BQIH | BQIB
cmiLoufcMmiLoufjcMLoul ucB | PUSH | PULL| MDF | UCB ||SKUIM |SKUIM | SKUIM IMLOU| IMLOU
CpCy=11
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
AN ANH ANB TZL AD ADH ADB | TszL RL AN ANH ANB | TAZL
00 Cco c1 c3 c2 DO D1 D3 D2 Fo F1 F3 F2 EO E1 E3 E2
BAVW | BAVH |BAvVE TZL AVW AVH | Ave | TszL cBZL BACw | BACH | BACB | TAZL
PPULO |PPULO |PPULO | CRLO| UAU UAU UAU |CRTSR CRSRT | PPULO|PPULO |PPULO| CRLO
OR ORH ORB TZR su SUH suB | Tszr || LoMmB | PULL RR OR ORH | ORB | TAZR
o1 ca CcS c7 cé D4 DS D7 D6 Fa F5 F7 F6 E4 ES E7 E6
BOVW | BOVH | BOVB | TZR MVW | MVH MvB | TSZR LFA | TPOL cBzrR | Bocw | BocH | BocB | TAZR
PPULO |PPULO |[PPULO | CRLO| UAU | UAU UAU |cRTSR||LDLFA | TPOL CRSRT | PPULO|PPULO |[PPULO| CRLO
EX EXH EXB TOR CN CNH CNB | TSOR CN CNH CNB SR EX EXH EXB | TAOR
11 cC CcD CF CE DoC DD DF DE FC FD FF FE EC ED EF EE
BXVW | BXVH | BXVB Tor | cvNw | cVNH| cvNB | Tsor|| ccNnw| ccNH | ccNB | cBOR | BXCw | BXCH | BXCB| TAOR
PPULO |[PPULO |[PPULO| CRLO| SKUPP| SKUPP|SKUPP|CRTSR|| SKUPP|SKUPP |SKUPP | CRSRT | PPULO|PPULO |PPULO| CRLO
EQ EQH EQB TOL CE CEH CEB TsoL CE CEH CEB SL EQ EQH EQs | TAoL
10 ce c9 cB CA D8 oB DA FB FA E8 E9 EB EA

D9
B8QvVw | BQVH BQvB TOoL CVEW [CVEH | CVEB | TSOL CCEW CCEB CBOL. BQCW BQCH | BQCB | TAOL
PPULO |pPuLO |PPuLO | CRLO |skuPP |SkuPP | SKUPP|CRTSR| | SKUPP|SKUPP | SKUPP| CRSRT |PPULO | PPULO{PPULO| CRLO

CgCy =10
00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
LD LoH | LoB ver | sT sTH | sTB | TRZL Tz TZH Tz8 | 182 TZ TZH Tz8
00 80 81 83 82 90 91 93 92 :19 81 B3 B2 AQ Al A3 A2
Lvw | tvH | Lve JvPRT | svw | svH | svB | TRZL TZW | TZH TZB | XizZ TFzw | TFZH | TFZB
LoppPuliLorpPujLorPru JucsrTlsTPTP |sTPTP | STPTP|CRTSR]| CBAT | CBAT | cBAT |CBIMD | CBAT | CBAT | CBAT
LD LOH | LDB ves | sT sTH | sTB | TRZR TN TNH TNB 18N ™ TNH TNB
01 84 85 87 86 94 95 97 96 B4 B5 87 B6 A4 AS A7 A6
LFVW | LFVH JLFve | vPsT | sFvw | sFvH | sFvB | TRZR TNW | TNH TNB xIN | TENw | TFNH | TFNB
Loppu | Lopru JLopPujucsrT]sTPTP |sTPTP |STPTP [CRTSR|| CBAT | CBAT | CBAT |CBIMD] CBAT | CBAT | CBAT
LD LoH | Loe | vpTo] sT sTH | sTB | TROR ™ TMH | TMB | DBN ™ TMH | TMmB | BPCS
1" 8c 8D 8F 8E 9c 9D 9F 9E -1 8D BF BE AC AD AF AE
Lréw |uFch | LFce | vPTo | sFcw | sFcH | sFce | TRoR || TMw | TMH | TMB | XDN | TFMwW/| TFMH | TFMB| UV
Loppu]Loppu]iopru] ucT |sTPTP|sTPTP| STPTP|CRTSR|]| CBAT | CBAT | CBAT |CBIMD | CBAT | CBAT | CBAT JUCBLP
LD LoH | ros | verz] sT sTH | sTB | TROL P TPH TPB | DBZ ™ TPH TPB
10 88 89 88 8A 98 99 98 9A B8 89 88 BA AB A9 AB AA
Lcw | tcH | tce | vPTz | scw | scH | sce | TROL || TPw | TPH P8 | xpz | TFPw | TFPH | TFPB

LDPPU| LDPPU JLDPPU ucT STPTP|STPTP{ STPTP|CRTSR{} CBAT | CBAT CBAT JCBIMD | CBAT | CBAT CBAT

(B)124736

Figure 4-12. Peripheral Processor Instruction Set

4-29 Advanced Scientific Computer

a2

The data specified by the T and N fields combines with the instruction op-
code to dictate one of the operand types (the R field may or may not specify
a second operand) listed in table 4-1.

Table 4-1. Peripheral Processor Operand Types

Operand Type Description

Immediate Operand An immediate operand is developed by sign
extending the 16-bit N field and the VPR
halfword specified by the T field to 32 bits
(N32 and T32, respectively), and adding
the results (N3Z+T32, where T32=0 for

no indexing).

CM Address (o) A CM address or base relative branch
Base Relative Branch address is developed by adding the 16-bit
N field (N16), the 24-bit CM base register
value (B24), and VPR halfword specified
by the T field sign extended to 24 bits (T2%)
(N16+B24+T24, where T24=0 for no in-

dexing).
CM Absolute Operand These operand types are developed by add-
VPR/CR Operand ing the 16-bit N field to the 24-bit sign ex-
ROM Branch Address - tended VPR halfword specified by the T
CM Absolute Branch field (N16+T24, where T24=0 for no index-

ing). The LSB's (four for a VPR operand
and eight for a CR operand) are used in the
VPR/CR operand case as described in the
R field addressing.

PC Relative Branch A PC relative branch address is developed
by adding the 24-bit sign extended N field,
the 24-bit PC value (PC24), and the 24-bit
sign extended VPR halfword specified by
the T field (N4+PC2%44+ 124, where T2%=0
for no indexing).

When an indirect instruction retrieves an indirect cell via one of the operands
just described, the indirect cell operand address is developed by adding the
24-bit address field (ADR24, refer to paragraph 1-16) and the 24-bit sign ex-
tended VPR halfword specified by the T field (ADR24+T24), A variation to
the normal T and N field operand development occurs for the augmented in-
structions. In these cases, the three LSB's of the developed effective

Advanced Scientific Computer

address (CM or ROM address) are replaced by the active VP code. When
augmenting occurs in combination with indirect, only the first level of in-

direct is augmented.

Each of the basic instruction groups utilizes some portion of the instruction
field addressing and T and N field operand development procedures and is
described in the order listed below:

° Stores

° Loads

° Arithmetic

° Logical

° Compare and skip

° Shifts

° Stack

e Set/reset CR bits

° Test CR bits and skip

e Test CR bits, set/reset, and skip
e Set/reset CR VP flag

° Test CR VP flag and skip

° Arithmetic conditional branches
° Increment/decrement and test conditional branches
° Unconditional branches

° Unconditional branch and load PC
° Unconditional branch to ROM and store PC
° Analyze effective address

° Load effective address

° Load CM base register

° Execute CM

° Test poll bits
4-40 STORE INSTRUCTIONS (ST, STA, STH, STB, STL, STR, and STF)

The store instructions store the VPR or CR operand specified by the R field
in the VPR, CR, or CM location developed by the T and N fields. Both word
and halfword stores may involve a register to register or register to CM
data transfer (the store CM absolute instruction is legal only on the word

4-31 Advanced Scientific Computer

O

level, however), but the byte stores can only be a register to register trans-
fer (the PP is capable of modifying CM data at the word and halfword level).
All register to CM stores have an identical augmented counterpart and in-
direct addressing is illegal for the halfword and byte register to register
stores.

A special case store instruction is the store VPR file instruction (STF),
which stores all four VPR's of the VP executing the instruction in four con-
secutive CM locations, the first of which is specified by the T and N field
operand. If the specified CM address is not a multiple of four, it is forced
to a multiple of four by zeroing the two LSB's. Augmenting occurs in the
three bits adjacent to the two zeroed LSB's.

4-41 LOAD INSTRUCTIONS (LD, LDA, LDH, LDB, LDI, LDR, LDF, LDI,
LDHI, and LDBI)

The load instructions load the VPR, CR, CM, or immediate operand devel-
oped by the T and N fields into the VPR or CR specified by the R field. Word
and halfword load instructions can use all combinations of both operands,

but byte loads cannot involve a CM operand. An exception is the load CM
absolute instructions, which are legal only on the word level. All CM loads
have an identical augmented counterpart and indirect addressing is undefined
for all immediate and halfword and byte register-to-register loads.

A special case load instruction is the load VPR file instruction (LDF'), which
loads all four VPR's with the contents of four consecutive CM locations, the
first of which is specified by the T and N field operand. If the specified CM
address is not a multiple of four, it is forced to a multiple of four by zeroing
the two LSB's. Augmenting occurs in the three bits adjacent to the two ze-
roed LSB's.

4-42 ARITHMETIC INSTRUCTIONS (AD, ADH, ADB, ADL, ADR, ADI,
ADHI, ADBI, SU, SUH, SUB, SUL, SUR, SUI, SUHI, SUBI)

The arithmetic instructions add/subtract the VPR, CM, or immediate op-
erand developed by the T and N fields to/from the VPR specified by the R
field. The result of the operation replaces the contents of the VPR specified
by the R field. Word and halfword add/subtract instructions can use all
combinations of both operands, but byte add/subtract instructions cannot
involve a CM operand. Indirect addressing is undefined for all immediate
arithmetic instructions and the halfword and byte arithmetic instructions
involving two VPR operands.

Advanced Scientific Computer

a2

4-43 LOGICAL INSTRUCTIONS (OR, ORH, ORB, ORL, ORR, ORHI, ORBI,
AN, ANH, ANB, ANL, ANR, ANHI, ANBI, EX, EXH, EXB, EXL,
EXR, EXHI, EXBI, EQ, EQH, EQB, EQL, EQR, EQHI, EQBI)

The logical instructions logically combine (OR, AND, EXCLUSIVE OR, or
EQUIVALENCE) the VPR, CR, CM, or immediate operand developed by the

T and N fields with the VPR specified by the R field. The result of the logi-
cal operation replaces the contents of the VPR specified by the R field. Word
level logical instructions can combine all combinations of both operands ex-
cept for immediate operands; halfword level logical instructions can combine
all combinations of both operands without exception. Byte level logical in-
structions can combine all combinations of both operands except for CM op-
erands. Indirect addressing is undefined for all immediate logical instructions
and for the halfword and byte logical instructions involving two registers.

4-44 COMPARE AND SKIP INSTRUCTIONS (CE, CEH, CEB, CEL, CER,
CEI, CEHI, CEBI, CN, CNH, CNB, CNL, CNR, CNI, CNHI, CNBI)

The compare and skip instructions compare the VPR, CR, CM, or immedi-
ate operand developed by the T and N fields to the VPR operand specified by
the R field. The next instruction is skipped if the comparison for equality
or non-equality evaluates true. Word and halfword compare instructions
can use all combinations of both operands, but byte compare instructions
cannot involve a CM operand. Indirect addressing is undefined for all im-
mediate compare and skip instructions and for the halfword and byte com-
pare and skip instructions involving two registers.

4-45 SHIFT INSTRUCTIONS (SHL, SHA, SHC)

The shift instructions perform right and left logical, arithmetic, and cyclic
shifts (paragraph 4-17) on the VPR word specified by the R field in the direc-
tion and amount of the immediate operand developed by the T and N fields.
The immediate operand is a signed number (positive for left shifts and nega-
tive for right shifts) in the range of +31 to -32. Indirect addressing is unde-
fined for all shift instructions.

4-46 STACK INSTRUCTIONS (PUSH, PULL, MOD)

The stack instructions are used to maintain an operand stack by modifying
the status parameters to reflect any change. The format of the status

parameters is as follows:

WORD COUNT SPACE COUNT
15116 31

STACK POINTER
31

Qo
\

4-33 Advanced Scientific Computer

The 16-bit word count indicates the number of operands in the stack, the
16-bit space count indicates the number of available 32-bit slots remaining
in the stack (up to a maximum of 32, 767), and the 24-bit stack pointer is
the address of the next available slot. Both parameter words are located
in adjacent memory locations.

The push stack instruction reads the first parameter word from the CM ad-
dress developed by the T and N fields, checks the space count for zero, and
terminates execution if the space count is zero (the stack is full). If the
space count is nonzero, the space count is decremented by one, the word
count is incremented by one, and the first parameter word is replaced by the
modified quantities. The second parameter word is read from CM, the con-
tained stack pointer is used to store the VPR word specified by the R field

in the operand stack, and the stack pointer is incremented by one and stored
back in the second parameter word. The next sequential instruction is
skipped.

The pull stack instruction reads the first parameter word from the CM ad-
dress developed by the T and N fields, checks the word count for zero, and
terminates execution if the word count is zero (the stack is empty). If the
word count is nonzero, the word count is decremented by one, the space
count is incremented by one, and the first parameter word is replaced by
the modified parameters. The second parameter word is read from CM,
the contained stack pointer is decremented by one and then used to read the
last operand in the stack into the VPR specified by the R field, and the dec-
remented stack pointer replaces the original. The next sequential instruc-
tion is skipped. ‘

The modify stack instruction reads the first parameter word from the CM
address developed by the T and N fields, adds the modification value in the
VPR specified by the R field to the word count and subtracts the modification
value from the space count (a positive modification value generates a gap of
unused stack locations and a negative modification value deletes the most
recent stack entries), checks both resulting quantities for a negative value,
and terminates execution if either count is negative. If both counts are non-
negative, they replace the original word and space count, the second param-
eter word is read from CM, the modification value is added to the retrieved
stack pointer, and the modified stack pointer replaces the original stack
pointer. The next sequential instruction is skipped.

4-47 SET/RESET CR BIT INSTRUCTIONS (SL, SR, RL, RR)

The set/reset CR bit instructions set or reset (depending on the op-code)
those bits, (marked by ones in the R field), in the right or left half of the CR
byte specified by the T and N fields. The R field is used as a mask in this
group of instructions and indirect addressing is undefined.

4-34 Advanced Scientific Computer

2

4-48 TEST CR BITS AND SKIP INSTRUCTIONS (TOL, TOR, TZL, TZR,
TAOL, TAOR, TAZL, TAZR)

The test CR bits and skip instructions test the bit positions marked by ones
in the R field in the left or right half of the CR byte specified by the T and

N fields for any or all one(s) or zero(s). The desired test (any one, any
zero, all ones, or all zeros) is determined by the op-code. If the test is not
satisfied, the next instruction is executed. If the test is satisfied, the next
instruction is skipped. Indirect addressing is undefined.

4-49 TEST CR BITS, SET/RESET, AND SKIP INSTRUCTIONS (TSZL, TSOL,
TRZL, TROL, TSZR, TSOR, TRZR, TROR)

The test CR bits, set/reset, and skip instructions test the bit positions
marked by ones in the R field in the left or right half of the CR byte speci-
fied by the T and N fields for any one or zero. If the desired test is satis-
fied, the next instruction is skipped. Independent of the test, the bit posi-
tions marked by ones in the R field are set or reset (depending on the op-
code). Indirect addressing is undefined.

4-50 SET/RESET CR VP FLAG INSTRUCTIONS (VPS, VPR)

The set/reset CR VP flag instructions set or reset the flag bit in the CR
byte specified by the T and N fields. The flag bit under consideration in the
byte is determined by the number of the executing VP. Indirect addressing
is undefined.

4-51 TEST CR VP FLAG AND SKIP INSTRUCTIONS (VPTO, VPTZ)

The test CR VP flag and skip instructions test the flag bit in the CR byte

specified by the T and N fields for one or zero and skip the next instruction
if the desired test is satisfied. The flag bit under test in the byte is deter-
mined by the number of the executing VP. Indirect addressing is undefined.

4-52 ARITHMETIC CONDITIONAL BRANCH INSTRUCTIONS (TZ, TZH,
TZB, TN, TNH, TNB, TP, TPH, TPB, TM, TMH, TMB)

The arithmetic conditional branch instructions test the VPR or CR word,
halfword, or byte specified by the R field for zero, nonzero, greater than
zero, or less than zero. If the desired test is satisfied, a PC relative
branch is taken to the location specified by the T and N fields.

4-53 INCREMENT/DECREMENT AND TEST CONDITIONAL BRANCH
INSTRUCTIONS (IBZ, IBN, DBZ, DBN)

The increment/decrement and test conditional branch instructions increment
or decrement by one the VPR halfword specified by the R field and test the

4-35 Advanced Scientific Computer

O

result for zero or nonzero. If the desired test is satisfied, a PC relative
branch is taken to the location specified by the T and N fields.

4-54 UNCONDITIONAL BRANCH INSTRUCTIONS (BPC, BR, BC, BCA)

The unconditional branch instructions branch to the PC relative, ROM, base
relative, or CM absolute operand address developed by the T and N fields,
as determined by the op-code. The unconditional branch to CM instructions
(PC relative, base relative, and CM absolute) all have an identical aug-
mented counterpart.

