Power Management Products
sңonpold quәuэбеиеw ләмоd
General Information (Vol. 1) 1
Linear Voltage Regulators 2
Shunt Regulators 3
Precision Virtual Grounds 4
Mechanical Data 5
General Information (Vol. 2)6
Processor PS Controllers 7
Switching PS and DC/DC Converters 8
MOSFET Drivers9
Supervisors 10
Mechanical Data 11
General Information (Vol. 3) 12
Power Distribution Switches 13
LED Drivers 14
Voltage Rail Splitters 15
Special Functions 16
Mechanical Data 17

Power Management Products Data Book

Volume 3

Literature Number: SLVD005

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

INTRODUCTION

The Texas Instruments 1999 Power Management Products Data Book Set showcases Tl's broad portfolio of analog components for power supply designs. Featured in this set are most of the components previously found in the 1996 Power Supply Circuits Data Book, the new and exciting power management products introduced since then, and other components useful for power supply designs.

The set consists of three product area specific volumes:

- Power Management Products, Volume 1:
- Linear voltage regulators
- Shunt regulators
- Voltage references
- Precision virtual grounds
- Power Management Products, Volume 2:
- Processor power supply controllers (DSP and CPU)
- Switching power supply controllers and DC/DC charge pump converters
- MOSFET drivers
- Supervisory circuits
- Power Management Products, Volume 3:
- Power distribution switches
- LED drivers
- Voltage Rail splitters
- Special Functions

More than a collection of data sheets, this data book set is a tool for locating the best power management components for a successful design effort. It is structured to help you quickly find the devices best suited to your application. The set contains:

- An alphanumeric index at the beginning of each book to make finding known part numbers simple.
- Product selection guides with a condensed view of parametric information organized to help you choose the devices that most closely fit your needs.
- Key specifications and features presented for easy comparison.
- A section on mechanical specifications for all packages used with Texas Instruments power management devices.

While this data book offers design and specification data only for power management products, complete technical data for any TI semiconductor product is available from your nearest TI Field Sales Office, local authorized TI distributor, or from the TI web site at:
http://www.ti.com/sc
We believe you will find the 1999 Power Management Data Book set to be a valuable addition to your collection of technical literature.

General Information (Vol. 1)

Linear Voltage Regulators

Shunt Regulators

Precision Virtual Grounds
Mechanical Data5
General Information (Vol. 2)6
Processor PS Controllers 7
Switching PS and DC/DC Converters 8
MOSFET Drivers 9
Supervisors 10
Mechanical Data 11
General Information (Vol. 3)12
Power Distribution Switches 13
LED Drivers 14
Voltage Rail Splitters 15
Special Functions 16Mechanical Data17

LM237	2-409	TL7770-5	10-139
LM337	2-409	TL7770-12	10-139
LT1054	8-171	TL-SCSI285	2-527
SG2524	8-97	TLC5904	14-3
SG3524	8-97	TLC7701	10-9
TL317	2-415	TLC7725	10-9
TL430	3-3	TLC7703	10-9
TL431	3-9	TLC7733	10-9
TL431A	3-9	TLC7705	10-9
TL494	8-111	TLE2425	4-3
TL494A	8-121	TLE2425Y	4-3
TL499A	8-129	TLE2426	15-3
TL594	8-137	TLE2426Y	15-3
TL598	8-149	TLV431	3-45
TL1431	3-27	TLV431A	3-45
TL750L05	2-421	TLV2217-33	2-461
TL750L08	2-421	TPS1100	13-3
TL750L10	2-421	TPS1100Y	13-3
TL750L12	2-421	TPS1101	13-13
TL750M05	2-429	TPS1101Y	13-13
TL750M08	2-429	TPS1120	13-23
TL750M10	2-429	TPS1120Y	13-23
TL750M12	2-429	TPS2010	13-35
TL751L05	2-421	TPS2010A	13-53
TL751L08	2-421	TPS2010Y	13-35
TL751L10	2-421	TPS2011	13-35
TL751L12	2-421	TPS2011A	13-53
TL751M05	2-429	TPS2012	13-35
TL751M08	2-429	TPS2012A	13-53
TL751M10	2-429	TPS2013	13-35
TL751M12	2-429	TPS2013A	13-53
TL780-05	2-441	TPS2014	13-73
TL780-12	2-441	TPS2015	13-73
TL780-15	2-441	TPS2020	13-93
TL783	2-449	TPS2021	13-93
TL2217-285	2-533	TPS2022	13-93
TL2218-285	16-7	TPS2023	13-93
TL2218-285Y	16-7	TPS2024	13-93
TL5001	8-79	TPS2030	13-115
TL5001A	8-79	TPS2031	13-115
TL5001Y	8-79	TPS2032	13-115
TL7700	10-101	TPS2033	13-115
TL7702A	10-91	TPS2034	13-115
TL7702B	10-113	TPS2041	13-137
TL7705A	10-91	TPS2042	13-157
TL7705B	10-113	TPS2043	13-179
TL7709A	10-91	TPS2044	13-203
TL7712A	10-91	TPS2045	13-227
TL7715A	10-91	TPS2046	13-247
TL7726	16-3	TPS2047	13-267
TL7757	10-123	TPS2048	13-289
TL7759	10-133	TPS2051	13-137

ALPHANUMERIC INDEX

INSTRUMENTS

FIXED-VOLTAGE LOW DROPOUT (LDO) VOLTAGE REGULATORS

Device	$\begin{aligned} & \mathrm{VO} \\ & \text { (typ) } \end{aligned}$ (V)	$\underset{(\max)}{\mathrm{IO}_{(\mathrm{mA})}}$	$\begin{gathered} V_{\text {do }} \\ \text { (typ) } \\ \text { (V) } \end{gathered}$	$\underset{(\max)}{V_{\text {do }}}$ (V)	$\begin{aligned} & \mathrm{I}_{\mathrm{q}} \\ & (\mathrm{typ}) \\ & (\mathrm{mA}) \end{aligned}$	Tolerance (\%)	$\begin{gathered} \hline \mathrm{V}_{\mathrm{IN}} \\ (\mathrm{Vax}) \\ \hline \end{gathered}$	Shutdown	SVS	Description	Page No.
TPS76912	1.224	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS77012	1.224	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS76515	1.5	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261
TPS76615	1.5	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-277
TPS76715	1.5	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS76815	1.5	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2-329
TPS76915	1.5	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS77015	1.5	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS77515	1.5	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-373
TPS77615	1.5	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-373
TPS77715	1.5	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-391
TPS77815	1.5	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-391
TPS76316	1.6	150	0.36	0.6	0.085	4	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS76318	1.8	150	0.3	0.5	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS73HD318	1.8	750	0.353		0.55	2	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2-185
TPS76518	1.8	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261
TPS76618	1.8	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-277
TPS76718	1.8	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS767D318	1.8	1000	0.35	0.825	0.085	2	10	Yes	Yes	Dual, Fixed, LDO, Positive Output	2-311
TPS76818	1.8	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2-329
TPS76918	1.8	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS77018	1.8	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS77518	1.8	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-373
TPS77718	1.8	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-391
TPS77618	1.8	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-373
TPS77818	1.8	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-391
TPS76325	2.5	150	0.36	0.6	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS71025	2.5	500	0.33	0.5	0.29	2	10	Yes	No	Fixed, LDO, Positive Output	2-59
TPS7225	2.5	250			0.18	2	10	Yes	No	Fixed, LDO, Positive Output	2-113
TPS7325	2.5	500	0.27	0.6	0.34	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-145
TPS73HD325	2.5	750	0.353		0.55	2	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2-185
TPS76425	2.5	150	0.36	0.6	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-247
TPS76525	2.5	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261

SELECTION GUIDE
LINEAR VOLTAGE REGULATORS

$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ 1 \\ \infty \end{gathered}$	FIXED－VOLTAGE LOW DROPOUT（LDO）VOLTAGE REGULATORS（continued）											
	Device	$\begin{gathered} \mathrm{V}_{\mathrm{O}} \\ \text { (typ) } \end{gathered}$ （V）	$\underset{(\mathrm{max})}{\mathrm{I} 0}$	$\begin{gathered} V_{\text {do }} \\ (\mathrm{typ}) \\ (\mathrm{V}) \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathrm{do}} \\ \left(\max _{(\mathrm{V})}\right) \end{gathered}$	$\begin{gathered} I_{q} \\ (\text { typ }) \\ (m A) \end{gathered}$ (mA)	Tolerance （\％）	$\underset{\left(\max _{\text {IN }}\right.}{\mathrm{V}_{2}}$	Shutdown	SVS	Description	Page No．
	TPS76625	2.5	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed，LDO，Positive Output	2－277
	TPS76725	2.5	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed，LDO，Positive Output	2－293
	TPS767D325	2.5	1000	0.35	0.825	0.085	2	10	Yes	Yes	Dual，Fixed，LDO，Positive Output	2－311
	TPS76825	2.5	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed，LDO，Positive Output	2－329
	TPS76925	2.5	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－345
	TPS77025	2.5	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－359
	TPS77525	2.5	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed，LDO，Positive Output	2－373
	TPS77625	2.5	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed，LDO，Positive Output	2－373
	TPS77725	2.5	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed，LDO，Positive Output	2－391
	TPS77825	2.5	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed，LDO，Positive Output	2－391
$\begin{aligned} & 0 \\ & \hline-1 \\ & \hline 1 \end{aligned}$	TPS76327	2.7	150	0.36	0.6	0.085	3.75	10	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－231
윢	TPS76427	2.7	150	0.36	0.6	0.085	3.7	10	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－247
	TPS76527	2.7	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed，LDO，Positive Output	2－261
$\stackrel{\mathrm{D}}{\mathrm{O}} \mathrm{x}$	TPS76627	2.7	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed，LDO，Positive Output	2－277
	TPS76727	2.7	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed，LDO，Positive Output	2－293
	TPS76827	2.7	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed，LDO，Positive Output	2－329
9	TPS76927	2.7	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－345
分	TPS77027	2.7	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－359
芴回	TPS76928	2.784	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－345
¢	TPS77028	2.784	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－359
氖	TPS7228	2.8	250			0.18	2	10	Yes	No	Fixed，LDO，Positive Output	2－113
	TPS76328	2.8	150	0.35	0.55	0.085	3.75	10	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－231
	TPS76428	2.8	150	0.36	0.6	0.085	3.8	10	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－247
	TPS76528	2.8	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed，LDO，Positive Output	2－261
	TPS76628	2.8	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed，LDO，Positive Output	2－277
	TPS76728	2.8	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed，LDO，Positive Output	2－293
	TPS76828	2.8	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed，LDO，Positive Output	2－329
	TPS7230	3	250	0.39	0.9	0.18	2	10	Yes	No	Fixed，LDO，Positive Output	2－113
	TPS7330	3	500	0.052	0.075	0.34	2	10	Yes	Yes	Fixed，LDO，Positive Output	2－145
	TPS76030	3	50	0.12	0.18	0.85	3	16	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－211
	TPS76130	3	100	0.17	0.28	2.6	3.6	16	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－221
	TPS76330	3	150	0.35	0.55	0.085	3.75	10	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－231
	TPS76430	3	150	0.36	0.6	0.085	3.8	10	Yes	No	Fixed，LDO，Positive Output，SOT－23	2－247

FIXED-VOLTAGE LOW DROPOUT (LDO) VOLTAGE REGULATORS (continued)

Device	$\mathrm{V} \mathbf{O}$ (typ) (V)	$\begin{gathered} \mathrm{IO}_{(\mathrm{max})} \\ (\mathrm{mA}) \end{gathered}$	$V_{\text {do }}$ (typ) (V)	$V_{\text {do }}$ (max) (V)	$\begin{gathered} I_{q} \\ (\text { typ }) \\ (\mathrm{mA}) \end{gathered}$	Tolerance (\%)	$\underset{(\max)}{\mathrm{V}_{\text {IN }}}$ (V)	Shutdown	SVS	Description	Page No.
TPS76530	3	150	0.16	0.28	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261
TPS76630	3	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-277
TPS76730	3	1000	0.45	0.675	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS76830	3	1000	0.45	0.675	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2-329
TPS77030	3	50	0.048	0.1	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS76930	3.09	100	0.115	0.23	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS76032	3.2	50	0.12	0.18	0.85	3.1	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-211
TPS76132	3.2	100	0.17	0.28	2.6	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-221
TPS7133QPWP	3.3	500	0.047	0.06	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2-3
TPS7133	3.3	500	0.047	0.06	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2-29
TPS71H33	3.3	500	0.047	0.06	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2-75
TPS7233	3.3	250	0.14	0.18	0.155	2	10	Yes	No	Fixed, LDO, Positive Output	2-113
TPS7333	3.3	500	0.044	0.06	0.34	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-145
TPS76033	3.3	50	0.12	0.18	0.85	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-211
TPS76133	3.3	100	0.17	0.28	2.6	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-221
TPS76333	3.3	150	0.3	0.5	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS76433	3.3	150	0.3	0.5	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-247
TPS76533	3.3	150	0.14	0.24	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261
TPS76633	3.3	250	0.23	0.4	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-277
TPS76733	3.3	1000	0.35	0.575	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS76833	3.3	1000	0.35	0.575	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2-329
TPS76933	3.3	100	0.098	0.2	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS77033	3.3	50	0.048	0.1	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS77533	3.3	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-373
TPS77633	3.3	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-373
TPS77733	3.3	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-391
TPS77833	3.3	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-391
TLV2217-33	3.3	500	0.4	0.5	19	1	12	No	No	LDO	2-461
TPS76038	3.8	50	0.12	0.18	0.85	2.6	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-211
TPS76138	3.8	100	0.17	0.28	2.6	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-221
TPS76338	3.8	150	0.36	0.6	0.085	3.5	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS7148	4.85	500	0.03	0.037	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2-29
TPS71H48	4.85	500	0.03	0.047	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2-75

	ADJUSTABLE OUTPUT-VOLTAGE REGULATORS											
	Device	Adjustable (nom) (V)	$\underset{(\max)}{\mathrm{ma}_{(0)}}$	$V_{\text {do }}$ (V)	$V_{\text {do }}$ (max) (V)	(mA)	Tolerance (\%)	$\underset{\left(\max _{\mathbf{I N}}\right.}{\mathrm{V}_{1}}$	Shutdown	SVS	Description	Page No.
	TPS76501	1.2-5.5	150	0.16	0.33	0.038	3	13.5	Yes	No	Adjustable, LDO, Positive Output	2-261
	TPS76601	1.2-5.5	250	0.23	0.54	0.038	3	13.5	Yes	No	Adjustable, LDO, Positive Output	2-277
	TPS76701	1.5-5.5	1000	0.5	0.825	0.085	2	10	Yes	Yes	Adjustable, LDO, Positive Output	2-293
	TPS767D301	1.2-5.5	1000	0.35	0.825	0.085	2	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2-311
	TPS76801	1.5-5.5	1000	0.5	0.825	0.085	2	10	Yes	No	Adjustable, LDO, Positive Output	2-329
	TPS76901	1.2-5.5	100	0.071	0.245	0.017	3	13.5	Yes	No	Adjustable, LDO, Positive Output, SOT-23	2-345
	TPS77001	1.2-5.5	50	0.035	0.125	0.017	3	13.5	Yes	No	Adjustable, LDO, Positive Output, SOT-23	2-359
	TPS77501	1.2-5.5	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Adjustable, LDO, Positive Output	2-373
	TPS77601	1.2-5.5	500	0.169	0.287	0.085	2	13.5	Yes	No	Adjustable, LDO, Positive Output	2-373
\%	TPS77701	1.2-5.5	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Adjustable, LDO, Positive Output	2-391
	TPS77801	1.2-5.5	750	0.26	0.427	0.085	2	13.5	Yes	No	Adjustable, LDO, Positive Output	2-391
	TPS76301	1.5-6.5	150	0.6	0.6	0.085	3	10	Yes	No	Adjustable, LDO, Positive Output, SOT-23	2-231
	TPS7101	1.2-9.75	500	0.052	0.085	0.285	3	10	Yes	No	Adjustable, LDO	2-29
$\stackrel{\times}{\circ}$	TPS71H01	1.2-9.75	500	0.052	0.085	0.285	3	10	Yes	No	Adjustable, LDO	2-75
	TPS7201	1.2-9.75	250	0.16	0.27	0.155	3	10	Yes	No	Adjustable, LDO	2-113
	TPS7301	1.2-9.75	500	0.052	0.085	0.34	3	10	Yes	Yes	Adjustable, LDO	2-145
	TPS73HD301	1.2-9.75	750	0.353	0.6	1.1	3	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2-185
	TL317	1.2-32	100	2.5	3	1.5	4	35	No	No	Adjustable	2-415
$\underset{6}{\infty}$	$\mu \mathrm{A} 723$	2-37	150		3	2.3	1	40	No	No	Adjustable	2-467
స్ల్ర	TL783	1.25-125	700	10	15	15	6	125	No	No	Adjustable	2-449
	LM237	-1.2--37	1500			2.2			No	No	3-Terminal Adjustable Regulator	2-409
	LM337	-1.2--37	1500			2.2			No	NO	3-Terminal Adjustable Regulator	2-409

FIXED POSITIVE-OUTPUT VOLTAGE VOLTAGE REGULATORS

Device	Vo (V)	$\underset{(\max)}{\substack{10 \\(\mathrm{~mA})}}$	$V_{\text {do }}$ (V)	$V_{\text {do }}$ (\max) (V)	$\begin{gathered} I_{q} \\ (\text { typ }) \end{gathered}$ (mA)	Tolerance (\%)	$\underset{(\max)}{\mathrm{V}_{\text {IN }}}$ (V)	Shutdown	SVS	Description	Page No.
μ A78L02A	2	100	1.7	3	3.6	5	20	No	No	Fixed, Positive Output	2-493
TL-SCSI285	2.85	500		0.7	26	1	5.5	No		Fixed Reg. for SCSI Active Termination	2-527
TL2217-285	2.85	500		1	26	1.5	5.5	No		Fixed Reg. for SCSI Active Termination	2-533
$\mu \mathrm{A} 7805$	5	1500	2	3	4.2	4	25	No	No	Fixed, Positive Output	2-479
μ A78L05	5	100	2	3	3.8	10	20	No	No	Fixed, Positive Output	2-493
μ A78L05A	5	100	1.7	3	3.8	5	20	No	No	Fixed, Positive Output	2-493
μ A78M05	5	500	2	3	4.5	4	25	No	No	Fixed, Positive Output	2-505
TL780-05	5	1500	2	3	5	1	25	No	No	Fixed, Positive Output	2-441
μ A7806	6	1500	2	3	4.3	4	25	No	No	Fixed, Positive Output	2-479
μ A78L06	6	100	1.7	3	3.9	10	20	No	No	Fixed, Positive Output	2-493
μ A78L06A	6	100	1.7	3	3.9	5	20	No	No	Fixed, Positive Output	2-493
$\mu \mathrm{A} 78 \mathrm{M06}$	6	500	2	3	4.5	4	25	No	No	Fixed, Positive Output	2-505
μ A7808	8	1500	2.5	3	4.3	4	25	No	No	Fixed, Positive Output	2-479
μ A7885	8	1500	2	3	4.3	4	25	No	No	Fixed, Positive Output	2-479
μ A78L08	8	100	1.7	3	4	10	23	No	No	Fixed, Positive Output	2-493
μ A78L08A	8	100	1.7	3	4	5	23	No	No	Fixed, Positive Output	2-493
-A78M08	8	500	2.5	3	4.6	4	25	No	No	Fixed, Positive Output	2-505
μ A78L09	9	100	1.7	3	4.1	10	24	No	No	Fixed, Positive Output	2-493
μ A78L09A	9	100	1.7	3	4.1	5	24	No	No	Fixed, Positive Output	2-493
μ A78M09	9	500	2.5	3	4.6	4	26	No	No	Fixed, Positive Output	2-505
$\mu \mathrm{A} 8810$	10	1500	2.5	3	4.3	4	28	No	No	Fixed, Positive Output	2-479
μ A78L10	10	100	1.7	3	4.2	10	25	No	No	Fixed, Positive Output	2-493
μ A78L10A	10	100	1.7	3	4.2	5	25	No	No	Fixed, Positive Output	2-493
$\mu \mathrm{A} 78 \mathrm{M} 10$	10	500	2.5	3	4.6	4	28	No	No	Fixed, Positive Output	2-505
TL780-12	12	1500	2.5	3	5.5	1	30	No	No	Fixed, Positive Output	2-441
$\mu \mathrm{A} 8812$	12	1500	2.5	3	4.3	4	30	No	No	Fixed, Positive Output	2-479
$\mu \mathrm{A} 78 \mathrm{~L} 12$	12	100	1.7	3	4.3	10	27	No	No	Fixed, Positive Output	2-493
μ A78L12A	12	100	1.7	3	4.3	5	27	No	No	Fixed, Positive Output	2-493
$\mu \mathrm{A} 78 \mathrm{M} 12$	12	500	2.5	3	4.8	4	30	No	No	Fixed, Positive Output	2-505
TL780-15	15	1500	2.5	3	5.5	1	30	No	No	Fixed, Positive Output	2-441
$\mu \mathrm{A} 7815$	15	1500	2.5	3	4.4	4	30	No	No	Fixed, Positive Output	2-479
μ A78L15	15	100	1.7	3	4.6	10	30	No	No	Fixed, Positive Output	2-493
μ A78L15A	15	100	1.7	3	4.6	5	30	No	No	Fixed, Positive Output	2-493

FIXED POSITIVE-OUTPUT VOLTAGE VOLTAGE REGULATORS (continued)

Device	$\begin{aligned} & \hline V_{0} \\ & \text { (typ) } \\ & \text { (V) } \end{aligned}$	$\underset{(\max)}{\mathrm{Imax}_{(\mathrm{mA})}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{do}} \\ & \text { (typ) } \end{aligned}$ (V)	$\begin{gathered} V_{\text {do }} \\ \left(\max ^{(V)}\right. \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{q}} \\ & (\mathrm{typ}) \\ & (\mathrm{mA}) \end{aligned}$	Tolerance (\%)	$\underset{(\max)}{\mathrm{V}_{\mathrm{N}}}$ (V)	Shutdown	SVS	Description	Page No.
HA78M15	15	500	2.5	3	4.8	4	30	No	No	Fixed, Positive Output	2-505
$\mu \mathrm{A} 7818$	18	1500	3	3	4.5	4	33	No	No	Fixed, Positive Output	2-479
$\mu \mathrm{A} 78 \mathrm{M} 20$	20	500	3	3	4.9	4	35	No	No	Fixed, Positive Output	2-505
$\mu \mathrm{A} 78 \mathrm{2} 24$	24	1500	3	3	4.6	4	38	No	No	Fixed, Positive Output	2-479
$\mu \mathrm{A} 78 \mathrm{M} 24$	24	500	3	3	5	4	38	No	No	Fixed, Positive Output	2-505

FIXED NEGATIVE-OUTPUT VOLTAGE VOLTAGE REGULATORS

Device	$\begin{aligned} & \mathrm{V}_{0} \\ & \text { (typ) } \end{aligned}$ (V)	$\underset{(\max)}{\mathrm{Imax}_{(0)}}$	$V_{\text {do }}$ (V)	$V_{\text {do }}$ (\max) (V)	$\begin{aligned} & I_{q} \\ & (\operatorname{typ}) \\ & (\mathrm{mA}) \end{aligned}$	Tolerance (\%)	$\underset{(\max)}{\mathrm{V}_{\mathrm{N}}}$ (V)	Shutdown	SVS	Description	Page No.
$\mu \mathrm{A} 79 \mathrm{M05}$	-5	500	2	3	1	4	-25	No	No	Fixed, Negative Output	2-517
$\mu \mathrm{A} 79 \mathrm{M} 06$	-6	500	2	3	1	4	-25	No	No	Fixed, Negative Output	2-517
$\mu \mathrm{A} 79 \mathrm{M} 08$	-8	500	2.5	3	1	4	-25	No	No	Fixed, Negative Output	2-517
$\mu \mathrm{A} 79 \mathrm{M} 12$	-12	500	2.5	3	1.5	4	-30	No	No	Fixed, Negative Output	2-517
$\mu \mathrm{A} 79 \mathrm{M} 15$	-15	500	2.5	3	1.5	4	-30	No	No	Fixed, Negative Output	2-517
$\mu \mathrm{A} 79 \mathrm{M} 20$	-20	500	3	3	1.5	4	-35	No	No	Fixed, Negative Output	2-517
$\mu \mathrm{A} 79 \mathrm{M} 24$	-24	500	3	3	1.5	4	-38	No	No	Fixed, Negative Output	2-517

SHUNT REGULATORS

Device	$V_{\text {ref }}$ (V)	$\underset{(\mathrm{min})}{\mathrm{I}}$ ($\mu \mathrm{A}$)	$\underset{(\max)}{I_{(2)}}$	$\begin{gathered} V_{0} \\ (\min) \\ (V) \end{gathered}$		Tolerance (\%)	$\begin{gathered} V_{I} \\ (\max) \\ (V) \end{gathered}$	Temp Coeff (typ) (ppm $/{ }^{\circ} \mathrm{C}$)	Description	Page No.
TLV431A	1.24	100	15	Vref	6	1	6	46	Adjustable Shunt	3-45
TL1431	2.5	1000	100	Vref	36	0.4	36	30	Adjustable Shunt	3-27
TL431	2.5	1000	100	Vref	36	2	36	30	Adjustable Shunt	3-9
TL431A	2.5	1000	100	Vref	36	1	36	30	Adjustable Shunt	3-9
TLV431	2.5	1000	100	Vref	36	2	36	30	Adjustable Shunt	3-45
TL430	2.75	2000	100	Vref	30	9	30	120	Adjustable Shunt	3-3

PRECISION VIRTUAL GROUNDS

Device	IO (typ) $(\mathbf{m A})$	Output Regulation (typ) $(\mu \mathrm{A})$	$\mathbf{V}_{\mathbf{O}}$ (\min) (V)	$\mathbf{V}_{\mathbf{O}}$ (\max) (V)	$\mathbf{V}_{\mathbf{1}}$ (\max) (V)	Temp Coeff (typ) $\left(\mathbf{p p m} /{ }^{\circ} \mathrm{C}\right)$	Description
TLE2425	20	$-45-15$	2.48	2.52	40	20	Precision Virtual Ground

PROCESSOR POWER SUPPLY CONTROLLERS

Device	Droop Comp	OCP	Output Drive Current (A)	Outputs	OVP	Power Good	Soft Start	UVLO	$\begin{aligned} & V_{\text {IN }} \\ & (V) \end{aligned}$	$\begin{aligned} & \mathrm{vo}_{0} \\ & \text { (typ) } \\ & \text { (V) } \end{aligned}$	$\mathrm{V}_{\text {ref }}$ (tol) ($\pm \%)$	Description	Page No.
TPS5102	No	Yes	1.5	2	No	No	Yes	Yes	4.5-25	$1.2-\mathrm{Vcc}$	1.5	Notebook	7-3
TPS5103	No	Yes	1.5	1	No	No	Yes	Yes	4.5-25	$1.2-\mathrm{Vcc}$	1.5	Multipurpose	7-33
TPS5210	Yes	Yes	2	1	Yes	Yes	Yes	Yes	5,12	pgm 1.3 to 3.5	1	Pentium class	7-123
TPS5211	Yes	Yes	2.4	1	Yes	Yes	Yes	Yes	5, 12	pgm 1.3 to 3.5	1.5	Pentium class	7-69
TPS5602	No	Yes	1	2	No	No	Yes	Yes	4.5-25	$1.2-\mathrm{V}_{\mathrm{CC}}$	2	DSP	7-149
TPS56100	No	Yes	2	1	Yes	Yes	Yes	Yes	5	$0.9-V_{C C}$	1.5	DSP	7-171
TPS5615	No	Yes	2	1	Yes	Yes	Yes	Yes	5,12	1.5	1	DSP	7-99
TPS5618	No	Yes	2	1	Yes	Yes	Yes	Yes	5, 12	1.8	1	DSP	7-99
TPS5625	No	Yes	2	1	Yes	Yes	Yes	Yes	5,12	2.8	1	DSP	7-99
TPS5633	No	Yes	2.4	1	Yes	Yes	Yes	Yes	5, 12	3.3	1	DSP	7-99

の	Device	SHDN	$\begin{aligned} & \text { Pulse } \\ & \text {-by- } \\ & \text { Pulse } \\ & \text { Isense } \end{aligned}$	VIN Range (VDC)	Output Type	Output Current (mA)	Freq (max) (kHz)	Operating/ Standby Current (mA)	Reference Voltage (V)	$V_{\text {ref }}$ Tol (\%)	Duty Cycle (max) (\%)	UVLO	Description	Page No.
	SG2524	Yes	No	8-40	Single Switch	100	500	NA/8	5	4	90	No	Voltage-Mode PWM	8-97
	SG3524	Yes	No	8-40	Single Switch	100	500	NA88	5	8	90	No	Voltage-Mode PWM	8-97
	TL494	No	No	7-40	Single Switch	200	300	7.5/6	5	5	90	No	Voltage-Mode PWM	8-111
	TL497A	Yes	No	4.5-12	Single Switch	500	50	11/6	1.2	5		No	Fixed On-Time Voltage-Mode	8-121
	TL499A	No	No	1.1-35	Single Switch	500	40	1.8/NA	1.26	5		No	Fixed On-Time Voltage-Mode	8-129
$\begin{aligned} & 0 \\ & \text { O} \\ & \text { 1-1 } \end{aligned}$	TL594	No	No	7-40	Single Switch	200	300	12.4/9	5	1	90	Yes	Voltage-Mode PWM	8-137
	TL598	No	No	7-40	Totem Pole	-250	300	15/NA	5	1	90	Yes	Voltage-Mode PWM	8-149
	UC2842	No	Yes	30	Totem Pole	-200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8-159
	UC2843	No	Yes	30	Totem Pole	-200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8-159
$5 \square$	UC2844	No	Yes	30	Totem Pole	-200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8-159
$\underset{\substack{-1 \\ 6}}{ }$	UC2845	No	Yes	30	Totem Pole	-200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8-159
※్ల్囚	UC3842	No	Yes	30	Totem Pole	-200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8-159
	UC3843	No	Yes	30	Totem Pole	-200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8-159
	UC3844	No	Yes	30	Totem Pole	-200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8-159
	UC3845	No	Yes	30	Totem Pole	-200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8-159
	TL5001	No	No	3.6-40	Single Switch	20	400	1.1/1	1	5	100	Yes	Voltage-Mode PWM	8-79
	TL5001A	No	No	3.6-40	Single Switch	20	400	1.1/1	1	3	100	Yes	Voltage-Mode PWM	8-79
	LT1054	No	No	3.6-15	Totem Pole	± 100	2000	3.5/3.1	1.25	2.5	100	Yes	Dual ChannelMode PWM	8-171

DC/DC CHARGE PUMP CONVERTERS

Device	SHDN	Vo (typ) (\mathbf{V})	Tolerance $(\%)$	VIN Range $(\mathbf{V D C})$	Output Current $(\mathbf{m A})$	Freq $(\mathbf{m a x})$ $(\mathbf{k H z)}$	Quiescent Current $(\mu \mathbf{A})$	Shut- down Current $(\mu \mathrm{A})$	UVLO	Description
TPS60100	Yes	3.3	± 4	$1.8-3.6$	200	300	50	0.05	Yes	Charge Pump DC/DC Converter, 3.3-V
TPS60101	Yes	3.3	± 4	$1.8-3.6$	100	300	50	0.05	Yes	Charge Pump DC/DC Converter, 3.3-V
TPS60110	Yes	5	± 4	$2.7-5.4$	300	300	60	0.05	Yes	Charge Pump DC/DC Converter, 5-V
TPS60111	Yes	5	± 4	$2.7-5.4$	150	300	60	0.05	Yes	Charge Pump DC/DC Converter, $5-\mathrm{V}$

Device	$\begin{aligned} & \text { ICC } \\ & (\mu \mathrm{A}) \end{aligned}$	Internal Regulator	Output Current (max) (A)	Rise/Fall Time (max) (ns)	Supply Voltage(s) (V)	Description	Page No.
TPS2811	5	Yes (8-40 V)	2	20	4-14	Dual Channel	9-3
TPS2812	5	Yes (8-40 V)	2	20	4-14	Dual Channel	9-3
TPS2813	5	Yes (8-40 V)	2	20	4-14	Dual Channel	9-3
TPS2814	5	No	2	20	4-14	Dual Channel	9-3
TPS2815	5	No	2	20	4-14	Dual Channel	9-3
TPS2816	150	Yes (8-40 V)	2	25	4-14	Active Pullup, Internal Regulator, Single Channel	9-31
TPS2817	150	Yes (8-40 V)	2	25	4-14	Active Pullup, Internal Regulator, Single Channel	9-31
TPS2818	25	Yes (8-40 V)	2	25	4-14	Single Channel	9-31
TPS2819	25	Yes (8-40 V)	2	25	4-14	Single Channel	9-31
TPS2828	25	No	2	25	4-14	Single Channel	9-31
TPS2829	25	No	2	25	4-14	Single Channel	9-31
TPS2830	1	No	2	$50 / 85$	4.5-15	Fast Synchronous-Buck With Deadtime Control	9-49
TPS2831	1	No	2	$50 / 85$	4.5-15	Fast Synchronous-Buck With Deadtime Control	9-49
TPS2832	1	No	2	$50 / 85$	4.5-15	Fast Synchronous-Buck With Deadtime Control	9-61
TPS2833	1	No	2	50/85	4.5-15	Fast Synchronous-Buck With Deadtime Control	9-61

SUPERVISORY CIRCUITS

Device	$V_{C C}$ (nom) (V)	$\begin{gathered} V_{t} \\ (V) \end{gathered}$	Tolerance (\%)	$\underset{\substack{\text { ICC } \\(\max)}}{ }$	$V_{\text {IN }}$ (min) (V)	Over Voltage Sense	Comp Outputs	Number of SVS	WDI	Description	Page No.
TPS3123J12	1.2	1.08	2	0.03	0.75	No	No	1	Yes	Fixed Delay, Micropower	10-21
TPS3124J12	1.2	1.08	2	0.03	0.75	No	Yes	1	Yes	Fixed Delay, Micropower	10-21
TPS3125J12	1.2	1.08	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	10-21
TPS3123G15	1.5	1.4	2	0.03	0.75	No	No	1	Yes	Fixed Delay, Micropower	10-21
TPS3124G15	1.5	1.4	2	0.03	0.75	No	Yes	1	Yes	Fixed Delay, Micropower	10-21
TPS3125G15	1.5	1.4	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	10-21
TPS3123J18	1.8	1.62	2	0.03	0.75	No	No	1	Yes	Fixed Delay, Micropower	10-21
TPS3124J18	1.8	1.62	2	0.03	0.75	No	Yes	1	Yes	Fixed Delay, Micropower	10-21
TPS3125J18	1.8	1.62	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	10-21
TPS3305-18	1.8	1.68	2	0.04	2.7	No	Yes	2	Yes	Fixed Delay, Micropower	10-33
TPS3307-18	1.8	1.68	2	0.04	2	No	Yes	3	No	Fixed Delay, Micropower	10-43
TLC7725	2.5	2.25	3	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10-9
TPS3707-25	2.5	2.25	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-53
TPS3801J25	2.5	2.25	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-63
TPS3305-25	2.5	2.25	2	0.04	2.7	No	Yes	2	Yes	Fixed Delay, Micropower	10-33
TPS3809J25	2.5	2.25	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-3
TPS3820-25	2.5	2.25	1.8	0.025		No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3823-25	2.5	2.25	1.8	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3824-25	2.5	2.25	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3825-25	2.5	2.25	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3828-25	2.5	2.25	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3307-25	2.5	2.25	2	0.04	2	No	Yes	3	No	Fixed Delay, Micropower	10-43
TLC7703	3	2.63	2.7	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10-9
TPS3125L30	3	2.64	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	10-21
TPS3705-30	3	2.63	2	0.05	2	No	No	1	Yes	Fixed Delay, Micropower	10-53
TPS3707-30	3	2.63	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-53
TPS3801L30	3	2.64	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-63
TPS3809L30	3	2.64	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-3
TPS3820-30	3	2.63	1.5	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3823-30	3	2.63	1.5	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3824-30	3	2.63	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71

SUPERVISORY CIRCUITS (continued)

Device	$\mathrm{V}_{\mathrm{Cc}} \mathrm{C}$ (nom) (V)	$\begin{aligned} & V_{t} \\ & (V) \end{aligned}$	Tolerance (\%)	$\underset{\substack{\text { ICC } \\(\max)}}{ }$	$\mathrm{V}_{\mathbf{I N}}$ (min) (V)	Over Voltage Sense	Comp Outputs	Number of SVS	WDI	Description	Page No.
TPS3825-30	3	2.63	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3828-30	3	2.63	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TLC7733	3.3	2.93	2.4	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10-9
TPS3705-33	3.3	2.93	2	0.05	2	No	No	1	Yes	Fixed Delay, Micropower	10-53
TPS3707-33	3.3	2.93	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-53
TPS3801K33	3.3	2.93	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-63
TPS3809K33	3.3	2.93	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-3
TPS3820-33	3.3	2.93	1.7	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3823-33	3.3	2.93	1.7	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3824-33	3.3	2.93	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3825-33	3.3	2.93	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3828-33	3.3	2.93	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TL7705A	5	4.55	2	3	3.6	No	Yes	1	No	Programmable Delay	10-91
TL7705B	5	4.55	2	3	1	No	Yes	1	No	Programmable Delay	10-113
TL7757	5	4.55	3	2.5	1	No	No	1	No	No Delay	10-123
TL7759	5	4.55	3	2	1	No	Yes	1	No	No Delay	10-133
TLC7705	5	4.55	1.5	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10-9
TL7770-5	5	4.55	1	5	1	Yes	Yes	2	No	Programmable Delay	10-139
TPS3705-50	5	4.55	2	0.05	2	No	No	1	Yes	Fixed Delay, Micropower	10-53
TPS3707-50	5	4.55	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-53
TPS3801150	5	4.55	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-63
TPS3305-33	5	4.55	2	0.04	2.7	No	Yes	2	Yes	Fixed Delay, Micropower	10-33
TPS3809150	5	4.55	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-3
TPS3820-50	5	4.55	1.3	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3823-50	5	4.55	1.3	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3824-50	5	4.55	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3825-50	5	4.55	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3828-50	5	4.55	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3307-33	5	4.55	2	0.04	2	No	Yes	3	No	Fixed Delay, Micropower	10-43
TL7709A	9	7.6	2	3	3.6	No	Yes	1	No	Programmable Delay	10-91

Device	VCC $(\mathbf{n o m})$ (\mathbf{V})	$\mathbf{V}_{\mathbf{t}}$ (V)	Tolerance $(\%)$	ICC $(\mathbf{m a x})$ (mA)	VIN (min) (\mathbf{V})	Over Voltage Sense	Comp Outputs	Number of SVS	WDI	Description
TL7712A	12	10.8	2	3	3.6	No	Yes	1	No	Programmable Delay
TL7770-12	12	10.9	1	5	1	Yes	Yes	2	No	Programmable Delay
TL7715A	15	13.5	2	3	3.6	No	Yes	1	No	Programmable Delay
TPS5510			3	1	4	Yes	Yes	3	No	Fixed Delay
TPS5511			3	1	4	Yes	Yes	3	No	Fixed Delay
TL7700	adj			0.016		No	Yes	1	No	Micropower, Programmable Delay
TL7702A	pgm	pgm	2	3	3.6	No	Yes	1	No	Programmable Delay
TL7702B	pgm	pgm	2	3	1	No	Yes	1	No	Programmable Delay
TLC7701	adj	1.1	5.4	0.016	1	No	Yes	1	No	Micropower, Programmable Delay

SUPERVISORY CIRCUITS (continued)

Device	Number of FETs	rDS(on) (typ) $(\mathbf{m \Omega})$	(max) $(\mathbf{A)}$	Current Limit (typ) $(\mathbf{A)}$	VINRange (typ) (\mathbf{V})	Over Current Reporting	Over Temp Protection	Enable	Description	
PPS2010	1	75	0.2	0.4	$2.7-5.5$	No	Yes	Neg	Current-Limited	
TPS2010A	1	30	0.2	0.3	$2.7-5.5$	No	Yes	Neg	Current-Limited	
TPS2011	1	75	0.6	1.2	$2.7-5.5$	No	Yes	Neg	Current-Limited	
TPS2011A	1	30	0.6	0.9	$2.7-5.5$	No	Yes	Neg	Current-Limited	
TPS2012	1	75	1	2	$2.7-5.5$	No	Yes	Neg	Current-Limited	
TPS2012A	1	30	1	1.5	$2.7-5.5$	No	Yes	Neg	Current-Limited	
TPS2013	1	75	1.5	2.6	$2.7-5.5$	No	Yes	Neg	Current-Limited	
TPS2013A	1	30	1.5	2.2	$2.7-5.5$	No	Yes	Neg	Current-Limited	$13-53$

$V_{\text {Aux }}$ SWITCHES

Device	Number of Inputs	$\begin{gathered} \text { IN1 } \\ \text { rDS(on) } \\ \text { (typ) } \\ \text { (m } \Omega \text {) } \end{gathered}$	$\begin{gathered} \text { IN2 } \\ \text { rDS(on) } \\ \text { (typ) } \\ (\Omega) \end{gathered}$	IN1 Output Current (mA)	IN2 Output Current (mA)	IN1 Supply Current (typ) (uA)	IN2 Supply Current (typ) (uA)	IN1, IN2 Input Voltage Range (V)	Enable	Page No.
TPS2100	2	250	1.3	500	10	10	0.75	2.7-4.0	Neg	13-311
TPS2101	2	250	1.3	500	10	10	0.75	2.7-4.0	Pos	13-311

PCMCIA/CARDBUS DISTRIBUTION SWITCHES

Device	12-V Supply Required	$\begin{gathered} \text { 3V/5V } \\ \text { rDS(on) } \\ \text { (typ) } \\ \text { (m } \Omega \text {) } \end{gathered}$	Control Inputs	Current and Temperature Protection	VPP_Good and OC Reporting	Description	Page No.
TPS2205	No	110/140	8 Line Parallel	Yes	N/Y	Dual Channel	13-325
TPS2206	No	110/140	3 Line Serial w/Reset	Yes	N/Y	Dual Channel	13-349
TPS2211	No	50	4 Line Parallel	Yes	N / Y	Single Channel	13-375
TPS2212	No	160	4 Line Parallel	Yes	N/Y	Single Channel	13-395
TPS2214	No	60	3 Line Serial, w/independent VCC/VPP	Yes	N/Y	Dual Channel	13-413
TPS2216	No	60	3 Line Serial, w/independent VCC/VPP	Yes	N/Y	Dual Channel	13-437

USB SWITCHES

Device	Number of FETs	$\begin{aligned} & \text { rDS(on) } \\ & \text { (typ) } \\ & \text { (m } \Omega \text {) } \end{aligned}$	$\underset{(\mathrm{A})}{\mathrm{IO}_{(0 x)}}$	Current Limit (typ) (A)	VIN Range (typ) (V)	Over Current Reporting	Over Temp Reporting	Enable	Description	Page No.
TPS2014	1	95	0.6	1.2	4.0-5.5	Yes	No	Neg	Current-Limited, UL Listed, USB	13-73
TPS2015	1	95	1	2	4.0-5.5	Yes	No	Neg	Current-Limited, USB	13-73
TPS2020	1		0.2	0.3	2.7-5.5	Yes	Yes	Neg	Current-Limited, USB	13-93
TPS2021	1		0.6	0.9	2.7-5.5	Yes	Yes	Neg	Current-Limited, USB	13-93
TPS2022	1		1	1.5	2.7-5.5	Yes	Yes	Neg	Current-Limited, USB	13-93
TPS2023	1		1.5	2.2	2.7-5.5	Yes	Yes	Neg	Current-Limited, USB	13-93
TPS2024	1		2	3	2.7-5.5	Yes	Yes	Neg	Current-Limited, USB	13-93
TPS2030	1	30	0.2	0.3	2.7-5.5	Yes	Yes	Pos	Current-Limited, USB	13-115
TPS2031	1	30	0.6	0.9	2.7-5.5	Yes	Yes	Pos	Current-Limited, USB	13-115
TPS2032	1	30	1	1.5	2.7-5.5	Yes	Yes	Pos	Current-Limited, USB	13-115
TPS2033	1	30	1.5	2.2	2.7-5.5	Yes	Yes	Pos	Current-Limited, USB	13-115
TPS2034	1	30	2	3	2.7-5.5	Yes	Yes	Pos	Current-Limited, USB	13-115
TPS2041	1	80	0.5	0.9	2.7-5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-137
TPS2042	2	80	0.5	0.9	2.7-5.5	Each	Yes	Neg	Current-Limited, Nemko Recognized	13-157
TPS2043	3	80	0.5	0.9	2.7-5.5	Each	Yes	Neg	Current-Limited, Nemko Recognized	13-179
TPS2044	4	80	0.5	0.9	2.7-5.5	Each	Yes	Neg	Current-Limited, Nemko Recognized	13-203
TPS2045	1	80	0.25	0.44	2.7-5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-227
TPS2046	2	80	0.25	0.44	2.7-5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-247
TPS2047	3	80	0.25	0.44	2.7-5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-267
TPS2048	4	80	0.25	0.44	2.7-5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-289
TPS2051	1	80	0.5	0.9	2.7-5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-137
TPS2052	2	80	0.5	0.9	2.7-5.5	Each	Yes	Pos	Current-Limited, Nemko Recognized	13-157
TPS2053	3	80	0.5	0.9	2.7-5.5	Each	Yes	Pos	Current-Limited, Nemko Recognized	13-179
TPS2054	4	80	0.5	0.9	2.7-5.5	Each	Yes	Pos	Current-Limited, Nemko Recognized	13-203
TPS2055	1	80	0.25	0.44	2.7-5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-227
TPS2056	2	80	0.25	0.44	2.7-5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-247
TPS2057	3	80	0.25	0.44	2.7-5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-267
TPS2058	4	80	0.25	0.44	2.7-5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-289

LED DRIVERS

Device	$\begin{aligned} & \hline V_{\text {ref }} \\ & \text { (V) } \end{aligned}$	$\underset{(\min)}{I_{(\mu \mathrm{A}}}$	$\underset{(\max)}{\mathrm{Imax}_{(\mathrm{mA})}}$	$\begin{gathered} \mathbf{V}_{\mathbf{o}} \\ (\mathrm{min}) \\ (\mathrm{V}) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{0} \\ & (\max) \\ & (\mathrm{V}) \end{aligned}$	Tolerance (\%)	$\begin{gathered} V_{1} \\ \left(\begin{array}{c} \max) \\ (\mathrm{V}) \end{array}\right. \end{gathered}$	Temp Coeff （typ） （ppm／${ }^{\circ} \mathrm{C}$ ）	Description	Page No．
TLC5904	2.5	1000	100	Vref	36	0.4	36	30	LED Driver	14－3

VOLTAGE RAIL SPLITTERS

Device	$\underset{(\mu \mathrm{A})}{\mathrm{Icc}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & \text { (V) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IO}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & (\underset{\mathrm{~min})}{(\mathrm{V})} \end{aligned}$	$\underset{\left(\max _{0}\right.}{\mathrm{V}_{0}}$		Description	Page No．
TLE2426	280	4－40	20	1.98	20.2	25	Rail Splitter Precision Virtual Ground	15－3

SPECIAL FUNCTIONS

Device	$\mathbf{V}_{\text {ref }}$ (V)	IZ (min) $(\mu \mathrm{A})$	IZ (max) $(\mu \mathrm{A})$	$\mathbf{V}_{\mathbf{O}}$ (min) (V)	Input Clamp Current (mA)	Settling Time $(\mu \mathrm{s})$	Description
TL7726	4.5		60		25	30	Hex Clamping Circuit
TL2218－285		-20.5		2.5			Excalibur Current－Mode SCSI Terminator

General Information (Vol. 1) 1
Linear Voltage Regulators 2
Shunt Regulators 3
Precision Virtual Grounds 4
Mechanical Data 5
General Information (Vol. 2) 6
Processor PS Controllers 7
Switching PS and DC/DC Converters 8
MOSFET Drivers 9
Supervisors 10
Mechanical Data 11
General Information (Vol. 3) 12
Power Distribution Switches 13
LED Drivers 14
Voltage Rail Splitters 15
Special Functions 16
Mechanical Data 17

- Low rids(on) $\ldots 0.18 \Omega$ Typ at $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$
- 3 V Compatible
- Requires No External VCC
- TTL and CMOS Compatible Inputs
- $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}=-1.5 \mathrm{~V}$ Max
- Available in Ultrathin TSSOP Package (PW)
- ESD Protection Up to 2 kV Per MIL-STD-883C, Method 3015

description

The TPS 1100 is a single P-channel enhancement-mode MOSFET. The device has been optimized for $3-\mathrm{V}$ or $5-\mathrm{V}$ power distribution in battery-powered systems by means of Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process. With a maximum $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ of -1.5 V and an $\mathrm{I}_{\mathrm{DSS}}$ of only $0.5 \mu \mathrm{~A}$, the TPS 1100 is the ideal high-side switch for low-voltage, portable battery-management systems where maximizing battery life is a primary concern. The low $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ and excellent ac characteristics (rise time 10 ns typical) make the TPS1100 the logical choice for low-voltage switching applications such as power switches for pulse-width-modulated (PWM) controllers or motor/bridge drivers.
The ultrathin thin shrink small-outline package or TSSOP (PW) version with its smaller footprint and reduction in height fits in places where other P-channel MOSFETs cannot. The size advantage is especially important where board real estate is at a premium and height restrictions do not allow for a small-outline integrated circuit (SOIC) package.

D OR PW PACKAGE
(TOP VIEW)

PW PACKAGE

schematic

NOTE A. For all applications, all source pins should be connected and all drain pins should be connected.

$\mathbf{T}_{\mathbf{A}}$	PACKAILABLE OPTIONS		
	SMALL OUTLINE (\mathbf{D})	PLASTIC DIP (P)	CHIP FORM (Y)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TPS1100D	TPS1100PWLE	TPS1100Y

The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS1100DR). The PW package is available only left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS1100PWLE). The chip form is tested at $25^{\circ} \mathrm{C}$.

Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.
LinBiCMOS is a trademark of Texas Instruments Incorporated.

description (continued)

Such applications include notebook computers, personal digital assistants (PDAs), cellular telephones, and PCMCIA cards. For existing designs, the D-packaged version has a pinout common with other p-channel MOSFETs in SOIC packages.

TPS1100Y chip information

This chip, when properly assembled, displays characteristics similar to the TPS1100. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
\ddagger Maximum values are calculated using a derating factor based on $R_{\theta J A}=158^{\circ} \mathrm{C} / \mathrm{W}$ for the D package and $R_{\theta J A}=248^{\circ} \mathrm{C} / \mathrm{W}$ for the $P W$ package. These devices are mounted on a FR4 board with no special thermal considerations.

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$	$\mathbf{T}_{\mathbf{A}}=7 \mathbf{7 0}^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{1 2 5}^{\circ} \mathbf{C}$ POWER RATING
D	791 mW	$6.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	506 mW	411 mW	158 mW
PW	504 mW	$4.03 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	323 mW	262 mW	101 mW

\ddagger Maximum values are calculated using a derating factor based on $\mathrm{R}_{\theta \mathrm{JA}}=158^{\circ} \mathrm{C} / \mathrm{W}$ for the D package and $\mathrm{R}_{\theta \mathrm{JA}}=248^{\circ} \mathrm{C} / \mathrm{W}$ for the PW package. These devices are mounted on an FR4 board with no special thermal considerations when tested.

electrical characteristics at $\mathbf{T}_{\mathbf{J}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$ (unless otherwise noted)

static

PARAMETER		TEST CONDITIONS			TPS1100			TPS1100Y			UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX							
V_{GS} (th)	Gate-to-source threshold voltage				$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$,	$\mathrm{ID}=-250 \mu \mathrm{~A}$		-1	-1.25	-1.50		-1.25		V
VSD	Source-to-drain voltage (diode-forward voltage) ${ }^{\dagger}$	Is $=-1 \mathrm{~A}$,	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$			-0.9			-0.9		V			
IGSS	Reverse gate current, drain short circuited to source	$V_{D S}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$				± 100				nA			
'DSS	Zero-gate-voltage drain current	$V_{D S}=-12 \mathrm{~V}, \quad V_{G S}=0 \mathrm{~V}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-0.5				$\mu \mathrm{A}$			
				$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			-10							
rDS(on)	Static drain-to-source on-state resistance \dagger	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}$		180				180		$\mathrm{m} \Omega$			
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	$\mathrm{l}=-0.5 \mathrm{~A}$			291	400		291					
		$\mathrm{V}_{G S}=-3 \mathrm{~V}$	$\mathrm{I}^{\mathrm{D}}=-0.2 \mathrm{~A}$			476	700		476					
		$\mathrm{V}_{\mathrm{GS}}=-2.7 \mathrm{~V}$				606	850		606					
9fs	Forward transconductance \dagger	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \quad \mathrm{D}=-2 \mathrm{~A}$			2.5			2.5			S			

\dagger Pulse test: pulse duration $\leq 300 \mu$ s, duty cycle $\leq 2 \%$
dynamic

PARAMETER		TEST CONDITIONS			TPS1100, TPS1100Y			UNIT			
		MIN	TYP	MAX							
Q_{g}	Total gate charge				$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$,	$I^{\prime}=-1 A$		5.45		nC
Q_{gs}	Gate-to-source charge		0.87								
Q_{gd}	Gate-to-drain charge		1.4								
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=6 \Omega, \end{aligned}$	$R_{L}=10 \Omega,$ See Figures 1 and 2	$I D=-1 A$,		4.5		ns			
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off delay time					13		ns			
tr_{r}	Rise time					10		ns			
t_{f}	Fall time					2					
trr(SD)	Source-to-drain reverse recovery time	$\mathrm{I}_{\mathrm{F}}=5.3 \mathrm{~A}$,	$\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$			16					

PARAMETER MEASUREMENT INFORMATION

Figure 1. Switching-Time Test Circuit

Figure 2. Switching-Time Waveforms

TYPICAL CHARACTERISTICS
Table of Graphs

Drain current	vs Drain-to-source voltage	3
Drain current	vs Gate-to-source voltage	4
Static drain-to-source on-state resistance	vs Drain current	5
Capacitance	vs Drain-to-source voltage	6
Static drain-to-source on-state resistance (normalized)	vs Junction temperature	7
Source-to-drain diode current	vs Source-to-drain voltage	8
Static drain-to-source on-state resistance	vs Gate-to-source voltage	9
Gate-to-source threshold voltage	vs Junction temperature	10
Gate-to-source voltage	vs Gate charge	11

TYPICAL CHARACTERISTICS

Figure 3
STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs
DRAIN CURRENT

Figure 5

DRAIN CURRENT
VS
GATE-TO-SOURCE VOLTAGE

Figure 4
CAPACITANCE
vs
DRAIN-TO-SOURCE VOLTAGE

Figure 6

TYPICAL CHARACTERISTICS

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE (NORMALIZED) vs JUNCTION TEMPERATURE

Figure 7

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs
GATE-TO-SOURCE VOLTAGE

Figure 9

Figure 8

GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

Figure 10

TYPICAL CHARACTERISTICS

GATE-TO-SOURCE VOLTAGE
Vs
GATE CHARGE

Figure 11

THERMAL INFORMATION

NOTE A. Values are for the D package and are FR4-board mounted only.

APPLICATION INFORMATION

Figure 14. Notebook Load Management

Figure 15. Cellular Phone Output Drive

- Low $r_{\text {DS(on) }} \ldots 0.09 \Omega$ Typ at $V_{G S}=-10 \mathrm{~V}$
- 3 V Compatible
- Requires No External VCC
- TTL and CMOS Compatible Inputs
- $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})=-1.5 \mathrm{~V}$ Max
- Available in Ultrathin TSSOP Package (PW)
- ESD Protection Up to 2 kV per MIL-STD-883C, Method 3015

description

The TPS1101 is a single, low-rds(on), P-channel, enhancement-mode MOSFET. The device has been optimized for $3-\mathrm{V}$ or $5-\mathrm{V}$ power distribution in battery-powered systems by means of the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process. With a maximum $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ of -1.5 V and an IDSS of only $0.5 \mu \mathrm{~A}$, the TPS1101 is the ideal high-side switch for low-voltage, portable battery-management systems where maximizing battery life is a primary concern. The low rDS(on) and excellent ac characteristics (rise time 5.5 ns typical) of the TPS1101 make it the logical choice for low-voltage switching applications such as power switches for pulse-width-modulated (PWM) controllers or motor/bridge drivers.

The ultrathin thin shrink small-outline package or TSSOP (PW) version fits in height-restricted places where other P-channel MOSFETs cannot. The size advantage is especially important where board height restrictions do not allow for an small-outline integrated circuit (SOIC) package. Such applications include notebook computers, personal digital assistants (PDAs), cellular telephones, and PCMCIA cards. For existing designs, the D-packaged version has a pinout common with other P-channel MOSFETs in SOIC packages.
aVAILABLE OPTIONS

T/J	PACKAGED DEVICES \dagger		CHIP FORM (Y)
	SMALL OUTLINE (D)	TSSOP (PW)	
$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	TPS1101D	TPS1101PWLE	TP

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS1101DR). The PW package is only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS1101PWLE). The chip form is tested at $25^{\circ} \mathrm{C}$.

[^0] Texas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments Incorporated.

schematic

NOTE B. For all applications, all source terminals should be connected and all drain terminals should be connected.

