j
b TEXAs
INSTRUMENTS

Digital Signal Processing
Applications with the TMS320 Family

Theory, Algorithms,

and Implementations

Volume 3

1990 Digital Signal Processor Products

Digital Signal Processing
Applications with the TMS320 Family

Volume 3

Edited by
Panos Papamichalis, Ph.D.
Digital Signal Processing
Semiconductor Group
Texas Instruments

TExXas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without notice.
Tl advises its customers to obtain the latest version of the relevant information
to verify, before placing orders, that the information being relied upon is current.

Tl warrants performance of its semiconductor products to current specifications
in accordance with TI's standard warranty. Testing and other quality control tech-
niques are utilized to the extent TI deems necessary to support this warranty. Un-
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tlwarrant or represent thatlicense, either express orimplied, is granted
under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

TRADEMARKS

ADI and AutoCAD are trademarks of Autodesk, Inc.

Apollo and Domain are trademarks of Apollo Computer, Inc.

ATVista is a trademark of Truevision, Inc.

CodeView, MS-Windows, MS, and MS-DOS are trademarks of Microsoft Corp.
DEC, Digital DX, VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.
DGIS is a trademark of Graphic Software Systems, Inc.

EPIC, XDS, TIGA, and TIGA-340 are trademarks of Texas Instruments, Inc.
GEM is a trademark of Digital Research, Inc.

GSS*CGl is a trademark of Graphic Software Systems, Inc.

HPGL is a registered trademark of Hewlett-Packard Co.

Macintosh and MPW are trademarks of Apple Computer Corp.

NEC is a trademark of NEC Corp.

PC-DOS, PGA, and Micro Channel are trademarks of IBM Corp.

PEPPER is a registered trademark of Number Nine Computer Corp.

PM is a trademark of Microsoft Corp.

PostScript is a trademark of Adobe Systems, Inc.

RTF is a trademark of Microsoft Corp.

Sony is a trademark of Sony Corp.

Sun 3, Sun Workstation, SunView, SunWindows, and SPARC are trademarks of
Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1990, Texas Instruments Incorporated

CONTENTS

FOREWORD ... v

PREFACE e vii

PART 1. INTRODUCTION
The TMS320 Family and Book OVErVIEWttt et 3

The TMS320 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from PROCEEDINGS OF THE IEEE,
Vol. 75, No. 9, September 1987) 11

The TMS320C30 Floating-Point Digital Signal Processor
(Panos Papamichalis and Ray Simar, Jr., reprinted from /EEE Micro Magazme Vol. 8, No. 6,
December 1988)t 31

PART II. DIGITAL SIGNAL PROCESSING ROUTINES

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30
(Panos PapamiChaliS)ottt e 53

Doublelength Floating-Point Arithmetic on the TMS320C30
(Al LOVIICh) . . o e 137

An 8x8 Discrete Cosine Transform Implementation on the TMS320C25 or the TMS320C30
(William Hohl) oo 169

Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30
(Sen Kuo, Chein Chen)t O 191

A Collection of Functions for the TMS320C30
(GAry SIEON) . . oottt et ettt e e e e e 273

PART III. DIGITAL SIGNAL PROCESSING INTERFACE TECHNIQUES

TMS320C30 Hardware Applications
(Jon Bradley) 333

10. TMS320C30-IEEE Floating-Point Format Converter

(Randy Restle and Adam CION)ottt e e e 365
PART IV. TELECOMMUNICATIONS

11. Implementation of a CELP Speech Coder for the TMS320C30 Using SPOX
(MArk D. GIOSEN) . . vt eoe ettt et et e e e e e e e 403

iii

PART V. COMPUTERS

12. A DSP-Based Three-Dimensional Graphics System
(NAt SEShAN)\ttt e 423

PART VI. TOOLS

13. The TMS320C30 Applications Board Functional Description
(Tony Coomes and Nat Seshan) i i 467

TMS320 BIBLIOGRAPHY R 533

iv

Foreword

Much has happened in the TMS320 Family since Volume 1 of Digital Signal Processing
Applications with the TMS320 Family was published, and Volumes 2 and 3 are a timely update to
the family history.

The DSP microcomputers keep changing the perspective of the systems designers by offer-
ing more computational power and better interfacing capabilities. The steps of change are coming
more quickly, and the potential impact is greater and greater. Because things change so rapidly in
thisarea, there is a pressing need for ways to quickly learn how to utilize the new technology. These
new volumes respond to that need.

As with Volume 1, the purpose of these books is to teach us about the issues and techniques
that are important in implementing digital signal processing systems using microprocessors in the
TMS320 Family. Volume 2 highlights the TMS320C25; and Volume 3, the TMS320C30 chip. A
large part of the books is devoted to such matters as characteristics of the TMS320C25 and
TMS320C30 chips, useful program code for implementing special DSP functions, and details on
interfacing the new chips to external devices. The remainder of the books illustrates how these
chips can be used in communications, control, and computer graphics applications.

What these two volumes make clear is how remarkably fast the field of DSP microcomputing
is evolving. IC technologists and designers are simply packing more and more of the right kind of
computing power into affordable microprocessor chips. The high-speed floating-point computing
power and huge address spaces of chips like the TMS320C30 open the door to a whole new class
of applications that were difficult or impractical with earlier generations of fixed-point DSP chips.
The signal processing theorists and system designers are clearly being challenged to match the cre-
ativity of the chip designers.

The present books differ from Volume 1 in the inclusion of a small section on tools. This is
ahopeful sign, because itis progress in this area that is likely to have the greatest impact on speeding
the widespread application of DSP microprocessors. While useful design tools are beginning to
emerge, much more can be done to help system designers manage the complexity of sophisticated
DSP systems, which often involve a unique combination of theory, numerical and symbolic pro-
cessing algorithms, real-time programming, and multiprocessing. No doubt future volumes of Dig-
ital Signal Processing Applications with the TMS320 Family will have more to say about this im-
portant topic. Until then, Volumes 2 and 3 have much useful information to help system designers
keep up with the TMS320 Family. N

Ronald W. Schafer
Atlanta, Georgia
November 14, 1989

vi

Preface

The newer, floating-point DSP devices, such as the TMS320C30, have brought an added di-
mension to DSP applications. With the TMS20C30, programming is much easier because the de-
signer does not have to worry about dynamic range and accuracy issues. An algorithm implemented
infloating-pointin a high-level language can be easily ported to such adevice. The new architecture
contains other features, besides the floating point capability, that simplify programming. Some of
these features (such as the software stack, the large register file, etc.) were added to facilitate the
development of high-level language compilers. Currently, C and Ada compilers have been intro-
duced. In addition, Spectron Microsystems introduced an operating system for DSPs (called
SPOX) that further facilitates the development of algorithms on the DSP devices.

Volume 3 of Digital Signal Processing Applications with the TMS320 Family contains appli-
cation reports primarily on the third generation of the TMS320 Family (floating-point devices).
This book is a continuation of Volumes 1 and 2 in the sense that it addresses the same needs of the
designer. The designer still has the task of selecting the DSP device with the appropriate cost, per-
formance, and support, developing the DSP algorithm that will solve the problem, and implement-
ing the algorithm on the processor. This volume tries to help by bringing the designer up to date
on the applications of newer processors or in different applications of earlier processors.

The objectives remain the same as in earlier volumes. First, the application reports supply
examples of device use and serve as tutorials in programming the devices. Of course, the same pur-
pose is served on a more elementary basis by the software and hardware applications sections of
the corresponding user’s guides. Second, since the source code of each application is provided with
the report, the designer can take it intact (or extract a portion of it) and place it in the application.

Itisassumed thatthe reader has exposure to the TMS320 devices or, at least, has the necessary
manuals (such as the appropriate TMS320 user’s guides) that will help the reader understand the
explanationsin the reports. The reports themselves include as references the necessary background
material. Additionally, the Introduction gives a brief overview of the available devices at the time
of the writing and points to the source of more information.

The reports are grouped by application area. The term report is used here in a broad sense,
since some articles from technical publications are also included. The authors of the reports are ei-
ther the digital signal processing engineering staff of the Texas Instruments Semiconductor Group
(including both field and factory personnel, and summer students) or third parties.

The source code associated with the reports is also available in electronic form, and the reader
can download it from the TI DSP Electronic Bulletin Board (telephone (713) 274-2323). If more
information is needed, the DSP Hotline can be called at (713) 274-2320.

The editor thanks all the authors and the reviewers for their contribution to this volume of
application reports.

Panos E. Papamichalis, Ph.D.
Senior Member of Technical Staff

vii

viii

Part I. Introduction
1. The TMS320C20 Family and Book Overview

2. The TMS320C20 Family of Digital Signal Processors
(Kun-Shan Lin, Gene A. Frantz, and Ray Simar, Jr., reprinted from
PROCEEDINGS OF THE IEEE, Vol. 75, No. 9, September 1987)

3. The TMS320C30 Floating-Point Digital Signal Processor
(Panos Papamichalis and Ray Simar, Jr., reprinted from IEEE Micro
Magazine, Vol. 8, No. 6, December 1988)

TMS320 Family and Book Overview

Digital signal processors have found applications in areas where they were not even consid-
ered a few years ago. The two major reasons for such proliferation are an increase in processor per-
formance and a reduction in cost. Volume 3 of Digital Signal Processing Applications with the
TMS320 Family presents a set of application reports primarily onthe TMS320C30, the third-gener-
ation TMS320 device.

Organization of the Book

The material in this book is grouped by subject area:
* Introduction

* Digital Signal Processing Routines

* DSP Interface Techniques

® Telecommunications

* Computers

¢ Tools

°* Bibliography

The Introduction contains this overview and two review articles. The first article gives a
general description of the TMS320 family and is reprinted from a special issue of the JEEE Pro-
ceedings, while the second article discusses the TMS320C30 device and is reprinted from the JEEE
MicroMagazine. The overview points out how the TMS320 family has grown since the two articles
were published and also introduces newer devices.

The five articles in the Digital Signal Processing Routines section present useful algo-
rithms, such as the FFT, the Discrete Cosine Transform, etc., that are implemented on the
TMS320C30. Two of the reports also consider implementations on the TMS320C25.

The section on DSP Interface Techmiques contains an article on interfacing the
TMS320C30with external hardware, such as memories and A/D and D/A converters, and an article
onahardware implementation of a floating-point converter between the IEEE and the TMS320C30
formats.

The following three sections contain one article each. In the Telecommunications section,
an implementation of the government-standard CELP speech-coding algorithm is presented. The
Computers section contains an article on 3-D graphics systems, which shows examples of using
the TMS320C30 device for graphics problems. In the Tools section, the article gives a functional
description of the TMS320C30 Application Board that is part of the hardware emulator for that de-
vice.

The Bibliography section contains a list of articles mentioning DSP implementations using
TMS320devices. The different titles are listed chronologically and are grouped by subject. The list
is not exhaustive, but it gives pointers for pursuing practical implementations in representative
application areas.

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 3

The TMS320 Family of Processors

The TMS320 Family of digital signal processors started with the TMS32010 in 1982, but it
has been expanded to encompass five generations (at the time of this writing) with devices in each
generation. Figure 1 shows this progression through the generations. The TMS320 devices can be
grouped in two broad categories: fixed-point and floating-point devices. As implied by Figure 1,
the first, second, and fifth generations are the fixed-point devices, while the third and the fourth
generations (the latest one under development) support floating-point arithmetic.

Figure 1. TMS320 Family Roadmap

*TMS320C40
TMS320C30
*TMS320C30-26

Floating-point DSP
Fixed-point DSP
* 1990 NEW TMS320

Pl m
e I *TMS320C31 TMS320C5x
r
(f) g *TMS320C50
4 TMS32020 *TMS320C51
m / TMS320C25
TMS320E25

al m | TMS320C10, -14 TMS320C25-50
nl i | TMs320c10-25 *TMS320C26

TMS320C15/E15
€| P | tms320c15-25
el S | TMs320C17/E17

TMS320C14/E14

,J S B -

Generation

4 Digital Signal Processing Applications with the TMS320 Family, Vol. 3

The following article, “The TMS320 Family of Digital Signal Processors,” by Lin, et. al.,
is reprinted from the Proceedings of the IEEE and gives an overview of the TMS320 family. Since
additional devices have been developed from the time the article was written, this section highlights
these newer devices. Table 1 shows a comprehensive list of the currently available TMS320 devices
and their salient characteristics.

Table 1. TMS320 Family Overview

Memory o
Data Cycle On- off- On-
Gen Device Type Time | RAM | Chip | EPROM Chi Parallel Serial DMA Chip Package
P (ns) ROM P Timers

TMS320C10 1 Integer 200 144 1.5K 4K 8x16 DIP/PLCC
TMS320C10-25 Integer 160 144 1.5K 4K 8x16 DIP/PLCC
TMS320C10-14 Integer 280 144 1.5K 4K 8x16 DIP/PLCC
TMS320E14 Integer 160 256 4K 4K 7x16 1 4 CERQUAD

Ist TMS320C15 1 Integer 200 256 4K 4K 8x16 DIP/PLCC
TMS320C15-25 1 Integer 160 256 4K 4K 8x16 DIP/PLCC
TMS320E15 1 Integer 200 256 4K 4K 8x16 DIP/CERQUAD
TMS320E15-25 Integer 160 256 4K 4K 8x16 DIP/CERQUAD:
TMS320C17 Integer 200 256 4K 4K 6x16 2 1 DIP/PLCC
TMS320E17 Integer 200 256 4K 4K 6x16 2 1 DIP/CERQUAD
TMS32020 1 Integer 200 544 128K 16x16 1 T 1 PGA
TMS320C25 1 Integer 100 544 4K 128K 16x16 1 t 1 PGA/PLCC

2nd TMS320C25-50 1 Integer 80 544 4K 128K 16x16 1 T 1 PGA/PLCC
TMS320E25 1 Integer 100 544 4K 128K 16x16 1 t 1 CERQUAD
TMS320C26 Integer 100 1.5K 256 128K 1 1 1 PLCC

3rd TMS320C30 1 Float Pt 60 2K 4K 16M 16Mx32 | 2 b3 2 PGA

5th TMS320C50 1 Integer 50 8.5K 2K 128K 16x16 1 T 1 CLCC

t+ External DMA

1 External/Internal DMA

9 For information on military versions of these devices, contact your local TI sales office.

Digital Signal Processing Applications with the TMS320 Family, Vol. 3 5

The additions to the first generation are the TMS320C14 and the TMS320E14; the latter is
identical with the former, except that the latter’s on-chip program memory is EPROM. The
TMS320C14/E14 devices have features that make them suitable for control applications. Figure
2 shows the components of these devices. The memory and the CPU are identical to
TMS320C15/E1S5, while the peripherals reflect the orientation of the devices toward control.

Figure 2. TMS320C14/E14 Key Features

DATA RAM
256%16 bits

PROGRAM ROM/EPROM
4Kx 16 bits

16-bit
Barrel Shifter

Multiply

16-bit T-Reg Timer/Counter 1

Timer/Counter 2

32-bit ACC Watchdog Timer

0,1,4-bit Shit | 32-bitP-Reg 16 bit 1/O

2 Auxiliary Registers SERIAL PORT

Event Manager

4 level H/W Stack

Status Register

Some of the key features of the TMS320C14/E14 are:
® 160-ns instruction cycle time
* Object-code-compatible with the TMS320C15

° Four 16-bit timers
— Two general-purpose timers
— One watchdog timer
— One baud-rate generator

® 16 individual bit-selectable 1/O pins

® Serial port/USART with codec-compatible mode

® Event manager with 6-channel PWM D/A

® CMOS technology, 68-pin CERQUAD

The additions to the second generation are the TMS320E25, the TMS320C25-50, and the
TMS320C26. The TMS320E2S is identical to the TMS320C25, except that the 4K-word on-chip
program memory is EPROM. Since increased speed is very important for the real-time implemen-

6 . Digital Signal Processing Applications with the TMS320 Family, Vol. 3

tation of certain applications, the TMS320C25-50 was designed as a faster version of the
TMS320C25 and has a clock frequency of 50 MHz instead of 40 MHz.

The TMS320C26 is a modification of the TMS320C25 in which the program ROM has been
exchanged for RAM. The memory space of the TMS320C26 has 1.5K words of on-chip RAM and
256 words of on-chip ROM, making it ideal for applications requiring larger RAM but minimal
external memory.

A new generation of higher-performance fixed-point processors has been introduced in the
TMS320 Family: the TMS320C5x devices. This generation shares many features with the first and
the second generations, but it also encompasses significant new features. Figure 3 shows the basic
components of the first device in that generation, the TMS320C50.

Figure 3. TMS320C50 Key Features

PROG/DATA RAM | DATA/PROG RAM BOOT ROM
8Kx16 bits 544x16 bits 2Kx16 bits

0-16B Preshift 16b T-Reg

32b Accumulator 16x16 bit :
32b Acc Buffer Multiply Serial Port
32b ALU . 32b P-Reg Timer
0-16b Rightshift 0,1,4, -6b shift S/W Waitsts
0-7b Postshift Parallel 16x16

Mem Mapped Regs Logic Unit Inputs

-8 Auxiliary 16x16
_> Status 12 Context Out;uts
—20 Prog Cntl Switch Regs

Some of the important features of the TMS320C50 are listed below:

® Source code is upward compatible with the TMS320C1x/C2x devices
® 50/35-ns instruction cycle time

® 8K words of on-chip program/data RAM

® 2K words boot ROM

® 544 words of data/program RAM

® 128K words addressable total memory

® Enhanced general-purpose and DSP-specific instructions

* Static CMOS, 84-pin CERQUAD

® JTAG serial scan path

Digital Signal Processing Applicationsv with the TMS320 Family, Vol. 3 7

The software and hardware development tools for the TMS320 family make the develop-
ment of applications easy. Such tools include assemblers, linkers, simulators, and C compilers for
the software. They include evaluation modules, software development boards, and extended devel-
opment systems for hardware. These tools are mentioned in the following paper by Lin, et. al. The
interested reader can find much more information in the additional literature that is published by
Texas Instruments and mentioned in the next section. In particular, the TMS320 Family Develop-
ment Support Reference Guide is an excellent source. '

One important addition to the list of tools is the SPOX operating system, developed by Spec-
tron Microsystems. SPOX permits you to write an application in a high-level language (C) and run
it on actual DSP hardware. The operating system of SPOX hides the details of the interface from
you and lets you concentrate on your algorithm while running it at supercomputer speeds on the
TMS320C30.

References

Texas Instruments publishes an extensive bibliography to help designers use the TMS320 de-
vices effectively. Besides the user’s guides for corresponding generations, there are manuals for
the software and the hardware tools. The TMS320 Family Development Support Reference Guide
isparticularly useful because it provides information, not only on development tools offered by TI,
butalso on those produced by third parties. Here is a partial list of the literature available (the litera-
ture number is in parentheses)

* TMS320 Family Development Support Reference Guide (SPRU011A)

® TMS320C1x User’s Guide (SPRUO13A) '

* TMS320C2x User’s Guide (SPRU014)

® TMS320C3x User’s Guide (SPRU031)

® TMS320C1x/TMS320C2x Assembly Language Tools User’s Guide (SPRU018)

® TMS320C30 Assembly Language Tools User’s Guide (SPRU035)

® TMS320C25 C Compiler Reference Guide (SPRU024)

® TMS320C30 C Compiler Reference Guide (SPRU034)

* Digital Signal Processing Applications with the TMS320 Family, Volume 1 (SPRA012)
* Digital Signal Processing Applications with the TMS320 Family, Volume 2 (SPRA016)

You canrequest this literature by calling the Customer Response Center at 1-800-232-3200,
or the DSP Hotline at 1-713-274-2320.

Contents of Other Volumes of the Application Book
‘Volume 1

Part I. Digital Signal Processing and the TMS320 Family
* Introduction /
* The TMS320 Family

Part II. Fundamental Digital Signal Processing Operations
* Digital Signal Processing Routines

8 Digital Signal Processing Applications with the TMS320 Family, Vol. 3

Implementation of FIR/IIR Filters with the TMS32010/TMS32020
Implementation of Fast Fourier Transform Algorithms with the TMS32020
Companding Routines for the TMS32010/TMS32020

Floating-Point Arithmetic with the TMS32010

Floating-Point Arithmetic with the TMS32020

Precision Digital Sine-Wave Generation with the TMS32010

Matrix Multiplication with the TMS32010 and TMS32020

DSP Interface Techniques

Interfacing to Asynchronous Inputs with the TMS32010
Interfacing External Memory to the TMS32010
Hardware Interfacing to the TMS32020

TMS32020 and MC68000 Interface

Part III. Digital Signal Processing Applications

Telecommunications

!

Telecommunications Interfacing to the TMS32010

Digital Voice Echo Canceller with a TMS32020

Implementation of the Data Encryption Standard Using the TMS32010
32K-bit/s ADPCM with the TMS32010

A Real-Time Speech Subband Coder Using the TMS32010

Add DTMF Generation and Decoding to DSP-uP Designs

Computers and Peripherals
Speech Coding/Recognition

A Single-Processor LPC Vocoder

The Design of an Adaptive Predictive Coder Using a Single-Chip
Digital Signal Processor

Firmware-Programmable C Aids Speech Recognition

Image/Graphics

A Graphics Implementation Using the TMS32020 and TMS34061

Digital Control

Control System Compensation and Implementation with the TMS32010

Volume 2

Part 1. Introduction

® Book Overview
® The TMS320 Family of DSP
* The Texas Instruments TMS320C25 Digital Signal Microcomputer

Part I1. Digital Signal Interface Techniques

Hardware Interfacing to the TMS320C2x

Interfacing the TMS320 Family to the TLC32040 Family

ICC Requirements of the TMS320C25

An Implementation of a Software UART Using the TMS320C25
TMS320C17/E17 and TMS370 Serial Interface

Digital Signal Processing Applications with the TMS320 Family, Vol. 3

10

Part I1I. Data Communications

* Theory and Implmentation of a Split-Band Modem Using the TMS320C17
* Implementation of an FSK Modem Using the TMS320C17

* An All-Digital Automatic Gain Control

Part IV. Telecommunications

* General Purpose Tone Decoding and DTMF Detection
Part V. Control

¢ Digital Control

Part VI. Tools
* TMS320 Algorithm Debugging Techniques

Digital Signal Processing Applications with the TMS320 Family, Vol. 3

The TMS320 Family
of
Digital Signal Processors

Kun-Shan Lin
Gene A. Frantz
Ray Simar, Jr.

Digital Signal Processor Products—Semiconductor Group
Texas Instruments

Reprinted from
PROCEEDINGS OF THE IEEE
Vol. 75, No. 9, September 1987

11

12

The TMS320 Family of Digital Signal Processors

The TMS320 Family of Digital Signal

Processors

KUN-SHAN LIN, MEmMBER, 1EEE, GENE A. FRANTZ, SENIOR MEMBER, IEEE,

AND RAY SIMAR, Jr.

This paper begins with a discussion of the characteristics of dig-
ital signal processing, which are the driving force behind the design
of digital signal processors. The remainder of the paper describes
the three generations of the TMS320 family of digital signal proces-
sors available from Texas Instruments. The evolution in architec-
tural design of these processors and key features of each genera-
tion of processors are discussed. More detailed information is
provided for the TMS320C25 and TMS320C30, the newest members
in the family. The benefits and cost-performance tradeoffs of these
processors become obvious when applied to digital signal pro-
cessing applications, such as telecommunications, data commu-
nications, graphics/image processing, etc.

DIGITAL SIGNAL PROCESSING CHARACTERISTICS

Digital signal processing (DSP) encompasses a broad
spectrum of applications. Some application examples
include digital filtering, speech vocoding, image process-
ing, fast Fourier transforms, and digital audio [1]-[10]. These
applications and those considered digital signal processing
have several characteristics in common:

« mathematically intensive algorithms,
* real-time operation,

» sampled data implementation,

« system flexibility.

To illustrate these characteristics in this section, we will use
the digital filter as an example. Specifically, we will use the
Finite Impulse Response (FIR) filter which in the time
domain takes the general form of

N

yn) = ‘§1 a(i) * x(n — i) M

where y(n) is the output sample at time n, a(i) is the ith coef-
ficient or weighting factor, and x(n — i) is the (n — i)th input
sample.

With this example in mind, we can discuss the various
characteristics of digital signal processing: mathematically
intensive algorithms, real-time processing, sampled data
implementation, and system flexibility. First, let us look at
the concept of mathematically intensive algorithms.

Manuscript received October 6, 1986; revised March 27, 1987.

The authors are with the Semiconductor Group, Texas Instru-
ments Inc., Houston, TX 77521-1445, USA.

IEEE Log Number 8716214.

Mathematically Intensive Algorithms

From (1), we can see that to generate every y(n), we have
to compute N multiplications and additions or sums of
products. This computation makes it mathematically inten-
sive, especially when N is large.

At this point it is worthwhile to give the FIR filter some
physical significance. An FIR filter is a common technique
used to eliminate the erratic nature of stock market prices.
When the day-to-day closing prices are plotted, it is some-
times difficult to obtain the desired information, such as the
trend of the stock, because of the large variations. A simple
way of smoothing the data is to calculate the average clos-
ing values of the previous five days. For the new average
value each day, the oldest value is dropped and the newest
value added. Each daily average value (average (n)) would
be the sum of the weighted value of the latest five days,
where the weighting factors (a(i)’s) are 1/5. In equation form,
the average is determined by

1
average(n)=%*d(n—1)+§*d(n -2
v -3+ e din— 4
5 5

+%*d(n - 5) (2)

where d(n — i) is the daily stock closing price for the (n —
i)th day. Equation (2) assumes the same form as (1). This is
also the general form of the convolution of two sequences
of numbers, a(i) and x(i) [5], [6]. Both FIR filtering and con-
volution are fundamental to digital signal processing.

Real-Time Processing

In addition to being mathematically intensive, DSP algo-
rithms must be performed in real time. Real time can be
defined as a process that is accomplished by the DSP with-
out creating a delay noticeable to the user. In the stock mar-
ket example, as long as the new average value can be com-
puted prior to the next day whenitis needed, itis considered
to be completed in real time. In digital signal processing
applications, processes happen faster than on a daily basis.
In the FIR filter example in (1), the sum of products must

©1989 IEEE. Reprinted, with permission, from PROCEEDINGS OF THE IEEE;

Vol. 75, No. 9, pp. 1143-1159; September 1987

The TMS320 Family of Digital Signal Processors

13

be computed usually within hundreds of microseconds
before the next sample comes into the system. A second
example is in a speech recognition system where a notice-
able delay between a word being spoken and being rec-
ognized would be unacceptable and not considered real-
time. Another example is in image processing, where it is
considered real-time if the processor finishes the process-
ing within the frame update period. If the pixel information
cannot be updated within the frame update period, prob-
lems such as flicker, smearing, or missing information will
occur.

Sampled Data Implementation

The application must be capable of being handled as a
sampled data system in order to be processed by digital
processors, such as digital signal processors. The stock
market is an example of a samr:pled data system. That is, a
specific value (closing value) .s assigned to each sample
period or day. Other periods may be chosen such as hourly
prices or weekly prices. In an FIR filter as shown in (1), the
output y(n) is calculated to be the weighted sum of the pre-
vious N inputs. In other words, the input signal is sampled
at periodic intervals (1 over the sample rate), multiplied by
weighting factor a(i), and then added together to give the
outputresult of y(n). Examples of sample rates for some typ-
ical sampled data applications [2], [4] are shown in Table 1.

Table 1 Sample Rates versus Applications

Nominal
Application Sample Rate

Control 1 kHz
Telecommunications 8 kHz
Speech processing 8-10 kHz
Audio processing 40-48 kHz
Video frame rate 30 Hz
Video pixel rate 14 MHz

‘Ina typical DSP application, the processor must be able
to effectively handle sampled datain large quantity and also
perform arithmetic computations in real time.

System Flexibility

The design of the digital signal processing system must
be flexible enough to allow improvements in the state of
the art. We may find out after several weeks of using the
average stock price as a means of measuring a particular
stock’s value that a different method of obtaining the daily
information is more suited to our needs, e.g., using dif-
ferent daily weightings, a different number of periods over
which to average, or a different procedure for calculating
the result. Enough flexibility in the system must be available
to allow for these variations. In many of the DSP applica-
tions, techniques are still in the developmental phase, and
therefore the algorithms tend to change over time. As an
example, speech recognition is presently an inexact tech-
nique requiring continual algorithmic modification. From
this example we can see the need for system flexibility so
that the DSP algorithm can be updated. A programmable
DSP system can provide this flexibility to the user.

14

HistoricaL DSP SoLuTioNs

Over the past several decades, digital signal processing
machines have taken on several evolutions in order to
incorporate these characteristics. Large mainframe com-
puters were initially used to process signals in the digital .
domain. Typically, because of state-of-the-art limitations,
this was done in nonreal time. As the state of the art
advanced, array processors were added to the processing
task. Because of their flexibility and speed, array processors
have become the accepted solution for the research lab-
oratory, and have been extended to end-applications in
many instances. However, integrated circuit technology has
matured, thus allowing for the design of faster micropro-
cessors and microcomputers. As a result, many digital sig-
nal processing applications have migrated from the array
processor to microprocessor subsystems (i.e., bit-slice
machines) to single-chip integrated circuit solutions. This
migration has brought the cost of the DSP solution down
to a point that allows pervasive use of the technology. The
increased performance of these highly integrated circuits
has also expanded DSP applications from traditional tele-
communications to graphics/image processing, then to
consumer audio processing.

A recent development in DSP technology is the single-
chip digital signal processor, such as the TMS320 family of
processors. These processors give the designer a DSP solu-
tion with its performance attainable only by the array pro-
cessors a few years ago. Fig. 1 shows the TMS320 family in
graphical form with the y-axis indicating the hypothetical
performance and the x-axis being the evolution of the semi-
conductor processing technology. The first member of the
family, the TMS32010, was disclosed to the market in 1982
[11], [12]). It gave the system designer the first microcom-
puter capable of performing five million DSP operations
per second (5 MIPS), including the add and multiply func-
tions [13] required in (1). Today there are a dozen spinoffs
from the TMS32010 in the first generation of the TMS320
family. Some of these devices are the TMS320C10,
TMS320C15, and TMS320C17 [14]. The second generation
of devices include the TMS32020 [15] and TMS320C25 [16).
The TMS320C25 can perform 10 MIPS [16]. In addition,
expanded memory space, combined single-cycle multiply/
accumulate operation, multiprocessing capabilities, and
expanded I/O functions have given the TMS320C25 a
2 to 4 times performance improvement over its predeces-
sors. The third generation of the TMS320 family of proces-
sors, the TMS320C30 [26], [27], has a computational rate of
33 million DSP floating-point operations per second (33
MFLOPS). Its performance (speed, throughput, and pre-
cision) has far exceeded the digital signal processors avail-
able today and has reached the level of a supercomputer.

It we look closely at the TMS320 family as shown in Fig.
1, we can see that devices in the same generation, such as
the TMS$320C10, TMS320C15, and TMS320C17, are assembly
object-code compatible. Devices across generations, such
as the TMS320C10 and TMS320C25, are assembly source-
code compatible. Software investment on DSP algorithms
therefore can be maintained during the system upgrade.
Another point is that since the introduction of the
TMS32010, semiconductor processing technology has
emerged from 3-um NMOS to 2-um CMOS to 1-um CMOS.

The TMS320 Family of Digital Signal Processors

p———— 24,mNMOS — o 2.0mCMOS —————=f=

Fig. 1. The TMS320 family of digital signal processors.

The TMS320 generations of processors have also taken the
same evolution in processing technology. Low power con-
sumption, high performance, and high-density circuit inte-
gration are some of the direct benefits of this semicon-
ductor processing evolution.

From Fig. 1, it can be observed that various DSP building
blocks, such as the CPU, RAM, ROM, I/0O configurations,
and processor speeds, have been designed as individual
modules and can be rearranged or combined with other
standard cells to meet the needs of specific applications.
Each of the three generations (and future generations) will
evolve in the same manner. As applications become more
sophisticated, semicustom solutions based on the core CPU
will become the solution of choice. An example of this
approach is the TMS320C17/E17, which consists of the
TMS320C10 core CPU, expanded 4K-word program ROM
(TMS320C17) or EPROM (TMS320E17), enlarged data RAM
of 256 words, dual serial ports, companding hardware, and
a coprocessor interface. Furthermore, as integrated circuit
layout rules move into smaller geometry (now at 2 um, rap-
idly goingto 1 pm), notonly will the TMS320 devices become
smallerin size, but also multiple CPUs will be incorporated
on the same device along with application-specific I/O to
achieve low-cost integrated system solutions.

BAsic TMS320 ARCHITECTURE

As noted previously, the underlying assumption regard-
ing a digital signal processor is fast arithmetic operations
and high throughput to handle mathematically intensive
algorithms in real time. In the TMS320 family [11)-[17], [26],
[27], this is accomplished by using the following basic con-
cepts:

+ Harvard architecture,

+ extensive pipelining,

« dedicated hardware multiplier,
» special DSP instructions,

« fast instruction cycle.

The TMS320 Family of Digital Signal Processors

14

1.0m __,

CMmos

These concepts were designed into the TMS320 digital sig-
nal processors to handle the vast amount of data charac-
teristic of DSP operations, and to allow most DSP opera-
tions to be executed in a single-cycle instruction.
Furthermore, the TMS320 processors are programmable
devices, providing the flexibility and ease of use of general-
purpose microprocessors. The following paragraphs dis-
cuss how each of the above concepts is used in the TMS320
family of devices to make them useful in digital signal pro-
cessing applications.

Harvard Architecture

The TMS320 utilizes a modified Harvard architecture for
speed and flexibility. In a strict Harvard architecture [18],
[19], the program and data memories lie in two separate
spaces, permitting a full overlap of instruction fetch and
execution. The TMS320 family’s modification of the Har-
vard architecture further allows transfer between program
and data spaces, thereby increasing the flexibility of the
device. This architectural modification eliminates the need
for a separate coefficient ROM and also maximizes the pro-
cessing power by maintaining two separate bus structures
(program and data) for full-speed execution.

Extensive Pipelining

In conjunction with the Harvard architecture, pipelining
is used extensively to reduce the instruction cycle time to
its absolute minimum, and to increase the throughput of
the processor. The pipeline can be anywhere from two to
four levels deep, depending on which processor in the fam-
ily is used. The TMS320 family architecture uses a two-level
pipeline for its first generation, a three-level pipeline for its
second generation, and a four-level pipeline for its third
generation of processors. This means that the device is pro-
cessing from two to four instructions in parallel, and each
instruction is atadifferent stage inits execution. Fig. 2 shows
an example of a three-level pipeline operation.

15

CLKOUT1 | I | ‘ | l

prefetch N Nel Ne2
decode N-1 N N+1
execute N-2 N-1 N

Fig. 2. Three-level pipeline operation.

In pipeline operation, the prefetch, decode, and execute
. operations can be handled independently, thus allowing
the execution of instructions to overlap. During any instruc-
tion cycle, three different instructions are active, each at a
different stage of completion. For example, as the Nth
instruction is being prefetched, the previous (N — 1)th
instruction is being decoded, and the previous (N — 2)th
instruction is being executed. In general, the pipeline is
transparent to the user.

Dedicated Hardware Multiplier

As we saw in the general form of an FIR filter, multipli-
cation is an important part of digital signal processing. For
each filter tap (denoted by i), a multiplication and an addi-
tion must take place. The faster a multiplication can be per-
formed, the higher the performance of the digital signal
processor. In general-purpose microprocessors, the mul-
tiplication instruction is constructed by a series of addi-
tions, therefore taking many instruction cycles. In com-
parison, the characteristic of every DSP device is a dedicated
multiplier. In the TMS320 family, multiplication is a single-
cycle instruction as a result of the dedicated hardware mul-
tiplier. If we look at the arithmetic for each tap of the FIR
filter to be performed by the TMS32010, we see that each
tap of the filter requires a multiplication (MPY) instruction.

LT ;LOAD MULTIPLICAND INTO T REGISTER
DMOV ;MOVE DATA IN MEMORY TO DO DELAY
MPY sMULTIPLY

APAC ;ADD MULTIPLICATION RESULT TO ACC

The other three instructions are used to load the multiplier
circuit with the multiplicand (LT), move the data through
the filter tap (DMOV), and add the result of the multipli-
cation (stored in the product register) to the accumulator
(APAC). Specifically, the multiply instruction (MPY) loads
the multiplier into the dedicated multiplier and performs
the multiplication, placing the result in a product register.
Therefore, if a 256-tap FIR filter is used, these four instruc-
tions are repeated 256 times. At each sample period, 256
multiplications must be performed. In a typical general-
purpose microprocessor, this requires each tap to be 30 to
40 instruction cycles long, whereas in the TMS320C10, it is
only four instruction cycles. We will see in the next section
how special DSP instructions reduce the time required for
each FIR tap even further.

Special DSP Instructions

Another characteristic of DSP devices is the use of special
instructions. We were introduced to one of them in the pre-
vious example, the DMOV (data move) instruction. In dig-
ital signal processing, the delay operator (z ~")is very impor-
tant. Recalling the stock market example, during each new
sample period (i.e., each new day), the oldest piece of data

16

(the closing price five days ago) was dropped and a new one
(today’s closing price) was added. Or, each piece of the old
data is delayed or moved one sample period to make room
for the incoming most current sample. This delay is the
function of the DMOV instruction. Another special instruc-
tion in the TMS32010 is the LTD instruction. It executes the
LT,DMOV, and APAC instructionsin asingle cycle. The LTD
and MPY instruction then reduce the number of instruction
cycles per FIR filter tap from four to two. In the second-gen-
eration TMS320, such as the TMS320C25, two more special
instructions have been included (the RPT and MACD
instructions) to reduce the number of cycles per tap to one,
as shown in the following:)

RPTK 255 ;REPEAT THE NEXT INSTRUCTION 256 TIMES
(N +1)

MACD ;LT, DMOV, MPY, AND APAC

Fast Instruction Cycle

The real-time processing capability is further enhanced
by the raw speed of the processor in executing instructions.
The characteristics which we have discussed, combined
with optimization of the integrated circuit design for speed,
give the DSP devices instruction cycle times less than 200
ns. The specific instruction cycle times for the TMS320 fam-
ily are given in Table 2. These fast cycle times have made

Table 2 TMS320 Cycle Times

Cycle Time
Device (ns)
TMS320C10* 160-200
TMS32020 160-200
TMS320C25 100-125
TMS320C30 60-75

*The same cycle time applies to all of the first-generation processors.

the TMS320 family of processors highly suited for many real-
time DSP applications. Table 1 showed the sample rates for
some typical DSP applications. This table can be combined
with the cycle times indicated in Table 2 to show how many
instruction cycles per sample can be achieved by the var-
ious generations of the TMS320 for real-time applications
(see Fig. 3).

As we can see from Fig. 3, many instruction cycles are
available to process the signal or to generate commands for
real-time control applications. Therefore, for simple con-
trol applications, the general-purpose microprocessors or
controllers would be adequate. However, for more math-
ematically intensive control applications, such as robotics
and adaptive control, digital signal processors are much
better suited [24]. The number of available instruction cycles
is reduced as we increase the sample rate from 8 kHz for
typical telecommunication applications to 40-48 kHz for
audio processing. Since most of these real-time applica-
tions require only a few hundreds of instructions per sam-
ple (such as ADPCM [4], and echo cancelation [4)), this is
within the reach of the TMS320. For higher sample rate
applications, such as video/image processing, digital signal
processors available today are not capable of handling the
processing of the real-time video data. Therefore, for these

The TMS320 Family of Digital Signal Processors

Third-Generation TMS320
5000 -
Second-Generation TMS320
é First-Generation TMS320
] c
3 500 o
3 N
o T T
$ R E
3 o L v
E L E 1
2 sof c [}
o E
M [
s 1 1 1)
0 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz
Sample Rate

Fig. 3. Number of instruction cycles/sample versus sample rate for the TMS320 family.

types of applications, multiple digital signal processors and
frame buffers are usually required. From Fig. 3, it can also
be seen that for slower speed applications, such as control,
the first-generation TMS320 provides better cost-perfor-
mance tradeoffs than the other processors. For high sample
rate applications, such as video/image processing, the sec-
ond and third generations of the TMS320 with their mul-
tiprocessing capabilities and high throughput are better
suited.

Now that we have discussed the basic characteristics of
digital signal processors, we can concentrate on specific
details of each of the three generations of the TMS320 fam-
ily devices.

THEe FIRST GENERATION OF THE TMS320 FAmiLy

The first generation of the TMS320 family includes the
TMS32010 [13], and TMS32011 [17], which are processed in
2.4um NMOS technology, and the TMS320C10 [13],
TMS320C15/E15[14], and TMS320C17/E17 [14], processed in
1.8-um CMOS technology. Some of the key features of these
devices are [14] as follows:

* Instruction cycle timing:
-160 ns
-200 ns
-280 ns.
* On-chip data RAM:
-144 words
-256 words (TMS320C15/E15, TMS320C17/E17).
* On-chip program ROM:
-1.5K words
-4K words (TMS320C15, TMS320C17).
+ 4K words of on-chip program EPROM (TMS320E15,
TMS320E17).
*+ External memory expansion up to 4K words at full
speed.
* 16 x 16-bit parallel multiplier with 32-bit result.
« Barrel shifter for shifting data memory words into the
ALU.
* Parallel shifter.
* 4 x 12-bit stack that allows context switching.
« Two auxiliary registers for indirect addressing.

« Dual-channel serial port (TMS32011, TMS320C17,
TMS320E17).
* On-chip companding
TMS320C17, TMS320E17).
« Coprocessor interface (TMS320C17, TMS320E17).
* Device packaging
-40-pin DIP
-44-pin PLCC.

hardware (TMS32011,

TMS320C10

The first generation of the TMS320 processors is based
on the architecture of the TMS32010 and its CMOS replica,
the TMS320C10. The TMS32010 was introduced in 1982 and
was the first microcomputer capable of performing 5 MIPS.
Since the TMS32010 has been covered extensively in the
literature (4], [11]-[14], we will only provide a cursory review
here. A functional block diagram of the TMS320C10is shown
in Fig. 4.

As shown in Fig. 4, the TMS320C10 utilizes the modified
Harvard architecture in which program memory and data
memory lie in two separate spaces. Program memory can
reside both on-chip (1.5Kwords) or off-chip (4K words). Data
memory is the 144 x 16-biton-chip dataRAM. There are four
basic arithmetic elements: the ALU, the accumulator, the
multiplier, and the shifters. All arithmetic operations are
performed using two’s-complement arithmetic.

ALU: The ALU is a general-purpose arithmetic logic unit
that operates with a 32-bit data word. The unit can add, sub-
tract, and perform logical operations.

Accumulator: The accumulator stores the output from the
ALU and is also often an input to the ALU. It opcrates with
a32-bitword length. The accumulator is dividedinto a high-
order word (bits 31 through 16) and a low-order word (bits
15 through 0). Instructions are provided for storing; the high-
and low-order accumulator words in data memory (SACH
for store accumulator high and SACL for store accumulator
low).

Muiltiplier: The 16 x 16-bit parallel multiplier consists of
three units: the T register, the P register, and the multipler
array. The T register is a 16-bit register that stores the mul-
tiplicand, while the P register is a 32-bit registerthat stores
the product. In order to use the multiplier, the multiplicand

The TMS320 Family of Digital Signal Processors 17

X

1
CLKOUT | X2/CLKIN

L 41 j

DEN —a—
MEN —a—

Bi0 —p—
mc/MP —p—4

INSTRUCTION

CONTROLLER

iNT —p— . 412

RS —p—{ b

PROGRAM
ROM
{1536 x 16}

ADDRESS

R

16

PROGRAM BUS 015-00

$1s

——l STACK I
4 4x12
A11-80/ X *
PA2-PAO 3
pa
pa
A

16 {16
7 ’%

ARO (16) | v oy
= (7]
il SHIFTER 6
L MULTIPLER | gt
(s (0-16)
L
8 P(32)
Mux
8
ADDRESS
DATA RAM
184 x 16)
LEGEND:
ACC= Accumulator DATA

ARP = Auxiliary register pointer
ARO = Auxiliary register O
AR1 = Auxiliary register 1

DP = Data page pointer
PC = Program counter
P = P register
T = T register

4

16

DATA BUS

Fig. 4. TMS320C10 functional block diagram.

must first be loaded into the T register from the data RAM
by using one of the following instructions: LT, LTA, or LTD.
Then the MPY (multiply) or the MPYK (multiply immediate)
instruction is executed. The multiply and accumulate oper-
ations can be accomplished in two instruction cycles with
the LTA/LTD and MPY/MPYK instructions.

Shifters: Two shifters are available for manipulating data:
a barrel shifter and a parallel shifter. The barrel shifter per-
forms a left-shift of 0 to 16 bits on all data memory words
that are to be loaded into, subtracted from, or added to the
accumulator. The parallel shifter, activated by the SACH
instruction, can execute a shift of 0, 1, or 4 bits to take care
of the sign bits in two’s-complement arithmetic calcula-
tions.

Based on the architecture of the TMS32010/C10, several
spinoffs have been generated offering different processor
speeds, expanded memory, and various 1/O integration.
Currently, the newest members in this generation are the
TMS320C15/E15 and the TMS320C17/E17 [14).

18

TMS320C15/E15

The TMS320C15and TMS320E15 are fully object-code and
pin-for-pin compatible with the TMS32010 and offer
expanded on-chip RAM of 256 words and on-chip program
ROM (TMS320C15) or EPROM (TMS320E15) of 4AK words. The
TMS320C15 is available in either a 200-ns version or a 160-
ns version (TM$320C15-25).

TMS320C17/E17

The TMS320C17/E17 is a dedicated microcomputer with
4K words of on-chip program ROM (TMS$320C17) or EPROM
(TMS320E17), adual-channel serial port for full-duplex serial
communication, on-chip companding hardware (u-law/
A-law), a serial port timer for stand-alone serial commu-
nication, and a coprocessor interface for zero glue interface
between the processor and any 4/8/16-bit microprocessor.
The TMS320C17/E17 is also object-code compatible with the
TMS32010 and can use the same development tools. The

The TMS320 Family of Digital Signal Processors

Table 3 TMS320 First-Generation Processors

Instruction On-Chip On-Chip On-Chip Off-Chip

TMS320 Cycle Time Prog ROM Prog EPROM Data RAM Prog

Devices (ns) Process (words) (words) (words) (words) Ref
TMS32010 200 NMOS 1.5K 144 4K [13]
TMS32010-25 160 NMOS 1.5K 144 4K (13]
TMS32010-14 280 NMOS 1.5K 144 4K [13]
TMS32011 200 NMOS 1.5K 144 N7
TMS320C10 200 CMOS 1.5K 144 4K (13]
TMS320C10-25 160 CMOS 1.5K 144 4K (13]
TMS320C15 200 CMOS 4.0K 256 4K [13]
TMS320C15-25 160 CMOS 4.0K 256 4K (14])
TMS320E15 200 CMOS 4.0K 256 4K [14]
TMS320C17 200 CMOS 4.0K 256 (4]
TMS320C17-25 160 CMOS 4.0K 256 (14]
TMS320E17 200 CMOS 4.0K 256 [14)

device is based on the TMS$320C10 core CPU with added
peripheral memory and 1/O modules added on-chip. The
TMS320C17/E17 can be regarded as a semicustom DSP solu-
tion suited for high-volume telecommunication and con-
sumer applications.

Table 3 provides a feature comparison of all members of
the first-generation TMS320 processors. References to more
detailed information on these processors are also provided.

THE SECOND GENERATION OF THE TMS320 FAMiLY

The second-generation TMS320 digital signal processors
includes two members, the TMS32020 [15] and the
TMS320C25 [16]. The architecture of these devices has been
evolved from the TMS32010, the first member of the TMS320
family. Key features of the second-generation TMS320 are
as follows:

* Instruction cycle timing:
-100 ns (TMS320C25)
-200 ns (TMS32020).

+ 4K words of on-chip masked ROM (TMS320C25).

* 544 words of on-chip data RAM.

+ 128K words of total program data memory space.

+ Eight auxiliary registers with a dedicated arithmetic
unit.

+ Eight-level hardware stack.

* Fully static double-buffered serial port.

+ Wait states for communication to slower off-chip
memories.

« Serial port for multiprocessing or interfacing to codecs.

» Concurrent DMA using an extended hold operation
(TMS320C25). ’

+ Bit-reversed addressing modes for fast Fourier trans-
forms (TMS320C25).

+ Extended-precision arithmetic and adaptive filtering
support (TMS320C25). .

* Full-speed operation of MAC/MACD instructions from

external memory (TMS320C25).

Accumulator carry bit and

(TMS320C25).

1.8-um CMOS technology (TMS320C25):
-68-pin grid array (PGA) package.
-68-pin lead chip carrier (PLCC) package.

2.4-um NMOS technology (TMS32020):
-68-pin PGA package.

related instructions

.

The TMS320 Family of Digital Signal Processors

TMS320C25 Architecture

The TMS320C25 is the latest member in the second gen-
eration of TMS320 digital signal processors. It is a pin-com-
patible CMOS version of the TMS32020 microprocessor,
butwith aninstruction cycle time twice as fastand the inclu-
sion of additional hardware and software features. The
instruction set is a superset of both the TMS32010 and
TMS32020, maintaining source-code compatibility. In addi-
tion, it is completely object-code compatible with the
TMS32020 so that TMS32020 programs run unmodified on
the TMS320C25.

The 100-ns instruction cycle time provides a significant
throughput advantage for many existing applications. Since
most instructions are capable of executing in asingle cycle,
the processor is capable of executing ten million instruc-
tions per second (10 MIPS). Increased throughput on the
TMS320C25 for many DSP applications is attained by means
of single-cycle multiply/accumulate instructions with a data
move option (MAC/MACD), eight auxiliary registers with a
dedicated arithmetic unit, instruction set support for adap-
tive filtering and extended-precision arithmetic, bit-rever-
sal addressing, and faster I/O necessary for data-intensive
signal processing.

Instructions are included to provide data transfers
between the two memory spaces. Externally, the program
and data memory spaces are multiplexed over the same bus
so as to maximize the address range for both spaces while
minimizing the pin count of the device. Internally, the
TMS320C25 architecture maximizes processing power by
maintaining two separate bus structures, program and data,
for full-speed execution.

Program execution in the device takes the form of athree-
level instruction fetch-decode-execute pipeline (see Fig.
2). The pipeline is essentially invisible to the user, except
in some cases where it must be broken (such as for branch
instructions). In this case, the instruction timing takes into
account the fact that the pipeline must be emptied and
refilled. Two large on-chip data RAM blocks (a total of 544
words), one of which is configurable either as program or
data memory, provide increased flexibility in system design.
An off-chip 64K-word directly addressable data memory
address space is included to facilitate implementations of
DSP algorithms. The large on-chip 4K-word masked ROM
can be used for cost-reduced systems, thus providing for
atrue single-chip DSP solution. The remainder of the 64K-
word program memory space is located exteinally. Large

19

programs can execute at full speed from this memory space. features as well as many others such as a hardware timer,

Programs may also be downloaded from slow external serial port, and block data transfer capabilities.
memory to on-chip RAM for full-speed operation. The VLSI A functional block diagram of the TMS320C25, shown in
implementation of the TMS320C25 incorporates all of these Fig. 5, outlines the principal blocks and data paths within

P
Zct
X252
R
£Bwk x%33

b <_—<— _f P QIR{16)

cAo I1R(16)
" |4 ST0(16)
:: Fl ST1016)
_o_nom £ RPTC(B)
s g IFRI6)

E C—<—_._ ° ——————0R
w CLKR
=] FSR
RS ———1

DX

- CLKX

FSX
m—_j s RSR{16)
#, 3 PROGRAM
e "ROM XSR{16) []
A15.80 | 5 16 14096 » 16) DRR(16)
z INSTRUCTION DXR(16)
TIM(16)
16 PRD(16)
IMR(6)
> 3 GREG(8)
3
H

ARO(161 [swrrerioae | TR(16) \Mux/

N AR1(16) 3
| ARP(3) I| AR2(16) 7Ls8 MULTIPLIER N
op9) | [FROM IR
AR3(16)

AR4{16) y PRI32)

AR5(16)

AR6(16)

AR7(16) 6
T

[arauiier |

16

DATA/PROG
RAM (256 - 16)
BLOCK BO

BLOCK B2
132 « 16)
DATA RAM
BLOCK B1
(256 = 16)

| SHIFTERS(0-7) I

V.
16

LEGEND:
ACCH - Accumulator high IFR pC Program counter
ACCL = Accumulator low IMR PFC - Prefetch counter
ALU = Arithmetic logic unit IR - Instruction register RPTC instruction counter
ARAU register arithmetic unit MCS - Microcall stack GREG
ARB y register pointer buffer QIR - Queue instruction register RSR
ARP PR - Product register XSR port transmit shift register
op Data memory page pointer PRD . Period register for timer ARO-ART - Auniliary registers
ORR erial port data receive register TIM - Timer STO.ST1 Status registers
DXR - Serisl port data transmit register TR - Temporary register

Fig. 5. TMS320C25 functional block diagram.

20 The TMS320 Family of Digital Signal Processors

the processor. The diagram also shows all of the TMS320C25
interface pins.

In the following architectural discussions on the mem-
ory, central arithmetic logic unit, hardware multiplier, con-
trol operations, serial port, and I/O interface, please refer
to the block diagram shown in Fig. 5.

Memory Allocation: The TMS320C25 provides a total of
4K 16-bit words of on-chip program ROM and 544 16-bit
words of on-chip data RAM. The RAM is divided into three
separate Blocks (B0, B1, and B2). Of the 544 words, 256 words
(block B0) are configurable as either data or program mem-
ory by CNFD (configure data memory) or CNFP (configure
program memory) instructions provided for that purpose;
288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS320C25 to
handle a data array of 512 words while still leaving 32 loca-
tions for intermediate storage. The TMS320C25 provides
64K words of off-chip directly addressable data memory
space as well as a 64K-word off-chip program memory space.

