

Power Management Products

Power Management Products

2000

Analog and Mixed Signal

General Information (Vol. 1)	1
Linear Voltage Regulators	2
Shunt Regulators	3
Precision Virtual Grounds	4
Mechanical Data	5
General Information (Vol. 2)	6
Processor PS Controllers	7
Switching PS and DC/DC Converters	8
MOSFET Drivers	9
Supervisors	10
Mechanical Data	11
General Information (Vol. 3)	12
Power Distribution Switches	13
LED Drivers	14
Voltage Rail Splitters	15
Special Functions	16
Mechanical Data	17

Power Management Products Data Book

Volume 3

Literature Number: SLVD005

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

Printed in U.S.A. by Von Hoffmann Graphics Owensville, Missouri

INTRODUCTION

The Texas Instruments 1999 Power Management Products Data Book Set showcases TI's broad portfolio of analog components for power supply designs. Featured in this set are most of the components previously found in the 1996 Power Supply Circuits Data Book, the new and exciting power management products introduced since then, and other components useful for power supply designs.

The set consists of three product area specific volumes:

- Power Management Products, Volume 1:
 - Linear voltage regulators
 - Shunt regulators
 - Voltage references
 - Precision virtual grounds
- Power Management Products, Volume 2:
 - Processor power supply controllers (DSP and CPU)
 - Switching power supply controllers and DC/DC charge pump converters
 - MOSFET drivers
 - Supervisory circuits
- Power Management Products, Volume 3:
 - Power distribution switches
 - LED drivers
 - Voltage Rail splitters
 - Special Functions

More than a collection of data sheets, this data book set is a tool for locating the best power management components for a successful design effort. It is structured to help you quickly find the devices best suited to your application. The set contains:

- An alphanumeric index at the beginning of each book to make finding known part numbers simple.
- Product selection guides with a condensed view of parametric information organized to help you
 choose the devices that most closely fit your needs.
- Key specifications and features presented for easy comparison.
- A section on mechanical specifications for all packages used with Texas Instruments power management devices.

While this data book offers design and specification data only for power management products, complete technical data for any TI semiconductor product is available from your nearest TI Field Sales Office, local authorized TI distributor, or from the TI web site at:

http://www.ti.com/sc

We believe you will find the 1999 Power Management Data Book set to be a valuable addition to your collection of technical literature.

vi

General Information (Vol. 1)	1
Linear Voltage Regulators	2
Shunt Regulators	3
Precision Virtual Grounds	4
Mechanical Data	5
General Information (Vol. 2)	6
Processor PS Controllers	7
Switching PS and DC/DC Converters	8
MOSFET Drivers	9
Supervisors	10
Mechanical Data	11
General Information (Vol. 3)	12
Power Distribution Switches	13
LED Drivers	14
Voltage Rail Splitters	15
Special Functions	16
Mechanical Data	17

General Information (Vol. 3)

12–2

ALPHANUMERIC INDEX

LM237 2–409	TL7770–5 10–139
LM337 2–409	TL7770–12 10–139
LT1054 8–171	TL–SCSI285 2–527
SG2524 8–97	TLC5904 14–3
SG3524 8–97	TLC7701 10–9
TL317 2–415	TLC7725 10–9
TL430 3–3	TLC7703 10–9
TL431 3–9	TLC7733 10–9
TL431A 3–9	TLC7705 10–9
TL494	TLE2425 4–3
TL494A	TLE2425Y 4–3
TL499A	TLE2426 15–3
TL594 8–137	TLE2426Y 15–3
TL598 8–149	TLV431 3–45
TL1431 3–27	TLV431A
TL750L05 2–421	TLV2217–33 2–461
TL750L08	TPS1100 13–3
TL750L10	TPS1100Y 13–3
TL750L12	TPS1101 13–13
TL750M05 2–429	TPS1101Y 13–13
TL750M08 2–429	TPS1120 13–23
TL750M10 2–429	TPS1120Y 13–23
TL750M12 2–429	TPS2010 13–35
TL751L05 2–421	TPS2010A 13–53
TL751L08	TPS2010Y 13–35
TL751L10 2–421	TPS2011 13–35
TL751L12	TPS2011A 13–53
TL751M05 2–429	TPS2012 13–35
TL751M08 2–429	TPS2012A 13–53
TL751M10 2–429	TPS2013 13–35
TL751M12 2–429	TPS2013A 13–53
TL780–05 2–441	TPS2014 13–73
TL780–12 2–441	TPS2015 13–73
TL780–15 2–441	TPS2020 13–93
TL783 2–449	TPS2021 13–93
TL2217–285 2–533	TPS2022 13–93
TL2218–285 16–7	TPS2023 13–93
TL2218–285Y 16–7	TPS2024 13–93
TL5001 8–79	TPS2030 13–115
TL5001A 8–79	TPS2031 13–115
TL5001Y 8–79	TPS2032 13–115
TL7700 10–101	TPS2033 13–115
TL7702A 10–91	TPS2034 13–115
TL7702B 10–113	TPS2041 13–137
TL7705A 10–91	TPS2042 13–157
TL7705B 10–113	TPS2043 13–179
TL7709A 10–91	TPS2044 13–203
TL7712A 10–91	TPS2045 13–227
TL7715A 10–91	TPS2046 13–247
TL7726 16–3	TPS2047 13–267
TL7757 10–123	TPS2048 13–289
TL7759 10–133	TPS2051 13–137

-

ALPHANUMERIC INDEX

TPS2052 13–157	TPS3707–50 10–53
TPS2053 13–179	TPS3801J25 10–63
TPS2054 13–203	TPS3801L30 10–63
TPS2055 13–227	TPS3801K33 10–63
TPS2056 13–247	TPS3801150 10–63
TPS2057 13–267	TPS3809J25 10–3
TPS2058 13–289	TPS3809L30 10–3
TPS2100	TPS3809K33 10–3
TPS2100 13–311	TPS3809I50 10–3
TPS2205 13–317	TPS3820–25 10–3
TPS2206 13–349	TPS3820–30 10–71
	TPS3820–33 10–71
TPS2214 13-413	TPS3823–25 10–71
TPS2216 13–437	TPS3823–30 10–71
TPS2811 9–3	TPS3823–33 10–71
TPS2812 9–3	TPS3823–50 10–71
TPS2813 9–3	TPS3824–25 10–71
TPS2814 9–3	TPS3824–30 10–71
TPS2815 9–3	TPS3824–33 10–71
TPS2816 9–31	TPS3824–50 10–71
TPS2817 9–31	TPS3825–25 10–71
TPS2818 9–31	TPS3825–30 10–71
TPS2819 9–31	TPS3825–33 10–71
TPS2828 9–31	TPS3825–50 10–71
TPS2829 9–31	TPS3828–25 10–71
TPS2830 9–49	TPS3828–30 10–71
TPS2831 9–49	TPS3828–33 10–71
TPS2832 9–61	TPS3828–50 10–71
TPS2833 9–61	TPS5102 7–3
TPS3123J12 10–21	TPS5103 7–33
TPS3123G15 10–21	TPS5211 7–69
TPS3123J18 10–21	TPS5510 10–79
TPS3124J12 10–21	TPS5511 10–85
TPS3124G15 10–21	TPS5615 7–99
TPS3124J18 10–21	TPS5618 7–99
TPS3125J12 10–21	TPS5625 7–99
TPS3125G15 10–21	TPS5633 7–99
TPS3125J18 10–21	TPS5210 7–123
TPS3125L30 10–21	TPS5602 7–149
TPS3305–18 10–33	TPS56100
TPS3305–25 10–33	TPS60100 8–3
TPS3305–33 10–33	TPS60101 8–23
TPS3307–18 10–43	TPS60110 8–43
TPS3307–25 10–43	TPS60111 8–61
TPS3307–23 10–43	TPS7101Q 2–29
TPS3705–30 10–53	TPS7101Q 2–29
TPS3705–30 10–53	TPS71017
TPS3705–50 10–53	
TPS3707–25 10–53	
TPS3707–30 10–53	TPS7133QPWP 2–3
TPS3707–33 10–53	TPS7148Q 2–29

TPS7148Y	2–29	TPS76428	2–247
TPS7150Q	2-29	TPS76430	
TPS7150Y		TPS76433	2-247
TPS71H01Q		TPS76501	
TPS71H33Q		TPS76515	
TPS71H48Q		TPS76518	2-261
TPS71H50Q		TPS76525	
	2–113	TPS76527	2-201
	2–113	TPS76528	2-201
	2–113	TPS76530	
	2–113 2–113	TPS76533	2-201
	2-113	TPS76550	
	2–113	TPS76601	2-277
	2-113	TPS76615	2-277
	2–113	TPS76618	
	2–113	TPS76625	2–277
	2-113	TPS76627	
TPS7248Q	2–113	TPS76628	2–277
TPS7248Y	2–113	TPS76630	2–277
TPS7250Q	2–113	TPS76633	2–277
TPS7250Y	2–113	TPS76650	2–277
TPS7301Q	2145	TPS76701Q	2–293
TPS7325Q	2–145	TPS76715Q	2–293
TPS7330Q	2–145	TPS76718Q	2293
TPS7333Q	2–145	TPS76725Q	2–293
TPS7348Q	2-145	TPS76727Q	2–293
TPS7350Q		TPS76728Q	
TPS73HD301		TPS76730Q	
	2–185	TPS76733Q	
TPS73HD325		TPS76750Q	
	2-211	TPS767D301	
	2-211	TPS767D318	
	2-211	TPS767D325	2-311
	2-211	TPS76801Q	
	2-211	TPS76815Q	
TPS76130	· ·	TPS76818Q	
TPS76132		TPS76825Q	
		TPS76827Q	
TPS76138		TPS76828Q	
TPS76150		TPS76830Q	2-329
TPS76301		TPS76833Q	
TPS76316	• ·	TPS76850Q	
TPS76318		TPS76901	
TPS76325		TPS76912	
TPS76327		TPS76915	2-345
TPS76328	-	TPS76918	2–345
TPS76330		TPS76925	
TPS76333		TPS76927	
TPS76338		TPS76928	
TPS76350	2–231	TPS76930	2–345
TPS76425	2–247	TPS76933	2–345
TPS76427	2–247	TPS76950	2–345

TPS77001		2–359
TPS77012	· • • • • • • • • • • • • • • • • • • •	2–359
TPS77015		2–359
TPS77018		2–359
TPS77025		2–359
TPS77027		2–359
TPS77028		2–359
TPS77030		2–359
TPS77033		2–359
TPS77050		2–359
TPS77501		2–373
TPS77515		2–373
TPS77518		2–373
TPS77525		2–373
TPS77533		2–373
TPS77601		2–373
TPS77615		2–373
TPS77618		2–373
TPS77625		2–373
TPS77633		2–373
TPS77701		2–391
TPS77715		2–391
TPS77718		2–391
TPS77725		2–391
TPS77733		2–391
TPS77801		2–391
TPS77815		2–391
TPS77818	·····	2–391
TPS77825		2–391
TPS77833		2–391
μΑ723		2-467
•		2–479
μ A 7806		2–479

μ A 7808 .		2-479
μ A 7810 .		2–479
μA7812 .		2-479
μA7815 .		2–479
μ <mark>A7818</mark> .		2–479
μ A7824 .		2–479
μ A78L02		2–493
μ A78L05		2–493
μ A78L06		2–493
μ A78L08		2–493
μ A78L09		2–493
μ A78L10		2–493
μ A78L12		2–493
μ A78L15		2–493
μΑ78Μ05		2–505
μΑ78Μ06		2–505
μΑ78Μ08		2–505
μΑ78Μ09		2–505
μ A78M1 0		2–505
μ A 78M12		2–505
μΑ79Μ05	· · · · · · · · · · · · · · · · · · ·	2–517
μΑ79Μ06		2–517
μΑ79Μ08		2–517
µA79M12	••••••	2-517
μA79M15		2–517
UC2842	•••••••••••••••••••••••••••••••••••••••	8-159
UC2843	••••••	8–159
UC2844		8–159
UC2845		8-159
UC3842		8-159
UC3843	••••••	8-159
UC3844		8-159
UC3845		8–159

,

Device	V _O (typ) (V)	IO (max) (mA)	V _{do} (typ) (V)	V _{do} (max) (V)	^l q (typ) (mA)	Tolerance (%)	V _{IN} (max) (V)	Shutdown	svs	Description	Page No.
TPS76912	1.224	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2345
TPS77012	1.224	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS76515	1.5	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261
TPS76615	1.5	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-277
TPS76715	1.5	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2–293
TPS76815	1.5	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2-329
TPS76915	1.5	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS77015	1.5	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS77515	1.5	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-373
TPS77615	1.5	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-373
TPS77715	1.5	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2391
TPS77815	1.5	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-391
TPS76316	1.6	150	0.36	0.6	0.085	4	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS76318	1.8	150	0.3	0.5	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS73HD318	1.8	750	0.353		0.55	2	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2-185
TPS76518	1.8	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261
TPS76618	1.8	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-277
TPS76718	1.8	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS767D318	1.8	1000	0.35	0.825	0.085	2	10	Yes	Yes	Dual, Fixed, LDO, Positive Output	2-311
TPS76818	1.8	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2-329
TPS76918	1.8	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS77018	1.8	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TPS77518	1.8	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-373
TPS77718	1.8	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2-391
TPS77618	1.8	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-373
TPS77818	1.8	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2–391
TPS76325	2.5	150	0.36	0.6	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS71025	2.5	500	0.33	0.5	0.29	2	10	Yes	No	Fixed, LDO, Positive Output	2–59
TPS7225	2.5	250			0.18	2	10	Yes	No	Fixed, LDO, Positive Output	2-113
TPS7325	2.5	500	0.27	0.6	0.34	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-145
TPS73HD325	2.5	750	0.353		0.55	2	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2-185
TPS76425	2.5	150	0.36	0.6	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-247
TPS76525	2.5	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-261

FIXED-VOLTAGE LOW DROPOUT (LDO) VOLTAGE REGULATORS

LINEAR VOLTAGE REGULATORS SELECTION GUIDE 1

12--7

ł

		FIX	ED-VO		ie lo	W DROP	OUT (L	.DO) VOL	TAGE	REGULATORS (continued)	
Device	VO (typ) (V)	lO (max) (mA)	V _{do} (typ) (V)	V _{do} (max) (V)	lq (typ) (mA)	Tolerance (%)	V _{IN} (max) (V)	Shutdown	svs	Description	Page No.
TPS76625	2.5	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–277
TPS76725	2.5	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2–293
TPS767D325	2.5	1000	0.35	0.825	0.085	2	10	Yes	Yes	Dual, Fixed, LDO, Positive Output	2–311
TPS76825	2.5	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2–329
TPS76925	2.5	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–345
TPS77025	2.5	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–359
TPS77525	2.5	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2–373
TPS77625	2.5	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2–373
TPS77725	2.5	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2–391
TPS77825	2.5	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2-391
TPS76327	2.7	150	0.36	0.6	0.085	3.75	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-231
TPS76427	2.7	150	0.36	0.6	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–247
TPS76527	2.7	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–261
TPS76627	2.7	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–277
TPS76727	2.7	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2–293
TPS76827	2.7	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2–329
TPS76927	2.7	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–345
TPS77027	2.7	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–359
TPS76928	2.784	100	0.122	0.245	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–345
TPS77028	2.784	50	0.06	0.125	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–359
TPS7228	2.8	250			0.18	2	10	Yes	No	Fixed, LDO, Positive Output	2–113
TPS76328	2.8	150	0.35	0.55	0.085	3.75	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–231
TPS76428	2.8	150	0.36	0.6	0.085	3.8	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–247
TPS76528	2.8	150	0.19	0.33	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–261
TPS76628	2.8	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–277
TPS76728	2.8	1000	0.5	0.825	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS76828	2.8	1000	0.5	0.825	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2-329
TPS7230	3	250	0.39	0.9	0.18	2	10	Yes	No	Fixed, LDO, Positive Output	2–113
TPS7330	3	500	0.052	0.075	0.34	2	10	Yes	Yes	Fixed, LDO, Positive Output	2–145
TPS76030	3	50	0.12	0.18	0.85	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–211
TPS76130	3	100	0.17	0.28	2.6	3.6	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–221
TPS76330	3	150	0.35	0.55	0.085	3.75	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–231
TPS76430	3	150	0.36	0.6	0.085	3.8	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–247

LINEAR VOLTAGE REGULATORS SELECTION GUIDE

1

TEXAS INSTRUMENTS POST OFFICE BOX 655500* DALLAS, TEXAS 72265

12-8

Device	Vo (typ) (V)	IO (max) (mA)	V _{do} (typ) (V)	V _{do} (max) (V)	lq (typ) (mA)	Tolerance (%)	V _{IN} (max) (V)	Shutdown	svs	Description	Page N
TPS76530	3	150	0.16	0.28	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–261
TPS76630	3	250	0.31	0.54	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–277
TPS76730	3	1000	0.45	0.675	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS76830	3	1000	0.45	0.675	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2–329
TPS77030	3	50	0.048	0.1	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–35
TPS76930	3.09	100	0.115	0.23	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–34
TPS76032	3.2	50	0.12	0.18	0.85	3.1	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-21
TPS76132	3.2	100	0.17	0.28	2.6	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–22
TPS7133QPWP	3.3	500	0.047	0.06	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2–3
TPS7133	3.3	500	0.047	0.06	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2–29
TPS71H33	3.3	500	0.047	0.06	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2–7
TPS7233	3.3	250	0.14	0.18	0.155	2	10	Yes	No	Fixed, LDO, Positive Output	2–11
TPS7333	3.3	500	0.044	0.06	0.34	2	10	Yes	Yes	Fixed, LDO, Positive Output	2–14
TPS76033	3.3	50	0.12	0.18	0.85	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-21
FPS76133	3.3	100	0.17	0.28	2.6	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-22
TPS76333	3.3	150	0.3	0.5	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–23
TPS76433	3.3	150	0.3	0.5	0.085	3.7	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-24
TPS76533	3.3	150	0.14	0.24	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–26
TPS76633	3.3	250	0.23	0.4	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-27
TPS76733	3.3	1000	0.35	0.575	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2–29
TPS76833	3.3	1000	0.35	0.575	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2–32
TPS76933	3.3	100	0.098	0.2	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–34
TPS77033	3.3	50	0.048	0.1	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–35
TPS77533	3.3	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2–37
TPS77633	3.3	500	0.169	0.287	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2–37
TPS77733	3.3	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Fixed, LDO, Positive Output	2–39
TPS77833	3.3	750	0.26	0.427	0.085	2	13.5	Yes	No	Fixed, LDO, Positive Output	2–39
TLV221733	3.3	500	0.4	0.5	19	1	12	No	No	LDO	2–46
TPS76038	3.8	50	0.12	0.18	0.85	2.6	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-21
TPS76138	3.8	100	0.17	0.28	2.6	3	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–22
TPS76338	3.8	150	0.36	0.6	0.085	3.5	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–23
TPS7148	4.85	500	0.03	0.037	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2-2
TPS71H48	4.85	500	0.03	0.047	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2-7

FIXED-VOLTAGE LOW DROPOUT (LDO) VOLTAGE REGULATORS (continued)

1

LINEAR VOLTAGE REGULATORS SELECTION GUIDE

I

										nedocarono (continued)	
Device	Vo (typ) (V)	lO (max) (mA)	V _{do} (typ) (V)	V _{do} (max) (V)	lq (typ) (mA)	Tolerance (%)	V _{IN} (max) (V)	Shutdown	svs	Description	Page No.
TPS7248	4.85,	250	0.09	0.1	0.155	2	10	Yes	No	Fixed, LDO, Positive Output	2–113
TPS7348	4.85	500	0.028	0.037	0.34	2	10	Yes	Yes	Fixed, LDO, Positive Output	2145
TPS7150	5	500	0.027	0.033	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2–29
TPS71H50	5	500	0.027	0.033	0.285	2	10	Yes	No	Fixed, LDO, Positive Output	2–75
TPS7250	5	250	0.76	0.85	0.155	2	10	Yes	No	Fixed, LDO, Positive Output	2-113
TPS7350	5	500	0.027	0.035	0.34	2	10	Yes	Yes	Fixed, LDO, Positive Output	2–145
TPS76050	5	50	0.12	0.18	0.85	2	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2211
TPS76150	5	100	0.17	0.28	2.6	2.8	16	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-221
TPS76350	5	150	0.18	0.3	0.085	4	10	Yes	No	Fixed, LDO, Positive Output, SOT-23	2–231
TPS76550	5	150	0.085	0.15	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2–261
TPS76650	5	250	0.14	0.25	0.038	3	13.5	Yes	No	Fixed, LDO, Positive Output	2-277
TPS76750	5	1000	0.23	0.38	0.085	2	10	Yes	Yes	Fixed, LDO, Positive Output	2-293
TPS76850	5	1000	0.23	0.38	0.085	2	10	Yes	No	Fixed, LDO, Positive Output	2329
TPS76950	5	100	0.071	0.17	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-345
TPS77050	5	50	0.035	0.085	0.017	3	13.5	Yes	No	Fixed, LDO, Positive Output, SOT-23	2-359
TL750L05	5	150	0.2	0.6	10	4	26	No	No	Fixed, LDO, Positive Output	2-421
TL750M05	5	750	0.5	0.6	60	2	26	No	No	Fixed, LDO, Positive Output	2-429
TL751L05	5	150	0.2	0.6	10	4	26	Yes	No	Fixed, LDO, Positive Output	2-421
TL751M05	5	750	0.5	0.6	60	2	26	Yes	No	Fixed, LDO, Positive Output	2-429
TL750L08	8	150	0.2	0.7	10	4	26	No	No	Fixed, LDO, Positive Output	2-421
TL750M08	8	750	0.5	0.7	60	2	26	No	No	Fixed, LDO, Positive Output	2-429
TL751L08	8	150	0.2	0.7	10	4	26	Yes	No	Fixed, LDO, Positive Output	2-421
TL751M08	8	750	0.5	0.7	60	2	26	Yes	No	Fixed, LDO, Positive Output	2-429
TL750L10	10	150	0.2	0.8	10	4	26	No	No	Fixed, LDO, Positive Output	2-421
TL750M10	10	750	0.5	0.8	60	2	26	No	No	Fixed, LDO, Positive Output	2–429
TL751L10	10	150	0.2	0.8	10	4	26	Yes	No	Fixed, LDO, Positive Output	2-421
TL751M10	10	750	0.5	0.8	60	2	26	Yes	No	Fixed, LDO, Positive Output	2-429
TL750L12	12	150	0.2	0.9	10	4	26	No	No	Fixed, LDO, Positive Output	2-421
TL750M12	12	750	0.5	0.9	60	2	26	No -	No	Fixed, LDO, Positive Output	2–429
TL751L12	12	150	0.2	0.9	10	4	26	Yes	No	Fixed, LDO, Positive Output	2-421
TL751M12	12	750	0.5	0.9	60	2	26	Yes	No	Fixed, LDO, Positive Output	2429

FIXED-VOLTAGE LOW DROPOUT (LDO) VOLTAGE REGULATORS (continued)

LINEAR VOLTAGE REGULATORS SELECTION GUIDE

12-10

FOST OFFICE BOX 655308* DALLAS, TEXAS 75265

Device	VO Adjustable (nom) (V)	lo (max) (mA)	Vdo (typ) (V)	V _{do} (max) (V)	lq (typ) (mA)	Tolerance (%)	V _{IN} (max) (V)	Shutdown	svs	Description	Page No.
TPS76501	1.2 - 5.5	150	0.16	0.33	0.038	3	13.5	Yes	No	Adjustable, LDO, Positive Output	2–261
TPS76601	1.2 - 5.5	250	0.23	0.54	0.038	3	13.5	Yes	No	Adjustable, LDO, Positive Output	2–277
TPS76701	1.5 - 5.5	1000	0.5	0.825	0.085	2	10	Yes	Yes	Adjustable, LDO, Positive Output	2–293
TPS767D301	1.2-5.5	1000	0.35	0.825	0.085	2	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2–311
TPS76801	1.5 - 5.5	1000	0.5	0.825	0.085	2	10	Yes	No	Adjustable, LDO, Positive Output	2329
TPS76901	1.2 - 5.5	100	0.071	0.245	0.017	3	13.5	Yes	No	Adjustable, LDO, Positive Output, SOT-23	2–345
TPS77001	1.2 - 5.5	50	0.035	0.125	0.017	3	13.5	Yes	No	Adjustable, LDO, Positive Output, SOT-23	2–359
TPS77501	1.2 - 5.5	500	0.169	0.287	0.085	2	13.5	Yes	Yes	Adjustable, LDO, Positive Output	2–373
TPS77601	1.2 - 5.5	500	0.169	0.287	0.085	2	13.5	Yes	No	Adjustable, LDO, Positive Output	2–373
TPS77701	1.2 - 5.5	750	0.26	0.427	0.085	2	13.5	Yes	Yes	Adjustable, LDO, Positive Output	2-391
TPS77801	1.2 - 5.5	750	0.26	0.427	0.085	2	13.5	Yes	No	Adjustable, LDO, Positive Output	2391
TPS76301	1.5 - 6.5	150	0.6	0.6	0.085	3	10	Yes	No	Adjustable, LDO, Positive Output, SOT-23	2-231
TPS7101	1.2 - 9.75	500	0.052	0.085	0.285	3	10	Yes	No	Adjustable, LDO	2–29
TPS71H01	1.2 - 9.75	500	0.052	0.085	0.285	3	10	Yes	No	Adjustable, LDO	2–75
TPS7201	1.2 - 9.75	250	0.16	0.27	0.155	3	10	Yes	No	Adjustable, LDO	2–113
TPS7301	1.2 - 9.75	500	0.052	0.085	0.34	3	10	Yes	Yes	Adjustable, LDO	2145
TPS73HD301	1.2 - 9.75	750	0.353	0.6	1.1	3	10	Yes	Yes	Adjustable, Dual, Fixed, LDO, Positive Output	2-185
TL317	1.2 - 32	100	2.5	3	1.5	4	35	No	No	Adjustable	2-415
μA723	2 – 37	150		3	2.3	1	40	No	No	Adjustable	2467
TL783	1.25 – 125	700	10	15	15	6	125	No	No	Adjustable	2449
LM237	-1.237	1500	· · · · ·	· · · · ·	2.2			No	No	3-Terminal Adjustable Regulator	2-409
LM337	-1.237	1500	,,		2.2			No	NO	3-Terminal Adjustable Regulator	2-409

ADJUSTABLE OUTPUT-VOLTAGE REGULATORS

1

Device	V _O (typ) (V)	IO (max) (mA)	V _{do} (typ) (V)	V _{do} (max) (V)	lq (typ) (mA)	Tolerance (%)	VIN (max) (V)	Shutdown	svs	Description	Page No.
μA78L02A	2	100	1.7	3	3.6	5	20	No	No	Fixed, Positive Output	2–493
TL-SCSI285	2.85	500		0.7	26	1	5.5	No		Fixed Reg. for SCSI Active Termination	2–527
TL2217-285	2.85	500		1	26	1.5	5.5	No		Fixed Reg. for SCSI Active Termination	2–533
μA7805	5	1500	2	3	4.2	4	25	No	No	Fixed, Positive Output	2-479
μA78L05	5	100	2	3	3.8	10	20	No	No	Fixed, Positive Output	2–493
μA78L05A	5	100	1.7	3	3.8	5	20	No	No	Fixed, Positive Output	2-493
μA78M05	5	500	2	3	4.5	4	25	No	No	Fixed, Positive Output	2–505
TL780-05	5	1500	2	3	5	1	25	No	No	Fixed, Positive Output	2-441
μA7806	6	1500	2	3	4.3	4	25	No	No	Fixed, Positive Output	2-479
μA78L06	6	100	1.7	3	3.9	10	20	No	No	Fixed, Positive Output	2-493
μA78L06A	6	100	1.7	3	3.9	5	20	No	No	Fixed, Positive Output	2-493
μA78M06	6	500	2	3	4.5	4	25	No	No	Fixed, Positive Output	2–505
μA7808	8	1500	2.5	3	4.3	4	25	No	No	Fixed, Positive Output	2-479
μA7885	8	1500	2	3	4.3	4	25	No	No	Fixed, Positive Output	2-479
μA78L08	8	100	1.7	3	4	10	23	No	No	Fixed, Positive Output	2-493
μA78L08A	8	100	1.7	3	4	5	23	No	No	Fixed, Positive Output	2-493
μA78M08	8	500	2.5	3	4.6	4	25	No	No	Fixed, Positive Output	2505
μA78L09	9	100	1.7	3	4.1	10	24	No	No	Fixed, Positive Output	2–493
μA78L09A	9	100	1.7	3	4.1	5	24	No	No	Fixed, Positive Output	2–493
μA78M09	9	500	2.5	3	4.6	4	26	No	No	Fixed, Positive Output	2–505
μ A 7810	10	1500	2.5	3	4.3	4	28	· No	No	Fixed, Positive Output	2-479
μA78L10	10	100	1.7	3	4.2	10	25	No	No	Fixed, Positive Output	2–493
μA78L10A	10	100	1.7	3	4.2	5	25	No	No	Fixed, Positive Output	2–493
μA78M10	10	500	2.5	3	4.6	4	28	No	No	Fixed, Positive Output	2–505
TL780-12	12	1500	2.5	3	5.5	1	30	No	No	Fixed, Positive Output	2441
μA7812	12	1500	2.5	3	4.3	4	30	No	No	Fixed, Positive Output	2-479
μA78L12	12	100	1.7	3	4.3	10	27	No	No	Fixed, Positive Output	2–493
μA78L12A	12	100	1.7	3	4.3	5	27	No	No	Fixed, Positive Output	2–493
μA78M12	12	500	2.5	3	4.8	4	30	No	No	Fixed, Positive Output	2505
TL78015	15	1500	2.5	3	5.5	1	30	No	No	Fixed, Positive Output	2–441
μ A 7815	15	1500	2.5	3	4.4	4	30	No	No	Fixed, Positive Output	2-479
μA78L15	15	100	1.7	3	4.6	10	30	No	No	Fixed, Positive Output	2493
µA78L15A	15	100	1.7	3	4.6	5	30	No	No	Fixed, Positive Output	2-493

FIXED POSITIVE-OUTPUT VOLTAGE VOLTAGE REGULATORS

LINEAR VOLTAGE REGULATORS SELECTION GUIDE

1

TEXAS INSTRUMENTS POST OFFICE BOX 855309 DALLAS, TEXAS 75285

Device	V _O (typ) (V)	lO (max) (mA)	V _{do} (typ) (V)	V _{do} (max) (V)	lq (typ) (mA)	Tolerance (%)	V _{IN} (max) (V)	Shutdown	svs	Description	Page No.
μA78M15	15	500	2.5	3	4.8	4	30	No	No	Fixed, Positive Output	2–505
μA7818	18	1500	3	3	4.5	4	33	No	No	Fixed, Positive Output	2-479
μA78M20	20	500	3	3	4.9	4	35	No	No	Fixed, Positive Output	2-505
μA7824	24	1500	3	3	4.6	4	38	No	No	Fixed, Positive Output	2-479
μA78M24	24	500	3	3	5	4	38	No	No	Fixed, Positive Output	2–505

FIXED NEGATIVE-OUTPUT VOLTAGE VOLTAGE REGULATORS

Device	VO (typ) (V)	lO (max) (mA)	V _{do} (typ) (V)	V _{do} (max) (V)	lq (typ) (mA)	Tolerance (%)	V _{IN} (max) (V)	Shutdown	svs	Description	Page No.
μA79M05	-5	500	2	3	1	4	-25	No	No	Fixed, Negative Output	2517
μA79M06	-6	500	2	3	1	4	-25	No	No	Fixed, Negative Output	2–517
μA79M08	-8	500	2.5	3	1	4	-25	No	No	Fixed, Negative Output	2-517
μA79M12	-12	500	2.5	3	1.5	4	-30	No	No	Fixed, Negative Output	2–517
μA79M15	-15	500	2.5	3	1.5	4	-30	No	No	Fixed, Negative Output	2–517
μ A79M 20	-20	500	3	3	1.5	4	-35	No	No	Fixed, Negative Output	2517
μA79M24	-24	500	3	3	1.5	4	-38	No	No	Fixed, Negative Output	2–517

1

TEXAS INSTRUMENTS POST OFFICE BOX 665302° DALLAS, TEXAS 72265

SHUNT REGULATORS

Device	V _{ref} (V)	lz (min) (μΑ)	IZ (max) (mA)	V _O (min) (V)	V _O (max) (V)	Tolerance (%)	Vj (max) (V)	Temp Coeff (typ) (ppm/°C)	Description	Page No.
TLV431A	1.24	100	15	Vref	6	1	6	46	Adjustable Shunt	3-45
TL1431	2.5	1000	100	Vref	36	0.4	36	30	Adjustable Shunt	3-27
TL431	2.5	1000	100	Vref	-36	2	36	30	Adjustable Shunt	3–9
TL431A	2.5	1000	100	Vref	36	1	36	30	Adjustable Shunt	3–9
TLV431	2.5	1000	100	Vref	36	2	36	30	Adjustable Shunt	3-45
TL430	2.75	2000	100	Vref	30	9	30	120	Adjustable Shunt	3–3

PRECISION VIRTUAL GROUNDS

SHUNT REGULATOR and PRECISION VIRTUAL GROUND SELECTION GUIDE

Device	lO (typ) (mA)	Output Regulation (typ) (μΑ)	V _O (min) (V)	V _O (max) (V)	Vj (max) (V)	Temp Coeff (typ) (ppm/°C)	Description	Page No.
TLE2425	20	-45 - 15	2.48	2.52	40	20	Precision Virtual Ground	4–3

12-14

Device	Droop Comp	ОСР	Output Drive Current (A)	Outputs	OVP	Power Good	Soft Start	UVLO	S. ZZ	V _O (typ) (V)	V _{ref} (tol) (±%)	Description	Page No.
TPS5102	No	Yes	1.5	2	No	No	Yes	Yes	4.5 – 25	1.2 – Vcc	1.5	Notebook	7–3
TPS5103	No	Yes	1.5	1	No	No	Yes	Yes	4.5 – 25	1.2 – Vcc	1.5	Multipurpose	7–33
TPS5210	Yes	Yes	2	1	Yes	Yes	Yes	Yes	5, 12	pgm 1.3 to 3.5	1	Pentium class	7–123
TPS5211	Yes	Yes	2.4	1	Yes	Yes	Yes	Yes	5, 12	pgm 1.3 to 3.5	1.5	Pentium class	7–69
TPS5602	No	Yes	1	2	No	No	Yes	Yes	4.5 – 25	1.2 – V _{CC}	2	DSP	7–149
TPS56100	Ňo	Yes	2	1	Yes	Yes	Yes	Yes	5	0.9 – V _{CC}	1.5	DSP	7–171
TPS5615	No	Yes	2	1	Yes	Yes	Yes	Yes	5, 12	1.5	1	DSP	7–99
TPS5618	No	Yes	2	1	Yes	Yes	Yes	Yes	5, 12	1.8	1	DSP	7–99
TPS5625	No	Yes	2	1	Yes	Yes	Yes	Yes	5, 12	2.8	1	DSP	7–99
TPS5633	No	Yes	2.4	1	Yes	Yes	Yes	Yes	5, 12	3.3	1	DSP	7–99

PROCESSOR POWER SUPPLY CONTROLLERS

1

				01				001111	/ 6 6 6 7 1 1 1				
Device	SHDN	Pulse -by- Pulse I _{sense}	V _{IN} Range (VDC)	Output Type	Output Current (mA)	Freq (max) (kHz)	Operating/ Standby Current (mA)	Reference Voltage (V)	V _{ref} Tol (%)	Duty Cycle (max) (%)	UVLO	Description	Page No.
SG2524	Yes	No	8-40	Single Switch	100	500	NA/8	5	4	90	No	Voltage-Mode PWM	8-97
SG3524	Yes	No	8–40	Single Switch	100	500	NA/8	5	8	90	No	Voltage-Mode PWM	8-97
TL494	No	No	740	Single Switch	200	300	7.5/6	5	5	90	No	Voltage-Mode PWM	8–111
TL497A	Yes	No	4.512	Single Switch	500	50	11/6	1.2	5		No	Fixed On-Time Voltage-Mode	8–121
TL499A	No	No	1.1–35	Single Switch	500	40	1.8/NA	1.26	5		No	Fixed On-Time Voltage-Mode	8–129
TL594	No	No	7–40	Single Switch	200	300	12.4/9	5	1	90	Yes	Voltage-Mode PWM	8–137
TL598	No	No	7-40	Totem Pole	-250	300	15/NA	5	1	90	Yes	Voltage-Mode PWM	8–149
UC2842	No	Yes	30	Totem Pole	-200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8–159
UC2843	No	Yes	30	Totem Pole	-200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8–159
UC2844	No	Yes	30	Totem Pole	-200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8–159
UC2845	No	Yes	30	Totem Pole	200	500	11/NA	5	1	97	Yes	Current-Mode PWM	8–159
UC3842	No	Yes	30	Totem Pole	-200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8–159
UC3843	No	Yes	30	Totem Pole	200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8–159
UC3844	No	Yes	30	Totem Pole	200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8–159
UC3845	No	Yes	30	Totem Pole	-200	500	11/NA	5	2	97	Yes	Current-Mode PWM	8–159
TL5001	No	No	3.6-40	Single Switch	20	400	1.1/1	1	5	100	Yes	Voltage-Mode PWM	8–79
TL5001A	No	No	3.6-40	Single Switch	20	400	1.1/1	1	3	100	Yes	Voltage-Mode PWM	8–79
LT1054	No	No	3.6–15	Totem Pole	±100	2000	3.5/3.1	1.25	2.5	100	Yes	Dual Channel- Mode PWM	8–171

SWITCHING POWER SUPPLY CONTROLLERS

SWITCHING POWER SUPPLY CONTROLLER and DC/DC CHARGE PUMP CONVERTER SELECTION GUIDE

12-16

TEXAS INSTRUMENTS POST OFFICE BOX 665303* DALLAS, TEXAS 75265

Device	SHDN	VO (typ) (V)	Tolerance (%)	VIN Range (VDC)	Output Current (mA)	Freq (max) (kHz)	Quiescent Current (µA)	Shut- down Current (μΑ)	UVLO	Description	Page No.
TPS60100	Yes	3.3	±4	1.8-3.6	200	300	50	0.05	Yes	Charge Pump DC/DC Converter, 3.3-V	8–3
TPS60101	Yes	3.3	±4	1.83.6	100	300	50	0.05	Yes	Charge Pump DC/DC Converter, 3.3-V	8–23
TPS60110	Yes	5	±4	2.7-5.4	300	300	60	0.05	Yes	Charge Pump DC/DC Converter, 5-V	8–43
TPS60111	Yes	5	±4	2.7–5.4	150	300	60	0.05	Yes	Charge Pump DC/DC Converter, 5-V	8-61

DC/DC CHARGE PUMP CONVERTERS

1

MOSFET DRIVERS

MOSFET DRIVERS SELECTION GUIDE

				MOSFET	DRIVERS		
Device	Ι<u></u>CC (μ Α)	Internal Regulator	Output Current (max) (A)	Rise/Fall Time (max) (ns)	Supply Voltage(s) (V)	Description	Page No.
TPS2811	5	Yes (8 – 40 V)	2	20	4–14	Dual Channel	9–3
TPS2812	5	Yes (8 – 40 V)	2	20	4-14	Dual Channel	9–3
TPS2813	5	Yes (8 – 40 V)	2	20	4–14	Dual Channel	9–3
TPS2814	5	No	2	20	4–14	Dual Channel	9–3
TPS2815	5	No	2	20	4–14	Dual Channel	9–3
TPS2816	150	Yes (8 – 40 V)	2	25	4–14	Active Pullup, Internal Regulator, Single Channel	9–31
TPS2817	150	Yes (8 – 40 V)	2	25	4-14	Active Pullup, Internal Regulator, Single Channel	9–31
TPS2818	25	Yes (8 – 40 V)	2	25	4-14	Single Channel	9–31
TPS2819	25	Yes (8 – 40 V)	2	25	4-14	Single Channel	9–31
TPS2828	25	No	2	25	4–14	Single Channel	9–31
TPS2829	25	No	2	25	4-14	Single Channel	9–31
TPS2830	1	No	2	50 / 85	4.5–15	Fast Synchronous-Buck With Deadtime Control	9-49
TPS2831	1	No	2	50 / 85	4.5–15	Fast Synchronous-Buck With Deadtime Control	9-49
TPS2832	1	No	2	50 / 85	4.5–15	Fast Synchronous-Buck With Deadtime Control	961
TPS2833	1	No	2	50 / 85	4.5-15	Fast Synchronous-Buck With Deadtime Control	9-61

TEXAS INSTRUMENTS POST OFFICE BOX 685533° DALLAS, TEXAS 75285

12-18

Device	V _{CC} (nom) (V)	V _t (V)	Tolerance (%)	ICC (max) (mA)	V _{IN} (min) (V)	Over Voltage Sense	Comp Outputs	Number of SVS	WDI	Description	Page No.
TPS3123J12	1.2	1.08	2	0.03	0.75	No	No	1	Yes	Fixed Delay, Micropower	10-21
TPS3124J12	1.2	1.08	2	0.03	0.75	No	Yes	1	Yes	Fixed Delay, Micropower	1021
TPS3125J12	1.2	1.08	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	10-21
TPS3123G15	1.5	1.4	2	0.03	0.75	No	No	1	Yes	Fixed Delay, Micropower	10-21
TPS3124G15	1.5	1.4	2	0.03	0.75	No	Yes	1	Yes	Fixed Delay, Micropower	1021
TPS3125G15	1.5	1.4	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	1021
TPS3123J18	1.8	1.62	2	0.03	0.75	No	No	1	Yes	Fixed Delay, Micropower	1021
TPS3124J18	1.8	1.62	2	0.03	0.75	No	Yes	1	Yes	Fixed Delay, Micropower	10-21
TPS3125J18	1.8	1.62	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	10-21
TPS3305-18	1.8	1.68	2	0.04	2.7	No	Yes	2	Yes	Fixed Delay, Micropower	10–33
TPS3307-18	1.8	1.68	2	0.04	2	No	Yes	3	No	Fixed Delay, Micropower	10-43
TLC7725	2.5	2.25	3	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10–9
TPS3707-25	2.5	2.25	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-53
TPS3801J25	2.5	2.25	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-63
TPS3305-25	2.5	2.25	2	0.04	2.7	No	Yes	2	Yes	Fixed Delay, Micropower	10–33
TPS3809J25	2.5	2.25	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10–3
TPS382025	2.5	2.25	1.8	0.025		No	Yes	1	Yes	Fixed Delay, Micropower	10–71
TPS3823-25	2.5	2.25	1.8	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3824-25	2.5	2.25	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3825-25	2.5	2.25	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3828-25	2.5	2.25	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3307-25	2.5	2.25	2	0.04	2	No	Yes	3	No	Fixed Delay, Micropower	10-43
TLC7703	3	2.63	2.7	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	109
TPS3125L30	3	2.64	2	0.03	0.75	No	Yes	1	No	Fixed Delay, Micropower	10-21
TPS3705-30	3	2.63	2	0.05	2	No	No	1	Yes	Fixed Delay, Micropower	10–53
TPS3707-30	3	2.63	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-53
TPS3801L30	3	2.64	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10–63
TPS3809L30	3	2.64	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10–3
TPS3820-30	3	2.63	1.5	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	1071
TPS3823-30	3	2.63	1.5	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	1071
TPS3824-30	3	2.63	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71

SUPERVISORY CIRCUITS

1

SUPERVISORY CIRCUITS (continued)

Device	V _{CC} (nom) (V)	V _t (V)	Tolerance (%)	ICC (max) (mA)	V _{IN} (min) (V)	Over Voltage Sense	Comp Outputs	Number of SVS	WDI	Description	Page N
TPS3825-30	3	2.63	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TPS3828-30	3	2.63	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-71
TLC7733	3.3	2.93	2.4	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10-9
TPS3705-33	3.3	2.93	2	0.05	2	No	No	1	Yes	Fixed Delay, Micropower	10-5
TPS3707-33	3.3	2.93	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-5
TPS3801K33	3.3	2.93	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-6
TPS3809K33	3.3	2.93	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-3
TPS3820-33	3.3	2.93	1.7	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-7
TPS3823-33	3.3	2.93	1.7	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-7
TPS382433	3.3	2.93	.2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-7
TPS3825-33	3.3	2.93	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-7
TPS3828-33	3.3	2.93	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-7
TL7705A	5	4.55	2	3	3.6	No	Yes	1	No	Programmable Delay	10-9
TL7705B	5	4.55	2	3	1.	No	Yes	1	No	Programmable Delay	10-11
TL7757	5	4.55	3	2.5	1	No	No	1	No	No Delay	10-12
TL7759	5	4.55	3	2	1	No	Yes	1	No	No Delay	10-13
TLC7705	5	4.55	1.5	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10-9
TL7770–5	5	4.55	1	5	1	Yes	Yes	2	No	Programmable Delay	10-13
TPS370550	5	4.55	2	0.05	2	No	No	1	Yes	Fixed Delay, Micropower	10-5
TPS3707-50	5	4.55	2	0.05	2	No	Yes	1	No	Fixed Delay, Micropower	10-5
TPS3801150	5	4.55	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	106
TPS3305-33	5	4.55	2	0.04	2.7	No	Yes	2	Yes	Fixed Delay, Micropower	10-3
TPS3809150	5	4.55	2	0.012	2	No	No	1	No	Fixed Delay, Micropower	10-3
TPS3820-50	5	4.55	1.3	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10–7
TPS3823-50	5	4.55	1.3	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	107
TPS3824-50	5	4.55	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-7
TPS3825-50	5	4.55	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	10-7
TPS3828-50	5	4.55	2	0.025	1.1	No	Yes	1	Yes	Fixed Delay, Micropower	107
TPS3307-33	5	4.55	2	0.04	2	No	Yes	3	No	Fixed Delay, Micropower	10-4
TL7709A	9	7.6	2	3	3.6	No	Yes	1	No	Programmable Delay	10-9

12-20

TEXAS INSTRUMENTS

SUPERVISORY CIRCUITS SELECTION GUIDE

Device	V _{CC} (nom) (V)	V _t (V)	Tolerance (%)	I _{CC} (max) (mA)	V _{IN} (min) (V)	Over Voltage Sense	Comp Outputs	Number of SVS	WDI	Description	Page No.
TL7712A	12	10.8	2	3	3.6	No	Yes	1	No	Programmable Delay	10–91
TL7770-12	12	10.9	1	5	1	Yes	Yes	2	No	Programmable Delay	10–139
TL7715A	15	13.5	2	3	3.6	No	Yes	1	No	Programmable Delay	10–91
TPS5510			3	1	4	Yes	Yes	3	No	Fixed Delay	1079
TPS5511			3	1	4	Yes	Yes	3	No	Fixed Delay	10-85
TL7700	adj			0.016		No	Yes	1	No	Micropower, Programmable Delay	10–101
TL7702A	pgm	pgm	2	3	3.6	No	Yes	1	No	Programmable Delay	1091
TL7702B	pgm	pgm	2	3	1	No	Yes	1	No	Programmable Delay	10113
TLC7701	adj	1.1	5.4	0.016	1	No	Yes	1	No	Micropower, Programmable Delay	10–9

SUPERVISORY CIRCUITS (continued)

GENERAL PURPOSE DISTRIBUTION SWITCHES

Device	Number of FETs	^r DS(on) (typ) (mΩ)	IO (max) (A)	Current Limit (typ) (A)	V _{IN} Range (typ) (V)	Over Current Reporting	Over Temp Protection	Enable	Description	Page No.
TPS2010	1	75	0.2	0.4	2.7 – 5.5	No	Yes	Neg	Current-Limited	13-25
TPS2010A	1	30	0.2	0.3	2.7 – 5.5	No	Yes	Neg	Current-Limited	13-53
TPS2011	1	75	0.6	1.2	2.7 – 5.5	No	Yes	Neg	Current-Limited	13–25
TPS2011A	1	30	0.6	0.9	2.7 – 5.5	No	Yes	Neg	Current-Limited	13–53
TPS2012	1	75	1	2	2.7 – 5.5	No	Yes	Neg	Current-Limited	13–25
TPS2012A	1	30	1	1.5	2.7 – 5.5	No	Yes	Neg	Current-Limited	13-53
TPS2013	t	75	1.5	2.6	2.7 – 5.5	No	Yes	Neg	Current-Limited	13-25
TPS2013A	1	30	1.5	2.2	2.7 – 5.5	No	Yes	Neg	Current-Limited	13-53

POWER DISTRIBUTION SWITCHES SELECTION GUIDE

VAUX SWITCHES

Devi	ce	Number of Inputs	IN1 ^r DS(on) (typ) (mΩ)	IN2 ^r DS(on) (typ) (Ω)	IN1 Output Current (mA)	IN2 Output Current (mA)	IN1 Supply Current (typ) (uA)	IN2 Supply Current (typ) (uA)	IN1, IN2 Input Voltage Range (V)	Enable	Page No.
TPS2100		2	250	1.3	500	10	10	0.75	2.7 – 4.0	Neg	13311
TPS2101		2	250	1.3	500	10	10	0.75	2.7 – 4.0	Pos	13-311

PCMCIA/CARDBUS DISTRIBUTION SWITCHES

Device	12-V Supply Required	3V/5V ^r DS(on) (typ) (mΩ)	Control Inputs	Current and Temperature Protection	VPP_Good and OC Reporting	Description	Page No.
TPS2205	No	110/140	8 Line Parallel	Yes	N/Y	Dual Channel	13–325
TPS2206	No	110/140	3 Line Serial w/Reset	Yes	N/Y	Dual Channel	13349
TPS2211	No	50	4 Line Parallel	Yes	N/Y	Single Channel	13–375
TPS2212	No	160	4 Line Parallel	Yes	N/Y	Single Channel	13–395
TPS2214	No	60	3 Line Serial, w/independent VCC/VPP	Yes	N/Y	Dual Channel	13-413
TPS2216	No	60	3 Line Serial, w/independent VCC/VPP	Yes	N/Y	Dual Channel	13–437

	USB SWITCHES											
Device	Number of FETs	^r DS(on) (typ) (mΩ)	lo (max) (A)	Current Limit (typ) (A)	VIN Range (typ) (V)	Over Current Reporting	Over Temp Reporting	Enable	Description	Page No.		
TPS2014	1	95	0.6	1.2	4.0 - 5.5	Yes	No	Neg	Current-Limited, UL Listed, USB	13-73		
TPS2015	1	95	1	2	4.0 - 5.5	Yes	No	Neg	Current-Limited, USB	13-73		
TPS2020	1		0.2	0.3	2.7 - 5.5	Yes	Yes	Neg	Current-Limited, USB	13-93		
TPS2021	1		0.6	0.9	2.7 – 5.5	Yes	Yes	Neg	Current-Limited, USB	13-93		
TPS2022	1		1	1.5	2.7 – 5.5	Yes	Yes	Neg	Current-Limited, USB	13-93		
TPS2023	1		1.5	2.2	2.7 – 5.5	Yes	Yes	Neg	Current-Limited, USB	13-93		
TPS2024	1		2	3	2.7 - 5.5	Yes	Yes	Neg	Current-Limited, USB	13-93		
TPS2030	1	30	0.2	0.3	2.7 - 5.5	Yes	Yes	Pos	Current-Limited, USB	13-115		
TPS2031	1	30	0.6	0.9	2.7 - 5.5	Yes	Yes	Pos	Current-Limited, USB	13-115		
TPS2032	1	30	1	1.5	2.7 - 5.5	Yes	Yes	Pos	Current-Limited, USB	13-115		
TPS2033	1	30	1.5	2.2	2.7 – 5.5	Yes	Yes	Pos	Current-Limited, USB	13-115		
TPS2034	1	30	2	3	2.7 - 5.5	Yes	Yes	Pos	Current-Limited, USB	13-115		
TPS2041	1	80	0.5	0.9	2.7 - 5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-137		
TPS2042	2	80	0.5	0.9	2.7 - 5.5	Each	Yes	Neg	Current-Limited, Nemko Recognized	13157		
TPS2043	3	80	0.5	0.9	2.7 – 5.5	Each	Yes	Neg	Current-Limited, Nemko Recognized	13-179		
TPS2044	4	80	0.5	0.9	2.7 – 5.5	Each	Yes	Neg	Current-Limited, Nemko Recognized	13-203		
TPS2045	1	80	0.25	0.44	2.7 – 5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-227		
TPS2046	2	80	0.25	0.44	2.7 - 5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-247		
TPS2047	3	80	0.25	0.44	2.7 - 5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13-267		
TPS2048	4	80	0.25	0.44	2.7 - 5.5	Yes	Yes	Neg	Current-Limited, Nemko Recognized	13289		
TPS2051	1	80	0.5	0.9	2.7 – 5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-137		
TPS2052	2	80	0.5	0.9	2.7 - 5.5	Each	Yes	Pos	Current-Limited, Nemko Recognized	13157		
TPS2053	3	80	0.5	0.9	2.7 ~ 5.5	Each	Yes	Pos	Current-Limited, Nemko Recognized	13-179		
TPS2054	4	80	0.5	0.9	2.7 - 5.5	Each	Yes	Pos	Current-Limited, Nemko Recognized	13-203		
TPS2055	1	80	0.25	0.44	2.7 - 5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-227		
TPS2056	2	80	0.25	0.44	2.7 - 5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-247		
TPS2057	3	80	0.25	0.44	2.7 – 5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-267		
TPS2058	4	80	0.25	0.44	2.7 – 5.5	Yes	Yes	Pos	Current-Limited, Nemko Recognized	13-289		

USB SWITCHES

POWER DISTRIBUTION SWITCHES SELECTION GUIDE ł

12-23

PMOS DISTRIBUTION SWITCHES

	PMOS DISTRIBUTION SWITCHES										
Device	Number of FETs	^r DS(on) (typ) (mΩ)	V _{DS} (max) (V)	I _{DD} (max) (A)	ESD Circuitry	Description	Page No.				
TPS1100	1	180	15	1.6	Yes	High-Side PMOS	13–3				
TPS1101	. 1	90	15	2.3	Yes	High-Side PMOS	13–13				
TPS1120	2	180	15	1.17	Yes	High-Side PMOS	13-23				

						LED	DRIVER	S		
Device	V _{ref} (V)	Iz (min) (μΑ)	Iz (max) (mA)	VO (min) (V)	V _O (max) (V)	Tolerance (%)	Vj (max) (V)	Temp Coeff (typ) (ppm/°C)	Description	Page No.
TLC5904	2.5	1000	100	Vref	36	0.4	36	30	LED Driver	14–3
	VOLTAGE RAIL SPLITTERS									
Device	I <u>CC</u> (μΑ)	V _{CC} (V)	lo (mA)	V _O (min) (V)	VO (max) (V)	Temp Coeff (typ) (ppm/°C)	Description			Page No.
TLE2426	280	4 - 40	20	1.98	20.2	25	Rail Splitte	r Precision V	irtual Ground	15–3
						SPECIAL	FUNCT	IONS		
Device	V _{ref} (V)	lz (min) (μΑ)	lz (max) (μΑ)	V _O (min) (V)	Input Clamp Curren (mA)	Time) Descrij	ption		Page No.
TL7726	4.5		60		25	30	Hex Cla	amping Circu	it	16–3
TL2218-285		-20.5		2.5			Excalib	ur Current-M	ode SCSI Terminator	16–7

TEXAS INSTRUMENTS POST OFFICE BOX 665302* DALLAS, TEXAS 75265

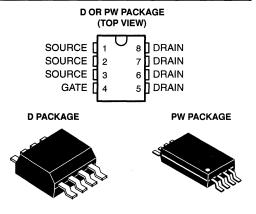
LED DRIVERS, VOLTAGE RAIL SPLITTERS and SPECIAL FUNCTIONS SELECTION GUIDE 1

12-25

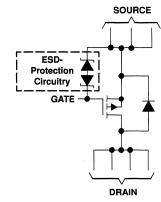
General Information (Vol. 1) Linear Voltage Regulators	1
Linear Voltage Regulators	
<u> </u>	2
Shunt Regulators	3
Precision Virtual Grounds	4
Mechanical Data	5
General Information (Vol. 2)	6
Processor PS Controllers	7
Switching PS and DC/DC Converters	8
MOSFET Drivers	9
Supervisors	10
Mechanical Data	11
General Information (Vol. 3)	12
Power Distribution Switches	13
LED Drivers	14
Voltage Rail Splitters	15
	16
Special Functions	

Power Distribution Switches

TPS1100, TPS1100Y SINGLE P-CHANNEL ENHANCEMENT-MODE MOSFETS


SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

- Low r_{DS(on)}... 0.18 Ω Typ at V_{GS} = -10 V
- 3 V Compatible
- Requires No External V_{CC}
- TTL and CMOS Compatible Inputs
- V_{GS(th)} = -1.5 V Max
- Available in Ultrathin TSSOP Package (PW)
- ESD Protection Up to 2 kV Per MIL-STD-883C, Method 3015


description

The **TPS1100** single P-channel is а enhancement-mode MOSFET. The device has been optimized for 3-V or 5-V power distribution in battery-powered systems by means of Texas Instruments LinBiCMOS™ process. With a maximum V_{GS(th)} of -1.5 V and an I_{DSS} of only 0.5 µA, the TPS1100 is the ideal high-side switch for low-voltage, portable battery-management systems where maximizing battery life is a primary concern. The low rDS(on) and excellent ac characteristics (rise time 10 ns typical) make the TPS1100 the logical choice for low-voltage switching applications such as power switches for pulse-width-modulated (PWM) controllers or motor/bridge drivers.

The ultrathin thin shrink small-outline package or TSSOP (PW) version with its smaller footprint and reduction in height fits in places where other P-channel MOSFETs cannot. The size advantage is especially important where board real estate is at a premium and height restrictions do not allow for a small-outline integrated circuit (SOIC) package.

schematic

NOTE A. For all applications, all source pins should be connected and all drain pins should be connected.

AVAILABLE OPTIONS

	PACKAGED		
TA	SMALL OUTLINE (D)	PLASTIC DIP (P)	CHIP FORM (Y)
-40°C to 85°C	TPS1100D	TPS1100PWLE	TPS1100Y

The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS1100DR). The PW package is available only left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS1100PWLE). The chip form is tested at 25° C.

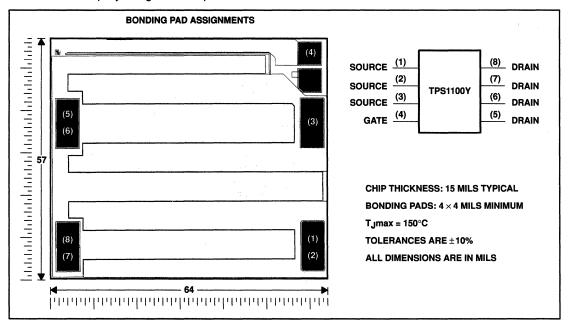
Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.

LinBiCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1995, Texas Instruments Incorporated


SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

description (continued)

Such applications include notebook computers, personal digital assistants (PDAs), cellular telephones, and PCMCIA cards. For existing designs, the D-packaged version has a pinout common with other p-channel MOSFETs in SOIC packages.

TPS1100Y chip information

This chip, when properly assembled, displays characteristics similar to the TPS1100. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

					UNIT
Drain-to-source voltage, V _{DS}				-15	V
Gate-to-source voltage, VGS				2 or -15	V
		Dinaskana	T _A = 25°C	±0.41	
		D package	T _A = 125°C	±0.28	
	V _{GS} = -2.7 V	PW package	T _A = 25°C	±0.4	
		T W package		±0.23	
		D package	T _A = 25°C	±0.6	
	V _{GS} = -3 V	D package	T _A = 125°C	±0.33	
	VGS = -3 V	PW package	T _A = 25°C	±0.53	A
Continuous drain current (T _J = 150°C), I _D ‡		F VV package	T _A = 125°C	±0.27	
		D package	T _A = 25°C	±1	
	V _{GS} = -4.5 V	D package	T _A = 125°C	±0.47	
	VGS4.5 V	PW package	T _A = 25°C	±0.81	
		1 W package	T _A = 125°C	±0.37	
		D package	T _A = 25°C	±1.6	
	V _{GS} = -10 V	D package	T _A = 125°C	±0.72	
	VGS = - 10 V	PW package	T _A = 25°C	±1.27	
		F W package	T _A = 125°C	±0.58	
Pulsed drain current, ID [‡]			T _A = 25°C	±7	Α
Continuous source current (diode conduction), IS	-1	Α			
Storage temperature range, T _{stg}	-55 to 150	°C			
Operating junction temperature range, Тј	-40 to 150	°C			
Operating free-air temperature range, TA	-40 to 125	°C			
Lead temperature 1,6 mm (1/16 inch) from case for 10 se	conds			260	°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[‡] Maximum values are calculated using a derating factor based on R_{0JA} = 158°C/W for the D package and R_{0JA} = 248°C/W for the PW package. These devices are mounted on a FR4 board with no special thermal considerations.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR [‡] ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	791 mW	6.33 mW/°C	506 mW	411 mW	158 mW
PW	504 mW	4.03 mW/°C	323 mW	262 mW	101 mW

‡ Maximum values are calculated using a derating factor based on R_{0JA} = 158°C/W for the D package and R_{0JA} = 248°C/W for the PW package. These devices are mounted on an FR4 board with no special thermal considerations when tested.

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

electrical characteristics at $T_J = 25^{\circ}C$ (unless otherwise noted)

static

	PARAMETER	тее				TPS1100)	Т	PS1100)	1	UNIT
	FARAMETER	TES	CONDITIO	10	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{GS(th)}	Gate-to-source threshold voltage	V _{DS} = V _{GS} ,	I _D =250 μ	A	-1	-1.25	-1.50		-1.25		v
V _{SD}	Source-to-drain voltage (diode-forward voltage) [†]	I _S = −1 A,	V _{GS} = 0 V			-0.9			-0.9		v
IGSS	Reverse gate current, drain short circuited to source	V _{DS} = 0 V,	V _{GS} = -12	v			±100				nA
	Zero-gate-voltage drain	V _{DS} = -12 V,	V0V	Тј = 25°С			-0.5				
DSS	current	$v_{\rm DS} = -12 v$,	VGS = 0 V	Тј = 125°С			-10				μA
		$V_{GS} = -10 V$	I _D = -1.5 A			180			180		
	Static drain-to-source	V _{GS} = -4.5 V	I _D = -0.5 A			291	400		291		mΩ
^r DS(on)	on-state resistance†	V _{GS} = -3 V				476	700		476		1152
		$V_{GS} = -3 V$ $V_{GS} = -2.7 V$	1'D = -0.2 A			606	850		606		
9fs	Forward transconductance†	V _{DS} = -10 V,	I _D = -2 A			2.5			2.5		S

† Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2%

dynamic

	PARAMETER		TEAT CONDITIONS	TPS1100, TPS1100)			1100Y	UNIT
			TEST CONDITIONS		MIN TYP MAX			UNIT
Qg	Total gate charge					5.45		
Qgs	Gate-to-source charge	V _{DS} =10 V,	V _{GS} = -10 V,	i _D = -1 A		0.87		nC
Q _{gd}	Gate-to-drain charge	1				1.4		
^t d(on)	Turn-on delay time					4.5		ns
^t d(off)	Turn-off delay time	$V_{DD} = -10 V,$	Rι = 10 Ω.	I _D = -1 A,		13		ns
t _r	Rise time	$R_{G} = 6 \Omega$,	See Figures 1 and 2			10		
tf	Fall time	1				2		ns
trr(SD)	Source-to-drain reverse recovery time	I _F = 5.3 A,	di/dt = 100 A/µs			16		

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

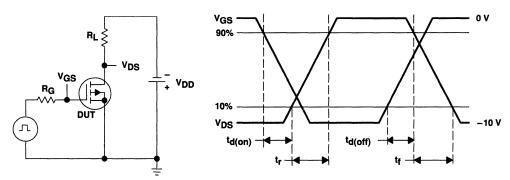


Figure 1. Switching-Time Test Circuit

Figure 2. Switching-Time Waveforms

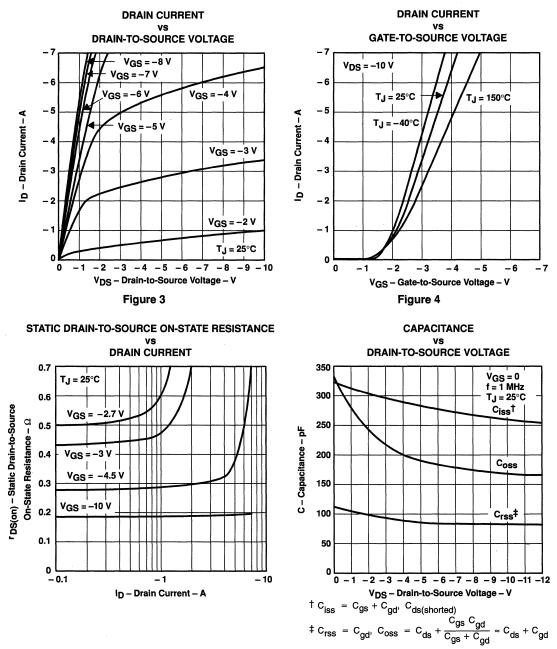

TYPICAL CHARACTERISTICS

Table of Graphs

		FIGURE
Drain current	vs Drain-to-source voltage	3
Drain current	vs Gate-to-source voltage	4
Static drain-to-source on-state resistance	vs Drain current	5
Capacitance	vs Drain-to-source voltage	6
Static drain-to-source on-state resistance (normalized)	vs Junction temperature	7
Source-to-drain diode current	vs Source-to-drain voltage	8
Static drain-to-source on-state resistance	vs Gate-to-source voltage	9
Gate-to-source threshold voltage	vs Junction temperature	10
Gate-to-source voltage	vs Gate charge	11

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

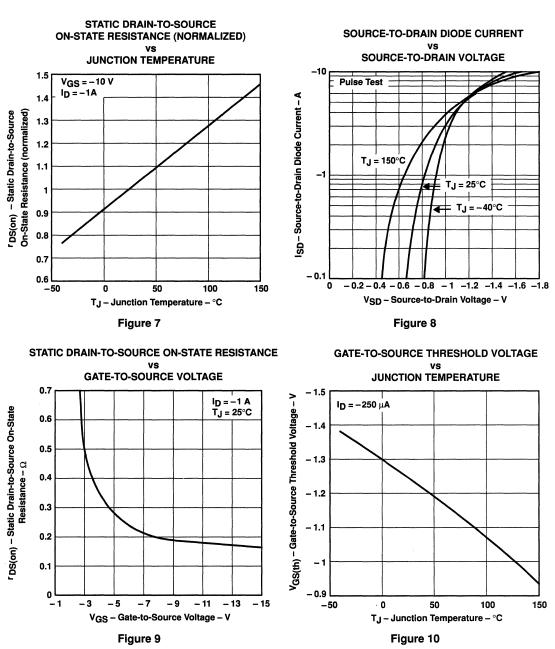
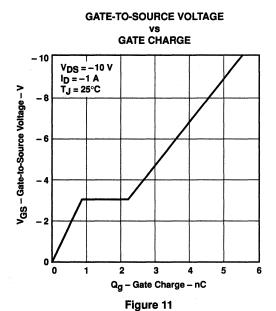
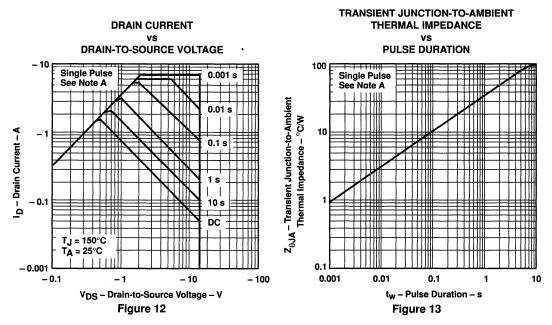

TYPICAL CHARACTERISTICS

Figure 5


Figure 6

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995



SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

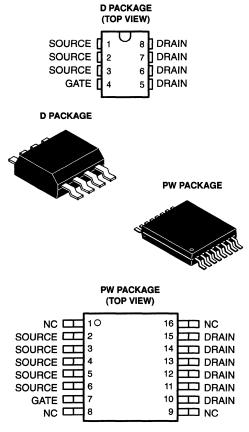
THERMAL INFORMATION

NOTE A. Values are for the D package and are FR4-board mounted only.

3 V or 5 V Microcontroller Load Load Load Load Load Load

APPLICATION INFORMATION

Figure 15. Cellular Phone Output Drive


SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

- Low r_{DS(on)} . . . 0.09 Ω Typ at V_{GS} = -10 V
- 3 V Compatible
- Requires No External V_{CC}
- TTL and CMOS Compatible Inputs
- V_{GS(th)} = -1.5 V Max
- Available in Ultrathin TSSOP Package (PW)
- ESD Protection Up to 2 kV per MIL-STD-883C, Method 3015

description

The TPS1101 is a single, low- $r_{DS(on)}$, P-channel, enhancement-mode MOSFET. The device has been optimized for 3-V or 5-V power distribution in battery-powered systems by means of the Texas Instruments LinBiCMOSTM process. With a maximum V_{GS(th)} of -1.5 V and an I_{DSS} of only 0.5 μ A, the TPS1101 is the ideal high-side switch for low-voltage, portable battery-management systems where maximizing battery life is a primary concern. The low $r_{DS(on)}$ and excellent ac characteristics (rise time 5.5 ns typical) of the TPS1101 make it the logical choice for low-voltage switching applications such as power switches for pulse-width-modulated (PWM) controllers or motor/bridge drivers.

The ultrathin thin shrink small-outline package or TSSOP (PW) version fits in height-restricted places where other P-channel MOSFETs cannot. The size advantage is especially important where board height restrictions do not allow for an small-outline integrated circuit (SOIC) package. Such applications include notebook computers, personal digital assistants (PDAs), cellular

NC - No internal connection

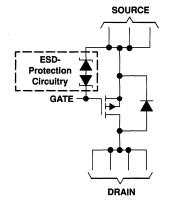
telephones, and PCMCIA cards. For existing designs, the D-packaged version has a pinout common with other P-channel MOSFETs in SOIC packages.

AVAILABLE OPTIONS						
PACKAGED DEVICEST CHIP						
Tj	TJ SMALL OUTLINE TSSOP (D) (PW)					
-40°C to 150°C	TPS1101D	TPS1101PWLE	TPS1101Y			
t						

The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS1101DR). The PW package is only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS1101PWLE). The chip form is tested at 25°C.