TPS1101Y chip information

This chip, when properly assembled, displays characteristics similar to the TPS1101. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

					UNIT
Drain-to-source voltage, $\mathrm{V}_{\text {DS }}$				-15	V
Gate-to-source voltage, V_{GS}				2 or - 15	V
Continuous drain current ($\mathrm{TJ}_{\mathrm{J}}=150^{\circ} \mathrm{C}$), I^{\ddagger}	$\mathrm{V}_{\mathrm{GS}}=-2.7 \mathrm{~V}$	D package	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.62	A
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.39	
		PW package	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	± 0.61	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.38	
	$V_{G S}=-3 V$	D package	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.88	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.47	
		PW package	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.86	
			$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$	± 0.45	
	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	D package	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 1.52	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.71	
		PW package	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 1.44	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.67	
	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$	D package	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 2.30	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 1.04	
		PW package	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 2.18	
			$\mathrm{T}_{A}=125^{\circ} \mathrm{C}$	± 0.98	
Pulsed drain current, ID^{\ddagger}			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	A
Continuous source current (diode conduction), Is			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.1	A
Storage temperature range, $\mathrm{T}_{\text {stg }}$				-55 to 150	${ }^{\circ} \mathrm{C}$
Operating junction temperature range, T_{J}				-40 to 150	${ }^{\circ} \mathrm{C}$
Operating free-air temperature range, T_{A}				-40 to 125	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds				260	${ }^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
\ddagger Maximum values are calculated using a derating factor based on $R_{\theta J A}=158^{\circ} \mathrm{C} / \mathrm{W}$ for the D package and $R_{\theta J A}=176^{\circ} \mathrm{C} / \mathrm{W}$ for the $P W$ package.
These devices are mounted on an FR4 board with no special thermal considerations.
DISSIPATION RATING TABLE

PACKAGE	$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=125^{\circ} \mathrm{C}$ POWER RATING
D	791 mW	$6.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	506 mW	411 mW	158 mW
PW	710 mW	$5.68 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	454 mW	369 mW	142 mW

\ddagger Maximum values are calculated using a derating factor based on $R_{\theta J A}=158^{\circ} \mathrm{C} / \mathrm{W}$ for the D package and $R_{\theta J A}=176^{\circ} \mathrm{C} / \mathrm{W}$ for the PW package. These devices are mounted on an FR4 board with no special thermal considerations.

electrical characteristics at $\mathbf{T}_{\mathbf{J}}^{\mathbf{~}} \mathbf{2 5 ^ { \circ }} \mathbf{C}$ (unless otherwise noted)

static

PARAMETER		TEST CONDITIONS			TPS1101			TPS1101Y			UNIT			
		MIN	TYP	MAX	MIN	TYP	MAX							
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	Gate-to-source threshold voltage				$V_{D S}=V_{G S}, \quad I_{D}=-250 \mu \mathrm{~A}$				-1.25	-1.5		-1.25		V
$V_{S D}$	Source-to-drain voltage (diode-forward voltage) ${ }^{\dagger}$	$I_{S}=-1 \mathrm{~A}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$				-1.04			-1.04		V			
IGSS	Reverse gate current, drain short circuited to source	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$		± 100						nA			
IDSS	Zero-gate-voltage drain current	$V_{D S}=-12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-0.5						$\mu \mathrm{A}$			
				$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-10									
rDS(on)	Static drain-to-source on-state resistance \dagger	$V_{\text {GS }}=-10 \mathrm{~V}$	$\mathrm{I}^{\prime}=-2.5 \mathrm{~A}$		90				90		$\mathrm{m} \Omega$			
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	$\mathrm{D}=-1.5 \mathrm{~A}$		134190			134						
		$\mathrm{V}_{G S}=-3 \mathrm{~V}$	${ }^{\prime} \mathrm{D}=-0.5 \mathrm{~A}$			198	310		198					
		$\mathrm{V}_{\mathrm{GS}}=-2.7 \mathrm{~V}$				232	400		232					
Gfs	Forward transconductance \dagger	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \quad \mathrm{ID}=-2 \mathrm{~A}$			4.3			4.3			S			

\dagger Pulse test: pulse duration $\leq 300 \mu$ s, duty cycle $\leq 2 \%$
dynamic

PARAMETER		TEST CONDITIONS			TPS1101, TPS1101Y			UNIT			
		MIN	TYP	MAX							
Q_{g}	Total gate charge				$V_{D S}=-10 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$,		$I_{D}=-1 A$		11.25		nC
Q_{gs}	Gate-to-source charge		1.5								
$Q_{\text {gd }}$	Gate-to-drain charge		2.6								
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on delay time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=6 \Omega, \end{aligned}$	$R_{L}=10 \Omega,$ See Figures 1 and 2	${ }^{\prime} \mathrm{D}=-1 \mathrm{~A}$,		6.5		ns			
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off delay time					19		ns			
tr_{r}	Rise time					5.5		ns			
t_{f}	Fall time					13					
trr(SD)	Source-to-drain reverse recovery time	$\underline{T}=5.3 \mathrm{~A}$,	$\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$			16					

PARAMETER MEASUREMENT INFORMATION

Figure 1. Switching-Time Test Circuit

Figure 2. Switching-Time Waveforms

TYPICAL CHARACTERISTICS
Table of Graphs

		FIGURE
Drain current	vs Drain-to-source voltage	3
Drain current	vs Gate-to-source voltage	4
Static drain-to-source on-state resistance	vs Drain current	5
Capacitance	vs Drain-to-source voltage	6
Static drain-to-source on-state resistance (normalized)	vs Junction temperature	7
Source-to-drain diode current	vs Source-to-drain voltage	8
Static drain-to-source on-state resistance	vs Gate-to-source voltage	9
Gate-to-source threshold voltage	vs Junction temperature	10
Gate-to-source voltage	vs Gate charge	11

TYPICAL CHARACTERISTICS

Figure 3

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT

Figure 5

DRAIN CURRENT
VS
GATE-TO-SOURCE VOLTAGE

Figure 4

CAPACITANCE \dagger
vs
DRAIN-TO-SOURCE VOLTAGE

Figure 6

TYPICAL CHARACTERISTICS

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE (NORMALIZED)
vs
JUNCTION TEMPERATURE

Figure 7
STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs
GATE-TO-SOURCE VOLTAGE

Figure 9

SOURCE-TO-DRAIN DIODE CURRENT vs
SOURCE-TO-DRAIN VOLTAGE

Figure 8

GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

Figure 10

SINGLE P-CHANNEL ENHANCEMENT-MODE MOSFETS

TYPICAL CHARACTERISTICS

GATE-TO-SOURCE VOLTAGE
vs
GATE CHARGE

Figure 11

THERMAL INFORMATION

 FR4-board-mounted only.

Figure 12

TRANSIENT JUNCTION-TO-AMBIENT
THERMAL IMPEDANCE
vs
PULSE DURATION

NOTE A. Values are for the D package and are FR4-board-mounted only.

Figure 13

APPLICATION INFORMATION

Figure 14. Notebook Load Management

Figure 15. Cellular Phone Output Drive

- Low rDS(on) $\ldots 0.18 \Omega$ at $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$
- 3-V Compatible
- Requires No External $V_{C C}$
- TTL and CMOS Compatible Inputs
- $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}=-1.5 \mathrm{~V}$ Max
- ESD Protection Up to 2 kV per MIL-STD-883C, Method 3015

description

The TPS1120 incorporates two independent p-channel enhancement-mode MOSFETs that have been optimized, by means of the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process, for $3-\mathrm{V}$ or $5-\mathrm{V}$ power distribution in battery-powered systems. With a maximum $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ of -1.5 V and an $\mathrm{I}_{\mathrm{DSS}}$ of only $0.5 \mu \mathrm{~A}$, the TPS1120 is the ideal high-side switch for low-voltage portable battery-management systems, where maximizing battery life is a primary concern. Because portable equipment is potentially subject to electrostatic discharge (ESD), the MOSFETs have built-in circuitry for 2-kV ESD protection. End equipment for the TPS1120 includes notebook computers, personal digital assistants (PDAs), cellular telephones, bar-code scanners, and PCMCIA cards. For existing designs, the TPS1120D has a pinout common with other p-channel MOSFETs in small-outline integrated circuit SOIC packages.
The TPS1120 is characterized for an operating junction temperature range, T_{J}, from $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

TJ	PACKAGED DEVICES $\boldsymbol{*}$	CHIP FORM
	SMALL OUTLINE (D)	TPS1120Y
$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	TPS1120D	TP

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS1120DR). The chip form is tested at $25^{\circ} \mathrm{C}$.

Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.

LinBiCMS is a trademark of Texas Instruments Incorporated.
schematic

\dagger For all applications, both drain pins for each device should be connected.

TPS1120Y chip information

This chip, when properly assembled, displays characteristics similar to the TPS1120C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

TPS1120, TPS1120Y DUAL P-CHANNEL ENHANCEMENT-MODE MOSFETS

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

				UNIT
Drain-to-source voltage, V_{DS}			-15	V
Gate-to-source voltage, V_{GS}			2 or -15	V
	$V_{G S}=-2.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.39	A
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.21	
	$V_{G S}=-3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.5	
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.25	
	$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.74	
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.34	
	$V_{G S}=-10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 1.17	
		$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	± 0.53	
Pulse drain current, l_{D}		$T_{A}=25^{\circ} \mathrm{C}$	± 7	A
Continuous source current (diode conduction), Is		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1	A
Continuous total power dissipation		See Dissipation Rating Table		
Storage temperature range, $\mathrm{T}_{\text {stg }}$			-55 to 150	${ }^{\circ} \mathrm{C}$
Operating junction temperature range, T_{J}			-40 to 150	${ }^{\circ} \mathrm{C}$
Operating free-air temperature range, T_{A}			-40 to 125	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds			260	${ }^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=125^{\circ} \mathrm{C}$ POWER RATING
D	840 mW	$6.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	538 mW	437 mW	169 mW

\ddagger Maximum values are calculated using a derating factor based on $R_{\theta J A}=149^{\circ} \mathrm{C} / \mathrm{W}$ for the package. These devices are mounted on an FR4 board with no special thermal considerations.

TPS1120, TPS1120Y

DUAL P-CHANNEL ENHANCEMENT-MODE MOSFETS

SLVS080A - MARCH 1994 - REVISED AUGUST 1995
electrical characteristics at $\mathbf{T}_{\mathbf{J}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathrm{C}$ (unless otherwise noted)
static

PARAMETER		TEST CONDITIONS		TPS1120			UNIT		
		MIN	TYP	MAX					
$\mathrm{V}_{\text {GS }}$ (th)	Gate-to-source threshold voltage			$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$,	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-1	-1.25	-1.50	V
$V_{S D}$	Source-to-drain voltage (diode forward voltage) \dagger	IS $=-1 \mathrm{~A}$,	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		-0.9		V		
IGSS	Reverse gate current, drain short circuited to source	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=-12 \mathrm{~V}$			± 100	nA		
IDSS	Zero-gate-voltage drain current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-12 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-0.5	$\mu \mathrm{A}$		
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			-10			
rDS(on)	Static drain-to-source on-state resistance \dagger	$\mathrm{V}_{G S}=-10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{~A}$	180			$\mathrm{m} \Omega$		
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	l D $=-0.5 \mathrm{~A}$		291	400			
		$\mathrm{V}_{\mathrm{GS}}=-3 \mathrm{~V}$	l D $=-0.2 \mathrm{~A}$		476	700			
		$\mathrm{V}_{\mathrm{GS}}=-2.7 \mathrm{~V}$			606	850			
gfs	Forward transconductance \dagger	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}$,	$\mathrm{ID}=-2 \mathrm{~A}$		2.5		S		

\dagger Pulse test: pulse width $\leq 300 \mu$ s, duty cycle $\leq 2 \%$

static

PARAMETER		TEST CONDITIONS		TPS1120Y			UNIT		
		MIN	TYP	MAX					
V_{GS} (th)	Gate-to-source threshold voltage			$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$,	l D $=-250 \mu \mathrm{~A}$		-1.25		V
$\mathrm{V}_{\text {SD }}$	Source-to-drain voltage (diode forward voltage) \dagger	IS $=-1 \mathrm{~A}$,	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		-0.9		V		
rDS(on)	Static drain-to-source on-state resistance \dagger	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$	$\mathrm{I}^{\text {D }}=-1.5 \mathrm{~A}$		180		$\mathrm{m} \Omega$		
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$	$\mathrm{I} D=-0.5 \mathrm{~A}$		291				
		$\mathrm{V}_{\mathrm{GS}}=-3 \mathrm{~V}$	$\mathrm{I}=-0.2 \mathrm{~A}$		476				
		$\mathrm{V}_{\mathrm{GS}}=-2.7 \mathrm{~V}$			606				
gfs	Forward transconductance \dagger	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \quad \mathrm{ID}=-2 \mathrm{~A}$			2.5		S		

\dagger Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$
dynamic

PARAMETER		TEST CONDITIONS			TPS1120, TPS1120Y			UNIT		
			MIN	TYP	MAX					
Q_{g}	Total gate charge			$V_{D S}=-10 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}$,	$l^{\prime}=-1 A$		5.45		nC
Q_{gs}	Gate-to-source charge		0.87							
Q_{gd}	Gate-to-drain charge		1.4							
$\mathrm{t}_{\mathrm{d}(\text { (on) }}$	Turn-on delay time	$\begin{aligned} & V_{D D}=-10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=6 \Omega, \end{aligned}$	$R_{L}=10 \Omega,$ See Figures 1 and 2	$\mathrm{I} D=-1 \mathrm{~A},$		4.5		ns		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off delay time					13		ns		
tr_{r}	Rise time					10		ns		
$\mathrm{t}_{\text {f }}$	Fall time					2				
trr(SD)	Source-to-drain reverse recovery time	$\mathrm{l}=5.3 \mathrm{~A}$,	$\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$			16				

PARAMETER MEASUREMENT INFORMATION

Figure 1. Switching-Time Test Circuit

Figure 2. Switching-Time Waveforms

TYPICAL CHARACTERISTICS \dagger

Table of Graphs

		FIGURE
Drain current	vs Drain-to-source voltage	3
Drain current	vs Gate-to-source voltage	4
Static drain-to-source on-state resistance	vs Drain current	5
Capacitance	vs Drain-to-source voltage	6
Static drain-to-source on-state resistance (normalized)	vs Junction temperature	7
Source-to-drain diode current	vs Source-to-drain voltage	8
Static drain-to-source on-state resistance	vs Gate-to-source voltage	9
Gate-to-source threshold voltage	vs Junction temperature	10
Gate-to-source voltage	vs Gate charge	11

DRAIN CURRENT
vs
DRAIN-TO-SOURCE VOLTAGE

Figure 3

DRAIN CURRENT
VS
GATE-TO-SOURCE VOLTAGE

Figure 4
\dagger All characteristics data applies for each independent MOSFET incorporated on the TPS1120.

TYPICAL CHARACTERISTICS

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE
vS
DRAIN CURRENT

Figure 5

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE (NORMALIZED) vs
JUNCTION TEMPERATURE

Figure 7

CAPACITANCE
VS
DRAIN-TO-SOURCE VOLTAGE

Figure 6

SOURCE-TO-DRAIN DIODE CURRENT
vs
SOURCE-TO-DRAIN VOLTAGE

Figure 8

TYPICAL CHARACTERISTICS

Figure 9

GATE-TO-SOURCE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE

Figure 10

GATE-TO-SOURCE VOLTAGE
vs
GATE CHARGE

Figure 11

NOTE A: FR4-board-mounted only
Figure 12
TRANSIENT JUNCTION-TO-AMBIENT THERMAL IMPEDANCE
vs
PULSE DURATION

NOTE A: FR4-board-mounted only
Figure 13

THERMAL INFORMATION

The profile of the heat sinks used for thermal measurements is shown in Figure 14. Board type is FR4 with 1-oz copper and $1-0 z$ tin/lead ($63 / 37$) plate. Use of vias or through-holes to enhance thermal conduction was avoided.
Figure 15 shows a family of $R_{\theta J A}$ curves. The $R_{\theta J A}$ was obtained for various areas of heat sinks while subject to air flow. Power remained fixed at 0.25 W per device or 0.50 W per package. This testing was done at $25^{\circ} \mathrm{C}$.

As Figure 14 illustrates, there are two separated heat sinks for each package. Each heat sink is coupled to the lead that is internally tied to a single MOSFET source and is half the total area, as shown in Figure 15. For example, if the total area shown in Figure 15 is $4 \mathrm{~cm}^{2}$, each heat sink is $2 \mathrm{~cm}^{2}$.

Figure 14. Profile of Heat Sinks
THERMAL RESISTANCE, JUNCTION-TO-AMBIENT

Figure 15

THERMAL INFORMATION

Figure 16 illustrates the thermally enhanced (SO) lead frame. Attaching the two MOSFET dies directly to the source terminals allows maximum heat transfer into a power plane.

Figure 16. TPS1120 Dual MOSFET SO-8 Lead Frame

APPLICATION INFORMATION

Figure 17. Notebook Load Management

Figure 18. Cellular Phone Output Drive

- $95-\mathrm{m} \Omega$ Max (5.5-V Input) High-Side MOSFET Switch With Logic Compatible Enable Input
- Short-Circuit and Thermal Protection
- Typical Short-Circuit Current Limits: 0.4 A, TPS2010; 1.2 A, TPS2011; 2 A, TPS2012; 2.6 A, TPS2013
- Electrostatic-Discharge Protection, 12-kV Output, 6-kV All Other Terminals
- Controlled Rise and Fall Times to Limit Current Surges and Minimize EMI
- SOIC-8 Package Pin Compatible With the Popular Littlefoot ${ }^{\text {™ }}$ Series When GND Is Connected
- 2.7-V to 5.5-V Operating Range
- 10- $\mu \mathrm{A}$ Maximum Standby Current
- Surface-Mount SOIC-8 and TSSOP-14 Packages
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Junction Temperature Range

	D PACKAGE (TOP VIEW)
GND 1	1
IN 2	27
in 3	3
EN ${ }^{4}$	4

PW PACKAGE

 (TOP VIEW)| GND 1 | 14 |
| :---: | :---: |
| IN0 2 | 13 |
| IN [3 | 12 |
| in 4 | 11 |
| IN 5 | 10 |
| IN 6 | |
| 人7 | |

description

The TPS201x family of power-distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The high-side switch is a $95-\mathrm{m} \Omega \mathrm{N}$-channel MOSFET. Gate drive is provided by an internal driver and charge pump designed to control the power switch rise times and fall times to minimize current surges during switching. The charge pump operates at 100 kHz , requires no external components, and allows operation from supplies as low as 2.7 V . When the output load exceeds the current-limit threshold or a short circuit is present, the TPS201x limits the output current to a safe level by switching into a constant-current mode. Continuous heavy overloads and short circuits increase power dissipation in the switch and cause the junction temperature to rise. If the junction temperature reaches approximately $180^{\circ} \mathrm{C}$, a thermal protection circuit shuts the switch off to prevent damage. Recovery from thermal shutdown is automatic once the device has cooled sufficiently.

The members of the TPS201x family differ only in short-circuit current threshold. The TPS2010 is designed to limit at 0.4-A load; the other members of the family limit at 1.2 A, 2 A , and 2.6 A (see the available options table). The TPS201x family is available in 8-pin small-outline integrated circuit (SOIC) and 14-pin thin shink small-outline (TSSOP) packages and operates over a junction temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Versions in the 8-pin SOIC package are drop-in replacements for Siliconix's Littlefoot ${ }^{\text {TM }}$ power PMOS switches, except that GND must be connected.

AVAILABLE OPTIONS

TJ	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT OUTPUT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$ (A)	PACKAGED DEVICES		CHIP FORM (Y)
			SOIC (D) \dagger	$\begin{aligned} & \hline \text { TSSOP } \\ & \text { (PW) } \ddagger \end{aligned}$	
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	0.2	0.4	TPS2010D	TPS2010PWLE	TPS2010Y
	0.6	1.2	TPS2011D	TPS2011PWLE	TPS2011Y
	1	2	TPS2012D	TPS2012PWLE	TPS2012Y
	1.5	2.6	TPS2013D	TPS2013PWLE	TPS2013Y

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2010DR).
\ddagger The PW package is only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS2010PWLE).
Littlefoot is a trademark of Siliconix.

functional block diagram

Terminal Functions

TERMINAL			I/O	
NAME	NO.			
	DESCRIPTION			
$\overline{\text { EN }}$	4	7	1	Enable input. Logic low turns power switch on.
GND	1	1	1	Ground
IN	2,3	$2-6$	1	Input voltage
OUT	$5-8$	$8-14$	O	Power-switch output

detailed description

power switch

The power switch is an N -channel MOSFET with a maximum on-state resistance of $95 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}\right)$, configured as a high-side switch.

charge pump

An internal $100-\mathrm{kHz}$ charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2 -ms to 4 -ms range instead of the microsecond or nanosecond range for a standard FET.

enable ($\overline{E N}$)

A logic high on the $\overline{E N}$ input turns off the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$. A logic zero input restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

current sense

A sense FET monitors the current supplied to the load. The sense FET is a much more efficient way to measure current than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its linear region, which switches the output into a constant current mode and simply holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts the power switch off when the junction temperature rises to approximately $180^{\circ} \mathrm{C}$. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

TPS201xY chip information

This chip, when properly assembled, displays characteristics similar to the TPS201xC. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Continuous total power dissipation .. See Dissipation Rating Table

Lead temperature soldering $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	145 mW
PW	700 mw	$5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	448 mW	140 mW

recommended operating conditions

		MIN	MAX	UNIT
Input voltage, $\mathrm{V}_{1(\mathrm{IN})}$		2.7	5.5	V
Input voltage, V_{1} at EN		0	5.5	V
Continuous output current, lo	TPS2010	0	0.2	A
	TPS2011	0	0.6	
	TPS2012	0	1	
	TPS2013	0	1.5	
Operating virtual junction temperature, T_{J}		-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=0 \mathrm{~V}$ (unless otherwise noted)
power switch

PARAMETER	TEST CONDITIONSt		TPS2010, TPS2011TPS2012, TPS2013		UNIT
			MIN TYP	MAX	
On-state resistance	$\mathrm{V}_{1}(\mathrm{IN})=5.5 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	75	95	$\mathrm{m} \Omega$
	$\mathrm{V}_{1}(\mathrm{IN})=4.5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	80	110	
	$\mathrm{V}_{1}(\mathrm{IN})=3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	120	175	
	$\mathrm{V}_{1}(\mathrm{IN})=2.7 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	140	215	
Output leakage current	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{I}}(\mathrm{IN})$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.001	1	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		10	
Output rise time	$\mathrm{V}_{1(1 \mathrm{~N})}=5.5 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \quad \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	4		ms
	$\mathrm{V}_{1}(\mathrm{IN})=2.7 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \quad \mathrm{C}_{L}=1 \mu \mathrm{~F}$	3.8		
Output fall time	$\mathrm{V}_{1}(\mathrm{IN})=5.5 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \quad \mathrm{C}_{L}=1 \mu \mathrm{~F}$	3.9		ms
	$\mathrm{V}_{1}(1 \mathrm{~N})=2.7 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \quad \mathrm{C}_{L}=1 \mu \mathrm{~F}$	3.5		

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. enable input (EN)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TPS2010, TPS2011 } \\ & \text { TPS2012, TPS2013 } \end{aligned}$			UNIT
		MIN	TYP	MAX	
High-level input voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{~N})} \leq 5.5 \mathrm{~V}$	2			V
Low-level input voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{~N})} \leq 5.5 \mathrm{~V}$			0.8	V
	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}}(\mathrm{IN})<4.5 \mathrm{~V}$			0.4	
Input current	$\overline{\mathrm{EN}}=0 \mathrm{~V}$ or $\overline{\mathrm{EN}}=\mathrm{V}_{1}(\mathrm{IN})$	-0.5		0.5	$\mu \mathrm{A}$
tpLH Propagation (delay) time, low-to-high-level output	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$			20	ms
tPHL Propagation (delay) time, high-to-low-level output	$\mathrm{C}_{L}=1 \mu \mathrm{~F}$			40	

current limit

PARAMETER	TEST CONDITIONSt		TPS2010, TPS2011			UNIT
			MIN	TYP	MAX	
Short-circuit current	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{1}(\mathrm{IN})=5.5 \mathrm{~V}, \end{aligned}$ OUT connected to GND, device enabled into short circuit	TPS2010	0.22	0.4	0.6	A
		TPS2011	0.66	1.2	1.8	
		TPS2012	1.1	2	3	
		TPS2013	1.65	2.6	4.5	

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
supply current

PARAMETER	TEST CONDITIONS		TPS2010, TPS2011 TPS2012, TPS2013			UNIT
			MIN	TYP	MAX	
Supply current, low-level output	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{l}}(\mathrm{IN})$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		0.015	1	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			10	
Supply current, high-level output	$\overline{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		73	100	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			100	

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{1(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=\mathbf{0} \mathrm{V}, \mathrm{T}_{\mathbf{J}}=\mathbf{2 5 ^ { \circ } \mathrm { C }}$ (unless otherwise noted)
power switch

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
current limit

PARAMETER	TEST CONDITIONS \dagger	TPS2010Y, TPS2011Y TPS2012Y, TPS2013Y			UNIT
		MIN	TYP	MAX	
Short-circuit current	$\mathrm{V}_{1(\mathbb{N})}=5.5 \mathrm{~V},$ OUT connected to GND, Device enabled into short circuit		0.4		A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
supply current

PARAMETER	TEST CONDITIONS	TPS2010Y, TPS2011Y TPS2012Y, TPS2013Y	UNIT
		MIN TYP MAX	
	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{I}(\mathrm{IN})}$	0.015	$\mu \mathrm{~A}$
Supply current, high-level output	$\overline{\mathrm{EN}}=0 \mathrm{~V}$	73	$\mu \mathrm{~A}$

Figure 1. Propagation Delay and
Rise Time With $1-\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$

Figure 3. Propagation Delay and
Rise Time With $1-\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathbf{I}(\mathrm{IN})}=2.7 \mathrm{~V}$

Figure 2. Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathbf{l}(\mathrm{IN})}=5.5 \mathrm{~V}$

Figure 4. Propagation Delay and
Fall Time With $1-\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=2.7 \mathrm{~V}$

TPS2010, TPS2011, TPS2012, TPS2013, TPS2010Y POWER-DISTRIBUTION SWITCHES

PARAMETER MEASUREMENT INFORMATION

Figure 5. TPS2010, Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$

Figure 7. TPS2012, Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$

Figure 6. TPS2011, Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5.5 \mathrm{~V}$

Figure 8. TPS2013 - Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{\mathbf{I}(\mathrm{IN})}=5.5 \mathrm{~V}$

PARAMETER MEASUREMENT INFORMATION

Figure 9. TPS2010 - Threshold Current, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$

Figure 11. TPS2012 - Threshold Current, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$

Figure 10. TPS2011 - Threshold Current, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$

Figure 12. TPS2013 - Threshold Current, $\mathrm{V}_{1(\mathrm{IN})}=5.5 \mathrm{~V}$

TPS2010, TPS2011, TPS2012, TPS2013, TPS2010Y POWER-DISTRIBUTION SWITCHES

PARAMETER MEASUREMENT INFORMATION

Figure 13. Turned-On (Enabled) Into Short Circuit, $\mathrm{V}_{\mathbf{l}(\mathrm{N})}=5.5 \mathrm{~V}$

Figure 14. Test Circuit and Voltage Waveforms

TPS2010, TPS2011, TPS2012, TPS2013, TPS2010Y POWER-DISTRIBUTION SWITCHES

TYPICAL CHARACTERISTICS

Figure 15
RISE TIME
vs
OUTPUT CURRENT

Figure 17

Figure 16
FALL TIME
vs
OUTPUT CURRENT

Figure 18

TYPICAL CHARACTERISTICS

Figure 19
SUPPLY CURRENT (OUTPUT ENABLED)
vs
input Voltage

Figure 21

SUPPLY CURRENT (OUTPUT DISABLED) VS JUNCTION TEMPERATURE

Figure 20
SUPPLY CURRENT (OUTPUT DISABLED)
input Voltage

Figure 22

TYPICAL CHARACTERISTICS

Figure 23

Figure 25

ON-STATE RESISTANCE
vs
INPUT VOLTAGE

Figure 24
SHORT-CIRCUIT CURRENT
vS
INPUT VOLTAGE

Figure 26

TYPICAL CHARACTERISTICS

Figure 27

SHORT-CIRCUIT CURRENT JUNCTION TEMPERATURE

Figure 28

APPLICATION INFORMATION

Figure 29. Typical Application

power supply considerations

The TPS201x family has multiple inputs and outputs, which must be connected in parallel to minimize voltage drop and prevent unnecessary power dissipation.

A $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. A high-value electrolytic capacitor is also desirable when the output load is heavy or has large paralleled capacitors. Bypassing the output with a $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to electrostatic discharge (ESD).

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike sense resistors and polyfuses, sense FETs do not increase series resistance to the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Shutdown only occurs if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}$ has been applied (see Figure 30). The TPS201x senses the short and immediately switches into a constant-current output.

Under the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents flow for a short time before the current-limit circuit can react (see Figures 5, 6, 7, and 8). After the current-limit circuit has tripped, the device limits normally.
Under the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached (see Figures $9,10,11$, and 12). The TPS201x family is capable of delivering currents up to the current-limit threshold without damage. Once the threshold has been reached, the device switches into its constant-current mode.

APPLICATION INFORMATION

overcurrent (continued)

Figure 30. Turned-On (Enabled) Into Short Circuit, $\mathrm{V}_{\mathbf{I}(\mathrm{IN})}=5.5 \mathrm{~V}$

power dissipation and junction temperature

The low on resistance of the N-channel MOSFET allows small surface-mount packages, such as SOIC or TSSOP to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{\text {on }}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{o n}$ from Figure 23. Next calculate the power dissipation using:

$$
P_{D}=r_{o n} \times 1^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature
$\mathrm{R}_{\theta J \mathrm{~A}}=$ Thermal resistance $\mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{TSSOP}=179^{\circ} \mathrm{C} / \mathrm{W}$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

APPLICATION INFORMATION

thermal protection

Thermal protection is provided to prevent damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS201x into its constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts it off. The switch remains off until the junction has dropped approximately $20^{\circ} \mathrm{C}$. The switch continues to cycle in this manner until the load fault or input power is removed.

ESD protection

All TPS201x terminals incorporate ESD-protection circuitry designed to withstand a $6-\mathrm{kV}$ human-body-model discharge as defined in MIL-STD-883C. Additionally, the output is protected from discharges up to 12 kV .

- 50-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit and Thermal Protection
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- Typical Rise Time . . . 6.1 ms
- Undervoltage Lockout
- Maximum Standby Supply

Current . . . $10 \mu \mathrm{~A}$

- No Drain-Source Back-Gate Diode
- Available in 8-pin SOIC and 14-Pin TSSOP Packages
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

The TPS201xA family of power distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. These devices are $50-\mathrm{m} \Omega \mathrm{N}$-channel MOSFET high-side power switches. The switch is controlled by a logic enable compatible with $5-\mathrm{V}$ logic and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .

When the output load exceeds the current-limit threshold or a short is present, the TPS201xA limits the output current to a safe level by switching into a constant-current mode. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS201xA devices differ only in short-circuit current threshold. The TPS2010A limits at 0.3-A load, the TPS2011 at 0.9-A load, the TPS2012A at 1.5-A load, and the TPS2013A at 2.2-A load (see Available Options). The TPS201xA is available in an 8-pin small-outline integrated-circuit (SOIC) package and in a 14-pin thin-shrink small-outline package (TSSOP) and operates over a junction temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$ (A)	PACKAGED DEVICES	
				SMALL OUTLINE (D) \dagger	TSSOP (PWP) ${ }^{\ddagger}$
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.2	0.3	TPS2010AD	TPS2010APWPR
		0.6	0.9	TPS2011AD	TPS2011APWPR
		1	1.5	TPS2012AD	TPS2012APWPR
		1.5	2.2	TPS2013AD	TPS2013APWPR

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2010DR)
\ddagger The PWP package is only available left-end taped-and-reeled.

TPS201xA functional block diagram

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	$\begin{gathered} \hline \text { NO. } \\ \text { D. } \end{gathered}$	NO. PWP		
EN	4	7	1	Enable input. Logic low turns on power switch.
GND	1	1	1	Ground
IN	2, 3	2-6	1	Input voltage
OUT	5, 6, 7, 8	8-14	0	Power-switch output

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of $50 \mathrm{~m} \Omega\left(\mathrm{~V}_{1(\mathrm{IN})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to $9-\mathrm{ms}$ range.

enable ($\overline{E N}$)

The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$ when a logic high is present on $\overline{\mathrm{EN}}$. A logic zero input on $\overline{\mathrm{EN}}$ restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately $140^{\circ} \mathrm{C}$. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately $20^{\circ} \mathrm{C}$, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

TPS2010A, TPS2011A, TPS2012A, TPS2013A POWER-DISTRIBUTION SWITCHES

SLVS189-DECEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

Input voltage range, $\mathrm{V}_{\text {I(EN) }}$... -0.3 V to 6 V

Continuous total power dissipation . See Dissipation Rating Table

Lead temperature soldering $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
PWP	700 mW	$5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	448 mW	364 mW

recommended operating conditions

		MIN	MAX	UNIT
Input voltage	$\mathrm{V}_{\mathrm{I}}(\mathrm{IN})$	2.7	5.5	V
	$\mathrm{V}_{1}(\overline{\mathrm{EN}})$	0	5.5	V
Continuous output current, lo	TPS2010A	0	0.2	A
	TPS2011A	0	0.6	
	TPS2012A	0	1	
	TPS2013A	0	1.5	
Operating virtual junction temperature, T_{J}		-40	125	${ }^{\circ} \mathrm{C}$

electro static discharge (ESD) protection

	MIN	MAX
Uuman Body Model MIL-STD-883C	2	kV
Machine model	kV	

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathbf{l}_{\mathrm{O}}=$ rated current, $\overline{\mathrm{EN}}=\mathbf{0} \mathrm{V}$ (unless otherwise noted)

power switch

PARAMETER		TEST CONDITIONS \dagger			MIN	TYP	MAX	UNIT
rDS(on)	Static drain-source on-state resistance	$\mathrm{V}_{1}(\mathrm{IN})=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$1 \mathrm{O}=1.5 \mathrm{~A}$		33	36	$\mathrm{m} \Omega$
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$1 \mathrm{O}=1.5 \mathrm{~A}$		38	46	
		$\mathrm{V}_{1}(\mathrm{IN})=5 \mathrm{~V}$,	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$,	$\mathrm{l}=1.5 \mathrm{~A}$		44	50	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I}=1.5 \mathrm{~A}$		37	41	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$\mathrm{I}=1.5 \mathrm{~A}$		43	52	
		$\mathrm{V}_{1}(\mathrm{IN})=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{I}=1.5 \mathrm{~A}$		51	61	
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I}=0.18 \mathrm{~A}$		30	34	
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$\mathrm{l} \mathrm{O}=0.18 \mathrm{~A}$		35	41	
		$\mathrm{V}_{1}(\mathrm{IN})=5 \mathrm{~V}$,	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$,	$\mathrm{I}=0.18 \mathrm{~A}$		39	47	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$,	$\mathrm{I}=0.18 \mathrm{~A}$		33	37	
		$\mathrm{V}_{1}(\mathrm{IN})=3.3 \mathrm{~V}$,	$\mathrm{T}_{J}=85^{\circ} \mathrm{C}$,	$\mathrm{I}=0.18 \mathrm{~A}$		39	46	
		$\mathrm{V}_{1(1 \mathrm{~N})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{I}=0.18 \mathrm{~A}$		44	56	
t_{r}	Rise time, output	$\begin{aligned} & \mathrm{V}_{1(\mathrm{IN})}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$			6.1		ms
		$\begin{aligned} & \mathrm{V}_{\mathrm{l}(\mathrm{IN})=2.7 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$			8.6		
tf_{f}	Fall time, output	$\begin{aligned} & \mathrm{V}_{1(\mathrm{IN})}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$			3.4		ms
		$\begin{aligned} & \mathrm{V}_{1(\mathrm{~N})}=2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$			3		

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. enable input ($\overline{\mathrm{EN}}$)

PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{IN})} \leq 5.5 \mathrm{~V}$	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{1(\mathrm{IN})} \leq 5.5 \mathrm{~V}$		0.8	V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{~N})} \leq 4.5 \mathrm{~V}$		0.5	
1	Input current	$\overline{\mathrm{EN}}=0 \mathrm{~V}$ or $\overline{\mathrm{EN}}=\mathrm{V}_{1(\mathrm{IN})}$	-0.5	0.5	$\mu \mathrm{A}$
$t_{\text {on }}$	Turn-on time	$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$		20	
$t_{\text {off }}$	Turn-off time	$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$		40	

current limit

	PARAMETER	TEST CONDITIONSt		MIN	TYP	MAX	UNIT
Ios	Short-circuit output current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$, OUT connected to GND, Device enable into short circuit	TPS2010A	0.22	0.3	0.4	A
			TPS2011A	0.66	0.9	1.1	
			TPS2012A	1.1	1.5	1.8	
			TPS2013A	1.65	2.2	2.7	

[^1]
TPS2010A, TPS2011A, TPS2012A, TPS2013A

 POWER-DISTRIBUTION SWITCHES $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=\mathbf{0} \mathrm{V}$ (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
Supply current, low-level output	No Load on OUT	$\left.\overline{\mathrm{EN}}=\mathrm{V}_{1(1 \mathrm{~N}}\right)$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.3	1	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			10	
Supply current, high-level output	No Load on OUT	$\overline{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		58	75	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		75	100	
Leakage current	OUT connected to ground	$\overline{\mathrm{EN}}=\mathrm{V}_{1(1 \mathrm{~N}}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		10		$\mu \mathrm{A}$

undervoltage lockout

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low-level input voltage		2	2.5	V	
Hysteresis	$T_{J}=25^{\circ} \mathrm{C}$		100	mV	

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms
Table of Timing Diagrams

	FIGURE
Turn-on Delay and Rise TIme	2
Turn-off Delay and Fall Time	3
Turn-on Delay and Rise TIme with $1-\mu$ F Load	4
Turn-off Delay and Rise TIme with $1-\mu$ F Load	5
Device Enabled into Short	6
TPS2010A, TPS2011A, TPS2012A, and TPS2013A, Short Applied to an Enabled Device	$7,8,9,10$
TPS2010A, TPS2011A, TPS2012A, and TPS2013A, Ramped Load on Enabled Device	$11,12,13$,
TPS2013A, Inrush Current	14
$7.9-\Omega$ Load Connected to an Enabled TPS2010A Device	15
$3.7-\Omega$ Load Connected to an Enabled TPS2010A Device	16
$3.7-\Omega$ Load Connected to an Enabled TPS2011A Device	17
$2.6-\Omega$ Load Connected to an Enabled TPS2011A Device	18
$2.6-\Omega$ Load Connected to an Enabled TPS2012A Device	19
$1.2-\Omega$ Load Connected to an Enabled TPS2012A Device	20
$1.2-\Omega$ Load Connected to an Enabled TPS2013A Device	21
$0.9-\Omega$ Load Connected to an Enabled TPS2013A Device	22

PARAMETER MEASUREMENT INFORMATION

Figure 2. Turn-on Delay and Rise Time

Figure 4. Turn-on Delay and Rise Time With $1-\mu$ F Load

Figure 3. Turn-off Delay and Fall Time

Figure 5. Turn-off Delay and Fall Time with $1-\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 6. Device Enabled into Short

Figure 8. TPS2011A, Short Applied to an Enabled Device

Figure 7. TPS2010A, Short Applied to an Enabled Device

Figure 9. TPS2012A, Short Applied to an Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 10. TPS2013A, Short Applied to an Enabled Device

Figure 12. TPS2011A, Ramped Load on Enabled Device

Figure 11. TPS2010A, Ramped Load on Enabled Device

Figure 13. TPS2012A, Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 14. TPS2013A, Ramped Load on Enabled Device

Figure 16. 7.9- Ω Load Connected to an Enabled TPS2010A Device

Figure 15. TPS2013A, Inrush Current

Figure 17. 3.7- Ω Load Connected to an Enabled TPS2010A Device

PARAMETER MEASUREMENT INFORMATION

Figure 18. 3.7- Ω Load Connected to an Enabled TPS2011A Device

Figure 20. 2.6- Ω Load Connected to an Enabled TPS2012A Device

Figure 19. 2.6- Ω Load Connected to an Enabled TPS2011A Device

Figure 21. 1.2- Ω Load Connected to an Enabled TPS2012A Device

PARAMETER MEASUREMENT INFORMATION

Figure 22. 1.2- Ω Load Connected to an Enabled TPS2013A Device

Figure 23. 0.9- Ω Load Connected to an Enabled TPS2013A Device

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-on delay time	vs Output voltage	24
t_{d} (off)	Turn-off delay time	vs Input voltage	25
tr_{r}	Rise time	vs Load current	26
t_{f}	Fall time	vs Load current	27
	Supply current (enabled)	vs Junction temperature	28
	Supply current (disabled)	vs Junction temperature	29
	Supply current (enabled)	vs Input voltage	30
	Supply current (disabled)	vs Input voltage	31
		vs Input voltage	32
OS	Shor-circuit current limit	vs Junction temperature	33
		vs Input voltage	34
	Statio	vs Junction temperature	35
'DS	Static drain-source on-state resistance	vs Input voltage	36
		vs Junction temperature	37
V_{1}	Input voltage	Undervoltage lockout	38

TURN-ON DELAY TIME
VS
OUTPUT VOLTAGE

Figure 24

TURN-OFF DELAY TIME
VS
INPUT VOLTAGE

Figure 25

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 30
SHORT-CIRCUIT CURRENT LIMIT
vs
INPUT VOLTAGE

Figure 32

SUPPLY CURRENT (DISABLED)
vs
input voltage

Figure 31
SHORT-CIRCUIT CURRENT LIMIT

Figure 33

TYPICAL CHARACTERISTICS

Figure 34

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

Figure 36

STATIC DRAIN-SOURCE ON-STATE RESISTANCE
vs

Figure 35
STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 37

TYPICAL CHARACTERISTICS

Figure 38

APPLICATION INFORMATION

Figure 39. Typical Application

power supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output and input pins is recommended when the output load is heavy. This reduces power supply transients that may cause ringing on the input. Also, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

APPLICATION INFORMATION

overcurrent (continued)

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{1(\mathrm{IN})}$ has been applied (see Figure 6). The TPS201xA senses the short and immediately switches into a constant-current output.

In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figures 16-23). After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figures 11-14). The TPS201xA is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ from Figures 34-37. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
\begin{aligned}
& T_{A}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C} \\
& R_{\theta J A}=\text { Thermal resistance } \mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS201xA into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

APPLICATION INFORMATION

undervoltage lock-out (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

generic hot-plug applications (see Figure 40)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Because of the controlled rise times and fall times of the TPS201xA series, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS201XA also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 40. Typical Hot-Plug Implementation
By placing the TPS201xA between the V_{CC} input and the rest of the circuitry, the input power will reach this device first after insertion. The typical rise time of the switch is approximately 9 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

- 95-m Ω Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit Protection and Thermal Protection
- Logic Overcurrent Output
- 4-V to 7-V Operating Range
- Enable Input Compatible With 3-V and 5-V Logic
- Controlled Rise and Fall Times Limit Current Surges and Minimize EMI
- Undervoltage Lockout Ensures That Switch is Off at Start-Up
- 10- $\mu \mathrm{A}$ Maximum Standby Current
- Available in Space-Saving 8-Pin SOIC and 8-Pin PDIP
- $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Junction Temperature Range
- 12-kV Output, 6-kV Input ElectrostaticDischarge Protection

description

The TPS2014 and TPS2015 power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The high-side switch is a $95-\mathrm{m} \Omega \mathrm{n}$-channel MOSFET. The switch is controlled by a logic enable that is compatible with $3-\mathrm{V}$ and $5-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump designed to control the power switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 4 V .

When the output load exceeds the current-limit threshold or a short is present, the TPS20xx limits the output current to a safe level by switching into a constant-current mode, and the overcurrent logic output is set to low. Continuous heavy overloads and short circuits will increase the power dissipation in the switch and cause the junction temperature to rise. A thermal protection circuit is implemented, which shuts the switch off to prevent damage when the junction temperature exceeds its thermal limit. An undervoltage lockout is provided to ensure the switch is in the off state at start-up.
The TPS2014 and TPS2015 differ only in short-circuit current limits. The TPS2014 is designed to limit at 1.2 A load and the TPS2015 limits at 2 A (see the available options table). The TPS20xx is available in 8-pin small-outline integrated circuit (SOIC) and 8-pin PDIP packages, and operates over a junction temperature range of $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$	PACKAGED DEVICES		CHIP FORM (Y)
			SOIC (D) \dagger	PDIP (P)	
$0^{\circ} \mathrm{C} \mathrm{TO} 85^{\circ} \mathrm{C}$	0.6 A	1.2 A	TPS2014D	TPS2014P	TPS2014Y
	1 A	2 A	TPS2015D	TPS2015P	TPS2015Y

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2014DR).

functional block diagram

TPS20xxY chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS20xx. Ultrasonic bonding may be used on the doped aluminium bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

TPS2014, TPS2015 POWER DISTRIBUTION SWITCHES

Terminal Functions

TERMINAL		I/O	
NAME	NO.		
$\overline{\mathrm{EN}}$	4	I	Enable input. Logic low at $\overline{\mathrm{EN}}$ turns the power switch on.
GND	1	I	Ground
$\overline{\mathrm{IN}}$	2,3	I	Input voltage
$\overline{\mathrm{OC}}$	5	O	$\overline{\mathrm{OC}}$ is asserted active low during a fault condition.
OUT	$6-8$	O	Power switch output

detailed description

power switch

The power switch is an n-channel MOSFET with a maximum on-state resistance of $95 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{I}(\mathrm{IN})}=5 \mathrm{~V}\right)$, configured as a high-side switch.

charge pump

An internal $100-\mathrm{kHz}$ charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 4 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the $2-\mathrm{ms}$ to $4-\mathrm{ms}$ range instead of the microsecond or nanosecond range for a standard FET.
enable ($\overline{\mathrm{EN}}$)
A logic high on $\overline{E N}$ turns off the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$. A logic zero input restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathrm{OC}}$)

$\overline{\mathrm{OC}}$ is an open-drain logic output that is asserted (active low) when an overload or short circuit is encountered. The output remains asserted until the overload or short-circuit condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET provides a much more efficient way to measure current than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its linear region, which switches the output into a constant current mode and simply holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately to $180^{\circ} \mathrm{C}$. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately $20^{\circ} \mathrm{C}$, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

An internal voltage sense monitors the input voltage. When the input voltage is below 3.2 V nominal, a control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{l} (see Note1)	0.3 V to 7 V
Output voltage range, V_{O} (see Note1)	-0.3 V to $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}+0.3 \mathrm{~V}$
Input voltage range, V_{1} at EN	-0.3 V to 7 V
Continuous output current, I_{0}	internally limited
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T_{J}	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
	$260^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	TA $^{2} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA	$\mathbf{T}_{A}=70^{\circ} \mathrm{C}$	$\mathbf{T A}_{A}=125^{\circ} \mathrm{C}$ POWER RATING
POWER RATING				

recommended operating conditions

		MIN	MAX
UNIT			
Input voltage, V_{1}	4	5.5	V
Input voltage, V_{1} at $\overline{\mathrm{EN}}$	0	5.5	V
Continuous output current, IO	TPS2014	0	0.6
	TPS2015	0	1
Operating virtual junction temperature, T_{J}	0	0	125

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{l} O=$ rated current, $\mathrm{EN}=0 \mathrm{~V}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONSt			MIN TYP	MAX	UNIT
ron	On-state resistance	$\mathrm{V}_{1}=5.5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		75	95	$\mathrm{m} \Omega$
		$\mathrm{V}_{1}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		80	95	
		$\mathrm{V}_{1}=4.5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		90	110	
		$\mathrm{V}_{1}=4 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		96	110	
$1 / \mathrm{kg}$	Leakage current, output	$\overline{\mathrm{EN}}=\mathrm{V}_{1}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.001	1	$\mu \mathrm{A}$
		$\overline{\mathrm{EN}}=\mathrm{V}_{1}$,	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			10	
t_{r}	Rise time, output	$\mathrm{V}_{1}=5.5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$C_{L}=1 \mu \mathrm{~F}$	4		ms
		$\mathrm{V}_{1}=4 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$C_{L}=1 \mu \mathrm{~F}$	3.8		
$\mathrm{tf}_{\text {f }}$	Fall time, output	$\mathrm{V}_{1}=5.5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$C_{L}=1 \mu \mathrm{~F}$	3.9		ms
		$\mathrm{V}_{1}=4 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$C_{L}=1 \mu \mathrm{~F}$	3.5		

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
 $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=0 \mathrm{~V}$ (unless otherwise noted) (continued)
enable input ($\overline{\mathrm{EN}}$)

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage	$4 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2		V
$\mathrm{V}_{\mathrm{IL}} \quad$ Low-level input voltage	$4 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$		0.8	V
II Input current	$\overline{\mathrm{EN}}=0 \mathrm{~V}$ or $\overline{\mathrm{EN}}=\mathrm{V}_{1}$	-0.5	0.5	$\mu \mathrm{A}$
tPLH Propagation (delay) time, low to high output	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$		20	ms
tpHL Propagation (delay) time, high to low output	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$		40	

current limit

PARAMETER	TEST CONDITIONS \dagger		MIN	TYP	MAX	UNIT
Short-circuit output current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=5.5 \mathrm{~V}$	TPS2014	0.66	1.2	1.8	A
		TPS2015	1.1	2	3	

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
supply current

PARAMETER	TEST CONDITIONS		MIN TYP	MAX	UNIT
IDDL Supply current, low-level output	$\overline{\mathrm{EN}}=\mathrm{V}_{1}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.015	10	$\mu \mathrm{A}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$		10	
Supply current, high-level output	$\overline{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	73	100	$\mu \mathrm{A}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		100	

undervoltage lockout

	PARAMETER	MIN	TYP	MAX
V_{IL} UNIT				

$\overline{\mathrm{OC}}$

PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
Ios	Short-circuit output current	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		5	
V_{OL}	Low-level output voltage	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		0.3	

TPS2014, TPS2015 POWER DISTRIBUTION SWITCHES

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=0 \mathrm{~V}$ (unless otherwise noted)
power switch

PARAMETER	TEST CONDITIONS \dagger			TPS2014Y, TPS2015Y		UNIT
				MIN TYP	MAX	
ron On-state resistance	$\mathrm{V}_{1}=5.5 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		75		$\mathrm{m} \Omega$
	$\mathrm{V}_{1}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		80		
	$\mathrm{V}_{1}=4.5 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		90		
	$\mathrm{V}_{1}=4 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		96		
l/kg Leakage current, output	$\overline{\mathrm{EN}}=\mathrm{V}_{1}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.001		$\mu \mathrm{A}$
	$\overline{\mathrm{EN}}=\mathrm{V}_{1}$,	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq$	$5^{\circ} \mathrm{C}$	10		
$\mathrm{tr}_{\mathrm{r}} \quad$ Rise time, output	$\mathrm{V}_{1}=5.5 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	4		ms
	$\mathrm{V}_{1}=4 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$C_{L}=1 \mu \mathrm{~F}$	3.8		
tf $^{\text {F }}$ Fall time, output	$\mathrm{V}_{1}=5.5 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$C_{L}=1 \mu \mathrm{~F}$	3.9		ms
	$\mathrm{V}_{1}=4 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	3.5		

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
enable input (EN)

PARAMETER	TEST CONDITIONS	TPS2014Y, TPS2015Y		UNIT
		MIN TYP	MAX	
$\mathrm{V}_{\mathrm{IH}} \quad$ High-level input voltage	$4 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	2		V
VIL Low-level input voltage	$4 \mathrm{~V} \leq \mathrm{V}_{1} \leq 5.5 \mathrm{~V}$	0.8		V
II Input current	$\overline{\mathrm{EN}}=0 \mathrm{~V}$ or $\overline{\mathrm{EN}}=\mathrm{V}_{1}$	0.5		$\mu \mathrm{A}$
tPLH Propagation (delay) time, low to high output	$C_{L}=1 \mu \mathrm{~F}$	20		ms
tPHL Propagation (delay) time, high to low output	$C_{L}=1 \mu \mathrm{~F}$	40		

current limit

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
supply current

PARAMETER	TEST CONDITIONS		TPS2014Y, TPS	2015 Y	UNIT
			MIN TYP	MAX	
Supply current, low-level output	$\overline{E N}=V_{1}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.015		$\mu \mathrm{A}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	10		
Supply current, high-level output	$\overline{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	73		$\mu \mathrm{A}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	100		

undervoltage lockout

	PARAMETER	TPS2014Y, TPS2015Y	
	UNIT		
$V_{\text {IL }}$ Low-level input voltage	MIN	TYP	MAX

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=0 \mathrm{~V}$ (unless otherwise noted) (continued)
$\overline{\mathbf{O C}}$

PARAMETER	TEST CONDITIONS	TPS2014Y, TPS2015Y	UNIT	
				MAX

PARAMETER MEASUREMENT INFORMATION

Table of Timing Diagrams

	FIGURE
Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})=5 \mathrm{~V}}$	1
Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$	2
TPS2014 Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$	3
TPS2015 Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$	4
TPS2014 Threshold Current, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$	5
TPS2015 Threshold Current, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})=5 \mathrm{~V}}$	6
TPS2014 (Enabled) into Short Circuit, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$	7
TPS2015 (Enabled) into Short Circuit, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$	8

Figure 1. Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathbf{I}(\mathrm{IN})}=5 \mathrm{~V}$

PARAMETER MEASUREMENT INFORMATION

Figure 2. Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5 \mathrm{~V}$

Figure 3. TPS2014 Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{\mathbf{I}(\mathrm{IN})}=5 \mathrm{~V}$

PARAMETER MEASUREMENT INFORMATION

Figure 4. TPS2015 Short-Circuit Current. Short is Applied to Enabled Device, $\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$

Figure 5. TPS2014 Threshold Current, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5 \mathrm{~V}$

PARAMETER MEASUREMENT INFORMATION

Figure 6. TPS2015 Threshold Current, $\mathrm{V}_{\mathbf{l}(\mathrm{IN})}=5 \mathrm{~V}$

Figure 7. TPS2014 (Enabled) into Short Circuit, $\mathrm{V}_{\mathbf{I}(\mathrm{IN})}=5 \mathrm{~V}$

PARAMETER MEASUREMENT INFORMATION

Figure 8. TPS2015 (Enabled) into Short Circuit, $\mathrm{V}_{\mathbf{l}(\mathrm{IN})=5 \mathrm{~V}}$

TYPICAL CHARACTERISTICS
Table of Graphs

	FIGURE
Turn-On Delay Time vs Input Voltage	9
Turn-Off Delay Time vs Input Voltage	10
Rise Time vs Output Current	11
Fall Time vs Output Current	12
Supply Current, Output Enabled vs Junction Temperature	13
Supply Current, Output Enabled vs Junction Temperature	14
Supply Current, Output Enabled vs Input Voltage	15
Supply Current, Output Enabled vs Input Voltage	16
On-State Resistance vs Junction Temperature	17
On-State Resistance vs Input Voltage	18
Input Voltage to Output Voltage vs Input Voltage	19
Short-Circuit Output Current vs Input Voltage	20
Threshold Trip Current vs Input Voltage	21
Short-Circuit Output Current vs Junction Temperature	22
UVLO Trip Voltage vs Junction Temperature	23

TYPICAL CHARACTERISTICS

Figure 9

Figure 11

TURN-OFF DELAY TIME
vs
INPUT VOLTAGE

Figure 10

FALL TIME
vs
OUTPUT CURRENT

Figure 12

TYPICAL CHARACTERISTICS

Figure 13

SUPPLY CURRENT, OUTPUT ENABLED
VS
INPUT VOLTAGE

Figure 15

SUPPLY CURRENT, OUTPUT DISABLED vs JUNCTION TEMPERATURE

Figure 14
SUPPLY CURRENT, OUTPUT DISABLED vs
input voltage

Figure 16

TYPICAL CHARACTERISTICS

Figure 17

Figure 19

ON-STATE RESISTANCE
vs
INPUT VOLTAGE

Figure 18
SHORT-CIRCUIT OUTPUT CURRENT vs
INPUT VOLTAGE

Figure 20

TYPICAL CHARACTERISTICS

Figure 23

APPLICATION INFORMATION

Figure 24. Typical Application

power supply considerations

The TPS20xx has multiple inputs and outputs that must be connected in parallel to minimize voltage drop and prevent unnecessary power dissipation.

A $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. A high-value electrolytic capacitor is also desirable when the output load is heavy or has large paralleled capacitors. Bypassing the output with a $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to electrostatic discharge (ESD).

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike sense resistors and polyfuses, sense FETs do not increase series resistance to the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Shutdown only occurs when the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{I(I N)}$ has been applied (see Figures 7 and 8). The TPS20xx senses the short and immediately switches into a constant-current output.

Under the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents flow for a short time before the current-limit circuit can react (see Figures 3 and 4). After the current-limit circuit has tripped, the device limits normally.

Under the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached (see Figures 5 and 6). The TPS20xx is capable of delivering current up to the current-limit threshold without damage. When the threshold has been reached, the device switches into its constant-current mode.

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance of the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistance of these packages is high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{o n}$ at the input voltage and at the operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {on }}$ from Figure 17. Next calculate the power dissipation using:

$$
P_{D}=r_{o n} \times 1^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature
$R_{\theta J A}=$ Thermal resistance $\mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{P}=106^{\circ} \mathrm{C} / \mathrm{W}$
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection is provided to prevent damage to the IC when heavy-overload or a short-circuit fault is present for an extended period of time. The fault forces the TPS20xx into constant current mode, which causes the voltage across the high-side switch to increase. Under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts it off. The switch remains off until the junction temperature has dropped approximately $20^{\circ} \mathrm{C}$. The switch continues to cycle in this manner until the load fault or the input power is removed.

undervoltage lockout

An undervoltage lockout is provided to ensure that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 3.2 V , the power switch quickly turns off. This facilitates the design of hot-insertion systems that may not have the ability to turn off the power switch before input power is removed. Upon reapplication of the input voltage (if enabled), the power switch turns on with a controlled rise time to reduce inrush current, EMI, and voltage overshoots.
For proper operation of the UVLO, the TPS20xx requires the voltage decay from 3 V to 2 V to take at least $200 \mu \mathrm{~s}$. Capacitance is added to the input or output of the TPS20xx to increase this decay rate. Capacitance is generally added to the output to lower inrush current due to input capacitance.