4-55 UNCONDITIONAL BRANCH AND LOAD PC INSTRUCTIONS (BPCS,
BCS, BRS, BCAS)

The unconditional branch and load PC instructions branch to the PC relative,
base relative, ROM, or CM absolute operand address developed by the T and
N fields and load the address of the next instruction in the current instruc-
tion stream in the VPR specified by the R field. The most significant bit of
the VPR is set to indicate which instruction stream is currently being ac-
cessed (one for CM and zero for ROM).

4-56 UNCONDITIONAL BRANCH TO ROM AND STORE PC INSTRUCTION
(BRSM)

The unconditional branch to ROM and store PC instruction branches to the
ROM address specified by the T and N fields and stores the address of the
next instruction in the current instruction stream in one of the eight contig-
uous CM locations beginning at 2074+ The identity of the VP executing the
instruction is added to the 201¢ base to determine the exact CM location.
Indirect addressing is undefined,

4-57 ANALYZE EFFECTIVE ADDRESS INSTRUCTION (ANAZ)

The analyze effective address instruction retrieves an object instruction
from the CM address developed by the T and N fields. The T and N field
operand of the object instruction is developed in the normal manner and the
result is stored in the VPR specified by the R field of the analyze instruction.
The result of the object instruction T and N field operand development is

that the object instruction is effectively in the location of the analyze instruc-
tion, with the following exception: a PC relative branch address is developed
with a PC value that is one greater than it would be if the PC relative branch
was in the analyze instruction location.

4-58 LOAD EFFECTIVE ADDRESS INSTRUCTION (LDEA)

The load effective address instruction loads the CM effective address devel-
oped by the T and N fields in the VPR specified by the R field.

4-36 Advanced Scientific Computer

[S—

4-59 LOAD CM BASE REGISTER INSTRUCTION (LDMB)

The load CM base register instruction loads the CM base register associated
with the active VP with the three least significant bytes of the VPR specified
by the T and N fields. The LDMB instruction may be indirect. When this is
the case, the first level of indirect is through a VPR and any additional levels
use CM. This instruction is exempt from the CR protect mechanism (no
interrupt will occur when the CR protect logic is enabled and this instruction
executes).

4-60 EXECUTE CM INSTRUCTION (EXEC)

The execute CM instruction executes the CM object instruction specified by
the T and N fields as though it were in the location of the original execute
CM instruction, except when the object instruction is a PC relative branch.
When the object instruction is a PC relative branch, the PC value used in the
development of the branch address is one greater than that used if the object
instruction actually replaced the execute CM instruction.

4-61 TEST POLL BITS INSTRUCTION (POLL)

The test poll bits instruction tests the CR byte specified by the T and N
fields for a one in any of the bit positions and skips the next instruction if a
one is found. The number of bit positions to the most significant one is in-
serted in the VPR halfword specified by the R field. (If no one is found, the
VPR halfword is cleared and no skip is taken). Indirect addressing is un-
defined.

4-62 INSTRUCTION PROCESSING

Each of the eight Virtual Processors (VP's) is capable of executing an inde-
pendent program residing in Central Memory (CM) or Read Only Memory
(ROM). The hardware directly involved in retrieving, holding, expanding,
and executing program instructions includes a Program Counter (PC), Single
Word Buffer Address register (SWBA), Single Word Buffer Data register
(SWBD), Next Instruction Register (NIR), Instruction Register (IR), and the
time-shared Indexer and Main Instruction Register (MIR).

The PC, SWBA, SWBD, NIR, and IR are discussed in the general and de-
tailed description of the VP's, the Indexer (including the PC indexer, TN
field indexer, and register indexer) is discussed in the general and detailed
description of the Indexer, and the MIR is discussed in the general and de-
tailed description of PP control. Refer to figure 4-13 for a diagram relating
all of these components.

The procedure required to retrieve and prepare an instruction for execution
involves three basic steps (N+2, N+1, and N in figure 4-13), which give rise
to the phrase ""PP three-level pipe''. The first basic step, instruction acqui-

Advanced Scientific Computer

(N+2) PC 'N(?,EC’§E,R
|
ROM — + *

SWBA
L s CENTRAL
MEMORY

(cM)
(N+1)
NIR .- — — — — SWBD

I INDEXER
(TN,REGISTER)

l_._..‘I : i
L | -X_
(N) r- B
IRO e e e e IR7 |
L -
L__‘ ______ J
TIME : —

SLOT -_—
CONTROL +

(A) 124737

Figure 4-13. Peripheral Processor Instruction Processing

4-38 Advanced Scientific Computer

sition, centers around the PC operation. When PP control determines that
the PP three-level pipe is to be advanced one level, and the time slot for the
VP being discussed occurs, the PC address is applied to ROM or the SWBD
as directed by PP control. If the instruction source is ROM, ROM imme-
diately responds by transferring the addressed instruction to the NIR. If the
instruction source is CM, the VP issues a read request and CM responds by
returning the addressed instruction to the SWBD. The second basic step, in-
struction expansion, is now possible. When the next PP three-level pipe ad-
vancement occurs, the SWBD or NIR R, T, and N fields (paragraph 1-15)
are expanded by the TN field and register indexers into the source, destina-
tion, and effective addresses for the IR. The dotted line around these two
indexers, in figure 4-13, represents the op-code, state, and control flags
developed by PP control for the IR. The third basic step, instruction execu-
tion, is now possible. When the next time slot occurs for this VP, the IR
data is transferred to the MIR for the duration of the time slot (approximately
85 nanoseconds). During this 85 nanoseconds, the MIR data is used by PP
control to direct execution of one step of the instruction. If termination of
the instruction occurs at this step, PP control initiates advancement of the
PP three-level pipe so a new instruction can be brought into the IR. If ter-
mination of the instruction does not occur at this step, PP control updates
the IR, at the conclusion of the time slot, to the next step of the multistep
instruction. When the next time slot for this VP occurs, the next step of the
same instruction is executed. The MIR is continually receiving IR data in
various steps of execution from all VP's that are executing programs in this
manner.

The terms N, N+1, and N+2 in figure 4-13 represent three sequential instruc-
tions in the PP three-level pipe at any one time from either ROM or CM.
The instruction from location N has been in the PP three-level pipe during
two level advances (the instructions from locations N-2 and N-1 have both
terminated while N was in the pipe), the instruction from location N+1 has
been in the PP three-level pipe during one level advance (termination of
N-1), and the instruction at location N+2 is currently addressed by the PC.
When execution of instruction N terminates, instruction N+1 goes through
the indexing phase to the IR, instruction N+2 is retrieved from either ROM
or CM and inserted in the NIR or SWBD, respectively, and the PC indexer
increments the PC to location N+3. This PP three-level pipe advancement
occurs every time an instruction terminates. This rather complicated
method of instruction processing necessitates a few data transfers and time
delaying techniques that interrupt this smooth flow (the dotted line between
the SWBD and NIR in figure 4-13 is one of these interruptions). These sit-
uations are called sequential dependencies and are discussed in the following

paragraphs.
4-63 SEQUENTIAL DEPENDENCIES

Sequential dependencies that do interrupt the smooth flow of the PP three-
level pipe include the following situations:

4-39 Advanced Scientific Computer

O

° CM instruction requires CM access
° Current instruction modifies next instruction
° Current instruction modifies next instruction index

° Unconditional branch and load PC instruction followed by PC
relative branch

Each of these hazards, with its associated solution, is described in the fol-
lowing paragraphs.

4-64 CM INSTRUCTION REQUIRES CM ACCESS. This problem occurs
when a VP is executing a program resident in CM and one of the program
instructions is required to read from or write to CM. The problem exists
because the SWBD contains the next instruction to be executed and it is
needed for a CM read or write operation. The solution is provided by trans-
ferring the next instruction to the NIR and setting the NIL bit in the current
instruction to reflect the transfer. The SWBD is now free to engage in the
CM read or write operation without destroying data.

4-65 CURRENT INSTRUCTION MODIFIES NEXT INSTRUCTION. This
problem occurs when the current instruction stores data in the CM location
of the next instruction. The problem exists because the next instruction
already resides in the NIR (due to the saving procedure described in the pre-
vious paragraph) in the unmodified form. The solution is provided by first
comparing the operand address plus one with the current PC value (the PC
has been incremented one location past the address of the next instruction).
This check is called the Write Cycle Equality (WCE) test. If WCE does exist
(the next instruction is modified), the modified data to be stored in the

SWBD is transferred to the NIR. This action replaces the ''old' next in-
struction with the '""new'' next instruction, but also adds an extra step to the
store instruction. '

4-66 CURRENT INSTRUCTION MODIFIES NEXT INSTRUCTION INDEX,
This problem occurs when the current instruction loads data into a CR or
VPR that is used by the next instruction for indexing purposes (address de-
velopment) during the terminating step of the current instruction. The prob-
lem exists because both the indexing and the register loading occur during
the same step, so the next instruction will be indexed with the unmodified
register value. The solution is provided by first checking to see if the reg-
ister to be loaded by the current instruction enters into the indexing of the
next instruction. This check is used to develop the Dependency (D) signal.
If Dependency does exist (the indexing register is to be modified), the load
is executed but the indexing operation is delayed one step. This action al-
lows for the indexing register modification but also adds one step to the cur-
rent instruction.

Advanced Scientific Computer

4-67 UNCONDITIONAL BRANCH AND LOAD PC INSTRUCTION FOLLOWED
BY PC RELATIVE BRANCH. This problem occurs when an unconditional
branch and load PC instruction attempts to save the address of the next in-
struction at the same time a PC relative branch (next instruction) is in the
indexing phase. The problem exists because the PC relative branch instruc-
tion develops its branch address using the address following the uncondition-
al branch and load PC instruction address as the PC value (the PC was de-
cremented for the save operation) rather than one greater than the branch
address of the unconditional branch and load PC instruction. The problem
can be more readily understood by stepping through the unconditional branch
and load PC instruction.

Step 1 The branch address from the IR is transferred to the SWBA to
retrieve the branched to instruction, and the branch address
plus one is temporarily stored in the effective address portion
of the IR. The PC is decremented by one to the address of the
next instruction.

Step 2 The decremented PC is saved in the designated VPR; the IR
effective address (containing the branch address plus one) is
transferred to the SWBA to retrieve the instruction following
the branched to instruction; and the IR effective address is
incremented by one and stored in the PC. In addition, the in-
struction retrieved in step 1 is indexed into the IR.

If the instruction retrieved in step 1 and indexed in step 2 is a PC relative
branch, the saved PC value would be used in the development of the PC rel-
ative branch address. The solution to this problem is provided by first
checking to see if a PC relative branch does follow the unconditional branch
and load PC instruction. When this is the case, the next instruction BTN
(NIBTN) signal is used to delay the PC relative branch indexing operation un-
til the PC holds the address following the PC relative branch instruction ad-
dress. This procedure modifies step 2 and adds two additional steps to the
execution of the unconditional branch and load PC instruction.

Step 2 The decremented PC is saved in the designated VPR and the IR
effective address is incremented by one (it is now two greater
than the original branch address) and inserted in the PC.

Step 3 The PC is decremented by one to point to the instruction follow-
ing the PC relative branch.

Step 4 The PC relative branch is indexed and input to the IR, the PC
value is impressed upon memory to retrieve the next instruc-
tion, and the PC value is incremented to complete the PP three-

level advance.

Advanced Scientific Computer

S—

4-68 INSTRUCTION TRANSFER TABLES

The instruction transfer tables provide a step-by-step summary of instruc-
tion execution for each of the instruction subgroups (refer to appendix A).
Each subg'roup has two transfer tables, one for CM source and one for ROM
source instructions. The header information on each of the transfer tables
includes a general description of the subgroup, the subgroup mnemonic and
source, and the hexadecimal representation, software mnemonic, and hard-

ware mnemonic of each instruction in the subgroup.
transfer table columns is provided in table 4-1A.

A description of the

Table 4-1A. Transfer Table Column Description

sent s‘;ate.

request is being made.

Column Name Description
Step Sequential numbering of instruction states.
Present State State the instruction is currently in.
Next State State the instruction will be in after the next time
slot.
Transfers Events that will take place when a time slot occurs

and the proper conditions exist for any given pre-

Mode Indicates instruction source CM (M) or ROM
M)).
SWBC The OUT column indicates if a CM read or write

request is possible (BA) or not ABA) and the IN
column indicates when a read (RC) or write (WC)

Op Code Subgroup mnemonic.

Facility Indicates the hardware involved in performing the
data transfer on the same line of the transfer
column.,

Source-Destination Indicates the indexer involved in developing source

and/or destination addresses used in the data
transfer on the same line of the transfer column.

Conditions Indicates hardware conditions that must exist for
the events in the transfer column to take place.

4-42

Advanced Scientific Computer

When an instruction is indexed and expanded from the SWBD or NIR to the
IR, PP control is responsible for development of the op-code, initial state,
and control flags and the Indexer is responsible for development of the
source, destination, and effective addresses. When a time slot for the

VP being discussed occurs, the IR data is transferred tothe MIR for the
duration of the time slot in order to direct the events listed in the transfer
column of the transfer table associated with the IR instruction. If the in-
struction is not complete at the conclusion of the time slot, the IR present
state is modified to reflect the next state via PP control and the VP waits for
the next time slot. When the instruction does terminate (indicated by NIN in
the transfer tables), the PP three-level pipe is advanced one level (a new in-
struction is brought into the IR).

The state information presented in the transfer tables represents six bits in
the IR, three to define the state class and three to define the step within the
state class. Each of the state class bits has a definition, and, when com-
bined with the other two state class bits and three step bits, gives a fair
description of what is actually happening in the PP. Table 4-2 contains
some useful combinations of state class and step, with their associated gen-
eralized descriptions.

The actual state transformation from the present state to the next state is
directed by PP control (paragraphs 4-37 and 4-154), which utilizes the pres-
ent state, various test results (this includes the Write Cycle Equality (WCE)
signal, Dependecny (D) signal, Skip Taken (ST) signal, Branch Taken (BT)
signal, etc.), and the relevent control flags to direct the transformation.
When the current instruction terminates, a signal called NINS is developed
by PP control to indicate the use of the initial state of the next instruction in
the development of the present state. The initial state of an instruction is
primarily determined by the op-code.

The following paragraphs, accompanied by figure 4-1, provide a few exam-
ples of tracing instruction execution in the PP via the transfer tables.

4-69 NO OPERATION INSTRUCTION

Refer to page A-74 of appendix A for a CM source transfer table of the no-
op instruction. The no-op instruction begins execution in state class 3, step
2. If the SWBC buffer is not available (MBA) to the VP executing the no-op
and an interrupt did not occur during the previous instruction (OINTEF), the
no-op remains in state class 3, step 2 without initiating any data transfers.
When the buffer does become available, the following events take place dur-
ing the next time slot:

(PC) —> SWBA
(NIL)—/> IR
(PC)+1——> PC

0 —— > NIL

4-43

Advanced Scientific Computer

i

’ Table 4-2. Instruction States

EX= LAx* LC=* BC* General Description

0 1 0 1 When direct, a branch state with PC in-
dexing and instruction retrieval. When
indirect, the first step of the indirect
cycle.

0 1 0 2 When direct, a stack instruction skip state
with PC indexing and instruction retrieval.
When indirect, the second step of the in-
direct cycle.

0 1 0 >2 Successive indexing steps of multiple-step
instructions.

0 1 1 1 Indexing with write cycle compare.

0 1 1 2 Indexing with no termination inhibits ex-

cept "'BA* and interrupts.

0 1 1 3 Indexing on B* with no termination inhibits
except "BA and interrupts.

1 0 0 1 Step 1 of multistep instructions.

1 0 0 >1 Successive execution steps of multistep
instructions.

1 1 1 1 - Execution with indexing and no write cycle
compare.
1 1 1 2 Execution with indexing and dependency,

skip, or branch testing.

1 1 1 3 Indexing on B with no termination inhibits
except "BA and interrupts.

EX-Execution State LA-Look Ahead (Indexing) LC-Last Cycle State
BC-Bit Count (Step) State BA-Buffer Available
p-Branch Address

The PC is transferred over the CMAB bus to the SWBA, the PC indexer uses
the PC value on the CMAB bus to increment the PC, the SWBD or NIR (as
determined by the NIL bit of the MIR) is expanded by PP control and the TN
field and register indexers and input to the IR, and the IR NIL bit is zeroed
by PP control to indicate the next instruction will be in the SWBD (because
of the CM instruction source). In addition, a read request is issued by PP

Advanced Scientific Computer

control to the SWBC to retreive the instruction addressed by the SWBA. The
net effect of the described events is advancement of one level in the PP three-
level pipe.

4-70 STORE WORD TO CENTRAL MEMORY INSTRUCTION

Refer to page A-1 of appendix A for a CM source transfer table of the store
word to CM instructions. The store word to CM instructions begin execution
in state class 4, step 1. When the buffer becomes available (BA), the follow-
ing events take place:

(PPU)R——> SWBD
(IR)TN—> SWBA
(SWBD)—> NIR

] —— > NIL
(IR)TN+1—> IR

If a VPR is specified by the R field, the desired VPR is enabled over the
VPAB bus, over the Main Data Bus (MDB), through the AU aligner, and over
the AU2B bus to the SWBD. If a CR is specified by the R field, the desired
CR is enabled over the CRAB buses, over the MDB, through the AU aligner,
and over the AU2B bus to the SWBD. The IR effective address developed by
the T and N fields is enabled over the CMAB bus tothe SWBA; the next in-
struction in the SWBD is saved in the NIR via the CMDB bus; the IR NIL bit
is set by PP control to reflect the save; and the IR effective address is in-
cremented by one by the TN field indexer and stored back into the IR. (This
is done for the WCE test mentioned in paragraph 4-63.) A write request is
issued by PP control to the SWBC to store the VPR or CR to the desired CM
address and the IR state class and step are advanced to three and one, re-
spectively, by PP control.