A register file containing eight Auxiliary Registers (ARO-
AR?), which are used for indirect addressing of data mem-
ory and for temporary storage, increase the flexibility and
efficiency of the device. These registers may be either
directly addressed by an instruction or indirectly addressed
by a 3-bit Auxiliary Register Pointer (ARP). The auxiliary reg-
isters and the ARP may be loaded from either data memory
or by an immediate operand defined in the instruction. The
contents of these registers may also be stored into data
memory. The auxiliary register file is connected to the Aux-
iliary Register Arithmetic Unit (ARAU). Using the ARAU
accessing tables of information does not require the CALU
for address manipulation, thus freeing it for other opera-
tions.

Central Arithmetic Logic Unit (CALU): The CALU contains
a 16-bit scaling shifter, a 16 x 16-bit parallel multiplier, a 32-
bit Arithmetic Logic Unit (ALU), and a 32-bit accumulator.
The scaling shifter has a 16-bit input connected to the data
bus and a 32-bit output connected to the ALU. This shifter
produces a left-shift of 0 to 16 bits on the input data, as pro-
grammed in the instruction. Additional shifters at the out-
puts of both the accumulator and the multiplier are suitable
for numerical scaling, bit extraction, extended-precision
arithmetic, and overflow prevention.

The following steps occur in the implementation of a typ-
ical ALU instruction:

1) Data are fetched from the RAM on the data bus.

2) Data are passed through the scaling shifter and the
ALU where the arithmetic is performed.

3) The result is moved into the accumulator.

The 32-bit accumulator is split into two 16-bit segments
for storage in data memory: ACCH (accumulator high) and
ACCL (accumulator low). The accumulator has a carry bit
to facilitate multiple-precision arithmetic for both addition
and subtract instructions.

Hardware Multiplier: The TMS320C25 utilizes a 16 X 16-
bit hardware multiplier, which is capable of computing a
32-bit product during every machine cycle. Two registers
are associated with the multiplier:

+ a16-bit Temporary Register (TR) that holds one of the
operands for the multiplier, and
+ a 32-bit Product Register (PR) that holds the product.

The TMS320 Family of Digital Signal Processors

The output of the product register can be left-shifted 1 or
4 bits. This is useful for implementing fractional arithmetic
or justifying fractional products. The output of the PR can
also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiple/accumulates without overflow.
An unsigned multiply (MPYU) instruction facilitates
extended-precision multiplication.

1/O Interface: The TMS320C25 1/O space consists of 16
input and 16 output ports. These ports provide the full 16-
bit parallel I/0 interface via the data bus on the device. A
single input (IN) or output (OUT) operation typically takes
two cycles; however, when used with the repeat counter,
the operation becomes single-cycle. /O devices are mapped
into the 1/O address space using the processor’s external
address and data buses in the same manner as memory-
mapped devices. Interfacing to memory and I/O devices of
varying speeds is accomplished by using the READY line.

A Direct Memory Access (DMA) to external program/data
memory is also supported. Another processor can take
complete control of the TMS320C25’s external memory by
asserting HOLD low, causing the TMS320C25 to place its
address, data, and control lines in the high-impedance state.
Signaling between the external processor and the
TMS320C25 can be performed using interrupts. Two modes
of DMA are available on the device. In the first, execution
is suspended during assertion of HOLD. In the second
““concurrent DMA” mode, the TMS320C25 continues to
execute its program while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive
applications.

TMS320C25 Software

The majority of the TMS320C25 instructions (97 out of 133)
are executed in a single instruction cycle. Of the 36 instruc-
tions that require additional cycles of execution, 21 involve
branches, calls, and returns that result in a reload of the
program counter and a break in the execution pipeline.
Another seven of the instructions are two-word, long-
immediate instructions. The remaining eight instructions
support I/O, transfers of data between memory spaces, or
provide for additional parallel operation in the processor.
Furthermore, these eight instructions (IN, OUT, BLKD,
BLKP, TBLR, TBLW, MAC, and MACD) become single-cycle
when used in conjunction with the repeat counter. The’
functional performance of the instructions exploits the par-
allelism of the processor, allowing complex and/or numer-
ically intensive computations to be implemented in rela-
tively few instructions.

Addressing Modes: Since most of the instructions are
coded in a single 16-bit word, most instructions can be exe-
cuted in a single cycle. Three memory addressing modes
are available with the instruction set: direct, indirect, and
immediate addressing. Both direct and indirect addressing
are used to access datamemory. Immediate addressing uses
the contents of the memory addressed by the program
counter.

When using direct addressing, 7 bits of the instruction
word are concatenated with the 9 bits of the data memory
page pointer (DP) to form the 16-bit data memory address.
With a 128-word page length, the DP register points to one
of 512 possible data memory pages to obtain a 64K total data
memory space. Indirect addressing is provided by the aux-

21

iliary registers (AR0-AR7). The seven types of indirect
addressing are shown in Table 4. Bit-reversed indexed
addressing modes allow efficient I/O to be performed for
. the resequencing of data points in a radix-2 FFT program.

Table 4 Addressing Modes of the TMS$320C25

Addressing Mode

OP A

OP * (,NARP)
OP *+(,NARP)
OP *—(,NARP)
OP *0+(,NARP)
OP *0-(,NARP)

Operation

direct addressing

indirect; no change to AR.

indirect; current AR is incremented.

indirect; current AR is decremented.

indirect; ARO is added to current AR.

indirect; ARO is subtracted from
current AR.

indirect; ARO is added to current AR
(with reverse carry propagation).

indirect; ARO is subtracted from
current AR (with reverse carry
propagation).

OP *BRO+(,NARP)
OP *BRO—(,NARP)

Note: The optional NARP field specifies a new value of the ARP.

TMS320C25 System Configurations

The flexibility of the TMS320C25 allows systems config-
urations to satisfy a wide range of application requirements
[16]. The TMS320C25 can be used in the following config-
urations: '

+ a stand-alone system (a single processor using 4K
words of on-chip ROM and 544 words of on-chip RAM),

+ parallel multipfocessing systems with shared global
data memory, or

+ host/peripheral coprocessing using interface control
signals.

A minimal processing system is shown in Fig. 6 using
external data RAM.and PROM/EPROM. Parallel multipro-
cessing and host/peripheral coprocessing systems can be
designed by taking advantage of the TMS320C25's direct
memory access and global memory configuration capabil-
ities.

In some digital processing tasks, the algorithm being
implemented can be divided into sections with a distinct
processor dedicated to each section. In this case, the first
and second processors may share global data memory, as
well as the second and third, the third and fourth, etc. Arbi-
tration logic may be required to determine which section
of the algorithm is executing and which processor has
access to the global memory. With multiple processors ded-

SERIAL
COMMUNICATION

TMS320C25

-

aonn B !
PROM/
| EPROM | loara RAM! 1
|(OPT|ONAL): | ‘°""°NALlI DEVICES
B st B RN

icated to distinct sections of the algorithm, throughput can
be increased via pipelined execution. The TMS320C25 is
capable of allocating up to 32K words of data memory as
global memory for multiprocessing applications.

THE THIRD GENERATION OF THE TMS320 FAamiLy

The TMS320C30 [26]-(27] is Texas Instruments third-gen-
eration member of the TMS320 family of compatible digital
signal processors. With a computational rate of 33 MFLOPS
(million floating-point operations per second), the
TMS320C30 far exceeds the performance of any program-
mable DSP available today. Total system performance has
been maximized through internal parallelism, more than
twenty-four thousand bytes of on-chip memory, single-cycle
floating-point operations, and concurrent I/O. The total sys-
tem cost is minimized with on-chip memory and on-chip
peripherals such as timers and serial ports. Finally, the user’s
system design time is dramatically reduced with the avail-
ability of the floating-point operations, general-purpose
instructions and features, and quality development tools.

The TMS320C30 provides the user with a level of per-
formance that, at one time, was the exclusive domain of
supercomputers. The strong architectural emphasis of pro-
viding a low-cost system solution to demanding arithmetic
algorithms has resulted in the architecture shown in Fig. 7.

The key features of the TMS320C30 [26], [27] are as fol-
lows:

* 60-ns single-cycle execution time, 1-um CMOS.

+ Two 1K x 32-bit single-cycle dual-access RAM blocks.

* One 4K x 32-bit single-cycle dual-access ROM block.

* 64 x 32-bit instruction cache.

+ 32-bit instruction and data words, 24-bit addresses.

+* 32/40-bit floating-point and integer multiplier.

+ 32/40-bit floating-point, integer, and logical ALU.

+ 32-bit barrel shifter.

+ Eight extended-precision registers.

+ Two address-generators with eight auxiliary registers.

+ On-chip Direct Memory Access (DMA) controller for
concurrent I/O and CPU operation.

+ Peripheral bus and modules for easy customization.

+ High-level language support.

+ Interlocked instructions for multiprocessing support.

+ Zero overhead loops and single-cycle branches.

The architecture of the TMS320C30 is targeted at 60-ns
and faster cycle times. To achieve such high-performance

Fig. 6. Minimal processing system with external data RAM and PROM/EPROM.

22

The TMS320 Family of Digital Signal Processors

PROGRAM RAM ROM
CACHE BLOCK O BLOCK 1 BLOCK 0
(64 X 32) (1K X 32) (1K X 32) (4K X 32) TORDY
iOHOLD
ROV TOHOLDA
HOLDA ™ I0R/W
STRB [32-BIT DATA BUSES v 10D(31-0)
RW x ﬁ 8 8 X 10A(12-0)
0(31-0)
A(23-0) le—e- Fsx0
cPu OMA
P = Dx0
SERIAL
REsey -—T INTEGER/ INTEGER/ SOURCE AND DESTINATION E pORT | CLkxo
—— e
¢ FLOATING-POINT | FLOATING-POINT ADDRESS GENERATORS ‘: 0 [<— FSRO
iNT13.0 ° MULTIPLIER ALY . le— RO
ACk=— | REGISTERS " e CLKRO
XF(1-0) - 32-BIT BARREL SHIFTER
T £ e FSX1
MC/MP— o R
X1 o EXTENDED-PRECISION N L - bx1
- REGISTERS (RO-R7) SERIAL Ly e cLKX1
X2/CLKIN—] L L leol PORT
veci7-0—ef b ADDRESS ADDRESS B jo— FSR1
E -]
Vss(10-00—e o GENERATORO | GENERATOR 1 s le— DR1
VBBP ~— AUXILIARY REGISTERS s e~ CLKR1
TCLKO
CONTROL REGISTERS (12)
TIMER 1 TCLK1
w~

Fig. 7. TMS320C30 functional block diagram.

goals while still providing low-cost system solutions, the
TMS320C30 is designed using Texas Instruments state-of-
the-art 1-um CMOS process. The TMS320C30 's high system
performance is achieved through a high degree of paral-
lelism, the accuracy and precision of its floating-point units,
its on-chip DMA controller that supports concurrent 1/O,
and its general-purpose features. At the heart of the archi-
tecture is the Central Processing Unit (CPU).

The CPU

The CPU consists of the following elements: floating-
point/integer multiplier; ALU for performing floating-point,
integer, and logical operations; auxiliary register arithmetic
units; supporting register file, and associated buses. The
multiplier of the CPU performs floating-point and integer
multiplication. When performing floating-point multipli-
cation, the inputs are 32-bit floating-point numbers, and the
result is a 40-bit floating-point number. When performing
integer multiplication, the input data is 24 bits and yields
a 32-bit result. The ALU performs 32-bit integer, 32-bit log-
ical, and 40-bit floating-point operations. Results of the mul-
tiplier and the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The TMS320C30 has the
ability to perform, in a single cycle, parallel multiplies and
adds (subtracts) on integer or floating-point data. It is this
ability to perform floating-point multiplies and adds (sub-
tracts) in a single cycle which give the TMS320C30 its peak
computational rate of 33 MFLOPS.

Floating-point operations provide the user with a con-
venient and virtually trouble-free means of performing
computations while maintaining accuracy and precision.
The TMS320C30 implementation of floating-point arith-

The TMS320 Family of Digital Signal Processors

metic allows for floating-point operations at integer speeds.
The floating-point capability allows the user to ignore, to
alarge extent, problems with overflow, operand alignment,
and other burdensome tasks common to integer opera-
tions.

The register file contains 28 registers, which may be oper-
ated upon by the multiplierand ALU. The first eight of these
registers (R0-R7) are the extended-precision registers,
which support operations on 40-bit floating-point numbers
and 32-bit integers.

The next eight registers (AR0-AR?) are the auxiliary reg-
isters, whose primary function is related to the generation
of addresses. However, they also may be used as general-
purpose 32-bit registers. Two auxiliary register arithmetic
units (ARAUO and ARAU1) can generate two addresses in
a single cycle. The ARAUs operate in parallel with the mul-
tiplier and ALU. They support addressing with displace-
ments, index registers (IR0 and IR1), and circular and bit-
reversed addressing.

The remaining registers support a variety of system func-
tions: addressing, stack management, processor status,
block repeat, and interrupts.

Data Organization

Two integer formats are supported on the TMS320C30:
a 16-bit format used for immediate integer operands and
a 32-bit single-precision integer format.

Two unsigned-integer formats are available: a 16-bit for-
mat for immediate unsigned-integer operands and a 32-bit
single-precision unsigned-integer format.

The three floating-point formats are assumed to be nor-
malized, thus providing an extra bit of precision. The first

23

is a 16-bit short floating-point format for immediate float-
ing-point operands, which consists of a 4-bit exponent, 1
sign bit, and an 11-bit fraction. The second is a single-pre-
cision format consisting of an 8-bit exponent, 1 sign bit, and
a 23-bit fraction. The third is an extended-precision format
consisting of an 8-bit exponent, 1 sign bit, and a 31-bit frac-
tion.

The total memory space of the TMS320C30 is 16M (mil-
lion) x 32 bits. Amachine word is 32 bits, and all addressing
is performed by word. Program, data, and I/O space are con-
tained within the 16M-word address space.

RAM blocks 0 and 1are each 1K x 32 bits. The ROM block
is 4K x 32 bits. Each RAM block and ROM block is capable
of supporting two data accesses in a single cycle. For exam-
ple, the user may, in a single cycle, access a program word
and a data word from the ROM block.

The separate program data, and DMA buses allow for par-
allel program fetches, datareads and writes, and DMA oper-
ations. Management of memory resources and busing is
handled by the memory controller. For example, a typical
mode of operation could involve a program fetch from the
on-chip program cache, two data fetches from RAM block
0, and the DMA moving data from off-chip memory to RAM
block 1. All of this can be done in parallel with no impact
on the performance of the CPU.

A 64 x 32-bit instruction cache allows for maximum sys-
tem performance with minimal system cost. The instruction
cache stores often repeated sections of code. The code may
then be fetched from the cache, thus greatly reducing the
number of off-chip accesses necessary. This allows for code
to be stored off-chip in slower, lower cost memories. Also,
the external buses are freed, thus allowing for their use by
the DMA or other devices in the system.

DMA

The TMS320C30 processes an on-chip Direct Memory
Access (DMA) controller. The DMA controller is able to per-
form reads from and writes to any location in the memory
map without interfering with the operation of the CPU. As
a consequence, it is possible to interface the TMS320C30
to slow external memories and peripherals (A/Ds, serial
ports, etc.) without affecting the computational throughput
-of the CPU. The resultis improved system performance and
decreased system cost.

The DMA controller contains its own address generators,
source and destination registers, and transfer counter.
Dedicated DMA address and data buses allow for operation
with no conflicts between the CPU and DMA controller.

The DMA controller responds to interrupts in a similar
way to the CPU. This ability allows the DMA to transfer data
based upon the interrupts received. Thus I/O transfers that
would normally be performed by the CPU may instead be
performed by the DMA. Again, the CPU may continue pro-
cessing data while the DMA receives or transmits data.

Peripherals

All peripheral modules are manipulated through mem-
ory-mapped registers located on adedicated peripheral bus.
This peripheral bus allows for the straightforward addition,
removal, and creation of peripheral modules. The initial
TMS320C30 peripheral library will include timers and serial
ports. The peripheral library concept allows Texas Instru-

ments to create new modules to serve a-wide variety of
applications. For example, the configuration of the
TMS320C30in Fig. 7 includes two timers and two serial ports.

Timers: The two timer modules are general-purpose
timer/event counters, with two signaling modes and inter-
nal or external clocking.

Available to each timer is an I/O pin that can be used as
an input clock to the timer or as an output signal driven by
the timer. The pin may also be configured as a general-pur-
pose /O pin.

Serial Ports: The two serial ports are modular and totally
independent. Each serial port can be configured to transfer
8,16,24, or 32 bits of data per frame. The clock for each serial
port can originate either internally or externally. An inter-
nally generated divide-down clock is provided. The pins of
the serial ports are configurable as general-purpose 1/0
pins. A special handshake mode allows TMS320C30s to
communicate over their serial ports with guaranteed syn-
chronization. The serial ports may also be configured to
operate as timers.

External Interfaces

The TMS320C30 provides two external interfaces: the par-
allel interface and the 1/O interface. The parallel interface
consists of a 32-bit data bus, a 24-bit address bus, and a set
of control signals. The 1/O interface consists of a 32-bit data
bus, a 13-bit address bus, and a set of control signals. Both
ports support an external ready signal for wait-state gen-
eration and the use of software-controlled wait states.

The TMS320C30 supports four external interrupts, anum-
ber of internal interrupts, and a nonmaskable external reset
signal. Two dedicated, general-purpose, external I/O flags,
XF0 and XF1, may be configured as input or output pins
under software control. These pins are also used by the
interlocked instructions to support multiprocessor com-
munication.

Pipelining In the TMS320C30

The operation of the TMS320C30 is controlled by five
major functional units. The five major units and their func-
tion are as follows:

* Fetch Unit (F) which controls the program counter
updates and fetches of the instruction words from
memory.

* Decode Unit (D) which decodes the instruction word
and controls address generation.

* Read Unit (R) which controls the operand reads from
memory. .

+ Execute Unit (E) which reads operands from the reg-
ister file, performs the necessary operation, and writes
results back to the register file and memory.

+ DMA Channel (DMA) which reads and writes memory
concurrently with CPU operation.

Each instruction is operated upon by four of these stages;
namely, fetch, decode, read, and execute. To provide for
maximum processor throughput these units can perform
in parallel with each unit operating on a different instruc-
tion. The overlapping of the fetch, decode, read, and exe-
cute operations of different instructions is called pipelin-
ing. The DMA controller runs concurrently with these units.
The pipelining of these operations is key to the high per-

The TMS320 Family of Digital Signal Processors

formance of the TMS$320C30. The ability of the DMA to move
datawithin the processor’'s memory space results in an even
greater utilization of the CPU with fewer interruptions of
the pipeline which inevitably yields greater performance.

The pipeline control of the TMS320C30 allows for
extremely high-speed execution rate by allowing an effec-
tive rate of one execution per cyclé. It also manages pipe-
line conflicts in a way that makes them transparent to the
user.

While the pipelining of the different phases of an instruc-
tion is key to the performance of the TMS320C30, the
designers felt it essential to avoid pipelining the operation
of the multiplier or ALU. By ruling out this additional level
of pipelining it was possible to greatly improve the pro-
cessor’s useability.

Instructions

The TMS320C30 instruction set is exceptionally well
suited to digital signal processing and other numerically
intensive applications. The TMS320C30 also possesses a full
complement of general-purpose instructions. The instruc-
tion set is organized into the following groups:

* load and store instructions;

+ two-operand arithmetic instructions;

* two-operand logical instructions;

+ three-operand arithmetic instructions;

« three-operand logic instructions;

+ parallel operation instructions;

arithmetic/logical instruction with store instructions;
+ program control instructions;

- interlocked operations instructions.

The load and store instructions perform the movement
of a single word to and from the registers and memory.
Included is the ability to load a register conditionally. This
operation is particularly useful for locating the maximum
and minimum of a set of data.

The two-operand arithmetic and logical instructions con-
sist of a complete set of arithmetic instructions. They have
two operands; src and dst for source and destination,
respectively. The src operand may come from memory, a
register, or be part of the instruction word. The dst operand
is always a register. This portion of the instruction set
includes floating-point integer and logical operations, sup-
port of multiprecision arithmetic, and 32-bit arithmetic and
logical shifts.

The three-operand arithmetic and logical instructions are
a subset of the two-operand arithmetic and logical instruc-
tions. They have three operands: two src operands and a
dst operand. The src operands may come from memory or
a register. The dst operand is always a register. These
instructions allow for the reading of two operands from
memory and/or the CPU register file in a single cycle.

The parallel operation instructions allow for a high degree
of parallelism. They support very flexible, parallel floating-
pointand integer multiplies and adds. They alsoinclude the
ability to load two registers in parallel.

The arithmetic/logical and store instructions support a
high degree of parallelism, thus complementing the par-
allel operation instructions. They allow for the performance
of an arithmetic or logical instruction between a register
and an operand read from memory, in parallel with the stor-

The TMS320 Family of Digital Signal Processors

ing of a register to memory. They also provide for extremely
rapid operations on blocks of memory.

The program control instructions consist of all those
operations that affect the program flow. This section of the
instruction set includes a set of flexible and powerful con-
structs that allow for software control of the program flow.
These fall into two main types: repeat modes and branch-
ing.

For many algorithms, there is an inner kernel of code
where most of the execution time is spent. Therepeat modes
of the TMS320C30 allow for the implementation of zero
overhead looping. Using the repeat modes allows these
time-critical sections of code to be executed in the shortest’
possible time. The instructions supporting the repeat
modes are RPTB (repeat a block of code) and RPTS (repeat
asingleinstruction). Through the use of the dedicated stack-
pointer, block repeats (RPTBs) may be nested.

Thebranching capabilities of the TMS320C30 include two
main subsets: standard and delayed branches. Standard
branches, as in any pipelined machine that comprehends
them, empty the pipeline to guarantee correct manage-
ment of the program counter. This results in a branch
requiring, in the case of the TMS$320C30, four cycles to exe-
cute. Included in this subset are calls and returns. A stan-
dard branch (BR) is illustrated below.

BR THREE ; standard branch.

MPYF ; not executed.
ADDF ; not executed.
SUBF ; not executed.
AND ; not executed.
THREE' MPYF ; fetched 3 cycles after BR

is fetched.

Delayed branches do not empty the pipe, but rather,
guarantee that the next three instructions will be fetched
before the program counter is modified by the branch. The
result is a branch that only requires a single cycle. Every
delayed branch has a standard branch counterpart. A
delayed branch (BRD) is illustrated below.

BRD THREE ; delayed branch.

MPYF ; executed.
ADDF ; executed.
SUBF ; executed.
AND ; not executed.
THREE MPYF ; fetched after SUBF fe-tched.

The combination of the repeat rﬁodes, standard branches,
and delayed branches provides the user with a set of pro-
gramming constructs which are well suited to awide range
of performance requirements. -

The program control instructions also include condi-
tional calls and returns. The decrement and branch con-
ditionally instruction allows for efficient loop control by
combining the comparison of a loop counter to zero with

25

the check of condition flags, i.e., floating-point overflow.
The condition codes available include unsigned and signed
comparisons, comparisons to zero, and comparisons based
upon the status of individual condition flags. These con-
ditions may be used with any of the conditional instruc-
tions.

The interlocked operations instructions support multi-
processor communication. Through the use of external sig-
nals, these instructions allow for powerful synchronization
mechanisms, such as semaphores, to be implemented. The
interlocked operations use the two external flag pins, XFO
and XF1. XFO signals an interlocked-operation request and
XF1 acts as an acknowledge signal for the requested inter-
locked operation. The interlocked operations include inter-
locked loads and stores. When an interlocked operation is
performed the external request and acknowledge signals
can be used to arbitrate between multiple processors shar-
ing memory, semaphores, or counters.

DEVELOPMENT AND SUPPORT TOOLS

Digital signal processors are essentially application-spe-
cific microprocessors (or microcomputers). Like any other
microprocessor, no matter how impressive the perfor-
mance of the processor or the ease of interfacing, without
good development tools and technical support, it is very
difficult to design itinto the system. In developing an appli-
cation, problems are encountered and questions are asked.
Oftentimes the tools and vendor support provided to the
designer are the difference between the success and failure
of the project.

The TMS320 family has awide range of development tools
available [25]. These tools range from very inexpensive eval-
uation modules for application evaluation and bench-
marking purposes, assembler/linkers, and software simu-
lators, to full-capability hardware emulators. A brief sum-
mary of these support tools is provided in the succeeding
subsections.

Software Tools

Assembler/linkers and software simulators are available
on PC and VAX for users to develop and debug TMS320 DSP
algorithms. Their features are described as follows:

Assembler/Linker: The Macro Assembler translates
assembly language source code into executable object
code. The Linker permits a program to be designed and
implemented in separate modules that will later be linked
together to form the complete program.

Simulator: The Simulator simulates operations of the
device in software to allow program verification and debug.
The simulator uses the object code produced by the Macro
Assembler/Linker.

C Complier: The C Compiler is a full implementation of
the standard Kernighan and Ritchie C as defined in The C
Programming Language [28). The compiler supports the
.insertion of assembly language code into the C source code.
The user may also write functions in assembly language,
and then call these functions from the C source. Similarly,
C functions may be called from assembly language.
Variables defined in the C source may be accessed in
assembly language modules and vice versa. The result is a
complier that allows the user to tailor the amount of high-
level programming versus the amount of assembly lan-

26

guage according to his application. The C compiler is sup-
ported on the TMS320C25 and the TMS320C30.

Hardware Tools

Evaluation modules and emulation tools are available for
in-circuit emulation and hardware program debugging for
developing and testing DSP algorithms in a real product
environment.

Evaluation Module (EVM): The EVM is a stand-alone sin-
gle-board module that contains all of the tools necessary
to evaluate the device as well as provide basic in-circuit
emulation. The EVM contains a debug monitor, editor,
assembler, reverse assembler, and software communica-
tions to a host computer or a line printer.

SoftWare Development System (SWDS): The SoftWare
Development System is a PC plug-in card with similar func-
tionality of the EVM.

Emulator (XDS): The eXtended Development System pro-
vides full-speed in-circuit emulation with real-time hard-
ware breakpoint/trace and program execution capability
from target memory. By setting breakpoints based on inter-
nal conditions or external events, execution of the program
can be suspended and the XDS placed into the debug mode.
In the debug mode, all registers and memory locations can
be inspected and modified. Full-trace capabilities at full
speed and areverse assembler that translates machine code
back into assembly instructions are included. The XDS sys-
tem is designed to interface with either a terminal or a host
computer. In addition to the above design tools, other
development support is available [25]:

APPLICATIONS

The TMS320is designed for real-time DSP and other com-
putation-intensive applications [4]. In these applications,
the TMS320 provides an excellent means for executing sig-
nal processing algorithms such as fast Fourier transforms
(FFTs), digital filters, frequency synthesis, correlation, and
convolution. The TMS320 also provides for more general-
purpose functions via bit-manipulation instructions, block
data move capabilities, large program and data memory
address spaces, and flexible memory mapping.

Tointroduce applications performed by the TMS320, dig-
ital filters will be used as examples. The remaining portion
of this section will briefly cover applications, and conclude
by showing some benchmarks.

Digital Filtering

As discussed several times in this paper, the FIR filter is
simply the sum of products in a sampled data system. This
was shown in (1). A simple implementation of the FIR filter
uses the MACD instruction (multiply/accumulate and data
move) for each filter tap, with the RPT/RPTK instruction
repeating the MACD for each filter tap. As we saw earlier,
a 256-tap FIR filter can be implemented by using the fol-
lowing two instructions:

RPTK 255
MACD *-,COEFFP

In this example, the coefficients may be stored anywhere
in program memory (reconfigurable on-chip RAM, on-chip
ROM, or external memories). When the coefficients are

The TMS320 Family of Digital Signal Processors

stored in on-chipROM or externally, the entire on-chip data
RAM may be used to store the sample sequence. This allows
filters of up to 512 taps to be implemented. Execution of the
filter will be at full speed or 100 ns per tap as long as the
memory supports full-speed execution (either on-chip RAM
or high-speed external RAM).

Up to this point, it has been assumed that the filter coef-
ficients are fixed from sample to sample. If the coefficients
are adapted or updated with time, such as in adaptive filters
for echo cancelation [4], [20], then the DSP algorithm
requires a greater computational capacity from the pro-
cessor. The requirement to adapt each of the coefficients,
usually with each sample, is accomplished by three instruc-
tions (MPYA or MPYS, ZALR, and SACH) on the TMS320C25
[16). A means of adapting the coefficients is the least-mean-
square (LMS) algorithm given by the following equation:

byli + 1) = by(i) + 2Beli) * x(i — k)]

where b(i + 1) is the weighting coefficient for the next sam-
ple period, b(i) is the weighting coefficient for the present
sample period, B is the gain factor or adaptation step size,
e(i)isthe error function, and x(i — k) is the input of the filter.

In an adaptive filter, it is important to update the coef-
ficients by(i) in order to minimize the error function e(i),
which is the difference between the output of the filter and
a reference signal. Quantization-errors are critical to the
performance of the filter when updating the coefficients
and can be minimized if the result is obtained by rounding
rather than truncating. For each coefficient in the filter at

a given point in time, the factor 2*B*e(i) is a constant. This -

factor can then be computed once and stored in the T reg-
ister for each of the updates. Thus the computational
requirement has become one multiply/accumulate plus
rounding. Without the new instructions, the adaptation of
each coefficient is five instructions corresponding to five
clock cycles. This is shown in the following instruction
sequence:

LRLK AR2,COEFFD ; LOAD ADDRESS OF
COEFFICIENTS.
LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA

SAMPLES.
LARP- AR2
LT ° ERRF ; errf = 2*B*e(i)
ZALH *,AR3 ; ACC = bk(i)*2**16
ADD ONE, 15 ; ACC = bk(i)*2**16 + 2**15
MPY *-AR2
APAC ; ACC = bk(i)*2**16

+ errf*x(i—k) + 2**15

SACH *+ ; SAVE bk(i+1).

s

When the MPYA and ZALR instructions are used, the
adaptation reduces to three instructions corresponding to
three clock cycles, as shown in the following instruction
sequence. Note that the processing order has been slightly
changed to incorporate the use of the MPYA instruction.
This is due to the fact that the accumulation performed by
the MPYA is the accumulation of the previous product.

The TMS320 Family of Digital Signal Processors

LRLK AR2,COEFFD ; LOAD ADDRESS OF
COEFFICIENTS.
LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA

SAMPLES.
LARP AR2
LT ERRF ; errf = 2*B*e(i)
ZALR *,AR3 ; ACC = bk(i)*2**16 + 2**15
MPYA *- AR2 ; ACC = bk(i)*2**16

+ errf*x(i—k) + 2**15
* ; PREG = errf*x(i—k+1)
SACH *+ ; SAVE bk(i+1).

The adaptive filter coefficient update can further be sim-
plified using the TMS320C30 [27] as shown below. The first
instruction defines the number of times to repeat the ker-
nel. The second instruction is the repeat-block instruction
(RPTB). The RPTB instruction allows the iterations of the ker-
nel to be performed with zero overhead looping. The kernel
assumes that the error term is stored in register RO. It is
important to note that all of the calculations are performed
in floating-point arithmetic. The MPYF3 is a three-operand
floating-point multiply of the input sample x(i — k), which
is stored in memory by the error term errf. The next step
isathree-operand floating-pointadd (ADDF3) ofthe change
inthe filter tap to the filter tap in parallel with the store (STF)
of the previously updated filter tap. That is, the store (STF)
is to be performed in parallel with ADDF3. Thus the number
of cyles for a floating-point adaptation is only two.

LDI N,RC ; load length N in-
to block repeat
counter

RPTB adapt ; repeat the adap-

tation loop N+1
times
MPYF3 *++ARO(1),RO,RT ; errf * x(i—k) = R1

adapt:
ADDF3 *+AR1(1)R1,R2 ; b(k,i) + errf * x(i—k)
- R2
Il STF R2,*ART+ +(1) ; R2 = bk-1,)

Since we have discussed the application of digital filter-
ing, we can now describe several applications in the areas
of telecommunications, graphics/image processing, high-
speed control, instrumentation, and numeric processing,
and then conclude this section with several benchmarks.
If more detail is needed on any of these applications, the
reader is referred to [4].

Telecommunications Applications

Many aspects of the telecommunications network can
take advantage of the TMS320. As telecommunications
evolves more toward an all-digital network, DSP will become
even more utilized [23]. Several typical uses of the TMS320
are discussed.

Echo Canceler: In echo cancellation [4], [20], an adaptive
FIR filter performs the modeling routine and signal mod-
ifications to adaptively cancel the echo caused by the
impedance mismatches in the telephone transmission lines.

27

For this application, a large on-chip RAM of 544 words and
on-chip ROM of 4K words on the TMS320C25 provides for
a 256-tap adaptive filter (32-ms echo cancellation) to be exe-
cuted in a single chip without external data or program
memory.

High-Speed Modems: The TMS320 can perform numer-
ous functions such a modulation/demodulation, adaptive
equalization, and echo cancellation [21], [22]. For lower
speed modems, such as Bell 212A and V.22 bis modems, the
TMS320C17 provides the most cost-effective single-chip
solution to these applications. For higher speed modems,
such as the V.32, requiring more processing power and
multiprocessing capabilities, the TMS320C25 and TMS-
320C30 are the designer’s choice.

Voice Coding: Voice-coding techniques [3], [4], such
as full-duplex 32-kbit/s ADPCM (CCITT G.721), CVSD,
16-kbit/s subband coders, and LPC, are frequently used in
voice transmission and storage. Arithmetic speed, nor-
malization, and the bit-manipulation capability of the
TMS320 provide for implementation of these functions,
usually in a single chip. For example, the TMS320C17 can
be used as a single-chip ADPCM [4), subband [4], or LPC [4]
coder. An application of voice coding is an ADPCM trans-
coder implemented in half-duplex on a single TMS320C17
or full-duplex on a TMS$320C25 for telecommunication mul-
tiplexing applications. Another example is a secure-voice
communication system, requiring voice coding, as well as
data encryption and transmission over a public-switched
network via a modem; the TMS320C25 offers an ideal solu-
tion.

Graphics/Image Processing Applications

In graphics and image processing applications [4], the
ability to interface with a host processor is important. Both
the TMS320C30 and the TMS320C25 multiprocessor inter-
face enable them to be used in a variety of host/coprocessor
configurations [4]. Graphics and image processing appli-
cations can use the large directly addressable external data
space and global memory capability to allow graphical
images in memory to be shared with a host processor, thus
minimizing unnecessary data transfers. The indexed indi-
rect addressing modes allow matrices to be processed row-
by-row when performing matrix multiplication for three-
dimensional image rotations, translations, and scaling.

The TMS320C30 has a number of features that support
graphics and image processing extremely well. The float-
ing-point capabilities allow for extremely precise compu-
tation of perspective transformations. They also support
more sophisticated algorithms such as shading and hidden
line removal, operations which are computationally inten-
sive.

The large address space allows for straightforward
addressing of large images or displays. The flexible address-
ing registers, coupled with the integer multiply, support
powerful addressing of multiple-dimensional arrays. Vec-
tor-oriented instructions allow the user to efficiently
manipulate large blocks of memory. Finally, the on-chip
DMA controller allows the user to easily overlap the pro-
cessing of data with its 1/O.

High-Speed Control

High-speed control applications [4], [24] use the
TMS320C17 and TMS320C25 general-purpose features for
bit-test and logical operations, timing synchronization, and

28

high data-transfer rate (ten- million 16-bit words per sec-
ond). Both devices can be used in closed-loop systems for
control signal conditioning, filtering, high-speed comput-
ing, and multichannel multiplexing capabilities. The fol-
lowing demonstrates two typical control applications:

Disk Control: Digital filtering in a closed-loop actuation
mechanism positions the read/write heads over the disk
surface. Supplemented with many general-purpose fea-
tures, the TMS320 can replace costly bit-slice/custom/ana-
log solutions to perform such tasks as compensation, fil-
tering, fine/coarse tuning, and other signal conditioning
algorithms.

Robotics: Digital signal processing and bit-manipulation
power, coupled with host interface, allow the TMS320C25
to be useful in robotics control [24]. The TMS320C25 can
replace both the digital controllers and analog signal pro-
cessing hardware for communication to a central host pro-
cessor and for the performance of numerically intensive
control functions.

Instrumentation

Instrumentation, such as spectrum analyzers and various
high-speed/high-precision instruments, often requires a
large data memory space and the high performance of a
digital signal processor. The TMS320C25 and TMS320C30
are capable of performing very long-length FFTs and gen-
erating precision functions with minimal external hard-
ware.

Numeric Processing

Numeric and array processing applications benefit from
TMS320 performance. High throughput resulting from fea-
tures, such as a fast cycle time and an on-chip hardware
multiplier, combined with multiprocessing capabilities and
data memory expansion, provide for a low-cost, easy-to-use
replacement for a typical bit-slice solution. The TMS-
320C30’s floating-point precision, high throughput, and
interface flexibility are excellent for this application.

TMS320 Benchmarks

To complete the discussion on the applications that the
TMS320 can perform, we will provide some benchmarks.
The TMS320 has demonstrated impressive benchmarks in
performing some of the common DSP routines and system

applications. Table 5 shows typical TMS320 benchmarks [4].

Table 5 TMS320 Family Benchmarks

First Second Third
DSP Routines/Applications Generation Generation Generation
FIR filter tap 400 ns 100 ns 60 ns
256-tap FIR sample rate 9.25 kHz 37 kHz >60 kHz
LMS adaptive FIR filter tap 700 ns 400 ns 180 ns
256-tap adaptive FIR filter 5.4 kHz 9.5 kHz >20 kHz
sample rate
Bi-quad filter element (five 2 ps 1us 360 ns
multiplies)
Echo canceler (single 8 ms 32ms >64 ms
chip)
SUMMARY

This paper has discussed characteristics of digital signal
processing and how these characteristics have influenced
the architectural design of the Texas Instruments TMS320
family of digital signal processors. Three generations of the

The TMS320 Family of Digital Signal Processors

TMS320 family were covered, and their support tools nec-
essary to develop end-applications were briefly reviewed.
The paper concluded with an overview of digital signal pro-
cessing applications using these devices.

REFERENCES

1
[2]
3
4]
(5]
[6)
71
8

(9
(10
m

[12]

(13

The TMS320 Family of Digital Signal Processors

L. R. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing. Englewood Cliffs, Nj: Prentice-Hall, 1975.
A. V. Oppenheim, Ed., Applications of Digital Signal Process-
ing.” Englewood Cliffs, NJ: Prentice-Hall, 1978.

L. R. Rabiner and R. W. Schafer, Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, 1978.

K. Lin, Ed., Digital Signal Processing Applications with the
TMS320 Family. Englewood Cliffs, NJ: Prentice-Hall, 1987
A.V.Oppenhiem and R. W. Schafer, Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

C. Burrus and T. Parks, DFT/FFT and Convolution Algorithms.
New York, NY: Wiley, 1985.

T. Parks and C. Burrus, Digital Filter Design. New York, NY:
Wiley, 1987.

J. Treichler, C. Johnson, and M. Larimore, A Practical Guide
to Adaptive Filter Design. New York, NY: Wiley, 1987.

P. Papamichalis, Practical Approaches to Speech Coding.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

R. Morris, Digital Signal Processing Software. Ottawa, Ont.,
Canada: DSPS Inc., 1983.

K. McDonough, E. Caudel, S. Magar, and A. Leigh, “‘Micro-
computer with 32-bit arithmetic does high-precision number
crunching,” Electronics, pp. 105-110, Feb. 24, 1982.

S. Magar, E. Caudel, and A. Leigh, “A Microcomputer with
digital signal processing capability,” in 7982 Int. Solid State
Conf. Dig. Tech. Pap., pp. 32-33, 284, 285.

First Generation TMS320 User’s Guide. Houston, TX: Texas
Instruments Inc., 1987.

(14]
[15]
[16]
(7]
18]

191
[20]
(21}

[22]

(23]
[24]

[25]

[26]

271
[28]

TMS320 First-Generation Digital Signal Processors Data Sheet.
Houston, TX: Texas Instruments Inc., 1987.

TMS32020 User’s Guide. Houston, TX: Texas Instruments
Inc., 1985.
TMS320C25 User's Guide. Houston, TX: Texas Instruments
Inc., 1986.
TMS32011 User’s Guide. Houston, TX: Texas Instruments
Inc., 1985.
H. Cragon, “The elements of single-chip microcomputer

architecture,” Comput. Mag., vol. 13, no. 10, pp. 27-41, Oct.
1980.

S. Rosen, “Electronic computers: A historical survey,” Com-
put. Surv., vol. 1, no. 1, Mar. 1969.

M. Honig and D. Messerschmitt, Adaptive Filters.
drecht, The Netherlands: Kluwer, 1984.

R. Lucky et al., Principles of Data Communication. New York,
NY: McGraw-Hill, 1965.

P. Van Gerwen et al., “’Microprocessor implementation of
high speed data modems,"” IEEE Trans. Commun., vol. COM-
25, pp. 238-249, 1977.

M. Bellanger, “New applications of digital signal processing
in communications,” IEEE ASSP Mag., pp. 6-11, July 1986..
Y. Wang, M. Andrews, S. Butner, and G. Beni, ‘“Robot-con-
troller system,” in Proc. Symp. on Incremental Motion Con-
trol Systems and Devices, pp. 17-26, June 1986.

TMS320 Family Development Support Reference Guide.
Houston, TX: Texas Instruments Inc., 1986.

R. Simar, T. Leigh, P. Koeppen, J. Leach,). Potts, and D. Bla-
lock, ““A 40 MFLOPS digital signal processor: The first super-
computer on a chip,” in Proc. IEEE Int’l Conf. on Acoustics,
Speech, and Signal Processing, Apr. 1987.

TMS320C30 User’s Guide. Houston, TX: Texas Instruments
Inc., 1987.

B. Kernighan and D. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

Dor-

29

30

The TMS320 Family of Digital Signal Processors

The TMS320C30 Floating-Point
Digital Signal Processor

Panos Papamichalis
Ray Simar, Jr.

Digital Signal Processor Products—Semiconductor Group
Texas Instruments

Reprinted from
IEEE MICRO MAGAZINE
Vol. 8, No. 6, December 1988

31

32

The TMS320C30 Floating-Point Digital Signal Processor

The TMS320C30
Floating-Point
Digital Signal Processor

igital signal processors have significantly impacted the way we bring

real-time implementations of sophisticated DSP algorithms to life.

What was once only a laboratory curiosity that required large comput-
ers or specialized, bulky, and expensive hardware is now incorporated into low-
cost consumer products. The rapid advancement of programmable DSPs since
their commercial introduction in the early 1980s lets us satisfy the needs of very
demanding applications. Implementation of basic DSP functions, such as digital
filters and fast Fourier transforms, has been integrated into advanced system
solutions involving speech algorithms, image processing, and control applica-
tions. The variety of the applications increases every day as researchers,
developers, and entrepreneurs discover new areas in which DSP devices can be
used. At the same time, the design of new devices incorporates features that make
such implementations easier. .

The Texas Instruinents family of TMS320 DSPs' evolved with the expanding
needs of the DSP applications and currently encompasses over 17 devices. The
TMS320 family consists of three generations of devices. The first two genera-
tions are 16-bit, fixed-point-arithmetic devices while the third one, represented
by the TMS320C30 and explained in detail here, is a 32-bit, floating-point
device. Architecturally, the TMS320 family, like most DSP devices, relies on
multiple Harvard buses. In the first two generations, we expanded the basic
Harvard architecture to permit communication between the program and data
spaces. In the third generation, we unified the two spaces to form an organization
that encompasses the advantages of both the Harvard and the von Neumann
architectures.

Overview of the TMS320C30

The 320C30 is a fast processor (16.7 million instructions per second for an
instruction cycle time of 60 nanoseconds) with a large memory space (16 million
32-bit words) and floating-point-arithmetic capabilities. This last feature is a
major trend in new DSP devices, which was developed to answer the need for
quicker, more accurate solutions to numerical problems. DSP algorithms, being
very intensive numerically, cause a designer to worry about overflows and the
accuracy of results. The introduction of floating-point capabilities eliminates
these difficulties.

©1989 IEEE. Reprinted, with permission, from IEEE MICRO MAGAZINE,
Vol. 8, No. 6, pp. 10-28; December 1986

The TMS320C30 Floating-Point Digital Signal Processor

]
Panos Papamichalis
Ray Simar, Jr.

Texas Instruments

In the 320C30, a chip design with 1-um geometries
produces instruction cycle times lower than those achieved
with the fixed-point devices of the first two generations. In
addition, the design produces a controlled increase in die
size that results more from the extended on-chip memory
spaces than from the floating-point capabilities.

The pipelined architecture of the 320C30 permits the
higher throughput achieved by the device, as we explain
later.” Yet, programmers do not have to worry about the
pipeline when writing the code. We can describe the design
philosophy of the 320C30 (as well as all the other devices
in the TMS320 family) as an “interlocked” or “hidden-
pipeline” approach. When writing the program, program-
mers can assume that the result of any instruction will be
available for the next instruction. Most of the instructions
execute in one machine cycle. If a conflict arises between
executing an instruction in one cycle and having the data
available for the next instruction, the device automatically
inserts the necessary delay to eliminate the conflict. Since
this delay could result in loss of performance, we provide
developmenttools thatidentify where such conflicts occur.
With this data, programmers can rearrange and optimize
code,

Many applications, such as graphics and image process-
ing, are difficult to implement on the earlier DSP devices
because they require a large memory space. To satisfy this
need, the 320C30 provides a total memory space of 16
million 32-bit words, memory several orders of magnitude
larger than the fixed-point devices. Furthermore, it con-
tains significantly increased on-chip memory: six thou-
sand 32-bit words of RAM and ROM. The desire to have
a device capable of offering system-level solutions to the
implemented algorithms guided the design decision to
increase on-chip memory. In other words, the 320C30
attempts to offer the capability of implementing an algo-
rithm with as little peripheral circuitry as possible.

Along the same lines, the 320C30 contains a peripheral
bus on which on-chip peripherals can be attached using a
memory-mapped approach. Currently available peripher-
als include two serial ports, two timers, and a DMA
controller. The modularity of the design permits easy
change, addition, or deletion of peripherals to accommo-
date different needs. For instance, if a p-law-to-linear
format converter or a gate array is more important than one
of the timers for certain applications, a user can make the
change without impacting the core of the device.

As the power of the DSP devices increases, so does the
sophistication of the algorithms that are implemented. The
implication is that constructing and debugging an algo-
rithm at the assembly-language level becomes a more and
more tedious task. To address that problem, we provide the
320C30 development tools, which include a high-level-
language compiler and a DSP operating system. The ex-
tended memory space, the software stack, and the large on-
chip register file also facilitate such a development. We've
already introduced a C compiler and announced an Ada
compiler. We expect compiler availability to change sig-

nificantly the way DSP algorithms are ported to DSP
devices. With these tools, programmers can develop the
algorithms on large computers, requiring at the most only
selective optimization when they incorporate the algo-
rithm on the 320C30.

Here, we describe the 320C30 architecture in detail,
discussing both the internal organization of the device and
the external interfaces. We also explain the pipeline struc-
ture, addressing software-related issues and constructs,
and examine the development tools and support. Finally,
we present examples of applications.

Architecture of the 320C30

Studying the architecture of the device helps in under-
standing how the different components contribute toward
ahigh-throughput system. The interaction and the efficient
use of the parts can contribute to very effective program-
ming. Another very important aspect to consider is the
system cost of the application. We designed the device to
incorporate on-chip features that minimize the amount and
the cost of external logic, thus leading to very compact and
cost-effective solutions. These advantages become ex-
plicit when looking at the architecture in detail. The inter-
nal structure of the 320C30, as shown in Figure 1, consists
of the

+ on-chip memory and cache,

* CPU with register file,

« peripheral bus and peripherals, and
« interconnecting buses.

See Figure 2 for the die photograph. To interface with
the external world, the 320C30 provides pins correspond-
ing to

«two buses (primary and expansion),
« two serial ports and two timers,

« four external interrupt signals,

« two external flags, and

» hold and hold-acknowledge signals.

In addition, other pins exist for address and data strobs,
power, and so on.

The overall architecture of the device is a Harvard type
in the sense that internally and externally it has multiple
buses to access program instructions, data, or perform
DMA transfers. However, italso has a von Neumann flavor
since the memory space is unified, and there is no separa-
tion of program and data spaces. As a result, the user can
choose to locate programs and data at any desired location.

Some of the major features of the 320C30 are:

« a 60-ns cycle time that results in execution of over 16
million instructions per second (MIPS) and over 33 million
floating-point operations per second (Mflops);

» 32-bit data buses and 24-bit address buses for a 16M-
word overall memory space;

+ dual-access, 4K X 32-bit on-chip ROM and 2K X 32-
bit on-chip RAM;

34 The TMS320C30 Floating-Point Digital Signal Processor

Program RAM RAM ROM
cache block 0 block 1 block 0
(64 x 32) (1K x 32) (1K x 32) (4K x 32)
RDY »
%] HOLD XRDY 2
3 HOLDA IOSTRB =
> STRB XRW kS
g RW XD (31-0) &
£ D(31-0) XA (12-0) o
A (23-0) P MSTRB 1]
e
r
CPU DMA i
P
RESET’ Integer/ Integer/ Address 2 < Serr;aol
INT (3-0)— floating-point | floating-point generators ; po!
TACK <@ multiplier ALU
e «—> g Control registers [T Serial o
XF (1__2 n Extended-precision port 1
MC/MP—b{ t registers (8)
ol A e
1 Address Address u
X2/CLKIN— | generator 0 generator 1 s
Voo (7-0)— ¢ :
Vgs (10-0)— T Aucxiliary registers (8)
VBBP—b
SUBS @ Control registers (12)

" Figure 1. Block diagram of the TMS320C30 architecture.

« a 64 X 32-bit program cache;

« a 32-bit integer/40-bit floating-point multiplier and
ALU;)

« eight- extended-precision registers, eight auxiliary
registers, and 12 control and status registers;

« generally single-cycle instructions;

« integer, floating-point, and logical operations;

« two- and three-operand instructions;

« an on-chip DMA controller; and

« fabrication in 1-um CMOS technology and packag-
ing in a 180-pin package.

Memory organization: The 320C30 provides 4K 32-
bit words of on-chip ROM, and 2K 32-bit words of on-chip
RAM. The on-chip ROM is mapped into the first 4K of the
overall memory map; it is accessed when the processor
operates in the microcomputer mode. Location 0 of the
memory map holds the reset vector, and adjacent locations
hold other interrupt vectors. In microprocessor mode, the
reset vector resides in external memory, and on-chip ROM
is not accessed. The 2K on-chip RAM consists physically
of two segments of 1K words each. These two segments of
RAM are mapped into adjacent sections of the memory.
Figure 3 on the next page shows the arrangement of the on-
chip memory, as well as the cache, buses, and two external
interfaces/buses, which we examine later.

FLOATING

POINT FLOATING

MULTIPUER POINT
AU

Figure 2. Die photograph of the 320C30.

The TMS320C30 Floating-Point Digital Signal Processor 35

Cache br;ﬁkMo
(64x32) (1K x 32)

RAM ‘ _ROM
block 1 block
(1K x 32)

(4K x 32)

D
]

U

Primary bus

Program counter/Instruction register
(PC/IR)

HEEN [T1]1 1]]
- e e
///////////////////////////////// ///// PAD ////A///////‘/////////////é//%
D% ///// DM %

I --Ill
7 77 00
- 1 11 I

\I

--
V%
/////////‘/-I-

xcZ
Expansion bus

NEN\E

CPU DMA

Figure 3. On-chip memory, cache, and buses.

The internal memory (both ROM and RAM) supports

two accesses for reads and/or writes in one cycle. This key
feature permits high throughput and ease of programming,
since it makes possible three-operand instructions with
two operands residing in the memory. Notice that, to
support this feature, we include two buses dedicated to data
addresses (DADDR1, DADDR?) and one bus to carry the
data (DDATA). There are also separate program buses,
PDATA and PADDR.
. The address buses are 24 bits wide, indicating that the
overall memory space is 16 million (32-bit) words. We
believe this large space will facilitate implementation of
algorithms in image processing applications that often
require large amounts of memory. The unified memory
space offers flexibility in placing program and data. But it
also permits optimal use of the memory space as a trade-off
between program and data.

An important addition to the architecture is the 64-word
instruction cache. To reduce the overall system cost of
applications, system designers often use slower (and
cheaper) external memories, a tactic that could slow down
the processor and degrade the performance. The instruc-
tion cache addresses this problem by storing on-chip in-
structions that have been fetched previously. Its main
advantage becomes obvious when loops must be executed.
In this case, the first time the instructions are fetched, they
are also stored in the cache. Any subsequent execution of
the loop does not access external memory but fetches

instructions from the cache, resulting in higher speed and

making the external buses available for data transfers.

The cache is segmented into two sections of 32 words
each that are transparent to users. A user can, however,
control the operation of the cache by manipulating three
control bits that are contained in the status register of the
CPU. Each control bit is dedicated to a specific operation:
cache enable/disable, cache freeze, and cache clear. When
acache miss occurs, that is, when the next instruction is not
included in the cache, the instruction is brought in and also
stored in the cache. The two cache sections are updated on
a least recently used basis.

CPU organization. The CPU consists of the ALU
(arithmetic logic unit), the hardware multiplier, and the
register file. These units are shown in Figure 4.

The register file consists of

-eight 40-bit-wide, extended-precision registers RO
through R7,

+eight 32-bit auxiliary registers ARO through AR7,
and

« twelve 32-bit control registers.