Universal Serial Bus (USB) applications

The USB specification provides for five different classes of devices based on their power sourcing and sinking requirements. These classes of devices are: bus-powered hub, self-powered hub, lower power bus-powered function, high power bus-powered function, and self-powered functions. The TPS20xx can provide power distribution solutions for many of these devices.

APPLICATION INFORMATION

bus-powered and self-power hubs

Hubs provide data and power for downstream functions through output ports. Self-power hubs have internal power supplies that furnish power to downstream functions. Each port is required to supply 500 mA continuous to a downstream function. Each port must have overcurrent protection to meet the requlatory safety limit that no single port can deliver more than 5 A . The self-power hub must also have a method to detect and report an overcurrent condition to the USB host. The TPS20xx provides the required current-limiting function and has an overcurrent logic output to inform the hub controller of the fault condition. The on-state resistance of the TPS20xx is low enough to meet all USB voltage regulation requirements. The switch also provides the capability to remove power from a faulted port.

Bus-powered hubs distribute power and data from an input port to downstream ports. Each output port is required to supply 100 mA continuous. A bus-powered hub is not required to provide overcurrent protection because it is provided by the upstream port. In order to power up in a low power state, the self-powered hub must be able to switch power to its output ports. The TPS20xx can also provide this function.

Figure 25. Typical USB Self-Powered Hub Application

low power bus-powered functions and high power bus-powered functions

Low-power and high-power bus-powered functions are powered by their input ports. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$, it must implement inrush current limiting. The TPS20xx provides this function with its controlled rise time during turn on.

APPLICATION INFORMATION

Figure 26. Typical USB Bus-Powered Function Application

ESD protection

All TPS20xx terminals incorporate ESD-protection circuitry designed to withstand a 6-kV human-body-model discharge as defined in MIL-STD-883C. Additionally, the output is protected from discharges up to 12 kV .

- 50-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit and Thermal Protection
- Overcurrent Logic Output
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- Typical Rise Time . . . 6.1 ms
- Undervoltage Lockout
- Maximum Standby Supply Current . . . $10 \mu \mathrm{~A}$
- No Drain-Source Back-Gate Diode
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

The TPS202x family of power distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. These devices are $50-\mathrm{m} \Omega \mathrm{N}$-channel MOSFET high-side power switches. The switch is controlled by a logic enable compatible with $5-\mathrm{V}$ logic and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .

When the output load exceeds the current-limit threshold or a short is present, the TPS202x limits the output current to a safe level by switching into a constant-current mode, pulling the overcurrent $(\overline{\mathrm{OC}})$ logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS202x devices differ only in short-circuit current threshold. The TPS2020 limits at 0.3-A load, the TPS2021 at 0.9-A load, the TPS2022 at 1.5-A load, the TPS2023 at 2.2-A load, and the TPS2024 at 3-A load (see Available Options). The TPS202x is available in an 8-pin small-outline integrated-circuit (SOIC) package and in an 8-pin dual-in-line (DIP) package and operates over a junction temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$ (A)	PACKAGED DEVICES	
				SMALL OUTLINE (D) \dagger	PLASTIC DIP (P)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.2	0.3	TPS2020D	TPS2020P
		0.6	0.9	TPS2021D	TPS2021P
		1	1.5	TPS2022D	TPS2022P
		1.5	2.2	TPS2023D	TPS2023P
		2	3	TPS2024D	TPS2024P

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2020DR)

TPS2020 functional block diagram

Terminal Functions

TERMINAL		I/O	
NAME	NO. DOR P		
$\overline{\text { EN }}$	4	I	Enable input. Logic low turns on power switch.
GND	1	1	Ground
IN	2,3	1	Input voltage
$\overline{O C}$	5	0	Overcurrent. Logic output active low
OUT	$6,7,8$	0	Power-switch output

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of $50 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{l}(\mathrm{IN})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2 -ms to 9 -ms range.

enable (EN)

The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$ when a logic high is present on $\overline{\mathrm{EN}}$. A logic zero input on $\overline{\mathrm{EN}}$ restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathbf{O C}}$)

The $\overline{O C}$ open drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately $140^{\circ} \mathrm{C}$. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately $20^{\circ} \mathrm{C}$, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
P	1175 mW	$9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	752 mW	611 mW

recommended operating conditions

		MIN	MAX	UNIT
Input voltage	$\mathrm{V}_{\mathrm{I}}(\mathrm{IN})$	2.7	5.5	V
	$\mathrm{V}_{1}(\overline{\mathrm{EN}})$	0	5.5	V
Continuous output current, ${ }^{\text {l }} \mathrm{O}$	TPS2020	0	0.2	A
	TPS2021	0	0.6	
	TPS2022	0	1	
	TPS2023	0	1.5	
	TPS2024	0	2	
Operating virtual junction temperature, T_{J}		-40	125	${ }^{\circ} \mathrm{C}$

electro static discharge (ESD) protection

	MIN	MAX
Uuman Body Model MIL-STD-883C	2	kV
Machine model	kV	

 $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=0 \mathrm{~V}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONS \dagger			MIN	TYP	MAX	UNIT
rDS(on)	Static drain-source on-state resistance	$\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$1 \mathrm{O}=1.8 \mathrm{~A}$		33	36	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$\mathrm{I}=1.8 \mathrm{~A}$		38	46	
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{I}=1.8 \mathrm{~A}$		44	50	
		$V_{1(I N)}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I}=1.8 \mathrm{~A}$		37	41	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$\mathrm{I}=1.8 \mathrm{~A}$		43	52	
		$\mathrm{V}_{1}(\mathrm{IN})=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{l}=1.8 \mathrm{~A}$		51	61	
		$\mathrm{V}_{1}(\mathrm{IN})=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I}=0.18 \mathrm{~A}$		30	34	
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$1 \mathrm{O}=0.18 \mathrm{~A}$		35	41	
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{l}=0.18 \mathrm{~A}$		39	47	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$1 \mathrm{O}=0.18 \mathrm{~A}$		33	37	
		$\mathrm{V}_{1(1 \mathrm{I})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$1 \mathrm{O}=0.18 \mathrm{~A}$		39	46	
		$\mathrm{V}_{1}(\mathrm{IN})=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{I}=0.18 \mathrm{~A}$		44	56	
tr_{r}	Rise time, output	$\begin{aligned} & \mathrm{V}_{l(\mathrm{IN})}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$			6.1		ms
		$\begin{aligned} & \mathrm{V}_{1(\mathrm{IN})}=2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$			8.6		
t_{f}	Fall time, output	$\begin{aligned} & \mathrm{V}_{1(\mathrm{IN})}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$			3.4		ms
		$\begin{array}{\|ll} \hline V_{(I N)}=2.7 \mathrm{~V}, & T_{J}=25^{\circ} \mathrm{C}, \\ C_{L}=1 \mu \mathrm{~F}, & R_{L}=10 \Omega \end{array}$				3		

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. enable input ($\overline{\mathrm{EN}}$)

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{V}_{\mathrm{IH}} \quad$ High-level input voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{IN})} \leq 5.5 \mathrm{~V}$	2		V
Low-level input voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{IN})} \leq 5.5 \mathrm{~V}$		0.8	V
	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}}(\mathrm{IN}) \leq 4.5 \mathrm{~V}$		0.5	
II Input current	$\overline{\mathrm{EN}}=0 \mathrm{~V}$ or $\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{I}(\mathrm{IN})}$	-0.5	0.5	$\mu \mathrm{A}$
ton Turn-on time	$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$		20	ms
$\mathrm{t}_{\text {off }}$ Turn-off time	$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$		40	

current limit

	PARAMETER	TEST CONDITIONS \dagger		MIN	TYP	MAX	UNIT
IOS	Short-circuit output current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \quad \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$ OUT connected to GND, Device enable into short circuit	TPS2020	0.22	0.3	0.4	A
			TPS2021	0.66	0.9	1.1	
			TPS2022	1.1	1.5	1.8	
			TPS2023	1.65	2.2	2.7	
			TPS2024	2.2	3	3.8	

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\overline{\mathrm{EN}}=0 \mathrm{~V}$ (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
Supply current, low-level output	No Load on OUT	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{l}}(\mathrm{IN})$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		0.3	1	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			10	
Supply current, high-level output	No Load on OUT	$\overline{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		58	75	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$		75	100	
Leakage current	OUT connected to ground	$\overline{\mathrm{EN}}=\mathrm{V}_{1}(\mathrm{IN})$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		10		$\mu \mathrm{A}$

undervoltage lockout

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX
UNIT				
Low-level input voltage		2	2.5	V
Hysteresis	$T_{J}=25^{\circ} \mathrm{C}$		100	mV

overcurrent ($\overline{\mathrm{OC}}$)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Output low voltage	$10=10 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{OL}}(\overline{\mathrm{OC}})$		0.4	V
Off-state current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1	$\mu \mathrm{~A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms
Table of Timing Diagrams

	FIGURE
Turn-on Delay and Rise TIme	2
Turn-off Delay and Fall Time	3
Turn-on Delay and Rise Tlme with $1-\mu$ F Load	4
Turn-off Delay and Rise TIme with $1-\mu$ F Load	5
Device Enabled into Short	6
TPS2020, TPS2021, TPS2022, TPS2023, and TPS2024, Short Applied to an Enabled Device	$7,8,9$,
TPS2020, TPS2021, TPS2022, TPS2023, and TPS2024, Ramped Load on Enabled Device	10,11
TPS2024, Inrush Current	$12,13,14$,
$7.9-\Omega$ Load Connected to an Enabled TPS2020 Device	15,16
$3.7-\Omega$ Load Connected to an Enabled TPS2020 Device	17
$3.7-\Omega$ Load Connected to an Enabled TPS2021 Device	18
$2.6-\Omega$ Load Connected to an Enabled TPS2021 Device	19
$2.6-\Omega$ Load Connected to an Enabled TPS2022 Device	20
$1.2-\Omega$ Load Connected to an Enabled TPS2022 Device	21
$1.2-\Omega$ Load Connected to an Enabled TPS2023 Device	22
$0.9-\Omega$ Load Connected to an Enabled TPS2023 Device	23
$0.9-\Omega$ Load Connected to an Enabled TPS2024 Device	24
$0.5-\Omega$ Load Connected to an Enabled TPS2024 Device	26

PARAMETER MEASUREMENT INFORMATION

Figure 2. Turn-on Delay and Rise Time

Figure 4. Turn-on Delay and Rise Time With 1- μ F Load

Figure 3. Turn-off Delay and Fall Time

Figure 5. Turn-off Delay and Fall Time with $1-\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 6. Device Enabled into Short

Figure 8. TPS2021, Short Applied to an Enabled Device

Figure 7. TPS2020, Short Applied to an Enabled Device

Figure 9. TPS2022, Short Applied to an Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 10. TPS2023, Short Applied to an Enabled Device

Figure 12. TPS2020, Ramped Load on Enabled Device

Figure 11. TPS2024, Short Applied to an Enabled Device

Figure 13. TPS2021, Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 14. TPS2022, Ramped Load on Enabled Device

Figure 16. TPS2024, Ramped Load on Enabled Device

Figure 15. TPS2023, Ramped Load on Enabled Device

Figure 17. TPS2024, Inrush Current

PARAMETER MEASUREMENT INFORMATION

Figure 18. 7.9- Ω Load Connected to an Enabled TPS2020 Device

Figure 20. 3.7- Ω Load Connected to an Enabled TPS2021 Device

Figure 19. 3.7- Ω Load Connected to an Enabled TPS2020 Device

Figure 21. 2.6- Ω Load Connected to an Enabled TPS2021 Device

PARAMETER MEASUREMENT INFORMATION

Figure 22. 2.6- Ω Load Connected to an Enabled TPS2022 Device

Figure 24. 1.2 Ω Load Connected to an Enabled TPS2023 Device

Figure 23. 1.2- Ω Load Connected to an Enabled TPS2022 Device

Figure 25. 0.9- Ω Load Connected to an Enabled TPS2023 Device

PARAMETER MEASUREMENT INFORMATION

Figure 26. 0.9- Ω Load Connected to an Enabled TPS2024 Device

Figure 27. 0.5- Ω Load Connected to an Enabled TPS2024 Device

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
t_{d} (on)	Turn-on delay time	vs Output voltage	28
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off delay time	vs Input voltage	29
t_{r}	Rise time	vs Load current	30
t_{f}	Fall time	vs Load current	31
	Supply current (enabled)	vs Junction temperature	32
	Supply current (disabled)	vs Junction temperature	33
	Supply current (enabled)	vs Input voltage	34
	Supply current (disabled)	vs Input voltage	35
IOS	Short-circuit current limit	vs Input voltage	36
IOS	Shor-circuit current fimit	vs Junction temperature	37
		vs Input voltage	38
	atic drain-source on-state resistance	vs Junction temperature	39
	Static drain-source on-state resistance	vs Input voltage	40
		vs Junction temperature	41
V_{1}	Input voltage	Undervoltage lockout	42

TURN-ON DELAY TIME
vs
OUTPUT VOLTAGE

Figure 28

TURN-OFF DELAY TIME
vs
INPUT VOLTAGE

Figure 29

TYPICAL CHARACTERISTICS

Figure 30
SUPPLY CURRENT (ENABLED)
vs
JUNCTION TEMPERATURE

Figure 32

FALL TIME
vs
LOAD CURRENT

Figure 31

SUPPLY CURRENT (DISABLED)
vs JUNCTION TEMPERATURE

Figure 33

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 38
STATIC DRAIN-SOURCE ON-STATE RESISTANCE

Figure 40

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 39

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 41

TYPICAL CHARACTERISTICS

Figure 42

APPLICATION INFORMATION

Figure 43. Typical Application

power supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output and input pins is recommended when the output load is heavy. This reduces power supply transients that may cause ringing on the input. Also, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

APPLICATION INFORMATION

overcurrent (continued)

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{1(\mathbb{N})}$ has been applied (see Figure 6). The TPS202x senses the short and immediately switches into a constant-current output.
In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figures 18-27). After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figures 12-16). The TPS202x is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathbf{O C}}$ response

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter can be connected to the $\overline{O C}$ pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

Figure 44. Typical Circuit for $\overline{\mathrm{OC}}$ Pin and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find r_{DS} (on) at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {DS }}(\mathrm{on})$ from Figures $38-41$. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
\begin{aligned}
& T_{A}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C} \\
& R_{\theta J A}=\text { Thermal resistance } \mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{PDIP}=106^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS202x into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lock-out (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

APPLICATION INFORMATION

generic hot-plug applications (see Figure 45)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Because of the controlled rise times and fall times of the TPS202x series, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS202x also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 45. Typical Hot-Plug Implementation
By placing the TPS202x between the V_{CC} input and the rest of the circuitry, the input power will reach this device first after insertion. The typical rise time of the switch is approximately 9 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

- 50-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit and Thermal Protection
- Overcurrent Logic Output
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- Typical Rise Time . . . 6.1 ms
- Undervoltage Lockout
- Maximum Standby Supply Current ... $10 \mu \mathrm{~A}$
- No Drain-Source Back-Gate Diode
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

D OR P PACKAGE (TOP VIEW)	
O	
GND 1	8
in 2	7
in 3	6
EN 04	

description

The TPS203x family of power distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. These devices are $50-\mathrm{m} \Omega \mathrm{N}$-channel MOSFET high-side power switches. The switch is controlled by a logic enable compatible with $5-\mathrm{V}$ logic and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .

When the output load exceeds the current-limit threshold or a short is present, the TPS203x limits the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OC}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.
The TPS203x devices differ only in short-circuit current threshold. The TPS2030 limits at 0.3-A load, the TPS2031 at 0.9-A load, the TPS2032 at 1.5-A load, the TPS2033 at 2.2-A load, and the TPS2034 at 3-A load (see Available Options). The TPS203x is available in an 8-pin small-outline integrated-circuit (SOIC) package and in an 8 -pin dual-in-line (DIP) package and operates over a junction temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$ (A)	PACKAGED DEVICES	
				SMALL OUTLINE (D) \dagger	PLASTIC DIP (P)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.2	0.3	TPS2030D	TPS2030P
		0.6	0.9	TPS2031D	TPS2031P
		1	1.5	TPS2032D	TPS2032P
		1.5	2.2	TPS2033D	TPS2033P
		2	3	TPS2034D	TPS2034P

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2030DR)

TPS2030 functional block diagram

Terminal Functions

TERMINAL		I/O	
NAME	NO. D OR P		
EN	4	1	Enable input. Logic high turns on power switch.
GND	1	1	Ground
IN	2,3	1	Input voltage
$\overline{O C}$	5	0	Overcurrent. Logic output active low
OUT	$6,7,8$	0	Power-switch output

detailed description

power switch

The power switch is an N -channel MOSFET with a maximum on-state resistance of $50 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{I}(\mathrm{IN})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2 -ms to 9 -ms range.

enable (EN)

The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$ when a logic low is present on EN. A logic high input on EN restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathbf{O C}}$)

The $\overline{O C}$ open drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately $140^{\circ} \mathrm{C}$. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately $20^{\circ} \mathrm{C}$, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

TPS2030, TPS2031, TPS2032, TPS2033, TPS2034
 POWER-DISTRIBUTION SWITCHES

SLVS190 - DECEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

put voltage range, $\mathrm{V}_{\text {IIIN }}$ (see	0.3 V to 6 V
Output voltage range, $\mathrm{V}^{\text {O(OUT) }}$ (see Note 1)	-0.3 V to $\mathrm{V}_{1(\mathrm{IN})}+0.3 \mathrm{~V}$
Input voltage range, $\mathrm{V}^{(\text {(EN })}$	-0.3 V to 6 V
Continuous output current, $\mathrm{I}_{\mathrm{O}} \mathrm{OUT}$)	internally limited
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range,	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature soldering $1,6 \mathrm{~m}$	$260^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	TA $_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathbf{T A}_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathbf{T A}_{A}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
P	1175 mW	$9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	752 mW	611 mW

recommended operating conditions

		MIN	MAX	UNIT
Input voltage	$V_{\text {IIIN }}$	2.7	5.5	V
Iput volage	$\mathrm{V}_{1(E N)}$	0	5.5	V
	TPS2030	0	0.2	
	TPS2031	0	0.6	
Continuous output current, lo	TPS2032	0	1	A
	TPS2033	0	1.5	
	TPS2034	0	2	
Operating virtual junction temp	re, T_{J}	-40	125	${ }^{\circ} \mathrm{C}$

electro static discharge (ESD) protection

	MIN	MAX
UNIT		
Maman Body Model MIL-STD-883C	2	kV

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{EN}=5 \mathrm{~V}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONSt			MIN	TYP	MAX	UNIT
rDS(on)	Static drain-source on-state resistance	$\mathrm{V}_{1(1 \mathrm{I})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{l}=1.8 \mathrm{~A}$		33	36	$\mathrm{m} \Omega$
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$\mathrm{l}=1.8 \mathrm{~A}$		38	46	
		$\mathrm{V}_{1(\mathrm{I})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{l}=1.8 \mathrm{~A}$		44	50	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I}=1.8 \mathrm{~A}$		37	41	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$\mathrm{l}=1.8 \mathrm{~A}$		43	52	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{I}=1.8 \mathrm{~A}$		51	61	
		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I}^{\mathrm{O}}=0.18 \mathrm{~A}$		30	34	
		$\mathrm{V}_{1(\mathrm{I})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$10=0.18 \mathrm{~A}$		35	41	
		$\mathrm{V}_{1(\mathrm{I})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{l}^{\mathrm{O}}=0.18 \mathrm{~A}$		39	47	
		$\mathrm{V}_{1(\mathrm{IN})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$1 \mathrm{O}=0.18 \mathrm{~A}$		33	37	
		$\mathrm{V}_{1(1 \mathrm{~N})}=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$,	$10=0.18 \mathrm{~A}$		39	46	
		$\mathrm{V}_{1}(\mathrm{IN})=3.3 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$,	$\mathrm{l}=0.18 \mathrm{~A}$		44	56	
tr_{r}	Rise time, output	$\begin{aligned} & V_{1(I N)}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & R_{L}=10 \Omega \\ & \hline \end{aligned}$			6.1		ms
		$\begin{aligned} & V_{l(I N)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$			8.6		
tf	Fall time, output	$\begin{aligned} & \mathrm{V}_{1(\mathrm{IN})}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$			3.4		ms
		$\begin{aligned} & V_{l(I N)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$			3		

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
enable input (EN)

PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT
V_{IH}	High-level input voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{1(\mathrm{IN})} \leq 5.5 \mathrm{~V}$	2		V
VIL	Low-level input voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{IN})} \leq 5.5 \mathrm{~V}$		0.8	V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{IN})} \leq 4.5 \mathrm{~V}$		0.5	
II	Input current	$\mathrm{EN}=0 \mathrm{~V}$ or $\mathrm{EN}=\mathrm{V}_{1}(\mathrm{IN})$	-0.5	0.5	$\mu \mathrm{A}$
$t_{\text {on }}$	Turn-on time	$C_{L}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$		20	ms
$t_{\text {off }}$	Turn-off time	$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$		40	

current limit

	PARAMETER	TEST CONDITIONS \dagger		MIN	TYP	MAX	UNIT
los	Short-circuit output current	$T_{J}=25^{\circ} \mathrm{C}, \quad V_{1}=5.5 \mathrm{~V},$ OUT connected to GND, Device enable into short circuit	TPS2030	0.22	0.3	0.4	A
			TPS2031	0.66	0.9	1.1	
			TPS2032	1.1	1.5	1.8	
			TPS2033	1.65	2.2	2.7	
			TPS2034	2.2	3	3.8	

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, EN = 5 V (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
Supply current, low-level output	No Load on OUT	$\mathrm{EN}=0$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		0.3	1	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			10	
Supply current, high-level output	No Load on OUT	$\mathrm{EN}=\mathrm{V}_{\text {I }}(\mathrm{IN})$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		58	75	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$		75	100	
Leakage current	OUT connected to ground	$E N=0$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$		10		$\mu \mathrm{A}$

undervoltage lockout

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low-level input voltage		2	2.5	V	
Hysteresis	$T_{J}=25^{\circ} \mathrm{C}$	100		mV	

overcurrent ($\overline{\mathrm{OC}}$)

PARAMETER	TEST CONDITIONS	MIN TYP \quad MAX	UNIT	
Output low voltage	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{OL}(}(\overline{\mathrm{OC}})$		0.4	V
Off-state current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1	$\mu \mathrm{~A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms
Table of Timing Diagrams

	FIGURE
Turn-on Delay and Rise Tlme	2
Turn-off Delay and Fall Time	3
Turn-on Delay and Rise TIme with $1-\mu$ F Load	4
Turn-off Delay and Rise Tlme with 1- μ F Load	5
Device Enabled into Short	6
TPS2030, TPS2031, TPS2032, TPS2033, and TPS2034, Short Applied to an Enabled Device	$7,8,9$,
TPS2030, TPS2031, TPS2032, TPS2033, and TPS2034, Ramped Load on Enabled Device	10,11
TPS2034, Inrush Current	$12,13,14$,
$7.9-\Omega$ Load Connected to an Enabled TPS2030 Device	15,16
$3.7-\Omega$ Load Connected to an Enabled TPS2030 Device	17
$3.7-\Omega$ Load Connected to an Enabled TPS2031 Device	18
$2.6-\Omega$ Load Connected to an Enabled TPS2031 Device	19
$2.6-\Omega$ Load Connected to an Enabled TPS2032 Device	20
$1.2-\Omega$ Load Connected to an Enabled TPS2032 Device	21
$1.2-\Omega$ Load Connected to an Enabled TPS2033 Device	22
$0.9-\Omega$ Load Connected to an Enabled TPS2033 Device	23
$0.9-\Omega$ Load Connected to an Enabled TPS2034 Device	
$0.5-\Omega$ Load Connected to an Enabled TPS2034 Device	24

PARAMETER MEASUREMENT INFORMATION

Figure 2. Turn-on Delay and Rise Time

Figure 4. Turn-on Delay and Rise Time With $1-\mu$ F Load

Figure 3. Turn-off Delay and Fall Time

Figure 5. Turn-off Delay and Fall Time with $1-\mu$ F Load

PARAMETER MEASUREMENT INFORMATION

Figure 6. Device Enabled into Short

Figure 8. TPS2031, Short Applied to an Enabled Device

Figure 7. TPS2030, Short Applied to an Enabled Device

Figure 9. TPS2032, Short Applied to an Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 10. TPS2033, Short Applied to an Enabled Device

Figure 12. TPS2030, Ramped Load on Enabled Device

Figure 11. TPS2034, Short Applied to an Enabled Device

Figure 13. TPS2031, Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 14. TPS2032, Ramped Load on Enabled Device

Figure 16. TPS2034, Ramped Load on Enabled Device

Figure 15. TPS2033, Ramped Load on Enabled Device

Figure 17. TPS2034, Inrush Current

PARAMETER MEASUREMENT INFORMATION

Figure 18. 7.9- Ω Load Connected to an Enabled TPS2030 Device

Figure 20. 3.7- Ω Load Connected to an Enabled TPS2031 Device

Figure 19. 3.7- Ω Load Connected to an Enabled TPS2030 Device

Figure 21. 2.6- Ω Load Connected to an Enabled TPS2031 Device

PARAMETER MEASUREMENT INFORMATION

Figure 22. 2.6- Ω Load Connected to an Enabled TPS2032 Device

Figure 24. 1.2- Ω Load Connected to an Enabled TPS2033 Device

Figure 23. 1.2- Ω Load Connected to an Enabled TPS2032 Device

Figure 25. 0.9- Ω Load Connected to an Enabled TPS2033 Device

PARAMETER MEASUREMENT INFORMATION

Figure 26. 0.9- Ω Load Connected to an Enabled TPS2034 Device

Figure 27. 0.5- Ω Load Connected to an Enabled TPS2034 Device

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
$t_{d}(0 n)$	Turn-on delay time	vs Output voltage	28
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off delay time	vs Input voltage	29
tr_{r}	Rise time	vs Load current	30
t_{f}	Fall time	vs Load current	31
	Supply current (enabled)	vs Junction temperature	32
	Supply current (disabled)	vs Junction temperature	33
	Supply current (enabled)	vs Input voltage	34
	Supply current (disabled)	vs Input voltage	35
IOS	ort-circuit current limit	vs Input voltage	36
OS	ort-circuit current limit	vs Junction temperature	37
		vs Input voltage	38
	resistanc	vs Junction temperature	39
rDS(on)	resistanc	vs Input voltage	40
		vs Junction temperature	41
V_{1}	Input voltage	Undervoltage lockout	42

Figure 28

TURN-OFF DELAY TIME vs
INPUT VOLTAGE

Figure 29

TYPICAL CHARACTERISTICS

Figure 30
SUPPLY CURRENT (ENABLED)
vs JUNCTION TEMPERATURE

Figure 32

FALL TIME
vs
LOAD CURRENT

Figure 31

> SUPPLY CURRENT (DISABLED) vs JUNCTION TEMPERATURE

Figure 33

TYPICAL CHARACTERISTICS

Figure 34

SHORT-CIRCUIT CURRENT LIMIT
VS
input voltage

Figure 36

SUPPLY CURRENT (DISABLED)
vs
input voltage

Figure 35
SHORT-CIRCUIT CURRENT LIMIT
vs
JUNCTION TEMPERATURE

Figure 37

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 38

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

Figure 40

STATIC DRAIN-SOURCE ON-STATE RESISTANCE
vs

Figure 39

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 41

TYPICAL CHARACTERISTICS
UNDERVOLTAGE LOCKOUT

Figure 42

APPLICATION INFORMATION

Figure 43. Typical Application

power supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output and input pins is recommended when the output load is heavy. This reduces power supply transients that may cause ringing on the input. Also, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

APPLICATION INFORMATION

overcurrent (continued)

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}$ has been applied (see Figure 6). The TPS203x senses the short and immediately switches into a constant-current output.
In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figures 18-27). After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figures 12-16). The TPS203x is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathbf{O C}}$ response

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter can be connected to the $\overline{\mathrm{OC}}$ pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

Figure 44. Typical Circuit for $\overline{\mathrm{OC}}$ Pin and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{\text {DS(on) }}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read rDS(on) from Figures 38-41. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times r^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
\begin{aligned}
& \mathrm{T}_{A}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C} \\
& R_{\theta J A}=\text { Thermal resistance } \mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \text { PDIP }=106^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS203x into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lock-out (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

APPLICATION INFORMATION

generic hot-plug applications (see Figure 45)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Because of the controlled rise times and fall times of the TPS203x series, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS203x also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 45. Typical Hot-Plug Implementation
By placing the TPS203x between the V_{CC} input and the rest of the circuitry, the input power will reach this device first after insertion. The typical rise time of the switch is approximately 9 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 500 mA Continuous Current
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range $\ldots 2.7 \mathrm{~V}$ to 5.5 V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- $10 \mu \mathrm{~A}$ Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8 -pin SOIC and PDIP Packages
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed - File No. E169910

description

The TPS2041 and TPS2051 power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The TPS2041 and the TPS2051 are 135-m Ω N-channel MOSFET high-side power switches. Each switch is controlled by a logic enable compatible with $5-\mathrm{V}$ and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .
When the output load exceeds the current-limit threshold or a short is present, the TPS2041 and TPS2051 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OC}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.
The TPS2041 and TPS2051 are designed to limit at 0.9-A load. These power distribution switches are available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP) and operate over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$T_{\text {A }}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$ (A)	PACKAGED DEVICES	
				SOIC (D) \dagger	PDIP (P)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.5	0.9	TPS2041D	TPS2041P
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.5	0.9	TPS2051D	TPS2051P

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2041DR)

TPS2041 functional block diagram

Terminal Functions

TERMINAL			1/0	DESCRIPTION
NAME	NO.			
	D OR P			
	TPS2041	TPS2051		
$\overline{\mathrm{EN}}$	4	-	1	Enable input. Logic low turns on power switch.
EN	-	4	1	Enable input. Logic high turns on power switch.
GND	1	1	1	Ground
IN	2, 3	2, 3	1	Input voltage
$\overline{\mathrm{OC}}$	5	5	0	Over current. Logic output active low
OUT	6, 7, 8	6, 7, 8	0	Power-switch output

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{l}(\mathrm{IN})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4 -ms range.

enable ($\overline{\mathrm{EN}}$ or EN)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$ when a logic high is present on EN (TPS2041) or a logic low is present on EN (TPS2051). A logic zero input on EN or a logic high on EN restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathrm{OC}}$)

The $\overline{O C}$ open drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately $140^{\circ} \mathrm{C}$. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately $20^{\circ} \mathrm{C}$, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately $2 \mathrm{~V}, \mathrm{a}$ control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

In	-0.3 V to 6 V
Output voltage range, $\mathrm{V}_{\mathrm{O} \text { (OUT) }}$ (see Note 1)	-0.3 V to $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}+0.3 \mathrm{~V}$
Input voltage range, $\mathrm{V}_{1(\mathrm{ENx})}$ or $\mathrm{V}_{1(E N x)}$	-0.3 V to 6 V
Continuous output current, IO(OUT)	ernally limited
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T_{J}	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature soldering $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds	$260^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	2 kV
Machine model	

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

PACKAGE	$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
P	1175 mW	$9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	752 mW	611 mW

recommended operating conditions

	TPS2041		TPS2051
	UNIT		
Input voltage, $\left.\mathrm{V}_{\mathrm{I}(\mathrm{IN})}\right)$		MIN	MAX
Input voltage, $\mathrm{V}_{\mathrm{l}}(\overline{\mathrm{EN}})$ or $\mathrm{V}_{\mathrm{l}}(\mathrm{EN})$	5.7	5.5	2.7
Continuous output current, $\mathrm{I}_{\mathrm{O}(\mathrm{OUT})}$	5.5	V	
Operating virtual junction temperature, T_{J}	5.5	0	5.5

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\mathrm{EN})}=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{I}(\mathrm{EN})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONS ${ }^{\text {t }}$		TPS2041			TPS2051			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
rDS(on)	Static drain-source on-state resistance, $5-\mathrm{V}$ operation			$\mathrm{V}_{1(1 \mathrm{~N})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		80	95		80	95	$\mathrm{m} \Omega$
		$\mathrm{V}_{1(1 \mathrm{~N})}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$		90	120		90	120			
		$\mathrm{V}_{1(1 \mathrm{~N})}=5 \mathrm{~V}$,	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		100	135		100	135			
	Static drain-source on-state resistance, 3.3-V operation	$\mathrm{V}_{1(1 \mathrm{~N})}=3.3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		85	105		85	105			
		$\mathrm{V}_{1(1 \mathrm{~N})}=3.3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$		100	135		100	135			
		$\mathrm{V}_{1(1 \mathrm{~N})}=3.3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		115	150		115	150			
tr_{r}	Rise time, output	$\begin{aligned} & \mathrm{V}_{\mathrm{l}(\mathrm{~N})}=5.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$	2.5			2.5			ms		
		$\begin{aligned} & V_{l(I N)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$	3			3					
tf	Fall time, output	$\begin{aligned} & \mathrm{V}_{\mathrm{l}(\mathrm{IN})=5.5 \mathrm{~V}} \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$	4.4			4.4			ms		
		$\begin{aligned} & V_{\mathrm{l}(\mathrm{IN})}=2.7 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$	2.5			2.5					

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. enable input EN or EN

PARAMETER			TEST CONDITIONS	TPS2041			TPS2051			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{IH}	High-level inp			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{~N})} \leq 5.5 \mathrm{~V}$	2			2			V
VIL	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{~N})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
$V_{\text {IL }}$			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{I})} \leq 4.5 \mathrm{~V}$			0.4			0.4		
1	Input current	TPS2041	$\mathrm{V}_{1}(\overline{\mathrm{EN}})=0 \mathrm{~V}$ or $\mathrm{V}_{1}(\overline{\mathrm{EN}})=\mathrm{V}_{1}(\mathrm{IN})$	-0.5		0.5				$\mu \mathrm{A}$	
		TPS2051	$\mathrm{V}_{1(\mathrm{EN})}=\mathrm{V}_{1(1 \mathrm{~N})}$ or $\mathrm{V}_{1(E N)}=0 \mathrm{~V}$				-0.5		0.5		
ton.	Turnon time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$			20			20	ms	
toff	Turnoff time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \quad \mathrm{R}_{\mathrm{L}}=10 \Omega$			40			40		

current limit

PARAMETER		TEST CONDITIONS \dagger	TPS2041			TPS2051			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Ios	Short-circuit output current		$\mathrm{V}_{1(\mathrm{I})}=5 \mathrm{~V}$, OUT connected to GND, Device enabled into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=\mathrm{Hi}$ (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS				TPS2041			TPS2051			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Supply current, low-level output	No Load on OUT	$\overline{E N}=\mathrm{V}_{\mathrm{I}}(\mathrm{IN})$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2041		0.015	1				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$				10				
		$\mathrm{EN}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2051					0.015	1	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$							10	
Supply current, high-level output	No Load on OUT	$\overline{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2041		80	100				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			100					
		$\mathrm{EN}=\mathrm{V}_{\mathrm{l}}(\mathrm{IN})$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2051					80	100	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$						100		
Leakage current	OUT connected to ground	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{l}}(\mathrm{IN})$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$	TPS2041		100					$\mu \mathrm{A}$
		$\mathrm{EN}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2051					100		
Reverse leakage current	$\begin{aligned} & I N=\text { High } \\ & \text { impedance } \end{aligned}$	$\mathrm{V}_{1}(\overline{\mathrm{EN}})=0 \mathrm{~V}$	$T_{J}=25^{\circ} \mathrm{C}$	TPS2041		0.3					$\mu \mathrm{A}$
		$\mathrm{V}_{1(\mathrm{EN})}=\mathrm{Hi}$		TPS2051					0.3		

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2041			TPS2051			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T},{ } 25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathbf{O C}}$

PARAMETER	TEST CONDITIONS	TPS2041		TPS2051		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$1 \mathrm{O}=5 \mathrm{~V}, \quad \mathrm{~V}$ OL($\overline{O C}$)		0.5		0.5	V
Off-state current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with $0.1-\mu \mathrm{F}$ Load

Figure 3. Turnoff Delay and Fall Time with 0.1- $\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with $1-\mu \mathrm{F}$ Load

Figure 6. TPS2041, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with $1-\mu \mathrm{F}$ Load

Figure 7. TPS2041, Threshold Trip Current with Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with $100-\mu \mathrm{F}, 220-\mu \mathrm{F}$ and $470-\mu \mathrm{F}$ Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

TURNOFF DELAY vs INPUT VOLTAGE

Figure 13
FALL TIME
vs
LOAD CURRENT

Figure 15

TYPICAL CHARACTERISTICS

Figure 16

Figure 18

SUPPLY CURRENT, OUTPUT DISABLED vs
JUNCTION TEMPERATURE

Figure 17
SUPPLY CURRENT, OUTPUT DISABLED VS
INPUT VOLTAGE

Figure 19

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 24

UNDERVOLTAGE LOCKOUT
vs
JUNCTION TEMPERATURE

Figure 26

SHORT CIRCUIT OUTPUT CURRENT vs
JUNCTION TEMPERATURE

Figure 25

CURRENT LIMIT RESPONSE
vs
PEAK CURRENT

Figure 27

TYPICAL CHARACTERISTICS

OVERCURRENT RESPONSE TIME ($\overline{\mathrm{OC}})$
vs
PEAK CURRENT

Figure 28

APPLICATION INFORMATION

TPS2041

Figure 29. Typical Application

power-supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output $\mathrm{pin}(\mathrm{s})$ is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

APPLICATION INFORMATION

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.
Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}$ has been applied (see Figure 6). The TPS2041 and TPS2051 sense the short and immediately switch into a constant-current output.
In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.
In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2041 and TPS2051 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathrm{OC}}$ response

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of $500 \mu \mathrm{~s}$ (see Figure 30) can be connected to the $\overline{O C}$ pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low-impedance energy source, thereby reducing erroneous overcurrent reporting.

Figure 30. Typical Circuit for $\overline{\mathbf{O C}}$ Pin and RC Filter for Damping Inrush $\overline{\mathbf{O C}}$ Responses

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find rDS(on) at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {DS(on) }}$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times R^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
\begin{aligned}
& \mathrm{T}_{A}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C} \\
& \mathrm{R}_{\theta J A}=\text { Thermal resistance } \mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{PDIP}=106^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2041 and TPS2051 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at powerup. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

universal serial bus (USB) applications

The universal serial bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for $5-\mathrm{V}$ power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the $5-\mathrm{V}$ input or its own internal power supply.

APPLICATION INFORMATION

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2041 and TPS2051 can provide power-distribution solutions for many of these classes of devices.

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs are required to have current limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

\dagger May need RC Filter (see Figure 34)
Figure 31. One-Port Solution
Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on powerup, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

APPLICATION INFORMATION

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA ; high-power functions must draw less than 100 mA at powerup and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at powerup, the device must implement inrush current limiting (see Figure 32).

Figure 32. High-Power Bus-Powered Function

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several powe- distribution features must be implemented.

- Hosts/self-powered hubs must:
- Current-limit downstream ports
- Report overcurrent conditions on USB VBUS
- Bus-powered hubs must:
- Enable/disable power to downstream ports
- Power up at <100 mA
- Limit inrush current ($<44 \Omega$ and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at <100 mA

The feature set of the TPS2041 and TPS2051 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 33).

APPLICATION INFORMATION

Figure 33. Hybrid Self/Bus-Powered Hub Implementation

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2041 and TPS2051, these devices can be.used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2041 and TPS2051 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 34. Typical Hot-Plug Implementation
By placing the TPS2041 and TPS2051 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 500 mA Continuous Current per Channel
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- $10 \mu \mathrm{~A}$ Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed - File No. E169910

description

The TPS2042 and TPS2052 dual power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The TPS2042 and the TPS2052 incorporate in single packages two $135-\mathrm{m} \Omega \mathrm{N}$-channel MOSFET high-side power switches for power distribution systems that require multiple power switches. Each switch is controlled by a logic enable that is compatible with 5-V logic and 3-V logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .

When the output load exceeds the current-limit threshold or a short is present, the TPS2042 and TPS2052 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OCx}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2042 and TPS2052 are designed to limit at 0.9-A load. These power distribution switches are available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP) and operate over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$ (A)	PACKAGED DEVICES	
				SOIC (D) \dagger	PDIP (P)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.5	0.9	TPS2042D	TPS2042P
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.5	0.9	TPS2052D	TPS2052P

†The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2042DR)

TPS2042 functional block diagram

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	D OR P			
	TPS2042	TPS2052		
EN1	3	-	1	Enable input. Logic low turns on power switch, IN-OUT1.
EN2	4	-	1	Enable input. Logic low turns on power switch, IN-OUT2.
EN1	-	3	1	Enable input. Logic high turns on power switch, IN-OUT1.
EN2	-	4	1	Enable input. Logic high turns on power switch, IN-OUT2.
GND	1	1	1	Ground
IN	2	2	1	Input voltage
OC1	8	8	0	Over current. Logic output active low, for power switch, IN-OUT1
$\overline{\mathrm{OC} 2}$	5	5	0	Over current. Logic output active low, for power switch, IN-OUT2
OUT1	7	7	0	Power-switch output
OUT2	6	6	0	Power-switch output

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{1(\mathrm{IN})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUTx to IN and IN to OUTx when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable ($\overline{E N x}$ or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$ when a logic high is present on $\overline{\mathrm{ENx}}$ (TPS2042) or a logic low is present on ENx (TPS2052). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathbf{O C x}}$)

The $\overline{O C x}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2042 and TPS2052 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switch. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The ($\overline{\mathrm{OCx}}$) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

> Input voltage range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}$ (see Note1) -0.3 V to 6 V
> Output voltage range, $\mathrm{V}_{\mathrm{O}(\text { OUTx })}$ (see Note1) . -0.3 V to $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}+0.3 \mathrm{~V}$

> Continuous output current, lo(OUTx) . internally limited
> Continuous total power dissipation . See Dissipation Rating Table
> Operating virtual junction temperature range, $\mathrm{T}_{\mathrm{J}} \ldots \ldots$. $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
> Storage temperature range, $\mathrm{T}_{\text {stg }}$. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> Lead temperature soldering $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds . $260^{\circ} \mathrm{C}$
> Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C 2 kV
> Machine model 0.2 kV
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
P	1175 mW	$9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	752 mW	611 mW

recommended operating conditions

	TPS2042		TPS2052		UNIT
	MIN	MAX	MIN	MAX	
Input voltage, $\mathrm{V}_{1(\mathrm{IN})}$	2.7	5.5	2.7	5.5	V
Input voltage, $\mathrm{V}_{1(\overline{\mathrm{ENx}})}$ or $\mathrm{V}_{1(\mathrm{ENx})}$	0	5.5	0	5.5	V
Continuous output current, IO(OUTx)	0	500	0	500	mA
Operating virtual junction temperature, T_{J}	-40	125	-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}}(\mathrm{IN})=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\overline{\mathrm{ENx}})}=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{I (E N x})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONS \dagger		TPS2042			TPS2052			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
rDS(on)	Static drain-source on-state resistance, $5-\mathrm{V}$ operation			$\begin{aligned} & V_{I(I N)}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		80	95		80	95	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{1(\mathrm{IN})=5 \mathrm{~V}}, \\ & \mathrm{l}=0.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$		90	120		90	120			
		$\begin{aligned} & V_{1(I N)}=5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{O}}=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C},$		100	135		100	135			
	Static drain-source on-state resistance, 3.3-V operation	$\begin{aligned} & V_{1(I N)}=3.3 \mathrm{~V}, \\ & 10=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		85	105		85	105			
		$\begin{aligned} & \mathrm{V}_{\mathrm{l}(\mathrm{IN})=3.3 \mathrm{~V}} \\ & \mathrm{lO}=0.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$		100	135		100	135			
		$\begin{aligned} & V_{1(I N)}=3.3 \mathrm{~V}, \\ & \mathrm{l}_{0}=0.5 \mathrm{~A} \end{aligned}$	$T_{J}=125^{\circ} \mathrm{C},$		115	150		115	150			
t_{r}	Rise time, output	$\begin{aligned} & \mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$	2.5			2.5			ms		
		$\begin{aligned} & V_{1(\mathbb{N})}=2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$	3			3					
t_{f}	Fall time, output	$\begin{aligned} & V_{l(I N)}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$		4.4			4.4		ms		
		$\begin{aligned} & V_{l(I N)}=2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ & \hline \end{aligned}$	2.5			2.5					

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
enable input $\overline{E N x}$ or ENx

PARAMETER			TEST CONDITIONS	TPS2042			TPS2052			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{IH}	High-level input voltage			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{IN})} \leq 5.5 \mathrm{~V}$	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{IN})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
			$2.7 \mathrm{~V} \leq \mathrm{V}_{1}(\mathrm{IN}) \leq 4.5 \mathrm{~V}$			0.4			0.4		
1	Input current	TPS2042	$\mathrm{V}_{1}(\overline{\mathrm{ENx}})=0 \mathrm{~V}$ or $\mathrm{V}_{1}(\overline{\mathrm{ENx}})=\mathrm{V}_{1(\mathrm{IN})}$	-0.5		0.5					
		TPS2052	$\mathrm{V}_{1(E N x)}=\mathrm{V}_{1(\mathrm{IN})}$ or $\mathrm{V}_{1(E N x)}=0 \mathrm{~V}$				-0.5		0.5		
$\mathrm{t}_{\text {on }}$	Turnon time		$C_{L}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$			20			20	ms	
$t_{\text {off }}$	Turnoff time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$			40			40		

current limit

PARAMETER		TEST CONDITIONS \dagger	TPS2042			TPS2052			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
los	Shor-circuit output current		$\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5 \mathrm{~V}$, OUT connected to GND, Device enable into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathrm{I}(\mathrm{ENx})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS				TPS2042			TPS2052			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Supply current, low-level output	No Load on OUT		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2042		0.015	1				$\mu \mathrm{A}$
		$V_{1(E N x)}=V_{1(1 N)}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$				10				
		$V_{1(E N x)}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2052					0.015	1	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$							10	
Supply current, high-level output	No Load on OUT	$V_{1(\overline{E N x})}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2042		80	100				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$			100					
		$\mathrm{V}_{1(E N x)}=\mathrm{V}_{1(1 \mathrm{I})}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2052					80	100	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$						100		
Leakage current	OUT connected to ground	$\mathrm{V}_{1(\overline{\mathrm{ENx}})}=\mathrm{V}_{1(\mathrm{IN})}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$	TPS2042		100					$\mu \mathrm{A}$
		$\mathrm{V}_{\text {l(ENx }}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2052					100		
Reverse leakage current	$\begin{aligned} & \text { IN = high } \\ & \text { impedance } \end{aligned}$	$\mathrm{V}_{1}(\overline{\mathrm{EN}})=0 \mathrm{~V}$	$T_{J}=25^{\circ} \mathrm{C}$	TPS2042		0.3					$\mu \mathrm{A}$
		$\mathrm{V}_{1(\mathrm{EN})}=\mathrm{Hi}$		TPS2052					0.3		

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2042			TPS2052			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathrm{OCx}}$

PARAMETER	TEST CONDITIONS	TPS2042		TPS2052		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$\mathrm{I}^{\mathrm{O}}=5 \mathrm{~mA}, \quad \mathrm{~V} \mathrm{OL}(\overline{\mathrm{OCx}})$		0.5		0.5	V
Off-state current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with $0.1-\mu$ F Load

Figure 3. Turnoff Delay and Fall Time with $0.1-\mu$ F Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with $1-\mu \mathrm{F}$ Load

Figure 6. TPS2042, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with $1-\mu \mathrm{F}$ Load

Figure 7. TPS2042, Threshold Trip Current with Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with $100-\mu \mathrm{F}, \mathbf{2 2 0}-\mu \mathrm{F}$ and 470- $\mu \mathrm{F}$ Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

TURNOFF DELAY vs
INPUT VOLTAGE

Figure 13

FALL TIME
vs
LOAD CURRENT

Figure 15

TYPICAL CHARACTERISTICS

Figure 16
SUPPLY CURRENT, OUTPUT ENABLED vs
inPUT VOLTAGE

Figure 18

SUPPLY CURRENT, OUTPUT DISABLED vs
JUNCTION TEMPERATURE

Figure 17

SUPPLY CURRENT, OUTPUT DISABLED
vs
INPUT VOLTAGE

Figure 19

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE VS
JUNCTION TEMPERATURE

Figure 20

INPUT-TO-OUTPUT VOLTAGE
vs
LOAD CURRENT

Figure 22

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 21

SHORT-CURCUIT OUTPUT CURRENT VS
INPUT VOLTAGE

Figure 23

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

OVERCURRENT RESPONSE TIME ($\overline{\mathbf{O C x}}$)
vs
PEAK CURRENT

Figure 28

APPLICATION INFORMATION

Figure 29. Typical Application

power-supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ cramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

APPLICATION INFORMATION

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.
Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{\mathbf{I (I N)}}$ has been applied (see Figure 6). The TPS2042 and TPS2052 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.
In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2042 and TPS2052 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathbf{O C}}$ response

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of $500 \mu \mathrm{~s}$ (see Figure 30) can be connected to the $\overline{O C}$ pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

Figure 30. Typical Circuit for $\overline{\mathrm{OC}}$ Pin and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{\text {DS(on) }}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {DS(on) }}$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
T_{A}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C}
$$

$\mathrm{R}_{\theta J \mathrm{~A}}=$ Thermal resistance $\mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{PDIP}=106^{\circ} \mathrm{C} / \mathrm{W}$
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2042 and TPS2052 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.
The TPS2042 and TPS2052 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of $140^{\circ} \mathrm{C}$ and reach $160^{\circ} \mathrm{C}$, both switches turn off. The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

APPLICATION INFORMATION

universal serial bus (USB) applications

The universal serial bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for $5-\mathrm{V}$ power distribution.
USB data is a $3.3-\mathrm{V}$ level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the $5-\mathrm{V}$ input or its own internal power supply.
The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2042 and TPS2052 can provide power-distribution solutions for many of these classes of devices.

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs are required to have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

\dagger May need RC filter (see Figure 36)
Figure 31. Typical Two-Port USB Host/Self-Powered Hub

APPLICATION INFORMATION

host/self-powered and bus-powered hubs (continued)

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA , and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at power up, the device must implement inrush current limiting (see Figure 32).

Figure 32. 'iign-Power Bus-Powered Function

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power-distribution features must be implemented.

- Hosts/self-powered hubs must:
- Current-limit downstream ports
- Report overcurrent conditions on USB VBUS
- Bus-powered hubs must:
- Enable/disable power to downstream ports
- Power up at <100 mA
- Limit inrush current ($<44 \Omega$ and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at <100 mA

The feature set of the TPS2042 and TPS2052 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 33).

APPLICATION INFORMATION

Figure 33. Hybrid Self/Bus-Powered Hub Implementation

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2042 and TPS2052, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2042 and TPS2052 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 34. Typical Hot-Plug Implementation
By placing the TPS2042 and TPS2052 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 500 mA Continuous Current per Channel
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- $20 \mu \mathrm{~A}$ Maximum Standby Supply Current
- Bidirectional Switch
- Available in 16 -pin SOIC Package
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed - File No. E169910

description

The TPS2043 and TPS2053 triple power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The TPS2043 and the TPS2053 incorporate in single packages three $135-\mathrm{m} \Omega \mathrm{N}$-channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable that is compatible with $5-\mathrm{V}$ logic and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V .
When the output load exceeds the current-limit threshold or a short is present, the TPS2043 and TPS2053 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OCX}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.
The TPS2043 and TPS2053 are designed to limit at 0.9-A load. These power distribution switches are available in a 16 -pin small-outline integrated circuit (SOIC) package and operate over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT $25^{\circ} \mathrm{C}$ (A)	PACKAGED DEVICES
				SOIC (D) \dagger
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.5	0.9	TPS2043D
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.5	0.9	TPS2053D

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2043DR)

TPS2043 functional block diagram

\dagger Current sense

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	TPS2043	TPS2053		
EN1	3	-	1	Enable input, logic low turns on power switch, IN1-OUT1.
EN2	4	-	1	Enable input, logic low turns on power switch, IN1-OUT2.
$\overline{\text { EN3 }}$	7	-	1	Enable input, logic low turns on power switch, IN2-OUT3.
EN1	-	3	1	Enable input, logic high turns on power switch, IN1-OUT1.
EN2	-	4	1	Enable input, logic high turns on power switch, IN1-OUT2.
EN3	-	7	1	Enable input, logic high turns on power switch, IN2-OUT3.
GND1	1	1		Ground
GND2	5	5		Ground
IN1	2	2	1	Input voltage
IN2	6	6	1	Input voltage
$\overline{\mathrm{NC}}$	8, 9, 10	8, 9, 10		No connection
$\overline{\text { OC1 }}$	16	16	0	Overcurrent, logic output active low, IN1-OUT1
$\overline{\mathrm{OC} 2}$	13	13	0	Overcurrent, logic output active low, IN1-OUT2
$\overline{\mathrm{OC3}}$	12	12	0	Overcurrent, logic output active low, IN2-OUT3
OUT1	15	15	0	Power-switch output, IN1-OUT1
OUT2	14	14	0	Power-switch output, IN1-OUT2
OUT3	11	11	0	Power-switch output, IN2-OUT3

SLVS191 - JANUARY 1999

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{1(1 \mathrm{Nx})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable ($\overline{\mathrm{ENx}}$ or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $20 \mu \mathrm{~A}$ when a logic high is present on $\overline{\mathrm{ENx}}$ (TPS2043) or a logic low is present on ENx (TPS2053). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{(\overline{O X x})}$

The $\overline{O C x}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2043 and TPS2053 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switch. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The $\overline{(\overline{O C x})}$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, $V_{\mid(1 N x)}$ (see Note1)	-0.3 V to 6 V
Output voltage range, $\mathrm{V}_{\mathrm{O}}(\mathrm{OUTx}$) (see Note1)	-0.3 V to $\mathrm{V}_{\mathrm{l}(\mathrm{INx})}+0.3 \mathrm{~V}$
Input voltage range, $\mathrm{V}_{1(\mathrm{ENx})}$ or $\mathrm{V}_{1(E N x)}$	-0.3 V to 6 V
Continuous output current, lo(OUTx)	Internally limited
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature soldering 1,6 mm (1/16 in	$260^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) protection: H	2 kV
	0.2

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW

recommended operating conditions

	TPS2043		TPS2053		UNIT
	MIN	MAX	MIN	MAX	
Input voltage, $\mathrm{V}_{1(\mathrm{INX})}$	2.7	5.5	2.7	5.5	V
Input voltage, $\mathrm{V}_{1(\mathrm{ENx})}$ or $\mathrm{V}_{\text {l(ENx }}$)	0	5.5	0	5.5	V
Continuous output current, IO(OUTX)	0	500	0	500	mA
Operating virtual junction temperature, T_{J}	-40	125	-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\overline{\mathrm{ENx}})}=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONS \dagger	TPS2043			TPS2053			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
rDS(on)	Static drain-source on-state resistance, 5 -V operation		$\begin{array}{ll} \mathrm{V}_{1(\mathrm{INx})}=5 \mathrm{~V}, & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ 10=0.5 \mathrm{~A} & \\ \hline \end{array}$		80	95		80	95	$\mathrm{m} \Omega$
		$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{I}(\mathrm{INx})}=5 \mathrm{~V}, & \mathrm{~T}_{\mathrm{J}}=85^{\circ} \mathrm{C}, \\ \mathrm{IO}=0.5 \mathrm{~A} & \\ \hline \end{array}$		90	120		90	120		
		$\begin{array}{ll} \mathrm{V}_{1(\mathrm{INx})}=5 \mathrm{~V}, & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \\ \mathrm{l}=0.5 \mathrm{~A} & \\ \hline \end{array}$		100	135		100	135		
	Static drain-source on-state resistance, 3.3-V operation	$\begin{aligned} & \mathrm{V}_{\mathrm{l}(\mathrm{INx})}=3.3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{l} \mathrm{O}=0.5 \mathrm{~A} \end{aligned}$		85	105		85	105		
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}(\mathrm{INx})=3.3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{J}}=85^{\circ} \mathrm{C},}^{\mathrm{l},} \mathrm{O}=0.5 \mathrm{~A} \end{aligned}$		100	135		100	135		
		$\begin{aligned} & \mathrm{V}_{\mathrm{I}(\mathrm{INx})}=3.3 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \\ & \mathrm{IO}=0.5 \mathrm{~A} \end{aligned}$		115	150		115	150		
tr_{r}	Rise time, output	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{l}}(\mathrm{~N} x)=5.5 \mathrm{~V}, & \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ \hline \end{array}$		2.5			2.5		ms	
		$\begin{array}{\|ll} \mathrm{V}_{\mathrm{l}(\mathrm{INx})}=2.7 \mathrm{~V}, & \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, & \mathrm{R}_{\mathrm{L}}=10 \Omega \\ \hline \end{array}$		3			3			
$\mathrm{tf}^{\text {f }}$	Fall time, output	$\begin{array}{ll} \mathrm{V}_{\mathrm{l}(\mathrm{INx})}=5.5 \mathrm{~V}, & \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, & R_{L}=10 \Omega \end{array}$		4.4			4.4		ms	
		$\begin{array}{\|ll} \mathrm{V}_{\mathrm{l}}(\mathrm{INx})=2.7 \mathrm{~V}, & \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{array}$		2.5			2.5			

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
enable input $\overline{\mathrm{ENx}}$ or ENx

PARAMETER			TEST CONDITIONS	TPS2043			TPS2053			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{IH}	High-level input voltage			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(\mathrm{INx})} \leq 5.5 \mathrm{~V}$	2			2			V
V_{IL}	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Nx})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Ix})} \leq 4.5 \mathrm{~V}$			0.4			0.4		
$!$	Input current	TPS2043	$\mathrm{V}_{1}(\overline{\mathrm{ENx}})=0 \mathrm{~V}$ or $\mathrm{V}_{1}(\overline{\mathrm{ENx}})=\mathrm{V}_{1}(\mathrm{IN})$	-0.5		0.5				$\mu \mathrm{A}$	
		TPS2053	$\mathrm{V}_{1(E N x)}=\mathrm{V}_{1(1 \mathrm{I} x)}$ or $\mathrm{V}_{1(\mathrm{ENx})}=0 \mathrm{~V}$				-0.5		0.5		
ton	Turnon time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$			20			20	ms	
$\mathrm{t}_{\text {off }}$	Turnoff time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$			40	40				

current limit

PARAMETER		TEST CONDITIONSt	TPS2043			TPS2053			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
los	Short-circuit output current		$\mathrm{V}_{1(1 N x)}=5 \mathrm{~V}$, OUT connected to GND, Device enable into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathrm{I}(\mathrm{ENx})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS				TPS2043			TPS2053			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Supply current, low-level output	No Load on OUTx	$V_{1(\overline{E N x})}=V_{1(1 N x)}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2043		0.03	2				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$		20						
		$V_{1(E N x)}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2053					0.03	2	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$							20	
Supply current, high-level output	No Load on OUTx	$V_{1(\overline{E N x})}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2043		160	200				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			200					
		$V_{l(E N x)}=V_{l(I N x)}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2053					160	200	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$						200		
Leakage current	OUTx connected to ground	$\mathrm{V}_{1(\overline{\mathrm{ENx}})}=\mathrm{V}_{1(1 \mathrm{INx})}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2043		200					$\mu \mathrm{A}$
		$\mathrm{V}_{\text {I(ENx }}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2053					200		
Reverse leakage current	$\begin{aligned} & \mathrm{IN}=\text { high } \\ & \text { impedance } \end{aligned}$	$\mathrm{V}_{1(\overline{\mathrm{ENx}})}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2043		0.3					$\mu \mathrm{A}$
		$\mathrm{V}_{\text {(ENX) }}=\mathrm{Hi}$		TPS2053					0.3		

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2043			TPS2053			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathbf{O C x}}$

PARAMETER	TEST CONDITIONS	TPS2043		TPS2053		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$1 \mathrm{O}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}(\overline{\mathrm{OCx}})$		0.5		0.5	V
Off-state current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with $0.1-\mu$ F Load

Figure 3. Turnoff Delay and Fall Time with $0.1-\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with 1- μ F Load

Figure 6. TPS2043, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with $1-\mu \mathrm{F}$ Load

Figure 7. TPS2043, Threshold Trip Current with Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with $100-\mu \mathrm{F}, \mathbf{2 2 0}-\mu \mathrm{F}$ and $470-\mu$ F Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12
RISE TIME
Vs
LOAD CURRENT

Figure 14

Figure 13

FALL TIME
vs
LOAD CURRENT

Figure 15

INSTRUMENTS

TYPICAL CHARACTERISTICS

Figure 16
SUPPLY CURRENT, OUTPUT ENABLED
vs
INPUT VOLTAGE

Figure 18

SUPPLY CURRENT, OUTPUT DISABLED
vs JUNCTION TEMPERATURE

Figure 17
SUPPLY CURRENT, OUTPUT DISABLED
INPUT VOLTAGE

Figure 19

TYPICAL CHARACTERISTICS

Figure 20
INPUT-TO-OUTPUT VOLTAGE
vs
LOAD CURRENT

Figure 22

STATIC DRAIN-SOURCE ON-STATE RESISTANCE VS INPUT VOLTAGE

Figure 21
SHORT-CURCUIT OUTPUT CURRENT
vs
INPUT VOLTAGE

Figure 23

TYPICAL CHARACTERISTICS

Figure 24

UNDERVOLTAGE LOCKOUT VS
JUNCTION TEMPERATURE

Figure 26

SHORT CIRCUIT OUTPUT CURRENT
vs
JUNCTION TEMPERATURE

Figure 25

CURRENT-LIMIT RESPONSE
vs
PEAK CURRENT

Figure 27

TYPICAL CHARACTERISTICS

OVERCURRENT RESPONSE TIME ($\overline{0 C x})$
vs
PEAK CURRENT

Figure 28

Figure 29. Typical Application

APPLICATION INFORMATION

power-supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.
Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{1(\mathrm{INx})}$ has been applied (see Figure 6). The TPS2043 and TPS2053 sense the short and immediately switch into a constant-current output.