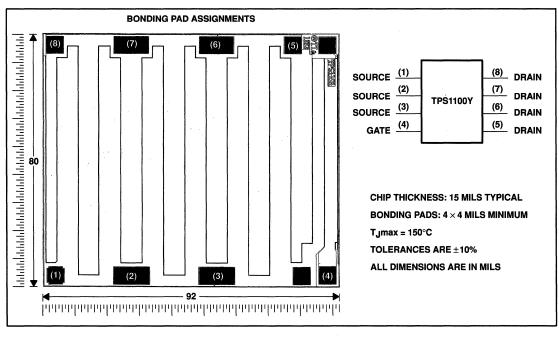
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments Incorporated.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995


schematic

NOTE B. For all applications, all source terminals should be connected and all drain terminals should be connected.

TPS1101Y chip information

This chip, when properly assembled, displays characteristics similar to the TPS1101. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

					UNI
Drain-to-source voltage, V _{DS}				– 15	v
Gate-to-source voltage, VGS				2 or – 15	v
		Dinaskana	T _A = 25°C	±0.62	
	N== 07V	D package	T _A = 125°C	±0.39	
	V _{GS} = -2.7 V	DW peekoge	T _A = 25°C	±0.61	
		PW package	T _A = 125°C	±0.38	
Continuous drain current (T _J = 150°C), I _D ‡		D package	T _A = 25°C	±0.88	
	V _{GS} = -3 V	D package	T _A = 125°C	±0.47	
	VGS = -3 V	PW/ package	T _A = 25°C	±0.86	
		PW package T _A = 125°C		±0.45	А
		D package	T _A = 25°C	±1.52	^
	$V_{GS} = -4.5 V$	D раскаде	T _A = 125°C	±0.71	
	VGS = -4.5 V	PW package	T _A = 25°C	±1.44	
		F W package	T _A = 125°C	±0.67	
		D package	T _A = 25°C	±2.30	
	V _{GS} = -10 V	D package	T _A = 125°C	±1.04	
	VGS=-10V	PW package	T _A = 25°C	±2.18	
		F W package	T _A = 125°C	±0.98	
Pulsed drain current, ID [‡]			T _A = 25°C	±10	A
Continuous source current (diode conduction), IS T _A = 25°C					A
Storage temperature range, Tstg					°C
Operating junction temperature range, T_J				-40 to 150	°C
Operating free-air temperature range, TA					°C
Lead temperature 1,6 mm (1/16 inch) from c	ase for 10 secon	ds		260	°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Maximum values are calculated using a derating factor based on R_{0JA} = 158°C/W for the D package and R_{0JA} = 176°C/W for the PW package. These devices are mounted on an FR4 board with no special thermal considerations.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR [‡] ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	791 mW	6.33 mW/°C	506 mW	411 mW	158 mW
PW	710 mW	5.68 mW/°C	454 mW	369 mW	142 mW

[‡] Maximum values are calculated using a derating factor based on $R_{\theta JA} = 158^{\circ}C/W$ for the D package and $R_{\theta JA} = 176^{\circ}C/W$ for the PW package. These devices are mounted on an FR4 board with no special thermal considerations.

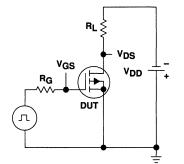
SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

electrical characteristics at $T_J = 25^{\circ}C$ (unless otherwise noted)

static

	PARAMETER	TEO			-	FPS1101		T	PS1101	1	UNIT
	PARAMEIER	163		49	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{GS(th)}	Gate-to-source threshold voltage	V _{DS} = V _{GS} ,	I _D = -250 μ	ıA	-1	-1.25	-1.5		-1.25		v
V _{SD}	Source-to-drain voltage (diode-forward voltage)†	I _S = -1 A,	V _{GS} = 0 V		~	-1.04			-1.04		v
IGSS	Reverse gate current, drain short circuited to source		V _{GS} = -12				±100				nA
	Zero-gate-voltage drain	V _{DS} = -12 V,	Vee - 0.V	Tj = 25°С			-0.5				۸
DSS	current	$v_{\rm DS} = -12 v$,	VGS = 0 V	Tj = 125°C			-10				μA
		V _{GS} = -10 V	I _D = -2.5 A			90			90		
	Static drain-to-source	VGS = -4.5 V	I _D = -1.5 A			134	190		134		
rDS(on)	on-state resistance [†]	V _{GS} = -3 V	- 054			198	310		198		mΩ
	· · · · · · · · · · · · · · · · · · ·	V _{GS} = -2.7 V	I _D = -0.5 A			232	400		232		
9fs	Forward transconductance [†]	V _{DS} = -10 V,	I _D = -2 A			4.3			4.3		S

[†] Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2%


dynamic

	PARAMETER		TEST CONDITIONS			TPS1101, TPS1101Y		
	FADAMEIER		TEST CONDITIONS		MIN TYP MAX			UNIT
Qg	Total gate charge					11.25		
Qgs	Gate-to-source charge	$V_{DS} = -10 V,$	V _{GS} = -10 V,	I _D = -1 A		1.5		nC
Q _{gd}	Gate-to-drain charge	1				2.6		
td(on)	Turn-on delay time	1				6.5		ns
td(off)	Turn-off delay time	$V_{DD} = -10 V,$		I _D = -1 A,		19		ns
t _r	Rise time	R _G = 6 Ω,				5.5		
t _f	Fall time				13			ns
^t rr(SD)	Source-to-drain reverse recovery time	IF = 5.3 A,	di/dt = 100 A/µs			16		

SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

PARAMETER MEASUREMENT INFORMATION

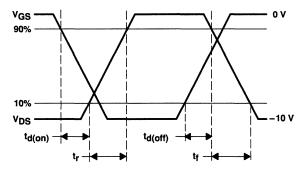


Figure 1. Switching-Time Test Circuit

Figure 2. Switching-Time Waveforms

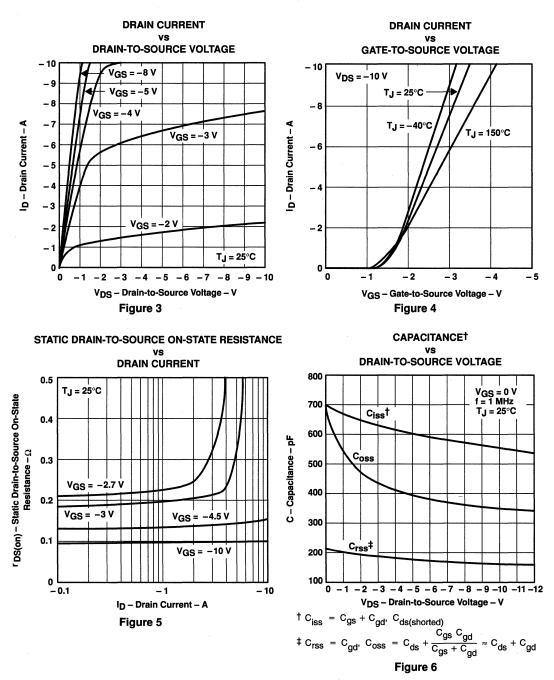
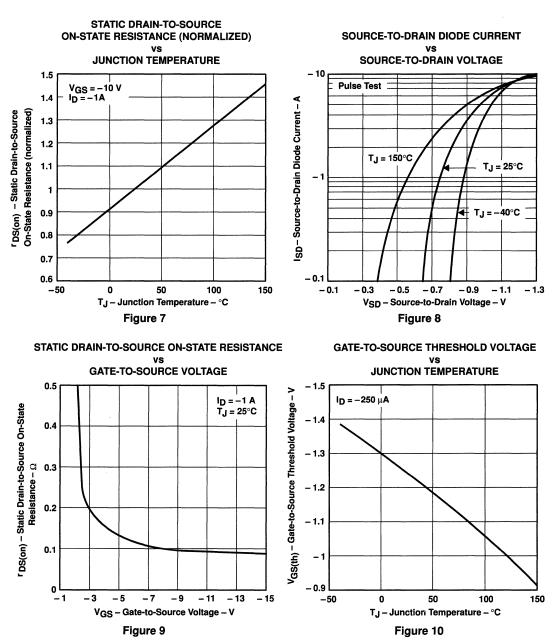

TYPICAL CHARACTERISTICS

Table of Graphs

		FIGURE
Drain current	vs Drain-to-source voltage	3
Drain current	vs Gate-to-source voltage	4
Static drain-to-source on-state resistance	vs Drain current	5
Capacitance	vs Drain-to-source voltage	6
Static drain-to-source on-state resistance (normalized)	vs Junction temperature	7
Source-to-drain diode current	vs Source-to-drain voltage	8
Static drain-to-source on-state resistance	vs Gate-to-source voltage	9
Gate-to-source threshold voltage	vs Junction temperature	10
Gate-to-source voltage	vs Gate charge	11



SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

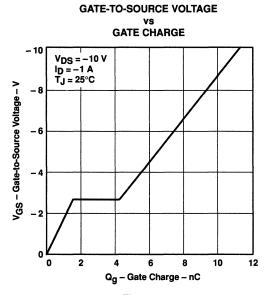
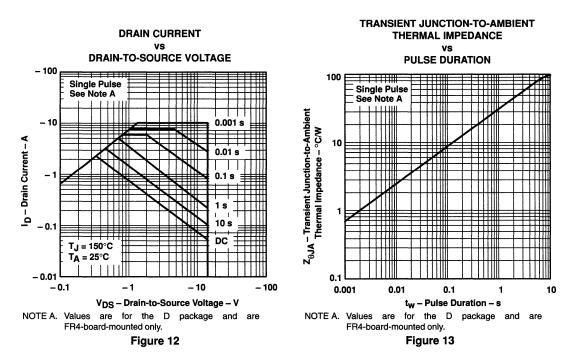



Figure 11

SLVS079C - DECEMBER 1993 - REVISED AUGUST 1995

THERMAL INFORMATION

APPLICATION INFORMATION

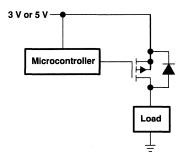
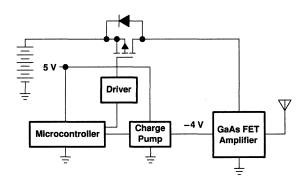
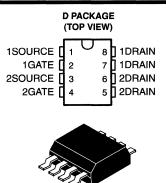



Figure 14. Notebook Load Management



SLVS080A - MARCH 1994 - REVISED AUGUST 1995

- Low $r_{DS(on)} \dots 0.18 \Omega$ at $V_{GS} = -10 V$
- 3-V Compatible
- Requires No External V_{CC}
- TTL and CMOS Compatible Inputs
- V_{GS(th)} = -1.5 V Max
- ESD Protection Up to 2 kV per MIL-STD-883C, Method 3015

description

The TPS1120 incorporates two independent p-channel enhancement-mode MOSFETs that have been optimized, by means of the Texas Instruments LinBiCMOS[™] process, for 3-V or 5-V

power distribution in battery-powered systems. With a maximum $V_{GS(th)}$ of -1.5 V and an I_{DSS} of only 0.5 μ A, the TPS1120 is the ideal high-side switch for low-voltage portable battery-management systems, where maximizing battery life is a primary concern. Because portable equipment is potentially subject to electrostatic discharge (ESD), the MOSFETs have built-in circuitry for 2-kV ESD protection. End equipment for the TPS1120 includes notebook computers, personal digital assistants (PDAs), cellular telephones, bar-code scanners, and PCMCIA cards. For existing designs, the TPS1120D has a pinout common with other p-channel MOSFETs in small-outline integrated circuit SOIC packages.

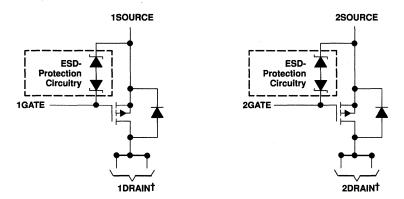
The TPS1120 is characterized for an operating junction temperature range, T_J , from -40° C to 150°C.

	AVAILABLE OPTIONS	
	PACKAGED DEVICES [†]	CHIP FORM
Tj	TJ SMALL OUTLINE (D)	
-40°C to 150°C	TPS1120D	TPS1120Y

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS1120DR). The chip form is tested at 25°C.

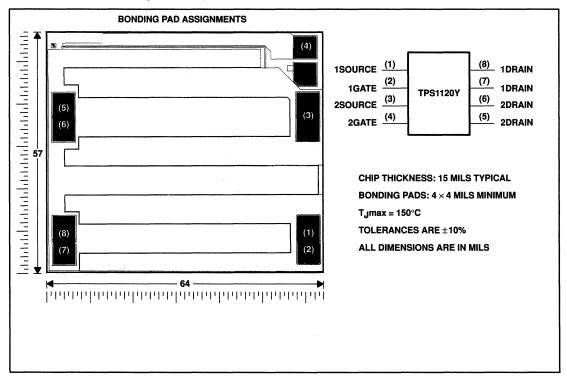
Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.

LinBiCMS is a trademark of Texas Instruments Incorporated.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

SLVS080A - MARCH 1994 - REVISED AUGUST 1995


schematic

[†] For all applications, both drain pins for each device should be connected.

TPS1120Y chip information

This chip, when properly assembled, displays characteristics similar to the TPS1120C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

SLVS080A - MARCH 1994 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

				UNIT
Drain-to-source voltage, VDS			-15	V
Gate-to-source voltage, VGS			2 or15	V
	Vec - 27V	T _A = 25°C	±0.39	
	$V_{GS} = -2.7 V$	T _A = 125°C	±0.21	
	Nee 2 V	T _A = 25°C	±0.5	
Continuous drain surrant, each davies (T 150°C). In	$V_{GS} = -3 V$	T _A = 125°C	±0.25	A
Continuous drain current, each device ($T_J = 150^{\circ}C$), I_D		T _A = 25°C	±0.74	^
	$V_{GS} = -4.5 V$	T _A = 125°C	±0.34	
	N	T _A = 25°C	±1.17	
	V _{GS} = -10 V	T _A = 125°C	±0.53	
Pulse drain current, ID		T _A = 25°C	±7	A
Continuous source current (diode conduction), IS		T _A = 25°C	-1	A
Continuous total power dissipation		See Diss	ipation Rating	Table
Storage temperature range, Tstg			-55 to 150	°C
Operating junction temperature range, TJ			-40 to 150	°C
Operating free-air temperature range, TA			-40 to 125	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 sec	onds		260	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION CATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR [‡]	T _A = 70°C	T _A = 85°C	T _A = 125°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING	POWER RATING
D	840 mW	6.71 mW/°C	538 mW	437 mW	169 mW

[‡] Maximum values are calculated using a derating factor based on R_{0JA} = 149°C/W for the package. These devices are mounted on an FR4 board with no special thermal considerations.

SLVS080A - MARCH 1994 - REVISED AUGUST 1995

electrical characteristics at $T_J = 25^{\circ}C$ (unless otherwise noted)

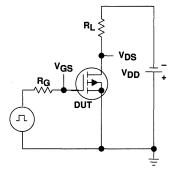
static

	DADAMETED	TERT CO	NDITIONS	-	FPS1120		UNIT
	PARAMETER	IESI CO	NUTIONS	MIN	TYP	MAX	UNIT
VGS(th)	Gate-to-source threshold voltage	$V_{DS} = V_{GS}$,	I _D = -250 μA	-1	-1.25	-1.50	V
V _{SD}	Source-to-drain voltage (diode forward voltage) [†]	l _S = −1 A,	$V_{GS} = 0 V$		-0.9		v
IGSS	Reverse gate current, drain short circuited to source	V _{DS} = 0 V,	$V_{GS} = -12 V$			±100	nA
	Zara gata valtaga draja aurrant	V _{DS} = -12 V,	TJ = 25°C			-0.5	
IDSS	Zero-gate-voltage drain current	$V_{GS} = 0 V$	Tj = 125°C			-10	μA
		V _{GS} = -10 V	I _D = -1.5 A		180		
		V _{GS} = -4.5 V	I _D = -0.5 A		291	400	mΩ
^r DS(on)	Static drain-to-source on-state resistance [†]	$V_{GS} = -3 V$	- 004		476	700	11152
		V _{GS} = -2.7 V	l _D = -0.2 A		606	850	
9fs	Forward transconductance [†]	$V_{DS} = -10 V,$	I _D = -2 A		2.5		S

[†] Pulse test: pulse width \leq 300 µs, duty cycle \leq 2%

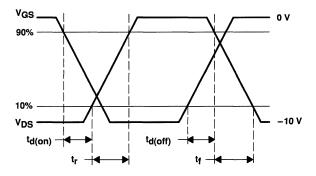
static

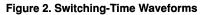
	PARAMETER	TEST CONDITIONS	TPS1120Y	UNIT
	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}, I_D = -250 \mu$	A –1.25	v
V _{SD}	Source-to-drain voltage (diode forward voltage) [†]	$I_{S} = -1 A$, $V_{GS} = 0 V$	-0.9	v
		V _{GS} = -10 V I _D = -1.5 A	180	
	a	$V_{GS} = -4.5 \text{ V}$ $I_D = -0.5 \text{ A}$	291	mΩ
rDS(on)	Static drain-to-source on-state resistance [†]	$V_{GS} = -3V$	476	11152
		$V_{GS} = -3 V$ $V_{GS} = -2.7 V$ $I_D = -0.2 A$	606	
9fs	Forward transconductance [†]	$V_{DS} = -10 \text{ V}, I_D = -2 \text{ A}$	2.5	S


[†] Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2%

dynamic

	DADAMETED		TEST CONDITIONS	-	TPS11	20, TPS ⁻	1120Y	UNIT
	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Qg	Total gate charge					5.45		
Qgs	Gate-to-source charge	$V_{DS} = -10 V,$	V _{GS} = -10 V,	I _D = -1 A		0.87		nC
Qgd	Gate-to-drain charge	1				1.4		
t _{d(on)}	Turn-on delay time					4.5		ns
^t d(off)	Turn-off delay time	$V_{DD} = -10 V$,	R _L = 10 Ω,	I _D = -1 A,		13		ns
t _r	Rise time	$R_{G} = 6 \Omega,$	See Figures 1 and 2	_		10		1
t _f	Fall time	1				2		ns
^t rr(SD)	Source-to-drain reverse recovery time	l _F = 5.3 A,	di/dt = 100 A/µs			16		

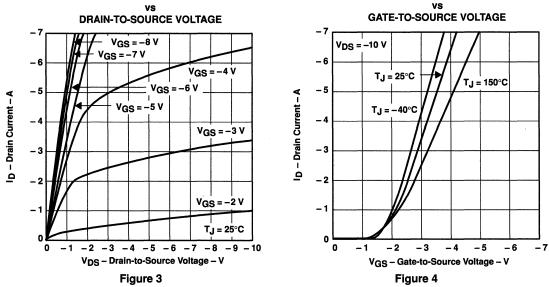



SLVS080A - MARCH 1994 - REVISED AUGUST 1995

PARAMETER MEASUREMENT INFORMATION

Figure 1. Switching-Time Test Circuit

SLVS080A - MARCH 1994 - REVISED AUGUST 1995


TYPICAL CHARACTERISTICS[†] . .

_ . .

Table of Gra	phs	
		FIGURE
Drain current	vs Drain-to-source voltage	3
Drain current	vs Gate-to-source voltage	4
Static drain-to-source on-state resistance	vs Drain current	5
Capacitance	vs Drain-to-source voltage	6
Static drain-to-source on-state resistance (normalized)	vs Junction temperature	7
Source-to-drain diode current	vs Source-to-drain voltage	8
Static drain-to-source on-state resistance	vs Gate-to-source voltage	9
Gate-to-source threshold voltage	vs Junction temperature	10
Gate-to-source voltage	vs Gate charge	11

DRAIN CURRENT

DRAIN CURRENT

[†] All characteristics data applies for each independent MOSFET incorporated on the TPS1120.

SLVS080A - MARCH 1994 - REVISED AUGUST 1995

V_{GS} = 0 f = 1 MHz

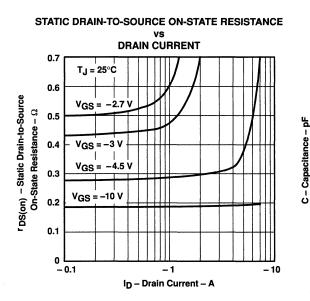
Tj = 25°C

C_{iss}†

Coss

C_{rss}∓

≈ C_{ds} + C_{gd}


-2-3-4-5-6-7-8-9-10-11-12

VDS - Drain-to-Source Voltage - V

CAPACITANCE

vs

DRAIN-TO-SOURCE VOLTAGE

TYPICAL CHARACTERISTICS

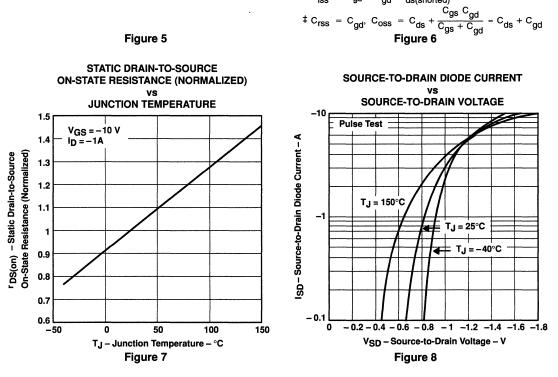
350

300

250

200

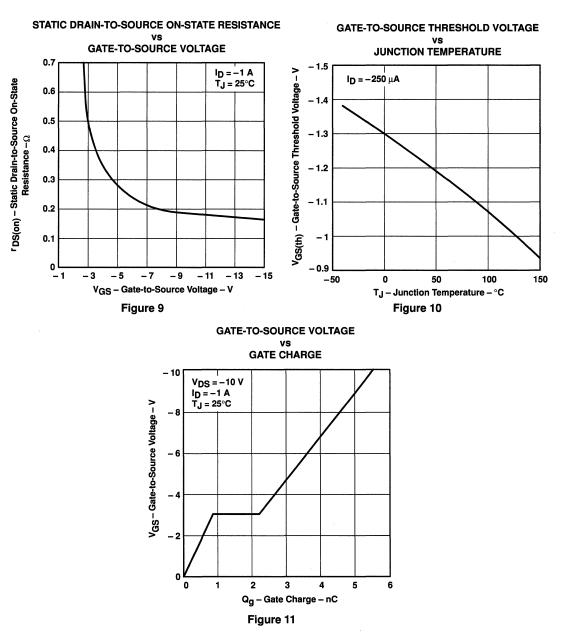
150


100

50

0

0 - 1


 $t C_{iss} = C_{gs} + C_{gd}, C_{ds(shorted)}$

13-29

SLVS080A - MARCH 1994 - REVISED AUGUST 1995

SLVS080A - MARCH 1994 - REVISED AUGUST 1995

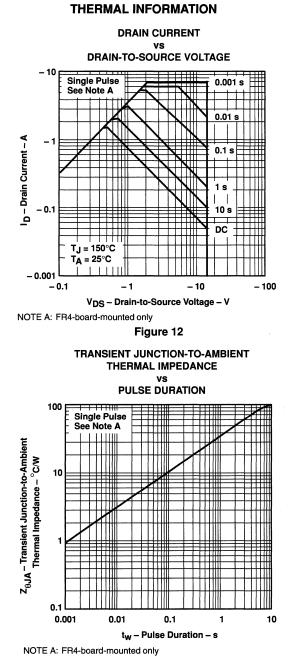
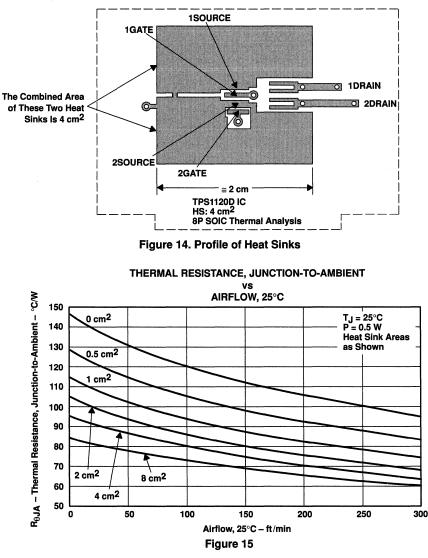


Figure 13


SLVS080A - MARCH 1994 - REVISED AUGUST 1995

THERMAL INFORMATION

The profile of the heat sinks used for thermal measurements is shown in Figure 14. Board type is FR4 with 1-oz copper and 1-oz tin/lead (63/37) plate. Use of vias or through-holes to enhance thermal conduction was avoided.

Figure 15 shows a family of $R_{\theta JA}$ curves. The $R_{\theta JA}$ was obtained for various areas of heat sinks while subject to air flow. Power remained fixed at 0.25 W per device or 0.50 W per package. This testing was done at 25°C.

As Figure 14 illustrates, there are two separated heat sinks for each package. Each heat sink is coupled to the lead that is internally tied to a single MOSFET source and is half the total area, as shown in Figure 15. For example, if the total area shown in Figure 15 is 4 cm², each heat sink is 2 cm².

SLVS080A - MARCH 1994 - REVISED AUGUST 1995

1DRAIN Lead 8 **1SOURCE** Lead 1 Pad 1 MOSFET 1 F 昂 Lead 2 IGATE **1DRAIN** Lead 7 R Pad 1 Lead 3 2SOURCE 2DRAIN Lead 6 MOSFET 2 Ŧ B Lead 4 2GATE 2DRAIN Lead 5

THERMAL INFORMATION

Figure 16 illustrates the thermally enhanced (SO) lead frame. Attaching the two MOSFET dies directly to the source terminals allows maximum heat transfer into a power plane.

Figure 16. TPS1120 Dual MOSFET SO-8 Lead Frame

APPLICATION INFORMATION

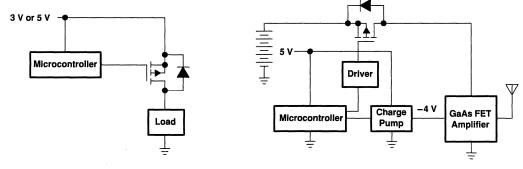


Figure 18. Cellular Phone Output Drive

D PACKAGE

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

- 95-mΩ Max (5.5-V Input) High-Side MOSFET Switch With Logic Compatible Enable Input
- Short-Circuit and Thermal Protection
- Typical Short-Circuit Current Limits: 0.4 A, TPS2010; 1.2 A, TPS2011; 2 A, TPS2012; 2.6 A, TPS2013
- Electrostatic-Discharge Protection, 12-kV Output, 6-kV All Other Terminals
- Controlled Rise and Fall Times to Limit Current Surges and Minimize EMI
- SOIC-8 Package Pin Compatible With the Popular Littlefoot™ Series When GND Is Connected
- 2.7-V to 5.5-V Operating Range
- 10-µA Maximum Standby Current
- Surface-Mount SOIC-8 and TSSOP-14 Packages
- -40°C to 125°C Operating Junction Temperature Range

(1		W)	
<u>IN</u>	1 2 3 4	8 7 6 5	out out out out
	W PACK (TOP VII		E
	3 4	14 13 12 11 10 9 8	OUT OUT OUT OUT OUT OUT

description

The TPS201x family of power-distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The high-side switch is a 95-m Ω N-channel MOSFET. Gate drive is provided by an internal driver and charge pump designed to control the power switch rise times and fall times to minimize current surges during switching. The charge pump operates at 100 kHz, requires no external components, and allows operation from supplies as low as 2.7 V. When the output load exceeds the current-limit threshold or a short circuit is present, the TPS201x limits the output current to a safe level by switching into a constant-current mode. Continuous heavy overloads and short circuits increase power dissipation in the switch and cause the junction temperature to rise. If the junction temperature reaches approximately 180°C, a thermal protection circuit shuts the switch off to prevent damage. Recovery from thermal shutdown is automatic once the device has cooled sufficiently.

The members of the TPS201x family differ only in short-circuit current threshold. The TPS2010 is designed to limit at 0.4-A load; the other members of the family limit at 1.2 A, 2 A, and 2.6 A (see the available options table). The TPS201x family is available in 8-pin small-outline integrated circuit (SOIC) and 14-pin thin shink small-outline (TSSOP) packages and operates over a junction temperature range of -40°C to 125°C. Versions in the 8-pin SOIC package are drop-in replacements for Siliconix's Littlefoot[™] power PMOS switches, except that GND must be connected.

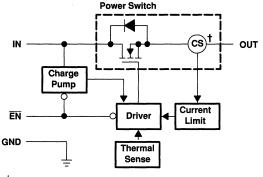
	RECOMMENDED MAXIMUM	TYPICAL SHORT-CIRCUIT	PACKAG	ED DEVICES	CHIP
Tj	CONTINUOUS LOAD CURRENT (A)	OUTPUT CURRENT LIMIT AT 25°C (A)	SOIC (D)†	TSSOP (PW)‡	FORM (Y)
	0.2	0.4	TPS2010D	TPS2010PWLE	TPS2010Y
-40°C to 125°C	0.6	1.2	TPS2011D	TPS2011PWLE	TPS2011Y
-40 C to 125 C	1	2	TPS2012D	TPS2012PWLE	TPS2012Y
	1.5	2.6	TPS2013D	TPS2013PWLE	TPS2013Y

AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2010DR).

[‡]The PW package is only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS2010PWLE).

Littlefoot is a trademark of Siliconix.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

functional block diagram

† Current sense

Terminal Functions

	ERMINA	Ļ		1
NAME	N	0.] I/O	DESCRIPTION
NAME	D	PW		
ĒN	4	7	I	Enable input. Logic low turns power switch on.
GND	1	1	1	Ground
IN	2, 3	2-6	Ι	Input voltage
OUT	5-8	8-14	0	Power-switch output

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 95 m Ω (V_{I(IN)} = 5.5 V), configured as a high-side switch.

charge pump

An internal 100-kHz charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

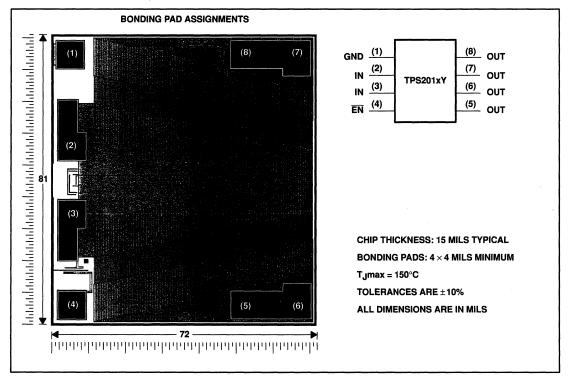
The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range instead of the microsecond or nanosecond range for a standard FET.

enable (EN)

A logic high on the $\overline{\text{EN}}$ input turns off the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A. A logic zero input restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

current sense


A sense FET monitors the current supplied to the load. The sense FET is a much more efficient way to measure current than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its linear region, which switches the output into a constant current mode and simply holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts the power switch off when the junction temperature rises to approximately 180°C. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

TPS201xY chip information

This chip, when properly assembled, displays characteristics similar to the TPS201xC. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, VI(IN) (see Note 1)	–0.3 V to 7 V
Input voltage range, V _{I(IN)} (see Note 1) Output voltage range, V _O (see Note 1)	0.3 V to V _{I(IN)} +0.3 V
Input voltage range, VI at EN	–0.3 V to 7 V
Continuous output current, IO	internally limited
Continuous total power dissipation	. See Dissipation Rating Table
Operating virtual junction temperature range, T _J	–40°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

3 mW/°C 464 mV	
Ì	3 mW/°C 464 mV 6 mW/°C 448 mV

recommended operating conditions

		MIN	MAX	UNIT
Input voltage, VI(IN)		2.7	5.5	v
Input voltage, VI at EN		0	5.5	V
	TPS2010	0	0.2	
	TPS2011	0	0.6	
Continuous output current, IO	TPS2012	0	1	A
	TPS2013	0	1.5	
Operating virtual junction temper	ature, Tj	-40	125	°C

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, EN = 0 V (unless otherwise noted)

power switch

PARAMETER		TEST CONDITIONS		TPS2010, TPS2011 TPS2012, TPS2013			UNIT
			MIN	TYP	MAX		
	V _{I(IN)} = 5.5 V,	Тј = 25°С		75	95		
	On-state resistance	V _{I(IN)} = 4.5 V,	TJ = 25°C		80	110	mΩ
On-state resistance	Christale resistance	V _{I(IN)} = 3 V,	Тј = 25°С		120	175	11152
Ĺ		V _{I(IN)} = 2.7 V,	Tj = 25°C		140	215	
	Output leakage current		Тј = 25°С		0.001	1	۸
	Ouput leakage current	$\overline{EN} = V_{I(IN)}$	–40°C ≤ TJ ≤ 125°C			10	μA
	Output rise time	V _{I(IN)} = 5.5 V,	$T_J = 25^{\circ}C$, $C_L = 1 \mu F$		4		-
tr	r Output lise time VI(I	VI(IN) = 2.7 V,	$T_J = 25^{\circ}C$, $C_L = 1 \mu F$		3.8		ms
	Output fall time	VI(IN) = 5.5 V,	$T_J = 25^{\circ}C$, $C_L = 1 \mu F$		3.9		-
t _f Output fa	Output fall time	V _{I(IN)} = 2.7 V,	$T_J = 25^{\circ}C$, $C_L = 1 \mu F$		3.5		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input (EN)

PARAMETER		TEST CONDITIONS	TPS2010, TPS2011 TPS2012, TPS2013			
			MIN	TYP	MAX	
	High-level input voltage	2.7 V ≤ V _{I(IN)} ≤ 5.5 V	2			v
	4.5 V ≤ V _{I(IN)} ≤ 5.5 V			0.8	v	
Low-level input voltage		2.7 V ≤ V _{I(IN)} < 4.5 V			0.4	v
	Input current	$\overline{EN} = 0 V \text{ or } \overline{EN} = V_{I(IN)}$	-0.5		0.5	μA
tPLH	Propagation (delay) time, low-to-high-level output	C _L = 1 μF			20	ma
t PHL	Propagation (delay) time, high-to-low-level output	C _L = 1 μF			40	ms

current limit

PARAMETER	TEST CONDITIONS	t TPS2010, TP TPS2012, TP				UNIT
			MIN TYP MAX			
	T _{.1} = 25°C,	TPS2010	0.22	0.4	0.6	
Short-circuit current	$V_{I(IN)} = 5.5 V,$ OUT connected to GND, device	TPS2011	0.66	1.2	1.8	
		TPS2012	1.1	2	3	A
	enabled into short circuit	TPS2013	1.65	2.6	4.5	

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

supply current

PARAMETER	TEST CONDITIONS		TPS2010, TPS2011 TPS2012, TPS2013			UNIT
			MIN TYP MAX			
		Т _Ј = 25°С	= 25°C 0.0	0.015	1	
Supply current, low-level output	$\overline{EN} = V_{I(IN)}$	–40°C ≤ TJ ≤ 125°C			10	μA
Supply current, high-level output	$\overline{EN} = 0 V$	TJ = 25°C		73	100	
Supply current, nigh-level output		–40°C ≤ TJ ≤ 125°C			100	μA

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, EN = 0 V, T_J = 25°C (unless otherwise noted)

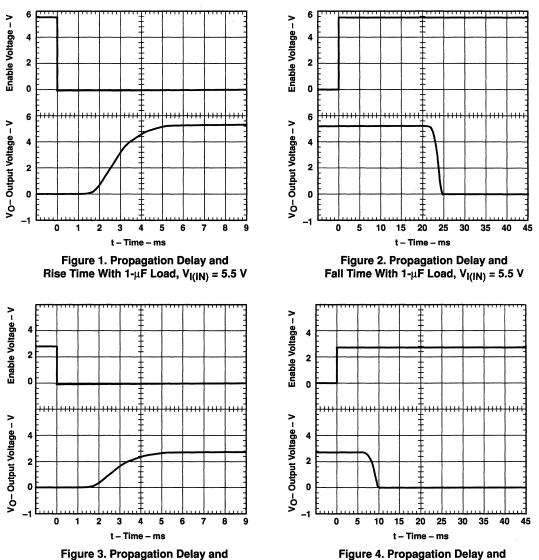
power switch

PARAMETER	TEST CONDITIONS [†]	TPS2010Y, TPS2011Y TPS2012Y, TPS2013Y	UNIT
		MIN TYP MAX	
	V _{I(IN)} = 5.5 V,	75	
On-state resistance	V _{I(IN)} = 4.5 V,	80	mΩ
	V _{I(IN)} = 3 V,	120	11152
	V _{I(IN)} = 2.7 V,	140	
Output leakage current	$\overline{EN} = V_{I(IN)}$	0.001	μA
Output rise time	$V_{I(IN)} = 5.5 V$, $C_{L} = 1 \mu F$	4	ma
	$V_{I(IN)} = 2.7 V$, $C_{L} = 1 \mu F$	3.8	ms
Output fall time	$V_{I(IN)} = 5.5 V$, $C_{L} = 1 \mu F$	3.9	-
	$V_{I(IN)} = 2.7 V, C_{L} = 1 \mu F$	3.5	ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

current limit

PARAMETER	TEST CONDITIONS [†]	TPS2010Y, TPS2011Y TPS2012Y, TPS2013Y			UNIT
		MIN	TYP	MAX	
Short-circuit current	$V_{I(IN)} = 5.5 V,$ OUT connected to GND, Device enabled into short circuit		0.4		A


[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

supply current

PARAMETER	TEST CONDITIONS	TPS2010Y, TPS TPS2012Y, TPS	UNIT	
		MIN TYP	MAX	
Supply current, low-level output	ĒN = VI(IN)	0.015		μA
Supply current, high-level output	$\overline{EN} = 0 V$	73		μA

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

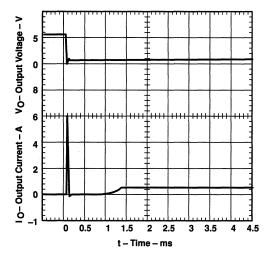
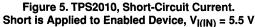

PARAMETER MEASUREMENT INFORMATION

Figure 4. Propagation Delay and Fall Time With 1- μ F Load, V_{I(IN)} = 2.7 V



Rise Time With 1-µF Load, VI(IN) = 2.7 V

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

PARAMETER MEASUREMENT INFORMATION

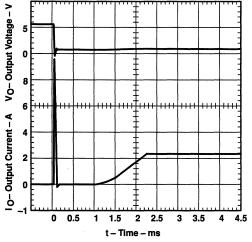
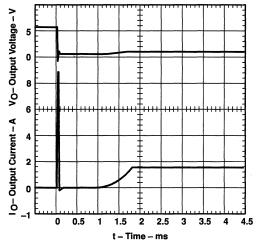
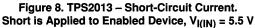
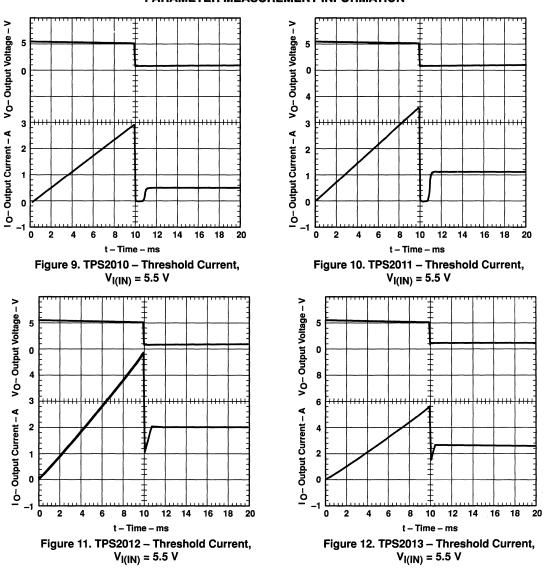
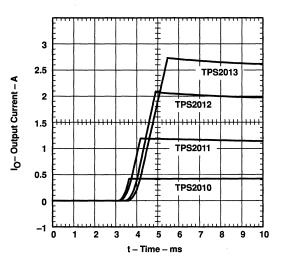
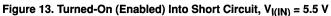


Figure 7. TPS2012, Short-Circuit Current. Short is Applied to Enabled Device, $V_{I(IN)} = 5.5 \text{ V}$


Figure 6. TPS2011, Short-Circuit Current. Short is Applied to Enabled Device, $V_{I(IN)} = 5.5 V$


SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995



SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

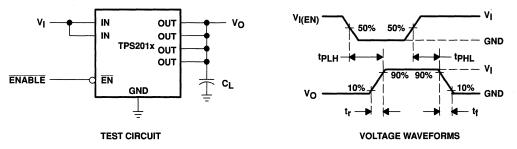
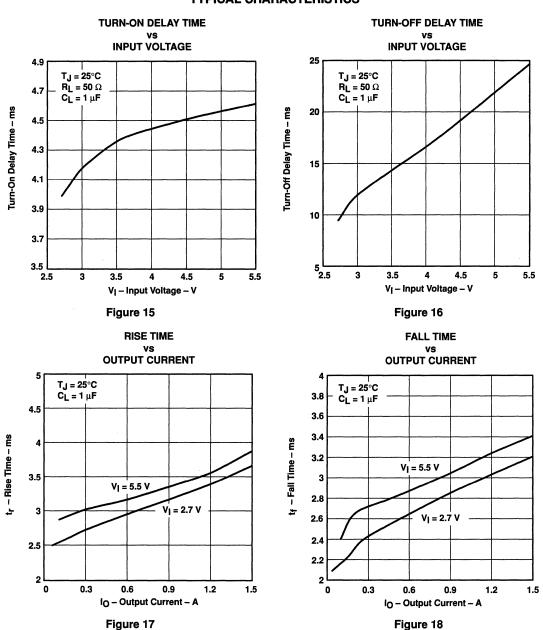
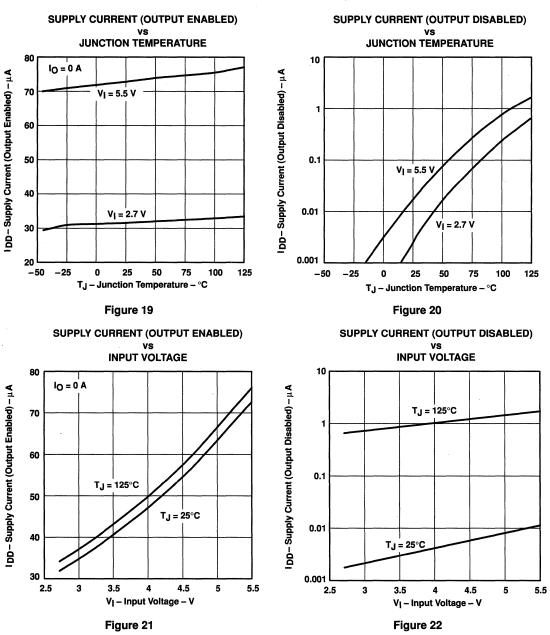
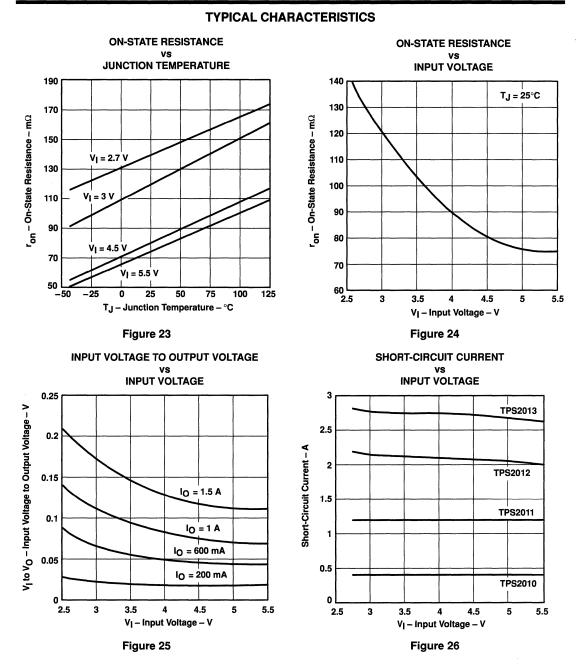
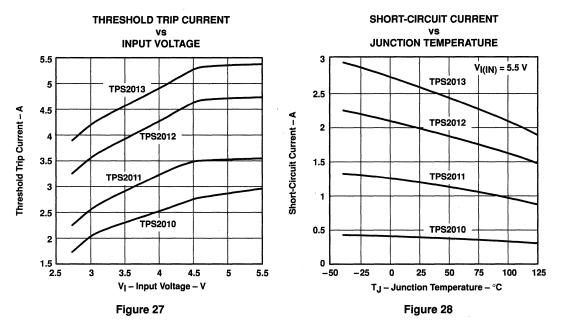



Figure 14. Test Circuit and Voltage Waveforms


SLVS097A -- DECEMBER 1994 -- REVISED AUGUST 1995

TYPICAL CHARACTERISTICS


SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995



SLVS097A -- DECEMBER 1994 -- REVISED AUGUST 1995

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

TYPICAL CHARACTERISTICS

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

APPLICATION INFORMATION

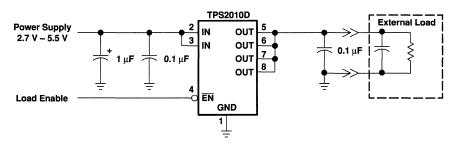


Figure 29. Typical Application

power supply considerations

The TPS201x family has multiple inputs and outputs, which must be connected in parallel to minimize voltage drop and prevent unnecessary power dissipation.

A 0.047- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. A high-value electrolytic capacitor is also desirable when the output load is heavy or has large paralleled capacitors. Bypassing the output with a 0.1- μ F ceramic capacitor improves the immunity of the device to electrostatic discharge (ESD).

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike sense resistors and polyfuses, sense FETs do not increase series resistance to the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Shutdown only occurs if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 30). The TPS201x senses the short and immediately switches into a constant-current output.

Under the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents flow for a short time before the current-limit circuit can react (see Figures 5, 6, 7, and 8). After the current-limit circuit has tripped, the device limits normally.

Under the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached (see Figures 9, 10, 11, and 12). The TPS201x family is capable of delivering currents up to the current-limit threshold without damage. Once the threshold has been reached, the device switches into its constant-current mode.

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

APPLICATION INFORMATION

overcurrent (continued)

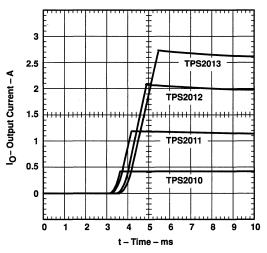


Figure 30. Turned-On (Enabled) Into Short Circuit, VI(IN) = 5.5 V

power dissipation and junction temperature

The low on resistance of the N-channel MOSFET allows small surface-mount packages, such as SOIC or TSSOP to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find r_{on} at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read r_{on} from Figure 23. Next calculate the power dissipation using:

$$P_D = r_{on} \times I^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient temperature $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W, TSSOP = 179°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

SLVS097A - DECEMBER 1994 - REVISED AUGUST 1995

APPLICATION INFORMATION

thermal protection

Thermal protection is provided to prevent damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS201x into its constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts it off. The switch remains off until the junction has dropped approximately 20°C. The switch continues to cycle in this manner until the load fault or input power is removed.

ESD protection

All TPS201x terminals incorporate ESD-protection circuitry designed to withstand a 6-kV human-body-model discharge as defined in MIL-STD-883C. Additionally, the output is protected from discharges up to 12 kV.

-

D PACKAGE

(TOP VIEW)

8 🛛 OUT

7 1 OUT

SLVS189 - DECEMBER 1998

- 50-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit and Thermal Protection
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- Typical Rise Time . . . 6.1 ms
- Undervoltage Lockout
- Maximum Standby Supply Current . . . 10 μA
- No Drain-Source Back-Gate Diode
- Available in 8-pin SOIC and 14-Pin TSSOP Packages
- Ambient Temperature Range, –40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

IN 6 DOUT П з EN 4 5 п OUT **PWP PACKAGE** (TOP VIEW) 14 🛛 OUT GND [13 OUT IN **[**] 2 12 OUT 3 IN [11 OUT 4 10 🛛 OUT 5 9 OUT 6 EN [8 OUT 7

IN I 2

description

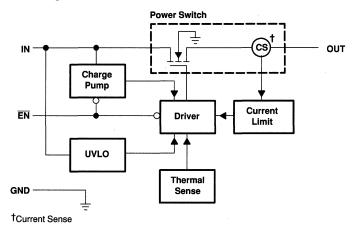
The TPS201xA family of power distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. These devices are 50-m Ω N-channel MOSFET high-side power switches. The switch is controlled by a logic enable compatible with 5-V logic and 3-V logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS201xA limits the output current to a safe level by switching into a constant-current mode. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS201xA devices differ only in short-circuit current threshold. The TPS2010A limits at 0.3-A load, the TPS2011 at 0.9-A load, the TPS2012A at 1.5-A load, and the TPS2013A at 2.2-A load (see Available Options). The TPS201xA is available in an 8-pin small-outline integrated-circuit (SOIC) package and in a 14-pin thin-shrink small-outline package (TSSOP) and operates over a junction temperature range of -40° C to 125°C.

		RECOMMENDED MAXIMUM CONTINUOUS	TYPICAL SHORT-CIRCUIT	PACKAGED DEVICES				
ТА	ENABLE	LOAD CURRENT (A)	CURRENT LIMIT AT 25°C (A)	SMALL OUTLINE (D) [†]	TSSOP (PWP)‡			
	A	0.2	0.3	TPS2010AD	TPS2010APWPR			
-40°C to 85°C		0.6	0.9	TPS2011AD	TPS2011APWPR			
-40°C 10 85°C	Active low	1	1.5	TPS2012AD	TPS2012APWPR			
		1.5	2.2	TPS2013AD	TPS2013APWPR			

AVAILABLE OPTIONS


[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2010DR)

[‡]The PWP package is only available left-end taped-and-reeled.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLVS189 - DECEMBER 1998

TPS201xA functional block diagram

Terminal Functions

	TERMINAL				
NAME	NO. D	NO. PWP	1/0	DESCRIPTION	
ĒŇ	4	7	I	Enable input. Logic low turns on power switch.	
GND	1	1		Ground	
IN	2, 3	2–6	I	Input voltage	
OUT	5, 6, 7, 8	8–14	0	Power-switch output	

SLVS189 - DECEMBER 1998

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 50 m Ω (V_{I(IN)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 9-ms range.

enable (EN)

The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A when a logic high is present on \overline{EN} . A logic zero input on \overline{EN} restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS189 - DECEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _{I(IN)} (see Note 1)	–0.3 V to 6 V
Output voltage range, VO(OUT) (see Note 1)	–0.3 V to V _{I(IN)} + 0.3 V
Input voltage range, V _{I(EN)}	– 0.3 V to 6 V
Continuous output current, I _{O(OUT)}	internally limited
Continuous total power dissipation	
Operating virtual junction temperature range, T _J	–40°C to 125°C
Storage temperature range, T _{stg}	65°C to 150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds .	260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages are with respect to GND.

	DISSIPATION RATING TABLE							
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING				
D	725 mW	5.8 mW/°C	464 mW	377 mW				
PWP	700 mW	5.6 mW/°C	448 mW	364 mW				

recommended operating conditions

		MIN	MAX	UNIT
Input voltage	VI(IN)	2.7	5.5	v
input voltage	VI(EN)	0	5.5	v
Continuous output current, IO	TPS2010A	0	0.2	
	TPS2011A	0	0.6	
	TPS2012A	0	1	A
	TPS2013A	0	1.5	
Operating virtual junction temperature, TJ		-40	125	°C

electro static discharge (ESD) protection

	MIN	MAX	UNIT
Human Body Model MIL-STD-883C		2	kV
Machine model		0.2	kV

SLVS189 - DECEMBER 1998

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, \overline{EN} = 0 V (unless otherwise noted)

power switch

PARAMETER		т	TEST CONDITIONS [†]			ТҮР	MAX	UNIT
		V _{I(IN)} = 5 V,	TJ = 25°C,	I _O = 1.5 A		33	36	
		V _{I(IN)} = 5 V,	TJ = 85°C,	I _O = 1.5 A		38	46	
		$V_{I(IN)} = 5 V,$	Тј = 125°С,	I _O = 1.5 A		44	50	
		V _{I(IN)} = 3.3 V,	Tj = 25°C,	l _O = 1.5 A		37	41	
		V _{I(IN)} = 3.3 V,	TJ = 85°C,	I _O = 1.5 A		43	52	
(DQ(ar))	Static drain-source on-state resistance	V _{I(IN)} = 3.3 V,	Tj = 125°C,	I _O = 1.5 A		51	61	mΩ
^r DS(on)		V _{I(IN)} = 5 V,	TJ = 25°C,	I _O = 0.18 A		30	34	11152
		$V_{I(IN)} = 5 V,$	TJ = 85°C,	I _O = 0.18 A		35	41	
		V _{I(IN)} = 5 V,	TJ = 125°C,	l _O = 0.18 A		39	47	
		V _{I(IN)} = 3.3 V,	Tj = 25°C,	l _O = 0.18 A		33	37	
		V _{I(IN)} = 3.3 V,	Tj = 85°C,	I _O = 0.18 A		39	46	
		V _{I(IN)} = 3.3 V,	Тј = 125°C,	I _O = 0.18 A		44	56	
•	Diss time, sutput	$V_{I(IN)} = 5.5 V,$ $C_{L} = 1 \mu F,$	TJ = 25°C, RL = 10 Ω			6.1		ms
t _r	Rise time, output	$V_{I(IN)} = 2.7 V,$ $C_L = 1 \mu F,$	TJ = 25°C, RL = 10 Ω			8.6		1115
tf	Foll time output	V _{I(IN)} = 5.5 V, C _L = 1 μF,		-		3.4		
	Fall time, output	$V_{I(IN)} = 2.7 V,$ $C_L = 1 \mu F,$				3		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input (EN)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIH	High-level input voltage	2.7 V ≤ V _{I(IN)} ≤ 5.5 V	2			V
V	Low-level input voltage	4.5 V ≤ V _{I(IN)} ≤ 5.5 V			0.8	v
VIL	Low-level liput volage	$2.7 \text{ V} \le \text{V}_{I(IN)} \le 4.5 \text{ V}$			0.5	v
Ц	Input current	$\overline{EN} = 0 V \text{ or } \overline{EN} = V_{I(IN)}$	-0.5		0.5	μA
ton	Turn-on time	$C_{L} = 100 \mu\text{F}, \ R_{L} = 10 \Omega$			20	
t _{off}	Turn-off time	$C_{L} = 100 \ \mu F, \ R_{L} = 10 \ \Omega$			40	ms

current limit

	PARAMETER	TEST CONDITIONS [†]			ТҮР	MAX	UNIT
				0.22	0.3	0.4	
IOS Short-circuit output current		$T_{J} = 25^{\circ}C, V_{I} = 5.5 V,$	TPS2011A	0.66	0.9	1.1	
	Device enable into short circuit	TPS2012A	1.1	1.5	1.8	A	
			TPS2013A	1.65	2.2	2.7	

+ Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS189 - DECEMBER 1998

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, \overline{EN} = 0 V (unless otherwise noted) (continued)

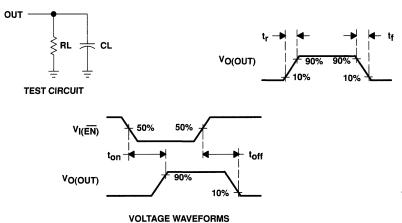
supply current

PARAMETER	TEST	TEST CONDITIONS			TYP	MAX	UNIT
	No Load on OUT		TJ = 25°C	0.3		1	
Supply current, low-level output	No Load on OUT	$\overline{EN} = V_{I(IN)}$	$-40^{\circ}C \le T_J \le 125^{\circ}C$			10	μA
	No. I and an OUT	=	TJ = 25°C	58 125°C 75		75	μA
Supply current, high-level output	No Load on OUT	<u>EN</u> = 0 V	–40°C ≤ TJ ≤ 125°C			100	
Leakage current	OUT connected to ground	$\overline{EN} = V_{I(IN)}$	–40°C ≤ TJ ≤ 125°C		10		μA

undervoltage lockout

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low-level input voltage		2		2.5	v
Hysteresis	Тј = 25°С	100		mV	

SLVS189 - DECEMBER 1998



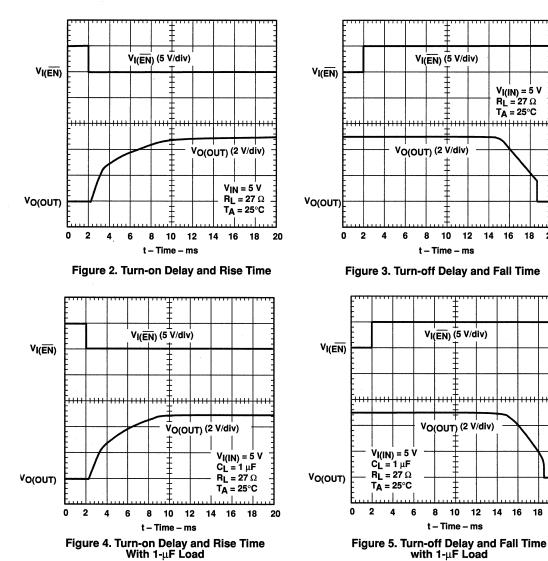
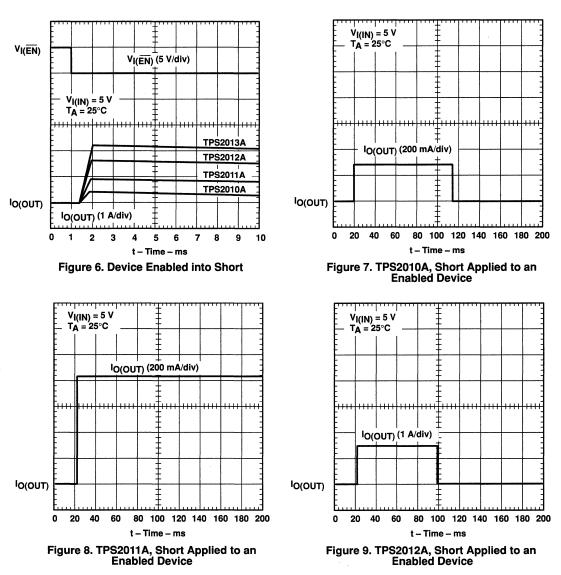

Figure 1. Test Circuit and Voltage Waveforms

Table of Timing Diagrams

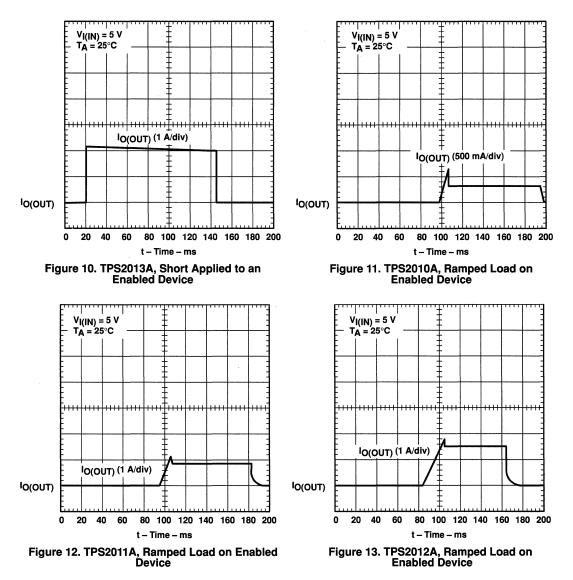
	FIGURE
Turn-on Delay and Rise TIme	2
Turn-off Delay and Fall Time	3
Turn-on Delay and Rise TIme with 1-µF Load	4
Turn-off Delay and Rise TIme with 1-µF Load	5
Device Enabled into Short	6
TPS2010A, TPS2011A, TPS2012A, and TPS2013A, Short Applied to an Enabled Device	7, 8, 9,10
TPS2010A, TPS2011A, TPS2012A, and TPS2013A, Ramped Load on Enabled Device	11, 12, 13, 14
TPS2013A, Inrush Current	15
7.9-Ω Load Connected to an Enabled TPS2010A Device	16
$3.7-\Omega$ Load Connected to an Enabled TPS2010A Device	17
3.7-Ω Load Connected to an Enabled TPS2011A Device	18
2.6-Ω Load Connected to an Enabled TPS2011A Device	19
2.6-Ω Load Connected to an Enabled TPS2012A Device	20
1.2-Ω Load Connected to an Enabled TPS2012A Device	21
1.2- Ω Load Connected to an Enabled TPS2013A Device	22
0.9-Ω Load Connected to an Enabled TPS2013A Device	23

SLVS189 - DECEMBER 1998

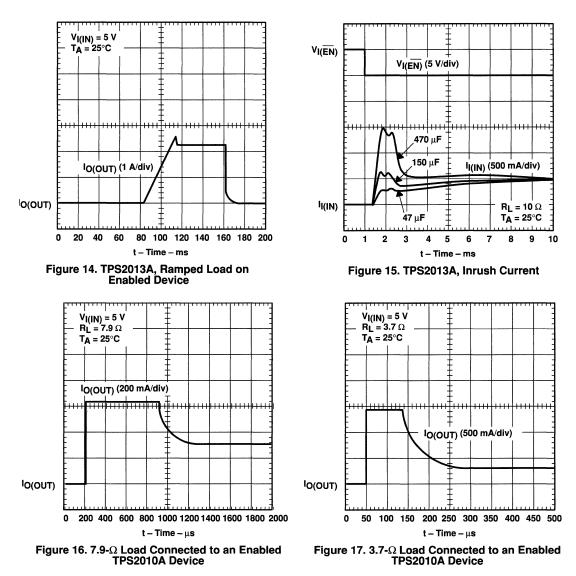


20

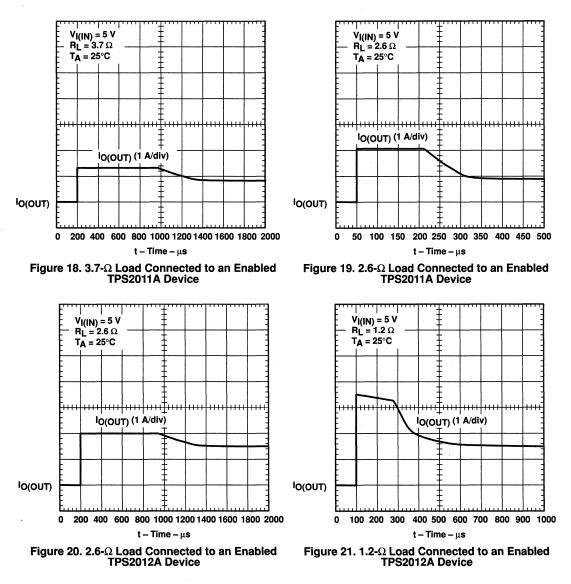
18 20



SLVS189 - DECEMBER 1998



SLVS189 - DECEMBER 1998



SLVS189 - DECEMBER 1998

SLVS189 - DECEMBER 1998

PARAMETER MEASUREMENT INFORMATION

13-64

SLVS189 - DECEMBER 1998

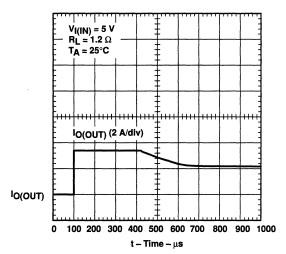


Figure 22. 1.2- Ω Load Connected to an Enabled TPS2013A Device

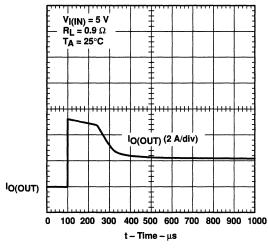
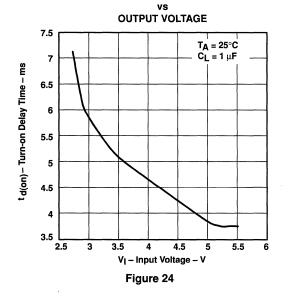


Figure 23. 0.9- Ω Load Connected to an Enabled TPS2013A Device



SLVS189 - DECEMBER 1998

TYPICAL CHARACTERISTICS

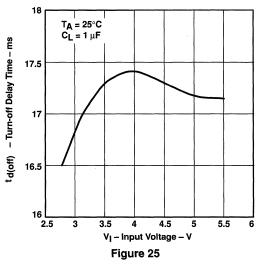
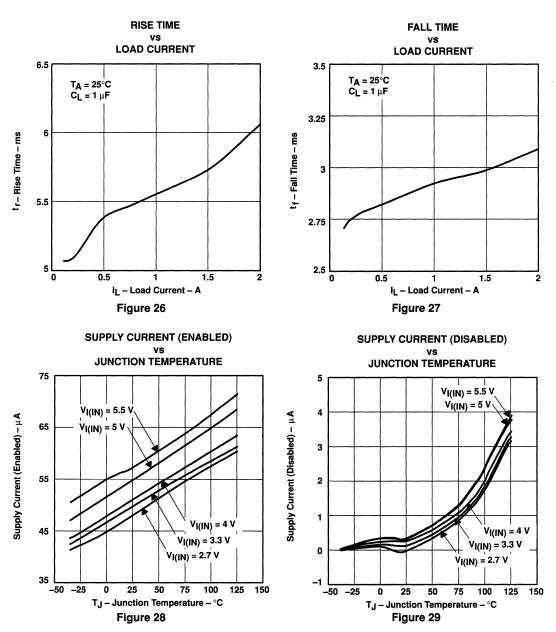
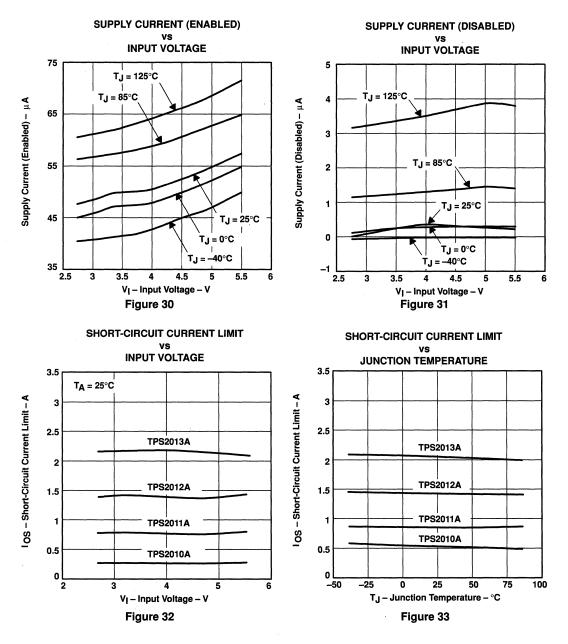
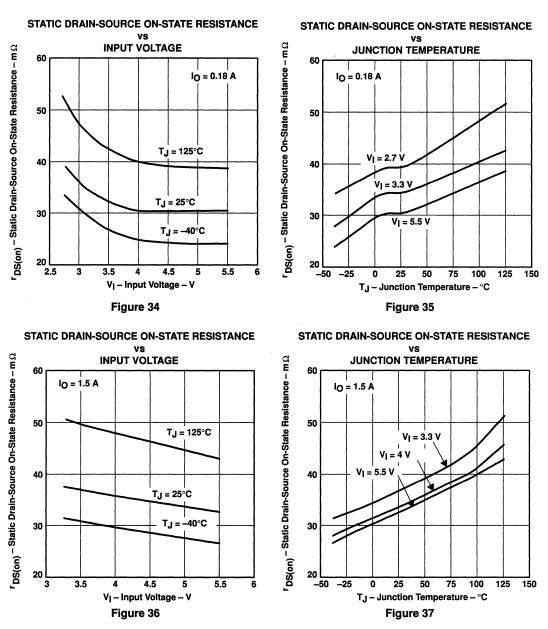

			FIGURE
^t d(on)	Turn-on delay time	vs Output voltage	24
^t d(off)	Turn-off delay time	vs Input voltage	25
tr	Rise time	vs Load current	26
tf	Fall time	vs Load current	27
	Supply current (enabled)	vs Junction temperature	28
	Supply current (disabled)	vs Junction temperature	29
	Supply current (enabled)	vs Input voltage	30
	Supply current (disabled)	vs Input voltage	31
los	Chart aircuit aurrant limit	vs Input voltage	32
	Short-circuit current limit	vs Junction temperature	33
^r DS(on)		vs Input voltage	34
	Ctatia duala anuna an atata unaistanan	vs Junction temperature	35
	Static drain-source on-state resistance	vs Input voltage	36
		vs Junction temperature	37
Vi	Input voltage	Undervoltage lockout	38

Table of Graphs

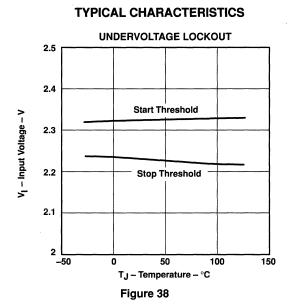
TURN-ON DELAY TIME

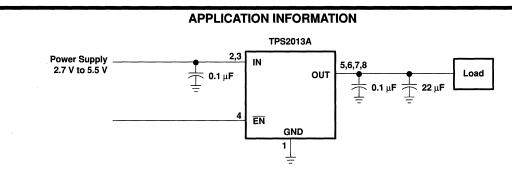

TURN-OFF DELAY TIME vs INPUT VOLTAGE


SLVS189 - DECEMBER 1998


SLVS189 - DECEMBER 1998

TYPICAL CHARACTERISTICS


SLVS189 - DECEMBER 1998



TYPICAL CHARACTERISTICS

SLVS189 - DECEMBER 1998

power supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output and input pins is recommended when the output load is heavy. This reduces power supply transients that may cause ringing on the input. Also, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

SLVS189 - DECEMBER 1998

APPLICATION INFORMATION

overcurrent (continued)

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 6). The TPS201xA senses the short and immediately switches into a constant-current output.