The extended-precision registers function as accumula-
tors and can handle both floating-point and integer num-
bers. When they are used for floating-point numbers, the
top eight bits represent the exponent and the bottom 32 bits
the mantissa of the number. In their integer format, regis-
ters RO through R7 use only their bottom 32 bits, keeping
the top 8 bits unchanged in any integer or logical operation.

36 The TMS320C30 Floating-Point Digital Signal Processor

The eight auxiliary registers ARO through AR7 can
function as memory pointers in indirect addressing, as loop
counters, or as general-purpose registers in integer arith-
metic or logical operations. Associated with these registers
are two auxiliary register arithmetic units (ARAU) that
generate two memory addresses in parallel for the instruc-
tions that need them. The flexibility of indirect addressing
increases even further when two index registers are used in
conjunction with the auxiliary registers, as we discuss
later.

The register file contains 12 control registers designated
for specific functions. If the control registers are not used
for these functions, they can be treated as general-purpose
registers in integer arithmetic and logical operations.
Examples of such control registers are the

« status register,

- index registers,

- stack pointer,

« interrupt mask and interrupt flag registers, and
« repeat-block registers.

In particular, the stack-pointer register points to the
software stack. The user has the flexibility of designating
where the stack resides, and even of changing its location
during the program execution. This feature also makes the
stack of essentially unlimited depth and permits its usage
not only for storing the program counter during subroutine
calls but also for passing arguments to subroutines. Such an
arrangement is particularly convenient in the development
of compilers, and we have used it extensively in the
320C30’s optimizing C compiler.

The ALU performs floating-point, integer, and logical
operations. The ALU always stores the result in the register
file, but the input can come either from the register file or
from memory, or it can be an immediate value.

In the case of floating-point arithmetic, the input to the
ALU can originate from either a 40-bit extended-precision
register or a 32-bit memory datum. Registers RO through
R7 store the 40-bit-word result. On the other hand, in
integer arithmetic, both input and output are 32-bit num-
bers, and the output can move to either the lower 32 bits of
the RO through R7 registers or to any other register in the
register file.

The single-cycle hardware multiplier has been an inte-
gral part of DSPs because any real-time application relies
on the fast execution of multiplies. Following the same
distinction as in the previous paragraph on the ALU, the
multiplier performs both floating-point and integer multi-
plications. The 32-bit inputs to a floating-point multiplica-
tion yield a 40-bit-wide result for storage in one of the
extended-precision registers.

In both the ALU and the multiplier the results of the
operations are automatically normalized, thus handling
any overflows of the mantissa. If there is an exponent
overflow, the result is saturated in the direction of overflow
and the overflow flag is set. Underflows are handled by
setting the result to zero and setting an underflow flag.

DDATA bus

MUX
-
CPU 1 \
CPU 2
] I I
Register 1
T B I I I |
- N
o Register 2
’ LT IT I 1]
\ ALU
% Multiplier 2ot
barrel
- shifter
gl |z 5% | [
ol (o 2|8
2llg] 12Nz
o a -4 & Register file
1

Figure 4. The 320C30 central processing unit.

Buses and peripherals. Figure 3 shows that multiple
on-chip buses handle program, data, and DMA operations
in parallel. The device contains separate address and data
buses for these three operations, with the data having two
address buses to accommodate the access of multiple
operands from the memory in one cycle. Also, separate
buses lead to the register file. The rule to remember is that,
inone cycle, up to two datamemory accesses are permitted
for any on-chip memory block. This multiplicity of buses
eliminates bottlenecks. The user can maximize the through-
put of the device by a judicious combination of the on-chip
memory with the two external buses (the primary bus and
the expansion bus).

The primary bus contains a 24-bit address bus and a 32-
bit data bus. Its true space, though, is 16M words minus the
on-chip memory and the expansion bus. The primary bus
can be placed in high impedance when the device is put on
hold. To facilitate its interfacing with slow memories, the
320C30 offers programmable wait states (up to seven) as
well as an external ready signal.

The expansion bus contains a 13-bit address bus and a
32-bit data bus. It has two strobes, one for memory and one
for I/O accesses. In other words, the memory space of the

The TMS320C30 Floating-Point Digital Signal Processor 37

Serial port 0
o
Memory [— g g
space = i Serial port 1
g 3
] k]
® s Timer 0
_ﬂr__' o
s 3
e =
2 K Timer 1
/L DMA controller

Figure 5. Peripheral bus and peripherals.

expansion bus is two segments of 8K words each, one
segment mapped as regular memory and the other one
mapped as I/O. Like the primary bus, the expansion bus
has up to seven software-programmable wait states.

A major innovation in the 320C30—to support system-
level solutions and to help in adapting the device to
changing needs—is the peripheral bus shown in Figures 1
and 5. The peripheral bus supplies a way of expanding or
varying the interface with the outside world without chang-
ing the core of the device. All of the peripherals attached to
this bus are mapped to memory, and they can be replaced
by others with a minimal effort if certain applications have
different demands.)

Currently, we have implemented a DMA controller, two
serial ports, and two timers as peripherals. The DMA
controller performs reads from and writes to any location
in the 320C30 memory map without interfering with the
operation of the CPU. The DMA controller contains its
own address generators, source and destination address
registers, and transfer counter. The two modular and totally
independent serial ports are identical with a complemen-
tary set of control registers. Each serial port can be config-
ured to transfer 8, 16, 24, or 32 bits of data per word, with
each port clock originating either internally or externally.
The pins of the serial ports are configurable as general-
purpose 1/O pins, while the serial ports can also be config-
ured and used as timers.

The two 320C30 timer modules function as general-
purpose timer/event counters; each have two signaling
modes and internal or external clocking. Available to each
timer is an 1/O pin for use as an input clock to the timer, as
an output signal driven by the timer, or as a general-

purpose pin.

Software

The software features of a programmable DSP are
probably the most important features because they deter-
mine the effectiveness of the implementation. Typically,
the user first develops an application on a large computer
using a high-level language and, once it is working satis-
factorily, ports it to a DSP device. The software features
of the 320C30 that we discuss include the integer and
floating-point number representations, addressing modes,
pipeline effects, and different types of instructions and
constructs.

Integer and floating-point formats. A 32-bit, twos-
complement notation represents the integers. Inaddition to
this single-precision format, we have a short format, con-
sisting of 16-bit, twos-complement numbers used only for
immediate operands. Every instruction of the 320C30
consists of one 32-bit word.

We use three formats for floating-point numbers: short,
single precision, and extended precision. The single-preci-
sion, 32-bit-wide format assigns 24 bits to the mantissa and
8 bits to the exponent. The exponent occupies the 8 most
significant bits, and it is represented in twos-complement
notation, taking values between —128 and 127. The expo-
nent value —128 is the result reserved to represent zero.

The mantissa, placed at the 24 least significant bits of a
32-bit number, is normalized to a number with an absolute
value between 1.0 and 2.0. Since the mantissa is repre-
sented in a normalized, twos-complement notation, the
leftmost bit, which corresponds to the sign, and its adjacent
bit will always be the complement of each other. As a
result, only the sign bit is represented, with the most
significant bit suppressed. In other words, the mantissa
contains 24 significant bits plus the sign bit, with the most
significant bit implied.

Addressing modes. The 320C30 supports several ad-
dressing modes that allow the user to access data from
memory, registers, and the instruction word. The basic
addressing modes are

- register,

« direct,

« indirect,

- short immediate,

« long immediate, and
* PC relative.

In register mode the operand is placed into a CPU
register that is explicitly specified in an instruction. In
direct mode the datamemory address is formed by preced-
ing the 16 least significant bits of the instruction word with
the 8 least significant bits of the data page pointer. To keep
all instructions one word long, we store only the 16 least
significant bits from the address in the instruction word; the
rest become the data page pointer. This restriction implies
that in direct addressing the memory space is segmented
into 256 pages of 64K words each.

38 The TMS320C30 Floating-Point Digital Signal Processor

Table 1.
Addressing modes of the 320C30.

ARO=B(ARO+ IRO0)

Mode Example Operation Description

Register ADDF RO,R1 Operand in RO

Direct ADDF @MEM, R1 Addr=MEM Operand in MEM

Short

immediate =~ ADDF 3.14,R1 Operand = 3.14
Long
immediate = BR LABEL Branch to LABEL
PC relative BGE LABEL Branch to LABEL
Indirect ADDF * + ARO(di),R1 Addr=ARO0+di Predisplacement add
without modification
Indirect ADDF * — ARO(di),R1 Addr=AR0-di Predisplacement subtract
without modification

Indirect ADDF * + + ARO(di),R1 Addr=ARO +di Predisplacement add and
ARO=ARO +di modify

Indirect ADDF * — — ARO(di),R1 Addr=AR0-di Predisplacement subtract
ARO=ARO-di and modify

Indirect ADDF *ARO+ +(di),R1 Addr=AR0 Postdisplacement add
ARO=ARO+di and modify

Indirect ADDF *ARO- —(di),R1 Addr=AR0 Postdisplacement
ARO=ARO-di subtract and modify

Indirect ADDF *ARO+ +(di)%,R1 Addr=AR0 Postdisplacement add
ARO = circ(ARO + di) and circular modify

Indirect ADDF *ARO0— —(di)%,R1 Addr=AR0 Postdisplacement subtract
ARO = circ(ARO—di) and circular modify

Indirect ADDF *ARO+ +(IR0)B,R1 Addr=AR0 Postindex (IR0) add and

bit-reversed modify

di is an integer between 0 and 255 or one of the index registers IRO and IR1.

Indirect addressing, the most versatile of all the modes,
specifies the address of an operand in memory through the
contents of an auxiliary register. As an option, the contents
of the register can be modified by constant displacements
or by the contents of the index registers. Table 1 lists all of
the addressing modes, with particular emphasis on indirect
addressing modes.

An instruction explicitly specifies the auxiliary register
used for indirect addressing. The user can modify it by a
constant displacement taking values 0 to 255 or by the
contents of one of the two index registers IR0 or IR1. The
modification can take place before or after accessing the
memory. In the case of premodification, the user has the
option to change the contents of the auxiliary register either
permanently or temporarily. The notation used for such
modifications is reminiscent of the C-language syntax.

Two special forms of indirect addressing that are par-
ticularly useful are bit-reversed and circular addressing.
Bit-reversed addressing is used with the fast Fourier trans-
form to compensate for the fact that normally ordered data

at the input of the transform are scrambled at output (bit-
reversed order). To avoid moving the data around to place
them in the proper order, bit-reversed addressing accesses
the data in scrambled order for any subsequent operation.

Circular addressing implements circular buffers. Such
buffers are very convenient for use in digital-filtering
operations. In circular addressing, BK, one of the control
registers, specifies the size of the block. Then, when the
user modifies the contents of an auxiliary register (pointing
within that block) in a circular fashion, the final value is
tested to determine if it is still within the block. If it is not,
it is wrapped around using modulo arithmetic.

The short-immediate mode encodes immediate, 16-bit-
long operands of arithmetic operations. The long-immedi-
ate mode encodes program control instructions (branch
instructions) for which it is useful to have a 24-bit absolute
address contained in the instruction word. Finally, the PC-
relative addressing also applies to program control instruc-
tions and uses the difference from the present location of
the PC counter rather than an absolute address. The last two

The TMS320C30 Floating-Point Digital Signal Processor 39

modes are transparent to the user. The user specifies the
branching label wanted, and the assembler assigns the
appropriate addressing mode.

Pipeline. To achieve the high throughput of the device,

the 320C30 uses a four-phase pipeline with five major
functional units operating in parallel. These five units are

«instruction fetching,

« instruction decoding and address generation,
« operand reads,

« instruction execution, and

* DMA transfer.

Figure 6 shows diagrammatically how the pipeline
operates on successive instructions. When the pipeline is
full, an instruction completes the execution phase every
60-ns machine cycle.

Occasionally conflicts may arise, as in the case of a
loaded auxiliary register that needs to be used for indirect
addressing in the next instruction. To handle such cases, we
established a priority between the different units, giving
DMA the lowest priority. Among the others, an Execute
instruction has the highest and a Fetch instruction the
lowest priority. ’

In programming the device, the user does not have to
worry about the pipeline conflicts, which do not occur that
often anyway. When a conflict does occur, the device
automatically inserts the necessary extra cycle(s) to make
the instructions behave as expected. In most cases, this
arrangement will be sufficient for successful operation.
For time-critical operations, though, it may be necessary to
remove the extra cycles caused by pipeline conflicts. The
user can make this correction by rearranging the instruc-
tions of the program. To do so, the user must determine
how to identify the locations where insertions occur. For
that purpose, the development tools (simulator, emulators)
contain a tracing feature that'can display the pipeline. In
this trace, any conflicts are immediately identified, and
then the user can take steps to correct the problem.

Instruction set features. The instruction set of the
320C30 supports both two- and three-operand instruc-
tions. In all arithmetic instructions (except Store), the

Cycle 1 2 3
1 I Fetch I Decode I Read I
2 2 I Feten | Decode |
[<]
T 3 \ I Feten |
g 1
5

destination is a register in the register file. The source
operands can come from memory or from a register or, in
the case of two-operand instructions, can be part of the
instruction word.

A unique feature of the 320C30 is the set of instructions
in which operations execute ‘in parallel. This construct
permits a high degree of concurrency and execution of any
arithmetic or logical instruction in parallel with a Store
instruction. It also supports parallel multiplies and adds, as
well as parallel loading and storing of two registers. Paral-
lel multiply and adds lead to the peak performance of 33
Mflops. Executing the Store instruction at the same time
with another arithmetic operation essentially permits this
kind of data movement without a penalty. As an example,
the following instruction adds the contents of memory
pointed to by ARI (indicated by *AR1) to register RO
(treating them as floating-point numbers) and places the
result in register R1. In parallel with that process, the
original contents of R1 are stored in the memory location
indicated by AR3.

ADDF *AR1,RO,R1

1 STF R1,*AR3

When executing a branch instruction, the pipeline must
be flushed since the path followed after the branch is data
dependent. As aresult, a regular branch instruction is more
costly than other instructions, taking four cycles to com-
plete. This overhead may be unacceptable in some time-
critical applications. To alleviate this problem and to offer
more flexibility to the programmer, the 320C30 contains
a set of delayed branches that complement the set of
standard branches. In a delayed branch, the three instruc-
tions following the branch instruction execute whether the
branch is taken or not taken. As aresult, the delayed branch
ends up taking only one cycle to execute. The same
approach can be used even when there are less than three
such instructions, by adding NOPs (no operations). The
branch will still take less than four cycles.

The greatest cost of branching occurs during the execu-
tion of loops. In looping, a counter is decremented and
compared to zero at the end of the loop. If it is not zero, a
branch is taken to the beginning of the loop. The 320C30
offers a special arrangement that implements loops with no

4 5 6 7
Execute l
Read I Execute i
Decode I Read l Execute I :
Fetch I Decode l Read I Execute I
I Fetch I Decode I Read I

Figure 6. Pipeline of 32030 instructions.

The TMS320C30 Floating-Point Digital Signal Processor

User-friendly development tools
offer extra support:
an optimizing C compiler and
a DSP operating system.

overhead. The two instructions RPTB (repeat block) and
RPTS (repeat single) realize this arrangement. The format
of the RPTB instruction is:

RPTB LABEL
(put instructions here)

LABEL (last instruction)

Associated with the repeat-block construct are three of
the 12 control registers in the register file. One register
indicates the beginning of the block, the second indicates
the end of the block, and the third acts as the repeat counter.
The assembler automatically assigns values to the first two
registers. They contain the address of the instruction
immediately below RPTB, and the address of LABEL
respectively. Users should initialize the repeat counter
before entering the loop. In terms of execution time, this
arrangement behaves as if the loop were implemented with
straight-line code.

The instruction RPTS has the format

RPTS count

and it repeats the following instruction “count” times. It
differs from RPTB in that it

« applies to only one instruction;

«does not refetch the instruction for every execution, but
keeps it in the instruction register thus freeing the buses for
data transfers, and

« is'not interruptible.

Table 2 on the next page is a sample of the instructions
available on the 320C30. Although we included a rich set
of instructions for both DSP and general-purpose process-
ing, the perceived size of the instruction set is much
smaller. The reason is that a symmetry exists between
integer and floating-point instructions, between instruc-
tions with two or three operands, and between single and
parallel instructions. For instance, addition is represented
by ADDI, ADDF, or ADDC in the case of adding integers,
floating-point numbers, or adding with a carry. The three-
operand instructions have the same form, with a 3 ap-
pended at the end (ADDF3). All of the multiplier and ALU
operations can be performed in parallel with a Store in-
struction, and such instructions take the form of the follow-
ing example:

ADDF3 *ARO,R1,R2
I STF RO,*ARI

Furthermore, two loads or two stores can execute in
parallel, as is also the case with a multiply and an add or a
multiply and a subtract. The design of the instruction set
has been guided by a desire to ease programming efforts.
The execution results of an instruction are always available
for use in the instruction that follows.

Besides the regular arithmetic and logical instructions,
the 320C30 includes instructions to handle the software
stack, internal and external interrupts, and branches and
subroutine calls. Conditional loads and calls make the
programming more compact and efficient, while special
instructions (called interlocked instructions) can be used in
multiprocessor environments.

Development tools and support

The newer DSP devices offer increased processing
power that permits the implementation of more compli-
cated and demanding algorithms. However, as the com-
plexity of the algorithm increases, the task of debugging
the implementation becomes more difficult. The 320C30
addresses this problem by providing user-friendly devel-
opment tools and offering extra support in the form of an
optimizing C compiler and a DSP operating system.

The assembler translates assembly-language source
files into machine-language object files. Source files can
contain instructions, assembler directives, and macro di-
rectives. Assembler directives control various aspects of
the assembly process such as the source-listing format,
symbol definition, and method of placing the source code
into sections. Macro directives permit a concise represen-
tation of groups of instructions that occur frequently.

The linker combines object files into one executable
object module. As it creates the executable module, the
linker performs relocation operations and resolves external
references. The linker accepts relocatable COFF (Com-

" mon Object File Format) object files, created by the assem-

bler, as input. It can also accept archive library members
and output modules created by a previous linker run.
Linker directives allow the user to combine object-file
sections, bind sections or symbols to specific addresses or

*within specific portions of 320C30 memory, and define or

redefine global symbols. An associated archiver can create
macro or object-file libraries.

The software simulator is a very important tool for
debugging 320C30 programs. Its interface consists of a
screen broken into windows that display the internal regis-
ters, the reverse-assembled program, and a versatile win-
dow where memory, breakpoints, and a wealth of other
information can be displayed. The same interface (modi-
fied to accommodate some special features) is also used
with the hardware emulator. The major features of the
simulator include:

« Simulation of the entire 320C30 instruction set and the

The TMS320C30 Floating-Point Digital Signal Processor 41

Table 2.
Instructions for the 320C30.

Instruction Description Instruction Description

Load and store instructions

LDE Load floating-point exponent POP Pop integer from stack

LDF Load floating-point value POPF Pop floating-point value from stack
LDFcond Load floating-point value conditionally PUSH Push integer on stack

LDI Load integer PUSHF Push floating-point value on stack
LDlcond Load integer conditionally STF Store floating-point value

LDM Load floating-point mantissa STI Store integer

Two-operand instructions

ABSF Absolute value of a floating-point NORM Normalize floating-point value
number
ABSI Absolute value of an integer NOT Bitwise logical-complement
ADDC 1 Add integers with carry OR t Bitwise logical-OR
ADDF 1 Add floating-point values RND Round floating-point value
ADDI ¢ Add integers ROL Rotate left
AND + Bitwise logical-AND ROLC Rotate left through carry
ANDN Bitwise logical-AND with complement ROR Rotate right
ASH t Arithmetic shift RORC Rotate right through carry
CMPF t Compare floating-point values SUBB 1 Subtract integers with borrow
CMPI t Compare integers SUBC Subtract integers conditionally
FIX Convert floating-point value to integer SUBF Subtract floating-point values
FLOAT Convert integer to floating-point value SUBI Subtract integer
LSH + Logical shift SUBRB Subtract reverse integer with borrow
MPYF +t Multiply floating-point values SUBRF Subtract reverse floating-point value
MPYI t Multiply integers SUBRI Subtract reverse integer
NEGB Negate integer with borrow TSTB t Test bit fields
NEGF Negate floating-point value XOR T Bitwise exclusive-OR
NEGI Negate integer
Program control instructions
Bcond Branch conditionally (standard) IDLE Idle until interrupt
BcondD Branch conditionally (delayed) NOP No operation
BR Branch unconditionally (standard) RETIcond Return from interrupt conditionally
BRD Branch unconditionally (delayed) RETScond Return from subroutine conditionally
CALL Call subroutine RPTB Repeat block of instructions
CALLcond Call subroutine conditionally RPTS Repeat single instruction
DBcond Decrement and branch conditionally SWI - Software interrupt
(standard)
DBcondD Decrement and branch conditionally TRAPcond Trap conditionally
(delayed) .

T Two- and three-operand versions

42 * The TMS320C30 Floating-Point Digital Signal Processor

key peripheral features;

« Command entry from either menu-driven keystrokes
(menu mode) or from line commands (line mode);

« Help menus for all screen modes;

« Quick storage and retrieval of simulation parameters
from files to facilitate preparation for individual sessions;

« Reverse assembly allowing editing and reassembly of
source statements;

« Multiple execution modes;

« Trace expressions that are easy to define;

- Trace execution that can display designated expression
values, cache memory, and the instruction pipeline; and

« Breakpoints that can occur on address read, write, or
both, on address execute, and on expression valid.

Perhaps the most important trend with the newer DSPs
is the availability of high-level-language compilers. The
presence of C and Ada compilers in the 320C30 is not an
accident since the 320C30 was designed with acompiler in
mind. We expect this path to a high-level language to make
the porting of application programs from large computers
much easier. The algorithm can be developed almost
entirely on a large computer and then converted to the
320C30 assembly language by compilation.

The C compiler for the 320C30 has exceptional effi-
ciency,? which makes a good C program almost as effec-
tive as the assembly-language program. The C compiler
will be sufficient for most applications. The exception is
time-critical applications. In such cases one can use the fact
that most DSP algorithms spend the vast majority of the
execution time on a small section of the code. (Researchers
often mention the 90/10 rule: 90 percent of the time is spent
on 10 percent of the code.) Under these circumstances, the
user can optimize execution by creating very fast assem-
bly-language routines that implement the time-critical
sections, and call them from C as regular C functions. To
achieve this, we define the C function interface very
precisely so that users can create their own routines. The C-
compiler package comes with a library of general-purpose
mathematical, interface, and I/O functions.

Besides this method of optimizing the performance of
the C language, two more methods can be used. The first
one is based on the fact that the output of the compiler is an
assembly-language program. The user can edit this pro-
gram and optimize it by rearranging the instructions. The
second method is to use the “asm” directive supported by
the C compiler. The arguments of this directive are passed
to the output of the compilation without any alteration so
that the user can insert assembly-language instructions into
the middle of the C program.

A key part of the 320C30 development environment is
Spox, the first real-time operating-system for a single-chip
DSP. Spox, developed by Spectron Microsystems, extends
the core C language with a library of standard I/O routines
and, mostimportantly,a DSP math package. One of Spox’s
unique features is that it provides users with software
objects that are especially suited for DSP. Some of these
objects are vectors, matrices, filters, and streams. The math

The TMS320C30 Floating-Point Digital Signal Processor

Perhaps the most important

trend with the newer DSPs is

the availability of high-level-
language compilers.

package and these software objects are carefully designed
to take full advantage of the capabilities of the 320C30.
Spox also supports multitasking, thus allowing the user to
easily implement the more complex control structures that
are becoming essential for DSP systems.

By providing a complete software development envi-
ronment that includes compilers and operating systems
along with the more-traditional tools such as assemblers
and linkers, we allow the user to move from system
conception to system implementation in the shortest pos-
sible time.

The next level of development tools includes the hard-
ware emulators for debugging target hardware or deter-
mining the performance of an algorithm on the 320C30
device itself. The XDS1000 is a real-time, in-circuit emu-
lator/software development tool based on the 320C30.
Besides these tools from Texas Instruments, other compa-
nies offer related support, such as the PC-based develop-
ment board by Atlanta Signal Processors and the develop-
ment platform of Spectron Microsystems for PCs and Sun
workstations.

Applications

Certain features of the 320C30 such as its high speed,
versatile architecture, and rich instruction set, make it easy
to implement very demanding algorithms. The large
memory space makes the device suitable for application
areas such as image processing in which memory address-
ing is one of the prime considerations. And the C compiler
makes it easy to construct algorithms with complicated
logic. '

General DSP algorithms. Almost every DSP applica-
tion needs to perform some kind of filtering, the first
application considered for a DSP device. Digital filters are
categorized as FIR (finite-length impulse response) and
IIR (infinite impulse response) filters,3¢ or, equivalently,
as filters that have only zeros or both poles and zeros. Each
of these categories can have either fixed or adaptive coef-
ficients.

The 320C30implements FIR filters very efficiently. For
instance, let an FIR filter have an impulse response h[0],
h[1],..., [N X 1], and let x[n] represent the input of the
filter at time n. Then, the following equation gives the
output y[n] with the equation:

y(n] = hl0] X x[n] + A[1] X x[n = 1]+ ... +
AIN=1] X x[n=N+1]

43

Typical Calling Sequence:

load ARO
load ARL
load RC
load BK
CALL FIR

Data Memory Organization:

Impulse Initial Final
response input samples input samples
Low Oldest +
address | h(N=-1) i input | x{n=(N-1)) |] ®2{n) P
!
H h(N-2) H b x(n=(N=-2)) ! tox(n=(N-1)) | i
. '
!
. . . Circular
. . . queue
'
i h(1) H ! x(n=1) ! H x (n-2)
High Newest
address ! h(0) t input ! X (n) HE x(n-1)

The physical address for the start of the input samples must be on
a boundary with the LSBs set to zero according to the length of the
buffer. The pointer to the input sequence (x) is incremented and
assumed to be moving from an older input to a newer input. At the
end of the subroutine AR1 will be pointing to the position for the
next input sample.

Argument Assignments:

Argument | Function

ARO i Address of h(N-1)

AR1 ! Address of x(N-1)

RC i Length of filter - 2 (N-2)
BE. ! Length of filter (N)

Registers used as input: ARO, AR1, RC, BK
Registers modified: RO, R2, ARO, AR1l, RC
Register containing result: RO

FProgram size: 6 words

Execution cycles: 11 + (N-1)

.global FIR

H ;3 initialize RO:

FIR MPYF3 *#ARO++ (1) ,*#ARL++ (1) % ,RO 3 h(N-1) #* x(n—(N-1)) => RO
LDF 0.0,R2 3 initialize R2.

filter (1 <=1 < N)

RFTS RC
MFYF3 #ARO++ (1) , #¥AR1++ (1) %Z,RQ
i ADDF3 RO,R2,R2

setup the repeat single.
h(N-1-i) # x(n=(N-1-i)) =-> RO
multiply and add operation

ADDF _RO,RZ,RO

add last product

return sequence

RETS return

L3
3
a

.end

Figure 7. FIR filter implementation on the 320€30.

44 The TMS320C30 Floating-Point Digital Signal Processor

Typical Calling Sequence:

load R2
load ARO
load ARY
load IRO.
load IR1
load BK.
load RC
CALL IIR2

Data Memory Organization:

The physical address

length of the buffer. The Bk

(block size) register must contain the

for the start of each circular queue of delay node
values must be on a boundary with the LSEs set to zero according to the

Filter * Initial delay Final delay
coefficients node values node values
Low - Newest
address | az2(0) I delay d(0,n) H { d(o,n-1) §m———
'
H
1 b2(0) i I d0,n-1) H i dO,n-2) ! circular
queue
3 oldest !
H H at¢o) i delay ! d{(0,n-2) H i d(o,n) fm———
i
H H b1 () H H Empty H i Empty
H
H H b0 (0) H 3
H
H . i d(N-1,m H I d(N-1,n=1) l-—-—4
3 !
H . i d(N-1,n=-1) 1 I d(N-1,n-2) | circular
queue
H H
i t aZ(N-1) H P dN-1,n=2) 1§ d(N=1,n) i--=-+
é I b2(N-1) i H Empty H i Empty
H
i tal(N-1) :
H Fr e ——————— +
3 PoblN-1)
i High e ataatd +
3 address I bO(N-1) H
3 e ——————— +
5
5
s
5

Figure 8. Implementation of N biquads on the 320C30.

Two features of the 320C30 facilitate the implementa-
tion of the FIR filters: parallel multiply/add operations and
circular addressing. The first feature permits a multiplica-
tion and an addition to execute in one machine cycle, while
the second makes a finite buffer of length N sufficient for
the data x[n]. Figure 7 shows the arrangement of the data
and the assembly code for an FIR filter. Note that the filter
takes one cycle of execution per tap.

The transfer function of the IIR filters contains both
poles and zeros, and its output depends on both the input
and the past output. As a rule, these filters need less
computation than a FIR filter of similar frequency re-
sponse, but they have the drawback of being sensitive to
coefficient quantization. Most often, the IIR filters are
implemented as a cascade of second-order sections, called
biquads., Toimplement an IIR filter consisting of N biquads,
let a1[i], a2[i] be the numerator coefficients of the ith bi-
quad and b0[i], b1[i], b2[i] the denominator coefficients of

The TMS320C30 Floating-Point Digital Signal Processor

the same biquad. Also, let x[n] be the input and y[n] be the
output of the IIR filter. In canonic form, the following C
code implements the N biquads:

y[0,n] = x[n};

for (i=0; i<N; i++){

d[i,n] = a2[i]*d[i,n-2] + al[i]*d[i,n~1] + y[i-1,n];

y(i,n] = b2[i]*d[i,n-2] + b1[i}*d[i,n-1] + '

bOfiJ*d[i.n};

}

y[n]} = y[N-1,n];)

Figure 8 shows the memory arrangement and the code
for this implementation on the 320C30.

In addition to the fixed-coefficient filters, the 320C30
can also implement very effectively adaptive filters (with
three cycles per updated tap).

Fourier transforms are another important tool often used
in DSP systems. The purpose of the transform is to convert
information from the time domain to the frequency do-

45

(Continued on page 26)

value 3. The result y(n) is placed in RO. At the end of the program,
AR1 points to the new d(0O,n-2) so that it is set when the new sample
comes in. N

rrgunent Assignmente:
Argument ! Function

R2 Input sample x(n)

ARO Address of filter coefficients (a2(0))
AR1 ! Address of delay node values (d(O,n-2))
BE i OBk = 3

IRO i IRO = 4

IR1 tIR1 = 4%N-4°

RC . ! Number of biquads (N} - 2

Registers used as input: R2, ARO, AR1, IRO, IR1, BK, RC
Registers modified: RO, R1, R2, ARO, ARl, RC

Register containing result: RO

Frogram size: 17 words

Execution cycles: 23 + 6N

.global IIRZ

3
1IR2 MFYF3 *ARO, *AR1,” RO
MFYFZ #++ARO(1), *AR1--(1)%, R1

az2(0) * d(0,n-2) => RO
b2(0) * d(0,n-2) -> RI

MFYF3 *++AR0 (1), *AR1, RO
H ADDF3 RO, R2, R2

al1(o) * d(o,n-1) -> RO
first sum term of d(O,n).

MFYF3 *#++ARO (1), *AR1--(1)%, RO 5 b1(0O) * d(O,n-1) ~-> RO
H ADDF3 RO, R2, R2 second sum term of d(0,n).

MPYFX *++ARO (1), R2, R2
. STF R2, *AR1--(1)%

b0o(0) * d(O,n) -> R2
store d(0,n); point to
d(0,n-2).

RETE Loor loop for 1 <= i < N

MFYF3 *#++ARO (1), *++AR1(IROM), RO 3 aZ(i) * d(i,n-2) ->» RO
H ADDF 3 ROLRZ,R2 first sum term of y(i-1,n)

MEYFZ *++ARO(1), *AR1--(1)%, R1
: ADDFS R1,R2,R2

b2¢i) * di,n-2) -> R1
second sum term of y(i-i,n)

MFYF3 *++ARO (1), *AR1, RO 5 aldi) % d(i,n-1) -» RO
H ADDF3 RO, R2, R2 first sum term of d(i,n).

MFYF3 *++ARO (1)

, *AR1-=(1)%, RO
ADDF3 RO, R2, R2

b1¢i) * d(i,n-1) -» RO
second sum term of d(i,n).

STF R2, *AR1--(1)% 5 store d(i,n); point to
ddi,n-2).
OOF MFYF3 *++ARO (1), R2, R2 5 bOGi) # d(i,n) -» R2

final summation

R

ADDF ROLRZ
ADDF = R1,R2Z,RO

first sum term of y(N-1,n)
second sum term af y(N-1,n)

NOF *#AR1--(IR1)
NOF L¥ART=-=(1)%

return to first biquad
point to d(0O,n-1)

return sequence

RETS return

end

.end

Figure 8 (cont'd.)

46 The TMS320C30 Floating-Poiht Digital Signal Processor

main. Computationally efficientimplementation of Fourier
transforms are known as the fast Fourier transform
(FFT).*>* Table 3 shows the timing for different FFTs on
the 320C30. The code for these FFTs, as well as the
routines listed in Table 4, appear in the TMS320C30 User’s
Guide .

The 320C30 has many features that make it well suited
for FFTs, such as the high speed of the device, the floating-
point capability, the block-repeat construct, and the bit-
reversed addressing mode. For instance, the FFT shown in
Figure 9 on the next page can be implemented in code that
can be entirely contained in the 64-word cache of the
320C30.7

Telecommunications and speech. Telecommunica-
tions and speech applications have many requirements in
common with other DSP applications, but they also have
some special needs. For instance, telecommunications
applications interfacing to T1 carriers sometimes need to
convert between a linear signal and one compressed by -
law or A-law formats. Such a conversion can be realized
with hardware by adding a peripheral to the DSP peripheral
bus. This is the approach taken in some members of the
TMS320 first generation of devices. An alternative way is
to do the same function with software.

In speech applications, digital filters are often imple-
mented in lattice form. Depending on the application, both
FIR and IIR filters are realized this way, although some-
times the terminology lattice filter and inverse lattice filter
is used respectively.

Graphics and image processing. In graphics and im-
age processing applications DSPs perform operations on
two-dimensional signals, and matrix arithmetic takes on
particular significance. In the 320C30 matrix arithmetic
can be decomposed into a series of dot products, which can
be very effectively implemented using constructs similar
to the FIR filter implementation discussed earlier. Addi-
tionally, the large memory space of the 320C30 allows
processing of large segments of data at a time.

Benchmarks. We have implemented several general-
purpose and applications-oriented routines for the 320C30
and include these in the User’s Guide . Table 4 lists some
of these routines with the necessary cycles and the memory
requirements for the program.

in the utility of digital signal processors. This

growth has been fueled, at least in part, by the
ever-increasing level of performance and ease of use of
general-purpose DSPs. The TMS320C30 represents the
newest generation of DSPs. But, the end of this trend is not
yet in sight. Rather, we expect the trend of higher levels of
performance and greater ease of use to continue. For DSPs,
the next five years look bright indeed.

T he last five years have seen a tremendous growth

Table 3.
Timing of an FFT on the 320C30.
SRR
Number of Radix-2 Radix-4 Radix-2
points (complex) (complex) (real)
FFT timing (ms)
64 0.167 0.123 0.075
128 0.367 — 0.162
256 0.801 0.624 0.354
512 1.740 — 0.771
1,024 3.750 3.040 1.670
Code size
(Words) 55 176 86

The code size does not include the sine/
cosine tables. The timing does not include bit
reversal or data 1/0.

Table 4.
Program memory and timing
requirements for 320C30 routines.

Cycles
(best case/

Application Words worst case)
Inverse of a floating-point

number 31 31
Integer division 27 27/58
Double-precision integer

multiplication 20/24
Square root 32 35
Dot product of two vectors 10 8+N-1
Matrix times vector

operation 10 2+ R(C+9)
FIR filter 5 T+N-=-1
IIR filter (one biquad) 7 7
IR filter (N> 1 biquads) 16 19+6N
LMS adaptive filter 9 8+3N-1)
LPC lattice filter 11 9+5(P-1)
Inverse LPC lattice filter 9 9+3P-1)
p-law compression 16 16
p-law expansion 13 11/16
A-law compression 18 18
A-law expansion 15 14/21

N = length of appropriate vector

P = length of lattice filter

R = number of rows of a matrix

C = number of columns of a matrix

The TMS320C30 Floating-Point Digital Signal Processor

47

GENERIC PROGRAM TO DO A LOOFED-CODE RADIX-2 FFT COMPUTATION IN 320C30.

THE PROGRAM IS ADAFTED FROM THE FORTRAN FROGRAM IN PAGE 111 OF
REFERENCE ([S3

AUTHOR: PANDS E. FAPAMICHALIS

TEXAS INSTRUMENTS JULY 16, 1987
«GLOBL N FFT S1ZE
.6LOBL M LOG2(N)

«GLOBL SINE
.BSS INF,1024

ADDRESS OF SINE TAELE
MEMORY WITH INPUT/OUTPUT DATA

«TEXT

H INITIALIZE
< WORD FFT 3 STARTING LOCATION OF THE PROGRAM
H

«SPACE 100 RESERVE 100 WORDS FOR VECTORS, ETC.
FFTS1Z «WORD N
LOGFFT +WORD ™M
'SINTAB «WORD SINE
INFUT < WORD INF
FFT: LDF FFTS1Z ;i COMMAND TO LOAD DATA FAGE FOINTER
LI @FFTSIZ, IR1
LSH -2,IR1 : IR1=N/4, POINTER FOR SIN/COS TABLE
LDI 0,ARG - 5 AR6 HOLDS THE CURRENT STAGE NUMEER
LDI: @FFTSI1Z, IR0
LSH 1,IR0O ;5 IRO=2%N1 (BECAUSE OF REAL/IMAG)
LDI @FFTSIZ,R7 ;3 R7=N2
LDI 1,AR7 s INITIALIZE REFEAT COUNTER OF FIRST LOOF
LDI 1,ARS ;s INITIALIZE IE INDEX (ARS=IE)

H OUTER LOOF

LGOF: NOF *r+ARG (1) : CURRENT FFT STAGE

LDI @INFUT, AR i ARO FOINTS TO X(I)

ADDI R7,AFO, Ak . § ARZ FOINTS TO X(L)

LDI A7 (RC

SUEI 1.RC 3 RC SHOULD BE ONE LESS THAN DESIRED #
: BUTTERFLY WITHOUT TWIDDLE FACTORS

4 BLK1

ADDF *ARO , *AR2, RO H CIy+X L)

SUBF *ARZ2++, #¥ARO++ K1 H (D) =X (L)

ADDF *AR2 , #AR0O,R2 H (I +Y (L)

SUBF #AR2, #ARO ,R3 H (I =YW

STF RZ, #ARO-— H AND. ..
i STF R3, *AR! 3
BLK1 STF RGy #ARO++ (IRO) H AND
H STF R1, #AR2++ (IF0) 3 X (L)=R1 AND ARO,2 = ARO,2 + 2%N1
3 IF THIS IS THE LAST STAGE, YOU ARE DONE

CMPI @LOGFFT,ARSL

EZD END

3 MAIN INNER LOOP

LDI1 2,AR1 3 INIT LOOF COUNTER FOR INNER LOOF
LDI @SINTAE,AR4 i INITIALIZE IA INDEX (AR4=1A)
INLOF: ADDL ARS ,AR4 ;i IA=IA+IE; AR4 FOINTS TO COSINE
LDI AR1,ARO
ADDI 2,AR1 3 INCREMENT INNER LOOF COUNTER
ADDI @INFUT, ARO 5 (X(I),Y(I)) POINTER
ADDI R7 4AR0O,ARZ 3O(X(L),Y(L)) FOINTER
LDI AR7 ,RC
SUBI 1,RC 3 RC SHOULD BE ONE LESS THAN DESIRED #
LDF #AR4 ,R&6 3 R6=SIN
i BENERAL BUTTERFLY
BLK2
SUEBF #ARZ, #ARO ,R2 R2=X(I)-X (L)

Ri=Y(I)-Y (L)
RO=R2%SIN AND...
R3=Y (1) +Y (L)
R3=R1%#C0OS AND...

SUBF *#+AR2, #+AR0,R1
MPYF R2,Ré,RO

i ADDF *#+AR2, #+AR0,R3
MPYF R1,%+AR4 (IR1) ,R3

N
Figure 9. Example of a radix-2, decimation-in-frequency FFT.

48 The TMS320C30 Floating-Point Digital Signal Processor

1 STF K3, *+AR0 3 YD =YD +Y (L)
SUBF RO,R3,R4 } R4=R1#COS-R2*SIN
MPYF R1,Ré,RO 3 RO=Ri#SIN AND...

t ADDF *#AR2, #*AR0,R3 3 R3=X(I)+X(L)
MPYF R2, *+AR4 (IR1) ,R3 3 R3=R2#COS AND...

t STF R3, #ARO++ (IRO) § X(I)=X(I)+X(L) AND ARO=ARO+2¥N1
ADDF RO,R3I,RS 3 RS=R2*COS+R1#SIN

BLK2 STF RS, #AR2++ (IRO) } X(L)=R2#COS+R1#SIN, INCR ARZ

AND. ..

i STF R4, *+AR2 § Y(L)=R1#COS-R2#SIN
CMPIL R7,AR1
ENE INLOF ; LOOP BACK TO THE INNER LOOF
LSH 1,AR7 5 INCREMENT LOOP COUNTER FOR NEXT TIME
LSH 1,ARS 5 IE=2#IE
LDI R7, IR0 5 N1=N2
LSH ~1,R7 3 N2=N2/2
ER LOOF i NEXT FFT STAGE

END NOF
.END

Figure 9 (cont'd.)
References processing and telecommunications.

1.K.-S. Lin, G.A. Frantz, and R. Simar, “The TMS320 Family
of Digital Signal Processors,” Proc. IEEE, Vol. 75, No. 9,
Sept. 1987, pp. 1143-1159.

2. R. Simar and A. Davis, “The Application of High-Level
Languages to Single-Chip Digital Signal Pragessors,” Proc.
1988 Int’l. Conf. Acoustics, Speech, and Signal Processing,
Apr. 1988, pp. 1678-1681.

3. A. Oppenheim and R. Schafer, Digital Signal Processing,
Prentice Hall, Englewood Cliffs, N.J., 1975, 585 pp.

4. L. Rabiner and B. Gold, Theory and Application of Digital
Signal Processing, Prentice Hall, 1975, 762 pp.

5. C.S. Burrus and T.W. Parks, DFT/FFT and Convolution
Algorithms, John Wiley & Sons, New York, 1985, 232 pp.
6. TMS320C30 User’s Guide, Texas Instruments, Dallas, Tex.,

1988.
7. P. Papamichalis, “FFT Implementation on the TMS320C30,”

Proc. 1988 Int'l. Conf. on Acoustics, Speech, and Signal
Processing, Apr. 1988, pp. 1399-1402.

il

Panos Pag isasenior of the technical staff and
a section manager in the Texas Instruments DSP Applications
Group. He is also an adjunct professor for the Electrical and
Computer Engineering Department at Rice University in Houston.
Author of Practical Approaches to Speech Coding, his interests
include digital signal processing with applications to speech

e

1 b,

The TMS320C30 Floating-Point Digital Signal Processor

Papamichalis received his engineering degree from the School
of Mechanical and Electrical Engineering, National Technical
University of Athens. His MS and PhD degrees in electrical
engineering come from the Georgia Institute of Technology in
Atlanta. He isamemberof the Institute of Electrical and Electronics
Engineers and Sigma Xi.

9

'y

Ray Simar, Jr. is a group member of the TI Semiconductor
technical staff and the principal architect and program manager of
the TMS320C30. He has supported the TMS320 family of digital
signal processors.

Simar holds a BS degree in bioengineering from Texas A&M
University, College Station, and an MSEE from Rice University.
He isamember of Tau Beta Pi, Phi Eta Sigma, and Phi Kappa Phi.

Questions concerning this article can be directed to Panos
Papamichalis, Texas Instr Inc., PO Box 1443, M/S 701,
Houston, TX 77251-1443.

49

50

The TMS320C30 Floating-Point Digital Signal Processor

Part II. Digital Signal Processing Routines

4. An Implementation of FFT, DCT, and Other Transforms on the TMS320C3(
(Panos Papamichalis)

5. Doublelength Floating-Point Arithmetic on the TMS320C30
(Al Lovrich)

6. An 8x8 Discrete Cosine Transform Implementation on the TMS320C25
or the TMS320C30
(William Hohl)

7. An Implementation of Adaptive Filters with the TMS320C25
or the TMS320C30
(Sen Kuo and Chein Chen)

8. A Collection of Functions for the TMS320C30
(Gary Sitton)

51

52

An Implementation of FFT, DCT,
and Other Transforms on the
TMS320C30

Panos Papamichalis

Digital Signal Processor Products—Semiconductor Group
Texas Instruments

53

54

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

This report describes the implementation of several Fast Fourier Transforms (FFTs)
and related algorithms on the TMS320C30. The TMS320C30 is the first device in the
third generation of 32-bit floating-point Digital Signal Processors (DSPs) in the Texas
Instruments TMS320 family. The algorithms considered here are the complex radix-2 FFT,
the complex radix-4 FFT, the real-valued radix-2 FFT (both forward and inverse
transforms), the Discrete Hartley Transform (DHT), and the Discrete Cosine Transform
(DCT). These transforms have many applications, such as in image processing, sonar,
and radar.

The introduction briefly describes transforms and their implementation on the
TMS320 family of processors. Next, the different kinds of FFTs (including the real FFT),
the closely-related Hartley transform, and the Cosine transform are described and com-
pared. This is followed by a description of the TMS320C30 features that permit efficient
implementations of these algorithms. Then, specific implementations, transforms, and
TMS320C30 C Compiler facts are outlined. Finally, the report discusses some implemen-
tation issues, and the appendices list actual TMS320C30 code for performing transforms.

The powerful architecture and instruction set of the TMS320C30 permit flexible
and compact coding of the algorithms in assembly language while preserving close cor-
respondence to a high-level language implementation. The efficiency of the architecture
and the speed of the device make faster realization of real and complex transforms possi-
ble. With the availability of a C compiler, these routines can be put in C-callable form
and used as faster versions of FFT C functions.

Introduction

The Fast Fourier Transform (FFT) is an important tool used in Digital Signal Pro-
cessing (DSP) applications. Its development by Cooley and Tuckey gave impetus to the
establishment of DSP as an independent discipline. The well-structured form of the FFT
has also made it one of the benchmarks in assessing the performance of number-crunching
devices and systems.

In recent years, because of the popularity of this signal-processing tool, there have
been efforts to improve its performance by advances both at the algorithmic level and
in hardware implementation. Researchers have been developing efficient algorithms to
increase the execution speed of FFTs while keeping requirements for memory size low.
On the other hand, developers of VLSI systems are including features in their designs
that improve system performance for applications requiring FFTs. In particular, single-
chip programmable DSP devices, currently available or under development, can realize
FFTs with speeds that allow the implementation of very complex systems in realtime.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 55

The Texas Instruments TMS320 family consists of five generations of programmable
digital signal processors. The TMS32010 introduced the first generation, which today en-
compasses more than twelve devices with various speeds, interfacing capabilities, and
price/performance combinations. FFT implementations on the TMS32010 can be found
in the appendix of the book by Burrus and Parks [1].

The second-generation TMS320 devices (the TMS32020, the TMS320C25, and their
spinoffs) enhanced the architecture and speed capabilities of the first generation. Examples
of FFT programs implemented on the TMS32020 can be found in an application report
in the book Digital Signal Processing Applications with the TMS320 Family [2]. Such pro-
grams are easily extended to the TMS320C25 because of the code compatibility between
devices.

The architectural and speed improvements on the processors from one generation
to the next have made the FFT computation faster and the programming easier. These
advantages have reached a new high level in the third generation. The TMS320C30 is
the first device in the third generation, and this report examines implementation of the
FFT algorithms on it. The fourth generation (TMS320C4x) is a new set of floating-point
devices, while the fifth generation (TMS320C5x) is a continuation of the fixed-point devices.
Since software compatibility is maintained within the fixed-point and the floating-point
devices, the existing FFT implementations will also be applicable to these new generations.

- The Fourier Transform of an analog signal x(), given as

oo
X(w) = x(t) e—jotdt , 1)
— Q0
determines the frequency content of the signal x(z). In other words, for every frequency,
the Fourier transform X(w) determines the contribution of a sinusoid of that frequency
in the composition of the signal x(z). For computations on a digital computer, the signal
x(t) is sampled at discrete-time instants. If the input signal is digitized, a sequence of numbers
x(n) is available instead of the continuous-time signal x(). Then, the Fourier transform
takes the form
[0 <]
X(@o) = X x(n) e—Jon @)

n=—oo

56 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

The resulting transform X(e/®) is a periodic function of w, and it needs to
be computed for only one period. The actual computation of the Fourier transform of a
stream of data presents difficulties because X(e/«) is a continuous function in w. Since
the transform must be computed at discrete points, the properties of the Fourier transform
led to the definition of the Discrete Fourier Transform (DFT), given by

N-1 _ j2mkn

Xk = X xme N A3)
n=0

When x(n) consists of N points x(0), x(1), . . ., x(N-1), the frequency-domain

representation is given by the set of N points X(k), k=0,1, . . .,N-1. Equation (3) is often
written in the form

N-1
Xk = L xwwh @)
n=0

k
where W 7\, =e—j 2mank /N, The factor Wy is sometimes referred to as the twiddle factor.

A detailed description of the DFT can be found in references [1,3,4]. The computational
requirements of the DFT increase rapidly with increasing block size N, having an impact
on the real-time system performance. This problem was alleviated with the development
of special fast algorithms, collectively known as Fast Fourier Transform (FFT). With an -
FFT, the computational burden increases much less rapidly with N, and for any given
N, the FFT computational load, measured in terms of required multiplications and addi-
tions, is smaller than a brute-force computation of the DFT.

The definition of the FFT is identical to the DFT: only the method of computation
differs. To achieve the efficiency of an FFT, it is important that N be a highly composite
number. Typically, the length N of the FFT is a power of 2: N = 2M_ and the whole
algorithm breaks down into a repeated application of an elementary transform known as
a butterfly. If N is not a power of 2, the sequence x(n) is appended with enough zeroes
to make the total length a power of 2. Again, references [1,3,4] contain a detailed develop-
ment of the FFT. Reference [2] also discusses the same topic.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 57

Different Forms of the FFT

Over the years, researchers have developed different forms of FFT for more effi-
cient computation. Special cases, such as those in which the input is a sequence of real
numbers, have been investigated, and even more sophisticated algorithms have been
developed. The general form of the FFT butterfly is given in Figure 1.

P > > k
O—» reawt
Q > > —awk
: O—> r-au

WN —1

Figure 1. Radix-2 Butterfly for Decimation in Time

If the inputs to the butterfly are the two complex numbers P and Q, the outputs will
be the complex numbers P’ and Q’, such that

PP=P+QWy 5)

and

Q'=P-0QWy ©)

The quantities P, O, and P’, Q" represent different points in the array being trans-
formed, and they may or may not occupy adjacent locations in that array. In an in-place
computation, the result P’ will overwrite P, and Q’ will overwrite 0. W]’\‘/ represents again

the twiddle factor, and its exponent is determined by the location of the corresponding
butterfly in the FFT algorithm.

Figure 2 shows an alternate form of the same FFT butterfly.

P P+Q W
k
o/ W P-Q W

Figure 2. Alternate Form of Radix-2 Butterfly for Decimation in Time.

58 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Although the notation is now less descriptive, it creates a clearer picture when several
butterflies are put together to form an FFT. Using the first notation, Figure 3 is the
flowgraph of an 8-point FFT example.

x(0) ©

x(2) o—3 .‘X‘XW”A 1 wﬁ % O X(2)

x(3) o—¥ 'vvv“" " >0 X6

0

N D 0 O p—0
/XSS e

0

N

0

N

> X(0)

Y
Y
v
- A
\
O

RETZAN TS0 GG
o w ., X(7)

Figure 3. Example of 8-Point FFT with Decimation in Time.

Note that the input sequence x(r) is in the correct order, while the output X(k) is
scrambled. Actually, this scrambling occurs in a very systematic way, called bit-reversed
order: If you express the indices of a scrambled sequence in binary and you reverse this
number, the result is the order that this particular point occupies. For instance, X(3) oc-
cupies the sixth position in the output (when counting from the zero position). In binary
form, 319 = 011,, and if bit-reversed, you get 110, = 619, which is the position that
X(3) occupies. It turns out that the third position is occupied by X(6), and to restore the
correct order at the output, you need only to swap these two numbers.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 59

The same procedure can be repeated with all the scrambled numbers not occupying
the position that their index suggests. If the input sequence x(n) is rearranged to appear
in bit-reversed form, the output X(k) appears in the correct order, as shown in Figure 4.

X0) TR >
NEERIC=0= GONVA
e ,m XA
: -1
%

\

X(0)

(e o= AYAYAYA
x(1) © 0 0 0 WN “A X(4)
ot SN 7 /XXX

ST ST g
x(3) © —_ v 'A > \=_L X(6)

x(7) © 0 X(7)

-1 -1 -1

Figure 4. Alternate Form of 8-Point FFT with Decimation in Time. The Input Is in
Bit-Reversed Order and the Output Is in the Correct Order.

Since the only difference between Figures 3 and 4 is a rearrangement of the but-
terflies, the computational load and the final results are identical. In terms of implementa-
tion, this rearrangement means that the nesting of the two innermost loops in the FFT
routine is interchanged.

The butterflies and the FFT configurations presented thus far implement the FFT
with a decimation in time. This terminology essentially describes a way of grouping the
terms of the DFT definition; see Equation (3). An alternative way of grouping the DFT
terms together is called decimation in frequency. Figures 5 and 6 show the same example
of an 8-point FFT: Figure 5 with the input in correct order and the output in bit-reversed
order, and Figure 6 vice-versa, and using the decimation in frequency (DIF).