In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2043 and TPS2053 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathrm{OC}}$ response

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of $500 \mu \mathrm{~s}$ (see Figure 30) can be connected to the $\overline{\mathrm{OC}}$ pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

APPLICATION INFORMATION

$\overline{\mathbf{O C}}$ response (continued)

Figure 30. Typical Circuit for $\overline{\mathrm{OC}}$ Pin and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{\mathrm{DS}}(\mathrm{on})$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {DS(on) }}$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:
$T_{A}=$ Ambient Temperature ${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\theta \mathrm{JA}}=$ Thermal resistance SOIC $=172^{\circ} \mathrm{C} / \mathrm{W}$
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2043 and TPS2053 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.
The TPS2043 and TPS2053 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of $140^{\circ} \mathrm{C}$ and reach $160^{\circ} \mathrm{C}$, both switches turn off. The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

universal serial bus (USB) applications

The universal serial bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the $5-\mathrm{V}$ input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2043 and TPS2053 can provide power-distribution solutions for many of these classes of devices.

APPLICATION INFORMATION

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs must have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

\dagger An RC filter may be needed, see Figure 36
Figure 31. Typical Three-Port USB Host/Self-Powered Hub
Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

APPLICATION INFORMATION

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA , and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at power up, the device must implement inrush current limiting (see Figure 32).

Figure 32. High-Power Bus-Powered Function

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Hosts/self-powered hubs must:
- Current-limit downstream ports
- Report overcurrent conditions on USB VBUS
- Bus-powered hubs must:
- Enable/disable power to downstream ports
- Power up at <100 mA
- Limit inrush current ($<44 \Omega$ and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at <100 mA

The feature set of the TPS2043 and TPS2053 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 39).

APPLICATION INFORMATION

\dagger USB rev 1.1 requires $120 \mu \mathrm{~F}$ per hub.
Figure 33. Hybrid Self/Bus-Powered Hub Implementation

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2043 and TPS2053, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2043 and TPS2053 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 34. Typical Hot-Plug Implementation
By placing the TPS2043 and TPS2053 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 500 mA Continuous Current per Channel
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 20- $\mu \mathrm{A}$-Maximum Standby Supply Current
- Bidirectional Switch
- 16-pin SOIC Package
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed - File No. E169910

description

The TPS2044 and TPS2054 quad powerdistribution switches are intended for applications where heavy capacitive loads and short circuits
 are likely to be encountered. The TPS2044 and the TPS2054 incorporate in single packages four 135-m Ω N -channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable that is compatible with $5-\mathrm{V}$ logic and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V .
When the output load exceeds the current-limit threshold or a short is present, the TPS2044 and TPS2054 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OCx}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.
The TPS2044 and TPS2054 are designed to limit at 0.9-A load. These power-distribution switches are available in 16-pin small-outline integrated-circuit (SOIC) packages and operate over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

TA $_{\text {A }}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT 25 (A)	PACKAGED DEVICES
	Active low	0.5	0.9	SOIC (D) \dagger
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.5	0.9	TPS2044D

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2044DR)

TPS2044 functional block diagram

\dagger Current sense

Terminal Functions

TERMINAL			1/0	DESCRIPTION
NAME	NO.			
	TPS2044	TPS2054		
EN1	3	-	1	Enable input. logic low turns on power switch, IN1-OUT1.
$\overline{\text { EN2 }}$	4	-	1	Enable input. Logic low turns on power switch, IN1-OUT2.
EN3	7	-	1	Enable input. Logic low turns on power switch, IN2-OUT3.
EN4	8	-	1	Enable input. Logic low turns on power switch, IN2-OUT4.
EN1	-	3	1	Enable input. Logic high turns on power switch, IN1-OUT1.
EN2	-	4	1	Enable input. Logic high turns on power switch, IN1-OUT2.
EN3	-	7	1	Enable input. Logic high turns on power switch, IN2-OUT3.
EN4	-	8	1	Enable input. Logic high turns on power switch, IN2-OUT4.
GND1	1	1		Ground.
GND2	5	5		Ground.
IN1	2	2	1	Input voltage.
IN2	6	6	1	Input voltage.
$\overline{\text { OC1 }}$	16	16	0	Overcurrent. Logic output active low, IN1-OUT1
$\overline{\mathrm{OC} 2}$	13	13	0	Overcurrent. Logic output active low, IN1-OUT2
$\overline{\mathrm{OC} 3}$	12	12	0	Overcurrent. Logic output active low, IN2-OUT3
$\overline{\text { OC4 }}$	9	9	0	Overcurrent. Logic output active low, IN2-OUT4
OUT1	15	15	0	Power-switch output, IN1-OUT1
OUT2	14	14	0	Power-switch output, IN1-OUT2
OUT3	11	11	0	Power-switch output, IN2-OUT3
OUT4	10	10	0	Power-switch output, IN2-OUT4

detailed description

power switch

The power switch is an N -channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{l}}(\mathrm{NXx})=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable ($\overline{E N x}$ or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $20 \mu \mathrm{~A}$ when a logic high is present on ENx (TPS2044) or a logic low is present on ENx (TPS2054). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\overline{O C x}}$)

The $\overline{O C x}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2044 and TPS2054 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switch. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The ($\overline{\mathrm{OCx}})$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, $\mathrm{V}_{1(\mathrm{INx})}$ (see Note1)	-0.3 V to 6 V
Output voltage range, $\mathrm{V}_{\text {O(OUTx) }}$ (see Note1)	-0.3 V to $\mathrm{V}_{1(1 \mathrm{Nx})}+0.3 \mathrm{~V}$
Input voltage range, $\mathrm{V}_{1(\mathrm{ENx})}$ or $\mathrm{V}_{1(E N x)}$	-0.3 V to 6 V
Continuous output current, I O(OUTx)	Internally limited
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range,	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature soldering $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inc}$)	$260^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) protection: Hu	2 kV

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE				
	$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathbf{T}_{A}=85^{\circ} \mathrm{C}$ POWER RATING
	725 mW	$5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW

recommended operating conditions

	TPS2044		TPS2054		UNIT
	MIN	MAX	MIN	MAX	
Input voltage, $\mathrm{V}_{1(1 \mathrm{Nx})}$	2.7	5.5	2.7	5.5	V
Input voltage, $\mathrm{V}_{1(\mathrm{ENx})}$ or $\mathrm{V}_{1(\mathrm{ENx})}$	0	5.5	0	5.5	V
Continuous output current, IO(OUTx)	0	500	0	500	mA
Operating virtual junction temperature, T_{J}	-40	125	-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathrm{I}(\overline{\mathrm{ENx}})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONSt		TPS2044			TPS2054			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
rDS(on)	Static drain-source on-state resistance, $5-\mathrm{V}$ operation			$\begin{aligned} & V_{1(\operatorname{INx})}=5 \mathrm{~V}, \\ & 10=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		80	95		80	95	$\mathrm{m} \Omega$
		$\begin{aligned} & V_{1(1 N x)}=5 \mathrm{~V}, \\ & 10=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$		90	120		90	120			
		$\begin{aligned} & V_{1(I N x)}=5 \mathrm{~V}, \\ & 10=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C},$		100	135		100	135			
	Static drain-source on-state resistance, 3.3-V operation	$\begin{aligned} & V_{1(1 N x)}=3.3 \mathrm{~V}, \\ & 10=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		85	105		85	105			
		$\begin{aligned} & V_{1(1 N x)}=3.3 \mathrm{~V}, \\ & 10=0.5 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$		100	135		100	135			
		$\begin{aligned} & V_{1(I N x)}=3.3 \mathrm{~V}, \\ & 10=0.5 \mathrm{~A} \end{aligned}$	$T_{J}=125^{\circ} \mathrm{C},$		115	150		115	150			
tr_{r}	Rise time, output	$\begin{aligned} & V_{1(I N x)}=5.5 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$		2.5			2.5		ms		
		$\begin{aligned} & V_{1(I N x)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & R_{L}=10 \Omega \end{aligned}$		3			3				
${ }_{\text {f }}$	Fall time, output	$\begin{aligned} & V_{I(I N x)}=5.5 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$		4.4			4.4		ms		
		$\begin{aligned} & V_{1(I N x)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu F, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & R_{L}=10 \Omega \\ & \hline \end{aligned}$	2.5			2.5					

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
enable input $\overline{E N x}$ or ENx

PARAMETER			TEST CONDITIONS	TPS2044			TPS2054			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(\mathrm{INx})} \leq 5.5 \mathrm{~V}$	2			2			V
VIL	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{1(\mathrm{INx})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(\mathrm{INx})} \leq 4.5 \mathrm{~V}$			0.4			0.4		
1	Input current	TPS2044	$\mathrm{V}_{1}(\overline{\mathrm{ENx}})=0 \mathrm{~V}$ or $\mathrm{V}_{1}(\overline{\mathrm{ENx}})=\mathrm{V}_{1(\mathrm{IN})}$	-0.5		0.5				$\mu \mathrm{A}$	
		TPS2054					-0.5		0.5	$\mu \mathrm{A}$	
$\mathrm{t}_{\text {on }}$	Turnon time		$C_{L}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$			20			20	ms	
$\mathrm{t}_{\text {off }}$	Turnoff time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$			40			40		

current limit

PARAMETER		TEST CONDITIONS \dagger	TPS2044			TPS2054			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
los	Short-circuit output current		$\mathrm{V}_{1(1 N x)}=5 \mathrm{~V}$, OUT connected to GND, Device enable into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathbf{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{l (E N x})}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathbf{I (E N x})}=\mathrm{Hi}$ (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS				TPS2044			TPS2054			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Supply current, low-level output	No Load on OUTx		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2044		0.03	2				
		$V_{l(E N x)}=V_{1(1 N x)}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2044			20				
		$V_{1(E N x)}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2054					0.03	2	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$							20	
Supply current, high-level output	No Load on OUTx	$V_{1(\overline{E N x})}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2044		160	200				
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq 125^{\circ} \mathrm{C}$			200					A
		$V_{l(E N x)}=V_{l(I N x)}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2054					160	200	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$						200		
Leakage current	OUTx connected to ground	$\mathrm{V}_{1(\overline{E N x})}=\mathrm{V}_{1(\mathrm{INx})}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2044		200					$\mu \mathrm{A}$
		$V_{1(E N x)}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2054					200		
Reverse leakage current	$\begin{aligned} & I N=\text { high } \\ & \text { impedance } \end{aligned}$	$\mathrm{V}_{1}(\overline{\mathrm{EN}})=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2044		0.3					$\mu \mathrm{A}$
		$\mathrm{V}_{1(\mathrm{EN})}=\mathrm{Hi}$		TPS2054					0.3		

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2044			TPS2054			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathbf{O C x}}$

PARAMETER	TEST CONDITIONS	TPS2044		TPS2054		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$\mathrm{I}^{\prime}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}(\overline{\mathrm{OCx}})$		0.5		0.5	V
Off-state current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

voltage waveforms
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with $0.1-\mu \mathrm{F}$ Load

Figure 3. Turnoff Delay and Fall Time with $0.1-\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with 1- $\mu \mathrm{F}$ Load

Figure 6. TPS2044, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with 1- μ F Load

Figure 7. TPS2044, Threshold Trip Current with Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with $100-\mu F, 220-\mu F$ and 470- μ F Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

Figure 13

FALL TIME
vs
LOAD CURRENT

Figure 15

TYPICAL CHARACTERISTICS

Figure 16
SUPPLY CURRENT, OUTPUT ENABLED

Figure 18

SUPPLY CURRENT, OUTPUT DISABLED
vs JUNCTION TEMPERATURE

Figure 17
SUPPLY CURRENT, OUTPUT DISABLED
VS
input VOLTAGE

Figure 19

TYPICAL CHARACTERISTICS

Figure 20

INPUT-TO-OUTPUT VOLTAGE vs
LOAD CURRENT

Figure 22

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 21

SHORT-CURCUIT OUTPUT CURRENT vs
INPUT VOLTAGE

Figure 23

TYPICAL CHARACTERISTICS

Figure 24

Figure 26

SHORT-CIRCUIT OUTPUT CURRENT
VS
JUNCTION TEMPERATURE

Figure 25

CURRENT LIMIT RESPONSE
vs
PEAK CURRENT

Figure 27

TYPICAL CHARACTERISTICS

OVERCURRENT RESPONSE TIME ($\overline{\mathbf{O C x})}$
VS
PEAK CURRENT

Figure 28

APPLICATION INFORMATION

Figure 29. Typical Application

APPLICATION INFORMATION

power-supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.
Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{\mathrm{I}(\mathrm{INx})}$ has been applied (see Figure 6). The TPS2044 and TPS2054 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2044 and TPS2054 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

APPLICATION INFORMATION

$\overline{O C}$ response

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of $500 \mu \mathrm{~s}$ (see Figure 30) can be connected to the $\overline{O C}$ pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

Figure 30. Typical Circuit for $\overline{\mathbf{O C}}$ Pin and RC Filter for Damping Inrush $\overline{\mathbf{O C}}$ Responses

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{\mathrm{DS}}(\mathrm{on})$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{D S}(o n)$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times R^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature ${ }^{\circ} \mathrm{C}$
$R_{\theta J A}=$ Thermal resistance $\mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}$
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2044 and TPS2054 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.
The TPS2044 and TPS2054 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of $140^{\circ} \mathrm{C}$ and reach $160^{\circ} \mathrm{C}$, both switches turn off. The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

universal serial bus (USB) applications

The universal serial bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function muist provide its owin regulated 3.3 v' from the $5-\mathrm{V}$ input or its own internal power supply.
The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2044 and TPS2054 can provide power-distribution solutions for many of these classes of devices.

APPLICATION INFORMATION

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs must have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

\dagger An RC filter may be needed, see Figure 36
Figure 31. Typical Four-Port USB Host/Self-Powered Hub
Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

APPLICATION INFORMATION

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA , and high-power functions must draw less than 100 mA at powerup and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at power up, the device must implement inrush current limiting (see Figure 32).

Figure 32. High-Power Bus-Powered Function

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power-distribution features must be implemented.

- Hosts/self-powered hubs must:
- Current-limit downstream ports
- Report overcurrent conditions on USB VBUS
- Bus-powered hubs must:
- Enable/disable power to downstream ports
- Power up at $<100 \mathrm{~mA}$
- Limit inrush current ($<44 \Omega$ and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at < 100 mA

The feature set of the TPS2044 and TPS2054 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 33).

APPLICATION INFORMATION

Figure 33. Hybrid Self/Bus-Powered Hub Implementation

TPS2044, TPS2054 QUAD POWER-DISTRIBUTION SWITCHES

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2044 and TPS2054, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2044 and TPS2054 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 34. Typical Hot-Plug Implementation
By placing the TPS2044 and TPS2054 between the $V_{c c}$ input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

TPS2045, TPS2055 CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

SLVS182-APRIL 1999

features

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- $10 \mu \mathrm{~A}$ Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

typical applications

- Notebook, Desktop and Palmtop PCs
- Monitors, Keyboards, Scanners, and Printers
- Digital Cameras, Phones, and PBXs
- Hot-Insertion Applications

description

The TPS2045 and TPS2055 power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. Each of these $135-\mathrm{m} \Omega \mathrm{N}$-channel MOSFET high-side power switches is controlled by a logic enable compatible with $5-\mathrm{V}$ and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .
When the output load exceeds the current-limit threshold or a short is present, the TPS2045 and TPS2055 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OC}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.
The TPS2045 and TPS2055 are designed to limit at 0.44-A load. These power-distribution switches, available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP), operate over an ambient temperature range of $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

T $\mathbf{T A}_{\mathbf{A}}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT 25 (A)	PACKAGED DEVICES	
		0.25	SOIC (D) \dagger	PDIP (P)	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.44	TPS2045D	TPS2045P	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.25	0.44	TPS2055D	TPS2055P

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2045DR)

TPS2045 functional block diagram

Terminal Functions

TERMINAL			I/0	DESCRIPTION
NAME	$\begin{aligned} & \text { NO. } \\ & \hline \text { D OR P } \end{aligned}$			
	TPS2045	TPS2055		
EN	4	-	1	Enable input. Logic low turns on power switch.
EN	-	4	1	Enable input. Logic high turns on power switch.
GND	1	1	1	Ground
IN	2, 3	2, 3	1	Input voltage
$\overline{\text { OC }}$	5	5	0	Over current. Logic output active low
OUT	6, 7, 8	6,7,8	0	Power-switch output

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{IIN})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2 -ms to 4 -ms range.

enable (EN or EN)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$ when a logic high is present on EN (TPS2045) or a logic low is present on EN (TPS2055). A logic zero input on EN or a logic high on EN restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathbf{O C}}$)

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately $140^{\circ} \mathrm{C}$. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately $20^{\circ} \mathrm{C}$, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, $\mathrm{V}_{1(\mathrm{IN})}$ (see Note 1)	-0.3 V to 6 V
Output voltage range, $\mathrm{V}_{\text {O(OUT }}$ (see Note 1)	-0.3 V to $\mathrm{V}_{\mathbf{I (I N})}+0.3 \mathrm{~V}$
Input voltage range, $\mathrm{V}_{1(\mathrm{EN})}$ or $\mathrm{V}_{1(\mathrm{EN})}$	-0.3 V to 6 V
Continuous output current, IO(OUT)	internally limited
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T_{J}	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature soldering $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds	$260^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	2 kV

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
P	1175 mW	$9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	752 mW	611 mW

recommended operating conditions

	TPS2045		TPS2055		UNIT
	MIN	MAX	MIN	MAX	
Input voltage, $\mathrm{V}_{1(1 \mathrm{~N})}$	2.7	5.5	2.7	5.5	V
Input voltage, $\mathrm{V}_{1(\mathrm{EN})}$ or $\mathrm{V}_{1}(\mathrm{EN})$	0	5.5	0	5.5	V
Continuous output current, IO(OUT)	0	250	0	250	mA
Operating virtual junction temperature, T_{J}	-40	125	-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{l}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathrm{l}(\mathrm{EN})}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}(\mathrm{EN})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONS \dagger		TPS2045			TPS2055			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
rDS(on)	Static drain-source on-state resistance, $5-\mathrm{V}$ operation			$\begin{aligned} & V_{1(I N)}=5 \mathrm{~V}, \\ & 10=0.25 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		80	95		80	95	$\mathrm{m} \Omega$
		$\begin{aligned} & V_{1(I N)}=5 \mathrm{~V}, \\ & 10=0.25 \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$		90	120		90	120			
		$\begin{aligned} & V_{1(I N)}=5 \mathrm{~V}, \\ & 10=0.25 \mathrm{~A} \end{aligned}$	$T_{J}=125^{\circ} \mathrm{C},$		100	135		100	135			
	Static drain-source on-state resistance, 3.3-V operation	$\begin{aligned} & V_{1}(\mathrm{~N})=3.3 \mathrm{~V}, \\ & 10=0.25 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		85	105		85	105			
		$\begin{aligned} & V_{1(I N)}=3.3 \mathrm{~V}, \\ & 10=0.25 \mathrm{~A} \\ & \hline \end{aligned}$	$T_{J}=85^{\circ} \mathrm{C},$		100	135		100	135			
		$\begin{aligned} & V_{1(I N)}=3.3 \mathrm{~V}, \\ & 10=0.25 \mathrm{~A} \end{aligned}$	$T_{J}=125^{\circ} \mathrm{C},$		115	150		115	150			
tr_{r}	Rise time, output	$\begin{aligned} & V_{l(I N)}=5.5 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \\ & \hline \end{aligned}$		2.5			2.5		ms		
		$\begin{aligned} & V_{l(I N)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \end{aligned}$		3			3				
$\mathrm{tf}^{\text {f }}$	Fall time, output	$\begin{aligned} & V_{l(I N)}=5.5 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \end{aligned}$		4.4			4.4		ms		
		$\begin{aligned} & V_{l(I N)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \end{aligned}$		2.5			2.5				

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input $\overline{\text { EN }}$ or EN

PARAMETER			TEST CONDITIONS	TPS2045			TPS2055			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{IH}	High-level input voltage			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{~N})} \leq 5.5 \mathrm{~V}$	2			2			V
VIL	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{~N})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}(1 \mathrm{~N})} \leq 4.5 \mathrm{~V}$			0.4			0.4		
I	Input current	TPS2045	$\mathrm{V}_{1(\overline{\mathrm{EN}})}=0 \mathrm{~V}$ or $\mathrm{V}_{1(\mathrm{EN})}=\mathrm{V}_{1(\mathrm{IN})}$	-0.5		0.5				$\mu \mathrm{A}$	
		TPS2055	$\mathrm{V}_{1(\mathrm{EN})}=\mathrm{V}_{1(1 \mathrm{~N})}$ or $\mathrm{V}_{1(E N)}=0 \mathrm{~V}$				-0.5		0.5		
ton	Turnon time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=20 \Omega$			20			20	ms	
$\mathrm{t}_{\text {off }}$	Turnoff time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \quad \mathrm{R}_{\mathrm{L}}=20 \Omega$			40			40		

current limit

PARAMETER		TEST CONDITIONSt	TPS2045			TPS2055			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Ios	Short-circuit output current		$\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5 \mathrm{~V}$, OUT connected to GND, Device enabled into short circuit	0.345	0.44	0.525	0.345	0.44	0.525	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathrm{I}(\mathrm{EN})}=\mathbf{0 V}, \mathrm{V}_{\mathrm{I}(\mathrm{EN})}=\mathrm{Hi}$ (unless otherwise noted) (continued)

supply current

PARAMETER	TEST CONDITIONS				TPS2045			TPS2055			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Supply current, low-level output	No Load on OUT	$V_{1(\overline{E N})}=V_{1(I N)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2045		0.015	1				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$				10				
		$V_{\text {I }}(\mathrm{EN})=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2055					0.015	1	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$							10	
Supply current, high-level output	No Load on OUT	$V_{1(\overline{E N})}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2045		80	100				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			100					
		$V_{\text {I(EN })}=V_{\text {IIIN }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2055					80	100	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$						100		
Leakage current	OUT connected to ground	$\mathrm{V}_{1(\overline{E N})}=\mathrm{V}_{1(\mathrm{IN})}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$	TPS2045		100					$\mu \mathrm{A}$
		$V_{l(E N)}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2055					100		
Reverse leakage current	$\begin{aligned} & I N=\text { high } \\ & \text { impedance } \end{aligned}$	$\mathrm{V}_{1}(\overline{\mathrm{EN}})=0 \mathrm{~V}$	$T_{J}=25^{\circ} \mathrm{C}$	TPS2045		0.3					$\mu \mathrm{A}$
		$\mathrm{V}_{1(\mathrm{EN})}=\mathrm{Hi}$		TPS2055					0.3		

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2045			TPS2055			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathbf{O C}}$

PARAMETER	TEST CONDITIONS	TPS2045		TPS2055		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$1 \mathrm{O}=5 \mathrm{~V}, \quad \mathrm{~V} \mathrm{OL}(\overline{\mathrm{OC}})$		0.5		0.5	V
Off-state current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with $0.1-\mu \mathrm{F}$ Load

Figure 3. Turnoff Delay and Fall Time with $0.1-\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with $1-\mu \mathrm{F}$ Load

Figure 6. TPS2045, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with $1-\mu \mathrm{F}$ Load

Figure 7. TPS2045, Threshold Trip Current with Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with $220-\mu \mathrm{F}, 100-\mu \mathrm{F}$ and $47-\mu \mathrm{F}$ Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

Figure 13

FALL TIME
vs
LOAD CURRENT

Figure 15

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 20
INPUT-TO-OUTPUT VOLTAGE
vs
LOAD CURRENT

Figure 22

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

Figure 21

SHORT-CURCUIT OUTPUT CURRENT vs INPUT VOLTAGE

Figure 23

TYPICAL CHARACTERISTICS

Figure 24
UNDERVOLTAGE LOCKOUT VS JUNCTION TEMPERATURE

Figure 26

SHORTCIRCUIT OUTPUT CURRENT vs
JUNCTION TEMPERATURE

Figure 25
CURRENT-LIMIT RESPONSE
vs
PEAK CURRENT

Figure 27

TYPICAL CHARACTERISTICS

OVERCURRENT ($\overline{\mathrm{OC}})$ RESPONSE TIME
vs
PEAK CURRENT

Figure 28

APPLICATION INFORMATION

Figure 29. Typical Application

power-supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy.
This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

APPLICATION INFORMATION

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{1(I N)}$ has been applied (see Figure 6). The TPS2045 and TPS2055 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.
In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2045 and TPS2055 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathrm{OC}}$ response

The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of $500 \mu \mathrm{~s}$ (see Figure 30) can be connected to the $\overline{\mathrm{OC}}$ pin to reduce false overcurrent reporting caused by hot-plug switching events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

Figure 30. Typical Circuit for $\overline{\mathrm{OC}} \mathbf{P i n}$ and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find r_{DS} (on) at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

```
\(T_{A}=\) Ambient Temperature \({ }^{\circ} \mathrm{C}\)
\(\mathrm{R}_{\theta \mathrm{JA}}=\) Thermal resistance \(\mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{PDIP}=106^{\circ} \mathrm{C} / \mathrm{W}\)
```

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2045 and TPS2055 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

APPLICATION INFORMATION

Universal Serial Bus (USB) applications

The Universal Serial Bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the $5-\mathrm{V}$ input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2045 and TPS2055 can provide power-distribution solutions for many of these classes of devices.
Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA ; high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at power up, the device must implement inrush current limiting (see Figure 31).

Figure 31. High-Power Bus-Powered Function

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
- Enable/disable power to downstream ports
- Power up at <100 mA
- Limit inrush current ($<44 \Omega$ and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at <100 mA

The feature set of the TPS2045 and TPS2055 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

APPLICATION INFORMATION

Figure 32. Bus-Powered Hub Implementation

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2045 and TPS2055, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2045 and TPS2055 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 33. Typical Hot-Plug Implementation
By placing the TPS2045 and TPS2055 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providng a slow voltage ramp at the output of the device. This implementaion controls system surge currents and provides a hot-plugging mechanism for any device.

features

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current per Channel
- Independent Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range ... 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- $10 \mu \mathrm{~A}$ Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8 -pin SOIC and PDIP Packages
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

typical applications

- Notebook, Desktop and Palmtop PCs
- Monitors, Keyboards, Scanners, and Printers
- Digital Cameras, Phones, and PBXs
- Hot-Insertion Applications

description

The TPS2046 and TPS2056 dual power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. These devices incorporate in single packages two 135-m Ω N -channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable compatible with $5-\mathrm{V}$ and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V .
When the output load exceeds the current-limit threshold or a short is present, the TPS2046 and TPS2056 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OCx}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.
The TPS2046 and TPS2056 are designed to limit at 0.44-A load. These power distribution switches, available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP), operate over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

TA	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT 25 (A)	PACKAGED DEVICES	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.25	SOIC (D)t	PDIP (P)	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.25	0.44	TPS2046D	TPS2046P

†The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2046DR)

TPS2046 functional block diagram

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	$\frac{\text { NO. }}{\text { D OR P }}$			
	TPS2046	TPS2056		
EN1	3	-	1	Enable input. Logic low turns on power switch, IN-OUT1.
EN2	4	-	1	Enable input. Logic low turns on power switch, IN-OUT2.
EN1	-	3	1	Enable input. Logic high turns on power switch, IN-OUT1.
EN2	-	4	1	Enable input. Logic high turns on power switch, IN-OUT2.
GND	1	1	1	Ground
IN	2	2	1	Input voltage
$\overline{\mathrm{OC1}}$	8	8	0	Overcurrent. Logic output active low, for power switch, IN-OUT1
$\overline{\mathrm{OC} 2}$	5	5	0	Overcurrent. Logic output active low, for power switch, IN-OUT2
OUT1	7	7	0	Power-switch output
OUT2	6	6	0	Power-switch output

detailed description

power switch

The power switch is an N -channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{l}(\mathrm{IN})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUTx to IN and IN to OUTx when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4 -ms range.

enable ($\overline{\mathrm{ENx}}$ or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $10 \mu \mathrm{~A}$ when a logic high is present on ENx (TPS2046) or a logic low is present on ENx (TPS2056). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.
overcurrent ($\overline{O_{C x}}$)
The $\overline{O C x}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2046 and TPS2056 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switches. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The ($\overline{\mathrm{OCx}}$) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.
DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE A $_{\mathbf{A}}=25^{\circ} \mathrm{C}$	T $_{\mathbf{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
P	1175 mW	$9.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	752 mW	611 mW

recommended operating conditions

	TPS2046		TPS2056		UNIT
	MIN	MAX	MIN	MAX	
Input voltage, $\mathrm{V}_{1(\mathrm{IN})}$	2.7	5.5	2.7	5.5	V
Input voltage, $\mathrm{V}_{1(\overline{\mathrm{ENx}})}$ or $\mathrm{V}_{1(\mathrm{ENx}}$)	0	5.5	0	5.5	V
Continuous output current, lo(OUTX)	0	250	0	250	mA
Operating virtual junction temperature, T	-40	125	-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{1(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\mathrm{ENx})}=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

PARAMETER		TEST CONDITIONS \dagger		TPS2046			TPS2056			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
r ${ }^{\text {DS }(o n) ~}$	Static drain-source on-state resistance, 5-V operation			$\begin{aligned} & V_{1(I N)}=5 \mathrm{~V}, \\ & 10=0.1 \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		80	95		80	95	$\mathrm{m} \Omega$
		$\begin{aligned} & v_{1(I N)}=5 \mathrm{~V}, \\ & 10=0.1 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$		90	120		90	120			
		$\begin{aligned} & v_{1(I N)}=5 \mathrm{~V}, \\ & 10=0.1 \mathrm{~A} \end{aligned}$	$T_{J}=125^{\circ} \mathrm{C},$		100	135		100	135			
	Static drain-source on-state resistance, 3.3-V operation	$\begin{aligned} & V_{l(I N)}=3.3 \mathrm{~V}, \\ & 10=0.1 \mathrm{~A} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},$		85	105		85	105			
		$\begin{aligned} & V_{l(I N)}=3.3 \mathrm{~V}, \\ & 10=0.1 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$		100	135		100	135			
		$\begin{aligned} & V_{l(I N)}=3.3 \mathrm{~V}, \\ & \mathrm{lO}=0.1 \mathrm{~A} \end{aligned}$	$T_{J}=125^{\circ} \mathrm{C},$		115	150		115	150			
t_{r}	Rise time, output	$\begin{aligned} & \mathrm{V}_{\mathrm{l}(\mathrm{IN})=5.5 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \\ & \hline \end{aligned}$	2.5			2.5			ms		
		$\begin{aligned} & V_{l(I N)}=2.7 \mathrm{~V}, \\ & C_{L}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \\ & \hline \end{aligned}$	3			3					
$\mathrm{tf}^{\text {f }}$	Fall time, output	$\begin{aligned} & V_{l(I N)}=5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \\ & \hline \end{aligned}$		4.4			4.4		ms		
		$\begin{aligned} & \mathrm{V}_{l(\mathrm{IN})}=2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=20 \Omega \end{aligned}$	2.5			2.5					

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately. enable input $\overline{\text { ENx }}$ or ENx

PARAMETER			TEST CONDITIONS	TPS2046			TPS2056			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{IH}	High-level input voltage			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(\mathrm{IN})} \leq 5.5 \mathrm{~V}$	2			2			V
VIL	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{1(\mathrm{IN})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {(}}(\mathrm{N}) \leq 4.5 \mathrm{~V}$			0.4			0.4		
1	Input current	TPS2046	$\mathrm{V}_{1}(\overline{\mathrm{ENx}})=0 \mathrm{~V}$ or $\mathrm{V}_{1(\mathrm{ENx})}=\mathrm{V}_{1(\mathrm{IN})}$	-0.5		0.5				$\mu \mathrm{A}$	
		TPS2056	$\mathrm{V}_{1(\mathrm{ENX})}=\mathrm{V}_{1(\mathrm{IN})}$ or $\mathrm{V}_{1(\mathrm{ENx})}=0 \mathrm{~V}$				-0.5		0.5		
ton	Turn-on time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=20 \Omega$			20			20	ms	
$\mathrm{t}_{\text {off }}$	Turn-off time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \quad \mathrm{R}_{\mathrm{L}}=20 \Omega$			40	40				

current limit

PARAMETER		TEST CONDITIONS \dagger	TPS2046			TPS2056			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
los	Short-circuit output current		$\mathrm{V}_{1(\mathrm{IN})}=5 \mathrm{~V}$, OUT connected to GND, Device enable into short circuit.	0.345	0.44	0.525	0.345	0.44	0.525	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{IN})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathrm{I}(\overline{\mathrm{ENx})}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted) (continued)
supply current

PARAMETE R	TEST CONDITIONS				TPS2046			TPS2056			UNIT
					MIN	TYP	MAX	MIIN	TYP	MAX	
Supply current, low-level output	No Load on OUTx	$V_{1(\overline{E N X})}=\mathrm{V}_{1(\mathrm{IN})}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2046		0.015	1				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$				10				
		$V_{1(E N x)}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2056					0.015	1	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$							10	
Supply current, high-level output	No Load on OUTx	$V_{1(\overline{E N x})}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2046		80	100				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$			100					
		$V_{1(E N X)}=V_{\text {I (IN }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2056					80	100	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$						100		
Leakage current	OUTx connected to ground	$\mathrm{V}_{1(\mathrm{ENx})}=\mathrm{V}_{1(\mathrm{IN})}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2046		100					$\mu \mathrm{A}$
		$V_{l(E N x)}=0 \mathrm{~V}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	TPS2056					100		
Reverse leakage current	$\begin{aligned} & \text { IN = high } \\ & \text { impedance } \end{aligned}$	$V_{1(\overline{E N x})}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2046		0.3					$\mu \mathrm{A}$
		$\mathrm{V}_{1(E N \mathrm{X})}=\mathrm{Hi}$		TPS2056					0.3		

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2046			TPS2056			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathbf{O} \overline{C x}}$

PARAMETER	TEST CONDITIONS	TPS2046		TPS2056		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$1 \mathrm{O}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}(\overline{\mathrm{OCx}})$		0.5		0.5	V
Off-state current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with 0.1- μ F Load

Figure 3. Turnoff Delay and Fall Time with 0.1- $\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with $1-\mu \mathrm{F}$ Load

Figure 6. TPS2046, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with $1-\mu$ F Load

Figure 7. TPS2046, Threshold Trip Current with Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with $220-\mu \mathrm{F}, 100-\mu \mathrm{F}$ and $47-\mu \mathrm{F}$ Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

Figure 13

FALL TIME
vs
LOAD CURRENT

Figure 15

TYPICAL CHARACTERISTICS

Figure 16

SUPPLY CURRENT, OUTPUT ENABLED VS
INPUT VOLTAGE

Figure 18

SUPPLY CURRENT, OUTPUT DISABLED
vs
JUNCTION TEMPERATURE

Figure 17
SUPPLY CURRENT, OUTPUT DISABLED
vs
INPUT VOLTAGE

Figure 19

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE VS
JUNCTION TEMPERATURE

Figure 20
INPUT-TO-OUTPUT VOLTAGE
vS
LOAD CURRENT

Figure 22

STATIC DRAIN-SOURCE ON-STATE RESISTANCE VS INPUT VOLTAGE

Figure 21
SHORT-CURCUIT OUTPUT CURRENT vs
INPUT VOLTAGE

Figure 23

TYPICAL CHARACTERISTICS

Figure 24

Figure 26

SHORTCIRCUIT OUTPUT CURRENT vs
JUNCTION TEMPERATURE

Figure 25

CURRENT-LIMIT RESPONSE
vs
PEAK CURRENT

Figure 27

TYPICAL CHARACTERISTICS

OVERCURRENT ($\overline{(\overline{O C x})}$ RESPONSE TIME
vs
PEAK CURRENT

Figure 28

APPLICATION INFORMATION

Figure 29. Typical Application

power-supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy.
This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

APPLICATION INFORMATION

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{1(\mathrm{IN})}$ has been applied (see Figure 6). The TPS2046 and TPS2056 sense the short and immediately switch into a constant-current output.
In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2046 and TPS2056 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathrm{OCx}}$ response

The $\overline{O C x}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter (see Figure 30) can be connected to the $\overline{\mathrm{OCx}}$ pin to reduce false overcurrent reporting caused by hot-plug switching events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

Figure 30. Typical Circuits for $\overline{\mathbf{O C}}$ Pin and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find rosson) at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {DS(on) }}$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times r^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C} \\
& R_{\theta J A}=\text { Thermal resistance } \mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{PDIP}=106^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2046 and TPS2056 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2046 and TPS2056 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of $140^{\circ} \mathrm{C}$ and reach $160^{\circ} \mathrm{C}$, both switches turn off. The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

APPLICATION INFORMATION

Universal Serial Bus (USB) applications

The Universal Serial Bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for $5-\mathrm{V}$ power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the $5-\mathrm{V}$ input or its own internal power supply.
The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2046 and TPS2056 can provide power-distribution solutions for many of these classes of devices.

bus-powered hubs

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA , and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at power up, the device must implement inrush current limiting (see Figure 31).

APPLICATION INFORMATION

Figure 31. High-Power Bus-Powered Function

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
- Enable/disable power to downstream ports
- Power up at <100 mA
- Limit inrush current ($<44 \Omega$ and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at <100 mA

The feature set of the TPS2046 and TPS2056 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

TPS2046, TPS2056
DUAL CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

APPLICATION INFORMATION

Figure 32. Bus-Powered Hub Implementation

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2046 and TPS2056, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2046 and TPS2056 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 33. Typical Hot-Plug Implementation
By placing the TPS2046 and TPS2056 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providng a slow voltage ramp at the output of the device. This implementaion controls system surge currents and provides a hot-plugging mechanism for any device.

features

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current per Channel
- Independent Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- $20 \mu \mathrm{~A}$ Maximum Standby Supply Current
- Bidirectional Switch
- Available in 16-pin SOIC Package
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

The TPS2047 and TPS2057 triple power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. These devices incorporate in single packages three $135-\mathrm{m} \Omega$ N -channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable compatible with $5-\mathrm{V}$ and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V .

When the output load exceeds the current-limit threshold or a short is present, the TPS2047 and TPS2057 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OCx}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2047 and TPS2057 are designed to limit at 0.44-A load. These power-distribution switches are available in 16-pin small-outline integrated circuit (SOIC) packages and operate over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

TA $_{\text {A }}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT 25 (A)	PACKAGED DEVICES
		SOIC (D) \dagger		
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.25	0.44	TPS2047D
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.25	0.44	TPS2057D

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2047DR)

TPS2047 functional block diagram

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	TPS2047	TPS2057		
EN1	3	-	1	Enable input. Logic low turns on power switch, IN1-OUT1.
EN2	4	-	1	Enable input. Logic low turns on power switch, IN1-OUT2.
EN3	7	-	1	Enable input. Logic low turns on power switch, IN2-OUT3.
EN1	-	3	1	Enable input. Logic high turns on power switch, IN1-OUT1.
EN2	-	4	1	Enable input. Logic high turns on power switch, IN1-OUT2.
EN3	-	7	1	Enable input. Logic high turns on power switch, IN2-OUT3.
GND1	1	1		Ground
GND2	5	5		Ground
IN1	2	2	1	Input voltage
IN2	6	6	1	Input voltage
NC	8, 9, 10	8, 9, 10		No connection
$\overline{\text { OC1 }}$	16	16	0	Overcurrent. Logic output active low, IN1-OUT1
$\overline{\mathrm{OC} 2}$	13	13	0	Overcurrent. Logic output active low, IN1-OUT2
$\overline{\mathrm{OC3}}$	12	12	0	Overcurrent. Logic output active low, IN2-OUT3
OUT1	15	15	0	Power-switch output, IN1-OUT1
OUT2	14	14	0	Power-switch output, IN1-OUT2
OUT3	11	11	0	Power-switch output, IN2-OUT3

detailed description

power switch

The power switch is an N -channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{1(\mathrm{INx})}=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable ($\overline{E N x}$ or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $20 \mu \mathrm{~A}$ when a logic high is present on $\overline{\mathrm{ENx}}$ (TPS2047) or a logic low is present on ENx (TPS2057). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathbf{O C x}}$)

The $\overline{O C x}$ open drain output is asserted (active low) when an overcurrent or over temperature condition is encountered. The output will remain asserted until the overcurrent or over temperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2047 and TPS2057 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus, isolating the fault without interrupting operation of the adjacent power switches. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The ($\overline{O C x}$) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Continuous total power dissipation See Dissipation Rating Table

Lead temperature soldering $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C 2 kV
Machine model .. 0.2 kV
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $T_{A}=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW

recommended operating conditions

	TPS2047	TPS2057	
	UNIT		
Input voltage, $\mathrm{V}_{\mathrm{l}(\mathrm{INx})}$		MAX	MIN
MAX			
Input voltage, $\mathrm{V}_{\mathrm{l}(\mathrm{ENx})}$ or $\mathrm{V}_{\mathrm{l}(\mathrm{ENx})}$	2.7	5.5	2.7
Continuous output current, $\mathrm{I}(\mathrm{OUTX})$	0.5	V	
Operating virtual junction temperature, T_{J}	5.5	0	5.5

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathbf{I}(\mathrm{INx})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\overline{\mathrm{ENx}})}=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
enable input $\overline{E N x}$ or $E N x$

PARAMETER			TEST CONDITIONS	TPS2047			TPS2057			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{IH}	High-level input voltage			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Nx})} \leq 5.5 \mathrm{~V}$	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Nx})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Nx})} \leq 4.5 \mathrm{~V}$			0.4			0.4		
	Input current	TPS2047	$\mathrm{V}_{1(\overline{\mathrm{ENx}})}=0 \mathrm{~V}$ or $\mathrm{V}_{1(\overline{E N x})}=\mathrm{V}_{1(1 \mathrm{I} x)}$	-0.5		0.5				$\mu \mathrm{A}$	
		TPS2057	$V_{1(E N X)}=V_{1(1 N x)}$ or $V_{1(E N x)}=0 \mathrm{~V}$				-0.5		0.5		
ton	Turnon time		$C_{L}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=20 \Omega$			20			20	ms	
$\mathrm{t}_{\text {off }}$	Turnoff time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=20 \Omega$			40			40		

current limit

PARAMETER		TEST CONDITIONSt	TPS2047			TPS2057			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
los	Shor-circuit output current		$\mathrm{V}_{1(1 \mathrm{Nx})}=5 \mathrm{~V}$, OUT connected to GND, Device enable into short circuit	0.345	0.44	0.525	0.345	0.44	0.525	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{1(1 \mathrm{Nx})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\overline{\mathrm{ENx})}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted) (continued)
supply current

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2047			TPS2057			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathbf{O C x}}$

PARAMETER	TEST CONDITIONS	TPS2047		TPS2057		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$1 \mathrm{O}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}(\overline{\mathrm{OCx}})$		0.5		0.5	V
Off-state current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with $0.1-\mu \mathrm{F}$ Load

Figure 3. Turnoff Delay and Fall Time with $0.1-\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with $1-\mu \mathrm{F}$ Load

Figure 6. TPS2047, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with $1-\mu \mathrm{F}$ Load

Figure 7. TPS2047, Threshold Trip Current with Ramped Load on Enabled Device

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with 220- $\mu \mathrm{F}$, 100- $\mu \mathrm{F}$ and $47-\mu$ F Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

Figure 13

FALL TIME
vs
LOAD CURRENT

Figure 15

TYPICAL CHARACTERISTICS

SUPPLY CURRENT, OUTPUT ENABLED VS JUNCTION TEMPERATURE

Figure 16
SUPPLY CURRENT, OUTPUT ENABLED
vs
INPUT VOLTAGE

Figure 18

SUPPLY CURRENT, OUTPUT DISABLED
vs JUNCTION TEMPERATURE

Figure 17
SUPPLY CURRENT, OUTPUT DISABLED vs
INPUT VOLTAGE

Figure 19

TYPICAL CHARACTERISTICS

Figure 20

INPUT-TO-OUTPUT VOLTAGE
vs
LOAD CURRENT

Figure 22

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs input voltage

Figure 21
SHORT-CURCUIT OUTPUT CURRENT vs
INPUT VOLTAGE

Figure 23

TYPICAL CHARACTERISTICS

Figure 24

UNDERVOLTAGE LOCKOUT vs JUNCTION TEMPERATURE

Figure 26

SHORTCIRCUIT OUTPUT CURRENT
vs JUNCTION TEMPERATURE

Figure 25

CURRENT-LIMIT RESPONSE
vs
PEAK CURRENT

Figure 27

TYPICAL CHARACTERISTICS
OVERCURRENT ($\overline{O C x}$) RESPONSE TIME
vs
PEAK CURRENT

Figure 28

APPLICATION INFORMATION

Figure 29. Typical Application

APPLICATION INFORMATION

power supply considerations

A $0.01-\mu F$ to $0.1-\mu F$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{1(\mathrm{INx})}$ has been applied (see Figure 6). The TPS2047 and TPS2057 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2047 and TPS2057 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathbf{O C}}$ response

The $\overline{O C}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of $500 \mu \mathrm{~s}$ (see Figure 30) can be connected to $\overline{O C x}$ to reduce false overcurrent reporting caused by hot-plug switching events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

APPLICATION INFORMATION

Figure 30. Typical Circuit for $\overline{\mathbf{O C}}$ Pin and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find ${ }^{\mathrm{DSS}}(\mathrm{on})$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\mathrm{DS}(\mathrm{on})}$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
\begin{aligned}
& T_{A}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C} \\
& R_{\theta J A}=\text { Thermal resistance } \mathrm{SOIC}=172^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2047 and TPS2057 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.
The TPS2047 and TPS2057 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of $140^{\circ} \mathrm{C}$ and reach $160^{\circ} \mathrm{C}$, both switches turn off. The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

Universal Serial Bus (USB) applications

The universal serial bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the $5-\mathrm{V}$ input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Bus-powered hubs distribute data and power to downstream functions. The TPS2047 and TPS2057 can provide power-distribution solutions for many of these classes of devices.

APPLICATION INFORMATION

bus-powered hubs

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA , and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at power up, the device must implement inrush current limiting (see Figure 31).

Figure 31. High-Power Bus-Powered Function

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
- Enable/disable power to downstream ports
- Power up at <100 mA
- Limit inrush current (<44 Ω and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at <100 mA

The feature set of the TPS2047 and TPS2057 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

APPLICATION INFORMATION

† USB rev 1.1 requires $120 \mu \mathrm{~F}$ per hub.
Figure 32. Bus-Powered Hub Implementation

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2047 and TPS2057, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2047 and TPS2057 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 33. Typical Hot-Plug Implementation
By placing the TPS2047 or TPS2057 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

features

- 135-m Ω-Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current per Channel
- Independent Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- $20 \mu \mathrm{~A}$ Maximum Standby Supply Current
- Bidirectional Switch
- Available in 16-pin SOIC Package
- Ambient Temperature Range, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

The TPS2048 and TPS2058 quad power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. These devices incorporate in single packages four 135-m Ω N -channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable compatible with $5-\mathrm{V}$ and $3-\mathrm{V}$ logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V .

When the output load exceeds the current-limit threshold or a short is present, the TPS2048 and TPS2058 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent ($\overline{\mathrm{OCx}}$) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2048 and TPS2058 are designed to limit at 0.44-A load. These power-distribution switches are available in 16-pin small-outline integrated circuit (SOIC) packages and operate over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

TA $_{\text {A }}$	ENABLE	RECOMMENDED MAXIMUM CONTINUOUS LOAD CURRENT (A)	TYPICAL SHORT-CIRCUIT CURRENT LIMIT AT 25 (A)	PACKAGED DEVICES
	SOIC (D)			
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active low	0.25	0.44	TPS2048D
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Active high	0.25	0.44	TPS2058D

\dagger The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2048DR)

QUAD CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

SLVS192-APRIL 1999
TPS2048 functional block diagram

[^2]
Terminal Functions

TERMINAL			1/0	
NAME	NO.			DESCRIPTION
	TPS2048	TPS2058		
EN1	3	-	1	Enable input. Logic low turns on power switch, IN1-OUT1.
EN2	4	-	1	Enable input. Logic low turns on power switch, IN1-OUT2.
EN3	7	-	1	Enable input. Logic low turns on power switch, IN2-OUT3.
EN4	8	-	1	Enable input. Logic low turns on power switch, IN2-OUT4.
EN1	-	3	1	Enable input. Logic high turns on power switch, IN1-OUT1.
EN2	-	4	1	Enable input. Logic high turns on power switch, IN1-OUT2.
EN3	-	7	1	Enable input. Logic high turns on power switch, IN2-OUT3.
EN4	-	8	1	Enable input. Logic high turns on power switch, IN2-OUT4.
GND1	1	1		Ground
GND2	5	5		Ground
IN1	2	2	1	Input voltage
IN2	6	6	1	Input voltage
$\overline{\mathrm{OC} 1}$	16	16	0	Overcurrent. Logic output active low, IN1-OUT1
$\overline{\mathrm{OC} 2}$	13	13	0	Overcurrent. Logic output active low, IN1-OUT2
$\overline{\mathrm{OC}}$	12	12	0	Overcurrent. Logic output active low, IN2-OUT3
$\overline{\mathrm{OC} 4}$	9	9	0	Overcurrent. Logic output active low, IN2-OUT4
OUT1	15	15	0	Power-switch output, IN1-OUT1
OUT2	14	14	0	Power-switch output, IN1-OUT2
OUT3	11	11	0	Power-switch output, IN2-OUT3
OUT4	10	10	0	Power-switch output, IN2-OUT4

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of $135 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{l}}(\mathrm{INx})=5 \mathrm{~V}\right)$. Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2 -ms to 4 -ms range.

enable ($\overline{E N x}$ or $\mathbf{E N x}$)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $20 \mu \mathrm{~A}$ when a logic high is present on ENx (TPS2048) or a logic low is present on ENx (TPS2058). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent ($\overline{\mathbf{O C x}}$)

The $\overline{O C x}$ open drain output is asserted (active low) when an overcurrent or over temperature condition is encountered. The output will remain asserted until the overcurrent or over temperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2048 and TPS2058 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus, isolating the fault without interrupting operation of the adjacent power switches. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The ($\overline{\mathrm{OCx}}$) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control signal turns off the power switch.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Input voltage range, $\mathrm{V}_{\mathrm{l}(\mathrm{INx})}$ (see Note1) -0.3 V to 6 V
Output voltage range, $\mathrm{V}_{\mathrm{O}(\mathrm{OUTX})}$ (see Note1) -0.3 V to $\mathrm{V}_{1(\mathrm{INx})}+0.3 \mathrm{~V}$
Input voltage range, $\mathrm{V}_{1(\mathrm{ENx})}$ or $\mathrm{V}_{1(\mathrm{ENx})}$ -0.3 V to 6 V
Continuous output current, IO(OUTx) Internally limited
Continuous total power dissipation See Dissipation Rating Table
Operating virtual junction temperature range, T_{J} $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature soldering $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds $260^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C 2 kV
Machine model 0.2 kV
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.
dISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW

recommended operating conditions

\left.| | TPS2048 | | TPS2058 | UNIT |
| :--- | ---: | ---: | ---: | :---: |
| | MIN | MAX | MIN | |$\right)$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{1(\mathrm{INx})}=5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\mathrm{ENx})}=0 \mathrm{~V}, \mathrm{~V}_{\mathbf{I}(\mathrm{ENx})}=\mathrm{Hi}$ (unless otherwise noted)
power switch

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
enable input $\overline{E N x}$ or ENx

PARAMETER			TEST CONDITIONS	TPS2048			TPS2058			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage			$2.7 \mathrm{~V} \leq \mathrm{V}_{(1 \mathrm{INx})} \leq 5.5 \mathrm{~V}$	2			2			V
VIL	Low-level input voltage		$4.5 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Nx})} \leq 5.5 \mathrm{~V}$			0.8			0.8	V	
			$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Nx})} \leq 4.5 \mathrm{~V}$			0.4			0.4		
1	Input current	TPS2048	$\mathrm{V}_{1(\mathrm{ENx})}=0 \mathrm{~V}$ or $\mathrm{V}_{1(\mathrm{ENx})}=\mathrm{V}_{1(1 \mathrm{Nx})}$	-0.5		0.5				$!\mathrm{A}$	
		TPS2058	$\mathrm{V}_{1(\mathrm{ENx})}=\mathrm{V}_{1(1 \mathrm{I} x)}$ or $\mathrm{V}_{1(\mathrm{ENx})}=0 \mathrm{~V}$				-0.5		0.5		
$\mathrm{t}_{\text {on }}$	Turnon time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \quad \mathrm{R} \mathrm{L}_{\mathrm{L}}=20 \Omega$			20			20	ms	
toff	Turnoff time		$\mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=20 \Omega$			40			40		

current limit

PARAMETER		TEST CONDITIONS \dagger	TPS2048			TPS2058			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
los	Short-circuit output current		$\mathrm{V}_{1(1 N x)}=5 \mathrm{~V}$, OUT connected to GND, Device enable into short circuit	0.345	0.44	0.525	0.345	0.44	0.525	A

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{l}(\mathrm{INx})}=5.5 \mathrm{~V}$, $\mathrm{l}_{\mathrm{O}}=$ rated current, $\mathrm{V}_{\mathbf{I}(\mathrm{ENx})}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathbf{I (E N x})}=\mathrm{Hi}$ (unless otherwise noted) (continued)
supply current

PARAMETER	TEST CONDITIONS				TPS2048			TPS2058			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Supply current, low-level output	No Load on OUTx	$\mathrm{V}_{1(\overline{\mathrm{ENX}})}=\mathrm{V}_{1(\mathrm{INx})}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2048		0.03	2				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$		20						
		$V_{1(E N x)}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2058					0.03	2	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$							20	
Supply current, high-level output	No Load on OUTx	$V_{1(E N x)}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2048		160	200				$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$			200					
		$\mathrm{V}_{\text {(ENX) }}=\mathrm{V}_{1(1 \mathrm{INX})}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	TPS2058					160	200	
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$						200		
Leakage current	OUTx connected to ground	$\mathrm{V}_{1(\overline{E N X})}=\mathrm{V}_{1(1 \mathrm{I} \times)}$	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 125^{\circ} \mathrm{C}$	TPS2048		200					$\mu \mathrm{A}$
		$\mathrm{V}_{\text {(ENX) }}=0 \mathrm{~V}$		TPS2058					200		
Reverse leakage current	$\begin{aligned} & \text { INx = high } \\ & \text { impedance } \end{aligned}$	$\mathrm{V}_{1(E N x)}=0 \mathrm{~V}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	TPS2048		0.3					$\mu \mathrm{A}$
		$\mathrm{V}_{\text {I(ENX) }}=\mathrm{Hi}$		TPS2058					0.3		

undervoltage lockout

PARAMETER	TEST CONDITIONS	TPS2048			TPS2058			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100			100		mV

overcurrent $\overline{\mathbf{0 C x}}$

PARAMETER	TEST CONDITIONS	TPS2048		TPS2058		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Sink current \dagger	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		10		10	mA
Output low voltage	$10=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}(\overline{\mathrm{OCx}})$		0.5		0.5	V
Off-state current ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$		1		1	$\mu \mathrm{A}$

\dagger Specified by design, not production tested.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS
Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Turnon Delay and Rise Time with $0.1-\mu \mathrm{F}$ Load

Figure 3. Turnoff Delay and Fall Time with $0.1-\mu \mathrm{F}$ Load

PARAMETER MEASUREMENT INFORMATION

Figure 4. Turnon Delay and Rise Time with $1-\mu$ F Load

Figure 6. TPS2048, Short-Circuit Current, Device Enabled into Short

Figure 5. Turnoff Delay and Fall Time with $1-\mu \mathrm{F}$ Load

Figure 7. TPS2048, Threshold Trip Current with Ramped Load on Enabled Device

QUAD CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

PARAMETER MEASUREMENT INFORMATION

Figure 8. Inrush Current with $220-\mu \mathrm{F}, 100-\mu \mathrm{F}$ and $47-\mu \mathrm{F}$ Load Capacitance

Figure 10. 4- Ω Load Connected to Enabled Device

Figure 9. Ramped Load on Enabled Device

Figure 11. 1- Ω Load Connected to Enabled Device

TYPICAL CHARACTERISTICS

Figure 12

RISE TIME
vs
LOAD CURRENT

Figure 14

TURNOFF DELAY
vs
INPUT VOLTAGE

Figure 13

FALL TIME
vs
LOAD CURRENT

Figure 15

TPS2048, TPS2058
 QUAD CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

SLVS192 - APRIL 1999
TYPICAL CHARACTERISTICS

Figure 16
SUPPLY CURRENT, OUTPUT ENABLED
vs
INPUT VOLTAGE

Figure 18

SUPPLY CURRENT, OUTPUT DISABLED
vs
JUNCTION TEMPERATURE

Figure 17
SUPPLY CURRENT, OUTPUT DISABLED vs INPUT VOLTAGE

Figure 19

TYPICAL CHARACTERISTICS

TPS2048, TPS2058
 QUAD CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES

TYPICAL CHARACTERISTICS

Figure 24

UNDERVOLTAGE LOCKOUT VS JUNCTION TEMPERATURE

Figure 26

SHORTCIRCUIT OUTPUT CURRENT
vs
JUNCTION TEMPERATURE

Figure 25

CURRENT-LIMIT RESPONSE
vs
PEAK CURRENT

Figure 27

TYPICAL CHARACTERISTICS

OVERCURRENT ($\overline{\mathbf{O C x}}$) RESPONSE TIME
vs
PEAK CURRENT

Figure 28

APPLICATION INFORMATION

Figure 29. Typical Application

APPLICATION INFORMATION

power supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $\mathrm{V}_{\mathrm{l}(\mathrm{INx})}$ has been applied (see Figure 6). The TPS2048 and TPS2058 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2048 and TPS2058 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

$\overline{\mathbf{O C}}$ response

The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of $500 \mu \mathrm{~s}$ (see Figure 30) can be connected to $\overline{O C x}$ to reduce false overcurrent reporting caused by hot-plug switching events or extremly high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

APPLICATION INFORMATION

Figure 30. Typical Circuit for $\overline{\mathrm{OC}}$ Pin and RC Filter for Damping Inrush $\overline{\mathrm{OC}}$ Responses

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find ${ }^{r_{D S}}$ (on) at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {DS(on) }}$ from Figure 21. Next, calculate the power dissipation using:

$$
P_{D}=r_{D S(o n)} \times 1^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:

$$
\begin{aligned}
& T_{A}=\text { Ambient Temperature }{ }^{\circ} \mathrm{C} \\
& R_{\theta J A}=\text { Thermal resistance }^{\text {SOIC }=172^{\circ} \mathrm{C} / \mathrm{W}}
\end{aligned}
$$

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2048 and TPS2058 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2048 and TPS2058 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately $140^{\circ} \mathrm{C}$, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of $140^{\circ} \mathrm{C}$ and reach $160^{\circ} \mathrm{C}$, both switches turn off. The $\overline{\mathrm{OC}}$ open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V , the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V , even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

Universal Serial Bus (USB) applications

The universal serial bus (USB) interface is a $12-\mathrm{Mb} / \mathrm{s}$, or $1.5-\mathrm{Mb} / \mathrm{s}$, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for $5-\mathrm{V}$ power distribution.
USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the $5-\mathrm{V}$ input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Bus-powered hubs distribute data and power to downstream functions. The TPS2048 and TPS2058 can provide power-distribution solutions for many of these classes of devices.