The next time this instruction receives a time slot, the WCE indicator is
used to determine whether termination of this instruction should occur now
or later. When the buffer is available and the current instruction has not
modified the next instruction A WCE), the PP three-level pipe is advanced
one level as described in the CM source no-op instruction. When the cur-
rent instruction does modify the next instruction (WCE), the SWBD is enabled
over the CMDB bus to the NIR so that the modified instruction replaces the
old instruction. The IR state class and step are advanced to three and two,
respectively, by PP control. At the next time slot, the store word to CM
instruction terminates by advancing the PP three-level pipe.

4-71 COMPARE CENTRAL MEMORY TO VPR INSTRUCTION

Refer to page A-45 of appendix A for a CM source transfer table of the com-
pare CM to VPR instructions. The compare CM to VPR instructions begin
execution in state class 4, step 1. When the buffer becomes available (BA),
the following events take place:

Advanced Scientific Computer

@O
(IR)TN —> SWBA

(SWBD)——> NIR
]l ——— > NIL

The IR effective address of the CM quantity to be comi)ared is enabled over
the CMAB bus to the SWBA; the next instruction in the SWBD is saved in the
NIR via the CMDB bus and the IR NIL bit is set by PP control to reflect the
save; and a read request is issued by PP control to the SWBC to retrieve the
CM quantity for comparison. The IR state class and step are advanced to |
seven and two, respectively, by PP control.

At the next time slot for which the buffer is available (BA), the retrieved

CM quantity and VPR specified by the R field are both applied to the skip
taken (ST) logic in the AU in the following manner: The desired VPR is
enabled over the VPRB buses to the AU and the CM quantity in the SWBD is
enabled over both the MDAB bus and the MDB to the AU, If the comparison
is satisfied (a check for equality or inequality, depending on the instruction
in the KSKUCM subgroup), the ST signal is true and the following takes place:

(PC) —> SWBA
(PC)+1 ——> PC
0 ————> NIL

The PC is enabled over the CMAB bus to the SWBA; the PC indexer uses the
PC value on the CMAB bus to increment the PC; the IR NIL bit is zeroed so
that the next instruction previously saved in the NIR is skipped; and a read
request is issued by PP control to the SWBC to retrieve the skipped-to in-
struction. The IR state class and step are advanced to three and two, re-
spectively, by PP control and the PP three-level pipe is advanced one level
using the skipped-to instruction at the next time slot for which the buffer is
available (BA). If the comparison is not satisfied (0ST), the PP three level
pipe is advanced one level without taking any skip.

4-72 INDIRECT CYCLE

Refer to page A-72 of appendix A for a CM source transfer table of the in-
direct cycle. The indirect cycle is executed when the next instruction to be
executed (in the SWBD or NIR) has the first bit of its T field set (first indi-
rect cycle) or the indirect cell retrieved from CM has the first bit of its T
field set (multiple level indirect cycle) and the current instruction has com-
pleted execution (NIN in the transfer table). When indirect addressing is
specified, the indirect cycle(s) is executed to develop the IR source, destina-
tion, or effective address prior to the normal execution of the instruction for
which indirect addressing is defined. This indirect cycle is not valid for the
conditional branch instructions (they have their own unique indirect cycle, as
described in paragraphs 4-182 and 4-183) or for the instructions for which
indirect addressing is undefined.

4-46 Advanced Scientific Computer

When the next instruction indirect indicator (DB) from PP control indicates
the next instruction is indirect, the ignore indirect indicator (IGI) from PP
control indicates indirect addressing is possible for the next instruction,

and the instruction termination indicator (NINS) indicates that the current
instruction has terminated, the IR DC bit is set by PP control and the indirect
cycle enters execution in state class 2, step 1. If the PPTN flag associated
with the indirect instruction indicates the indirect cell is located in CM
(MPPTN), the following events take place:

(IR)TN ——> SWBA
(SWBD)—> NIR
] —————> NIL

The IR effective address developed by the TN field indexer pointing to the
indirect cell is enabled over the CMAB bus to the SWBA; the instruction fol-
lowing the indirect instruction in the SWBD is saved in the NIR via the CMDB
bus and the IR NIL bit is set by PP control to reflect the save; and a read
request is issued by PP control to the SWBC to retrieve the indirect cell.
The IR state class and step are both advanced to two by PP control. If the
PPTN flag associated with the indirect instruction indicates the indirect cell
is located in a register (PPTN), the following events take place:

(PPU)TN——>SWBD
SWBD —>NIR
] — > NIL

The VPR or CR specified by the T and N fields is transferred to the SWBD
as follows: If a VPR is specified, the desired VPR is enabled over the
VPAB, over the MDB through the AU aligner, and over the AU2B bus to the
SWBD. If a CR is specified, the desired CR is enabled over the CRAB buss-
es, over the MDB, through the AU aligner, and over the AU2B bus to the
SWBD. The next instruction is saved in the NIR as previously mentioned for
the indirect cell-in-CM. The IR state class and step are both advanced to
two by PP control.

At the next time slot for which the buffer is available (BA) and the next in-
struction indirect indicator signals termination of indirect addressing (NMDB),
the TN field indexer develops an IR source, destination, or effective address
from the SWBD indirect cell and the IR DC bit is zeroed by PP control. The
former indirect instruction now enters its normal execution sequence. If the
next instruction indirect indicator signals another level of indirect address-
ing (DB), the TN field indexer develops the indirect cell address for the IR
from the current indirect cell in the SWBD and PP control sets the IR DC bit
to reflect another level of indirect addressing. The retreiving of indirect
cells continues until the termination level is reached (indirect addressing
through a register is only possible at the first level, however).

Advanced Scientific Computer

4-73 INTERRUPT CYCLE

Refer to page A-76 of appendix A for a CM source transfer table of the inter-
rupt cycle. The interrupt cycle is executed at the conclusion of the instruc-
tion durinmg which a programmed or automatic interrupt occurred. PP con-
trol directs execution of the interrupt cycle, which executes the interrupt
instruction at ROM location 1016 if an automatic interrupt occurred, or at
ROM location 1174 if a programmed interrupt occurred (the interrupt in-
structions are the branch and save PC type). When the interrupt servicing
routine terminates, control resumes with the instruction following the in-
terrupted instruction. The net result is the squeezing of an interrupt servic-
ing routine in the normal flow of instruction processing after the instruction
during which the interrupt occurred.

When a programmed or automatic interrupt has been recorded and the as-
sociated IR interrupt bit has been set (INT), the current instruction has
terminated (NINS), and the terminated instruction is not execute CM
(EXCM), the following events take place:

] —— > INTF
] — > NIL
NO-OP —> 1R
(PC)+1—>PC

The check for "EXCM is necessary because the execute CM instruction has
not really terminated until its object instruction has terminated. PP control
sets the IR INTF bit to initiate the interrupt cycle and the IR NIL bit to in-
dicate that the interrupt instruction to be executed will be retrieved from
ROM. PP control zeros the IR op-code and the current PC value is incre-
mented by the PC indexer to two instructions past the interrupted instruction.
The IR state class and step are advanced to two and three, respectively, by
PP control. When the interrupted VP receives its next time slot, the follow-
ing events take place:

E.A,—> NIR
(PC)-2——> PC

The IR effective address reflecting the interrupt type (1074 for automatic and
114 for programmed) is applied to ROM from PP control via the RMAB bus
and the PC value is decremented by two via the PC indexer (the PC indexer
receives the PC value to be modified via the CMAB bus). The PC value now
points to the instruction following the interrupted instruction and the NIR con-
tains the interrupt servicing instruction. The IR state class and step are
advanced to three and two, respectively, by PP control.

At the next time slot for which the buffer is available (BA), the PP three-
level pipe, with the no-op instruction at the execution level, the interrupt
servicing instruction at the address preparation level, and the instruction
following the interrupted instruction at the acquisition level, is advanced one
level as described in the CM source no-op instruction. In addition, the IR
INTF bit is zeroed to reflect the honored interrupt.

4-48 Advanced Scientific Computer

4-74 DETAILED DESCRIPTION

The remaining paragraphs in this section provide a detailed look at the eight
major components of the PP (VP's, AU, Indexer, CR file, ROM, SWBC, PP
Control, and Maintenance Logic). The detailed descriptions covering the
eight major components are supplemented with detailed block diagrams and
logic diagrams that aid in understanding the logic card diagrams in section
VII of this manual. Timing diagrams are provided for the more involved
timing circuits and transfer tables accompany the PP Control description of
instruction execution.

4-75 VIRTUAL PROCESSORS

Each of the eight Virtual Processors (VP's) of the PP consists of a Program
Counter Register (PC), Next Instruction Register (NIR), Instruction Regis-
ter (IR), Virtual Processor Register File (VPR File), Central Memory Base
Register (CM Base), Single Word Buffer Address Register (SWBA), and a
Single Word Buffer Data Register (SWBD). A detailed description of each
register type, supplemented with block diagrams and/or logic diagrams, is
presented in the following paragraphs. The integrated operation of these
areas is described in paragraph 4-62.

4-76 PROGRAM COUNTER REGISTER. Refer to figure 4-14 for a simpli-
fied block diagram of the eight PC's and the associated input and output logic.
The primary function of each PC is to provide the associated VP with a
pointer to the next instruction in Central Memory (CM) or Read Only Mem-
ory (ROM). Secondary functions include distribution of the PC to the MDB,
Indexer I1, Indexer I2, PP Control, and the Single Word Buffer Controller,
in support of the PP three-level pipe.

4-77 PC Loading Logic. During normal PP operation (maintenance logic
not used), the source of the updated PC value is Indexer I1. When a PC is
to be updated, the PC load enable line (PPI1PCE) from the PCCTL card per-
mits the decoding of the PC load select lines (PPWMSC(0-2)) to develop the
pointer to the PC of the active VP. The PPWMSC(0-2) lines are also sup-
plied by the PCCTL card and contain the VP number of the active VP. The
developed pointer is used to insert the updated PC value (32 bits) in the PC
of the current active VP. Bit 0 of the updated PC value (indicates mode) is
supplied by the PCCTL card, bits 1 ghrough 7 are set to zero, and bits 8
through 31 (the address) are supplied by Indexer I1.

4-78 PC Distribution Logic. When an unconditional branch and save PC
instruction (BPCS, BCS, BRS, or BCAS) or the unconditional branch and
store PC instruction (BRSM) is executing, the PCAB bus is used to route the
PC of the active VP to the MDB. The PC to MDB enable line (PPPCABE)

Advanced Scientific Computer

0s-%

221ndwoy 21413Ud19S PAUBAPY

/

FROM
PCCTL <

FROM
PCCTL

(8) 124738

PPRABC(0-2)

PC TO MDB SELECT o
PC TO MDB ENABLE PPPCABE E
FROM c
PCCTL \ pc TO INDEXER 12 PPRMSC(0-2) ‘—. S
SELECT \ (vee) E
D
E
c
o
D -~ PPPCAB(0-31) 10 MDB
PC LOAD _ £ —
SELECT FRoM_PPWMSCO— gy o
PCCTL E
I
PC LOAD)
ENABLE FROM_EPIIPCE gy D PCAB
PCCTL E
PC'S
PPQPCO(0—31) ~PPPCI2(0-31) TO INDEXER
==l — 12
_____ PCB
BITO (MODE) . -~PPPCIR(0-31) . TO PCCTL AS
FROM PCCTL —~PP110(0-31) —®» EFFECTIVE
8ITS 8-31 FROM . ADDRESS
INDEXER 11 —-—— ==
-—————
_____ CMAB
. ~PPPCCMI(0—31)
—_—_——— - TO INDEXER 11
PPQPC7(0—31)
WBPPCMC(0-31) o TO SWBA
RMAB
~PPPCMC:1(29-31)
—8» TO SWBSYNC
PC TO ROM PPQVPCD(0~2) b
ADDR SELECT - 2
c ~PPPCRMI(0-31)
o TO INDEXER
D R
[—. E
PC TO ROM PPPCRBE ~PMROMADD(0~31)
ADDR ENABLE & TO ROM
D
PC TO CM PPRMSC(0-2) [£
ADDR SELECT s
PC TO CM PPPCCBE D
ADDR ENABLE — E
IR TN ADDR PITNADI -
FROM PPCTL1 PITNADOR(SZ3Y) o 50
IR TN ADDR TO CM PPTACBE CMAB
ADDR ENABLE —_—
FROM PCCTL
INDEXER 12 TO EM PTI2RES (0 31)
ADDR FROM INDEXER ,
INDEXER 12 TO PPI2CBE 2N's
CM ADDR ENABLE
IR TN ADDR TO : o PO
ROM ADDR ENABLE PPTARBE RMAB

Figure 4-14.

Program Counter Registers

O

permits the decoding of the PC to MDB select lines (PPRABC(0-2)) to select
and route the PC of the active VP to the MDB (hPPPCAB(0-31)). When any
instruction is executing, the PCB bus is used to route the PC of the active
VP to Indexer I2 and the PP Control logic used-in performing the Write
Cycle Equality (WCE) test. The PC to Indexer I2 select lines (PPRMSC(0-2))
are decoded and used to select and route the PC of the active VP to Indexer
I2 (where the "PPPCI2(0-31) lines are used in PC relative instructions) and
the PP Control logic on the PCCTL card (where the "PPPCIR(0-31) lines are
used in performing the WCE test). The CMAB bus is used to route the PC
of the active VP to Indexer Il for indexing, to the associated SWBA for in-
struction location in CM, and to the Single Word Buffer Controller logic for
CM zone selection. In these three cases, the PC to CM address enable line
(PPPCCBE) permits the decoding of the select lines (PPRMSC(0-2)) so that
the necessary distribution is possible. The CMAB bus is also used to route
the IR TN address (PITNADDR(8-31)) to the SWBA when the IR TN address
to CM address enable line (PPTACBE) goes to one or the output of Indexer
I2 (PTI2ZRES(0-31)) to the SWBA when the Indexer I2 to CM address enable
line (PPI2CBE) goes to one (stack instructions). The RMAB bus is used to
route the PC of the active VP to Indexer Il for indexing and to ROM for in-
struction location when the PC to ROM address enable line (PPPCRBE) per-
mits the decoding of the select lines. The RMAB bus is also used to route
the IR TN address to ROM when the IR TN address to ROM address enable
line (PPTARBE) goes to one (branch to ROM type instructions).

4-79 NEXT INSTRUCTION REGISTER. Refer to figure 4-15 for a simpli-
fied block diagram of the eight NIR's and the associated input and output
logic. The primary function of each NIR is to provide the associated VP
with a 32-bit register for holding words retrieved from ROM. A secondary
function is to provide temporary storage of SWBD data when the SWBD is
being used during the execution of an instruction. When data is being read
from ROM(PMROMO(0-31)), the ROM to NIR enable line (PNRMCDE) gates
the ROM data to the NIR selection logic. The CM/ROM data to NIR enable
line (PNCDNRE) permits the decoding of the active VP code lines
(PPWA2CSL(0-2)) in order to develop a pointer to the NIR of the active VP.
The pointer is then used to insert the ROM data into the proper NIR. When
data from the SWBD of the active VP is to be transferred to the associated
NIR, the SWBD data is applied to the NIR selection logic (instead of ROM
data) and inserted in the proper NIR via the mentioned pointer. During the
execution of all instructions, the NIR data is distributed to Indexers I2 and
I3 over the NIRB bus. The active VP code lines (PPQVPD:2(0-2)) are de-
coded at each execution period and used to select the NIR of the active VP,
The selected NIR is then transferred over the NIRB bus and input to Indexers
12 and I3 (PNIRI2R(0-31)) for IR development.

Advanced Scientific Computer

ACTIVE VP PPQVPC: 2(0—2)
CODE FROM
PCCTL

moonmo

ACTIVE VP PPWAzCSL(O’zi

CODE |

FROM PCCTL
CM/ROM DAT,

A
TO NIR ENABLE PNCDNRE
FROM PCCTL ————————

mooamo

PNQNIRO(0—31)

ROM DATA PMROMO(0—31 - —
FROM ROMMRG | X ~PNIRI2R(0-31) NIR TO
cMDpB NIRB &> INDEXERS

2N - T-= 7 12 AN
ROM TO NIR enemcoe | Tl ON | — - - = o3
ENABLE FROM e gl -
pcett Tk N | == -
PNQNIR7(0-31)
SWBD DATA

(32 BITS)

(B) 124739

Figure 4-15. Next Instruction Registers

4-80 INSTRUCTION REGISTER. Refer to figure 4-16 for the format of one
of the eight 64-bit IR's. The IR data is grouped as follows:

° Operation code. (bits 0 through 7)

The eight bit op-code specifies the instruction to be executed. The source
of the op-code is the associated SWBD or NIR when the previous instruction
has terminated, the MIR when the current instruction is not complete or -
when a test and skip or test and branch instruction evaluates true, or the re-
map logic when the first level of indirect for an indirect or indirect-aug-
mented instruction is through a CR or VPR.