60 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 .

AN ASNDZ A=
x(2) I .v-: o X(2)
‘#‘Amm— ;3 X(6)

XA ‘V‘V WO 1 -1

.AeeAO B N * 0 " .v?’ o X(1)
LXK N T <
(-1 w2 N N¥ 0 -1 ®)
«©) O N N A .v,,, 0 X@)
o Cws TN > W .

x(7)©

Figure 6. Alternate Form of 8-Point FFT with Decimation in Frequency. The Input .
Is in Bit-Reversed Order and the Output Is in the Correct Order

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 61

Pictorially, the difference between decimation in time and decimation in frequency
is that the twiddle factor appears at the input of the butterfly in the first, and at the output
in the second. Otherwise, the two methods are identical in terms of results. However,
depending on what is the most convenient order of getting the twiddle factors and where
the longest-span butterfly appears, you may prefer one method over the other.

The butterfly shown in Figure 1 (or Figure 2) is the smallest element in a radix-2
FFT. The radix of the FFT represents the number of inputs that are combined in a butter-
fly. The Fast Fourier Transform is usually explained around the radix-2 algorithm for
conceptual simplicity. If, however, higher-order radices are used, more computational
savings can be achieved. These savings increase with the radix, but there is very little
improvement above radix 4. That’s why the radix-2 and radix-4 FFTs are the most com-
monly used algorithms.

In radix-4 FFT, each butterfly has 4 inputs and 4 outputs, essentially combining
two stages of a radix-2 algorithm in one. Figure 7 shows this combination graphically.

A Al A
A A
B B1 B __ B B
c c1 c — ¢ c
D D
D D1 D

Figure 7. Butterfly for Radix-4, Decimation-in-Time FFT.

62 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Although four radix-2 butterflies are combined into one radix-4 butterfly, the com-
putational load of the latter is less than four times the load of a radix-2 butterfly. Ex-
amples of radix-4, 16-point FFTs are shown in Figures 8 and 9 for decimation in time
and decimation in frequency, respectively.

0

/
\
N

W
(7}

11« 14

12 ¢« 3

13 ¢« 7
O

14 & 1

15 15

Figure 8. Example of a 16-Point, Radix-4, Decimation-in-Time FFT.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 63

0 os O
1 0, 4
2 % 8
0
3 12
4 s 1
5 0, 5
6 % 9
0
7 13
8 Os 2
9 0. 6
10 9, 10
0
11 14
12 0s 3
13 0, 7
0
14 o M
15 15

Figure 9. Example of a 16-Point, Radix-4, Decimation-in-Frequency FFT.

These configurations take the incoming sequence in order and produce the frequency-
domain result in digit-reversed form. It is a simple matter to rearrange the FFT and have
the input in digit-reversed form and the output in order.

Digit reversal is similar to bit reversal, except that the number whose digits are re-
versed is written in base 4 (equal to the radix) rather than base 2. For example, the output
value X(14) in a 16-point, radix-4 FFT occupies position eleven (again starting from zero)
because 1419 = 324 and, reversing the digits of the number, 234 = 11;¢. To restore the
output to the correct order, the contents of locations with digit-reversed indices should
be swapped. However, since the TMS320C30 has a special bit-reversed addressing mode,
it is desirable to have the output of the radix-4 computation in bit-reversed rather than
digit-reversed form. This is accomplished quite simply if, in each radix-4 butterfly, the
two middle output legs are interchanged. That is, whenever the output of the butterfly
is the four numbers 4°, B’, C’, and D’, instead of storing them in that order, store them
in the order A°, C’, B’, and D’, as shown in Figure 10.

64 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

A A A A
B B B c
c c c B’
D D’ D D'

@ (b)

Figure 10. Radix-4 Butterflies. (a) Regularly-Ordered Output, (b) Bit-Reversed
Output.

References [5, 6] explain why this simple rearrangeinent puts the result in bit-reversed
order.

Features of the TMS320C30

The TMS320C30 is the first device introduced in the third generation of the TMS320

- Digital Signal Processors [7,8]. It has many architectural features that permit very effi-

cient implementation of algorithms. Some of those features pertinent to the FFT implemen-
tation are discussed in this section. ‘

The two most salient characteristics of the TMS320C30 device are its high speed
(60-ns cycle time) and floating-point arithmetic. The higher speed makes the implementa-
tion of real-time application easier than in earlier processors, even when the other architec-
tural advantages are not considered. Each instruction executes in a single cycle under mild
pipeline restrictions. The device automatically takes care of any potential conflicts. The
pipeline should be observed closely (e.g., using the trace capability of the simulator) only
if code optimization for speed is required.

The floating-point capability permits the handling of numbers of high dynamic range
without concern for overflows. In FFT programs, in particular, the computed values tend
to increase from one stage to the next, as discussed in reference [2]. Then, the fixed-point
arithmetic will cause overflows if the incoming numbers are large enough and no provi-
sions are made for scaling. All these considerations are eliminated with the floating-point
capability of the TMS320C30. The TMS320C30 performs floating-point arithmetic with
the same speed as any fixed point operation; no performance is sacrificed for this feature.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 65

There are eight extended-precision registers, RO—R7, that can be used as ac-
cumulators or general-purpose registers, and eight auxiliary registers, ARO—AR7, for
addressing and integer arithmetic. For many applications, these registers are sufficient
for temporary storage of values, and there is no need to use memory locations. This is
the case with the radix-2 FFT algorithm, where no locations are required other than those
for the transformation of incoming data to be transformed. Also, arithmetic using these
registers greatly increases the programming efficiency. The two index registers, IR0 and
IR1, are used for indexing the contents of the auxiliary registers ARO—AR?7, thus making
the access of the butterfly legs and the twiddle factors easy.

A powerful structure in the TMS320C30 is the block-repeat capability that has the
form

RPTB LABEL
put instructions here
LABEL last instruction

Whatever occurs after the RPTB instruction and up to the LABEL is repeated one -
time more than the number included in the repeat counter register, RC. The RC register
must be initialized before entering the block-repeat construct. The net effect is that the
repeated code behaves as if it were straight-line coded (no penalty for looping), with pro-
gram size equal to the one in looped code. In this way, the FFT butterfly, being the core
of the program, can be implemented in a block-repeat form, thereby saving execution time
while preserving the clarity of the program and conserving program space.

A bit-reversed addressing mode is available to eliminate the need for swapping
memory locations at the beginning or the end of the FFT (depending on the FFT type).
When you use this addressing mode, you access a sequence of data points in bit-reversed
order rather than sequentially, and you can recover the points in the correct order during
retrieval of the data instead of spending extra cycles to accomplish it in software.

Implementation of Radix-2 and Radix-4 Complex FFTs

Because of the powerful architecture and the instruction set of the TMS320C30,
the assembly language program follows closely the flow of a high-level language pro-
gram; this makes it easy to read and debug. It also keeps the size of the program small
and reduces the requirements for program memory. Appendix A presents an example of
code for a Radix-2 complex FFT, while Appendix B is a radix-4 complex FFT. The pro-
gram memory requirements for these programs (as well as others to be discussed later)
are given in Table 1. ‘

66 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Table 1. Program Memory Requirements for the Core of the FFT and Hartley

Transforms
Routine Type Program Size
Radix-2, complex FFT 50 words
Radix-4, complex FFT 170 words
Radix-2, real FFT 68 words
Radix-2, real inverse FFT 76 words
Hartley transform 71 words

The numbers in the table correspond only to the core program and do not include
the sine/cosine tables for the twiddle factors, any input/output, or any bit-reversing opera-
tions. Note also that they are independent of the FFT data size.

The data memory requirements are, of course, dependent on the FFT size. The max-
imum length of a complex, radix-2 FFT that can be implemented entirely on the internal
memory of the TMS320C30 is 1024 points. In the present implementation, the 1024-point
radix-4 FFT requires a few more locations (about 7) than are available on-chip.

The code (provided in the appendices) has been written to be independent of the
FFT length. The length N, together with the sine/cosine tables for the twiddle factors,
should be provided separately to maintain the generic nature of the core FFT program.
An example of a file with the sine/cosine tables for a 64-point FFT is given in the Appen-
dix F. Note that the FFT size and the number of stages are declared .global in both files
(i.e., the main routine and the file with the table) so that the core program gets the actual
values during linking.

To reduce the storage requirements of a sine/cosine table, a full sine and a cosine
cycle are overlapped. The table stores 5/4 of a full sine wave, with the cosine table start-
ing with a phase delay of 1/4 cycle from the sine table. This table size is larger than ac-
tually needed, and it is selected merely for testing convenience of the algorithms. The
minimum table size for a radix-2 complex FFT includes 1/2 of a full sine wave, and 1/2
of a full cosine wave. If these two half waves are combined using the above quarter-cycle
phase delay, the minimum table size for this kind of FFT is 3/4 of a full sine wave. For
instance, for a 1024-point FFT, the table can be the first 768 points of a sine wave, where
a full cycle would be 1024 points. In the case of a radix-4 complex FFT, the minimum
table size should include 3/4 of a sine and 3/4 of a cosine wave. Overlapping these re-
quirements, we get the minimum table size of a radix-4 algorithm to be one full sine wave.

An example ofa linking file is also included in Appendix F to show how the dif-
ferent segments are assigned. For a complete description of the assembler and linker, consult
the corresponding manual [6].

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 67

_ The timing of the FFT routines was done using the cycle-counting capability of the
TMS320C30 simulator. For the conversion of the number of cycles into seconds, a cycle
time of 60 ns was used. The timing refers only to the core FFT computation, ignoring
read-in and write-out requirements, since such requirements are application-dependent.
Also, no bit reversal is counted (although it may be included in the program), since it
is performed as part of the read-in or read-out. Table 2 gives the timing for the different
FFT routines and for the Hartley transform.

Table 2. FFT Timing in Milliseconds

Radix-2 Radix-4 Radix-2 Radix-2
Transform ’ Hartley
. Complex Complex Real Real
Size Transform
FFT FFT FFT Inverse FFT

64 0.165 0.123 0.077 0.085 0.081
128 0.370 - 0.174 0.193 0.181
256 0.816 0.624 0.387 0.434 0.403
512 1.784 - 0.857 0.964 1.132
1024 3.873 3.040 1.879 2.124 2.430
1024 2.366

For the complex FFTs, the radix-4 algorithm reduces the execution time by 20-25%
compared to radix-2, depending on the FFT size. The last entry in this table represents
the timing of the radix-2, DIT routine generated at the University of Erlangen [18] and
given in Appendix A. These numbers are typically used for benchmarking.

Implementation of Real FFT

The development of FFT algorithms is centered mostly around the assumption that
the input sequence consists of complex numbers (as does the output). This assumption
guarantees the generality of the algorithm. However, in a large number of actual applica-
tions, the input is a sequence of real numbers. If this condition is taken into consideration,
additional computational savings can be achieved because the FFT of a real sequence
demonstrates the following symmetries: Assuming that the FFT output X(k) is complex,

X(k) = R(k) + j Ik) O

and that the sequence has length N, R(k) and I(k) should satisfy the following relations:

Rk) = RN—k), k=1, ..., N2—1 (8)
Ik) = —IN-k), k=1, ..., N2-1 : ©)
10) = I(N/2) = 0. (10)

68 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

In other words, the real part of the transform is symmetric around zero frequency,
while the imaginary part is antisymmetric. Similar conditions hold if the transform is ex-
pressed in terms of magnitude and phase.

The savings are due to the fact that not all points need to be computed. Since the
not-computed points do not need to be saved either, there are also storage savings. An
efficient algorithm for real-valued FFTs is described in [10]. This algorithm was im-
plemented in the present study in such a way that, given the sequence of N real numbers
x(0), x(1), . . .,x(N-1), the resulting FFT, consisting of complex numbers, is stored as
R(©), R(1), . . .,R(N/2), I(N/2-1), I(N/2-2), . . .,I(1). R(k) and I(k) represent the real and
imaginary parts of the complex number X (k). Figure 11 shows the memory arrangement
for the FFT. Note that the input to the real FFT should be bit-reversed, but the bit rever-
sal can be done as the data is brought in. With this arrangement, an N-point FFT uses
exactly N memory locations. If the full array X(k) is needed, the following relations should
be used: '

X(@©0) = R(0) (11)
Xk) =Rk) +jIk),K=1,... N2-1 _ (12)
X(N/2) = R(N/2) (13)
X(k) = R(N—k) — j IIN—k), k = N2+1, ..., N—1 (14)
x(0) R(0)
x(1) R(1)
x(2) -
- N BIT- REAL R(N/2)
_ REVERSAL g FFT (N/2—1)
— I(N/2-2)
x(N-2) -
x(N-1) : (1)

Figure 11. Memory Arrangement of a Real FFT.

It is expected that, in most signal procéssing applications, there will be no need to
reconstruct the full X(k) array and that the output shown in Figure 11 will be sufficient
for any further processing.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 69

Appendix C contains TMS320C30 routines implementing a radix-2 real FFT and
its inverse. The implementation of the forward transformation is based on the FORTRAN
programs contained in [10]. The inverse transformation assumes that the input data are
given in the order presented at the output of the forward transformation and produces a
time signal in the proper order (i.e., bit-reversing takes place at the end of the program).
Viewed another way, the inverse real FFT operates as shown in Figure 11 but with the
arrows reversed (and inverse FFT taking the place of the FFT).

The timing for the real-valued FFT (both forward and inverse) is included in Table
2, and the corresponding program sizes are shown in Table 1. As you can see, the real-
valued FFT is considerably faster than the corresponding complex FFT because not all
the computations need be performed. Furthermore, there are data storage savings because
only half the values must be stored. As a result, the maximum length of real-valued FFT
that can be implemented on the TMS320C30 without using any external memory is 2048
points. Of course, if all the values are needed, they can be recovered using the symmetry
conditions mentioned earlier. To achieve the efficiencies of real FFT and not use any ex-
tra memory locations during the computation, the decimation-in-time method is applied
[10]. Decimation in time requires the bit-reversal operation in the forward transform to
be performed at the beginning of the program rather than at the end. The reverse is true
for bit-reversing in the inverse transform.

The Discrete Hartley Transform

Another transform that has attracted attention recently is the Discrete Hartley
Transform (DHT)[11, 12]. The DHT is applicable to real-valued signals and is closely
related to the real-valued FFT. Comparison of references [10] and [12] describing the
implementation of the two algorithms on FORTRAN programs shows that their implemen-
tation on the TMS320C30 should be similar. And indeed, this is the case.

The DHT pair is defined for a real-valued sequence x(n), n = 0, . . .,N—1, by
the following equations:

N—1
Hk) = X x(n) cas@wk n/N), k=0, . .., N—1 (15)
n=0
N—1
xm) = L H() cas(2rk n / N), k=0, . . ., N—1 (16)
N k=0

where cas(x) = cos(x) + sin(x). The DHT demonstrates a symmetry that is convenient
for implementations: The same program can be used for both the forward and the inverse
transforms, and the result is correct within a scale factor. Also, the real FFT and the DHT
can be derived from each other [12].

70 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

A radix-2 Hartley transform was implemented on the TMS320C30, and the cor-
responding code is included in Appendix D. This code follows the structure of the real
FFT in Appendix C. Tables 1 and 2 show the program memory requirements and the
timing for the execution of Hartley transforms of different sizes. The sine/cosine table
sizes are the same as in the case of a real FFT.

The Discrete Cosine Transform

The Discrete Cosine Transform (DCT), since its introduction in 1974 [13], has gained
popularity in speech and image processing applications because of its near-optimal behavior.
This discussion is based on the paper by Lee [14]. The DCT code was developed and
implemented by Paul Wilhelm of the University of Washington.

If x(n), n=0, . . .,N-1 is a time-domain signal and X(k) is the corresponding DCT,
x(n) and X(k) are related by the following equations:

N-1
xk) =2 X ek) x(n) cos @k + Dmn a”n
N n=0 2N ‘
N—-1
xm) = X e(k) X(k) cos 2k + Dmn (18)
k=0 2N
e) = 1/V2 (19)
ek) =1, fork # 0 (20

Appendix E shows an implementation of the DCT based on the paper by Lee [14].
The appendix contains the algorithms for both the forward and the inverse transformations
and an example of a table for a 16-point DCT. Note that, because of the structure of the
algorithm, the cosine table needed contains actually the inverses of the cosines (within
a scale factor), and it is not stored in the natural order. Instead, it is generated by the
following C pseudocode:

for k=2, i=0; k=N/2; k*=2]
for (j=k/2; j<N/2; j+ =k]{
cos__table[i+ +] = 1/[2*cos[j*pi/[2*N]]];
cos__table[i+ +] = 1/[2*cos[[N-j)*pi/[2*NJ]);

}
cos__table[N-2]
cos__table[N-1]

cos(pi/4);
2/N;

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 71

The last entry to the table is not part of the cosine itself; it is a constant that is used
by the algorithm, and it is placed at the end of the cosine table for convenience.

Table 3 shows the timing of the forward and inverse transforms for different transform
lengths. The difference in the timing between the forward and the inverse transforms is
due to the fact that more time was expended to optimize the performance of the inverse
transform. Since four of the smallest butterflies were done simultaneously in the center
program loop, the minimum permissible array size to be transformed is 8.

Table 3. DCT Timing in Milliseconds

Transform Forward Inverse
Size Transform Transform
16 0.023 0.020
64 0.105 0.088
128 0.230 0.193
256 0.502 0.416
512 ' 1.094 0.905
1024) 2.378 1.982

Other Related Transforms

In addition to the FFT types mentioned earlier (complex, real, decimation-in-time,
decimation-in-frequency, etc.), newer forms of the FFT have been developed to reduce
the computational load. One of the latest in the literature is the Split-Radix FFT. The Split-
Radix FFT [16] has the lowest number of multiplies and adds of any known algorithm.
It achieves this efficiency by combining certain radix-2 and radix-4 butterflies, but, as
a result, the classical concept of FFT stages is lost. The new structure uses a rather
complicated indexing scheme, which is the price paid for the reduced multiplies/adds.
Since, on the TMS320C30, multiplies/adds are not more expensive computationally than
any other operation, the indexing scheme wipes out the gains of the reduced arithmetic.
Actually, an implementation of the split-radix FFT showed it to be slower than the radix-2
FFT, one of the main reasons being that the block-repeat structure could no longer be
used effectively.

Very often, there is a question on what the different benchmark numbers mean. A
useful comparison of execution times for different algorithms on different machines has
been made [17]. Table 4 presents a small segment of the resulting information that is relevant
to the present discussion: the timing in seconds for the radix-8, mix-radix, and split-radix
algorithms that were implemented on various machines. Different operating systems and
compilers have been used, as shown. The execution times of Table 4 should be compared
with the 0.001879 s that it takes to implement a 1024-point, radix-2, real FFT on a
TMS320C30. As can be seen, the TMS320C30 compares favorably to all the other machines
investigated.

72 An Implementation of FFT, DCT, and Other Transfarms on the TMS320C30

Table 4. Execution Times in Seconds for a 1024-Point Real FFT. The Numbers Should
Be Compared with 0.001879 s of a 1024-Point Real FFT on the TMS320C30

Machine Radix-8 Mix-radix | Split-radix
VAX 750 UNIX BSD4.2 {77 0.3634 0.3902 0.3021
VAX 750 UNIX BSD4.2 f77 -0 0.2376 0.2948 0.2089
VAX 750 UNIX BSD4.3 f77 0.2545 0.2600 0.2371
VAX 750 UNIX BSD4.3 f77 -0 0.1825 0.2127 0.1672
VAX 785 ULTRIX f77 0.1046 0.1107 0.1101
VAX 785 ULTRIX f77 -0 0.0796 0.0943 0.0811
VAX 785 VMS FOR/NOOPTM 0.0767 0.0871 0.0975
VAX 785 VMS FOR/OPTM 0.0539 0.0641 0.0633
VAX 8600 VMS FOR/OPTM 0.0217 0.0243 0.0235
MICROVAX VMS FOR/NOOPTM 0.1671 0.1846 0.1864
MICROVAX VMS FOR/OPTM 0.1299 0.1527 0.1419
DEC-10 TOPS-10 FOR/NOOPTM 0.0940 0.1184 0.0991
DEC-10 TOPS-10 FOR/OPTM 0.0885 0.1110 0.0845
CDC 855 FTN5,0PT=0 0.0277 0.0319 0.0338
CDC 855 FTN5,0PT=1 0.0277 0.0316 0.0337
CDC 855 FTN5,0PT=2 0.0182 0.0171 0.0151
CDC 855 FTN5,0PT=3 0.0180 0.0173 0.0150
SUN 3/50 UNIX BSD4.2 f77 —0 -f68881 0.2518 0.3365 0.2103
SUN 3/50 UNIX BSD4.2 f77 —f68881 0.2806 0.3897 0.2802
SUN 3/50 UNIX BSD4.2 f77 -0 R 0.7586 1.047 0.6955
SUN 3/50 UNIX BSD4.2 f77 0.7476 1.029 0.7033
SUN 3/160 UNIX BSD4.2 77 0.6037 0.6895 0.5660
SUN 3/160 UNIX BSD4.2 {77 —pfa 0.0983 0.1060 0.0946
SUN 3/260 UNIX BSD4.3 f77 ’ 0.3689 0.4126 0.3390
SUN 3/260 UNIX BSD4.3 f77 -0 0.3530 0.4142 0.3297
Pyramid 90X UNIX BSD4.2 f77 -0 0.2053 0.2244 0.1416
Pyramid 90X UNIX BSD4.2 {77 0.2206 0.2457 0.1326
HP-1000 21MX-E FTN7X 0.9400 1.248 0.9478
Apple MAC Microsoft FOR 2.6670 3.1600 2.8260
AST PC Microsoft FOR 1.5040 2.0800 1.4630

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 ' 73

The TMS320C30 C Compiler

The C compiler for the TMS320C30 permits easy porting of high-level language
programs to the DSP device. If the CPU loading of a particular application is not very
high, the C compiler can create programs that run on the TMS320C30 in real time. If,
however, the result is non-realtime, it may be necessary to use assembly language for
more efficient coding.

In most cases, only a portion of the code needs to be written in assembly language.
Typically, there are a few code segments where the device spends most of the time and
which, when optimized in assembly language, yield the necessary performance
improvement. By following the conventions outlined in the run-time environment of the
C compiler [15], you can write these time-critical routines in assembly language and call
them in a C program. This is also true for the FFT routines. In appendices A, B, and
C, the radix-2, radix-4, and real FFT routines mentioned earlier are also put in a C-callable
form by adding the necessary interface at the beginning and the end of the code. The tables
with the sines and cosines are again assumed to be supplied during link time.

Issues in FFT Implementation

There are many ways of actually implementing the FFT code (and the other
transformations), taking into consideration the different possibilities of program locations,
the data locations, the ways of input and output, etc. Since it is impractical to cover every
possible case, this report has concentrated on a configuration in which the use of external
memory is minimized. With the source code and additional explanations provided, you
should be able to customize the FFT implementation for a particular application.

Use of External Memory

In these implementations, only on-chip memory was used, and that’s why the
maximum transform size considered was 1024 points long (2048 for a real transform).
Often, though, applications call for use of external memory for program or data or both.
When external memory is used, the structure of the code does not change at all; it is only
the timing that may be affected.

Fast external memory can be selected so that no wait states are necessary. But even
when there are no wait states, accessing external memory may impose some limitations.
For instance, you can make only one external memory access in a full cycle, but you can
make two accesses of internal memory in each cycle. Also, because of mutliplexing of
the busses, pipeline conflicts may arise if both program and data are placed on the same
external port. Resolution of such conflicts causes extra cycles for the execution. The section
on pipelining in the TMS320C30 User’s Guide explains in detail what kind of potential
conflicts may occur. '

74 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

To minimize or avoid such conflicts, there are some simple steps that the designer
can take. The TMS320C30 has three separate memory areas (one on-chip, one accessed
by the primary bus, and one accessed by the expansion bus) that can be combined. For
instance, the program can be placed on the expansion port and the data on the primary
port. Or the data can first be brought into internal memory and then operated upon.
Alternatively, the program may be relocated to internal memory. A related approach is
to use the cache. All the transforms are implemented as loops that are executed many
times. If you activate the on-chip cache after the first access of the code, the instructions
execute from the cache instead of the external memory.

If there are additional conflicts, they can typically be resolved by some rearrangement
of the code. For instance, consecutively writing to external memory takes two cycles per
write. If, however, a write is followed by some internal operation, then the second cycle
of the write is transparent, and the actual cost is one cycle.

Bit Reversal

The TMS320C30 has a special form of the indirect addressing mode for the bit-
reversing operation that is required at the beginning or the end of an FFT. Through this
addressing mode, the scrambled data are accessed in their proper order. This addressing
mode works as follows:

Let ARn (n=0..7) Be the auxiliary register pointing to the array with scrambled
data. The index register IR0 contains a.number equal to one-half the size of the FFT.
Then, after every access of the data, ARn is incremented by IR0 using the construct

*ARn + +[IR0JB

This causes the contents of ARn to be incremented by the contents of IR0, but if
there is a carry in this incrementing, the carry propagates to the right instead of to the
left. The result is the generation of the addresses in a bit-reversed order. The bit-reversed
addressing mode works correctly if the array with the data is aligned in memory so that
the first memory address is a multiple of the FFT size. This can be achieved if the first
memory address has zeros for the last M bits, where M = log,N, with N being the FFT
size. For example, in the case of a 1024-point FFT, the last 10 bits of the memory address
of the first datum should be zeros.

In the implementation of the complex FFT, the output is complex even when the
input is real. So, there is a need to consider both the real and the imaginary parts of the
data array. The above description of the bit-reversed addressing mode assumed that the
real and the imaginary parts are stored as separate arrays in the memory. In this case,
each of the arrays (real or imaginary parts) can be accessed as described. However, in
most cases (including this report), the real and imaginary points alternate in the same array.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 75

In this arrangement, the following simple modification achieves the same goal: set IR0
equal to N instead of N/2, and access the N points of the transform. At every access, the
auxiliary register is pointing to the real part of the FFT. The imaginary part is located
in the next higher location, and it can be easily accessed.

With the bit-reversed addressing mode, the unscrambling of the data can take place
when the FFT result is accessed for further processing or for I/0. It is possible, though,
that certain applications demand the reordering of the data in the same array. Such a
rearrangement can be done very simply for a complex FFT with the following code.

; DO THE BIT-REVERSING EXPLICITLY

LDl @FFTSIZ,RC » RC = FFT SIZE

suBl 1,RC ; RC SHOULD BE ONE LESS THAN DESIRED #
LDl @FFTSIZIRO ;IR0 = FFT SIZE

LDl @INPUT,ARO

LDl @INPUT,AR1

RPTB BITRV N
CMPI AR1,ARO ; EXCHANGE LOCATIONS ONLY
BGE CONT . IF ARDAR1
LDF *ARO,RO ;

I LDF *AR1,R1 . EXCHANGE REAL PARTS
STF RO,*AR1 :

I STF R1,*ARO ;

| LDF *+ARORO ; ~

I LDF *+AR1,R1 . EXCHANGE IMAGINARY PARTS
STF RO,* +AR1 . .

I STF R1,*+ARD
CONT NOP *ARO+ +(2)
BITRV NOP *AR1 + +(IRO)B

Note that AR1-is pointing to the bit-reversed version of the address contained in
ARO. For real-valued FFT, or for FFTs that store the real and the imaginary parts in
separate arrays, the real-FFT routine in Appendix C contains a modified example of the
above code. ' -

Use of DMA

If the signal to be transformed arrives as a continuous stream of data, the DMA
could be used to collect the new data while the data already collected are processed. In
this case, the data source address of the DMA points to the memory location correspond-
ing to a serial port, or to another port associated with an external device. The destination
is a memory space designated for storage.

76 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

There are two ways to use such buffers. One possibility is to designate one buffer
as the temporary storage and the other buffer as the working area. When the storage buffer
receives the necessary amount of data, the data is transferred to the working area, and
the DMA starts refilling the storage buffer. Alternatively, the two buffers are considered
equivalent: when the processor finishes processing and outputting the data from one and
the DMA has filled the other, the two buffers switch functions; i.e., the DMA starts filling
the first buffer while the CPU is processing the data in the buffer just filled.

Test Vector

For testing purposes, a vector with 64 (quasi-random) data points and the
corresponding FFT values is given in Appendix F. In this way, if any of the routines is
implemented, the test vectors can be used to verify the correct functionality of the routines.
Together with the test vectors, Appendix C gives a sine/cosine table for a 64-point
transform, and the linking file for such a transform.

Summary

This report examined implementations of fast transforms on the Texas Instruments
TMS320C3x floating-point devices. The transforms considered were several forms of the
FFT, the Discrete Hartley Transform, and the Discrete Cosine Transform. Because of
the powerful architecture of the device, the implementation was done easily and efficiently.
It was shown that a TMS320C30 executes the FFTs several times faster than large computers
such as VAX and SUN workstations. With the availability of the C compiler, these routines
can be put in C-callable form and be used to compute the corresponding transforms
efficiently.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 77

Appendices

Appendices A to F contain the TMS320C30 assembly language programs for the
different algorithms considered. The contents of the appendices are as follows:

Appendix A:
composed of
Al:

A2:

A3:
A4:
AS:

Appendix B:
composed of
B1:

B2:

Appendix C:
composed of
Cl:

C2:
C3:

Appendix D:
composed of
D1:

Appendix E:
composed of
El:
E2:
E3:
E4:

Radix-2 Complex FFT.

Generic Program to Do a Looped-Code Radix-2 FFT
Computation on the TMS320C30.

fft_ 2 - Radix-2 Complex FFT to Be Called as a C
Function.

Complex, Radix-2 DIT FFT - R2DIT.ASM.

Complex, Radix-2 DIT FFT - R2DITB.ASM.
TWID1KBR.ASM - Table with Twiddle Factors for a FFT
up to a Length of 1024 Complex Points.

Radix-4 Complex FFT.

Generic Program to Do a Looped-Code Radix-4 FFT on the
TMS320C30.

fft__ 4 - Radix-4 Complex FFT to Be Called as a C
Function.

Radix-2 Real FFT.

Generic Program to Do a Radix-2 Real FFT Computation
on the TMS320C30.

fft_ rl - Radix-2 Real FFT to Be Called as a C Function.
Generic Program to Do a Radix-2 Real Inverse FFT
Computation on the TMS320C30.

Discrete Hartley Transform.

Generic Program to Do a Radix-2 Hartley Transform on the
TMS320C30.

Discrete Cosine Transform.

A Fast Cosine Transform.

A Fast Cosine Transform (Inverse Transform).

FCT Cosine Tables File.
Data File.

78 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix F: Test Vectors, 64-Point Sine Table, Link Command File.
composed of
F1: Example of a 64-Point Vector to Test the FFT Routines.
F2: File to Be Linked with the Source Code for a 64-Point,
Radix-4 FFT.
F3: Link Command File.

The first three appendices contain the code for the radix-2, complex radix-4, and
real radix-2 FFT transformations. These routines are given in both the regular form and
in a C-callable form. Furthermore, the contents of a file with the twiddle factors are given,
as well as an example of a link command file for a 64-point FFT. Note that the source
code of these routines can be downloaded from the TI DSP bulletin board (BBS) by calling
(713) 274-2323. For questions regarding the BBS, call the TI DSP hotline at (713) 274-2320.

Acknowledgements

Mr. Raimund Meyer and Mr. Karl Schwarz (Lehrstuhl fur Nachrichtentechnik,
University of Erlangen) provided the fast routines of Appendix A to do 1024-point, radix-2,
DIT FFT. Mr. Paul Wilhelm of the University of Washington provided the routines for
the Fast Cosine Transform (FCT) together with the related explanations and the test vector
in Appendix E. Their contributions are gratefully acknowledged.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 v 79

References

[1] Burrus, C. S., and Parks, T.W. DFT/FFT and Convolution Algorithms, John Wiley
and Sons, New York, 1985.

[2] Lin, K. -S., Ed. Digital Signal Processing Applications with the TMS320 Family,
Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

[3] Oppenheim, A. V. and Schafer R.W. Digital Signal Processing, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1975.

[4] Rabiner, L.W., and Gold, B. Theory and Application of Digital Signal Processing,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[5]1 Burrus, C.S. ‘“Unscrambling for Fast DSP Algorithms,”’ IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-36, No. 7, pp. 1086—1087,
July 1988.

[6] Papamichalis, Panos E., and Burrus, C.S. ‘“‘Conversion of Digit-Reversed to Bit-
Reversed Order in FFT Algorithms,’’ Proceedings of 1989 IEEE International
Conference on Acoustics, Speech, and Signal Processing, May 1989.

[71 Third-Generation TMS320 User’s Gutde, Texas Instruments, Inc., Dallas, Texas,
August 1988.

[8] Papamichalis, Panos E., and Simar, Ray Jr. ‘“The TMS320C30 Floating-Point Digital
Signal Processor,”” IEEE Micro, Vol. 8, No. 6, pp. 13—29, December1988.

[9]1 TMS320C30 Assembly Language Tools User’s Guide, Texas Instruments Inc., Dallas,
Texas, July 1987.

[10] Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burrus, C.S. “‘Real-Valued Fast
Fourier Transform Algorithms”’, IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-35, No. 6, pp. 849—863, June 1987.

[11] Bracewell, R.N. ‘“The Fast Hartley Transform,’’ Proceedings of IEEE, Vol. 72,
No. 8, pp. 1010—1018, August 1984.

[12] Sorensen, H.V., Jones, D.L., Burrus, C.S., and Heideman, M.T. ‘‘On Computing
the Discrete Hartley Transform,’’ IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-33, No. 4, pp. 1231—1238, October 1985.

[13] Ahmed, N., Natarajan, T., and Rao, K.R. ‘‘Discrete Cosine Transform,”’ IEEE
Transactions on Computers, Vol. C-23, pp. 90—93, January 1974.

[14] B. G. Lee, “FCT - A Fast Cosine Transform,’’ Proceedings of 1984 IEEE
International Conference on Acoustics, Speech, and Signal Processing, pp.
28A.3.1—28A.3.4, March 1984.

[15] TMS320C30 C Compiler Reference Guide, Texas Instruments Inc., Dallas, Texas,
December 1988.

80 An Implementatién of FFT, DCT, and Other Transforms on the TMS320C30

[16] Sorensen, H.V., Heideman, M.T., and Burrus, C.S. ‘‘On Computing the Split-Radix
FFT,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-34, No. 1, pp. 152—156, February 1986.

[17] Sorensen, H.V.and Burrus, C.S. ‘“‘Computer Dependency of FFT Algorithms’’,
Proceedings of ASILOMAR, 1987.

[18] Schuessler, H.W., Meyer, R., and Schwarz, K. ‘‘FFT Implementation on DSP
Chips—Theory and Practice,”” Proposal for the 1990 IEEE International Conference
on Acoustics, Speech, and Signal Processing.

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

81

82

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix A. Radix-2 Complex FFT

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

83

0£D0ZESHL 243 U0 Swofsuvi] 1ayiQ puv ‘[Dd ‘LA fo uouviuawaiduy uy

R R

*

GENERIC PROGRAM TO DO A LOOPED-CODE RADIX-2 FFT COMPUTATION ON THE

TMS320C30.

THE PROGRAM IS TAKEN FROM THE BURRUS & PARKS BOOK, P. 111. THE (COMPLEX)
DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS DONE IN-PLACE, BUT THE
RESULT IS MOVED TO ANOTHER MEMORY SECTION TO DEMONSTRATE THE BIT-REVERSED

ADDRESSING. THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA

SECTION. THIS DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC

NATURE OF THE PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE FFT N AND
LOG2(N) ARE DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED DURING LINKING.

AUTHOR: PANGS E. PAPAMICHALIS

TEXAS INSTRUMENTS

+GLOBL
GLOBL
«GLOBL
GLOBL

+USECT
.BSS

JTEXT

INITIALIZE

«HORD

. SPACE

FFTSIZ .WORD
LOGFFT .WORD
SINTAB .WORD
INFUT «WORD
QUTPUT . WORD

*
FFT:
*

Lo
LDI
LDI
LDI
LSH
LDI
L1
LDl

DUTER LOOP

LI

FFT
N
"
SINE

“INY, 1024
UTP, 1024

SINE
INe
TP

FFTSIZ

FFTSIZ, IR1
-2,1Rt
0,ARb
@FFTSIZ, IR0
1,180
FFTSIZ R
1,AR7

1,ARS

#+ARG(1)
RINPUT, ARO

JULY 16, 1987

5 ENTRY POINT FOR EXECUTION
+ FFT SIZE

3 LOG2(N)

+ ADDRESS OF SINE TABLE

MEMORY WITH INPUT DATA
MEMORY WITH OUTPUT DATA

5

STARTING LOCATION OF THE PROGRAM

RESERVE 100 WORDS FOR VECTORS, ETC.

COMMAND TO LOAD DATA PAGE POINTER

IR1=N/4, POINTER FOR SIN/COS TABLE
ARG HOLDS THE CURRENT STAGE NUMBER

3 IR0=2#N1 (BECAUSE OF REAL/IMAG)

3 R7=NZ

5 INITIALIZE REPEAT COUNTER OF FIRST
3 LOOP

5 INITIALIZE IE INDEX (ARS=IE)

CURRENT FFT STAGE
ARO POINTS TO X(I)

+
*
*

ADDI R7,AR0, ARZ

LDI ART,RC

SUBI 1,RC
FIST LOOP

RPTB BKI

ADDF RO, #AR2, RO
SUBF HR2++, #R0H R
ADDF *R2, ¥R0,R2
SUBF +AR2, #AR0, R3

STF R2, +R0--
STF R3,#AR2—

STF RO, #AR0++(IR0)
STF R1, #ARZ++(IRO)

IF THIS IS THE LAST STAGE, YOU ARE

CPI ELOGFFT, ARG

BID N
MAIN INNER LOOP
LDl 2,1
LoI €SINTAB, AR4
INOP: ADDI RS, R4
L01 AR1,ARD
ADDI 2,mR1

-

ADDI INPUT, ARO
ADDI R7, ARO, AR2

L0l AR7,RC
SUET 1,RC
LF +R4,R6

SECOND LOOP
RPTB BLK2

SUBF #R2, #R0,R2
SUBF HARZ, #4AR0, R1
WYF R2,R6,R0

ADDF #+AR2, #+AR0,R3
WYF RI, #+AR4(IR1) R3
STF R3, #+AR0

SUBF RO,R3,R4

MPYF R1,Ré,R0

ADDF #AR2, #AR0,R3
NPYF R2,#+AR4(IR1),R3

STF R3, #ARO++(IR0)
ADDF RO, R3, RS

STF RS, #AR2++(IR0)
STF R4, ++AR2

Pl R7,MR1

BNE INLOP

s AR2 POINTS T0 X(L)

+ RC SHOULD BE ONE LESS THAN DESIRED #

RO=X(1)+X(L)
RI=X(D)-X(L)
R2=Y(1)4Y(L)
R3=Y(D)-Y(L)
Y(I)=R2 AND...
Y(L)=R3
X(I)=R0 AND...
X(L)=R1 AND ARO,2 = ARO,2 + 2#NI

DONE

INIT LOOP COUNTER FOR INNER LOOP
INITIALIZE 1A INDEX (AR4=IA)
IA=1A+1E; AR4 POINTS TO COSINE

INCREMENT INNER LOOP COUNTER
(X(1),Y(I)) POINTER
(X(L),Y(L)) POINTER

RC SHOULD BE ONE LESS THAN DESIRED #
R&=SIN

R2=X(D)-X(L)

RI=Y(D-Y(L)

RO=R2#SIN AND...

R3=Y(I)+Y(L)

R3=R1#C0S AND...

YID=Y(D+Y(L)

R4=R1#COS-R2*SIN

RO=R1#SIN AND...

R3=X(D)+X(L)

R3=R2:C0S AND...

X(D=X(1)+X(L) AND ARO=ARO+23¥N1

RS=R2+COS+R1*SIN

X(L)=R2#COS+R1#SIN, INCR AR2 AND...
Y(L)=R1¥COS-R2¥SIN

4+ LOOP BACK TO THE INNER LOOP

0€D0ZESIALL 3y uo uopenduio)
LAd Z-X1pey 3po)-padoo] € o@ 0} weasold LU Ty xipudddy

0£D0ZESWL Y1 o suLofsuvd] 1yl puv ‘[DQ ‘LA Jo vouvowaiduy uy

S8

*
*

END:

*::5::

LSH

LSH
LDI
LSH
BR

1,87 + INCREMENT LOOP COUNTER FOR NEXT TIME
1,A85 3 IE=24IE

R7, 1RO + NI=N2

-1,R7 ; N2=N2/2

LOoP + NEXT FFT STAGE

STORE RESULT OUT USING BIT-REVERSED ADDRESSING

LDI
SUBI
LDI
LDI
LpI
L1

RPTB
LDF
LDF
STF
STF

BR
END

SFFTSIZ,RC + RC=N
1,RC + RC SHOULD BE ONE LESS THAN DESIRED #
FFTSIZ, IR0 ; IRO=SIZE OF FFT=N

ROUTPUT, ARL

BITRV
ARO(1) RO
#AR0++(IR0)B,R1
RO, #+AR1(1)
R1,#R1++(IR1)

SELF 3 BRANCH TO ITSELF AT THE END

98

0ED0ZESIL 24 uo suLiofsuvd] 4oyiQ puv ‘[DQ ‘LA Jo uouviuawaduy uy

+ NAME:

*

fft_2 --- RADIX-2.COMPLEX FFT TO BE CALLED AS A C FUNCTION.

*
* SYNOPSIS:

R I I T I I T R

INT fft_2(N, M, DATA)

INT N FFT SIZE: Ne2w#sd

INT % NUMBER OF STAGES = LOG2(N)

FLOAT #DATA ARRAY WITH INPUT AND OUTPUT DATA

DESCRIPTION:

GENERIC FUNCTION TO DO A RADIX-2 FFT COMPUTATION ON THE 320C30.

THE DATA ARRAY IS 26N-LONG, WITH REAL AND IMAGINARY VALUES ALTERNATING.
THE PROGRAM 1S BASED ON THE FORTRAN PROGRAM IN THE BURRUS AND PARKS
BOXK, P. 111.

THE COMPUTATION IS DONE IN PLACE, AND THE ORIGINAL DATA IS DESTROYED.
BIT REVERSAL IS IMPLEMENTED AT THE END OF THE FUNCTION. IF THIS IS NOT
NECESSARY, THIS PART CAN BE COMMENTED OUT.

THE SINE/COSINE TABLE FOR THE TWIDDLE FACTORS IS EXPECTED TO BE SUPPLIED
DURING LINK TIME, AND IT SHOULD HAVE THE FOLLOWING FORMAT:

LGLOBAL _sine

.DATA

-sine JFLOAT VALUEl = sin(0#2#pi/N)
LFLOAT VALUE = sin(1¥2#pi/N)

LFLOAT VALUE(SN/4) = sin{(5N/4~1)#2¢p1/N)

THE VALUES VALUE1, VALUE2, ETC., ARE THE SAME WAVE VALUES. FOR AN
N-POINT FFT, THERE ARE N+N/4 VALUES FOR A FULL AND A QUARTER PERIOD OF
THE SINE WAVE. IN THIS WAY, A FULL SINE AND COSINE PERIOD ARE AVAILABLE
(SUPERIMPOSED) .

STACK STRUCTURE UPON THE CALL:

B e
-FP(4) i DATA H
-FP(3) L. | H
-FP(2) H N H
-FP(1) + RETURN ADDR |
-FP(0) it ODFP

+- ———t
REGISTERS USED: RO, R1, R, R3, R4, RS, R6, R7, ARO, AR1, AR2, AR, ARS
ARb6, AR7, IR0, IR1, RS, RE, RC

AUTHOR: PANOS E. PAPANICHALIS

TEXAS INSTRUMENTS OCTOBER 13, 1987

FP .set

.GLOBL
«GLOBL

.BSS
.BSS
.BSS

JTEXT

*

SINTAB .word

*

*

*

_fft.2: PUSH
LDl
PUSH
PUSH
PUSHF
PUSHF
PUSH
PUSH
PUSH
PUSH

LDI
STl
LI
STI
L1
STL

*

* INITIALIZE FFT

*
LI
LSH
LDI
Lol
LSH
LDI
D1

LbI
*
OUTER LOOP

*

LOOP: NOP
LDI
ADDI
LI
SUBI

R3

-fft2
-sine

FFTSI1Z,1

LOGFFT, 1
NPT, 8

-51ne

INITIALIZE C FUNCTION

FP
,FP
R4

[

R6

R7
I
RS
6
w7

+FP(2),RO
R0, FFTSIZ
+FP(3),RO
R0, BLOGFFT
+FP(4),RO
R0, BINPUT

ROUTINE

EFTSIZ, IRY
-2, IRt
0,AR6
FFTSIZ, IR0
1, IR0
FFTSIZ,RY
1,AR7

1,ARS

HHARG(1)
RINPUT, ARO
R7,AR0, AR2
PR7,RC
1,RC

ENTRY POINT FOR EXECUTION
ADDRESS OF SINE TABLE

SAVE DEDICATED REGISTERS

MOVE ARGUMENTS TO LOCATIONS MATCHING
THE NAMES IN THE PROGRAM

IR1=N/4, POINTER FOR SIN/COS TABLE
ARG HOLDS THE CURRENT STAGE NUMBER

IR0=2#N1 (BECAUSE OF REAL/IMAG)
R7=N2
INITIALIZE REPEAT COUNTER OF FIRST

INITIALIZE IE INDEX (ARS=IE)

CURRENT FFT STAGE
ARO POINTS TO X(I)
AR2 POINTS TO X(L)

RC SHOULD BE ONE LESS THAN DESIRED #

uornpung

D ® se paj[e) o 0) L44 Xo[dwio) z-xipey—7 N TV xipuaddy

0ED0ZESIL Y U0 suiofsuvd] 4ayi puv ‘IHq ‘LA f0 uonviuawajduy uy

L8

*
*

FIST LOOP

RPTB BLKI

ADDF #ARO, #AR2, RO
SUBF AR+ HAROH,RI
ADDF #AR2, ¥R0,R2
SUBF #AR2, #AR0,R3

STF R2, 40R0—
i STF R3, #R2—
BK1 STF RO, #AR0++(IRO)
" STF R1, #AR2++(IR0)
*
% IF THIS IS THE LAST STAGE, YOU ARE
*
Pl @LOGFFT, ARG
BID END
*
+ MAIN INNER LOOP
*
LDl 2,ARt
LDI €SINTAB,ARY
INLOP: ADDT ARS, R4
LDI AR1,ARO
ADDI 2,AR1
ADDI RINPUT, ARO
ADDI R7,AR0, ARZ
LDI AR7,RC
SUBT 1,RC
LDF #AR4,R6
*
*+ SECOND LOOP
*
RPTB BLK2
SUBF #AR2, #AR0,R2
SUBF #+AR2, #4ARO,R1
WYF R2,R6,R0
" ADDF #HARZ, #4R0,R3
HPYF R1, #+AR4(IR1) ,R3
i STF R3, #+AR0
SUBF RO,R3,R4
MPYF R1,R6,R0
0 ADDF #AR2, #ARO,R3
MPYF R2, #AR4(IR1) ,R3
i STF R3, #AR0++(IR0)
ADDF RO,R3,RS
BLK2 STF RS, #AR2++(IR0)
i STF R4, $HAR2
*
[», 29 R7,AR1
BNE INLOP
¥
LSH 1,AR7

LSH 1,ARS

ROSX(I)X(L)
RI=X(1)-X(L)
R2=V(D)4Y(L)
R3=Y(1)-Y(L)
Y(1)=R2 AND...
Y(L)=R3
X(D=RO AD...
X(L)=RL AND ARO,2 = ARD,2 + 281

H
H
H

DONE

INIT LOOP COUNTER FOR INNER LOOP
INITIALIZE IA INDEX (AR4=IA)
IA=1A+1E; AR4 POINTS TO COSINE

INCREMENT INNER LOOP COUNTER
(X(1),Y(I)) POINTER
(X(L),Y(L)) POINTER

RC SHOULD BE ONE LESS THAN DESIRED %
R6=SIN

R2=X(1)-X(L)
RI=Y(D)-Y(L)
RO=R2#SIN AND...

R3=Y(1)+Y(L)
R3=R13¥C0S AND...

Y(D=Y(D+Y(L)
RA=R1¥C0S-R2:SIN
RO=R1¥SIN AND...

RE=X(1+X(L)
R3=R2%C0S AND...

X(I=X(I)4X(L) AND ARO=ARO+2iN1
RS=R2¥COS+R1#SIN
X(L)=R2#C0S+R1#SIN, INCR AR2 AND...

Y(L)=R1+C0S-R2¥SIN

LOOP BACK TO THE INNER LOOP

INCREMENT LOOP COUNTER FOR NEXT TIME

1E=2:1E

ga-m

-~ CONT

BITRV
*
*
*

LDI
LSH
BR

LDI
SUBI
LDI
LDI
LoI

RPTB
Pl
BGE
LDF
LDF
STF
STF
LDF
LDF
STF
STF

NOP
NOP

333333333

B
@

87, IR0
-1,R7
Loop

DO THE BIT-REVERSING OF THE QUTPUT

FFTSIZ,RC
1,RC
FFTSIZ, IR0
RINPUT, ARD
RINPUT, ARI

BITRV

ARO, ARL
CONT
*AR0,RO
+R1,R1

RO, #AR1

R1, #AR0
#+AR0(1),RO
+#AR1(1),R1
RO, HARL(1)
R1, #+ARO0(1)
HHAR0(2)
+HR1+(IR0)B

m7
ARG

N1=N2
N2=N2/2
NEXT FFT STAGE

RC=N
RC SHOULD BE ONE LESS THAN DESIRED #
IRO=SIZE OF FFT=N

RESTORE THE REGISTER VALUES AND RETURN

88

0£D0ZESII Y1 U0 SULIOfSUvL] 1oyl puv ‘[‘[Ad fo uonuvmuawaiduy uy

T R R R R E T

COMPLEX, RADIX-2 DIT FFT ¢ R2DIT.ASH

GENERIC PROGRAM FOR A FAST LOOPED-CODE RADIX-2 DIT FFT COMPUTATION
ON THE TMS320C30

WRITTEN BY: RAIMUND MEVER, KARL SCHWARZ 19.07.89
LEHRSTUHL FUER NACHRICHTENTECHNIK
UNIVERSITAET ERLANGEN-NUERNBERG
CAUERSTRASSE 7, D-8520 ERLANGEN, FRG

THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS DONE
IN-PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY SECTION TO
DEMONSTRATE THE BIT-REVERSED ADDRESSING.

FOR THIS PROGRAM THE MINIMUM FFTLENGTH IS 32 POINTS BECAUSE OF THE
SEPARATE STAGES.

FIRST TWO PASSES ARE REALIZED AS A FOUR BUTTERFLY LOOP SINCE THE
MULTIPLIES ARE TRIVIAL. THE MULTIPLIER IS ONLY USED FOR A LOAD.IN
PARALLEL WITH AN ADDF OR SUBF.

R

R L

EXAMPLE FOR A 1024-POINT FFT (EXCLUDING BIT REVERSAL):

MEMORY SIZE:
PROGRAM = 229 WORDS
DATA (TWIDDLE FACTORS) = 512 WORDS
CYCLES PER BUTTERFLY:
STAGES 1 AND 2 = 4
STAGES 3 10 8 = 8
STAGE 9 = 8.25
STAGE 10 = 8.5
AVERAGE CYCLES/BUTTERFLY = 7.215
TOTAL BUTTERFLYCYCLES = 37248

INITIALIZATION OVERHEAD 2181 = 5.55 % OF TOTAL TIME

TOTAL NUMBER OF INSTRUCTION CYCLES = 39429

TOTAL TIME FOR A 1024 POINT FFT = 2.36 ms (EXCLUDING BIT
REVERSAL)

L L R T R

I I L E T

THIS PROGRAM INCUDES FOLLOWING FILES:

THE FILE “TWIDIKBR.ASH’ CONSISTS OF TWIDDLE FACTORS

THE TWIDDLE FACTORS ARE STORED IN BITREVERSED ORDER AND WITH A TABLE
LENGTH OF N/2 (N = FFTLENGTH).

EXAMPLE: SHOWN FOR N=32, WN(n) = COS(2#P1#n/N) - j#SIN(2#P1#n/N)

ADDRESS COEFFICIENT

0 R{WN(0)} = COS(2#P1#0/32) = 1

1 -1{WN(0)} = SIN(2#PIX0/32) = 0

2 R{WN(4)} = COS(2#P1#4/32) = 0.707
3 -I{WN(4)} = SIN(2:P124/32) = 0.707
12 R{WN(3)} = COS(2sP143/32) = 0.831
13 -I{WN(3)} = SIN(2#P1¥3/32) = 0.556
14 REWN(7)} = COS(2#P147/32) = 0.195
15 -I{WN(7)} = SIN(2sP1#7/32) = 0.981

WHEN GENERATED FOR A FFT LENGTH OF 1024, THE TABLE IS FOR ALL
AVAILABLE FFT OF LESS OR EQUAL LENGTH.

THE MISSING TWIDDLE FACTORS (WN(),WN(),....) ARE GENERATED BY USING
THE SYMMETRY WN(N/44n) = -j#N(n). THIS CAN BE EASILY REALIZED BY
CHANGING REAL- AND IMAGINARY PART OF THE TWIDDLE FACTORS AND BY
NEGATING THE NEW REAL PART. .

TO CHANGE THE FFT LENGTH, ONLY THE PARAMETERS IN THE HEADER OF
TWIDIKBR.ASM AND THE INPUT AND QUTPUT VECTOR LENGTHS NEED TO BE
ALTERED.