In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figures 16–23). After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figures 11–14). The TPS201xA is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figures 34–37. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS201xA into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

SLVS189 - DECEMBER 1998

APPLICATION INFORMATION

undervoltage lock-out (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

generic hot-plug applications (see Figure 40)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Because of the controlled rise times and fall times of the TPS201xA series, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS201xA also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

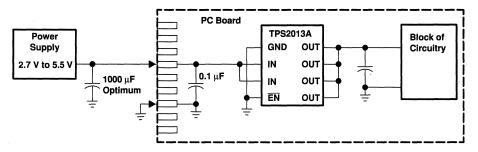


Figure 40. Typical Hot-Plug Implementation

By placing the TPS201xA between the V_{CC} input and the rest of the circuitry, the input power will reach this device first after insertion. The typical rise time of the switch is approximately 9 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

TPS2014, TPS2015 POWER DISTRIBUTION SWITCHES

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

8 0UT

6 OUT

5 DOC

7

ΠΟυτ

D OR P PACKAGE (TOP VIEW)

4

IN 🛛 2

EN D

IN 🛛 3

- 95-mΩ Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit Protection and Thermal Protection
- Logic Overcurrent Output
- 4-V to 7-V Operating Range
- Enable Input Compatible With 3-V and 5-V Logic
- Controlled Rise and Fall Times Limit Current Surges and Minimize EMI
- Undervoltage Lockout Ensures That Switch is Off at Start-Up
- 10-µA Maximum Standby Current
- Available in Space-Saving 8-Pin SOIC and 8-Pin PDIP
- 0°C to 125°C Operating Junction Temperature Range
- 12-kV Output, 6-kV Input Electrostatic-Discharge Protection

description

The TPS2014 and TPS2015 power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The high-side switch is a 95-m Ω n-channel MOSFET. The switch is controlled by a logic enable that is compatible with 3-V and 5-V logic. Gate drive is provided by an internal charge pump designed to control the power switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 4 V.

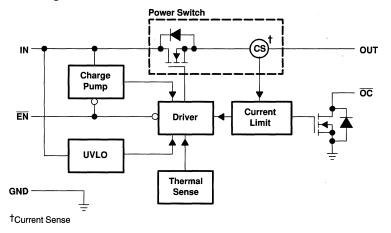
When the output load exceeds the current-limit threshold or a short is present, the TPS20xx limits the output current to a safe level by switching into a constant-current mode, and the overcurrent logic output is set to low. Continuous heavy overloads and short circuits will increase the power dissipation in the switch and cause the junction temperature to rise. A thermal protection circuit is implemented, which shuts the switch off to prevent damage when the junction temperature exceeds its thermal limit. An undervoltage lockout is provided to ensure the switch is in the off state at start-up.

The TPS2014 and TPS2015 differ only in short-circuit current limits. The TPS2014 is designed to limit at 1.2 A load and the TPS2015 limits at 2 A (see the available options table). The TPS20xx is available in 8-pin small-outline integrated circuit (SOIC) and 8-pin PDIP packages, and operates over a junction temperature range of 0°C to 125°C.

	RECOMMENDED MAXIMUM	TYPICAL SHORT-CIRCUIT	PACKAGE	D DEVICES	CHIP FORM (Y)	
TA	CONTINUOUS LOAD CURRENT	CURRENT LIMIT AT 25°C	SOIC (D)†	PDIP (P)		
0°C TO 85°C	0.6 A	1.2 A	TPS2014D	TPS2014P	TPS2014Y	
0.010.05.0	1 A	2 A	TPS2015D	TPS2015P	TPS2015Y	

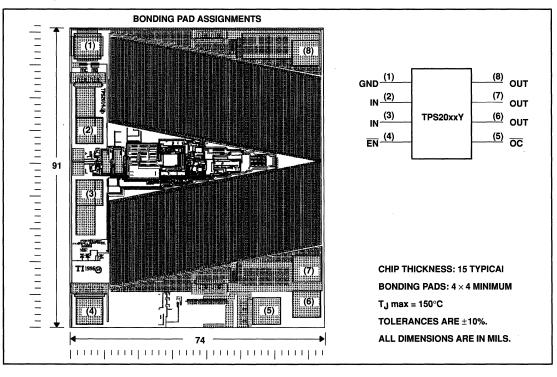
AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2014DR).



Copyright © 1997, Texas Instruments Incorporated

TPS2014, TPS2015 POWER DISTRIBUTION SWITCHES


SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

functional block diagram

TPS20xxY chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS20xx. Ultrasonic bonding may be used on the doped aluminium bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

TPS2014, TPS2015 POWER DISTRIBUTION SWITCHES

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

TERM	RMINAL I/O		DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
EN	4	Ι	Enable input. Logic low at EN turns the power switch on.		
GND	1	Ι	Ground		
ĪN	2, 3	1	Input voltage		
ŌĊ	5	0	DC is asserted active low during a fault condition.		
OUT	68	0	Power switch output		

Terminal Functions

detailed description

power switch

The power switch is an n-channel MOSFET with a maximum on-state resistance of 95 m Ω (V_{I(IN)} = 5 V), configured as a high-side switch.

charge pump

An internal 100-kHz charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 4 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range instead of the microsecond or nanosecond range for a standard FET.

enable (EN)

A logic high on $\overline{\text{EN}}$ turns off the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A. A logic zero input restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OC)

OC is an open-drain logic output that is asserted (active low) when an overload or short circuit is encountered. The output remains asserted until the overload or short-circuit condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET provides a much more efficient way to measure current than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its linear region, which switches the output into a constant current mode and simply holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately to 180°C. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

An internal voltage sense monitors the input voltage. When the input voltage is below 3.2 V nominal, a control signal turns off the power switch.

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V_I (see Note1) Output voltage range, V_O (see Note1) Input voltage range, V_I at \overline{EN} Continuous output current, I_O Continuous total power dissipation Operating virtual junction temperature range, T_J Storage temperature range, T_{sta}	0.3 V to V _{I(IN)} + 0.3 V
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE								
PACKAGE $T_A \le 25^{\circ}$ C DERATING FACTOR $T_A = 70^{\circ}$ C $T_A = 125^{\circ}$ POWER RATING ABOVE $T_A = 25^{\circ}$ C POWER RATING POWER RAT								
Р	1175 mW	9.4 mW/°C	752 mW	235 mW				
D	725 mW	5.8 mW/°C	464 mW	145 mW				

recommended operating conditions

		MIN	MAX	UNIT
Input voltage, VI		4	5.5	V
Input voltage, VI at EN		0	5.5	V
Continuous output ourrent la	TPS2014	0	0.6	
Continuous output current, IO	TPS2015	0	1	A
Operating virtual junction tempe	ature, Tj	0	125	°C

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, EN = 0 V (unless otherwise noted)

power switch

	PARAMETER	TE	EST CONDITIO	NST	MIN	TYP	MAX	UNIT	
		Vj = 5.5 V,	Tj = 25°С			75	95		
	On-state resistance	V _I = 5 V,	Tj = 25°С			80	95	mΩ	
ron		V _I = 4.5V,	Тј = 25°С			90	110		
		V _I = 4 V,	Tj = 25°С			96	110		
J.,		$\overline{EN} = V_{ },$	Tj = 25°С			0.001	1	A	
likg	Leakage current, output	$\overline{EN} = V_{I}$,	0°C ≤ Tj ≤ 1	25°C			10	- μΑ	
	Disa tima, autruit	Vj = 5.5 V,	Tj = 25°C	CL = 1 μF		4		-	
tr	Rise time, output	V ₁ = 4 V,	Тј = 25°С	CL = 1 μF		3.8		ms	
٠.	Fall time, output	Vj = 5.5 V,	Тј = 25°С	C _L = 1 μF		3.9			
tf	Fall time, output	V _I = 4 V,	Tj = 25°C	΄ C _L = 1 μF		3.5		ms	

† Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, \overline{EN} = 0 V (unless otherwise noted) (continued)

enable input (EN)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
VIH	High-level input voltage	$4 \text{ V} \leq \text{V}_{ } \leq 5.5 \text{ V}$	2		V
VIL	Low-level input voltage	4 V ≤ V ≤ 5.5 V		0.8	V
l <u>i</u>	Input current	$\overline{EN} = 0 V \text{ or } \overline{EN} = V_I$	-0.5	0.5	μΑ
tPLH	Propagation (delay) time, low to high output	CL = 1 μF		20	m 0
t PHL	Propagation (delay) time, high to low output	CL = 1 μF		40	ms

current limit

	PARAMETER	TEST CONDITIONS [†]		MIN	ТҮР	MAX	UNIT
IOS Short-circuit output current T.I = 25°C	T ₁ = 25°C, V ₁ = 5.5 V	TPS2014	0.66	1.2	1.8	^	
0	S Short-circuit output current	$ 1 = 25^{\circ}$ C, $ 1 = 5.5^{\circ}$ V	TPS2015	1.1	2	3	~

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

supply current

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
lan	Supply current, low-level output		TJ = 25°C		0.015	10	
DDL	Supply current, low-level output		0°C ≤ TJ ≤ 125°C			10	μΑ
	Supply surrent high lovel sutput	ĒN = 0 V	Tj = 25°C		73	100	
IDDH	Supply current, high-level output		0°C ≤ TJ ≤ 125°C			100	μA

undervoltage lockout

PARAMETER	MIN	TYP	MAX	UNIT
VIL Low-level input voltage	2	3.2	4	V

 $\overline{\mathbf{OC}}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
los	Short-circuit output current	0°C ≤ T၂ ≤ 125°C			5	mA
VOL	Low-level output voltage	0°C ≤ T၂ ≤ 125°C			0.3	ША

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

electrical characteristics over recommended operating junction temperature range, $V_{i(IN)}$ = 5.5 V, I_O = rated current, \overline{EN} = 0 V (unless otherwise noted)

power switch

	PARAMETER		EST CONDITIC	Net	TPS201	4Y, TPS	2015Y	UNIT
	PARAMETER	"	EST CONDITIC	N91	MIN	TYP	MAX	UNIT
		V _i = 5.5 V,	Тј = 25°С			75		
	On-state resistance	V _l = 5 V,	Tj = 25°C			80		mΩ
ron	On-state resistance	Vj = 4.5V,	Тј = 25°С			90		11152
		V _I = 4 V,	TJ = 25°C			96		
L.,	Leakage current, output	$\overline{EN} = V_i$,	TJ = 25°C			0.001		۸
likg	Leakage current, output	$\overline{EN} = V_{ },$	0°C ≤ TJ ≤ 1	25°C		10		μA
	Pine time, output	V _I = 5.5 V,	TJ = 25°C	CL = 1 μF		4		
tr	Rise time, output	V ₁ = 4 V,	Tj = 25°C	CL = 1 μF		3.8		ms
	Fall time, output	V _I = 5.5 V,	Tj = 25°С	CL = 1 μF		3.9		-
tf	Fall time, output	V _l = 4 V,	Тј = 25°С	CL = 1 μF		3.5		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input (EN)

	PARAMETER	TEST CONDITIONS	TPS201	UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIH	High-level input voltage	4 V ≤ V _I ≤ 5.5 V		2		V
VIL	Low-level input voltage	4 V ≤ V _I ≤ 5.5 V	0.8		v	
1 ₁	Input current	$\overline{EN} = 0 V \text{ or } \overline{EN} = V_{I}$		0.5		μA
t PLH	Propagation (delay) time, low to high output	C _L = 1 μF		20		
t PHL	Propagation (delay) time, high to low output	C _L = 1 μF	40		ms	

current limit

PARAMETER		TEST CONDIT	TPS201	UNIT			
		TEST CONDIT	MIN	TYP	MAX	UNIT	
	IOS Short-circuit output current T	T 25°C V 5 5 V	TPS2014		1.2		٨
os		T _J = 25°C, V _I = 5.5 V	TPS2015		2		~

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

supply current

PARAMETER		TEST CONDITIONS		TPS2014Y, TPS2015Y			UNIT	
				MIN	TYP	MAX	UNIT	
			Tj = 25°C		0.015		۵	
JUDL	I_{DDL} Supply current, low-level output $\overline{EN} = V_{I}$	EN = V	0°C ≤ Tj ≤ 125°C		10		μA	
	Cumply surrent high layed surry	ĒN = 0 V	Тј = 25°С		73		μA	
IDDH	Supply current, high-level output		0°C ≤ TJ ≤ 125°C		100			

undervoltage lockout

PARAMETER	TPS201	UNIT		
	MIN	TYP	MAX	UNIT
VIL Low-level input voltage		3.2		v

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, \overline{EN} = 0 V (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS	TPS2014Y, TPS2015Y			UNIT
		TEST CONDITIONS	MIN	TYP	MAX	
los	Short-circuit output current	0°C ≤ TJ ≤ 125°C	5			
VOL	Low-level output voltage	0°C ≤ TJ ≤ 125°C	0.3		mA	

Table	of	Timina	Diagrams
IGNIC	•••		Blagramo

	FIGURE
Propagation Delay and Rise Time With $1-\mu F$ Load, $V_{I(IN)} = 5 V$	1
Propagation Delay and Fall Time With 1- μ F Load, V _{I(IN)} = 5 V	2
TPS2014 Short-Circuit Current. Short is Applied to Enabled Device, $V_{I(IN)} = 5 V$	3
TPS2015 Short-Circuit Current. Short is Applied to Enabled Device, $V_{I(IN)} = 5 V$	4
TPS2014 Threshold Current, VI(IN) = 5 V	5
TPS2015 Threshold Current, VI(IN) = 5 V	6
TPS2014 (Enabled) into Short Circuit, VI(IN) = 5 V	7
TPS2015 (Enabled) into Short Circuit, VI(IN) = 5 V	8

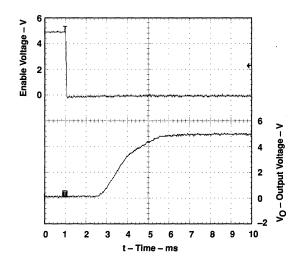


Figure 1. Propagation Delay and Rise Time With 1- μ F Load, V_{I(IN)} = 5 V

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

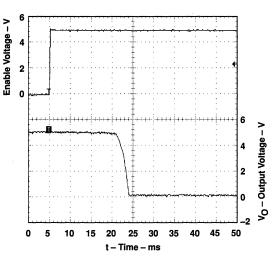


Figure 2. Propagation Delay and Fall Time With 1- μF Load, $V_{I(IN)}$ = 5 V

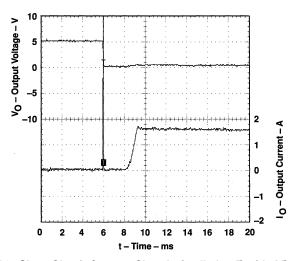
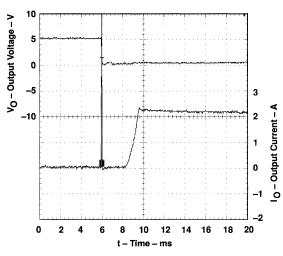
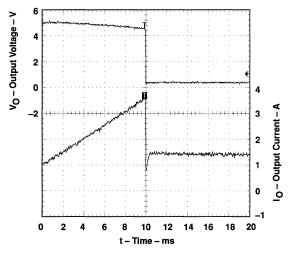
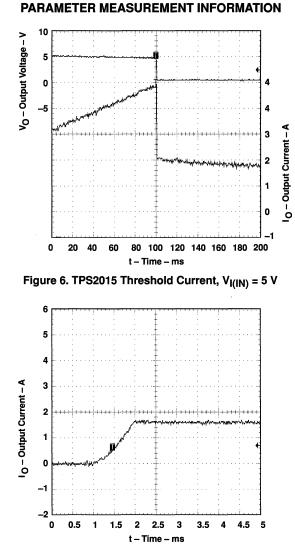
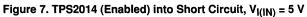


Figure 3. TPS2014 Short-Circuit Current. Short is Applied to Enabled Device, VI(IN) = 5 V

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997


Figure 4. TPS2015 Short-Circuit Current. Short is Applied to Enabled Device, $V_{I(IN)} = 5 V$



SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

PARAMETER MEASUREMENT INFORMATION

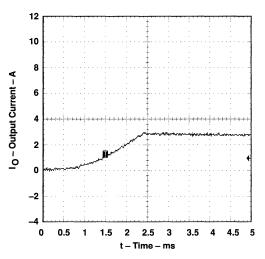


Figure 8. TPS2015 (Enabled) into Short Circuit, VI(IN) = 5 V

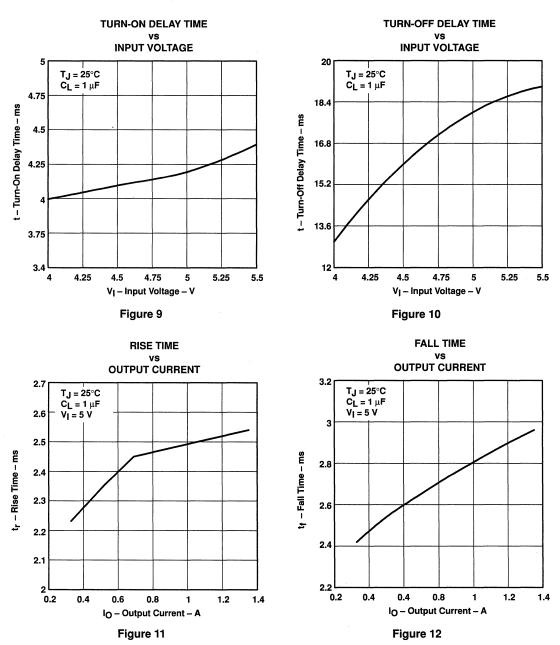
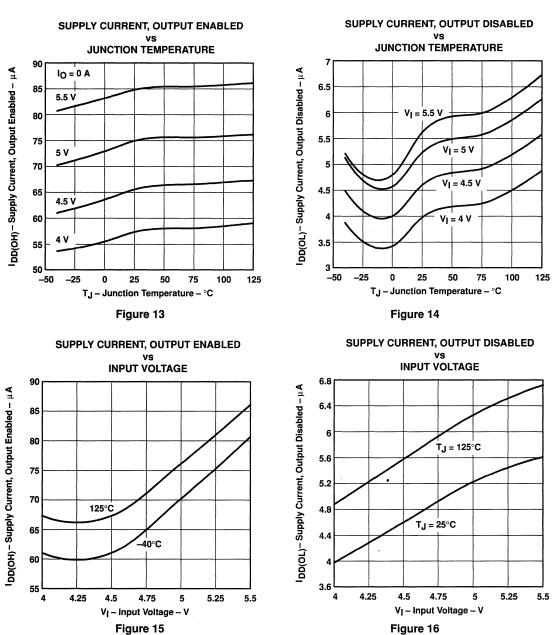
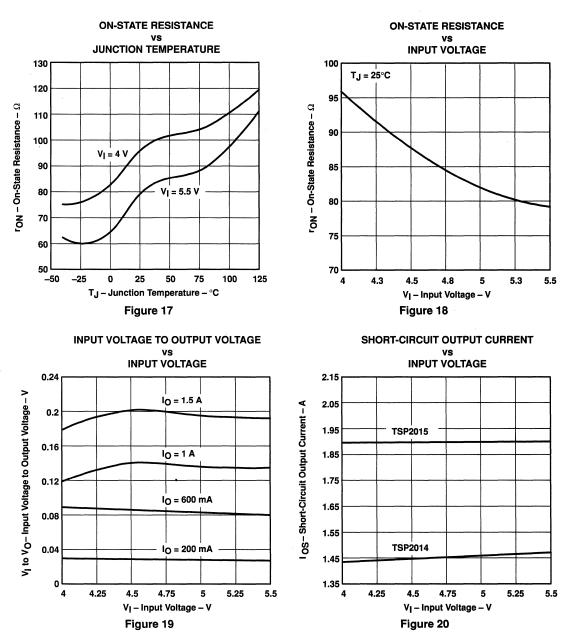

TYPICAL CHARACTERISTICS

Table of Graphs

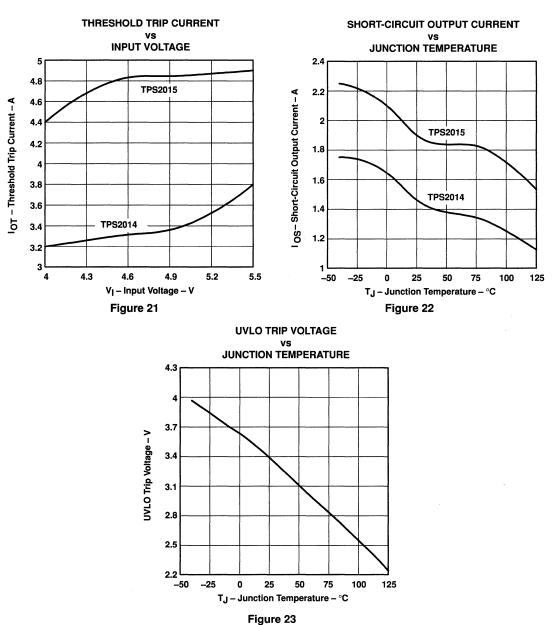
	FIGURE
Turn-On Delay Time vs Input Voltage	9
Turn-Off Delay Time vs Input Voltage	10
Rise Time vs Output Current	11
Fall Time vs Output Current	12
Supply Current, Output Enabled vs Junction Temperature	13
Supply Current, Output Enabled vs Junction Temperature	14
Supply Current, Output Enabled vs Input Voltage	15
Supply Current, Output Enabled vs Input Voltage	16
On-State Resistance vs Junction Temperature	17
On-State Resistance vs Input Voltage	18
Input Voltage to Output Voltage vs Input Voltage	19
Short-Circuit Output Current vs Input Voltage	20
Threshold Trip Current vs Input Voltage	21
Short-Circuit Output Current vs Junction Temperature	22
UVLO Trip Voltage vs Junction Temperature	23



SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997



SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997



SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

SLVS159B -- DECEMBER 1996 -- REVISED AUGUST 1997

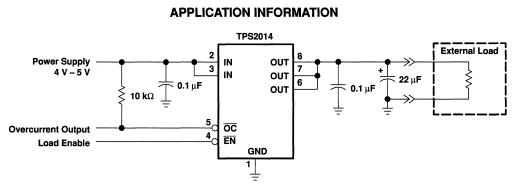


Figure 24. Typical Application

power supply considerations

The TPS20xx has multiple inputs and outputs that must be connected in parallel to minimize voltage drop and prevent unnecessary power dissipation.

A 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. A high-value electrolytic capacitor is also desirable when the output load is heavy or has large paralleled capacitors. Bypassing the output with a 0.1- μ F ceramic capacitor improves the immunity of the device to electrostatic discharge (ESD).

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike sense resistors and polyfuses, sense FETs do not increase series resistance to the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Shutdown only occurs when the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figures 7 and 8). The TPS20xx senses the short and immediately switches into a constant-current output.

Under the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents flow for a short time before the current-limit circuit can react (see Figures 3 and 4). After the current-limit circuit has tripped, the device limits normally.

Under the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached (see Figures 5 and 6). The TPS20xx is capable of delivering current up to the current-limit threshold without damage. When the threshold has been reached, the device switches into its constant-current mode.

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance of the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistance of these packages is high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find r_{on} at the input voltage and at the operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read r_{on} from Figure 17. Next calculate the power dissipation using:

$$P_D = r_{on} \times l^2$$

Finally, calculate the junction temperature:

$$\mathsf{T}_{\mathsf{J}} = \mathsf{P}_{\mathsf{D}} \times \mathsf{R}_{\mathsf{\theta}\mathsf{J}\mathsf{A}} + \mathsf{T}_{\mathsf{A}}$$

Where:

T_A = Ambient temperature

 $R_{\theta,JA}$ = Thermal resistance SOIC = 172°C/W, P = 106°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection is provided to prevent damage to the IC when heavy-overload or a short-circuit fault is present for an extended period of time. The fault forces the TPS20xx into constant current mode, which causes the voltage across the high-side switch to increase. Under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts it off. The switch remains off until the junction temperature has dropped approximately 20°C. The switch continues to cycle in this manner until the load fault or the input power is removed.

undervoltage lockout

An undervoltage lockout is provided to ensure that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 3.2 V, the power switch quickly turns off. This facilitates the design of hot-insertion systems that may not have the ability to turn off the power switch before input power is removed. Upon reapplication of the input voltage (if enabled), the power switch turns on with a controlled rise time to reduce inrush current, EMI, and voltage overshoots.

For proper operation of the UVLO, the TPS20xx requires the voltage decay from 3 V to 2 V to take at least 200 µs. Capacitance is added to the input or output of the TPS20xx to increase this decay rate. Capacitance is generally added to the output to lower inrush current due to input capacitance.

Universal Serial Bus (USB) applications

The USB specification provides for five different classes of devices based on their power sourcing and sinking requirements. These classes of devices are: bus-powered hub, self-powered hub, lower power bus-powered function, high power bus-powered function, and self-powered functions. The TPS20xx can provide power distribution solutions for many of these devices.

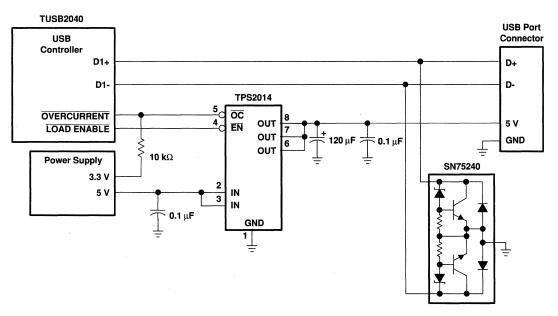
SLVS159B – DECEMBER 1996 – REVISED AUGUST 1997

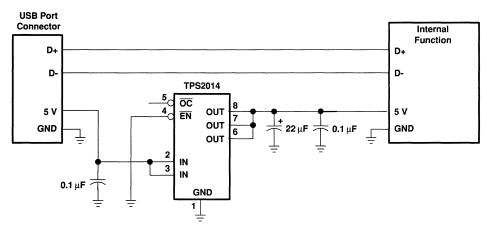
APPLICATION INFORMATION

bus-powered and self-power hubs

Hubs provide data and power for downstream functions through output ports. Self-power hubs have internal power supplies that furnish power to downstream functions. Each port is required to supply 500 mA continuous to a downstream function. Each port must have overcurrent protection to meet the regulatory safety limit that no single port can deliver more than 5 A. The self-power hub must also have a method to detect and report an overcurrent condition to the USB host. The TPS20xx provides the required current-limiting function and has an overcurrent logic output to inform the hub controller of the fault condition. The on-state resistance of the TPS20xx is low enough to meet all USB voltage regulation requirements. The switch also provides the capability to remove power from a faulted port.

Bus-powered hubs distribute power and data from an input port to downstream ports. Each output port is required to supply 100 mA continuous. A bus-powered hub is not required to provide overcurrent protection because it is provided by the upstream port. In order to power up in a low power state, the self-powered hub must be able to switch power to its output ports. The TPS20xx can also provide this function.




Figure 25. Typical USB Self-Powered Hub Application

low power bus-powered functions and high power bus-powered functions

Low-power and high-power bus-powered functions are powered by their input ports. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F, it must implement inrush current limiting. The TPS20xx provides this function with its controlled rise time during turn on.

SLVS159B - DECEMBER 1996 - REVISED AUGUST 1997

APPLICATION INFORMATION

ESD protection

All TPS20xx terminals incorporate ESD-protection circuitry designed to withstand a 6-kV human-body-model discharge as defined in MIL-STD-883C. Additionally, the output is protected from discharges up to 12 kV.

SLVS175 - DECEMBER 1998

- 50-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit and Thermal Protection
- Overcurrent Logic Output
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- Typical Rise Time . . . 6.1 ms
- Undervoltage Lockout
- Maximum Standby Supply Current . . . 10 μA
- No Drain-Source Back-Gate Diode
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, –40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

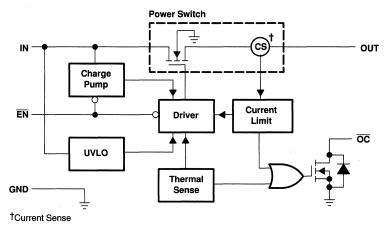
description

D OR P PACKAGE (TOP VIEW)								
GND (IN (IN (EN (O 1 2 3 4	6] OUT] OUT] OUT] OC					

The TPS202x family of power distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. These devices are 50-m Ω N-channel MOSFET high-side power switches. The switch is controlled by a logic enable compatible with 5-V logic and 3-V logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS202x limits the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OC}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS202x devices differ only in short-circuit current threshold. The TPS2020 limits at 0.3-A load, the TPS2021 at 0.9-A load, the TPS2022 at 1.5-A load, the TPS2023 at 2.2-A load, and the TPS2024 at 3-A load (see Available Options). The TPS202x is available in an 8-pin small-outline integrated-circuit (SOIC) package and in an 8-pin dual-in-line (DIP) package and operates over a junction temperature range of -40° C to 125°C.


	ENABLE	ABLE MAXIMUM CONTINUOUS CURRENT L	TYPICAL SHORT-CIRCUIT	PACKAGED DEVICES				
TA			CURRENT LIMIT AT 25°C (A)	SMALL OUTLINE (D) [†]	PLASTIC DIP (P)			
	Active low	0.2	0.3	TPS2020D	TPS2020P			
		0.6	0.9	TPS2021D	TPS2021P			
-40°C to 85°C		1	1.5	TPS2022D	TPS2022P			
		1.5	2.2	TPS2023D	TPS2023P			
		2	3	TPS2024D	TPS2024P			

AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2020DR)

SLVS175 - DECEMBER 1998

TPS2020 functional block diagram

Terminal Functions

TERMINAL					
NAME	NO. D OR P	1/0	DESCRIPTION		
ĒN	4	I	Enable input. Logic low turns on power switch.		
GND	1	1	Ground		
IN	2, 3	1	nput voltage		
OC	5	0	Overcurrent. Logic output active low		
OUT	6, 7, 8	0	Power-switch output		

SLVS175 - DECEMBER 1998

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 50 m Ω (V_{I(IN)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 9-ms range.

enable (EN)

The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A when a logic high is present on \overline{EN} . A logic zero input on \overline{EN} restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OC)

The OC open drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS175 - DECEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _{I(IN)} (see Note 1)	–0.3 V to 6 V
Output voltage range, VO(OUT) (see Note 1)	–0.3 V to V _{I(IN)} + 0.3 V
Input voltage range, V _{I(EN)}	
Continuous output current, IO(OUT)	internally limited
Continuous total power dissipation	. See Dissipation Rating Table
Operating virtual junction temperature range, T _J	
Storage temperature range, T _{stg}	
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE								
$\begin{array}{ccc} T_A \leq 25^\circ C & \text{DERATING FACTOR} & T_A = 70^\circ C & T_A = 85^\circ \\ \text{POWER RATING} & \text{ABOVE } T_A = 25^\circ C & \text{POWER RATING} & \text{POWER RAT} \end{array}$								
D	725 mW	5.8 mW/°C	464 mW	377 mW				
Р	1175 mW	9.4 mW/°C	752 mW	611 mW				

recommended operating conditions

		MIN	MAX	UNIT
Input voltage	VI(IN)	2.7	5.5	v
input voltage	VI(EN)	0	5.5	Ŷ
	TPS2020	0	0.2	
	TPS2021	0	0.6	
Continuous output current, IO	TPS2022	0	1	A
	TPS2023	0	1.5	
	TPS2024	0	2	
Operating virtual junction temper	ture, TJ	-40	125	°C

electro static discharge (ESD) protection

	MIN	MAX	UNIT
Human Body Model MIL-STD-883C		2	kV
Machine model		0.2	kV

SLVS175 - DECEMBER 1998

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, \overline{EN} = 0 V (unless otherwise noted)

power switch

	PARAMETER	ті	EST CONDITIO	NS†	MIN	ТҮР	MAX	UNIT
		$V_{I(IN)} = 5 V,$	TJ = 25°C,	I _O = 1.8 A		33	36	
		V _{I(IN)} = 5 V,	Tj = 85°C,	I _O = 1.8 A		38	46	
		V _{I(IN)} = 5 V,	TJ = 125°C,	I _O = 1.8 A		44	50	
		V _{I(IN)} = 3.3 V,	TJ = 25°C,	I _O = 1.8 A		37	41	
		V _{I(IN)} = 3.3 V,	TJ = 85°C,	I _O = 1.8 A		43	52	
	Static drain-source on-state resistance	V _{I(IN)} = 3.3 V,	TJ = 125°C,	I _O = 1.8 A		51	61	mΩ
^r DS(on)	Static drain-source on-state resistance	V _{1(IN)} = 5 V,	T _J = 25°C,	I _O = 0.18 A		30	34	11122
		V _{I(IN)} = 5 V,	Tj = 85°C,	I _O = 0.18 A		35	41	
		V _{I(IN)} = 5 V,	Tj = 125°C,	I _O = 0.18 A		39	47	
		V _{I(IN)} = 3.3 V,	Tj = 25°C,	I _O = 0.18 A		33	37	
		V _{I(IN)} = 3.3 V,	Тј = 85°С,	I _O = 0.18 A		39	46	
		V _{I(IN)} = 3.3 V,	Tj = 125°C,	I _O = 0.18 A		44	56	
•	Rise time, output	V _{I(IN)} = 5.5 V, C _L = 1 μF,				6.1		-
t _r		V _{I(IN)} = 2.7 V, C _L = 1 μF,	TJ = 25°C, RL = 10 Ω			8.6		ms
		V _{I(IN)} = 5.5 V, C _L = 1 μF,				3.4		
t r	Fall time, output	V _{I(IN)} = 2.7 V, C _L = 1 μF,				3		ms

† Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input (EN)

	PARAMETER	TEST CONDITIONS	MIN 1	TYP MAX	UNIT	
VIH	High-level input voltage	2.7 V ≤ V _{I(IN)} ≤ 5.5 V	2		٧	
V		4.5 V ≤ V _{I(IN)} ≤ 5.5 V		0.8	v	
VIL	/IL Low-level input voltage	$2.7 \text{ V} \le \text{V}_{1(IN)} \le 4.5 \text{ V}$		0.5	v	
li I	Input current	$\overline{EN} = 0 V \text{ or } \overline{EN} = V_{I(IN)}$	-0.5	0.5	μA	
ton	Turn-on time	$C_{L} = 100 \ \mu F, \ R_{L} = 10 \ \Omega$		20		
toff	Turn-off time	$C_{L} = 100 \ \mu F, \ R_{L} = 10 \ \Omega$		40	ms	

current limit

	PARAMETER	TEST CONDITIONST			TYP	MAX	UNIT
			TPS2020	0.22	0.3	0.4	
		$T_{1} = 25^{\circ}C, V_{1} = 5.5 V,$	TPS2021	0.66	0.9	1.1	
los	IOS Short-circuit output current		TPS2022	1.1	1.5	1.8	Α
		Device enable into short circuit	TPS2023	1.65	2.2	2.7	
		TPS2024	2.2	3	3.8		

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS175 - DECEMBER 1998

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, \overline{EN} = 0 V (unless otherwise noted) (continued)

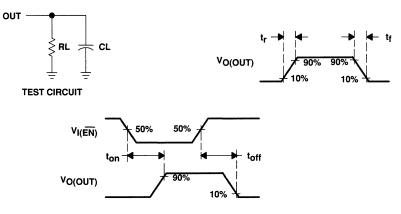
supply current

PARAMETER	TEST	TEST CONDITIONS			TYP	MAX	UNIT
Supply current, low-level output	No Load on OUT		TJ = 25°C		0.3	1	
Supply current, low-level output	No Load on COT	$\overline{EN} = V_{I(IN)}$	–40°C ≤ T _J ≤ 125°C			10	μA
Supply ourrest, high lovel output	No Load on OUT		TJ = 25°C		58	75	
Supply current, high-level output	No Load on OUT	<u>EN</u> = 0 V	–40°C ≤ TJ ≤ 125°C		75	100	μΑ
Leakage current	OUT connected to ground	$\overline{EN} = V_{I(IN)}$	–40°C ≤ TJ ≤ 125°C		10		μΑ

undervoltage lockout

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low-level input voltage		2		2.5	V
Hysteresis	Т _Ј = 25°С		100		mV

overcurrent (OC)


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output low voltage	$I_O = 10 \text{ mA}, V_{OL}(\overline{OC})$			0.4	V
Off-state current [†]	V _O = 5 V, V _O = 3.3 V			1	μA

[†] Specified by design, not production tested.

SLVS175 - DECEMBER 1998

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

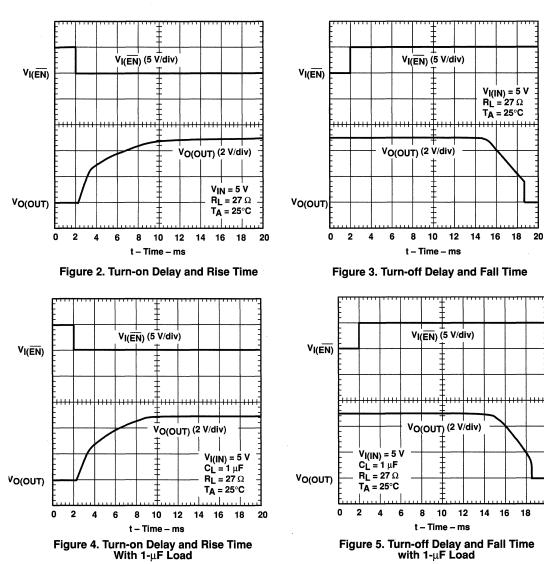
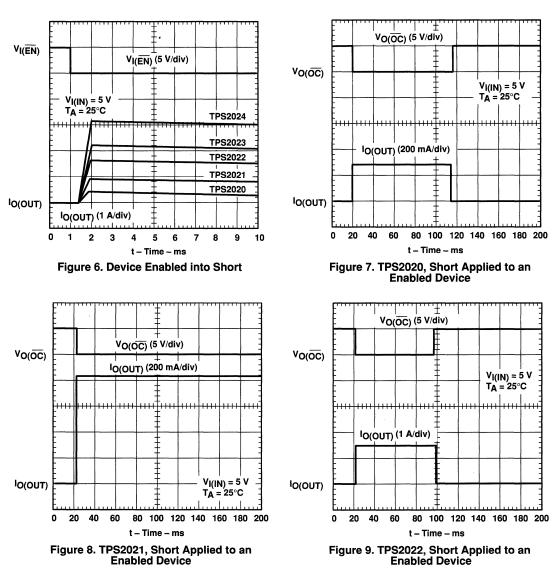

Figure 1. Test Circuit and Voltage Waveforms

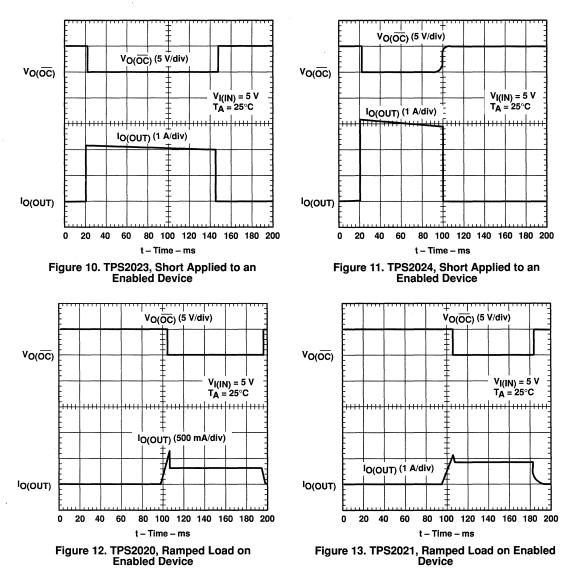
Table of Timing Diagrams

	FIGURE
Turn-on Delay and Rise Time	2
Turn-off Delay and Fall Time	3
Turn-on Delay and Rise Time with 1-µF Load	4
Turn-off Delay and Rise TIme with 1- μ F Load	5
Device Enabled into Short	6
TPS2020, TPS2021, TPS2022, TPS2023, and TPS2024, Short Applied to an Enabled Device	7, 8, 9, 10, 11
TPS2020, TPS2021, TPS2022, TPS2023, and TPS2024, Ramped Load on Enabled Device	12, 13, 14, 15,16
TPS2024, Inrush Current	17
7.9- Ω Load Connected to an Enabled TPS2020 Device	18
3.7- Ω Load Connected to an Enabled TPS2020 Device	19
3.7- Ω Load Connected to an Enabled TPS2021 Device	20
2.6- Ω Load Connected to an Enabled TPS2021 Device	21
2.6- Ω Load Connected to an Enabled TPS2022 Device	22
1.2-Ω Load Connected to an Enabled TPS2022 Device	23
1.2-Ω Load Connected to an Enabled TPS2023 Device	24
$0.9-\Omega$ Load Connected to an Enabled TPS2023 Device	25
0.9- Ω Load Connected to an Enabled TPS2024 Device	26
0.5-Ω Load Connected to an Enabled TPS2024 Device	27

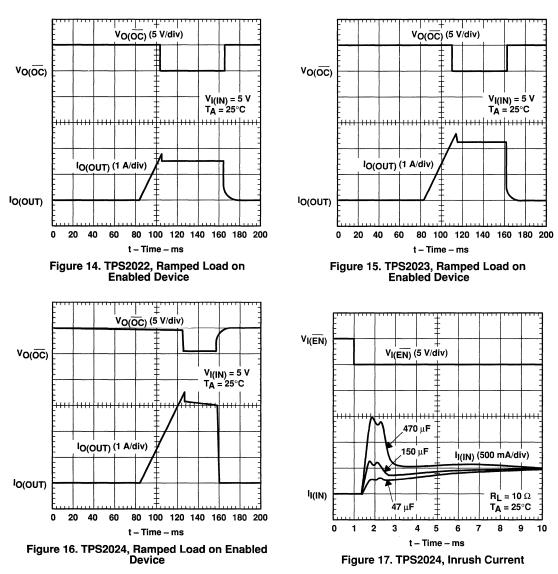
SLVS175 - DECEMBER 1998



PARAMETER MEASUREMENT INFORMATION

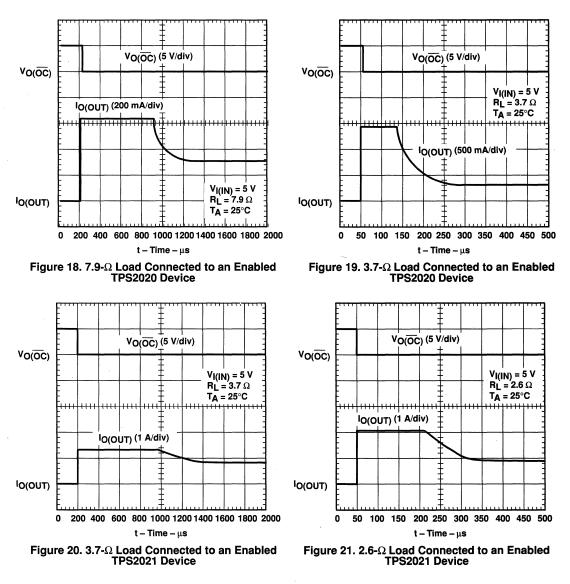

20

SLVS175 - DECEMBER 1998

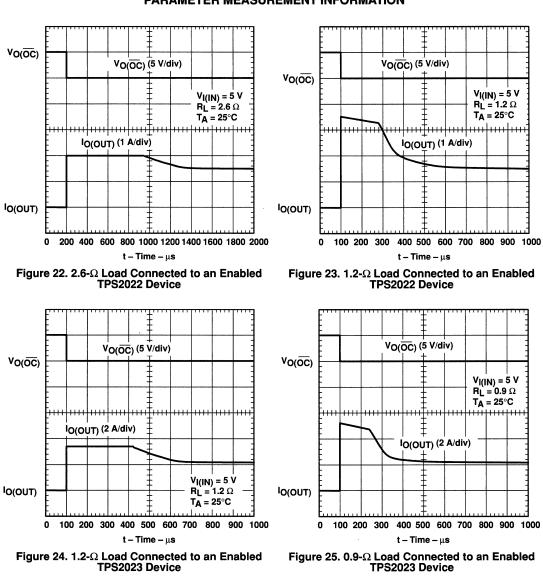


SLVS175 - DECEMBER 1998

SLVS175 - DECEMBER 1998



PARAMETER MEASUREMENT INFORMATION



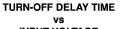
SLVS175 - DECEMBER 1998

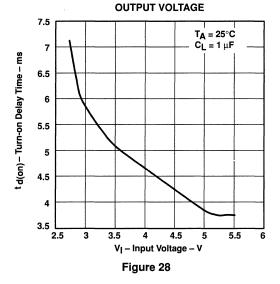


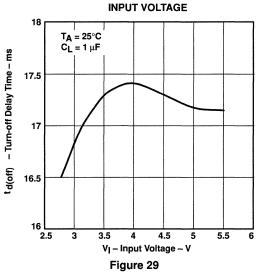
SLVS175 - DECEMBER 1998

SLVS175 - DECEMBER 1998

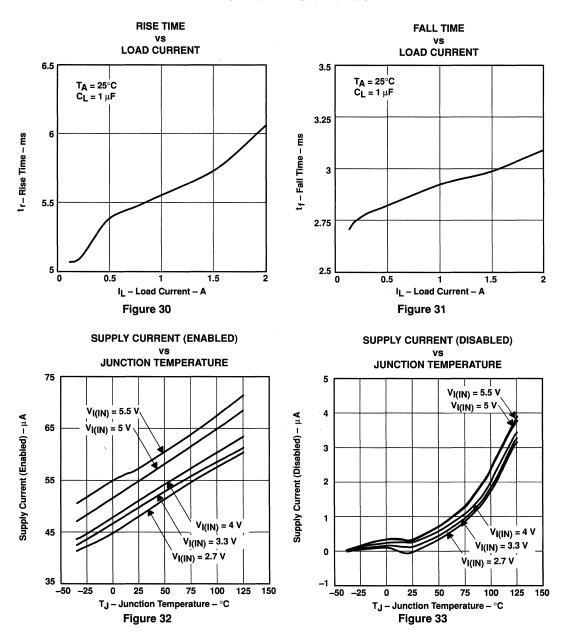
SLVS175 - DECEMBER 1998

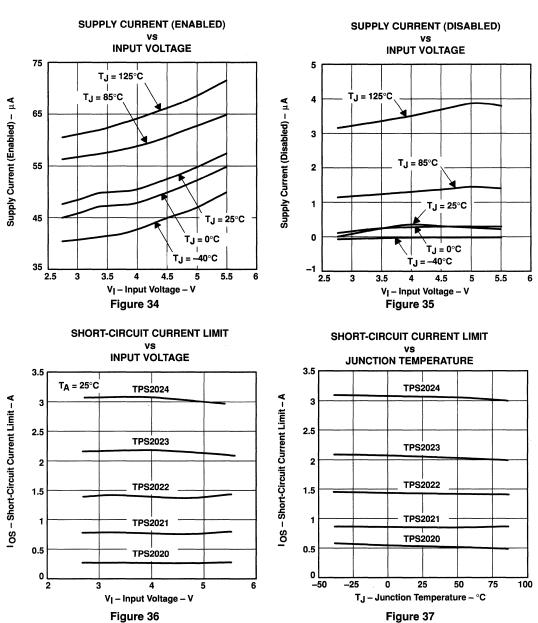

TYPICAL CHARACTERISTICS


Table of Graphs

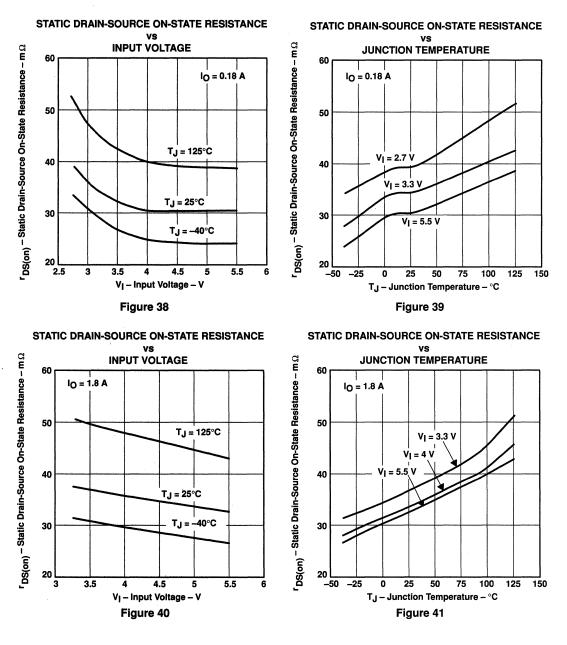

			FIGURE
^t d(on)	Turn-on delay time	vs Output voltage	28
^t d(off)	Turn-off delay time	vs Input voltage	29
tr	Rise time	vs Load current	30
tf	Fall time	vs Load current	31
	Supply current (enabled)	vs Junction temperature	32
	Supply current (disabled)	vs Junction temperature	33
	Supply current (enabled)	vs Input voltage	34
	Supply current (disabled)	vs Input voltage	35
1		vs Input voltage	36
los	Short-circuit current limit	vs Junction temperature	37
		vs Input voltage	38
	Ctatia duain accuración atata vaciatavas	vs Junction temperature	39
^r DS(on)	Static drain-source on-state resistance	vs Input voltage	40
		vs Junction temperature	41
VI	Input voltage	Undervoltage lockout	42

TURN-ON DELAY TIME vs

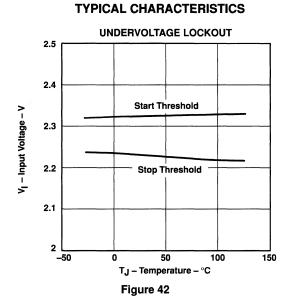


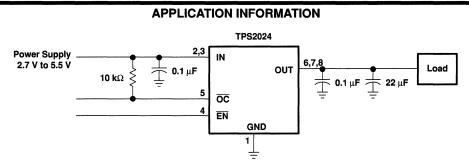


SLVS175 - DECEMBER 1998



SLVS175 - DECEMBER 1998


SLVS175 - DECEMBER 1998



SLVS175 - DECEMBER 1998

power supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output and input pins is recommended when the output load is heavy. This reduces power supply transients that may cause ringing on the input. Also, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

SLVS175 - DECEMBER 1998

APPLICATION INFORMATION

overcurrent (continued)

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 6). The TPS202x senses the short and immediately switches into a constant-current output.

In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figures 18–27). After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figures 12–16). The TPS202x is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter can be connected to the \overline{OC} pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

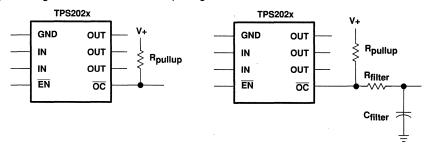


Figure 44. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses

SLVS175 - DECEMBER 1998

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figures 38–41. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS202x into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lock-out (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

SLVS175 - DECEMBER 1998

APPLICATION INFORMATION

generic hot-plug applications (see Figure 45)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Because of the controlled rise times and fall times of the TPS202x series, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS202x also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

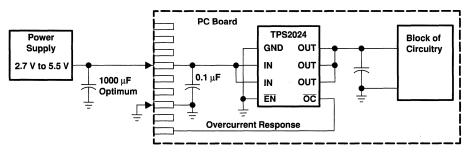


Figure 45. Typical Hot-Plug Implementation

By placing the TPS202x between the V_{CC} input and the rest of the circuitry, the input power will reach this device first after insertion. The typical rise time of the switch is approximately 9 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

SLVS190 - DECEMBER 1998

- 50-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- Short-Circuit and Thermal Protection
- Overcurrent Logic Output
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- Typical Rise Time . . . 6.1 ms
- Undervoltage Lockout
- Maximum Standby Supply Current . . . 10 μA
- No Drain-Source Back-Gate Diode
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, -40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

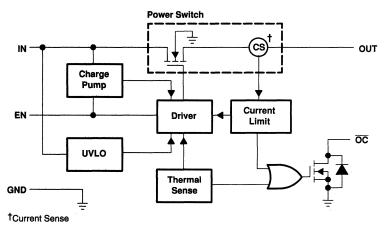
D OR P PACKAGE (TOP VIEW)						
GND (IN (IN (EN (O 1 2 3 4	8 7 6 5] OUT] OUT] OUT] OC			

The TPS203x family of power distribution switches is intended for applications where heavy capacitive loads and short circuits are likely to be encountered. These devices are 50-m Ω N-channel MOSFET high-side power switches. The switch is controlled by a logic enable compatible with 5-V logic and 3-V logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS203x limits the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OC}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS203x devices differ only in short-circuit current threshold. The TPS2030 limits at 0.3-A load, the TPS2031 at 0.9-A load, the TPS2032 at 1.5-A load, the TPS2033 at 2.2-A load, and the TPS2034 at 3-A load (see Available Options). The TPS203x is available in an 8-pin small-outline integrated-circuit (SOIC) package and in an 8-pin dual-in-line (DIP) package and operates over a junction temperature range of -40°C to 125°C.

	RECOMMENDED	RECOMMENDED MAXIMUM CONTINUOUS	TYPICAL SHORT-CIRCUIT	PACKAGED DEVICES				
ТА	ENABLE	LOAD CURRENT (A)	CURRENT LIMIT AT 25°C (A)	SMALL OUTLINE (D) [†]	PLASTIC DIP (P)			
	Active high	0.2	0.3	TPS2030D	TPS2030P			
		0.6	0.9	TPS2031D	TPS2031P			
-40°C to 85°C		1	1.5	TPS2032D	TPS2032P			
		1.5	2.2	TPS2033D	TPS2033P			
		2	3	TPS2034D	TPS2034P			


AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2030DR)

SLVS190 - DECEMBER 1998

TPS2030 functional block diagram

Terminal Functions

TE	RMINAL			
NAME	NO. D OR P	1/0	DESCRIPTION	
EN	4	I	Enable input. Logic high turns on power switch.	
GND	1	1	Ground	
IN	2, 3	I	Input voltage	
ŌĊ	5	0	Overcurrent. Logic output active low	
OUT	6, 7, 8	0	Power-switch output	

SLVS190 - DECEMBER 1998

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 50 m Ω (V_{I(IN)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 9-ms range.

enable (EN)

The logic enable disables the power switch, the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A when a logic low is present on EN. A logic high input on EN restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OC)

The OC open drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS190 - DECEMBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _{I(IN)} (see Note 1)	–0.3 V to 6 V
Output voltage range, VO(OUT) (see Note 1)	0.3 V to V _{I(IN)} + 0.3 V
Input voltage range,V _{I(EN)}	– 0.3 V to 6 V
Continuous output current, IO(OUT)	internally limited
Continuous total power dissipation	. See Dissipation Rating Table
Operating virtual junction temperature range, T _J	–40°C to 125°C
Storage temperature range, T _{stg}	
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE							
PACKAGE	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING					
D	725 mW	5.8 mW/°C	464 mW	377 mW			
Р	1175 mW	9.4 mW/°C	752 mW	611 mW			

recommended operating conditions

		MIN	MAX	UNIT
Input voltage	VI(IN)	2.7	5.5	V
VI(EN)	0	5.5	V	
	TPS2030	0	0.2	
	TPS2031	· 0	0.6	
Continuous output current, IO	TPS2032	0	1	Α
	TPS2033	0	1.5	
	TPS2034	0	2	
Operating virtual junction temper	ture, TJ	-40	125	°C

electro static discharge (ESD) protection

	MIN	MAX	UNIT
Human Body Model MIL-STD-883C		2	kV
Machine model		0.2	kV

SLVS190 - DECEMBER 1998

	PARAMETER	ТІ	EST CONDITIO	nst	MIN	ТҮР	MAX	UNIT
		$V_{1(IN)} = 5 V,$	Тј = 25°С,	I _O = 1.8 A		33	36	
		$V_{I(IN)} = 5 V,$	Тј = 85°С,	I _O = 1.8 A		38	46	
		$V_{I(IN)} = 5 V,$	Тј = 125°С,	I _O = 1.8 A		44	50	
		V _{I(IN)} = 3.3 V,	Tj = 25°C,	I _O = 1.8 A		37	41	
		V _{I(IN)} = 3.3 V,	Tj = 85°C,	I _O = 1.8 A		43	52	
1 00()	Static drain-source on-state resistance	V _{I(IN)} = 3.3 V,	Тј = 125°С,	I _O = 1.8 A		51	61	mΩ
^r DS(on)		$V_{I(IN)} = 5 V,$	TJ = 25°C,	I _O = 0.18 A		30	34	11152
		$V_{I(IN)} = 5 V,$	Tj = 85°С,	I _O = 0.18 A		35	41	
		$V_{I(IN)} = 5 V,$	Тј = 125°С,	I _O = 0.18 A		39	47	
		$V_{I(IN)} = 3.3 V,$	Тј = 25°С,	I _O = 0.18 A		33	37	
		$V_{I(IN)} = 3.3 V,$	Тј = 85°C,	I _O = 0.18 A		39	46	
		$V_{I(IN)} = 3.3 V,$	Tj = 125°C,	I _O = 0.18 A		44	56	
•	Rise time, output	$V_{I(IN)} = 5.5 V,$ $C_L = 1 \mu F,$				6.1		ms
t _r Rise time, outpu		$V_{I(IN)} = 2.7 V,$ $C_L = 1 \mu F,$				8.6		1115
h.	Foll time, output	$V_{I(IN)} = 5.5 V,$ $C_{L} = 1 \mu F,$	TJ = 25°C, RL = 10 Ω			3.4		ms
tf	Fall time, output	$V_{I(IN)} = 2.7 V,$ $C_L = 1 \mu F,$				3		ms

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, EN = 5 V (unless otherwise noted)

power switch

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input (EN)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
VIH	High-level input voltage	2.7 V ≤ V _{I(IN)} ≤ 5.5 V	2			v
V	Low-level input voltage	4.5 V ≤ V _{I(IN)} ≤ 5.5 V			0.8	v
VIL Low-level input	Low-level input voitage	2.7 V ≤ V _{I(IN)} ≤ 4.5 V			0.5	v
4	Input current	EN = 0 V or EN = VI(IN)	-0.5		0.5	μA
ton	Turn-on time	$C_L = 100 \mu\text{F}, R_L = 10 \Omega$			20	
toff	Turn-off time	$C_{L} = 100 \ \mu F$, $R_{L} = 10 \ \Omega$			40	ms

current limit

	PARAMETER	TEST CONDITIONS [†]		MIN	ТҮР	MAX	UNIT
	$T_J = 25^{\circ}C$, $V_J = 5.5 V$, OUT connected to GND, Device enable into short circuit	TPS2030	0.22	0.3	0.4		
		TPS2031	0.66	0.9	1.1		
		TPS2032	1.1	1.5	1.8	А	
		TPS2033	1.65	2.2	2.7		
			TPS2034	2.2	3	3.8	

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS190 - DECEMBER 1998

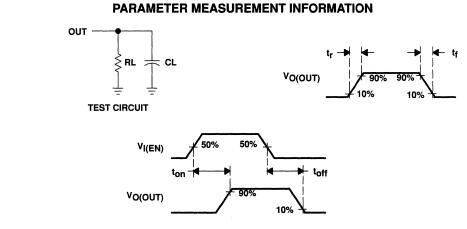
electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, EN = 5 V (unless otherwise noted) (continued)

supply current

PARAMETER	TEST	TEST CONDITIONS			TYP	MAX	UNIT
Supply current, low-level output	No Load on OUT	EN = 0	Tj = 25°C		0.3	1	
			–40°C ≤ TJ ≤ 125°C			10	μA
Supply current, high-level output No Load on OUT EN = VI(IN		Т _Ј = 25°С		58	75	۸	
	No Load on OUT	EN = VI(IN)	–40°C ≤ TJ ≤ 125°C		75	100	μA
Leakage current	OUT connected to ground	EN = 0	–40°C ≤ TJ ≤ 125°C		10		μA

undervoltage lockout

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Low-level input voltage		2		2.5	v
Hysteresis	T _J = 25°C		100		mV


overcurrent (OC)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output low voltage	$I_O = 10 \text{ mA}, V_{OL}(\overrightarrow{OC})$,		0.4	v
Off-state current [†]	V _O = 5 V, V _O = 3.3 V			1	μA

[†] Specified by design, not production tested.

SLVS190 - DECEMBER 1998

VOLTAGE WAVEFORMS

Figure 1. Test Circuit and Voltage Waveforms

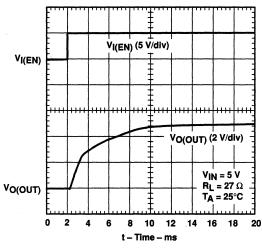
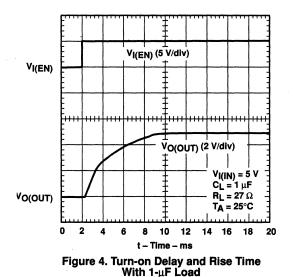

Table of Timing Diagrams

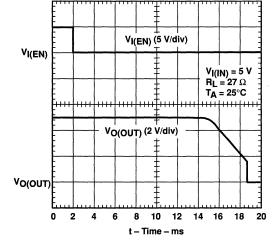
	FIGURE
Turn-on Delay and Rise Time	2
Turn-off Delay and Fall Time	3
Turn-on Delay and Rise Time with 1-µF Load	4
Turn-off Delay and Rise Time with 1-µF Load	5
Device Enabled into Short	6
TPS2030, TPS2031, TPS2032, TPS2033, and TPS2034, Short Applied to an Enabled Device	7, 8, 9, 10, 11
TPS2030, TPS2031, TPS2032, TPS2033, and TPS2034, Ramped Load on Enabled Device	12, 13, 14, 15,16
TPS2034, Inrush Current	17
7.9- Ω Load Connected to an Enabled TPS2030 Device	18
3.7- Ω Load Connected to an Enabled TPS2030 Device	19
3.7- Ω Load Connected to an Enabled TPS2031 Device	20
2.6- Ω Load Connected to an Enabled TPS2031 Device	21
2.6- Ω Load Connected to an Enabled TPS2032 Device	22
1.2- Ω Load Connected to an Enabled TPS2032 Device	23
1.2- Ω Load Connected to an Enabled TPS2033 Device	24
0.9- Ω Load Connected to an Enabled TPS2033 Device	25
0.9- Ω Load Connected to an Enabled TPS2034 Device	26
$0.5-\Omega$ Load Connected to an Enabled TPS2034 Device	27



PARAMETER MEASUREMENT INFORMATION

SLVS190 - DECEMBER 1998

Figure 2. Turn-on Delay and Rise Time



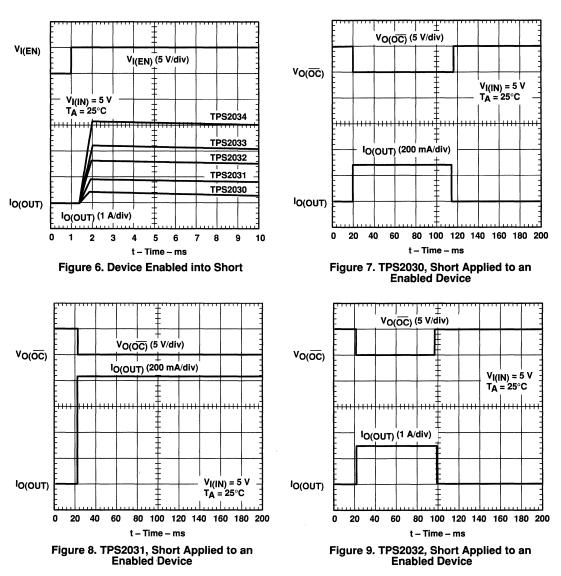
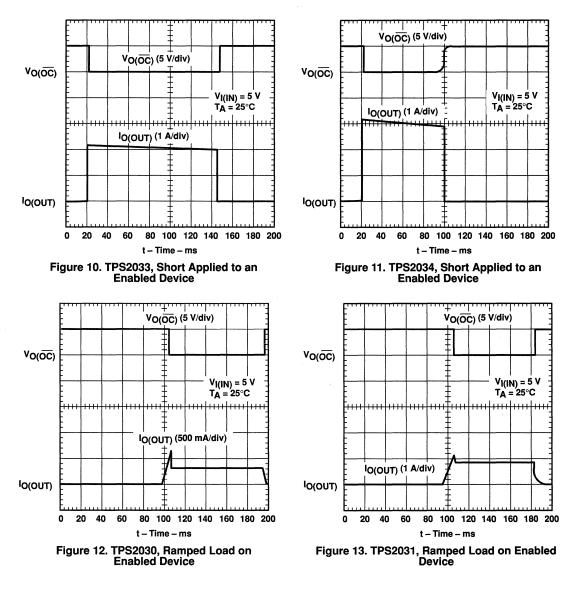
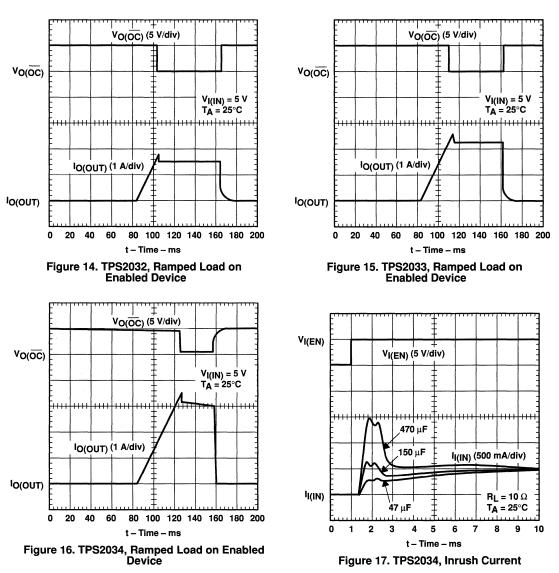

Figure 3. Turn-off Delay and Fall Time

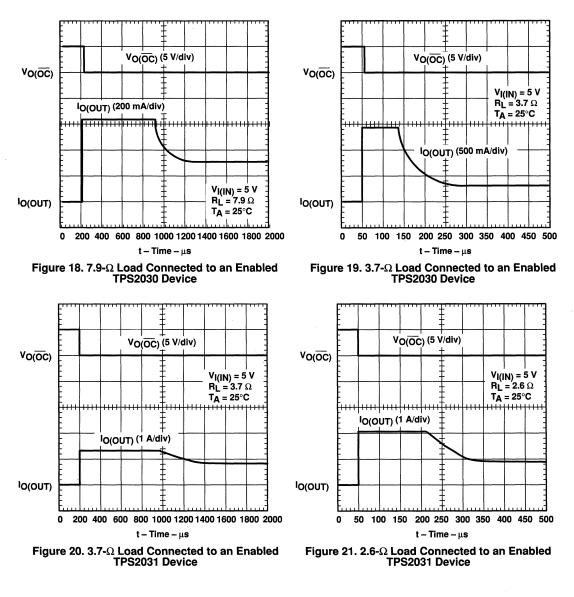
Figure 5. Turn-off Delay and Fall Time with 1- μF Load



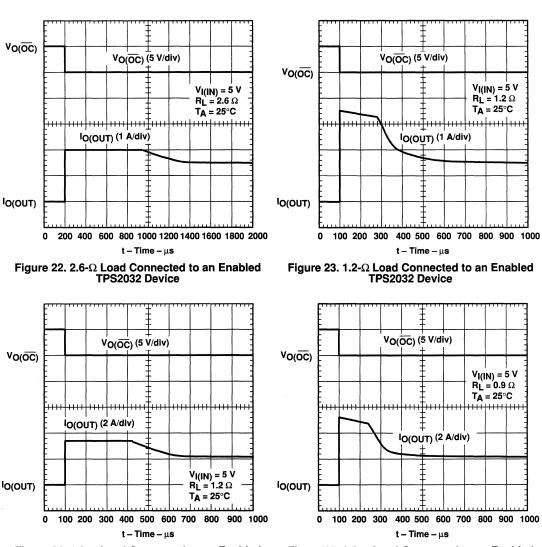
SLVS190 - DECEMBER 1998



SLVS190 - DECEMBER 1998

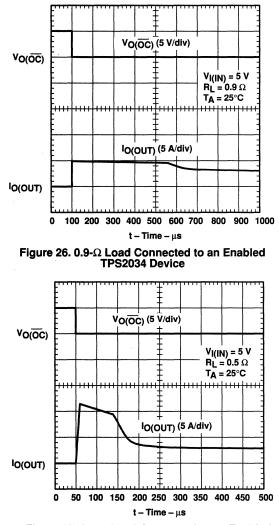


SLVS190 - DECEMBER 1998



SLVS190 - DECEMBER 1998

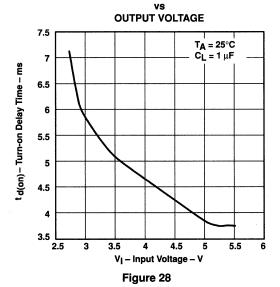
SLVS190 - DECEMBER 1998



SLVS190 - DECEMBER 1998

PARAMETER MEASUREMENT INFORMATION

13-128


SLVS190 - DECEMBER 1998

TYPICAL CHARACTERISTICS

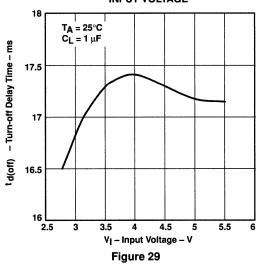
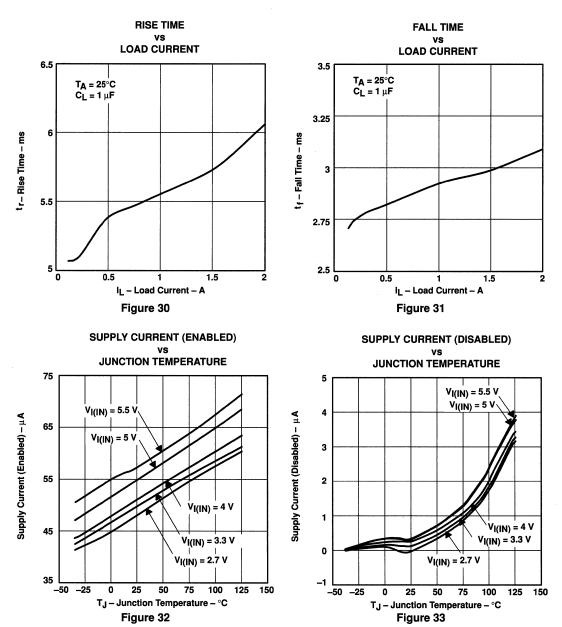
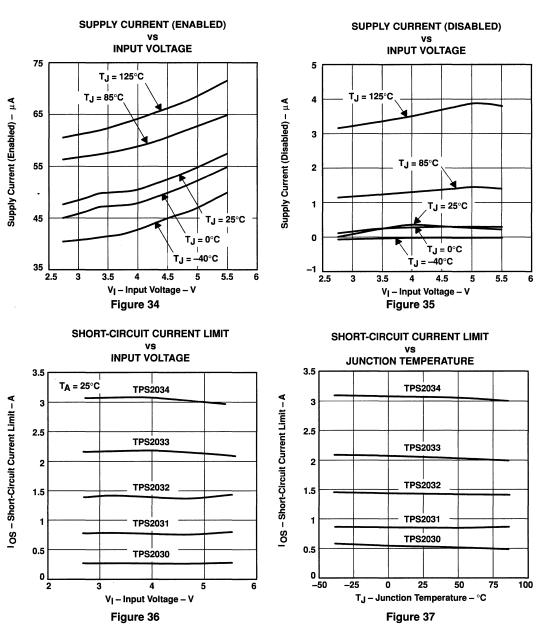

Table of Graphs

			FIGURE
^t d(on)	Turn-on delay time	vs Output voltage	28
^t d(off)	Turn-off delay time	vs Input voltage	29
tr	Rise time	vs Load current	30
t _f	Fall time	vs Input voltage	31
	Supply current (enabled)	vs Junction temperature	32
	Supply current (disabled)	vs Junction temperature	33
	Supply current (enabled)	vs Input voltage	34
	Supply current (disabled)	vs Input voltage	35
1		vs Input voltage	36
OS	Fall time vs Load current Supply current (enabled) vs Junction temperature Supply current (disabled) vs Junction temperature Supply current (enabled) vs Input voltage Supply current (disabled) vs Input voltage Supply current (disabled) vs Input voltage Supply current (disabled) vs Input voltage Supply current limit vs Input voltage Source on-state resistance vs Input voltage S(on) Static drain-source on-state resistance	37	
		vs Input voltage	38
IOS rDS(on)	Otatia duaia anuna an atata nasistanaa	vs Junction temperature	39
'DS(on)	Static drain-source on-state resistance	vs Input voltage	40
		vs Junction temperature	41
VI	Input voltage	Undervoltage lockout	42

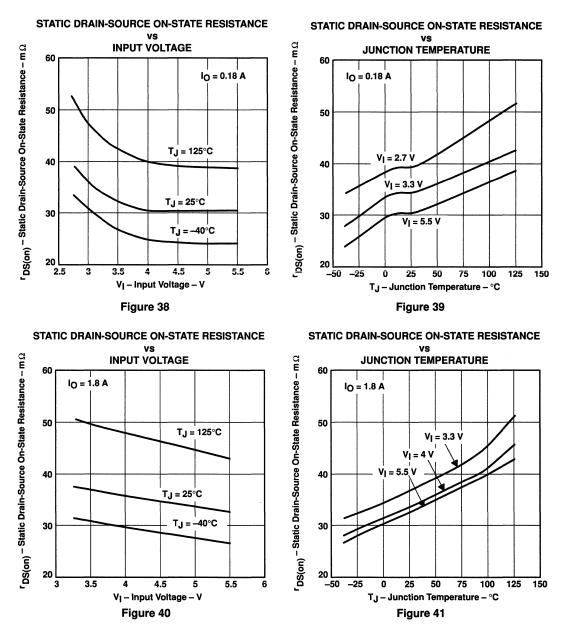
TURN-ON DELAY TIME



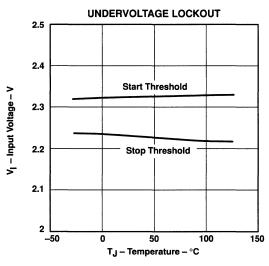
TURN-OFF DELAY TIME vs INPUT VOLTAGE


SLVS190 - DECEMBER 1998

TYPICAL CHARACTERISTICS


SLVS190 - DECEMBER 1998

TYPICAL CHARACTERISTICS


SLVS190 - DECEMBER 1998

SLVS190 - DECEMBER 1998

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

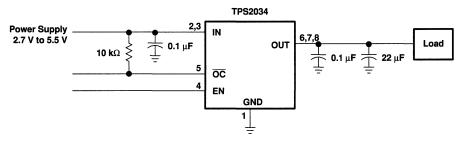


Figure 43. Typical Application

power supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output and input pins is recommended when the output load is heavy. This reduces power supply transients that may cause ringing on the input. Also, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

SLVS190 - DECEMBER 1998

APPLICATION INFORMATION

overcurrent (continued)

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 6). The TPS203x senses the short and immediately switches into a constant-current output.