° State classes (bits 8 through 10)

The three state class bits (EX for execute, LA for look ahead, and LC for
last cycle) provide a broad definition of the state of the current instruction
in order for the PP three-level pipe to operate properly. The EX bit indi-
cates the current instruction is in an execution state; the LA bit indicates the
possiblility of indexing the next instruction on this step; the LC bit indicates
that it is possible to terminate the current instruction on this execution
cycle.

° Bit count (bits 11 through 13)

4-52 Advanced Scientific Computer

€9~ ¥

481ndwoY 21§11Ud10S PAIUCAPY,

STATE BIT INDIRECT MODE
OP CODE CLASSES COUNT CYCLE BIT BIT
/ \/ \/ \/ \/ \
C, c, c, c, c, cg cg c, EX LA tc | Bc, | BC, | BC, | DC M
BIT 00 BIT 15
SOURCE ADDRESS DESTINATION ADDRESS
/ \/_ \
s /R|s /R |s /r |s_/r
o 1 52 S3 ol 75" 1] 6" 2 3] Po P P> P3 Pa Ps Pe P,
BIT 16 BIT 31
FLAGS EFFECTIVE ADDRESS
/- \VA 7
T E
oM NniL | LFaF| pPTN | INTF iINT | INT, | Eag | EA | EA G| EA | EA L EA S B4, | EA
BIT 32 BIT 47
: EFFECTIVE ADDRESS
/_ \
EA EA _| EA EA EA EA EA EA EA EA EA EA EA EA EA EA
16 17 18 19 20 21 22 23| 24 25 26 27 28 29 30 31
BIT 48 BIT 63
(A) 111653
Figure 4-16. Instruction Register Format

O

The bit count (BCq is the MSB and BC, is the LLSB) is a modifier of the state
class and provides a counter for multiple steps in one state class.

° Indirect cycle bit (bit 14)

The indirect cycle bit (DC) is set to indicate that the current instruction in
the IR is an indirect instruction.

° Mode bit (bit 15)

The mode bit (M) is set to indicate the source of the current instruction is"
Central Memory (CM) and reset to indicate Read Only Memory (ROM).

e Source address (bits 16 through 23)

The eight bit source address specifies a CR or VPR from which data is to be
retrieved.

° Destination address (bits 24 through 31)

The eight bit destination address specifies a CR or VPR in which data is to
be stored.

° Flags (bits 32 through 39)

The object mode bit (OM) is the mode bit for the object instruction pointed
to by an analyze instruction. The next instruction location (NIL) is set to
indicate the next instruction is in the NIR, or reset to indicate the next in-
struction is in the SWBD. The LFAF flag is set when the current instruc-
tion is LDMB indirect and indicates the base value to be loaded is in CM
rather than the VPR specified by the T and N fields. The PPTN flag is set
when the current instruction is indirect through a CR or VPR specified by
the T and N fields. The interrupt flag (INTF) is set at the last step of ex-
ecution of the current instruction when an automatic or programmed inter-
rupt occurs during the same instruction. The INTF flag is used to trap the
VP with the interrupt to an interrupt routine in ROM. The TRAP flag is not
used by the IR, and the INT1 flag is set when a programmed interrupt is ini-
tiated (a bit is set in the Interrupt Control byte of the CR file) by the execut-
ing VP. The INT2 flag is set (only in the IR of the selected VP) when any
one of the following occurs: A/C power failure, activation of the STOP but-
ton on the Operator'sConsole, disc protect violation, CP interrupt, CM
parity error in selected VP, CM protect violation in selected VP, illegal
op-code in selected VP,

° Effective Address (bits 40 through 63)

The 24-bit effective address is developed by the TN field indexer (indexer

I2) and indicates an immediate operand, a direct or indirect operand address,
or a direct or indirect branch address. The only exception to this effective
address development occurs when a shift instruction is executing and the cur-
rent shift count update is supplied by the CONTAU card.

Advanced Scientific Computer

(@)

The loading logic and flip-flops for each of the eight IR's is distributed on
four IRCARD cards (IRCARD(0) through IRCARD(33)), as shown in figure 4-17.
The op-code and state class bits exist on IRCARD(0) and their source de-
pends on the test positive signal from the CONTAU card. If a test and skip
or test and branch instruction evaluates true (skip or branch taken), the test
positive signal (TPOS) enables the op-code of the instruction (located in the
MIR during the test cycle) and the data test states (DT) into the associated
IR. These loading sources are required because the three-level pipe re-
quires updating before the current instruction terminates. If a skip or
branch is not taken, the inverted test positive signal (TPOS) enables the op-
code of a new instruction, remapped instruction, or old partially complete
instruction and the data real states (DR) into the associated IR. The source
and destination addresses exist on IRCARD(1) and they are supplied (as long
as the TPOS signal is true) by the TN field indexer (indexer I2) or the regis-
ter indexer (indexer 1I3), depending on the instruction being executed. The
control flags and the first byte of the effective address exist on IRCARD(2).
If the TPOS signal is true, the DT control flags are inserted in the IR; if the
TPOS signal is true, the DR control flags are inserted in the IR. The first
byte of the effective address is supplied by indexer I2 when the TPOS signal
is true. The second and third bytes of the effective address exist on
IRCARD(3) and are supplied by indexer I2 when the TPOS signal is true.
When a shift instruction is in the process of shifting data in the AU and the
desired shift count has not been completed, the selected shift increment (1,
4, 8, or 16) is inserted in the third byte of the effective address by the
CONTAU card. A more detailed description of the loading and distribution
logic on the IRCARD cards is presented in the following paragraphs.

4-81 IRCARD(0) Loading and Distribution Logic. Refer to figure 4-18 for
a simplified logic diagram of the IR op-code and state loading and distribu-
tion logic. The active VP code lines (PILVPC(0-2)) from the MLCTL card
are temporarily stored in a group of three flip-flops on IRCARD(0) during
every execution cycle. The true outputs of the flip-flops are directly applied
to a DE module for decoding purposes and the complement outputs are in-
verted by a group of 2N logic modules (during normal PP processing the
maintenance logic holds one of the two 2N module inputs at one) before being
applied to a second DE module. At the conclusion of the current execution
cycle, the MIR op-code lines PICDT(000-007)) from PPCTL2 are applied
to the test positive inputs of the IR flip-flops. At this same time, the new
op-code from the associated SWBD or NIR, the old op-code from an instruc-
tion currently in the MIR, or the remapped op-code from the remapping
logic, is supplied by PPCTLZ2 (MPICDR(000-007)) and inverted twice (once
due to the inhibited maintenance logic). The result is applied to the test
positive complement inputs of the IR flip-flops. If the test positive signal
(PACTSPOS) developed by the skip taken and branch taken logic of the AU
indicates an instruction is to be skipped, or control is to branch out of the

4-55 Advanced Scientific Computer

481ndw oy 314113195 PIIUEAPY

9¢-%

IRCARD (0) IRCARD (1) IRCARD (2) I IRCARD (3)
BYTE BYTE BYTE I BYTE BYTE
TPOS MIR TPOS DR TPOS TPOS TPOS TPOS TPOS TPOS | «
v |
‘ 12 12 DT 12 12 12
OP CODE STATES SOURCE DESTINATION FLAGS EFF ADDRESS | EFF ADDRESS | EFF ADDRESS
) . UNUSED UNUSED
x T
(x/Au2x TPOS TPOS 13. 13 DR 1 CONTAU
DT TPO3 TPOS TPOS BYTE
L
+]
NINS
Q BYTE BYTE
NEW
INSTR
REMAP
INSTR
OoLD MIR
NOTE: INSTR
DR=DATA REAL
DT=DATA TEST
469 466 469 466 469 466 469 466
MB Y TPOS: 1 TPOS: 2 TPOS: 1 TPOS: 4 TPOS: 1 TPOS: 4 TPOS: 3 TPOS: 4
PINS —
X1 TPoOS: 3 TPOS: 1 TPOS: 3 TPOS: 4 TPOS: 3 N/A N/A N/A
467 462 467 462 467 462 467 462
CARD
LOCATION Lu LT LS LR
(A) 111675

Figure 4-17.

Instruction Register Loading Format

LGP

131NdWOoY) 21413UB1IS PIIUCAPY

ACTIVE VP
CODE FROM
MLCTL

TEST POSITIVE
FROM CONTAU

FROM
PPCTL2

TEST POSITIVE
FROM CONTAU

FROM
PPCTL2

MIR OP-CODE
FROM PPCTL2

NEW, OLD, OR
REMAPPED
OP—CODE

FROM PPCTL2

TEST POSITIVE
FROM CONTAU

FROM
PPCTL2

TEST POSITIVE
FROM CONTAU

FROM
PPCTL2

DR
FROM ST[A)TES

PPCTL1

NEXT VP CODE

FROM MLCTL

PIQIRO(0-7)
L[]

.

PIQIR7(0-7)

PIQIRO(8—15)
L]

PIQIR7(8-15)

—~PILVPC(0-2)
\
FFS
1 ﬂ y DE
N'S
(MAINT) 1 __gul © ri
PACTSPOS
(MAINT)1 2
SPIRXFLG(0) .
° . H2 PIRXOEN °F
o -~PIRXBO(0)
PACTSPOS o
PIRYOEN
1 —PIRYFLG(0) | 4B
1—P1RYBO(0) -
SPICDT(000-007)
~PICDR(000-007)
2NS
1 ——— H——5 ,
2N'S
(MAINT) 1 —
-~ PACTSPOS
— -
e
(MAINT)T o)
(, APIRXFLG(0) » 12 PIRX1EN - F
~PIRXB1(0) -
DE
PACTSPOS)
i RYFLG(O 4B PIRY 1 EN
1_PIRYB1(0) »
PREXDR , .. PIMDR
T
STATES —PREXDR .. .—\PIME‘
2N ’ 2N
1 — 11—
(MAINT)
PILNVPC(0-2)
i s B cmmm— ,
DE 2N S FFS
1 — 11— 1T —

(B)124740

IRB

IRB

Figure 4-18.

Instruction Register (IRCARD(0))

PIRBMIR(0-7)

» TO MIR

I g TO VPRCONT
L g TO PPCTLI

PIRBMIR(8-15)
N - TO MIR

f—————————f» TO VPRCONT
L _gm TO PPCTLI

O

current instruction stream, the PACTSPOS signal, combined with the
PIRYFLG(0) and PIRYBO(0) signals (these last two signals are hard wired on
PPCTL2 at a logic one for IRCARD (0)), develop the PIRYOEN signal. The
PIRYOEN signal enables the decoding of the VP code in order to generate a
gate for the MIR op-code applied to the test positive inputs of the IR's. The
net result is insertion of the MIR op-code in the IR of the active VP at the
conclusion of the execution cycle. If the test positive signal indicates no
skip or branch is to be taken, the PACTSPOS signal combines with the
PPCTL2 hard-wired signals "PIRXFLG(0) and "PIRXBO(0) to develop the
PIRXOEN signal. The PIRXOEN signal enables the decoding of the VP code
and the resulting insertion of the new, old, or remapped op-code in the IR
of the active VP.

The state bits (EX, LA, LC, BC,, BC,;, BC,, DC, and M) are inserted in
the second byte of the IR of the active VP at the same time and in a manner
similar to that described for the op-code. If the inverted test positive sig-
nal PACTSPOS) indicates a skip or branch is to be taken, the PIRX1EN
signal is developed to enable the decoding of the active VP code (gate gen-
eration) and to permit the insertion of the data test states PREXDT,
PRLADT, PRLCDT, aPRBCODT, -PRBC1DT, PRBC2DT, WPIDCDT, and
APIMDT) in the IR of the active VP. If the inverted test positive signal in-
dicates no skip or branch, the PIRY1EN signal is developed to generate the
gate used in inserting the data real states MPREXDR, PRLADE, PRLCDR,
PRBCODR, TPRBCIDR, PRBC2DR, W\PIDCDR, and 7"PIMDR) in the IR of
the active VP.

The next VP code (PILNVPC(0-2)) from the MLCTL card is decoded and
stored in a group of eight flip-flops at the conclusion of an execution cycle.
The true output of the flip-flop set, due to the decoding process, is used to
enable the op-code and states of the IR associated with the active VP over the
IRB bus at the beginning of the next execution cycle. The enabled data
(PIRBMIR(0-15)) is output to the MIR, the VPRCONT card, and the PPCTLI!
card.

4-82 IRCARD(1) Loading and Distribution Logic. The IR loading and dis-
tribution logic on IRCARD(1) is identical to that on IRCARD(0), however, the
data handled and the loading control signals differ as shown in figure 4-19.
Source data from indexer I2 or indexer I3 may be loaded in the first byte of.
IRCARD(1) and destination data from one of the same two sources may be
loaded in the second byte. In order for any data to be loaded in either byte,
the test positive signal must indicate no skip or branch is to be taken
(QPACTSPOS is true). When this is the case and the source address is to be
supplied by indexer 12, the I2 enable signal (PIRYBO(1)) from PPCTL2 per-
mits the development of the PIRYOEN signal. The PIRYOEN signal enables
the decoding of the VP code and the resulting insertion of the I2 source ad-
dress (mPTI2RES(024-031)) in the IR of the active VP. When the source

Advanced Scientific Computer

65-¥

231NdwWoy 21411U819S PAIUEADY

ACTIVE VP - PILVPC(0—2) Pl
CODE iRCOh‘/I_ FF
MLCT 1 - » DE
A
(MAINT) 1 2N's
TEST POSITIVE PACTSPOS
FROM CONTAU
(MAINT) 1 »
SPIRXFLG(1)
FROM 0 L DE
PPCTL2 - || H2 PIRXOEN
13 -PIRXBO(1)
ENABLE —i
L
TEST POSITIVE P
FROM CONTAU —’:?CT:L:(SI) > PIRYOEN
RY
FROM 1 o 48
PPCTL2
12 ___PIRYBO(1) » PIQIRO
ENABLE (016-023)
SOURCE DATA - PTI2RES(024-031 °
FROM INDEXER : .
12 .
SOURCE DATA PRI3RES(024-031 PIRBMIR(016-023)
FROM INDEXER 2 ‘ , . ¢ B TO MIR
13 N
11— —— . L TO VPRCONT
2N
L]
TO PPCTLI
1 — PIQIR7) —
TEST POSITIVE (016-023
S oNTAL PACTSPOS (MAINT) -
(MAINT) 1
13 DE
PIRXB1(1) PIRX1EN
ENABLE — ——
FROM
PPCTL2 H2
0 _-PIRXFLG(1) -
o T,
024-031
TEST POSITIVE ~PACTSPOS — D
FROM CONTAU L 48 PIRY1EN J .
. FROLhzd 1 —PIRYFLG(1) - .
PCT 4-031)
12 __PIRYB1(1) P . N\ PIRBMIR(02 TO MIR
ENABLE . _
DESTINATION - PTI2RES(024-031) . — TO VPRCONT
DATA FROM o
INDEXER 12 olaREe(024 081 . » TO PPCTL1
DESTINATION PRI (- PIQIR7Y
DATA FROM L — (024-031)
INDEXER 1
1—al 2N] g
(MAINT)
NEXT VP CODE PILNVPC(0-2)
FROM MLCTL - ——————®
2N's FF
1— PE | 1 — g 1 —
(B)124741
Figure 4-19. Instruction Register (IRCARD(1))

a2

address is to be supplied by indexer I3, the I3 enable signal (PIRXBO(1))
develops the PIRXOEN signal, which in turn enables the I3 source address
("PRI3RES(024-031)) into the IR of the active VP. The source of the destina-
tion address is determined in a similar manner, except the PIRYB1(1l) signal
provides fhe I2 enable and the "PIRXB1(1) signal provides the I3 enable.

The source and destination addresses (PIRBMIR(016-031)) and the op-code
and states on IRCARD(0) are distributed simultaneously.

4-83 IRCARD(2) Loading and Distribution Logic. The control flags and
first byte of effective address loading and distribution logic on IRCARD(2)
(the logic is again identical to that on IRCARD(0)) is shown in figure 4-20.
If the test positive signal is true, the PIRYOEN signal is developed in order
to enable the data test flags (PIOMDT, PINILDT, 3PILFAFDT,
APIPPTNDT, "PIINTFDT, 7PINT1IDT, and "PINT2DT) from PPCTL2 into
the IR of the active VP. If the inverted test positive signal is true, the
PIRXOEN signal is developed to enable the data real flags ((MPIOMDR,
“PINILDR, "PILFAFDR, 7" PIPPTNDR, "PIINTFDR, mPINT1DR, and
APINT2DR) from PPCTL2 into the IR of the active VP. If the inverted test
positive signal is true and PPCTL2 activates the indexer I2 enable signal
(PIRYB1(2)), the PIRY1EN signal is developed to enable the first byte of the
effective address generated by indexer I2(APTI2ZRES(008-015)) into the IR of
the active VP. The PIRXI1EN signal is held to a logic zero at all times by
the "PIRXB1(2) signal from PPCTL2. (This disables all gates associated
with one of the two inputs to the dual flip-flops composing the second byte on
IRCARD(2).) The control flags, the first byte of the effective addres's
(PIRBMIR(032-047)), and the IR data on IRCARD(0) and IRCARD(1) are
distributed simultaneously. |

4-84 IRCARD(3) Loading and Distribution Logic. The second and third
bytes of effective address loading and distribution logic on IRCARD(3) (the
logic is identical to that on the other IRCARD cards) are shown in figure
4-21. If the inverted test positive signal is true and PPCTLZ2 activates the
indexer I2 enable signals (PIRYBO(3) and PIRYB1(3)), the PIRYOEN signal
is developed to enable the second byte of the effective address from I2
(APTI2RES(016-023)) into the IR of the active VP, and the PIRY1EN signal is
developed to enable the third byte of the effective address from I2
(PTI2RES(024-031)) into the same IR. The PIRX1EN signal is held to a
logic zero at all times by the "PIRXBO0(3) signal from PPCTL2, so one set
of the inputs to the dual flip-flops composing the first byte on IRCARD(3) is
not used. When the shift count needs updating during a shift instruction, the
“PIRXB1(3) signal from PPCTLZ2 is used to drive the PIRX1EN signal to a
logic one, so a new shift count (PACSHOB(000-005)) from CONTAU is in-
serted in the IR of the active VP. The second and third bytes of the effec-
tive address (PIRBMIR(048-063)) and the IR data on the other IRCARD cards
are distributed simultaneously.