R I T R T

P R R R R

MR+ Al MR+ AL

BR+ j BI ——=— (005 - j SIN) ===--mmmmmmmmmmmmeeee —— BR’ + j BI

TR = BR # COS + BI # SIN
TI = BR # SIN - BI # C0S
M=+ TR
Al’= AL - T1
BR'=MR-TR
BI’= Al + 11

L

NSV LIA2Y — LAd 1Id 7-x1ipey ‘xopdwo) gy xipuaddy

0£D0ZESWL Y1 uo Sul.lOfSllD.l__L 2410 puv ‘JHq ‘Idd fO uoumuawa;duq uy

68

SINTAB
SINTML
SINTP2
INPUT
INPUTPZ
WTPUT

ARO
M1 2
AR2 :
AR3 @
ARY
ARS ¢
ARG ¢
AR7 ¢

P

FFT:

.global FFT
.alobal N

.global NHALB
.global NVIERT
.global NATCHEL
.global M

.global SINE

.BSS INP, 2048
.BSS TP, 2048
Jtext

word N

~word NVIERT-2
Lword NVIERT-3
word NATCHEL-2
word NHALB
word NHALB-3
word]

.word SINE

wvord SINE-1
wword SINE+2
word e

wword INP+2
word TP

AR + Al

BR + Bl

CR + CI + CR" + CI”
DR + D1

AR” + AL’

BR” + BIY

DR’ + DI*

FIRST TWIDDLE FACTOR = 1
Loe FFTSIZ

L1 €62, IR0
L1 €SINTAB, AR7
LDl RINPUT, ARD
ADDI 1RO, ARO, ARL
ADDI 1RO, AR1, AR2
ADDI IR0, ARZ, AR3
LDI ARO, ARY
LDI AR1, PR
L0I AR3, ARG
L1 2,IR1

L -1,1R0
Lol IRO,RC
SuBI 2,RC

INPUT VECTOR LENGTH = 2N (DEPENDS
ON N)

OUTPUT VECTOR LENGTH = 2N (DEPENDS
N N

LOAD PAGE POINTER

IR0 = N/2 = OFFSET BETWEEN INPUTS
AR7 POINTS T0 TWIDDLE FACTOR 1
ARO POINTS TO AR

AR1 POINTS TO BR

AR2 POINTS TO CR

AR3 POINTS TO DR

AR4 POINTS TO AR’

ARS POINTS T0 BR”

ARG POINTS TO DR’

ADDRESS OFFSET

IR0 = N/4 = NUMBER OF R4-BUTTERFLIES

- - .

FIRST 2 STAGES AS RADIX-4 BUTTERFLY

FILL PIPELINE

ADDF
SUBF
ADDF
SUBF
ADDF
WPYF
SUBF
ADDF
-STF
SUBF
STF
ADDF
WPYF
SUBF
ADDF
STF
SUBF
STF
ADDF

HR2, 4RO, R4
#AR2, R0+, RS
HR1, ¥R3,R6
HARL++, HR3+ R7
Ro,R4,RO
HRI+, HRT RL
Ré, R4, R3

RI, #R1,R0

RO, ¥R+

Ri, #R1++ R
R3, #RS++
R1,R5,R2
#+AR2, #R7,R1
R1,R5,R3

R1, #RO,R2

R2, #AR2++(IR1)
R1, R0+, RS
R3, #AR6H
RO,R2,R4

RADIX-4 BUTTERFLY LOOP

RPTB
MWPYF
SUBF
MPYF
ADDF
ADDF
STF

SUBF
STF

SUBF
ADDF
STF

SUBF
STF

ADDF
WPYF
SUBF
ADDF
STF

SUBF
STF

ADDF
WY
SUBF
ADDF
STF

SUBF
STF

BLKt
HR2— , +#R7, RO
RO, R2,R2
R+, HRT RL
R7,R6,R3

RO, #4R0, R4

RA, HR4H

RO, #ARO++, RS
R2, #RS+
R7;R6,R7
R1,#AR3,RS

R7, #ARG++

R1, #AR3++,R7
R3, #AR2++
R6,R4,RO
R34+, HRT RL
Ré,R4,R3
R1,#AR1,RO

RO, #ARA+

R1, #R1++ R
R3, HRSH
R1,RS,R2
AR, WR7,RI

R2, #R2++{IR1)
R1, $RO+ RS
R3, #R6H+

s RE = AR+ (R
sRE=Mm-(R

s R6 = DR + BR
JRT=IR- R

$ AR°=RO=Re+Rb
SRU=DI, BR =R3=RA-Rb

3 RO=BI +DI, R =RO
sRi=B1-DI,BR =R3

s R =R2=R5 +R1
sRI=Cl, DR =R3=R5-RI

sRI=AL4CI, R =R
tRE=Al-Cl, DR =R3

Al“ =R4=R2 + RO

;RO =CR, (Bl =R = R2 - RO)
sRUL=BR, (CI' =R3 = Rb + A7)
s RE= M+ R, (ALY = RA)

RS = AR - R, (B’ = R2)

{DI“ = R7 = Ré - RT)
R6 =R + BR, (DI’ =R

JRT=DR-BR, (CI’ = R3)

s M =RO=RE+R
sRU=DI, BR" = R3 =R -Rb

RO = BI + DI , AR’ = RO

tRU=BI-DI ,BR =R3

s R =R2=RS +RI
Rt =Cl, DR” =R3 =RS - Rl

sR=AL#CI, CR =R

sRo=AL-CI, DR =R3

0ED0TESIL 23 U0 suLiofsuvi] 4ayiQ puv ‘1A ‘L4d fo uouvnowaiduy uy

BKI ADF RO,R2,R4
*
+ CLEAR PIPELINE
*
SUBF RO,R,R2
ADDF R7,R6,R3
STF R4, #0RA
i STF R2, ¥RS
SUBF R7,R6,R7
STF R7, #5Rb
i SIF R3, +—AR2

THIRD TO LAST OF STAGE 2

L01 62, IR1
Lo1 1RO, ARS
SUBI 1,ARS
Lo1 1,6

STUFE DI €SINTAB, AR7
L01 0,AR4
LD1 RINPUT, ARO
L01 RO, AR
ADDI 1RO, ARO, ARG
L01 AR3, ARI
LSH 1,ARb
LSH -2,MR5
LSH 1,85
LS -1,1R0

+
Lo -1,1Rt
AL 1,IR1

*
LF HR1++,R6

i LF +#R7 RY

*

GRUPPE

*

+ FILL PIPELINE

*

*

*

*
LF HHHRT RO
WYE HRI— R6,RI

i ADDF #++R4,RO,RS

WYF +#R1,R7,R0
MPYF HAR1++, #AR7-- RO

1 ADDF RO,RILR3
WY HRIHRTRL
i SUBF RG,3AR0,R2

ADDF #ARO++ R3,RS

Al = R4 = R2 + RO

Bl =R2=R2 - RO
Cl* =R3=R6 + R7
Al’ = R4, BI’ = R2

s DY =R7 =R - R7

H

DI’ =R7, CI' =R3

POINTER TO TWIDDLE FACTOR

GROUP COUNTER

UPPER REAL BUTTERFLY INPUT

UPPER REAL BUTTERFLY QUTPUT

LOWER REAL BUTTERFLY OUTPUT

LOWER REAL BUTTERFLY INPUT

DOUBLE GROUP COUNT

HALF BUTTERFLY COUNT

CLEAR LSB

HALF STEP FROM UPPER TO LOWER REAL
PART

STEP FROM OLD IMAGINARY TO NEW REAL
VALUE

DUMMY LOAD, ONLY FOR ADDRESS UPDATE

R7 = C0S

ARO = UPPER REAL BUTTERFLY INPUT
AR1 = LOWER REAL BUTTERFLY INPUT
AR2 = UPPER REAL BUTTERFLY OUTPUT
AR3 = LOWER REAL BUTTERFLY OUTPUT
THE IMAGINARY PART HAS TO FOLLOW
Rb = SIN

Rl = BI # SIN

DUMMY ADDF FOR COUNTER UPDATE
RO = BR # COS
R3=TR=RO+Rt, RO =BR # SIN

Rt=Bl#+#C05, RR=AR-TR

RS=M+TR, R =R2

" STF R2, #R3++

b1 ARS,RC
¥ +
FIRST BUTTERFLY-TYPE: *
¥ +
* TR = BR # COS + BI # SIN *
* TI = BR # SIN - BI # C0S +
* MR'=MR+TR *
* Al’= AL - T1 *
+ BR’=AR - TR *
+ BI’= A1 + T *
+ +
¥

RPTB BFLY1
*

MPYF #4AR1,R6, RS ; RS =Bl # SIN, (R’ =RS)
" STF RS, #R2++

SUBF R1,R0,R2 3 (R2 =TI =RO - RI)

NPYF #R1,R7,R0 s RO=BR#C0S, (R3=AI+TI)
0" ADDF R2, #ARO,R3

SUBF R2, #8R0++ R4 ; (R&=Al - T, BI” =R3)
] STF R3, #R3++

ADDF RO,RS,R3 s R3I=TR=RO+RS

MPYF #R1++ R6,RO sRO=BR#SIN, RR=MR-TR
H SUBF R3, #AR0,R2

PYF HR1++ K7 R1 s Rl =Bl #C0S , (Al = R4)
" STF R4, #AR2++
BFLY1 ADDF #AR0++,R3,RS sRS=M+TR, R =R
i STF R2, #AR3++
*
* SWITCH OVER TO NEXT GROUP
*

SUBF
ADDF
STF
SUBF
STF
NOP
WPYF
STF
"PYF
MPYF
SUBF
MPYF
SUBF
ADDF
STF
LI

R1,RO0,R2

R2, #R0,R3

RS, #AR2++

R2, #ARO++(IR1) R4
R3, #R3++(IR1)
HR1H(IR1)
#R1--,R7,R1

R4, #AR2++(IR1)
AR1,R6,RO
#R1++, #AR7++,RO
RO,R1,R3
#R1++,R6,R1

R3, R0, R2
#R0++,R3,RS

R2, #R3++

ARS,RC

;R=TI=RO-RI
tRI=AL+TI, AR =RS

;R&=Al-T1 , BI’=R3

+ ADDRESS UPDATE
s RU=BI*C05, Al = R4

RO = BR * SIN
R3=TR=Ri - RO, RO = BR # COS

s RI=Bl*SIN, RR=MR - TR

(RS=M+TR, BR =R

0ED0ZESWL 2yt U0 suofsuvi] 1ayiQ puv “[Dq ‘L4 Jo uouvmawaiduy uy

16

* *
* SECOND BUTTERFLY-TYPE: *
* +
* TR = BI # 03 - BR * SIN *
* TI = BI # SIN + BR # C0S]
+ MR’= MR+ TR ¥
* AL-TI *
¥ BR’= AR - TR *
* BI'= Al +T1 *
+ *
*

RPTB BFLY2
+

MPYF #+AR1,R7,RS 3 RS =Bl # COS , (AR’ = RS)
i STF RS, #AR2++

ADDF R1,R0,R2 ;5 (R2 =TI = RO +RI)

NPYF #AR1,R6,RO s RO=BR#SIN, (R3=Al+TD
i ADDF R2, R0, R3

SUBF R2, #ARO+ R4 5 (R& = Al - TI | BI” = R3)
i STF R3, #AR3++

SUBF RO,RS,R3 s TR=R3=RS - RO

MPYF HR1++,R7,RO ;RO=BR*COS, RR=M-TR
i SUBF R3, #ARO, R2

NPYF #AR1++ R6 R1 ; Rl =Bl + SIN, (Al” =R4)
H STF R4, #AR2++
BFLY2 ADDF RO+, R3,RS sRS=M+TR, BR =R2
i STF R2, #R3++
*
+ CLEAR PIPELINE
*

ADDF R1,R0,R2 s R2=TI=RO+RI

ADDF R2, #AR0,R3 s R3=AL+TI
B STF RS, #AR2++ D R=RS

ol ARb, ARY

BNED GRUPPE ; DO FOLLOWING 3 INSTRUCTIONS

SUBF R2,#ARO++(IR1),R4 s R4 = Al - TI | BI’ = R3
i STF R3, #AR3++(IR1)

LIF #HART R7 3 R7 = C0S
i STF R4, #AR2++(IR1) 3 AlY = R4

NCP #AR1++(IR1) s BRANCH HERE
*
+ END OF THIS BUTTERFLY GROUP
*

CHP1 4,1R0 3 JUMP OUT AFTER LD(N)-3 STAGE

BNZ STUFE
*
*
+ SECOND TO LAST STAGE
*

Lor
LDI
ADDI

RINPUT, ARD
ARO, ARZ
1RO.ARO, AR

3

UPPER INPUT
UPPER QUTPUT
LOWER INPUT

R

-

LDI
LDI
LI
LDI

FILL PIPELINE

1. BUTTERFLY:

ADDF
SUBF
ADDF
SuBF

2, BUTTERFLY:

ADDF
SUBF
ADDF
SUBF
STF
STF
STF
STF
STF
STF

. STF
STF

3. BUTTERFLY:

ADDF
SUBF
ADDF
SUBF

4. BUTTERFLY:

ADDF
LDF
LDF
SUBF
STF
STF
STF

MR1,AR3 3 LOWER OUTPUT
€SINTP2,AR7 ; POINTER TO TWIDDLE FACTOR
S,1R0 3 DISTANCE BETWEEN TWO GROUPS
€FG8M2, RC

A

#ARO, ¥AR1,R2 1 AR =RR=AR+BR
HAR1++ #ROH.R3 3 BR =R3 =M - R
*AR0, ¥AR1, RO 5 AIY = RO = Al + BI
AR+ RO+ RL 3 BI” = RL = Al - BI

w0

R0, ¥AR1 R s AR =R6= AR +BR
HR1++ #ROH KT 3 BR = R7 = AR - IR
*ARO, ¥AR1 R4 s AlY = R4 = Al + BI
#AR1++(IR0), #ARO++(IR0),RS ; BI” = RS = Al - BI
R2, #AR2++ ; (AR’ =R2)

R3, ¥AR3++ s (BR” = R3)

RO, #AR2++ 3 (Al = RO)

RL, #AR3++ 3 (Bl” = R1)

R6, #AR2++ ;s AR =Rb

R7, #AR3++ s B =R7

R4, #AR2++(IR0) s Al = R4

RS, #AR3++(IRO) ¢+ Bl =RS
w/4

#AR0O+H , #4+AR1, RS s R =RS=M +BI

*AR1, #ARO, R4 s AV =Ré = Al - BR
*AR1++, #AR0--R6 ; B = R6 = Al + BR
#AR1++ #ARO+,R7 3 BR" = R7 = AR - BI
w/4

#AR1, #++AR0,R3 s R =R3=M +BI

*-AR7 R1 3 Rl = 0 (FOR INNER LOOP)
*HR1++,RO s RO = BR (FOR INNER LOOP)
#R1++(IR0) , #AR0++,R2 3 BR” = R2 = AR - BI
RS, #AR2++ ;3 (AR’ = RS)

R7, #AR3+ s (BR’ = R7)

R6, #AR3++ 3 (Bl = Ré)

5. T0 M. BUTTERFLY:

RPTB

LDF
STF
LDF
STF

BF2END

ART4,RT
R4, #AR2++
HR7++,Rb
R2, ¥R3++

H

R7 = C0S , ((AI” = R4))

R6 = SIN, (BR’ = R2)

6

0£D0ZESNL 2Yi uo suuofsuw_l 42410 puv ‘__L:)G ‘LAA fO uogvauawaIdull uy

WYF

PYF

PYF
STF

WPYF
ADDF

STF

NPYF

#4AR1,R6, RS
R3, #AR2+
R1,RO,R2
#R1,R7,R0
R2, #4R0,R3
R2, #AR0++(IR0), R4
R3, ¥AR3++(IR0}
RO,RS,R3
#AR1++,R6, RO
R3, #AR0,R2
#R1++,R7,RY
R4, #AR2++(IRO)

#+AR1,R6, RS
RS, #AR2+
R1,R0,R2
*R1,R7,RO
R2, R0, R3
R2, #ARO++ R4
R3, #AR3++
RO,RS,R3
#R1++,Rb, RO
R3, #AR0, R2
#R1++(IR0),R7,R1
R4, #R2++

R2, #AR0, R3

R2, #ARO++(IR0), R4
R3, #R3++(IRO)
RO,RS,R3
#R1++,R7,RO

R3, #R0,R2
#R1++,R6,R1

R4, #R2++(IRO)
#AR0++,R3,RS

R2, ¥#AR3++

+ARL,R7, RS
RS, #AR2H
RI,R0,R2
R1,R6, RO
R2, ¥R0,R3
R2, #4R0++ R4
R3, #AR3H
R0,R5,R3
#R1++,R7, RO

H

i

b

5

RS = Bl # SIN , (AR’ =R3)

(R2 =TI = RO +R1)
RO=BR*COS, (RR=Al+TD

(R4 = Al - TI , Bl = R3)

R3=TR =R0 + RS
RO=BR ¥ SIN, R2= MR - TR

Rl = BI #C0S , (AL = RA)

RA=MR+TR, R =R

RS = BI # SIN, (AR’ =RS)

(R2 =TI = RO - R1)
RO = BR ¥ 005, (R3=AI+TD

(R4 = Al - T, BI” = R3)

R3=TR = RO * RS
RO=BR*SIN, R2= MR- TR

Rt = BI # C0S , (Al = R4)

RR=MR+TR, R =R

RS =Bl # C0S , (R’ =R3)

(R2 = TI = RO - R1)
RO=BR *SIN, (R3=AI +TD

(R4 = Al - T1 , BI” =R3)

R3 = TR = RS - RO
RO=BR* 005, RR=M-TR

Rl = BI # SIN, (AI’ =R4)

RS=M+TR, B =R

RS = Bl # C0S , (AR’ =RS)

(R2 =TI =RO +R1)
RO=BR #SIN, (R3=Al +TD)

(R4 = AL - T1 , yiL) = BI" = R3)

R3=TR = RS - RO
RO=BR*C0S, RR=M-TR

: SUBF R, #AR0,R2
7

+#R1++(IR0),R6,R1
i ADDF RO+ ,R3,R3
*
+ CLEAR PIPELINE
STF R2, #AR3++
i STF R, $AR2++
ADDF R1,R0,R2
ADDF R2, #R0,R3
" STF R3, #AR2++
SUBF R2, #R0, R4
i STF R3,#R3
STF R4, +AR2
*
+ LAST STAGE
*
LDI RINPUT, ARO
LoI ARO, AR2
LDI RINPUTP2, ART
D1 AR1,AR3
L1 ESINTP2,AR7
Lo1 3,IR0
o1 SFGAR2, RC
*
FILL PIPELINE
*
1. BUTTERFLY: w"0
*

D0F RO, ¥AR1,R6
SUBF ARL++, HAROH,RT
ADDF #ARO,#AR1,R4

RU=Bl*#SIN, R3= M+ TR

BR” =R2, A’ = R4

R =Tl =R0+Rt
RI=Al+TI, AR =R3

R =4l -TI, BI” =R3

Al = R4

UPPER INPUT

UPPER QUTPUT

LOWER INPUT

LOWER OUTPUT

POINTER TO TWIDDLE FACTORS
GROUP OFFSET

AR =RO=MR+R
BR =R7=MR-BR
Al = R4 = Al + BI

SUBF *R1++(IR0), #AR0++(IR0),RS 5 BI’ = RS = Al - BI

- 2. BUTTERFLY: w'M/4

ADDF ++ARI, #AR0,R3

LDF +AR7,R1
H LOF #R1++,R0
SUBF HR1+(IRO), #AR0H,
STF Rb, HR2++
" STF R7, 4R34+
STF RS, #AR3++(IR0)

* 3. TO-M. BUTTERFLY:

L HR7+,RT

i STF RY, #4R2++(IRO)
uF HRTH,Rb

i STF R2, A3+
PYE HHRLRSRS

T STF R3, #R2++

ADDF R1,RO,R2
WYF HRLR7,RO

R7 = C0S , (AI” = R4)
Ré = SIN, (BR’ = R2)
RS =Bl # SIN, (AR’ =R3)

(R2 =TI = RO +R1)
RO = BR ¥ C0S , (R3 = Al + TD

0ED0TESWL 241 uo suiofsuv.] 4oyiQ puv ‘1D ‘Ldd fo uouvuswaiduy uy

€6

ADDF
SUBF
STF

ADDF
MPYF

MWPYF
STF
ADDF
STF

MPYF
STF

STF

SUBF
MPYF
SUBF

BFLEND MPYF

ADDF

CLEAR PIPELINE

STF
STF
ADDF
ADDF
STF
SUBF
STF
STF

END OF FFT

BIT REVERSAL

LoI
LDI
LbI
LbI
LoI
SUBI

LDF
RPTB
LDF
STF
LDF
STF
LDF
STF

R2, #4R0,R3
R2, #R0+(IR0) , RA
R3, ¥R3++(IRO)
R0,R5,R3
R1++,R6, RO

R3, 44RO, R2
HR1+(IRO) R, R1
R4, ¥AR2++(IRO)
RO+, R3,R3

R2, $AR3H

*+AR1,R7,RS

R3, ¥AR2++
R1,R0,R2
#AR1,R6,RO

R2, #R0,R3

R2, #ARO++(IRO) R4
R3, #AR3++(IRO)
RO,RS,R3
R1++,R7,R0

R3, #R0,R2
#AR1++(IR0),R6,R1
RO+ R3,R3

R2, #AR3++

R4, #AR2++(IRO0)
R1,R0,R2

R2, %ARO,R3
R3, #AR2++

R2, #ARO, R4

R3, ¥AR3

R4, #AR2

FFTSIZ, IR0
2,1Rt
CINPUT, ARD
OUTPUT, ARY
FFTSIZ RC
2,RC

+HARO(1), RO
BITRY
*#ARO++(IRO)b,R1
RO, #+AR1(1)
+ARO(1) RO

RI, #RI+(IRI)
RO+ (IRO)b,RY
RO, #+AR1 (1)

H

i

H

(R4 = Al - TI , BI” =R3)

R3 = TR = RO + RS
RO=BR#SIN, R=AR-TR

Rl = BI # C0S , (A’ = R4)

R3=MR+TR , R =R

RS'=BI #C0S , (AR’ =R3)

(R2 = TI = RO - R1)
RO = BR # SIN, (R3 = AL + TD)

(R4 = Al - TI , BI” =R3)

R3=TR=RO-RS
RO=BR®COS,R2= M- TR

Rl=Bl *SIN,R3=MR+ TR

BR* =R2, (Al = R4)

R4 =Al -TI, BI’ =R3

Al = R4

5888

2

.end

RI, 3481

6

0ED0TESWL Y1 uo suLofsuv.] 14iQ puv [DQ ‘LA fo uonvmawaiduy uy

B T R

APPENDIX A4

COMPLEX, RADIX-2 DIT FFT : R2DITB.ASM

GENERIC PROGRAM FOR A FAST LOOPED-CODE RADIX-2 DIT FFT COMPUTATION
ON THE TMS320C30

WRITTEN BY: RAIMUND MEYER, KARL SCHWARL 24.07.89
LEHRSTUHL FUER NACHRICHTENTECHNIK
UNIVERSITAET ERLANGEN-NUERNBERG
CAUERSTRASSE 7, D-8520 ERLANGEN, FRG

THE (COMPLEX) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS DONE
IN-PLACE, BUT THE RESULT IS MOVED TO ANOTHER MEMORY SECTION TO
DEMONSTRATE THE BIT-REVERSED ADDRESSING.

FOR THIS PROGRAM THE MINIMUM FFT LENGTH IS 32 POINTS BECAUSE OF
THE SEPARATE STAGES.

FIRST TWO PASSES ARE REALIZED AS A FOUR BUTTERFLY LOOP SINCE THE
MULTIPLIES ARE TRIVIAL. THE MULTIPLIER IS ONLY USED FOR A LOAD IN
PARALLEL WITH AN ADDF OR SUBF.

B R T R

B

EXAMPLE FOR A 1024-POINT FFT (WITH BIT REVERSAL) :
MEMORY SIZE :
PROG = 231 WORDS
DATA = 512 WORDS
CYCLES PER BUTTERFLY :
STAGES 1 AND 2 = 4
STAGES 3 T0 8 = 8
STAGE 9 = 8.25
STAGE 10 = 10.5 (DUE TO EXT. MEMORY WAITS)
AVERAGE CYCLES/BUTTERFLY = 7.475
TOTAL BUTTERFLYCYCLES = 38272
INITIALIZATION OVERHEAD = 2185 = 5.4 % OF TOTAL TINE
TOTAL NUMBER OF INSTRUCTION CYCLES = 40457
TOTAL TIME FOR A 1024 POINT FFT = 2.42 ms (INCLUDING BIT
REVERSAL)

ek K ke Kk ek ke kR

MW M R ke N e K ke kR R N Mk kR kK M

THIS PROGRAM INCUDES FOLLOWING FILES:

THE FILE “TWIDIKBR.ASH’ CONSISTS OF TWIDDLE FACTORS

THE TWIDDLE FACTORS ARE STORED IN BIT REVERSED ORDER AND WITH A TRBLE
LENGTH OF N/2 (N = FFTLENGTH).

EXAMPLE: SHOWN FOR N=32, WN(n) = COS(2#PI#n/N) - j#SIN(2#PI#n/N)

ADDRESS COEFFICIENT

0 R{WN(0)) = COS(2sP1#0/32) = 1

1 -I{WN(0)) = SIN(2sP1¥0/32) = 0

2 R{WN(4)} = COS(2#P1#4/32) = 0.707
3 -I{WN(4)} = SIN(2#P134/32) = 0.707
12 R{WN(3)} = COS(2#P143/32)

13 -I{WN(3)} = SIN(2#P1¥3/32)

14 R{WN(7)} = COS(2+P1#7/32)
15 ~I{WN(7)) = SIN(23P1#7/32) = 0.981

WHEN GENERATED FOR A FFT LENGTH OF 1024, THE TABLE IS FOR ALL
AVAILABLE FFT OF LESS OR EQUAL LENGTH.

THE MISSING TWIDDLE FACTORS (WN(),WN(),....) ARE GENERATED BY USING
THE SYMMETRY WN(N/4+n) = -j#WN(n). THIS CAN BE EASILY REALIZED, BY
CHANGING REAL- AND IMAGINARY PART OF THE TWIDDLE FACTORS AND BY
NEGATING THE NEW REAL PART.

T CHANGE THE FFT LENGTH ONLY THE PARAMETERS IN THE HEADER OF
TWIDIKBR.ASM AND THE INPUT AND OUTPUT VECTOR LENGTHS NEED TO BE
ALTERED.

M M Ak kR M M R M M R R M K R Rk kR e ke Rk

P R I

MR+ Al MR+ AL

BR+ jBI —— (COS-jSIN) -

TR = BR # COS + BI # SIN
TI = BR # SIN - BI # C0S
MR’=M+TR
Al’= Al - TI
BR'=M - TR
BI‘= Al + 11

o W R ke kM kR kW

SV 4LIA2 — LAd LId ¢-Xipey ‘xaidwo) *py xipuaddy

0£D0CESHL 241 uo Sul.lOfS‘llD.l_l 42Y10 puv ‘1Hd 'MJJO uogzmuawaldw[uy

$6

¥ *
.global FFT + FIRST 2 STAGES AS RADIX-4 BUTTERFLY
.global N *
.global NHALB + FILL PIPELINE
.global NVIERT *
“global NACHTEL ADDF HRZ, #R0,RA ;R =M+ R
_global N SUBF HAR2, #ARO+ RS ;RS = M- R
.global SINE ADDF +AR1, #AR3, R6 s+ R6=DR + BR
SUBF HR1++, HRIHRT ; R7 = DR - B
Jbss I, 2048 3 INPUT VECTOR LENGTH = 2N (DEPENDS ADDF R6,R4, RO 3 AR7 = RO =R +RS
N LW WPYF R34+, 4R7, R sRU=DI, BR =R3=R4 - Re
.bss OUTP,2048 3 OUTPUT VECTOR LENGTH = 2N (DEPENDS H SUBF - R6,RA,R3
M NN ADDF RI1,*R1,RO s RO=BI+DI, AR =RO
N ! i STF RO, #AR4++
text SUBF . RI,#R1++,R1 sRU=BI-DI, BR" =R3
¥ i STF R3, #ARS+
FFTSIZ .word N ADDF R1,RS,R2 s CR"=R2=RS+RI
FGAM2 .word NVIERT-2 WPYF #ARZ, +AR7,R1 s RE=Cl, DR"=R3I=RS-R
FGAM3 .word NIERT-3 : i SUBF R1,RS5,R3
FGaM2 .word NACHTEL-2 ADDF RI, +AR0,R2 s Re=Al+Cl, CR"=R2
F62 Jword NHALB H STF R2,¥AR2++(IR1)
FGM3 .word NHALB-3 SUBF R1, #ARO++,R6 s R6=AL-Cl, DR =R3
LOGFFT .word M “ STF R3, ¥ARb++
SINTAB .word SINE ADDF Fo,R2, R4 3 ALY = R4 = R2 + RO
SINTML .word SINE-1 Cor
SINTPZ .word SINE#2 * RADIX-4 BUTTERFLY LOOP
INPUT wword N *
INPUTP2 ,word INP#2 RPTB BLK1
QUTPUT .word OQUTP WYF +R2-- #AR7, RO s RO=CR, (Bl =R2 = R2 - RO)
UTPL .word OUTP+1 0" SUBF RO,R2,R2
M) PYF R+, 1AR7 RL s RE=BR, (CI' =R3=R6 + RN
+ ARO : AR + Al i ADDF R7,Ré,R3
+ ARL:BR+BI ADDF RO, #ARO,R4 s Re=AR+CR, (A’ = R4)
* MRZ:CR+CI+CR +CI’ i STF R4, #AR4++
M3 DR+DI SUBF RO, #AR0++, RS ;RS=MR-CR, (Bl =R2)
+ ARE : AR7 +AIY H STF R2, #ARS++
* ARS:BR + B SUBF R7,R6,R7 3 (DI’ =R7 = Ré - RT)
+ M6 : DR+ DI’ ADDF R1, #AK3, R6 s R6 = DR+ BR, (DI’ = RD)
* AR7 : FIRST TWIDDLE FACTOR = 1 i STF R7, 4R6++
' SUBF RI, #AR3+,R7 sR7=IR-BR, (C1’ = R3)
FFT: e FFTSIZ ; LOAD PAGE POINTER i STF R3, #AR2++
LoI #F62, IR0 3 IR0 = N/2 = OFFSET BETWEEN INPUTS ADDF Ré, R4, RO s AR’ = RO =RA +Rb
LDI ESINTAB, AR7 + AR7 POINTS T0 THIDDLE FACTOR 1 HPYF R34+, #R7 R s RU=DI, BR* =R3=R4-R6
LbI GINPUT, ARO 3 ARO POINTS TO AR i SUBF - R6,R4,R3
ADDI IR0, ARO, ARI ; ARI POINTS T0 BR ADDF R1, +AR1, RO ;RO =BI +DI, AR =RO
ADDI IR0, AR, AR2 ; AR2 POINTS TO CR i STF RO, #AR#++
ADDI 1RO, AR2, AR3 + AR3 POINTS T0 IR SUBF R1, #AR1++,R1 sRU=BI-DI, BR" =R3
LI ARO, ARA 3 AR4 POINTS T0 AR’ i STF R3, $ARS++
i MR1,ARS 3 ARS POINTS T0 BRY ADDF R1,RS,R2 s CR” =R2=RS +RI
LD R3, ARG 3 ARG POINTS T0 DR’ WPVF +ORZ, 3R7,R1 s RE=Cl, DR" =R3=RS-RI
Lot 2,1kt + ADDRESS OFFSET i SUBF R1,RS,R3
LSH -1,1R0 5 IRO = N/4 = NOMBER OF R4-BUTTERFLIES ADDF R1, #AR0,R2 ;R2=AI+C1, R =R
LoI 1R0,RC i STF R2, #AR2++(IR1)

SUBI 2,RC SUBF RI,HAROH+,R6

Ré=Al -CI , DR’ =R3

96

0£D0ZESWL Y1 uo suiofsuvi] 143 puv ‘[DQ ‘Ldd Jo uonvuswaid] uy

] STF R3, #ARb6++
BLK1 ADDF RO,R2,R4
*
+ CLEAR PIPELINE
SUBF RO,R2,R2
ADDF R7,R6,R3
STF R4, #AR4
N STF R2, #RS
SUBF R7,R6,R7
STF R7, #4Rb
" STF R3, +—AR2
*
+ THIRD TO LAST-2 STAGE
*
L1 @62, IRt
Lo1 IR0, ARS
SUBI 1,6R5
LDI 1,AR6
*
STUFE LI @SINTAB, AR7
LI 0,AR4
L1 RINPUT, AROD
DI ARO, AR2
ADDI IR0, ARO, AR3
LDI AR3,AR1
LSH 1,ARS
LSH -2,MRS
LSH 1,ARS
LSH -1, IR0
+
LSH -1,1R1
ADDI 1,IR1
*
LIF HR1++,R6
" LDF *AR7,R?
+
GRUPPE
+
+ FILL PIPELINE
#
*
*
*
LIF +HR7 Rb
wYF #HR1-- R6,R1
i ADDF ++4AR4,RO,R3
MPYF #R1,R7,R0
NPYF #R1++ #AR7— RO
H ADDF RO,R1,R3
WYF #R1++ R7,R1
N SUBF R3, #AR0,R2
ADDF RO+ R3,RS
i STF R2, #AR3++

s AlY =R8 =R+ RO

s Bl =RR=R - RO
s CI” =R3=R6 + R7
+Al”=R4, B’ = R2

3 DI” =R7=R6 - R7
3 DI/ =R7, CI’ =R3

POINTER TO TWIDDLE FACTOR -

GROUP COUNTER

UPPER REAL BUTTERFLY INPUT

UPPER REAL BUTTERFLY OUTPUT

3 LOWER REAL BUTTERFLY OUTPUT

LOMER REAL BUTTERFLY INPUT

DOUBLE GROUP COUNT

HALF BUTTERFLY COUNT

CLEAR LSB

HALF STEP FROM UPPER TO LOWER REAL
PART

STEP FROM OLD IMAGINARY TO NEW REAL
VALUE

DUMMY LOAD, ONLY FOR ADDRESS UPDATE

R7 = C0S

s ARO = UPPER REAL BUTTERFLY INPUT
3 ARL = LOWER REAL BUTTERFLY INPUT
s AR2 = UPPER REAL BUTTERFLY QUTPUT
3 AR3 = LOWER REAL BUTTERFLY OUTPUT
s THE IMAGINARY PART HAS TO FOLLOW
s R6 = SIN

s R1=BI # SIN

s DUMMY ADDF FOR COUNTER UPDATE

s RO = BR # COS

s R3=TR=RO+Rl, RO =ER % SIN

sRI=BI#CS, RR=MR-TR

JRS=M+TR, R =R

L1 ARS,RC
FIRST BUTTERFLY-TYPE:

TR = BR # C0S + BI # SIN
TI = BR # SIN - BI # C0S
R’= AR+ TR
Al’= Al - T1
BR’= AR - TR
BI‘= Al + TI#

RPTB BFLYL

WYF HARLRG,RS
STF RS, #R2H
SWF RI,RO,R2
WY RIRT,RO
ADDF R2,sHRO0,R3
SUBF R2,HAR0++,R4
STF R3, HR3H
ADDF RO,RS,R3
WYF #ARI+ R6,RO
SUBF R3,HR0,R2
WYF R1+,RTRL
STF R4, #AR2H+
ADDF RO+ R3,RS
STF R2, $4R3++

SHITCH OVER TO NEXT GROUP

SUBF R1,ROR2
ADDF R2,R0,R3

STF RS, #AR2++

SUBF Rz, AR0++(IR1),R4
STF R3, ¥R3HIRL)

NP HR1++UIRI)
wPYF #R1-- R7,R1
STF Ré, #AR2++(IR1)

WYF SAR1R,RO
PYF MR, HRTH,RO
SUF RO,RL,R3

WYF L+ RS,RI
SUBF . R3,R0,R2

ADDF #ARO+R3,RS

STF R2, #R3H

Lo1 AR5, RC

SECOND BUTTERFLY-TYPE:

TR = BI # COS - BR # SIN
TI =Bl # SIN + BR # (08
AR’= M+ TR
Al’= Al - T1
BR'=M-TR

+ RS =Bl #SIN, (AR’ = RS)

s (R2=TI=R0-R1
sRO=ER#COS, (R3=Al+TD

;s (Ré = Al - T, B’ = R3)

sR3=TR=RO +RS
;RO=BR*SIN, RR=M-TR

;RU=BI #C0S, (Al = RA)

sRS=M+TR, B =R

s R =TI =R0-R
sRI=AL+TI, MR =RS

;s Ré=Al -TI, Bl’ =R3

; ADDRESS UPDATE
s RU=BI #COS, Al = R4

+ RO =R # SIN :
s R3=TR=R1-RO, RO =BR #C0S

sRI=BI#SIN, R=MR-TR

IRS=MR+T, R =R

d ‘[4d fo uonvawaiduy uy

0SD0TESIL 41 U0 SuOfSUbAL 43Y1Q puv °

L6

¥ BI'sAL+TI
+
RPTB BFLY2
PYF HAR1,RT,RS
i STF RS, #R2+
ADDF R1,R0,R2
PV #R1,R6,R0
it ADDF R2, #4R0,R3
SUBF R2, #AR0++ R4
HH STF R3, #AR3++
SUBF RO, RS,R3
WPYF #R1++,R7,RO
i SUBF R3, #AR0,R2
PYF #R1++,R6,R1
i STF RA, #R2++
BFLY2 ADDF R0+ ,R3,RS
" STF R2, #R3++
*
& CLEAR PIPELINE
#
ADDF R1,R0,R2
ADDF R2, #R0,R3
tH STF RS, #AR2++
>, 2 AR, ARY
BNED GRUPPE
SUBF R2, ¥AR0O+(IR1) R4
i STF R3, #AR3++(IR1)
LDF H4AR7,R7
W STF R4, #AR2++(IR1)
NOP #AR1++(IR1)
*
&+ END OF THIS BUTTERFLY GROUP
*
>, 291 4, IR0
BN STUFE
*
® SECOND TO LAST STAGE
*
(804 RINPUT, ARD
DI ARO, AR2
ADDI 1RO, ARD, ARL
LDI AR1,AR3
LI @SINTP2, AR7
LDI 5, IR0
(804 @FGSM2,RC
*
* FILL PIPELINE
*
& 1, BUTTERFLY: w0
*
ADDF R0, #AR1,R2
SUBF HR1++ HR0++ R3
ADDF +RO, #AR1,RO

;RS =Bl #C0S, (AR’ =RS)

+ (R2=TI =R + R
;RO=BRESIN, (R3=AI+TI)

s (R&=Al-TI, Bl =R3)

s TR=R3=RS-RO
JROZBRECIS, R=M-TR

;s RU=BI #SIN, (Al = R4)

sRA=MR+MR, R =R

R2 =TI =RO +RI1
R3=AI ¢TI
AR =R

DO FOLLOWING 3 INSTRUCTIONS
R&=AI-T1, BI”=R3

+ R7 =008
S Al = R4
+ BRANCH HERE

3 JUMP OUT AFTER LD(N)-3 STAGE

UPPER INPUT

UPPER OQUTPUT

LONER INPUT

LOWER QUTPUT

POINTER TO TWIDDLE FACTOR
DISTANCE BETWEEN TWO GROUPS

-

3 BI” =Rl = Al - BI

s AR =RE=MR+ R
sBR =RI=R-R
s Al” = R4 = Al + BI

#R1++(IR0), #AR0++(IR0),RS 3 BI” = RS = AI - BI

SUBF SAR1++, $AR0+ R1
2. BUTTERFLY: w0

ADDF #R0, #R1,R6

SUBF #R1++, #AR0+ R7

ADDF #RO, #R1, R4

SUBF

STF R2, #AR2++

STF R3, #AR3++

STF RO, #AR2++

STF R, #R3++

STF R6, #HAR2++

STF R7, #AR3++

STF R4, #AR24+(1R0)

STF RS, #R3++(IRO)

3. BUTTERFLY: w™i/4

ADDF
SUBF
ADDF
SUBF

RO+ #4R1,RS
*R1, #AR0, RA
#AR1++, #AR0-- R6
HAR1++ #AR0++ R7

4. BUTTERFLY: wW/4

ADDF
LDF
LDF
SUBF
STF
STF
STF

#+AR1, #++AR0,R3
*+-AR7,RL
#HR1++ RO

(AR’ = R2)
(BR’ = R3)
(AI” = RO)
(Bl = R1)
MR =R
BR’ = R7
Al = R4
BI’ = RS

AR’ =RS =M + Bl
Al = R4 = Al - BR
Bl =R6 = Al + R
BR’ =R7=AR - Bl

AR’ =R3=#MR +Bl
Rl = 0 (FOR INNER LOOP)
RO = BR (FOR INNER LOOP)

SAR1++(IR0), #AROH+ R2 3 BR’ = R2 = AR - BI

RS, #AR2++
R7, #AR3++
R6, #AR3++

S. TO M. BUTTERFLY:

RPTB

LDF
STF
LDF
STF
PYF
STF
ADDF
WPYF
ADDF
SUBF
STF
ADDF
WPYF
SUBF
PYF
STF

BF2END

HR7++ RT

R4, #R2++
HR7++ Rb

R2, #R3++
+AR1,R6, RS
R3, #AR2++
RI,RO,R2
#R1,R7,R0
R2, #4R0,R3
R2, #AR0++(IR0) , R4
R3, #AR3++(IR0)
RO,RS,R3
#R1++ R6,RO
R3, #4R0,R2
HR1++,R7,R1
R4, #AR2++(IRO)

3 (R” =RS)
s+ (BR” = R7)
;3 (BI” = Ré)

+ R7 =008, ((AI = RA))
s R6 = SIN, (R =R2)
s R5 =Bl ¢ SIN, (R’ =R3)

3 (R2=TI =R0 +RI)
s RO=BR#C0S, (R3=AI +TI)

s (R& = Al - T1, BI” = R3)

3 R3=TR=RO +RS
sRO=BR#SIN, R=MR-TR

s R =Bl #C0S, (AI’ = R4)

86

0EDOZESIL 3 UO Suofsubi] 4241 puv ‘IDQ ‘L4 Jo uouvmawaiduy uy

CLEAR PIPELINE

STF
STF
ADDF
ADDF
STF
SUBF

RO+, R3,RS
R2, $AR3+

AR, RS, RS
RS, #AR2+
R1,R0,R2
#R1,R7,R0
R2,#AR0,R3
R2, #ARO++, R4
R3, #AR3+
RO,RS,R3
#R1++,R6,R0
R3, #R0,R2
#R1++(IR0),R7,RL
R4, #AR2++
#RO++,R3,R3
R2, #AR3++

#44R1,R7,R5
R3, #AR2H
R1,R0,R2
+R1,R6,R0

R2, #4R0,R3

R2, #AR0++(IR0) , R4
R3, #4R3++ (IR0)
RO,RS,R3
HR14+4,R7,R0

R3, #ARO, R2
HR1++,R6,R1

R4, #AR2++ (IRO)
HROH,R3,RS

R2, #R3++

+AR1,R7,RS
RS, #AR2+
R1,RO,R2
#R1,R6,RO
R2,#R0,R3
R2, #AR0++,R4
R3, #AR3++
RO,R5,R3
#AR1++ R7,RO0
R3,#AR0,R2
#R1++(IRO) RS, RL
#R0++,R3,RY

R2, +R3H
RY, #R2H
R1,RO,R2

R2, #R0,R3

R2, #4R0, R

(RS=MR+TR, R =R

s RS =Bl 4 SIN, (AR’ = RS)

: (R2 =TI =RO - RD)
;RO=BR®COS, (R3=AI+TD)

; (R& = Al -TI, BI’ = R3)

;R3=TR=RO+RS
;RO=BRESIN, =M - R

3 Rt =BI #C0S , (Rl” = R4)

(RI=M+TR, R =R

s RS =Bl £C0S, (AR’ =R3)

: (R =TI =RO-RD
sRO=BRESIN, (R3=AL+TD)

s (RE=AL-TI, Bl =R3)

;R3=TR=FR5-RO
cRO=BR¥C0S, R=M-TR

s RU=BI #SIN, (Al = RA)

(RS=MR+TR, R =R

3 RS =BI #C0S , (R’ =RS)

s (R2=TI =R +RL)
;RO=BR#SIN, (R3= AL+ TD

; (R&=AI-TI, yll) = BI =R3)

R =TR=R5-RO
RO=BR*CS, RR=M-TR

sRU=BI#SIN, R3= M+ TR

s BR‘=R2, A’ = Re

;R2=TI =RO +Rl
sRB=AL+T1 , R =R3

sRE=AL-TI, Bl =R3

-

STF
STF

R3, #R3
R4, #AR2

Al = R4

LAST STAGE WITH INTEGRATED BIT REVERSAL

o1 INPUT, ARO
L1 OUTRUT, AR
101 INPUTP2, AR1
L01 OUTPL, AR3
w01 SINTP2, A7
LDI #FTSIZ, IR
L1 3,IR1
Lo1 6N, RC

FILL PIPELINE

1. BUTTERFLY: w0
ADDF #ARO,#ARI,R6
SUBF RLH, #R0+,R7
SUBF 4RI, HARO,RS
ADDF

H

H

H

H
i

BIT REVERSAL
GROUP OFFSET

MR =RE=MR+R
BR* =R7 = AR - BR
BI” = R4 = Al - BI

#AR1++(IR1),#AR0++(IR1),RS 5 AI’ = RS = Al + BI

2. BUTTERFLY: w™M/4

UBF
LDF
LDF
ADDF
STF
STF
STF

#++AR1, #AR0,R3
+AR7,R1
#HR1+ RO

HRL+(IRD), #R0++, R2

R6, #AR2++(IR0)b
RS, #R3++(IR0)D
R7, #AR2++(IR0O)b

3. TO M. BUTTERFLY:

PTB

BFLEND

H

B’ =R3 = MR - BI
Rl = 0 (FOR INNER LOOP)
RO = BR (FOR INNER LOOP)
SR =R=AR 4B
(R = R6)
(Al” = RS)
(R’ =RT)

17 CYCLES IF FFT SIZE <1024 DUE TO THE USE OF INTERNAL MEMORY FOR BIT
REVERSAL, 21 CYCLES IF FFT SIZE = 1024 DUE TO THE USE OF EXTERNAL MEMORY

FOR BIT REVERSAL
LDF #HRT+ R
STF R4, #R3++(IR0)B
LOF HR7++,R6
STF R2, #AR2++(IR0)B
PYF £+AR1,R6,RS
STF R3, #AR2++(IRO)B
ADDF R1,R0,R2
PYF #R1,R7,R0
SUBF R2, #R0,R3
ADDF R2, #RO+(IR1) ,RY
STF R3, #AR3++(IR0)B
ADDF R0,R5,R3
PYF #R1++,Rb, RO

s R7=C0S, ((BI” = R4))

R6 = SIN , (AR’ =R2)-
RS = BI # SIN, (BR’ =R3)

(R2 = TI'= RO + R1)

S ROCER ¥ COS, (Al = R3 = Al - TD

i

3 (BI” =R4 = Al + TI , AI” = R3)

R3=TR=RO+RS
RO=BR¥SIN, R’ =R=M+ TR

0£D0ZESIWL 2Y? uo swiofsuvi] 12yl puv ‘[Dd ‘LA Jo voupuawaduy uy

66

ADDF
WPYF
STF

STF

LAl
STF

SUBF
MPYF
SUBF
ADDF
STF

SUBF
WPYF
ADDF

BFLEND MPYF

g‘:—

SUBF

CLEAR PIPELINE

STF
STF
ADDF

-
3
a

R3, #R0,R2
#R1++(IR1) R7,RI
R4, ¥AR3++(IR0)B
R3, ¥AR0++ R3

R2, #R2++(IR0)B

AR1,R7,RS

R3, #AR2++(IRO)B
Rt,R0,R2
#R1,R6,R0

R2, +ARO,R3

R2, #ARO++(IR1) R4
R3, #R3++(IR0)B
R0, RS, R3
*AR1++,R7,R0

R3, #AR0,R2
#R1++(IR1) R6,R1
R3, ¥R0+, R3

R2, #AR2++(IRO)B
R4, #AR3++(IRO)B
R1,R0,R2

R2, R0, R3

R3, #AR2

R2, ¥AR0, R4

R3, ¥R3++ (IRO)B
R4, *AR3

H

Rt = BI # C0S , (BI' = R4)

R =R=M-TR, R =R

RS = BI # C0S , (BR’ =R3)

(R2 = TI = RO - RI)
RO =BR # SIN, (Al =R3 =Al - TD)

(BI” =R4 = Al + TI , Al’ = R3)

R =TR=R0-FRS
RO=BR®COS, R =R2= M+ TR

Rt =Bl #SIN, BR" =R3=AR - TR

AR’ =R2, (Bl' =R4)

R2=TI=R0 +R1
Al =R3=Al -TI, BR" = R3

BI” =R&=Al'+T1 L Al =R3

BI’ = R4

001

0£D0ZESWL 2yp uo sudofsuvi] 41y30 puv ‘[0 ‘L4 Jo uonvmawaiduy uy

* +
+ APPENDIX AS ¥
* *
TITLE: TWIDIKBR.ASH *
* *
TABLE WITH TWIDDLE FACTORS FOR A FFT UP TO A LENGTH OF 1024 COMPLEX *
* POINTS. *
+ +
FILE TO BE LINKED WITH THE SOURCE CODE : R2DIT.ASM OR R2DITB.ASM ¥
* *
WRITTEN BY : RAIMUND MEYER AND KARL SCHWARZ 14,07.89 ¥
* LEHRSTUHL FUER NACHRICHTENTECHNIK *
* UNIVERSITAET ERLANGEN-NUERNBERG #
* *
LENGTH OF TWIDDLE FACTOR TABLE : 512 REAL VALUES (=1024 FFT) ¥
¥ *
*

.global sine

.global n

.global nhalb

.global nviert

.global nachtel

.global =m
*
n .set 1024 3 FFT-LENGTH n
nhalb .set 512 3 n/2
nviert .set 286 3 n/4
nachtel .set 128 3 n/8
n .set 10 ; NUMBER OF STAGES = 1d(n)

*
ANOTHER EXAMPLE OF FFT-LENGTH n = 32¢
ONLY THE FIRST 16 VALUES OF THE TABLE ARE NEEDED

*
0 .set
#nhald .set
#viert .set
#nachtel .set
" .set
*
.data
*
sine
.float
float
.float
float
" .float
.float
Jfloat
float
.float

2

o

1
8
4
S

1..00000000000000¢ +000
0..00000000000000¢ +000
7.07106781186548-001
7.071067811856548e-001
9.23879532511287e-001
3.826834323650902-001
3.82683432355090e-001
9.23879532511287¢-001
9.80785280403230e-001

float
Jfloat
.float
float

7.11432195745216e-001
7.02754744457225¢-001
6.13588464915452¢-003
9.99981175262601e-001

‘syutod xd[dwo) $70I jo WSud € 03 dn L4
€ 10§ S10308] JPPIML UMM d[qeL— NSV AMITAIML SV xipuaddy

Appendix B. Radix-4 Complex FFT

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 101

201

0£D0ZESIWL) U0 suofsuvi] 4oyiQ puv ‘[DA ‘LA Jo uouvuowaiduy uy

R T T T R o

APPENDIX Bl

GENERIC PROGRAM TO DO A LOOPED-CODE RADIX-4 FFT COMPUTATION ON THE
THS320C30.

THE PROGRAM IS TAKEN FROM THE BURRUS AND PARKS BOOK, P. 117. THE COMPLEX
DATA RESIDE IN INTERNAL MEMORY, AND THE COMPUTATION IS DONE IN-PLACE.

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION. THIS
DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC NATURE OF THE
PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE FFT N AND LOG4(N) ARE
DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED DURING LINKING.