In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react (see Figures 18–27). After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figures 12–16). The TPS203x is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter can be connected to the \overline{OC} pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

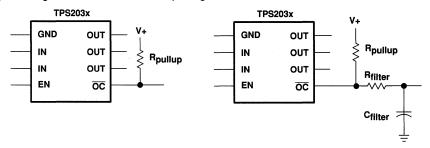


Figure 44. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses

SLVS190 - DECEMBER 1998

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figures 38–41. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS203x into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lock-out (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

SLVS190 - DECEMBER 1998

APPLICATION INFORMATION

generic hot-plug applications (see Figure 45)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Because of the controlled rise times and fall times of the TPS203x series, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS203x also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

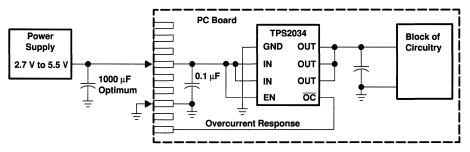


Figure 45. Typical Hot-Plug Implementation

By placing the TPS203x between the V_{CC} input and the rest of the circuitry, the input power will reach this device first after insertion. The typical rise time of the switch is approximately 9 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

8 OUT

7 OUT

6 OUT

DOC 5

8 OUT

7 0UT

6 OUT

5 DOC

TPS2041 D OR P PACKAGE

(TOP VIEW)

TPS2051 D OR P PACKAGE

(TOP VIEW)

1 IN [

2

3

1

1

GND

IN [

EN

GND [

IN Π 2

IN П 3

EN Î 4

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

- 135-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- 500 mA Continuous Current
- Short-Circuit and Thermal Protection With **Overcurrent Logic Output**
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 10 µA Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, –40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed File No. E169910

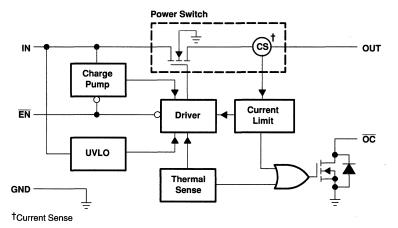
description

The TPS2041 and TPS2051 power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The TPS2041 and the TPS2051 are 135-m Ω N-channel MOSFET high-side power switches. Each switch is controlled by a logic enable compatible with 5-V and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2041 and TPS2051 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OC}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2041 and TPS2051 are designed to limit at 0.9-A load. These power distribution switches are available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP) and operate over an ambient temperature range of -40°C to 85°C.

ТА		RECOMMENDED	TYPICAL SHORT-CIRCUIT	PACKAGE	D DEVICES
	ENABLE	MAXIMUM CONTINUOUS LOAD CURRENT (A)	CURRENT LIMIT AT 25°C (A)	SOIC (D)†	PDIP (P)
-40°C to 85°C	Active low	0.5	0.9	TPS2041D	TPS2041P
-40°C to 85°C	Active high	0.5	0.9	TPS2051D	TPS2051P


AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2041DR)

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

TPS2041 functional block diagram

Terminal Functions

	TERMINA	-		
	NO.		1	DECODIDEION
NAME	DO	RP	1/0	DESCRIPTION
	TPS2041	TPS2051	1	
ĒN	4	-	1	Enable input. Logic low turns on power switch.
EN	- 4		1	Enable input. Logic high turns on power switch.
GND	1	1	I	Ground
IN	2, 3	2, 3	1	Input voltage
ŌĊ	5	5	Ö	Over current. Logic output active low
OUT	6, 7, 8	6, 7, 8	0	Power-switch output

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(IN)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (EN or EN)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A when a logic high is present on EN (TPS2041) or a logic low is present on EN (TPS2051). A logic zero input on EN or a logic high on EN restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OC)

The OC open drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, $V_{I(IN)}$ (see Note 1) Output voltage range, $V_{O(OUT)}$ (see Note 1) Input voltage range, $V_{I(ENx)}$ or $V_{I(ENx)}$ Continuous output current, $I_{O(OUT)}$ Continuous total power dissipation Operating virtual junction temperature range, T_J Storage temperature range, T_{stg} Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds Electrostatic discharge (ESD) protection: Human body model MIL -STD-883C	-0.3 V to V _{I(IN)} + 0.3 V 0.3 V to 6 V internally limited ssipation Rating Table 40°C to 125°C 65°C to 150°C 260°C
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C Machine model	2 kV

 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: All voltages are with respect to GND.

	U U	ISSIFATION RATING TA		
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1175 mW	9.4 mW/°C	752 mW	611 mW

DISCIDATION DATING TABLE

recommended operating conditions

	TPS	2041	TPS2	UNIT	
	MIN	MAX	MIN	MAX	UNIT
Input voltage, VI(IN)	2.7	5.5	2.7	5.5	v
Input voltage, VI(EN) or VI(EN)	0	5.5	0	5.5	v
Continuous output current, IO(OUT)	0	500	0	500	mA
Operating virtual junction temperature, TJ	-40	125	-40	125	°C

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(EN)}$ = 0 V, $V_{I(EN)}$ = Hi (unless otherwise noted)

power switch

	PARAMETER	TEST OO	NDITIONST	Т	PS2041		т	PS2051		UNIT
	PARAMETER	TEST CO	NUTIONS	MIN	MIN TYP MAX		MIN	ТҮР	MAX	UNIT
		V _{I(IN)} = 5 V,	TJ = 25°C		80	95		80	95	
	Static drain-source on-state resistance, 5-V operation	V _{I(IN)} = 5 V,	Тј = 85°С		90	120		90	120	
(DO())		V _{I(IN)} = 5 V,	Тј = 125°С		100	135		100	135	mΩ
^r DS(on)		V _{I(IN)} = 3.3 V,	TJ = 25°C		85	105		85	105	
	Static drain-source on-state resistance, 3.3-V operation	V _{I(IN)} = 3.3 V,	Т _Ј = 85°С		100	135		100	135	
		V _{I(IN)} = 3.3 V,	TJ = 125°C		115	150		115	150	
	Diss time, sutsut	V _{I(IN)} = 5.5 V, C _L = 1 μF,	T _J = 25°C, R _L = 10 Ω		2.5			2.5		
tr	Rise time, output	V _{I(IN)} = 2.7 V, C _L = 1 μF,	Tյ = 25°C, RL = 10 Ω		3			3		ms
	Fall time, output	V _{I(IN)} = 5.5 V, C _L = 1 μF,			4.4		4.4			
t r		$V_{I(IN)} = 2.7 V,$ $C_L = 1 \mu F,$	TJ = 25°C, RL = 10 Ω		2.5			2.5		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input EN or EN

	PARAMETER		TEST CONDITIONS		TPS2041		TPS2041		TPS2051			UNIT
			TEST CONDITIONS	MIN	TYP	МАХ	MIN	TYP	MAX	UNIT		
VIH	High-level input voltag	e	$2.7 V \le V_{I(IN)} \le 5.5 V$	2			2			V		
V	VIL Low-level input voltage		$4.5 V \le V_{I(IN)} \le 5.5 V$			0.8			0.8	v		
۲IL			$2.7 \text{ V} \le \text{V}_{I(IN)} \le 4.5 \text{ V}$			0.4			0.4			
	Input ourrent	TPS2041	$V_{I}(\overline{EN}) = 0 V \text{ or } V_{I}(\overline{EN}) = V_{I}(IN)$	-0.5		0.5						
1	Input current	TPS2051	$V_{I(EN)} = V_{I(IN)}$ or $V_{I(EN)} = 0 V$				-0.5		0.5	μA		
ton	Turnon time		$C_L = 100 \ \mu\text{F}, \ R_L = 10 \ \Omega$			20			20	ms		
toff	Turnoff time		$C_L = 100 \ \mu F$, $R_L = 10 \ \Omega$			40			40			

current limit

PARAMETER	TEST CONDITIONS		FPS2041		٦	UNIT			
	TEST CONDITIONS!	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
los	Short-circuit output current	$V_{I(IN)} = 5 V$, OUT connected to GND, Device enabled into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	A

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

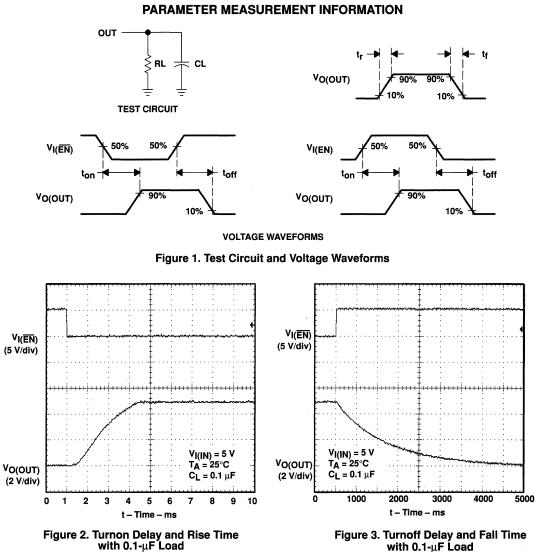
electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(EN)}$ = 0 V, $V_{I(EN)}$ = Hi (unless otherwise noted) (continued)

supply current

PARAMETER		TEOT	CONDITIONS		1	PS2041		T	PS2051		UNIT	
PARAMETER		TEST	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Supply current, low-level output			Tj = 25°C	TPS2041		0.015	1					
	No Load	$\overline{EN} = V_{I(IN)}$	–40°C ≤ TJ ≤ 125°C	11-32041			10				μA	
	on OUT	EN = 0 V	T _J = 25°C TPS2051					0.015	1	μΑ		
			EIN = 0 V	–40°C ≤ Tj ≤ 125°C	11-32031		_				10	
		ĒN = 0 V	Тј = 25°С	TPS2041		80	100					
Supply current,	No Load	EN = 0 V	–40°C ≤ TJ ≤ 125°C	11-32041		100					μA	
high-level output	on OUT		Тј = 25°С	TPS2051					80	100	μΑ	
		EN = VI(IN)	–40°C ≤ TJ ≤ 125°C	1-32051					100			
	OUT	$\overline{EN} = V_{I(IN)}$	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	TPS2041		100					μA	
Leakage current	to ground	connected to ground	EN= 0 V	–40°C ≤ Tj ≤ 125°C	TPS2051					100		μΛ
Reverse leakage	IN = High	$V_{I(EN)} = 0 V$	T 25%C	TPS2041		0.3						
current	impedance	V _{I(EN)} = Hi	TJ = 25°C	TPS2051					0.3		μA	

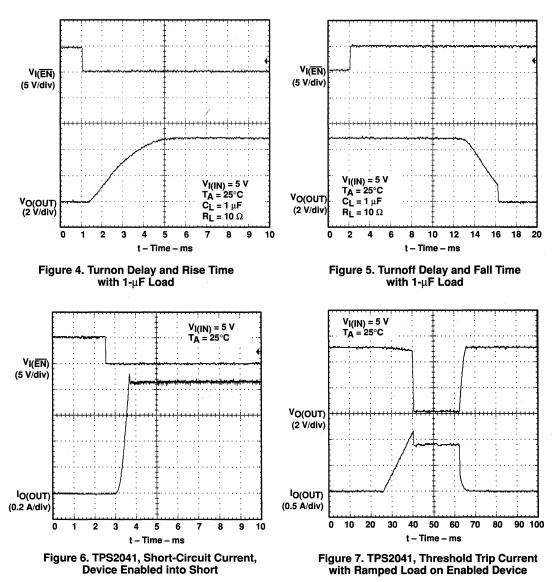
undervoltage lockout

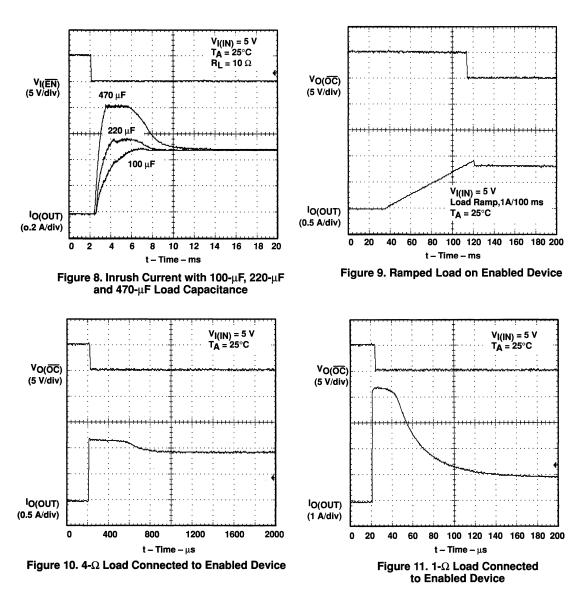
PARAMETER	TEST CONDITIONS	т	PS2041		TPS2051			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	v
Hysteresis	TJ = 25°С		100			100		mV


overcurrent OC

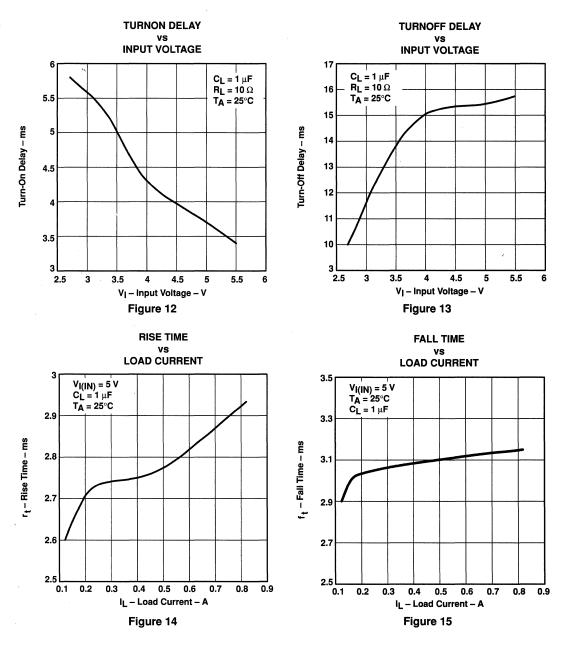
PARAMETER	TEST CONDITIONS	TPS2041			TPS2051			UNIT
	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Sink current [†]	V _O = 5 V			10			10	mA
Output low voltage	$I_O = 5 V$, $V_{OL}(\overline{OC})$			0.5			0.5	v
Off-state current [†]	V _O = 5 V, V _O = 3.3 V			1			1	μA

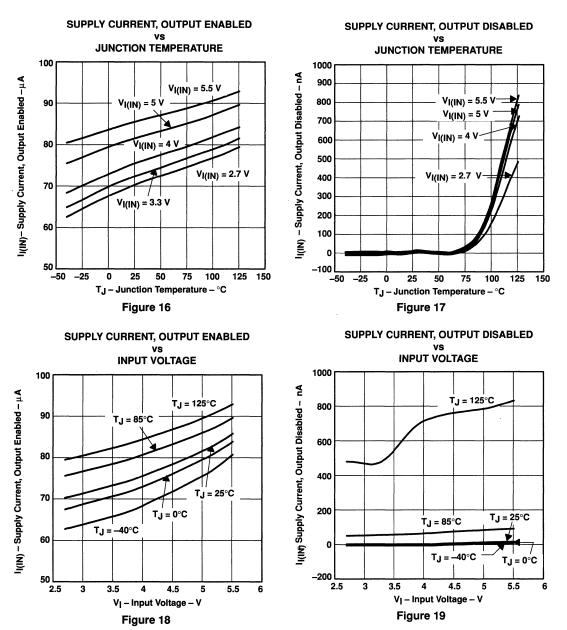
[†] Specified by design, not production tested.


SLVS172A -AUGUST 1998 - REVISED APRIL 1999

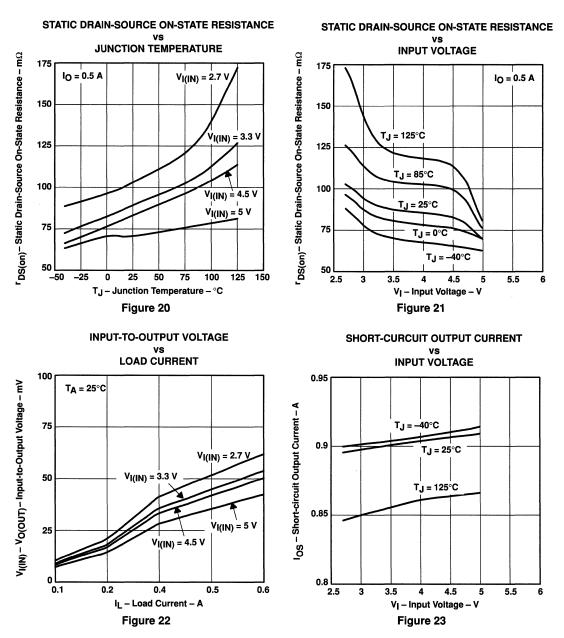


SLVS172A -AUGUST 1998 - REVISED APRIL 1999

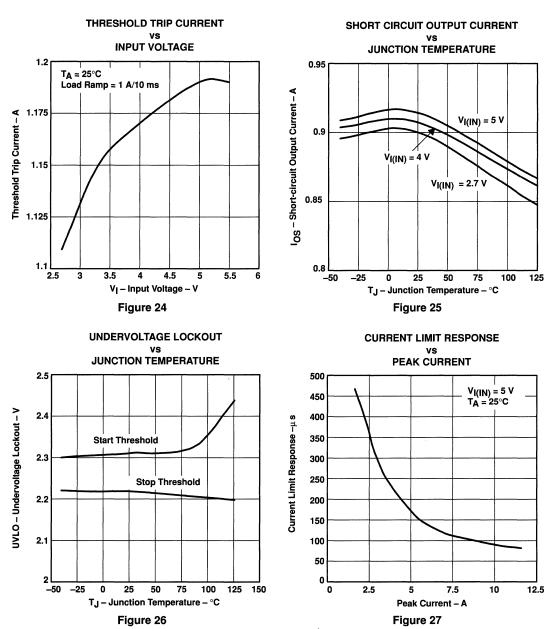

SLVS172A -AUGUST 1998 - REVISED APRIL 1999


SLVS172A -AUGUST 1998 - REVISED APRIL 1999

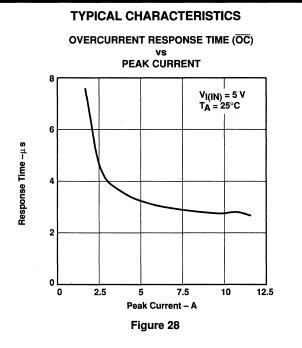
TYPICAL CHARACTERISTICS


SLVS172A -AUGUST 1998 - REVISED APRIL 1999

TYPICAL CHARACTERISTICS


SLVS172A -AUGUST 1998 - REVISED APRIL 1999

TYPICAL CHARACTERISTICS


SLVS172A -AUGUST 1998 - REVISED APRIL 1999

TYPICAL CHARACTERISTICS

SLVS172A - AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

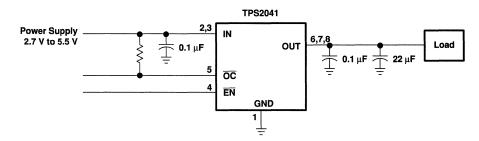


Figure 29. Typical Application

power-supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

APPLICATION INFORMATION

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 6). The TPS2041 and TPS2051 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2041 and TPS2051 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 μ s (see Figure 30) can be connected to the \overline{OC} pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low-impedance energy source, thereby reducing erroneous overcurrent reporting.

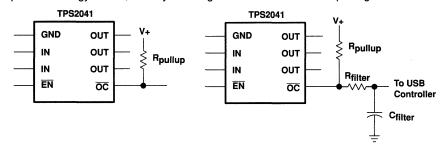


Figure 30. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses

SLVS172A -- AUGUST 1998 -- REVISED APRIL 1999

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C R_{0JA} = Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2041 and TPS2051 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lockout (UVLO)

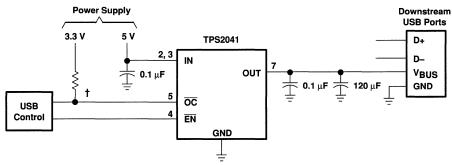
An undervoltage lockout ensures that the power switch is in the off state at powerup. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

universal serial bus (USB) applications

The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

APPLICATION INFORMATION


The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2041 and TPS2051 can provide power-distribution solutions for many of these classes of devices.

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs are required to have current limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

[†] May need RC Filter (see Figure 34)

Figure 31. One-Port Solution

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on powerup, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA; high-power functions must draw less than 100 mA at powerup and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at powerup, the device must implement inrush current limiting (see Figure 32).

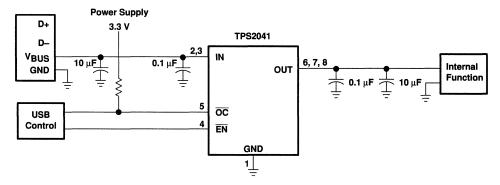
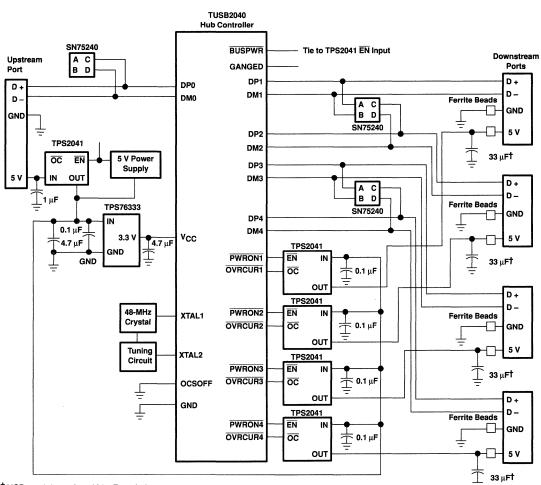


Figure 32. High-Power Bus-Powered Function

USB power-distribution requirements


USB can be implemented in several ways, and, regardless of the type of USB device being developed, several powe- distribution features must be implemented.

- Hosts/self-powered hubs must:
 - Current-limit downstream ports
 - Report overcurrent conditions on USB V_{BUS}
- Bus-powered hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μ F)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2041 and TPS2051 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 33).

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

 $^{\dagger}\,\text{USB}$ rev 1.1 requires 120 μF per hub.

Figure 33. Hybrid Self/Bus-Powered Hub Implementation

SLVS172A -AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2041 and TPS2051, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2041 and TPS2051 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

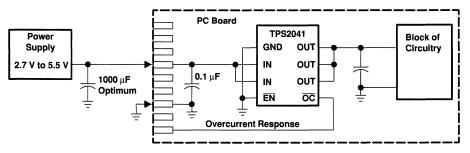


Figure 34. Typical Hot-Plug Implementation

By placing the TPS2041 and TPS2051 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

TPS2042 D OR P PACKAGE

(TOP VIEW)

TPS2052 D OR P PACKAGE

(TOP VIEW)

C

IN [2

EN1 🛛 3

EN2 1 4

0

1

GND

EN1

EN2 4

Пз

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

8 1 OC1

7 1 OUT1

6 OUT2

5 1 OC2

8 0C1

7 1 OUT1

6 OUT2

5

OC2

- 135-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- 500 mA Continuous Current per Channel
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 10 µA Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, -40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed File No. E169910

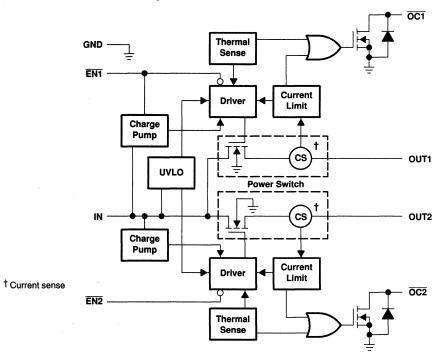
description

The TPS2042 and TPS2052 dual power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The TPS2042 and the TPS2052 incorporate in single packages two 135-m Ω N-channel MOSFET high-side power switches for power distribution systems that require multiple power switches. Each switch is controlled by a logic enable that is compatible with 5-V logic and 3-V logic. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2042 and TPS2052 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OCx}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2042 and TPS2052 are designed to limit at 0.9-A load. These power distribution switches are available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP) and operate over an ambient temperature range of -40° C to 85°C.

		RECOMMENDED	TYPICAL	PACKAGED DEVICES		
TA	ENABLE	MAXIMUM CONTINUOUS LOAD CURRENT (A)	SHORT-CIRCUIT CURRENT LIMIT AT 25°C (A)	SOIC (D)†	PDIP (P)	
-40°C to 85°C	Active low	0.5	0.9	TPS2042D	TPS2042P	
-40°C to 85°C	Active high	0.5	0.9	TPS2052D	TPS2052P	


AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2042DR)

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

TPS2042 functional block diagram

Terminal Functions

	TERMINAL		Γ							
	NO.		NO.		NO.		NO.		1	DECODIDION
NAME	DO	RP	1/0	DESCRIPTION						
	TPS2042	TPS2052								
EN1	3	-	1	Enable input. Logic low turns on power switch, IN-OUT1.						
EN2	4	-	1	Enable input. Logic low turns on power switch, IN-OUT2.						
EN1	-	3	I	Enable input. Logic high turns on power switch, IN-OUT1.						
EN2	-	4	I	Enable input. Logic high turns on power switch, IN-OUT2.						
GND	1	1	1	Ground						
IN	2	2	ł	Input voltage						
OC1	8	8	0	Over current. Logic output active low, for power switch, IN-OUT1						
OC2	5	5	0	Over current. Logic output active low, for power switch, IN-OUT2						
OUT1	7	7	0	Power-switch output						
OUT2	6	6	0	Power-switch output						

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(IN)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUTx to IN and IN to OUTx when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (ENx or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A when a logic high is present on ENx (TPS2042) or a logic low is present on ENx (TPS2052). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OCx)

The OCx open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2042 and TPS2052 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switch. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The (OCx) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, $V_{I(IN)}$ (see Note1)	- 0.3 V to 6 V limited J Table 125°C 150°C 260°C 2 kV
Machine model	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1175 mW	9.4 mW/°C	752 mW	611 mW

recommended operating conditions

	TPS	TPS2042		TPS2052		
	MIN	MAX	MIN	MAX	UNIT	
Input voltage, VI(IN)	2.7	5.5	2.7	5.5	v	
Input voltage, VI(ENx) or VI(ENx)	0	5.5	0	5.5	v	
Continuous output current, IO(OUTx)	0	500	0	500	mA	
Operating virtual junction temperature, TJ	-40	125	40	125	°C	

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted)

power switch

	DADAMETED			Т	PS2042		т	PS2052		UNIT
	PARAMETER	TEST CO	NDITIONST	MIN	TYP	MAX	MIN	ТҮР	MAX	UNII
		V _{I(IN)} = 5 V, I _O = 0.5 A	Tj = 25°C,		80	95		80	95	
Static drain-source on-state resistance, 5-V operation	V _{I(IN)} = 5 V, I _O = 0.5 A	TJ = 85°C,		90	120		90	120		
	V _{I(IN)} = 5 V, I _O = 0.5 A	Т _Ј = 125°С,		100	135		100	135	mΩ	
	V _{I(IN)} = 3.3 V, I _O = 0.5 A	Тј = 25°С,		85	105		85	105		
	Static drain-source on-state resistance, 3.3-V operation	V _{I(IN)} = 3.3 V, I _O = 0.5 A	TJ = 85°C,		100	135		100	135	
		V _{I(IN)} = 3.3 V, I _O = 0.5 A	T _J = 125°C,		115	150		115	150	
	Dise time, sutnut	V _{I(IN)} = 5.5 V, C _L = 1 μF,	T _J = 25°C, R _L =10 Ω		2.5			2.5		ms
t _r Rise time, output	Hise time, output	V _{I(IN)} = 2.7 V, C _L = 1 μF,	Tj = 25°C, RL=10 Ω		3			3		ms
•-		$V_{I(IN)} = 5.5 V,$ $C_L = 1 \mu F,$	T _J = 25°C, R _L =10 Ω		4.4			4.4		
tf	Fall time, output	V _{I(IN)} = 2.7 V, C _L = 1 μF,	TJ = 25°C, RL=10 Ω		2.5			2.5		ms

Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input ENx or ENx

	PARAMETER		TEST CONDITIONS	TPS2042			1	UNIT		
			TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
VIH	High-level input voltag	e	2.7 V ≤ V _{I(IN)} ≤ 5.5 V	2			2			v
		4.5 V ≤ V _{I(IN)} ≤ 5.5 V			0.8			0.8	v	
VIL	Low-level input voltage	;	2.7 V≤ V _{I(IN)} ≤ 4.5 V			0.4			0.4	
1.	Input ourrent	TPS2042	$V_{I}(\overline{ENx}) = 0 V \text{ or } V_{I}(\overline{ENx}) = V_{I}(IN)$	-0.5		0.5				
lj.	I Input current TPS		$V_{I(ENx)} = V_{I(IN)}$ or $V_{I(ENx)} = 0$ V				-0.5		0.5	μΑ
ton	Turnon time		$C_{L} = 100 \mu\text{F}, R_{L} = 10 \Omega$			20			20	ms
toff	Turnoff time		$C_{L} = 100 \mu\text{F}, R_{L} = 10 \Omega$			40			40	

current limit

PARAMETER		TEST CONDITIONS	TPS2042			TPS2052			UNIT
	FARAMEIER	TEST CONDITIONST		ТҮР	MAX	MIN	TYP	MAX	ONT
los		$V_{I(IN)} = 5 V$, OUT connected to GND, Device enable into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	А

† Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted) (continued)

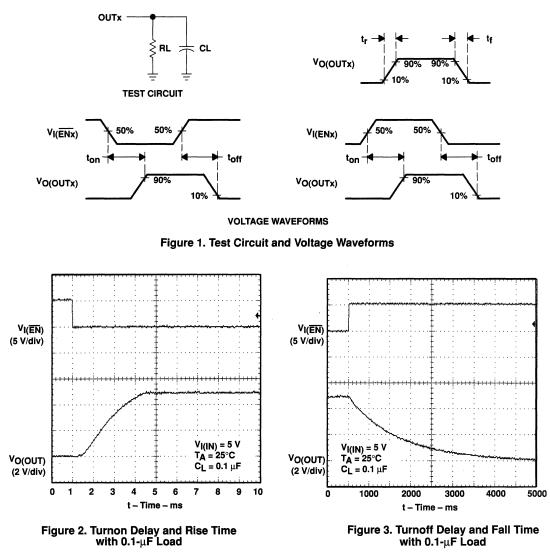
supply current

PARAMETER	TEST CONDITIONS					PS2042		TPS2052			UNIT
PARAMETER							MAX	MIN	TYP	MAX	
Supply			Tj = 25°C	TPS2042		0.015	1				
current, No Load		$V_{I}(\overline{ENx}) = V_{I}(IN)$	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	1752042			10				μA
low-level on OUT output		Tj = 25°C	TPS2052					0.015	1	μΛ	
	V _{I(ENx)} = 0 V	–40°C ≤ TJ ≤ 125°C	TPS2052						10		
Supply		Viv an ov	TJ = 25°C	TPS2042		80	100				
current,	No Load	$V_{I}(\overline{ENx}) = 0 V$	–40°C ≤ TJ ≤ 125°C	11 02042		100					μA
high-level	on OUT	VI(ENx) = VI(IN)	TJ = 25°C	TPS2052					80	100	-
output			–40°C ≤ TJ ≤ 125°C						100		
Leakage	OUT connected	$V_{I}(\overline{ENx}) = V_{I}(IN)$	$-40^{\circ}C \le T_J \le 125^{\circ}C$	TPS2042		100					μA
current	to ground	V _{I(ENx)} = 0 V	–40°C ≤ Tj ≤ 125°C	TPS2052					100		μΑ
Reverse leakage		TPS2042		0.3					μA		
current	impedance	V _{I(EN)} = Hi	TJ = 25°C	TPS2052					0.3		μΑ

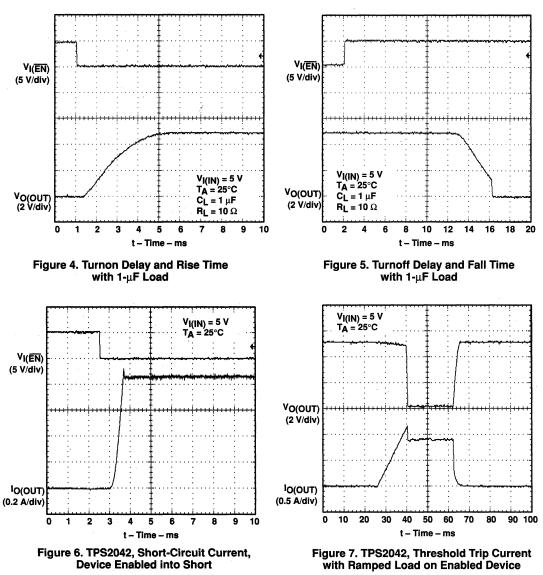
undervoltage lockout

TEST CONDITIONS	TPS2042			TPS2052			UNIT
TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	2		2.5	2		2.5	v
TJ = 25°C		100			100		mV
	TEST CONDITIONS	TEST CONDITIONS MIN 2	TEST CONDITIONS MIN TYP 2	TEST CONDITIONS MIN TYP MAX 2 2.5	TEST CONDITIONS MIN TYP MAX MIN 2 2.5 2	TEST CONDITIONS MIN TYP MAX MIN TYP 2 2.5 2	TEST CONDITIONS MIN TYP MAX MIN TYP MAX 2 2.5 2 2 2.5 2 2 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

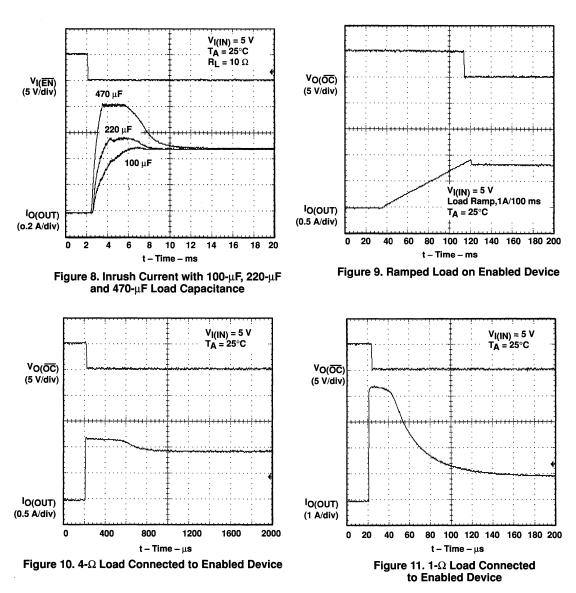
overcurrent OCx


PARAMETER	TEST CONDITIONS	TPS2042			Т	UNIT		
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
Sink current [†]	V _O = 5 V			10			10	mA
Output low voltage	$I_O = 5 \text{ mA}, V_{OL}(OCx)$			0.5			0.5	V
Off-state current [†]	$V_{O} = 5 V$, $V_{O} = 3.3 V$			1			1	μA

[†] Specified by design, not production tested.

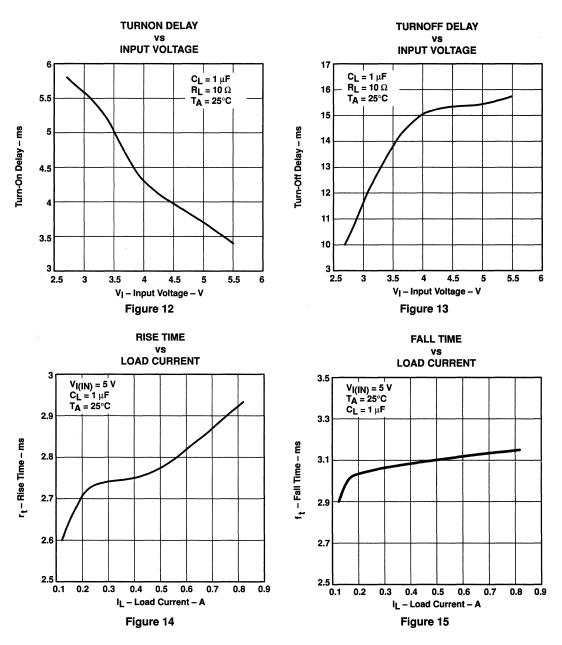

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

PARAMETER MEASUREMENT INFORMATION

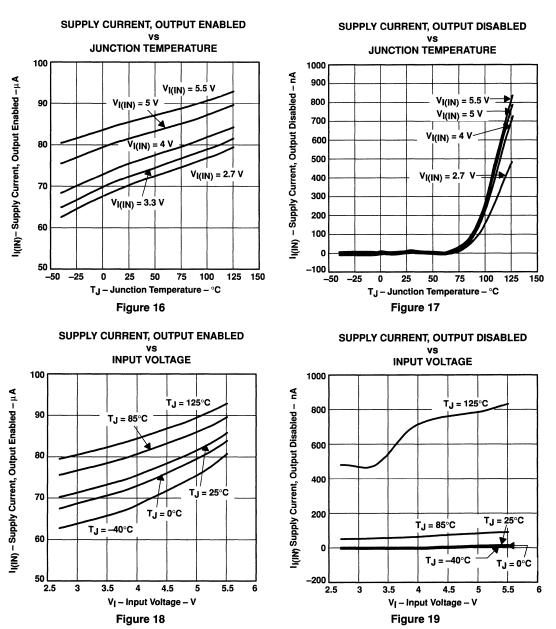

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

PARAMETER MEASUREMENT INFORMATION

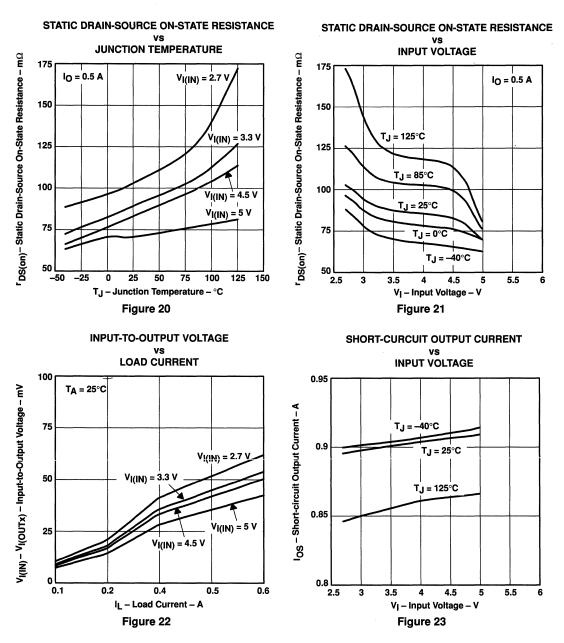
SLVS173A - AUGUST 1998 - REVISED APRIL 1999



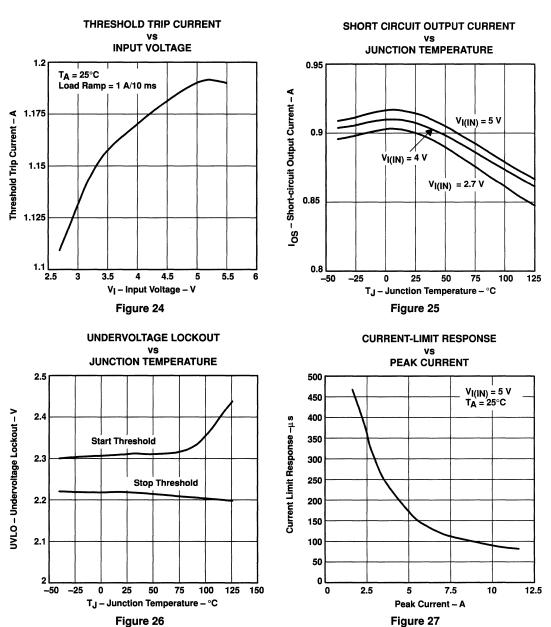
PARAMETER MEASUREMENT INFORMATION

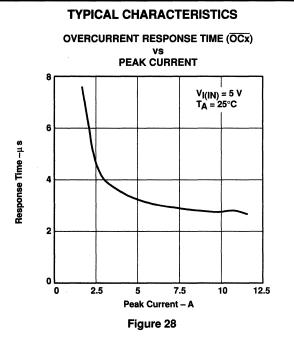

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

TYPICAL CHARACTERISTICS


SLVS173A - AUGUST 1998 - REVISED APRIL 1999

TYPICAL CHARACTERISTICS


SLVS173A - AUGUST 1998 - REVISED APRIL 1999


SLVS173A - AUGUST 1998 - REVISED APRIL 1999

TYPICAL CHARACTERISTICS

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION TPS2042 2 **Power Supply** IN 2.7 V to 5.5 V OUT1 Load 0.1 μF 22 u F 8 OC1 3 EN1 5 OUT2 Load OC2 4 EN2 GND 1 +

power-supply considerations

A 0.01- μ F to 0.1- μ F coramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

APPLICATION INFORMATION

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 6). The TPS2042 and TPS2052 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2042 and TPS2052 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 μ s (see Figure 30) can be connected to the \overline{OC} pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

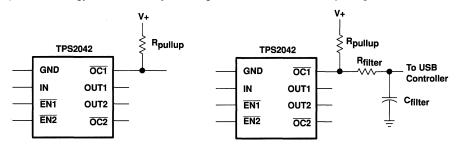


Figure 30. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times P_{C}$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2042 and TPS2052 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2042 and TPS2052 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach 160°C, both switches turn off. The \overline{OC} open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

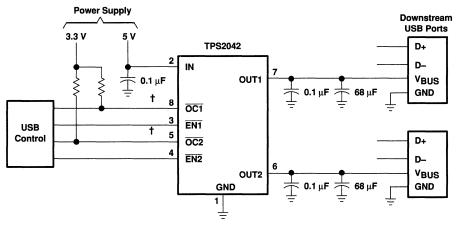
SLVS173A - AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

universal serial bus (USB) applications

The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.


The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2042 and TPS2052 can provide power-distribution solutions for many of these classes of devices.

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs are required to have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

[†] May need RC filter (see Figure 36)

Figure 31. Typical Two-Port USB Host/Self-Powered Hub

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

host/self-powered and bus-powered hubs (continued)

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA, and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current limiting (see Figure 32).

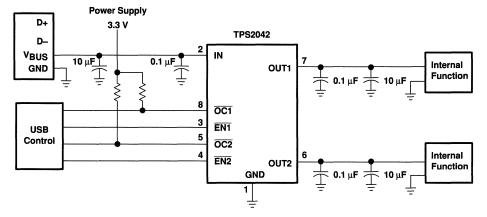


Figure 32. High-Power Bus-Powered Function

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power-distribution features must be implemented.

- Hosts/self-powered hubs must:
 - Current-limit downstream ports
 - Report overcurrent conditions on USB V_{BUS}
- Bus-powered hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μ F)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2042 and TPS2052 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 33).

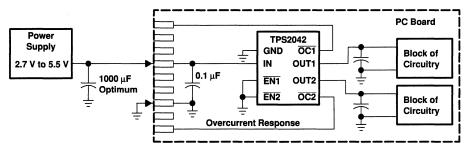
SLVS173A - AUGUST 1998 - REVISED APRIL 1999

TUSB2040 Hub Controller SN75240 BUSPWR Tie to TPS2041 EN Input Downstream A C B D Upstream GANGED Ports Port D + DP1 DPO D + DM1 D --DMO D-Ferrite Beads C D А GND GND в SN75240 -DP2 5 V TPS2041 DM2 33 µF† 5 V Power ŌĊ ĒN DP3 Supply OUT 5 V IN DM3 D + С Α D --ΒD _1 μF Ferrite Beads TPS76333 SN75240 GND 1 | DP4 IN ÷ 0.1 µF. DM4 3.3 V Vcc 5 V 4.7 μF 4.7 μF TPS2042 GND PWRON1 EN1 OUT1 GND 33 µF† OC1 OUT2 OVRCUR1 EN2 PWRON2 D+ OVRCUR2 OC2 IN D --48-MHz XTAL1 Ferrite Beads **Ξ 0.1** μF Crystal GND - T-TPS2042 Ŧ Tunina PWRON3 EN1 OUT1 5 V XTAL2 OC1 OUT2 Circuit **OVRCUR3** 33 µF† EN2 PWRON4 OCSOFF OVRCUR4 OC2 IN ÷ D + ≂ 0.1 μF GND Ī Ī D --Ferrite Beads GND Ŧ 5 V 33 µF†

APPLICATION INFORMATION

 $1\,\text{USB}$ rev 1.1 requires 120 μF per hub.

Figure 33. Hybrid Self/Bus-Powered Hub Implementation


13-176

SLVS173A - AUGUST 1998 - REVISED APRIL 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2042 and TPS2052, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2042 and TPS2052 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

By placing the TPS2042 and TPS2052 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

TPS2043 D PACKAGE (TOP VIEW)

GND1 1

IN1

EN1 3

EN2

EN3

NC 8

GND1

IN1

EN1 I з

GND2 1 5

IN2 🛙 6

EN3 I 7

NC

8

NC - No internal connection

EN2 4

п 2

GND2

2

4

5 IN2 6

7

TPS2053 D PACKAGE (TOP VIEW)

16 0C1

15 OUT1

14 OUT2

13 1 OC2

12 0C3

10 NC

9 NC

16 0C1

15 OUT1

14 1 OUT2

13 OC2

12 0C3

10 NC

эП NC

11 1 OUT3

11 OUT3

SLVS191 - JANUARY 1999

- 135-mΩ -Maximum (5-V Input) High-Side **MOSFET Switch**
- 500 mA Continuous Current per Channel
- Short-Circuit and Thermal Protection With **Overcurrent Logic Output**
- Operating Range . . . 2.7 V to 5.5 V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 20 µA Maximum Standby Supply Current
- Bidirectional Switch
- Available in 16-pin SOIC Package
- Ambient Temperature Range, –40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed File No. E169910

description

The TPS2043 and TPS2053 triple power distribution switches are intended for applications where heavy capacitive loads and short circuits are likely to be encountered. The TPS2043 and

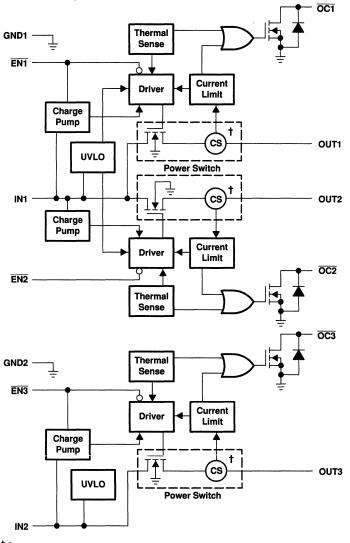
the TPS2053 incorporate in single packages three 135-m Ω N-channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable that is compatible with 5-V logic and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2043 and TPS2053 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OCx}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2043 and TPS2053 are designed to limit at 0.9-A load. These power distribution switches are available in a 16-pin small-outline integrated circuit (SOIC) package and operate over an ambient temperature range of -40°C to 85°C.

		RECOMMENDED MAXIMUM	TYPICAL SHORT-CIRCUIT	PACKAGED DEVICES		
TA	ENABLE	CONTINUOUS LOAD CURRENT (A)	CURRENT LIMIT AT 25°C (A)	SOIC (D)†		
-40°C to 85°C	Active low	0.5	0.9	TPS2043D		
-40°C to 85°C	Active high	0.5	0.9	TPS2053D		

AVAILABLE OPTIONS


[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2043DR)

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLVS191 - JANUARY 1999

TPS2043 functional block diagram

† Current sense

SLVS191 - JANUARY 1999

Terminal Functions

TERMINAL						
NAME	NO.] I/O	DESCRIPTION		
	TPS2043	TPS2053				
EN1	3	-	L.	nable input, logic low turns on power switch, IN1-OUT1.		
EN2	4	-	I	Enable input, logic low turns on power switch, IN1-OUT2.		
EN3	7	-	1	Enable input, logic low turns on power switch, IN2-OUT3.		
EN1	-	3	1	Enable input, logic high turns on power switch, IN1-OUT1.		
EN2	-	4	1	Enable input, logic high turns on power switch, IN1-OUT2.		
EN3	-	7	1	Enable input, logic high turns on power switch, IN2-OUT3.		
GND1	1	1		Ground		
GND2	5	5		Ground		
IN1	2	2	I.	Input voltage		
IN2	6	6	1	Input voltage		
NC	8, 9, 10	8, 9, 10		No connection		
OC1	16	16	0	Overcurrent, logic output active low, IN1-OUT1		
OC2	13	13	0	Overcurrent, logic output active low, IN1-OUT2		
OC3	12	12	0	Overcurrent, logic output active low, IN2-OUT3		
OUT1	15	15	0	Power-switch output, IN1-OUT1		
OUT2	14	14	0	Power-switch output, IN1-OUT2		
OUT3	11	11	0	Power-switch output, IN2-OUT3		

SLVS191 - JANUARY 1999

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(INx)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (ENx or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 20 μ A when a logic high is present on ENx (TPS2043) or a logic low is present on ENx (TPS2053). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OCx)

The OCx open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2043 and TPS2053 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switch. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The (OCx) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS191 - JANUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _{I(INx)} (see Note1)	-0.3 V to 6 V
Output voltage range, V _{O(OUTx)} (see Note1)	$-0.3 V \text{ to } V_{(101x)} + 0.3 V$
Input voltage range, $V_{I(ENx)}$ or $V_{I(ENx)}$.	-0.3 V to 6 V
Continuous output current, I _{O(OUTx)}	
Continuous total power dissipation	
Operating virtual junction temperature range, T ₁	
Storage temperature range, T _{sto}	
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	2 kV
Machine model	0.2 kV

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages are with respect to GND.

		D	ISSIPATION RATING TA	BLE		
PAC	KAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
	D	725 mW	5.8 mW/°C	464 mW	377 mW	

recommended operating conditions

	TPS	TPS2043		TPS2053		
	MIN	MAX	MIN	MAX	UNIT	
Input voltage, VI(INx)	2.7	5.5	2.7	5.5	v	
Input voltage, VI(ENx) or VI(ENx)	0	5.5	0	5.5	v	
Continuous output current, IO(OUTx)		500	0	500	mA	
Operating virtual junction temperature, TJ		125	-40	125	°C	

SLVS191 - JANUARY 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted)

power switch

	PARAMETER	7507.001	upiziouot	Т	PS2043		т	PS2053		LINUT
	PARAMETER	TEST COM	IDITIONS [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		V _{I(INx)} = 5 V, I _O = 0.5 A	Т _Ј = 25°С,		80	95		80	95	
	Static drain-source on-state resistance, 5-V operation	V _{I(INx)} = 5 V, I _O = 0.5 A	T _J = 85°C,		90	120		90	120	
	DS(on)	$V_{I(INx)} = 5 V,$ $I_{O} = 0.5 A$	T _J = 125°C,		100	135		100	135	mΩ
'DS(on)		V _{I(INx)} = 3.3 V, I _O = 0.5 A	Т _Ј = 25°С,		85	105		85	105	
	Static drain-source on-state resistance, 3.3-V operation	V _{I(INx)} = 3.3 V, I _O = 0.5 A	Т _Ј = 85°С,		100	135		100	135 ⁻	
		V _{I(INx)} = 3.3 V, I _O = 0.5 A	T _J = 125°C,		115	150		115	150	
		$V_{I(INx)} = 5.5 V,$ $C_L = 1 \mu F,$	T _J = 25°C, R _L = 10 Ω		2.5			2.5		
t _r	Rise time, output	$V_{I(INx)} = 2.7 V,$ $C_L = 1 \mu F,$	T _J = 25°C, R _L = 10 Ω		3			3		ms
		$V_{I(INx)} = 5.5 V,$ $C_L = 1 \mu F,$	T _J = 25°C, R _L = 10 Ω		4.4			4.4		
tf	Fall time, output	$V_{I(INx)} = 2.7 V,$ $C_{L} = 1 \mu F,$			2.5			2.5		ms

† Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input ENx or ENx

	PARAMETER		TEST CONDITIONS	TPS2043			1	UNIT		
	PARAMETER		TEST CONDITIONS	MIN	MIN TYP MAX		MIN TYP		MAX	UNIT
VIH	IH High-level input voltage		2.7 V ≤ V _{I(INx)} ≤ 5.5 V	2			2			v
V	Low-level input voltage		4.5 V ≤ V _{I(INx)} ≤ 5.5 V			0.8			0.8	v
VIL	VIL Low-level input voltage		2.7 V≤ V _{I(INx)} ≤ 4.5 V			0.4			0.4	
	Input ourrept	TPS2043	$V_{I}(\overline{ENx}) = 0 V \text{ or } V_{I}(\overline{ENx}) = V_{I}(IN)$	-0.5		0.5				
4	Input current TPS2053		$V_{I(ENx)} = V_{I(INx)}$ or $V_{I(ENx)} = 0$ V				-0.5		0.5	μA
ton	t _{on} Turnon time		$C_{L} = 100 \mu\text{F}, R_{L} = 10 \Omega$			20			20	ms
toff			$C_{L} = 100 \mu\text{F}, R_{L} = 10 \Omega$			40			40	

current limit

	PARAMETER		TEST SOUDITIONST	TPS2043			1	UNIT		
			TEST CONDITIONS [†]	MIN	ΤΥΡ	MAX	MIN	TYP	MAX	UNIT
-	os	Short-circuit output current	$V_{I(INx)} = 5 V$, OUT connected to GND, Device enable into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	A

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS191 - JANUARY 1999

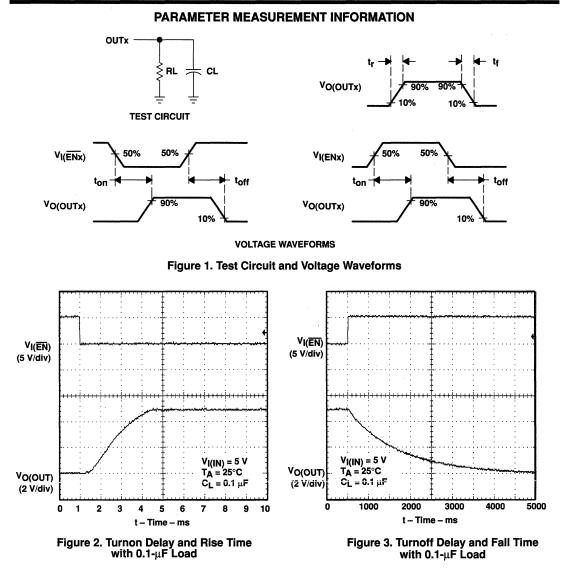
electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted) (continued)

supply current

PARAMETER		TERT CO	NDITIONS		Т	PS2043		Т	PS2053		UNIT	
PARAMETER	TEST CONDITIONS					ТҮР	MAX	MIN	TYP	MAX	UNIT	
Supply			Tj = 25°C	TPS2043		0.03	2					
current,	No Load	$V_{I}(\overline{ENx}) = V_{I}(INx)$	$V_{I}(INx) = 40^{\circ}C \le T_{J} \le 125^{\circ}C$				20				μA	
low-level	on OUTx		Tj ≈ 25°C	TPS2053					0.03	2	μΛ	
output		V _{I(ENx)} = 0 V	–40°C ≤ TJ ≤ 125°C	11-32033						20		
Supply			Tj = 25°C	TPS2043		160	200					
current,	current, No Load high-level on OUTx	No Load	No Load VI(ENx) = 0 V	–40°C ≤ Tj ≤ 125°C	11-32043		200					μA
high-level			Tj = 25°C	TPS2053					160	200	μΑ	
output		VI(ENx) = VI(INx)	$-40^{\circ}C \le T_J \le 125^{\circ}C$	1-32055					200			
Leakage	OUTx connected	$V_{I}(\overline{ENx}) = V_{I}(INx)$	-40° C ≤ T _J ≤ 125°C	TPS2043		200					μA	
current	to ground	V _{I(ENx)} = 0 V	–40°C ≤ TJ ≤ 125°C	TPS2053					200		μΑ	
Reverse	IN = high	$V_{I}(\overline{ENx}) = 0 V$	T 25°C	TPS2043		0.3						
leakage current	impedance	V _{I(ENx)} = Hi	TJ = 25°С	TPS2053					0.3		μA	

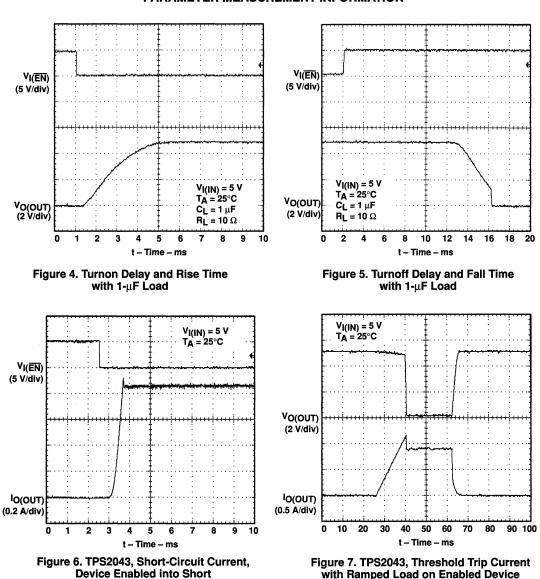
undervoltage lockout

PARAMETER	TEST CONDITIONS		TPS2043			TPS2053			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT	
Low-level input voltage		2		2.5	2		2.5	V	
Hysteresis	Тј = 25°С		100			100		mV	

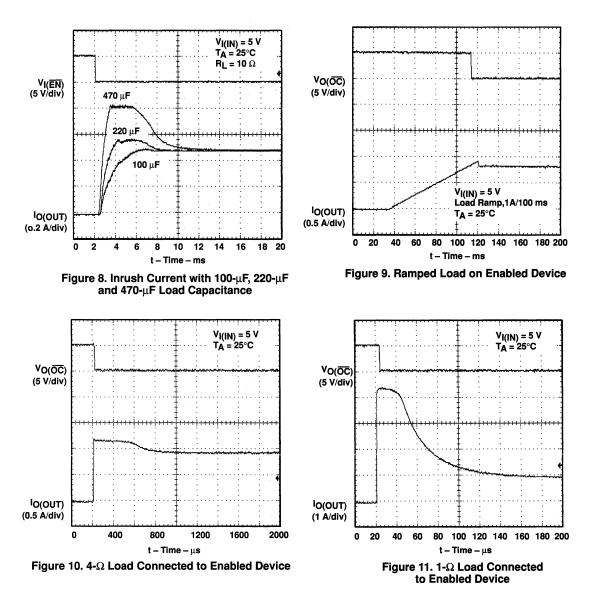

overcurrent OCx

PARAMETER	TEST CONDITIONS	TPS2043			Т	UNIT		
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
Sink current [†]	V _O = 5 V			10			10	mA
Output low voltage	$I_O = 5 \text{ mA}, V_{OL}(\overline{OCx})$			0.5			0.5	v
Off-state current [†]	$V_{O} = 5 V$, $V_{O} = 3.3 V$			1			1	μA

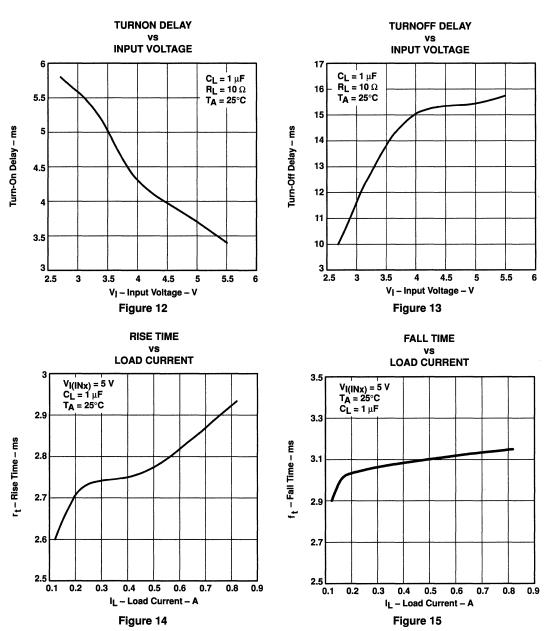
[†] Specified by design, not production tested.



SLVS191 - JANUARY 1999

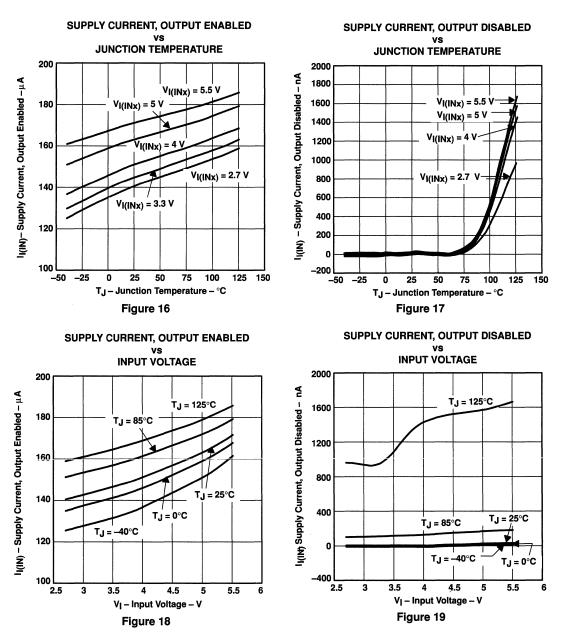

SLVS191 - JANUARY 1999

PARAMETER MEASUREMENT INFORMATION

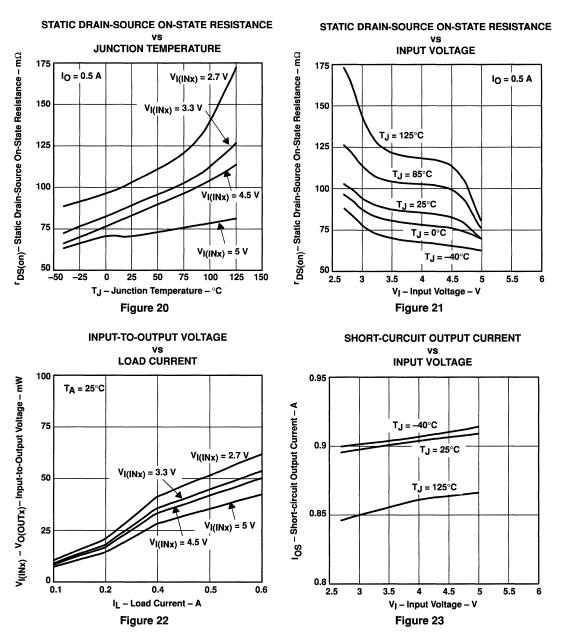

SLVS191 - JANUARY 1999

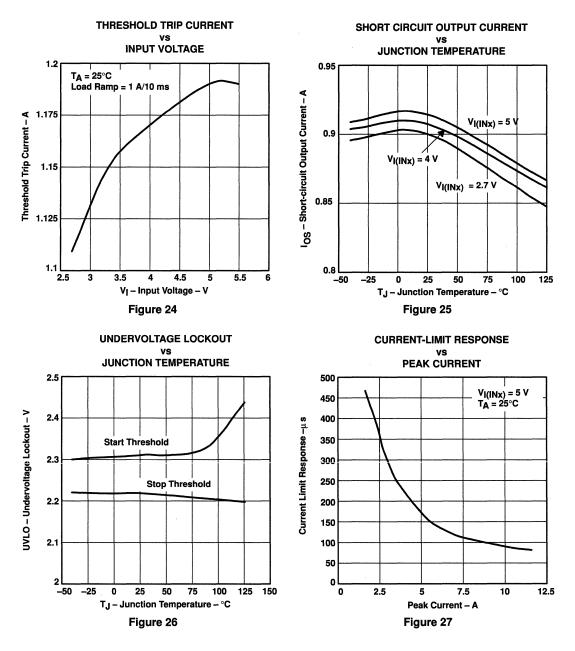
PARAMETER MEASUREMENT INFORMATION

SLVS191 - JANUARY 1999

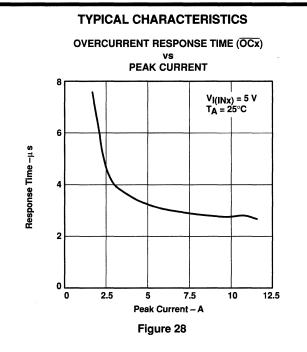


TYPICAL CHARACTERISTICS


SLVS191 - JANUARY 1999



SLVS191 - JANUARY 1999



SLVS191 - JANUARY 1999

SLVS191 - JANUARY 1999

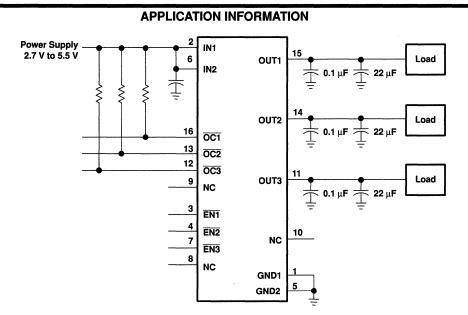


Figure 29. Typical Application

SLVS191 - JANUARY 1999

APPLICATION INFORMATION

power-supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(INx)}$ has been applied (see Figure 6). The TPS2043 and TPS2053 sense the short and immediately switch into a constant-current output.

In the second condition, the excessive load occurs while the device is enabled. At the instant the excessive load occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2043 and TPS2053 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 μ s (see Figure 30) can be connected to the \overline{OC} pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

SLVS191 - JANUARY 1999

APPLICATION INFORMATION

OC response (continued)

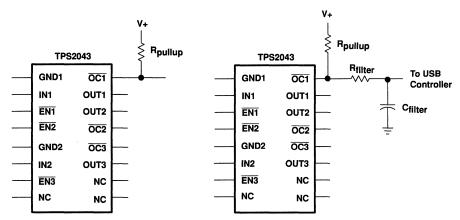


Figure 30. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C R_{0,JA} = Thermal resistance SOIC = 172°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get an acceptable answer.

SLVS191 - JANUARY 1999

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2043 and TPS2053 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2043 and TPS2053 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach 160°C, both switches turn off. The \overline{OC} open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

universal serial bus (USB) applications

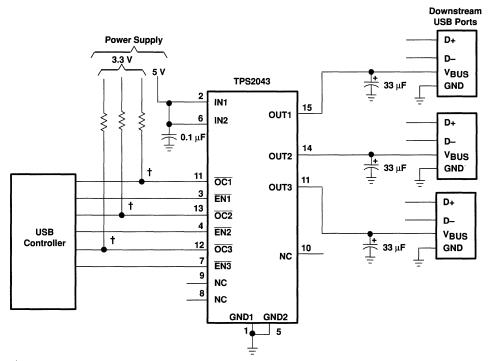
The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2043 and TPS2053 can provide power-distribution solutions for many of these classes of devices.