4-60 Advanced Scientific Computer

19-%

433ndwoy) 31§131Ud19S PAIUBAPYY

ACTIVE VP CODE
FROM MLCTL

TEST POSITIVE FROM
CONTAU

FROM PPCTL2

TEST POSITIVE
FROM CONTAU

FROM PPCTL2

DATA TEST FLAGS
FROM PPCTL2

DATA REAL FLAGS
FROM PPCTL2

FROM PPCTL2

TEST POSITIVE
FROM CONTAU

FROM PPCTL2

FIRST BYTE OF
EFFECTIVE ADDRESS
FROM INDEXER 12

NEXT UP CODE
FROM MLCTL

(B)124742

= PILVPC(0—2)

FF'S

PACTSPOS

(MAINT) | —————
TIPIRXFLG(2)
01—

IRXBO (2)
o JPIRXBO(RY |

L

H2

DE

2N'S
(MAINT) 1

PIRXOEN

T
PACTSPOS o

Y PIRYFLG (2) .

1 PIRYBO(2)

4B

PIRYOEN

DE

TIPIOMDT-TIPINT2DT

TIPIOMDR-TIPINT2DR

11—

2N

0 g

(MAINT) 1 -
APIRXB1(2)

—IPIRXFLG (2)

H2

L
2N
(MAINT) 1 g

PIQIR0(032-039)

.
PIQIR7(032-039)

PIRX1EN

—PACTSPOS

} —IPTI2RES (008-015)

PIRYB1(2)

PIRYFLG (2)
—_—

4B

DE

PIRY1EN

DE

BLANK

L
1——8

2N

PILNVPC(0-2)

2N
(MAINT) 1 g

P1QIR0(040-047)

.
PIQIR7(040-047)

—
11—

DE

Figure 4-20.

2N'S

Instruction Register (IRCARD(2))

PIRBMIR -
IRB (032-039) TO MIR

[————@» TO VPRCONT
L———————@» TO PPCTL1

IRBMIR(040-047
P (040-0 TO MIR

I @» TO VPRCONT

L g TO PPCTLI

29-%

481ndwWoY 21411U819S PAdUEAPY

ACTIVE VP
CODE FROM
MLCTL

o

FROM
PPCTL2

TEST POSITIVE

FROM CONTAU
FROM !
PPCTL2 2

ENABLE

SECOND BYTE OF
IEFFECTIVE ADDRESS
FROM INDEXER 12

[

FROM
PPCTL2 SHIFT
UPDATE
ENABLE

TEST POSITIVE
FROM CONTAU

FROM !
PPCTL2 12

ENABLE
THIRD BYTE OF

EFFECTIVE ADDRESS
FROM INDEXER 12
SHIFT COUNT

FROM CONTAU

NEXT VP CODE
FROM MLCTL

(B)124743

PIRBM IR(048-055)

>

& TOMIR

j————————®» TO VPRCONT

"——————® TO PPCTL1

\ PIRBM IR (056063
() e TO MIR

——————————& TO VPRCONT

*———————& TO PPCTL1

-~ PILVPC(0-2) o
FF'sS DE
11— Pl —
2N'S
(MAINT) | —8»
BLANK o
PIRXOEN DE
(MAINT) 1 — -
~ PIRXFLG(3)
L
r—d H2
-~ PIRXBO(3) PIQIR0(048—055)
o .
- .
L]
~PACTSPOS .
. .
PIRYFLG(3)
4B
PIRYBO(3) - PIRYOEN PIQIR7(048—055))
~PTI2RE S(016-023)
BLANK
— _— 2N
. ol 2N
(MAINT) 1
ZERO PIRX1EN
— L
DE
(MAINT) | —p——g»
PIRXFLG(3
al (3) -
—es H2 e
-~PIRXB1(3) DE
L
- PACTSPOS -
PIRYFLG(3) P1QIR0(056—063)
1 4B .
PIRYB1(3) o PIRYIEN .
-~ PTI2RE S(024-031) °
.
o
~PACSHOB(000-005) PIQIR7(056-063)
- 2N
1 2N
(MAINT) 1 .
PILNV PC(0-2
- S ™ 2N'S FF's
DE ! .
1 —a 1 —a (—

Figure 4-21.

Instruction Register (IRCARD(3))

1P

4-85 VIRTUAL PROCESSOR REGISTER FILE. Refer to figure 4-22 for a
simplified block diagram of the eight VPR files and the associated input and
output logic. Each of the eight VPR files provides the associated VP with
four 32-bit general accumulator registers that can be addressed to the byte,
halfword, or word level. Each VPR file accepts data from the AU and dis-
tributes data to Indexer 12, Indexer I3, and the AU.

4-86 VPR Loading Logic. Data is input to a VPR of the active VPR file via
the AU1B or AU2ZB transfer buses of the AU. When the source of data is the
AUI1B bus, the appropriate AULB enable signals (PUWA1PO01(0-3) for VPO
and VP1, PUWAI1P23(0-3) for VP2 and VP3, PUWA1P45(0-3) for VP4 and
VP5, or PUWA1P67(0-3) for VP6 and VP7) from the VPRCONT card enable
the decoding of the AU1B word code (PUAW1C(0-2), the word code points to
one VPR out of two VPR files) and determine what portion of the destination
VPR (byte, halfword, or word) is to be used. The decoded pointer is used
to direct the AU1B data (WPAU10(0-31)) to the destination VPR and the active
AUI1B enable signals are used to determine what part of the destination VPR
is to be filled with new data. When the source of data is the AU2B bus, the
appropriate AUZB enable signals (PUWAZ2P01(0-3) for VPO and VPI,
PUWA2P23(0-3) for VP2 and VP3, PUWA2P45(0-3) for VP4 and VP5, or
PUWA2P67(0-3) for VP6 and VP7) from the VPRCONT card enable decoding
of the AU2B word code (PUWAZ2C(0-2)) so that the AU2B data (IPAU20(0-31))
is inserted in the intended portion of the destination VPR (this processing
parallels that for the AU1B bus).

4-87 VPR Distribution logic. The selected VPR data is distributed to the
AU over the VPAB bus in combination with the MDB or over the VPRBI1 and
VPRB2 buses. When VPR data is to be transferred to the AU by way of the
MDB, the MDB enable signal (PURABPO1 for VPO and VP1, PURABP23

for VP2 and VP3, PURABP45 for VP4 and VP5, or PURABP67 for VP6 and
VP7) from the VPRCONT card enables the decoding of the MDB word code
(PURABC(0-2)). The resulting pointer' enables one VPR of two VPR files
over the VPAB bus to the MDB (PUPOR1AB(0-31) for VPO and VPI1,
“PUP2R3AB(0-31) for VP2 and VP3, "PUP4R5AB(0-31) for VP4 and VP5,
or "PUP6R7AB(0-31) for VP6 and VP7). When VPR data is to be trans-
ferred to the AU by way of the VPRB1 and VPRB2 buses, the VPRB1 enable
signal (PURA1PO1 for VPO and VP1, PURA1P23 for VP2 and V P3,
PURA1P45 for VP4 and VP5, or PURA1P67 for VP6 and VP7) from the
VPRCONT card enables the decoding of the VPRBI1 word code (PURA1C(0-2)).
The resulting pointer enables one VPR of two VPR files over the VPRBI1 bus
to the VPRB2 bus. The VPR input to the VPRB2 bus is inverted by a group
of 4B logic modules and then routed to the AU (PUVPRA1(0-31)).

The VPR file of the active VP is transferred to Indexer 12 via the VPIB1 bus
and VPR3 of the active VP is transferred to Indexer I3 via the AVPB bus.

4-63/4-64 Advanced Scientific Computer

12

VP CODE

PURIZC!O—Z!

1 ———o

DECODE

d MDE WORD CODE _PURABC(072) N ruarowar
MDB ENABLE PURABPO1 vo(o-31) VPRO OF
FROM D VPo ~PUPOR 1A B(0-31) _ N -~ PUVPWOI2(0-31)
VPR'CONT < AUIB ngs PUWA1C(0-2) UGPoWs 5 VPO OR VPlI—- — VPIB1 ACTIVE VP
c - - N VPA MDB y TO INDEXER 2
WRITE AUTB PUWA1PO1(0-3) |PFCOPE (0-3n) VPR TO PUQP7W0(0-31)
ENABLE .
S (0-31) PUQPOW3 VPRE2 = |
FROM AutB DATA PAUIOR 0-31) PUVPRA1(0-31) vP
PPAUCD { AU2B DATA _PAU20(0-31) PUGP WS @0\ | FUVPRAT(0-31) g to 12
_ (0-31) 4 AU | vp PURI2C(0-2)
- —_—
AU2B WORD COPE PUWA2C(0—2 E : 4B s cobE bECODE
WRITE AU2B o;wA2P01(0-3) DECOD PUQPIW3 | p——
ENABLE (0—31) — |
AU WORD CODE PURAIC(0-2) VP
ATPOT DECODE ! | PUQPOW1(0-31) VPRI OF
FROM AU ENABLE PUR _ . PUVEWIT2(0-31) s
VPRCONT < = - . VP18 o INDEXE
MDB WORD CODE PURABC(0-2) | PUGRTWI(0-31) . " 12
DECODE
RABP23
MDB ENABLE PU VP2 * APUP2RIAB(O-31) _ VP2 OR VP3I
AUIB ‘gggg PUWAIC(0-2) o PUQP2Wo UPAB PR TO MDH|
WRITE AU1IB ENABLE PUWA1P23(0-3) |DECODE (0-31) 12
\ PUWAIP e - : | VP PURlzc(o—zz
FROM AUIB DATA -PAU10(0-31) > PU(;{';?‘)’“ lcooE DECODE
PPAUCD AU2B DATA -PAU20(0—31) PU N | ! ’
QP3W0 ®
- 0~31 \}
AU2B WORD pywazc(0-2) o (30 D) I PUQPOW2(0-31) VPR2 OF
. P —
WRITE AU2B ENABLE PuwA2P23(0-3) |DFCODE PU((?I?IV)VB e - : vpisr D EUVPW2120730 - o1 ive v To
AU WORD CODE PURA1C(0-2) I PUQP7W2(0-31) INDEXER 12
DECODE vP3 [
FROM AU ENABLE PURA1P23
VPRCONT |
MDB WORD CODE PURABE(0-2) ' 12
MDB ENABLE PURABP45 DECODE von } PUPARSABO-31) vrs o ves| VP PURI2C(0-2)
AU1B WORD N = - CODE DECODE
CODE PUWAI1C(0-2 PUQP4WO VPAB : VPR TO Mnal 1
[WRITE AUIB ENABLE PUWA1P45(0-3) |PECODE (31 '
L]
PUQPOW3(0-31)
FROM AUIB DATA _-PAUI0(0-31) P";(?i‘l‘;” | . APUVPWaI2(0-31) VPR3 OF
—— ._. .
PPAUCD AU2B DATA ~PAU20(0-31) PUQPSWO 3 | . VRIBI ACTIVE VP TO
(0-31) o@ PUQP7W3(0-31) INDEXER 12
4 AU2B WORD _ R > |
WORD PuwA2c(0-2) s
]
- WRITE AU2B ENABLE PUWA2P45(0-3) DECODE PLQQPS‘;” |
0-31
AU WORD CODE PURAIC(0-2) - |woro 3
FROM AU ENABLE PURA1P45 DECODE | vP PURW3C(-2)
VPRCONT < |°°DE DECODE
MDB WORD CODE PURABC(0-2) 1 i
DE
MDB ENABLE PURABP67 CODE j ~PUPSRIAB(0-31) VP6 OR VP PUQPOW3(0-31)
AU1B WORD vP6 - 7] . VPR3 OF
CODE PUWAIC(0—2 PUQP6WO VPR TOM . ~PUDELTA(0-31
DECODE (0=31) VPAB DB" —— . AvePB ACTIVE VP TO
L WRITE AUIB ENABLE PUWA1P67(0-3), : | PUQP7W3(0-31) INDEXER 13
FROM AU1B DATA _aPAU10(0-31) PUC"’:;S‘V)\’3 '
PPAUCD AU2B DATA -~ PAU20(0-31) (© A\ |
PUGP7WO o2
(0-31) \14
f Auzs chggg PuwA2c(0-2) f . b :
FrROM | WRITE AU2B ENABLE PuwA2zPe7(0-3) | °=COPF Puof=71\;v3
0-3
VPRCONT AU WORD CODE PURA1C(0-2) (VP7 l
AU ENABLE PURAIP67 DECODE |
~ L ——]
(C)124744 — o
Figure 4-22, Virtual Processor
Register Files
e,

16 o
4.65/4-66 Advanced Scientific Computer

During the execution of all instructions, the VPR to Indexer I2 VP code
(PURI2C(0-2), same as the active VP code) is decoded and used to enable
the four VPR's of the active VP over the VPIBI bus to the VPIB2 bus on the
PCCARDA(0-7) cards. The middle two bits of the T field of the instruction
being executed are used to enable one of the four VPR's over the VPIB2 bus
to Indexer I2. The VPR3 VP code (PURW3C(0-2), same as the active VP
code) is also continuously decoded and used to enable VPR3 of the active VP
over the AVPB bus to Indexer I3. Indexer I3 uses only byte three of VPR3,
therefore control at the motherboard level is necessary because all
VPRCARD cards are identical.

4-88 CENTRAL MEMORY BASE REGISTER. Refer to figure 4-23 for a
simplified block diagram of the eight CM base registers and the associated
input and output logic. Each of the eight CM base registers provides the as-
sociated VP with 24 bits of temporary storage used to hold a base value for
base relative instructions. The CM base register accepts data from the AU
and outputs data to Indexer I2.

4-89 CM Base Register Loading Logic. Data is input to a CM base regis-
ter via the AUZ2B bus of the AU in byte or multiple byte increments. When
data from the AU is to be written to a CM base register, three signals are
necessary from the CRCONT card. These signals include a write card zero
(PCWA2B1E(0)), which designates the CM base registers of the CR file; a
word select ("PCWA2CBI1(3-5)), which selects one of the eight CM base reg-
isters; and a write right (PCWA2CR(1-3)) or left (PCWA2CL(1-3)) hex, which
is used to select the right or left half of bytes one, two and three of the se-
lected CM base register. In addition, the R field mask signals
(PCRFDMSK(0-3)) from the CONTAU card provide additional control on data
written to a CM base register when a test and set (TS), test and reset (TR),
set (S), or reset (R) instruction is being executed. When a load central
memory base (LDMB) instruction is executed, all three bytes of the base
register associated with the active VP are loaded simultaneously. This is
accomplished by forcing the right and left hex enables and the R field mask
to all ones. When a TS, TR, S, or R type instruction is being executed and
data is to be written to the right half of the first byte of a CM base register,
the write card zero and write right hex of CRBASE] signals combine to en-
able the decoding of the word select signals. The result of the decode is
masked by the R field so the AU2B data (PAU20(12-15)) marked by ones in
the R field is inserted in the right half of the first byte of the intended CM
base register. When AU2B data is to be written to the left half of the first
byte of a CM base register, the write left hex of CRBASE]1 signal replaces
the write right hex of CRBASE] signal so that the net result is data storage
in the left half of the first byte of the intended CM base register. Data is
written to the second and third bytes (CRBASE2 and CRBASE3, respectively)
of the intended CM base register in a similar manner via the PCWA2CR(2),

4-67 Advanced Scientific Computer

89-¥

493ndwWo?) 21413UdIIS PAIUEADY,

 WORD SELECT —~PCWA2CB1(3-5) =
- E PCWA2BIR(0-7) ,
cROM J WRITE CARD PCWA2BIE(Q) o, < o 28's
RCONT ZERO
28 D
WRITE_RIGHT PCWA2CR(1) ol “"|—®m ¢
HEX OF CRBASE 1
“R_FIELD MASK PCRFOMSK(0~3)
FROM CONTAU
WA2CB1 I
” WORD SELECT _PCWA2CBI1(3”5) — e D
- -
FROM WRITE CARD CWA2BIE(0) c .
CRCONT ZERO - S 28'S
WRITE LEFT PwcaA2cL(1) E PCWA2B1L(0~7)
HEX OF CRBASE1]
CRBASE1 CRBASE2) (CRBASE3)
6) 16 23 24 31
DATA FROM -PAU20(8~15)
AU2B OF AU

~PAU20(16-23)

PCRABSE1-3(3-5)

PCRABB1—-3E(0)

READ WORD
FROM SELECT
CRCONT
READ ENABLE
FOR CARD ZERO
NEXT VPC

FROM MLCTL

(B)124745

-PCLVPCB1-3(0—-2)

-PAU20(24-31)

moonomo

FF

mooOmoy

Figure 4-23.