IN ORDER TO HAVE THE FINAL RESULT IN BIT-REVERSED ORDER, THE TWO MIDDLE
BRANCHES OF THE RADIX-4 BUTTERFLY ARE INTERCHANGED DURING STORAGE. NOTE
THIS DIFFERENCE WHEN COMPARING WITH THE PROGRAM IN P. 117 OF THE BURRUS
AND PARKS BOOK,

AUTHIR: PANOS E. PAPAMICHALIS

TEXAS INSTRUMENTS AUGUST 23, 1987
*
LGLOBL FFT + ENTRY POINT FOR EXECUTION
GLOBL N + FFT SIZE
GLOBL M + LOGA(N)
GLOBL SINE ; ADDRESS OF SINE TABLE
*
w LUSECT N, 1024 + HEMORY WITH INPUT DATA
*
JTEXT
*
+ INITIALIZE
*
WRD FFT + STARTING LOCATION OF THE PROGRAM
*
LPACE 100 + RESERVE 100 WORDS FOR VECTORS, ETC.
*
TEMP LWORD $%2 .
STORE .MORD FFTSIZ ; BEGINNING OF TENP STORAGE AREA
WRD N
WRD M
MORD SINE
MRD W
*
BSS FFTSIZ1 + FFT SIZE
BSS LOGFFT,1 + LOGA(FFTSIZ)
BSS SINTAB, L + SINE/COSINE TABLE BASE
LBSSINUT,L + AREA WITH INPUT DATA TO PROCESS
JBSS STAGE,1 + FFT STAGE #
GBS RPTONT,1 + REPEAT CONTER
LBSSIEINDX,1 :

3 1E INDEX FOR SINE/COSINE

.BSS
BSS
BSS
FFT:

Loe
LoI
LoI
LI

STL
[R1)4
ST1
LDI
STL
LDI
ST1

LD
LDI
LDI
LoI
D1
STI

LSH
LSH
L1
STl

LSH
STI
ADDI
STL
SUBI
L

% QUTER LOOP

LOGP:
LDI
ADDI
ADDT
ADDI
Lol
SUBI

+ FIST LOOP

RPTE
ADDF
ADDF
ADLF

LPCNT, 1
a1
1a1,1

TP
ETENP, ARD
@STORE, ARI
HEOH RO

RO, #AR1++
#AR0++ RO
RO, #AR1+4+
*AR0+H RO
RO, #AR1++
+AR0, RO

RO, #AR1

FFTSIZ
SFFTSIZ,RO
FFTSIZ, IR0
BFFTSIZ, IRL
0,AR7

PR, ESTAGE

1,1R0
-2,IR1
1,AR7
PR7, GRPTCNT

-2,R0
AR, GIEINDX
2,R0

R0, &JT
2,R0

1,R0

RINPUT, ARO
RO, ARO, ARL
RO, ARI, AR
RO, AR2, AR3
RPTCNT,RC
1,RC

BLKL

*+ARO, #+ARZ,R1
*4AR3, ++ARL A3
R3,R1,R6

3 SECOND-LOOP COUNT
3 JT COUNTER IN PROGRAM, P. 117
; IAL INDEX IN PROGRAM, P. 117

INITIALIZE DATA LOCATIONS
; COMMAND TO LOAD DATA PAGE POINTER

3 XFER DATA FROM ONE MEMORY T0 THE
s OTHER

COMMAND TO LOAD DATA PAGE POINTER

3 @STAGE HOLDS THE CURRENT STAGE
NUMBER

;' IRO=2#NI (BECAUSE OF REAL/IMAG)
5 IR1=N/4, POINTER FOR SIN/COS TABLE

+ INITIALIZE REPEAT COUNTER OF FIRST
LooP

s INITIALIZE IE INDEX
s JT=R0/242

;3 RO=N2

ARO POINTS TO X(I)
ARL POINTS TO X(I1)
AR2 POINTS TO X(I12) -
AR3 POINTS TO X(I3)

3 RC SHOULD BE ONE LESS THAN DESIRED #

3 RI=Y(I)+Y(I2)
3 R3=Y(I1#Y(I3)
; R6=RI1+R3

0€D0ZESINLL Y}

uo A4 v-X;pe}I apo;)-padooq ® 0(J 0) WeIZ01] JLIUAY) *1g xipuaddy

0ED0ZESIWI 2y? uo swiofsuvd] 1ay30 puv ‘IHQ ‘L4 J0 uonvuawaiduy uy ‘

€01

STF
STF
SUBF
ADDF
STF
STF

#+AR2, #+ARO, R4
RS, 44RO
R3,Rt

HR2,R5
##MR1,R7
HR3, HR1LR3
RS, #ARO,R1

R, #AR1
R3,R1,R6

RS, #ARO,R2

Rb, #AR0++(IR0)
R3,R1

#R3, #AR1,R6
R7,#+AR3,R3
R1, #R1++(IRO)
Ré,R4,RS
R6,R4

RS, #4AR2

R4, #+AR3
R3,R2,RS

R3,R2

RS, #R2++(IRO)
R2, #AR3+(1R0)

*
* IF THIS IS THE LAST STAGE, YOU ARE
*

LDI @STAGE, AR7
ADDI 1,AR7
o, 41 @LOGFFT,AR7
BID END
STl AR7, @STAGE
*
* MAIN INNER LOOP
*
[80+ 1,AR7
STl AR7, 81A1
1 2,AR7
STI AR, 8LPCNT
INLOP:
LDI 2,AR6
ADDI @LPONT, ARG
Lor @LPCNT, ARO
LDI QIAL, AR7
ADDI @IEINDX, AR7
ADDI CINPUT, ARO
STI MR7, 011
ADDI RO, ARO, AR1
STI ARb, BLPCNT
ADDI RO, AR1, AR2
ADDI RO, AR2,AR3
LI ERPTCNT,RC
SUBI 1,RC
> 0} QJT, AR
BID SPCL

Re=Y(I)-Y(I2)
Y(1)=R1+R3
RI=RI-R3
RS=X(12)
R7=Y(11)
R3=X(11)+X(13)
RI=X(1)#X(12)
Y(I1)=R1-R3
R6=R1+R3
R2=X(1)-X(12)
X(1=R14R3
Ri=R1-R3
R&=X(I1)-X(13)
=R3=Y(I1)-Y(I3)
X(I1=R1-R3
RS=R4-R6
RA=R4+Rb
Y(I2)=R4-R6
Y(I3)=R4+R6
RS=R2-R3 !!!
R2=R2+R3 !'!!
X(12)=R2-R3 '!!
X(I3)=R24R3 !!!

DONE

3 CURRENT FFT STAGE

+ INIT 1Al INDEX
+ INIT LOOP COUNTER FOR INER LOOP

+ INCREMENT INNER LOOP COUNTER

IAL=1A1+IE
(X(I),Y(I)) POINTER

3 (X(I1),Y(I1)) POINTER

;5 (X(12),Y(I2)) POINTER
3 (X(I3),Y(I3)) POINTER

+ RC SHOULD BE ONE LESS THAN DESIRED #
+ IF LPONT=JT, 60 TO
: SPECIAL BUTTERFLY

LDI

ADDI
ADDI
SUBI
ADDI
SUBI

SECOND LOOP

RPTB

ADDF
ADDF

ADDF

MPYF
STF
ADDF

WPYF
STF

MPYF

Lala

MPYF
STF

MPYF
ADDF
MPYF
STF

MPYF

MPYF
STF
MPYF

STF

©IAL,AR7
o141, AR
€SINTAB, AR4
R4, ART, ARS
1,5

AR7, ARS, ARG
1,AR6

BLK2

#ARZ, #4AR0, R3
++AR3, ++R1 RS
RS,R3,Ré

#+AR2, H+ARO, R4
RS,R3

*AR2, #ARO, R1
#AR3, #AR1, RS
R3,+ARS(IR1),R6
R6, 44RO
RS,R1,R7

+AR2, #AR0, R2
RS,R1

R1, #ARS R7

R7, #AR0++(IR0)
R7,R6

*#+AR3, #4AR1 RS
R1,#+ARS(IR1),R7
R6, #+4R1

R3, AR5, R6

R7,R6

RS,R2,R1

RS,R2

+R3, ¥R1,RS
RS,R4,R3

RS, R4

R3, #+AR4(IR1) R
Ré, #AR1++(IR0)
RI, #R4,R7

R7,R6
R1,#+AR4(IR1) RS
R6, #+AR2

R3, #AR4, R7

R7,R6

R4, ++AR6(IR1) ,R6
R6, tAR2++(IR0)
Rz, #AR6,R7

R7,Ré

RZ, #+AR6(IR1),R6
Rb, +4AR3

R4, #AR6,R7
R7,R6

Rb, #R3++(IRO)

i

H

CREATE COSINE INDEX AR4

1A2=1A1+]A1-1

1A3=1A2+1A1-1

R3=Y(D1)4Y(12)
RS=Y(I1)+Y(I3)
R6=R3+RS
Ra=Y(I)-Y(12)
R3=R3-RS
R1=X(1)+X(12)
RS=X(I1)+X(13)
R6=R3#C02
Y(I)=R3+RS

R7=R14RS
R2=X(1)-X(I2)
R1=R1-RS

R7=R1#S12
X(1)=RI+RS
R6=R3xC02-R1#S12
RS=Y(I1)-Y(I3)
R7=R1%C02
Y(I11)=R35C02-R14812
R&=R3#S12
R&=R1#CO24R34S12
RI=R2+RS

R2=R2-RS
RS=X(I1)-X(13)
R3=R4-RS

RA=RHRS

R6=R3+C01
X(I1)=R1#CO2+R3%512
R7=R1#S11
R6=R3#CO1-R1#ST1
R6=R1#C01
Y(I2)=R3#C01-R1#SI1
R7=R3#S11
R6=R1#C01+R3#SI1
R6=R4xCO3
X(12)=R1C01+R3#S11
R7=R2sS13
R6=R4#C03-R2#S13
R6=R2sC03
Y(I13)=R4*C03-R2#SI3
R7=R4SI3
R6=R2¥CO3+R4#SI3
X(13)=R2%CO3+RA#SI3

o1

0ED0ZESIWL 2y? uo suuiofsuvif 1ayiQ puv ‘I ‘L4 Jo uoupmawaiduy uy

g--

oel @LPONT, RO
: 4 INOP
® CONT

SPECIAL BUTTERFLY FOR W=J

L1 IR1, ARA
LSH ~1,AR4
ADDL . @SINTAB, R4

RFTB B3
ADDF +AR2,#R0,R1
SUBF AR2, 4ARO,R2
ADF . +AR2, 4RO
SUBF H4ARZ, HHARD,RY
ADDF #AR3,#R1,RS

SUF RI,RS,R6
ADF RS,

ADDF #4AR3, #4ARL,RS
SUBF RS,R3,R7

ADF RS,R3

SiF. R3, #+AR0

STF R1, R0+ (IRO)
SUBF #R3,$AR1,R1
SUBF #+AR3, +R1,R3
STF R6, #4ARL

STF R7, #R1++(IR0)
ADDF R3,R2,R5
SUBF R2,R3,R2

SUBF RI,RA,R3

ADDF RI,R¢

SUBF RS,R3,Rt

PYF HR4RL

ADDF RS,R3

PYF #AR4,R3

STF R, #+AR2

SUBF R4,R2,R1

PYF #R4,R1

STF R3, #4R2++(IR0)
ADDF R4,R2

PYF #AR4,R2

STF R1, #+AR3

STF R2, $AR3++(IR0)

>, 2 @LPCNT, RO
BPD NP

1 RPTONT, AR7
Lo1 CIEINDX, AR
LH 2,87

sT1 ART, ORPTONT
LsH 2,6

LOOP BACK TO THE INNER LOOP

3 POINT TO SIN(45)

CREATE COSINE INDEX ARA=CO2L

RI=X(1)#X(12)
R2=X(1)-X(12)
R3=Y(1)+Y(12)
Ré=Y(1)-¥(12)
RS=X(I1)+X(I3)
Ré=RS-RL
RI=R14RS
RS=Y(I1)4Y(13)
R7=R3-RS
R3=R3RS
Y(I)=R3+RS
XD=RIRS
RI=X(I1)-X(13)
R3=Y(11)-Y(I3)
Y(I1)=RS-R1
X(I11)=R3-RS
RS=R24R3
R2=-R2+R3 !!!
R3=RA-RI
Re=R4+RL
Ri=R3-RS
Ri=R1#C021
R3=R3RS
R3=R3sC021
Y(I2)=(R3-RS)#C021 -
Ri=R2-Ré !!!
R1=R1#C021
X(12)=(R3+RS)#C021
R2=R2+R4 !!!
R2=R2¥C021{ !!!
Y(I3)=-(R4-R2)eC021 !!!
X(I3)=(R4+R2)#C021 !!!

LOOP BACK TO THE INNER LOOP

INCREMENT REPEAT COUNTER FOR NEXT

e

1E=A+]E

]
13
*
END:

il i
=
2

STL
808
LSH
ADDI
§TI
SuBl
LS
B

ARG, RIEINDX
R0, 1RO + NI=R2

-3,80

2,R0

RO, &7 3 JTN2I242
2,R0

1,R0 ; N2=N2/4

LooP + NEXT FFT STAGE

STORE RESULT OUT USING BIT-REVERSED ADDRESSING

oI
SUBL
LI
LD1
LI
Lop
Lor

RPTB
LOF
LDF
STF
STF

BR
END

#FISIZ,RC
1,8
FFISIZ, IR0
2,181
CINAUT, AR
STORE
@STORE, ARI

RC=N
RC SHOULD BE ONE LESS THAN DESIRED ¢
IRO=SIZE OF FFT=N

BITRY
FARO(1), RO
#R0++(IR0)B,R!
RO, #AR1(1)

RY, #RI++(IR1)

SELF 3 BRANCH TO ITSELF AT THE END

d ‘LdAd Jo uvonuvuawaiduy uy

0£D0ZESWL 2Y? uo suuojsuw ([49Y10 pup °

sot

I I T I I I I T T R R N R R T

APPENDIX B2

NAME: fft_4 — RADIX-4 COMPLEX FFT TO BE CALLED AS A C FUNCTION.

SYNOPSIS:
int F6E_A(N, N, DATA)
int N FFT SIZE: Ned#s
int NUMBER OF STAGES = LOG4(N)

float #data - ARRAY WITH INPUT AND OUTPUT DATA

DESCRIPTION:
GENERIC FUNCTION TO DO A RADIX-4 FFT COMPUTATION ON THE THS320C30.
THE DATA ARRAY IS 2eN-10NG, WITH REAL AND IMAGINARY VALUES ALTER-
NATING. THE PROGRAM 1S BASED ON THE FORTRAN PROGRAM IN THE BURRUS
AND PARKS BOKK, P. 117,

IN ORDER TO HAVE THE FINAL RESULT IN BIT-REVERSED ORDER, THE TWO
MIDDLE BRANCHES OF THE RADIX-4 BUTTERFLY ARE. INTERCHANGED DURING
STORAGE. NOTE THIS DIFFERENCE WHEN COMPARING WITH THE PROGRAM ON

P. 117, THE COMPUTATION IS DONE IN-PLACE, AND THE ORIGINAL DATA IS
DESTROYED. BIT REVERSAL IS IMPLEMENTED AT THE END OF THE FUNCTION.
IF THIS IS NOT NECESSARY, THIS PART CAN BE COOOENTED OUT. THE
SINE/COSINE ‘TABLE FOR THE TWIDILE FACTORS IS EXPECTED TO BE SUPPLIED
DURING LINK TIME, AND-IT SHOULD HAVE THE FOLLOWING FORMAT:

.giobal _sine
Jdata

-sine Jfloat valuel = sin(O%2#pi/N)
Jfloat value2 = sin(1#2#pi/N)

float- - value(SN/4) = sin((S#N/4-1)#2%pi/N)

THE VALUES valuel, value2, ETC., ARE THE SINE WAVE VALUES. FOR AN
N-POINT FFT,” THERE ARE N+N/4 VALUES FOR A FULL AND A QUARTER PERIOD
OF THE SINE WAVE. IN THIS WAY, A FULL SINE AND COSINE PERIOD ARE
AVAILABLE (SUPERIMPOSED).

STACK STRUCTURE UPON THE CALL:

$mommme—me et
-fP(4) I DATA H
-FP(3) H " H
P20 ¢ N H
<FP(1) | RETURN ADIR !
-FP(0) i ODFP i

4t

REGISTERS USED: RO, RI, R2, R3, R4, RS, R6, R7, ARO, ARI, AR2, AR3, AR,
RS, AR6, AR, IRO, IR1, RS, RE, AC

AUTHOR: PANOS E. PAPANICHALIS
TEXAS INSTRURENTS OCTOBER 13, 1987

P SET

.GLOBL
GLOBL

.BSS

.BSS

.BSS
*

JTEXT

*
SINTAB - .word
*

A3

FFT.4
-SIN

FFTSIZ, 1

LOGFFT, 1
INUT,1

-SINE

INITIALIZE C FUNCTION

*
fft & PUSH
- LDt

Lo
STI
101
STl
Lt
STl

PP
,FP

+FP(2),R0
RO, 6FFTSIZ
+-FP(3),R0
RO, &LOGFFT
+-FP(4),R0
RO, RINPUT

% INITIALIZE FFT ROUTINE

.BsS
BSS
BSS
.BSS
.BSS
.BSS

Lol
803
LI
Lor
STL

LSH
LSH
04
STI

STAGE, 1
RPTCNT, 1
IEINDK, 1
LPONT, 1
a1
1AL,

SFTSIZ,R0
FFTSIZ, IRO
FISIZ, IR
0,07
AR7, 6STAGE

1,IR0
-2,1Rl
1,7
BR7, GRPTONT

H

ENTRY POINT FOR EXECUTION
ADDRESS OF SINE TABLE

SAVE DEDICATED REGISTERS

;3 MOVE ARGUMENTS TO LOCATIONS MATCHING

THE NAKES IN THE PROGRAM

FFT STAGE #

REPEAT COUNTER

IE INDEX FOR SINE/COSINE
SECOND-LOOP COUNT

JT COUNTER IN PROGRAM, P. 117
1AL INDEX IN PROGRAM, P, 117

@STAGE HOLDS THE CURRENT STAGE
NUFBER

IRO=2#N1 (BECAUSE OF REAL/IMAG)
IRI=N/4, POINTER FOR SIN/COS TABLE

3 INITIALIZE REPEAT COUNTER OF FIRST

LooP

uonounjg

D ® se pafe) ag 03 LAd xodwo) p-xipey— 1) ‘zd Xipuaddy

901

0ED0ZESWI Y3 uo suriofsuvs] 43410 puv ‘I1DQ ‘L4 Jo uonvyuowajduy uy

LBI

ADDI
ADDI
ADDI

SUBI

-

FIST LOOP

RPTB

i STF
SUBF
ADDF
STF
" STF
SUBF
ADDF
BLK1 STF
H STF

0
& IF THIS IS THE LAST STAGE, YOU ARE DONE
*

LI
ADDI
>, 41
BID
STI

-2,R0
AR7, GIEINDX
2,80

RO, &7
2,0

1,R0

RINPUT, ARO
R0, ARD, ARI
RO, AR, AR
RO, AR2, ARG
RPTONT RC
1,RC

BLKIL
+ARD, $4AR2,R1
+AR3, £HR1,R3
R3,R1,R6
HAR2, #4+ARO,RA
Rb, $4AR0

R3,R1

+R2,R5
+AR1,R7
+R3, 4R, K3
RS, #4R0,R1

RE, 4RI
R3,R1,R6

RS, #0R0,R2

R6, #R0++(IR0)
R3,RL

*R3, #4R1,R6
R7, #4AR3,R3
RI, #4R1++(IR0)
R6,R4,RS
R6,R4

RS, +4HR2

RY, HARS
R3,R2,R5
R3,R2

RS, $AR2++(IRO)
R2, #R3++ (IR0}

ESTAGE, AR7
1,AR7
BLOGFFT, AR7
00

PR, STAGE

INITIALIZE 1€ INDEX
JTRO/292

RO=N2

ARO POINTS TO X(I)
ARL POINTS TO X(11)
AR2 POINTS T0 X(12)
AR3 POINTS T0 X(I3)

RC SHOULD BE ONE LESS THAN DESIRED #

RI=Y(I)4Y(12)
R3=Y(11)+Y(13)
R6=R1+R3
R&=Y(1)-Y(12)
Y(I)=R1+R3
R1=R1-R3
RS=X{12)
R7=Y(11)
R3=X(I1)+X(I3)
R1=X(1)+X(12)
Y(I1)=R1-R3
R&=R1+R3
R2=X(1)-X(12) .
X(1=R1+R3
RI=RI1-R3
R&=X(11)-X(I3)
-R3=Y(11)-Y(I3) 1!
X(I1)=R1-R3
RS=R4-RS
R4=R4+R6
Y(12)=R4-Rb
Y(I3)=R4+R6
RS=R2-R3 !!!
R2=R2+R3 !!!
X(12)=R2-R3 '!!
XI3)=R24R3 1!

CURRENT FFT STAGE

£ MAIN INNER LOOP

Lor
ST1
LoI
STI

INLOP:

*

LDI
ADDI
LI
LoI
ADDI
ADDI
§TI
ADDL
STI
ADDI
ADDI
LI
SUBI
>, 91
BID
[R1)¢
DI
ADDI
ADDI
SUBI
ADDI
SUBI

SECOND LOOP

RPTB
ADDF
ADDF
ADDF
SUBF
SUBF
ADDF
ADDF
MPYF
3TF

ADDF
SUBF
SUBF
MPYF
STF

SUBF
SUBF
MPYF
STF

PYF
ADDF

1,87
70101
2,7

AR7, BLPONT

2,86
LPONT, RS
LPONT, ARO
@1AL, AR
RIEINX, /7

e1AL, AR7
e1A1,AR4
ESINTAB, R4
ARY,AR7, ARS
1,M85

ART, ARS, AR
1,086

BLK2

+4AR2, +4AR0, R3
HAR3, #AR1 RS
RS, R3, Rb

AR, #+ARO, RA
RS,R3

#ARZ, *AR0, R
+R3, #AR1 RS

R3, #+ARS(IR1) ,R6
Rb, ¥+ARO
RS,R1,R7

HR2, #AR0,R2
RS,RL

R1, AR5 R7

R7, #AR0O+(IR0)
R7,R6

*+AR3, #4AR1,RS
R1,#4ARS(IR1),R7

INIT IA1 INDEX
INIT LOOP COUNTER FOR INNER LOOP

INCREMENT INNER LOOP COUNTER

IA1=1AI+IE
{X(I),Y(I)) POINTER

(X(I1),Y(11)) POINTER

(X(I2),Y(I2)) POINTER

+ (X(I3),¥(13)) POINTER

RC SHOULD BE ONE LESS THAN DESIRED #
IF LPCNT=JT, 60 T0

SPECIAL BUTTERFLY
CREATE COSINE INDEX AR4
1A2=1A1+1A1-1

IA3=1A2+1A1-1

R3=Y(1)4Y(12)
RS=Y(I1)+Y(13)
R&=R3+RS

1 R&=Y(D)-Y(12)

R3=R3-RS
RI=X(1)+X(12)
RS=X(I1)+X(I3)
R6=R3#C02
Y(I)=R34RS
R7=R14RS
R2=X(1)-X(12)
RI=R1-RS
R7=R1#S12
X(1=R1+4RS
R&=R31CO2-R1#SI2
RS=Y(I1)-Y(I3)
R7=R13C02
Y(11)=R3#C02-R1#512
R&=R3#512
R&=R1#C024R3#S12

0£D0ZESILIL 241 uo suLiofsuvi] sy puv ‘[D ‘Ldd Jo uouvawaidwy uy

LO1

SUBF
SUBF

WPYF

WPYF

MPYF
i STF
MPYF
ADDF
MPYF
" STF
MPYF

WPYF
) STF

MPYF

ADDF
BLK2 STF

ol
B
BR

*

R5,R2,R1

RS,R2

*R3, #R1,RS
R5,R4,R3

RS,R4

R3, #+AR(IR1) R6
R6, #AR1++(IR0)
R1, #AR8,R7
R7,R6

R1, #+ARA(IR1) ,R6

R4, #+AR6(IR1) k6
Rb, #AR2++(IRO)
R2, #ARb,R7

R7,R6

R2, #+AR6(IR1) ,R6
Ré, #+AR3

R4, ¥ARb, R7

R7,R6

Rb, #AR3++(IR0)

@LPCNT RO
INLOP
CONT

* SPECIAL BUTTERFLY FOR W=J

*

SPCL LbI
LSH
ADDI

RPTB
ADDF
SUBF
ADDF
SUBF
ADDF
SUBF
ADDF
ADDF
SUKF
ADDF
§TF
H STF
SUBF
SUBF
STF
H STF
ADDF
SUBF
SUBF
ADDF

IRI, AR4
-1,AR4
@SINTAB, AR

BLK3

#R2, ¥AR0,R1
*AR2, #AR0, R2
#+AR2, #+ARO0,R3
#+AR2, #++AR0, R4
#AR3, ¥AR1,RS
R1,RS,R6

RS,RI

#4+AR3, #+ARI, RS
RS,R3,R7
RS,R3

R3, #+AR0

R1, #AR0++(IR0)
#AR3, #AR1,RL
#+AR3, #4AR1 R3
Rb, #+AR1

R7, #AR1++(1R0)
R3,R2,RS
R2,R3,R2
R1,R4,R3
R1,R4

RI=R24RS

R2=R2-RS
RS=X(I1)-X(I3)
R3=R4-RS

R4=R4+RS

R6=R3%C01
X(I1)=R1#CO2+R3#512
R7=R1#SI1
R6=R3#C01-R1#SI1
R&=R1%C01
Y(12)=R3#CO1-R1#SI1
R7=R3sSI1
R6=R1#CO1+R3#SI1
R6=R4C03
X(I2)=R1#C01+R3#S11
R7=R23S13
R6=R4C03-R24S13
R&=R2#C03
Y(13)=R4*C03-R2¢S13
R7=R4xSI3
R6=R2¥(03+R42SI3
X(13)=R2¥CO3+R4*SI3

LOOP BACK TO THE INNER LOOP

POINT T0 SIN(45)
CREATE COSINE INDEX AR4=C021

RI=X(1)+X(12)
R2=X(1)-X(12)
R3=Y(1)4Y(I2)
Ra=Y(I)-Y(I2)
RS=X(11)+X(13)
R&=RS-R1
RI=R1+RS
RS=Y(I1)+Y(13)
R7=R3-RS
R3=R3+RS
Y(1)=R3+RS
X(1)=RI4RS
R1=X(11)-X(13)
R3=Y(11)-Y(13)
Y(I1)=RS-Rl
X(11)=R3-RS
RS=R2+R3
R2=-R24R3 !!!
R3=R4-R1
R4=R4+R1

SUBF RS,R3,RI + RISR3-RS
HPYF R4 R1 + RI=R1%C02L
ADIF RS,R3 3 R3RIRS
WPYF R4 R3 + R3=R34C02L
T STF RI, ¥4AR2 + Y(12)=(R3-RS) #0021
SUBF R4,R2,R1 s RI=R2-RA 1!
WYF R4 R + RI=R1¥C021
1 STF R3, #ARZ++ (IRO) + X(12)=(R3+RS)EC021
ADDF R4,R2 ; ROR2RE 11
wYF R4, R2 + R2=R28C021 11
BK3I SIF R1, HAR3 3 Y(I3)=-(R4-RRIRCO2L '!!
: STF R2, ¥AR3++(IRO) 5 X(I3)=(R4R2)AC02L 11

5, ¢ @LPCNT, RO

BPD INLOP ; LOOP BACK TO THE INNER LOOP
#
CONT [0 ERPTCNT, AR7
Ln1 @IEINDX, ARG
LSH 2,AR7 5 INCREMENT REPEAT COUNTER FOR NEXT
* s TIE
STI AR7, BRPTCNT
LSH 2,AR6 s IE=ARIE
STI ARG, RIEINDX
LDI RO, IRO o NI=N2
LSH -3,R0
ADDI 2,R0
ST1 RO, &JT 3 JT=N2/242
SUBI 2,R0
LSH 1,R0 3 N2=N2/4
BR LOoP 3 NEXT FFT STAGE
*
[0 THE BIT-REVERSING OF THE CQUTPUT
¥
END: LI eFFTSIZ,RC 3 RC=N
SUBI 1,RC s+ RC SHOULD BE ONE LESS THAN DESIRED #
Lor eFFTSIZ, IRO s IRO=SIZE OF FFT=N
LDI RINPUT, ARO
04 RINPUT, ART
*
RPTR BITRV
CMPL ARO, ARI
BGE CONT
LDF #ARO,RO .
¥ LIF #R1,R1
STF RO, ¥AR1
3 STF RI, #R0
LDF #+ARO(1) RO
" LDF #HAR1(1),RL
STF RO, #+AR1(1)
i STF R1, #4AR0(1)
CONT NGP HHARO(2)
BITRV NOF *AR1+(IROIB

RESTORE THE REGISTER VALUES AND RETURN

AR7
ARG
ARS
ARY
R7
Ré
RS
Ré
FP

311313131

108 : An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix C.Radix-2 Real FFT

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

109

o1t

0ED0ZESL 243 U0 SuLIofsuvi] 42yiQ puv “IDA “Ldd Jo uouvowaiduy uy

R R L R R

APPENDIX C1
GENERIC PROGRAM TO DO A RADIX-2 REAL FFT COMPUTATION ON THE TMS320C30

THE PROGRAM IS TAKEN FROM THE PAPER BY SORENSEN ET AL., JUNE 1987 ISSUE
OF THE TRANSACTIONS ON ASSP.

THE (REAL) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS DONE
IN-PLACE. THE BIT REVERSAL IS DONE AT THE BEGINNING OF THE PROGRAM.

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION. THIS
DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC NATURE OF THE
PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE FFT N AND LOG2(N) ARE
DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED DURING LINKING. THE LENGTH OF
THE TABLE IS N/4 + N/4 = N/Z.

AUTHOR: PANOS E. PAPAMICHALIS

TEXAS INSTRUMENTS SEPTEMBER 8, 1987

LJGLOBLFFT + ENTRY POINT FOR EXECUTION
GLOB N + FFT SIIE

LGLOBL M 3 LOG2(N)

LGLOBL SN + ADDRESS OF SINE TABLE

LUSECT “IN, 1024
BSS OUTP,1024

MEMORY WITH INPUT DATA
MEMORY WITH CUTPUT DATA

JTEXT

INITIALIZE
WORD FFT 3 STARTING LOCATION OF THE PROGRAM
LSPACE 100 5 RESERVE 100 WORDS FOR VECTORS, ETC.

*
FFTSIZ .WORD N
LOGFFT .WORD L]
SINTAB ~ .WORD SINE

INPUT

«WORD INe

QTPUT .WORD wre

*
FFT:

*
*
*

LoP FFTSIZ s COMMAND TO LOAD DATA PAGE POINTER

DO THE BIT-REVERSING AT THE BEGINNING

LDI @FFTSIZ RC 3 RC=N

SUBI ,RC s RC SHOULD BE ONE LESS THAN DESIRED #
Lor EFFTSIZ, IR0 -

LSH -1, IR0 s IRO=HALF THE SIZE OF FFT=N/2

LDI RINPUT, ARO

LoI RINPUT, ARL

RPTB BITRV

> 2¢
BGE
LIF
i LDF
STF
i STF
CONT NOP
BITRV NOP

ARL,ARO .
CONT

#AR0, RO
#R1,RL

RO, HR1

R1, #AR0
*ARO+H
#AR1++(IR0IB

LENGTH-TWO BUTTERFLIES

Lot
L1
SUBI

RPTB

ADDF

SUBF
BLK1 STF
H STF

INPUT, ARD
1RO,RC
1,RC

BLKL

++AR0, #AR0++ RO
*ARO, #-AR0, R1
RO, #-ARO

R1, ¥AR0++

i
H

5

XCHANGE LOCATIONS ONLY
IF AROCARL

ARO POINTS TO X(I)
REPEAT N/2 TIMES
RC SHOULD BE ONE LESS THAN DESIRED #

RO=X(1)4X(I+1)
RI=X(D)-X(I+1)
X(D=X(1)+X(1+1)
XUI+D=X(D-X(1+1)

*
+ FIRST PASS OF THE DO-20 LOOP (STAGE K=2 IN DO-10 LOOP)
*

LDI
LoI
LbI
LSH
SUBT

RPTB
ADDF
SUBF
NEGF
" STF
BLK2 STF
H STF

MAIN LOOP

- - ee

LDI
LSH
LI
LoI
Lol
LOoP LSH
LSH
LSH

EINPUT, ARO
2,1R0
FFTSIZ,RC
-2,RC

1,RC

BLK2

ARO POINTS TO X(I)
IR0=2N2

REPEAT N/4 TIMES
RC SHOULD BE ONE LESS THAN DESIRED #

+ARO(IR0) , #ARO++(IR0),RO 5 RO=X(I)4X(142)

*AR0, #-ARO(IRO) ,R1
#+AR0, RO

RO, #-ARO(IR0)

R1, #ARO++(IR0)

RO, #+ARO

(FFT STAGES)

FTSIZ, IR0
-2,1R0
3,85

1,R8

2,R3

-1, IR0

1,R8

1,R3

H
H
3
i
;
H
i

RI=X(I)-X(1+2)
RO=-X(I+3)
X(D=X(1)4X(142)
X(I+2)=X(1)-X(1+2)
X(1+3)=-X(1+43)

IRO=INDEX FOR E

RS HOLDS THE CURRENT STAGE NUMBER
RA=N4

R3=N2

E=£/2

NA=28N4

N2=26N2

INNER LOOP (D0-20 LOOP IN THE PROGRAM)

Lol
INLOP LI

ADDI

LDI

INPUT, ARS
1RO, 4RO
€SINTAB, ARO
R4, IRL

i

ARS POINTS TO X(I)

ARO POINTS TO SIN/COS TABLE
IR1=N4

0€£D0ZESIALL 2Y) uo uonenduwio)
LAA 183y Z-XIpey & o(0} weadold dLpuan) 1) xipuaddy

0ED0ZESIL 2yl uo sutofsund] 12y3Q puv ‘IHJ ‘Ldd Jo uonviuawaiduy uy

I

LbI
ADDI
LoI
ADDI
LbI

ADDI

INNERMOST LOOP

(208
LSH

SUBL

RPTB
MPYF
MPYF
WPYF
ADDF
MPYF
SUBF
SUBF

5TF
ADDF
STF

STF
STF

SUBT
ADDI
2,21
BLTD
ADDI

ADDI
w1

*RS5++{IR1) R0
++AR5(IR1),RO,R1
RO, #++ARS(IR1) RO
R1, #-ARS(IR1)

RO

*HARS(IRD) RL
RO, #ARS

R, #ARS

FFTSIZ, IRt
-2, IRt
R4,RC

2,RC

BLK3

#AR3, #+ARO(IR1) RO
+AR4, #ARO, R1

#AR4, #+ARO(IRT) RI
RO,R1,R2

#AR3, #ARO++ (IRO) RO
RO,R1,RO
#ARZ,RO,R1
*ARZ,RO,R1

R1, #AR3++
*AR1,RZ,R1

R1, #AR4—

R2, #AR1,R1

R1, #AR14+

R1, #AR2—

INPUT, RS
R, ARS
FFTSIZ, RS
P
INPUT, ARS

1,85
LOGFFT RS
LO0P

d

ARL POINTS TO X(I1)=X(I+J) *
END

z® §§

S

AR3 POINTS T0 X(I3)=X(I+JN2)

AR2 POINTS T0 X(I12)=X(I-J4N2)
AR4 POINTS TO X(14)=X(I-J#N1)

RO=X(I)
R1=X(1)+X(1+N2)
RO=-X{1)+X(1+N2)
X=X +X(1+N2)
RO=X(I)-X(I+N2)
Ri=-X(I1+NA#N2)
X{IN2)=X(1)-X{14N2)
XCT+HNA4N2)=-X (1 +N4+N2)

IR1=SEPARATION BETWEEN SIN/COS TBLS

REPEAT M4-1 TIMES

RO=X(13)#C0S
RI=X(14)#SIN
Ri=X(14)%C0S
R2=X(13)¥COS+X (14)4SIN
RO=X(I3)#SIN
RO=-X(I3)*SIN+X(14)%C0S ' !}
Ri=-X(12)+RO '!!
RI=X(I2)+RO !!!
X(I3)=-X(I214R0 !1!
R1=X(I11)+R2
X(14)=X(12)4R0 !!!
Ri=x(11)-R2
X(I1=X(11)+R2
X{12)=x(11-R2

ARS=INL

LOOP BACK TO THE INNER LOOP

3BRANCH T0 ITSELF AT THE END

(44!

0£D0ZESWIL 2yl uo suuojsuml 42410 puv ‘lga WAL fO uogzmuawa]duq uy

I T I T T T T T N R L L R B R R

APPENDIX C2

NAME:
fft_rl --- RADIX-2 REAL FFT TO BE CALLED AS A C FUNCTION.

SYNOPSIS:
int fFtorl(N, M, data)
int N FFT SIZE: N=2wsh
wnth NUMBER OF STAGES = LOG2(N)
float #data ARRAY WITH INPUT AND OUTPUT DATA

DESCRIPTION:
GENERIC FUNCTION TO DO A RADIX-2 FFT COMPUTATION ON THE TMS320C30.
THE DATA ARRAY IS N-LONG, WITH ONLY REAL DATA. THE QUTPUT IS STORED
IN THE SAME LOCATIONS WITH REAL AND IMAGINARY POINTS R AND I AS
FOLLOWS: R(0), R(1),..., RIN/2), 1(N/2-1),..., I(1)

THE PROGRAM 1S BASED ON THE FORTRAN PROGRAM IN THE PAPER BY SORENSEN
ET AL., JUNE 1987 ISSUE OF TRANS. ON ASSP. THE COMPUTATION IS DONE
IN-PLACE, AND THE ORIGINAL DATA IS DESTROYED. BIT REVERSAL IS
IMPLEMENTED AT THE BEGINNING OF THE FUNCTION. IF THIS IS NOT
NECESSARY, THIS PART CAN BE COMMENTED OUT.

THE SINE/COSINE TABLE FOR THE TWIDDLE FACTORS IS EXPECTED TO BE
SUPPLIED DURING LINK TIME, AND [T SHOULD HAVE THE FOLLOWING FORMAT:

.glodbal _sine
Jdata

_sine Jfloat valuel = sin(0¥2#pi/N)
float value2 = sin(1¥2#pi/N)

Jfloat value(N/2) = cos((N/4)#2#pi/N)
THE VALUES valuel TO value(N/4) ARE THE FIRST QUARTER OF THE SINE
PERIOD ANDd value(N/4+1) TO value(N/2) ARE THE FIRST QUARTER OF THE
CUSINE PERIOD.

STACK STRUCTURE UPON THE CALL:

D +
-FP(4) i DATA H
-FP(3) HE | !
-FP(2) PN H
-FP(1) i RETURN ADDR !
-FP(0) i GDFP !

B +

REGISTERS USED: RO, R1, R2, R3, R4, RS, ARO, ARI, AR2, AR4, ARS, IRO,
IR1, RS, RE, RC

AUTHOR: PANOS E. PAPAMICHALIS
TEXAS INSTRUMENTS OCTOBER 13, 1987

-

FP JSET

«GLOBL
GLOBL

.BSS
.BSS
.BSS
*
JTEXT
*
SINTAB .word
*

-SINE

INITIALIZE C FUNCTION

*

FFT_RL: PUSH
LoI
PUSH
PUSH
PUSH
PUSH

o1
STI
L1
STI
L1
STI

LI
SUBI
U8
LSH
oI
LI

RPTB

(5,98

BGE

LDF
i LDF

STF
H STF
CONT NOP
BITRV NOP
*

P
,FP
Ré

RS
'
RS

+FP(2), R0
RO, &FFTSIL
+FP(3),R0
RO, BLOGFFT
+FP(4),R0
RO, RINPUT

FFTSIZ,RC
1,RC
SFFTSIZ, IR0
-1,1R0
INUT, ARO
INPUT, ARL

BITRV

A1, A0

CONT

#ARO,RO
*R1RL

RO, #4R1

R1, #R0
HROH
*#R1++(IROIB

LENGTH-TWO BUTTERFLIES

¥
[0
LDI
SUBI

RINPUT, ARO
1RO, RC
1,RC

i

ENTRY POINT FOR EXECUTION
ADDRESS OF SINE TABLE

SAVE DEDICATED REGISTERS

s MOVE ARGUMENTS TO LOCATIONS MATCHING

H

THE NAMES IN THE PROGRAN

DO THE BIT REVERSING AT THE BEGINNING

RC=N
RC SHOULD BE ONE LESS THAN DESIRED #

IRO=HALF THE SIZE OF FFT=N/2

XCHANGE LOCATIONS ONLY

s IF AROCARL

ARO POINTS TO X(I)
REPEAT N/2 .TIMES
RC SHOULD BE ONE LESS THAN DESIRED #

uonpunyg) € se pa[[e) 3g 03 L4J [edY -X1pey — 1 1 “7D xipuaddy

0£D0TESNL 243 uo suofsuvd] 41ayiQ puv [Id ‘Ldd fo uouviuawaiduy uy

€1l

* = Akt NEGF *+ARS(IRD) I 3 RI=-K(1+NA+R2)
K o R« Rt (Lol T STF RO, WS + X=X (T)-X (1)
el m,-—mmo,m Tt , , STF RIS + XCTHNAZI=-XCLHAIN)

BKI STF RO,#-ARO + KDDT4) . 1

N STF RL R0+ § X+DKD-K(I+1) 3 TMERNIST LOOP

*

Lot #FISIZ, IR
B FIRST PSS OF TIE D0-20 LOOP (STAGE k=2 IN 00-10 L) S 2 , IRI-GEPRRATION BETHEEN SINVCOS THLS
L0t RARC
e AR PO To X Bl 2,RC 3 REPEAT M1 TIES
1 1 *
wl EFFTSIZ, R
, RTB BK3
LsH 2,8 + REPEAT N/4 TIMES
) ; YE #R3,HHAROCIR) RO - 5 ROX(13)4C0S

) SBI 1R + RC SHOULD BE ONE LESS THAN DESIRED # W e 0B RSN
o R YE #RA,%+AROUTRI)RI 5 RISX(IA)ICOS
ADF ++ARO(IRO), 4ROH(IRO),R0 5 ROSK(IIX(I4D) " :ﬂe’i mglizommo) w0 x:::g:ﬁoxumsm
SUBF #ARD,#-AROCIRO) RI RISK(I)-X(142) d RO !
ors R, SUBF RO,RIRO + ROS-K(I3)ISINH(14)4C05 11

\ ; F Ao "

H STF RO-AROURD) - ¢ X(D=XD#X(I2) o nrm LA

BLK2 STF R1, #AR0++(IR0) 3 KI2)=XD-K(142) " T vy P S

1 STF RO, #H4R0 + X(1+3)=-X(143) i $ R1, 1hR3+ 3 XUI3)=-XUI2)4R0 11!

e J ; A +RIR2AI + RISX(I1)4R2

T STE R, HRI- + X()=X(12)4R0 111

t MINLOGR (FFT STAGES) SUF 2, RIRL ¢ RIX(ID-R2

T SF RL RN § XUD=X(T1)4R2
[B0¢ eFFTSIZ, IR0 o ' 3
p A . LRO-INDEX FR £ BK3 ST Ri RO 1 XMI=KI-R
v 1 +*
LI 3,85 + RS HILDS THE CURRENT STAGE NWBER.
i 1,84 + RisNb SUBL - RINPUT, RS
o i e ADDI B3RS ; ARSI

Lo LS 1,180 s EER2 CPL - OFFTSIZARS i
- a it RED MO + LOOP BACK T0 THE INVER LOOP
o h s ADI BINPUT,ARS

, , ; P

+ INVER LOCP (10-20 LOGP IN THE PROGRAM) i o

*
w1 RINPUT, ARS + ARS POINTS T0 X(I) AL 1,RS

INGP LD 1RO, ARO OP1 - BLOGFFT,RS
DT ESINTAB,ARO + 4RO POINTS T0 SIN/COS TABLE . BE LO0P

1 R4, IR ; IRI=M
s L 1Rt . RESTORE THE REGISTER VALUES AND RETURN
*

Lot RS, RL
AL 1,ARL + AR POINTS T0 X(ID)=X(I+J) x :‘;5
L ARL,AR3 4
wN R3LARS + AR3 POINTS T X(13)=X(1+J42) eoom
Lot PR3, ARZ Re
Sl 2,AR2 + AR2 POINTS TO X(12)=X{I-JH2) PP PP
MDDl R3,ARZ,ARH + ARS POINTS TO X(I4)=X(I-J4N1) RETS

*
LDF #ARS++(IR1},RO 3 RO=X(1)

ADDF ++ARSUIRD),RO,RL
SUBF RO, e+ARS(IRL),RO

i STF RI, +-ARS(IRL)
NEGF RO

RI=X(D+X(14N2)
RO=-X(1)4X(1+N2)
XUD=XD+X(I4N2)
RO=X(1)-X(I+N2)

141!

0€D0CESWIL Yl uo suuofs‘uml 42Y10 puv ‘lga ‘Idd fO uoywuawalduq uy

o M M M M K W N Wk K A Rk w

APPENDIX C3

+ INITIALIZE

*

*
'FFTSIZ
LOGFFT
SINTAB
neuT

*
IFFT:
*

& MAIN LOOP (FFT

*

WORD
SPACE

- WORD
HORD
+WORD
WORD

Loe

LDI
Lot
LBI
LSH
01
LSH

* INNER LOOP

AUTHOR: PANCS PAPAMICHALIS

TEXAS INSTRUMENTS
LLOBL IFFT
LGB N

GLOBL M

GO SINE

GBS IN, 1024
JTEXT

SINE
INe

FFTSIZ
STAGES)
1,1R0

3,85
OFFTSIZ, RS

-1,R8
EFFTSIZ,RA
-2,R4

H

H

GENERIC PROGRAM TO DO A RADIX-2 REAL INVERSE FFT COMPUTATION ON THE
THS320C30.

THE (REAL) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS DONE
IN-PLACE. THE BIT REVERSAL IS DONE AT THE BEGINNING OF THE PROGRAM. THE
INPUT DATA ARE STORED IN THE FOLLOWING ORDER:

REO), RE(1),..., RE(N/2), IN(N/2-1),..., IM(1)

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION. THIS
DATA IS INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC NATURE OF THE
PROGRAM. FOR THE SAME PURPGSE, THE SIZE OF THE FFT N AND LOG2(N) ARE
DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED DURING LINKING. THE LENGTH OF
THE TABLE IS N/4 + N/4 = N/2.

DECEMBER 21, 1988

ENTRY POINT FOR EXECUTION
FFT SIZE

LOG2(N)

ADDRESS OF SINE TABLE

MEMORY WITH INPUT DATA

3 STARTING LOCATION OF THE PROGRAM

RESERVE 100 WORDS FOR VECTORS, ETC.

COMMAND TO LOAD DATA PAGE POINTER

3 IRO=INDEX FOR E

RS HOLDS THE CURRENT STAGE NUMBER
R3=N1/2=N2

R4=N1/4=NA

Loop

INLOP

+ INNERMOST LOOP

LDI

ADDI
LDI

LI
ADDI

ADDI
D1

SUBI
ADDI

STF
STF

MPYF
STF

MPYF
STF

LI
LSH

SUBI

RPTB

ADDF
¥PYF
STF

ADDF
SUBF
PYF
STF

MPYF
STF
Lala

STF

SUBI
>, 21
BLTD

LI
ADDI

CINUT, RS
1R0,ARO
ESINTAB, ARO
R4, IR

ARS, AR
1,881
AR1,AR3
R3, ARG
AR3, AR2
2,M2

R3, PR2, ARA

+H+ARS(IRT)

RO, +-ARS(IR1)
R1, #++ARS(IR1)
#ARS, RO
2.0,R0

RO, +-ARSIR1)
++RS(IRD), R
-2.0,R1

R1, #R5++(IR1)

#FTSIZ, IR1
-2, 1Rt
Ré,RC

2,RC

B3

+R2, #AR1,R1
R2, #R1, RO

Rt, #AR0(IR1),RO
RO, #R1++

+R3, +R4, R2
R3, +R4, R

R2, #R0,R6

R, #R2—

RS, RO

R2, #4AROUIR1) R
RO, $AR3H+

RL, RO+ (IR0) , RO
R6,R0

RO, $4RA—

CINPUT, ARS
SFISIZ, RS
NP
INPUT, RS
1RO, ARO
ESINTAB, ARO

ARS POINTS TO X(I)

ARO POINTS TO SIN/COS TABLE

IR1=M

AR1 POINTS TO X(I1)=X(I+J)

AR3 POINTS TO X(I3)=X(I+JHN2)

AR2 POINTS TO X(12)=X(I-J+N2)
AR4 POINTS TO X(I14)=X(I-J4N1)

; POINT T0 X(I+N&)
#+-ARS(IR1), #+ARS(IR1) RO
#+ARS(IRL) , #-ARS(IRT) RT

H
H

X(=X1+X(14N2)
X{IHN2)=X(1)-X(14N2)

X(I+NA)=28X (1 +N4)

X{T+NANZ) ==X (14NA+N2) #2

IR1=SEPARATION BETWEEN SIN/COS TBLS

REPEAT MA-1 TIMES

RI=Ti=X(I1)-X(12)
RO=T1#C0S

XUD=XT1)4X(12)
R2=T2=X(13)+X(14)

R&=T24SIN

3 K(I2)=X(14)-X(I3)

R6=T24C0S
X(13)=T13COS-T2#SIN
RO=T1#SIN

X(14)=T13SIN+T22C0S

LO0P BACK TO THE INNER LOOP

ARO POINTS TO SIN/COS TABLE

0€D0ZESINLL 3y uo uopendwo)
L 9SI9AU] [y Z-XIpey & o 0} weidold LU *¢) xipudddy

0£D0ZESHL Y3 uo suLofsuvdy 441 puv ‘1D ‘L4 fo uonvuawduy uy

STt

ADI 1,RS
OP1 BLOGFFT,RS
BED LOOP
LsH 1,180

LSH -1,R4

LS+ -1,R3

-

LAST PASS OF THE MAIN LOOP

Lol INPUT, ARO
LDI 2,1R0
101 FFTSIZ,RC
L4 -2,RC
SUBI 1,RC

*
LOF +ARO(IRO) RO
RTB BLK2

ADDF RO, *ARO++(IR0) R
SUBF - RO,*-ARO(IRD),R1

i STF RI, #-ARO(IRO)
STF R1, ¥ARO++

i LDF +-ARO, R1
WY 2.0,Rl
STF R, #-ARO(IRO)

HH LIF RO+, R
WY 20,81

BLK2 STF R1, #-ARO

: LOF +ARO(IRO), RO

*
LENGTH-TWO BUTTERFLIES
+

Lo1 RINPUT, ARO
L01 FFTSIZ,RC
LsH -1,RC
SUBI 1,RC

*
RPTB BLKI

ADDF #4ARD, $ARO+, RO
SUBF #ARO,*-ARO,R1
BKI STF RO, #-AR0
! STF RY, ¥RO+

*
+ DO THE BIT REVERSING AT THE END
+

L1 FFTSIZ,RC

SUBI 1,RC

LDI OFFTSIZ, IR0

LSH -1,1R0

LDI @INPUT, ARO

Lol RINPUT, AR1
*

RPTB BITRV

P MRILARO

3

E=£#2 H
Na=N4/2 CONT
N2=N2/2 BITRV

ARO POINTS TO X(I)
1R0=2=N2

REPEAT N/4 TIMES
RC SHOULD BE ONE LESS THAN DESIRED #

RO=X(1+2)

RI=X(1)+X(142)
RI=X(I)-X(1+2)
X(D=X(1+X{142)
X{142)=X(1)-X(142)

R1=2,0#X(1+1)
X(1+1)=2,08X(141)

Ri=-2,04X(1+3)

X(143)=-2.0%X(143)
RO=X(144+2)

ARO POINTS T0 X(I)
REPEAT N/Z TIMES
RC SHOULD BE ONE LESS THAN DESIRED #

RO=X(1)+X(I+1)
R1=X(I1)-X(1+1)
X(D=X(1+X(1+1)
XU+ =X(1)-X(1+1)

RC=N
RC SHOULD BE ONE LESS THAN DESIRED #

IRO=HALF THE SIZE OF FFT=N/2

XCHANGE LOCATIONS OMLY

LDF

STF
STF

NOP

JEND

CONT

+ARO,RO
#AR1,R1

RO, #ARL

R1, ¥ARO
RO+
#AR1++(IRO)B

END

3 IF AROCARL

+ BRANCH TO_ITSELF AT THE END

116 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix D. Discrete Hartley Transform

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 117

811

0ED0ZESIL 23 U0 suLiofsuvs] 1410 puv ‘[‘LA Jo uonvmowsiduy uy

R I R I R

APPENDIX D1
GENERIC PROGRAM TO DO A RADIX-2 HARTLEY TRANSFORM ON THE TMS320C30.

THE PROGRAM IS TAKEN FROM THE PAPER BY SORENSEN ET AL., OCT 1985 ISSUE
OF THE TRANSACTIONS ON ASSP.

THE (REAL) DATA RESIDE IN INTERNAL MEMORY. THE COMPUTATION IS DONE
IN-PLACE. THE BIT-REVERSAL IS DONE AT THE BEGINNING OF THE PROGRAM.

THE TWIDDLE FACTORS ARE SUPPLIED IN A TABLE PUT IN A .DATA SECTION. THIS
DATA 1S INCLUDED IN A SEPARATE FILE TO PRESERVE THE GENERIC NATURE OF THE
PROGRAM. FOR THE SAME PURPOSE, THE SIZE OF THE FHT N AND LOG2(N) ARE
DEFINED IN A .GLOBL DIRECTIVE AND SPECIFIED DURING LINKING. THE LENGTH OF
THE TABLE IS N/& + N/4 = N/2,

AUTHOR: PANOS PAPAMICHALIS

DECEMBER 14, 1988
TEXAS INSTRUMENTS .

LJGLOBL FHT + ENTRY POINT FOR EXECUTION
LGB N ; FHT SIZE
LGLOBL M + LOG2(N)
GLOBL SN ; ADDRESS OF SINE TABLE
BSS INP, 1024 3 MEMORY WITH INPUT DATA
LTEXT
INITIALIZE
MORD FHT + STARTING LOCATION OF THE PROGRAV
LSPACE 100 + RESERVE 100 HORDS FOR VECTORS, ETC.