SLVS191 - JANUARY 1999

APPLICATION INFORMATION

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs must have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

[†] An RC filter may be needed, see Figure 36

Figure 31. Typical Three-Port USB Host/Self-Powered Hub

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

SLVS'191 - JANUARY 1999

APPLICATION INFORMATION

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA, and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current limiting (see Figure 32).

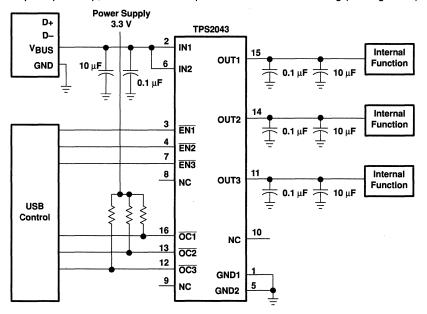
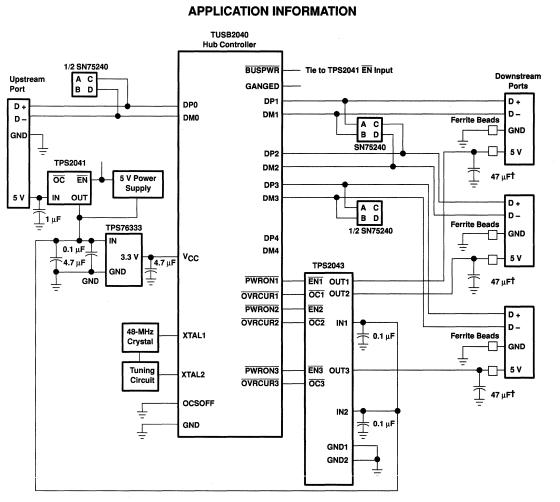


Figure 32. High-Power Bus-Powered Function

SLVS191 - JANUARY 1999

APPLICATION INFORMATION

USB power-distribution requirements


USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Hosts/self-powered hubs must:
 - Current-limit downstream ports
 - Report overcurrent conditions on USB V_{BUS}
- Bus-powered hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μ F)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2043 and TPS2053 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 39).

SLVS191 - JANUARY 1999

[†] USB rev 1.1 requires 120 μ F per hub.

Figure 33. Hybrid Self/Bus-Powered Hub Implementation

SLVS191 - JANUARY 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2043 and TPS2053, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2043 and TPS2053 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

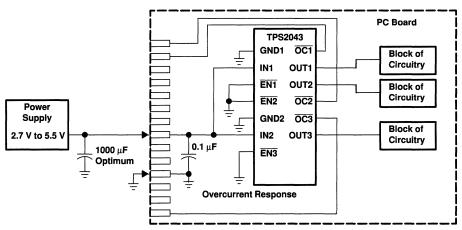


Figure 34. Typical Hot-Plug Implementation

By placing the TPS2043 and TPS2053 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

TPS2044 D PACKAGE

(TOP VIEW)

GND1

IN1

EN1

EN2 4

EN3 7

EN4 8

GND1 1

EN1 1 3

EN2

IN2 6

EN3 17

EN4

GND2

2

4

5

8

GND2 5

2

Пз

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

16 0C1

15 OUT1

14 OUT2

13 0C2

12 0C3

11 DUT3

10 OUT4

16 0C1

15 OUT1

14 OUT2

13 0C2

12 1 OC3

11 OUT3

10 1 OUT4

9 0C4

9 0C4

TPS2054 D PACKAGE (TOP VIEW)

- 135-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- 500 mA Continuous Current per Channel
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range ... 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 20-µA-Maximum Standby Supply Current
- Bidirectional Switch
- 16-pin SOIC Package
- Ambient Temperature Range, -40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection
- UL Listed File No. E169910

description

The TPS2044 and TPS2054 quad powerdistribution switches are intended for applications where heavy capacitive loads and short circuits

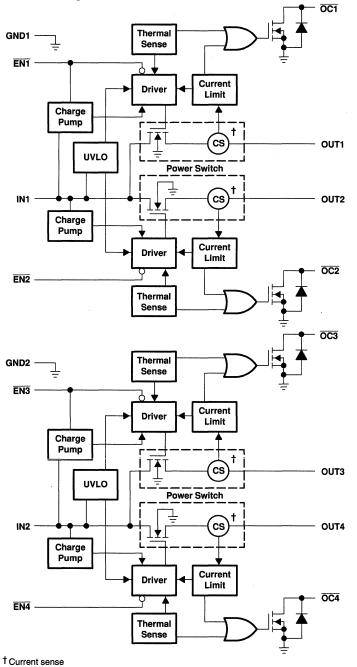
are likely to be encountered. The TPS2044 and the TPS2054 incorporate in single packages four 135-m Ω N-channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable that is compatible with 5-V logic and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2044 and TPS2054 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OCx}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2044 and TPS2054 are designed to limit at 0.9-A load. These power-distribution switches are available in 16-pin small-outline integrated-circuit (SOIC) packages and operate over an ambient temperature range of -40°C to 85°C.

		RECOMMENDED TYPICAL SHORT-CIP		RECOMMENDED TYPICAL SHO		PACKAGED DEVICES
τ _Α	ENABLE	LOAD CURRENT (A)	CURRENT LIMIT AT 25°C (A)	SOIC (D)†		
-40°C to 85°C	Active low	0.5	0.9	TPS2044D		
-40°C to 85°C	Active high	0.5	0.9	TPS2054D		

AVAILABLE OPTIONS


[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2044DR)

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

TPS2044 functional block diagram

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

Terminal Functions

	TERMINAL	-		
NAME	N	0.	1/0	DESCRIPTION
NAME	TPS2044	TPS2054		
EN1	3	1	1	Enable input. logic low turns on power switch, IN1-OUT1.
EN2	4	-	1	Enable input. Logic low turns on power switch, IN1-OUT2.
EN3	7	-	I	Enable input. Logic low turns on power switch, IN2-OUT3.
EN4	8	-	1	Enable input. Logic low turns on power switch, IN2-OUT4.
EN1	-	3	1	Enable input. Logic high turns on power switch, IN1-OUT1.
EN2	-	4	1	Enable input. Logic high turns on power switch, IN1-OUT2.
EN3	-	7	1	Enable input. Logic high turns on power switch, IN2-OUT3.
EN4	-	8	I	Enable input. Logic high turns on power switch, IN2-OUT4.
GND1	1	1		Ground.
GND2	5	5		Ground.
IN1	2	2	1	Input voltage.
IN2	6	6	1	Input voltage.
OC1	16	16	0	Overcurrent. Logic output active low, IN1-OUT1
OC2	13	13	0	Overcurrent. Logic output active low, IN1-OUT2
OC3	12	12	0	Overcurrent. Logic output active low, IN2-OUT3
OC4	9	9	0	Overcurrent. Logic output active low, IN2-OUT4
OUT1	15	15	0	Power-switch output, IN1-OUT1
OUT2	14	14	0	Power-switch output, IN1-OUT2
OUT3	11	11	0	Power-switch output, IN2-OUT3
OUT4	10	10	0	Power-switch output, IN2-OUT4

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(INx)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch supplies a minimum of 500 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (ENx or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 20 μ A when a logic high is present on ENx (TPS2044) or a logic low is present on ENx (TPS2054). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OCx)

The OCx open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2044 and TPS2054 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switch. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The (OCx) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _{I(INx)} (see Note1)	
Output voltage range, V _{O(OUTx)} (see Note1)	
Input voltage range, V _{I(ENx)} or V _{I(ENx)}	
Continuous output current, IO(OUTx)	
Continuous total power dissipation	
Operating virtual junction temperature range, T _J	–40°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	2 kV
Machine model	0.2 kV

 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: All voltages are with respect to GND.

	D	ISSIPATION RATING TA	BLE	
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.6 mW/°C	464 mW	377 mW

recommended operating conditions

	TPS	2044	TPS	2054	UNIT
	MIN	TPS2044 TPS20 MIN MAX MIN 2.7 5.5 2.7 0 5.5 0 0 500 0 -40 125 -40	MAX		
Input voltage, VI(INx)	2.7	5.5	2.7	5.5	v
Input voltage, VI(ENx) or VI(ENx)	0	5.5	0	5.5	v
Continuous output current, IO(OUTx)	0	500	0	500	mA
Operating virtual junction temperature, TJ	-40	125	-40	125	°C

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted)

power switch

	DADAMETER		DITIONIST	Т	PS2044		т	PS2054		UNIT
	PARAMETER	TEST CON	IDITIONS [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$V_{I(INx)} = 5 V,$ $I_{O} = 0.5 A$	T _J = 25°C,		80	95		80	95	
	Static drain-source on-state resistance, 5-V operation	$V_{I(INx)} = 5 V,$ I _O = 0.5 A	T _J = 85°C,		90	120		90	120	
		V _{I(INx)} = 5 V, I _O = 0.5 A	T _J = 125°C,		100	135		100	135	mΩ
	Static drain-source on-state resistance, 3.3-V operation	V _{I(INx)} = 3.3 V, I _O = 0.5 A	T _J = 25°C,		85	105		85	105	
		$V_{I(INx)} = 3.3 V,$ I _O = 0.5 A	Тј = 85°С,		100	135		100	135	
		V _{I(INx)} = 3.3 V, I _O = 0.5 A	T _J = 125°C,		115	150		115	150	
•	Biss time, sutput	$V_{I(INx)} = 5.5 V,$ $C_{L} = 1 \mu F,$	T _J = 25°C, R _L = 10 Ω		2.5			2.5		
tr	Rise time, output	$V_{I(INx)} = 2.7 V,$ $C_{L} = 1 \mu F,$	TJ = 25°C, RL = 10 Ω		3			3		ms
		$V_{I(INx)} = 5.5 V,$ $C_L = 1 \mu F,$	TJ = 25°C, RL = 10 Ω		4.4			4.4		-
ч ч	Fall time, output	$V_{I(INx)} = 2.7 V,$ $C_L = 1 \mu F,$			2.5			2.5		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input ENx or ENx

PARAMETER		TEST CONDITIONS	TPS2044			1	UNIT				
		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX			
VIH High-level input voltage		$2.7 \text{ V} \le \text{V}_{I(INx)} \le 5.5 \text{ V}$	2			2			v		
V.,	Low-level input voltage		4.5 V ≤ V _{I(INx)} ≤ 5.5 V			0.8			0.8	V	
VIL			2.7 V≤ V _{I(INx)} ≤ 4.5 V			0.4			0.4		
.	land de una ad	TPS2044	$V_{I}(\overline{ENx}) = 0 V \text{ or } V_{I}(\overline{ENx}) = V_{I}(IN)$	-0.5		0.5				μA	
1 1	Input current	TPS2054	$V_{I(ENx)} = V_{I(INx)}$ or $V_{I(ENx)} = 0 V$				-0.5		0.5	μΑ	
ton	t _{on} Turnon time		$C_{L} = 100 \mu\text{F}, R_{L} = 10 \Omega$			20			20	ms	
toff	Turnoff time		$C_{L} = 100 \ \mu F, R_{L} = 10 \ \Omega$			40			40		

current limit

	PARAMETER	TEST CONDITIONST	٦	FPS2044		1	PS2054		UNIT
		TEST CONDITIONS [†]		TYP	MAX	MIN	TYP	MAX	UNIT
los	Short-circuit output current	$V_{I(INx)} = 5 V$, OUT connected to GND, Device enable into short circuit	0.7	0.9	1.1	0.7	0.9	1.1	A

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

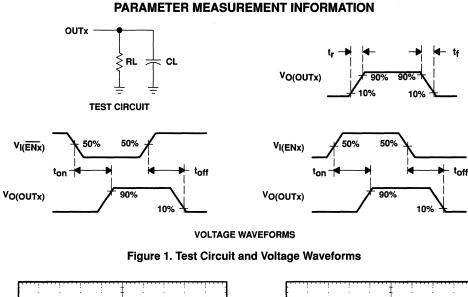
electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted) (continued)

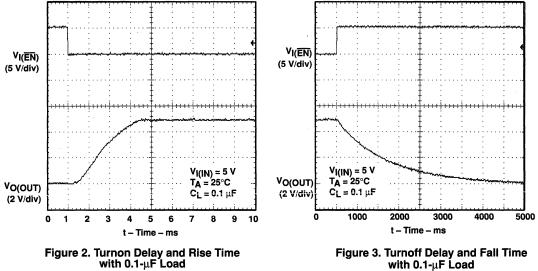
supply current

PARAMETER	TEST CONDITIONS					TPS2044			TPS2054		
PARAMETER							TYP MAX	MIN	TYP	MAX	UNIT
Supply			TJ = 25°C	TPS2044		0.03	2				
current,	No Load	$V_{I}(\overline{ENx}) = V_{I}(INx)$	–40°C ≤ TJ ≤ 125°C	1- 32044			20				
low-level	on OUTx	x V _{I(ENx)} = 0 V	TJ = 25°C	TPS2054					0.03	2	μΑ
output			–40°C ≤ TJ ≤ 125°C	1PS2054						20	
Supply	No Load	The second se	Тј = 25°С	TPS2044		160	200				μΑ
current,			–40°C ≤ Tj ≤ 125°C			200					
high-level	on OUTx		Тј = 25°С	TPS2054					160	200	μΑ
output			–40°C ≤ TJ ≤ 125°C						200]
Leakage	$ \begin{array}{ c c c c } \hline OUTx & VI(\overline{ENx}) = VI(INx) & -40^{\circ}C \leq T_{J} \leq 125^{\circ}C \\ \hline VI(\overline{ENx}) = 0 & V & -40^{\circ}C \leq T_{J} \leq 125^{\circ}C \\ \hline VI(ENx) = 0 & V & -40^{\circ}C \leq T_{J} \leq 125^{\circ}C \\ \hline \end{array} $	$V_{I}(\overline{ENx}) = V_{I}(INx)$	–40°C ≤ Tj ≤ 125°C	TPS2044		200					
current		TPS2054					200		μA		
Reverse	IN = high	IN = high $V_{I}(\overline{EN}) = 0 V$	T. 05%C	TPS2044		0.3					
leakage current	impedance	V _{I(EN)} = Hi	Тј = 25°С	TPS2054					0.3		μA

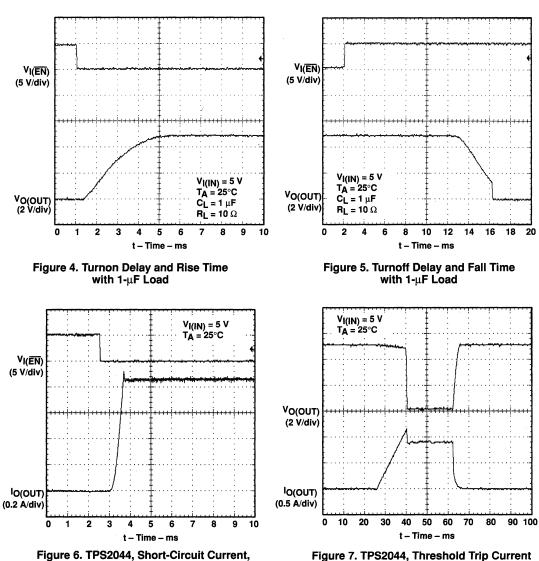
undervoltage lockout

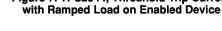
PARAMETER	TEST CONDITIONS	Т	PS2044		т	UNIT		
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Low-level input voltage		2		2.5	2		2.5	v
Hysteresis	Тј = 25°С	100			100			mV


overcurrent OCx


PARAMETER	TEST CONDITIONS	Т	PS2044		Т	UNIT			
	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Sink current [†]	V _O = 5 V			10			10	mA	
Output low voltage	$I_{O} = 5 \text{ mA}, V_{OL}(OCx)$			0.5			0.5	v	
Off-state current [†]	$V_{O} = 5 V$, $V_{O} = 3.3 V$			1			1	μA	

[†] Specified by design, not production tested.


SLVS174B - JULY 1998 - REVISED FEBRUARY 1999



SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

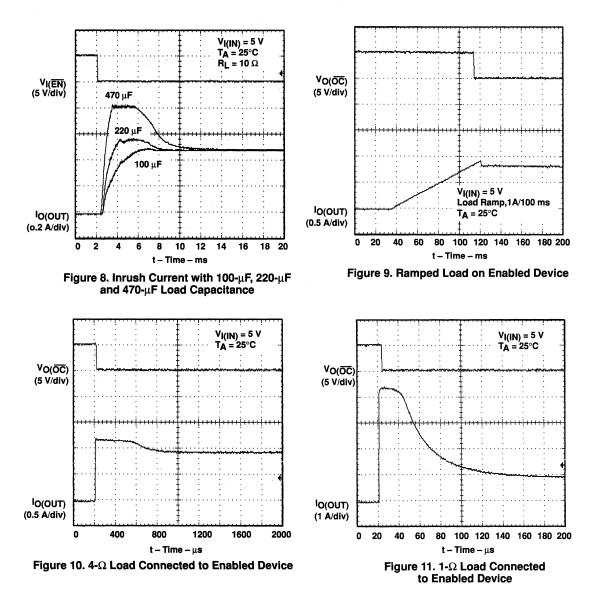
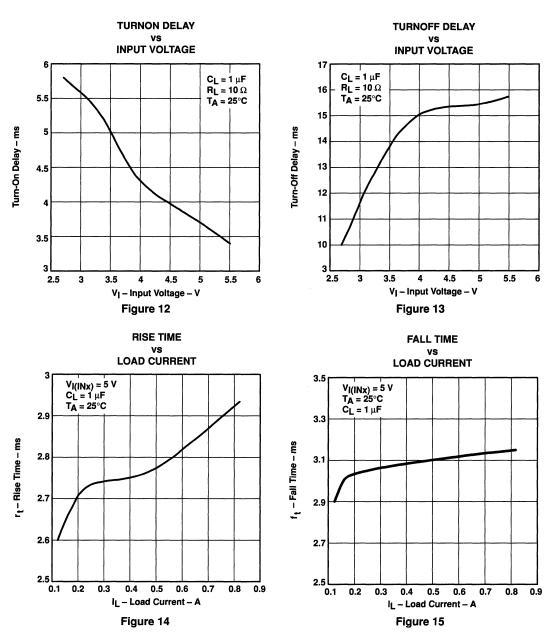
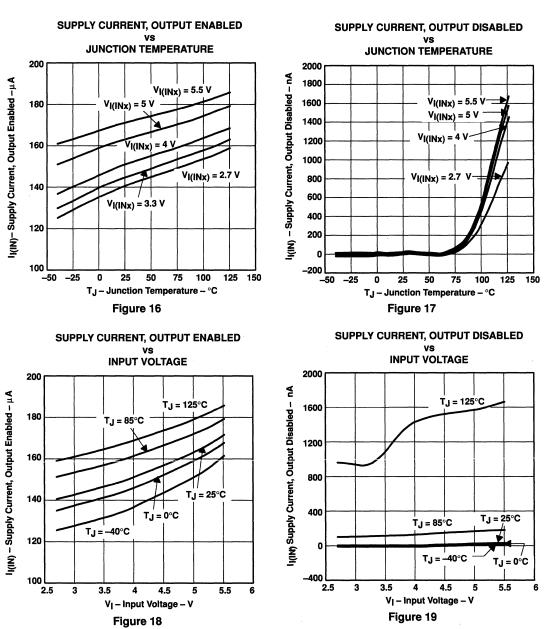

PARAMETER MEASUREMENT INFORMATION

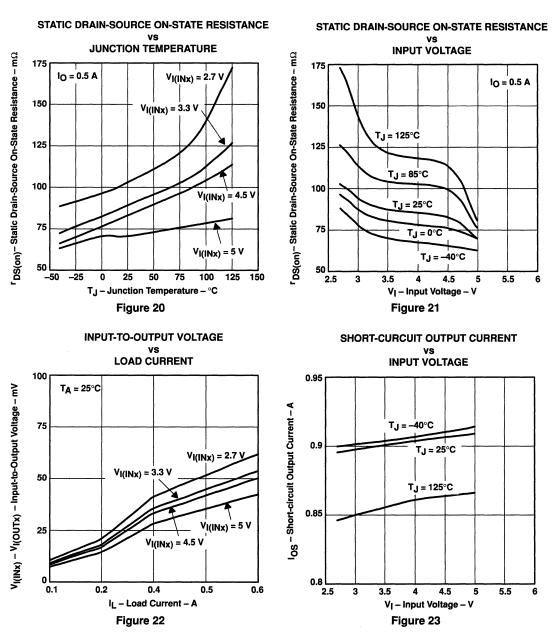
Figure 6. TPS2044, Short-Circuit Current, Device Enabled into Short


SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

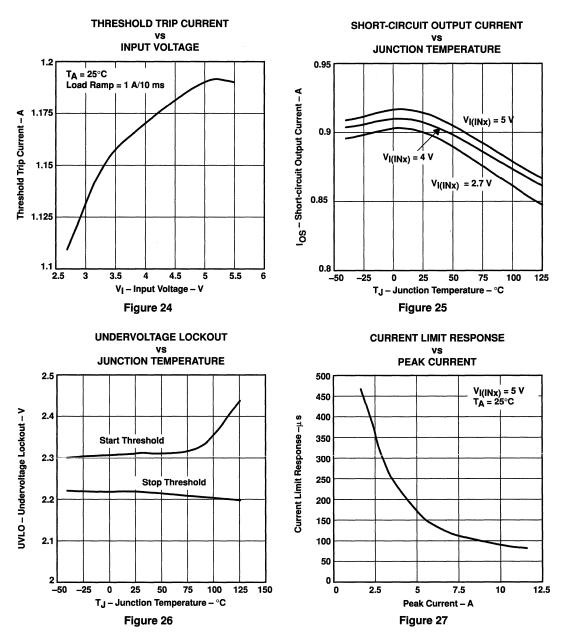
PARAMETER MEASUREMENT INFORMATION



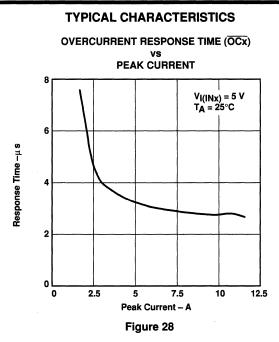
SLVS174B - JULY 1998 - REVISED FEBRUARY 1999



SLVS174B - JULY 1998 - REVISED FEBRUARY 1999



SLVS174B - JULY 1998 - REVISED FEBRUARY 1999



SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

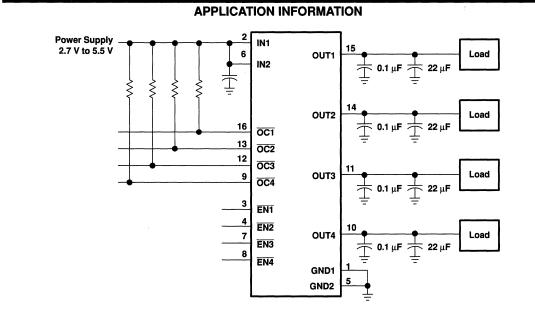


Figure 29. Typical Application

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

power-supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between INx and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(INx)}$ has been applied (see Figure 6). The TPS2044 and TPS2054 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2044 and TPS2054 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 μ s (see Figure 30) can be connected to the \overline{OC} pin to reduce false overcurrent reporting. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

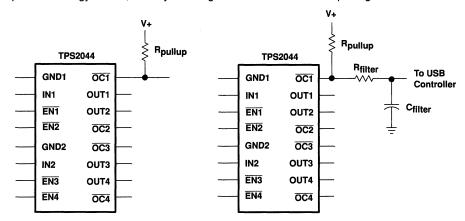


Figure 30. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta,JA}$ = Thermal resistance SOIC = 172°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2044 and TPS2054 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2044 and TPS2054 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach 160°C, both switches turn off. The OC open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

universal serial bus (USB) applications

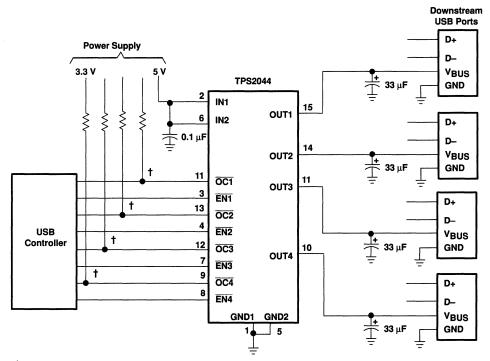
The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2044 and TPS2054 can provide power-distribution solutions for many of these classes of devices.



SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

host/self-powered and bus-powered hubs

Hosts and self-powered hubs have a local power supply that powers the embedded functions and the downstream ports (see Figure 31). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under full-load and no-load conditions. Hosts and SPHs must have current-limit protection and must report overcurrent conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

[†] An RC filter may be needed, see Figure 36

Figure 31. Typical Four-Port USB Host/Self-Powered Hub

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA, and high-power functions must draw less than 100 mA at powerup and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current limiting (see Figure 32).

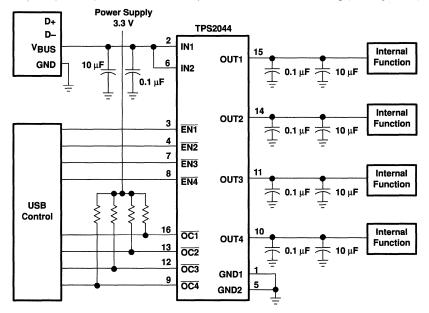
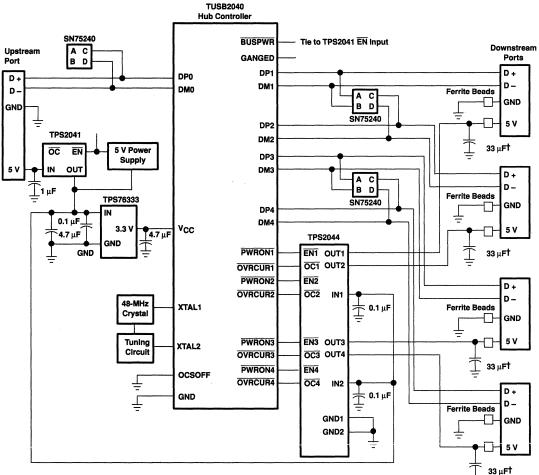


Figure 32. High-Power Bus-Powered Function

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

USB power-distribution requirements


USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power-distribution features must be implemented.

- Hosts/self-powered hubs must:
 - Current-limit downstream ports
 - Report overcurrent conditions on USB V_{BUS}
- Bus-powered hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μ F)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2044 and TPS2054 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 33).

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

[†] USB rev 1.1 requires 120 μ F per hub.

Figure 33. Hybrid Self/Bus-Powered Hub Implementation

SLVS174B - JULY 1998 - REVISED FEBRUARY 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 34)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2044 and TPS2054, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2044 and TPS2054 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

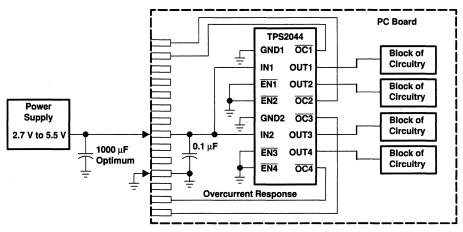


Figure 34. Typical Hot-Plug Implementation

By placing the TPS2044 and TPS2054 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

SLVS182 - APRIL 1999

features

- 135-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current
- Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range ... 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 10 µA Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, –40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

typical applications

- Notebook, Desktop and Palmtop PCs
- Monitors, Keyboards, Scanners, and Printers
- Digital Cameras, Phones, and PBXs
- Hot-Insertion Applications

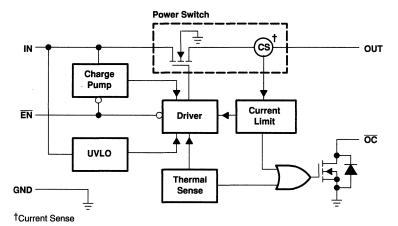
D OR P P	2045 ACKAGE VIEW)	TPS2055 D OR P PACKAGE (TOP VIEW)					
GND [1 IN [2 IN [3 EN [4	8] OUT 7] OUT 6] OUT 5] OC	GND [0 1 IN [2 IN [3 EN [4	8] OUT 7] OUT 6] OUT 5] OC				

The TPS2045 and TPS2055 power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. Each of these $135 \text{-m}\Omega$ N-channel MOSFET high-side power switches is controlled by a logic enable compatible with 5-V and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2045 and TPS2055 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OC}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2045 and TPS2055 are designed to limit at 0.44-A load. These power-distribution switches, available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP), operate over an ambient temperature range of -40°C to 85°C.

			TYPICAL SHORT-CIRCUIT	PACKAGED DEVICES			
ТА	ENABLE	MAXIMUM CONTINUOUS LOAD CURRENT (A)	CURRENT LIMIT AT 25°C (A)	SOIC (D)†	PDIP (P)		
-40°C to 85°C	Active low	Active low 0.25 0		TPS2045D	TPS2045P		
-40°C to 85°C	Active high	0.25	0.44	TPS2055D	TPS2055P		


AVAILABLE OPTIONS

[†]The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2045DR)

SLVS182 - APRIL 1999

TPS2045 functional block diagram

Terminal Functions

	TERMINAL	-					
	N	Э.		DECODIDITION			
NAME	DO	RP	I/O	DESCRIPTION			
	TPS2045	TPS2055					
ĒN	4	-	1	Enable input. Logic low turns on power switch.			
EN	- 4		I	Enable input. Logic high turns on power switch.			
GND	1	1	ł	Ground			
IN	2, 3	2, 3	I	Input voltage			
ŌĊ	5	5	0	Over current. Logic output active low			
OUT	6, 7, 8	6, 7, 8	0	Power-switch output			

SLVS182 - APRIL 1999

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(IN)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (EN or EN)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A when a logic high is present on EN (TPS2045) or a logic low is present on EN (TPS2055). A logic zero input on EN or a logic high on EN restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OC)

The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS182 - APRIL 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Input voltage range, V _{I(IN)} (see Note 1)	–0.3 V to 6 V
Output voltage range, V _{O(OUT)} (see Note 1)	–0.3 V to V _{I(IN)} + 0.3 V
Input voltage range, VI(EN) or VI(EN)	–0.3 V to 6 V
Continuous output current, I _{O(OUT)}	
Continuous total power dissipation	
Operating virtual junction temperature range, T.J.	–40°C to 125°C
Storage temperature range, T _{stg}	
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	
Machine model	0.2 kV

 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING		
D.	725 mW	5.8 mW/°C	464 mW	377 mW		
Р	1175 mW	9.4 mW/°C	752 mW	611 mW		

recommended operating conditions

	TPS	2045	TPS2	UNIT	
	MIN	MAX	MIN	MAX	UNIT
Input voltage, VI(IN)	2.7	5.5	2.7	5.5	v
Input voltage, VI(EN) or VI(EN)	0	5.5	0	5.5	v
Continuous output current, IO(OUT)	0	250	0	250	mA
Operating virtual junction temperature, TJ	40	125	-40	125	°C

SLVS182 - APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(EN)}$ = 0 V, $V_{I(EN)}$ = Hi (unless otherwise noted)

power switch

				Т	PS2045		т	PS2055		
	PARAMETER	TEST CO	NDITIONS [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			T _J = 25°C,		80	95		80	95	
	Static drain-source on-state resistance, 5-V operation	V _{I(IN)} = 5 V, I _O = 0.25 A	Т _Ј = 85°С,		90	120		90	120	
		V _{I(IN)} = 5 V, I _O = 0.25 A	Т _Ј = 125°С,		100	135		100	135	mΩ
^r DS(on)		V _{I(IN)} = 3.3 V, I _O = 0.25 A	TJ = 25°C,		85	105		85	105	
и -	Static drain-source on-state resistance, 3.3-V operation	V _{I(IN)} = 3.3 V, I _O = 0.25 A	TJ = 85°C,		100	135		100	135	
		V _{I(IN)} = 3.3 V, I _O = 0.25 A	Т _Ј = 125°С,		115	150		115	150	
		V _{I(IN)} = 5.5 V, C _L = 1 μF,	T _J = 25°C, R _L = 20 Ω		2.5		r	2.5		
tr Rise time, output	V _{I(IN)} = 2.7 V, C _L = 1 μF,	TJ = 25°C, RL = 20 Ω		3			3		ms	
		V _{I(IN)} = 5.5 V, C _L = 1 μF,			4.4			4.4		
tf	Fall time, output	V _{I(IN)} = 2.7 V, C _L = 1 μF,	TJ = 25°C, RL = 20 Ω		2.5			2.5		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input EN or EN

	PARAMETER		TEST CONDITIONS	1	PS2045	5	1	PS2055	5	UNIT	
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX		
VIH	High-level input voltag	е	2.7 V ≤ V _{I(IN)} ≤ 5.5 V	2			2			v	
		<u></u>	$4.5 V \le V_{I(IN)} \le 5.5 V$			0.8			0.8	v	
VIL	Low-level input voltage		$2.7 V \le V_{I(IN)} \le 4.5 V$			0.4			0.4		
1.	Input current	TPS2045	$V_{I}(\overline{EN}) = 0 V \text{ or } V_{I}(EN) = V_{I}(IN)$	0.5		0.5					
4	input current	TPS2055	$V_{I(EN)} = V_{I(IN)}$ or $V_{I(EN)} = 0 V$				-0.5		0.5	μA	
ton	Turnon time		$C_L = 100 \mu\text{F}, \ R_L = 20 \Omega$			20			20	ms	
toff	Turnoff time		$C_L = 100 \ \mu\text{F}, \ R_L = 20 \ \Omega$			40			40		

current limit

PARAMETER	TEOT CONDITIONST	٦	PS2045	5	٦	5	UNIT			
		FANAWEIEN	TEST CONDITIONS [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
10	os	Short-circuit output current	VI(IN) = 5 V, OUT connected to GND, Device enabled into short circuit	0.345	0.44	0.525	0.345	0.44	0.525	A

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS182 - APRIL 1999

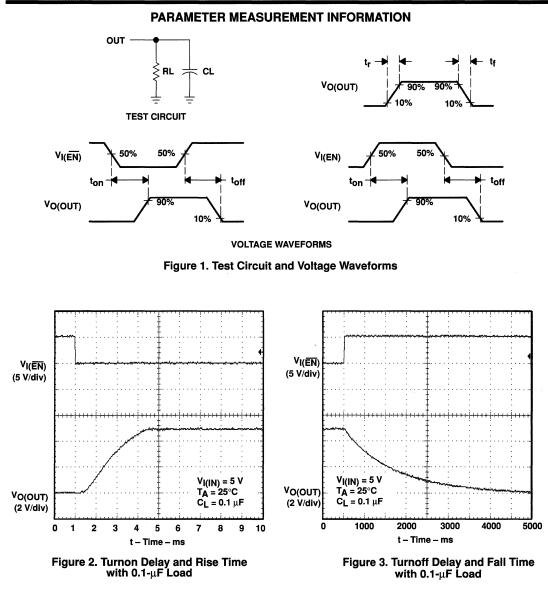
electrical characteristics over recommended operating junction temperature range, $V_{I(IN)} = 5.5 V$, $I_O = rated current$, $V_{I(EN)} = 0 V$, $V_{I(EN)} = Hi$ (unless otherwise noted) (continued)

supply current

PARAMETER		TEOT O	ONDITIONS		Т	PS2045	;	1	PS2055		UNIT
PARAMETER		1251 00	DINDITIONS	•	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Supply			Тј = 25°С	TPS2045		0.015	1				
current,	No Load	$V_{I(EN)} = V_{I(IN)}$	–40°C ≤ Tj ≤ 125°C	11-32045			10				μA
low-level	on OUT	V _{I(EN)} = 0 V	TJ = 25°C	TPS2055					0.015	1 -	μΛ
output		$\mathbf{V}_{(EN)} = \mathbf{V}_{\mathbf{V}}$	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	11 32033						10	
Supply	upply $V_{I}(\overline{EN}) = 0 V$ $T_{J} = 25^{\circ}C$ TPS2C	TREDALE		. 80	100						
current,	No Load	•I(EN) = 0 •	–40°C ≤ TJ ≤ 125°C	11 02040		100					μA
high-level	on OUT		Тј = 25°С	TPS2055					80	100	μΑ
output		$V_{I(EN)} = V_{I(IN)}$	–40°C ≤ TJ ≤ 125°C	11-32035					0.015 1 10 80 100 100 100 μ		
Leakage	OUT connected	$V_{I}(\overline{EN}) = V_{I}(IN)$	–40°C ≤ TJ ≤ 125°C	TPS2045		100					μA
current	to ground	V _{I(EN)} = 0 V	$-40^\circ C \le T_J \le 125^\circ C$	TPS2055					100		μ
Reverse	IN = high	VI(EN) = 0 V	T.1 = 25°C	TPS2045 TPS2055		0.3					μA
leakage current	impedance	V _{I(EN)} = Hi	1] = 20 0						0.3		μА

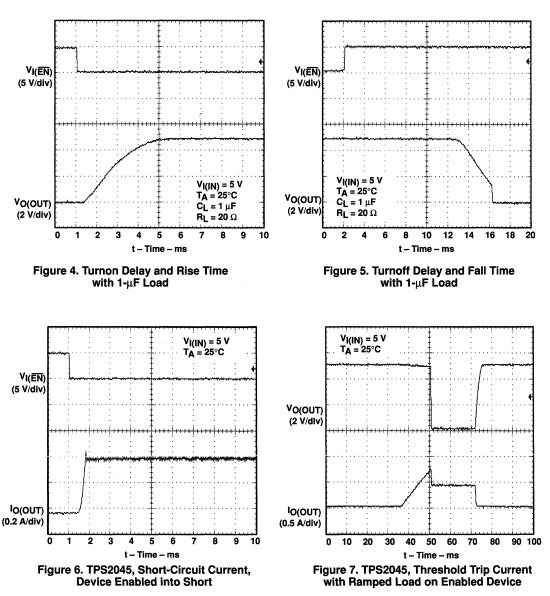
undervoltage lockout

PARAMETER	TEST CONDITIONS	т	PS2045		Т	UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	TJ = 25°C	100		100			mV	

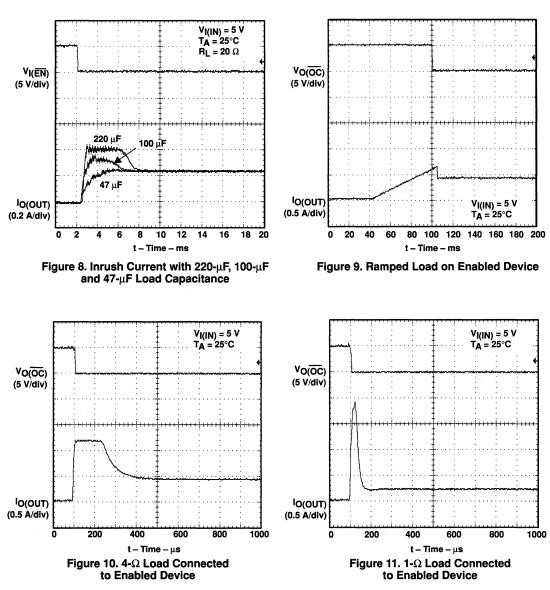

overcurrent OC

PARAMETER	TEST CONDITIONS	т	PS2045		т	UNIT		
FARAMETER	TEST CONDITIONS	MIN	ΤΥΡ	MAX	MIN	TYP	MAX	UNIT
Sink current [†]	V _O = 5 V			10			10	mA
Output low voltage	$I_O = 5 V, V_{OL}(\overline{OC})$			0.5			0.5	v
Off-state current [†]	$V_{O} = 5 V$, $V_{O} = 3.3 V$			1			1	μA

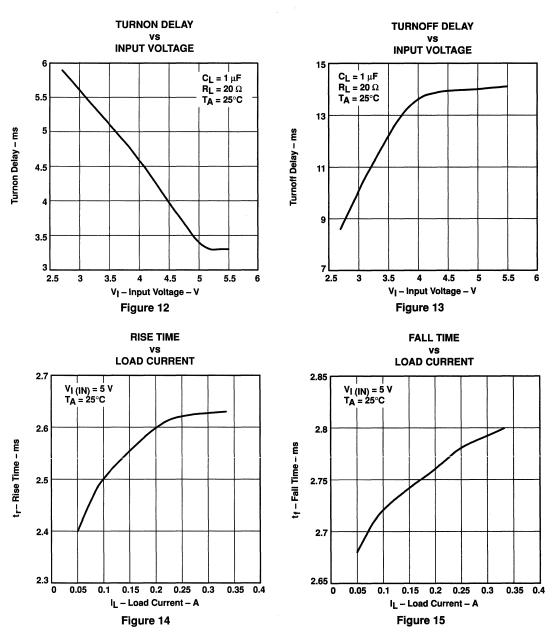
[†] Specified by design, not production tested.

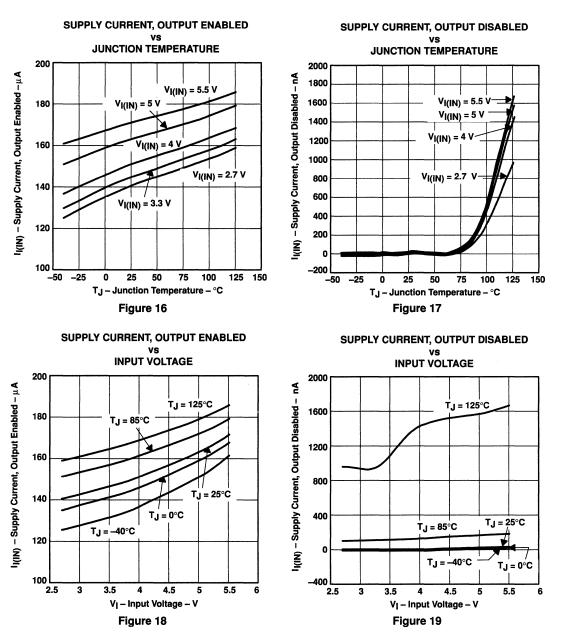


SLVS182 - APRIL 1999

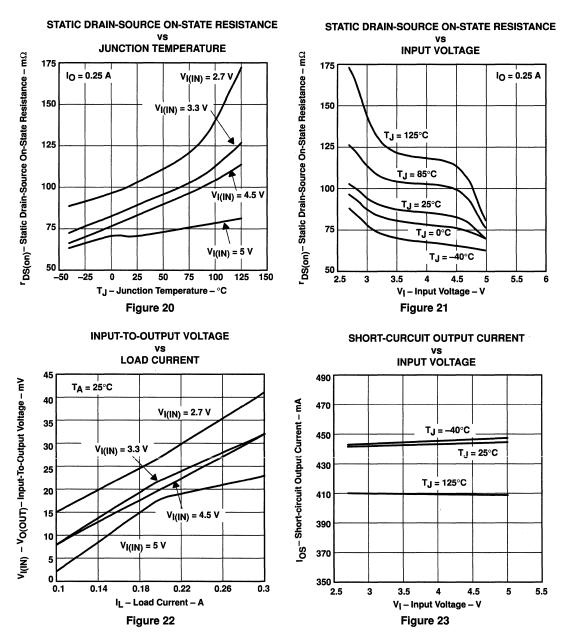

SLVS182 - APRIL 1999

PARAMETER MEASUREMENT INFORMATION

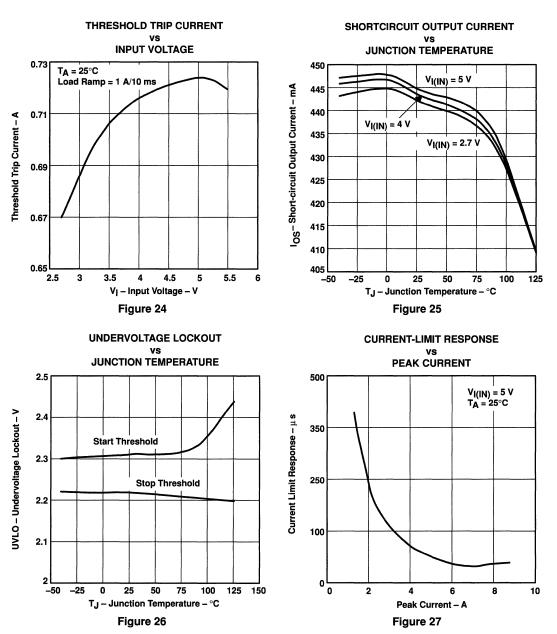

SLVS182 - APRIL 1999



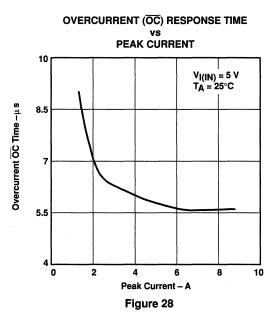
SLVS182 - APRIL 1999



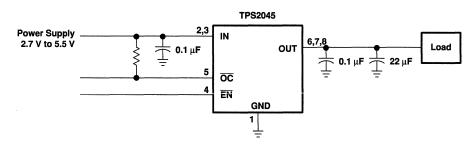
SLVS182 - APRIL 1999



SLVS182 - APRIL 1999



SLVS182 - APRIL 1999



SLVS182 - APRIL 1999

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

power-supply considerations

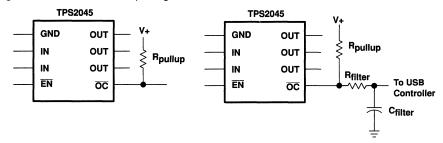
A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

SLVS182 - APRIL 1999

APPLICATION INFORMATION

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.


Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 6). The TPS2045 and TPS2055 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2045 and TPS2055 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 μ s (see Figure 30) can be connected to the \overline{OC} pin to reduce false overcurrent reporting caused by hot-plug switching events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

SLVS182 - APRIL 1999

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2045 and TPS2055 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce EMI and voltage overshoots.

SLVS182 - APRIL 1999

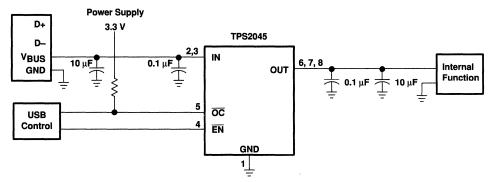
APPLICATION INFORMATION

Universal Serial Bus (USB) applications

The Universal Serial Bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:


- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2045 and TPS2055 can provide power-distribution solutions for many of these classes of devices.

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

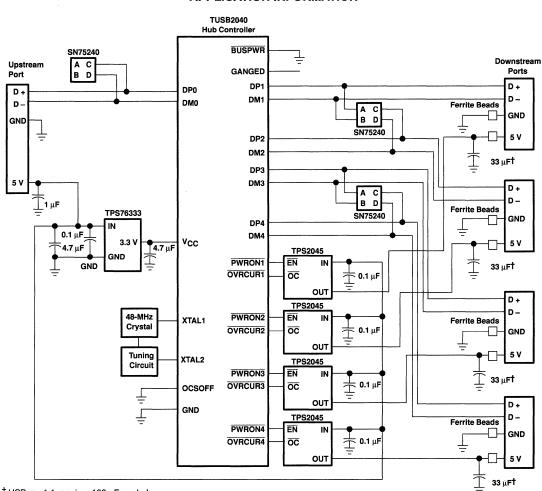
low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA; high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current limiting (see Figure 31).

SLVS182 - APRIL 1999

APPLICATION INFORMATION

USB power-distribution requirements


USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μ F)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2045 and TPS2055 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

SLVS182 - APRIL 1999

APPLICATION INFORMATION

[†] USB rev 1.1 requires 120 μF per hub.

SLVS182 - APRIL 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2045 and TPS2055, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2045 and TPS2055 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

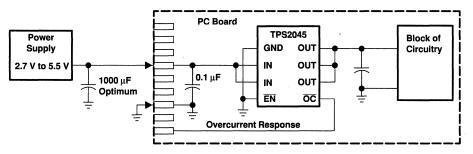


Figure 33. Typical Hot-Plug Implementation

By placing the TPS2045 and TPS2055 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

SLVS183 - APRIL 1999

features

- 135-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current per Channel
- Independent Short-Circuit and Thermal
 Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 10 µA Maximum Standby Supply Current
- Bidirectional Switch
- Available in 8-pin SOIC and PDIP Packages
- Ambient Temperature Range, –40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

typical applications

- Notebook, Desktop and Palmtop PCs
- Monitors, Keyboards, Scanners, and Printers
- Digital Cameras, Phones, and PBXs
- Hot-Insertion Applications

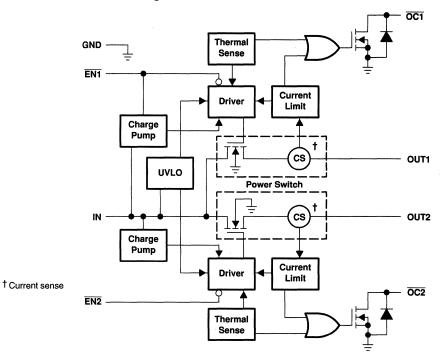
TPS: D OR P P (TOP V	ACKA			TPS R P P (TOP	ACKAGE
GND [0 1 IN [2 EN1 [3 EN2 [4	8 7 6 5	0000 000000000000000000000000000000000	GND [IN [EN1 [EN2 [0 1 2 3 4	8] OC1 7] OUT1 6] OUT2 5] OC2

The TPS2046 and TPS2056 dual power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. These devices incorporate in single packages two 135-m Ω N-channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable compatible with 5-V and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external components and allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2046 and TPS2056 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OCx}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2046 and TPS2056 are designed to limit at 0.44-A load. These power distribution switches, available in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP), operate over an ambient temperature range of -40°C to 85°C.

		RECOMMENDED MAXIMUM CONTINUOUS		PACKAGED DEVICES			
Та	ENABLE	LOAD CURRENT (A)	SHORT-CIRCUIT CURRENT LIMIT AT 25°C (A)	SOIC (D)†	PDIP (P)		
-40°C to 85°C	Active low	0.25	0.44	TPS2046D	TPS2046P		
-40°C to 85°C	Active high	0.25	0.44	TPS2056D	TPS2056P		


AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2046DR)

SLVS183 - APRIL 1999

TPS2046 functional block diagram

Terminal Functions

	TERMINAI	-								
	N	NO.		NO.		NO.		NO.		DECODIDION
NAME	DO	RP	1/0	DESCRIPTION						
	TPS2046	TPS2056								
EN1	3	-	1	Enable input. Logic low turns on power switch, IN-OUT1.						
EN2	4	-	1	Enable input. Logic low turns on power switch, IN-OUT2.						
EN1	-	3	1	Enable input. Logic high turns on power switch, IN-OUT1.						
EN2	-	4	1	Enable input. Logic high turns on power switch, IN-OUT2.						
GND	1	1	1	Ground						
IN	2	. 2	1	Input voltage						
OC1	8	8	0	Overcurrent. Logic output active low, for power switch, IN-OUT1						
OC2	5	5	0	Overcurrent. Logic output active low, for power switch, IN-OUT2						
OUT1	7	7	0	Power-switch output						
OUT2	6	6	0	Power-switch output						

SLVS183 - APRIL 1999

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(IN)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUTx to IN and IN to OUTx when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (ENx or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 10 μ A when a logic high is present on ENx (TPS2046) or a logic low is present on ENx (TPS2056). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OCx)

The OCx open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2046 and TPS2056 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus isolating the fault without interrupting operation of the adjacent power switches. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The (\overline{OCx}) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS183 - APRIL 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _{I(IN)} (see Note1)	–0.3 V to 6 V
Output voltage range, VO(OUTx) (see Note1)	–0.3 V to V _{I(IN)} + 0.3 V
Input voltage range, VI(ENx) or VI(ENx)	–0.3 V to 6 V
Continuous output current, I _{O(OUTx)}	internally limited
Continuous total power dissipation	
Operating virtual junction temperature range, T ₁	–40°C to 125°C
Storage temperature range, T _{stg}	
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	2 kV
Machine model	0.2 kV

 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1175 mW	9.4 mW/°C	752 mW	611 mW

recommended operating conditions

	TPS2	2046	TPS2	UNIT	
	MIN	MAX	MIN MAX 5.5 2.7 5.5 5.5 0 5.5 250 0 250		
Input voltage, VI(IN)	2.7	5.5	2.7	5.5	V
Input voltage, VI(ENx) or VI(ENx)	0	5.5	0	5.5	v
Continuous output current, IO(OUTx)	0	250	0	250	mA
Operating virtual junction temperature, TJ	-40	125	-40	125	°C

SLVS183 - APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted)

power switch

	PARAMETER	TEAT OO	NOITIONOT	Т	PS2046		Т	PS2056		
	PARAMETER	TEST CO	NDITIONST	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		V _{I(IN)} = 5 V, I _O = 0.1 A	T _J = 25°C,		80	95		80	95	
	Static drain-source on-state resistance, 5-V operation	V _{I(IN)} = 5 V, I _O = 0.1 A	Т _Ј = 85°С,		90	120		90	120	
		V _{I(IN)} = 5 V, I _O = 0.1 A	T _J = 125°C,		100	135		100	135	mΩ
^r DS(on)		V _{I(IN)} = 3.3 V, I _O = 0.1 A	T _J = 25°C,		85	105		85	105	
	Static drain-source on-state resistance, 3.3-V operation	V _{I(IN)} = 3.3 V, I _O = 0.1 A	T _J = 85°C,		100	135		100	135	
		V _{I(IN)} = 3.3 V, I _O = 0.1 A	TJ = 125°C,		115	150		115	150	
	Bios time, sutsut	V _{I(IN)} = 5.5 V, C _L = 1 μF,	T _J = 25°C, R _L = 20 Ω		2.5			2.5		
tr	Rise time, output	$V_{I(IN)} = 2.7 V,$ $C_L = 1 \mu F,$	TJ = 25°C, RL = 20 Ω		3			3		ms
	Fall time, output	V _{I(IN)} = 5.5 V, C _L = 1 μF,			4.4			4.4		
tf	רמו נווופ, סענטע	V _{I(IN)} = 2.7 V, C _L = 1 μF,	TJ = 25°C, RL = 20 Ω		2.5			2.5		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input ENx or ENx

	PARAMETER		TEST CONDITIONS	TPS2046			1	UNIT		
	PANAMEIEN		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIH	High-level input voltag	e	2.7 V ≤ V _{I(IN)} ≤ 5.5 V	2			2			v
V.,	Low lovel input veltage	<u>`</u>	4.5 V ≤ V _{I(IN)} ≤ 5.5 V			0.8			0.8	v
۷IL	VIL Low-level input voltage		2.7 V≤ V _{I(IN)} ≤ 4.5 V			0.4			0.4	
6	Input current	TPS2046	$V_{I}(\overline{ENx}) = 0 V \text{ or } V_{I}(\overline{ENx}) = V_{I}(IN)$	-0.5		0.5				
1	input current	TPS2056	$V_{I(ENx)} = V_{I(IN)}$ or $V_{I(ENx)} = 0$ V				-0.5		0.5	μA
ton	Turn-on time		$C_L = 100 \mu\text{F}, \ R_L = 20 \Omega$			20			20	ms
toff	Turn-off time		$C_L = 100 \mu\text{F}, R_L = 20 \Omega$			40			40	

current limit

PARAMETER		TEST CONDITIONS	TPS2046			٦	UNIT		
		TEST CONDITIONS [†]	MIN	TYP	MAX	MIN	ТҮР	MAX	
los	Short-circuit output current	$V_{I(IN)} = 5 V$, OUT connected to GND, Device enable into short circuit.	0.345	0.44	0.525	0.345	0.44	0.525	А

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS183 - APRIL 1999

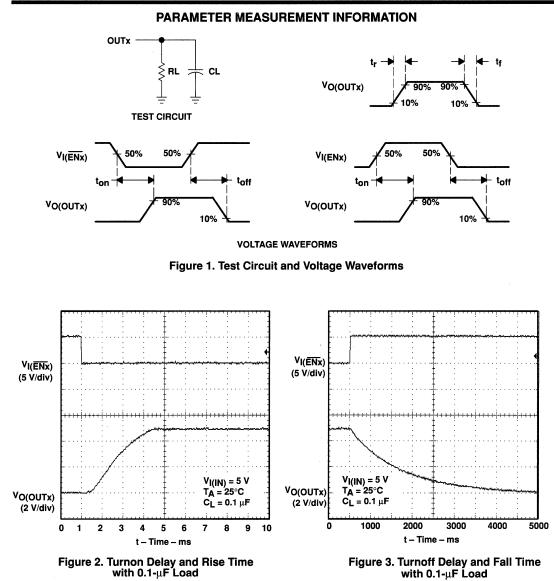
electrical characteristics over recommended operating junction temperature range, $V_{I(IN)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted) (continued)

supply current

PARAMETE		TEST OO	NDITIONS		Т	PS2046		T	PS2056		UNIT
R		TEST CO	NDITIONS		MIN	TYP	MAX	MIN	ΤΥΡ	MAX	UNIT
low-level on OUTx			Т _Ј = 25°С	TPS2046		0.015	1				
	$V_{I}(\overline{ENx}) = V_{I}(IN)$	$-40^{\circ}C \le T_J \le 125^{\circ}C$	11-32040			10				μA	
	V _{I(ENx)} = 0 V	TJ = 25°C	TPS2056					0.015	1	μΑ	
		$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	1PS2056						10		
Supply		V	Тј = 25°С	TPS2046		80	100				
current,	No Load	$V_{I}(\overline{ENx}) = 0 V$	–40°C ≤ Tj ≤ 125°C			100					μA
high-level	on OUTx		TJ = 25°C	TPS2056					80	100	μΛ
output		$V_{I(ENx)} = V_{I(IN)}$	$-40^{\circ}C \le T_J \le 125^{\circ}C$						100		
Leakage	OUTx connected	$V_{I}(\overline{ENx}) = V_{I}(IN)$	$-40^\circ C \le T_J \le 125^\circ C$	TPS2046		100					μA
current C	to ground	V _{I(ENx)} = 0 V	$-40^\circ C \le T_J \le 125^\circ C$	TPS2056					100		μΑ
Reverse leakage	IN = high	$V_{I}(\overline{ENx}) = 0 V$	T.J = 25°C	TPS2046		0.3					
current	impedance	V _{I(ENx)} = Hi	13-23 0	TPS2056					0.3		μΑ

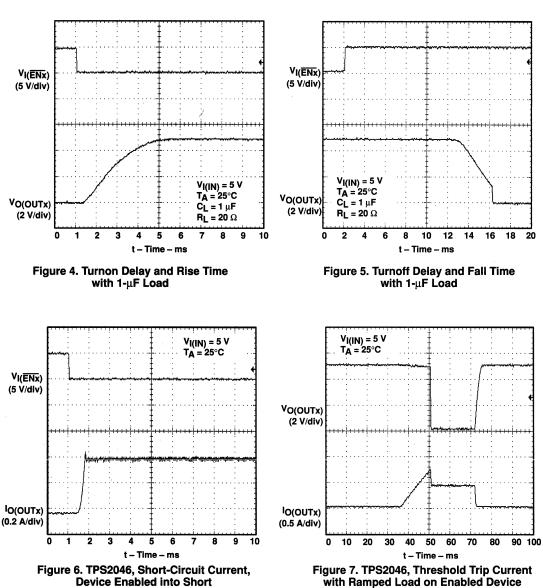
undervoltage lockout

PARAMETER	TEST CONDITIONS		PS2046		т	UNIT		
FARAMEIER			TYP	MAX	MIN	TYP	MAX	
Low-level input voltage		2		2.5	2		2.5	v
Hysteresis	TJ = 25°C		100			100		mV

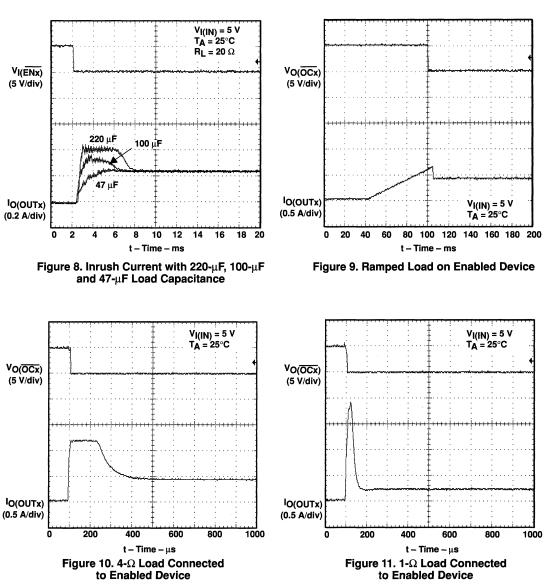

overcurrent OCx

PABAMETER	TEST CONDITIONS		PS2046		т	UNIT		
FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Sink current [†]	V _O = 5 V			10			10	mA
Output low voltage	$I_{O} = 5 \text{ mA}, V_{OL(OCx)}$			0.5			0.5	V
Off-state current [†]	$V_{O} = 5 V$, $V_{O} = 3.3 V$			1			1	μA

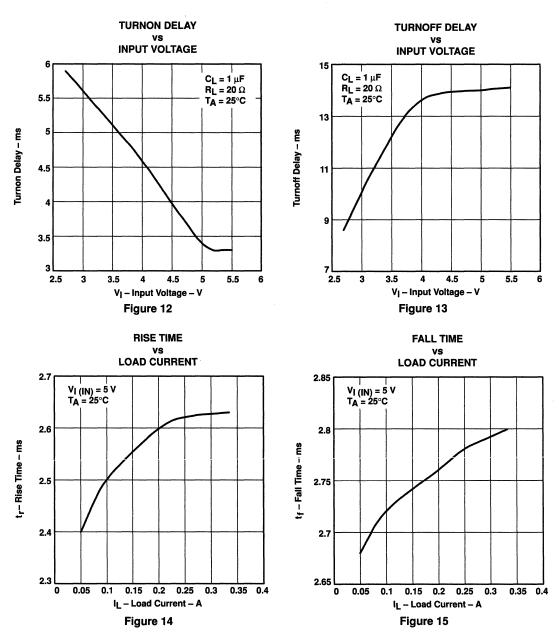
[†] Specified by design, not production tested.



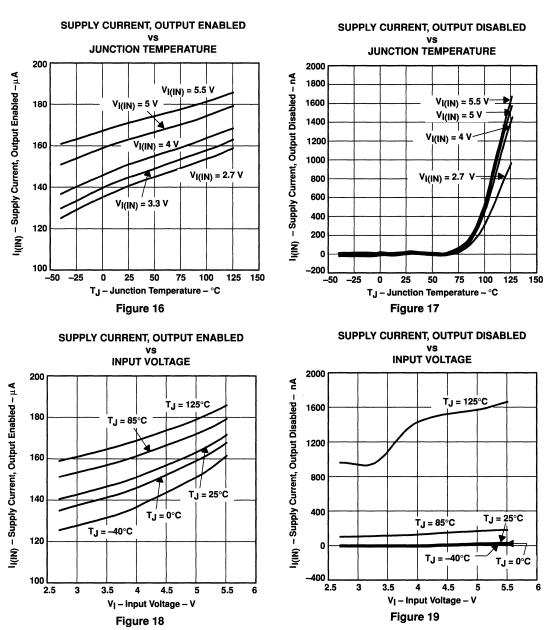
SLVS183 - APRIL 1999

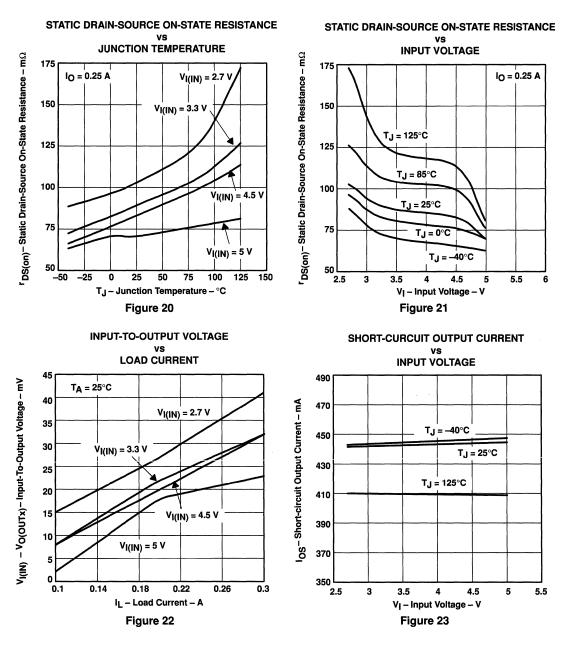

SLVS183 - APRIL 1999

PARAMETER MEASUREMENT INFORMATION

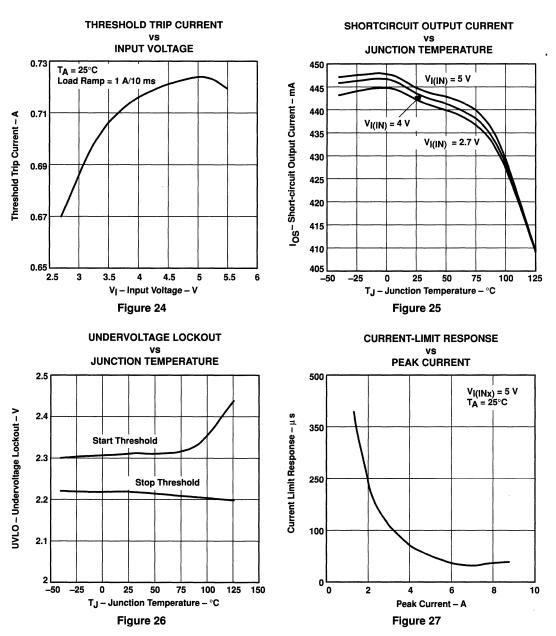

SLVS183 - APRIL 1999

PARAMETER MEASUREMENT INFORMATION

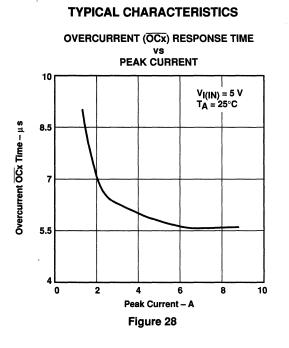

SLVS183 - APRIL 1999



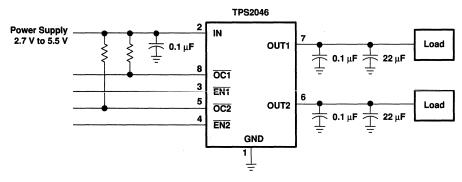
SLVS183 - APRIL 1999



SLVS183 - APRIL 1999



SLVS183 - APRIL 1999



SLVS183 - APRIL 1999

APPLICATION INFORMATION

power-supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

SLVS183 - APRIL 1999

APPLICATION INFORMATION

overcurrent

A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(IN)}$ has been applied (see Figure 6). The TPS2046 and TPS2056 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2046 and TPS2056 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OCx response

The OCx open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter (see Figure 30) can be connected to the OCx pin to reduce false overcurrent reporting caused by hot-plug switching events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

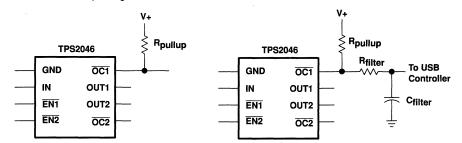


Figure 30. Typical Circuits for OC Pin and RC Filter for Damping Inrush OC Responses

SLVS183 - APRIL 1999

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times I^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W, PDIP = 106°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2046 and TPS2056 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2046 and TPS2056 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach 160°C, both switches turn off. The \overline{OC} open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

SLVS183 - APRIL 1999

APPLICATION INFORMATION

Universal Serial Bus (USB) applications

The Universal Serial Bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

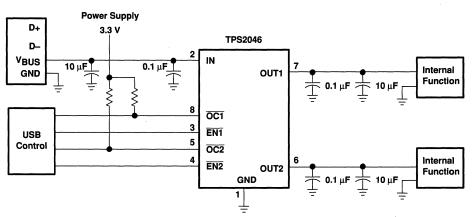
USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2046 and TPS2056 can provide power-distribution solutions for many of these classes of devices.

bus-powered hubs


Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

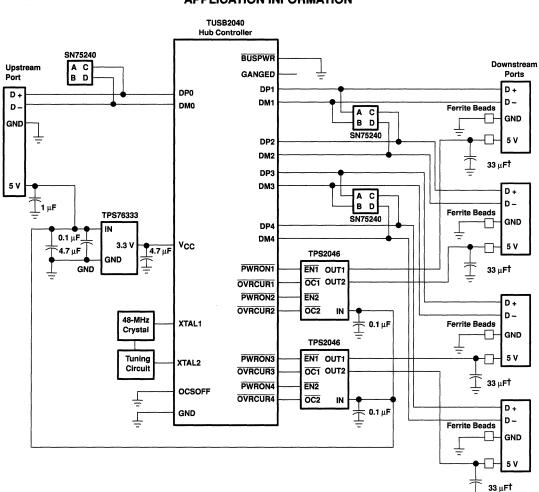
Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA, and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current limiting (see Figure 31).

SLVS183 - APRIL 1999

APPLICATION INFORMATION

Figure 31. High-Power Bus-Powered Function

USB power-distribution requirements


USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μ F)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2046 and TPS2056 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

SLVS183 - APRIL 1999

APPLICATION INFORMATION

[†] USB rev 1.1 requires 120 μF per hub.