Central Memory Base Registers

CR WORD

-~PCRABDO08(0)-31(0)
TO CRCONT1-3

CR WORD
Tg INDEXER
I

~PCRI2(8-31)

5

PCWA2CL(2), PCWA2CR(3), and PCWA2CL(3) signals. When a group of data
larger than a hex is under consideration (byte or halfword), the proper com-
bination of hex controls enable the desired write operation.

4-90 CM Base Register Distribution Logic. CM base register data is read
in 24-bit groups (the entire CM base register) and is distributed to both In-
dexer I2 over the CRBB bus and to the MDB (and eventually the AU) over the
CRABI1 and CRAB2 buses. During the execution of all instructions, the VP
code of the active VP is decoded and used to enable the selected CM base
register over the CRBB bus to Indexer I2., Indexer I2 requires the CM base
register of the active VP in case a base relative effective address needs to
be developed. When CM base register data is required on the MDB, the read
enable for card zero signals from CRCONT1, CRCONT2, and CRCONT3
(PCRABB1E(0), PCRABB2E(0), and PCRABB3E(0), respectively), enable
the decoding of the read select signals (PCRABSEI1(3-5) PCRABSE?2(3-5) and
PCRABSE3(3-5)) so that the selected CM base register is enabled over the
CRABI1 bus to the CRAB2 bus and eventually to the MDB,

4-91 SINGLE WORD BUFFER ADDRESS REGISTER. Refer to figure 4-24
for a simplified block diagram of the eight SWBA's and the associated input

PPWMSC(0-2)
VP CODE
FROM OF ACTIVE VP
DECODE

PCCTL
CM ADDR TO PMCBMAE
SWBA ENABLE

SWBA'S

PMQMAO(0-31)

PC, INDEXERI2 . ~PMACMEM(0-31)
OR IR TN DATA -~ PPPCMC(0-31) PMADDCM(0-31)
FROM CMAB . MAMB #»ADDRESS
TO
N CENTRAL
MEMORY

PMQMA7(0-31)

SWBA
SELEC PMRCMA (0-2)
FROM SWBASY
DECODE
1 —
(B)1247 46

Figure 4-24, Single Word Buffer Address Registers

4-69 Advanced Scientific Computer

a2

and output logic. Each of the eight SWBA's provides the associated VP with
an address register that supplies Central Memory with an address when a
read or write operation is to be performed. When PC, Indexer 12, or IR TN
data (MPPPCMC(0-31)) is to be written in a SWBA, the CM address to SWBA
enable signal (PMCBMAE) from PCCTL permits the decoding of the active
VP code in order to develop a pointer to the SWBA of the active VP, The de-
veloped pointer is then used to insert the source data into the proper SWBA.
When a memory access request has been accepted by the MCU, the SWBA
select signals (PMRCMA(0-2)) from the SWBASY card are decoded and used
to enable the SWBA of the VP making the request over the MAMB bus. The
selected address is inverted back to its true form and input to Central Mem-
ory.

4-92 SINGLE WORD BUFFER DATA REGISTER. Refer to figure 4-25 for
a simplified block diagram of the eight SWBD's and the associated input and
output logic. Each of the eight SWBD's provide the associated VP with a
data register that is used to hold data to be written to or read from Central
Memory. The SWBD's accept data from Central Memory when a read is
performed and from the associated PC, SWBA, VPR file, or CM base reg-
ister, via the MDB and AUZB bus, when a write is to be performed. The
SWBD's distribute data to Indexer I2 via the MDIB bus, to the MDB via the
MDAB bus, to the associated NIR via the CMDB bus, and to Central Memory
via the TWB,

When a read request has been accepted by the MCU and read data is available
to the PP, the SWBD load enable signal (PMWCMD) from the SWBASY card
permits the decoding of the SWBD load select signals (PMWCMC(0-2)) so
that the Central Memory data word is inserted in the SWBD of the VP making
the read request. When PC, SWBA, VPR file, or CM base register data is
to be written to Central Memory, the AU2B bus to SWBD enable signals
(PMA2MDLE and PMA2MDRE for left half and right half, respectively)

from the PCCTL card permit the decoding of the write AU2B bus to SWBD
select signals (PPWA2C(0-2)). The resulting pointers are used to enable

the MDB supplied data over the AU2B bus to the associated SWBD in halfword
or word groups. During the execution of all instructions, the active VP code
is continuously decoded and used to enable the associated SWBD over the
MDIB bus to Indexer I2 for effective address development. When SWBD data
is to be output to the MDB, the SWBD to MDB enable signal (PMMDABE)
permits the decoding of the active VP code (PPRABC(0-2)) so that the asso-
ciated SWBD is enabled over the MDAB bus to the MDB, When SWBD data

is to be transferred to the associated NIR, the SWBD to NIR enable signal
(PNMDCDE) permits the decoding of the active VP code (PPRMSC(0-2)) so
that the SWBD is enabled over the CMDB bus to the NIR, When SWBD data
is to be written to Central Memory, the TWB write selector (PMRCMD(0-2))
from SWBASY is decoded and used to enable the SWBD of the VP executing

4_
70 Advanced Scientific Computer

1L-¥

191NdWo2) 31§13U319S PIIULADY

FROM
PCCTL

FROM
SWBASY

FROM
PCCTL

(A)124747

¢
WRITE AU2B
TO SwBD
SELECT

AU2B TO
SWBD ENABLE
\

SWBD LOAD
SELECT

SWBD LOAD
ENABLE

DATA FROM
CENTRAL
MEMORY

AU2B DATA
FROM AU

/

MIR VP CODE

1

SwBD TO
MDB SELECT

SwBD TO
MDB ENABLE

READ SELECT
SWBD TO

NIR ENABLE

TWB WRITE
SELECTOR
FROM SWBASY

1

PPWA2C(0—2)

PMA2MDLE ,

PMA 2MDRE DECODE

PMWCMC(0—2

DECODE

PMWCMD

- PMQCMMD(0—-31)

—PAU20(0—31)

PPQVPC(0—2)

SWBD'S

PMQMDO(0—31)

PMQMD7(0—31)

DECODE

PPRABC(0—2)

DECODE

PMMDABE

PPRMSC(0—2)
DECODE

PNMDCDE

PMRCMD(0-2)

DECODE

Figure 4-25.

Single Word Buffer Data Registers

— PMDI 2(0-2)

o
PMDCM :8(0—31)
—_—

SWBD TO
INDEXER I 2

SWBD TO
MDB

SWBD TO
NIR

SWBD EX—
PANDED

8 TIMES
TO

CENTRAL
MEMORY

a2

the write over the TWB to Central Memory. Refer to the description of the
Single Word Buffer Controller TWB for additional information on the writing
process.

4-93 ARITHMETIC UNIT

The arithmetic unit (AU) of the PP may be divided into the following major
functions:

° Aligner

° Complement or constant generator
° Unload box

° Double rail generator

° Adder

° Shifter

° Bit picker

° Test box 1, 2, and 3 logic

° Comparator

° Data manipulator

° Skip taken and branch taken logic
° AU control

A detailed description supplemented with block diagrams, logic diagrams,
and/or equations is provided for each of these functional areas in the follow-
ing paragraphs.

4-94 ALIGNER. Refer to figure 4-26 for a simplified block diagram of the
AU aligner. The aligner is used to perform a right end-around (cyclic)
shift on a data word from a CR, VPR, the SWBD of the active VP, or the
MIR effective address for immediate operands, in byte increments. The
amount of shift is controlled by the AU control logic and can be zero, one,

two, or three bytes, depending on the enabled control line. The selected
source of input data to the aligner is supplied by the Main Data Bus (MDB)

and is distributed to the aligner select logic in complemented byte groups.
The select logic enables the appropriate byte of data to be output as deter-
mined by the enabled shift control line. The selected byte is routed to the
AU2B transfer bus, the comparator, the shifter, and the complement or
constant generator. The complemented selected byte is routed only to the
complement or constant generator. The described data processing occurs
simultaneously in each of the four PPAUCD cards so that the net result is
a byte increment data word shift in true and complement form distributed
throughout the AU. Refer to figure 4-27 for two examples of aligner data
shifting.

4-72 Advanced Scientific Computer

F———— ——_— — — = — — = = — —

PPAUCD(0)

| . r———b TO AU2B TRANSFER BUS
|

f—————8» TO COMPARATOR
e BYTE 0 SELECTED BYTE
—— #» TO SHIFTER
BYTET (PAALIO1 ,2) l
—® spLecT
BYTE 3 LOGIC TO COMPLEMENT OR
(sQis) SONSTANT GENERATOR
BYTE 3 SELECTED BYTE
4.
| (qAPAALIO1)
l SHIFT CONTROL
_ e e e
| PPAUCD(1
F—. TO AU2B TRANSFER BUS
| p————8» TO COMPARATOR
BYTE 1 SELECTED BYTE
—_——— & TO SHIFTER
BYTE 2 (PAALIO1T ,2) |
_ B
— SELECT
BYTE 3 LOGIC TO COMPLEMENT OR
— (sQrs) CONSTANT GENERATOR
BYTE O SELECTED BYTE
_— L
(APAALIO1)
MDB DATA SHIFT CONTROL
FROM CR,
VPR,S\INBEA < — - —— ——— —— — — — —— — — —— —_— —
- F;BO) | PPAUCD(2)
| ——— @» TO AU2B TRANSFER BUS
——® 10 COMPARATOR
BYTE 2 SELECTED BYTE
#» TO SHIFTER
- (PAALIO1 ,2)
BYTE 3
— SELECT
BYTE O LoGIC TO COMPLEMENT OR
_— (sQ's) CONSTANT GENERATOR
BYTE 1 > SELECTED BYTE -
(APAALIOT)
| SHIFT CONTROL
e e e o — — — — — —— —— — — —
| PPAUCD(3)
— 8 TO AU2B TRANSFER BUS
| — 8 TO COMPARATOR
BYTE 3 SELECTED BYTE
_——— (PAALIOT . 2) —8» TO SHIFTER
BYTE 0 ») L_-
—_ SELECT
BYTE 1 (ng"sc) TO COMPLEMENT OR
P ————— CONSTANT GENERATOR
BYTE 2 SELECTED BYTE
_ B —
\ | (mPAALIO1)
cycLE o (PAALICCO) !
(PAALICC 3)
FROM CYCLE
CONTAU
cvcLe 2 (PAALICC2)
cvcLe 1 (PAALICCH)
b e e e
(B) 124748

Figure 4-26. Aligner Logic on PPAUCD(0-3)

4-73
Advanced Scientific Computer

S~

INPUT DATA
0 112 3 BYTES
CYCLE O
0 ———— P
1 CYCLE 1 3
CONTROL
INPUTS o CYCLE 2 ALIGNER
S
E
o CYCLE 3 3
3 o] 1 2 BYTES

OUTPUT DATA

A. DATA ROTATED ONE BYTE

INPUT DATA

o|l1]2]3 jmg——BYTES

0 CYCLE O >

o CYCLE 1 »

CONTROL
INPUTS o CYCLE 2 ALIGNER
CYCLE 2

1 CYCLE 3 >

1 2|13 |0 jmg—— BYTES
OUTPUT DATA

B. DATA ROTATED THREE BYTES

(A)124749

Figure 4-27. Aligner Byte Rotation

4-74
Advanced Scientific Computer

~d
N3 O

4-95 COMPLEMENT OR CONSTANT GENERATOR. Refer to figure 4-28
for a simplified block diagram of the complement or constant generator.
The complement or constant generator accepts true and complement data
from the aligner in byte groups and generates true and complement data for
use in the adder when addition or subtraction is to be performed. When the
adder is to be used for the incrementing and test or decrementing and test
instructions, the complement or constant generator supplies plus or minus
one, respectively, to the adder. The function of the complement or constant
generator is controlled by the AU control logic via the add, subtract, incre-
ment, and decrement lines. The true and complement data supplied by the
aligner is distributed to the select logic in byte groups. The control lines
then enable the true form of the input data if an add instruction is being ex-
ecuted or the complement form of the input data if a subtract instruction is
being executed. When a decrement and test instruction is being executed,
the select logic and decrement control lines are used to generate the quantity
FFFFFFFF|¢ at the true output of the select logic on the word level. When
an increment and test instruction is being executed, the select logic and in-
crement control lines are used to generate the quantity 00010001,, at the
true output of the select logic on the word level. The output data from the
complement or constant generator is input to the first level of the adder.
Operation of the complement or constant generator occurs simultaneously
on each of the four PPAUCD cards (one byte per card) so that the net re-
sult is a 32-bit word output to the adder.

4-96 UNLOAD BOX. Refer to figure 4-29 for a simplified block diagram
of the unload box. The unload box is used to develop the true and complement
form of the VP code from the maintenance logic, the R field from the MIR,
and the data word from a CR, VPR, the SWBD of the active VP, or the MIR
effective address for immediate operand instructions. The 3-bit VP code
from the maintenance logic is decoded into 8 bits (one bit per VP) and each
of the 8 bits is developed in the true and complement form. The resulting
VP code data is distributed to the data manipulator and test box 2. The 4-
bit R field from the MIR is also developed in the true and complement form
for use in the data manipulator and test box 2. Each of the four PPAUCD
cards are operating on the same VP code and R field simultaneously to im-
plement the byte bit-slice partitioning technique in the AU. The input data
word to the unload box is supplied by the MDB in complement form. The un-
load box develops the true and complement form for each byte and then dis-
tributes the results to the shifter, bit picker, data manipulator, test box 1,
and test box 2. Each of the PPAUCD cards are operating on a byte of the
input data word simultaneously, so that the net resultis a 32-bit data word.

4-97 DOUBLE RAIL GENERATOR. The double rail generator is used to
develop the true and complement form of the selected data word from the

Advanced Scientific Computer

COMPLEMENT OR CONSTANT GENERATOR
|lpPAUCD(0)
ECT a©
BYTE 0 SELEC -
(PAALl01(0—7)P LOGIC .\(’85’7’*‘)3)‘300 Q(0) TO ADDER
BYTE 0 : pf (S9'S) E
(mPAALIO1(0-7)) iPACCOO
? ?? ? o
CONTROL
—P
PPAUCD(1)
BYTE 1 SELECT Q(‘)$
(PAALlo1(s-1':'$ LOGIC E-T:\ccoo TO ADDER
BYTE T pl (sa's) | o719 SICREF
s-lPAAL.lOI ‘ ‘gpAccoo
8—15)) ? ?? 1 8—15))
FROM
ACTONER < CONTROL
——
PPAUCD(2))
Q(2)
BYTE 2 SELECT >
(PAALIO1(16-23) LOGIC {"'P_A°°°° TO ADDER
BYTEZ o] Gas) [li6723) 19@) o
£“PAAL|01 PACCOO
16—23)) TT? ? é16-23))
CONTROL
[PPAUCD(3)
Q(3)
BYTE 3 seLecT L
(PAALIO1(24-31)| LoGIC SR TO ADDER
BVTE S > G9's) 31)) 193 o
sﬂPAALIOI PACCO00
24-31)) [} 24-31))
»ACCOCAD
ADD i |
SUBTRACT (PAccocsu)
DECREMENT (PACCOCDE)
INCREMENT (PACCOCIN)
o—

WHERE, Q(N) = BYTE N FOR ADD, BYTE N FOR SUBTRACT, FF (g FOR DECREMENT
Q(0) AND Q(2) = 0016’ Q(1) AND Q(3) = 01 16 FOR INCREMENT

(AY124750

Figure 4-28. Complement or Constant Generator

4-
76 Advanced Scientific Computer

VP CODE
(PAUNLOP)
VP CODE 3 TO 8 VP CODE TO DATA
(3 BITS) DECODER f—2B1TS) DRIVERS MANIPULATOR
18'S) D TEST
(PAQVPC) (DE) (PAUNLVP) (AND T
VP CUCE
((IPAUNL.OP)
FROM
CONTAU
R-FIELD
(PAUNLOR) .
R—FIELD TO DATA
- q DRIVERS MANIPULATOR
~ (PAQRFLD) (18's) AND JEST
R—-FIELD
-
CIPAUNLOR)
BYTE O N
-~ BYTE O - —
B
YTE 0 -
BYTE 1 -
BYTE 1 —
ROM = BYTE 1 TO SHIFTER,
DATA FROM DRIVERS -2 BIT PICKER,
CR,VPR, (18'S) > DATA
SWBD,OR BYTE 2 o [MANIPULATOR,
MIR EA WFE_Z TEST BOX 1
L BYTE 2 AND TEST
=] BOX 2
BYTE 3 -
BYTE 3 o> -
BYTE 3
N
H A =)
' !
(- PABO) (PAUNLOAB)
(APAUNLOAB)
(AY124751

Figure 4-29. Unload Box

4.
i Advanced Scientific Computer

O

active VPR file. The data word from the selected VPR is input in byte groups
to the double rail generator via the VPRB bus. A series of 1B logic modules
provides the necessary drive and true and complement data for use in the ad-
der, the comparator, and test box 3. The four bytes of input data are op-
erated on in parallel by the four PPAUCD cards in order to supply a 32-bit
word. ‘

4-98 ADDER. Refer to figure 4-30 for a simplified block diagram of the
five-level look-ahead adder. The adder performs addition, subtraction, and
logical functions (AND, OR, EXCLUSIVE OR, and EQUIVALENCE) on 32-bit
data words from the complement or constant generator and the double rail
generator. The op-code from the MIR may specify adder operation to the
byte, halfword, or word level. The following paragraphs provide a detailed
description of each level in the five-level adder, and figure 4-31 presents a
summary of each level.