APPLICATION INFORMATION

bus-powered hubs

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA , and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44Ω and $10 \mu \mathrm{~F}$ at power up, the device must implement inrush current limiting (see Figure 31).

Figure 31. High-Power Bus-Powered Function

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
- Enable/disable power to downstream ports
- Power up at <100 mA
- Limit inrush current ($<44 \Omega$ and $10 \mu \mathrm{~F}$)
- Functions must:
- Limit inrush currents
- Power up at <100 mA

The feature set of the TPS2048 and TPS2058 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

APPLICATION INFORMATION

Figure 32. Bus-Powered Hub Implementation

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2048 and TPS2058, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2048 and TPS2058 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

Figure 33. Typical Hot-Plug Implementation
By placing the TPS2048 or TPS2058 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-piugging mechanism for any device.

features

- Dual-Input, Single-Output MOSFET Switch With No Reverse Current Flow (No Parasitic Diodes)
- IN1 . . 250-m Ω, 500-mA N-Channel; 16- $\mu \mathrm{A}$ Max Supply Current
- IN2... 1.3- Ω, 10-mA P-Channel; $1.5-\mu \mathrm{A}$ Max Supply Current ($\mathrm{V}_{\mathrm{AUX}}$ Mode)
- Advanced Switch Control Logic
- CMOS- and TTL-Compatible Enable Input
- Controlled Rise, Fall, and Transition Times
- 2.7-V to 4 V Operating Range
- SOT-23-5 and SOIC-8 Package
- $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Ambient Temperature Range
- 2-kV Human-Body-Model, 750-V CDM, 200-V Machine-Model ElectrostaticDischarge Protection

typical applications

- Notebook and Desktop PCs
- Palmtops and PDAs

Figure 1. Typical Dual-Input Single-Output Application

description

The TPS2100 and TPS2101 are dual-input, single-output power switches designed to provide uninterrupted output voltage when transitioning between two independent power supplies. Both devices combine one n -channel ($250 \mathrm{~m} \Omega$) and one p-channel (1.3Ω) MOSFET with a single output. The p-channel MOSFET (IN2) is used with auxiliary power supplies that deliver lower current for standby modes. The n-channel MOSFET (IN1) is used with a main power supply that delivers higher current required for normal operation. Low on-resistance makes the n-channel the ideal path for higher main supply current when power-supply regulation and system voltage drops are critical. When using the p-channel MOSFET, quiescent current is reduced to $0.75 \mu \mathrm{~A}$ to decrease the demand on the standby power supply. The MOSFETs in the TPS2100 and TPS2101 do not have the parasitic diodes, found in discrete MOSFETs, which allow the devices to prevent back-flow current when the switch is off.

Figure 2. $\mathrm{V}_{\mathrm{AUX}}$ CardBus Implementation

AVAILABLE OPTIONS

TJ	DEVICE	ENABLE	PACKAGED DEVICES	
			SOT-23-5 (DBV) \dagger	SOIC-8 (D)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TPS2100	$\overline{\mathrm{EN}}$	TSP2100DBV \dagger	TPS2100D
	TPS2101	EN	TPS2101DBV \dagger	TPS2101D

Both packages are available left-end taped and reeled. Add an R suffix to the D device type (e.g., TPS2101DR).
† Add T (e.g., TPS2100DBVT) to indicate tape and reel at order quantity of 250 parts. Add R (e.g., TPS2100DBVR) to indicate tape and reel at order quantity of 3000 parts.

TPS2100 functional block diagram

TPS2101 functional block diagram

Function Tables

TPS2100			
VIN1	VIN2	EN	OUT
0 V	0 V	XX	GND
0 V	3.3 V	L	GND
3.3 V	0 V	L	VIN 1
3.3 V	3.3 V	L	VIN 1
0 V	3.3 V	H	VIN 2
3.3 V	0 V	H	VIN 2
3.3 V	3.3 V	H	VIN 2

TPS2101			
VIN1	VIN2	EN	OUT
0 V	0 V	XX	GND
0 V	3.3 V	H	GND
3.3 V	0 V	H	VIN 1
3.3 V	3.3 V	H	VIN 1
0 V	3.3 V	L	VIN 2
3.3 V	0 V	L	VIN 2
3.3 V	3.3 V	L	VIN 2

XX = don't care
Terminal Functions

TERMINAL						DESCRIPTION
NAME	NO.				I/O	
	TPS2100		TPS2101			
	DBV	D	DBV	D		
EN			1	3		Active-high enable for IN1-OUT switch
$\overline{\mathrm{EN}}$	1	3			1	Active-low enable for IN1-OUT switch
GND	2	2	2	2	1	Ground
IN1	5	5	5	5	1	Main Input voltage, NMOS drain ($250 \mathrm{~m} \Omega$)
IN2	3	1	3	1	1	Auxilliary input voltage, PMOS drain (1.3 Ω)
OUT	4	7	4	7	0	Power switch output
NC		4, 6		4, 6		No connection

detailed description

power switches

n-channel MOSFET

The IN1-OUT n-channel MOSFET power switch has a typical on-resistance of $250 \mathrm{~m} \Omega$ at 3.3-V input voltage, and is configured as a high-side switch.

p-channel MOSFET

The IN2-OUT p-channel MOSFET power switch with typical on-resistance of 1.3Ω at 3.3-V input voltage and is configured as a high-side switch. When operating, the p-channel MOSFET quiescent current is reduced to less than $1.5 \mu \mathrm{~A}$.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the IN1-OUT and IN2-OUT power switches. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the drivers incorporate circuitry that controls the rise times and fall times of the output voltage.

detailed description (continued)

enable
The logic enable will turn on the IN2-OUT power switch when a logic high is present on $\overline{E N}$ (TPS2100) or logic low is present on EN (TPS2101). A logic low input on EN (TPS2100) or logic high on EN (TPS2101) restores bias to the drive and control circuits and turns on the IN1-OUT power switch. The enable input is compatible with both TTL and CMOS logic levels.

the $\mathrm{V}_{\mathrm{AUX}}$ application for CardBus controllers

The PC Card specification requires the support of $\mathrm{V}_{\mathrm{AUX}}$ to the CardBus controller as well as to the PC Card sockets. Both are $3.3-\mathrm{V}$ requirements; however the CardBus controller's current demand from the $\mathrm{V}_{\mathrm{AUX}}$ supply is limited to $10 \mu \mathrm{~A}$, whereas the PC Card may consume as much as 200 mA . In either implementation, if support of a wake-up event is required, the controller and the socket will transition from the $3.3-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ rail to the $3.3-\mathrm{V}$ V_{A} X rail when the equipment moves into a low power mode such as D 3 . The transition from V_{CC} to V_{A} X needs to be seamless in order to maintain all memory and register information in the system. If $\mathrm{V}_{\mathrm{AUX}}$ is not supported, the system will lose all register information when it transitions to the D3 state.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) $\boldsymbol{\dagger}$

\qquad

Input voltage range, V_{1} at EN or EN ... -0.3 V to 5 V

Continuous output current, $\left.\mathrm{IO}_{\mathrm{O}} \mathrm{IN}_{1}\right)$.. 700 mA

Lead temperature soldering $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
Electrostatic discharge (ESD) protection: Human body model 2 kV
Machine model 200 V
Charged device model (CDM) 750 V
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to GND.
DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
DBV	309 mW	$3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	170 mW	123 mW
D	568 mW	$5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	313 mW	227 mW

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, $\mathrm{V}_{1(1 \mathrm{Nx}}$)	2.7	4	V
Input voltage, V_{1} at EN and EN	0	4	V
Continuous output current, IO(IN1)		500	mA
Continuous output current, $\mathrm{IO}(1 \mathrm{~N} 2)$		10	mA
Operating virtual junction temperature, $\mathrm{T}^{\mathbf{J}}$	-40	85	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN} 1)}=\mathrm{V}_{(\mathrm{IN} 2)}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=$ rated current (unless otherwise noted)
power switch

PARAMETER			TEST CONDITIONSt	MIN	TYP	MAX	UNIT
rDS(on) On-state resistance		IN1-OUT	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		250		$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$		300	375		
		IN2-OUT	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		1.3		Ω
		$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$		1.5	2.1		

\dagger Pulse-testing techniques maintain junction temperature close to ambient termperature; thermal effects must be taken into account separately. enable input ($\overline{\mathrm{EN}}$ and EN)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
V_{IH}	High-level input voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Nx})} \leq 4 \mathrm{~V}$		2			V
V_{IL}	Low-level input voltage	$2.7 \mathrm{~V} \leq \mathrm{V}_{1(1 \mathrm{Ix})} \leq 4 \mathrm{~V}$				0.8	V
I	Input current	TPS2100	$\overline{\mathrm{EN}}=0 \mathrm{~V}$ or $\overline{\mathrm{EN}}=\mathrm{V}_{1(1 N x)}$	-0.5		0.5	$\mu \mathrm{A}$
		TPS2101	$\mathrm{EN}=0 \mathrm{~V}$ or $\mathrm{EN}=\mathrm{V}_{1}(\mathrm{INX})$	-0.5		0.5	$\mu \mathrm{A}$

supply current

PARAMETER	TEST CONDITIONS			MIN	TYP MAX	UNIT
Supply current	TPS2100	$\overline{\mathrm{EN}}=\mathrm{H},$ IN2 selected	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.75	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$		1.5	
		$\overline{E N}=L \text {, }$ IN1 selected	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$		16	
	TPS2101	$\begin{aligned} & E N=L, \\ & \text { IN2 selected } \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		0.75	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$		1.5	
		$\begin{aligned} & \mathrm{EN}=\mathrm{H}, \\ & \text { IN1 selected } \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		10	$\mu \mathrm{A}$
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$		16	

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

switching characteristics, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{l}(\mathrm{IN} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=3.3 \mathrm{~V}$ (unless otherwise noted) \dagger

\dagger All timing parameters refer to Figure 3.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

Propagation Delay Time, Low-to-High-Level Output

Propagation Delay Time, High-to-Low-Level Output

WAVEFORMS
Figure 3. Test Circuit and Voltage Waveforms

Table of Timing Diagrams \dagger

	FIGURE
Propagation Delay and Rise Time With $0.1-\mu$ F Load, IN1	4
Propagation Delay and Rise Time With $0.1-\mu$ F Load, IN2	5
Propagation Delay and Fall Time With $0.1-\mu \mathrm{F}$ Load, IN1	6
Propagation Delay and Fall Time With $0.1-\mu \mathrm{F}$ Load, IN2	7
Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, IN1	8
Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, IN2	9
Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, IN1	10
Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, IN2	11

† Waveforms shown in Figures 4-11 refer to TPS2100 at $T_{J}=25^{\circ} \mathrm{C}$

PARAMETER MEASUREMENT INFORMATION

Figure 4. Propagation Delay and Rise Time With $0.1-\mu \mathrm{F}$ Load, IN1

Figure 6. Propagation Delay and Fall Time With $0.1-\mu \mathrm{F}$ Load, IN1

Figure 5. Propagation Delay and Fall Time With $0.1-\mu$ F Load, IN2

Figure 7. Propagation Delay and Fall Time With $0.1-\mu \mathrm{F}$ Load, IN2

PARAMETER MEASUREMENT INFORMATION

Figure 8. Propagation Delay and Rise Time With $1-\mu$ F Load, IN1

Figure 10. Propagation Delay and Fall Time With 1- μ F Load, IN1

Figure 9. Propagation Delay and Rise Time With $1-\mu$ F Load, IN2

Figure 11. Propagation Delay and Fall Time With $1-\mu$ F Load, IN2

TYPICAL CHARACTERISTICS

Table of Graphs

		FIGURE
IN1 Switch Rise Time	vs Output Current	12
IN2 Switch Fall Time	vs Output Current	13
IN1 Switch Fall Time	vs Output Current	14
IN2 Switch Fall Time	vs Output Current	15
Output Voltage Droop	vs Output Current When Output is Switched From IN2 to IN1	16
Inrush Current	vs Output Capacitance	17
IN1 Supply Current	vs Junction Temperature (IN1 Enabled)	18
IN1 Supply Current	vs Junction Temperature (IN1 Disabled)	18
IN2 Supply Current	vs Junction Temperature (IN2 Enabled)	19
IN2 Supply Current	vs Junction Temperature (IN2 Disabled)	20
IN1-OUT On-State Resistance	vs Junction Temperature	21
IN2-OUT On-State Resistance	vs Junction Temperature	22

IN1 SWTICH RISE TIME
vs
OUTPUT CURRENT

Figure 12

IN2 SWTICH RISE TIME
vs
OUTPUT CURRENT

Figure 13

TYPICAL CHARACTERISTICS

IN1 SWITCH FALL TIME
vs
OUTPUT CURRENT

Figure 14

OUTPUT VOLTAGE DROOP
vs
OUTPUT CURRENT WHEN OUTPUT IS SWITCHED FROM IN2 TO IN1

Figure 16

IN2 SWITCH FALL TIME
vs
OUTPUT CURRENT

Figure 15

Figure 17

TYPICAL CHARACTERISTICS

Figure 18

IN2 SUPPLY CURRENT
vs
JUNCTION TEMPERATURE (IN2 ENABLED)

Figure 20

IN1 SUPPLY CURRENT
vs
JUNCTION TEMPERATURE (IN1 DISABLED)

Figure 19

IN2 SUPPLY CURRENT vs JUNCTION TEMPERATURE (IN2 DISABLED)

Figure 21

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

Figure 24. Typical Application

power supply considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic bypass capacitor between IN and GND, close to the device is recommended. The output capacitor should be chosen based on the size of the load during the transition of the switch. A 47- $\mu \mathrm{F}$ capacitor is recommended for $10-\mathrm{mA}$ loads. Typical output capacitors ($x \mathrm{x} \mu \mathrm{F}$, shown in Figure 24) required for a given load can be determined from Figure 16 which shows the output voltage droop when output is switched from IN2 to IN1. The output voltage droop is insignificant when output is switched from IN1 to IN2. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

APPLICATION INFORMATION

power supply considerations (continued)

switch transition

The n-channel MOSFET on IN1 uses a charge-pump to create the gate-drive voltage, which gives the IN1 switch a rise time of approximately 1 ms . The p-channel MOSFET on $\operatorname{N} 2$ has a simpler drive circuit that allows a rise time of approximately $8 \mu \mathrm{~s}$. Because the device has two switches and a single enable pin, these rise times are seen as transition times, from IN1 to IN2, or IN2 to IN1, by the output. The controlled transition times help limit the surge currents seen by the power supply during switching.

thermal protection

Thermal protection provided on the IN1 switch prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The increased dissipation causes the junction temperature to rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts it off at approximately $125^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{J}}\right)$. The switch remains off until the junction temperature has dropped. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lockout

An undervoltage lockout function is provided to ensure that the power switch is in the off state at power-up. Whenever the input voltage falls below approximately 2 V , the power switch quickly turns off. This function facilitates the design of hot-insertion systems that may not have the capability to turn off the power switch before input power is removed. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. First, find $r_{\text {on }}$ at the input voltage, and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{\text {on }}$ from Figure 22 or Figure 23. Next calculate the power dissipation using:

$$
P_{D}=r_{o n} \times I^{2}
$$

Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where

$$
\mathrm{T}_{\mathrm{A}}=\text { Ambient temperature }
$$

$\mathrm{R}_{\theta J A}=$ Thermal resistance
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally sufficient to obtain a reasonable answer.

ESD protection

All TPS2100 and TPS2101 terminals incorporate ESD-protection circuitry designed to withstand a $2-\mathrm{kV}$ human-body-model discharge as defined in MIL-STD-883C.

- Fully Integrated $V_{c c}$ and $V_{p p}$ Switching for Dual-Slot PC CardTM Interface

- Compatible with Controllers From Cirrus, Ricoh, $\mathrm{O}_{\mathbf{2}}$ Micro, Intel, and Texas Instruments
- 3.3-V Low-Voltage Mode
- Meets PC Card Standards
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short Circuit and Thermal Protection
- 30-Pin SSOP (DB) and 32-Pin TSSOP (DAP)
- Compatible With 3.3-V, 5-V and 12-V PC Cards
- Low $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}\left(140-\mathrm{m} \Omega 5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}\right.$ Switch; 110-m Ω 3.3-V VCC Switch)
- Break-Before-Make Switching

description

The TPS2205 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit (IC), using the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process. The circuit allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$, and/or 12-V card power, and is compatible with many PCMCIA controllers. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability.
The TPS2205 is backward compatible with the TPS2201, except that there is no $V_{D D}$ connection. Bias current is derived from either the 3.3-V input pin or the $5-\mathrm{V}$ input pin. The TPS2205 also eliminates the APWR_GOOD and BPWR_GOOD pins of the TPS2201.

dB OR DF PACKAGE

(TOP VIEW)

NC - No internal connection

The TPS2205 features a 3.3-V low-voltage mode that allows for $3.3-\mathrm{V}$ switching without the need for 5 V . This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available.
End equipment for the TPS2205 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.

[^3]DUAL-SLOT PC CARD POWER-INTERFACE SWITCH
FOR PARALLEL PCMCIA CONTROLLERS
SLVS128D OCTOBER 1995 - REVISED JUNE 1998

TA $_{\mathbf{A}}$	PACKAGED DEVICES			CHIP FORM (Y)
	PLASTIC SMALL OUTLINE (DB)	PLASTIC SMALL OUTLINE (DF)	TSSOP (DAP)	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TPS2205IDBLE	TPS2205IDAPR	TPS2205Y	

The DB package and the DF package are only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS2205IDBLE). The DAP package is only available taped and reeled (indicated by the R suffix on the device type; e.g., TPS2205IDAPR).

typical PC card power-distribution application

TPS2205Y chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS2205. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

Terminal Functions

TERMINAL			I/O	DESCRIPTION
NAME	NO.			
	DB, DF	DAP		
$\overline{\text { A_VCC3 }}$	6	7	1	Logic input that controls voltage on AVCC (see TPS2205 Control-Logic table)
A_VCC5	5	6	1	Logic input that controls voltage on AVCC (see TPS2205 Control-Logic table)
A_VPP_PGM	3	4	1	Logic input that controls voltage on AVPP (see TPS2205 Control-Logic table)
A_VPP_VCC	4	5	1	Logic input that controls voltage on AVPP (see TPS2205 Control-Logic table)
AVCC	9, 10, 11	10, 11, 12	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or high impedance
AVPP	8	9	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or high impedance
B_VCC3	26	26	1	Logic input that controls voltage on BVCC (see TPS2205 Control-Logic table)
B_VCC5	27	28	1	Logic input that controls voltage on BVCC (see TPS2205 Control-Logic table)
B_VPP_PGM	29	30	1	Logic input that controls voltage on BVPP (see TPS2205 Control-Logic table)
B_VPP_VCC	28	29	1	Logic input that controls voltage on BVPP (see TPS2205 Control-Logic table)
BVCC	20, 21, 22	21, 22, 23	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or high impedance
BVPP	23	24	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or high impedance
$\overline{\text { SHDN }}$	14	14	1	Logic input that shuts down the TPS2205 and set all power outputs to high-impedance state
$\overline{O C}$	18	20	0	Logic-level overcurrent reporting output that goes low when an overcurrent condition exists
GND	12	13		Ground
3.3 V	15, 16, 17	16, 17, 18	1	3.3-V V_{CC} in for card power
5 V	1, 2, 30	1,2, 32	1	$5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ in for card power
12V	7, 24	8, 25	1	12-V VPP in for card power
NC	13, 19, 25	$\begin{gathered} 3,15,19, \\ 27,31 \end{gathered}$	1	No internal connection

absolute maximum ratings over operating free-air temperature (unless otherwise noted) $\boldsymbol{\dagger}$

$\mathrm{V}_{\mathrm{l}(3.3 \mathrm{~V})} \ldots \ldots .$.

Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE		$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
$\begin{aligned} & \hline \mathrm{DB} \\ & \mathrm{DF} \end{aligned}$		1024 mW	$8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	655 mW	532 mW
		1158 mW	$9.26 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	741 mW	602 mW
DAP	No backplane	1625 mW	$13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	1040 mW	845 mW
	Backplane§	6044 mW	$48.36 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	3869 mW	3143 mW

\ddagger These devices are mounted on an FR4 board with no special thermal considerations.
$\S 2-$ oz backplane with $2-$ oz traces; $5.2-\mathrm{mm} \times 11-\mathrm{mm}$ thermal pad with $6-\mathrm{mil}$ solder; $0.18-\mathrm{mm}$ diameter vias in a 3×6 array.

recommended operating conditions

		MIN	MAX	UNIT
Input voltage range, $\mathrm{V}_{\mathbf{l}}$	$\mathrm{V}_{1(5 \mathrm{~V})}$	0	5.25	V
	$\mathrm{V}_{1(3.3 V)}$	0	5.25	V
	$\mathrm{V}_{1(12 \mathrm{~V})}$	0	13.5	V
Output current	$1 \mathrm{O}(\mathrm{xVCC})$ at $25^{\circ} \mathrm{C}$		1	A
	$1 \mathrm{O}(\mathrm{xVPP})$ at $25^{\circ} \mathrm{C}$		150	mA
Operating virtual junction temperature, T_{J}		-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$ (unless otherwise noted)

dc characteristics

PARAMETER			TEST CONDITIONS	TPS2205			UNIT	
			MIN	TYP	MAX			
Switch resistances ${ }^{\dagger}$		5 V to xVCC				103	140	$\mathrm{m} \Omega$
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$		69	110		
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=0, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$		96	180		
		5 V to xVPP				6	Ω	
		3.3 V to xVPP				6		
		12 V to xVPP				1		
$\mathrm{V}_{\mathrm{O}(\mathrm{xVPP})}$	Clamp low voltage		1 pp at 10 mA			0.8	V	
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}$	Clamp low voltage		1 CC at 10 mA			0.8	V	
IIkg	Leakage current	Ipp high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10	$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
		ICC high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10		
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
11	Input current	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\begin{aligned} & V_{O(A V C C)}=V_{O(B V C C)}=5 \mathrm{~V}, \\ & V_{O(A V P P)}=V_{O(B V P P)}=12 \mathrm{~V} \end{aligned}$		117	150	$\mu \mathrm{A}$	
		$\begin{aligned} & V_{l(5 \mathrm{~V})}=0, \\ & \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}=\mathrm{V}_{\mathrm{O}(\mathrm{BVCC})}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{AVPP})}=\mathrm{V}_{\mathrm{O}(\mathrm{BVP})}=0 \end{aligned}$		131	150		
		Shutdown mode	$\begin{aligned} & V_{O(B V C C)}=V_{O(A V C C)} \\ & =V_{O(A V P P)}=V_{O(B V P P)}=H i-Z \end{aligned}$			1	$\mu \mathrm{A}$	
Ios	Short-circuit output-current limit	$\mathrm{IO}(\mathrm{xVCC})$	$\begin{aligned} & \mathrm{T}_{J}=85^{\circ} \mathrm{C} \text {, } \\ & \text { Output powered up into a short to GND } \end{aligned}$	1		2.2	A	
		$10(x V P P)$		120		400	mA	

\dagger Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{(5 \mathrm{~V})}=5 \mathrm{~V}$ (unless otherwise noted)
logic section

PARAMETER	TEST CONDITIONS	TPS2205	UNIT
		MIN MAX	
Logic input current		1	$\mu \mathrm{A}$
Logic input high level		2	V
Logic input low level		0.8	V
	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad 10=1 \mathrm{~mA}$	$\mathrm{V}_{1(5 \mathrm{~V})}-0.4$	
Logic output high level	$\begin{array}{ll} \hline \mathrm{V}_{1(5 \mathrm{~V})=0 \mathrm{~V},} & \mathrm{I} \mathrm{O}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{l}}(3.3 \mathrm{~V})=3.3 \mathrm{~V} & \\ \hline \end{array}$	$\mathrm{V}_{1(3.3 \mathrm{~V})}{ }^{-0.4}$	V
Logic output low level	$10=1 \mathrm{~mA}$	0.4	V

switching characteristics $\dagger \ddagger$

PARAMETER	TEST CONDITIONS		TPS2205		UNIT
			MIN TYP	MAX	
Output rise time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1.2		ms
	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$		5		
Output fall time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		10		
	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		14		
tpd Propagation delay (see Figure 1)	$\mathrm{V}_{\text {(}}$ (x_VPP_PGM) ${ }^{\text {to }} \mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	ton	4.4		ms
		toff	18		ms
	$\mathrm{V}_{1(\overline{\mathrm{x}} \text { _VCC5) }}$ to $\mathrm{xVCC}(3.3 \mathrm{~V}), \mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	6.5		ms
		$t_{\text {off }}$	20		ms
		$\mathrm{t}_{\text {on }}$	5.7		ms
		$t_{\text {off }}$	25		ms
	$\left.\mathrm{V}_{\mathrm{I}} \overline{\mathrm{x}-\mathrm{VCC5}}\right)$ to $\mathrm{xVCC}(3.3 \mathrm{~V}), \mathrm{V}_{1(5 \mathrm{~V})}=0$	$\mathrm{t}_{\text {on }}$	6.6		ms
		$\mathrm{t}_{\text {off }}$	21		ms

\dagger Refer to Parameter Measurement Information
\ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$ (unless otherwise noted)

dc characteristics

PARAMETER			TEST CONDITIONS		TPS2205Y			UNIT		
			MIN	TYP	MAX					
	Switch resistances§	5 V to xVCC					103			$\mathrm{m} \Omega$
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$,	$\mathrm{V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$	69					
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=0$,	$\mathrm{V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$	96					
		5 V to XVPP			4.74			Ω		
		3.3 V to xVPP			4.74					
		12 V to xVPP			0.724					
$\mathrm{V}_{\mathrm{O} \text { (}} \mathrm{xVPP}$)	Clamp low voltage		l_{pp} at 10 mA		0.275			V		
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$	Clamp low voltage		1 CC at 10 mA		0.275			V		
1 lkg	Leakage current	Ipp High-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			$\mu \mathrm{A}$		
		ICC High-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1				
1	Input current	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\begin{aligned} & V_{O}(\text { AVCC })= \\ & V_{O}(\text { AVPP }) \end{aligned}=V$	$\begin{aligned} & B V C C)=5 \mathrm{~V}, \\ & 3 V P P)=12 \mathrm{~V} \end{aligned}$		117		$\mu \mathrm{A}$		
		$\begin{aligned} & \mathrm{V}_{1(5 \mathrm{~V})}=0, \\ & \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{O(A V C C)}=V \\ & V_{O(A V P P)}=V \end{aligned}$	$\begin{aligned} & B V C C)=3.3 \mathrm{~V}, \\ & 3 V P P)=0 \end{aligned}$	131					

§ Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

switching characteristics $\boldsymbol{\dagger} \boldsymbol{\ddagger}$

PARAMETER	TEST CONDITIONS		TPS2205		UNIT
			MIN TYP	MAX	
Output rise time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1.2		ms
	$V_{O}(x V P P)$		5		
Output fall time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		10		
	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		14		
${ }^{\text {tpd }}$ P Propagation delay (see Figure 1)	$\mathrm{V}_{1\left(x _V P P _P G M\right)}$ to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	ton	4.4		ms
		toff	18		ms
	$\mathrm{V}_{\mathrm{l}\left(\mathrm{x} _\mathrm{VCC}\right.}$) to $\mathrm{xVCC}(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	ton	6.5		ms
		toff	20		ms
	$\mathrm{V}_{1(\mathrm{x} \text { _VCC5 }}$ to $\mathrm{xVCC}(5 \mathrm{~V})$	ton	5.7		ms
		toff	25		ms
	$\mathrm{V}_{1(\mathrm{x}-\mathrm{VCC5}}$) to $\mathrm{xVCC}(3.3 \mathrm{~V}), \mathrm{V}_{\mathbf{l}(5 \mathrm{~V})}=0$	ton	6.6		ms
		toff	21		ms

\dagger Refer to Parameter Measurement Information
\ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

LOAD CIRCUIT

VOLTAGE WAVEFORMS

VOLTAGE WAVEFORMS

Figure 1. Test Circuits and Voltage Waveforms

Table of Timing Diagrams

	FIGURE
xVCC Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	2
$x \mathrm{VCC}$ Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	3
$x \mathrm{VCC}$ Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1}(5 \mathrm{~V})=5 \mathrm{~V}$	4
xVCC Propagation Delay and Fall Time With 150- F L Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	5
$x \mathrm{VCC}$ Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	6
xVCC Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	7
$x \mathrm{VCC}$ Propagation Delay and Rise Time With 150- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	8
$x \mathrm{VCC}$ Propagation Delay and Fall Time With 150- F F Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{I}}(5 \mathrm{~V})=0$	9
xVCC Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, 5-V Switch	10
xVCC Propagation Delay and Fall Time With 1- μ F Load, 5-V Switch	11
xVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	12
xVCC Propagation Delay and Fall Time With 150- $\mu \mathrm{F}$ Load, 5-V Switch	13
xVPP Propagation Delay and Rise Time With 1- μ F Load, 12-V Switch	14
xVPP Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, 12-V Switch	15
xVPP Propagation Delay and Rise Time With 150- μ F Load, 12-V Switch	16
xVPP Propagation Delay and Fall Time With 150- F L Load, 12-V Switch	17

PARAMETER MEASUREMENT INFORMATION

Figure 2. xVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch,

$$
\left(V_{1(5 \mathrm{~V})}=5 \mathrm{~V}\right)
$$

Figure 4. xVCC Propagation Delay and Rise Time With $150-\mu$ F Load, 3.3-V Switch, $\mathrm{V}_{\mathbf{I}(5 \mathrm{~V})}=5 \mathrm{~V}$

Figure 3. xVCC Propagation Delay and Fall Time With $1-\mu$ F Load, 3.3-V Switch, $\left.\left(V_{1(5)}\right)=5 \mathrm{~V}\right)$

Figure 5. xVCC Propagation Delay and Fall Time With $150-\mu$ F Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH

PARAMETER MEASUREMENT INFORMATION

Figure 6. xVCC Propagation Delay and Pise Time With 1-iF Load, 3.3-V Switch,

$$
V_{l(5 \mathrm{~V})}=0
$$

Figure 8. xVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch,

$$
V_{l(5 \mathrm{~V})}=0
$$

Figure 7. xVCC Propagation Delay and Fall Time With i-iF Loau, 3.3-V Switch,

$$
V_{l(5 \mathrm{~V})}=0
$$

Figure 9. xVCC Propagation Delay and Fall Time With $150-\mu$ F Load, $3.3-\mathrm{V}$ Switch, $\mathrm{V}_{\mathbf{I}(5 \mathrm{~V})}=0$

PARAMETER MEASUREMENT INFORMATION

Figure 10. xVCC Propagation Delay and Rise Time With 1- μ F Load, 5-V Switch

Figure 12. xVCC Propagation Delay and Rise Time With 150- μ F Load, 5-V Switch

Figure 11. xVCC Propagation Delay and Fall Time With $1-\mu$ F Load, $5-V$ Switch

Figure 13. xVCC Propagation Delay and Fall Time With $150-\mu$ Load, $5-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 14. xVPP Propagation Delay and Rise Time With 1-iF Lead, 12-V Switch

Figure 16. XVPP Propagation Delay and Rise Time With $150-\mu$ F Load, 12-V Switch

Figure 15. xVPP Propagation Delay and Fall Time with i-jF Loau, i2-v Switch

Figure 17. xVPP Propagation Delay and Fall Time With 150- μ F Load, 12-V Switch

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
IDD	Supply current	vs Junction temperature	18
IDD	Supply current, $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=0, \mathrm{~V}_{\mathrm{I}(12 \mathrm{~V})}=0, \mathrm{~V}_{\mathrm{O}}(\mathrm{AVCC})=\mathrm{V}_{\mathrm{O}}(\mathrm{BVCC})=3.3 \mathrm{~V}$	vs Junction temperature	19
rDS(on)	Static drain-source on-state resistance, 3.3-V switch, $\mathrm{V}_{1}(5 \mathrm{~V})=5 \mathrm{~V}$	vs Junction temperature	20
rDS(on)	Static drain-source on-state resistance, 3.3-V switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	vs Junction temperature	21
rDS(on)	Static drain-source on-state resistance, 5-V switch	vs Junction temperature	22
rDS(on)	Static drain-source on-state resistance, 12-V switch	vs Junction temperature	23
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}$	Output voltage, $5-\mathrm{V}$ switch	vs Output current	24
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}$)	Output voltage, 3.3-V switch	vs Output current	25
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}$	Output voltage, 3.3-V switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	vs Output current	26
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	Output voltage, 12-V V_{pp} switch	vs Output current	27
$\operatorname{los}(x V C C)$	Short-circuit current, 5-V switch	vs Junction temperature	28
IOS(xVCC)	Short-circuit current, 3.3-V switch	vs Junction temperature	29
$\operatorname{loS}(x \vee P P)$	Short-circuit current, 12-V switch	vs Junction temperature	30

SUPPLY CURRENT
VS
JUNCTION TEMPERATURE

Figure 18

SUPPLY CURRENT
vs
JUNCTION TEMPERATURE

Figure 19

TYPICAL CHARACTERISTICS

Figure 20

5-V SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 22
3.3-V SWITCH

STATIC DRAIN-SOURCE ON-STATE RESISTANCE VS

Figure 21

12-V SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE
VS

Figure 23

TYPICAL CHARACTERISTICS

Figure 24
3.3-V SWITCH

OUTPUT VOLTAGE
vs
OUTPUT CURRENT

Figure 26

Figure 25

Figure 27

TYPICAL CHARACTERISTICS

5-V SWITCH
SHORT-CIRCUIT CURRENT
vs
JUNCTION TEMPERATURE

Figure 28
3.3-V SWITCH

SHORT-CIRCUIT CURRENT
vs
JUNCTION TEMPERATURE

Figure 29

12-V SWITCH
SHORT-CIRCUIT CURRENT
vs
JUNCTION TEMPERATURE

Figure 30

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited on-board memory. The idea of add-in cards quickly took hold; modems, wireless LANs, global positioning satellite system (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the "plug-and-play" concept. Cards and hosts from different vendors should be compatible - able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of 68 terminals of the PC Card connector. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple $V_{C C}$ and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

designing for voltage regulation

The current PCMCIA specification for output-voltage regulation $\left(\mathrm{V}_{\mathrm{O}(\mathrm{reg})}\right)$ of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In a typical PC power-system design, the power supply has an output-voltage regulation ($\mathrm{V}_{\mathrm{PS}(\mathrm{reg})}$) of $2 \%(100 \mathrm{mV})$. Also, a voltage drop from the power supply to the PC Card will result from resistive losses (VPB) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than $1 \%(50 \mathrm{mV})$ of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2205 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$
V_{D S}=V_{\mathrm{O}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PS}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PCB}}
$$

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2205. The voltage drop is the output current multiplied by the switch resistance of the TPS2205. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2205 divided by the output switch resistance.

$$
\mathrm{I}_{\mathrm{O}} \mathrm{max}=\frac{\mathrm{V}_{\mathrm{DS}}}{r_{\mathrm{DS}(\mathrm{On})}}
$$

The xVCC outputs have been designed to deliver 700 mA at 5 V within regulation over the operating temperature range. Current proposals for the PCMCIA specifications are to limit the power dissipated in the PCMCIA slot to 3 W . With an input voltage of $5 \mathrm{~V}, 700 \mathrm{~mA}$ continous is the maximum current that can be delivered to the PC Card. The TPS2205 is capable of delivering up to 1 A continuously, but during worst-case conditions the output may not be within regulation. This is generally acceptable because the majority of PC Cards require less than 700 mA continuous. Some cards require higher peak currents (disk drives during initial platter spin-up), but it is generally acceptable for small voltage sags to occur during these peak currents.

The xVCC outputs have been designed to deliver 1 A continuously at 3.3 V within regulation over the operating temperature range. The PCMCIA specification for output voltage regulation of the $3.3-\mathrm{V}$ output is 300 mV . Using the voltage drop percentages (2\%) for power supply regulation and PCB resistive loss (1\%), the allowable voltage drop for the 3.3 V switch is 200 mV .

The xVPP outputs have been designed to deliver 150 mA continuously at 12 V .

APPLICATION INFORMATION

overcurrent and over-temperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB-trace damage. Even systems sufficiently robust to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. The reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.
The TPS2205 takes a two-pronged approach to overcurrent protection. First, instead of fuses, sense FETs monitor each of the power outputs. Excessive current generates an error signal that linearly limits the output current, preventing host damage or failure. Sense FETs, unlike sense resistors or polyfuses, have an advantage in that they do not add to the series resistance of the switch and thus produce no additional voltage losses. Second, when an overcurrent condition is detected, the TPS2205 asserts a signal at $\overline{O C}$ that can be monitored by the microprocessor to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates, shutting down all power outputs until the device cools to within a safe operating region.

12-V supply not required

Most PC Card switches use the externally supplied 12-V Vpp power for switch-gate drive and other chip functions, which requires that power be present at all times. The TPS2205 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the $5-\mathrm{V}$ or $3.3-\mathrm{V}$ input; therefore, the external $12-\mathrm{V}$ supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the $12-\mathrm{V}$ inputs when the $12-\mathrm{V}$ input is not used. Additional power savings are realized by the TPS2205 during a software shutdown in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

backward compatibility and 3.3-V low-voltage mode

The TPS2205 is backward compatible with the TPS2201, with the following considerations. Pin 25 (VDD on TPS2201) is a no connect because bias current is derived from either the 3.3-V input pin or the 5-V input pin. Also, the TPS2205 does not have the APWR_GOOD or BPWR_GOOD VPP reporting outputs. These are left as no connects.

The TPS2205 operates in 3.3-V low-voltage mode when 3.3 V is the only available input voltage $\left(\mathrm{V}_{1(5 \mathrm{~V})}=0\right)$. This allows host and PC Cards to be operated in low-power 3.3-V-only modes such as sleep modes or pager modes. Note that in this operation mode, the TPS2205 derives its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card. The 3.3-V switch resistance will be increased, but the added switch resistance should not be critical, because only a small amount of current is delivered in this mode. If 6% (198 mV) is allowed for the $3.3-\mathrm{V}$ switch voltage drop, a $500 \mathrm{~m} \Omega$ switch could deliver over 350 mA to the PC Card.

voltage transitioning requirement

PC Cards, like portables, are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2205 is designed to meet all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on $3.3-\mathrm{V}$-compatible cards be discharged to below 0.8 V before applying $3.3-\mathrm{V}$ power. This ensures that sensitive 3.3-V circuitry is not subjected to any residual $5-\mathrm{V}$ charge and functions as a power reset. The TPS2205 offers a selectable V_{CC} and V_{pp} ground state, in accordance with PCMCIA $3.3-\mathrm{V} / 5-\mathrm{V}$ switching specifications, to fully discharge the card capacitors while switching between V_{CC} voltages.

APPLICATION INFORMATION

output ground switches

Several PCMCIA power-distribution switches on the market do not have an active-grounding FET switch. These devices do not meet the PC Card specification requiring a discharge of $V_{C C}$ within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. A method commonly shown to alleviate this problem is to add to the switch output an external 100-k resistor in parallel with the PC Card. Considering that this is the only discharge path to ground, a timing analysis shows that the RC time constant delays the required discharge time to more than 2 seconds. The only way to ensure timing compatibility with PC Card standards is to use a power-distribution switch that has an internal ground switch, like that of the TPS22xx family, or add an external ground FET to each of the output lines with the control logic necessary to select it.
In summary, the TPS2205 is a complete single-chip dual-slot PC Card power interface. It meets all currently defined PCMCIA specifications for power delivery in $5-\mathrm{V}, 3.3-\mathrm{V}$, and mixed systems, and offers a serial control interface. The TPS2205 offers functionality, power savings, overcurrent and thermal protection, and fault reporting in one 30-pin SSOP surface-mount package, for maximum value added to new portable designs.

power supply considerations

The TPS2205 has multiple pins for each of its $3.3-\mathrm{V}, 5-\mathrm{V}$, and $12-\mathrm{V}$ power inputs and for the switched V_{CC} outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. Both $12-\mathrm{V}$ inputs must be connected for proper V_{pp} switching; it is recommended that all input and output power pins be paralleled for optimum operation.
Although the TPS2205 is fairly immune to power input fluctuations and noise, it is generally considered good design practice to bypass power supplies, typically with a $1-\mu \mathrm{F}$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched V_{cc} and V_{pp} outputs be bypassed with a $0.1-\mu \mathrm{F}$ or larger capacitor; doing so improves the immunity of the TPS2205 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2205 and the load. High switching currents can produce large negative-voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similary, no pin should be taken below -0.3 V .

overcurrent and thermal protection

The TPS2205 uses sense FETs to check for overcurrent conditions in each of the $V_{C C}$ and $V_{p p}$ outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore, voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The $\overline{\mathrm{OC}}$ indicator, normally a logic high, is a logic low when any overcurrent condition is detected, providing for initiation of system diagnostics and/or sending a warning message to the user.
During power up, the TPS2205 controls the rise time of the $V_{C C}$ and $V_{p p}$ outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2205 engages. If the V_{CC} or V_{pp} outputs are driven below ground, the TPS2205 may latch nondestructively in an off state. Cycling power will reestablish normal operation.
Overcurrent limiting for the $V_{C C}$ outputs is designed to activate if powered up into a short in the range of 1 A to 2.2 A, typically at about 1.6 A. The $V_{p p}$ outputs limit from 120 mA to 400 mA , typically around 280 mA . The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

APPLICATION INFORMATION

overcurrent and thermal protection (continued)

Thermal limiting prevents destruction of the IC from overheating if the package power-dissipation ratings are exceeded. Thermal limiting disables all power outputs (both A and B slots) until the device has cooled.

calculating junction temperature

The switch resistance, $r_{D S(o n), ~ i s ~ d e p e n d e n t o n ~ t h e ~ j u n c t i o n ~ t e m p e r a t u r e, ~} \mathrm{~T}_{\mathrm{J}}$, of the die. The junction , is dependent on both $r_{D S}(o n)$ and the current through the switch. To calculate T_{J}, first find $r_{D S}(o n)$ from Figures $20,21,22$, and 23 using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Next, sum the power dissipation and calculate the junction temperature:

$$
T_{J}=\left(\Sigma P_{D} \times R_{\theta J A}\right)+T_{A^{\prime}}, R_{\theta J A}=108^{\circ} \mathrm{C} / \mathrm{W}
$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic input and outputs

The TPS2205 was designed to be compatible with most popular PCMCIA controllers and current PCMCIA and JEIDA standards. However, some controllers require slightly counterintuitive connections to achieve desired
 low (see Figure 31 and control-logic table). As such, they are directly compatible with the logic outputs of the Cirrus Logic CL-PD6720 controller.
The shutdown input ($\overline{\mathrm{SHDN}}$) of the TPS2205, when held at a logic low, places all V_{CC} and V_{pp} outputs in a high-impedance state and reduces chip quiescent current to $1 \mu \mathrm{~A}$ to conserve battery power.
An overcurrent output ($\overline{\mathrm{OC}}$) is provided to indicate an overcurrent condition in any of the V_{CC} or V_{pp} supplies (see discussion above).

APPLICATION INFORMATION

NOTE A. MOSFET switches S 9 and S 12 have a back-gate diode from the source to the drain. Unused switch inputs ;should never be grounded.
Figure 31. Internal Switching Matrix

APPLICATION INFORMATION

TPS2205 control logic

AVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	DO A_VPP_PGM	D1 A_VPP_VCC	S7	S8	S9	VAVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	VCC \dagger
1	1	0	OPEN	OPEN	CLOSED	VPP(12 V)
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

BVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	D4 B_VPP_PGM	D5 B_VPP_VCC	S10	S11	S12	VBVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	VCC \ddagger
1	1	0	OPEN	OPEN	CLOSED	VPP(12 V)
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

AVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	D3 A_VCC3	D2 A_VCC5	S1	S2	S3	VAVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	Hi-Z

BVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 STiDN	D̄6 $\overline{\text { B_VCCJ}}$	Ј7 Ē_VCC5	54	S5	56	VEVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	$\mathrm{Hi}-\mathrm{Z}$

\dagger Output depends on AVCC
\ddagger Output depends on BVCC

ESD protection

All TPS2205 inputs and outputs incorporate ESD-protection circuitry designed to withstand a $2-\mathrm{kV}$ human-body-model discharge as defined in MIL-STD-883C, Method 3015. The V_{cc} and V_{pp} outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

TPS2205

APPLICATION INFORMATION

Figure 32. Detailed Interconnections and Capacitor Recommendations

APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in 2 of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.
The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A $1.22-\mathrm{V}$ reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a generall purpose I/O terminal on the PCMCIA controller or tied high.
Figure 33. TPS2205 with TPS6734 12-V, 120-mA Supply

- Fully Integrated V_{CC} and V_{pp} Switching for Dual-Slot PC CardTM Interface
- $\mathbf{P}^{2} \mathbf{C}^{\text {TM }}$ 3-Lead Serial Interface Compatible With CardBus ${ }^{\text {™ }}$ Controllers
- 3.3 V Low-Voltage Mode
- Meets PC Card Standards
- RESET for System Initialization of PC Cards
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short Circuit and Thermal Protection
- 30-Pin SSOP (DB) and 32-Pin TSSOP (DAP)
- Compatible With 3.3-V, 5-V and 12-V PC Cards
- Low ros(on) (140-m Ω 5-V VCC Switch; 110-m Ω 3.3-V VCC Switch)
- Break-Before-Make Switching

description

The TPS2206 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit (IC), using the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process. The circuit allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$, and/or $12-\mathrm{V}$ card power by means of the $\mathrm{P}^{2} \mathrm{C}$ (PCMCIA Peripheral-Control) Texas Instruments nonproprietary serial interface. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability.
The TPS2206 is backward compatible with the TPS2202 and TPS2202A, except that there is no $V_{D D}$ connection. Bias current is derived from either the $3.3-\mathrm{V}$ input pin or the $5-\mathrm{V}$ input pin. The TPS2206 also eliminates the APWR_GOOD and BPWR_GOOD pins of the TPS2202 and TPS2202A.

DB OR DF PACKAGE
(TOP VIEW)

NC - No internal connection

The TPS2206 features a 3.3-V low-voltage mode that allows for $3.3-\mathrm{V}$ switching without the need for 5 V . This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available.

[^4]
description (continued)

The TPS2206 incorporates a reset function, selectable by one of two inputs, to help alleviate system errors. The reset function enables PC Card initialization concurrent with host platform initialization, allowing a system reset. Reset is accomplished by grounding the V_{CC} and V_{pp} (flash-memory programming voltage) outputs, which discharges residual card voltage.

End equipment for the TPS2206 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras and bar-code scanners.

TA $_{4}$	AVAILABLE OPTIONS			
	PLASTIC SMALL OUTLINE (DB)	PLASTIC SMALL OUTLINE (DF)	TSSOP (DAP)	CHIP FORM (Y)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TPS2206IDBLE	TPS2206IDFLE	TPS2206IDAPR	TPS2206Y

The DB package and the DF package are only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS2206IDBLE). The DAP package is only available taped and reeled (indicated by the R suffix on the device type; e.g., TPS2206IDAPR).

typical PC card power-distribution application

TPS2206Y chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS2206. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

Terminal Functions

TERMINAL			1/0	DESCRIPTION
NAME	NO.			
	DB, DF	DAP		
3.3 V	15, 16, 17	16, 17, 18	1	3.3-V V_{CC} input for card power
5 V	1, 2, 30	1, 2, 32	1	$5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ input for card power and/or chip power
12V	7,24	8, 25	1	$12-\mathrm{V} \mathrm{V}_{\mathrm{pp}}$ input for card power
AVCC	9, 10, 11	10, 11, 12	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or high impedance to card
AVPP	8	9	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or high impedance to card
BVCC	20, 21, 22	21, 22, 23	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or high impedance
BVPP	23	24	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or high impedance
CLOCK	4	5	1	Logic-level clock for serial data word
DATA	3	4	1	Logic-level serial data word
GND	12	13		Ground
LATCH	5	6	1	Logic-level latch for serial data word
NC	$\begin{gathered} \hline 13,19,25 \\ 26,27 \\ 28,29 \end{gathered}$	$\begin{gathered} 3,19,26, \\ 27,28,29 \\ 30,31 \end{gathered}$		No internal connection
$\overline{\mathrm{OC}}$	18	20	0	Logic-level overcurrent. $\overline{\mathrm{OC}}$ reports output that goes low when an overcurrent condition exists
RESET	6	7	1	Logic-level RESET input active high. Do not connect if terminal 14 is used.
RESET	14	14	1	

absolute maximum ratings over operating free-air temperature (unless otherwise noted) $\boldsymbol{\dagger}$

Logic input voltage .. 0.3 V to 7 V

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
dISSIPATION RATING TABLE

PACKAGE		$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING
$\begin{aligned} & \hline \mathrm{DB} \\ & \mathrm{DF} \end{aligned}$		1024 mW	$8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	655 mW	532 mW
		1158 mW	$9.26 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	741 mW	602 mW
DAP	No backplane	1625 mW	$13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	1040 mW	845 mW
	Backplane§	6044 mW	$48.36 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	3869 mW	3143 mW

\ddagger These devices are mounted on an FR4 board with no special thermal considerations.
§2-oz backplane with $2-\mathrm{oz}$ traces; $5.2-\mathrm{mm} \times 11-\mathrm{mm}$ thermal pad with 6 -mil solder; 0.18 - mm diameter vias in a 3×6 array.
recommended operating conditions

		MIN	MAX	UNIT
	$\mathrm{V}_{1(5 \mathrm{~V})}$	0	5.25	V
Input voltage range, V_{l}	$\mathrm{V}_{1(3.3 V)}$	0	5.25	V
	$\mathrm{V}_{1(12 \mathrm{~V})}$	0	13.5	V
Output current	$1 \mathrm{O}(\mathrm{xVCC})$ at $25^{\circ} \mathrm{C}$		1	A
	$1 \mathrm{O}(\mathrm{xVPP})$ at $25^{\circ} \mathrm{C}$		150	mA
Clock frequency		0	2.5	MHz
Operating virtual junction		-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$ (unless otherwise noted)
dc characteristics

PARAMETER			TEST CONDITIONS		S2206		UNIT	
			MIN	TYP	MAX			
Switch resistances \dagger		5 V to xVCC				103	140	$\mathrm{m} \Omega$
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$		69	110		
		3.3 V to xVCC	$\mathrm{V}_{1}(5 \mathrm{~V})=0, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})=3.3 \mathrm{~V}}$		96	180		
		5 V to XVPP				6	Ω	
		3.3 V to XVPP				6		
		12 V to XVPP				1		
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	Clamp low voltage		lpp at 10 mA			0.8	V	
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}$	Clamp low voltage		1 CC at 10 mA			0.8	V	
Ilikg	Leakage current	Ipp high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10	$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
		ICC high-impedance state	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		1	10		
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
11	Input current	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\begin{aligned} & V_{O(A V C C)}=V_{O(B V C C)}=5 \mathrm{~V}, \\ & V_{O(A V P P)}=V_{O(B V P P)}=12 \mathrm{~V} \end{aligned}$		117	150	$\mu \mathrm{A}$	
		$\begin{aligned} & \mathrm{V}_{1(5 \mathrm{~V})}=0, \\ & \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{O(A V C C)}=V_{O(B V C C)}=3.3 \mathrm{~V}, \\ & V_{O(A V P P)}=V_{O(B V P P)}=0 \end{aligned}$		131	150		
		Shutdown mode	$\begin{aligned} & \mathrm{V}_{\mathrm{O}(B V C C)}=\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}=\mathrm{V}_{\mathrm{O}(\mathrm{AVPP})} \\ & =\mathrm{V}_{\mathrm{O}(\mathrm{BVPP})}=\mathrm{Hi}-\mathrm{Z} \end{aligned}$			1	$\mu \mathrm{A}$	
Ios	Short-circuit output-current limit	$\mathrm{IO}(\mathrm{xVCC})$	$\begin{aligned} & T_{J}=85^{\circ} \mathrm{C}, \\ & \text { Output powered up into a short to GND } \end{aligned}$	1		2.2	A	
		1 O (xVPP)		120		400	mA	

\dagger Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

logic section

PARAMETER	TEST CONDITIONS	TPS2206	UNIT
		MIN MAX	
Logic input current		1	$\mu \mathrm{A}$
Logic input high level		2	V
Logic input low level		0.8	V
	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad 10=1 \mathrm{~mA}$	$\mathrm{V}_{1(5 \mathrm{~V})}-0.4$	
Logic output high level	$\begin{array}{ll} \hline \mathrm{V}_{1(5 \mathrm{~V})=0,} & \mathrm{I} \mathrm{O}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{l}(3.3 \mathrm{~V})=3.3 \mathrm{~V}} & \\ \hline \end{array}$	$V_{1(3.3 V)}{ }^{-0.4}$	v
Logic output low level	$1 \mathrm{O}=1 \mathrm{~mA}$	0.4	V

switching characteristics $\dagger \ddagger$

PARAMETER	TEST CONDITIONS		TPS2206		UNIT
			MIN TYP	MAX	
Output rise time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1.2		ms
	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$		5		
Output fall time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		10		
	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		14		
tpd Propagation delay (see Figure	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	ton	4.4		ms
		$\mathrm{t}_{\text {off }}$	18		ms
	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	ton	6.5		ms
		toff	20		ms
	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})(5 \mathrm{~V})$	$\mathrm{t}_{\text {on }}$	5.7		ms
		$\mathrm{t}_{\text {off }}$	25		ms
	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=0$	ton	6.6		ms
		toff	21		ms

\dagger Refer to Parameter Measurement Information
\ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$ (unless otherwise noted)

dc characteristics

PARAMETER			TEST CONDITIONS	TPS2206Y			UNIT	
			MIN	TYP	MAX			
	Switch resistances§	5 V to xVCC			103			$\mathrm{m} \Omega$
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$	69				
		3.3 V to xVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=0, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$	96				
		5 V to xVPP		4.74			Ω	
		3.3 V to XVPP		4.74				
		12 V to xVPP			0.724			
V_{O} (xVPP)	Clamp low voltage		lpp at 10 mA	0.275			V	
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}$	Clamp low voltage		$\mathrm{I}^{\text {CC }}$ at 10 mA	0.275			V	
Ilkg	Leakage current	Ipp High-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1			$\mu \mathrm{A}$	
		Ic. High-impedance state	$T_{A}=25^{\circ} \mathrm{C}$		1			
1	Input current	$\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{O(A V C C)}=\mathrm{V}_{O(B V C C)}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{AVPP})}=\mathrm{V}_{\mathrm{O}(\mathrm{BVPP})}=12 \mathrm{~V} \\ & \hline \end{aligned}$		117		$\mu \mathrm{A}$	
		$\begin{aligned} & V_{1(5 \mathrm{~V})}=0, \\ & V_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & V_{O(A V C C)}=V_{O(B V C C)}=3.3 \mathrm{~V}, \\ & V_{O(A V P P)}=V_{O(B V P P)}=0 \end{aligned}$	131				

§ Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

switching characteristics $\dagger \ddagger$

PARAMETER	TEST CONDITIONS		TPS2206		UNIT
			MIN TYP	MAX	
Output rise time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1.2		ms
	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		5		
Output fall time	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		10		
	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		14		
${ }^{\text {tpd }}$ Propagation delay (see Figure 1)	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$	ton	4.4		ms
		$\mathrm{t}_{\text {off }}$	18		ms
	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=5 \mathrm{~V}$	$\mathrm{t}_{\text {on }}$	6.5		ms
		$t_{\text {off }}$	20		ms
	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})(5 \mathrm{~V})$	$\mathrm{t}_{\text {on }}$	5.7		ms
		$t_{\text {off }}$	25		ms
	LATCH \uparrow to $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}(3.3 \mathrm{~V}), \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=0$	$\mathrm{t}_{\text {on }}$	6.6		ms
		$t_{\text {off }}$	21		ms

\dagger Refer to Parameter Measurement Information
\ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

Table of Timing Diagrams

	FIGURE
Serial-Interface Timing	2
$x \mathrm{VCC}$ Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	3
$x \mathrm{VCC}$ Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1}(5 \mathrm{~V})=5 \mathrm{~V}$	4
xVCC Propagation Delay and Rise Time With 150- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	5
xVCC Propagation Delay and Fall Time With 150- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	6
xVCC Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	7
$x \mathrm{VCC}$ Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	8
xVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=0$	9
xVCC Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	10
xVCC Propagation Delay and Rise Time With 1- $\mathrm{\mu}$ F Load, 5-V Switch	11
xVCC Propagation Delay and Fall Time With 1- μ F Load, 5-V Switch	12
xVCC Propagation Delay and Rise Time With 150- $\mathrm{\mu}$ F Load, 5-V Switch	13
xVCC Propagation Delay and Fall Time With 150- $\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	14
xVPP Propagation Delay and Rise Time With 1- μ F Load, 12-V Switch	15
xVPP Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, 12-V Switch	16
xVPP Propagation Delay and Rise Time With 150- μ F Load, 12-V Switch	17
xVPP Propagation Delay and Fall Time With 150- F F Load, 12-V Switch	18

CLOCK

NOTE A. Data is clocked in on the positive leading edge of the clock. The latch should occur before the next positive leading edge of the clock. For definition of D0 to D8, see the control logic table.