Figure 32. Bus-Powered Hub Implementation

SLVS183 - APRIL 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2046 and TPS2056, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2046 and TPS2056 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

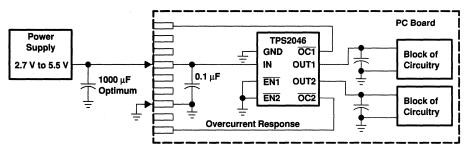


Figure 33. Typical Hot-Plug Implementation

By placing the TPS2046 and TPS2056 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

SLVS194 - APRIL 1999

features

- 135-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current per Channel
- Independent Short-Circuit and Thermal
 Protection With Overcurrent Logic Output
- Operating Range . . . 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 20 µA Maximum Standby Supply Current
- Bidirectional Switch
- Available in 16-pin SOIC Package
- Ambient Temperature Range, -40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

typical applications

- Notebook, Desktop and Palmtop PCs
- Monitors, Keyboards, Scanners, and Printers
- Digital Cameras, Phones, and PBXs
- Hot-Insertion Applications

	D PA	S2047 CKAGI P VIEW		TPS2057 D PACKAGE (TOP VIEW)						
GND1 [0	16		GND1	0 1	16] OC1				
IN1 [2	15	OUT1	IN1 [2	15 0UT1	l			
EN1 [3	14		EN1	3	14 🛛 OUT2	2			
EN2 [4	13] <u>OC2</u>	EN2 [4	13 0C2				
GND2 [5	12	OC3	GND2 [5	12 0C3				
IN2 [6	11		IN2 [6	11 🛛 OUTS	3			
EN3 [7	10] NC	EN3 [7	10 🛛 NC				
NC [8	9] NC	NC [8	9] NC				

description

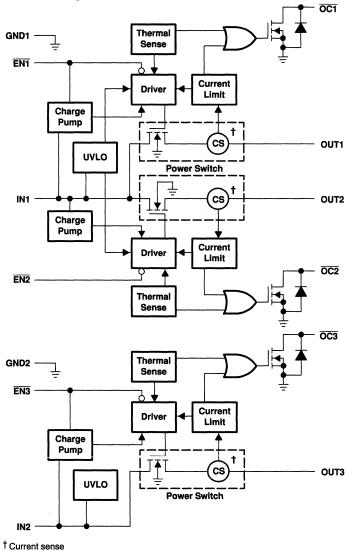
NC - No internal connection

The TPS2047 and TPS2057 triple power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. These devices incorporate in single packages three 135-m Ω N-channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable compatible with 5-V and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2047 and TPS2057 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OCx}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2047 and TPS2057 are designed to limit at 0.44-A load. These power-distribution switches are available in 16-pin small-outline integrated circuit (SOIC) packages and operate over an ambient temperature range of -40° C to 85° C.

		RECOMMENDED MAXIMUM	TYPICAL SHORT-CIRCUIT	PACKAGED DEVICES		
ТА	ENABLE	CONTINUOUS LOAD CURRENT (A)	CURRENT LIMIT AT 25°C	SOIC		
		(A)	(A)	(D)†		
-40°C to 85°C	Active low	0.25	0.44	TPS2047D		
-40°C to 85°C	Active high	0.25	0.44	TPS2057D		


AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2047DR)

SLVS194 - APRIL 1999

TPS2047 functional block diagram

SLVS194 - APRIL 1999

Terminal Functions

	TERMINAL	-		
NAME	N	0.	1/0	DESCRIPTION
NAME	TPS2047	TPS2057		
EN1	3	-	1	Enable input. Logic low turns on power switch, IN1-OUT1.
EN2	4	1	1	Enable input. Logic low turns on power switch, IN1-OUT2.
EN3	7	-	1	Enable input. Logic low turns on power switch, IN2-OUT3.
EN1	-	3	I	Enable input. Logic high turns on power switch, IN1-OUT1.
EN2	-	4	1	Enable input. Logic high turns on power switch, IN1-OUT2.
EN3	-	7	1	Enable input. Logic high turns on power switch, IN2-OUT3.
GND1	1	1		Ground
GND2	5	5		Ground
IN1	2	2	1	Input voltage
IN2	6	6	1	Input voltage
NC	8, 9, 10	8, 9, 10		No connection
OC1	16	16	0	Overcurrent. Logic output active low, IN1-OUT1
OC2	13	13	0	Overcurrent. Logic output active low, IN1-OUT2
OC3	12	12	0	Overcurrent. Logic output active low, IN2-OUT3
OUT1	15	15	0	Power-switch output, IN1-OUT1
OUT2	14	14	0	Power-switch output, IN1-OUT2
OUT3	11	11	0	Power-switch output, IN2-OUT3

SLVS194 - APRIL 1999

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(INX)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (ENx or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 20 μ A when a logic high is present on ENx (TPS2047) or a logic low is present on ENx (TPS2057). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OCx)

The OCx open drain output is asserted (active low) when an overcurrent or over temperature condition is encountered. The output will remain asserted until the overcurrent or over temperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2047 and TPS2057 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus, isolating the fault without interrupting operation of the adjacent power switches. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The (\overline{OCx}) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS194 - APRIL 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, V _{I(INx)} (see Note1)	
Output voltage range, VO(OUTx) (see Note1)	–0.3 V to V _{I(INx)} + 0.3 V
Input voltage range, V _{I(ENx)} or V _{I(ENx)}	–`0.3´V to 6 V
Continuous output current, IO(OUTx)	Internally limited
Continuous total power dissipation	
Operating virtual junction temperature range, T _J	–40°C to 125°C
Storage temperature range, T _{stg}	
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	2 kV
Machine model	0.2 kV

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW

recommended operating conditions

	TPS2	2047	TPS	2057	UNIT
	MIN	MAX	MIN	MAX	UNIT
Input voltage, VI(INx)	2.7	5.5	2.7	5.5	v
Input voltage, VI(ENx) or VI(ENx)	0	5.5	0	5.5	v
Continuous output current, IO(OUTx)	0	250	0	250	mA
Operating virtual junction temperature, Тј	-40	125	-40	125	°C

SLVS194 - APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(INx)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted)

power switch

	DADAMETER			Т	PS2047		Т	PS2057		UNIT
	PARAMETER	TEST COM	IDITIONS [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$V_{I(INx)} = 5 V,$ I _O = 0.25 A	Т _Ј = 25°С,		80	95		80	95	
	Static drain-source on-state resistance, 5-V operation	$V_{I(INx)} = 5 V,$ I _O = 0.25 A	T _J = 85°C,		90	120		90	120	
-		V _{I(INx)} = 5 V, I _O = 0.25 A	Т _Ј = 125°С,		100	135		100	135	mΩ
^r DS(on)		V _{I(INx)} = 3.3 V, I _O = 0.25 A	Т _Ј = 25°С,		85	105		85	105	
	Static drain-source on-state resistance, 3.3-V operation	V _{I(INx)} = 3.3 V, I _O = 0.25 A	T _J = 85°C,		100	135		100	135	
		V _{I(INx)} = 3.3 V, I _O = 0.25 A	T _J = 125°C,		115	150		115	150	
•	Rise time, output	V _{I(INx)} = 5.5 V, C _L = 1 μF,			2.5			2.5		ms
t _r		V _{I(INx)} = 2.7 V, C _L = 1 μF,	TJ = 25°C, RL = 20 Ω		3			3		1115
•-		$V_{I(INx)} = 5.5 V,$ $C_{L} = 1 \mu F,$	TJ = 25°C, RL = 20 Ω		4.4			4.4		-
tf	Fall time, output	V _{I(INx)} = 2.7 V, C _L = 1 μF,	T _J = 25°C, R _L = 20 Ω		2.5			2.5		ms

Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input ENx or ENx

	PARAMETER		TEST CONDITIONS	TPS2047			٦	UNIT		
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIH	High-level input voltag	je	2.7 V ≤ V _{I(INx)} ≤ 5.5 V	2			2			V
V		•	4.5 V ≤ V _{I(INx)} ≤ 5.5 V			0.8			0.8	v
VIL	/IL Low-level input voltage		2.7 V≤ V _{I(INx)} ≤ 4.5 V			0.4			0.4	
	Input current	TPS2047	$V_{I}(\overline{ENx}) = 0 V \text{ or } V_{I}(\overline{ENx}) = V_{I}(INx)$	0.5		0.5				
1	приссител	TPS2057	$V_{I(ENx)} = V_{I(INx)}$ or $V_{I(ENx)} = 0 V$				0.5		0.5	μA
ton	Turnon time		$C_{L} = 100 \mu\text{F}, R_{L} = 20 \Omega$			20			20	ms
toff	Turnoff time		$C_{L} = 100 \mu$ F, $R_{L} = 20 \Omega$			40			40	

current limit

Γ	PARAMETER		TEST CONDITIONS	TPS2047			TPS2057			UNIT
PARAMETER		FARAMETER	TEST CONDITIONST	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
10	os		$V_{I(INx)} = 5 V$, OUT connected to GND, Device enable into short circuit	0.345	0.44	0.525	0.345	0.44	0.525	A

† Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS194 - APRIL 1999

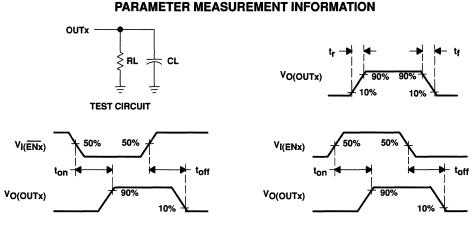
electrical characteristics over recommended operating junction temperature range, $V_{I(INx)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted) (continued)

supply current

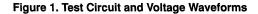
PARAMETER		TEST CON	DITIONS		Т	PS2047	,	Т	PS2057	,	UNIT
FARAMETER		TEST CON			MIN	TYP	MAX	MIN	TYP	MAX	
			T _J = 25°C	TPS2047		0.03	2				
Supply current,	No Load	$V_{I(ENx)} = V_{I(INx)}$	$-40^{\circ}C ≤ T_{J} ≤ 125^{\circ}C$	1F32047			20				μA
low-level output	on OUTx	V	T _J = 25°C	TPS2057					0.03	2	μΛ
		$V_{I(ENx)} = 0 V$	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	1-32037						20	
		x ov	T _J = 25°C	TPS2047		160	200				
Supply current, high-level	No Load	$V_{I(ENx)} = 0 V$	–40°C ≤ T _J ≤ 125°C	11-32047		200					
output	on OUTx	V V	T _J = 25°C	TPS2057					160	200	μA
		$V_{I(ENx)} \approx V_{I(INx)}$	$-40^{\circ}C ≤ T_J ≤ 125^{\circ}C$	1952057					200		
Leakage	OUTx connected	$V_{I(ENx)} = V_{I(INx)}$	-40°C ≤ T, ≤ 125°C	TPS2047		200					
current	to ground	$V_{I(ENx)} = 0 V$	-40.0 2 1 1 2 1 2 5.0	TPS2057					200		μA
Reverse	INx = high	V _{I(ENx)} = 0 V	T 05%C	TPS2047		0.3					
leakage current	impedance	V _{I(ENx)} = Hi	T _J = 25°C	TPS2057					0.3		μA

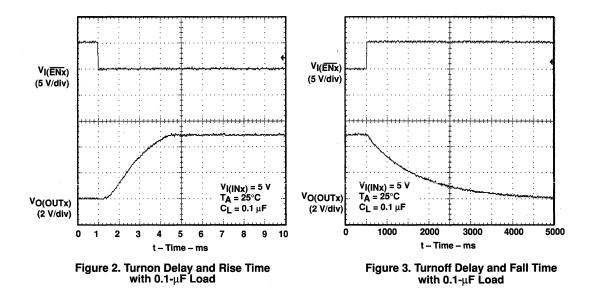
undervoltage lockout

PARAMETER	TEST CONDITIONS	Т	PS2047		Т	UNIT			
FARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT	
Low-level input voltage		2		2.5	2		2.5	v	
Hysteresis	Тј = 25°С		100			100		mV	

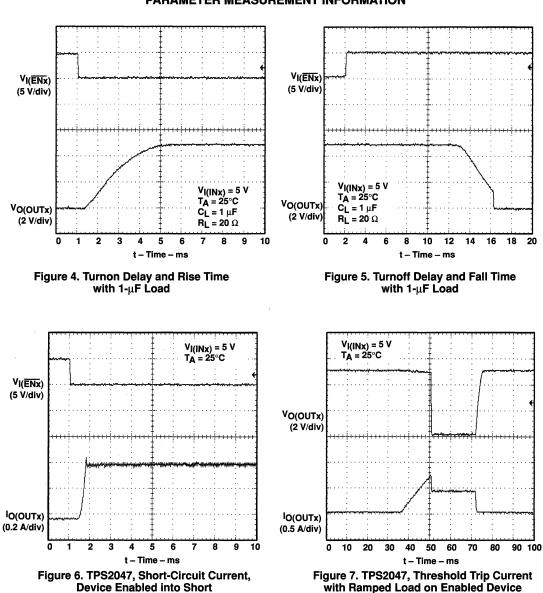

overcurrent OCx

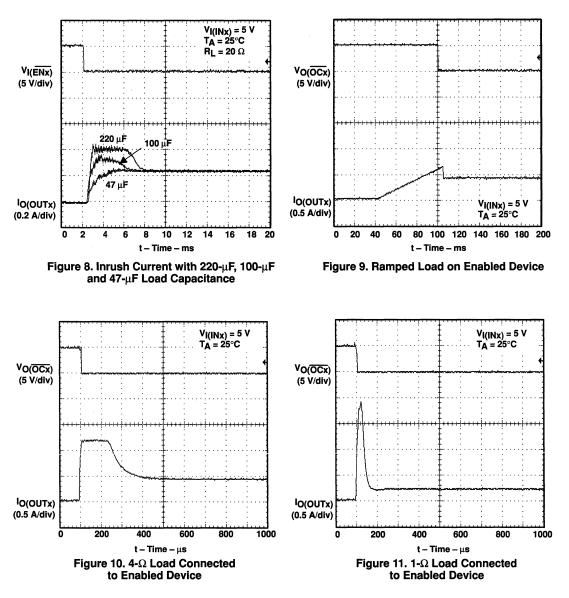
PARAMETER	TEST CONDITIONS	Т	PS2047		т	UNIT		
FARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNIT
Sink current [†]	V _O = 5 V			10			10	mA
Output low voltage	$I_O = 5 \text{ mA}, V_{OL}(OCx)$			0.5			0.5	v
Off-state current [†]	$V_{O} = 5 V$, $V_{O} = 3.3 V$			1			1	μA


[†] Specified by design, not production tested.

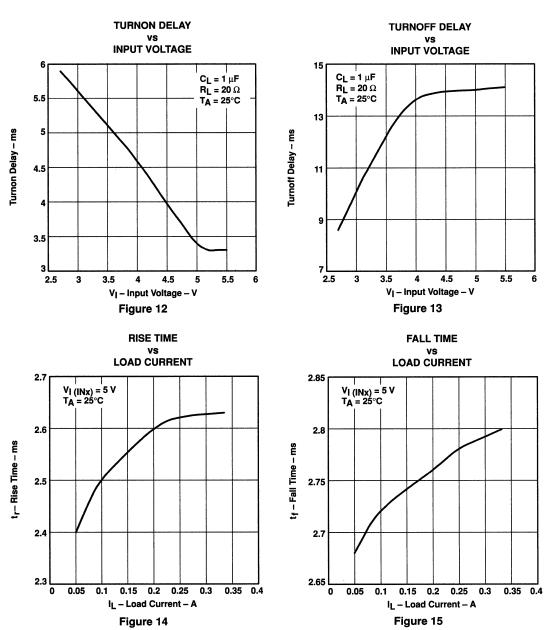


SLVS194 - APRIL 1999


VOLTAGE WAVEFORMS

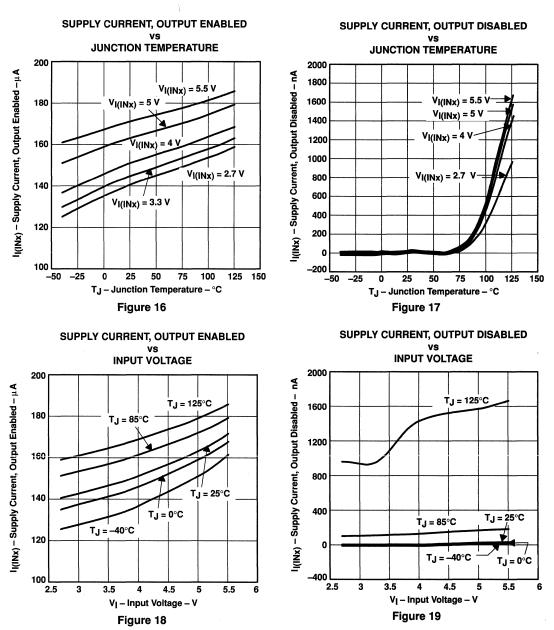

SLVS194 - APRIL 1999

PARAMETER MEASUREMENT INFORMATION

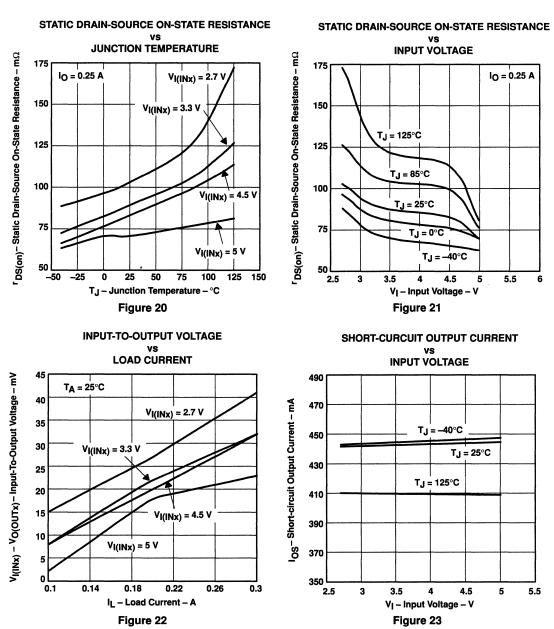

SLVS194 - APRIL 1999

PARAMETER MEASUREMENT INFORMATION

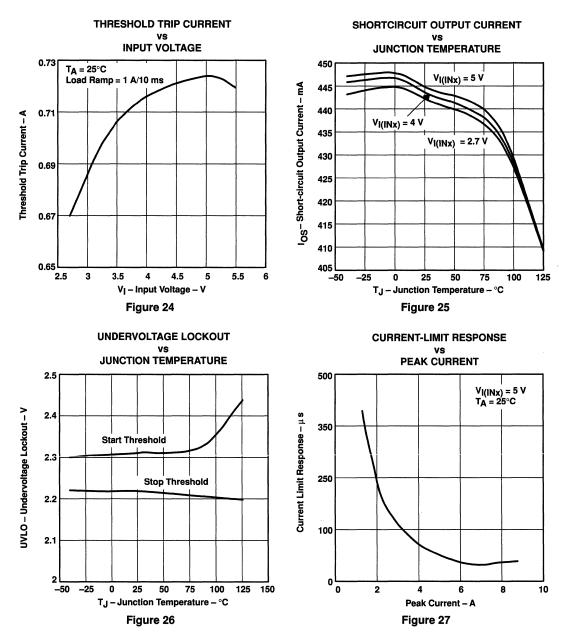
SLVS194 - APRIL 1999



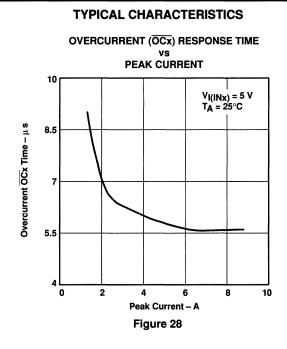
TYPICAL CHARACTERISTICS



SLVS194 - APRIL 1999



SLVS194 - APRIL 1999



SLVS194 - APRIL 1999

SLVS194 - APRIL 1999

APPLICATION INFORMATION 2 **Power Supply** IN1 2.7 V to 5.5 V 6 OUT1 Load IN2 22 µF 0.1 µF Ļ 1 Ş Ş ξ OUT2 Load 16 0 1 22 OC1 13 OC2 12 OC3 Load OUT3 9 NC 22 uF 0.1 uF 3 EN1 4 EN2 10 NC 7 EN3 8 NC GND1 5 GND2

SLVS194 - APRIL 1999

APPLICATION INFORMATION

power supply considerations

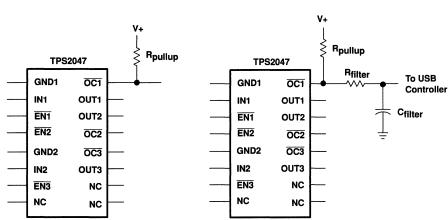
A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(INx)}$ has been applied (see Figure 6). The TPS2047 and TPS2057 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.


In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2047 and TPS2057 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 μ s (see Figure 30) can be connected to \overline{OCx} to reduce false overcurrent reporting caused by hot-plug switching events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

SLVS194 - APRIL 1999

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times l^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C R_{0JA} = Thermal resistance SOIC = 172°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

SLVS194 - APRIL 1999

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2047 and TPS2057 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2047 and TPS2057 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach 160°C, both switches turn off. The \overline{OC} open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

Universal Serial Bus (USB) applications

The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Bus-powered hubs distribute data and power to downstream functions. The TPS2047 and TPS2057 can provide power-distribution solutions for many of these classes of devices.

SLVS194 - APRIL 1999

APPLICATION INFORMATION

bus-powered hubs

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA, and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current limiting (see Figure 31).

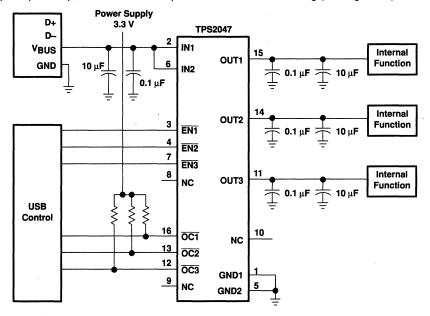


Figure 31. High-Power Bus-Powered Function

SLVS194 - APRIL 1999

APPLICATION INFORMATION

USB power-distribution requirements

USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 $\mu\text{F})$
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2047 and TPS2057 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

SLVS194 - APRIL 1999

APPLICATION INFORMATION

 † USB rev 1.1 requires 120 μF per hub.

Figure 32. Bus-Powered Hub Implementation

SLVS194 - APRIL 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2047 and TPS2057, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2047 and TPS2057 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

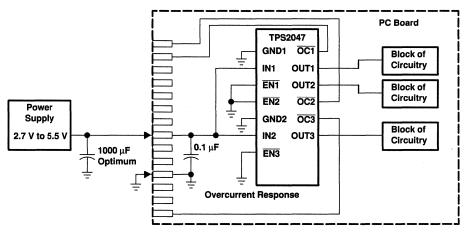


Figure 33. Typical Hot-Plug Implementation

By placing the TPS2047 or TPS2057 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.

SLVS192 - APRIL 1999

features

- 135-mΩ -Maximum (5-V Input) High-Side MOSFET Switch
- 250 mA Continuous Current per Channel
- Independent Short-Circuit and Thermal Protection With Overcurrent Logic Output
- Operating Range ... 2.7-V to 5.5-V
- Logic-Level Enable Input
- 2.5-ms Typical Rise Time
- Undervoltage Lockout
- 20 µA Maximum Standby Supply Current
- Bidirectional Switch
- Available in 16-pin SOIC Package
- Ambient Temperature Range, -40°C to 85°C
- 2-kV Human-Body-Model, 200-V Machine-Model ESD Protection

description

typical applications

- Notebook, Desktop and Palmtop PCs
- Monitors, Keyboards, Scanners, and Printers
- Digital Cameras, Phones, and PBXs
- Hot-Insertion Applications

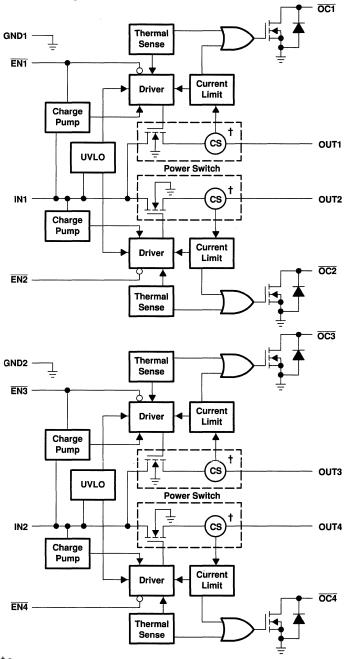
TPS2048 D PACKAGE (TOP VIEW)				TPS2058 D PACKAGE (TOP VIEW)		
0	16		GND1	0 1	16 0C1	
2	15] OUT1	IN1 [2	15 OUT1	
3	14] OUT2	EN1	з	14 OUT2	
4	13] <u>0C2</u>	EN2 [4	13 0C2	
5	12] <u>0C3</u>	GND2 [5	12 0C3	
6	11	Ουτ3	IN2 [6	11 OUT3	
7	10	0UT4	EN3	7	10 OUT4	
8	9		EN4 [8	9 0 004	
	0 1 2 3 4 5 6 7	D PACKAGE (TOP VIEW) 1 1 16 2 15 3 14 4 13 5 12 6 11 7 10	D PACKAGE (TOP VIEW) 1 16 0C1 2 15 0UT1 3 14 0UT2 4 13 0C2 5 12 0C3 6 11 0UT3 7 10 0UT4	D PACKAGE (TOP VIEW) O 1 16 2 15 0UT1 IN1 3 14 0UT2 EN1 4 13 0C2 EN2 5 12 0C3 GND2 6 11 7 10	DPACKAGE (TOP VIEW) DPA (TOF 0 1 6 1 16 0C1 GND1 0 2 15 0UT1 IN1 2 3 14 0UT2 EN1 3 4 13 0C2 EN2 4 5 12 0C3 GND2 5 6 11 0UT3 IN2 6 7 10 0UT4 EN3 7	

The TPS2048 and TPS2058 quad power-distribution switches are intended for applications where heavy capacitive loads and short circuits are likely. These devices incorporate in single packages four 135-m Ω N-channel MOSFET high-side power switches for power-distribution systems that require multiple power switches. Each switch is controlled by a logic enable compatible with 5-V and 3-V logic. Gate drive is provided by an internal charge pump that controls the power-switch rise times and fall times to minimize current surges during switching. The charge pump, requiring no external components, allows operation from supplies as low as 2.7 V.

When the output load exceeds the current-limit threshold or a short is present, the TPS2048 and TPS2058 limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (\overline{OCx}) logic output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present.

The TPS2048 and TPS2058 are designed to limit at 0.44-A load. These power-distribution switches are available in 16-pin small-outline integrated circuit (SOIC) packages and operate over an ambient temperature range of -40°C to 85°C.

TA		RECOMMENDED MAXIMUM	TYPICAL SHORT-CIRCUIT	PACKAGED DEVICES			
	ENABLE	CONTINUOUS LOAD CURRENT (A)	CURRENT LIMIT AT 25°C (A)	SOIC (D)†			
-40°C to 85°C	Active low	0.25	0.44	TPS2048D			
-40°C to 85°C	Active high	0.25	0.44	TPS2058D			


AVAILABLE OPTIONS

[†] The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2048DR)

SLVS192 - APRIL 1999

TPS2048 functional block diagram

†Current sense

SLVS192 - APRIL 1999

Terminal Functions

TERMINAL		1/0	DESCRIPTION	
NAME NO.				
NAME	TPS2048 TPS2058			
EN1	3	-	1	Enable input. Logic low turns on power switch, IN1-OUT1.
EN2	4	-	I	Enable input. Logic low turns on power switch, IN1-OUT2.
EN3	7	-	Ι	Enable input. Logic low turns on power switch, IN2-OUT3.
EN4	8	-	1	Enable input. Logic low turns on power switch, IN2-OUT4.
EN1	_	3	1	Enable input. Logic high turns on power switch, IN1-OUT1.
EN2	-	4	I	Enable input. Logic high turns on power switch, IN1-OUT2.
EN3	-	7	1	Enable input. Logic high turns on power switch, IN2-OUT3.
EN4	-	8	1	Enable input. Logic high turns on power switch, IN2-OUT4.
GND1	1	1		Ground
GND2	5	5		Ground
IN1	2	2	1	Input voltage
IN2	6	6	I	Input voltage
OC1	16	16	0	Overcurrent. Logic output active low, IN1-OUT1
OC2	13	13	0	Overcurrent. Logic output active low, IN1-OUT2
OC3	12	12	0	Overcurrent. Logic output active low, IN2-OUT3
OC4	9	9	0	Overcurrent. Logic output active low, IN2-OUT4
OUT1	15	15	0	Power-switch output, IN1-OUT1
OUT2	14	14	0	Power-switch output, IN1-OUT2
OUT3	11	11	0	Power-switch output, IN2-OUT3
OUT4	10	10	0	Power-switch output, IN2-OUT4

SLVS192 - APRIL 1999

detailed description

power switch

The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 m Ω (V_{I(INx)} = 5 V). Configured as a high-side switch, the power switch prevents current flow from OUTx to INx and INx to OUTx when disabled. The power switch can supply a minimum of 250 mA per switch.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.

enable (ENx or ENx)

The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than 20 μ A when a logic high is present on ENx (TPS2048) or a logic low is present on ENx (TPS2058). A logic zero input on ENx or logic high on ENx restores bias to the drive and control circuits and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.

overcurrent (OCx)

The OCx open drain output is asserted (active low) when an overcurrent or over temperature condition is encountered. The output will remain asserted until the overcurrent or over temperature condition is removed.

current sense

A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into its saturation region, which switches the output into a constant current mode and holds the current constant while varying the voltage on the load.

thermal sense

The TPS2048 and TPS2058 implement a dual-threshold thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature rises. When the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks to determine which power switch is in an overcurrent condition and turns off that switch, thus, isolating the fault without interrupting operation of the adjacent power switches. Hysteresis is built into the thermal sense, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed. The (\overline{OCx}) open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout

A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V, a control signal turns off the power switch.

SLVS192 - APRIL 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Input voltage range, VI(INx) (see Note1)	–0.3 V to 6 V
Output voltage range, VO(OUTx) (see Note1)	–0.3 V to V _{I(INx)} + 0.3 V
Input voltage range, V _{I(ENx)} or V _{I(ENx)}	Ó. 3 V to 6 V
Continuous output current, IO(OUTx)	
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T _J	–40°C to 125°C
Storage temperature range, T _{stg}	
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C	2 kV
Machine model	0.2 kV

 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE							
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING			
D	725 mW	5.8 mW/°C	464 mW	377 mW			

recommended operating conditions

	TPS2048 TPS20				
	MIN	MAX	MIN	MAX	UNIT
Input voltage, VI(INx)	2.7	5.5	2.7	5.5	v
Input voltage, VI(ENx) or VI(ENx)	0	5.5	0	5.5	V
Continuous output current, IO(OUTx)	0	250	0	250	mA
Operating virtual junction temperature, TJ	40	125	-40	125	°C

SLVS192 - APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(INx)}$ = 5.5 V, I_O = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted)

power switch

	DADAMETED			Т	PS2048		т	PS2058		
	PARAMETER	TEST CON	IDITIONS [†]	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		$V_{I(INx)} = 5 V,$ I _O = 0.25 A	T _J = 25°C,		80	95		80	95	
	Static drain-source on-state resistance, 5-V operation	$V_{I(INx)} = 5 V,$ $I_{O} = 0.25 A$	TJ = 85°C,		90	120		90	120	
	,	$V_{I(INx)} = 5 V,$ $I_O = 0.25 A$	T _J = 125°C,		100	135		100	135	mΩ
^r DS(on)		V _{I(INx)} = 3.3 V, I _O = 0.25 A	T _J = 25°C,		85	105		85	105	
	Static drain-source on-state resistance, 3.3-V operation	V _{I(INx)} = 3.3 V, I _O = 0.25 A	Тј = 85°С,		100	135		100	135	
		V _{I(INx)} = 3.3 V, I _O = 0.25 A	TJ = 125°C,		115	150		115	150	
		$V_{I(INx)} = 5.5 V,$ $C_{L} = 1 \mu F,$	T _J = 25°C, R _L = 20 Ω		2.5			2.5		
tr	Rise time, output	$V_{I(INx)} = 2.7 V,$ $C_{L} = 1 \mu F,$	TJ = 25°C, RL = 20 Ω		3			3		ms
•		$V_{I(INx)} = 5.5 V,$ $C_L = 1 \mu F,$	TJ = 25°C, RL = 20 Ω		4.4			4.4		
t _f	Fall time, output	$V_{I(INx)} = 2.7 V,$ $C_L = 1 \mu F,$	TJ = 25°C, RL = 20 Ω		2.5			2.5		ms

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

enable input ENx or ENx

	PARAMETER		TEST CONDITIONS	TPS2048			٦	PS2058)	UNIT
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIH	High-level input voltag	je	2.7 V ≤ V _{I(INx)} ≤ 5.5 V	2			2			v
V		•	4.5 V ≤ V _{I(INx)} ≤ 5.5 V			0.8			0.8	v
VIL	Low-level input voltag	e	2.7 V≤ VI(INx) ≤ 4.5 V			0.4			0.4	
	Input current	TPS2048	$V_{I}(\overline{ENx}) = 0 V \text{ or } V_{I}(\overline{ENx}) = V_{I}(INx)$	-0.5		0.5				
	input current	TPS2058	$V_{I(ENx)} = V_{I(INx)}$ or $V_{I(ENx)} = 0$ V	1			-0.5		0.5	μΑ
ton	Turnon time		$C_L = 100 \mu\text{F}, \ R_L = 20 \Omega$			20			20	ms
toff	Turnoff time		$C_{L} = 100 \mu\text{F}, \ R_{L} = 20 \Omega$			40			40	

current limit

	PARAMETER	TEAT CONDITIONAT	TPS2048			٦		UNIT	
	PANAMEIEN	TEST CONDITIONS [†]	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
los	Short-circuit output current	$V_{I(INx)} = 5 V$, OUT connected to GND, Device enable into short circuit	0.345	0.44	0.525	0.345	0.44	0.525	А

† Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

SLVS192 - APRIL 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(INx)}$ = 5.5 V, I_{O} = rated current, $V_{I(ENx)}$ = 0 V, $V_{I(ENx)}$ = Hi (unless otherwise noted) (continued)

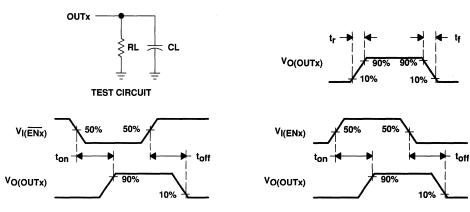
supply current

PARAMETER		TEST CON			Т	PS2048	3	Т	PS2058	1	UNIT
FARAMETER			DITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			T _J = 25°C	TPS2048		0.03	2				
Supply current,	No Load	$V_{I(ENx)} = V_{I(INx)}$	$-40^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq 125^{\circ}\text{C}$	11732040			20				
low-level output	on OUTx	У. О.У.	T _J = 25°C	TPS2058					0.03	2	μA
		$V_{I(ENx)} = 0 V$	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	11932056						20	
		<u>v — av</u>	T _J = 25°C	TPS2048		160	200				
Supply current, high-level	No Load	$V_{i(\overline{ENx})} = 0 V$	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	11-52040		200					
output	on OUTx		T _J = 25°C	TPS2058					160	200	μA
		$V_{I(ENx)} = V_{I(INx)}$	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	1952058					200		
Leakage	OUTx connected	$V_{I(ENx)} = V_{I(INx)}$	–40°C ≤ T,1 ≤ 125°C	TPS2048		200					
current	to ground	$V_{I(ENx)} = 0 V$	-40.0 ≤ 13 ≤ 125.0	TPS2058					200		μA
Reverse	INx = high	VI(ENx) = 0 V	T 0500	TPS2048		0.3					
leakage current	impedance	V _{I(ENx)} = Hi	T _J = 25°C	TPS2058					0.3		μA

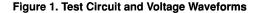
undervoltage lockout

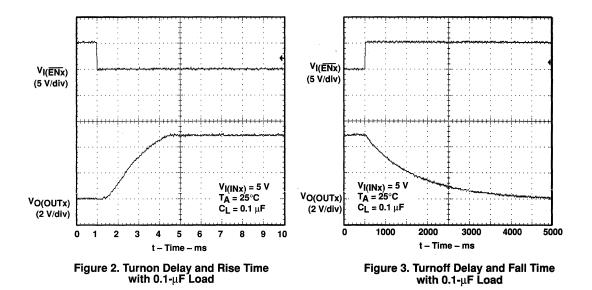
PARAMETER	TEST CONDITIONS	TPS2048			TPS2058			UNIT
	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Low-level input voltage		2		2.5	2		2.5	V
Hysteresis	T _J = 25°C		100			100		mV

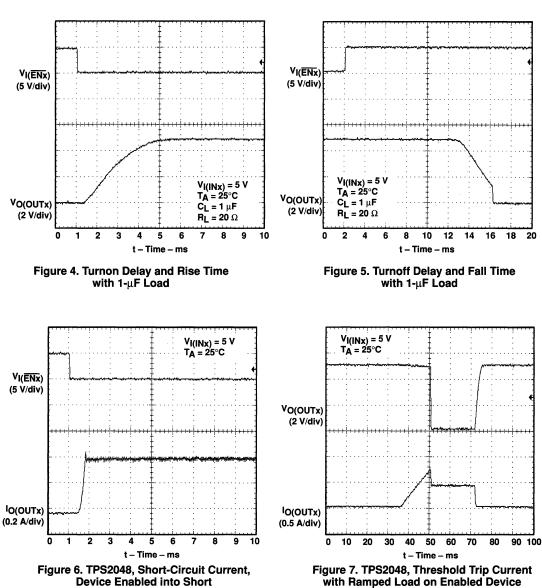
overcurrent OCx

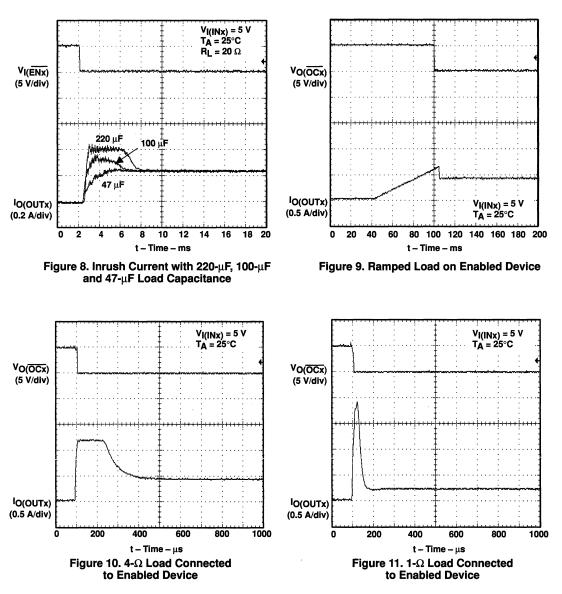

PARAMETER	TEST CONDITIONS		TPS2048			TPS2058			
FARAMETER	TEST CONDITIONS	MIN	TYP	TYP MAX		TYP	MAX	UNIT	
Sink current [†]	V _O = 5 V			10			10	mA	
Output low voltage	$I_O = 5 \text{ mA}, V_{OL(OCx)}$			0.5			0.5	V	
Off-state current [†]	$V_{O} = 5 V$, $V_{O} = 3.3 V$			1			1	μA	

[†] Specified by design, not production tested.

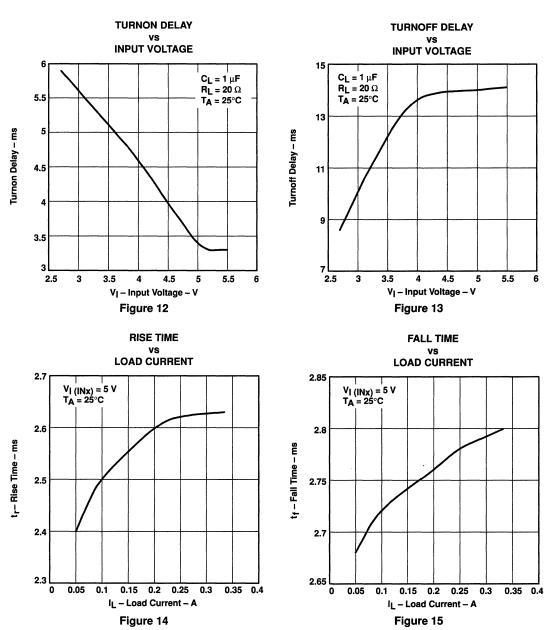



SLVS192 - APRIL 1999

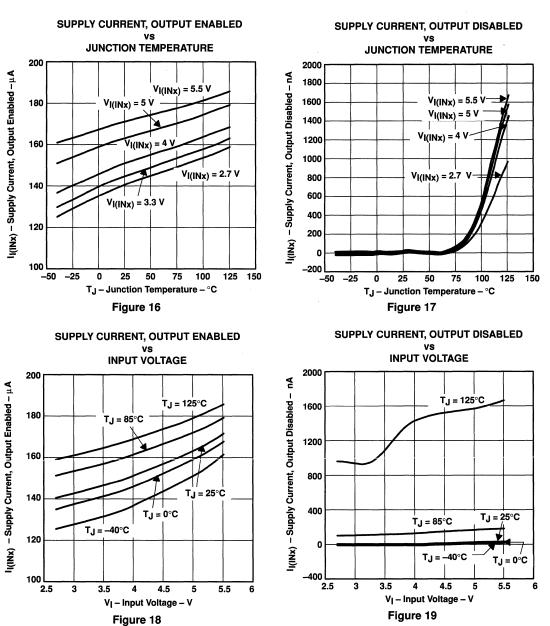

VOLTAGE WAVEFORMS


SLVS192 - APRIL 1999

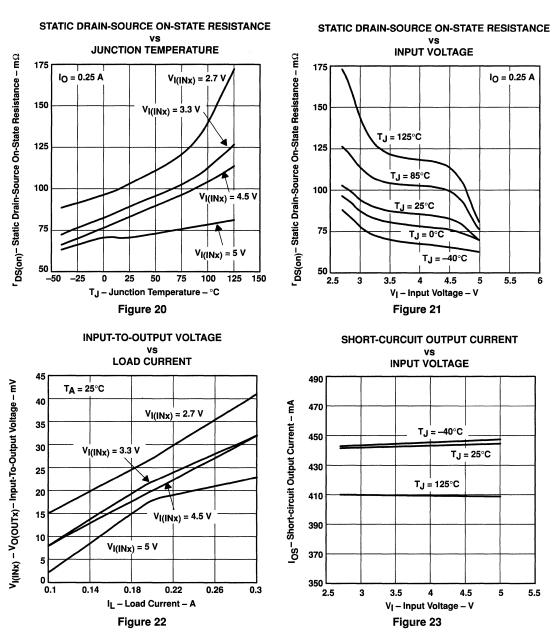
PARAMETER MEASUREMENT INFORMATION

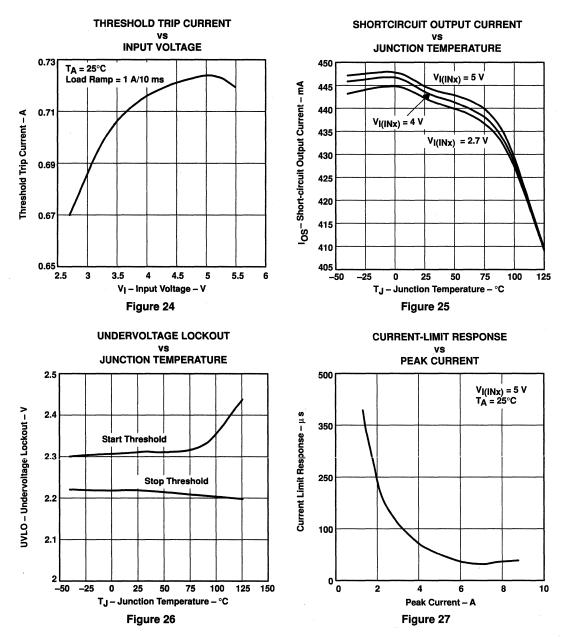

SLVS192 - APRIL 1999

PARAMETER MEASUREMENT INFORMATION


SLVS192 - APRIL 1999

TYPICAL CHARACTERISTICS


SLVS192 - APRIL 1999


SLVS192 - APRIL 1999

TYPICAL CHARACTERISTICS

SLVS192 - APRIL 1999

TYPICAL CHARACTERISTICS

SLVS192 - APRIL 1999

TYPICAL CHARACTERISTICS OVERCURRENT (OCx) RESPONSE TIME vs PEAK CURRENT 10 V_{I(INx)} = 5 V T_A = 25°C Overcurrent \overrightarrow{OCx} Time – μ s 8.5 7 5.5 4 0 2 4 6 8 10 Peak Current - A Figure 28

SLVS192 - APRIL 1999

APPLICATION INFORMATION

power supply considerations

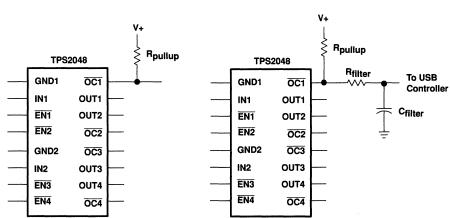
A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

overcurrent

A sense FET checks for overcurrent conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault is present long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before $V_{I(INx)}$ has been applied (see Figure 6). The TPS2048 and TPS2058 sense the short and immediately switch into a constant-current output.

In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has tripped (reached the overcurrent trip threshold) the device switches into constant-current mode.


In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is exceeded (see Figure 7). The TPS2048 and TPS2058 are capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its constant-current mode.

OC response

The \overline{OC} open-drain output is asserted (active low) when an overcurrent or overtemperature condition is encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed. Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 μ s (see Figure 30) can be connected to \overline{OCx} to reduce false overcurrent reporting caused by hot-plug switching events or extremly high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush current flow through the device during hot-plug events by providing a low impedance energy source, thereby reducing erroneous overcurrent reporting.

SLVS192 - APRIL 1999

APPLICATION INFORMATION

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to those of power packages; it is good design practice to check power dissipation and junction temperature. The first step is to find $r_{DS(on)}$ at the input voltage and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read $r_{DS(on)}$ from Figure 21. Next, calculate the power dissipation using:

$$P_D = r_{DS(on)} \times I^2$$

Finally, calculate the junction temperature:

$$T_J = P_D \times R_{\theta JA} + T_A$$

Where:

 T_A = Ambient Temperature °C $R_{\theta JA}$ = Thermal resistance SOIC = 172°C/W

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally sufficient to get a reasonable answer.

SLVS192 - APRIL 1999

APPLICATION INFORMATION

thermal protection

Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The faults force the TPS2048 and TPS2058 into constant current mode, which causes the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels. The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed.

The TPS2048 and TPS2058 implement a dual thermal trip to allow fully independent operation of the power distribution switches. In an overcurrent or short-circuit condition the junction temperature will rise. Once the die temperature rises to approximately 140°C, the internal thermal sense circuitry checks which power switch is in an overcurrent condition and turns that power switch off, thus isolating the fault without interrupting operation of the adjacent power switch. Should the die temperature exceed the first thermal trip point of 140°C and reach 160°C, both switches turn off. The OC open-drain output is asserted (active low) when overtemperature or overcurrent occurs.

undervoltage lockout (UVLO)

An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if the switch is enabled. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

Universal Serial Bus (USB) applications

The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts/self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Bus-powered hubs distribute data and power to downstream functions. The TPS2048 and TPS2058 can provide power-distribution solutions for many of these classes of devices.

SLVS192 - APRIL 1999

APPLICATION INFORMATION

bus-powered hubs

Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs are required to power up with less than one unit load. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.

low-power bus-powered functions and high-power bus-powered functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power functions always draw less than 100 mA, and high-power functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 μ F at power up, the device must implement inrush current limiting (see Figure 31).

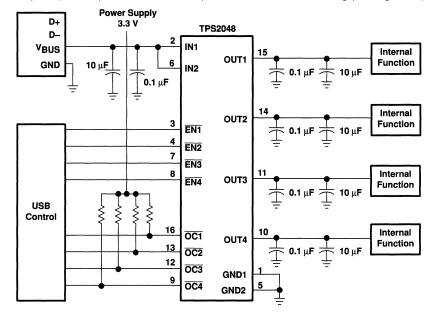


Figure 31. High-Power Bus-Powered Function

SLVS192 - APRIL 1999

APPLICATION INFORMATION

USB power-distribution requirements


USB can be implemented in several ways, and, regardless of the type of USB device being developed, several power distribution features must be implemented.

- Bus-Powered Hubs must:
 - Enable/disable power to downstream ports
 - Power up at <100 mA
 - Limit inrush current (<44 Ω and 10 μ F)
- Functions must:
 - Limit inrush currents
 - Power up at <100 mA

The feature set of the TPS2048 and TPS2058 allows them to meet each of these requirements. The integrated current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input ports for bus-power functions (see Figure 32).

SLVS192 ~ APRIL 1999

APPLICATION INFORMATION

[†]USB rev 1.1 requires 120 μF per hub.

SLVS192 - APRIL 1999

APPLICATION INFORMATION

generic hot-plug applications (see Figure 33)

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the TPS2048 and TPS2058, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the TPS2048 and TPS2058 also ensures the switch will be off after the card has been removed, and the switch will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every insertion of the card or module.

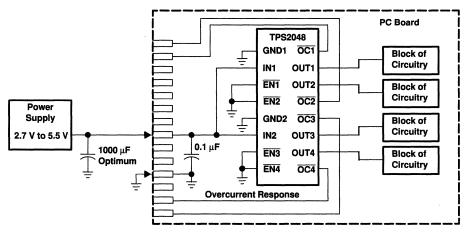
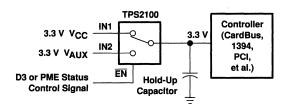


Figure 33. Typical Hot-Plug Implementation

By placing the TPS2048 or TPS2058 between the V_{CC} input and the rest of the circuitry, the input power will reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providing a slow voltage ramp at the output of the device. This implementation controls system surge currents and provides a hot-plugging mechanism for any device.


SLVS197B - JUNE 1999 - REVISED AUGUST 1999

features

- Dual-Input, Single-Output MOSFET Switch With No Reverse Current Flow (No Parasitic Diodes)
- IN1 ... 250-mΩ, 500-mA N-Channel; 16-μA Max Supply Current
- IN2...1.3-Ω, 10-mA P-Channel;
 1.5-μA Max Supply Current (V_{AUX} Mode)
- Advanced Switch Control Logic
- CMOS- and TTL-Compatible Enable Input
- Controlled Rise, Fall, and Transition Times
- 2.7-V to 4 V Operating Range
- SOT-23-5 and SOIC-8 Package
- –40°C to 70°C Ambient Temperature Range
- 2-kV Human-Body-Model, 750-V CDM, 200-V Machine-Model Electrostatic-Discharge Protection

typical applications

- Notebook and Desktop PCs
- Palmtops and PDAs

description

The TPS2100 and TPS2101 are dual-input, single-output power switches designed to provide uninterrupted output voltage when transitioning between two independent power supplies. Both devices combine one n-channel (250 m Ω) and one p-channel (1.3 Ω) MOSFET with a single output. The p-channel MOSFET (IN2) is used with auxiliary power supplies that deliver lower current for standby modes. The n-channel MOSFET (IN1) is used with a main power supply that delivers higher current required for normal operation. Low on-resistance makes the n-channel the ideal path for higher main supply current when power-supply regulation and system voltage drops are critical. When using the p-channel MOSFET, quiescent current is reduced to 0.75 μ A to decrease the demand on the standby power supply. The MOSFETs in the TPS2100 and TPS2101 do not have the parasitic diodes, found in discrete MOSFETs, which allow the devices to prevent back-flow current when the switch is off.

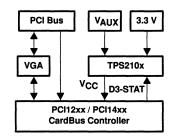
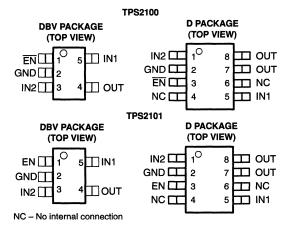
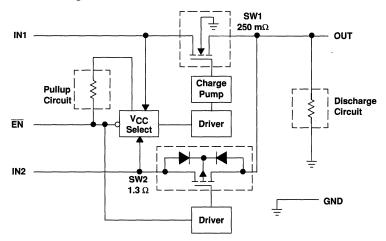
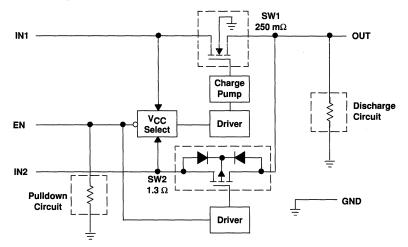



Figure 2. VAUX CardBus Implementation


SLVS197B - JUNE 1999 - REVISED AUGUST 1999

AVAILABLE OPTIONS								
			PACKAGED DEVICES					
Тј	DEVICE	ENABLE	SOT-23-5 (DBV)†	SOIC-8 (D)				
-40°C to 85°C	TPS2100	ĒN	TSP2100DBV [†]	TPS2100D				
-40°C 10 85°C	TPS2101	EN	TPS2101DBV [†]	TPS2101D				


Both packages are available left-end taped and reeled. Add an R suffix to the D device type (e.g., TPS2101DR).

[†] Add T (e.g., TPS2100DBVT) to indicate tape and reel at order quantity of 250 parts. Add R (e.g., TPS2100DBVR) to indicate tape and reel at order quantity of 3000 parts.

TPS2100 functional block diagram

TPS2101 functional block diagram

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

Function Tables

TPS2100 VIN2 VIN1 EN OUT 0 V GND 0 V XX 0 V 3.3 V GND L 3.3 V 0 V L VIN1 3.3 V 3.3 V VIN1 L VIN2 0 V 3.3 V н 3.3 V 0 V н VIN2 3.3 V 3.3 V н VIN2

	TPS	2101	
VIN1	VIN2	EN	OUT
0 V	0 V	XX	GND
0 V	3.3 V	н	GND
3.3 V	0 V	н	VIN1
3.3 V	3.3 V	н	VIN1
0 V	3.3 V	L	VIN2
3.3 V	0 V	L	VIN2
3.3 V	3.3 V	L	VIN2

XX = don't care

Terminal Functions

	•	FERMINA	L			
		N	0.			DESCRIPTION
NAME	TPS	TPS2100		TPS2101		DESCRIPTION
	DBV	D	DBV	D	1	
EN			1	3	Ι	Active-high enable for IN1-OUT switch
ĒN	1	3			1	Active-low enable for IN1-OUT switch
GND	2	2	2	2	1	Ground
IN1	5	5	5	5	1	Main Input voltage, NMOS drain (250 mΩ)
IN2	3	1	3	1	1	Auxilliary input voltage, PMOS drain (1.3 Ω)
OUT	4	7	4	7	0	Power switch output
NC		4, 6	1	4, 6		No connection

detailed description

power switches

n-channel MOSFET

The IN1-OUT n-channel MOSFET power switch has a typical on-resistance of 250 m Ω at 3.3-V input voltage, and is configured as a high-side switch.

p-channel MOSFET

The IN2-OUT p-channel MOSFET power switch with typical on-resistance of 1.3 Ω at 3.3-V input voltage and is configured as a high-side switch. When operating, the p-channel MOSFET quiescent current is reduced to less than 1.5 μ A.

charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires very little supply current.

driver

The driver controls the gate voltage of the IN1-OUT and IN2-OUT power switches. To limit large current surges and reduce the associated electromagnetic interference (EMI) produced, the drivers incorporate circuitry that controls the rise times and fall times of the output voltage.

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

detailed description (continued)

enable

The logic enable will turn on the IN2-OUT power switch when a logic high is present on \overline{EN} (TPS2100) or logic low is present on EN (TPS2101). A logic low input on \overline{EN} (TPS2100) or logic high on EN (TPS2101) restores bias to the drive and control circuits and turns on the IN1-OUT power switch. The enable input is compatible with both TTL and CMOS logic levels.

the VAUX application for CardBus controllers

The PC Card specification requires the support of V_{AUX} to the CardBus controller as well as to the PC Card sockets. Both are 3.3-V requirements; however the CardBus controller's current demand from the V_{AUX} supply is limited to 10 μ A, whereas the PC Card may consume as much as 200 mA. In either implementation, if support of a wake-up event is required, the controller and the socket will transition from the 3.3-V V_{CC} rail to the 3.3-V V_{AUX} rail when the equipment moves into a low power mode such as D3. The transition from V_{CC} to V_{AUX} needs to be seamless in order to maintain all memory and register information in the system. If V_{AUX} is not supported, the system will lose all register information when it transitions to the D3 state.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Input voltage range, V _{I(IN1)} (see Note1)	–0.3 V to 5 V
Input voltage range, VI(IN2) (see Note1)	–0.3 V to 5 V
Input voltage range, V _I at EN or EN	
Output voltage range, VO (see Note 1)	–0.3 V to 5 V
Continuous output current, IO(IN1)	700 mA
Continuous output current, I _{O(IN2)}	70 mA
Continuous total power dissipation	
Operating virtual junction temperature range, TJ	
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Electrostatic discharge (ESD) protection: Human body model	2 kV
Machine model	200 V
Charged device model (CDM)	750 V

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	T _A < 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	309 mW	3.1 mW/°C	170 mW	123 mW
D	568 mW	5.7 mW/°C	313 mW	227 mW

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, VI(INx)	2.7	4	v
Input voltage, VI at EN and EN	0	. 4	V
Continuous output current, IO(IN1)		500	mA
Continuous output current, IO(IN2)		10	mA
Operating virtual junction temperature, TJ	-40	85	°C

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

electrical characteristics over recommended operating junction temperature range, $V_{I(IN1)} = V_{(IN2)} = 3.3 V$, $I_O =$ rated current (unless otherwise noted)

power switch

PARAMETER		TEST CONDITIONS [†]	MIN	ТҮР	МАХ	UNIT
	IN1-OUT	Тј = 25°С		250		
rDS(on) On-state resistance		TJ = 85°C		300	375	mΩ
		Тј = 25°С		1.3		0
	IN2-OUT	TJ = 85°C		1.5	2.1	Ω

† Pulse-testing techniques maintain junction temperature close to ambient termperature; thermal effects must be taken into account separately.

enable input (EN and EN)

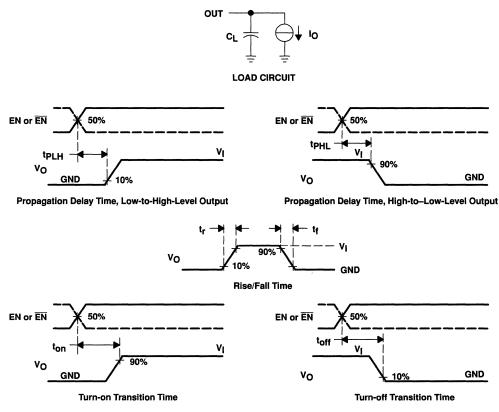
	PARAMETER	Т	TEST CONDITIONS		TYP	MAX	UNIT
VIH	High-level input voltage	2.7 V ≤ V _{I(I}	Nx) ≤ 4 V	2	_		v
VIL	Low-level input voltage	2.7 V ≤ V _{I(I}	$2.7 \text{ V} \leq \text{V}_{I(INx)} \leq 4 \text{ V}$			0.8	V
	Innut oursent	TPS2100	$\overline{EN} = 0 V \text{ or } \overline{EN} = V_{I(INx)}$	-0.5		0.5	μA
1	Input current	TPS2101	EN = 0 V or EN = VI(INx)	0.5		0.5	μA

supply current

	PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT	
			ĒN = H,	TJ = 25°C		0.75		μA	
1		TPS2100	IN2 selected	–40°C ≤ TJ ≤ 85°C			1.5	μΑ	
ļ		$\overline{EN} \approx L$,	1952100	$\overline{EN} = L,$	TJ = 25°C		10		μA
1.			IN1 selected	–40°C ≤ TJ ≤ 85°C			16	μΑ	
14	Supply current		EN = L,	TJ = 25°C		0.75			
	TPS2101	IN2 selected	–40°C ≤ TJ ≤ 85°C			1.5	μA		
		EN = H,	TJ = 25°C		10		μA		
				–40°C ≤ TJ ≤ 85°C			16	μΑ	

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

switching characteristics, $T_J = 25^{\circ}C$, $V_{I(IN1)} = V_{I(IN2)} = 3.3 V$ (unless otherwise noted)[†]


			/ (((112)																			
	PARAMETER		TE	ST CONDITIONS [†]		MIN TYP	MAX	UNIT														
				CL = 1 μF, lL = 500) mA	830																
		IN1-OUT	$V_{I(IN2)} = 0$	C _L = 10 μF, I _L = 500) mA	840																
	Output rise time			C _L = 1 μF, I _L = 10	mA	640																
t _r	Output rise time			$C_L = 1 \ \mu F$, $I_L = 10$	mA	5.5		μs														
		IN2-OUT	V _{I(IN1)} = 0	C _L = 10 μF, l _L = 10	mA	70																
				$C_L = 1 \mu F$, $I_L = 1 m$	ηA	5.5																
				C _L = 1 μF, I _L = 500) mA	8																
		IN1-OUT	$V_{I(IN2)} = 0$	C _L = 10 μF, I _L = 500) mA	93																
٠.	Output fall time																	$C_L = 1 \ \mu F$, $I_L = 10$	mA	23		
^t f				$C_L = 1 \ \mu F$, $I_L = 10$	mA	690		μs														
		IN2-OUT	V _{I(IN1)} = 0	$C_L = 10 \ \mu\text{F}, I_L = 10$	mA	6900																
				C _L = 1 μF, l _L = 1 m	ıΑ	6900																
toru	Propagation delay time, low-to-high output	IN1-OUT	$V_{I(IN2)} = 0$	Cլ=10μF, Ιլ=10	ma L	75																
^t PLH	r ropagation delay time, low-to-high output	IN2-OUT	V _{I(IN1)} = 0			2		μs														
tour	Propagation delay time, high-to-low output	IN1-OUT	V _{I(IN2)} = 0	Cլ=10μF, Ιլ=10	ma L	3		ue														
^t PHL	riopagation delay time, fligh-to-low output	IN2-OUT	V _{I(IN1)} = 0			370		μs														

[†] All timing parameters refer to Figure 3.

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

PARAMETER MEASUREMENT INFORMATION

WAVEFORMS

Figure 3. Test Circuit and Voltage Waveforms

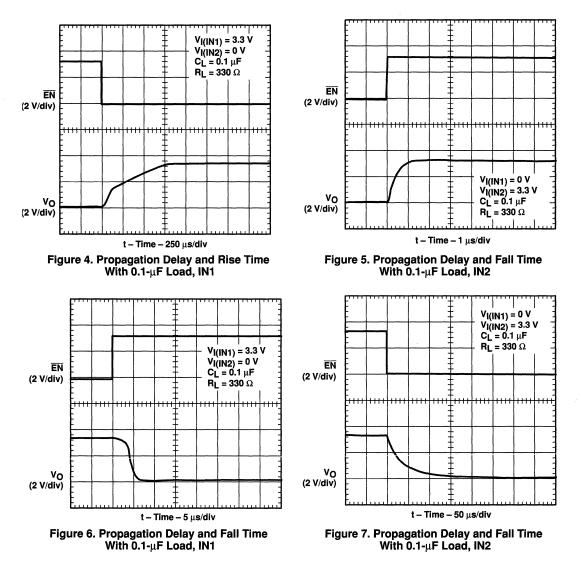
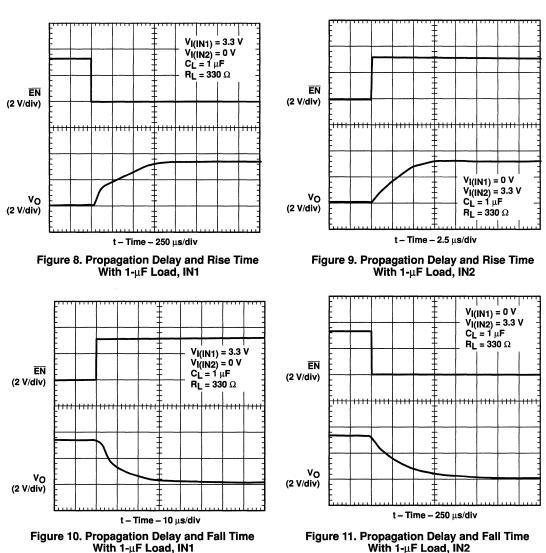

Table of Timing Diagrams[†]

	FIGURE
Propagation Delay and Rise Time With 0.1-µF Load, IN1	4
Propagation Delay and Rise Time With 0.1-µF Load, IN2	5
Propagation Delay and Fall Time With 0.1- μ F Load, IN1	6
Propagation Delay and Fall Time With 0.1- μ F Load, IN2	7
Propagation Delay and Rise Time With $1-\mu F$ Load, IN1	8
Propagation Delay and Rise Time With 1- μ F Load, IN2	9
Propagation Delay and Fall Time With 1-µF Load, IN1	10
Propagation Delay and Fall Time With $1-\mu F$ Load, IN2	11

[†] Waveforms shown in Figures 4–11 refer to TPS2100 at $T_J = 25^{\circ}C$


SLVS197B - JUNE 1999 - REVISED AUGUST 1999

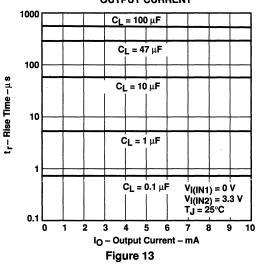
PARAMETER MEASUREMENT INFORMATION

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

PARAMETER MEASUREMENT INFORMATION

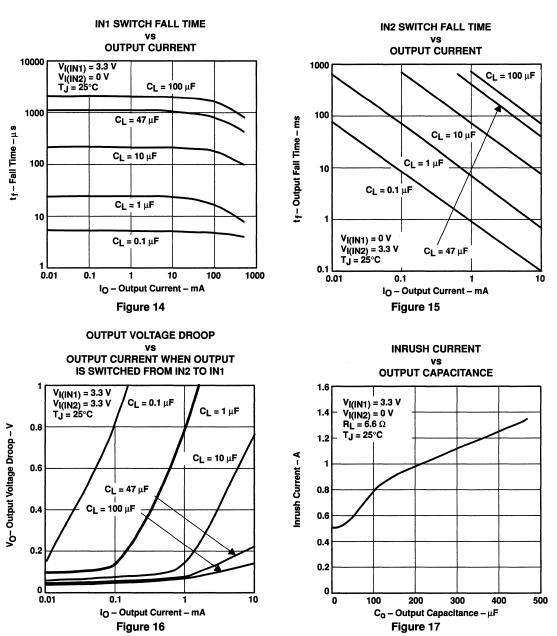


SLVS197B - JUNE 1999 - REVISED AUGUST 1999

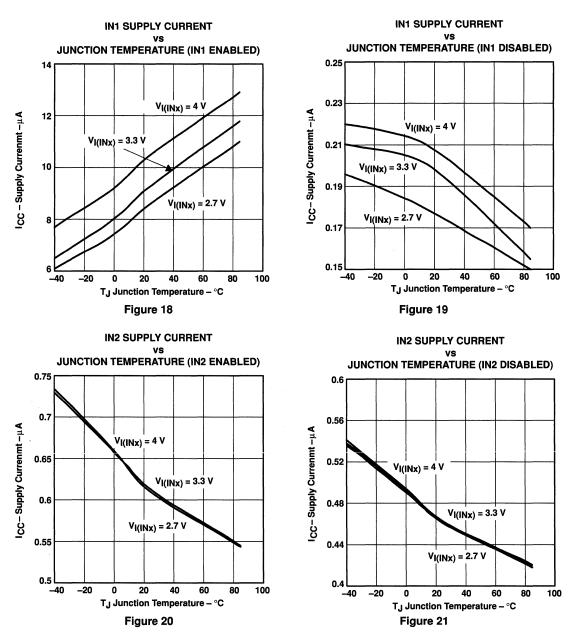

TYPICAL CHARACTERISTICS

lable of Graphs	able of Graphs	5
-----------------	----------------	---

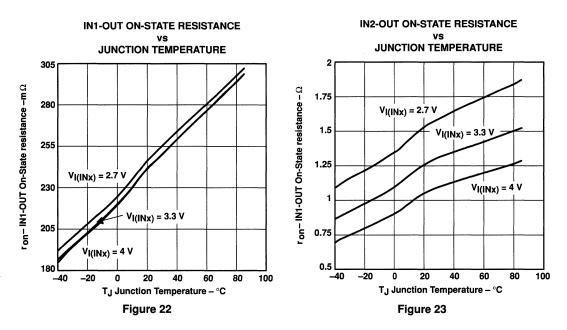
		FIGURE
IN1 Switch Rise Time	vs Output Current	12
IN2 Switch Fall Time	vs Output Current	13
IN1 Switch Fall Time	vs Output Current	14
IN2 Switch Fall Time	vs Output Current	15
Output Voltage Droop	vs Output Current When Output is Switched From IN2 to IN1	16
Inrush Current	vs Output Capacitance	17
IN1 Supply Current	vs Junction Temperature (IN1 Enabled)	18
IN1 Supply Current	vs Junction Temperature (IN1 Disabled)	19
IN2 Supply Current	vs Junction Temperature (IN2 Enabled)	20
IN2 Supply Current	vs Junction Temperature (IN2 Disabled)	21
IN1-OUT On-State Resistance	vs Junction Temperature	22
IN2-OUT On-State Resistance	vs Junction Temperature	23



IN2 SWTICH RISE TIME vs OUTPUT CURRENT


SLVS197B - JUNE 1999 - REVISED AUGUST 1999

TYPICAL CHARACTERISTICS


SLVS197B - JUNE 1999 - REVISED AUGUST 1999

TYPICAL CHARACTERISTICS

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

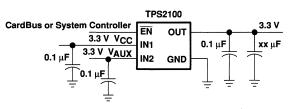


Figure 24. Typical Application

power supply considerations

A 0.01- μ F to 0.1- μ F ceramic bypass capacitor between IN and GND, close to the device is recommended. The output capacitor should be chosen based on the size of the load during the transition of the switch. A 47- μ F capacitor is recommended for 10-mA loads. Typical output capacitors (xx μ F, shown in Figure 24) required for a given load can be determined from Figure 16 which shows the output voltage droop when output is switched from IN2 to IN1. The output voltage droop is insignificant when output is switched from IN1 to IN2. Additionally, bypassing the output with a 0.01- μ F to 0.1- μ F ceramic capacitor improves the immunity of the device to short-circuit transients.