4-99 Adder Level 1. Refer to figure 4-32 for the logic module connections
required to implement the equations necessary for operation of adder level 1.
The first level of the adder is used to develop the carry generated functions
(D; and D;), the carry propagate enables (T; and T;), and the logical instruc-
tion outputs (LOG;). Each PPAUDC card develops these signals for one
byte of input data. A carry is generated (developed) whenever the two bits
being added are both one. This fact results in the following equations:

Dj = aj « bj

D;-=3; - b, =3 +5;
where

a; = the quantity at bit position i of the complement or constant

generator output

b: = the quantity at bit position i of the double rail generator output
A carry propagate (transfer) enable is generated whenever one of the two
bits being added is one. This results in the following equations:

Ti=a;« bj+ta;. by

Ti:ai' b; +2a; - b
An exception to the developed equations occurs for halfword instructions be-
cause the carry in the most significant bit of the right halfword must be dis-

abled. This is accomplished with the following carry transfer (T,) and
carry develop (D,) equations for the most significant bit of the right halfword.

4-78
Advanced Scientific Computer

MDB

PABO (0—31)

PUVPRA1 (0—-31)

PAALICCO
PAALICC 1 FROM
ALIGNER PAALICC2 CONTAU
ADD. DATA FLOW PAALICC3
CO=A[B| + (A{B; + A;Bj)Cj =
—_ — m
CARRY CARRY CARRY 18's - |
GENERATED PROPOGATED IN " o
‘D’ EVELOP ‘1’ RANSFER e S
NOTE.T=TRUE BINARY ADD RESULT o 3
(A @Bi) 3 <
LEVEL 1 GENERATES CARRY GENERATED ¥ r
FUNCTIONS (Dj AND'ﬁig AND
CARRY PROPGATE ENABLES
(T; AND Tj) -
LEVEL 2 GENERA:IES BYTE AND RIGHT - v ADD
== HEX TRANSFER FUNCTIONS AND)
BYTE AND RIGHT HEX DEVELOP ! = COMPLE~ SUBTRACT
FUNCTIONS, e o MENT OR FROM
5 z CONSTANT LgDECREMENT ~ cONTAU
LEVEL 3 DEVELOPS GROUP CARRIES z a GENERATOR INCREMENT
—— (KG'S) FROM PRECEEDING BYTE | § < e EEEEE—
TG AND DG FUNCTIONS, < %.
o - -
LEVEL 4 DEVELOPS INDIVIDUAL BIT - ©
~———— CARRY TERMS FROM PREVI— | 5
OUSLY GENERATED CARRY 5 Nt
FUNCTIONS, 5 9
LEVEL 5 PERFORMS FINAL SUMMATION 9 9
OF ‘Tj /AND 'PAADDCRY ‘ AND 3 g
FORMS AUl BUS TO VPR FILE, b4 P
P C
\\/\A_i/ \B/ B,
ADDER LEVEL 1
(PAADDTTR|) (PAADDTBRY)
(PADDD|) (PADDD;)
_ ADDER LEVEL 2
(PAADDTG (0—3)) (PAADRTG (0—3)) AU CONTROL
(PAADDDG (0—3)) (PAADDRDG (0—3)) LINES FROM
CONTAU
ADDER LEVEL 3
(PAADDKG (0—3))
ADDER LEVEL 4
. (PAADDCRY|) (PAADDCRY)
ADDER LEVEL 5
\ /

\/
AUI OUTPUTS TO VPR'S PAUIO (0-31)

(A)111672

Figure 4-30. Five-Level Look-Ahead Adder

4-79 Advanced Scientific Computer

08-%

481ndwo) a1y11ua19s pasuerpy

SUBTRACT CMD'S A24-31 B24-31

FOR 2'S COMP Ag-15 Bg-1s Aje-23 Big—23
LOG, LOG| LOG;
Ao-7 Bo-7 oUTPUT oUTPUT OUTPUT
LOG, Ti 40; AND ! KG T; ,Di AND KG 4 T; ,D{ AND ! KGg4 T; ,Di AND KG ,
OUTPUT g— 'L baicaL | L - YosicaL | | L'OG ICAL GEN LOGICAL | .0
1sT GENERATOR , GEN GENERATOR , GEN GENERATOR GENERATOR
LEVEL l 1
2ND ¥ } ¥ —‘ v y
LEVEL T TGi T T}G
RHTGg AND | TGo RHTGy AND I 76, RHTGp AND 2 RHTG ; AND 3
— RHDGO | Sgo — RHDGo | ggo —— RHDG , [} Sgg — RHOG 3] Sgo
GENERATOR 1 ek GENERATOR | GEN GENERATOR | GEN GENERATOR | GER
3RD T
- Y Yy v Y
s KG KG KGg g
KGsy 2 < GENERATOR - GENERATOR
GENERATOR GENERATOR
Ci C; 8 Ci > %‘
|
4TH GENERATOR GENERATOR GENERATOR GENERATOR
LEVEL t——pm —— e —
STH Sq S S Sj
LEVEL —B» GENERATOR 1 GENERATOR — GENERATOR —— GENERATOR
SUM BITS 0-7 SUM BITS 8-15 SUM BITS 16-23 SUM BITS 24-31
(B) 111671

Figure 4-31. Five-Level Look-Ahead Adder Detailed Block Diagram

a; N T, (PAADDTTR)
2N
bj
a; N
2N
bj
a; N T, (PAADDTBR)
2N
bj
a i N
2N
b;
aj N D (MPAADDD)
2B
b; A D; (PAADDD)
WHERE ,
di - ONE BIT FROM COMPLEMENT OR CONSTANT GENERATOR
b, = ONE BIT FROM DOUBLE RAIL GENER TOR
i = BIT POSITION WITHIN A BYT
Ti = CARRY TRANSFER
Dij = CARRY DEVELOP
To = TRANSFER BETWEEN HALF‘WORDS
Do = DEVELOP FOR MSB OF HALFWO
ASH = TRUE FOR ADD OR SUBTRACT HALFWORD
SUB = TRUE FOR SUBTRACTION
(BY124752

[e]

sus

ASH

T, (" PAADDT)

To (PAADDT)

Do (MPAADDD(0))

D, (PAADDD:0))

Figure 4-32., Adder Level 1 Equation Implementation (Sheet 1 of 2)

4-81

Advanced Scientific Computer

a; N N LOG;|
2N | |
bj 1 _'_ I
SOR 1B
(PAADDCOR) I l
A <> L.OGj
| l (PAADDOLO)
Ti | N I
1 —-|——
(Pmncg e | l
) A A |
= | ~
[I
1 —f— I
DDC? 1 '° l '
(PAADDCEQ) A A
sp — 1B l
(PAADDCAN) A A I
sQ
L SE—— g GEEE— GE— J
WHERE $
LOG = OUTPUT FOR LOGICAL INSTRUCTIONS
SOR = TRUE FOR LOGICAL ‘OR” INSTRUCTIONS
ST = TRUE FOR LOGICAL ‘EXCLUSIVE OR” INSTRUCTIONS
ST = TRUE FOR LOGICAL ‘EQUIVALENCE” INSTRUCTIONS
SD = TRUE FOR LOGICAL AND INSTRUCTIONS,

(A)124753

Figure 4-32. Adder Level 1 Equation Implementation (Sheet 2 of 2)

4-82

Advanced Scientific Computer

where,

ASH = true for add or subtract halfword instructions

SUB = true for subtract instructions

All the logical functions, except the OR function, are implemented using the
carry transfer and develop equations and the logical function enables. The
OR function is defined by the following equation:

OR; = aj + by

The exclusive OR function is true only when the two bits compared are dif-
ferent, so the carry transfer equation (T;) is used. The equivalence function
is true only when the two bits compared are the same, so the negated carry
transfer equation (T;) is used. The AND function is true only when both bits
compared are ones, so the carry develop equation (D;) is used. The output
equation for all logical instructions, therefore, is formed as follows:

LOGy SOR:OR; + ST.T; + ST-T'I + SD. D
where,

LOG; = output at bit position i for all logical instructions

SOR = enable for OR functions

ST = enable for exclusive OR functions
ST = enable for equivalence functions
SD = enable for AND functions

The logical function output data (byte, halfword, or word, as determined by
the logical instruction op-code) is distributed to the fifth level of the adder,
where it is gated through to the AUIl transfer bus (AU1B).

4-100 Adder Level 2. Refer to figure 4-33 for the logic module connections
required to implement the equations necessary for operation of adder level
2. The second level of the adder uses the carry transfer and develop equa-
tions from level 1 to generate the right hex group carries (RHTG and RHDG)
and byte group carries (TG and DG). The carry equations generated by the
second level of the adder exist on each of the four PPAUCD cards and ap-
ply to only one byte of data per card. A right hex group carry transfer is

Advanced Scientific Computer

S

iy
Dy = |
. Te ! N — RHDG

1 | '
H I

T5 ! l

Ta —! A ~-O— I RHDG (PAADDRDG)
| | |

0 I |
| |
l A I
|
| . I

Dg = l
I A I
: N }— :

D A

5 | |
| N

o :
- G J

48

T A RHTG (PAADDRTG)

To

T TG
T2

T3

Ta
Ts
Te
T TG (PAADDTG)

1

WHERE {
RHDG
RHTG
TG
DG

RIGHT HEX GROUP CARRY DEVELOP
RIGHT HEX GROUP CARRY TRANSFER
BYTE GROUP CARRY TRANSFER
BYTE GROUP CARRY DEVELOP

(AY124754

Figure 4-33, Adder Level 2 Equation Implementation (Sheet 1 of 2)

4-84 Advanced Scientific Computer

D‘A_—. 9B

9B

—_

9B

ol
ol Sl

ol

o

ol

(AY124755

GC

DG (PAADDDG)

Figure 4-33.

Adder Level 2 Equation Implementation (Sheet 2 of 2)

4-85

Advanced Scientific Computer

@o
generated whenever all four carry transfers in the right hex group are true.
This results in the following equation:

RHTG = T4.Ts-Tg- T7

A right hex group carry develop is generated whenever a carry is developed
in the right hex group and the carry transfers propagate (propagation is not
necessary when the MSB of the hex develops the carry) the carry through the
right hex group. This results in the following equation:

RHDG = D4+D5' T4+D6' T4' T5° T6+D7' T4° T5° T6° T7

A byte group carry transfer is generated whenever all eight carry transfers
in the byte group are true. This results in the following equation:

TG = T+ T;+Tp T3+ Ty Tg Tg+ Ty

A byte group carry develop is generated whenever a carry is developed in a
byte group and the carry transfers propagate the carry through the byte.
Propagation is not required if the MSB of the byte develops the carry. This
results in the following equation:

DG = D0+D1T0+D2T0T1+D3T0T 1T2+D4 TgT1TpT3+D5TT1 TpT3Ty+
D6T0T1 T2T3T4T5+D7T0T1T2T3 T4T5 T6

The equation for DG is implemented by forming DG and using the inverted
output of the resulting logic network to extract DG. The equation for DG is
as follows:

DG = T050+T1_Do_f) 1+T2DoDD2+T3DpD; D2D3+

D0D1D2D3D4D5D6D7

This equation is formed by inverting the previous equation for DG, convert-
ing the result to the product of sums form, and multiplying out the resulting
products. The byte group carries (TG and DG) are used in the third level of
the adder and the right hex group carries (RHTG and RHDG) are used in the

fourth level of the adder.

4-101 Adder Level 3. Refer to figure 4-34 for the logic module connections
required to implement the equation necessary for operation of adder level 3.
The third level of the adder uses the byte group carries from the second level
of the adder to generate the carry into a byte (KG) from a previous byte or
bytes. A carry is input to a byte whenever a carry is developed in a less

4-86 Advanced Scientific Computer

T T T T T

KG4 i N % KG
TG 3 L |
TG2 }
TG, i l
N } A KG (PAADDKG)
] : |
ASB I I
iB I N |
DG 5 | A |
|
I " |
DG | A |
1
I X I
DG
1 | l
A
I
I i |
A I I
2B
KG , A
| GC
ASB'= TRUE FOR ADD OR SUBTRACT BYTE
KG4 = TRUE FOR SUBTRACT

(ALL SUBSCRIPTS DESIGNATE A BYTE)
(A) 124756

Figure 4-34, Adder Level 3 Equation Implementation

4-87 Advanced Scientific Computer

O

significant byte and the carry is propagated through to the byte in question.
Propagation is not required if the carry is developed in the right adjacent
byte. This results in the following four equations for the four bytes in a
word, '

KGq = DG] + DG2TG] + DG3TG] TG, + KG4TG]TG2TG3

KG1 = DGZ + DG3TG2 + KG4TGZTG3
KGZ = DGy + KG4TG3
KG3 = KG4 = true for all subtracts

When a halfword add or subtract instruction is being executed, carries are
not propagated from the right halfword to the left halfword, so the carry into
byte equations must be modified.

KG) = KGyq
KGZ = DG3 + KG4TG3
KG3 = KG4 ‘

When a byte add or subtract instruction is being executed, all carry into byte
equations are set equal to KGy (true for subtract instructions). Since the
PPAUCD cards are identical, they must contain the same logic yet gener-
ate the appropriate KG equation. This is accomplished by implementing the
KG(equation for the word level instruction and routing inputs to each byte
via the VPRMB motherboard to develop the appropriate KG equation. The
KGq equation is modified as follows so that it can be used to develop the cor-
rect halfword and byte level KG equations.

KGg = KG4(ASB) + DG (ASB) + DG,TG,(ASB) + DG3 TG, TG, (ASB) +
KG4 TG TG,TG3(ASB)
where,
ASB = true for add or subtract byte level instructions

The KG(equation for word level instructions is developed because ASB is
zero. For word level instructions, KG; is developed by setting TG; to one
and DG) to zero; KG2 is developed by setting TG and TG, to one and DG
and DG to zero; KG3 is developed by setting TG, TG, and TG3 to one and
DGj, DG, and DG3 to zero. The correct KG equations for bytes zero and
one are developed for halfword instructions by using the control mentioned
for the word level instructions and setting TG, to zero for both adds and

4.
88 Advanced Scientific Computer

subtracts and DG, to zero for adds and one for subtracts. In reality, TG
and DG are set equal to Tg and D, respectively, of byte two for halfword
instructions. This is done because T of byte two is zero for halfword in-
structions and D of byte two is zero for halfword adds and one for halfword
subtracts. The developed KG equation for each byte is input to the fourth
level of the adder.

4-102 Adder Level 4. Refer to figure 4-35 for the logic module connections
required to implement the equations necessary for operation of adder level

4. The fourth level of the adder uses the carry develop, carry transfer,
right hex group carry, and the carry into byte equations to generate the carry
equations for each bit in the 32-bit adder result. Each PPAUCD card gen-
erates the carries for one byte of data. A carry is generated for a bit when-
ever a carry is developed in the word and the carry is propagated through to
the bit in question. Propagation is not required if the carry is developed in
the right adjacent bit. This results in the following carry equations for a
byte of data:

Cy=D, + D,T; + D3T|T, + (RHDG)TT,T5 + KG(RHTG)T | T,T;
Cy = Dy + D3T, + (RHDG)T, T3 + KG(RHTG)T, T3

C, = D3 + (RHDG)T3 + KG(RHTG)T3

C3 = RHDG + KG(RHTG)

Cy4 = D5 + DgTg + D7T5T¢ + (KG)T5T¢T7

Cg = Dy + D7Ty + (KG)T¢ T

Cg = D7 + (KG)Ty

C, = KG

The results from the carry equations for four bytes of data are input to the
fifth level of the adder.

4-103 Adder Level 5. Refer to figure 4-36 for the logic module connections
required to implement the equations and gating necessary for operation of
adder level 5. The fifth level of the adder uses the carry equations from
level 4 and the carry transfer equations from level 1 to generate the sum
outputs. In addition, level 5 includes the output gating associated with the
AUI1 transfer bus for the AU. Each PPAUCD card generates sum outputs for
one byte of data. The sum output is formed by an exclusive OR between the
carry (C;) for a bit and the carry transfer (Ti) for a bit and is expressed by
the following equation.

where,

0N
Il

sum output at bit position i

4-89 Advanced Scientific Computer

[— N [[J— N E'
"HTG ———] RHTG i
Ta Ty ——
T2 T, __1 .
T1 —_— A Co 1 — A p————— C,
(PAADDCRY (0)) (PAADDCRY (1))
RHDG ———— RHDG —]
D3 D3
o, — sc e ——1 «cc
KG ‘ | Y o)
N E4 1 _ﬁ N (:z
T, ———— 1 — :
TG— 0 — A c2
(PAADDCRY (2))
Ts
1 A C, RHTG
(PAADDCRY (4)) T
3
D7 | CHE——
De RHDG
T
Dg 3
1
0 GC ‘
1
D3 sQ
1 — N C. 1 N c N —
— ©3 [1 T,
1 — 1 — | I
o A Cy o A Cg () A c,
(PAADDCRY (3)) (PAADDCRY (5)) (PAADDCRY (6))
1 — T7 — | —
1 — T 1
Gﬁ —_—
[o J— KG g 0 —
| — | E— 1 —
KG Te Ty —
RHTG D, . KG
1 — [| R—
RHDG sQ Dg sQ o, — sa
(A)124757

Figure 4-35. Adder Level 4 Equation Implementation

4-90 Advanced Scientific Computer

S; (PAADDOSM)

PAU1IC 1)

T N N
Ci———— 2N (PAU10: 2)
; 30 (PAU10: 3)
T N
?i 2N
LOG; N
1 31
SHFTj N
1 31
N PAU10: 4)
SUM
CONTROL. 1B
(PAA1XCSM) A 2N
N
LOGICAL 18
CONTROL.
(PAAIXCLO) A 2N
SHIFT 1B N
CONTROL.
(PAA1XCSH) A 2N
BITS 0-4 OF BYTE
WHERE:
Sj = SUM OUTPUT AT BIT POSITION |
SHFT|; = SHIFT OUTPUT AT BIT POSITION ;
LOG| = LOGICAL OUTPUT AT BIT POSITION ;
(A)124758

Figure 4-36,

AU 1B
> OUTPUT.