FHTSIZ .WORD N
LOGFHT .WORD N
SINTAB .WORD SINE
INPUT . WORD INe

*

FHT:

*
*
*

LbP FHTSIZ s COMMAND TO LOAD DATA PAGE POINTER

D0 THE BIT REVERSING AT THE BEGINNING

L01 FHTSIZ,RC ; RC=N .
SUBl 1,RC + RC SHOULD BE OME LESS THAN DESIRED
101 EFHTSIZ, 1RO

LsH -1,1R0 ; IRO=HALF THE SIZE OF FHT=N/2

Lo1 RINPUT, RO

Lot RINPUT, ARI

RPTB BITRV

oFl ARLARO + XCHANGE LOCATIONS ONLY

BGE cNT - : IF AROCARY

LF R0, RO

- oo e

LooP

HRI1,RI
STF RO, #4R1

STF R1, #R0

NP HROH

NP HRIH(IRO)B

LENGTH-THO BUTTERFLIES

o1 INPUT, ARO s ARO POINTS TO X(I)

LD IRO,RC + REPEAT N/2 TINES

SuBl 1,8C + RC SHOULD BE ONE LESS THAN DESIRED #
RPTB BKI

ADDF #4ARO,¥ARO+,RO - ; ROK(I)4X(I+1)

SUBF R0, +-ARO, R s RISX(D)-K(I+1)

SIF RO, #-ARO 5 XID=XDI4)

STF R1, #ARO+ + MI+D=ND-X(1#1)

FIRST PASS OF THE D0-30 LOOP (STAGE K=2 IN D0-20 LOOP)

LI " @INPUT,ARO 3 ARO POINTS TO X(J)

LDI 2,1R0 3 IRO=2=N2

b1 #FHTSIZ,RC

LSH -2,RC 3 REPEAT N/4 TIMES

SUBI 1,RC 3 RC SHOULD BE ONE LESS THAN DESIRED #
RPTB BLK2

ADF #+ROCIR0), #ARO(IR0),RO 5 ROKIIIHX(L2)
SUBF ARD,:-AROCIRO),R1 ; RI=X(J)-X(L2)

STF RO, #-ARO(IRO) 5 XXX
LIF +AR0,RO 5 ROSK(LA)

ADDF RO, *-ARO,RI s RISX(L3IHX(L4)
STF R1, #AR0+ s KL2=D-XL2)
SUBF RO, #-ARO(IRO),RI 3 RIKIL3)-X(L4)
STF R1, #-ARO(IRO) + XL3I=XLI+X(LA)
STF R1, #ARO+ + X(LA)=X(L3)-X(LA)

MAIN LOOP (FHT STAGES)

101 FHTSII, IRO
LSH -2,1R0 + TRO=INDEX FOR E

o1 3,R5 + RS HOLDS THE CLRRENT STAGE NUMBER
w1 1,R8 + RN

L01 2,R3 ; R

LSH -1,1R0 s E=E12

LsH 1,R4 ; NA=26N4

LSH 1,R3 ; N2=2m2

INNER LOOP (DO-30 LOOP IN THE PROGRAM)

LbI RINPUT, ARS 3 ARS POINTS TO X(J) N

INGP LDI 1RO, ARD

ADDI €SINTAB, ARO 3 ARO POINTS TO SIN/COS TABLE
Ln1 R4,IRL s IR1=WA

0€D0ZESIALL 3Y) uo

uLIojsueL], A3p)IeH Z-XIpeY ® o 0} weldold JLIRuUIL) ‘[Xipudddy

0ED0ZESHL 23 uo suuofsuvi] 4430 puv ‘[DQ ‘LA o uouvmawaiduy uy

611

Lol

LDI
ADDI
DI
SUBI
ADDI

SUBF
STF
NEGF
STF

STF
STF

INNERMOST

LI
LSH
LbI
SUBI

RPTB
WYF
MPYF
WPYF

HPYF

ADDF
STF
ADDF
STF

STF
STF

SUBL
ADDI
ol
BLTD
ADDI

ADDI
CHP1

#ARS++(IR1) RO
+ARS(IR1),RO,R1
RO, #++ARS(IR1) RO
R1, %-ARS(IR1)

RO

RO, #ARS
HARS(IR) RO
RO, #-ARS(IR1) ,R1
RO, #-ARS(IR1) ,R1
R1, -ARS(IR1)
R1, #+ARS(IR1)

FHTSIZ, IR
-2,IR1
R4,RC

2,RC

BLK3

#AR3, #+AR0(IR1) RO
+ARA #ARO,R1

R4, +ARO(IR1) ,RI
RO,R1,R2

#AR3, #ARO+ (1RO , RO
R1,R0,R0

RO, #AR2,R1
#AR2,R0,RL

R1, +ARA--
#AR1,R2,R1

R1, #AR2--
R2,#AR1,R1

R1, #AR1++

R, #AR3+

RINPUT, ARS
R3,ARS
FHTSIZ, MRS
NP
RINPUT, ARS

1,85
@LOGFHT, RS

3 ARL POINTS TO X(L1)=X(J+I-1)
s AR3 POINTS TO X(L3)=X(L1¢N2)

s AR2 POINTS T0 X(L2)=X(J-1+142)
5 ARY POINTS TO X(LA)=X(L2N2)

+ ROX()

; RISKJHX(L2)

3 RO=-X(J)#X(L2)

s X=X
+ RO=X(J)-X(L2)

3 XL2=XD-X(L2)
+ ROSX(LA)

s RI=K(LIX(LH

+ RI=K(L3)-X(L4)

+ XL XL
5 X(LO=XIIN-X (LA

IR1=SEPARATION BETMEEN SIN/COS TBLS

REPEAT NA-1 TIMES

RO=X(L3)#C0S

RI=X(L4)4SIN

R1=X(L4)#C0S
R2=X(L3)#COS+X(L4) #SIN=T1
RO=X(L3)4SIN
RO=X(L3)#SIN-X{14)#C0S=T2
R1=X(L2)-T2

R1=X(L2)+T2
X(L4)=X(L2)-T2
RI=X(L1)+T1
X(L2)=X(L2)+T2
Ri=X(L1)-T1
X(L1=X(L1)+T1
X(L3)=X(L1)-T1

3 ARS=INL

LOOP BACK TO THE INNER LOOP

;BRANCH TO ITSELF AT THE END

120 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix E. Discrete Cosine Transform

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 121

(44}

0E£D0ZESIHL Y1 uo suLiofsuvi] 1ayiQ puo ‘[Dd ‘LA Jo uonvuawaiduy uy

I I

*

*

APPENDIX E1

A FAST COSINE TRANSFORM

BASED ON THE ALGORITHM OUTLINED BY BYEONG GI LEE IN HIS ARTICLE, FCT - A
FAST COSINE TRANSFORM, PUBLISHED IN THE PROCEEDINGS OF THE IEEE INTER-
NATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, SAN
DIEGD, . CA, 19-21 MWARCH 1984, P 28A.3/1-4 VOL. 2, (CH1954-5/84/0000-0299).

LEE’S ALGORITHM HAS BEEN MODIFIED TO ALLOW NATURAL ORDER TIME DOMAIN
COEFFICIENTS RATHER THAN THE LESS ORDERED INPUT SUGGESTED IN HIS ARTICLE.

THE FREQUENCY DOMAIN COEFFICIENTS ARE IN BIT REVERSE ORDER. THIS IS AN IN
PLACE CALCULATION.

AUTHOR: PAUL WILHELM

.global
«global
.alobal
.global

Stext

FCTSIZE .word

-£os

~word

-DATA wvord

*
FCT:

- o o .

-

LI
L1

Lol
Lol
Bt
LbI
LDI
ADDI3
SUBI
LSH3
LDI
ADDI
ADDI3
ADDI3

FCT

L}
COS_TAB
COEFF

"
COS_TAB
COEFF

€FCTSIZE, RO
€FCTSIZE, B

©DATA, ARG -
£.C05,AR7
R0, IRL
-1,1R0

ARG, AR
ARG, RO, AR
1,AR2

1R0, AR, AR3
1,AR5

ARb, AR3
1RO, AR3, AR4
IR0, ARS, RC

FIRST LOOP SERIES

FAST COSINE TRANSFORM ENTRY POINT.
LENGTH OF DATA ENTRY.

TABLE OF COSINE COEFFICIENTS.
TABLE OF INPUT DATA.

LOAD DATA LENGTH.

SET BLOCK SIZE FOR CIRCULAR
ADDRESSING.

LOAD DATA POINTER.

LOAD COSINE TABLE POINTER.

INITIALIZE INDEX REGISTERS FOR FIRST
BUTTERFLY SERIES.

INITIALIZE DATA POINTERS,

s INITIALIZE 2’S POWER COUNTER.
3 FINISH DATA POINTER INITIALIZATION,

RC SHOULD BE ONE LESS THAN COUNT
‘DESIRED.

THIS LOOP SERIES DOES ALL THE BUTTERFLY STAGES EXCEPT THE FINAL ONE.

RPTB

END_CENTER_LOOP

MPYF3
H ADDF3

MPYF3
H ADDF3
STF
H STF
*
END_CENTER_LOOP:
]

STF
H STF

ADDI3

ADDF3
el
BGTD
ADDF3

ADDI
R

- o W

LSH
LI
ADDI
ADDI
Pl
BGTD
LSH
SUBI3

ADDI3

- o

W2 R
*R3,R3

R3, 4RA,R1
+R2, #R1,RO
R1, H+46R7,R1
R3, ¥4, R3

RO, #—AR7, RO
R2,#R1,R2

R1, #R2++(IR1)L
R3, #R4++ (IR1)L

RO, #R3+(IRDL
R2, ¥RIH(IR1)L

1RO, ARS, RC

HRI, HR2—, RO
3, AR2
MIDDLE_LOOP
HR1++, #RI- RO

2,7
0100H, ST

-1, IRt
ARG, AR

1RO, AR6, AR2
IR1, AR2
2,IR1
QUTSIDE_LOOP
1,AR5

1RO, R4, AR3

1RO, ARS, RC

END OF FIRST LOOP SERIES.

FINAL BUTTERFLY STAGE LOOP.

3 TWO BUTTERFLIES ARE CALCULATED AT
3 THE SHE TIXE.

GET LOWER HALF OF EACH BUTTERFLY.
(THIS ALLOWS FOR MORE PARALLEL
COMMANDS LATER)

SUBTRACT SECOND BUTTERFLY DATA.

SUBTRACT FIRST BUTTERFLY DATA.

MATIPLY 2ND SUBTRACTION RESULT BY
COSINE COEFFICIENT. ADD SECOND
BUTTERFLY DATA.

3 MULTIPLY 1ST SUBTRACTION RESULT BY

COSINE COEFFICIENT. ADD FIRST

BUTTERFLY DATA.

3 SAVE 2ND MULTIPLY RESULT IN LOWER

HALF IF BUTTERFLY. SAVE 2ND

ADDITION IN UPPER ZND BUTTERFLY.

3
3
i
3
H
SAVE 1T MULTIPLY IN LOMER HALF OF

. 2D BUTTERFLY. SAVE 1ST ADOITION
+ N WPER 1ST BUTTERFLY.

END OF CENTER LOOP OF FIRST LOOP SERIES.

+ UPDATE REPEAT COUNTER FOR NEXT BLOCK
: REPEAT.

+ UPDATE DATA POINTERS.

+ WAVE BUTTERFLIES BEEN COMPLETED?

+ DELAYED BRANCH, IF NOT.

+ UPDATE FINAL TMO POINTERS FOR NEXT
; REPEAT

+ UPDATE COSINE COEFFICIENT POINTER.
+ SET REPEAT MODE. (FASTER THAN USING
: RPTB WHEN START AND END ADDRESS

: ARE STILL GO0D)

DELAY BRANCH FROM HERE TO MIDDLE.LOOP.

3 UPDATE INDEX REGISTER. (DIVIDE BY 2)
3 REINITIALIZE DATA POINTERS.

1S FIRST BUTTERFLY SERIES COMPLETE?

DELAY BRANCH, IF NOT.

MULTIPLY 2/S POWER COUNTER BY 2.

CONTINUE REINITIALIZING DATA
POINTERS.

SET REPEAT COUNTER FOR REPEAT BLOCK.

uLIOjSueL], UIso)) Ise] V 1d xipuaddy

0£D0ZESHL Y2 uo suiofsuvd] 4ayiQ puv ‘[Dd ‘I4d o uouvowaiduy uy

€21

-

LDI
ADDI
LSH
ADDI
ADDI3
MPYF3

RPTB

SUBF3
SUBF3
MPYF3
ADDF3

- -

MPYF3
ADDF3

P

MPYF3
STF

MPYF3
STF

4,IR1

1,M3

-1, AR5

3,AR4

1RO, ARS RC
HR7, ++AR7, RA

END_2ND_LOOP

+AR2, ¥AR1 RO
+RY, 4R3,R1
RO, R4, RO

INCLUBES LAST BUTTERFLIES AND FIRST STAGE OF BIT REVERSE ADDITIONS.

INITIALIZE INDEX REGISTER.
SET UP DATA POINTERS.

INITIALIZE REPEAT COUNTER.

CALCULATE (2/M)4C0S(P1/4).
(1.E.=> (SRRT(2))/K THIS VALLE IS
CALLED, S, BELOW.)

TWO BUTTERFLIES ARE CALCULATED PER
LOOP.

SUBTRACT 1ST BUTTERFLY DATA.
SUBTRACT 2ND BUTTERFLY DATA.

3 MULTIPLY 1ST SUBTRACTION RESULT
#AR3++(IR1), #AR4++(IR1) ,R3

s BY S, ADD 2ND BUTTERFLY

; DATA.

R1,R4,Ri s MULTIPLY 2ND SUBTRACTION RESULT

sR1++(IR1), #AR2++(IR1) R ; BY S. ADD 1ST BUTTERFLY
DATA.

R3, 4AR7, K3 MULTIPLY ZND ADDITION RESULT BY

RO, #-AR2(IR1) 7071, SAVE 1ST. SUBTRACTION IN
LOWER 1/2 OF 1ST BUTTERFLY.

R2, #4AR7, R2 MULTIPLY 1ST ADDITION RESULT BY

R1, +-ARA(IR1) .7071 SAVE 2D SUBTRACTION IN

ADDF3 R3,R1,R3

-

H
H
H
i
i
5
3

STF R2,*-AR1(IR1)
. :
*
END_2ND_LOOP:
*
STF R3, #-AR3(IR1) 3
¥ 3
*
+ END OF FINAL BUTTERFLY STAGE LOOP.
*
* BIT REVERSE ADDITION LOOP SERIES.
*
*
* COSINE TRANSFORN,
*
LI 2,1R0 5
LDI ARG, ARL ;
ADDI 4,AR1 ;
[§04 AR1,AR2
‘LDl 8, IRt

*

LAST_QUTSIDELOOP:

*
Lol AR2, A4 ;
L -1,AR5

LOWER 1/2 OF 2ND BUTTERFLY.

ADD 2ND SUBTRACTION MULTIPLY TO 2ND
ADDITION MULTIPLY.

SAVE 1ST ADDITION MULTIPLY IN UPPER
1/2 OF BUTTERFLY.

SAVE 2ND ADDITION MULTPLY IN UPPER
1/2 OF UPPER BUTTERFLY.

THIS LOOP SERIES DOES ALL OF THE BIT REVERSE ADDITIONS AT THE END OF FAST

INITIALIZE INDEX REGISTERS AND DATA
POINTERS FOR FINAL ADDITION
SERIES.

UPDATE POINTERS AND COUNTERS.

*
LAST_INSIDE_LOOP:

#

DI
ADDF3
b1

SUBI
NOP
LbI

RPTB

ADDF3
ADDF3
STF

*
END_INSIDE:

+

13

STF

ARS, RC + SET UP REPEAT COUNTER.

#AR2++(IR0IB, tARA+(IRO)B,RO ; DATA POINTER UPDATE.

AR1,R4 + USE INITIAL AR1 VALUE AS INNER LOOP
; CONTROL.

1,RC

R+ (IRO)B + CONTINUE UPDATING POINTERS.

AR2,AR3

END_INSIDE ; TWO ADDITIONS ARE DONE IN EACH LOCP.

HR1, #R2++ (IR1)Z,RO
HR3, #AR4++(IR1)Z, RI
RO, #R1++(IR1)%

ADD FIRST TWO DATA.
ADD SECOND TWO DATA,
3 SAVE FIRST ADDITION.

H
5

R, #AR3++(IR1)% 3 SAVE SECOND ADDITION.

END OF INSIDE LOOP FOR LAST LOOP SERIES.

ADDF3 #ARI++(IRO)B, ¥AR2++(IROJB,RO ; UPDATE DATA POINTERS.
ADDF3 #AR3++(IR0)B, #AR4++(IR0IB, RO

ADDF3 %AR3++(IR0)B, #ARA++(IR0)B, RO

ADDF3 #AR1++(IR0IB, $AR2++ (IR0IB, RO

I RA,ARS 5 1S THIS LOOP COMPLETE?

BNED LAST_INSIDELLOGP ; DELAYED BRANCH, IF NOT.

Lol RS, RC + SET UP REPEAT COUNTER.

SuBI 1,RC

® 0100H,ST + SET REPEAT MODE.

BRANCH DELAYED TO LAST.INSIDE_LOOP.

RPTB LAST_BLOCK 3
ADDF3 *R1, #R2++(IR1)ZL, RO

H

*
LAST_BLOCK:
+

STF RO, #AR1++(IR1)% 3

END OF LAST REPEAT BLOCK.

LSH 1,1R0 ;
ADDI IRO,R4 ;
o1 1,A%5 ;
BSTD LASTOUTSIDE.LOOP ;
L01 R4, AR2 s
L0 R4, AR

LSH 1,IRt ;

DELAYED BRANCH TO LAST_OUTSIDE_LOOP.

SINCE THERE ARE AN 0DD MMBER OF
: ADDITIONS, THE FINAL ONES ARE
DONE NOW.

SAVE ADDITION.

MULTIPLY IRO BY 2.

UPDTEE INNER LOOP CONTROL REGISTER.
ARE CALCULATIONS COMPLETE 2
DELAYED BRANCH, IF NOT.

UPDATE DATA POINTERS.

MULTIPLY IR1 BY 2.

14!

0SD0ZESHL 241 UO SULIOfSuPAL 4410 puv ‘[‘LA fo uouvnowaiduy uy

+ END OF LAST LOOP SERIES.
*
5 MLTIPLY COEFFICIENT ZERO BY .5, IF NOT ZERO.
*

LoF R6,R0 ; SET ZERO FLAG IF #R6 = 0.

BEQD DONT_STORE ; IF COEFFICIENT 1S ZERO, DON'T DO
' ; THIS.

LsH 2,05 ; USE INTEGER MATH FOR FLOAT DIVIDE
B ;B2

SUBI3 ARS, #ARG, ARI
W .

+ DELAYED BRANCH FROM HERE IF VALUE IS NOT TO BE STORED.
*

STI ARL, RS s STORE, IF EXPONENT WASN‘T -128.
+
DONT_STORE:
*

RETS

0ED0ZESWI Y2 uo suLiofsuvi] 13yiQ puv ‘[Dd ‘Ldd Jo uonvmawaiduy uy

STl

R E R L

*
L3

*
FCTSI
-DATA
-Cos

*
IFCT:

*
*
*
LU
.

APPENDIX E2

A FAST COSINE TRANSFORM (INVERSE TRANSFORM)

BASED ON THE ALGORITHM OUTLINED BY BYEONG GI LEE IN HIS ARTICLE, FCT - A
FAST COSINE TRANSFORM, PUBLISHED IN THE PROCEEDINGS OF THE IEEE Inter-
NATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, SAN
DIEGO, CA, 19-21 MARCH 1984, P 28A,3/1-4 VOL 2., (CH1954-5/84/0000-0299).

LEE’S ALGORITHM HAS BEEN MODIFIED TO ALLOW NATURAL ORDER TIME DOMAIN
COEFFICIENTS.

THE FREQUENCY DOMAIN COEFFICIENTS ARE IN BIT REVERSE ORDER. THIS IS AN IN
PLACE CALCULATION.

AUTHOR: PAUL WILHELM

.global IFCT 3 INVERSE FAST COSINE TRANSFORM ENTRY
POINT.
.global M LENGTH OF ARRAY TO BE TRANSFORMED.

.global COEFF TABLE OF COSINE COEFFICIENTS.
.glebal COS_TAB TABLE OF ARRAY DATA TO BE
TRANSFORMED.
Jtext
IE .word L}
word COEFF
Jword COS_TAB
LI @FCTSIZE,ARO 3 LOAD ARRAY SIZE.
LDI BFCTSIZE, K 3 LOAD BLOCK SIZE FOR CIRCULAR
3 ADDRESSING
[Ri)¢ ©_DATA, ARG s LOAD POINTER TO DATA TABLE.
LDI 8.C0S, AR7 5 LOAD POINTER TO COSINE TABLE.
ADDI ARO, AR 3 POINT TO LAST COSINE VALUE IN TABLE.
SUBL 2,AR7
L1 ARO, IRO s INITIALIZE INDEX REGISTERS FOR BIT
LSH -2,IR0 s REVERSED ADDITION SEQUENCE.
LDI ARO, TR1
oI ARG, ARL s INITIALIZE DATA POINTERS.
ADDI 1RO, ARL

START OF BIT REVERSED ADDITION LOOP SERIES.

I€: + TOP OF QUTSIDE LOOP FOR BIT REVERSED
3 ADDITIONS.
ADDI IR0, AR + UPDATE DATA POINTERS AND REPEAT
: COUNTER.
L01 AR1,AR
LDI IR0, RC
SBI 2,RC

NOP #R2++(IR0)B
ADDF3 #AR1++(IR0)B, #AR2++(IR0)B,R0O ; FIND FIRST SUM. (MAKES

LI ARL,AR3 NIDDLE LOOP MORE EFFICIENT)
L1 R2,PRA
L01 PRI, ARS
ADDF3 #AR3++(IR0)B, ¥AR4++(IROIB,R1 ; DUMMY ADD TO UPDATE
* : POINTERS,
LSH -1,1R0 + UPDATE INDEX REGISTER.
*
RPTB END_CENTER ; T0P OF INNER MOST LOOP.
*
MIDDLE: ; TOP OF NIDDLE LOOP.
*
L +R3,R3 ; GET UPPER HALF OF SECOND ADDITION.
ADDF3 #ARL,#AR2++(IRO)B,RL 5 DO FIRST ADDITION.
STF RO,#RI+(IROIB ; STORE ADDITION DONE THE LAST LOOP OR
' WHEN INITIALIZATION WAS DONE ABOVE
END_CENTER:
*
ADDF3 RS, #ARA+(IR0)B,RO ; DO SECOND ADDITION.
i STF RL,#R3++(IROJB ; STORE FIRST ADDITION.
*
+ END OF INNER MOST LOOP.
*

- -

.o o w w %

ADDF3 #AR3++(IRT) Y, ¥AR4++(IR1)Z,R2 3 DUMMY ADD TO UPDATE

: POINTERS.

LF #R3+(IROB,R3 3 GET VALUE FOR LAST ADDITION.

LIF *R2++(IROB,R2 5 DUMHY ADD TO UPDATE POINTER.

ADDF3 3, AR4++(IR0IB,RO ; DO LAST ADDITION.

STF RO, #RL++(IROB 5 STORE NEXT TO LAST ADDITION,

ADDF3 #ARI+(IR1)L, ¥AR2++(IR1)L,R2 5 DUMMY ADD TO UPDATE
; POINTERS.

L1 IR0, RC ; UPDATE REPEAT COUNTER.

Pl ARLARS + 15 HIDDLE LOOP COMPLETE 2

BED HIDDLE ; IF NOT, DO DELAYED BRANCH.

LsH 1,RC

SUBI 2,RC

® 01004, 6T + SET REPEAT MODE.

(START/STOP ADDRESSES STILL OK)

DELAY BRANCH FROM HERE TO MIDDLE.

eI 1,IR0 + 1S OUTSIDE LOOP COMPLETE 2

B0 OUTSIDE ; IF NOT, DO DELAYED BRANCH.

Lol AR, PRI ; PREPARE TO UPDATE POINTERS AT TOP OF
; Looe,

ADDI IRO,ARI)

LsH -1, IRt + UPDATE INDEX REGISTER.

DELAY BRANCH FROM HERE TO OUTSIDE.
END OF BIT REVERSED ADDITION LOOP SERIES.

START OF CENTER BUTTERFLY LOOP.

(ULIOJSUBL], 9SIIAU) ULIOJSURL], dUISO)) Isef V 7H Xipuaddy

9Tl

0£D0ZESIL Y uO swofsuvd] 1ayiQ puv ‘[DA ‘Ldd Jo uouviuawaduy uy

o W

o -m

R

PR

* - o

THIS LOOP INCLUDES THE LAST BIT REVERSED ADDITION STAGE, THE FIRST
BUTTERFLY, AND THE COSINE MULTIPLICATIONS FOR THE SECOND BUTTERFLY

SERIES.
SUBI
LI
LDI
LSH
LDF
SUBI
LoI

RPTB

ADDF3
MPYF3
MPYF3
ADDF3

ADDF3
MPYF3

ADDF3
SUBF3

MPYF3
SUBF3
STF

STF
MPYF3

MPYF3
SUBF3

ADDF3
WPYF3

ADDF3
SUBF3

MPYF3
STF

STF
STF

3,AR2
8, IRt
ARO,RC
-3,RC
H#R7-— R
1,RC
RC,ARS

END_CENTER_LOOP

*+AR2, +AR2,RA
*R1,RT,RS
R7,R4,R0
R4, +-ARA,R3

RS, #-AR1, R4
#+R7,R3,R1

RO, $4R2, R2
RS, +-AR1,RS

+ART,R2,R0
RO, #AR2, R2

R4, +-AR1

RS, #RI++(IR1)L
RO, #HR2
*R7,R2,R0

RL, #-AR4,R3

R4, #-AR3,RS
AR7,R3,RL

RI, +-AR4,R3
R4, +-AR3 R

+-AR7,R3,R1
R1, #-ARY

RO, #AR2+(IR1)Z
RS, +-AR3

UPDATE DATA POINTER FOR THIS LOOP.
INITIALIZE INDEX REGISTER.
INITIALIZE REPEAT COUNTER.

GET COSINE P1/4.
SAVE REPEAT COUNTER FOR LATER USE.

FOUR BUTTERFLIES ARE DONE EACH CYCLE
THROUGH THIS LOOP,

BIT REVERSED ADDITION FOR 2ND
BUTTERFLY.

COSINE P1/4 TIMES LOWER RALF OF 1ST
BUTTERFLY.

COSINE P1/4 TIMES LOWER HALF OF 24D
BUTTERFLY. '

BIT REVERSED ADDITION FOR 4TH
BUTTERFLY.

ADD UPPER HALF OF 1ST BUTTERFLY.

COSINE P1/4 TIMES LOWER HALF OF 4TH
BUTTERFLY.

ADD UPPER HALF OF 2ND BUTTERFLY.

SUBTRACT LOWER HALF OF 15T
BUTTERFLY.

MULTIPLY UPPER HALF OF. 2ND BUTTERFLY
BY COSINE COEFFIEIENT.

SUBTRACT LOWER HALF OF 23
BUTTERFLY.

STORE UPPER HALF OF 1ST BUTTERFLY.

STORE LOWER HALF OF 1ST BUTTERFLY.

STORE LOWER HALF OF 2ND BUTTERFLY.

COSINE P1/4 TIMES LOWER HALF OF 3RD
BUTTERFLY.

MATIPLY LOWER HALF OF 2ND BUTTERFLY
BY COSINE COEFFICIENT

SUBTRACT LOWER HALF OF 4TH
BUTTERFLY.

ADD UPPER HALF OF 3RD BUTTERFLY.

MULTIPLY ;0MER HALF OF 4TH BUTTERFLY
BY COSINE COEFFICIENT

ADD UPPER HALF OF 4TH BUTTERFLY.

SUBTRACT LOWER HALF OF 3RD
BUTTERFLY.

MULTIPLY UPPER HALF OF 4TH BUTTERFLY
BY COSINE COEFFICIENT.

STORE UPPER HALF OF 4TH BUTTERFLY.

STORE UPPER HALF OF 2ND BUTTERFLY.

STORE UPPER HALF OF 3RD BUTTERFLY.

+

END_CENTER_LOOP:
]

STF R1, #R4++ (IRD)L
i STF R4, #R3++(IR1)L
*
+ END OF CENTER BUTTERFLY LOOP.
*
+ START NEXT TO LAST LOOP SERIES.
¥
*
*
*
1 FAST EXECUTION.)
*

SUBI -~ 2,AR7

SuBl 1,AR4

L0 ARS,RC

LF *#R7--,RS

LIF +R7--, R4
*

RPTB ENDNTL

SUBF3 #ARA,#AR3,R6

ADDF3 #AR4,#AR3,R7
WPYF3 RS,R6,RO

- -

ADDF3 +ARZ,#WR1,R2
WPYF3 R4,RT,RI

BNED NTL..LOOP

STORE LOWER HALF OF 4TH BUTTERFLY.
STORE LOWER HALF OF 3RD BUTTERFLY.

THIS SERIES OF LOGPS DOES ALL BUT THE LAST BUTTERFLY STAGE. ALL THE
COSINE COEFFICIENT MULTIPLICATIONS ARE DONE, INCLUDING THE MULTI-
PLICATIONS FOR THE LAST BUTTERFLY STAGE. (THIS PROGRAM FLOW ALLOWS FOR

UPDATE COSINE COEFFICIENT POINTER.
UPDATE DATA POINTER.

RELOAD REPEAT COUNTER.

GET COSINE COEFFICIENTS.

TWO BUTTERFLIES ARE CALCULATED PER
CYCLE THROUGH THE INNER LOOP.

SUBTRACT LOWER HALF OF 28D
BUTTERFLY.

ADD UPPER HALF OF 2ND BUTTERFLY.

MLTIPLY UPPER HALF OF 2ND BUTTERFLY
BY COSINE COEFFICIENT.

ADD UPPER HALF OF 1ST BUTTERFLY.

MULTIPLY LOWER HALF OF 2ND BUTTERFLY
BY COSINE COEFFIEICENT.

SUBTRACT LOWER HALF OF 1ST
BUTTERFLY.

STORE UPPER HALF OF 2ND BUTTERFLY.

STORE UPPER HALF OF 1ST BUTTERFLY.

STORE LOWER HALF OF 1ST BUTTERFLY.
STORE LOWER HALF OF 2ND BUTTERFLY.

RELOAD REPEAT COUNTER.

GET NEW COSINE COEFFICIENTS. (FYI-
THE LAST TIME, THIS WILL FETCH
FROM MEMORY BELOW THE COSINE
TABLE.)

HAS MIDDLE LOOP BEEN COMPLETED ?

IF NOT, BRANCH DELAYED.

*
" SUBF3 #AR2,#AR1,R3
*
STF RO, #AR3++(IR1)Y
" STF R2, #R1++(IR1 %
*
END_NTL:
*
STF RI, #ARA++(IR1)% H
" STF R3, #R2++(IR1)% 3
¥
+ END OF CENTER LOOP OF NEXT TO LAST SERIES.
*
LDI ARS,RC 3
LIF R7—,RS :
LOF +R7—,R4 ;
* 3
* 3
Pl ARI,ARb :

ADDF3 #ARd++ ¥R3— RO

DUMMY ADDS TO UPDATE DATA POINTERS.

0ED0TESHL 2y# uo suiofsuvd] 4ay1Q puv [D(‘LAA Jo uouviuawadwy uy

LTl

ADDF3 HR2++, #R1—, RO

R

- o -

LDI
ADDI3
LSH
>, 2
BGED
ADDI3
LSH
LI

- o w w

L1
ADDI3
SUBI3
LI
LSH
SUB1

RPTB

LDF

ADDF3
N SUBF3

ADDF3
tH STF

0100H, 5T

BRANCH DELAY FROM HERE 7O NTL.LOOP.

R3, AR
IR1, ARI, ARG
1,IR1

IRL, RO
NTL_LOOP
1RO, AR3, AR
-1,MR5
ARS, RC

END OF NEXT TO LAST LOOP SERIES.

START OF THE LAST LOOP.

2,1Rt
1RO, AR2, ARM
1RO, AR1, ARG
ARO,RC
-2,RC

1,RC

END_LAST_LOOP

+RY,RO
*AR2, #AR1 R
*R2, 40R1,R2
RO, #R3,R3

R1, #R1--(IR1)
RO, +4R3,RA

R2, #AR2++(IR1)
R3, #AR3—(IR1)

R4, #AR4++(IR1)

3 SET REPEAT MODE. (START/STOP
s ADDRESSES ARE STILL G0OD.)

3 UPDATE DATA POINTERS.

+ UPDATE INDEX REGISTER.
+ IS THIS LOOP SERIES COMPLETE ?
+ IF NOT, BRANCH DELAYED.

; UPDATE DATA POINTER.

+ UPDATE REPEAT COUNTER.

DELAYED BRANCH FROM HERE 70 NTL_LOOP.

THE LAST LOOP IS THE LAST BUTTERFLY STAGE WITHOUT THE COSINE COEFFICIENT
MULTIPLICATIONS, WHICH HAVE ALREADY BEEN DONE.

3 INITIALIZE INDEX REGISTER.
;3 INITIALIZE DATA POINTERS.

s+ INITIALIZE REPEAT COUNTER.

TWO BUTTERFLIES ARE DONE FOR EACH
CYCLE THROUGH THE LOOP,

GET VALUE FOR LONER HALF OF 28D
BUTTERFLY.

ADD UPPER HALF OF 1ST BUTTERFLY.
SUBTRACT LOWER HALF OF 1ST
BUTTERFLY.

ADD UPPER- HALF OF 2ND BUTTERFLY.

STORE UPPER HALF OF 1ST BUTTERFLY.
SUBTRACT LOWER HALF OF 230
BUTTERFLY.

STORE LOWER HALF OF 1ST BUTTERFLY.

STORE UPPER HALF OF 28 BUTTERFLY.

we e ws ws we e e us we wa we

3 STORE LOWER HALF OF 2ND BUTTERFLY.

+ END OF LAST LOOP, AND INVERSE COSINE TRANSFORM.

RETS
~end

Appendix E3. FCT Cosine Tables File

%
¥ APPENDIX E3
H
¥ FCT COSINE TABLES FILE
*
TO BE LINKED WITH FCT SOURCE CODE FOR 32 POINT FCT.
M
COEFFICIENTS ARE 1/(2 # COS{N#PI/2M)), WHERE N IS5 A NUMBER FROM 1 to
M-1. M IS THE ORDER OF THE TRANSFORM.
#
FOR A 32 POINT FCT, N IS IN THE FOLLOWING ORDER:
* 1, 15, 3, 13,5, 11, 7, 9,
* 2, 14, &, 10,
4, 12,
* 3
#
THE LAST VALUE IN THE TABLE IS 2/M.
#
¥
.qlobal COS_TAB
.qlobal M
#
M .set 16
*
.data
¥
COS_TAB

float 0.5024192
.float 5.1011487
float 0.5224986
float 1.7224471
float 0.5669440
float 1.0606777
.float 0.6463218
Float 0.7821544
float 0.5097956
Jfloat 2,5629194
Jfloat 0.6013449
Float 0,8999762
Hloat 0.5411961
float 1.3063630
Float 0,7071068
float 0,1250000
end
128 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

£

AFFENDIX E4

UATA FILE

EE T

.alcbal

.data
" .
COEFF

.float
.float
.float
.float
.float
.float
.float
float
.float
float
.float
.fleat
float
float
.float
.float
.end

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

COEFF

137.0
249.0
105.0
217.0
73.0
1585.0
41.0
153.0
2.0

1121.0

233.0
89.0
201.0
37.0
169.0
25.0

Appendix E4. Data File

129

130 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Appendix F. Test Vectors, 64-Point Sine Table, Link Command File

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30 131

(431}

o ow o

0ED0ZESIL 2yt U0 suuofsuvi] 4ayiQ puv ‘[Jd ‘LA Jo uoupmauaiduy uy

0.5598
APPENDIX F1 0.9166
0.1402
EXAMPLE OF A 64-POINT VECTOR TO TEST THE FFT ROUTINES 0.7054
0.0178
X= 0.2611
0.1358
0.2113 0.0503
0.0824 0.5782
0.75%9 0.2432
0.0087 0.9448
0.8096 0.5876
0.8474 0.7256
0.4524 0.2849
0.8075 0.6767
0.4832 0.8642
0.6135 0.1943
0.2749 *
0.8807 * GA-POINT FFT CORRESPONDING TO VECTOR X
0.6538 *
0.4899 Y=
0.7741
0.9626 : 30.3774
0,993 1.7780 - 2.5584i
0.8360 -1.0376 - 2.3999i
0.7469 -1.0123 + 2.4889i
0.0378 0.6594 + 2,363%1
0.4237 -1.5228 - 0.7527i
0.2613 -3.8171 - 0.20501
0.2403 -2.709 + 1.2841i
0.3405 2.1622 - 1.68631
0.1167 0.2879 + 1.8671i
0.6250 ~1.5479 + 1.6298i
0.5510 =0.6366 ~ 0.1176i
0,3550 2.2902 + 1.5549i
0.4943 -2.4837 - 0.5842i
0.0365 -1.7338 + 0.0738i
0.2280 -0.2180 - 0.47261
0.8159 -0.2104 + 0.4897i
0.2284 -1.7473 - 1.0213i
0.6553 0.1233 - 2.39151
0.0621 . -0.6415 - 1.1144i
0.7075 -2.7119 - 0.4802i
0.2408 -0.0063 - 0.3885i
0.6907 -0.7163 + 1,5682i
0.1062) 0.3218 - 1.3316i
0.2640 -0.7823 + 1.0607i
0.7034 -0.2553 + 2.8270i
0.4021 -1.0813 - 2.7861i
0.6583 3.4859 + 1,9485i
0.9700 3.0352 + 1.38551
0.0380 3.2099 + 2.3564i
0.0988 -1.9511 - 0.7714i

0.2560 1.8755 + 0,2867i

saunnoy LA Y} 1S9, 0) I0J9A JuIod-$9 © Jo dduexy 14 xipuaddy

0£D0ZESIL 241 U0 swuofsuni] 4yiQ puv ‘IDQ ‘L4 fo uouvmawaiduy uy

eel

-1.5474

1.8755 - 0.2867i
-1.9511 + 0.7714i
3.2099 - 2.3564i
3.0352 - 1.385i
3.4869 - 1.94851
-1.0813 + 2.7861i
-0.2953 - 2.8270i
-0.7823 - 1.0607i
0.3218 + 1.33161
-0.7163 - 1.5682i
-0.0063 + 0.3885i
-2.7719 + 0.4802i

-0.6415 + 111441

0.1233 + 2.3915i
~1.7473 + 102131
-0.2104 - 0.4897i
-0.2180 + 0.4726i
-1.7338 - 0.0738i
-2.4837 + 0.5842i

2.2902 - 1.549i
-0.6366 + 0.11761
-1.5479 - 1.6298i

0.2879 - 1.8671i

2.1622 + 1.68631
-2.709 - 1.28811
-3.8171 + 0.2050i
-1.5228 + 0.7527i

0.6594 - 2.3639i
-1.0123 - 2.4889i
-1.0376 + 2.3999i

1.7780 + 2.5584i

pel

0ED0TESHWL Y3 U0 suLiofsund], 4ayiQ puv ‘[DA ‘LA fo uouvawaiduy uy

o o

* X Z %

SINE

COSINE

APPENDIX F2

.globl
.globl
.globl

.set
set

Jdata

float
float
float
float
float
float
float
float
float
float
.float
float
float
float
.float
«float

.float
Jfloat
float
Jfloat
float
float
float
float
float
float
float
float
float
float
.float
Jfloat
float
float
float
.float
float
.float

FILE TO BE LINKED WITH THE SOURCE CODE FOR A 64-POINT, RADIX-4 FFT.

SINE
N
L]

o
b

0.000000
0.098017
0.195090
0.290285
0.382683
0.471397
0.555570
0.634393
0.707107
0.773010
0.831470
0.881921
0.923880
0.956940
0.980785
0.995185

1.000000
0.995185
0.980785
0.956940
0.923880
0.881921
0.831470
0.773010
0.707107
0.634393
0.535570
0.471397
0.382683
0.290285
0. 195090
0.098017
0.000000
-0.098017
-0. 195090
~0.290285
-0.382683
-0.471397

float
Jfloat
float
float
.float
float
float
float
float
float
.float
float
.float
float
float
float
. float
float
.float
float
float
-float
float
float
float
float
float
Jfloat
float
float
.float
+float
.float
Jfloat
float
float
«float
.float
.float
-float
float
.float

-0.555570
-0.634393
-0.707107
-0.773010
-0.831470
-0.881921
-0.923880
-0,956940
-0.980785
-0.995185
-1.000000
-0.995185
-0.980785
-0.956940
-0.923880
-0.881921
-0.831470
-0.773010
-0.707107
-0.634393
-0.53%570
-0.471397
-0.382683
-0.290285
-0.195090
-0.098017
0.000000
0.098017
0,19090
0.290285
0.382683
0.471397
0.555570
0.634393
0.707107
0.773010
0.831470
0.881921
0.923880
0.956940
0.980785
0.995185

‘144 v-X1pey

“JUI0J-p9 € 10§ IPO)) DINOS A} YA PaYuI'] o 0} [74 Xipuaddy

Appendix F3. Link Command File

#
¥ APFENDIX F2

%

#

LINK COMMAND FILE

4

DO NOT TYPE IN THESE FIRST SEVEN LINES
-u 1Zoptbd. out

12fopt.obj

siné4, obj

o

ECTIONS

=
o

Jtext 2 {3

.data ¢ {}

IN 809300h 2 { 12fopt.obj(IN} }
.bss B09C0O0h: {3

[

An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

135

136 An Implementation of FFT, DCT, and Other Transforms on the TMS320C30

Doublelength Floating-Point
Arithmetic on the TMS320C30

Al Lovrich

Digital Signal Processor Products—Semiconductor Group
Texas Instruments

137

138 Doublelength Floating-Point Arithmetic on the TMS320C30

In the past, extended-precision arithmetic has been implemented only on fixed-point
processors. The introduction of the TMS320C30 Digital Signal Processor (DSP), a floating-
point 33-MFLOP device, enables us to represent multilength floating-point math in terms
of singlelength floating-point math. Extended-precision arithmetic allows designers to have
more accuracy in their applications. Some of these applications include digital filtering,
FFTs, image processing, control, etc.

This application report describes how to extend the available precision of floating-
point arithmetic on the TMS320C30. Our empbhasis is on implementing an efficient exten-
sion of the available precision while minimizing both the execution time and the memory
usage.

The structure of this report is'as follows: The first section describes the TMS320C30
DSP floating-point number representation. The second section discusses doublelength
arithmetic and some basic definitions. The third section discusses the algorithms used along
with the TMS320C30 implementation. An analysis of the error introduced by the algorithm
is presented in the fourth section. The last section provides an insight into generating C-
callable functions from assembly language routines. Finally, the appendix provides the
source listings for the extended-precision arithmetic.

Floating Point Format
The TMS320C30 supports three floating-point formats [1].

° Short floating-point format, used to represent immediate operands, con-
sisting of a 4-bit exponent and a 12-bit mantissa.

° Single-precision format, used for regular floating-point value representa-
tion, consisting of an 8-bit exponent and a 24-bit mantissa.

° The extended-precision format, used with the extended-precision registers,
consisting of an 8-bit exponent and a 32-bit mantissa.

For the extended-precision algorithms to work properly on the DSP, it is important
to start from the highest-precision floating-point format available in the system that is
used for basic floating-point operations. The single-precision format is of particular in-
terest in developing the TMS320C30 code for extended-precision floating-point opera-
tions. Therefore, a working knowledge of the properties of this format is essential for
the concepts presented in this application report.

Doublelength Floating-Point Arithmetic on the TMS320C30 139

In the single-precision format, the floating-point number is represented by an 8-bit
exponent field (e) in two’s complement notation, and a two’s complement 24-bit mantissa
field (f) with an implied most-significant nonsign bit. Bit 23 of the mantissa indicates the
sign (s), as shown in Figure 1.

31 24 23 22 0
e |s f

Figure 1. Single-Precision Floating-Point Format of the TMS320C30

Operations are performed with an implied binary point between bits 23 and 22. When
the implied most-significant nonsign bit is made explicit, it is located to the immediate
left of the binary point after the sign bit. We show the implied bit explicitly throughout
this application report for clarity. The floating-point number x is expressed as follows:

x= 0lfx2 if s5=0;
10fx2° if s=1;
0 if e=—128,s=0,andf=0

The range and precision available with the TMS320C30 single-precision floating-
point format are illustrated by the following values:

= +3.4028234 x 10+38
+5.8774717 x 10—39
Least Negative: —5.8774724 x 10—39
Most Negative: = —3.4028236 x 10+38

Doublelength Floating-Point — The Basics

The techniques used to develop doublelength results in this application report re-
quire a singlelength floating-point system and arithmetic that satisfy certain conditions.
The TMS320C30 implementation takes the singlelength system as the highest floating-
point precision system available. The algorithms presented do not require a doublelength
accumulator with respect to the singlelength system used. The extended-precision formats
available are used to control the truncation or rounding of the single-precision results.

Most Positive:
Least Positive:

L o B]

The doublelength arithmetic presented here increases precision of a given floating-
point operation without the need for a doublelength aceumulator. Using this method, the
result of the floating-point operations on two single-precision numbers can be determined
exactly. If x and y are two such numbers and the desired operation is addition, the result
can be represented as a pair of floating-point numbers z and zz. The z value represents

140 Doublelength Floating-Point Arithmetic on the TMS320C30

the most significant portion of the floating-point operation, while zz represents the least
significant portion of the floating-point operation.

As an example, consider the result of the exact addition of two floating-point numbers
x and y that are expressed in the single-precision format of the TMS320C30:

x = 217FFFFFh (decimal: 1.71798682 x 1010)
y = OC7FFFFFh (decimal: 8.19199951 x 103)

The values are represented in the TMS320C30 binary equivalent as follows:

x =233 x 01.111 1111 1111 1111 1111 1111b
y = 212 x 01.111 1111 1111 1111 1111 1111b

Addition of two floating-point numbers requires aligning the two variables x and y [1]:

x = 233 x O1.111 1111 1111 1111 1111 1111b
y = 233 x 00.000 0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1000b

As can be seen in this example, most of the precision available for y will not be
available to carry out the addition. Maintaining full precision for floating-point addition
requires extra mantissa bits beyond the 24 bits available on the DSP. Since the need for
such precision is rare, software methods are used to represent the result of the operation
as a floating-point number pair (z,zz). In our example, the exact result is represented as
follows:

z = 234 x 01.000 0000 0000 0000 0000 0011b
zz = 209 x 01.111 1111 1111 1111 1111 1000b

The corresponding hexadecimal representation of (z,zz) is shown below:

z = 22000003h (decimal: 1.71798753 x 1010)
zz = 097FFFF8h (decimal: 1.0239995 x 103)

Some definitions are basic to the development of concepts in this report. First is
the definition of the floating-point operations over a system R. The system contains all
the possible floating-point numbers that the single-precision format of the TMS320C30
can represent. All the floating-point arithmetic is carried out in base 2. Therefore, R can
be represented as follows on the TMS320C30:

R = [x|x = m(x)2¢®), |m(x)| <224, —128<e(x)< 127}
A floating-point operation is faithful if the result of the operation fl(x *y) equais either:
The largest elément of R that is smaller than or equal to (x * y) or
The smallest element of R that is larger than or equal to (x * y)
where * represents one of the following floating-point operations: +, —, X, <. In other

words, faithful refers to truncating the floating-point operation result. The floating-point

Doublelength Floating-Point Arithmetic on the TMS320C30 141

multiplier on the TMS320C30 saves the upper 40 bits of the mantissa in one of the extended-
precision registers [1] and drops the least significant byte of the result. By this definition,
the floating-point multiplication on the TMS320C30 is faithful. Since the algorithms re-
quire the floating-point result to be in single-precision format, the floating-point multiplica-
tion on the DSP must therefore be followed by a second truncation step. Saving the contents
of the extended-precision register to a memory location or masking off the low 8 bits results
in truncation.

A floating-point operation is optimal if for all x and y, the result of fl(x * y) is an element
of R nearest to (x * y). In other words, the round-off error should not exceed one-half
of the last remaining bit position. This is commonly referred to as rounding.

The results of floating-point operations on the TMS320C30 are stored in the extended-
precision registers [1]. The extended-precision register adds 8 bits of precision to the
floating-point arithmetic result. Execution of the RND (round) instruction forces the result
of the floating-point arithmetic to be optimal. When you round the result of the addition
or subtraction operations on the TMS320C30, these floating-point operations become
optimal.

Implementing Doublelength Floating-Point Arithmetic

This section presents the algorithms used in implementing doublelength arithmetic -
in pseudo-code for a number of fundamental floating-point operations. The basic idea of
doublelength arithmetic can be extended to multiplelength precision, given that the start
of the implementation is based on the highest precision available on the system. Therefore,
to achieve quadruplelength results, the same algorithm can be applied to doublelength
values, and so on. The implementation is based on the theoretical results presented in
Reference [2].

Exact Singlelength Addition

In this discussion of the algorithm used to carry out exact addition and its implemen-
tation on the TMS320C30 DSP, the term exact refers to performing an operation on two
floating-point numbers, x and y, and obtaining a doublelength floating-point number pair
(z,zz) to represent the result. In this implementation, we have not accounted for floating-
point exponent overflow or underflow. For this algorithm to produce a correct result, the
floating-point addition and subtraction must be optimal.

The purpose of exact addition is to find a term, zz, that satisfies Equation (2).
z+zz=Xx+Yy 2)
Equation (2) can be rewritten as

2z =y — (z — X) ' ©)]

142 _ Doublelength Floating-Point Arithmetic on the TMS320C30

Equation (3) can be expanded into Equation (4).

w=z—X “)
zzZ=y — W

In particular, |x| > |y| must be valid for Equation (4) to be valid. Implementation
of Equation (4) on the TMS320C30 always generates the exact correction term zz if the
result of floating-point addition operation is made optimal. This requirement guarantees
that the result of single-precision floating-point add and subtract belongs to system R. By
swapping the x and y values when |x| < |y|, the condition for obtaining an exact result
is met.

The algorithm requires that x and y be normalized. Normalization guarantees that
the floating-point number has only one sign bit, and that sign bit is followed by nonsign
bits [1]. Floating-point addition on the TMS320C30 assumes that the operands are nor-
malized.

The TMS320C30 assembly code for obtaining the doublelength sum of two
singlelength floating-point numbers x and y is shown in Appendix A. First, the values
for x and y are interchanged when |x| < |y|. When you add x and y values, the number
with the smaller exponent, y, is shifted repeatedly until the exponents of x and y are equal
and their mantissas are aligned. We have now calculated the singlelength number, z, that
satisfies Equation (2). Since the floating-point addition on the TMS320C30 is made op-
timal by rounding, the extra precision is, in effect, dropped. The extra precision value,
zz, is obtained by implementing Equation (4). Figure 2 is a graphical representation of
the implemented algorithm. The figure also shows the relationship between doublelength
number pair (z,zz) and singlelength floating-point numbers and their representation on
the TMS320C30.

Doublelength Floating-Point Arithmetic on the TMS320C30 143

8 24

X e(x) f(x)

y e(y) f(y)

X+y e

e-24- '
norm(f2) f2(normalized)

Figure 2. Exact Singlelength Addition

The same algorithm can be used to implement exact floating-point subtraction on
the DSP. This is accomplished by negating the second operand and performing an exact
addition. ’

Doublelength Addition .

A natural extension of exact singlelength addition and subtraction is its application
to doublelength arithmetic. Figure 3 shows an algorithm for implementing doublelength
addition on the DSP. Using this algorithm, you can add two doublelength numbers (x,xx)
and (y,yy) and represent the result as a doublelength number (z,zz).

The algorithm requires forming a doublelength number (r,rr) that represents an ex-
act addition of x and y. Generating a second number, s = ((rr + yy) + xx), results in
a number pair (r,s) that approximates the addition of (x,xx) and (y,yy). Finally, an exact
addition of r and s generates a doublelength number (z,zz) that has the same value as (x,xx)
+ GHyy).

To obtain exact results for addition and subtraction, subtraction and addition must
be optimal; this is guaranteed by following each subtraction or addition instruction on
the DSP with a round instruction.

144 Doublelength Floating-Point Arithmetic on the TMS320C30

; Calculate the doublelength sum of (x,xx) and (y,yy),
; the result being (z,zz)
r=x+y;
if (abs(x) >abs(y))
s=X-—r1r+Yy+yy+ xx
else
Ss=y—r1+ X+ XX +Yy,;
Z=r1+Ss;
22 =1 — 7 + S§;

Figure 3. Doublelength Addition
Exact Singlelength Multiplication

The exact singlelength multiplication is shown in Figure 4. The algorithm requires
breaking the x and y mantissas into half-length numbers, referred to as head (hx,hy) and
tail (tx,ty) sections [2]. This algorithm requires addition and subtraction to be optimal
and multiplication faithful. The TMS320C30 DSP multiplication result is faithful if the
contents of the extended-precision register are truncated.

To split x and y into two half-length numbers, a constant value is needed that is
dependent on the number of available digits. The TMS320C30 device has t = 24 bits
of mantissa in the single-precision format. Equation (5) shows that head section hx is chosen
to be as near to the value of x as possible.

hx = round(m(x)2—t1)2e(x)+tl)

Also, t1 is chosen to be approximately one-half of the available precision, or 12,
on the processor. This effectively breaks the mantissa into half-length values. Equation
(5) shows that hx is obtained by rounding and is defined to be an element of R{t1}. The
tail section tx is easily obtained by subtracting hx from x. Since floating-point subtraction
can be made optimal on the TMS320C30, it follows that tx is an element of R{tl — 1}.
Setting the constant equal to 212 does not always satisfy Equation (5) when t is even. When
the constant is set to 212 + 1, the definition of Equation (5) is satisfied. The proof for
the above is given in Reference [2].

Doublelength Floating-Point Arithmetic on the TMS320C30 145

; Calculate the exact product of x and y, the result being
; a doublelength number (z,zz). This algorithm uses the
; following syntax when called from a user program as shown
; multl2 (x,y,z,zz);
p = X X constant;
hx =x —p + p;
tx = x — hx;

p =y X constant,
hy =y —p+p;

ty =y — hy;
p = hx X hy;
q = hx X ty + tx X hy;
z=p+g

ZZ =p -z + q + tx X ty;
Figure 4. Exact Singlelength Product
Doublelength Multiplication

The doublelength multiplication algorithm, shown in Figure 5, relies on the
singlelength algorithm discussed earlier. The algorithm generates a nearly doublelength
approximation of the output result (c,cc). Note that the exact singlelength multiplication
routine is used for this approximation. Exact addition is used to generate a doublelength
floating-point number that is the closest approximation to the actual result.