SLVS197B - JUNE 1999 - REVISED AUGUST 1999

APPLICATION INFORMATION

power supply considerations (continued)

switch transition

The n-channel MOSFET on IN1 uses a charge-pump to create the gate-drive voltage, which gives the IN1 switch a rise time of approximately 1 ms. The p-channel MOSFET on IN2 has a simpler drive circuit that allows a rise time of approximately 8 μ s. Because the device has two switches and a single enable pin, these rise times are seen as transition times, from IN1 to IN2, or IN2 to IN1, by the output. The controlled transition times help limit the surge currents seen by the power supply during switching.

thermal protection

Thermal protection provided on the IN1 switch prevents damage to the IC when heavy-overload or short-circuit faults are present for extended periods of time. The increased dissipation causes the junction temperature to rise to dangerously high levels. The protection circuit senses the junction temperature of the switch and shuts it off at approximately 125°C (T_J). The switch remains off until the junction temperature has dropped. The switch continues to cycle in this manner until the load fault or input power is removed.

undervoltage lockout

An undervoltage lockout function is provided to ensure that the power switch is in the off state at power-up. Whenever the input voltage falls below approximately 2 V, the power switch quickly turns off. This function facilitates the design of hot-insertion systems that may not have the capability to turn off the power switch before input power is removed. Upon reinsertion, the power switch will be turned on with a controlled rise time to reduce EMI and voltage overshoots.

power dissipation and junction temperature

The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass large currents. The thermal resistances of these packages are high compared to that of power packages; it is good design practice to check power dissipation and junction temperature. First, find r_{on} at the input voltage, and operating temperature. As an initial estimate, use the highest operating ambient temperature of interest and read r_{on} from Figure 22 or Figure 23. Next calculate the power dissipation using:

$$P_{D} = r_{on} \times l^{2}$$

Finally, calculate the junction temperature:

$$\mathsf{T}_{\mathsf{J}} = \mathsf{P}_{\mathsf{D}} \times \mathsf{R}_{\mathsf{\theta}\mathsf{J}\mathsf{A}} + \mathsf{T}_{\mathsf{A}}$$

Where

T_A = Ambient temperature

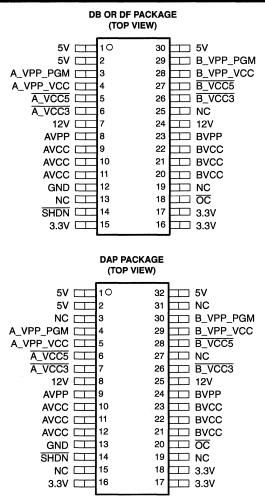
 $R_{\theta JA}$ = Thermal resistance

Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees, repeat the calculation using the calculated value as the new estimate. Two or three iterations are generally sufficient to obtain a reasonable answer.

ESD protection

All TPS2100 and TPS2101 terminals incorporate ESD-protection circuitry designed to withstand a 2-kV human-body-model discharge as defined in MIL-STD-883C.

TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS


SLVS128D OCTOBER 1995 - REVISED JUNE 1998

- Fully Integrated V_{CC} and V_{pp} Switching for Dual-Slot PC Card[™] Interface
- Compatible with Controllers From Cirrus, Ricoh, O₂Micro, Intel, and Texas Instruments
- 3.3-V Low-Voltage Mode
- Meets PC Card Standards
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short Circuit and Thermal Protection
- 30-Pin SSOP (DB) and 32-Pin TSSOP (DAP)
- Compatible With 3.3-V, 5-V and 12-V PC Cards
- Low $r_{DS(on)}$ (140-m Ω 5-V V_{CC} Switch; 110-m Ω 3.3-V V_{CC} Switch)
- Break-Before-Make Switching

description

The TPS2205 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit (IC), using the Texas Instruments LinBiCMOS[™] process. The circuit allows the distribution of 3.3-V, 5-V, and/or 12-V card power, and is compatible with many PCMCIA controllers. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability.

The TPS2205 is backward compatible with the TPS2201, except that there is no V_{DD} connection. Bias current is derived from either the 3.3-V input pin or the 5-V input pin. The TPS2205 also eliminates the APWR_GOOD and BPWR_GOOD pins of the TPS2201.

NC - No internal connection

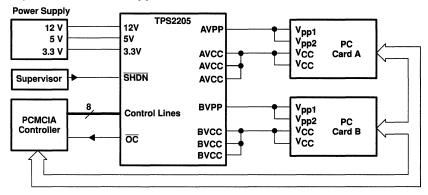
The TPS2205 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5 V. This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available.

End equipment for the TPS2205 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.

LinBiCMOS is a trademark of Texas Instruments Incorporated. PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association).

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1998, Texas Instruments Incorporated

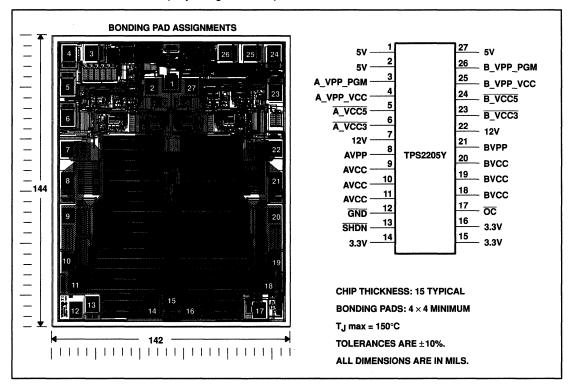

TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS

SLVS128D OCTOBER 1995 - REVISED JUNE 1998

	AVAIL	ABLE OPTIONS		
	P	ACKAGED DEVICES		CHIP FORM
TA	PLASTIC SMALL OUTLINE (DB)	PLASTIC SMALL OUTLINE (DF)	TSSOP (DAP)	(Y)
-40°C to 85°C	TPS2205IDBLE	TPS2205IDFLE	TPS2205IDAPR	TPS2205Y

The DB package and the DF package are only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS2205IDBLE). The DAP package is only available taped and reeled (indicated by the R suffix on the device type; e.g., TPS2205IDAPR).

typical PC card power-distribution application



TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS128D OCTOBER 1995 – REVISED JUNE 1998

TPS2205Y chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS2205. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

Terminal Functions

TERMINAL							
NAME	NO.		1/0	DESCRIPTION			
NAME	DB, DF	DAP	1				
A_VCC3	6	7	1	Logic input that controls voltage on AVCC (see TPS2205 Control-Logic table)			
A_VCC5	5	6	1	Logic input that controls voltage on AVCC (see TPS2205 Control-Logic table)			
A_VPP_PGM	3	4	1	Logic input that controls voltage on AVPP (see TPS2205 Control-Logic table)			
A_VPP_VCC	4	5	1	Logic input that controls voltage on AVPP (see TPS2205 Control-Logic table)			
AVCC	9, 10, 11	10, 11, 12	0	Switched output that delivers 0 V, 3.3 V, 5 V, or high impedance			
AVPP	8	9	0	Switched output that delivers 0 V, 3.3 V, 5 V, 12 V, or high impedance			
B_VCC3	26	26	1	Logic input that controls voltage on BVCC (see TPS2205 Control-Logic table)			
B_VCC5	27	28	I	Logic input that controls voltage on BVCC (see TPS2205 Control-Logic table)			
B_VPP_PGM	29	30	1	Logic input that controls voltage on BVPP (see TPS2205 Control-Logic table)			
B_VPP_VCC	28	29	1	Logic input that controls voltage on BVPP (see TPS2205 Control-Logic table)			
BVCC	20, 21, 22	21, 22, 23	0	Switched output that delivers 0 V, 3.3 V, 5 V, or high impedance			
BVPP	23	24	0	Switched output that delivers 0 V, 3.3 V, 5 V, 12 V, or high impedance			
SHDN	14	14	1	Logic input that shuts down the TPS2205 and set all power outputs to high-impedance state			
00	18	20	0	Logic-level overcurrent reporting output that goes low when an overcurrent condition exists			
GND	12	13		Ground			
3.3V	15, 16, 17	16, 17, 18	1	3.3-V V _{CC} in for card power			
5V	1, 2, 30	1, 2, 32	1	5-V V _{CC} in for card power			
12V	7, 24	8, 25	1	12-V VPP in for card power			
NC	13, 19, 25	3, 15, 19, 27, 31	1	No internal connection			

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Input voltage range for card power: V _{I(5V)}	–0.3 V to 7 V
V _{I(3.3V)}	–0.3 V to 7 V
V _{I(12V)}	–0.3 V to 14 V
Logic input voltage	
Continuous total power dissipation	
Output current (each card): IO(XVCC)	Internally limited
IO(xVPP)	
Operating virtual junction temperature range, T _J	
Operating free-air temperature range, TA	
Storage temperature range, T _{stg}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

	DISSIPATION RATING TABLE								
P	ACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR [‡] ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING				
DB		1024 mW	8.2 mW/°C	655 mW	532 mW				
DF		1158 mW	9.26 mW/°C	741 mW	602 mW				
DAD	No backplane	1625 mW	13 mW/°C	1040 mW	845 mW				
DAP	Backplane§	6044 mW	48.36 mW/°C	3869 mW	3143 mW				

[‡]These devices are mounted on an FR4 board with no special thermal considerations.

§ 2-oz backplane with 2-oz traces; 5.2-mm × 11-mm thermal pad with 6-mil solder; 0.18-mm diameter vias in a 3×6 array.

recommended operating conditions

		MIN	MAX	UNIT
Input voltage range, Vj	V _{I(5V)}	0	5.25	v
	V _{I(3.3V)}	0	5.25	v
	VI(12V)	0	0 5.25	v
Output ourroot	IO(xVCC) at 25°C		1	А
Supurcurent	Voltage range, VI VI(3.3V) VI(12V) ut current IO(xVCC) at 25°C IO(xVPP) at 25°C		150	mA
Operating virtual junction temperature,	Тј	-40	125	°C

electrical characteristics, T_A = 25°C, V_{I(5V)} = 5 V (unless otherwise noted)

dc characteristics

PARAMETER			TEST CONDITIONS	т	PS2205		
			TEST CONDITIONS	MIN	TYP	MAX	UNIT
		5 V to xVCC			103	140	
		3.3 V to xVCC	V _{I(5V)} = 5 V, V _{I(3.3 V)} = 3.3 V		69	110	mΩ
	0	3.3 V to xVCC	V _{I(5V)} = 0, V _{I(3.3V)} = 3.3 V		96	180	
	Switch resistances†	5 V to xVPP				6	
		3.3 V to xVPP				6	Ω
		12 V to xVPP				1	
VO(xVPP)	Clamp low voltage		I _{pp} at 10 mA			0.8	v
VO(xVCC)	Clamp low voltage		I _{CC} at 10 mA			0.8	v
		I _{pp} high-impedance	$T_A = 25^{\circ}C$		1	10	
I	Lookogo ourront	state	$T_A = 85^{\circ}C$			50	
likg	Leakage current	ICC high-impedance	$T_A = 25^{\circ}C$		1	10	μA
		state	T _A = 85°C			50	
		V _{I(5V)} = 5 V	$V_{O(AVCC)} = V_{O(BVCC)} = 5 V,$ $V_{O(AVPP)} = V_{O(BVPP)} = 12 V$		117	150	
ų	Input current	V _{I(5V)} = 0, V _{I(3.3V)} = 3.3 V	$V_{O}(AVCC) = V_{O}(BVCC) = 3.3 V,$ $V_{O}(AVPP) = V_{O}(BVPP) = 0$		131	150	μA
		Shutdown mode	V _O (BVCC) = V _O (AVCC) = V _O (AVPP) = V _O (BVPP) = Hi-Z			1	μA
loo	Short-circuit	IO(xVCC)	T _J = 85°C,	1		2.2	А
los	output-current limit	lO(xVPP)	Output powered up into a short to GND	120		400	mA

[†] Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

electrical characteristics, $T_A = 25^{\circ}C$, $V_{I(5V)} = 5 V$ (unless otherwise noted)

logic section

PARAMETER	TEST CONDITIONS	TPS220	UNIT		
FARAMETER	TEST CONDITIONS	MIN MAX			
Logic input current			1	μA	
Logic input high level		2		v	
Logic input low level			0.8	V	
	V _{I(5V)} = 5 V, I _O = 1mA	V _{I(5V)} -0.4			
Logic output high level	V _{I(5V)} = 0 V, I _O = 1mA, V _{I(3.3V)} = 3.3 V	V _{I(3.3V)} -0.4		v	
Logic output low level	I _O = 1mA		0.4	V	

switching characteristics^{†‡}

PARAMETER		TEST CONDITIONS	TEST CONDITIONS			TPS2205		
	PARAMETER	TEST CONDITIONS	TEST CONDITIONS		TYP	MAX	UNIT	
	Output rise time	VO(xVCC)			1.2			
tr	Output lise time	V _{O(xVPP)}			5		-	
٠.	Output fall time	V _{O(xVCC)}			10		ms	
tf		V _{O(xVPP)}	V _{O(xVPP)}			14		
		N AND	ton		4.4		ms	
		VI(x_VPP_PGM) ^{to} VO(xVPP)	toff		18		ms	
			ton		6.5		ms	
	Dreparation dalay (and Figure 1)	$V_{I}(\overline{x_VCC5})$ to xVCC (3.3 V), $V_{I}(5V) = 5 V$	toff		20		ms	
tpd	Propagation delay (see Figure 1)		ton	Т	5.7		ms	
		$V_{I}(\overline{x_VCC5})$ to xVCC (5 V)	toff		25		ms	
			ton		6.6		ms	
		$V_{I}(\overline{x_VCC5})$ to xVCC (3.3 V), $V_{I}(5V) = 0$		1	21		ms	

[†] Refer to Parameter Measurement Information

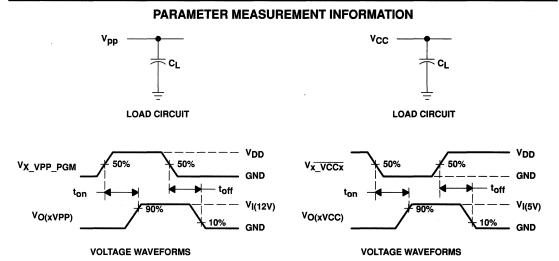
[‡] Switching Characteristics are with $C_L = 150 \, \mu$ F.

electrical characteristics, $T_A = 25^{\circ}C$, $V_{I(5V)} = 5 V$ (unless otherwise noted)

dc characteristics

	DADAME	TED	TEST O	ONDITIONS	TI	PS22051	(UNIT
	PARAMETER		TEST	ONDITIONS	MIN	TYP	MAX	UNIT
		5 V to xVCC				103		
		3.3 V to xVCC	V _{I(5V)} = 5 V,	V _{I(3.3 V)} = 3.3 V		69		mΩ
	0itati madatana a	3.3 V to xVCC	V _{I(5V)} = 0,	V _{I(3.3V)} = 3.3 V		96		
	Switch resistances§	5 V to xVPP				4.74		
		3.3 V to xVPP	T			4.74		Ω
		12 V to xVPP			0.724			
V _{O(xVPP)}	Clamp low voltage		I _{pp} at 10 mA			0.275		V
VO(xVCC)	Clamp low voltage		I _{CC} at 10 mA			0.275		v
		Ipp High-impedance state	T _A = 25°C			. 1		
likg	Leakage current	ICC High-impedance state	T _A = 25°C			1		μA
	V _{I(5V)} = 5 V		V _O (AVCC) = V _O (BVCC) = 5 V, V _O (AVPP) = V _O (BVPP) = 12 V			117		
l)	Input current	V _{I(5V)} = 0, V _{I(3.3V)} = 3.3 V		D(BVCC) = 3.3 V,		131		μA

§ Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.


switching characteristics^{†‡}

PARAMETER		TEST CONDITIONS				TPS2205Y		
	PARAMETER	TEST CONDITIONS	TEST CONDITIONS		TYP	MAX	UNIT	
		V _{O(xVCC)}			1.2			
tr	Output rise time	V _{O(xVPP)}			5		ms	
٠.	Output fall time	VO(xVCC)			10		ms	
tf	Output fall time VO(xVPP)			14				
			ton	4.4			ms	
		VI(x_VPP_PGM) to VO(xVPP)			18		ms	
			ton		6.5		ms	
	Dreposition delay (and Figure 1)	$V_{I}(x_VCC5)$ to xVCC (3.3 V), $V_{I}(5V) = 5 V$			20		ms	
tpd	Propagation delay (see Figure 1)		ton		5.7		ms	
		VI(x_VCC5) to xVCC (5 V)			25		ms	
			ton		6.6		ms	
		$V_{I}(x_VCC5)$ to xVCC (3.3 V), $V_{I}(5V) = 0$			21		ms	

[†] Refer to Parameter Measurement Information

[‡] Switching Characteristics are with $C_L = 150 \ \mu$ F.

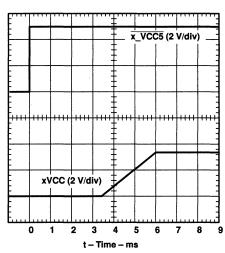
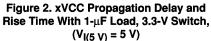
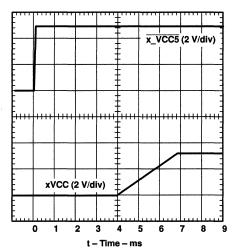
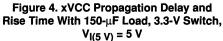


Figure 1. Test Circuits and Voltage Waveforms


	FIGURE
xVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	2
xVCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	3
xVCC Propagation Delay and Rise Time With 150- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	4
xVCC Propagation Delay and Fall Time With 150- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	5
xVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 0	6
xVCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 0	7
xVCC Propagation Delay and Rise Time With 150- μ F Load, 3.3-V Switch, VI(5V) = 0	8
xVCC Propagation Delay and Fall Time With 150- μ F Load, 3.3-V Switch, V _{I(5V)} = 0	9
xVCC Propagation Delay and Rise Time With 1- μ F Load, 5-V Switch	10
xVCC Propagation Delay and Fall Time With 1-µF Load, 5-V Switch	11
xVCC Propagation Delay and Rise Time With 150-µF Load, 5-V Switch	12
xVCC Propagation Delay and Fall Time With 150-µF Load, 5-V Switch	13
xVPP Propagation Delay and Rise Time With 1-µF Load, 12-V Switch	14
xVPP Propagation Delay and Fall Time With 1-µF Load, 12-V Switch	15
xVPP Propagation Delay and Rise Time With 150-µF Load, 12-V Switch	16
xVPP Propagation Delay and Fall Time With 150-µF Load, 12-V Switch	17


Table of Timing Diagrams



PARAMETER MEASUREMENT INFORMATION



Figure 3. xVCC Propagation Delay and Fall Time With 1-µF Load, 3.3-V Switch, $(V_{I(5 V)} = 5 V)$

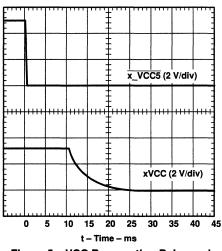
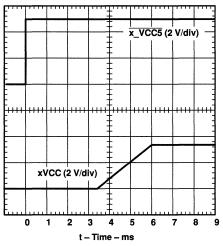
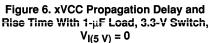
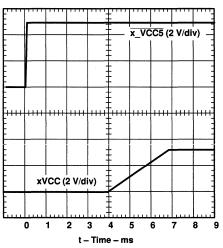
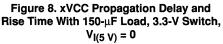



Figure 5. xVCC Propagation Delay and Fall Time With 150-µF Load, 3.3-V Switch, $V_{I(5 V)} = 5 V$




TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS


SLVS128D OCTOBER 1995 - REVISED JUNE 1998

PARAMETER MEASUREMENT INFORMATION

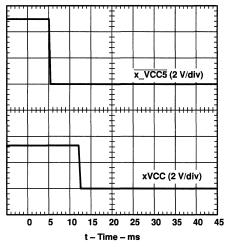
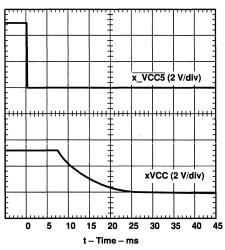
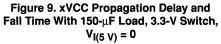
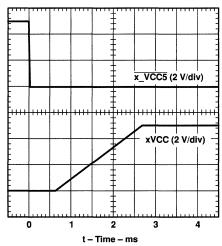
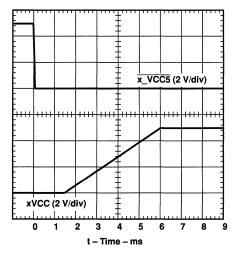
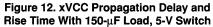





Figure 7. xVCC Propagation Delay and Fall Time With 1-µF Load, 3.3-V Switch, $V_{I(5 V)} = 0$





PARAMETER MEASUREMENT INFORMATION

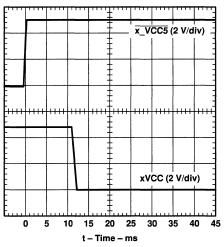
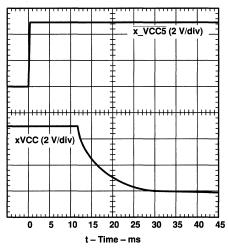
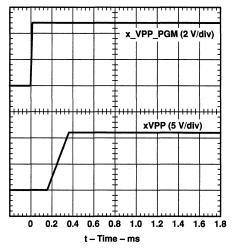
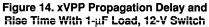
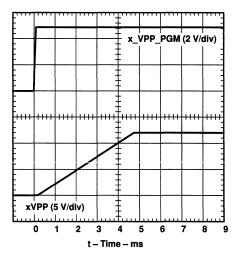


Figure 11. xVCC Propagation Delay and Fall Time With 1-µF Load, 5-V Switch


Figure 13. xVCC Propagation Delay and Fall Time With 150-µF Load, 5-V Switch

PARAMETER MEASUREMENT INFORMATION

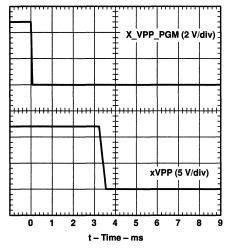


Figure 15. xVPP Propagation Delay and Fall Time With $1-\mu F$ Load, 12-V Switch

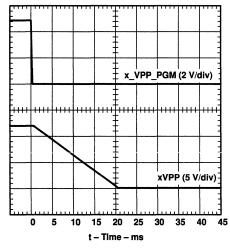


Figure 17. xVPP Propagation Delay and Fall Time With $150-\mu F$ Load, 12-V Switch

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
IDD	Supply current	vs Junction temperature	18
IDD	Supply current, VI(5V) = 0, VI(12V) =0, VO(AVCC) = VO(BVCC) = 3.3 V	vs Junction temperature	19
^r DS(on)	Static drain-source on-state resistance, 3.3-V switch, $V_{I(5V)} = 5 V$	vs Junction temperature	20
^r DS(on)	Static drain-source on-state resistance, 3.3-V switch, $V_{I(5V)} = 0$	vs Junction temperature	21
^r DS(on)	Static drain-source on-state resistance, 5-V switch	vs Junction temperature	22
^r DS(on)	Static drain-source on-state resistance, 12-V switch	vs Junction temperature	23
VO(xVCC)	Output voltage, 5-V switch	vs Output current	24
VO(xVCC)	Output voltage, 3.3-V switch	vs Output current	25
VO(xVCC)	Output voltage, 3.3-V switch, VI(5V) = 0	vs Output current	26
VO(xVPP)	Output voltage, 12-V V _{pp} switch	vs Output current	27
IOS(xVCC)	Short-circuit current, 5-V switch	vs Junction temperature	28
IOS(xVCC)	Short-circuit current, 3.3-V switch	vs Junction temperature	29
OS(xVPP)	Short-circuit current, 12-V switch	vs Junction temperature	30

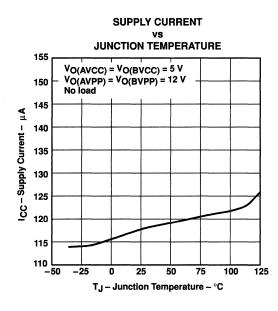


Figure 18

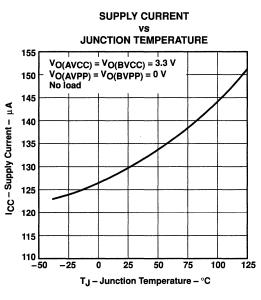
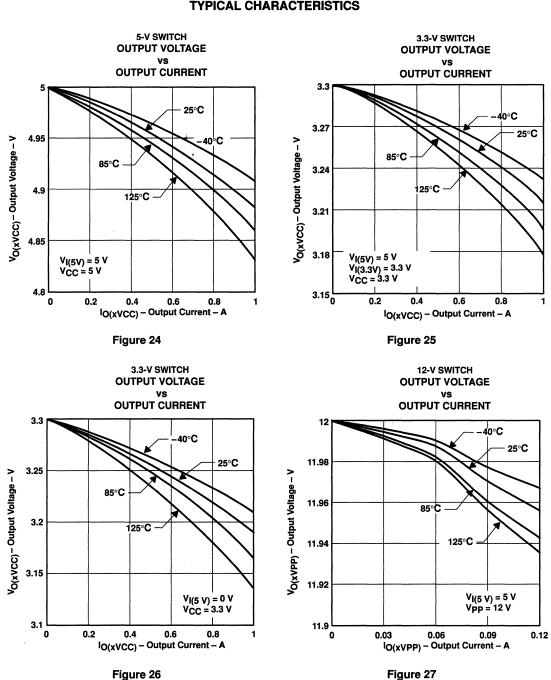


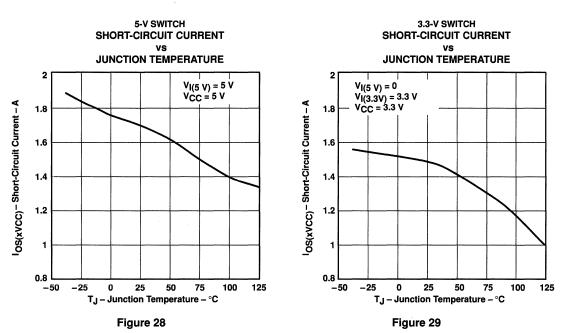
Figure 19

TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS

SLVS128D OCTOBER 1995 - REVISED JUNE 1998



TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS


SLVS128D OCTOBER 1995 - REVISED JUNE 1998

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

12-V SWITCH SHORT-CIRCUIT CURRENT vs JUNCTION TEMPERATURE 0.32 VI(5 V) = 5 V Vpp = 12 V ¹OS(xVPP) – Short-Circuit Current – A 0.3 0.28 0.26 0.24 0.22 0.2 -50 -25 25 50 75 100 0 125 T.I - Junction Temperature - °C Figure 30

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited on-board memory. The idea of add-in cards quickly took hold; modems, wireless LANs, global positioning satellite system (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the "plug-and-play" concept. Cards and hosts from different vendors should be compatible — able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of 68 terminals of the PC Card connector. This power interface consists of two V_{CC} , two V_{pp} , and four ground terminals. Multiple V_{CC} and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

designing for voltage regulation

The current PCMCIA specification for output-voltage regulation ($V_{O(reg)}$) of the 5-V output is 5% (250 mV). In a typical PC power-system design, the power supply has an output-voltage regulation ($V_{PS(reg)}$) of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses (V_{PCB}) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than 1% (50 mV) of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2205 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$V_{DS} = V_{O(reg)} - V_{PS(reg)} - V_{PCB}$$

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2205. The voltage drop is the output current multiplied by the switch resistance of the TPS2205. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2205 divided by the output switch resistance.

$$I_{O}$$
max = $\frac{V_{DS}}{r_{DS(On)}}$

The xVCC outputs have been designed to deliver 700 mA at 5 V within regulation over the operating temperature range. Current proposals for the PCMCIA specifications are to limit the power dissipated in the PCMCIA slot to 3 W. With an input voltage of 5 V, 700 mA continuous is the maximum current that can be delivered to the PC Card. The TPS2205 is capable of delivering up to 1 A continuously, but during worst-case conditions the output may not be within regulation. This is generally acceptable because the majority of PC Cards require less than 700 mA continuous. Some cards require higher peak currents (disk drives during initial platter spin-up), but it is generally acceptable for small voltage sags to occur during these peak currents.

The xVCC outputs have been designed to deliver 1 A continuously at 3.3 V within regulation over the operating temperature range. The PCMCIA specification for output voltage regulation of the 3.3-V output is 300 mV. Using the voltage drop percentages (2%) for power supply regulation and PCB resistive loss (1%), the allowable voltage drop for the 3.3 V switch is 200 mV.

The xVPP outputs have been designed to deliver 150 mA continuously at 12 V.

APPLICATION INFORMATION

overcurrent and over-temperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB-trace damage. Even systems sufficiently robust to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. The reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.

The TPS2205 takes a two-pronged approach to overcurrent protection. First, instead of fuses, sense FETs monitor each of the power outputs. Excessive current generates an error signal that linearly limits the output current, preventing host damage or failure. Sense FETs, unlike sense resistors or polyfuses, have an advantage in that they do not add to the series resistance of the switch and thus produce no additional voltage losses. Second, when an overcurrent condition is detected, the TPS2205 asserts a signal at OC that can be monitored by the microprocessor to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates, shutting down all power outputs until the device cools to within a safe operating region.

12-V supply not required

Most PC Card switches use the externally supplied 12-V V_{pp} power for switch-gate drive and other chip functions, which requires that power be present at all times. The TPS2205 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the 5-V or 3.3-V input; therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the 12-V inputs when the 12-V input is not used. Additional power savings are realized by the TPS2205 during a software shutdown in which quiescent current drops to a maximum of 1 μ A.

backward compatibility and 3.3-V low-voltage mode

The TPS2205 is backward compatible with the TPS2201, with the following considerations. Pin 25 (V_{DD} on TPS2201) is a no connect because bias current is derived from either the 3.3-V input pin or the 5-V input pin. Also, the TPS2205 does not have the APWR_GOOD or BPWR_GOOD VPP reporting outputs. These are left as no connects.

The TPS2205 operates in 3.3-V low-voltage mode when 3.3 V is the only available input voltage ($V_{I(5V)}$ =0). This allows host and PC Cards to be operated in low-power 3.3-V-only modes such as sleep modes or pager modes. Note that in this operation mode, the TPS2205 derives its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card. The 3.3-V switch resistance will be increased, but the added switch resistance should not be critical, because only a small amount of current is delivered in this mode. If 6% (198 mV) is allowed for the 3.3-V switch voltage drop, a 500 m Ω switch could deliver over 350 mA to the PC Card.

voltage transitioning requirement

PC Cards, like portables, are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2205 is designed to meet all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on 3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This ensures that sensitive 3.3-V circuitry is not subjected to any residual 5-V charge and functions as a power reset. The TPS2205 offers a selectable V_{CC} and V_{pp} ground state, in accordance with PCMCIA 3.3-V/5-V switching specifications, to fully discharge the card capacitors while switching between V_{CC} voltages.

APPLICATION INFORMATION

output ground switches

Several PCMCIA power-distribution switches on the market do not have an active-grounding FET switch. These devices do not meet the PC Card specification requiring a discharge of V_{CC} within 100 ms. PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. A method commonly shown to alleviate this problem is to add to the switch output an external 100-k Ω resistor in parallel with the PC Card. Considering that this is the only discharge path to ground, a timing analysis shows that the RC time constant delays the required discharge time to more than 2 seconds. The only way to ensure timing compatibility with PC Card standards is to use a power-distribution switch that has an internal ground switch, like that of the TPS22xx family, or add an external ground FET to each of the output lines with the control logic necessary to select it.

In summary, the TPS2205 is a complete single-chip dual-slot PC Card power interface. It meets all currently defined PCMCIA specifications for power delivery in 5-V, 3.3-V, and mixed systems, and offers a serial control interface. The TPS2205 offers functionality, power savings, overcurrent and thermal protection, and fault reporting in one 30-pin SSOP surface-mount package, for maximum value added to new portable designs.

power supply considerations

The TPS2205 has multiple pins for each of its 3.3-V, 5-V, and 12-V power inputs and for the switched V_{CC} outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. Both 12-V inputs must be connected for proper V_{pp} switching; it is recommended that all input and output power pins be paralleled for optimum operation.

Although the TPS2205 is fairly immune to power input fluctuations and noise, it is generally considered good design practice to bypass power supplies, typically with a 1- μ F electrolytic or tantalum capacitor paralleled by a 0.047- μ F to 0.1- μ F ceramic capacitor. It is strongly recommended that the switched V_{CC} and V_{pp} outputs be bypassed with a 0.1- μ F or larger capacitor; doing so improves the immunity of the TPS2205 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2205 and the load. High switching currents can produce large negative-voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similary, no pin should be taken below –0.3 V.

overcurrent and thermal protection

The TPS2205 uses sense FETs to check for overcurrent conditions in each of the V_{CC} and V_{pp} outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore, voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The \overrightarrow{OC} indicator, normally a logic high, is a logic low when any overcurrent condition is detected, providing for initiation of system diagnostics and/or sending a warning message to the user.

During power up, the TPS2205 controls the rise time of the V_{CC} and V_{pp} outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2205 engages. If the V_{CC} or V_{pp} outputs are driven below ground, the TPS2205 may latch nondestructively in an off state. Cycling power will reestablish normal operation.

Overcurrent limiting for the V_{CC} outputs is designed to activate if powered up into a short in the range of 1 A to 2.2 A, typically at about 1.6 A. The V_{pp} outputs limit from 120 mA to 400 mA, typically around 280 mA. The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.

APPLICATION INFORMATION

overcurrent and thermal protection (continued)

Thermal limiting prevents destruction of the IC from overheating if the package power-dissipation ratings are exceeded. Thermal limiting disables all power outputs (both A and B slots) until the device has cooled.

calculating junction temperature

The switch resistance, $r_{DS(on)}$, is dependent on the junction temperature, T_J , of the die. The junction temperature is dependent on both $r_{DS(on)}$ and the current through the switch. To calculate T_J , first find $r_{DS(on)}$ from Figures 20, 21, 22, and 23 using an initial temperature estimate about 50°C above ambient. Then calculate the power dissipation for each switch, using the formula:

$$P_D = r_{DS(on)} \times I^2$$

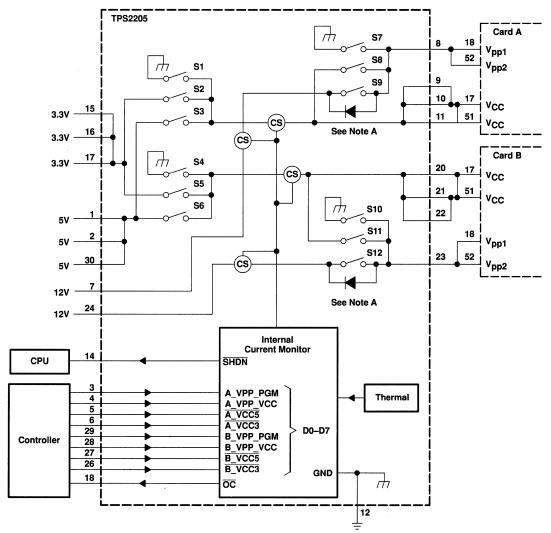
Next, sum the power dissipation and calculate the junction temperature:

$$T_{J} = (\Sigma P_{D} \times R_{\theta JA}) + T_{A}, R_{\theta JA} = 108^{\circ}C/W$$

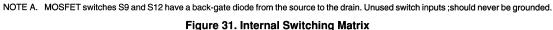
Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic input and outputs

The TPS2205 was designed to be compatible with most popular PCMCIA controllers and current PCMCIA and JEIDA standards. However, some controllers require slightly counterintuitive connections to achieve desired output states. The TPS2205 control logic inputs A_VCC3, A_VCC5, B_VCC3 and B_VCC5 are defined active low (see Figure 31 and control-logic table). As such, they are directly compatible with the logic outputs of the Cirrus Logic CL-PD6720 controller.


The shutdown input (SHDN) of the TPS2205, when held at a logic low, places all V_{CC} and V_{pp} outputs in a high-impedance state and reduces chip quiescent current to 1 μ A to conserve battery power.

An overcurrent output ($\overline{\text{OC}}$) is provided to indicate an overcurrent condition in any of the V_{CC} or V_{pp} supplies (see discussion above).



TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS

SLVS128D OCTOBER 1995 - REVISED JUNE 1998

APPLICATION INFORMATION

APPLICATION INFORMATION

TPS2205 control logic

AVPP

	CONTROL SIGNALS	6	INTER	OUTPUT		
D8 SHDN D0 A_VPP_PGM D1 /		D1 A_VPP_VCC	S7	S8	S9	VAVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	vcc†
1	1	0	OPEN	OPEN	CLOSED	VPP(12 V)
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	x	X	OPEN	OPEN	OPEN	Hi-Z

BVPP

CONTROL SIGNALS			INTER	OUTPUT		
D8 SHDN	D4 B_VPP_PGM	D5 B_VPP_VCC	S10	S11	S12	VBVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	vcc‡
1	1	0	OPEN	OPEN	CLOSED	VPP(12 V)
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	x	OPEN	OPEN	OPEN	Hi-Z

AVCC

CONTROL SIGNALS			INTER	OUTPUT		
D8 SHDN	D3 A_VCC3	D2 A_VCC5	S1	S2	S3	VAVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	x	X	OPEN	OPEN	OPEN	Hi-Z

BVCC

CONTROL SIGNALS			INTER	OUTPUT		
D8 SHDN	D6 B_VCC3	D7 B_VCC5	S4	S5	S6	VBVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	x	x	OPEN	OPEN	OPEN	Hi-Z

[†] Output depends on AVCC

‡ Output depends on BVCC

ESD protection

All TPS2205 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-body-model discharge as defined in MIL-STD-883C, Method 3015. The V_{CC} and V_{pp} outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with 0.1- μ F capacitors protects the devices from discharges up to 10 kV.

TPS2205 DUAL-SLOT PC CARD POWER-INTERFACE SWI FOR PARALLEL PCMCIA CONTROLLERS

SLVS128D OCTOBER 1995 - REVISED JUNE 1998

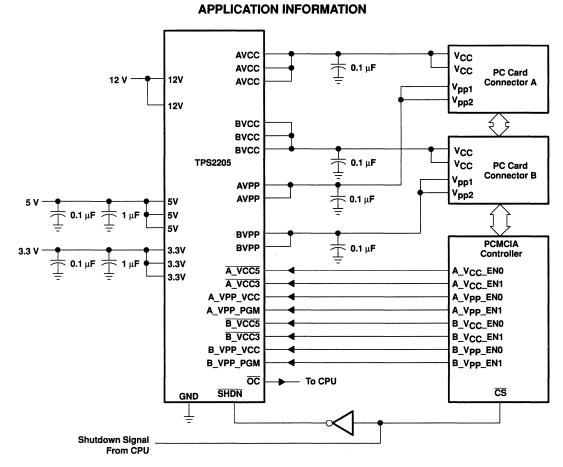
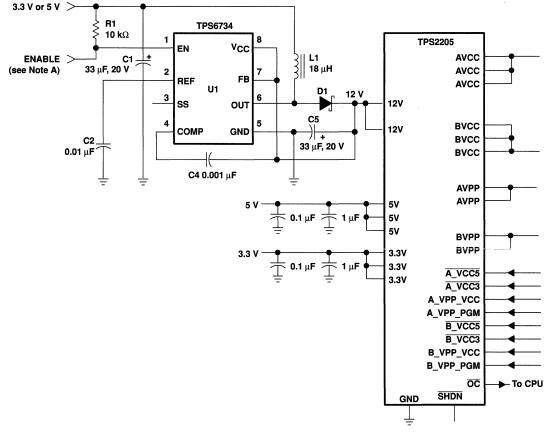


Figure 32. Detailed Interconnections and Capacitor Recommendations



APPLICATION INFORMATION

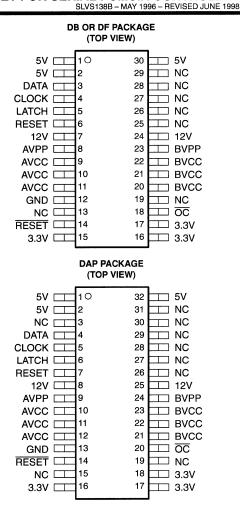
12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in² of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to 3 μ A when 12 V is not needed.

The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V. Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a generall purpose I/O terminal on the PCMCIA controller or tied high.

Figure 33. TPS2205 with TPS6734 12-V, 120-mA Supply


TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER

- Fully Integrated V_{CC} and V_{pp} Switching for Dual-Slot PC Card[™] Interface
- P²C[™] 3-Lead Serial Interface Compatible With CardBus[™] Controllers
- 3.3 V Low-Voltage Mode
- Meets PC Card Standards
- RESET for System Initialization of PC Cards
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short Circuit and Thermal Protection
- 30-Pin SSOP (DB) and 32-Pin TSSOP (DAP)
- Compatible With 3.3-V, 5-V and 12-V PC Cards
- Low $r_{DS(on)}$ (140-m Ω 5-V V_{CC} Switch; 110-m Ω 3.3-V V_{CC} Switch)
- Break-Before-Make Switching

description

The TPS2206 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit (IC), using the Texas Instruments LinBiCMOS[™] process. The circuit allows the distribution of 3.3-V, 5-V, and/or 12-V card power by means of the P²C (PCMCIA Peripheral-Control) Texas Instruments nonproprietary serial interface. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability.

The TPS2206 is backward compatible with the TPS2202 and TPS2202A, except that there is no V_{DD} connection. Bias current is derived from either the 3.3-V input pin or the 5-V input pin. The TPS2206 also eliminates the APWR_GOOD and BPWR_GOOD pins of the TPS2202 and TPS2202A.

NC - No internal connection

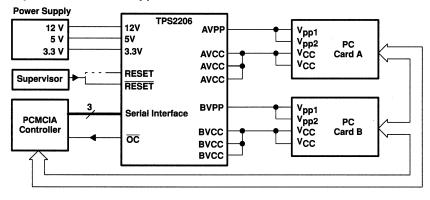
The TPS2206 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5 V. This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available.

LinBiCMOS and P²C are trademarks of Texas Instruments Incorporated. PC Card and CardBus are trademarks of PCMCIA (Personal Computer Memory Card International Association).

Copyright © 1998, Texas Instruments Incorporated

description (continued)

The TPS2206 incorporates a reset function, selectable by one of two inputs, to help alleviate system errors. The reset function enables PC Card initialization concurrent with host platform initialization, allowing a system reset. Reset is accomplished by grounding the V_{CC} and V_{pp} (flash-memory programming voltage) outputs, which discharges residual card voltage.

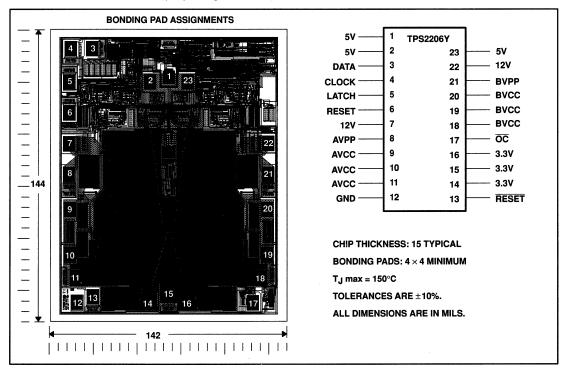

End equipment for the TPS2206 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras and bar-code scanners.

AVAILABLE	OPTIONS

т.	Р	CHIP FORM (Y)		
A'	PLASTIC SMALL OUTLINE (DB)	PLASTIC SMALL OUTLINE (DF)	TSSOP (DAP)	
-40°C to 85°C	TPS2206IDBLE	TPS2206IDFLE	TPS2206IDAPR	TPS2206Y

The DB package and the DF package are only available left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS2206IDBLE). The DAP package is only available taped and reeled (indicated by the R suffix on the device type; e.g., TPS2206IDAPR).

typical PC card power-distribution application



TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B - MAY 1996 - REVISED JUNE 1998

TPS2206Y chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS2206. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B – MAY 1996 – REVISED JUNE 1998

Terminal Functions

TERMINAL NAME NO.				
		I/O	DESCRIPTION	
	DB, DF DAP			
3.3V	15, 16, 17	16, 17, 18	1	3.3-V V _{CC} input for card power
5V	1, 2, 30	1, 2, 32	1	5-V V _{CC} input for card power and/or chip power
12V	7, 24	8, 25	1	12-V V _{pp} input for card power
AVCC	9, 10, 11	10, 11, 12	0	Switched output that delivers 0 V, 3.3 V, 5 V, or high impedance to card
AVPP	8	9	0	Switched output that delivers 0 V, 3.3 V, 5 V, 12 V, or high impedance to card
BVCC	20, 21, 22	21, 22, 23	0	Switched output that delivers 0 V, 3.3 V, 5 V, or high impedance
BVPP	23	24	0	Switched output that delivers 0 V, 3.3 V, 5 V, 12 V, or high impedance
CLOCK	4	5	1	Logic-level clock for serial data word
DATA	3	4	1	Logic-level serial data word
GND	12	13		Ground
LATCH	5	6	1	Logic-level latch for serial data word
NC	13, 19, 25, 26, 27, 28, 29	3, 19, 26, 27, 28, 29, 30, 31		No internal connection
OC	18	20	0	Logic-level overcurrent. $\overline{\text{OC}}$ reports output that goes low when an overcurrent condition exists
RESET	6	7	1	Logic-level RESET input active high. Do not connect if terminal 14 is used.
RESET	14	14	1	Logic-level RESET input active low. Do not connect if terminal 6 is used.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Input voltage range for card power: VI(5V)	–0.3 V to 7 V
V _{I(3.3V)}	0.3 V to 7 V
V _{I(12V)}	–0.3 V to 14 V
Logic input voltage	–0.3 V to 7 V
Continuous total power dissipation	See Dissipation Rating Table
Output current (each card): IO(xVCC)	internally limited
I _{O(xVPP)}	internally limited
Operating virtual junction temperature range, TJ	–40°C to 150°C
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stg}	–55°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE								
PA	CKAGE	$T_A \le 25^{\circ}C$ DERATING FACTOR [‡] POWER RATING ABOVE $T_A = 25^{\circ}C$		T _A = 70°C POWER RATING	T _A = 85°C POWER RATING			
DB		1024 mW	8.2 mW/°C	655 mW	532 mW			
DF		1158 mW	9.26 mW/°C	741 mW	602 mW			
DAP	No backplane	1625 mW	13 mW/°C	1040 mW	845 mW			
DAF	Backplane§	6044 mW	48.36 mW/°C	3869 mW	3143 mW			

[‡] These devices are mounted on an FR4 board with no special thermal considerations.

§ 2-oz backplane with 2-oz traces; 5.2-mm × 11-mm thermal pad with 6-mil solder; 0.18-mm diameter vias in a 3×6 array.

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B - MAY 1996 - REVISED JUNE 1998

recommended operating conditions

		MIN	MAX	UNIT
Input voltage range, V _I	VI(5V)	0	5.25	v
	VI(3.3V)	0	5.25	v
	VI(12V)	0	0 5.25 0 5.25 0 13.5 1 150	v
Output ourropt	IO(xVCC) at 25°C		1	Α
Dutput current	IO(xVPP) at 25°C		150	mA
Clock frequency		0	2.5	MHz
Operating virtual junction tempe	rature, TJ	-40	125	°C

electrical characteristics, $T_A = 25^{\circ}C$, $V_{I(5V)} = 5 V$ (unless otherwise noted)

dc characteristics

	PARAMETER		TENT OO		TPS2206			UNIT
			TEST CONDITIONS		MIN	TYP	MAX	UNIT
		5 V to xVCC				103	140	
		3.3 V to xVCC	VI(5V) = 5 V,	V _{I(3.3 V)} = 3.3 V		69	110	mΩ
	o	3.3 V to xVCC	V _{I(5V)} = 0,	V _{I(3.3V)} = 3.3 V		96	180	
	Switch resistances†	5 V to xVPP	· · ·				6	
		3.3 V to xVPP					6	Ω
		12 V to xVPP					1	
VO(xVPP)	Clamp low voltage		I _{pp} at 10 mA				0.8	v
VO(xVCC)	Clamp low voltage		ICC at 10 mA				0.8	v
	Leakage current	L bigh impedance state	T _A = 25°C			1	10	
L.		Ipp high-impedance state	T _A = 85°C				50	
likg		I _{CC} high-impedance state	T _A = 25°C			1	10	μ A
			T _A = 85°C				50	
		V _{I(5V)} = 5 V	VO(AVCC) = VO(B) VO(AVPP) = VO(B)	VCC) = 5 V, /PP) = 12 V		117	150	
Ŋ	Input current	V _{I(5V)} = 0, V _{I(3.3V)} = 3.3 V	VO(AVCC) = VO(B) VO(AVPP) = VO(B)	VCC) = 3.3 V, /PP) = 0		131	150	μA
		Shutdown mode	V _{O(BVCC)} = V _{O(A} = V _{O(BVPP)} = Hi-Z	, , , ,			1	μA
laa	Short-circuit	IO(xVCC)	Тј = 85°С,		1		2.2	Α
los	output-current limit	IO(xVPP)	Output powered up	into a short to GND	120		400	mA

[†] Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

logic section

PARAMETER	TEST CONDITIONS	TPS2206	TPS2206		
PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT	
Logic input current			1	μA	
Logic input high level		2		V	
Logic input low level			0.8	v	
	V _{I(5V)} = 5 V, l _O = 1mA	V _{I(5V)} -0.4			
Logic output high level	V _{I(5V)} = 0, I _O = 1mA, V _{I(3.3V)} = 3.3 V	V _{I(3.3V)} -0.4		v	
Logic output low level	I _O = 1mA		0.4	v	

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS1386 – MAY 1996 – REVISED JUNE 1998

switching characteristics^{†‡}

	PARAMETER TEST CONDITIONS				TPS2206		
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tr	Output rise time	VO(xVCC)			1.2		
ч		V _{O(x} VPP)			5		me
+.	Output fall time	V _{O(x} VCC)			10		ms
tf		V _{O(x} VPP)	-		14		
					4.4		ms
		LATCH [↑] to V _{O(x} VPP)	toff		18		ms
			ton		6.5		ms
	Propagation delay (see Figure 1)	LATCH [↑] to $V_{O(xVCC)}$ (3.3 V), $V_{I(5V)} = 5$ V	toff		20		ms
^t pd	Fropagation delay (see Figure 1)		ton		5.7		ms
		LATCH [↑] to V _{O(xVCC)} (5 V)	toff		25		ms
			ton		6.6		ms
		LATCH [↑] to $V_{O(xVCC)}$ (3.3 V), $V_{I(5V)} = 0$	toff		21		ms

† Refer to Parameter Measurement Information

[‡] Switching Characteristics are with $C_L = 150 \ \mu$ F.

electrical characteristics, $T_A = 25^{\circ}C$, $V_{I(5V)} = 5 V$ (unless otherwise noted)

dc characteristics

PARAMETER			TEST CONDITIONS		TPS2206Y			UNIT	
					MIN	TYP	MAX	UNIT	
	Switch resistances§	5 V to xVCC				103		mΩ	
		3.3 V to xVCC	$V_{I(5V)} = 5 V,$	V _{I(3.3 V)} = 3.3 V		69			
		3.3 V to xVCC	$V_{I(5V)} = 0,$	V _{I(3.3V)} = 3.3 V		96			
		5 V to xVPP				4.74			
		3.3 V to xVPP				4.74		Ω	
		12 V to xVPP				0.724			
VO(xVPP)	Clamp low voltage		I _{pp} at 10 mA			0.275		V	
VO(xVCC)	Clamp low voltage		I _{CC} at 10 mA			0.275		V	
l _{ikg}	Leakage current	Ipp High-impedance state	T _A = 25°C			1		μA	
		I _{CC} High-impedance state	T _A = 25°C			1			
II	Input current	V _{I(5V)} = 5 V	V _{O(AVCC)} = V _O V _{O(AVPP)} = V _O	(BVCC) = 5 V, (BVPP) = 12 V		117		μA	
		V _{I(5V)} = 0, V _{I(3.3V)} = 3.3 V		(BVCC) = 3.3 V, (BVPP) = 0		131			

Pulse-testing techniques are used to maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWI СΗ WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B - MAY 1996 - REVISED JUNE 1998

		TEAT CONDITIONS		TPS2206Y			
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
•	Output rise time	V _{O(xVCC)}		1.2			
tr		VO(xVPP)		5]
	VO(xVCC)		10			ms	
tf	Output fall time	V _{O(xVPP)}			14		
		LATCH [↑] to V _{O(x} VPP)	ton		4.4		ms
			toff		18		ms
			ton	6.5		ms	
t _{pd} Propagation delay (see Figure 1)	LATCH [↑] to $V_{O(xVCC)}$ (3.3 V), $V_{I(5V)} = 5$ V	toff	20		ms		
		ton	5.7		ms		
		LATCH [↑] to V _{O(xVCC)} (5 V)	toff		25		ms
			ton		6.6		ms
		LATCH [↑] to $V_{O(XVCC)}$ (3.3 V), $V_{I(5V)} = 0$	toff		21		ms

switching characteristics^{†‡}

[†] Refer to Parameter Measurement Information

[‡] Switching Characteristics are with $C_L = 150 \mu F$.

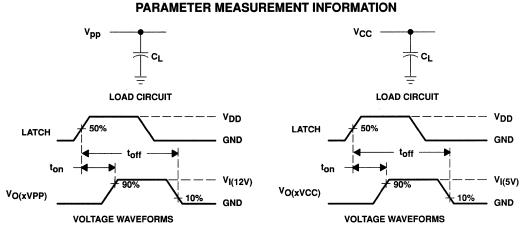
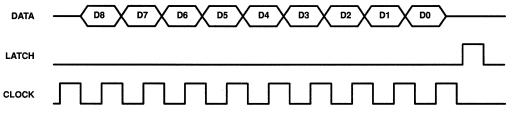


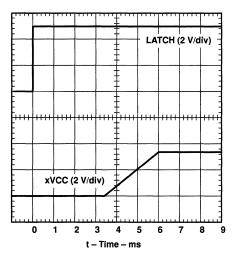
Figure 1. Test Circuits and Voltage Waveforms



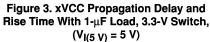
TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B - MAY 1996 - REVISED JUNE 1998

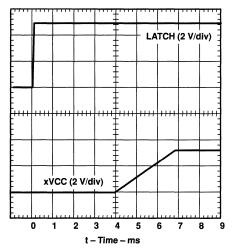
PARAMETER MEASUREMENT INFORMATION

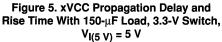
	FIGURE
Serial-Interface Timing	2
xVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	3
xVCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	4
xVCC Propagation Delay and Rise Time With 150- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	5
xVCC Propagation Delay and Fall Time With 150- μ F Load, 3.3-V Switch, V _{I(5V)} = 5 V	6
xVCC Propagation Delay and Rise Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 0	7
xVCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch, V _{I(5V)} = 0	8
xVCC Propagation Delay and Rise Time With 150- μ F Load, 3.3-V Switch, V _{I(5V)} = 0	9
xVCC Propagation Delay and Fall Time With 150- μ F Load, 3.3-V Switch, V _{I(5V)} = 0	10
xVCC Propagation Delay and Rise Time With 1-µF Load, 5-V Switch	11
xVCC Propagation Delay and Fall Time With 1-μF Load, 5-V Switch	12
xVCC Propagation Delay and Rise Time With 150-μF Load, 5-V Switch	13
xVCC Propagation Delay and Fall Time With 150-μF Load, 5-V Switch	14
xVPP Propagation Delay and Rise Time With 1-µF Load, 12-V Switch	15
xVPP Propagation Delay and Fall Time With 1-µF Load, 12-V Switch	16
xVPP Propagation Delay and Rise Time With 150-µF Load, 12-V Switch	17
xVPP Propagation Delay and Fall Time With 150-µF Load, 12-V Switch	18



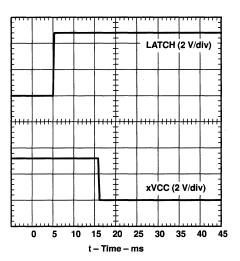
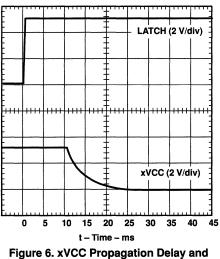
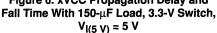
NOTE A. Data is clocked in on the positive leading edge of the clock. The latch should occur before the next positive leading edge of the clock. For definition of D0 to D8, see the control logic table.

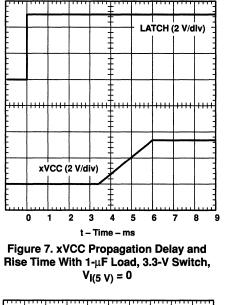

Figure 2. Serial-Interface Timing

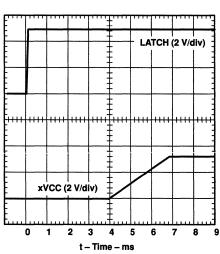


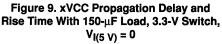

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B - MAY 1996 - REVISED JUNE 1998

PARAMETER MEASUREMENT INFORMATION


Figure 4. xVCC Propagation Delay and Fall Time With 1-µF Load, 3.3-V Switch, $(V_{I(5 V)} = 5 V)$





TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS1398 – MAY 1996 – REVISED JUNE 1998

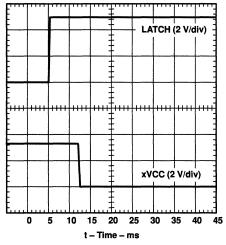
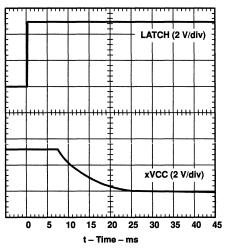
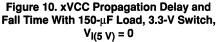




Figure 8. xVCC Propagation Delay and Fall Time With 1- μ F Load, 3.3-V Switch, $V_{I(5 V)} = 0$

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B – MAY 1996 – REVISED JUNE 1998

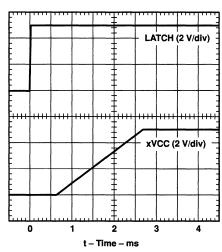
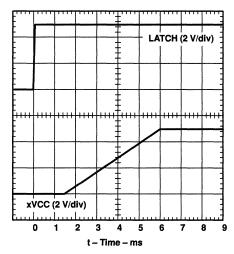
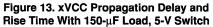




Figure 11. xVCC Propagation Delay and Rise Time With 1-µF Load, 5-V Switch

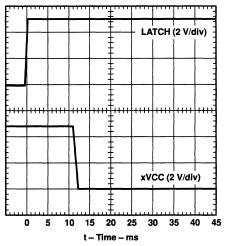


Figure 12. xVCC Propagation Delay and Fall Time With 1-µF Load, 5-V Switch

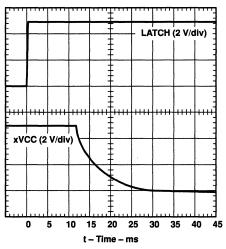
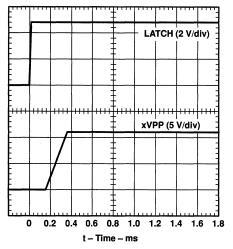



Figure 14. xVCC Propagation Delay and Fall Time With 150-µF Load, 5-V Switch

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B – MAY 1996 – REVISED JUNE 1998

PARAMETER MEASUREMENT INFORMATION

Figure 15. xVPP Propagation Delay and Rise Time With 1- μ F Load, 12-V Switch

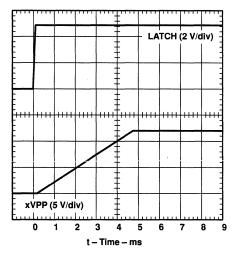


Figure 17. xVPP Propagation Delay and Rise Time With 150-µF Load, 12-V Switch

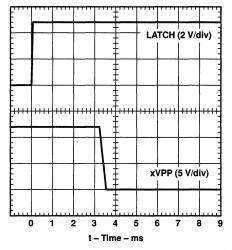


Figure 16. xVPP Propagation Delay and Fall Time With 1- μ F Load, 12-V Switch

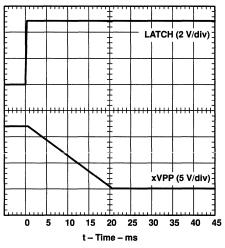


Figure 18. xVPP Propagation Delay and Fall Time With 150- μ F Load, 12-V Switch

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B - MAY 1996 - REVISED JUNE 1998

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
IDD	Supply current, VI(5V) = 5 V	vs Junction temperature	19
IDD	Supply current, V _{I(5V)} = 0	vs Junction temperature	20
^r DS(on)	Static drain-source on-state resistance, 3.3-V switch, $V_{I(5V)} = 5 V$	vs Junction temperature	21
^r DS(on)	Static drain-source on-state resistance, 3.3-V switch, $V_{I(5V)} = 0$	vs Junction temperature	22
rDS(on)	Static drain-source on-state resistance, 5-V switch	vs Junction temperature	23
rDS(on)	Static drain-source on-state resistance, 12-V switch	vs Junction temperature	24
VO(xVCC)	Output voltage, 5-V switch	vs Output current	25
VO(xVCC)	Output voltage, 3.3-V switch, VI(5V) = 5 V	vs Output current	26
VO(xVCC)	Output voltage, 3.3-V switch, $V_{I(5V)} = 0$	vs Output current	27
VO(xVPP)	Output voltage, 12-V switch	vs Output current	28
lOS(xVCC)	Short-circuit current, 5-V switch	vs Junction temperature	29
IOS(xVCC)	Short-circuit current, 3.3-V switch	vs Junction temperature	30
IOS(xVPP)	Short-circuit current, 12-V switch	vs Junction temperature	31

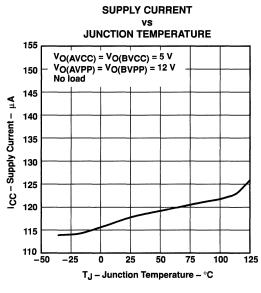


Figure 19

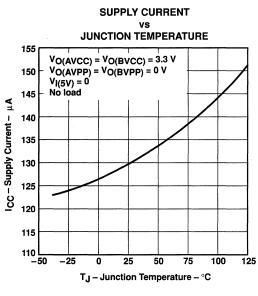
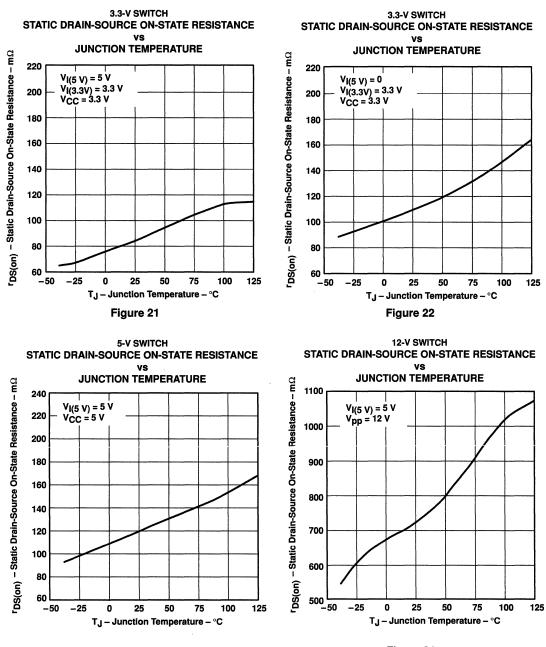
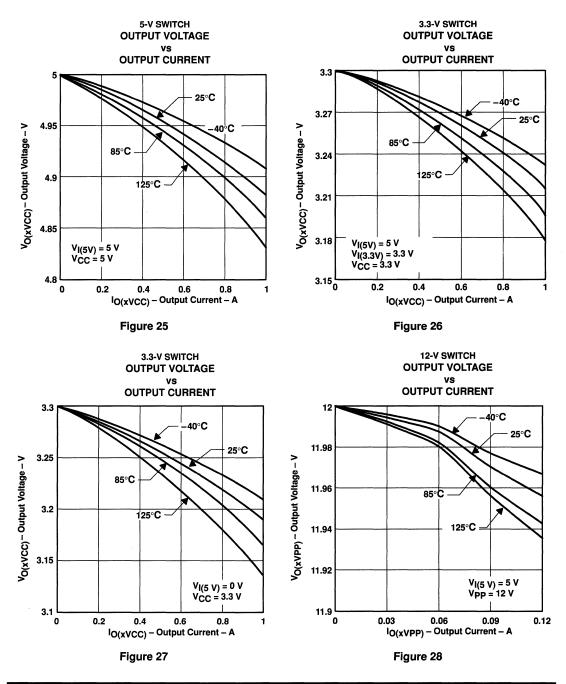


Figure 20

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS1398 – MAY 1996 – REVISED JUNE 1998

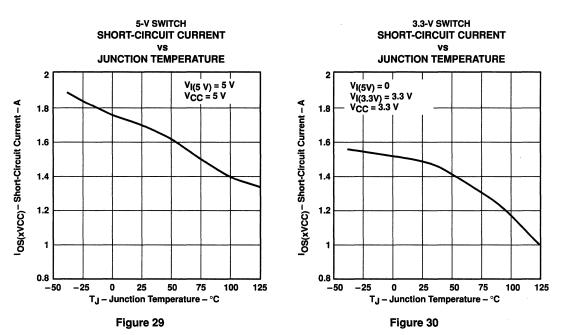
TYPICAL CHARACTERISTICS

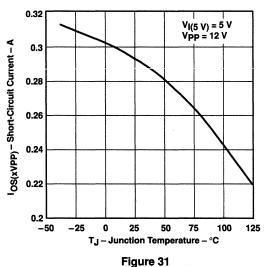



Figure 24

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER

SLVS138B - MAY 1996 - REVISED JUNE 1998


TYPICAL CHARACTERISTICS



TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B – MAY 1996 – REVISED JUNE 1998

TYPICAL CHARACTERISTICS

12-V SWITCH SHORT-CIRCUIT CURRENT VS JUNCTION TEMPERATURE

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited on-board memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the "plug-and-play" concept. Cards and hosts from different vendors should be compatible — able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connector. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

designing for voltage regulation

The current PCMCIA specification for output-voltage regulation ($V_{O(reg)}$) of the 5-V output is 5% (250 mV). In a typical PC power-system design, the power supply has an output-voltage regulation ($V_{PS(reg)}$) of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses (V_{PCB}) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than 1% (50 mV) of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2206 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$V_{DS} = V_{O(reg)} - V_{PS(reg)} - V_{PCB}$$
(1)

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2206. The voltage drop is the output current multiplied by the switch resistance of the TPS2206. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2206 divided by the output switch resistance.

$$I_{O} max = \frac{V_{DS}}{r_{DS(on)}}$$
(2)

The xVCC outputs have been designed to deliver 700 mA at 5 V within regulation over the operating temperature range. Current proposals for the PCMCIA specifications are to limit the power dissipated in the PCMCIA slot to 3 W. With an input voltage of 5 V, 700 mA continuous is the maximum current that can be delivered to the PC Card. The TPS2206 is capable of delivering up to 1 A continuously, but during worst-case conditions the output may not be within regulation. This is generally acceptable because the majority of PC Cards require less than 700 mA continuous. Some cards require higher peak currents (disk drives during initial platter spin-up), but it is generally acceptable for small voltage sags to occur during these peak currents.

The xVCC outputs have been designed to deliver 1 A continuously at 3.3 V within regulation over the operating temperature range. The PCMCIA specification for output voltage regulation of the 3.3-V output is 300 mV. Using the voltage drop percentages (2%) for power supply regulation and PCB resistive loss (1%), the allowable voltage drop for the 3.3 V switch is 200 mV.

The xVPP outputs have been designed to deliver 150 mA continuously at 12 V.

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER

SLVS138B – MAY 1996 – REVISED JUNE 1998

APPLICATION INFORMATION

overcurrent and over-temperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB-trace damage. Even systems robust enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.

The TPS2206 takes a two-pronged approach to overcurrent protection. First, instead of fuses, sense FETs monitor each of the power outputs. Excessive current generates an error signal that linearly limits the output current, preventing host damage or failure. Sense FETs, unlike sense resistors or polyfuses, have an added advantage in that they do not add to the series resistance of the switch and thus produce no additional voltage losses. Second, when an overcurrent condition is detected, the TPS2206 asserts a signal at \overrightarrow{OC} that can be monitored by the microprocessor to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates, shutting down all power outputs until the device cools to within a safe operating region.

12-V supply not required

Most PC Card switches use the externally supplied 12-V V_{pp} power for switch-gate drive and other chip functions, which requires that power be present at all times. The TPS2206 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the 5-V or 3.3-V input; therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the 12-V input if the 12-V input is not used. Additional power savings are realized by the TPS2206 during a software shutdown in which quiescent current drops to a maximum of 1 μ A.

backward compatibility and 3.3-V low-voltage mode

The TPS2206 is backward compatible with the TPS2202 AND TPS2202A products, with the following considerations. Pin 25 (V_{DD} on TPS2202/TPS2202A) is a no connect because bias current is derived from either the 3.3-V input pin or the 5-V input pin. Also, the TPS2206 does not have the APWR_GOOD or BPWR_GOOD VPP reporting outputs. These are left as no connects.

The TPS2206 operates in 3.3-V low-voltage mode when 3.3 volts is the only available input voltage ($V_{I(5V)}$ =0). This allows host and PC Cards to be operated in low-power 3.3-V-only modes such as sleep modes or pager modes. Note that in this operation mode, the TPS2206 derives its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card. The 3.3-V switch resistance increases, but the added switch resistance should not be critical, because only a small amount of current is delivered in this mode. If 6% (198 mV) is allowed for the 3.3-V switch voltage drop, a 500 m Ω switch could deliver over 350 mA to the PC Card.

voltage transitioning requirement

PC Cards, like portables, are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2206 is designed to meet all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on 3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This ensures that sensitive 3.3-V circuitry is not subjected to any residual 5-V charge and functions as a power reset. The TPS2206 offers a selectable V_{CC} and V_{pp} ground state, in accordance with PCMCIA 3.3-V/5-V switching specifications, to fully discharge the card capacitors while switching between V_{CC} voltages.

output ground switches

Several PCMCIA power-distribution switches on the market do not have an active-grounding FET switch. These devices do not meet the PC Card specification requiring a discharge of V_{CC} within 100 ms. PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. A method commonly shown to alleviate this problem is to add to the switch output an external 100-k Ω resistor in parallel with the PC Card. Considering that this is the only discharge path to ground, a timing analysis shows that the RC time constant delays the required discharge time to more than 2 seconds. The only way to ensure timing compatibility with PC Card standards is to use a power-distribution switch that has an internal ground switch, like that of the TPS22xx family, or add an external ground FET to each of the output lines with the control logic necessary to select it.

In summary, the TPS2206 is a complete single-chip dual-slot PC Card power interface. It meets all currently defined PCMCIA specifications for power delivery in 5-V, 3.3-V, and mixed systems, and offers a serial control interface. The TPS2206 offers functionality, power savings, overcurrent and thermal protection, and fault reporting in one 30-pin SSOP surface-mount package for maximum value added to new portable designs.

power supply considerations

The TPS2206 has multiple pins for each of its 3.3-V, 5-V, and 12-V power inputs and for the switched V_{CC} outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. Both 12-V inputs must be connected for proper V_{pp} switching; it is recommended that all input and output power pins be paralleled for optimum operation.