Adder Level 5 Equation Implementation (Sheet 1 of 2)

4-91

Advanced Scientific Computer

o

si PAU1O: 1) N

T N N
c: N CPAU1O: 2)
|
' 3l (PAU10:3)
T N
< 2N
LOG; N
1 31
AU 1B
> OUTPUT
SHFT;j N
1 —0o| 31
BPK; N
1 31
(APAU10:4)
SUM . N S
CONTROl, 1B
(PAATXCSM) A
1 —
CONTROE
(PARTRELOY ‘BA
1 ————
SHIFT
CONTROL 1B
(PAA1XCSH) A
[—
BIT PICK 1B
CONTROI.) —
(PAA1XCBP A

BITS 5-7 OF BYTE

WHERE:)
BPK;= BIT PICKER OUTPUT AT BIT POSITION |

(A)124759

Figure 4-36, Adder Level 5 Equation Implementation (Sheet 2 of 2)

4-92 Advanced Scientific Computer

When a sum (add or subtract) is being executed, the S-1 terms from the adder
are gated through the AUl transfer bus (AU1B) by the sum enable. When a
logical function is being executed, the LOG; terms from the first level of the
adder are gated through AULB by the logical enable. When a shift or poll in-
struction is being executed, the SHFT; or BPK; terms, respectively, are
gated through AUI1B by the appropriate enable.

4-104 SHIFTER. Refer to figure 4-37 for a simplified block diagram of
one byte of the AU shifter representing the logic on each PPAUCD card.

The shifter performs right or left arithmetic, logical, or cyclic shifts in in-
crements of 1, 4, or 8 bits on a 32-bit word from the MDB. In addition, the
shifter and aligner combine to perform right or left cyclic shifts in incre-
ments of 16 bits. The byte of data corresponding to the PPAUCDM card
number and its right and left adjacent bytes are applied to the shifter bit se-
lect logic to provide for the 1, 4, or 8 bit shifts. The selected byte from
the aligner on the same PPAUCDM card is applied to the shifter bit select
logic to provide for the 16 bit shifts. The remainder of the inputs to the
shifter are supplied by the CONTAU card and provide the control necessary
to generate a byte of shifted data.

The byte 0 fix control is used in the shift size and direction logic to generate
the zero fill in byte zero of the shifter word output for right logical shifts.
The same control is used in the sign propagation logic to provide sign propa-
gation in byte zero of the shifter word output for right arithmetic shifts. The
byte 3 fix control is used in the shift size and direction logic to generate the
zero fill in byte three of the shifter word output for left arithmetic and left
logical shifts. The shift size controls (1, 4, and 8) are used in both blocks
of logic to generate the proper enables so that the correct amount of shift and
sign propagation is gated through the shifter bit select logic. The shift type
controls (cyclic, arithmetic, and logical) are used in the shift size and di-
rection logic to control whether or not zero fill is necessary in bytes zero and
three of the shifter word output. The arithmetic shift control and the right
shift control are used in the sign propagation logic to determine when sign
propagation is necessary. The shift direction controls (left and right) are
used in the shift size and direction logic to generate the proper enables so
that bits from the correct adjacent byte are gated through the shifter bit se-
lect logic. The cyclic shift of 16 control is used in the shifter bit select
logic to enable the byte from the aligner through to the shifter output. The
remaining paragraphs on the shifter give a more detailed description of the
shift size and direction logic, the sign propagation logic, and shifter bit se-
lect logic.

4-105 Shift Size and Direction Logic. The shift size and direction logic
uses the inputs shown in figure 4-37 to develop the following equations:

4.
93 Advanced Scientific Computer

¥6-¥

491ndwW0Y) 21413UBIIS PAIUCADY

BYTE N FROM UNLOAD BOX

FROM
CONTAU

(BY124760

FROM MAIN DATA BUS

<

7

CYCLIC SHIFT OF 16

BYTE 0 FIX

BYTE 3 FIX

SHIFT 8

SHIFT 4

SHIFT 1

CYCLIC SHIFT (CS)

LOGICAL SHIFT (LS)

ARITHMETIC
SHIFT (AS)

LEFT SHIFT (L)

RIGHT SHIFT (R)

SELECTED BYTE
FROM ALIGNER

Figure 4-37.

(PAUNLOAB)
-
RIGHT ADJACENT BYTE (PASHF PO) H
LEFT ADJACENT BYTE (PASHFMO)
—
(PASHFSPE)
2
(PABCOF X) ;64 OR a ENABLES
— F
(PACcoBC3) (PASHFR!P 4P ,8P)
L 4,0R 8 ENABLES
(PASHFCB8) FOR A (LS+AS+CS)
(PASHFCA) = (PASHFR1,4,8) .
—
(PASHFC1) SHIFT
; — Size
AND
(PASHFCCS) o DirecTION ng ORsa ENABLES
LOGIC >
(PASHFCLS) > (PASHFL 1P, 4P, 8P)
(PASHFCAS)
—&» 1,4, OR 8 ENABLES
(PASHFCL) > FOR'L- (LS+AS+CS) >
CVPASHFCL) (PASHFL1,4,8)
—»
(PAAL102)
|
e
-
’SIGN 1,4, OR 8 ENABLES
PROPAGATION —
—gLOcIC (PASHFSNI1 ,2,3)
—»
.

Shifter Logic on PPAUCD (N)

SHIFTER
BIT

SELECT
LOGIC

OUTPUT
BYTE

(PASHFO)

i

PASHFRIP =B0 - B3 - S1 .R . (AS+LS)+ Sl. R . CS

PASHFR1 = (AS+LS+CS)(R-Sl)

PASHFR4P =B0 » B3 + S4+- R - (AS+LS)+ S4 -R - CS

PASHFR4 = (AS+LS+CS)(R-S4)

PASHFR8P = B0 .- B3 - S8 - R+ (AS+LS)+ S8 : R - CS
where,

BO = byte 0 fix control

B3 = byte 3 fix control
S1 = shift 1 bit

S4 = shift 4 bits

S8 = shift 8 bits

R = right shift

AS = arithmetic shift
LS = logical shift

CS = cyclic shift

This set of equations provides the enables necessary for the shifter bit se-
lect logic to perform right arithmetic, right logical, or right cyclic shifts in
increments of 1, 4, or 8 bits., A similar set of equations (PASHFLI1P,
PASHF L1, PASHFL4P, PASHF 14, and PASHFL8P) are developed for left
shifts., The PASHFRIP and PASHFRI equations combine to provide the en-
ables required for all types of right shift of 1 bit., The first term in the
PASHFRIP equation enables zeroing of the first bit in byte zero of the shifter
output word when a right logical or right arithmetic shift of 1 bit is being
performed (the sign propagation logic overrides all zero fill of byte zero when
a right arithmetic shift is being performed). This same term in the

PASHF L1P equation enables zeroing of the last bit in byte three when a left
logical or left arithmetic shift of 1 bit is being performed. The first term

in the PASHFRIP (PASHFL1P) equation provides the PPAUCD(1-3)
(PPAUCD(0-2)) cards with the enables necessary for the éhifting of bit 7

(bit 0) from the left (right) adjacent byte to bit 0 (bit 7) of the output byte when
a right (left) logical or right (left) arithmetic shift of 1 bit is being performed.
The second term in the PASHFRIP (PASHF L1P) equation enables shifting of
bit 7 (bit 0) from the left (right) adjacent byte to bit 0 (bit 7) of the output byte
when a right (left) cyclic shift of 1 bit is being performed. - The PASHFRI1
(PASHF L1) equation enables the shifting of bits 0 through 6 (1 through 7) to
bits 1 through 7 (0 through 6) of the output byte when a right (left) arithmetic,
right (left) logical, or right (left) cyclic shift of 1 bit is being performed.

4-95 Advanced Scientific Computer

O

The PASHFR4P (PASHF1L4P) and PASHFR4 (PASHF14) equations combine to
provide the enables required for all types of right (left) shift or 4 bits. The
first term in the PASHFR4P (PASHF1L4P) equation enables the zeroing of the
first (last) four bits in byte zero (three) of the shifter output word when a
right (left) logical or right (left) arithmetic shift of 4 bits is being performed.
In addition, the first term in the PASHFR4P (PASHF14P) equation is used on
the PPAUCD(1-3) (PPAUCD(0-2)) cards to enable the shifting of the four

last (first) bits from the left (right) adjacent byte to the four first (last) bits
of the output byte when a right (left) logical or right (left) arithmetic shift of
4 bits is being performed. The second term in the PASHFR4P (PASHFL4P)
equation enables the shifting of the four last (first) bits from the left (right)
adjacent byte to the four first (last) bits of the output byte when a right (left)
cyclic shift of 4 bits is being performed. The PASHFR4 (PASHF 14) equation
enables the shifting of the four first (last) bits of the output byte to the four
last (first) bits of the output byte when a right (left) arithmetic, right (left)
logical, or right (left) cyclic shift of 4 bits is being performed.

The PASHFR8P (PASHFLS8P) equation provides the enables required for all
types of right (left) shift of 8 bits. The first term in the PASHF R8P

(PASHF L8P) equation enables the zeroing of byte 0 (three) when a right (left)
logical or right (left) arithmetic shift of 8 bits is being performed. In addi-
tion, the first term in the PASHFR8P (PASHF L8P) equation is used on the
PPAUCD(1-3) (PPAUCD(0-2)) cards to enable the shifting of the left (right)
adjacent byte to the output byte when a right (left) logical or right (left)
arithmetic shift of 8 bits is being performed. The second term in the
PASHFR8P (PASHF L8P) equation enables the shifting of the left (right) adja-
cent byte to the output byte when a right (left) cyclic shift of 8 bits is being
performed. ' ,

4-106 Sign Propagation Logic. The sign propagation logic uses the inputs
shown in figure 4-37 to develop the following equations: :

PASHFSN1 = S8 . AS. R . BO
PASHFSN2 =(S4 + S8) (AS:-R-B0)
PASHFSN3 =(S1 + S4 + S8) (AS: R+ BO0)

This set of equations provides the enables necessary for the shifter bit se-
lect logic to sign extend the quantity being shifted. Examination of the three
equations indicates that sign propagation occurs only when a right arithmetic
shift is being performed and the logic using the equations is on the
PPAUCDM(0) card. When this is the case, the PASHFSN3 equation is used
to enable the sign of the data to be shifted into the bit 0 of byte 0, the
PASHFSNZ2 equation is used to enable the sign of the data to be shifted into
bits 1 through 3 of byte 0, and the PASHFSNI1 equation is used to enable the

4-96 Advanced Scientific Computer

a2

sign of the data to be shifted into bits 4 through 7 of byte 0. When sign prop-
agation is necessary, only equation PASHFSN3 is true for a shift of one,
equations PASHFSN3 and PASHFSN2 are true for a shift of four, and all three
equations (PASHFSN3, PASHFSN2, and PASHFSNI1) are true for a shift of
eight,

4-107 Shifter Bit Select Logic. The shifter bit select logic uses the enables
from the shift size and direction logic and the sign propagation logic to select
and gate data from the unload box and the MDB through to the output when a
shift of 1, 4, or 8 is specified. In addition, the cyclic shift of 16 control
from the CONTAU card is used to select and gate data from the aligner
through to the output when a cyclic shift of 16 is specified. The ten pre-
viously-mentioned shift size and direction enables from the shift size and
direction logic, the three previously-mentioned sign propagation enables
from the sign propagation logic, and the cyclic shift of 16 enable from the
CONTAU card are all paired with an appropriate bit of data from one of the
three data sources. When the control signals from the CONTAU card drive
an enable signal true, the data bit paired with the true enable is output to the
proper bit in the output byte. Each PPAUCD card produces a byte of

shifted data for output to the AUl transfer bus in this manner.

4-108 BIT PICKER. Refer to figure 4-38 for a diagram of the data flow re-
quired for bit picker operation. The bit picker is used during poll instruc-
tions to scan a byte of data (typically from a CR register) from the MSB to
the LSB in order to determine the number of zeroes from the MSB of the byte
to the first one. The bit picker accepts the true and complement form of the
word supplied by the MDB from the unload box. All four bytes of the word
are operated on in parallel (one byte per PPAUCD card) by the bit picker

and the necessary selection of the byte specified by the poll instruction is
supplied by the PPCTL2 card.

A three-bit code (H G F) is developed by the pit picker on each PPAUCD

card to indicate the zero count to the first one for each byte of the input word.
The equations formed to generate the three-bit code are based on the unload
byte table in figure 4-38. In addition, an equation is formed (K) to indicate
when all bits of a byte are zero. Refer to figure 4-39 for the logic module
connections required to implement the following equations:

+agazagaqay

| S
oo
o |
(@] (@]
| o
- —
N
|
+ o
o] o
o N
o @
- w
S o+
+ ol
o
ol
o g
o|
—
o B
i (02
U1
(W)
o
+
o
o
o
—
o
N
o
or
[}
~J

j = a0a1a2a3a4a5a6a7

Advanced Scientific Computer

BIT PICKER LOGIC PPAUCD(0—3)

l ! |
PPAUCDM’s (0-3) I PPCTL 2 | PPAUCDM's
\Y "
| TRUE ' - I W I
l‘\Ga |
" l . o BYTE |.\\G" 3 BIT CODE
v UNLOAD o BT '\.H,, SELECT ALIE To
psme— BOX OR » ﬁ
B | COMP ' w vPC | 'F VPRCRDS
| | |
‘K'I
CONTAU
(CONTAU)
PAA1XCBP — ;g;{fgg{gb% ,3)
(BP—=AU1 ENABLE) > PPAUCD(0, 2
UNLOAD BYTE
ol1]213lals]le] Vv P C
‘" IS TRUE IF: ol rlx]xIx]|x|x]|x ojfojo
OR ofx o 1]x|x]|x|x o|o|Q®)
oDD
BITS < OR o|lx|o|lx|ol|l1]x]|x o|fr) o
OR o|lx|o|x]|o|x 1 o ()| (O
‘¢’ IS TRUE IF: olo|x|x|olo|lx]|1 (M| o | o
OR olo|x|x]olo|1]x 1f| o |
OR ojo|x |1 |x]|x|x]|x 1{[(")| o
OR ojlo |1 |x]|x|x|x|x W @
A
H” 1S TRUE IF: olofolof1]|x|x H|G|F
OR olo|o]o 1| x
REFER TO LOGIC
X
OR 0jojojo T]x DIAG PG 12 AND 13
OR olo|o|lo]| x| x]|x|1
K" 1S TRUE IF; o 0 0 0 0 0 O O
PPCTL2:
1. DECODES POLL INSTRUCTION
2. LOOKS AT DESTINATION ADDRESS FOR WHICH HALFWORD
3. LOOKS AT SOURCE ADDRESS FOR WHICH BYTE TO BE SELECTED FROM THE BIT PICKER
(A) 111699

Figure 4-38. Bit Picker Data Flow

4-98 Advanced Scientific Computer

[P p—— ao
3 H——
5 m—— _
2 33—
3o PABPKOF
A _(___L_ r:i 54
[Rp— s
as EG
. (PABPKOK)
A — a5 A K
0 | cc t— 98
- (PABPKOG) PABPKOH) .
ap N N i N { Hl
ay
a, _
a N
3. o
ag | — 48 _ —
ay
a —
a, — _ N
1 5 ao
| 3 7 ——
A, _
1 — az
1 | 9B 33—
[p—
as
1 —T
ag N 1
— 1 ——— 98B
ay 1
a, 1
55 1 9B
ag
! a3 N
a9
1 p—
a
1 1
a. -
P 2 A N
98 5
3 a—‘
a =
6 3,
_ 1
do N a,
= 1
ay —— ay; —
1 —————————
as 3N . 1
98
1
% N | ——
3, t —— 98
43— an
(3p THROUGH 3, HAVE PAUNLOAB SIGNATURES)
(BY124761

Figure 4-39,.

Bit Picker Equation Implementation

4-99

Advanced Scientific Computer

g

where,
Fj is the LSB of the three-bit code for byte j
Qj is the LSB+1 of the three-bit code for byte j
Hj is the MSB of the three-bit code for byte j

Kj is the no ones control signal for byte j

apgajajagagagaga, is a byte of data from the unload box

The four sets of H, G, and F lines (one set per PPAUCD card) are input to
the PPCTL2 card and the four K lines are input to the CONTAU card. The

K line of the byte specified by the poll instruction is used to determine if the
next instruction is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>