The doublelength product program implementation uses the TMS320C30 stack
capabilities to save some intermediate variables. These programs are written to be used
as callable functions or macros in your program. In either case, the stack pointer must
be set to a valid memory segment for proper code execution.

; Calculate the doublelength product of (x,xx) and (y,yy)
; the result being a nearly doublelength number (z,zz).
; Program uses exact singlelength multiplication, mult12 (.).
multl2 (x, y, c, cc);
cc =X Xyy +xx Xy + cc;
zZ =c¢ + cc;
7z = ¢ — Z + CC;

" Figure 5. Exact Doublelength Product

146 Doublelength Floating-Point Arithmetic on the TMS320C30

Doublelength Quotient and Square Root

Figures 6 and 7 show the algorithm used in calculating the doublelength quotient
and doublelength square root routines. Singlelength multiplication is used to generate a
doublelength approximation of the quotient or square root values. As with doublelength
multiplication, exact addition is used to generate a doublelength floating-point result.

; Calculates the doublelength quotient of (x,xx) and (y,yy)
; the result being (z,zz)
c=x/y;
multi2(c, y, u, uu);
cc=x—-—u—u+xx—cXyy'ly;
Z = ¢ + cc;
7ZZ = ¢ — Z + cc;

Figure 6. Doublelength Quotient

; Calculate the doublelength square root of (x,xx), the
; result being (z,zz)

if x>0) {)
© ¢ = sqrt (x);
multl2 (c, ¢, u, uu);
cc=(X—u-—uu + xx) X 0.5/¢;
Z = ¢ + cc;
7z =¢c — z + ccjl
else {
z =12z =0.J};

Figure 7. Doublelength Square Root

Doublelength Floating-Point Arithmetic on the TMS320C30 147

Error Analysis

This section discusses and determines an upper bound for the error generated in
forming a doublelength result. The value of the doublelength number (z,zz) is equal to
z + zz. Singlelength addition, subtraction, and multiplication results are always exact.
In doublelength addition, any error introduced in the end result is generated by calculating
the zz term. An upper bound error magnitude has been calculated in Reference [2] and
is shown in Equation (6) as follows:

[E+| <f|x+xx| + |y+yy|} x 22-2t = |Z| x 22-2 ©)

where t = 24 for this system. This gives an upper bound of |Z| X 2-46, or approximate-
ly |Z| x 1.42 x 10-14, This translates to a theorical accuracy greater than 13 decimal
places. Table 1 shows an example of doublelength addition using the exact addition
algorithm previously described. The numbers in the left column represent TMS320C30
hexadecimal notation for the floating-point results, and (z,zz) is the decimal equivalent
of the doublelength output result. Appendix B shows a listing of C programs (exact) that
convert from TMS320C30 hexadecimal notation to decimal notation.

Table 1. Exact Singlelength Arithmetic Examples

Singlelength Addition

x = 217FFFFFh
y = OC7FFFFFh
z = 22000003h (z,zz) = 17179876351.9995117 (Exact)
zz = 097FFFF8h 17179876351.9995117 (DSP)

= FC7C8923h

= 0A29A7E5h
z = 0A29ABD8h (z,2z) = 1357.37010409682989 (Exact)
zz = EFA46000h 1357.37010409682989 (DSP)

Singlelength Multiplication

= OF7FFFFFh

= 21FFFFFFh
z = 30800000h (z,2z) = —562949986975740 (Exact)
zz = 18800002h —-562949986975740 (DSP)

= FC7CB923h

= 0A29A7E5h
z = 07277BF7h (z,2z) = 167.484236862815123 (Exact)
zz = EBA714FOh 167.484236862815123 (DSP)

148 Doublelength Floating-Point Arithmetic on the TMS320C30

The doublelength product, quotient, and square-root algorithms all have a small
relative error. The upperbound error magnitude for each is given in Equations (7) through

).

|E><|=(IX+XX| X |y+yy|) X 11 x 2-48 0)
[E+|=(x+xx| + |yxyy|) x 21.1 x 2-48 . ®)
BV | =sqrt(jx+xx|) x 12.7 x 2-48 ®

Equation (7) establishes an upperbound of |Z| X 3.9 X 10—14, or approximately
13 decimal digits of accuracy for doublelength multiplication. Similarly, an upperbound
of |Z| x 7.5 x 10—14, or greater than 13 decimal digits for the doublelength square-
root algorithm, is established. Table 2 shows examples for each algorithm discussed, along
with the algorithm output and expected theorical output.

Doublelength Floating-Point Arithmetic on the TMS320C30 149

Table 2. Exact Doublelength Arithmetic Examples

Doublelength Multiplication

X = 22000000h
xx = 097FFFFEh
y = 21000001h
vy = 097FFFFEh
z = 43000002h (z,2z) = 1.47573996570139475 x 1020 (Exact)
zz = 2A7FFFFCh 1.47573996570139427 x 1020 (DSP)
x = 22000003h
xx = 097FFFF8h
y = OA29ABD8h
yy = EFA46000h
z = 2C29ABDDh (z,2z) = 23319450552284.2434 (Exact)
zz = 13907DC2h 23319450552284.1250 (DSP)
Doublelength Quotient
x = 43000002h
‘xx = 2A7FFFFCh
y = 2C29ABDDh
yy = 13907DC2h
z = 1641205Ah (z,2z) = 6328365.08044074177 (Exact)
zz = FC24BE20h 6328365.08044075966 (DSP)
x = 22000000h
xx = 097FFFFEh
y = 21000001h
yy = 097FFFFEh
z = O07FFFFDh (z,2z) = 1.99999964237223082 (Exact)
zz = D3400000h 1.99999964237217398 (DSP)
Doublelength Square Root
X = 2C2BDDOOh
xx = 3907DC2h
z = 61451A4h (z,2z) = 4860114.04539400958 (Exact)
zz = FB39EF11h 4860114.04539400712 (DSP)
x = 21000001h
xx = 097FFFFEh
z = 103504F5h (z,2z) = 92681.9110722252960 (Exact)
zz = F7BCO0784h 92681.9110722253099 (DSP)
150 Doublelength Floating-Point Arithmetic on the TMS320C30

Note that the results were obtained using the programs shown in Appendix B. The
C programs were created and compiled on a 80386-based microcomputer running under
MS-DOS 3.3.

How to Generate C-Callable Functions

The source listings for the extended-precision arithmetic presented in Appendix A
are optimized for execution speed and code size. These routines are designed to be used
as macros in a user program environment or, with a few adjustments, as a C function.

This section provides an overview of TMS320C30 C compiler calling conventions
necessary to create functions that can be added to the C compiler library. You need a
working knowledge of C language to understand the terminology in this section [4, 5, 6].

The C compiler uses the processor stack to pass arguments to functions, store local
variables, and save temporary values. The C compiler uses two registers of the TMS320C30
to manage the stack pointer (SP) and the frame pointer (AR3).

When a C program calls a function, it must

1. Push the arguments onto the stack,
2. Call the function, and
3. Pop the arguments off the stack,

in that order.
On the other hand, the called C function must perform the following tasks:

. Set up a local frame by saving the old frame pointer on the stack.
. Assign the new frame pointer to the current value of stack pointer.
. Allocate the frame.

. Save any dedicated registers that the function modifies.

. Execute function code.

. Store a scalar value in RO.

. Deallocate the frame.

. Lastly, restore the old frame pointer [4].

NN WN =

The following code segment shows the singlelength addition routine modified to be
in C-callable form. Note that registers R4 through R7 and AR4 through AR7 are dedicated
registers used by the compiler. These registers must be saved as floating-point values.

single .set OFFh

fp .set ar3
X .set rO
y .set r1
z .set re
2z .set r3

Doublelength Floating-Point Arithmetic on the TMS320C30 151

w .set
x1 -~ .set
a .set
.globa
.width
.text
_add12:
push
pushf
push
Idi
ldi
Idi
absf
absf
cmpf
Idfit
dftt
dfit

addf3
rnd
subf3
rnd
subf3
rnd
pop
popf
pop
retsu
.end

r4
re
r3
_add1e:
96

fp ; Save old fp
r4

r4

sp,fp ; Point to top of stack
*—fp(2),r0 ; Load x into rO
*—fp[3),r1 ; Loady into r1
x,x1

y.y1

y1.x1 x>yl

X, X1

Y.X

x1,y

X,Y,2Z iZ=X+Yy

z

X,Z,W cFormw =z - x
w

w.y.zz rz=y-[y-w
2z

r4

rd

fp ; Restore fp

Conclusion

This report presented an implementation of extended-precision arithmetic routines
for the TMS320C30 DSP. The programs presented include singlelength floating-point ad-
dition, subtraction, and multiplication, which produce exact doublelength results.
Doublelength floating-point addition, subtraction, multiplication, division, and square root
were also presented. The doublelength floating-point routines all had a small relative er-
ror that appeared in the correction term zz. However, it has been shown that the accuracy
of the doublelength floating-point result is at least 13 decimal digits. Table 3 is a summary
of information about the routines contained in Appendices A and B. Execution times shown

152

Doublelength Floating-Point Arithmetic on the TMS320C30

in the table are given only for the routines in Appendix A. These times do not include
the call and return if the routine is implemented as a called function. They also do not
include any context saves and restores that may be required.

Table 3. Summary Information

Code Size | Execution

Routine Mnemonic| Appendix (Words) (Cycles)
Singlelength Add __add12 A1 12 12
Doublelength Add) __dbladd A2 25 25
Singlelength Multiply —_mult12 A3 35 35
Doublelength Multiply : __mult2 A4 51 51
Doublelength Divide __div2 A5 115 115
Doublelength Square Root __sqrt2 A6 163 163

Change Two Single-Precision
TMS320C30 Numbers to One
Double-Precision Result C30DBL B1

Change Two Double-Precision
TMS320C30 Numbers to a
Double-Precision Result C30DBL2 B2

References

[1.]1 Third-Generation TMS320 User’s Guide (literature number SPRU031), Texas In-
struments, Inc., 1988.

[2.] Dekker, T.J. “A Floating-Point Technique for Extending the Available PI‘CCISIOI]
Numer. Math. 18, 1971, pp 224-242.

[3.] Linnainmaa, S.,‘‘Software for Doubled-Precision Floating-Point Computations’’,
ACM Transactions on Mathematical Software, Vol. 7, No. 3, Sept. 1981, pp
272-283.

[4.] TMS320C30 C Compiler (literature number SPRU034), Texas Instruments, Inc.,
1988.

[5.] Kernigan, B.W. and Ritchie, D.M., The C Programming Language, 2nd Revision,
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[6.]1 Kochan, S.G., Programming in C, Second Edition, Howard K. Sams, Indianapolis,
Indiana, 1988.

Doublelength Floating-Point Arithmetic on the TMS320C30 153

Appendix A

154 - Doublelength Floating-Point Arithmetic on the TMS320C30

0ED0ZESL Y41 o duaunyy nuiog-Sunwol yiuaiqnoq

SSI

if not, exchange x & y

FUNCTION DEF : _add12
*
AUTHOR: Al Lovrich 2/21/89
* Texas Instruments, Inc.
*
* Entry Conditions:
+ Upon entry (r0,r1) contains (x,y)
Exit Conditions:
Upon exit (r2,r3) contains (z,2z).
Registers Affected:
+ 10, rl, r2, r3, r4
*
Revision: Original
#+ Execution Time! 12 cycles
single .set Offh
«global -2dd12
X oset r0
y .set rl
2 .set r2
2z set 3
[oset r4
x1 .set r2
yi set "3
text
-add12:
absf x,x1
absf y,y!
capf yl,xt 3 ixi >yl ?
1df1t X, x4 H
1461t ¥,X
1df1t x1,y
addf3 X,Y,2 j2=x+ty
rad 2
subf3 X,2,¥ s formw=2-x
rnd]
subf3 v,y,22 s22=y-w
rnd 2
retsu
.end

PPV Y13ud 9[8ulS 1V xipuaddy

156

Appendix A2. Double Length Add

ok ok KRR KKK KKKk kKR KKk KK KK KKK KKK kKK KKKk k kKKK KKK KKk KX

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

XX

vy
2z
x1
y1

.d

FUNCTION DEF

AUTHOR: Al Lovrich
Texas Instruments, Inc.

Entry Conditions:
Upon entry (r@i,r1) contains (x,xx) and
(r2,r3) contain (y,yy).

Exit Conditions:
Upon exit (r4,r5) contains (z,2z)

Registers Affected:

Jdbladd

2/21/89

8, r1, r2, r3, rd, v5, r6, r7

Revision: Original

Execution time:
KAKKIKIRKKKKKAKIIRKK KKK AAK KK KKK KKK AR IR KKK KKK d ko k kK k

.global _dbladd

.set
.set
.5et
.set
-set
.set
.set
.set
.s5et

.set

-text

bladd:
absf
absf
cmpf
tdf 1t
ldflt
Idflt
ldfit
ldf it
ldtit

addf3
rnd

subf3
rnd
addf3
rnd
addf
rnd
addf
rnd

addf3
rnd

subf3
rnd
addf3
rnd
retsu
.end

r
r
r2
r3
ra
ré
ré
r7
ré
r7

25 cycles

check for ixi > iyl
if not, exchange (x,xx)
and (y,yy)

5SEX - F 4y

STy ey

S EX - F 4y 4 YY 4 XX

Doublelength Floating-Point Arithmetic on the TMS320C30

0£D0ZESWL Y2 uo duduwyity wuiod-8unvol yisuaaignoq

LST

FUNCTION DEF : _aulti2
¥
AUTHOR: Al Lovrich 2/21/89
+ Texas Instruments, Inc.
*
Entry Conditions:
+ Upon entry (r0,r1) contains (x,y)
Exit Conditions:
Upon exit (r0,r1) contains (z,22).
Registers Affected:
+ r0, r1, r2, r3, 4, 5, ré, r7
*
Revision: Original
Execution Time: 35 Cycles
.global _mult12
single set Offh
X set r0
y .set rl
P .set 2
b3 .set r3
tx set r4
q .set rS
hy oset rS
ty .set ré
2 .set ro
2 oset rl
Jtemp .set r7
Jtext
it
1df @constant, teap
npyf3 temp,x,p 3 P = x * constant
andn single,p 3 F1(#) is faithful
*
subf3 P, X, hx s hx=x-p
rnd hx
addf3 hx, p,hx shx=x-p+p
rnd hx
+
subf3 hx, x, tx g tx=x-hx
rnd tx
*
apyf3 teap,y,p 3 p =y # constant
andn single,p 3 F1(#) is faithfu
*
subf3 PYshy shy=y-p
rnd hy
addf3 hy,p, by shy=y-p+p
rnd hy
*

constant:

subf3
rnd

pyf3
andn

apyf3
andn
Bpyf3
andn
addf3
rnd

addf3
rnd

subf3
rnd
addf
rnd
npyf3
andn
addf3
rnd

retsy
Jdata

float
wend

hy,y,ty
ty

hx, hy,p
single,p

hx, ty, temp
single, temp
tx,hy,q
single,q

q, temp,q

q

P4,z
2

z,p,22

2z

q,22

2

tx, ty, temp

single, temp
2z, temp,2z

2

4097

ty=y-hy
p=hx#hy

f1(#) is faithful
temp = hx # ty
£1(#) is faithful
q=tx # hy

fl() is faithful
q=hx#ty +tx # hy

=ptq

2Z=p-z
2zZz=p-z+q
temp = tx # ty

£1(x) is faithful
2Z=p-2+qttxdty

constant = 2*(24-24/2)+1

A[dnmA Y3ua] J3ulS gy xipuaddy

861

0£D0ZESWL 241 U0 duduyiiy uiod-8ulwol yiduajajqnoq

FUNCTION DEF : _ault2
*
AUTHOR: Al Lovrich 2/21/89
1 Texas Instruments, Inc.
Entry Conditions:
+ Upon entry (r0,r1) contains (x,y),
* and (r2,r3) contains (xx,yy).
+ Exit Conditions:
* Upon exit (r0,r1) contains (z,22).
Registers Affected:
* r0, 1, r2, r3, r4, rS, ré, r7
*
Algorithm used:
* aiti2(x, y, ¢, ccly
* Cc=xEyy+xx by +cey
* z =ctcg
+ 12Z=c-2z+cg
*
Revision: Origimal
Execution Time: 51 cycles
.global wit2
single .set Offh
X .set r0
y set rl
p set r2
hx oset r3
tx .set r4
q set rS
hy oset S
ty .set ré
z set r0
24 set rl
XX set r2
yy set r3
.set r4
c set r6
teapd .set ré
temp et 7
text
ault2:
wyf3 X,Yy,teapd 5 temp0 = xdyy
andn single, teap0d
wyf3 y.xx,temp 4 temp = yixx
andn single, temp
addf tempO,temp ; temp = xiyy + yhxx
rnd teap
pushf tenp 5 (xdyy + yixx)
+*

aulti2(x, y, ¢, cc)

*

1df Bconstant, temp

apyf3 temp,x,p
andn single,p

#
subf3 P, hx
rnd hx
addf3 hx,p, hx
rnd hx
subf3 hx, x, tx
rnd tx
mpyf3 temp,y,p
andn single,p
subf3 p,Y,hy
rnd hy
addf3 hy,p,hy
rnd hy

+
subf3 hy,y, ty
rnd ty

*
»pyf3 hx, hy,p
andn single,p

+
pyf3 hx, ty, temp
andn single, tesp
mpyf3 tx,hy,q
andn single,q
addf3 q,temp,q
rnd q

*
npyf3 tx, ty, teap
andn single, tesp
addf3 P,q,C
rnd c

]
subf3 c,p,cC
rnd [34
addf q,cc
rnd cc
addf temp,cc
rnd c

+

+ restore variables

+

break:
popf temp

+

FoccTxEyybxxEytc

p = x # constant

hx=x-p

hx=x=~-p+p

tx = x - hx

p =y # constant

hy=y-p

hy=y-p+p

ty=y-hy

p=hx # hy

temp = hx # ty

q=tx #hy

q=hx #ty + tx # hy

temp = tx # ty

c=p+q

c=p-c¢

cc=p-c+q

cc=p-c+qtixdty

xX#yy + yixx

addf
rnd

+

¥ z=ctcc

¥
addf3
rnd

+

z=c-z4cC

+
subf3
rnd
addf3
rnd

+
retsu
data

constant:
float
.end

temp,cc
{3

€,¢,z

z,c,22
2z
22,¢¢,22
2z

3

i

cc=x®yy+xx#y+cc

z=c+cc

w2Z=c-2

2zZ=c-2z+cC

constant = 2°(24-24/2)+1

Adnmy yi3ua] sgqno("V xipuaddy

0ED0ZESHL 241 uo duouysty muiod-8uwolq yiSuajaiqnoq

6S1

FUNCTION DEF & _div2

AUTHOR: Al Lovrich 2/21/89
Texas Instruments, Inc.

Entry Conditions:

Upon entry (r0,r1) contains (x,y),
and (r2,r3) contains (xx,yy).

Exit Conditions:

Upon exit (r0,r1) contains (z,22).
Registers Affected:

r0, r1, r2, 13, r4, 5, ré, r7

Algoritha used:

c=x/y;

miti2(c, y, v, w);
cc=(x-u-w+xx-cyy)/y;
2 +cc;

P EXERE N

o M W Rk K M N e e e

Revision: Original
Execution Time: 115 Cycles

Jglobal _div2

single .set Offh

x oset r0

y set rl

P .set r2

hx set r3

tx .set r4

yl .set r4

q .set S

hy .set rS

ty .set ré

z .set ro

43 .set rl

X% oset r2

yy .set r3

temp .set r7

templ .set r3

temp2 set "

3 set r2

(4 set r3

(] .set 2z

w .set 23
otext

*

div2:
pushf yy 3 save yy
pushf XX 3 save xx
pushf x 3 Save x

3 save y

The floating-point number v is stored in R1. After the computation is

3 v is saved for later.
3 The algorithm uses v = ivi,

s The 8 LSBs of Rl contain the exponent
3 of v.

A few comments on boundary conditions. If e = -128, then v = 0. The
following x0] calculation yields Rl'= —128 - 1 = 127 and the algorite
overflow and saturate since x[0] is large. This seems reasonable. If 127,
the Rl = =127 - 1 = -128, Thus x[0) = 0 and this will cause the algorithm
to yield zero. Since the mantissa of v is aluays-between 1 this is also
reasonable. As a result, boundary conditions are handled automatically in

3 Now we have —e-1, the exponent of x[0].

3 Now RI = x[0] = 1.0 # 2##(-¢-1),

3 R2=v #x(0]
3 R2=2.0-v#x0]

3 R1 = x(1] = x(0] # (2.0 - v # x{0})

s R=v#x(1]
s R2=2.0 - v #x(1]

s R1 = x[2) = x(1] # (2,0 - v # x(1])

pushf y
*
c=x/y;
*
*
+ completed, 1/v is also stored in R4,
#*
Register used as inputt R1
Registers modified: RO, Rl, R2, R3
+ Register containing result: R4
*
inv_f: 1df r,r3
absf rl
*
+ Extract the exponent of v,
*
pushf 3
pop r0
ash -24,00
+
*
*
*
*
*
*
+
a reasonable fashion.
+
+ x[0] formation given the exponent of v.
*
negi r0
subi 1,00
ash 24,10
push r0
popf r0
+
Now the iterations begin.
+
apyf3 r0,r1,r2
andn single,r2
subrf 2.0,r2
rnd r2
wyf r2,r0
andn single,r0
*
npyf r0,r1,r2
andn single,r2
subrf 2.0,r2
rnd r2
wpyf r2,r0
andn single,r0

IpIAIQ YI3ud] dqno('SV xipuaddy

091

0ED0ZESHLL 23 U0 duaunsLLy uiod-Suiwold ySuaaignoq

- e

wyf
andn
subr
rnd

wpyf
andn

wpyf
andn
subrf
rnd

wyf

andn

For the last iteration we use the

r0,r1,r2
single,r2
2.0,r2

r2

r2,r0
single,r0

ro,r1,r2
single,r0
2.0,r2

r2

r2,r0

single,r0

s R=v#x(2]
s R2=2.0-v#x(2]

s R1 = x(3] = x(2] # (2.0 - v # x(2])

s R2=v #x(3]
s R2=2.0-v#x(3]
s Rl = x[4] = x[3) # (2.0 - v # x[3])

s This minimizes error in the LSBs.

formulation:

XIS = (x(4] # (1.0 - (v # x[41))) + x(4)

wyf

rnd

Now the case of v < 0 is handled.

negf
16¢

1dfn
14¢

restore variables

popf
popf
pushf

wyf
andn

save variables

pushf
pushf

witi2lc, y, u, w)

r0,r1,r2
single,r2
1.0,r2

2

r0,r2
single,r2
r2,r0

r0,r1

M,r2
r3,r3
r2,r

r1,r4

y
x
X

yi,x
single,x

y1

s RR=v #x04] = 1.0..01.. => 1

s R2= 1,0 - vax(4) = 0.0,.01... > 0

3 R2 = x(4] # (1,0 - v # x(4))

3 R2= x(5) = (x(41#(1.0~(vax(4])))+x(4]

Round since this is follow by a MPYF,

This sets condition flags.
If v <0, then Rl = RI

s save 1/y

restore y
restore x
save x

cax#(1ly)

save ¢
save 1y

perfora t:

optimize

1¢f

pyf3
andn

subf3
rnd
addf3
rnd

subf3
rnd

wpyf3
andn

subf3
rnd
addf3
rnd

subf3
rnd

apyf3
andn

wpyf3
andn
opyf3
andn
addf3
rnd

x # ty operation and store the result in temp. This is to

Qconstant, tenp

tesp,x,p 1 P =x # constant
single,p

PyX,hx shx=x=-p.

hx

hx, p, hx shx=x=-p+p
hx

hx,x, tx ptx=x - hx

tx

tenp,y,p 3 =y # constant
single,p

PYshy thy=y-p

hy

hy,p,hy shy=y-p+p
hy

hy,y,ty sty=y-hy

ty

hx, by, p i p=hx#hy
single,p

hx,ty,teap ; temp = hx # ty
single, tesp

x,hy,q s q=tx#hy
single,q

q,tem,q 1 q=hxdty +tx & hy
q

use of registers on the device.

pyf3
andn
4df3
rnd

subf3
rnd
addf
rnd

tx, ty, temp
single, tesp
(AN

]

u,p,uu
w
q,0u
w

s temp = tx # ty

jus=ptq

suwE=p-utq

0ED0ZESHL 2yt uo duawyaty iod-3uivold yiduajaignoq

191

popf yi

popf 3

popf teap
subf3 u, temp, cc
rod <4

subf uy, cc

rnd 44

popf teap

addf temp,cc
rnd [<4

popf teap
npyf ¢, temp
andn single, teap
subf temp, cc
rnd cc

npyf yi,ec
andn single,cc

z=ctcc

constant:

addf3 €,cc,2

rad z
z+cC

subf z,¢c,22
rad 2z
addf cc,2z
rnd 22
retsu

Jdata

Jfloat 4097
~end

H

restore 1/y
restore ¢
restore x
C=x=-u
cC=x-u=-u

restore xx
C=X-U- U+ xx

restore yy
cEyy

CC=SX-U-uu+xx-cHyy

c=(x-u-uw+xx-cyy)/y

z=c+cc

2Z=c-2

wZ=c-z4cC

constant = 2°(24-24/2)+1

91

OEDOZESIL 241 U0 duauyey jutod-Sunnoly yiduaiaignoq

pushf X 3 save x
FUNCTION DEF : _sqrt2 wyf 2.0,r0 ; add a rounding bit in the exponent
* andn single,r0
& AUTHOR: Al Loveich 2/21/89 pushf r0
* Texas Instruments, Inc. pop r
* ash -25,r1 ; The 8 LSBs of RI contain 1/2 the expon
Entry Conditions: *
* Upon entry (r0,r1) contains (x,xx), & x[0] formation given the exponent of v.
Exit Conditionst *
+ Upon exit (r0,r1) contains (z,z2). negi M
+ Registers Affected: ash 24,
+ r0, ri, r2, r3, o4, 1§, ré, r7 push r1
* popf ™ s Now rl = x[0] = 1,0 # 28#(-e/2),
Algorithe used: +
* ¢ = sqrtix); # Generate v/2.
* multi2(c, c, u, ul; ¥
+ ccElx-u-uwexx)#0.5/ ¢ wyf 0.25,r0 3 v/2 and take rounding bit out.
* 2 =c+eg andn single,r0
* ZEc-74cq S *
* : + Now the iterations begin.
Revision? Original *
+ Execution Time: 163 Cycles wyf e1,r1,r2 3 r2.= x(0] # x{0]
andn single,r2
.global _sqrt2 wyf £0,r2 5 12 = (/2) # xI0] # [0
single .set Offh andn single,r2
X oset 0 subrf 1.5;r2 3 12= 1.5 - (v/2) # x(0] # x(0]
y set " rnd r2
P st 2 ' wyf 2l ¢ P = x1] = x{0] # (1.5 - (v/21exC0Jax
hx -set r3 andn single,rl
tx .set 3 .
9 "': 'g wyf MLrLI2 g or2 = (D x01
z ':‘ :6 andn single,r2
‘st 0 wyf 10,12 3 02= (v/2) & X011 £ x01]
z '"t 1 andn single,r2
s ot ’ sbef 15,2 § 722 1.5 - (w/2) # x01) & X1
XX set ri . nd 2
:"' :: ,'; wyf 2,01 § P = x02) = XE11 % (1.5 = (v/2Mex1lex
* andn single,rl
c Set r3 s
(] set 2z
wyf r1,r1,02 3 02 = x(2] # x(2)
w -set u andn single,r2
o oset 0 wyf 10,82 $ 12 = (v/2) & x(21 # x[2]
: ~text andn single,r2
Setz sbré 15,12 § 122 1.5 - (W/2) % X120 % x(2)
* rnd r2
* o= sertix) wyf 12,01 3 rl o= x03] = x[2) # (1.5 - (v/21ex(2]ex
* andn single,r!

Extract the exponent of v.
*

wyf rl,r1, 02 r2 = x[3] # x{3]

1df r0,r3 3 save v

. . andn single,r2
retsle 3 return if nuaber non-positive wyf 0,12 5 F2 = (v/2) & x[3] # x(3]
pushf X J save xx andn single,r2

j00y dxenbg Y)3udT diqno(‘9y xipuaddy

0ED0ZESWL Y3 uo duduyinly juiod-sulivold yiduajajqnoq

€91

subrf
rnd
wpyf
andn

apyf
andn

wpyf
andn
subrf
rnd

wyf

andn
1df

wpyf
andn

Save variables

pushf
1df

aulti2(c, ¢, u, wu)

1df
apyf3
andn

subf3
rod
addf
rnd

subf3
rnd

apyf3
andn

subf3
rnd
addf3
rnd

subf3
rnd

mpyf3
andn

1.5,,2 B
r2

r2,r1
single,rl

r1,r1,r2 :
single,r2
r0,r2 3
single,r2
1.5,r2 s
r2

2,01 3

single,rl
ri,r0

r3,r0
single,r0

X
<

€constant, teap
temp,x,p '
single,p

Py X, hx H
hx
pyhx 3
hx

hx,x, tx B
tx

temp,y,p
single,p

Py, hy
hy

hy, p,hy
hy

hy,y, ty
ty

hx, by, p ;
single,p

r2 = 1,5 - (v/2) # x[3] # x[3]

r1 = x[4] = x[3] # (1.5 - (v/2)#x[3Jex

r2 = x[4] * x(4]
r2 = (v/2) # x[4) # x[4]

r2 = 1.5 = (v/2) # x[4] # x[4]

r1 = x[5] = x[4] # (1.5 - (v/2)¥x[4]1ex

sqrtlv) from sqrilvir(-1))

save ¢ = sqrt(x)

get ready for multiplication

p = x # constant

hx=x~p

hx=x-p+p

tx = x - hx

p =y # constant

hy=y-p

hy=y-p+p

ty =y -hy

p=hx #hy

- o

R Y

opyf3 bx, ty, temp 5
andn single, temp
opyf3 tx,hy,q {
andn single,q

addf teap,q 3
rnd q

perfora tx # ty operation and store

teap = hx # ty
q=tx & hy

qrhxdty +tx &by

the result in teap.

This is to optimize use of registers on the device.

Wyl totytemp g

andn single, tesp
addf3 P,q,U 1
rnd u

subf3 u,p,uu 3
rnd uw

addf q,uu 3
rnd w

addf temp,uu]
rnd u

cc=(x-u~-uw+xx)#05/c

popf c H
popf temp 3
subf3 u, temp,cc 3
rnd cc

subf uu, cc H
rnd cc

popf temp 3
addf temp,cc [
rnd c

pushf cc 3
pushf 4 H

temp = tx ¥ ty

u=p+q

w=p-u
w=p-u+gq

Ww=p-u+qtitx#ty

restore ¢
restore x
c=x-u

cC=x=-u-uw
restore xx

CC=X U= uu+xx

save cC
Save ¢

The floating-point number v is stored in Ri. After the computation is

completed, 1/v is also stored in R4.

Register used as input: R2
Registers modified: RO, Rl, R2, R3
Register containing result: R2

14f r2,r3 3
absf r2 3

v is saved for later.
The algoritha uses v = ivi,

91

OED0ZESIL 2y3 U0 duouiyiy 1uod-Sutivold yisuajaiqnoq

*
+*

- o -

-

LR

Extract the exponent of v.

pushf r2

pop r

ash -24,r1

x[0] formation given the exponent

negi rl

subi 1,01

ash 24,11

push rl

popf rl

Now the iterations begin.

apyf3 r1,r2,r0

andn single,r0
subrf 2.0,r0
rad r0

wpyf r0,r1
andn single,rl
npyf r1,r2,r0
andn single,r0
subrf 2.0,r0
rnd r0

wpyf r0,r1
andn single,r1
apyf r1,r2,r0
andn single,r0
subrf 2.0,r0
rnd r0

wpyf r0,rl
andn single,rl
wpyf r1,r2,r0
andn single,r0
subrf 2.0,r0
rnd r0

wyf ro,r1
andn single,rt

For the last iteration we use the

s The 8 LSBs of RO contain the exponent
s of v

of v.
s Now we have -e-1, the exponent of x[0]

5 Now RO = x[0] = 1.0 # 2#%(-e-1).

s Rl =v #x00]
s Rl =2.0 - v #x00]

3 RO = x[1] = x[0] # (2.0 - v # x(0])

s RU=v #xi1]
s R1=2.0-v#x(1]

s RO = x[2] = x(1] # (2,0 - v # x[1])

s Rl=v #x(2]
s R1=2,0-v#x02]

1 RO = x(3] = x(2] # (2.0 - v # x[2])

3t Rl =v #x(3]
s Rl =20 -v#xi3]

3 RO = x[4] = x(3] # (2,0 - v # x(3])

formulations

x[53 = (x[4] # (1.0 - (v # x[41))) + x(4]

apyf
andn
subrf
rnd
pyf
andn
addf

rnd

* Now the case of v < 0 is handled.

negf
1¢f
1dfn

-

restore variables

popf
popf
wpyf
andn
wyf
andn

-

z=C+cC

addf3
rnd

-

zZ=c-z2+cc

subf
rnd
addf
rnd

retsu

Jdata
constant:

Jfloat

.end

£1,r2,r0
single,r0
1.0,r0

ro

r1,r0
single,r0
r0,rl

r1,r2

r2,r0
r3,r3
r0,r2

teap

cc

0.5,cc
single,cc
r2,cc
single,cc

temp,cc,2
b4

z,temp,22
43

cc, 2z

2z

Rl = v # x[4] = 1,0,.01.. => 1

Rl = 1,0 - v # x{4] = 0.0,.01... => 0
Rl = x(41 # (1.0 - v # x[4])

RO = x[S] = (x(41#(1.0-(v#x[41)))+x[4]

Round since this is followed by a MPYF

This sets condition flags.
If v €0, then R2 = R2

restore ¢
restore cc
cc=(x-u-u+xx)#05

cc=(x-u-uw+xx)#05/c¢c

=C+cc

zZ=c-2

zZ=c~-z+cCC

constant = 2%(24-24/2)+1

Appendix B

Doublelength Floating-Point Arithmetic on the TMS320C30 165

166 Doublelength Floating-Point Arithmetic on the TMS320C30

0£D0ZESIWL 243 uo duawLy Juiod-3ulipo]] Yiduajajqnoq

L91

3/# C30DBL — Program to operate on two single-precision numbers
in C30 format and produce 3 double-precision result #/

Sinclude Cmath.h>

#include (stdio.hd

min()

4

Tong double x, y, 2;

Tong int x1, yi3

int i, operation;

long int c30toellong int);

i=1;

do{

printf("Type two C30 hex numbers:\n");
printf("x = *)g

scanf ("XX",dx1);

printf("y = ")

scanf("XX", 4y1);

x! = c30toelxl);

x = (long double) (#(float #)(ixi))s

yl = c30toelyl);

y = (long double) (#(float #)(&yl1));
do{
printf("Add(1), Sub(2), Mpy(3), Div(4), Sqrt(S)s ");
scanf("Xd", koperationl;

} while (operationCl i} operationdS);

if (operation == 1) z=x +y;
if loperation == 2) 2=x~y;
if (operation ==3) z=x #y;
if (operation =4) z=x/ y;
if (operation == 5) z = sqrt(x);
printf("\nz = L.18Lg", 2);

printf(*\n\nType in C30 hex result:\n");
printf(*z = ")

scanf(*%X",dx1)y

printf(*zz = ")

scanf("1X" 4yl);

x1 = c30toelxl)y

x = (long double)(#(float #)(&x1));

yl = c0toelyl);

y = (long double) (#(float #)(iyl));
z=xty;

printf(*\nz = 1.180g", 2);
printf("\n\nType O to exit, else continue 2 *);
scanf ("X4", &i);

) while (i != 0);
}

/% C0TOE — routine to convert from a c30 floating point number to a

nusber in ieee format. Both input and output in hex. #/

Tong int c30toe(long int x)
{

Tong int mantissa, sign;
lTong int exp;

sign = x & 0x00800000;
exp = x 2> 24

/% exp=-128 corresponds to 0, exp=-127 is denormalized in ieee:
represent it as 0. #/

if (exp <= ~127) return(0);
/% add implied bit and sign-extend mantissa #/
mantissa = x & OxO07¢FFFf;

if (sign)

mntissa 1= 0xf£000000;

else

mantissa i= 0x00800000;
/% convert mantissa to sign-magnitude #/

if (sign) mantissa = -mantissa;
/% adjust mantissa if it was -2.0 &/
if (mantissa == 0x01000000){

exphty

mntissa = 0x00800000;
}
if (exp > 127) return(0); /# too large number; return error #/

/% make exponent 127-excess and return ieee number #/

exp += 127; .
mantissa = (mantissa & Ox007FFFFF) | (sign <C 8) | (exp <K 28);

return(mantissa);

J[NSY UOISINIJ-d[qno(q
AUQ 0} SIPqUINN UOISINIJ-I3ulS oM, dduey) ‘1q xipuaddy

891

0£D0CZESHL Y1 uo duouyiy

10d-8unvol] yi3uajaiqnoq

/% CODBL2 — Program to operate on two double-precision numbers
in C30 format and produce a double-precision result &/

#include Cmath.h>

tinclude (stdioshd

mia()

long double x, y, 23
Tong int x1, yi, xxi, yyl;
int i, operation; .
long int c0toe(long int);
i=1;
dof
printf("Type two C30 hex numbers:\n®);
printf(*x = *)g
scanf(“XX*, dx1)g
printf("xx = *);
scanf(*XX", box1)g
printf(®y = *)g
scanf(*XX*, dyl);
printf(yy = *);
scanf("XX", kyyl);
xi = c30toe(xl);
xx1 = c30toexxl)y
yi = c0toelyl);
yyl = c30toe(yyl);
x = (long double) (#{float #)(&xi)) +
(long double) (#(£loat #)(baxi))g
y = (long. double) (#(float #)(iy1)) +
(Tong double)(#(float #)(kyyl));
do({
printf("Add(1), Sub(2), Mpy(3), Div(4), Sqrt(S)s ");
scanf("Xd", Loperation);
} while (operationCl ii operationdS);

if (operation == 1) z=x +y;
if (operation =2) z2x-y;
if (operation =3) z=x #y;
if (operation = 4) 2=x/y;
if (operation == 5) z = sqrt(x);
printf(*"\nz = %.18Lg", 2);

printf(*\n\nType in C30 hex result:\n");
printf("z = *)g

scanf("XX" tx1)g

printf("2z = *);

scanf("1X", &yl);

x1 = c0toelxl);

x = (long double)(#(float #)(ix1));

yl = c30toelyl)s

y = (long double)(#(float #}(iyl));
zExty;

printf(*\nz = %.18L¢°, 2);
printf("\n\nType 0 to exit, else continue : *);
scanf ("X4", &i);

} while (i '=0);

}

/% C30TOE — routine to convert from a c30 floating point number to a

nuaber in ieee formt. Both input and output in hex. #/
long int c0toe(long int x)
{

Tong int mantissa, sign;
long int exp;

sign = x & 0x00800000;
exp = x> 24

/% exp=-128 corresponds to D. exp=-127 is denormalized in ieee:
represent it as 0. #/

if (exp <= =127) return(0);
/% add implied bit and sign-extend mantissa #/
mntissa = x & 0x007¢FFF;

if (sign)

mntissa i= OxfF000000;

else

mntissa i= 0x00900000;
/% convert mantissa to sign-sagnitude #/

if (sign) mntissa = -mantissa;
7% agjust mantissa if it ws 2.0 8/

if (mntissa = 0x01000000) ¢

expH;

mntissa = 0x00800000;

}

if (exp D 127) return(0); /# too large nuaber; return error #/

/% mke exponent 127-excess and return ieee number #/

exp += 1273
mantissa = (mantissa k Ox007FFFFF) 1 (sign <C 8) | (exp <K 23)4

return(mantissal;

}NSAY uoIsRIg-3qnoq
3U() 0} SIdqUINN UOISIAIF-Iqno(oM], aduey)) *zq xipuaddy

8 X8 Discrete Cosine Transform

Implementation on
the TMS320C25 or the TMS320C30

William Hohl

Digital Signal Processor Products—Semiconductor Group
Texas Instruments

169

170 An 8 x 8 Discrete, Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

Introduction

In the general class of orthogonal transforms, there exists one in particular, the
discrete cosine transform (DCT), that has recently gained wide popularity in signal pro-
cessing. The DCT has found applications in such areas as data compression, pattern recogni-
tion, and Weiner filtering, primarily because of its close comparison to the Karhunen-Loeve
Transform (KLT) with respect to rate distortion criteria [1]. Although the KLT is con-
sidered to be optimal, there is no fast algorithm to compute it. Since there is no fast KLT
algorithm, the DCT is an attractive alternative.

For image coding, the DCT works well because of the high correlation among adja-
cent data samples (pixel values). Because of this correlation, the DCT provides near op-
timal reduction while retaining high image quality. In a comparative study [2], the DCT
was shown to outperform the Fourier, Hartley, and cas-cas transforms for image com-
pression, providing even more motivation for finding fast implementations.

A number of algorithms have been developed, most notably those of Hou [3] and
Lee [4], which generate higher-order DCTs from lower-order ones. This paper presents
two 8 X8 DCT routines, one for the TMS320C25 and another for the TMS320C30, based
upon the routine in [3].

An 8 X 8 Discrete Cosine Transform Implementation 171
on the TMS320C25 or the TMS320C30

The DCT Algorithm

For a given real data sequence xg,X1, . . .,Xn.1, the discrete cosine transform is
given in [1] as

N=1
a=alXal T x,cos (FEEDRY b 0.1, .., N—1 (1a)
VN a0 N

and its inverse is

Nl
= 4 /% b cos (1’__@_;;_%) k=0,1,...,N—1 (1b)

where a (k) = "5 for k = 0; otherwise, the transform is unitary. If zo is scaled up
by 2, the DCT can also be written in matrix form as

2—1/ T(N) x, @

where x and z are column vectors denoting the input and output data sequences, and 7T(N)
is the DCT matrix of order N. Actually, expanding the matrix (neglecting the factor of

V—=- for the moment), a 4-point DCT appears as

20 1 1 1 1 X0
¥5) a —«o o —o b
= R 3
a B —5 —B x3 ®
3 6 B -6 -8 X1
172 " An 8 % 8 Discrete Cosine Transform Implementation

on the TMS320C25 or the TMS320C30

L T (T e
where o = \/2‘, B = cos (§)’ and 6 = sin (g) Similarly, the 8-pt DCT can be

expressed as

[% | 1 1 1 11 1 1 1] [x]
24 a —a a —«o a —o a —« X
2 B -6 -8 5 B -6 —B o X4
%6 6 B -6 -B & B -6 -B X6
44| - A B —v —y =N —p v 7 X7 @
Z5 7 v —x AN —p —v g =\ X5
z3 Yy =N v =y N —p = x3
27 v v oy M p —v —y =N —p x

where X = cos (1—7:5—), ¥ = cos (3’1-765), o= siﬁ (?1_6 , and » = sin (-1-756-) Note that

the input is no longer in natural order but has been rearranged according to the permutation
matrix P and the relation

% = Px, &)
where
1 0 0 0 0 0 0 0 |
0 0 1 0 0 0o 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
Po= 0o 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0O 0 0
0 1 0 0 0 0 0 O
An 8 x 8 Discrete Cosine Transform Implementation ‘ 173

on the TMS320C25 or the TMS320C30

Upon examination, the matrix T(N) in (4), which is the matrix T(N) with the rows and
columns rearranged, can be described more compactly as

e e
e |

since the upper half of the 8-point DCT is exactly the 4-point DCT matrix previously

(©)

generated. Using the results obtained in [3], the relationship between D (%/) and

T (g) is a given as

D*(g) - KT(%/—) 0, |)
where

K = RLR!,

R being the matrix that performs a bit reversal on the input data; L is the lower triangular
matrix

1 0 0 0 0 0 0 O
-1 2 0 0 0 0 0 O
1 -2 0 1 0 0 0
-1 2 =2 2 0 0 0 O
L=l 1 22 222 2 0 0 o ’
-1 2 =2 2 =2 2 0 0
1 =2 2 =2 2 -2 2 0
-1 2 =2 2 -2 2 =2 2
and Q = diag [cos(n +_1)(2_7r)], for n = 0,1, . . ., 7. The output vector z

4°N
is now in bit-reversed order. Signal flow graphs for 2-point, 4-point, and 8-point DCTs
are shown in Figure 1, with the multipliers defined as in (4).

174 An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

Xo 2o - Z A
Xo v Z
- _— —_— Z; A
X, > 2
— Z1 A
X2 | || > 4 Z
- Z; 2 A
- « X 2ptDCT =
X4 Z
2:1 MUX 1:2 DEMUX
(a) 2-Point (b) 4-Point
—- 2 A
Xo > Z
- _— | 2 A
X > Z4
- 2 A
X2 —] > 2;
- A
- —] A
X4 Zy
- A
Xs |]] Zs
- A
X Z;
- 4-pt DCT A
X7) Z;
2:1 MUX 1:2 DEMUX
(c) 8-Point

Figure 1. Signal Flow Graphs for 2-Point, 4-Point, and 8-Point DCTs

The structure of the algorithm looks very much like that of a Fast Fourier Transform
(FFT), since the most fundamental computation is a 2-point butterfly. This routine is actually
a generalized case of the Cooley-Tukey FFT algorithm with the addition of the recursion
at the end. If the equations for the signal flow graph are written explicitly, the recursive
nature of the DCT becomes clear; for a 4-point DCT, we have

20 = 20,
2 = 2o,
2] = z3,

3 = 2z3 — 2,

An 8 x 8 Discrete Cosine Transform Implementation 175
on the TMS320C25 or the TMS320C30 -

and for the 8-point DCT,

ZO = ZO,
24 =24
=2
26 = 26
1=z

23 = 223 — 2,
Zs = 2z5 — %3,
g7 = 227 — Zs.

To create a unitéry transform, each element in the vector should be multiplied by

the scaling factor ifor both the forward and inverse transforms. The inverse

N
transform is obtained by completely reversing the direction of the signal flow graph; i.e.,

performing the bit-reversal first, then the recursions and the butterflies, and finally, the
data permutation.

For the two-dimensional case of interest, the DCT can be described in the form

N—=1 N=1
zk,l) = i ak) a() E E x(m,n) cos (M) cos (M’) (8a)
N =0 n=0 2N 2N

N=1 N=1
xmm) =2 L Y a®) al)zfk,l) cos (" @m+ l)k) cos (" @n+ 1)') (8b)
N k=0 1=0 2N N

1
where a (k) = _2 for k = 0, unity otherwise. Like the FFT, the DCT kernel is

separable, allowing the transform to be performed in two steps, first along the rows and
then the columns.

176 An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

Implementation on the TMS320C25
The DCT algorithm may be carried out in one of two ways, either using

1. A matrix formulation, where the DCT coefficients are simply multiplied by
the data, or

2. The signal flow graph.

This routine uses a matrix formulation, which requires the sixty-four cosine
‘coefficients to be stored in an array in memory. The matrix formulation is based on the
following equation:

[% | 1 1 1t 1t 1 1 1] [x
2] A u v —v —p —y —\ X1
2 B 6 -6 -8B —-B -6 &6 B x)
z3 Y —v =N —p p A v -y x3
Z4 - a —o -« o ¢ —a —a o X4 > D
zs B N v ¥y -y —v AN —p x5
%6 6 -8 B -6 -6 B -B & X6
27 v o —pu v =\ AN =y n —v X7
where A = cos (16) = cos (%), u = sin (16) and » = sin (17'-6)

The algorithm described above has been shown to be numerically stable for fixed-
point processors; however, to prevent serious data errors, truncation and roundoff must
be accounted for. A roundoff technique similar to the one in [6], is used to prescale the
matrix coefficients by (215 - 1). This product is then loaded into the accumulator with
a one-bit left shift, effectively dividing it by 215. After a multiplication is performed, the
32-bit value in the accumulator must be rounded to sixteen bits, where bits 13,14, and
15 are used to determine the value of the sixteenth bit. The TMS320C25 performs this
operation in a single instruction by adding 3000h to the accumulator product with a one-
bit left shift, as outlined in the code shown in Figure 2.

An 8 X 8 Discrete Cosine Transform Implementation 177
on the TMS320C25 or the TMS320C30

*

*

DCTINI

T2

178

INITIALIZE MATRIX COEFFICIENTS AND ROUNDOFF VALUES INTO

INTERNAL BLOCK O

LDPK RNDOFF
RSXM ;
SPM 1 ;
LRLK AR1,COEFF ;
RPTK EDATA-IDATA
BLKP IDATA,* +
LRLK AR1,RNDOFF ;
RPTK 10

EDATA,* +

BLKP

SECOND SET OF COEFFICIENTS

LAR

MAR
LAR
LARK
LT
MPY
ZAC
RPTK
MAC

LTA
MPY
ADD
SACH
BANZ

AR1,DST

*+,AR2
AR2,SRC
AR3,7
*+,AR2
c10

6
C11,*+

*+,AR1
c10
RNDOFF
*0+,AR3
t2,*-,AR2

SIGN-EXTENSION MODE
LEFT SHIFT 1 BIT
COEFFICIENTS

VARIABLES

AR1 IS NOW DESTINATION
POINTER
WORK ON SECOND COLUMN

Figure 2. TMS320C25 Code for Roundoff Routine

An 8 x 8 Discrete Cosine Transform Implementation

on the TMS320C25 or the TMS320C30

After the multiplications are computed, the results are stored in another array area
in transposed order; thus, a separate routine for transposing the matrix is not needed. Once
the rows are transformed, the pointers for the input and output matrices are exchanged.
When the procedure is repeated, the output is stored as rows, completing the transform.
Appendix A contains a complete program listing for the forward transform on the
TMS320C25. To perform an inverse DCT, the table of cosine coefficients should be
replaced with those used for an inverse transform.

Implementation on the TMS320C30

The TMS320C30’s increased speed and flexible addressing modes can reduce
execution time substantially. In using the FFT-like structure, extraneous multiplications
are removed, and because of the TMS320C30’s ability to perform parallel
multiplication/additions, two butterflies can be computed at once. After an initial subtraction
is done, the coefficient multiplication can be executed in parallel with the addition of the
data. The TMS320C30’s floating-point capability eliminates not only the problems of
roundoff error associated with fixed point processors but also the need for any truncation
routines.

Because the DCT size is fixed to eight points, there are only four locations that need
exchanging; this allows for a fast bit-reversal of the data. When using the TMS320C30’s
extended-precision registers for temporary storage, the transfers can be done in-place.
These data transfers are also done in parallel, since two load or store operations can be
performed simultaneously. The code for performing the bit reversal is shown in Figure
3 below.

* CORRECT ORDER FROM BIT REVERSED TO NATURAL
BITREV ~ LDF *ARO,RO ; ONLY FOUR LOCATIONS ARE
[l LDF *-AR2,R1 ; ACTUALLY SWITCHED
STF R1,*ARO
I STF RO,*-AR2
LDF *AR1,R0O
I LDF *-AR3,R1
STF R1,*AR1
[l STF RO,*-AR3

Figure 3. TMS320C30 Code for Bit Reversal

An 8 x 8 Discrete Cosine Transform Implementation 179
on the TMS320C25 or the TMS320C30

Because of the amount of data shuffling that occurs, an eight-word scratch-pad vector
has been created with four permanent pointers set up at every other memory location.
This allows access to each element in the vector (by predecrement or preincrement
addressing) without requiring constant alteration of one or two pointer locations. Although
there is no overhead for looping on the TMS320C30, straight-line coding is used as much
as possible to increase performance.

You can transpose the DCT matrix in the same way as in the TMS320C25
implementation: namely, store the transformed row vector as a column vector in another
matrix and interchange the input and output pointers.

The complete routines for the forward and inverse transforms are given in Appen-
dix B.

Results

The execution times and memory requirements for the two routines are given in
Table 1. For the TMS320C30 implementation, the forward transform contains the scale
factor of %, so the transform is not unitary. When the signal flow is reversed,

instructions accumulate and the time required to perform the inverse transform actually
increases (see Table 1). This increase occurs because certain multiplications cannot be
performed in parallel with another instruction. The two times are identical on a TMS320C25
because it uses a matrix routine to compute the transform.

Table 1. Execution Times and Memory Requirements

Device Memory Required - Time Required
Program Data
TMS320C25 232 words* 203 words 257.3 (forward)
232 words) 203 words 257.3 (inverse)
TMS320C30 148 words** 136 words - 99.4 (forward)
155 words 136 words 107.9 (inverse)

* TMS320C25 wordlengths are 16 bits
** TMS320C30 wordlengths are 32 bits -

180 An 8 x 8 Discrete Cosine Transform Implementation
on the TMS320C25 or the TMS320C30

Summary

Two routines for a two-dimensional Discrete Cosine Transform are presented: one
for the TMS320C25 and one for the TMS320C30, with a development of the algorithm
given for clarification. This report also discussed the similarities of the DCT to the Cooley-
Tukey FFT algorithm and arithmetic shortcuts which can reduce the DCT’s execution
time. Although these implementations use the most recent formulation, there is still room
for investigation into more efficient methods. Another approach that might prove fruitful
is to deal with the entire 8 X8 array all at once, as suggested by Haque [7], rather than
transforming the array by rows and columns. However, both routines given in the
appendices provide fast, numerically stable solutions for applications requiring the DCT.

Acknowledgements

The author thanks Steve Ford for supplying the original code for the TMS320C25
implementation. Francois Charlot helped in modifying the code for the TMS320C25, as
well as in preparing this manuscript. Daniel Chen improved the performance of the code
for both the TMS320C25 and the TMS320C30.

References

[1] Ahmed, N., Natarajan, T., and Rao, K.R. ‘‘Discrete Cosine Transform,’’ IEEE
Transactions o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>