Figure 2. Serial-Interface Timing

Figure 3. xVCC Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $\left(\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}\right)$

Figure 5. xVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch,

$$
V_{1(5 \mathrm{~V})}=5 \mathrm{~V}
$$

Figure 4. xVCC Propagation Delay and Fall Time With $1-\mu$ F Load, 3.3-V Switch,

$$
\left.\left(V_{1(5 \mathrm{~V}} \mathrm{V}\right)=5 \mathrm{~V}\right)
$$

Figure 6. xVCC Propagation Delay and Fall Time With $150-\mu$ F Load, 3.3-V Switch,

$$
V_{1(5 \mathrm{~V})}=5 \mathrm{~V}
$$

PARAMETER MEASUREMENT INFORMATION

Figure 7. xVCC Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch, $V_{1(5 \mathrm{~V})}=0$

Figure 9. xVCC Propagation Delay and Rise Time With $150-\mu$ F Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$

Figure 8. xVCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch, $V_{1(5)} \mathrm{V}=0$

Figure 10. xVCC Propagation Delay and Fall Time With $150-\mu$ F Load, 3.3-V Switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$

PARAMETER MEASUREMENT INFORMATION

Figure 11. xVCC Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

Figure 13. xVCC Propagation Delay and Rise Time With 150- μ F Load, 5-V Switch

Figure 12. xVCC Propagation Delay and Fall Time With 1- HF Load, 5-V Switch

Figure 14. xVCC Propagation Delay and Fall Time With 150- HF Load, 5-V Switch

PARAMETER MEASUREMENT INFORMATION

Figure 15. XVPP Propagation Delay and Rise Time With 1- μ F Load, 12-V Switch

Figure 17. xVPP Propagation Delay and Rise Time With $150-\mu$ F Load, $12-\mathrm{V}$ Switch

Figure 16. xVPP Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, $12-\mathrm{V}$ Switch

Figure 18. xVPP Propagation Delay and Fall Time With $150-\mu$ F Load, 12-V Switch

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
IDD	Supply current, $\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	vs Junction temperature	19
IDD	Supply current, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=0$	vs Junction temperature	20
rDS(on)	Static drain-source on-state resistance, 3.3-V switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	vs Junction temperature	21
rDS(on)	Static drain-source on-state resistance, 3.3-V switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	vs Junction temperature	22
rDS(on)	Static drain-source on-state resistance, 5-V switch	vs Junction temperature	23
rDS(on)	Static drain-source on-state resistance, 12-V switch	vs Junction temperature	24
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}$	Output voltage, 5-V switch	vs Output current	25
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC}}$	Output voltage, 3.3-V switch, $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}$	vs Output current	26
$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}$	Output voltage, 3.3-V switch, $\mathrm{V}_{1(5 \mathrm{~V})}=0$	vs Output current	27
V_{O} (xVPP)	Output voltage, 12-V switch	vs Output current	28
$\mathrm{loS}(\mathrm{xVCC})$	Short-circuit current, 5-V switch	vs Junction temperature	29
$\operatorname{loS}(x V C C)$	Short-circuit current, 3.3-V switch	vs Junction temperature	30
$\operatorname{loS}(x \vee P P)$	Short-circuit current, 12-V switch	vs Junction temperature	31

SUPPLY CURRENT
vs
JUNCTION TEMPERATURE

Figure 19

SUPPLY CURRENT
vs
JUNCTION TEMPERATURE

Figure 20

TYPICAL CHARACTERISTICS
3.3-V SWITCH

STATIC DRAIN-SOURCE ON-STATE RESISTANCE
VS
JUNCTION TEMPERATURE

Figure 21

5-V SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 23
3.3-V SWITCH

STATIC DRAIN-SOURCE ON-STATE RESISTANCE VS

Figure 22

12-V SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE Vs

Figure 24

TYPICAL CHARACTERISTICS

Figure 25
3.3-V SWITCH

OUTPUT VOLTAGE
vs
OUTPUT CURRENT

Figure 27

Figure 26

12-V SWITCH
OUTPUT VOLTAGE
vs
OUTPUT CURRENT

Figure 28

TYPICAL CHARACTERISTICS

Figure 29
3.3-V SWITCH SHORT-CIRCUIT CURRENT vs JUNCTION TEMPERATURE

Figure 30

12-V SWITCH
SHORT-CIRCUIT CURRENT
vs
JUNCTION TEMPERATURE

Figure 31

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited on-board memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the "plug-and-play" concept. Cards and hosts from different vendors should be compatible - able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connector. This power interface consists of two V_{Cc}, two V_{pp}, and four ground terminals. Multiple V_{Cc} and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

designing for voltage regulation

The current PCMCIA specification for output-voltage regulation $\left(\mathrm{V}_{\mathrm{O}(\mathrm{reg})}\right)$ of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In atypical PC power-system design, the power supply has an output-voltage regulation ($\mathrm{V}_{\mathrm{PS}}(\mathrm{reg})$) of $2 \%(100 \mathrm{mV})$. Also, a voltage drop from the power supply to the PC Card will result from resistive losses ($\mathrm{V}_{\mathrm{PCB}}$) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than $1 \%(50 \mathrm{mV})$ of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2206 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:
$V_{D S}=V_{\mathrm{O}_{(\text {reg })}}-\mathrm{V}_{\mathrm{PS}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PCB}}$
Typically, this would leave 100 mV for the allowable voltage drop across the TPS2206. The voltage drop is the output current multiplied by the switch resistance of the TPS2206. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2206 divided by the output switch resistance.

$$
\begin{equation*}
{ }^{\mathrm{I}} \mathrm{O}^{\max }=\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{r}_{\mathrm{DS}(\mathrm{on})}} \tag{2}
\end{equation*}
$$

The xVCC outputs have been designed to deliver 700 mA at 5 V within regulation over the operating temperature range. Current proposals for the PCMCIA specifications are to limit the power dissipated in the PCMCIA slot to 3 W . With an input voltage of $5 \mathrm{~V}, 700 \mathrm{~mA}$ continuous is the maximum current that can be delivered to the PC Card. The TPS2206 is capable of delivering up to 1 A continuously, but during worst-case conditions the output may not be within regulation. This is generally acceptable because the majority of PC Cards require less than 700 mA continuous. Some cards require higher peak currents (disk drives during initial platter spin-up), but it is generally acceptable for small voltage sags to occur during these peak currents.

The xVCC outputs have been designed to deliver 1 A continuously at 3.3 V within regulation over the operating temperature range. The PCMCIA specification for output voltage regulation of the $3.3-\mathrm{V}$ output is 300 mV . Using the voltage drop percentages (2\%) for power supply regulation and PCB resistive loss (1\%), the allowable voltage drop for the 3.3 V switch is 200 mV .

The xVPP outputs have been designed to deliver 150 mA continuously at 12 V .

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER

APPLICATION INFORMATION

overcurrent and over-temperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB-trace damage. Even systems robust enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.

The TPS2206 takes a two-pronged approach to overcurrent protection. First, instead of fuses, sense FETs monitor each of the power outputs. Excessive current generates an error signal that linearly limits the output current, preventing host damage or failure. Sense FETs, unlike sense resistors or polyfuses, have an added advantage in that they do not add to the series resistance of the switch and thus produce no additional voltage losses. Second, when an overcurrent condition is detected, the TPS2206 asserts a signal at $\overline{\mathrm{OC}}$ that can be monitored by the microprocessor to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates, shutting down all power outputs until the device cools to within a safe operating region.

12-V supply not required

Most PC Card switches use the externally supplied $12-\mathrm{V} \mathrm{V}_{\mathrm{pp}}$ power for switch-gate drive and other chip functions, which requires that power be present at all times. The TPS2206 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the $5-\mathrm{V}$ or $3.3-\mathrm{V}$ input; therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the $12-\mathrm{V}$ input if the $12-\mathrm{V}$ input is not used. Additional power savings are realized by the TPS2206 during a software shutdown in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

backward compatibility and 3.3-V low-voltage mode

The TPS2206 is backward compatible with the TPS2202 AND TPS2202A products, with the following considerations. Pin 25 (VDD on TPS2202/TPS2202A) is a no connect because bias current is derived from either the 3.3-V input pin or the 5-V input pin. Also, the TPS2206 does not have the APWR_GOOD or BPWR_GOOD VPP reporting outputs. These are left as no connects.

The TPS2206 operates in 3.3 - V low-voltage mode when 3.3 volts is the only available input voltage $\left(\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=0\right)$. This allows host and PC Cards to be operated in low-power 3.3 - V-only modes such as sleep modes or pager modes. Note that in this operation mode, the TPS2206 derives its bias current from the $3.3-\mathrm{V}$ input pin and only 3.3 V can be delivered to the PC Card. The $3.3-\mathrm{V}$ switch resistance increases, but the added switch resistance should not be critical, because only a small amount of current is delivered in this mode. If $6 \%(198 \mathrm{mV})$ is allowed for the $3.3-\mathrm{V}$ switch voltage drop, a $500 \mathrm{~m} \Omega$ switch could deliver over 350 mA to the PC Card.

voltage transitioning requirement

PC Cards, like portables, are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2206 is designed to meet all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on $3.3-\mathrm{V}$-compatible cards be discharged to below 0.8 V before applying $3.3-\mathrm{V}$ power. This ensures that sensitive $3.3-\mathrm{V}$ circuitry is not subjected to any residual $5-\mathrm{V}$ charge and functions as a power reset. The TPS2206 offers a selectable V_{cc} and V_{pp} ground state, in accordance with PCMCIA $3.3-\mathrm{V} / 5-\mathrm{V}$ switching specifications, to fully discharge the card capacitors while switching between V_{CC} voltages.

APPLICATION INFORMATION

output ground switches

Several PCMCIA power-distribution switches on the market do not have an active-grounding FET switch. These devices do not meet the PC Card specification requiring a discharge of V_{CC} within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. A method commonly shown to alleviate this problem is to add to the switch output an external 100-k Ω resistor in parallel with the PC Card. Considering that this is the only discharge path to ground, a timing analysis shows that the RC time constant delays the required discharge time to more than 2 seconds. The only way to ensure timing compatibility with PC Card standards is to use a power-distribution switch that has an internal ground switch, like that of the TPS22xx family, or add an external ground FET to each of the output lines with the control logic necessary to select it.
In summary, the TPS2206 is a complete single-chip dual-slot PC Card power interface. It meets all currently defined PCMCIA specifications for power delivery in $5-\mathrm{V}, 3.3-\mathrm{V}$, and mixed systems, and offers a serial control interface. The TPS2206 offers functionality, power savings, overcurrent and thermal protection, and fault reporting in one 30 -pin SSOP surface-mount package for maximum value added to new portable designs.

power supply considerations

The TPS2206 has multiple pins for each of its $3.3-\mathrm{V}, 5-\mathrm{V}$, and $12-\mathrm{V}$ power inputs and for the switched V_{CC} outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. Both $12-\mathrm{V}$ inputs must be connected for proper V_{pp} switching; it is recommended that all input and output power pins be paralleled for optimum operation.
Although the TPS2206 is fairly immune to power input fluctuations and noise, it is generally considered good design practice to bypass power supplies typically with a $1-\mu \mathrm{F}$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched V_{CC} and V_{pp} outputs be bypassed with a $0.1-\mu \mathrm{F}$ or larger capacitor; doing so improves the immunity of the TPS 2206 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2206 and the load. High switching currents can produce large negative-voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similary, no pin should be taken below -0.3 V.

RESET or RESET inputs

To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at the same time as the host by applying a low impedance to the V_{Cc} and V_{pp} terminals. A low-impedance output state allows discharging of residual voltage remaining on PC Card fitter capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The RESET or RESET input closes internal switches S1, S4, S7, and S10 with all other switches left open (see TPS2206 control-logic table). The TPS2206 remains in the low-impedance output state until the signal is deasserted and further data is clocked in and latched. RESET or RESET is provided for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The unused pin is internally pulled up or down and should be left unconnected.

APPLICATION INFORMATION

overcurrent and thermal protection

The TPS2206 uses sense FETs to check for overcurrent conditions in each of the V_{Cc} and V_{pp} outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore, voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The $\overline{O C}$ indicator, normally a logic high, is a logic low when any overcurrent condition is detected, providing for initiation of system diagnostics and/or sending a warning message to the user.
During power up, the TPS2206 controls the rise time of the $V_{C C}$ and $V_{p p}$ outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2206 engages. If the V_{CC} or V_{pp} outputs are driven below ground, the TPS2206 may latch nondestructively in an off state. Cycling power will reestablish normal operation.

Overcurrent limiting for the V_{CC} outputs is designed to activate, if powered up, into a short in the range of 1 A to 2.2 A, typically at about 1.6 A. The V_{pp} outputs limit from 120 mA to 400 mA , typically around 280 mA . The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.
Thermal limiting prevents destruction of the IC from overheating if the package power-dissipation ratings are exceeded. Thermal limiting disables all power outputs (both A and B slots) until the device has cooled.

calculating junction temperature

The switch resistance, $r_{\mathrm{DS}(\mathrm{on})}$, is dependent on the junction temperature, T_{J}, of the die. The junction temperature is dependent on both $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ and the current through the switch. To calculate T_{J}, first find $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ from Figures $21,22,23$, and 24 using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
\begin{equation*}
P_{D}=r_{D S(o n)} \times 1^{2} \tag{3}
\end{equation*}
$$

Next, sum the power dissipation and calculate the junction temperature:

$$
\begin{equation*}
T_{j}=\left(\Sigma P_{\bar{D}} \times R_{\theta J A}\right)+T_{A}, R_{\theta J A}=108^{\circ} \mathrm{C} / \mathrm{N} \tag{4}
\end{equation*}
$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic input and outputs

The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive leading edge of the clock (see Figure 2). The 9-bit (D0 through D8) serial data word is loaded during the positive edge of the latch signal. The latch signal should occur before the next positive leading edge of the clock.

The shutdown bit of the data word places all V_{CC} and V_{pp} outputs in a high-impedance state and reduces chip quiescent current to $1 \mu \mathrm{~A}$ to conserve battery power.
The TPS2206 serial interface is designed to be compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan Electronic Industry Development Association (JEIDA) standards.
An overcurrent output $(\overline{\mathrm{OC}})$ is provided to indicate an overcurrent condition in any of the V_{CC} or V_{pp} outputs as previously discussed.

APPLICATION INFORMATION

NOTE A. MOSFET switches S9 and S12 have a back-gate diode from the source to the drain. Unused switch inputs should never be grounded.
Figure 32. Internal Switching Matrix

APPLICATION INFORMATION

TPS2206 control logic
AVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	D0 A_VPP_PGM	D1 A_VPP_VCC	S7	S8	S9	VAVPP
1	0	0	CLOSED	OPEN	OPEN	OV
1	0	1	OPEN	CLOSED	OPEN	VCC \dagger
1	1	0	OPEN	OPEN	CLOSED	VPP(12 V$)$
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

BVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	D4 B_VPP_PGM	D5 B_VPP_VCC	S10	S11	S12	VBVPP
1	0	0	CLOSED	OPEN	OPEN	OV
1	0	1	OPEN	CLOSED	OPEN	VCC \ddagger
1	1	0	OPEN	OPEN	CLOSED	VPP $(12 \mathrm{~V})$
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

AVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 $\overline{\text { SHDN }}$	D3 $\overline{\text { A_VCC3 }}$	D2 $\overline{\mathbf{A}} \mathbf{V C C 5}$	S1	S2	S3	VAVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	Hi-Z

BVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 $\overline{\text { SHDN }}$	D6 $\overline{\text { B_VCC3 }}$	D7 $\overline{\mathbf{B} _V C C 5}$	$\mathbf{S 4}$	$\mathbf{S 5}$	$\mathbf{S 6}$	VBVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	Hi-Z

\dagger Output depends on AVCC
\ddagger Output depends on BVCC

ESD protection

All TPS2206 inputs and outputs incorporate ESD-protection circuitry designed to withstand a $2-\mathrm{kV}$ human-body-model discharge as defined in MIL-STD-883C, Method 3015. The V_{cc} and V_{pp} outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

APPLICATION INFORMATION

Figure 33. Detailed Interconnections and Capacitor Recommendations

APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in² of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.
The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the $12-\mathrm{V}$ output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A $1.22-\mathrm{V}$ reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a generall purpose I/O terminal on the PCMCIA controller or tied high.
Figure 34. TPS2206 with TPS6734 12-V, 120-mA Supply

THIS PAGE INTENTIONALLY LEFT BLANK

- Fully Integrated V_{Cc} and V_{pp} Switching for Single-Slot PC Card ${ }^{\text {TM }}$ Interface
- Low rDS(on) (90-m Ω 5-V VCC Switch and 3.3-V VCC Switch)
- Compatible With Controllers From Cirrus, Ricoh, O_{2} Micro, Intel, and Texas Instruments
- 3.3-V Low-Voltage Mode
- Meets PC Card Standards
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short-Circuit and Thermal Protection
- Space-Saving 16-Pin SSOP (DB)
- Compatible With 3.3-V, 5-V, and 12-V PC Cards
- Break-Before-Make Switching

description

The TPS2211 PC Card power-interface switch provides an integrated power-management solution for a single PC Card. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit, using the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process. The circuit allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$, and/or $12-\mathrm{V}$ card power, and is compatible with many PCMCIA controllers. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability. Current-limit reporting can help the user isolate a system fault to the PC Card.

The TPS2211 features a 3.3-V low-voltage mode that allows for $3.3-\mathrm{V}$ switching without the need for 5 V . Bias power can be derived from either the $3.3-\mathrm{V}$ or $5-\mathrm{V}$ inputs. This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available.
End equipment for the TPS2211 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.

AVAILABLE OPTIONS

TA $_{\mathbf{A}}$	PACKAGED DEVICE	CHIP FORM
	SMALL OUTLINE (DB)	

The DB package is only available left-end taped and reeled (indicated by the LE suffix on the device type, e.g. TPS2211IDBLE).

typical PC-card power-distribution application

TPS2211Y chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS2211. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

Terminal Functions

TERMINAL		I/O	DESCRIPTION
NAME	NO.		
3.3 V	3, 4	1	3.3-V V_{CC} input for card power and/or chip power if 5 V is not present
5 V	5,6	1	$5-\mathrm{V} \mathrm{V}_{\text {CC }}$ input for card power and/or chip power
12V	9	1	$12-\mathrm{V} \mathrm{V}_{\mathrm{pp}}$ input card power
AVCC	11, 12, 13	0	Switched output that delivers $0 \mathrm{~V}, 3.3-\mathrm{V}, 5-\mathrm{V}$, or high impedance to card
AVPP	10	0	Switched output that delivers $0 \mathrm{~V} 3.3-\mathrm{V}, 5-\mathrm{V}, 12 \mathrm{~V}$, or high impedance to card
GND	7		Ground
$\overline{\mathrm{OC}}$	8	0	Logic-level overcurrent reporting output that goes low when an overcurrent conditions exists
SHDN	16	1	Logic input that shuts down the TPS2211 and sets all power outputs to high-impedance state
$\overline{\text { VCCDO }}$	1	1	Logic input that controls voltage of AVCC (see control-logic table)
VCCD1	2	1	Logic input that controls voltage of AVCC (see control-logic table)
VPPDO	15	1	Logic input that controls voltage of AVPP (see contro--logic table)
VPPD1	14	1	Logic input that controls voltage of AVPP (see control-logic table)

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

Input voltage range for card power:	$V_{1(5 \mathrm{~V})}$	-0.3 V to 7 V
	$V_{1(3.3 V)}$	-0.3 V to 7 V
	$\mathrm{V}_{\text {(12V) }}$	-0.3 V to 14 V
Logic input voltage		-0.3 V to 7 V

Continuous total power dissipation ... See Dissipation Rating Table

Lead temperature 1.6 mm ($1 / 16 \mathrm{inch}$) from case for 10 seconds $260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA PO	$\mathbf{T}_{\mathbf{\circ}}{ }^{\circ} \mathrm{C}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=85^{\circ} \mathrm{C}$ POWER RATING
DB	775 mW	$6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	496 mW	403 mW

These devices are mounted on an FR4 board with no special thermal considerations.
recommended operating conditions

		MIN	MAX	UNIT
Input voltage, $\mathrm{V}_{\mathbf{l}}$	$\mathrm{V}_{1(5 \mathrm{~V})}$	0	5.25	V
	$\mathrm{V}_{1(3.3 V)}$	0	5.25	V
	$\mathrm{V}_{1(12 \mathrm{~V})}$	0	13.5	V
Output current	Io(AVCC)		1	A
	IO(AVPP)		150	mA
Operating virtual junction temperature, T_{J}		-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)
power switch

PARAMETER			TEST CONDITIONSt	TPS2211			UNIT	
			MIN	TYP	MAX			
Switch resistance		5 V to AVCC		$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$		50	90	$\mathrm{m} \Omega$
		3.3 V to AVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$		48	90		
		3.3 V to AVCC	$\mathrm{V}_{1(5 \mathrm{~V})}=0 \mathrm{~V}, \quad \mathrm{~V}_{1}(3.3 \mathrm{~V})=3.3 \mathrm{~V}$		48	90		
		5 V to AVPP	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			6	Ω	
		3.3 V to AVPP	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			6		
		12 V to AVPP	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1		
V_{O} (AVPP)	Clamp low voltage		lpp at 10 mA			0.8	V	
$\mathrm{V}_{\text {O }}$ (AVCC)	Clamp low voltage		1 CC at 10 mA			0.8	V	
Ilkg	Leakage current	'pp high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10	$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
		ICC high-impedance state	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	10		
			$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			50		
1	Input current	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}(\mathrm{AVPP})=12 \mathrm{~V}$		40	150	$\mu \mathrm{A}$	
		$\begin{aligned} & V_{1(5 \mathrm{~V})}=0 \mathrm{~V}, \\ & \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}(\mathrm{AVCC})}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{AVPP})}=12 \mathrm{~V}$		40	150		
		Shutdown mode	$\mathrm{V}_{\mathrm{O}}(\mathrm{AVCC})=\mathrm{V}_{\mathrm{O}}(\mathrm{AVPP})=\mathrm{Hi}-\mathrm{Z}$			1		
Ios	Short-circuit output-current limit	IO(AVCC)	$T_{J}=85^{\circ} \mathrm{C}$, output powered into a short to GND	1		2.2	A	
		Io(AVPP)		120		400	mA	

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

logic section

PARAMETER	TEST CONDITIONS \dagger	TPS2211	UNIT
		MIN MAX	
Logic input current		1	$\mu \mathrm{A}$
Logic input high level		2	V
Logic input low level		0.8	V
Logic output high level	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad 1 \mathrm{O}=1 \mathrm{~mA}$	$\mathrm{V}_{1(5 \mathrm{~V})}-0.4$	V
	$\mathrm{V}_{1(5 \mathrm{~V})}=0 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \quad \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}$	$\mathrm{V}_{1(3.3 V)}$-0.4	
Logic output low level	$1 \mathrm{O}=1 \mathrm{~mA}$	0.4	V

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS
SLVS156D - JULY 1997 - REVISED MAY 1999
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)
power switch

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
switching characteristics \ddagger

PARAMETER	TEST CONDITIONS§		$\begin{aligned} & \hline \text { TPS2211 } \\ & \text { TPS2211 } \end{aligned}$		UNIT
			MIN TYP	MAX	
Rise times, output	V_{O} (AVCC)		2.8		ms
	$V_{\text {O(AVPP) }}$		6.4		
Fall times, output	V_{O} (AVCC)		4.5		
	V_{O} (AVPP)		12		
$\mathrm{t}_{\mathrm{pd}} \quad$ Propagation delay (see Figure1)	$\mathrm{V}_{\text {(VPPDO }}$ to $\mathrm{V}_{\text {O(AVPP) }}$	ton	6.8		ms
		$t_{\text {off }}$	18		
	$\mathrm{V}_{1} \overline{\mathrm{VCCD} 1)}$ to $\mathrm{V}_{\mathrm{O}(\mathrm{AVCC}}{ }^{(3.3 V)}$	ton	4		
		$t_{\text {off }}$	17		
	$\mathrm{V}_{1}(\mathrm{VCCDO})$ to $\mathrm{V}_{\mathrm{O}}(\mathrm{AVCC})(5 \mathrm{~V})$	ton	6.6		
		$\mathrm{t}_{\text {off }}$	17		

\ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.
§ Refer to Parameter Measurement Information

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

AVCC

LOAD CIRCUIT

Figure 1. Test Circuits and Voltage Waveforms
Table of Timing Diagrams

	FIGURE
AVCC Propagation Delay and Rise Time With 1- F Load, 3.3-V Switch	2
AVCC Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, 3.3-V Switch	3
AVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 3.3-V Switch	4
AVCC Propagation Delay and Fall Time With 150- μ F Load, 3.3-V Switch	5
AVCC Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	6
AVCC Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch	7
AVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, 5 -V Switch	8
AVCC Propagation Delay and Fall Time With 150- H F Load, 5 -V Switch	9
AVPP Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, 12-V Switch	10
AVPP Propagation Delay and Fall Time With 1- F Load, 12-V Switch	11
AVPP Propagation Delay and Rise Time With 150- F Load, 12-V Switch	12
AVPP Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, 12-V Switch	13

PARAMETER MEASUREMENT INFORMATION

Figure 2. AVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch

Figure 4. AVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $3.3-\mathrm{V}$ Switch

Figure 3. AVCC Propagation Delay and Fall Time With 1- $\mu \mathrm{F}$ Load, 3.3-V Switch

Figure 5. AVCC Propagation Delay and Fall Time With $150-\mu$ Load, $3.3-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 6. AVCC Propagation Delay and Rise Time With $1-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

Figure 8. AVCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

Figure 7. AVCC Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

Figure 9. AVCC Propagation Delay and Fall Time With 150- $\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 10. AVPP Propagation Delay and Rise Time With 1- μ F Load, 12-V Switch

Figure 12. AVPP Propagation Delay and Rise Time With $150-\mu$ Load, $12-V$ Switch

Figure 11. AVPP Propagation Delay and Fall Time With 1- μ F Load, 12-V Switch

Figure 13. AVPP Propagation Delay and Fall Time With $150-\mu$ F Load, $12-V$ Switch

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
${ }^{1} \mathrm{CC}(5 \mathrm{~V})$	Supply current	vs Junction temperature	14
$\mathrm{ICC}(3.3 \mathrm{~V})$	Supply current	vs Junction temperature	15
rDS(on)	Static drain-source on-state resistance, 5-V VCC switch	vs Junction temperature	16
rDS(on)	Static drain-source on-state resistance, 3.3-V VCC switch	vs Junction temperature	17
rDS(on)	Static drain-source on-state resistance, 12-V VPP switch	vs Junction temperature	18
V_{O} (AVCC)	Output voltage, 5-V VCC switch	vs Output current	19
$\mathrm{V}_{\mathrm{O} \text { (AVCC) }}$	Output voltage, 3.3-V VCC switch	vs Output current	20
V_{O} (AVPP)	Output voltage, 12-V VPP switch	vs Output current	21
IOS(AVCC)	Short-circuit current, 5-V VCC switch	vs Junction temperature	22
IOS(AVCC)	Short-circuit current, 3.3-V VCC switch	vs Junction temperature	23
IOS(AVPP)	Short-circuit current, 12-V VPP switch	vs Junction temperature	24

SUPPLY CURRENT
vs
JUNCTION TEMPERATURE

Figure 14

SUPPLY CURRENT
vs
JUNCTION TEMPERATURE

Figure 15

TYPICAL CHARACTERISTICS

5-V VCC SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs

Figure 16

12-V VPP SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE VS

Figure 18
3.3-V VCC SWITCH

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs
Cl JUNCTION TEMPERATURE

Figure 17

5-V VCC SWITCH OUTPUT VOLTAGE vs
OUTPUT CURRENT

Figure 19

TYPICAL CHARACTERISTICS

Figure 20
5-V VCC SWITCH SHORT-CIRCUIT CURRENT VS
JUNCTION TEMPERATURE

Figure 22

Figure 21
3.3-V VCC SWITCH SHORT-CIRCUIT CURRENT VS JUNCTION TEMPERATURE

Figure 23

TYPICAL CHARACTERISTICS

12-V VPP SWITCH
SHORT-CIRCUIT CURRENT
VS
JUNCTION TEMPERATURE

Figure 24

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, GPS systems, multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibiiity across piatiorms. To this end, the PCMCIA (Personal Computer Memory Card International Association) was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the plug and play concept, i.e. cards and hosts from different vendors should be compatible.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connectors. This power interface consists of two V_{Cc}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

APPLICATION INFORMATION

designing for voltage regulation

The current PCMCIA specification for output voltage regulation of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In a typical PC power-system design, the power supply will have an output voltage regulation ($\mathrm{V}_{\mathrm{PS}}(\mathrm{reg})$) of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses ($\mathrm{V}_{\mathrm{PCB}}$) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than $1 \%(50 \mathrm{mV})$ of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2211 is the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$
\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{O}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PS}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PCB}}
$$

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2211. The voltage drop is the output current multiplied by the switch resistance of the TPS2211. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2211 divided by the output switch resistance.

$$
\mathrm{I}_{\mathrm{O}} \max =\frac{\mathrm{V}_{\mathrm{DS}}}{r_{\mathrm{DS}(\mathrm{On})}}
$$

The AVCC outputs deliver 1 A continuous at 5 V and 3.3 V within regulation over the operating temperature range. Using the same equations, the PCMCIA specification for output voltage regulation of the 3.3 V output is 300 mV . Using the voltage drop percentages for power supply regulation (2%) and PCB resistive loss (1%), the allowable voltage drop for the 3.3 V switch is 200 mV . The 12-V outputs (AVPP) of the TPS2211 can deliver 150 mA continuously.

overcurrent and overtemperature protection

PC Cards are inherently subject to damage from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB trace damage. Even systems sufficiently robust to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in a sudden loss of system power. Most hosts include fuses for protection. The reliability of fused systems is poor and requires troubleshooting and repair, usually by the manufacturer, when fuses are blown.
The TPS2211 uses sense FETs to check for overcurrent conditions in each of the AVCC and AVPP outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The $\overline{O C}$ indicator, normally a logic high, is a logic low when an overcurrent condition is detected providing for initiation of system diagnostics and/or sending a warning message to the user.
During power up, the TPS2211 controls the rise time of the AVCC and AVPP outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2211 engages. If the AVCC or AVPP outputs are driven below ground, the TPS2211 may latch nondestructively in an off state. Cycling power will reestablish normal operation.
Overcurrent limiting for the AVCC outputs is designed to activate if powered up into a short in the range of 1 A to 2.2 A, typically at about 1.6 A. The AVPP outputs limit from 120 mA to 400 mA , typically around 280 mA . The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.
Thermal limiting prevents destruction of the IC from overheating if the package power dissipation ratings are exceeded. Thermal limiting disables power output until the device has cooled.

TPS2211
 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH
 FOR PARALLEL PCMCIA CONTROLLERS
 SLVS156D - JULY 1997-REVISED MAY 1999

APPLICATION INFORMATION

12-V supply not required

Most PC Card switches use the externally supplied 12 V to power gate drive and other chip functions, which require that power be present at all times. The TPS2211 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the $5-\mathrm{V}$ input. Therefore, the external $12-\mathrm{V}$ supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the $12-\mathrm{V}$ switch inputs when the $12-\mathrm{V}$ input is not used. Additional power savings are realized by the TPS2211 during a software shutdown in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

3.3-V low-voltage mode

The TPS2211 will operate in a 3.3-V low-voltage mode when 3.3 V is the only available input voltage $\left(V_{1(5 V)}=0\right)$. This allows host and PC Cards to be operated in low-power 3.3-volts-only modes such as sleep or pager modes. Note that in these operation modes, the TPS2211 will derive its bias current from the $3.3-\mathrm{V}$ input pin and only 3.3 V can be delivered to the PC Card.

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2211 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on 3.3-V compatible cards be discharged to below 0.8 V before applying $3.3-\mathrm{V}$ power. This functions as a power reset and ensures that sensitive $3.3-\mathrm{V}$ circuitry is not subjected to any residual $5-\mathrm{V}$ charge. The TPS2211 offers a selectable V_{CC} and V_{pp} ground state, in accordance with PCMCIA $3.3-\mathrm{V} / 5-\mathrm{V}$ switching specifications.

output ground switches

PC Card specification requires that V_{CC} be discharged within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes.

power-supply considerations

The TPS2211 has multiple pins for each of its $3.3-\mathrm{V}$ and $5-\mathrm{V}$ power inputs and for the switched AVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. It is recommended that all input and output power pins be paralleled for optimum operation.

To increase the noise immunity of the TPS2211, the power supply inputs should be bypassed with a $1-\mu \mathrm{F}$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a $0.1-\mu \mathrm{F}$, or larger, ceramic capacitor; doing so improves the immunity of the TPS2211 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2211 and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken below -0.3 V.

APPLICATION INFORMATION

calculating junction temperature

The switch resistance, $\mathrm{r}_{\mathrm{DS}}\left(\mathrm{on}_{\mathrm{n}}\right.$, is dependent on the junction temperature, T_{J}, of the die and the current through the switch. To calculate T_{J}, first find ${ }^{\mathrm{D}}$ D(on) from Figures 16 through 18 using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
P_{D}=r_{D S(\text { on })} \times 1^{2}
$$

Next, sum the power dissipation and calculate the junction temperature:

$$
T_{J}=\left(\sum P_{D} \times R_{\theta J A}\right)+T_{A}, R_{\theta J A}=108^{\circ} \mathrm{C} / \mathrm{W}
$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

ESD protection

All TPS2211 inputs and outputs incorporate ESD-protection circuitry designed to withstand a $2-\mathrm{kV}$ human-bodymodel discharge as defined in MIL-STD-883C, Method 3015. The AVCC and AVPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

NOTE A. MOSFET switch S6 has a back-gate diode from the source to the drain. Unused switch inputs should never be grounded.
Figure 25. Internal Switching Matrix, TPS2211 control logic

APPLICATION INFORMATION

TPS2211 control logic

AVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
$\overline{\text { SHDN }}$	VPPD0	VPPD1	S4	S5	S6	AVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	AVCC \dagger
1	1	0	OPEN	OPEN	CLOSED	VPP $(12 \mathrm{~V})$
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

\dagger Output depends on AVCC

AVCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
$\overline{\text { SHDN }}$	$\overline{\mathrm{VCCD1}}$	$\overline{\mathbf{V C C D O}}$	$\mathbf{S 1}$	S2	$\mathbf{S 3}$	AVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	Hi-Z

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in ${ }^{2}$ of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.

The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the $12-\mathrm{V}$ output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

APPLICATION INFORMATION

NOTE A. The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.
Figure 26. TPS2211 with TPS6734 12-V, 120-mA Supply

TPS2212
 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS
 SLVS193-APRIL 1999

- Fully Integrated V_{cc} and V_{pp} Switching for Low Power Single-Slot PC Card™ Interface
- Low $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}$ (160-m $\Omega \mathrm{V}_{\mathrm{CC}}$ Switches)
- Low Current Limit, $450 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{cc}}\right)$ Typ
- 3.3-V Low-Voltage Mode
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short-Circuit and Thermal Protection
- Space-Saving 16-Pin SSOP (DB)
- Compatible With 3.3-V, 5-V, and 12-V PC Cards
- Break-Before-Make Switching
- Typical Applications Include: PCMCIA PC Card Sockets in PDAs, PBXs, Bar Code Scanners, Compact Flash and Smart Cards

description

The TPS2212 PC Card power-interface switch provides an integrated power-management solution for a single low power PC Card. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit, using the Texas Instruments LinBiCMOS ${ }^{\text {TM }}$ process. The circuit allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$, and/or $12-\mathrm{V}$ card power, and is compatible with many PCMCIA controllers. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability. Current-limit reporting can help the user isolate a system fault to the PC Card.

The TPS2212 features a $3.3-\mathrm{V}$ low-voltage mode that allows for $3.3-\mathrm{V}$ switching without the need for 5 V . Bias power can be derived from either the $3.3-\mathrm{V}$ or $5-\mathrm{V}$ inputs. This facilitates low-power system designs such as sleep mode and pager mode, where only 3.3 V is available.

End equipment for the TPS2212 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners. This device is well suited for those applications which need to limit the power provided to the PC card due to power supply constraints. In many applications, such as palm computers, the system cannot allocate more than 200 mA of current to a PC card slot. For these lower power applications, the TPS2212 provides the same advanced level of protection as the TPS2211 provides for higher power applications.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGED DEVICE
	SMALL OUTLINE (DB)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TPS2212IDBLE

The DB package is only available left-end taped and reeled (indicated by the LE suffix on the device type, e.g. TPS2212IDBLE).

PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association). LinBiCMOS is a trademark of Texas Instruments Incorporated.

TPS2212
SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH
FOR LOW POWER PC CARD SLOTS
SLVS193-APRIL 1999

typical PC-card power-distribution application

Terminal Functions

TERMINAL		I/O	DESCRIPTION
NAME	NO.		
3.3 V	3, 4	1	3.3-V V_{CC} input for card power and/or chip power if 5 V is not present
5 V	5,6	1	$5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ input for card power and/or chip power
VPPI	9	1	Main VPP input, typically 12 V , allows $3.3 \mathrm{~V}-12 \mathrm{~V}$.
VCC	11, 12, 13	0	Switched output that delivers $0 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$, or high impedance to card
VPP	10	0	Switched output that delivers $0 \mathrm{~V} 3.3-\mathrm{V}, 5-\mathrm{V}, \mathrm{VPPI}(12 \mathrm{~V})$, or high impedance to card
GND	7		Ground
$\overline{\mathrm{OC}}$	8	0	Logic-level overcurrent reporting output that goes low when an overcurrent conditions exists
SHDN	16	1	Logic input that shuts down the TPS2212 and sets all power outputs to high-impedance state
$\overline{\text { VCCD0 }}$	1	I	Logic input that controls voltage of VCC (see control-logic table)
VCCD1	2	1	Logic input that controls voltage of VCC (see control-logic table)
VPPD0	15	1	Logic input that controls voltage of VPP (see control-logic table)
VPPD1	14	I	Logic input that controls voltage of VPP (see control-logic table)

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

Input voltage range for card power:	$\begin{aligned} & V_{I(5 V)} \\ & V_{I(3.3 V)} \\ & V_{I(V P P I)} \end{aligned}$	-0.3 V to 7 V -0.3 V to 7 V -0.3 V to 14 V
Logic input voltage		-0.3 V to 7 V
Continuous total power dissipation . See Dissipation Rating Table		
$\left.\begin{array}{ll}\text { Output current (each card): } & \mathrm{IO}(\mathrm{VCO}\end{array}\right)$		internally limited
		internally limited
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds . 260		

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathbf{T}_{A}=70^{\circ} \mathrm{C}$ POWER RATING	TA $_{A}=85^{\circ} \mathrm{C}$ POWER RATING
DB	775 mW	$6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	496 mW	403 mW

These devices are mounted on an FR4 board with no special thermal considerations.
recommended operating conditions

		MIN	MAX	UNIT
Input voltage, V_{l}	$\mathrm{V}_{1(5 \mathrm{~V})}$	0	5.25	V
	$\mathrm{V}_{1}(3.3 \mathrm{~V})$	0	5.25	V
	V_{1} (VPPI)	0	13.5	V
Output Current	Io(VCC)		250	mA
	IO(VPP)		150	mA
Operating virtual junction temperature, T_{J}		-40	125	${ }^{\circ} \mathrm{C}$

SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH

 FOR LOW POWER PC CARD SLOTSSLVS193-APRIL 1999
electrical characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)
power switch

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.
logic section

PARAMETER	TEST CONDITIONSt	MIN MAX	UNIT
Logic input current		1	$\mu \mathrm{A}$
Logic input high level		2	V
Logic input low level		0.8	V
Logic output high level	$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}, \quad 1 \mathrm{O}=1 \mathrm{~mA}$	$\mathrm{V}_{1(5 \mathrm{~V})}-0.4$	V
	$\mathrm{V}_{1}(5 \mathrm{~V})=0 \mathrm{~V}, \quad 1 \mathrm{O}=1 \mathrm{~mA}, \quad \mathrm{~V}_{1}(3.3 \mathrm{~V})=3.3 \mathrm{~V}$	$\mathrm{V}_{1(3.3 V)}$-0.4	
Logic output low level	$1 \mathrm{O}=1 \mathrm{~mA}$	0.4	V

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

switching characteristics \ddagger

PARAMETER	TEST CONDITIONS§		MIN TYP	MAX	UNIT
Rise times, output	V_{O} (VCC)		2.8		ms
	V_{O} (VPP)		6.4		
Fall times, output	$\mathrm{V}_{\text {O(VCC) }}$		4.5		
	$\mathrm{V}_{\text {O(VPP) }}$		12		
$\mathrm{t}_{\mathrm{pd}} \quad$ Propagation delay (see Figure1)	$\mathrm{V}_{\text {I(VPPDO }}$ to $\mathrm{V}_{\text {O(VPP) }}$	ton	6.8		ms
		$t_{\text {off }}$	18		
	$\mathrm{V}_{\mathrm{I}} \overline{\mathrm{VCCD} 1)}$ to $\mathrm{V}_{\mathrm{O}(\mathrm{VCC})}(3.3 \mathrm{~V})$	ton	4		
		$\mathrm{t}_{\text {off }}$	17		
	$\left.\mathrm{V}_{1} \overline{\mathrm{VCCDO}}\right)$ to $\mathrm{V}_{\mathrm{O}(\mathrm{VCC})}(5 \mathrm{~V})$	$\mathrm{t}_{\text {on }}$	6.6		
		$t_{\text {off }}$	17		

[^5]§ Refer to Parameter Measurement Information

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

AVCC

LOAD CIRCUIT

Figure 1. Test Circuits and Voltage Waveforms

Table of Timing Diagrams

	FIGURE
VCC Propagation Delay and Rise Time With $1-\mu$ F Load, 3.3-V Switch	2
VCC Propagation Delay and Fall Time With $1-\mu$ F Load, 3.3-V Switch	3
VCC Propagation Delay and Rise Time With $150-\mu$ F Load, 3.3-V Switch	4
VCC Propagation Delay and Fall Time With $150-\mu$ F Load, 3.3-V Switch	5
VCC Propagation Delay and Rise Time With $1-\mu$ F Load, $5-\mathrm{V}$ Switch	6
VCC Propagation Delay and Fall Time With $1-\mu$ F Load, $5-V$ Switch	7
VCC Propagation Delay and Rise Time With $150-\mu$ F Load, $5-V$ Switch	8
VCC Propagation Delay and Fall Time With $150-\mu$ F Load, $5-V$ Switch	9
VPP Propagation Delay and Rise Time With $1-\mu$ F Load, $12-V$ Switch	10
VPP Propagation Delay and Fall Time With $1-\mu$ F Load, $12-V$ Switch	11
VPP Propagation Delay and Rise Time With $150-\mu$ F Load, $12-V$ Switch	12
VPP Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, $12-\mathrm{V}$ Switch	13

PARAMETER MEASUREMENT INFORMATION

Figure 2. VCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch

Figure 4. VCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $3.3-\mathrm{V}$ Switch

Figure 3. VCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch

Figure 5. VCC Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, $3.3-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 6. VCC Propagation Delay and Rise Time With 1- $\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

Figure 8. VCC Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

Figure 7. VCC Propagation Delay and Fall Time With $1-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

Figure 9. VCC Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, $5-\mathrm{V}$ Switch

PARAMETER MEASUREMENT INFORMATION

Figure 10. VPP Propagation Delay and Rise Time With 1- μ F Load, 12-V Switch

Figure 12. VPP Propagation Delay and Rise Time With $150-\mu \mathrm{F}$ Load, $12-\mathrm{V}$ Switch

Figure 11. VPP Propagation Delay and Fall Time With 1- μ F Load, 12-V Switch

Figure 13. VPP Propagation Delay and Fall Time With $150-\mu \mathrm{F}$ Load, 12-V Switch

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
${ }^{\text {ICC(5V) }}$	Supply current	vs Junction Temperature	14
ICC(3.3V)	Supply current	vs Junction Temperature	15
rDS(on)	Static drain-source on-state resistance, 5-V VCC switch	vs Junction Temperature	16
rDS(on)	Static drain-source on-state resistance, 3.3-V VCC switch	vs Junction Temperature	17
rDS(on)	Static drain-source on-state resistance, 12-V VPP switch	vs Junction Temperature	18
$\mathrm{V}_{\text {O(VCC) }}$	Output voltage, 5-V VCC switch	vs Output current	19
$\mathrm{V}_{\text {O}}$ (VCC)	Output voltage, 3.3-V VCC switch	vs Output current	20
$\mathrm{V}_{\text {O }}$ (VPP)	Output voltage, 12-V VPP switch	vs Output current	21
$\operatorname{los}(\mathrm{VCC})$	Short-circuit current, 5-V VCC switch	vs Junction Temperature	22
$\operatorname{los}(\mathrm{VCC})$	Short-circuit current, 3.3-V VCC switch	vs Junction Temperature	23
IOS(VPP)	Short-circuit current, 12-V VPP switch	vs Junction Temperature	24

TYPICAL CHARACTERISTICS

Figure 14

5-V VCC SWITCH
STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs
JUNCTION TEMPERATURE

Figure 16

SUPPLY CURRENT
vs JUNCTION TEMPERATURE

Figure 15
3.3-V VCC SWITCH

STATIC DRAIN-SOURCE ON-STATE RESISTANCE vs
JUNCTION TEMPERATURE

Figure 17

TYPICAL CHARACTERISTICS

Figure 18
3.3-V VCC SWITCH OUTPUT VOLTAGE VS OUTPUT CURRENT

Figure 20
5-v VCc SWITCH
OUTPUT VOLTAGE
vs OUTPUT CURRENT

Figure 19

12-V VPP SWITCH OUTPUT VOLTAGE vs
OUTPUT CURRENT

Figure 21

TYPICAL CHARACTERISTICS

Figure 22

Figure 23

12-V VPP SWITCH
SHORT-CIRCUIT CURRENT
VS
JUNCTION TEMPERATURE

Figure 24

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited on-board memory. The idea of add-in cards quickly took hold; modems, wireless LANs, GPS systems, multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association) was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the plug and playconcept, i.e. cards and hosts from different vendors should be compatible.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connectors. This power interface consists of two VCC, two VPP, and four ground terminals. Multiple VCC and ground terminals minimize connector-terminal and line resistance. The two VPP terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the VCC terminals; flash-memory programming and erase voltage is supplied through the VPP terminals.

designing for voltage regulation

The current PCMCIA specification for output voltage regulation of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In a typical PC power-system design, the power supply will have an output voltage regulation ($\mathrm{V}_{\mathrm{PS}}(\mathrm{reg})$) of $2 \%(100 \mathrm{mV})$. Also, a voltage drop from the power supply to the PC Card will result from resistive losses ($V_{\text {PCB }}$) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than $1 \%(50 \mathrm{mV})$ of the output voltage. Therefore the allowable voltage drop (V_{DS}) for the TPS2212 is the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$
V_{D S}=V_{\mathrm{O}(\mathrm{reg})}-V_{\mathrm{PS}(\mathrm{reg})}-\mathrm{V}_{\mathrm{PCB}}
$$

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2212. The voltage drop is the output current multiplied by the switch resistance of the TPS2212. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2212 divided by the output switch resistance.

$$
\mathrm{I}_{\mathrm{O}}^{\max }=\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{r}_{\mathrm{DS}(\mathrm{On})}}
$$

The VCC outputs deliver 250 mA continuous at 5 V and 3.3 V within regulation over the operating temperature range. Using the same equations, the PCMCIA specification for output voltage regulation of the 3.3 V output is 300 mV . Using the voltage drop percentages for power supply regulation (2\%) and PCB resistive loss (1\%), the allowable voltage drop for the 3.3 V switch is 200 mV . The 12-V outputs (VPP) of the TPS2212 can deliver 150 mA continuously.

APPLICATION INFORMATION

overcurrent and overtemperature protection

PC Cards are inherently subject to damage from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB trace damage. Even systems sufficiently robust to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in a sudden loss of system power. Most hosts include fuses for protection. The reliability of fused systems is poor and requires troubleshooting and repair, usually by the manufacturer, when fuses are blown.

The TPS2212 uses sense FETs to check for overcurrent conditions in each of the VCC and VPP outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The $\overline{\mathrm{OC}}$ indicator, normally a logic high, is a logic low when an overcurrent condition is detected providing for initiation of system diagnostics and/or sending a warning message to the user.

During power up, the TPS2212 controls the rise time of the VCC and VPP outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 5 A to 10 A may flow into the short before the current limiting of the TPS2212 engages. If the VCC or VPP outputs are driven below ground, the TPS2212 may latch nondestructively in an off state. Cycling power will reestablish normal operation.

Overcurrent limiting for the VCC outputs is designed to activate if powered up into a short in the range of 300 mA to 600 mA , typically at about 450 mA . The VPP outputs limit from 120 mA to 400 mA , typically around 280 mA . The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.

Thermal limiting prevents destruction of the IC from overheating if the package power dissipation ratings are exceeded. Thermal limiting disables power output until the device has cooled.

12-V supply not required

Most PC Card switches use the externally supplied 12 V to power gate drive and other chip functions, which requires that power be present at all times. The TPS2212 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the $5-\mathrm{V}$ input. Therefore, the external $12-\mathrm{V}$ supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the VPPi switch input when the VPPI input is not used. Additional power savings are realized by the TPS2212 during a software shutdown in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

3.3-V low-voltage mode

The TPS2212 will operate in a $3.3-\mathrm{V}$ low-voltage mode when 3.3 V is the only available input voltage $\left.\left(V_{1(5 V}\right)=0\right)$. This allows host and PC Cards to be operated in low-power 3.3-volts-only modes such as sleep or pager modes. Note that in these operation modes, the TPS2212 will derive its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card.

APPLICATION INFORMATION

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2212 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on 3.3-V compatible cards be discharged to below 0.8 V before applying $3.3-\mathrm{V}$ power. This functions as a power reset and ensures that sensitive 3.3-V circuitry is not subjected to any residual $5-\mathrm{V}$ charge. The TPS2212 offers a selectable VCC and VPP ground state, in accordance with PCMCIA $3.3-\mathrm{V} / 5-\mathrm{V}$ switching specifications.

output ground switches

PC Card specification requires that V_{CC} be discharged within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes.

power supply considerations

The TPS2212 has multiple pins for each of its $3.3-\mathrm{V}$ and $5-\mathrm{V}$ power inputs and for the switched VCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. It is recommended that all input and output power pins be paralleled for optimum operation.
To increase the noise immunity of the TPS2212, the power supply inputs should be bypassed with a $1-\mu \mathrm{F}$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a $0.1-\mu \mathrm{F}$, or larger, ceramic capacitor; doing so improves the immunity of the TPS2212 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2212 and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken below -0.3 V.

calculating junction temperature

The switch resistance, $r_{\text {DS(on) }}$, is dependent on the junction temperature, T_{J}, of the die and the current through the switch. To calculate T_{J}, first find $r_{D S}(o n)$ from Figures 16 through 18 using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
P_{D}=r_{D S(o n)} \times 1^{2}
$$

Next, sum the power dissipation and calculate the junction temperature:

$$
T_{J}=\left(\sum P_{D} \times R_{\theta J A}\right)+T_{A}, R_{\theta J A}=108^{\circ} \mathrm{C} / \mathrm{W}
$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

APPLICATION INFORMATION

ESD protection

All TPS2212 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-bodymodel discharge as defined in MIL-STD-883C, Method 3015. The VCC and VPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

NOTE A. MOSFET switch S 6 has a back-gate diode from the source to the drain. Unused switch inputs should never be grounded.
Figure 25. Internal Switching Matrix, TPS2212 Control Logic

APPLICATION INFORMATION

TPS2212 control logic
VPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
SHDN	VPPD0	VPPD1	S4	S5	S6	VPP
1	0	0	CLOSED	OPEN	OPEN	OV
1	0	1	OPEN	CLOSED	OPEN	VCC \dagger
1	1	0	OPEN	OPEN	CLOSED	VPPI
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	X	OPEN	OPEN	OPEN	Hi-Z

† Output depends on AVCC
VCC

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
$\overline{\text { SHDN }}$	$\overline{\mathbf{V C C D 1}}$	$\overline{\mathbf{V C C D O}}$	S1	S2	S3	VCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	X	X	OPEN	OPEN	OPEN	Hi-Z

SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH

 FOR LOW POWER PC CARD SLOTS
APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 26, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in ${ }^{2}$ of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.
The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a generall purpose I/O terminal on the PCMCIA controller or tied high.
Figure 26. TPS2212 with TPS6734 12-V, 120-mA Supply

- Fully Integrated xVCC and xVPP Switching
- xVPP Programmed Independent of xVCC
- 3.3-V, 5-V, and/or 12-V Power Distribution
- Low rids(on) ($60-\mathrm{m} \Omega \times \mathrm{xVCC}$ Switch Typical)
- Short Circuit and Thermal Protection
- 150- $\mu \mathrm{A}$ (Maximum) Quiescent Current
- Standby Mode: 50-mA Current Limit (Typ)
- 12-V Supply Can Be Disabled
- 3.3-V Low-Voltage Mode
- Meets PC Card™ Standards
- TTL-Logic Compatible Inputs
- Break-Before-Make Switching
- Internal Power-On Reset

description

DB PACKAGE
(TOP VIEW)

\dagger The TPS2214 is identical to the TPS2216 in all respects except packaging and pin assignments.
NC - No internal connection

The TPS2214 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit. This device allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$, and/or 12-V power to the card. The current-limiting feature eliminates the need for fuses. Current-limit reporting can help the user isolate a system fault.
The TPS2214 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for $5-\mathrm{V}$ power. This feature facilitates low-power system designs such as sleep modes where only 3.3 V is available. This device also has the ability to program the xVPP outputs independent of the xVCC outputs. A standby mode that changes all output-current limits to 50 mA (typical) has been incorporated.

End-equipment applications for the TPS2214 include: notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{J}}$	PACKAGED DEVICES \dagger
	PLASTIC SMALL OUTLINE (DB)
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	TPS2214DB(R)

\dagger The DB package is available in tubes and left-end taped and reeled. Add R suffix to device type (e.g., TPS2214DBR) for taped and reeled.

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH

 FOR SERIAL PCMCIA CONTROLLERSSLVS206A - JULY 1999
Terminal Functions

TERMINAL		1/0	DESCRIPTION
NAME	NO.		
3.3 V	13,14	1	3.3-V input for card power and/or chip power if 5 V is not present
5 V	1, 2, 24	1	$5-\mathrm{V}$ input for card power and/or chip power
12V	7, 20	1	$12-\mathrm{V} \mathrm{V}_{\mathrm{pp}}$ input card power
AVCC	9, 10	0	VCC output: 3.3-V, 5-V, GND or high impedance to card
AVPP	8	0	VPP output: $3.3-\mathrm{V}, 5-\mathrm{V}, 12-\mathrm{V}$, GND or high impedance to card
BVCC	17, 18	0	VCC output: 3.3-V, 5-V, GND or high impedance to card
BVPP	19	0	VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card
GND	11		Ground
MODE	22	1	TPS2206 operation when floating or pulled low; must be pulled high externally for TPS2214 operation. MODE is internally pulled low with a $150-\mathrm{k} \Omega$ pulldown resistor.
$\overline{\mathrm{OC}}$	15	0	Logic-level output that goes low when an overcurrent or overtemperature condition exists.
RESET	6	1	Logic-level reset input active high. Do not connect if $\overline{\text { RESET }}$ pin is used. RESET is internally pulled low with a $150-\mathrm{k} \Omega$ pulldown resistor.
$\overline{\text { RESET }}$	12	1	Logic-level reset input active low. Do not connect if RESET pin is used. The pin is internally pulled high with a $150-\mathrm{k} \Omega$ pullup resistor.
$\overline{\text { STBY }}$	16	1	Logic-level active low input sets the TPS2214 to standby mode and sets all current limits to 50 mA . The pin is internally pulled high with a $150-k \Omega$ pullup resistor.
CLOCK	4	1	Logic-level clock for serial data word
DATA	3	1	Logic-level serial data word
LATCH	5	1	Logic-level latch for serial data word
NC	21, 23		No internal connection

functional block diagram

\dagger Both 12 V pins must be connected together.

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH

FOR SERIAL PCMCIA CONTROLLERS

SLVS206A - JULY 1999

absolute maximum ratings over operating virtual free-air temperature (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
DB	890 mW	$8.90 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	489 mW	356 mW

\ddagger These devices are mounted on an JEDEC low-k board (2 oz. traces on surface), 1-W power applied.
recommended operating conditions

		MIN	MAX	UNIT
	$\mathrm{V}_{1(3.3 V)}$	2.7	5.25	V
Input voltage, V_{1}	$\mathrm{V}_{1(5 \mathrm{~V})}$	2.7	5.25	V
	$\mathrm{V}_{1(12 \mathrm{~V})}$	2.7	13.5	V
	${ }^{1} \mathrm{O}(\mathrm{VCC})$ at $\mathrm{T}_{A}=70^{\circ} \mathrm{C}$		1	A
ouput current, 10	${ }^{1} \mathrm{O}$ (VPP) at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		200	mA
Clock frequency			2.5	MHz
	Data	200		
Pulse duration	Latch	250		ns
	Clock	100		
Data hold time§		100		ns
Data setup time§		100		ns
Latch delay time§		100		ns
Clock delay time§		250		ns
Operating virtual ju	on temperature, T_{J}	-40	125	${ }^{\circ} \mathrm{C}$

§ Refer to Figures 2 and 3.
electrical characteristics, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{l}(5 \mathrm{~V})}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(3.3 \mathrm{~V})}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}(12 \mathrm{~V})}=12 \mathrm{~V}$, STBY floating, all $^{\text {STB }}$ outputs unloaded (unless otherwise noted)
power switch

PARAMETER				TEST CONDITIONS			MIN	TYP	MAX	UNIT		
Switch resistance \dagger		3.3 V to xVCC, with one switch on		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I} \mathrm{O}=1 \mathrm{~A}$			60	85	$\mathrm{m} \Omega$		
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$10=1 \mathrm{~A}$			90	120					
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{V}_{1(5 \mathrm{~V})}=0$,	$\mathrm{I}=1 \mathrm{~A}$		65	85					
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{1(5 \mathrm{~V})}=0$,	$1 \mathrm{O}=1 \mathrm{~A}$		90	130					
		5 V to xVCC , with one switch on		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{I}=1 \mathrm{~A}$			60	85			
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$10=1 A$			90	120					
		3.3 V to xVCC , with two switches on		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{l},=1 \mathrm{~A}$ each			65	105			
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\mathrm{l} \mathrm{O}=1 \mathrm{~A}$ each			95	140					
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{V}_{1(5 \mathrm{~V})}=0$,	$\mathrm{l} \mathrm{O}=1 \mathrm{~A}$ each		70	105					
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{1}(5 \mathrm{~V})=0$,	$\mathrm{l}=1 \mathrm{~A}$ each		100	140					
		5 V to xVCC , with two switches on		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{l}=1 \mathrm{~A}$ each			70	105			
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\mathrm{I}=1 \mathrm{~A}$ each			100	140					
		3.3 V/5 V/12 V to xVPP		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\mathrm{l}=50 \mathrm{~mA}$			0.7	1	Ω		
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$1 \mathrm{O}=50 \mathrm{~mA}$			1.4	2.5					
		3.3 V/5 V to xVCC		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\overline{\text { STBY }}=$ low,	$1 \mathrm{O}=30 \mathrm{~mA}$		1.4	2			
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\overline{\mathrm{STBY}}=$ low,	$\mathrm{I}=30 \mathrm{~mA}$		2	3					
		3.3 V/5 V/12 V to xVPP		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$,	$\overline{S T B Y}=$ low,	$\mathrm{I}=30 \mathrm{~mA}$		5	7			
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\overline{\text { STBY }}=$ low,	$10=30 \mathrm{~mA}$		10	16					
Clamp low voltage				$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		$1 \mathrm{O}(\mathrm{xVCC})$ at 10 mA , After reset				0.275	0.8	V
		$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		${ }^{1}(\underline{x V P P})^{\text {a }}$	10 mA , After re			0.275	0.8			
likg	Leakage current	IO(xVCC) High-impedance state		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				1	10	$\mu \mathrm{A}$		
				$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$				2	50			
		IO(xVPP) High-impedance state		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				1	10			
				$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$				2	50			
Ios	Short-circuit output current limit ${ }^{\dagger}$	$1 \mathrm{O}(\mathrm{xVCC})$		$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C}$, output powered into a short to GND			1		2.2	A		
		$\mathrm{l} \mathrm{O}_{(x V P P)}$					250		500	mA		
		Standby mode ${ }^{\circ} \mathrm{O}(\mathrm{xVCC})$		$\mathrm{T}_{\mathrm{J}}=85^{\circ} \mathrm{C},$ Output powered into a short to GND, $\overline{S T B Y}=0 \mathrm{~V}$			35	50	65	mA		
		Standby mode lo(xVPP)					30	50	60			
	Current limit response time \ddagger	xVCC switch		100-m Ω short circuit				100		$\mu \mathrm{s}$		
		xVPP switch						16				
	Input current§	Normal operation and in reset mode	H/3.3V)	$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}=\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})=5 \mathrm{~V}$				0.01	2	$\mu \mathrm{A}$		
			$\mathrm{I}_{1}(5 \mathrm{~V})$					100	120			
			I(12V)					6	10			
			II(3.3V)	$\begin{aligned} & V_{1(5 \mathrm{~V})=0,} \\ & V_{\mathrm{O}}(\mathrm{xVCC})=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{xVPP})}=12 \mathrm{~V} \end{aligned}$				100	120	$\mu \mathrm{A}$		
			$1 \mathrm{l}(5 \mathrm{~V})$					0				
			$l_{1(12 V)}$					22	30			
		Shutdown mode	I $1(3.3 \mathrm{~V}$)	$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}=\mathrm{Hi}-\mathrm{Z}, \quad \mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})=\mathrm{Hi}-\mathrm{Z}$					1	$\mu \mathrm{A}$		
			$1(5 \mathrm{~V})$						1			
			$l_{1}(12 \mathrm{~V})$						1			
	Thermal shutdown \ddagger	Trip point, T						155		${ }^{\circ} \mathrm{C}$		
		Hysteresis						10				

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature ($250-\mu \mathrm{s}$-wide pulse, less than 0.5% duty cycle); thermal effects must be taken into account separately.
\ddagger Specified by design, not tested in production.
§ Input currents do not include logic input currents (presented in electrical characteristics for logic section); clock is inactive.
NOTE: $\mathrm{V}_{\mathrm{I}(3.3 \mathrm{~V})}$ or $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}$ must be biased for switches to function.
logic section (CLOCK, DATA, LATCH, MODE, RESET, $\overline{\text { RESET, }} \overline{\text { STBY, }} \overline{\mathrm{OC}})$

PARAMETER		TEST	NDITIONS	MIN	TYP	MAX	UNIT
Logic input current	$\mathrm{l}_{(\text {(RESET) }}$ or II($\overline{\mathrm{RESET})}{ }^{\dagger}$	$\mathrm{V}_{1(\text { RESET })}=5$	$\left.\mathrm{V}_{1(\text { (RESET }}\right)=0 \mathrm{~V}$		30	50	$\mu \mathrm{A}$
		$V_{1(\text { RESET })}=0$	$\mathrm{V}_{1}(\overline{\text { RESET }})=5 \mathrm{~V}$			1	
	${ }^{1}(\text { MODE })^{\dagger}$	$V_{1(M O D E)}=5$			30	50	
		$V_{\text {(MODE }}=0$				1	
	$1 / \overline{\text { STBY }}{ }^{\dagger}$	$\mathrm{V}_{1(\overline{S T B Y}}(\underline{\text { S }}=5 \mathrm{~V}$				1	
		$\mathrm{V}_{1(\overline{S T B Y})}=0 \mathrm{~V}$			30	50	
						1	
Logic input high level		$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$		2			V
		$\mathrm{V}_{1(5 \mathrm{~V})}=0 \mathrm{~V}$		2			
Logic input low level						0.8	V
Logic output high level, $\overline{\mathrm{OC}}$		$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$,	$1 \mathrm{O}=1 \mathrm{~mA}$	$\mathrm{V}_{1(5 \mathrm{~V})}-0.4$			V
		$\mathrm{V}_{1(5 \mathrm{~V})}=0 \mathrm{~V}$,	$\mathrm{l}^{\prime}=1 \mathrm{~mA}$	$\mathrm{V}_{1(3.3 \mathrm{~V})}$-0.4			
Logic output low level, $\overline{\mathrm{OC}}$		$1 \mathrm{O}=1 \mathrm{~mA}$				0.4	V

\dagger RESET and MODE have internal $150-\mathrm{k} \Omega$ pulldown resistors; $\overline{\text { RESET }}$ and $\overline{\text { STBY }}$ have internal $150-\mathrm{k} \Omega$ pullup resistors.
switching characteristics

PARAMETER ${ }^{\text {t }}$	LOAD CONDITION \dagger	TEST CONDITIONS \dagger		MIN TYP	MAX	UNIT
$\mathrm{tr}_{\text {r }} \quad$ Output rise times \ddagger	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(\mathrm{xVCC})}=0.1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{L}(\mathrm{xVPP})}=0.1 \mu \mathrm{~F}, \\ & \mathrm{l}(\mathrm{xVCC})=0 \S, \\ & \mathrm{O}(\mathrm{xVPP})=0 \S \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}$		1		ms
		VO(xVPP)		0.8		
	$\begin{aligned} & C_{L(x V C C)}=150 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=10 \mu \mathrm{~F}, \\ & \mathrm{l}(\mathrm{xVCC})=1 \mathrm{~A}, \\ & \mathrm{lO}(\mathrm{xVPP})=50 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1.2		
		$\mathrm{V}_{\mathrm{O}(\mathrm{xVPP})}$		2.5		
tf Output fall times \ddagger	$\begin{aligned} & C_{L(x V C C)}=0.1 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=0.1 \mu \mathrm{~F}, \\ & \mathrm{l}(\mathrm{xVCC})=0 \S, \\ & \mathrm{O}(\mathrm{xVPP})=0 \S \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		0.01		ms
		$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$		0.01		
	$\begin{aligned} & C_{L(x V C C)}=150 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=10 \mu \mathrm{~F}, \\ & \mathrm{l}(\mathrm{xVCC})=1 \mathrm{~A}, \\ & \mathrm{l}(\mathrm{xVPP})=50 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		3		
		$\mathrm{V}_{\mathrm{O}(\mathrm{xVPP})}$		8		
$\mathrm{t}_{\text {pd }}$ Propagation delay \ddagger	$\begin{aligned} & C_{L(x V C C)}=0.1 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=0.1 \mu \mathrm{~F}, \\ & \mathrm{l}(\mathrm{xVCC})=0 \S, \\ & \mathrm{l}(x V P P)=0 \S \end{aligned}$	Latch \uparrow to xVPP (12 V)	tpd(on)	3		ms
			tpd(off)	25		
		Latch \uparrow to xVPP (5 V)	$\mathrm{t}_{\text {pd(on) }}$	0.6		
			tpd(off)	8.5		
		Latch \uparrow to $\mathrm{xVPP}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	tpd(on)	0.6		
			tpd(off)	9		
		Latch \uparrow to $\mathrm{xVPP}(3.3 \mathrm{~V})$,$V_{l(5 \mathrm{~V})}=0 \mathrm{~V}$	tpd(on)	1.4		
			tpd(off)	9		
		Latch \uparrow to $\mathrm{xVCC}(5 \mathrm{~V})$	tpd(on)	0.3		
			tpd(off)	15		
		Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	tpd(on)	0.2		
			tpd(off)	15		
		Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=0 \mathrm{~V}$	tpd(on)	0.4		
			tpd(off)	15		
	$\begin{aligned} & \mathrm{C}_{\mathrm{L}(\mathrm{xVCC})}=150 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{L}(\mathrm{xVPP})}=10 \mu \mathrm{~F}, \\ & \mathrm{lO}(\mathrm{xVCC})=1 \mathrm{~A}, \\ & \mathrm{l}(\mathrm{xVPP})=50 \mathrm{~mA} \end{aligned}$	Latch \uparrow to $\mathrm{xVPP}(12 \mathrm{~V})$	$t_{\text {pd(on) }}$	4.5		
			tpd(off)	13		
		Latch \uparrow to $\mathrm{xVPP}(5 \mathrm{~V})$	tpd(on)	3.3		
			tpd(off)	8		
		Latch \uparrow to $\mathrm{xVPP}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	tpd(on)	3		
			tpd(off)	9		
		Latch \uparrow to $\mathrm{xVPP}(3.3 \mathrm{~V})$,$V_{l(5 \mathrm{~V})}=0 \mathrm{~V}$	tpd(on)	3		
			tpd(off)	9		
		Latch \uparrow to $\mathrm{XVCC}(5 \mathrm{~V})$	$t_{\text {pd(on) }}$	1		
			$t_{\text {pd(off) }}$	12		
		Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\mathrm{t}_{\mathrm{pd}(\text { (on) }}$	0.6		
			tpd(off)	12		
		Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=0 \mathrm{~V}$	$t_{\text {pd(on) }}$	1		
			$t_{\text {pd(off }}$	12		

\dagger Refer to Parameter Measurement Information
\ddagger Specified by design: not tested in production.
§ No card inserted, assumes $0.1-\mu \mathrm{F}$ recommended output capacitor (see Figure 34).

PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D10, see the control logic table.
Figure 2. Serial-Interface Timing for Independent xVPP Switching When MODE $=5 \mathrm{~V}$ or 3.3 V

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D8, see the control logic table.

Figure 3. Serial-Interface Timing When MODE = 0 V or Floating

Table of Timing Diagrams \dagger

	FIGURE
Short-circuit current response, short applied to powered-on 5-V xVCC switch output	4
Short-circuit current response, short applied to powered-on 12-V xVPP switch output	5
$\overline{\mathrm{OC}}$ response with ramped load on 5-V xVCC switch output	6
$\overline{\mathrm{OC}}$ response with ramped load on 12-V xVPP switch output	7

\dagger Timing tests are conducted at free-air temperature, $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}, \mathrm{~V}_{1(3.3 \mathrm{~V})}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}(12 \mathrm{~V})}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ on each output, STBY floating.

PARAMETER MEASUREMENT INFORMATION

Figure 4. Short-Circuit Response, Short Applied to Powered-On 5-V xVCC-Switch Output

Figure 6. $\overline{\mathrm{OC}}$ Response With Ramped Load on 5-V xVCC-Switch Output

Figure 5. Short-Circuit Response, Short Applied to Powered-On 12-V xVPP-Switch Output

Figure 7. $\overline{\mathbf{O C}}$ Response With Ramped Load on 12-V xVPP-Switch Output

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
tpd(on)	Turnon propagation delay time, 3.3-V xVCC switch	vs Load capacitance	8
tpd(off)	Turnoff propagation delay time, 3.3-V \times VCC switch	vs Load capacitance	9
$t_{\text {pd(on) }}$	Turnon propagation delay time, $5-\mathrm{V} \times \mathrm{VCC}$ switch	vs Load capacitance	10
tpd(off)	Turnoff propagation delay time, $5-\mathrm{V} \times \mathrm{VCC}$ switch	vs Load capacitance	11
tpd(on)	Turnon propagation delay time, 12-V xVPP switch	vs Load capacitance	12
tpd(off)	Turnoff propagation delay time, 12-V xVPP switch	vs Load capacitance	13
t_{r}	Rise time, 3.3-V xVCC switch	vs Load capacitance	14
$\mathrm{t}_{\text {f }}$	Fall time, 3.3-V xVCC switch	vs Load capacitance	15
t_{r}	Rise time, $5-\mathrm{V} \times \mathrm{VCC}$ switch	vs Load capacitance	16
tf_{f}	Fall time, $5-\mathrm{V} \times \mathrm{VCC}$ switch	vs Load capacitance	17
t_{r}	Rise time, 12-V xVPP switch	vs Load capacitance	18
t_{f}	Fall time, 12-V xVPP switch	vs Load capacitance	19
1	Input current at $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})=\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})=3.3 \mathrm{~V}$	vs Junction temperature	20
	Input current at $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})=\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})=5 \mathrm{~V}$	vs Junction temperature	21
	Input current at $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{xVPP})}=12 \mathrm{~V}$	vs Junction temperature	22
rDS(on)	Static drain-source on-state resistance, 3.3-V $\times \mathrm{VCCC}$ switch $\left(\mathrm{V}_{1}(5 \mathrm{~V})=0\right)$	vs Junction temperature	23
	Static drain-source on-state resistance, 3.3-V xVCC switch	vs Junction temperature	24
	Static drain-source on-state resistance, $5-\mathrm{V} \times \mathrm{VCC}$ switch	vs Junction temperature	25
	Static drain-source on-state resistance, 12-V xVPP switch	vs Junction temperature	26
$\mathrm{V}_{\mathrm{IO}}(\mathrm{xVCC})$	dc input-to-output voltage (drop), 3.3-V xVCC switch ($\left.\mathrm{V}_{1(5 \mathrm{~V}}\right)=0$)	vs Load current	27
	dc input-to-output voltage (drop), 3.3-V xVCC switch	vs Load current	28
	dc input-to-output voltage (drop), $5-\mathrm{V} \times \mathrm{VCCC}$ switch	vs Load current	29
$\mathrm{V}_{\mathrm{IO}}(\mathrm{xVPP}$)	dc input-to-output voltage (drop), 12-V xVPP switch	vs Load current	30
Ios	Short-circuit current limit, 3.3-V xVCC switch	vs Junction temperature	31
	Short-circuit current limit, $5-\mathrm{V} \times \mathrm{VCC}$ switch	vs Junction temperature	32
	Short-circuit current limit, 12-V xVPP switch	vs Junction temperature	33

NOTE: Electrical characteristics tests are conducted at $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(3.3 \mathrm{~V})}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(12 \mathrm{~V})}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ on each output, STBY floating (unless otherwise noted on Figures).

TYPICAL CHARACTERISTICS

Figure 8
TURNON PROPAGATION DELAY TIME, 5-V xVCC SWITCH

Figure 10

TURNOFF PROPAGATION DELAY TIME, 3.3-V xVCC SWITCH

Figure 9
TURNOFF PROPAGATION DELAY TIME, $5-\mathrm{V}$ xVCC SWITCH

Figure 11

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

TURNOFF PROPAGATION DELAY TIME dc, 12-V xVPP SWITCH

Figure 13
FALL TIME, 3.3-V xVCC SWITCH

Figure 15

TYPICAL CHARACTERISTICS

Figure 16

RISE TIME, 12-V xVPP SWITCH
vs

Figure 18

FALL TIME, 5-V xVCC SWITCH

Figure 17
FALL TIME, 12-V xVPP SWITCH
VS
LOAD CAPACITANCE

Figure 19

TYPICAL CHARACTERISTICS

Figure 20

$$
\text { INPUT CURRENT AT } V_{\substack{(x V C C) \\ V S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}(\mathrm{xVPP})}=12 \mathrm{~V}
$$

JUNCTION TEMPERATURE

Figure 22

INPUT CURRENT AT $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}=\mathrm{V}_{\mathrm{O}(\mathrm{xVPP})}=5 \mathrm{~V}$ vs JUNCTION TEMPERATURE

Figure 21
STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 3.3-V xVCC SWITCH
vs
JUNCTION TEMPERATURE

Figure 23

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 3.3-V xVCC SWITCH vs JUNCTION TEMPERATURE

Figure 24
STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 12-V xVPP SWITCH
vs
JUNCTION TEMPERATURE

Figure 26

STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 5-V xVCC SWITCH vs JUNCTION TEMPERATURE

Figure 25
dc INPUT-TO-OUTPUT VOLTAGE (DROP), 3.3-V xVCC SWITCH vs LOAD CURRENT

Figure 27

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association), comprising members from leading computer, software, PC Card, and semiconductor manufacturers, was established. One key goal was to realize the plug-and-play concept. Cards and hosts from different vendors should be compatible or able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connector. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

APPLICATION INFORMATION

designing for voltage regulation

The current PCMCIA specification for output voltage regulation, $\mathrm{V}_{\mathrm{O}(\mathrm{reg})}$, of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In a typical PC power-system design, the power supply has an output-voltage regulation, $\mathrm{V}_{\mathrm{PS}}(\mathrm{reg})$, of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses, $V_{\text {PCB }}$, in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than $1 \%(50 \mathrm{mV})$ of the output voltage. Therefore, the allowable voltage drop, V_{DS}, for the TPS2214 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$
\left.V_{D S}=V_{O(r e g)}\right)^{-V_{P S(r e g)}}{ }^{-V_{P C B}}
$$

Typically, this would leave 100 mV for the allowable voltage drop across the $5-\mathrm{V}$ switch. The specification for output voltage regulation of the $3.3-\mathrm{V}$ output is 300 mV ; so, using the same equation by deducting the voltage drop percentages (2\%) for power-supply regulation and PCB resistive loss (1\%), the allowable voltage drop for the $3.3-\mathrm{V}$ switch is 200 mV . The voltage drop is the output current multiplied by the switch resistance of the TPS2214. Therefore, the maximum output current, IO max, that can be delivered to the PC Card in regulation is the allowable voltage drop across the IC, divided by the output-switch resistance.

$$
I_{\mathrm{O}}^{\max }=\frac{\mathrm{V}_{\mathrm{DS}}}{r_{\mathrm{DS}(\mathrm{on})}}
$$

The xVCC outputs can deliver 1 A continuously at 5 V and 3.3 V within regulation over the operating temperature range. The xVPP outputs of the IC can deliver 200 mA continuously.

overcurrent and overtemperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power-supply or PCB trace damage. Even systems robust enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.

The TPS2214 takes a two-pronged approach to overcurrent protection, which is designed to activate if an output is shorted or when an overcurrent condition is present when switches are powered up. First, instead of fuses, sense FETs monitor each of the xVCC and xVPP power outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. Excessive current generates an error signal that limits the output current of only the affected output, preventing damage to the host. Each xVCC output overcurrent limits from 1 A to 2.2 A, typically around 1.6 A; the xVPP outputs limit from 250 mA to 500 mA , typically around 375 mA .
Second, when an overcurrent condition is detected, the TPS2214 asserts an active low $\overline{O C}$ signal that can be monitored by the microprocessor or controller to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates. This shuts down all power outputs until the device cools to within a safe operating region, which is ensured by a thermal shutdown hysteresis.

APPLICATION INFORMATION

12-V supply not required

Many PC Card switches use the externally supplied 12 V to power gate drive and other chip functions; this requires that power be present at all times. The TPS2214 offers considerable power savings by using an internal charge pump to generate the required higher gate drive voltages from the $5-\mathrm{V}$ or $3.3-\mathrm{V}$ power supplies. Therefore, the external $12-\mathrm{V}$ supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Additional power savings are realized by the IC during shutdown mode, in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

3.3-V low-voltage mode

The TPS2214 will operate in 3.3-V low-voltage mode when 3.3 V is the only available input voltage $\left(\mathrm{V}_{1(5 \mathrm{~V})}=0\right.$, $\mathrm{V}_{\mathrm{I}(12 \mathrm{~V})}=0$). This feature allows host and PC Cards to be operated in low-power 3.3-V-only modes such as sleep modes. Note that in this operation mode, the IC will derive its bias current from the $3.3-\mathrm{V}$ input pin and can only provide 3.3 V to the outputs.

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2214 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on 3.3-V-compatible cards be discharged to below 0.8 V before applying $3.3-\mathrm{V}$ power. This action ensures that sensitive $3.3-\mathrm{V}$ circuitry is not subjected to any residual $5-\mathrm{V}$ charge and functions as a power reset. PC Card specification requires that V_{CC} be discharged within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. The TPS2214 includes discharge transistors on all xVCC and xVPP outputs to meet the specification requirement.

shutdown mode

In the shutdown mode, which can be controlled by bit D8 of the input serial DATA word, each of the xVCC and xVPP outputs is forced to a high-impedance state. In this mode, the chip quiescent current is limited to $1 \mu \mathrm{~A}$ or less to conserve battery power.

standby mode

The TPS2214 can be put in standby mode by pulling $\overline{\text { STBY }}$ low to conserve power during low-power operation. In this mode, all of the power outputs (x VCC and XVPP) will have a nominal current limit of 50 mA . STBY has an internal $150-\mathrm{k} \Omega$ pullup resistor. The output-switch status of the device must be set, allowing the output capacitors to charge, prior to enabling the standby mode. Changing the setting of the output switches with the device in standby mode may cause an overcurrent response to be generated.

mode

The mode pin programs the switches in either TPS2214 or TPS2206 mode. An internal 150-k $\mathbf{1}$ pulldown resistor is connected to the pin. Floating or pulling the mode pin low sets the switches in TPS2206 mode; pulling the mode pin high sets the switches in TPS2214 mode. In TPS2206 mode, xVPP outputs are dependent on xVCC outputs. In TPS2214 mode, xVPP is programmed independent of xVCC. Refer to TPS2214 control-logic tables for more information.

APPLICATION INFORMATION

power supply considerations

The TPS2214 has multiple pins for each of its $3.3-\mathrm{V}$ and $5-\mathrm{V}$ power inputs and for the switched xVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is higher than that specified, resulting in increased voltage drops and less power. It is recommended that all input and output power pins be paralleled for optimum operation. Because the two 12-V pins are not internally connected, they must be tied together externally.
To increase the noise immunity of the TPS2214, the power-supply inputs should be bypassed with a $1-\mu \mathrm{F}$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a $0.1-\mu \mathrm{F}$ (or larger) ceramic capacitor; doing so improves the immunity of the IC to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the IC and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken, or allowed to fall, below -0.3 V .

RESET and RESET inputs

To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at the same time as the host by applying low impedance paths from xVCC and xVPP terminals to ground. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The active-high RESET or active low RESET input will close internal switches $\mathrm{S} 1, \mathrm{~S} 4, \mathrm{~S} 7$, and S 11 with all other switches left open. The TPS2214 remains in the low-impedance output state until the signal is deasserted and further data is clocked in and latched. The input serial data can not be latched during Reset mode. RESET and RESET are provided for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The RESET pin has an internal 150-k Ω pulldown resistor and the $\overline{\text { RESET }}$ pin has an internal $150-\mathrm{k} \Omega$ pullup resistor. The device will be reset automatically when powered up.

calculating junction temperature

The switch resistance, $r_{\mathrm{DS}}(\mathrm{on})$, is dependent on the junction temperature, T_{J}, of the die. The junction temperature is dependent on both $r_{D S}(o n)$ and the current through the switch. To calculate T_{J}, first find $r_{D S}(o n)$ from Figures 23 through 26, using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
P_{D}=r_{D S(o n)} \times I^{2}
$$

Next, sum the power dissipation of all switches and calculate the junction temperature:

$$
\mathrm{T}_{\mathrm{J}}=\left(\sum \mathrm{P}_{\mathrm{D}} \times \mathrm{R}_{\theta \mathrm{JA}}\right)+\mathrm{T}_{\mathrm{A}}
$$

Where:
$R_{\theta J A}$ is the inverse of the derating factor given in the dissipation rating table.
Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic inputs and outputs

The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive edge of the clock (see Figures 2 and 3). The 11-bit (D0-D10) serial data word is loaded during the positive edge of the latch signal. The positive edge of the latch signal should occur before the next positive edge of the clock occurs.

APPLICATION INFORMATION

logic inputs and outputs (continued)

The TPS2214 serial interfaces are compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan Electronic Industry Development Association (JEIDA) standards.
An overcurrent output $(\overline{\mathrm{OC}})$ is provided to indicate an overcurrent or overtemperature condition in any of the xVCC and xVPP outputs as previously discussed.

TPS2214 control logic

TPS2214 mode (MODE pulled high)
xVPP

	AVPP CONTROL SIGNALS			OUTPUT V_AVPP	BVPP CONTROL SIGNALS				OUTPUT
D8 (SHDN)	D0	D1	D9		D8 (SHDN)	D4	D5	D10	V_BVPP
1	0	0	X	0 V	1	0	0	X	0 V
1	0	1	0	3.3 V	1	0	1	0	3.3 V
1	0	1	1	5 V	1	0	1	1	5 V
1	1	0	X	12 V	1	1	0	X	12 V
1	1	1	X	Hi-Z	1	1	1	X	Hi-Z
0	X	X	X	$\mathrm{Hi}-\mathrm{Z}$	0	X	X	X	Hi-Z

xVCC

	AVCC CONTROL SIGNALS		OUTPUT V_AVCC	BVCC CONTROL SIGNALS			OUTPUT V_BVCC
D8 (SHDN)	D3	D2		D8 ($\overline{\text { SHDN }}$)	D6	D7	
1	0	0	0 V	1	0	0	0 V
1	0	1	3.3 V	1	0	1	3.3 V
1	1	0	5 V	1	1	0	5 V
1	1	1	0 V	1	1	1	0 V
0	x	X	Hi-Z	0	X	X	Hi-Z

TPS2206 mode (MODE floating or pulled low)
xVPP

	AVPP CONTROL SIGNALS		OUTPUT V_AVPP	BVPP CONTROL SIGNALS			OUTPUT V_BVPP
D8 (SHDN)	D0	D1		D8 (SHDN)	D4	D5	
1	0	0	0 V	1	0	0	0 V
1	0	1	V_AVCC	1	0	1	V_BVCC
1	1	0	12 V	1	1	0	12 V
1	1	1	Hi-Z	1	1	1	Hi-Z
0	X	X	Hi-Z	0	X	X	Hi-Z

xVCC

	AVCC CONTROL SIGNALS		OUTPUT V_AVCC	BVCC CONTROL SIGNALS			OUTPUT V BVCC V_BVCC
D8 (SHDN)	D3	D2		D8 (SHDN)	D6	D7	
1	0	0	0 V	1	0	0	0 V
1	0	1	3.3 V	1	0	1	3.3 V
1	1	0	5 V	1	1	0	5 V
1	1	1	0 V	1	1	1	0 V
0	X	X	Hi-Z	0	X	X	$\mathrm{Hi}-\mathrm{Z}$

APPLICATION INFORMATION

ESD protections (see Figure 34)

All TPS2214 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-body-model discharge as defined in MIL-STD-883C, Method 3015. The xVCC and xVPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

\dagger Maximum recommended output capacitance for XVCC is $220 \mu \mathrm{~F}$ and for XVPP is $10 \mu \mathrm{~F}$ without $\overline{\mathrm{OC}}$ glitch when switches are powered on.
Figure 34. Detailed Interconnections and Capacitor Recommendations

APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V . The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 35, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than $0.7 \mathrm{in}^{2}$ of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.
The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the $12-\mathrm{V}$ output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.
Figure 35. TPS2214 with TPS6734 12-V, 120-mA Supply

- Fully Integrated xVCC and xVPP Switching
- xVPP Programmed Independent of xVCC
- 3.3-V, 5-V, and/or 12-V Power Distribution
- Low rids(on) (60-m Ω xVCC Switch Typical)
- Short Circuit and Thermal Protection
- 150- $\mu \mathrm{A}$ (maximum) Quiescent Current
- Standby Mode: 50-mA Current Limit (Typ)
- 12-V Supply Can Be Disabled
- 3.3-V Low-Voltage Mode
- Meets PC Card ${ }^{\text {TM }}$ Standards
- TTL-Logic Compatible Inputs
- Available in 30-Pin SSOP (DB) and 32-Pin TSSOP (DAP) Packages
- Break-Before-Make Switching
- Internal Power-On Reset

description

The TPS2216 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit. This device allows the distribution of $3.3-\mathrm{V}, 5-\mathrm{V}$, and/ or 12-V power to the card. The current-limiting feature eliminates the need for fuses. Currentlimit reporting can help the user isolate a system fault.
The TPS2216 features a 3.3-V low-voltage mode that allows for $3.3-\mathrm{V}$ switching without the need for $5-\mathrm{V}$ power. This feature facilitates low-power system designs such as sleep modes where only 3.3 V is available. This device also has the ability to program the xVPP outputs independent of the xVCC outputs. A standby mode that changes all output-current limits to 50 mA (typical) has been incorporated.

DAP PACKAGET
(TOP VIEW)

$5 \mathrm{~V} \square$	10	32	\square	5 V
$5 \mathrm{~V} \square$	2	31	1	NC
NC \square	3	30	1	MODE
DATA \square	4	29	1	NC
CLOCK \square	5	28	1	NC
LATCH	6	27	1	NC
RESET	7	26	1	NC
$12 \mathrm{~V} \square$	8	25	1	12 V
AVPP \square	9	24	1	BVPP
AVCC \square	10	23	\square	BVCC
AVCC \square	11	22	\square	BVCC
AVCC \square	12	21	\square	BVCC
GND \square	13	20	1	OC
RESET -	14	19	1	STBY
NC \square	15	18	T	3.3 V
$3.3 \mathrm{~V} \square$	16	17	1	3.3 V

dB PACKAGE \dagger (TOP VIEW)

5 V -	10	30	$\square 5 \mathrm{~V}$
5 V ■	2	29	\square MODE
DATA \square	3	28	1 NC
CLOCK \square	4	27	$\square \mathrm{NC}$
LATCH	5	26	1 NC
RESET \square	6	25	1 NC
12 V	7	24	1 T V
AVPP 민	8	23	\square BVPP
AVCC \square	9	22	\square BVCC
AVCC \square	10	21	1 BVCC
AVCC \square	${ }^{11}$	20	\square BVCC
GND \square	12	19	$\square \mathrm{STBY}$
NC	13	18	$\square \overline{O C}$
RESET	14	17	$\square 3.3 \mathrm{~V}$
$3.3 \mathrm{~V} \square$	15	16	$\square 3.3 \mathrm{~V}$

†The TPS2216 is identical to the TPS2214 in all respects except packaging and pin assignments.
NC - No internal connection

End-equipment applications for the TPS2216 include: notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.
The TPS2216 is backward-compatible with the TPS2202A and TPS2206.

AVAILABLE OPTIONS		
TJ 4	PACKAGED DEVICES \dagger	
	PLASTIC SMALL OUTLINE (DB)	PowerPAD PLASTIC SMALL OUTLINE ${ }^{\text {M }}$ (DAP)
	TPS2216DB(R)	TPS2216DAP(R)

\dagger The DB and DAP packages are available in tubes and left-end taped and reeled. Add R suffix to device type (e.g., TPS2216DBR) for taped and reeled.

Terminal Functions

TERMINAL			1/0	DESCRIPTION
NAME	NO.			
	DB	DAP		
3.3V	15, 16, 17	16, 17, 18	1	3.3-V input for card power and/or chip power if 5 V is not present
5 V	1, 2, 30	1, 2, 32	1	5-V input for card power and/or chip power
12V	7, 24	8,25	1	$12-\mathrm{V} \mathrm{V}_{\text {pp }}$ input card power
AVCC	9, 10, 11	10, 11, 12	0	VCC output: 3.3-V, 5-V, GND or high impedance to card
AVPP	8	9	0	VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card
BVCC	20,21, 22	21, 22, 23	0	VCC output: $3.3-\mathrm{V}, 5-\mathrm{V}, \mathrm{GND}$ or high impedance to card
BVPP	23	24	0	VPP output: $3.3-\mathrm{V}, 5-\mathrm{V}, 12-\mathrm{V}, \mathrm{GND}$ or high impedance to card
GND	12	13		Ground
MODE	29	30	1	TPS2206 operation when floating or pulled low; must be pulled high externally for TPS2216 operation. MODE is internally pulled low with a $150-\mathrm{k} \Omega$ pulldown resistor.
$\overline{\mathrm{OC}}$	18	20	0	Logic-level output that goes low when an overcurrent or overtemperature condition exists.
RESET	6	7	1	Logic-level reset input active high. Do not connect if $\overline{\text { RESET pin is used. RESET is internally }}$ pulled low with a $150-\mathrm{k} \Omega$ pulldown resistor.
$\overline{\text { RESET }}$	14	14	1	Logic-level reset input active low. Do not connect if RESET pin is used. The pin is internally pulled high with a $150-\mathrm{k} \Omega$ pullup resistor.
$\overline{\text { STBY }}$	19	19	i	Logic-ievel active iow input sets the TPS2216 io standiby mode and sets ail current iimits to 50 mA . The pin is internally pulled high with a $150-\mathrm{k} \Omega$ pullup resistor.
CLOCK	4	5	1	Logic-level clock for serial data word
DATA	3	4	1	Logic-level serial data word
LATCH	5	6	1	Logic-level latch for serial data word
NC	$\begin{gathered} 13,25,26, \\ 27,28 \end{gathered}$	$\begin{gathered} \hline 3,15,26, \\ 27,28,29, \\ 31 \end{gathered}$		No internal connection

[^6]functional block diagram (pin numbers refer to DB package)

\dagger Both 12 V pins must be connected together.

SLVS179C - MARCH 1999 - REVISED JULY 1999

absolute maximum ratings over operating virtual free-air temperature (unless otherwise noted) $\boldsymbol{\dagger}$

Input voltage range for card power:	$V_{1(3.3 V)}$ $V_{1(5 \mathrm{~V})}$ $V_{I(12 V)}$	$\begin{array}{r} -0.3 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ -0.3 \mathrm{~V} \text { to } 6 \mathrm{~V} \\ -0.3 \mathrm{~V} \text { to } 14 \mathrm{~V} \end{array}$
Logic input voltage . - 0.3 l V to 6 V		
Output voltage range: $\mathrm{V}_{\mathrm{O}(\mathrm{xVCC})}$		-0.3 V to 6 V
$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$		-0.3 V to 14 V
Continuous total power dissipation		See Dissipation Rating Table
O (xVPP)		Internally limited
Lead temperature 1,6 mm (1/16 inch)) from case for 10 seconds	$260^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR \ddagger ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING
DB	1095 mW	$10.99 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	602 mW	438 mW
DAP	4255 mW	$42.55 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	2340 mW	1702 mW

\ddagger These devices are mounted on an JEDEC low-k board (2 oz. traces on surface), 1-W power applied.

recommended operating conditions

		MIN	MAX	UNIT
	$\mathrm{V}_{1(3.3 V)}$	2.7	5.25	V
Input voltage, $\mathrm{V}_{\mathbf{l}}$	$\mathrm{V}_{1(5 \mathrm{~V})}$	2.7	5.25	V
	$V_{1(12 V)}$	2.7	13.5	V
Output current,	1 O (VCC) at $\mathrm{T}_{A}=70^{\circ} \mathrm{C}$		1	A
	$10(V P P)$ at $T_{A}=70^{\circ} \mathrm{C}$		200	mA
Clock frequency			2.5	MHz
	Data	200		
Pulse duration	Latch	250		ns
	Clock	100		
Data hold time§		100		ns
Data setup time§		100		ns
Latch delay time§		100		ns
Clock delay time§		250		ns
Operating virtual jun	on temperature, T_{J}	-40	125	${ }^{\circ} \mathrm{C}$

§ Refer to Figures 2 and 3.
electrical characteristics, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(3.3 \mathrm{~V})}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}(12 \mathrm{~V})}=12 \mathrm{~V}$, $\overline{\text { STBY }}^{\text {floating, all }}$ outputs unloaded (unless otherwise noted)
power switch

\dagger Pulse-testing techniques maintain junction temperature close to ambient temperature ($250-\mu s$-wide pulse, less than 0.5% duty cycle); thermal effects must be taken into account separately.
\ddagger Specified by design, not tested in production.
§ Input currents do not include logic input currents (presented in electrical characteristics for logic section); clock is inactive.
NOTE: $\mathrm{V}_{1(3.3 \mathrm{~V})}$ or $\mathrm{V}_{\mathrm{I}(5 \mathrm{~V})}$ must be biased for switches to function.

TPS2216

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH

FOR SERIAL PCMCIA CONTROLLERS

SLVS179C - MARCH 1999 - REVISED JULY 1999

logic section (CLOCK, DATA, LATCH, MODE, RESET, $\overline{\text { RESET, }} \overline{\text { STBY, }} \overline{\mathrm{OC}})$

PARAMETER		TES	NDITIONS	MIN	TYP	MAX	UNIT
Logic input current	$\mathrm{I}_{(\text {RESET })}$ or II($\overline{\text { RESET }}{ }^{\dagger}$	$\mathrm{V}_{1(\text { RESET }}=$	$\mathrm{V}_{1}($ RESET $)=0 \mathrm{~V}$		30	50	$\mu \mathrm{A}$
		$\mathrm{V}_{1(\text { RESET })}=$	$\mathrm{V}_{\text {(}}$ (RESET) $=5 \mathrm{~V}$			1	
	${ }^{1}(\mathrm{MODE})^{\dagger}$	$\mathrm{V}_{1}(\mathrm{MODE})=5 \mathrm{~V}$			30	50	
		$\mathrm{V}_{1}(\mathrm{MODE})=0$				1	
	$11(\overline{S T B Y})^{\dagger}$	$\mathrm{V}_{1}(\overline{\text { STBY }}$) $=5$				1	
		$\mathrm{V}_{1}(\overline{\text { STBY }}$) $=0$			30	50	
	${ }_{1}\left(\right.$ CLOCK) or ${ }_{1}(\mathrm{DATA})$ or $\mathrm{l}_{(\text {(LATCH) }}$					1	
Logic input high level		$\mathrm{V}_{1(5 \mathrm{~V})}=5 \mathrm{~V}$		2			V
		$\mathrm{V}_{1}(5 \mathrm{~V})=0 \mathrm{~V}$		2			
Logic input low level						0.8	V
Logic output high level, $\overline{\mathrm{OC}}$		$\mathrm{V}_{1}(5 \mathrm{~V})=5 \mathrm{~V}$,	$10=1 \mathrm{~mA}$	$\mathrm{V}_{1(5 \mathrm{~V})}-0.4$			V
		$\mathrm{V}_{1}(5 \mathrm{~V})=0 \mathrm{~V}$,	$1 \mathrm{O}=1 \mathrm{~mA}$	$\mathrm{V}_{1(3.3 \mathrm{~V})^{-0.4}}$			
Logic output low level, $\overline{\mathrm{OC}}$		$10=1 \mathrm{~mA}$				0.4	V

\dagger RESET and MODE have internal 150-k Ω pulldown resistors; $\overline{\text { RESET }}$ and $\overline{\text { STBY }}$ have internal $150-\mathrm{k} \Omega$ pullup resistors.
switching characteristics

	PARAMETER \dagger	LOAD CONDITION \dagger	TEST CONDITIONSt		MIN TYP	MAX	UNIT
tr_{r}	Output rise times \ddagger	$\begin{aligned} & C_{L}(x V C C)=0.1 \mu \mathrm{~F}, \\ & C_{1} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1		ms
		$\begin{aligned} & \mathrm{O}(x \vee C C)=0 \S, \\ & \mathrm{O}(\mathrm{x} V P \mathrm{P})=0 \S \end{aligned}$	V_{O} (xVPP)		0.8		
		$\begin{aligned} & C_{L(x V C C)}=150 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=10 \mu \mathrm{~F}, \\ & l_{(x V C C)}=1 \mathrm{~A}, \\ & \mathrm{lO}(\mathrm{xVPP})=50 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		1.2		
			$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP}$)		2.5		
tf_{f}	Output fall times \ddagger	$\begin{aligned} & C_{L(x V C C)}=0.1 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=0.1 \mu \mathrm{~F}, \\ & \mathrm{l}_{\mathrm{L}}(x V C C)=0 \S, \\ & \mathrm{l}(x V P P)=0 \S \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		0.01		ms
			V_{O} (xVPP)		0.01		
		$\begin{aligned} & C_{L(x V C C)}=150 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=10 \mu \mathrm{~F}, \\ & \mathrm{O}(x V C C)=1 \mathrm{~A}, \\ & \mathrm{O}(x V P P)=50 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})$		3		
			$\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})$		8		
${ }^{\text {tpd }}$	Propagation delay \ddagger	$\begin{aligned} & C_{L(x V C C)}=0.1 \mu \mathrm{~F}, \\ & C_{L(x V P P)}=0.1 \mu \mathrm{~F}, \\ & \mathrm{l}(x V C C)=0 \$, \\ & \mathrm{l}(x V P P)=0 \S \end{aligned}$	Latch \uparrow to $\mathrm{xVPP}(12 \mathrm{~V})$	tpd(on)	3		ms
				tpd(off)	25		
			Latch \uparrow to $\mathrm{xVPP}(5 \mathrm{~V})$	tpd(on)	0.6		
				tpd(off)	8.5		
			Latch \uparrow to $\mathrm{xVPP}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	tpd(on)	0.6		
				tpd(off)	9		
			Latch \uparrow to $\mathrm{XVPP}(3.3 \mathrm{~V})$,$v_{1(5 \mathrm{~V})}=0 \mathrm{~V}$	tpd(on)	1.4		
				$\mathrm{t}_{\text {pd(off) }}$	9		
			Latch \uparrow to $\mathrm{xVCC}(5 \mathrm{~V})$	${ }^{\text {tpd}}$ (on)	0.3		
				tpd(off)	15		
			Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	tpd(on)	0.2		
				$t_{\text {pd(off) }}$	15		
			Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=0 \mathrm{~V}$	${ }^{\text {tpd(on) }}$	0.4		
				tpd(off)	15		
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}(\mathrm{xVCC})}=150 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{L}(\mathrm{xVPP})}=10 \mu \mathrm{~F}, \\ & \mathrm{l}(\mathrm{xVCC})=1 \mathrm{~A}, \\ & \mathrm{O}(\mathrm{xVPP})=50 \mathrm{~mA} \end{aligned}$	Latch \uparrow to xVPP (12 V)	$t_{\text {pd(on) }}$	4.5		
				$t_{\text {pd(off }}$	13		
			Latch \uparrow to $\mathrm{xVPP}(5 \mathrm{~V})$	tpd(on)	3.3		
				$t_{\text {pd(off }}$	8		
			Latch \uparrow to $\mathrm{XVPP}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$t_{\text {pd }}$ (on)	3		
				$\mathrm{t}_{\text {pd(off) }}$	9		
			Latch \uparrow to $\mathrm{xVPP}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=0 \mathrm{~V}$	$t_{\text {pd }}$ (on)	3		
				$\mathrm{t}_{\mathrm{pd} \text { (off) }}$	9		
			Latch \uparrow to $\mathrm{xVCC}(5 \mathrm{~V})$	${ }^{\text {tpd(on) }}$	1		
				$t_{\text {pd(off }}$	12		
			Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=5 \mathrm{~V}$	$\mathrm{t}_{\text {pd(on) }}$	0.6		
				$t_{\text {pd(off }}$	12		
			Latch \uparrow to $\mathrm{xVCC}(3.3 \mathrm{~V})$,$V_{1(5 \mathrm{~V})}=0 \mathrm{~V}$	${ }^{\text {tpd}}$ (on)	1		
				$t_{\text {pd(off }}$	12		

\dagger Refer to Parameter Measurement Information
\ddagger Specified by design: not tested in production.
§ No card inserted, assumes $0.1-\mu \mathrm{F}$ recommended output capacitor (see Figure 34).

PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D10, see the control logic table.
Figure 2. Serial-Interface Timing for Independent xVPP Switching When MODE $=5 \mathrm{~V}$ or 3.3 V

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D8, see the control logic table.

Figure 3. Serial-Interface Timing When MODE = 0 V or Floating

Table of Timing Diagrams \dagger

	FIGURE
Short-circuit current response, short applied to powered-on 5-V xVCC switch output	4
Short-circuit current response, short applied to powered-on 12-V xVPP switch output	5
$\overline{O C}$ response with ramped load on 5-V xVCC switch output	6
$\overline{O C}$ response with ramped load on 12-V xVPP switch output	7

\dagger Timing tests are conducted at free-air temperature, $\mathrm{V}_{\mathrm{I}}(5 \mathrm{~V})=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}(12 \mathrm{~V})=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ on each output, $\overline{\mathrm{S} T B Y}$ floating.

PARAMETER MEASUREMENT INFORMATION

Figure 4. Short-Circuit Response, Short Applied to Powered-on 5-V xVCC-Switch Output

Figure 6. $\overline{O C}$ Response With Ramped Load on 5-V xVCC-Switch Output

Figure 5. Short-Circuit Response, Short Applied to Powered-on 12-V xVPP-Switch Output

Figure 7. $\overline{\mathrm{OC}}$ Response With Ramped Load on 12-V xVPP-Switch Output

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
tpd(on)	Turnon propagation delay time, 3.3-V xVCC switch	vs Load capacitance	8
tpd(off)	Turnoff propagation delay time, 3.3-V xVCC switch	vs Load capacitance	9
tpd(on)	Turnon propagation delay time, $5-\mathrm{V} \times \mathrm{VCC}$ switch	vs Load capacitance	10
tpd(off)	Turnoff propagation delay time, 5-V xVCC switch	vs Load capacitance	11
tpd(on)	Turnon propagation delay time, $12-\mathrm{V} \times \mathrm{VPP}$ switch	vs Load capacitance	12
$t_{\text {pd(off) }}$	Turnoff propagation delay time, 12-V xVPP switch	vs Load capacitance	13
tr_{r}	Rise time, 3.3-V xVCC switch	vs Load capacitance	14
$t_{\text {f }}$	Fall time, 3.3-V xVCC switch	vs Load capacitance	15
t_{r}	Rise time, $5-\mathrm{V} \times \mathrm{xCCC}$ switch	vs Load capacitance	16
t_{f}	Fall time, 5-V xVCC switch	vs Load capacitance	17
tr_{r}	Rise time, 12-V xVPP switch	vs Load capacitance	18
t_{f}	Fall time, $12-\mathrm{V} \times \mathrm{VPP}$ switch	vs Load capacitance	19
11	Input current at $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})=\mathrm{V}_{\mathrm{O}}(\mathrm{xVPP})=3.3 \mathrm{~V}$	vs Junction temperature	20
	Input current at $\mathrm{V}_{\mathrm{O}}(x \mathrm{VCC})=\mathrm{V}_{\mathrm{O}}(x \vee P P)=5 \mathrm{~V}$	vs Junction temperature	21
	Input current at $\mathrm{V}_{\mathrm{O}}(\mathrm{xVCC})=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}(\mathrm{xVPP})=12 \mathrm{~V}$	vs Junction temperature	22
rDS(on)		vs Junction temperature	23
	Static drain-source on-state resistance, 3.3-V xVCC switch	vs Junction temperature	24
	Static drain-source on-state resistance, 5-V xVCC switch	vs Junction temperature	25
	Static drain-source on-state resistance, 12-V xVPP switch	vs Junction temperature	26
$\mathrm{V}_{\mathrm{IO}}(x \mathrm{VCC})$		vs Load current	27
	DC input-to-output voltage (drop), 3.3-V xVCC switch	vs Load current	28
	DC input-to-output voltage (drop), 5-V xVCC switch	vs Load current	29
$\mathrm{V}_{10}(x \mathrm{VPP})$	DC input-to-output voltage (drop), 12-V xVPP switch	vs Load current	30
'OS	Short-circuit current limit, 3.3-V xVCC switch	vs Junction temperature	31
	Short-circuit current limit, 5-V xVCC switch	vs Junction temperature	32
	Short-circuit current limit, 12-V xVPP switch	vs Junction temperature	33

NOTE: Electrical characteristics tests are conducted at $\mathrm{V}_{\mathrm{l}}(5 \mathrm{~V})=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}}(12 \mathrm{~V})=12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$ on each output, $\overline{\text { STBY floating }}$ (unless otherwise noted on Figures).

TYPICAL CHARACTERISTICS

Figure 8
TURNON PROPAGATION DELAY TIME, 5-V xVCC SWITCH

Figure 10

Figure 9

TURNOFF PROPAGATION DELAY TIME, 5-V xVCC SWITCH

Figure 11

TYPICAL CHARACTERISTICS

Figure 12
RISE TIME, 3.3-V xVCC SWITCH LOAD CAPACITANCE

Figure 14

TURNOFF PROPAGATION DELAY TIME dc, 12-V xVPP SWITCH

Figure 13
FALL TIME, 3.3-V xVCC SWITCH LOAD CAPACITANCE

Figure 15

TYPICAL CHARACTERISTICS

Figure 16

Figure 18

FALL TIME, 5-V xVCC SWITCH
VS
LOAD CAPACITANCE

Figure 17
FALL TIME, 12-V xVPP SWITCH LOAD CAPACITANCE

Figure 19

TYPICAL CHARACTERISTICS

Figure 20

INPUT CURRENT AT $V_{1(x V C C)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{l}(\mathrm{xVPP})}=12 \mathrm{~V}$ vs
JUNCTION TEMPERATURE

Figure 22

INPUT CURRENT AT $V_{1(x V C C)}=V_{1(x V P P)}=5 \mathrm{~V}$ vs
JUNCTION TEMPERATURE

Figure 21
STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 3.3-V xVCC SWITCH
vs

Figure 23

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 3.3-V xVCC SWITCH
vs
JUNCTION TEMPERATURE

Figure 24

STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 12-V xVPP SWITCH
vs
JUNCTION TEMPERATURE

Figure 26

STATIC DRAIN-SOURCE ON-STATE RESISTANCE, 5-V xVCC SWITCH vs JUNCTION TEMPERATURE

Figure 25

DC INPUT-TO-OUTPUT VOLTAGE (DROP), 3.3-V xVCC SWITCH
vs
LOAD CURRENT

Figure 27

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association), comprising members from leading computer, software, PC Card, and semiconductor manufacturers, was established. One key goal was to realize the plug-and-play concept. Cards and hosts from different vendors should be compatible or able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connector. This power interface consists of two V_{cc}, two V_{pp}, and four ground terminals. Multiple $V_{C C}$ and ground terminals minimize connector terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

APPLICATION INFORMATION

designing for voltage regulation

The current PCMCIA specification for output voltage regulation, $\mathrm{V}_{\mathrm{O}(\text { reg })}$, of the $5-\mathrm{V}$ output is $5 \%(250 \mathrm{mV})$. In a typical PC power-system design, the power supply has an output-voltage regulation, $\mathrm{V}_{\mathrm{PS}}($ reg $)$, of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses, $\mathrm{V}_{\text {PCB }}$, in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than $1 \%(50 \mathrm{mV})$ of the output voltage. Therefore, the allowable voltage drop, V_{DS}, for the TPS2216 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$
\left.V_{D S}=V_{O(r e g)}\right)^{-V_{P S(r e g)}}{ }^{-V_{P C B}}
$$

Typically, this would leave 100 mV for the allowable voltage drop across the $5-\mathrm{V}$ switch. The specification for output voltage regulation of the $3.3-\mathrm{V}$ output is 300 mV ; so, using the same equation by deducting the voltage drop percentages (2%) for power-supply regulation and PCB resistive loss (1%), the allowable voltage drop for the $3.3-\mathrm{V}$ switch is 200 mV . The voltage drop is the output current multiplied by the switch resistance of the TPS2216. Therefore, the maximum output current, Io max, that can be delivered to the PC Card in regulation is the allowable voltage drop across the IC, divided by the output-switch resistance.

$$
\mathrm{I}_{\mathrm{O}} \max =\frac{\mathrm{V}_{\mathrm{DS}}}{\mathrm{r}_{\mathrm{DS}}(\mathrm{on})}
$$

The xVCC outputs can deliver 1 A continuously at 5 V and 3.3 V within regulation over the operating temperature range. The xVPP outputs of the IC can deliver 200 mA continuously.

overcurrent and overtemperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power-supply or PCB trace damage. Even systems robust enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.

The TPS2216 takes a two-pronged approach to overcurrent protection, which is designed to activate if an output is shorted or when an overcurrent condition is present when switches are powered up. First, instead of fuses, sense FETs monitor each of the xVCC and xVPP power outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. Excessive current generates an error signal that limits the output current of only the affected output, preventing damage to the host. Each xVCC output overcurrent limits from 1 A to 2.2 A, typically around 1.6 A; the xVPP outputs limit from 250 mA to 500 mA , typically around 375 mA .
Second, when an overcurrent condition is detected, the TPS2216 asserts an active low $\overline{O C}$ signal that can be monitored by the microprocessor or controller to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates. This shuts down all power outputs until the device cools to within a safe operating region, which is ensured by a thermal shutdown hysteresis.

APPLICATION INFORMATION

12-V supply not required

Many PC Card switches use the externally supplied 12 V to power gate drive and other chip functions; this requires that power be present at all times. The TPS2216 offers considerable power savings by using an internal charge pump to generate the required higher gate drive voltages from the $5-\mathrm{V}$ or $3.3-\mathrm{V}$ power supplies. Therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Additional power savings are realized by the IC during shutdown mode, in which quiescent current drops to a maximum of $1 \mu \mathrm{~A}$.

3.3-V low-voltage mode

The TPS2216 will operate in 3.3-V low-voltage mode when 3.3 V is the only available input voltage $\left(\mathrm{V}_{1(5 \mathrm{~V})}=0\right.$, $\mathrm{V}_{\mathrm{l}(12 \mathrm{~V})}=0$). This feature allows host and PC Cards to be operated in low-power $3.3-\mathrm{V}$-only modes such as sleep modes. Note that in this operation mode, the IC will derive its bias current from the $3.3-\mathrm{V}$ input pin and can only provide 3.3 V to the outputs.

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2216 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ systems by first powering the card with 5 V , then polling it to determine its $3.3-\mathrm{V}$ compatibility. The PCMCIA specification requires that the capacitors on 3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This action ensures that sensitive $3.3-\mathrm{V}$ circuitry is not subjected to any residual $5-\mathrm{V}$ charge and functions as a power reset. PC Card specification requires that $\mathrm{V}_{C C}$ be discharged within 100 ms . PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. The TPS2216 includes discharge transistors on all xVCC and xVPP outputs to meet the specification requirement.

shutdown mode

In the shutdown mode, which can be controlled by bit D8 of the input serial DATA word, each of the xVCC and xVPP outputs is forced to a high-impedance state. In this mode, the chip quiescent current is limited to $1 \mu \mathrm{~A}$ or less to conserve battery power.

standby mode

The TPS2216 can be put in standby mode by pulling $\overline{\text { STBY }}$ low to conserve power during low-power operation. In this mode, all of the power outputs (xVCC and xVPP) will have a nominal current limit of 50 mA . STBY has an internal $150-\mathrm{k} \Omega$ pullup resistor. The output-switch status of the device must be set, allowing the output capacitors to charge, prior to enabling the standby mode. Changing the setting of the output switches with the device in standby mode may cause an overcurrent response to be generated.

mode

The mode pin programs the switches in either TPS2216 or TPS2206 mode. An internal 150-k Ω pulldown resistor is connected to the pin. Floating or pulling the mode pin low sets the switches in TPS2206 mode; pulling the mode pin high sets the switches in TPS2216 mode. In TPS2206 mode, xVPP outputs are dependent on xVCC outputs. In TPS2216 mode, xVPP is programmed independent of xVCC . Refer to TPS2216 control-logic tables for more information.

APPLICATION INFORMATION

power supply considerations

The TPS2216 has multiple pins for each of its $3.3-\mathrm{V}$ and $5-\mathrm{V}$ power inputs and for the switched xVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is higher than that specified, resulting in increased voltage drops and less power. It is recommended that all input and output power pins be paralleled for optimum operation. Because the two 12-V pins are not internally connected, they must be tied together externally.
To increase the noise immunity of the TPS2216, the power-supply inputs should be bypassed with a $1-\mu \mathrm{F}$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a $0.1-\mu \mathrm{F}$ (or larger) ceramic capacitor; doing so improves the immunity of the IC to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the IC and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken, or allowed to fall, below -0.3 V .

RESET and RESET inputs

To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at the same time as the host by applying low impedance paths from xVCC and xVPP terminals to ground. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The active-high RESET or active low RESET input will close internal switches S1, S4, S7, and S11 with all other switches left open. The TPS2216 remains in the low-impedance output state until the signal is deasserted and further data is clocked in and latched. The input serial data can not be latched during Reset mode. RESET and RESET are provided for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The RESET pin has an internal $150-\mathrm{k} \Omega$ pulldown resistor and the RESET pin has an internal $150-\mathrm{k} \Omega$ pullup resistor. The device will be reset automatically when powered up.

calculating junction temperature

The switch resistance, $r_{\mathrm{DS}}(\mathrm{on})$, is dependent on the junction temperature, T_{J}, of the die. The junction temperature is dependent on both $r_{D S}(\mathrm{on})$ and the current through the switch. To calculate T_{J}, first find ${ }^{\mathrm{DSS}}{ }_{(o n)}$ from Figures 23 through 26, using an initial temperature estimate about $50^{\circ} \mathrm{C}$ above ambient. Then calculate the power dissipation for each switch, using the formula:

$$
P_{D}=r_{D S(o n)} \times 1^{2}
$$

Next, sum the power dissipation of all switches and calculate the junction temperature:

$$
T_{J}=\left(\sum P_{D} \times R_{\theta J A}\right)+T_{A}
$$

Where:
$R_{\theta J A}$ is the inverse of the derating factor given in the dissipation rating table.
Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic inputs and outputs

The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive edge of the clock (see Figures 2 and 3). The 11-bit (D0-D10) serial data word is loaded during the positive edge of the latch signal. The positive edge of the latch signal should occur before the next positive edge of the clock occurs.

TPS2216

DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR SERIAL PCMCIA CONTROLLERS

SLVS179C - MARCH 1999 - REVISED JULY 1999

APPLICATION INFORMATION

logic inputs and outputs (continued)

The TPS2216 serial interfaces are compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan Electronic Industry Development Association (JEIDA) standards.
An overcurrent output $(\overline{\mathrm{OC}})$ is provided to indicate an overcurrent or overtemperature condition in any of the xVCC and xVPP outputs as previously discussed.

TPS2216 control logic

TPS2216 mode (MODE pulled high)

xVPP

	AVPP CONTROL SIGNALS			OUTPUT V_AVPP	BVPP CONTROL SIGNALS				OUTPUT V_BVPP
D8 ($\overline{\text { SHDN }}$)	D0	D1	D9		D8 (SHDN)	D4	D5	D10	
1	0	0	X	0 V	1	0	0	X	0 V
1	0	1	0	3.3 V	1	0	1	0	3.3 V
1	0	1	1	5 V	1	0	1	1	5 V
1	1	0	X	12 V	1	1	0	X	12 V
1	1	1	X	$\mathrm{Hi}-\mathrm{Z}$	1	1	1	X	Hi-Z
0	X	X	X	$\mathrm{Hi}-\mathrm{Z}$	0	X	X	X	Hi-Z

xVCC

	AVCC CONTROL SIGNALS		OUTPUT V_AVCC	BVCC CONTROL SIGNALS			OUTPUT V_BVCC
D8 (SHDN)	D3	D2		D8 (SHDN)	D6	D7	
1	0	0	0 V	1	0	0	0 V
1	0	1	3.3 V	1	0	1	3.3 V
1	1	0	5 V	1	1	0	5 V
1	1	1	0 V	1	1	1	0 V
0	X	X	Hi-Z	0	X	X	Hi-Z

TPS2206 mode (MODE floating or pulled low)
xVPP

	AVPP CONTROL SIGNALS		OUTPUT \checkmark AVPF	BVPP CONTROL SIGNALS			OUTPUT V_PVPP
D8 (SHDN)	DO	D1		D8 (SHDN)	D4	D5	
1	0	0	0 V	1	0	0	0 V
1	0	1	V_AVCC	1	0	1	V_BVCC
1	1	0	12 V	1	1	0	12 V
1	1	1	$\mathrm{Hi}-\mathrm{Z}$	1	1	1	$\mathrm{Hi}-\mathrm{Z}$
0	X	X	Hi-Z	0	X	X	$\mathrm{Hi}-\mathrm{Z}$

xVCC

	AVCC CONTROL SIGNALS		OUTPUT	BVCC CONTROL SIGNALS			OUTPUT
D8 (SHDN)	D3	D2		D8 (SHDN)	D6	D7	
1	0	0	0 V	1	0	0	0 V
1	0	1	3.3 V	1	0	1	3.3 V
1	1	0	5 V	1	1	0	5 V
1	1	1	0 V	1	1	1	0 V
0	X	X	Hi-Z	0	X	X	Hi-Z

APPLICATION INFORMATION

ESD protections (see Figure 34)

All TPS2216 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-body-model discharge as defined in MIL-STD-883C, Method 3015. The xVCC and xVPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu \mathrm{F}$ capacitors protects the devices from discharges up to 10 kV .

\dagger Maximum recommended output capacitance for XVCC is $220 \mu \mathrm{~F}$ and for XVPP is $10 \mu \mathrm{~F}$ without $\overline{\mathrm{OC}}$ glitch when switches are powered on.
Figure 34. Detailed Interconnections and Capacitor Recommendations

APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V . The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 35, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in 2 of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to $3 \mu \mathrm{~A}$ when 12 V is not needed.
The TPS6734 is a $170-\mathrm{kHz}$ current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the $12-\mathrm{V}$ output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V . Soft start is accomplished with the addition of one small capacitor. A $1.22-\mathrm{V}$ reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.
Figure 35. TPS2216 with TPS6734 12-V, 120-mA Supply
General Information (Vol. 1) 1
Linear Voltage Regulators 2
Shunt Regulators 3
Precision Virtual Grounds 4
Mechanical Data 5
General Information (Vol. 2) 6
Processor PS Controllers 7
Switching PS and DC/DC Converters 8
MOSFET Drivers 9
Supervisors 10
Mechanical Data 11
General Information (Vol. 3) 12
Power Distribution Switches 13
LED Drivers 14
Voltage Rail Splitters 15
Special Functions 16
Mechanical Data 17

 14

- Drive Capability and Output Counts
-80 mA (Current Sink) $\times 16$ Bits
- 120 mA (Current Sink) $\times 8$ Bits
- Constant Current Output Range
- $\mathbf{5} \mathbf{~ m A}$ to $\mathbf{8 0} \mathbf{~ m A} / 10 \mathrm{~mA}$ to 120 mA (Selectable by MODE Terminal) (Current Value Setting for All Output Terminals Using External Resistor and Internal Brightness Control Register)
- Constant Current Accuracy
- $\pm 4 \%$ (Maximum Error Between Bits)
- Voltage Applied to Constant Current Output Terminals
- Minimum 0.4 V (Output Current 5 mA to 40 mA
- Minimum 0.7 V (Output Current 40 mA to 80 mA
- 256 Gray Scale Display
- Pulse Width Control 256 Steps
- Brightness Adjustment
- Output Current Adjustment for 32 Steps (Adjustment for Brightness Deviation Between LEDs)
- 8 Steps Brightness Control by 8 Times Speed Gray Scale Control Clock (Brightness Adjustment for Panel)
- Voltage Monitor
- Monitor Voltage on Constant Current Output Terminals (Detect LED Disconnection and Short Circuit)

description

The TLC5904 is a constant current driver incorporating shift register, data latch, constant current circuitry with current value adjustable, and 256 gray scale display using pulse width control. The output current can be selected as maximum 80 mA with 16 bits or 120 mA with 8 bit, and the current value of constant current output can be set by one external register. After this device is mounted on PCB, the brightness deviation between LEDs (ICs) can be adjusted by external data input, and the brightness control for panel can be accomplished by brightness adjustment circuitry. Also, the device incorporates the voltage monitor circuitry used for LED failure detection to monitor constant current output. Moreover, the device incorporates WDT (watch-dog timer) circuitry, which turns constant current output off when scan signal stopped at dynamic scanning operation, and thermal shutdown (TSD) circuitry, which turns constant current output off when the junction temperature exceeds the limit.
General Information (Vol. 1) 1
Linear Voltage Regulators 2
Shunt Regulators3
Precision Virtual Grounds 4
Mechanical Data 5
General Information (Vol. 2) 6
Processor PS Controllers 7
Switching PS and DC/DC Converters 8
MOSFET Drivers 9
Supervisors 10
Mechanical Data 11
General Information (Vol. 3) 12
Power Distribution Switches 13
LED Drivers 14
Voltage Rail Splitters 15
Special Functions 16
Mechanical Data17

- 1/2 VI Virtual Ground for Analog Systems
- Self-Contained 3-terminal TO-226AA Package
- Micropower Operation . . . $170 \mu \mathrm{~A}$ Typ, $\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$
- Wide VI Range . . . 4 V to 40 V
- High Output-Current Capability
- Source . . . 20 mA Typ
- Sink . . 20 mA Typ

description

In signal-conditioning applications utilizing a single power source, a reference voltage equal to one-half the supply voltage is required for termination of all analog signal grounds. Texas Instruments presents a precision virtual ground whose output voltage is always equal to one-half the input voltage, the TLE2426 "rail splitter."

The unique combination of a high-performance, micropower operational amplifier and a precisiontrimmed divider on a single silicon chip results in a precise $\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\text {I }}$ ratio of 0.5 while sinking and sourcing current. The TLE2426 provides a lowimpedance output with 20 mA of sink and source capability while drawing less than $280 \mu \mathrm{~A}$ of supply current over the full input range of 4 V to 40 V . A designer need not pay the price in terms of board space for a conventional signal ground consisting of resistors, capacitors, operational amplifiers, and voltage references. The performance and precision of the TLE2426 is available in an easy-to-use, space saving, 3-terminal LP package. For increased performance, the optional 8-pin packages provide a noise-reduction pin. With the addition of an external capacitor (C_{NR}), peak-to-peak noise is reduced while line ripple rejection is improved.

Initial output tolerance for a single $5-\mathrm{V}$ or $12-\mathrm{V}$ system is better than 1% with 3.6% over the full $40-\mathrm{V}$ input range. Ripple rejection exceeds 12 bits of accuracy. Whether the application is for a data acquisition front end, analog signal termination, or simply a precision voltage reference, the TLE2426 eliminates a major source of system error.

AVAILABLE OPTIONS

PACKAGED DEVICES					
TA	SMALL OUTLINE (D)	CERAMIC DIP (JG)	PLASTIC (LP)	PLASTIC DIP (P)	CHIP FORM (Y)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	TLE2426CD	-	TLE2426CLP	TLE2426CP	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TLE2426ID	-	TLE2426ILP	TLE2426IP	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	TLE2426MD	TLE2426MJG	TLE2426MLP	TLE2426MP	

The D and LP packages are available taped and reeled in the commercial temperature range only. Add R suffix to the device type (e. g., TLC2426CDR). Chips are tested at $25^{\circ} \mathrm{C}$.

PRECISION VIRTUAL GROUND

SLOS098D - AUGUST 1991 - REVISED MAY 1998

description (continued)

The C-suffix devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The I suffix devices are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The M suffix devices are characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

TLE2426Y chip information

This chip, properly assembled, displays characteristics similar to the TLE2426C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

Continuous input voltage, V_{I} 40 V
Continuous filter trap voltage 40 V
Output current, lo $\pm 80 \mathrm{~mA}$
Duration of short-circuit current at (or below) $25^{\circ} \mathrm{C}$ (see Note 1) unlimited
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} : C suffix $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
I suffix $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
M suffix $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds: D or P package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 60 seconds: JG or LP package $300^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
dissipation rating table

PACKAGE	$T_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathbf{T}_{\mathbf{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$ POWER RATING
D	725 mV	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW	145 mW
JG	1050 mV	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	672 mW	546 mW	210 mW
LP	775 mV	$6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	496 mW	403 mW	155 mW
P	1000 mV	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW	520 mW	200 mW

recommended operating conditions

\left.| | C SUFFIX | | I SUFFIX | | M SUFFIX | UNIT |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
| | MIN | MAX | MIN | MAX | MIN | |$\right)$

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathbf{A}}{ }^{\text {t }}$	TLE2426C			UNIT	
			MIN	TYP	MAX			
Output voltage	$\mathrm{V}_{1}=4 \mathrm{~V}$			$25^{\circ} \mathrm{C}$	1.98	2	2.02	V
	$\mathrm{V}_{1}=5 \mathrm{~V}$		2.48		2.5	2.52		
	$\mathrm{V}_{1}=40 \mathrm{~V}$		19.8		20	20.2		
	$\mathrm{V}_{1}=5 \mathrm{~V}$		Full range	2.475		2.525		
Temperature coefficient of output voltage			Full range		25		ppm/ $/{ }^{\circ} \mathrm{C}$	
Supply current	No load	$\mathrm{V}_{1}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		170	300		
		$\mathrm{V}_{1}=4$ to 40 V	Full range			400		
Output voltage regulation (sourcing current) ${ }^{\ddagger}$	$1 \mathrm{O}=0$ to -10 mA		$25^{\circ} \mathrm{C}$		-45	± 160	$\mu \mathrm{V}$	
			Full range			± 250		
	$1 \mathrm{O}=0$ to -20 mA		$25^{\circ} \mathrm{C}$		-150	± 450		
Output voltage regulation (sinking current) ${ }^{\ddagger}$	$\mathrm{l}=0$ to 10 mA		$25^{\circ} \mathrm{C}$		15	± 160	$\mu \mathrm{V}$	
			Full range			± 250		
	$1 \mathrm{O}=0$ to 20 mA		$25^{\circ} \mathrm{C}$		65	± 235		
Output impedance			$25^{\circ} \mathrm{C}$		7.5	22.5	$\mathrm{m} \Omega$	
Noise-reduction impedance			$25^{\circ} \mathrm{C}$		110		$\mathrm{k} \Omega$	
Short-circuit current	Sinking current,	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		26		mA	
	Sourcing current,	$\mathrm{V}_{\mathrm{O}}=0$			-47			
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\text {NR }}=0$	$25^{\circ} \mathrm{C}$		120		$\mu \mathrm{V}$	
		$\mathrm{C}_{\mathrm{NR}}=1 \mu \mathrm{~F}$			30			
Output voltage current step response	V_{O} to $0.1 \%, \quad l_{0}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	$25^{\circ} \mathrm{C}$		290		$\mu \mathrm{s}$	
		$C_{L}=100 \mathrm{pF}$			275			
	V_{O} to $0.01 \%, \mathrm{I}_{\mathrm{O}}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	$25^{\circ} \mathrm{C}$	400				
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			390			
Step response	$\mathrm{V}_{1}=0$ to $5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		20		$\mu \mathrm{s}$	
	$\mathrm{V}_{1}=0$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {O }}$ to 0.01%				160			

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
\ddagger The listed values are not production tested.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}, \mathrm{I}_{0}=0$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$	TLE2426C			UNIT	
			MIN	TYP	MAX			
Output voltage	$\mathrm{V}_{1}=4 \mathrm{~V}$			$25^{\circ} \mathrm{C}$	1.98	2	2.02	V
	$\mathrm{V}_{1}=12 \mathrm{~V}$		5.95		6	6.05		
	$\mathrm{V}_{1}=40 \mathrm{~V}$		19.8		20	20.2		
	$\mathrm{V}_{1}=12 \mathrm{~V}$		Full range	5.945		6.055		
Temperature coefficient of output voltage			Full range		35		ppm/ ${ }^{\circ} \mathrm{C}$	
Supply current	No load	$\mathrm{V}_{1}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		195	300	$\mu \mathrm{A}$	
		$\mathrm{V}_{1}=4$ to 40 V	Full range			400		
Output voltage regulation (sourcing current) ${ }^{\ddagger}$	${ }^{1} \mathrm{O}=0$ to -10 mA		$25^{\circ} \mathrm{C}$		-45	± 160		
			Full range			± 250	$\mu \mathrm{V}$	
	$10=0$ to -20 mA		$25^{\circ} \mathrm{C}$		-150	± 450		
Output voltage regulation (sinking current) ${ }^{\ddagger}$	$1 \mathrm{O}=0$ to 10 mA		$25^{\circ} \mathrm{C}$		15	± 160		
			Full range			± 250	$\mu \mathrm{V}$	
	$10=0$ to 20 mA		$25^{\circ} \mathrm{C}$		65	± 235		
Output impedance			$25^{\circ} \mathrm{C}$		7.5	22.5	$\mathrm{m} \Omega$	
Noise-reduction impedance			$25^{\circ} \mathrm{C}$		110		$\mathrm{k} \Omega$	
Short-circuit current	Sinking current, $\quad \mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$		$25^{\circ} \mathrm{C}$		31		mA	
	Sourcing current,	$\mathrm{V}_{\mathrm{O}}=0$			-70			
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\text {NR }}=0$	$25^{\circ} \mathrm{C}$		120		$\mu \mathrm{V}$	
		$\mathrm{C}_{\mathrm{NR}}=1 \mu \mathrm{~F}$			30			
Output voltage current step response	V O to $0.1 \%, \quad \mathrm{I}_{0}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	$25^{\circ} \mathrm{C}$		290		$\mu \mathrm{s}$	
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			275			
	V_{O} to $0.01 \%, \mathrm{l}^{\prime}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	$25^{\circ} \mathrm{C}$		400			
		$C_{L}=100 \mathrm{pF}$			390			
Step response	$\mathrm{V}_{1}=0$ to $12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		20		$\mu \mathrm{s}$	
	$\mathrm{V}_{1}=0$ to $12 \mathrm{~V}, \mathrm{~V}_{\text {O }}$ to 0.01%				120			

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
\ddagger The listed values are not production tested.

TLE2426, TLE2426Y
THE "RAIL SPLITTER"
PRECISION VIRTUAL GROUND
SLOSO98D - AUGUST 1991 - REVISED MAY 1998
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$T_{A}{ }^{\dagger}$	TLE2426I		UNIT	
			MIN TYP	MAX			
Output voltage	$\mathrm{V}_{1}=4 \mathrm{~V}$			$25^{\circ} \mathrm{C}$	1.98 2	2.02	V
	$\mathrm{V}_{1}=5 \mathrm{~V}$		2.48 2.5		2.52		
	$\mathrm{V}_{1}=40 \mathrm{~V}$		19.8 20		20.2		
	$\mathrm{V}_{1}=5 \mathrm{~V}$		Full range	2.47	2.53		
Temperature coefficient of output voltage			Full range	25		ppm $/{ }^{\circ} \mathrm{C}$	
Supply current	No load	$\mathrm{V}_{1}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	170	300	-	
		$\mathrm{V}_{1}=4$ to 40 V	Full range		400		
Output voltage regulation (sourcing current) \ddagger	$1 \mathrm{O}=0$ to -10 mA		$25^{\circ} \mathrm{C}$	-45	± 160		
			Full range		± 250	$\mu \mathrm{V}$	
	$1 \mathrm{O}=0$ to -20 mA		$25^{\circ} \mathrm{C}$	-150	± 450		
Output voltage regulation (sinking current) ${ }^{\ddagger}$	$1 \mathrm{O}=0$ to 10 mA		$25^{\circ} \mathrm{C}$	15	± 160		
	$\mathrm{l}^{\mathrm{O}}=0$ to 8 mA		Full range		± 250	$\mu \mathrm{V}$	
	$\mathrm{I}^{\mathrm{O}}=0$ to 20 mA		$25^{\circ} \mathrm{C}$	65	± 235		
Output impedance			$25^{\circ} \mathrm{C}$	7.5	22.5	$\mathrm{m} \Omega$	
Noise-reduction impedance			$25^{\circ} \mathrm{C}$	110		$\mathrm{k} \Omega$	
Short-circuit current	Sinking current, $\quad \mathrm{V}_{\mathrm{O}}=5$		$25^{\circ} \mathrm{C}$	26			
	Sourcing current, $\quad \mathrm{V}_{\mathrm{O}}=0$			-47			
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\text {NR }}=0$	$25^{\circ} \mathrm{C}$	120		$\mu \mathrm{V}$	
		$\mathrm{C}_{\mathrm{NR}}=1 \mu \mathrm{~F}$		30			
Output voltage current step response	V_{O} to $0.1 \%, \quad \mathrm{l}_{\mathrm{O}}= \pm 10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{L}}=0$	$25^{\circ} \mathrm{C}$	290		$\mu \mathrm{s}$	
		$C_{L}=100 \mathrm{pF}$		275			
	V O to $0.01 \%, \mathrm{l}_{\mathrm{O}}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	$25^{\circ} \mathrm{C}$	400			
		$C_{L}=100 \mathrm{pF}$		390			
Step response	$\mathrm{V}_{1}=0$ to $5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$	20		$\mu \mathrm{s}$	
	$\mathrm{V}_{1}=0$ to $5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}$ to 0.01%			160			

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
\ddagger The listed values are not production tested.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathbf{A}}{ }^{\text {t }}$	TLE2426I			UNIT	
			MIN	TYP	MAX			
Output voltage	$\mathrm{V}_{1}=4 \mathrm{~V}$			$25^{\circ} \mathrm{C}$	1.98	2	2.02	V
	$\mathrm{V}_{1}=12 \mathrm{~V}$		5.95		6	6.05		
	$\mathrm{V}_{1}=40 \mathrm{~V}$		19.8		20	20.2		
	$\mathrm{V}_{1}=12 \mathrm{~V}$		Full range	5.935		6.065		
Temperature coefficient of output voltage			Full range		35		ppm $/{ }^{\circ} \mathrm{C}$	
Supply current	No load	$\mathrm{V}_{1}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		195	300	$\mu \mathrm{A}$	
		$\mathrm{V}_{1}=4$ to 40 V	Full range			400		
Output voltage regulation (sourcing current) ${ }^{\ddagger}$	$\mathrm{IO}=0$ to -10 mA		$25^{\circ} \mathrm{C}$		-45	± 160	$\mu \mathrm{V}$	
			Full range			± 250		
	$10=0$ to -20 mA		$25^{\circ} \mathrm{C}$		-150	± 450		
Output voltage regulation (sinking current) ${ }^{\ddagger}$	$\mathrm{O}=0$ to 10 mA		$25^{\circ} \mathrm{C}$		15	± 160	$\mu \mathrm{V}$	
	$1 \mathrm{O}=0$ to 8 mA		Full range			± 250		
	$1 \mathrm{O}=0$ to 20 mA		$25^{\circ} \mathrm{C}$		65	± 235		
Output impedance			$25^{\circ} \mathrm{C}$		7.5	22.5	$\mathrm{m} \Omega$	
Noise-reduction impedance			$25^{\circ} \mathrm{C}$		110		$\mathrm{k} \Omega$	
Short-circuit current	Sinking current, $\quad \mathrm{V}_{\mathrm{O}}=12$		$25^{\circ} \mathrm{C}$		31		mA	
	Sourcing current,	$\mathrm{V}_{\mathrm{O}}=0$			-70			
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\text {NR }}=0$	$25^{\circ} \mathrm{C}$		120		$\mu \mathrm{V}$	
		$\mathrm{C}_{\mathrm{NR}}=1 \mu \mathrm{~F}$			30			
Output voltage current step response	V_{O} to $0.1 \%, \quad \mathrm{l}, ~= \pm 10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{L}}=0$	$25^{\circ} \mathrm{C}$		290		$\mu \mathrm{s}$	
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			275			
	V_{O} to $0.01 \%, \quad \mathrm{l} \mathrm{O}= \pm 10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{L}}=0$	$25^{\circ} \mathrm{C}$	400				
		$C_{L}=100 \mathrm{pF}$			390			
Step response	$\mathrm{V}_{1}=0$ to $12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		20		$\mu \mathrm{s}$	
	$\mathrm{V}_{\mathrm{I}}=0$ to $12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ to 0.01%				120			

\dagger Full range is $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
\ddagger The listed values are not production tested.

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$T_{A}{ }^{\dagger}$	TLE2426M			UNIT	
			MIN	TYP	MAX			
Output voltage	$\mathrm{V}_{1}=4 \mathrm{~V}$			$25^{\circ} \mathrm{C}$	1.98	2	2.02	V
	$\mathrm{V}_{1}=5 \mathrm{~V}$		2.48		2.5	2.52		
	$\mathrm{V}_{1}=40 \mathrm{~V}$		19.8		20	20.2		
	$\mathrm{V}_{1}=5 \mathrm{~V}$		Full range	2.465		2.535		
Temperature coefficient of output voltage			Full range		25		ppm/ ${ }^{\circ} \mathrm{C}$	
Supply current	No load	$\mathrm{V}_{1}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		170	300		
		$\mathrm{V}_{1}=4$ to 40 V	Full range			400		
Output voltage regulation (sourcing current) ${ }^{\ddagger}$	$\mathrm{O}=0$ to -10 mA		$25^{\circ} \mathrm{C}$		-45	± 160	$\mu \mathrm{V}$	
			Full range			± 250		
	$1 \mathrm{O}=0$ to -20 mA		$25^{\circ} \mathrm{C}$		-150	± 450		
Output voltage regulation (sinking current) \ddagger	$10=0$ to 10 mA		$25^{\circ} \mathrm{C}$		15	± 160	$\mu \mathrm{V}$	
	$10=0$ to 3 mA		Full range			± 250		
	$1 \mathrm{O}=0$ to 20 mA		$25^{\circ} \mathrm{C}$		65	± 235		
Output impedance			$25^{\circ} \mathrm{C}$		7.5	22.5	$\mathrm{m} \Omega$	
Noise-reduction impedance			$25^{\circ} \mathrm{C}$		110		$\mathrm{k} \Omega$	
Short-circuit current	Sinking current, $\quad \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		$25^{\circ} \mathrm{C}$		26		mA	
	Sourcing current, $\quad \mathrm{V}_{\mathrm{O}}=0$				-47			
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\text {NR }}=0$	$25^{\circ} \mathrm{C}$		120		$\mu \mathrm{V}$	
		$\mathrm{C}_{\mathrm{NR}}=1 \mu \mathrm{~F}$			30			
Output voltage current step response	Vo to $0.1 \%, \quad 10= \pm 10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{L}}=0$	$25^{\circ} \mathrm{C}$		290		$\mu \mathrm{s}$	
		$C_{L}=100 \mathrm{pF}$			275			
	VO to $0.01 \%, 1 \mathrm{l}= \pm 10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{L}}=0$	$25^{\circ} \mathrm{C}$	400				
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$			390			
Step response	$\mathrm{V}_{1}=0$ to $5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$		20		$\mu \mathrm{s}$	
	$\mathrm{V}_{\mathrm{l}}=0$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {O }}$ to 0.01%				120			

\dagger Full range is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
\ddagger The listed values are not production tested.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$	TLE2426M		UNIT	
			MIN TYP	MAX			
Output voltage	$\mathrm{V}_{1}=4 \mathrm{~V}$			$25^{\circ} \mathrm{C}$	1.98 2	2.02	V
	$V_{1}=12 \mathrm{~V}$		$5.95 \quad 6$		6.05		
	$\mathrm{V}_{1}=40 \mathrm{~V}$		19.8 20		20.2		
	$\mathrm{V}_{1}=12 \mathrm{~V}$		Full range	5.925	6.075		
Temperature coefficient of output voltage			Full range	35		ppm $/{ }^{\circ} \mathrm{C}$	
Supply current	No load	$\mathrm{V}_{1}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	195	250	$\mu \mathrm{A}$	
		$\mathrm{V}_{1}=4$ to 40 V	Full range		350		
Output voltage regulation (sourcing current) ${ }^{\ddagger}$	$1 \mathrm{O}=0$ to -10 mA		$25^{\circ} \mathrm{C}$	-45	± 160	$\mu \mathrm{V}$	
			Full range		± 250		
	$10=0$ to -20 mA		$25^{\circ} \mathrm{C}$	-150	± 450		
Output voltage regulation (sinking current) ${ }^{\ddagger}$	$10=0$ to 10 mA		$25^{\circ} \mathrm{C}$	15	± 160	$\mu \mathrm{V}$	
	$\mathrm{I}=0$ to 8 mA		Full range		± 250		
	$10=0$ to 20 mA		$25^{\circ} \mathrm{C}$	65	± 235		
Output impedance			$25^{\circ} \mathrm{C}$	7.5	22.5	$\mathrm{m} \Omega$	
Noise-reduction impedance			$25^{\circ} \mathrm{C}$	110		k Ω	
Short-circuit current	Sinking current,	$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	31		mA	
	Sourcing current,	$\mathrm{V}_{\mathrm{O}}=0$		-70			
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\text {NR }}=0$	$25^{\circ} \mathrm{C}$	120		$\mu \mathrm{V}$	
		$\mathrm{C}_{\mathrm{NR}}=1 \mu \mathrm{~F}$		30			
Output voltage current step response	VO to $0.1 \%, \quad \mathrm{I}_{0}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	$25^{\circ} \mathrm{C}$	290		$\mu \mathrm{s}$	
		$C_{L}=100 \mathrm{pF}$		275			
	V O to $0.01 \%, \mathrm{l} \mathrm{O}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	$25^{\circ} \mathrm{C}$	400			
		$C_{L}=100 \mathrm{pF}$		390			
Step response	$\mathrm{V}_{\mathrm{I}}=0$ to $12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	$25^{\circ} \mathrm{C}$	12		$\mu \mathrm{s}$	
	$\mathrm{V}_{1}=0$ to $12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}$ to 0.01\%			120			

\dagger Full range is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
\ddagger The listed values are not production tested.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		TLE2426		$\begin{gathered} \text { UNIT } \\ V \end{gathered}$
			MIN TYP	MAX	
Output voltage	$\mathrm{V}_{1}=5 \mathrm{~V}$		2.5		
Supply current	No load		170		$\mu \mathrm{A}$
Output voltage regulation (sourcing current) ${ }^{\dagger}$	$1 \mathrm{O}=0$ to -10 mA		-45		$\mu \mathrm{V}$
	$10=0$ to -20 mA		-150		
Output voltage regulation (sinking current) ${ }^{\dagger}$	$10=0$ to 10 mA		15		$\mu \mathrm{V}$
	$10=0$ to 20 mA		65		
Output impedance			7.5		$\mathrm{m} \Omega$
Noise-reduction impedance			110		k Ω
Short-circuit current	Sinking current,	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	26		mA
	Sourcing current,	$\mathrm{V}_{\mathrm{O}}=0$	-47		
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\text {NR }}=0$	120		$\mu \mathrm{V}$
		$\mathrm{C}_{\text {NR }}=1 \mu \mathrm{~F}$	30		
Output voltage current step response	V_{O} to $0.1 \%, \quad \mathrm{l},{ }^{\text {a }}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	290		$\mu \mathrm{s}$
		$C_{L}=100 \mathrm{pF}$	275		
	V_{O} to $0.01 \%, \quad \mathrm{l}= \pm 10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{L}}=0$	400		
		$C_{L}=100 \mathrm{pF}$	390		
Step response	$\mathrm{V}_{1}=0$ to $5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	20		$\mu \mathrm{s}$
	$\mathrm{V}_{1}=0$ to $5 \mathrm{~V}, \quad \mathrm{~V}_{0}$ to 0.01%		160		

\dagger The listed values are not production tested.
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{I}}=\mathbf{1 2} \mathrm{V}, \mathrm{I}_{\mathrm{O}}=\mathbf{0}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		TLE2426		UNIT V
			MIN TYP	MAX	
Output voltage	$\mathrm{V}_{1}=12 \mathrm{~V}$		6		
Supply current	No load		195		$\mu \mathrm{A}$
Output voltage regulation (sourcing current) \dagger	$10=0$ to -10 mA		-45		$\mu \mathrm{V}$
	$10=0$ to -20 mA		-150		
Output voltage regulation (sinking current) ${ }^{\dagger}$	$1 \mathrm{O}=0$ to 3 mA		15		$\mu \mathrm{V}$
	$10=0$ to 20 mA		65		
Output impedance			7.5		$\mathrm{m} \Omega$
Noise-reduction impedance			110		$\mathrm{k} \Omega$
Short-circuit current	Sinking current,	$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$	31		mA
	Sourcing current,	$\mathrm{V}_{\mathrm{O}}=0$	-70		
Output noise voltage, rms	$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz	$\mathrm{C}_{\mathrm{NR}}=0$	120		$\mu \mathrm{V}$
		$\mathrm{C}_{\mathrm{NR}}=1 \mu \mathrm{~F}$	30		
Output voltage current, step response	V_{O} to $0.1 \%, \quad \mathrm{l} \mathrm{O}= \pm 10 \mathrm{~mA}$	$\mathrm{C}_{\mathrm{L}}=0$	290		$\mu \mathrm{s}$
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	275		
	V_{O} to $0.01 \%, \quad \mathrm{l}= \pm 10 \mathrm{~mA}$	$C_{L}=0$	400		
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	390		
Step response	$\mathrm{V}_{1}=0$ to $12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}$ to 0.1%	$C_{L}=100 \mathrm{pF}$	12		$\mu \mathrm{s}$
	$\mathrm{V}_{\mathrm{I}}=0$ to $12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}$ to 0.01%		120		

\dagger The listed values are not production tested.

TYPICAL CHARACTERISTICS

Table Of Graphs

		FIGURE
Output voltage	Distribution	1,2
Output voltage change	vs Free-air temperature	3
Output voltage error	vs Input voltage	4
Input bias current	vs Input voltage	5
	vs Free-air temperature	6
Output voltage regulation	vs Output current	7
Output impedance	vs Frequency	8
Short-circuit output current	vs Input voltage	9,10
	vs Free-air temperature	11,12
Ripple rejection	vs Frequency	13
Spectral noise voltage density	vs Frequency	14
Output voltage response to output current step	vs Time	15
Output voltage power-up response	vs Time	16
Output current	vs Load capacitance	17

TYPICAL CHARACTERISTICS \dagger

Figure 1
OUTPUT VOLTAGE CHANGE
vs
FREE-AIR TEMPERATURE

Figure 3

Figure 2
OUTPUT VOLTAGE ERROR
vs
input voltage

Figure 4

[^7]
TYPICAL CHARACTERISTICS \dagger

Figure 5

OUTPUT VOLTAGE REGULATION
VS
OUTPUT CURRENT

Figure 7
-

INPUT BIAS CURRENT
VS
FREE-AIR TEMPERATURE

Figure 6

OUTPUT IMPEDANCE
vs
FREQUENCY

Figure 8

[^8]
TYPICAL CHARACTERISTICS \dagger

[^9]
TYPICAL CHARACTERISTICS

Figure 13

Figure 15

Figure 14

OUTPUT VOLTAGE POWER-UP RESPONSE

Figure 16

TYPICAL CHARACTERISTICS

Figure 17

MACROMODEL INFORMATION

```
* TLE2426 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT
* CREATED USING PARTS RELEASE 4.03 0N 08/21/90 AT 13:51
* REV (N/A) SUPPLY VOLTAGE: 5 V
* CONNECTIONS: FILTER
| INPUT
* 1 1 COMMON
* | 1 1 OUTPUT
.SUBCKT TLE2426 1 3 4 5
```

```
    C1 
    C3 
    CPSR 85 86 15.9E-9
    DCM+ 81 82 DX
    DCM- }83 81 DX
    DC 5 53 DX
    DE 
    DLN 92 90 DX
    lar m
    EGND 99 0 POLY(2) (3,0) (4,0) 0 .5 .5
    EPSR 85 0 POLY(1) (3,4) -16.22E-6 i. . . . 4 E E-6
    ENSE 89 2 POLY(1) (88,0) 120E-61
    FB 7 99 POLY(6) VB VC VE VLPVLNVPSR 0 74.8E6-10E6 10E6 10E6 -10E6 74E6
    GA 
    GCM 0 6 10 99 1.013E-9
    GPSR 85 86 (85,86) 100E-6
    GRC1 4 11 (4,11) 3.204E-4
    GRC2 4 12 (4,12) 3.204E-4
    GRE1 13 10 (13,10) 1.038E-3
    GRE2 14 10 (14,10) 1.038E-3
    HLIM 
    IRP 3 4 146E-6
    3 10 DC 24.05E-6
    IIO 2 0 .2E-9
    I1 88 0 1E-21
    Q1 11 89 13 QX
    Q2 12 80 14 QX
    R2 6 9 100.0E3
    RCM 84 81 1K
    REE 10 99 8.316E6
    RN1 87 0 2.55E8
    RN2 87 88 11.67E3
    RO1 8 5 63
    RO2 7}9996
    VCM + 82 99 1.0
    VCM- }83\quad99-2.
    VB }900\mathrm{ DC 0
    VC 3 53 DC 1.400
    VE 54 4 DC 1.400
    VLIM 7 8 DC 0
    VLP 91 0 DC 30
    VLN 0}92\mathrm{ DC }3
    VPSR 0 86 DC 0
    RFB 5 2 1K
    RIN1 3 1 220K
    RIN2 1 4 220K
.MODEL DX D(IS=800.OE-18)
.MODEL QX PNP(IS=800.OE-18 BF=480)
.ENDS
```

General Information (Vol. 1) 1
Linear Voltage Regulators 2
Shunt Regulators 3
Precision Virtual Grounds 4
Mechanical Data 5
General Information (Vol. 2)6
Processor PS Controllers 7
Switching PS and DC/DC Converters 8
MOSFET Drivers9
Supervisors 10
Mechanical Data 11
General Information (Vol. 3) 12
Power Distribution Switches 13
LED Drivers 14
Voltage Rail Splitters 15
Special Functions 16
Mechanical Data 17

- Protects Against Latch-Up
- 25-mA Current Sink in Active State
- Less Than 1-mW Dissipation in Standby Condition
- Ideal for Applications in Environments Where Large Transient Spikes Occur
- Stable Operation for All Values of Capacitive Load
- No Output Overshoot

description

The TL7726 consists of six identical clamping circuits that monitor an input voltage with respect to a reference value, REF. For an input voltage $\left(V_{1}\right)$ in the range of GND to $<$ REF, the clamping circuits present a very high impedance to ground, drawing current of less than $10 \mu \mathrm{~A}$. The clamping circuits are active for $\mathrm{V}_{1}<\mathrm{GND}$ or $V_{1}>$ REF when they have a very low impedance and can sink up to 25 mA .
These characteristics make the TL7726 ideal as protection devices for CMOS semiconductor devices in environments where there are large positive or negative transients to protect analog-to-digital converters in automotive or industrial systems. The use of clamping circuits provides a safeguard against potential latch-up.
The TL7726C is characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The TL 77261 is characterized for operation over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TL7726Q is characterized for operation over the temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	SOIC (D)	PLASTIC DIP (P)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	TL7726CD	TL7726CP
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TL77261D	TL7726IP
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	TL7726QD	TL7726QP

The D package is available taped and reeled. Add the suffix R to the device type (i.e., TL7726CDR).

absolute maximum ratings over operating free-air temperature (unless otherwise noted) \dagger

Reference voltage, $\mathrm{V}_{\text {ref }}$	6 V
Clamping current, $\mathrm{I}_{\text {IK }}$	$\pm 50 \mathrm{~mA}$
Junction temperature, T_{J}	$150^{\circ} \mathrm{C}$
Package thermal impedance, $\theta_{\text {JA }}$ (see Notes 1 and 2): D package	$97^{\circ} \mathrm{C} / \mathrm{W}$
P package	$127^{\circ} \mathrm{C} / \mathrm{W}$
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	$260^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. Maximum power dissipation is a function of $T_{J}(\max), \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{J}(\max)-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can impact reliability.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

		MIN	MAX	UNIT
Reference voltage, $\mathrm{V}_{\text {ref }}$		4.5	5.5	V
Input clamping current, $\mathrm{I}_{\mathrm{K}} \mathrm{K}$	$\mathrm{V}_{1} \geq \mathrm{V}_{\text {ref }}$		25	mA
	$\mathrm{V}_{1} \leq$ GND	-25		
Operating free-air temperature range, T_{A}	TL7726C	0	70	${ }^{\circ} \mathrm{C}$
	TL77261	-40	85	
	TL7726Q	-40	125	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP\#	MAX	UNIT
$\mathrm{V}_{\text {IK }+}$	Positive clamp voltage	$\mathrm{I}_{1}=20 \mathrm{~mA}$	$\mathrm{V}_{\text {ref }}$		$\mathrm{V}_{\text {ref }}+200$	mV
V_{IK} -	Negative clamp voltage	$1 \mathrm{l}=20 \mathrm{~mA}$	-200		0	mV
IZ	Reference current	$\mathrm{V}_{\text {ref }}=5 \mathrm{~V}$		25	60	$\mu \mathrm{A}$
1	Input current	$\mathrm{V}_{\text {ref }}-50 \mathrm{mV} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {ref }}$			10	$\mu \mathrm{A}$
		GND $\leq \mathrm{V}_{1} \leq 50 \mathrm{mV}$	-10			
		$50 \mathrm{mV} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {ref }}-50 \mathrm{mv}$	-i		1	

\ddagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics specified at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
$t_{s} \quad$ Settling time	$\begin{array}{lll} \mathrm{V}_{\mathrm{l} \text { (system) }}= \pm 13 \mathrm{~V}, & \mathrm{R}_{\mathrm{l}}=600 \Omega, \quad \mathrm{t}_{\mathrm{t}}<1 \mu \mathrm{~s}, \\ \text { Measured at } 10 \% \text { to } 90 \%, & \text { See Figure } 1 \end{array}$	30	$\mu \mathrm{s}$

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

INPUT WAVEFORM

CLAMP WAVEFORM

Figure 1. Switching Characteristics

Figure 2. Tolerance Band for Clamping Circuit

APPLICATION INFORMATION

Example: If $l_{I} \gg I_{\text {(system) }}$, i.e., $V_{l \text { (system) }}>V_{\text {ref }}+200 \mathrm{mV}$ where:

$$
\begin{aligned}
& I_{I(\text { system })}=\text { Input current to the device being protected } \\
& V_{I(\text { system })}=\text { Input voltage to the device being protected } \\
& \text { then the maximum input voltage } \\
& \begin{aligned}
V_{I(\text { system })^{\max }} & =V_{\text {ref }}+l_{\max }(10 \mathrm{k} \Omega) \\
& =5 \mathrm{~V}+25 \mathrm{~mA}(10 \mathrm{k} \Omega) \\
& =5 \mathrm{~V}+250 \mathrm{~V} \\
& =255 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Figure 3. Typical Application

TL2218-285, TL2218-285Y
 EXCALIBUR CURRENT-MODE SCSI TERMINATOR

available features

- Fully Integrated 9-Channel SCSI Termination
- No External Components Required
- Maximum Allowed Current Applied at First High-Level Step
- 6-pF Typical Power-Down Output Capacitance
- Wide $\mathrm{V}_{\text {term }}{ }^{\dagger}$ (Termination Voltage) Operating Range, 3.5 V to 5.5 V
- TTL-Compatible Disable Feature
- Compatible With Active Negation
- Thermal Regulation

PW PACKAGE
(TOP VIEW)

NC - No internal connection

description

The TL2218-285 is a current-mode 9-channel monolithic terminator specially designed for single-ended small-computer-systems-interface (SCSI) bus termination. A user-controlled disable function is provided to reduce standby power. No impedance-matching resistors or other external components are required for its operation as a complete terminator.

The device operates over a wide termination-voltage ($\mathrm{V}_{\text {term }}{ }^{\dagger}$) range of 3.5 V to 5.5 V , offering an extra 0.5 V of operating range when compared to the minimum termination voltage of 4 V required by other integrated active terminators. The TL2218-285 functions as a current-sourcing terminator and supplies a constant output current of 23 mA into each asserted line. When a line is deasserted, the device senses the rising voltage level and begins to function as a voltage source, supplying a fixed output voltage of 2.85 V . The TL2218-285 features compatibility with active negation drivers and has a typical sink current capability of 20 mA .

The TL2218-285 is able to ensure that maximum current is applied at the first high-level step. This performance means that the device should provide a first high-level step exceeding 2 V even at a $10-\mathrm{MHz}$ rate. Therefore, noise margins are improved considerably above those provided by resistive terminators.
A key difference between the TL2218-285 current-mode terminator and a Boulay terminator is that the TL2218-285 does not incorporate a low dropout regulator to set the output voltage to 2.85 V . In contrast with the Boulay termination concept, the accuracy of the 2.85 V is not critical with the current-mode method used in the TL2218-285 because this voltage does not determine the driver current. Therefore, the primary device specifications are not the same as with a voltage regulator but are more concerned with output current.
The $\overline{\text { DISABLE }}$ terminal is TTL compatible and must be taken low to shut down the outputs. The device is normally active, even when DISABLE is left floating. In the disable mode, only the device startup circuits remain active, thereby reducing the supply current to just $500 \mu \mathrm{~A}$. Output capacitance in the shutdown mode is typically 6 pF .
The TL2218-285 has on-board thermal regulation and current limiting, thus eliminating the need for external protection circuitry. A thermal regulation circuit that is designed to provide current limiting, rather than an actual thermal shutdown, is included in the individual channels of the TL2218-285. When a system fault occurs that leads to excessive power dissipation by the terminator, the thermal regulation circuit causes a reduction in the asserted-line output current sufficient to maintain operation. This feature allows the bus to remain active during a fault condition, which permits data transfer immediately upon removal of the fault. A terminator with thermal shutdown does not allow for data transfer until sufficient cooling has occurred. Another advantage offered by the TL2218-285 is a design that does not require costly laser trimming in the manufacturing process.

The TL2218-285 is characterized for operation over the virtual junction temperature range of $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
\dagger This symbol is not presently listed within EIA/JEDEC standards for letter symbols.

AVAILABLE OPTIONS		
TJ	SURFACE MOUNT (PW) \dagger	CHIP FORM (Y)
$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	TL22218-285PWLE	TL2218-285Y

\dagger The PW package is only available left-end taped and reeled.

TL2218-285Y chip information

This chip, when properly assembled, displays characteristics similar to the TL2218-285. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

TL2218-285, TL2218-285Y EXCALIBUR CURRENT-MODE SCSI TERMINATOR

functional block diagram (each channel)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) (see Figures 1, 2, and 3) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE	POWER RATING AT	$\begin{gathered} \mathrm{T} \leq \mathbf{2 5}{ }^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$	DERATING FACTOR ABOVE T $=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\mathrm{T}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}=85^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}=125^{\circ} \mathrm{C}$ POWER RATING
PW	$\mathrm{T}_{\text {A }}$	828 mW	$6.62 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	530 mW	430 mW	166 mW
	${ }^{\text {T } C}$	4032 mW	$32.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	2583 mW	2100 mW	812 mW
	$\mathrm{T}_{\mathrm{L}}{ }^{\ddagger}$	2475 mW	19.8 mW/ ${ }^{\circ} \mathrm{C}$	1584 mW	1287 mW	495 mW

$\ddagger \mathrm{R}_{\theta \mathrm{JL}}$ is the thermal resistance between the junction and device lead. To determine the virtual junction temperature (T_{J}) relative to the device lead temperature, the following calculations should be used: $T_{J}=P_{D} \times R_{\theta J L}+T_{L}$, where P_{D} is the internal power dissipation of the device and T_{L} is the device lead temperature at the point of contact to the printed wiring board. $R_{\theta \mathrm{JL}}$ is $50.5^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 1

CASE TEMPERATURE DISSIPATION DERATING CURVE

Figure 2

Figure 3
$\dagger \mathrm{R}_{\theta \mathrm{JL}}$ is the thermal resistance between the junction and device lead. To determine the virtual junction temperature (T_{J}) relative to the device lead temperature, the following calculations should be used: $T_{J}=P_{D} \times R_{\theta J L}+T_{L}$, where P_{D} is the internal power dissipation of the device, and T_{L} is the device lead temperature at the point of contact to the printed wiring board. $R_{\theta J L}$ is $50.5^{\circ} \mathrm{C} / \mathrm{W}$.
recommended operating conditions

	MIN	MAX
UNIT		
Termination voltage	3.5	5.5
High-level disable input voltage, V_{IH}	2	V term
Low-level disable input voltage, V_{IL}	0	V
Operating virtual junction temperature, T_{J}	0.8	V

electrical characteristics, $\mathrm{V}_{\text {term }}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output high voltage		2.5	2.85		V
TERMPWR supply current	All data lines open		9		mA
	All data lines $=0.5 \mathrm{~V}$		228		
	$\overline{\text { DISABLE }}=0 \mathrm{~V}$		500		$\mu \mathrm{A}$
Output current		-20.5	-23	-24	mA
Disable input current (see Note 1)	$\overline{\text { DISABLE }}=4.75 \mathrm{~V}$			1	$\mu \mathrm{A}$
	$\overline{\text { DISABLE }}=0 \mathrm{~V}$			600	
Output leakage current	$\overline{\text { DISABLE }}=0 \mathrm{~V}$		100		nA
Output capacitance, device disabled	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \quad 1 \mathrm{MHz}$		6		pF
Termination sink current, total	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$		20		mA

NOTE 1: When DISABLE is open or high, the terminator is active.

THERMAL INFORMATION

The need for smaller surface-mount packages for use on compact printed-wiring boards (PWB) causes an increasingly difficult problem in the area of thermal dissipation. In order to provide the systems designer with a better approximation of the junction temperature rise in the thin-shrink small-outline package (TSSOP), the junction-to-lead thermal resistance ($\mathrm{R}_{\theta \mathrm{JL}}$) is provided along with the more typical values of junction-to-ambient and junction-to-case thermal resistances, $\mathrm{R}_{\theta \mathrm{JA}}$ and $\mathrm{R}_{\theta \mathrm{JC}}$.
$R_{\theta J L}$ is used to calculate the device junction temperature rise measured from the leads of the unit. Consequently, the junction temperature is dependent upon the board temperature at the leads, $\mathrm{R}_{\theta \mathrm{JL}}$, and the internal power dissipation of the device. The board temperature is contingent upon several variables, including device packing density, thickness, material, area, and number of interconnects. The $\mathrm{R}_{\theta \mathrm{JLL}}$ value depends on the number of leads connecting to the die-mount pad, the lead-frame alloy, area of the die, mount material, and mold compound. Since the power level at which the TSSOP can be used is highly dependent upon both the temperature rise of the PWB and the device itself, the systems designer can maximize this level by optimizing the circuit board. The junction temperature of the device can be calculated using the equation $T_{J}=\left(P_{D} \times R_{\theta J L}\right)+T_{L}$ where $T_{J}=$ junction temperature, $P_{D}=$ power dissipation, $\mathrm{R}_{\theta \mathrm{JL}}=$ junction-to-lead thermal resistance, and $\mathrm{T}_{\mathrm{L}}=$ board temperature at the leads of the unit.
The values of thermal resistance for the TL2218-285 PW are as follows:

Thermal Resistance	Typical Junction Rise
$R_{\theta J A}$	$151^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\theta J C}$	$31^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta J \mathrm{~L}}$	$50.5^{\circ} \mathrm{C} / \mathrm{W}$

TYPICAL CHARACTERISTICS

Table of Graphs

		FIGURE	
I_{O}	Output current	vs Input voltage	4
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	vs Input voltage	5
I_{O}	Output current	vs Junction temperature	6
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	vs Junction temperature	7

TYPICAL CHARACTERISTICS

Figure 4

OUTPUT CURRENT vs
JUNCTION TEMPERATURE

Figure 6

OUTPUT VOLTAGE
inPUT vs

Figure 5

Figure 7
General Information (Vol. 1)1
Linear Voltage Regulators 2
Shunt Regulators3
Precision Virtual Grounds 4
Mechanical Data 5
General Information (Vol. 2)6
Processor PS Controllers 7
Switching PS and DC/DC Converters8
MOSFET Drivers 9
Supervisors 10
Mechanical Data 11
General Information (Vol. 3) 12
Power Distribution Switches 13
LED Drivers 14
Voltage Rail Splitters 15
Special Functions 16
Mechanical Data 17

17

PINS **	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
A MIN	0.189 $(4,80)$	0.337 $(8,55)$	0.386 $(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

MECHANICAL INFORMATION

DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

MECHANICAL INFORMATION

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
E. Falls within JEDEC MO-153

MECHANICAL INFORMATION

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions include mold flash or protrusion.

MECHANICAL INFORMATION

DF (R-PDSO-G30)
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

MECHANICAL INFORMATION

JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T8

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Lead dimensions are not controlled within this area.
D. Falls within JEDEC TO-226AA (TO-226AA replaces TO-92)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

MECHANICAL INFORMATION

PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN

PINS **	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

MECHANICAL INFORMATION

PWP (R-PDSO-G**)
PowerPADTM PLASTIC SMALL-OUTLINE
20 PINS SHOWN

DIM PINS **	14	16	20	24	28
A MAX	5,10	5,10	6,60	7,90	9,80
A MIN	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusions.
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments Incorporated.

TI Worldwide Technical Support

Internet

Tl Semiconductor Home Page
www.ti.com/sc

TI Distributors

www.ti.com/sc/docs/general/distrib.htm

Product Information Centers

Americas

Phone	$+1(972) 644-5580$
Fax	$+1(972) 480-7800$
Internet	www.ti.com/sc/ampic

Europe, Middle East, and Africa	
Phone	
\quad Belgium (English)	$+32(0) 27455532$
France	$+33(0) 130701164$
Germany	$+49(0) 8161803311$
Israel (English)	18009490107
Italy	800791137
Netherlands (English)	$+31(0) 546879545$
Spain	+34902354028
Sweden (English)	$+46(0) 858755522$
United Kingdom	$+44(0) 1604663399$
Fax	$+44(0) 1604663334$
Email	epic@ti.com
Internet	www.ti.com/sc/epic
Japan	
Phone	$+81-3-3344-5311$
International	$0120-81-0026$
Domestic	$+81-3-3344-5317$
Fax	$0120-81-0036$
\quad International	
Domestic	www.ti.com/sc/jpic
Internet	www.tij.co.jp/pic

Asia		
Phone		
International	+886-2-23786800	
Domestic	Local Access Code	Tl Number
Australia	1-800-881-011	-800-800-1450
China	10810	-800-800-1450
Hong Kong	800-96-1111	-800-800-1450
India	000-117	-800-800-1450
Indonesia	001-801-10	-800-800-1450
Korea	080-551-2804	-
Malaysia	1-800-800-011	-800-800-1450
New Zealand	000-911	-800-800-1450
Philippines	105-11	-800-800-1450
Singapore	800-0111-111	-800-800-1450
Taiwan	080-006800	-
Thailand	0019-991-1111	-800-800-1450
Fax	886-2-2378-6808	
Email	tiasia@ti.com	
internet	wwwi.ti.com/sc/apic	

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

[^1]: \dagger Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

[^2]: \dagger Current sense

[^3]: LinBiCMOS is a trademark of Texas Instruments Incorporated.
 PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association).

[^4]: LinBiCMOS and $\mathrm{P}^{2} \mathrm{C}$ are trademarks of Texas Instruments Incorporated.
 PC Card and CardBus are trademarks of PCMCIA (Personal Computer Memory Card International Association).

[^5]: \ddagger Switching Characteristics are with $\mathrm{C}_{\mathrm{L}}=150 \mu \mathrm{~F}$.

[^6]: PowerPAD is a trademark of Texas Instruments incorporated.

[^7]: \dagger Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

[^8]: \dagger Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

[^9]: \dagger Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