Although the TPS2206 is fairly immune to power input fluctuations and noise, it is generally considered good design practice to bypass power supplies typically with a 1- μ F electrolytic or tantalum capacitor paralleled by a 0.047- μ F to 0.1- μ F ceramic capacitor. It is strongly recommended that the switched V_{CC} and V_{pp} outputs be bypassed with a 0.1- μ F or larger capacitor; doing so improves the immunity of the TPS2206 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2206 and the load. High switching currents can produce large negative-voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similary, no pin should be taken below –0.3 V.

RESET or RESET inputs

To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at the same time as the host by applying a low impedance to the V_{CC} and V_{pp} terminals. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The RESET or RESET input closes internal switches S1, S4, S7, and S10 with all other switches left open (see TPS2206 control-logic table). The TPS2206 remains in the low-impedance output state until the signal is deasserted and further data is clocked in and latched. RESET or RESET is provided for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The unused pin is internally pulled up or down and should be left unconnected.

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B – MAY 1996 – REVISED JUNE 1998

APPLICATION INFORMATION

overcurrent and thermal protection

The TPS2206 uses sense FETs to check for overcurrent conditions in each of the V_{CC} and V_{pp} outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore, voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The \overline{OC} indicator, normally a logic high, is a logic low when any overcurrent condition is detected, providing for initiation of system diagnostics and/or sending a warning message to the user.

During power up, the TPS2206 controls the rise time of the V_{CC} and V_{pp} outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2206 engages. If the V_{CC} or V_{pp} outputs are driven below ground, the TPS2206 may latch nondestructively in an off state. Cycling power will reestablish normal operation.

Overcurrent limiting for the V_{CC} outputs is designed to activate, if powered up, into a short in the range of 1 A to 2.2 A, typically at about 1.6 A. The V_{pp} outputs limit from 120 mA to 400 mA, typically around 280 mA. The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.

Thermal limiting prevents destruction of the IC from overheating if the package power-dissipation ratings are exceeded. Thermal limiting disables all power outputs (both A and B slots) until the device has cooled.

calculating junction temperature

The switch resistance, $r_{DS(on)}$, is dependent on the junction temperature, T_J , of the die. The junction temperature is dependent on both $r_{DS(on)}$ and the current through the switch. To calculate T_J , first find $r_{DS(on)}$ from Figures 21, 22, 23, and 24 using an initial temperature estimate about 50°C above ambient. Then calculate the power dissipation for each switch, using the formula:

$$P_{\rm D} = r_{\rm DS(on)} \times l^2 \tag{3}$$

Next, sum the power dissipation and calculate the junction temperature:

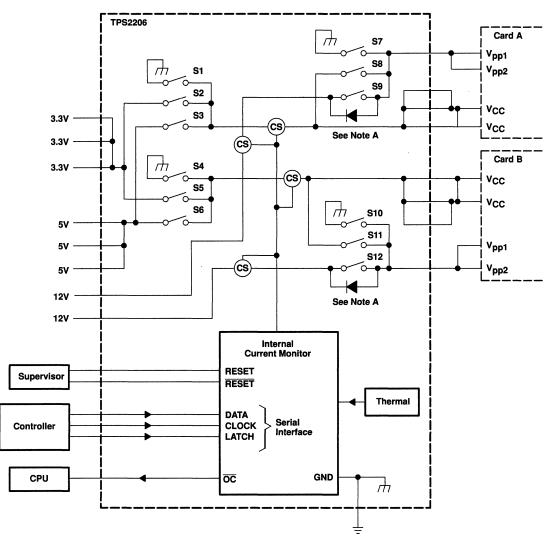
$$T_{j} = \left(\Sigma P_{D} \times R_{\theta J A}\right) + T_{A}, R_{\theta J A} = 108^{\circ}C/W$$
(4)

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

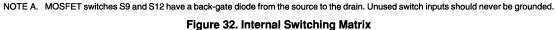
logic input and outputs

The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive leading edge of the clock (see Figure 2). The 9-bit (D0 through D8) serial data word is loaded during the positive edge of the latch signal. The latch signal should occur before the next positive leading edge of the clock.

The shutdown bit of the data word places all V_{CC} and V_{pp} outputs in a high-impedance state and reduces chip quiescent current to 1 μ A to conserve battery power.


The TPS2206 serial interface is designed to be compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan Electronic Industry Development Association (JEIDA) standards.

An overcurrent output (\overline{OC}) is provided to indicate an overcurrent condition in any of the V_{CC} or V_{pp} outputs as previously discussed.



TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER

SLVS138B - MAY 1996 - REVISED JUNE 1998

APPLICATION INFORMATION

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER SLVS138B - MAY 1996 - REVISED JUNE 1998

APPLICATION INFORMATION

TPS2206 control logic

AVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	D0 A_VPP_PGM	D1 A_VPP_VCC	S7	S8	S9	VAVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	vcct
1	1	0	OPEN	OPEN	CLOSED	VPP(12 V)
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	x	х	OPEN	OPEN	OPEN	Hi-Z

BVPP

CONTROL SIGNALS			INTERNAL SWITCH SETTINGS			OUTPUT
D8 SHDN	D4 B_VPP_PGM	D5 B_VPP_VCC	S10	S11	S12	VBVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	vcc‡
1	1	0	OPEN	OPEN	CLOSED	VPP(12 V)
1	1 1	1	OPEN	OPEN	OPEN	Hi-Z
0	X	х	OPEN	OPEN	OPEN	Hi-Z

AVCC

CONTROL SIGNALS		INTERNAL SWITCH SETTINGS			OUTPUT	
D8 SHDN	D3 A_VCC3	D2 A_VCC5	S1	S2	S3	VAVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	x	х	OPEN	OPEN	OPEN	Hi-Z

BVCC

CONTROL SIGNALS		INTERNAL SWITCH SETTINGS			OUTPUT	
D8 SHDN	D6 B_VCC3	D7 B_VCC5	S4	S5	S6	VBVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	x	X	OPEN	OPEN	OPEN	Hi-Z

[†]Output depends on AVCC

[‡]Output depends on BVCC

ESD protection

All TPS2206 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-body-model discharge as defined in MIL-STD-883C, Method 3015. The V_{CC} and V_{pp} outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with 0.1-µF capacitors protects the devices from discharges up to 10 kV.

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER

SLVS138B - MAY 1996 - REVISED JUNE 1998

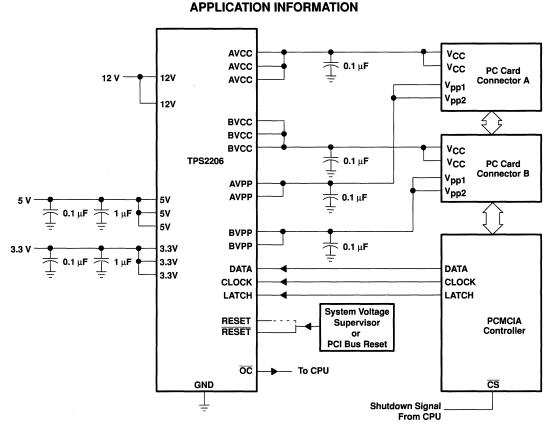
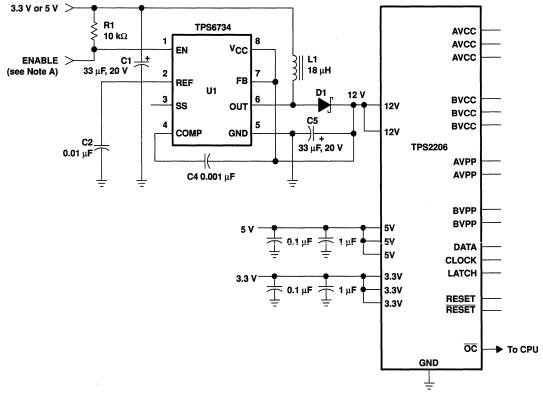


Figure 33. Detailed Interconnections and Capacitor Recommendations

TPS2206 DUAL-SLOT PC CARD POWER-INTERFACE SWITCH WITH RESET FOR SERIAL PCMCIA CONTROLLER


SLVS138B - MAY 1996 - REVISED JUNE 1998

APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in² of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to 3 μ A when 12 V is not needed.

The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V. Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a generall purpose I/O terminal on the PCMCIA controller or tied high.

Figure 34. TPS2206 with TPS6734 12-V, 120-mA Supply

13-373

THIS PAGE INTENTIONALLY LEFT BLANK

SLVS156D - JULY 1997 - REVISED MAY 1999

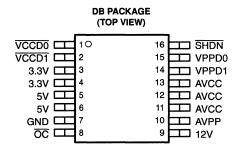
- Fully Integrated V_{CC} and V_{pp} Switching for Single-Slot PC Card[™] Interface
- Low $r_{DS(on)}$ (90-m Ω 5-V V_{CC} Switch and 3.3-V V_{CC} Switch)
- Compatible With Controllers From Cirrus, Ricoh, O₂Micro, Intel, and Texas Instruments
- 3.3-V Low-Voltage Mode
- Meets PC Card Standards
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short-Circuit and Thermal Protection
- Space-Saving 16-Pin SSOP (DB)
- Compatible With 3.3-V, 5-V, and 12-V PC Cards
- Break-Before-Make Switching

description

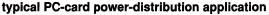
The TPS2211 PC Card power-interface switch provides an integrated power-management solution for a single PC Card. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit, using the Texas Instruments LinBiCMOS™ process. The circuit allows the distribution of 3.3-V, 5-V, and/or 12-V card power, and is compatible with many PCMCIA controllers. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability. Current-limit reporting can help the user isolate a system fault to the PC Card.

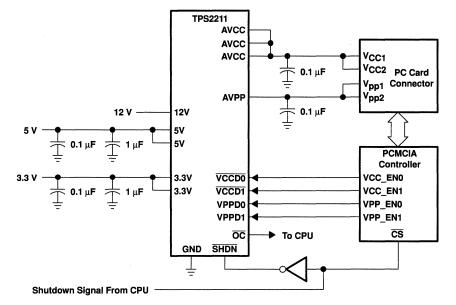
The TPS2211 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5 V. Bias power can be derived from either the 3.3-V or 5-V inputs. This facilitates low-power system designs such as sleep mode and pager mode where only 3.3 V is available.

End equipment for the TPS2211 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.


AVAILABLE OPTIONS						
	PACKAGED DEVICE					
TA	SMALL OUTLINE (DB)	(Y)				
-40°C to 85°C	TPS2211IDBLE	TPS2211Y				

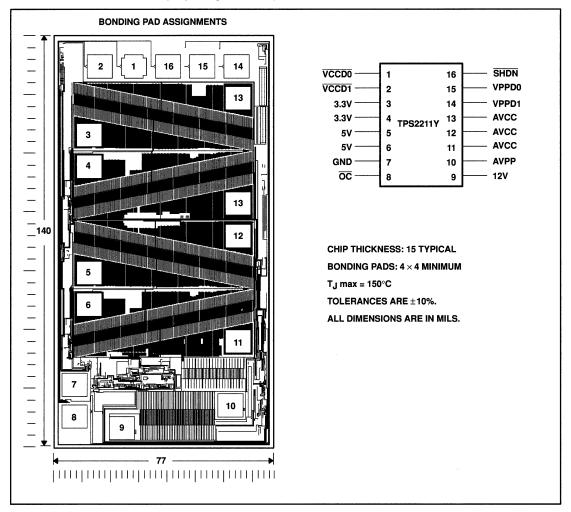
The DB package is only available left-end taped and reeled (indicated by the LE suffix on the device type, e.g. TPS2211IDBLE).


PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association). LinBiCMOS is a trademark of Texas Instruments Incorporated.



Copyright © 1999, Texas Instruments Incorporated

TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS156D – JULY 1997 – REVISED MAY 1999



SLVS156D - JULY 1997 - REVISED MAY 1999

TPS2211Y chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS2211. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

SLVS156D - JULY 1997 - REVISED MAY 1999

Terminal Functions

TERMINAL			DECODIDION
NAME	NO.	I/O	DESCRIPTION
3.3V	3, 4	ł	3.3-V V _{CC} input for card power and/or chip power if 5 V is not present
5V	5, 6	1	5-V V _{CC} input for card power and/or chip power
12V	9	I	12-V V _{pp} input card power
AVCC	11, 12, 13	Ō	Switched output that delivers 0 V, 3.3-V, 5-V, or high impedance to card
AVPP	10	0	Switched output that delivers 0 V 3.3-V, 5-V, 12-V, or high impedance to card
GND	7		Ground
<u>OC</u>	8	0	Logic-level overcurrent reporting output that goes low when an overcurrent conditions exists
SHDN	16	1	Logic input that shuts down the TPS2211 and sets all power outputs to high-impedance state
VCCD0	1	I	Logic input that controls voltage of AVCC (see control-logic table)
VCCD1	2	ł	Logic input that controls voltage of AVCC (see control-logic table)
VPPD0	15	ł	Logic input that controls voltage of AVPP (see control-logic table)
VPPD1	14	I	Logic input that controls voltage of AVPP (see control-logic table)

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Input voltage range for card power:		0.3 V to 7 V 0.3 V to 7 V
,	$V_{I(12V)}$	–0.3 V to 14 V
Logic input voltage		–0.3 V to 7 V
Continuous total power dissipation		See Dissipation Rating Table
		internally limited
IO(VPF)	internally limited
Operating virtual junction temperatur	é range, Tj	
Operating free-air temperature range	θ, Τ _Α	
Storage temperature range, Tstg		–55°C to 150°C
		260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
DB	775 mW	6.2 mW/°C	496 mW	403 mW

These devices are mounted on an FR4 board with no special thermal considerations.

recommended operating conditions

		MIN	MAX	UNIT
Input voltage, V _I	V _{I(5V)}	0	5.25	v
	V _{I(3.3V)}	0	5.25	v
	V _{I(12V)}	0	13.5	v
<u>.</u>	IO(AVCC)		1	Α
Output current	lO(AVPP)		150	mA
Operating virtual junction temperature, TJ			125	°C

TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS156D - JULY 1997 - REVISED MAY 1999

electrical characteristics, $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)

power switch

	PARAMETER		TEST COMPLETIONS	Т	PS2211		
			TEST CONDITIONST	MIN	TYP	MAX	UNIT
		5 V to AVCC	V _{I(5V)} = 5 V		50	90	
		3.3 V to AVCC	V _{I(5V)} = 5 V, V _{I(3.3V)} = 3.3 V		48	90	mΩ
	Switch resistance	3.3 V to AVCC	V _{I(5V)} = 0 V, V _{I(3.3V)} = 3.3 V		48	90	
	Switch resistance	5 V to AVPP	TJ=25°C			6	
		3.3 V to AVPP	Tj=25°C			6	Ω
		12 V to AVPP	TJ=25℃			1	
VO(AVPP)	Clamp low voltage		I _{pp} at 10 mA			0.8	٧
VO(AVCC)	Clamp low voltage		I _{CC} at 10 mA			0.8	v
	Leakage current		T _A = 25°C		1	10	
		Ipp high-impedance state	T _A ≕ 85°C			50	μΑ
likg			T _A = 25°C		1	10	
		ICC high-impedance	ICC high-impedance state	T _A =85°C			50
	······································	V _{I(5V)} = 5 V	V _{O(AVCC)} = 5 V, V _{O(AVPP)} = 12 V		40	150	
ų	Input current	V _{I(5V)} = 0 V, V _{I(3.3V)} = 3.3 V	V _{O(AVCC)} = 3.3 V, V _{O(AVPP)} = 12 V		40	150	μΑ
		Shutdown mode VO(V _{O(AVCC)} = V _{O(AVPP)} = Hi-Z			1	
1	Short-circuit	IO(AVCC)	$T_J = 85^{\circ}C$, output powered into a	1		2.2	A
los	output-current limit	IO(AVPP)	short to GND	120		400	mA

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

logic section

DADAMETER	TEAT CONDITIONAL	TPS2211	UNIT	
PARAMETER	TEST CONDITIONS [†]	MIN	MAX	UNIT
Logic input current			1	μA
Logic input high level		2		v
Logic input low level			0.8	v
	$V_{I(5V)} = 5 V$, $I_{O} = 1 mA$	V _{I(5V)} - 0.4		v
Logic output high level	$V_{I(5V)} = 0 V$, $I_{O} = 1 mA$, $V_{I(3.3V)} = 3.3 V$			v
Logic output low level	I _O = 1 mA		0.4	v

Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS156D – JULY 1997 – REVISED MAY 1999

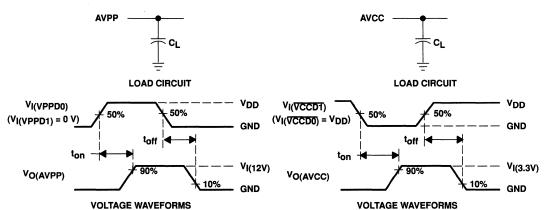
electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

power switch

PARAMETER		TEST CONDITIONS [†]	TPS2211Y	UNIT	
	FADAMETER		TEST CONDITIONST	MIN TYP MAX	
		5 V to AVCC	V _{I(5V)} = 5 V	50	
		3.3 V to AVCC	$V_{I(5V)} = 5 V$, $V_{I(3.3V)} = 3.3 V$	48	mΩ
	Switch resistance	3.3 V to AVCC	V _{I(5V)} = 0 V, V _{I(3.3V)} = 3.3 V	48	
	Switch resistance	5 V to AVPP	Tj=25°C	4.3	
		3.3 V to AVPP	Tj=25°C	4.3	Ω
		12 V to AVPP	Tj=25°C	0.5	
VO(AVPP)	Clamp low voltage		I _{pp} at 10 mA	0.28	V
VO(AVCC)	Clamp low voltage		I _{pp} at 10 mA	0.28	V
1		Ipp high-impedance state		1	
IIkg Leakage current	ICC high-impedance state		1	μΑ	
		V _I = 5 V	VO(AVCC) = 5 V, VO(AVPP) = 12 V	42	
lj –	Input current	V _{I(5V)} = 5 V, V _{I(3.3V)} = 3.3 V	V _{O(AVCC)} = 3.3 V, V _{O(AVPP)} = 12 V	42	μΑ

† Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

switching characteristics[‡]


PARAMETER		TEST CONDITIONS§	TEST CONDITIONS§		TPS2211, TPS2211Y			
						MAX		
+	Rise times, output	V _{O(AVCC)}			2.8			
tr		V _{O(AVPP)}			6.4		ms	
•.	Fall times, output	VO(AVCC)		VO(AVCC)		4.5		1115
tf	Fair times, output	VO(AVPP)	VO(AVPP)					
			ton		6.8			
		VI(VPPD0) ^{to V} O(AVPP)	toff		18]	
. .	Propagation dolor (and Figure 1)		ton		4			
^t pd	Propagation delay (see Figure1)	ion delay (see Figure 1) VI(VCCD1) to VO(AVCC) (3.3V)	17		ms			
			ton		6.6			
		VI(VCCD0) to VO(AVCC) (5V)	toff		17			

 \ddagger Switching Characteristics are with CL = 150 μ F. § Refer to Parameter Measurement Information

SLVS156D - JULY 1997 - REVISED MAY 1999

PARAMETER MEASUREMENT INFORMATION

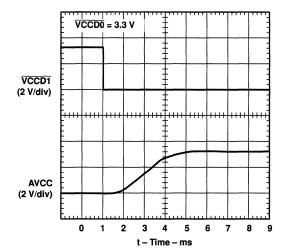
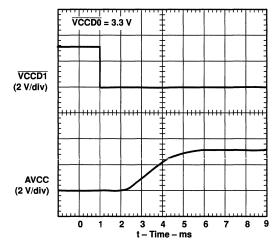

Figure 1. Test Circuits and Voltage Waveforms

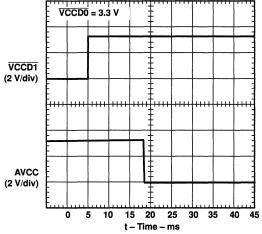
	FIGURE
AVCC Propagation Delay and Rise Time With 1-µF Load, 3.3-V Switch	2
AVCC Propagation Delay and Fall Time With 1-µF Load, 3.3-V Switch	3
AVCC Propagation Delay and Rise Time With 150-µF Load, 3.3-V Switch	4
AVCC Propagation Delay and Fall Time With 150-µF Load, 3.3-V Switch	5
AVCC Propagation Delay and Rise Time With 1-µF Load, 5-V Switch	6
AVCC Propagation Delay and Fall Time With 1-µF Load, 5-V Switch	7
AVCC Propagation Delay and Rise Time With 150-µF Load, 5-V Switch	8
AVCC Propagation Delay and Fall Time With 150-µF Load, 5-V Switch	9
AVPP Propagation Delay and Rise Time With 1-µF Load, 12-V Switch	10
AVPP Propagation Delay and Fall Time With 1-µF Load, 12-V Switch	11
AVPP Propagation Delay and Rise Time With 150- μ F Load, 12-V Switch	12
AVPP Propagation Delay and Fall Time With 150-µF Load, 12-V Switch	13

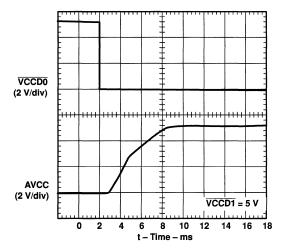

Table of Timing Diagrams



TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS156D – JULY 1997 – REVISED MAY 1999

PARAMETER MEASUREMENT INFORMATION




Figure 3. AVCC Propagation Delay and Fall Time With 1-µF Load, 3.3-V Switch

SLVS156D - JULY 1997 - REVISED MAY 1999

PARAMETER MEASUREMENT INFORMATION

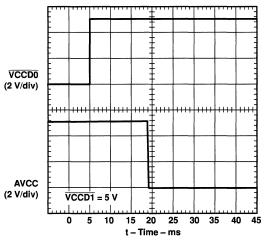


Figure 6. AVCC Propagation Delay and Rise Time With 1- μF Load, 5-V Switch

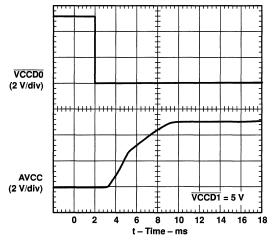
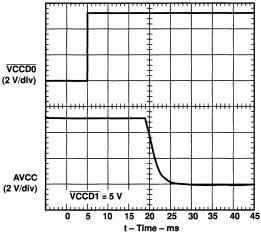
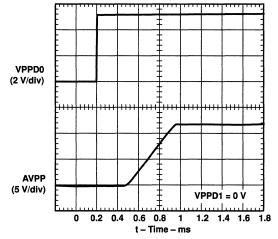
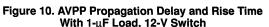
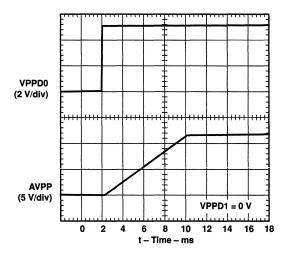


Figure 7. AVCC Propagation Delay and Fall Time With 1- μF Load, 5-V Switch


Figure 9. AVCC Propagation Delay and Fall Time With 150-μF Load, 5-V Switch



TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS156D – JULY 1997 – REVISED MAY 1999

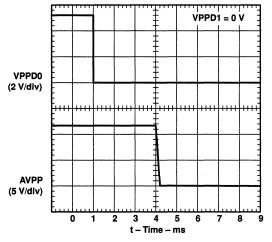


Figure 11. AVPP Propagation Delay and Fall Time With 1-uF Load, 12-V Switch

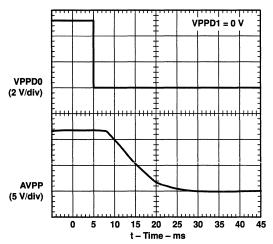
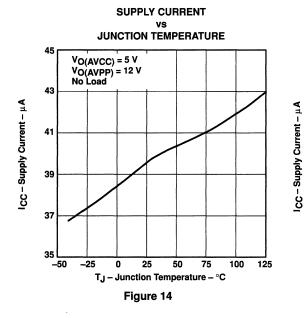


Figure 13. AVPP Propagation Delay and Fall Time With 150-µF Load, 12-V Switch



SLVS156D - JULY 1997 - REVISED MAY 1999

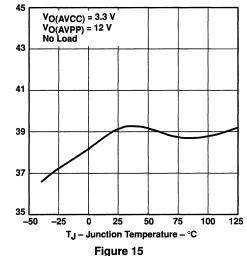
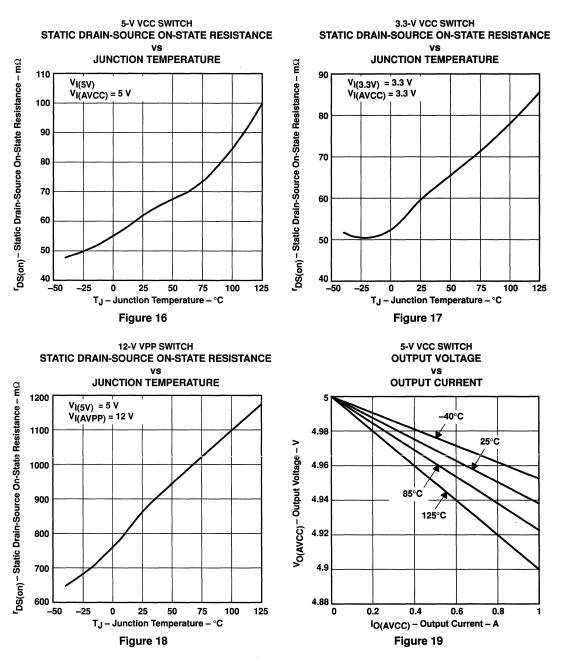
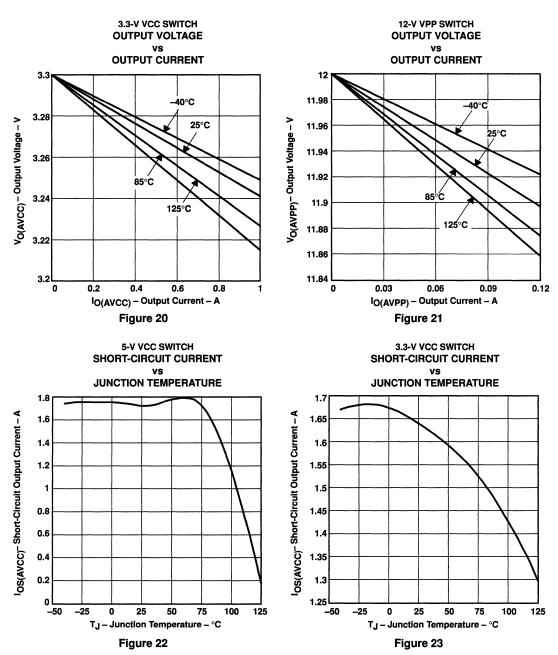

TYPICAL CHARACTERISTICS

Table of Graphs

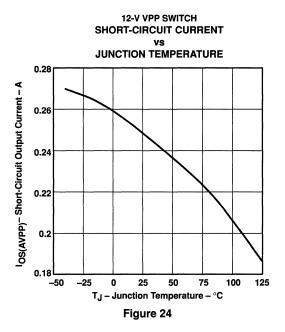
			FIGURE
ICC(5V)	Supply current	vs Junction temperature	14
ICC(3.3V)	Supply current	vs Junction temperature	15
^r DS(on)	Static drain-source on-state resistance, 5-V VCC switch	vs Junction temperature	16
rDS(on)	Static drain-source on-state resistance, 3.3-V VCC switch	vs Junction temperature	17
^r DS(on)	Static drain-source on-state resistance, 12-V VPP switch	vs Junction temperature	18
VO(AVCC)	Output voltage, 5-V VCC switch	vs Output current	19
VO(AVCC)	Output voltage, 3.3-V VCC switch	vs Output current	20
VO(AVPP)	Output voltage, 12-V VPP switch	vs Output current	21
OS(AVCC)	Short-circuit current, 5-V VCC switch	vs Junction temperature	22
OS(AVCC)	Short-circuit current, 3.3-V VCC switch	vs Junction temperature	23
IOS(AVPP)	Short-circuit current, 12-V VPP switch	vs Junction temperature	24


SUPPLY CURRENT vs JUNCTION TEMPERATURE


TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLV5156D – JULY 1997 – REVISED MAY 1999

TYPICAL CHARACTERISTICS

SLVS156D - JULY 1997 - REVISED MAY 1999



TYPICAL CHARACTERISTICS

TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS156D – JULY 1997 – REVISED MAY 1999

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, GPS systems, multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association) was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the *plug and play* concept, i.e. cards and hosts from different vendors should be compatible.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connectors. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector-terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

designing for voltage regulation

The current PCMCIA specification for output voltage regulation of the 5-V output is 5% (250 mV). In a typical PC power-system design, the power supply will have an output voltage regulation ($V_{PS(reg)}$) of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses (V_{PCB}) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than 1% (50 mV) of the output voltage. Therefore, the allowable voltage drop (V_{DS}) for the TPS2211 is the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$V_{DS} = V_{O(reg)} - V_{PS(reg)} - V_{PCB}$$

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2211. The voltage drop is the output current multiplied by the switch resistance of the TPS2211. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2211 divided by the output switch resistance.

$$I_{O}$$
max = $\frac{V_{DS}}{r_{DS(ON)}}$

The AVCC outputs deliver 1 A continuous at 5 V and 3.3 V within regulation over the operating temperature range. Using the same equations, the PCMCIA specification for output voltage regulation of the 3.3 V output is 300 mV. Using the voltage drop percentages for power supply regulation (2%) and PCB resistive loss (1%), the allowable voltage drop for the 3.3 V switch is 200 mV. The 12-V outputs (AVPP) of the TPS2211 can deliver 150 mA continuously.

overcurrent and overtemperature protection

PC Cards are inherently subject to damage from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB trace damage. Even systems sufficiently robust to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in a sudden loss of system power. Most hosts include fuses for protection. The reliability of fused systems is poor and requires troubleshooting and repair, usually by the manufacturer, when fuses are blown.

The TPS2211 uses sense FETs to check for overcurrent conditions in each of the AVCC and AVPP outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The \overline{OC} indicator, normally a logic high, is a logic low when an overcurrent condition is detected providing for initiation of system diagnostics and/or sending a warning message to the user.

During power up, the TPS2211 controls the rise time of the AVCC and AVPP outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 10 A to 15 A may flow into the short before the current limiting of the TPS2211 engages. If the AVCC or AVPP outputs are driven below ground, the TPS2211 may latch nondestructively in an off state. Cycling power will reestablish normal operation.

Overcurrent limiting for the AVCC outputs is designed to activate if powered up into a short in the range of 1 A to 2.2 A, typically at about 1.6 A. The AVPP outputs limit from 120 mA to 400 mA, typically around 280 mA. The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.

Thermal limiting prevents destruction of the IC from overheating if the package power dissipation ratings are exceeded. Thermal limiting disables power output until the device has cooled.

12-V supply not required

Most PC Card switches use the externally supplied 12 V to power gate drive and other chip functions, which require that power be present at all times. The TPS2211 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the 5-V input. Therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the 12-V switch inputs when the 12-V input is not used. Additional power savings are realized by the TPS2211 during a software shutdown in which quiescent current drops to a maximum of 1 μ A.

3.3-V low-voltage mode

The TPS2211 will operate in a 3.3-V low-voltage mode when 3.3 V is the only available input voltage $(V_{I(5V)} = 0)$. This allows host and PC Cards to be operated in low-power 3.3-volts-only modes such as sleep or pager modes. Note that in these operation modes, the TPS2211 will derive its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card.

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2211 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on 3.3-V compatible cards be discharged to below 0.8 V before applying 3.3-V power. This functions as a power reset and ensures that sensitive 3.3-V circuitry is not subjected to any residual 5-V charge. The TPS2211 offers a selectable V_{CC} and V_{pp} ground state, in accordance with PCMCIA 3.3-V/5-V switching specifications.

output ground switches

PC Card specification requires that V_{CC} be discharged within 100 ms. PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes.

power-supply considerations

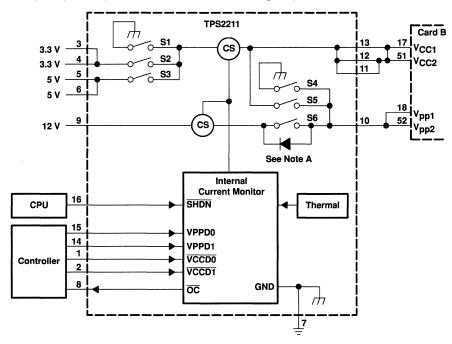
The TPS2211 has multiple pins for each of its 3.3-V and 5-V power inputs and for the switched AVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. It is recommended that all input and output power pins be paralleled for optimum operation.

To increase the noise immunity of the TPS2211, the power supply inputs should be bypassed with a 1- μ F electrolytic or tantalum capacitor paralleled by a 0.047- μ F to 0.1- μ F ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a 0.1- μ F, or larger, ceramic capacitor; doing so improves the immunity of the TPS2211 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2211 and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken below -0.3 V.

calculating junction temperature

The switch resistance, $r_{DS(on)}$, is dependent on the junction temperature, T_J , of the die and the current through the switch. To calculate T_J , first find $r_{DS(on)}$ from Figures 16 through 18 using an initial temperature estimate about 50°C above ambient. Then calculate the power dissipation for each switch, using the formula:

$$P_{D} = r_{DS(on)} \times I^{2}$$


Next, sum the power dissipation and calculate the junction temperature:

$$T_{J} = \left(\sum P_{D} \times R_{\theta JA}\right) + T_{A}, R_{\theta JA} = 108^{\circ}C/W$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

ESD protection

All TPS2211 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-bodymodel discharge as defined in MIL-STD-883C, Method 3015. The AVCC and AVPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu$ F capacitors protects the devices from discharges up to 10 kV.

NOTE A. MOSFET switch S6 has a back-gate diode from the source to the drain. Unused switch inputs should never be grounded.

Figure 25. Internal Switching Matrix, TPS2211 control logic

TPS2211 SINGLE-SLOT PC CARD POWER INTERFACE SWITCH FOR PARALLEL PCMCIA CONTROLLERS SLVS156D - JULY 1997 - REVISED MAY 1999

APPLICATION INFORMATION

TPS2211 control logic

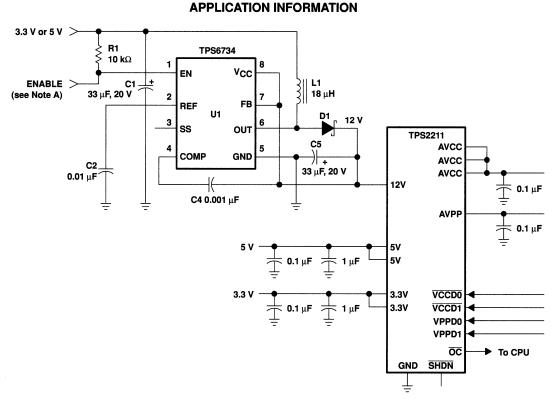
AVPP

CONTROL SIGNALS			INTE	INTERNAL SWITCH SETTINGS		
SHDN	VPPD0	VPPD1	S4	S5	S6	AVPP
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	AVCC†
1	1	0	OPEN	OPEN	CLOSED	VPP (12 V)
1	1	1	OPEN	OPEN	OPEN	Hi-Z
0	x	Х	OPEN	OPEN	OPEN	Hi-Z

[†]Output depends on AVCC

AVCC

	CONTROL SIGNAL	S	INTER	RNAL SWITCH SET	TINGS	OUTPUT
SHDN	VCCD1	VCCD0	S1	S2	S3	AVCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	x	X	OPEN	OPEN	OPEN	Hi-Z


12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 1, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in² of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to 3 µA when 12 V is not needed.

The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the 0.7-Ω MOSFET and improve efficiency at input voltages below 5 V. Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

SLVS156D - JULY 1997 - REVISED MAY 1999

NOTE A. The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.

Figure 26. TPS2211 with TPS6734 12-V, 120-mA Supply

13--394

SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS

- Fully Integrated V_{CC} and V_{pp} Switching for Low Power Single-Slot PC Card[™] Interface
- Low r_{DS(on)} (160-mΩ V_{CC} Switches)
- Low Current Limit, 450 mA (V_{CC}) Typ
- 3.3-V Low-Voltage Mode
- 12-V Supply Can Be Disabled Except During 12-V Flash Programming
- Short-Circuit and Thermal Protection
- Space-Saving 16-Pin SSOP (DB)
- Compatible With 3.3-V, 5-V, and 12-V PC Cards
- Break-Before-Make Switching
- Typical Applications Include: PCMCIA PC Card Sockets in PDAs, PBXs, Bar Code Scanners, Compact Flash and Smart Cards

description

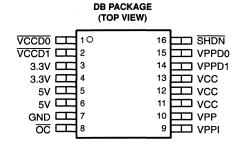
The TPS2212 PC Card power-interface switch provides an integrated power-management solution for a single low power PC Card. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit, using the Texas Instruments LinBiCMOS[™] process. The circuit allows the distribution of 3.3-V, 5-V, and/or 12-V card power, and is compatible with many PCMCIA controllers. The current-limiting feature eliminates the need for fuses, which reduces component count and improves reliability. Current-limit reporting can help the user isolate a system fault to the PC Card.

The TPS2212 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5 V. Bias power can be derived from either the 3.3-V or 5-V inputs. This facilitates low-power system designs such as sleep mode and pager mode, where only 3.3 V is available.

End equipment for the TPS2212 includes notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners. This device is well suited for those applications which need to limit the power provided to the PC card due to power supply constraints. In many applications, such as palm computers, the system cannot allocate more than 200 mA of current to a PC card slot. For these lower power applications, the TPS2212 provides the same advanced level of protection as the TPS2211 provides for higher power applications.

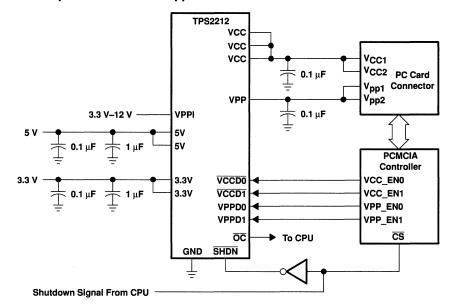
AVAILABLE OPTIONS				
	PACKAGED DEVICE			
TA	SMALL OUTLINE (DB)			
-40°C to 85°C	TPS2212IDBLE			

AVAILABLE OPTIONS


The DB package is only available left-end taped and reeled (indicated by the LE suffix on the device type, e.g. TPS2212IDBLE).

PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association). LinBiCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1999, Texas Instruments Incorporated

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APRIL 1999

typical PC-card power-distribution application

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS

SLVS193 - APRIL 1999

Terminal Functions

TER	ERMINAL		
NAME	NO.	I/O	DESCRIPTION
3.3V	3, 4	I	3.3-V V _{CC} input for card power and/or chip power if 5 V is not present
5V	5, 6	1	5-V V _{CC} input for card power and/or chip power
VPPI	9	I	Main VPP input, typically 12 V, allows 3.3 V-12 V.
VCC	11, 12, 13	0	Switched output that delivers 0 V, 3.3-V, 5-V, or high impedance to card
VPP	10	0	Switched output that delivers 0 V 3.3-V, 5-V, VPPI (12V), or high impedance to card
GND	7		Ground
OC	8	0	Logic-level overcurrent reporting output that goes low when an overcurrent conditions exists
SHDN	16	I	Logic input that shuts down the TPS2212 and sets all power outputs to high-impedance state
VCCD0	1	I	Logic input that controls voltage of VCC (see control-logic table)
VCCD1	2	I	Logic input that controls voltage of VCC (see control-logic table)
VPPD0	15	I	Logic input that controls voltage of VPP (see control-logic table)
VPPD1	14	I	Logic input that controls voltage of VPP (see control-logic table)

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Input voltage range for card power:	V _{I(3.3} V)	0.3 V to 7 V 0.3 V to 7 V 0.3 V to 14 V
Logic input voltage		–0.3 V to 7 V
Continuous total power dissipation		See Dissipation Rating Table
Output current (each card): IO(VCC	;)	internally limited
IO(VPF	ý	internally limited
Operating virtual junction temperatur	é range, Tj	–40°C to 150°C
Operating free-air temperature range	, Τ _Α	–40°C to 85°C
Storage temperature range, Tstg		–55°C to 150°C
		260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

	D	ISSIPATION RATING TA	BLE	
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DB	775 mW	6.2 mW/°C	496 mW	403 mW

These devices are mounted on an FR4 board with no special thermal considerations.

recommended operating conditions

		MIN	MAX	UNIT
	V _{I(5V)}	0	5.25	V
Input voltage, V _I	V _{I(3.3V)}	0	5.25	V
	V _{I(VPPI)}	0	13.5	V
Output Current	IO(VCC)		250	mA
Output Current	lO(VPP)		150	mA
Operating virtual junction t	emperature, TJ	-40	125	°C

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APRIL 1999

electrical characteristics, $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)

power switch

	PARAM	ETER	TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT
		5 V to VCC	V _{I(5V)} = 5 V		160	210	
		3.3 V to VCC	V _{I(5V)} = 5 V, V _{I(3.3V)} = 3.3 V		160	210	mΩ
	Switch resistance	3.3 V to VCC	V _{I(5V)} = 0 V, V _{I(3.3V)} = 3.3 V		160	210	
		5 V to VPP	TJ=25°C			6	
		3.3 V to VPP	TJ=25°C			6	Ω
		12 V to VPP	TJ=25°C			1	
VO(VPP)	Clamp low voltage		I _{pp} at 10 mA			0.8	V
VO(VCC)	Clamp low voltage		I _{CC} at 10 mA			0.8	v
		I bigh impedance state	$T_A = 25^{\circ}C$		1	10	μΑ
1		IPP high-impedance state	T _A = 85°C			50	
likg	Leakage current	ICC high-impedance state	$T_A = 25^{\circ}C$		1	10	
	ICC high-i	ICC migh-impedance state	T _A =85°C			50	
		V _{I(5V)} = 5 V	V _{O(VCC)} = 5 V, V _{O(VPP)} = 12 V		40	150	
Ιŗ	Input current	$V_{I(5V)} = 0 V,$ $V_{I(3.3V)} = 3.3 V$	V _{O(VCC)} = 3.3 V, V _{O(VPP)} = 12 V		40	150	μA
		Shutdown mode	$V_{O(VCC)} = V_{O(VPP)} = Hi-Z$			1	
100	Short-circuit	IO(VCC)	$T_J = 85^{\circ}C$, output powered into a	300		600	mA
los	output-current limit	IO(VPP)	short to GND	120		400	mA

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

logic section

PARAMETER	TEST CONDITIONST	MIN	MAX	UNIT
Logic input current			1	μA
Logic input high level		2		v
Logic input low level			0.8	v
Logio autaut high loval	$V_{I(5V)} = 5 V$, $I_{O} = 1 mA$	V _{I(5V)} – 0.4		v
Logic output high level	$V_{I(5V)} = 0 V$, $I_{O} = 1 mA$, $V_{I(3.3V)} = 3.3 V$	V _{I(3.3V)} - 0.4		v
Logic output low level	I _O = 1 mA		0.4	v

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account separately.

switching characteristics[‡]

	PARAMETER	TEST CONDITIONS§		MIN TYP	MAX	UNIT	
	Rise times, output	VO(VCC)		2.8	2.8		
tr		V _{O(VPP)}		6.4		ms	
+.	Fall times, output	V _O (VCC)		4.5] 1115	
tf		VO(VPP)		12			
	Propagation delay (see Figure1)	VI(VPPD0) to VO(VPP)	ton	6.8		ms	
t _{pd}			toff	18			
		VI(VCCD1) to VO(VCC) (3.3V)	ton	4			
			toff	17			
		VI(VCCD0) to VO(VCC) (5V)	ton	6.6			
			toff	17			

 \pm Switching Characteristics are with C_L = 150 μ F. § Refer to Parameter Measurement Information

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APRIL 1999

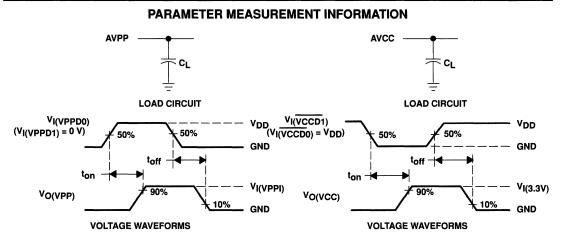


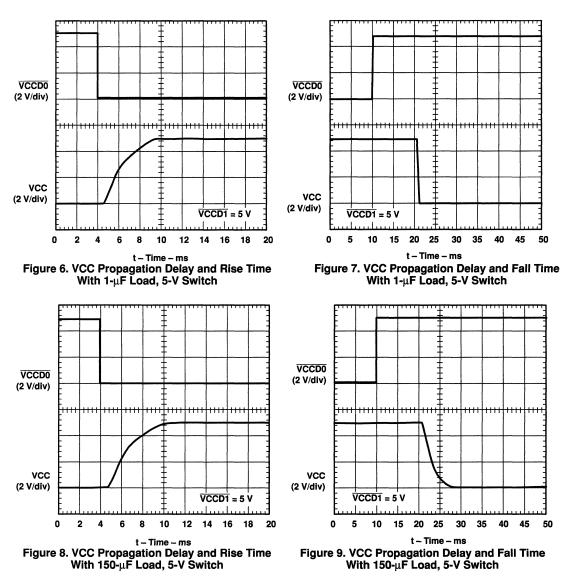
Figure 1. Test Circuits and Voltage Waveforms

	FIGURE
VCC Propagation Delay and Rise Time With 1-µF Load, 3.3-V Switch	2
VCC Propagation Delay and Fall Time With 1-µF Load, 3.3-V Switch	3
VCC Propagation Delay and Rise Time With 150-µF Load, 3.3-V Switch	4
VCC Propagation Delay and Fall Time With 150-µF Load, 3.3-V Switch	5
VCC Propagation Delay and Rise Time With $1-\mu F$ Load, 5-V Switch	6
VCC Propagation Delay and Fall Time With 1-µF Load, 5-V Switch	7
VCC Propagation Delay and Rise Time With 150-µF Load, 5-V Switch	8
VCC Propagation Delay and Fall Time With 150-µF Load, 5-V Switch	9
VPP Propagation Delay and Rise Time With 1-µF Load, 12-V Switch	10
VPP Propagation Delay and Fall Time With 1-µF Load, 12-V Switch	11
VPP Propagation Delay and Rise Time With 150-µF Load, 12-V Switch	12
VPP Propagation Delay and Fall Time With 150-µF Load, 12-V Switch	13

Table of Timing Diagrams

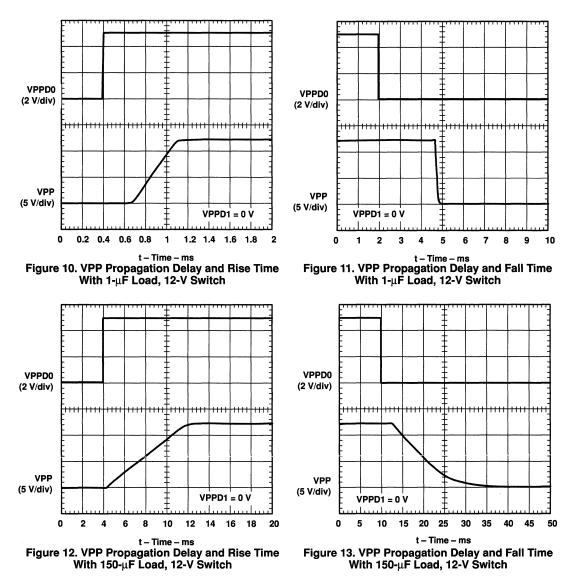
TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APRIL 1999

VCCD0 = 3.3 V VCCD0 = 3.3 V Ŧ VCCD1 VCCD1 (2 V/div) (2 V/div) ++++ +++ +++ +++ ++-VCC vcc (2 V/div) (2 V/div) 0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30 35 40 45 50 t - Time - ms t – Time – ms Figure 2. VCC Propagation Delay and Rise Time Figure 3. VCC Propagation Delay and Fall Time With 1-µF Load, 3.3-V Switch With 1-µF Load, 3.3-V Switch VCCD0 = 3.3 V VCCD0 = 3.3 V VCCD1 VCCD1 (2 V/div) (2 V/div) Ŧ ו∏ו +++++++++ +++ ++++ ŧ VCC VCC (2 V/div) (2 V/div) 15 20 25 30 0 5 10 35 40 45 2 3 5 6 7 0 1 4 8 9 10 t - Time - ms t – Time – ms Figure 4. VCC Propagation Delay and Rise Time Figure 5. VCC Propagation Delay and Fall Time With 150-µF Load, 3.3-V Switch With 150-µF Load, 3.3-V Switch


PARAMETER MEASUREMENT INFORMATION

50

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS



PARAMETER MEASUREMENT INFORMATION

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APRIL 1999

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 – APRIL 1999

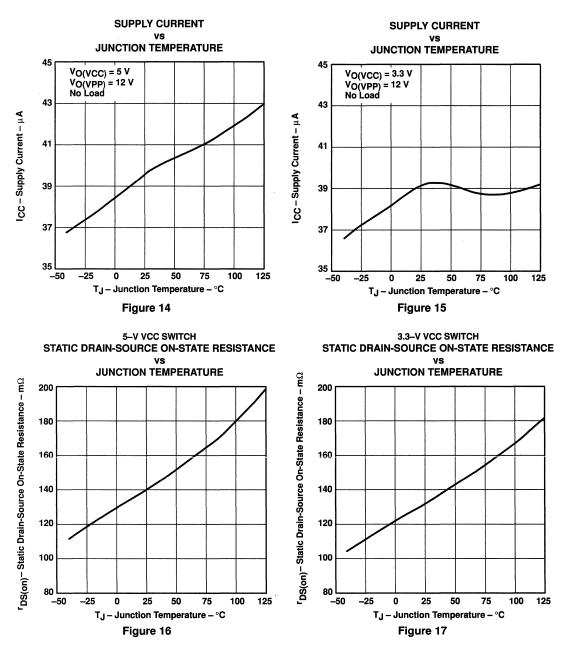
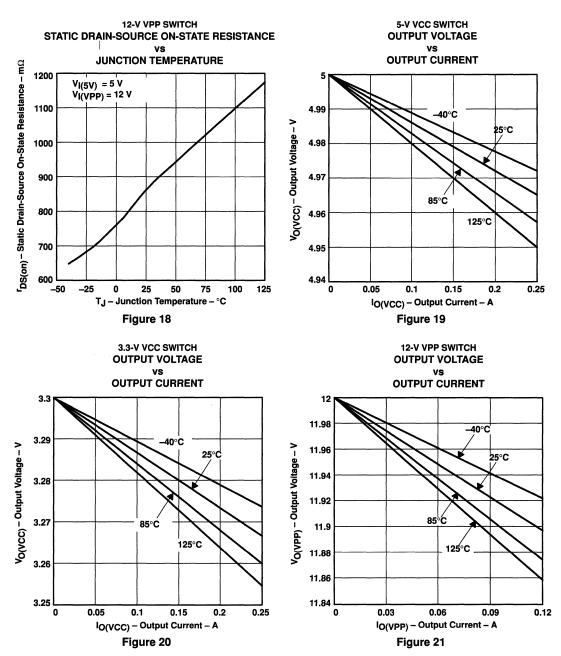
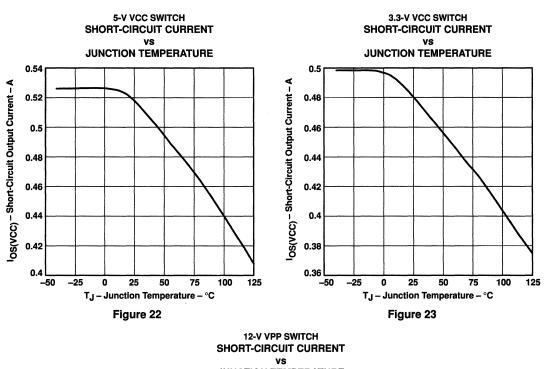
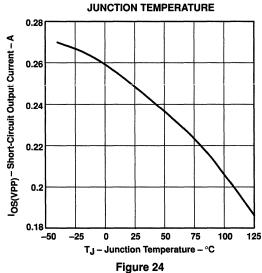

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
ICC(5V)	Supply current	vs Junction Temperature	14
ICC(3.3V)	Supply current	vs Junction Temperature	15
rDS(on)	Static drain-source on-state resistance, 5-V VCC switch	vs Junction Temperature	16
^r DS(on)	Static drain-source on-state resistance, 3.3-V VCC switch	vs Junction Temperature	17
^r DS(on)	Static drain-source on-state resistance, 12-V VPP switch	vs Junction Temperature	18
VO(VCC)	Output voltage, 5-V VCC switch	vs Output current	19
VO(VCC)	Output voltage, 3.3-V VCC switch	vs Output current	20
VO(VPP)	Output voltage, 12-V VPP switch	vs Output current	21
los(vcc)	Short-circuit current, 5-V VCC switch	vs Junction Temperature	22
IOS(VCC)	Short-circuit current, 3.3-V VCC switch	vs Junction Temperature	23
IOS(VPP)	Short-circuit current, 12-V VPP switch	vs Junction Temperature	24


TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APRIL 1999


TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS


SLVS193 - APRIL 1999

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APRIL 1999

SLVS193 - APRIL 1999

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited on-board memory. The idea of add-in cards quickly took hold; modems, wireless LANs, GPS systems, multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association) was established, comprised of members from leading computer, software, PC Card, and semiconductor manufacturers. One key goal was to realize the *plug and play* concept, i.e. cards and hosts from different vendors should be compatible.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connectors. This power interface consists of two VCC, two VPP, and four ground terminals. Multiple VCC and ground terminals minimize connector-terminal and line resistance. The two VPP terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the VCC terminals; flash-memory programming and erase voltage is supplied through the VPP terminals.

designing for voltage regulation

The current PCMCIA specification for output voltage regulation of the 5-V output is 5% (250 mV). In a typical PC power-system design, the power supply will have an output voltage regulation ($V_{PS(reg)}$) of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses (V_{PCB}) in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than 1% (50 mV) of the output voltage. Therefore the allowable voltage drop (V_{DS}) for the TPS2212 is the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$V_{DS} = V_{O(reg)} - V_{PS(reg)} - V_{PCB}$$

Typically, this would leave 100 mV for the allowable voltage drop across the TPS2212. The voltage drop is the output current multiplied by the switch resistance of the TPS2212. Therefore, the maximum output current that can be delivered to the PC Card in regulation is the allowable voltage drop across the TPS2212 divided by the output switch resistance.

$$I_{O}$$
max = $\frac{V_{DS}}{r_{DS(On)}}$

The VCC outputs deliver 250 mA continuous at 5 V and 3.3 V within regulation over the operating temperature range. Using the same equations, the PCMCIA specification for output voltage regulation of the 3.3 V output is 300 mV. Using the voltage drop percentages for power supply regulation (2%) and PCB resistive loss (1%), the allowable voltage drop for the 3.3 V switch is 200 mV. The 12-V outputs (VPP) of the TPS2212 can deliver 150 mA continuously.

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 - APPIL 1999

APPLICATION INFORMATION

overcurrent and overtemperature protection

PC Cards are inherently subject to damage from mishandling. Host systems require protection against short-circuited cards that could lead to power supply or PCB trace damage. Even systems sufficiently robust to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in a sudden loss of system power. Most hosts include fuses for protection. The reliability of fused systems is poor and requires troubleshooting and repair, usually by the manufacturer, when fuses are blown.

The TPS2212 uses sense FETs to check for overcurrent conditions in each of the VCC and VPP outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. When an overcurrent condition is detected, only the power output affected is limited; all other power outputs continue to function normally. The \overline{OC} indicator, normally a logic high, is a logic low when an overcurrent condition is detected providing for initiation of system diagnostics and/or sending a warning message to the user.

During power up, the TPS2212 controls the rise time of the VCC and VPP outputs and limits the current into a faulty card or connector. If a short circuit is applied after power is established (e.g., hot insertion of a bad card), current is initially limited only by the impedance between the short and the power supply. In extreme cases, as much as 5 A to 10 A may flow into the short before the current limiting of the TPS2212 engages. If the VCC or VPP outputs are driven below ground, the TPS2212 may latch nondestructively in an off state. Cycling power will reestablish normal operation.

Overcurrent limiting for the VCC outputs is designed to activate if powered up into a short in the range of 300 mA to 600 mA, typically at about 450 mA. The VPP outputs limit from 120 mA to 400 mA, typically around 280 mA. The protection circuitry acts by linearly limiting the current passing through the switch rather than initiating a full shutdown of the supply. Shutdown occurs only during thermal limiting.

Thermal limiting prevents destruction of the IC from overheating if the package power dissipation ratings are exceeded. Thermal limiting disables power output until the device has cooled.

12-V supply not required

Most PC Card switches use the externally supplied 12 V to power gate drive and other chip functions, which requires that power be present at all times. The TPS2212 offers considerable power savings by using an internal charge pump to generate the required higher voltages from the 5-V input. Therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Do not ground the VPPI switch input when the VPPI input is not used. Additional power savings are realized by the TPS2212 during a software shutdown in which quiescent current drops to a maximum of 1 µA.

3.3-V low-voltage mode

The TPS2212 will operate in a 3.3-V low-voltage mode when 3.3 V is the only available input voltage $(V_{I(5V)} = 0)$. This allows host and PC Cards to be operated in low-power 3.3-volts-only modes such as sleep or pager modes. Note that in these operation modes, the TPS2212 will derive its bias current from the 3.3-V input pin and only 3.3 V can be delivered to the PC Card.

SLVS193 - APRIL 1999

APPLICATION INFORMATION

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2212 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on 3.3-V compatible cards be discharged to below 0.8 V before applying 3.3-V power. This functions as a power reset and ensures that sensitive 3.3-V circuitry is not subjected to any residual 5-V charge. The TPS2212 offers a selectable VCC and VPP ground state, in accordance with PCMCIA 3.3-V/5-V switching specifications.

output ground switches

PC Card specification requires that V_{CC} be discharged within 100 ms. PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes.

power supply considerations

The TPS2212 has multiple pins for each of its 3.3-V and 5-V power inputs and for the switched VCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is significantly higher than that specified, resulting in increased voltage drops and lost power. It is recommended that all input and output power pins be paralleled for optimum operation.

To increase the noise immunity of the TPS2212, the power supply inputs should be bypassed with a 1- μ F electrolytic or tantalum capacitor paralleled by a 0.047- μ F to 0.1- μ F ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a 0.1- μ F, or larger, ceramic capacitor; doing so improves the immunity of the TPS2212 to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the TPS2212 and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken below –0.3 V.

calculating junction temperature

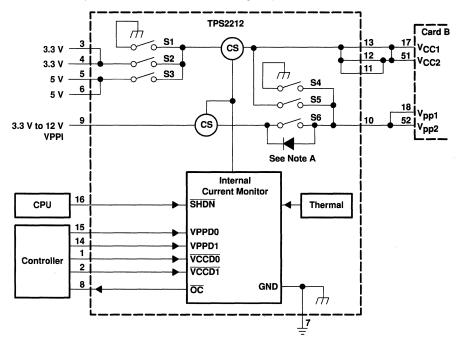
The switch resistance, $r_{DS(on)}$, is dependent on the junction temperature, T_J , of the die and the current through the switch. To calculate T_J , first find $r_{DS(on)}$ from Figures 16 through 18 using an initial temperature estimate about 50°C above ambient. Then calculate the power dissipation for each switch, using the formula:

$$P_D = r_{DS(on)} \times l^2$$

Next, sum the power dissipation and calculate the junction temperature:

$$T_{J} = \left(\sum P_{D} \times R_{\theta JA}\right) + T_{A}, R_{\theta JA} = 108^{\circ}C/W$$

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.



TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 – APPIL 1999

APPLICATION INFORMATION

ESD protection

All TPS2212 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-bodymodel discharge as defined in MIL-STD-883C, Method 3015. The VCC and VPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu$ F capacitors protects the devices from discharges up to 10 kV.

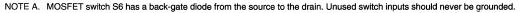


Figure 25. Internal Switching Matrix, TPS2212 Control Logic

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS SLVS193 – APRIL 1999

APPLICATION INFORMATION

TPS2212 control logic

VPP

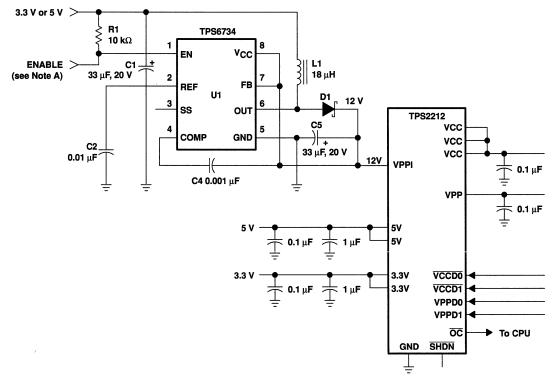
(CONTROL SIGNAL	S	INTE	INTERNAL SWITCH SETTINGS			
SHDN	VPPD0	VPPD1	S4	S5	S6	VPP	
1	0	0	CLOSED	OPEN	OPEN	0 V	
1	0	1	OPEN	CLOSED	OPEN	vcc†	
1	1	0	OPEN	OPEN	CLOSED	VPPI	
1	1	1	OPEN	OPEN	OPEN	Hi-Z	
0	X	X	OPEN	OPEN	OPEN	Hi-Z	

[†]Output depends on AVCC

VCC

CONTROL SIGNALS			INTEF	OUTPUT		
SHDN	VCCD1	VCCD0	S1	S2	S3	VCC
1	0	0	CLOSED	OPEN	OPEN	0 V
1	0	1	OPEN	CLOSED	OPEN	3.3 V
1	1	0	OPEN	OPEN	CLOSED	5 V
1	1	1	CLOSED	OPEN	OPEN	0 V
0	x	X	OPEN	OPEN	OPEN	Hi-Z

TPS2212 SINGLE-SLOT, PARALLEL INTERFACE POWER SWITCH FOR LOW POWER PC CARD SLOTS


SLVS193 - APRIL 1999

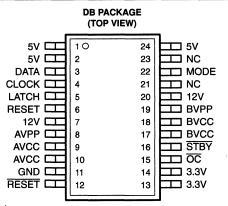
APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 26, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in² of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to 3 µA when 12 V is not needed.

The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the 0.7-Ω MOSFET and improve efficiency at input voltages below 5 V. Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a generall purpose I/O terminal on the PCMCIA controller or tied high.


Figure 26. TPS2212 with TPS6734 12-V, 120-mA Supply

SLVS206A - JULY 1999

- Fully Integrated xVCC and xVPP Switching
- xVPP Programmed Independent of xVCC
- 3.3-V, 5-V, and/or 12-V Power Distribution
- Low r_{DS(on)} (60-mΩ xVCC Switch Typical)
- Short Circuit and Thermal Protection
- 150-µA (Maximum) Quiescent Current
- Standby Mode: 50-mA Current Limit (Typ)
- 12-V Supply Can Be Disabled
- 3.3-V Low-Voltage Mode
- Meets PC Card[™] Standards
- TTL-Logic Compatible Inputs
- Break-Before-Make Switching
- Internal Power-On Reset

description

[†] The TPS2214 is identical to the TPS2216 in all respects except packaging and pin assignments.
NC No interpol connection

NC - No internal connection

The TPS2214 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit. This device allows the distribution of 3.3-V, 5-V, and/or 12-V power to the card. The current-limiting feature eliminates the need for fuses. Current-limit reporting can help the user isolate a system fault.

The TPS2214 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5-V power. This feature facilitates low-power system designs such as sleep modes where only 3.3 V is available. This device also has the ability to program the xVPP outputs independent of the xVCC outputs. A standby mode that changes all output-current limits to 50 mA (typical) has been incorporated.

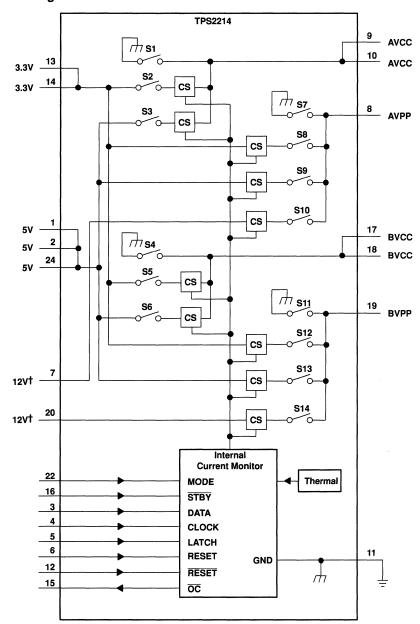
End-equipment applications for the TPS2214 include: notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.

AVAILABLE OF HONS			
	PACKAGED DEVICEST		
Тј	PLASTIC SMALL OUTLINE (DB)		
-40°C to 125°C	TPS2214DB(R)		

AVAILABLE ODTIONS

[†] The DB package is available in tubes and left-end taped and reeled. Add R suffix to device type (e.g., TPS2214DBR) for taped and reeled.

PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association).


Copyright © 1999, Texas Instruments Incorporated

Terminal Functions

TERMINAL		1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
3.3V	13,14	I	3.3-V input for card power and/or chip power if 5 V is not present	
5V	1, 2, 24	1	5-V input for card power and/or chip power	
12V	7, 20	I	12-V V _{pp} input card power	
AVCC	9, 10	0	VCC output: 3.3-V, 5-V, GND or high impedance to card	
AVPP	8	0	VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card	
BVCC	17, 18	0	VCC output: 3.3-V, 5-V, GND or high impedance to card	
BVPP	19	0	VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card	
GND	11		Ground	
MODE	22	1	TPS2206 operation when floating or pulled low; must be pulled high externally for TPS2214 operation. MODE is internally pulled low with a 150-k Ω pulldown resistor.	
ŌĊ	15	0	Logic-level output that goes low when an overcurrent or overtemperature condition exists.	
RESET	6	1	Logic-level reset input active high. Do not connect if $\overrightarrow{\text{RESET}}$ pin is used. RESET is internally pulled low with a 150-k Ω pulldown resistor.	
RESET	12	1	Logic-level reset input active low. Do not connect if RESET pin is used. The pin is internally pulled high with a 150-kΩ pullup resistor.	
STBY	16	1	Logic-level active low input sets the TPS2214 to standby mode and sets all current limits to 50 mA. The pin is internally pulled high with a 150-k Ω pullup resistor.	
CLOCK	4	1	Logic-level clock for serial data word	
DATA	3	1	Logic-level serial data word	
LATCH	5	1	Logic-level latch for serial data word	
NC	21, 23		No internal connection	

[†]Both 12V pins must be connected together.

SLVS206A - JULY 1999

absolute maximum ratings over operating virtual free-air temperature (unless otherwise noted)[†]

Input voltage range for card power: VI(3.3V)	–0.3 V to 6 V
V _{I(5V)}	
$V_{l(12V)}$	–0.3 V to 14 V
Logic input voltage	
Output voltage range: V _{O(xVCC)}	
V _{O(xVPP)}	
Continuous total power dissipation	. See Dissipation Rating Table
Output current: I _{O(xVCC)}	Internally limited
Output current: I _{O(xVCC)}	Internally limited
	Internally limited
Output current: I _{O(xVCC)}	Internally limited Internally limited Internally limited -40°C to 125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR [‡]	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE $T_A = 25^{\circ}C$	POWER RATING	POWER RATING
DB	890 mW	8.90 mW/°C	489 mW	356 mW

[‡] These devices are mounted on an JEDEC low-k board (2 oz. traces on surface), 1-W power applied.

recommended operating conditions

		MIN	MAX	UNIT
	V _{I(3.3V)}	2.7	5.25	v
Input voltage, V _I	V _{I(5V)}	2.7	5.25	v
	V _{I(12V)}	2.7	13.5	v
Output current, IO	$I_O(VCC)$ at $T_A = 70^{\circ}C$		1	Α
Output current, 10	IO(VPP) at T _A = 70°C		200	mA
Clock frequency			2.5	MHz
	Data	200		
Pulse duration	Latch	250		ns
	Clock	100		
Data hold time§		100		ns
Data setup time§		100		ns
Latch delay time§		100		ns
Clock delay time§		250		ns
Operating virtual junc	tion temperature, TJ	-40	125	°C

§ Refer to Figures 2 and 3.

electrical characteristics, $T_J = 25^{\circ}C$, $V_{I(5V)} = 5 V$, $V_{I(3.3V)} = 3.3 V$, $V_{I(12V)} = 12 V$, STBY floating, all outputs unloaded (unless otherwise noted)

power switch

	PAR	AMETER			TEST CONDITION	ONS	MIN	TYP	MAX	UNIT	
				Тј = 25°С,	I _O = 1 A			60	85		
		3.3 V to xVCC, with one		TJ = 125°C,	I _O = 1 A			90	120		
		switch on		Тј = 25°С,	$V_{I(5V)} = 0,$	I _O = 1 A		65	85		
				T _J = 125°C,	$V_{I(5V)} = 0,$	I _O = 1 A		90	130		
		5 V to xVCC, with	one	Тј = 25°С,	I _O = 1 A			60	85		
		switch on		TJ = 125°C,	l _O = 1 A			90	120		
				Тј = 25°С,	IO = 1 A each			65	105	mΩ	
		3.3 V to xVCC, with	h two	Тј = 125°C,	I _O = 1 A each			95	140		
	Switch	switches on		Тј = 25°С,	$V_{I(5V)} = 0,$	I _O = 1 A each		70	105		
	resistance [†]			TJ = 125°C,	$V_{I(5V)} = 0,$	I _O = 1 A each		100	140		
		5 V to xVCC, with	two	Тј = 25°С,	IO = 1 A each			70	105		
		switches on		TJ = 125°C,	IO = 1 A each			100	140		
		0.01//51//101/15		Тј = 25°С,	l _O = 50 mA			0.7	1		
		3.3 V/5 V/12 V to x	VPP	Тј = 125°С,	l _O = 50 mA			1.4	2.5		
				Т _Ј = 25°С,	STBY = low,	I _O = 30 mA		1.4	2	~	
		3.3 V/5 V to xVCC		Тј = 125°С,	STBY = low,	I _O = 30 mA		2	3	Ω	
		3.3 V/5 V/12 V to xVPP		TJ = 25°C,	STBY = low,	I _O = 30 mA		5	7		
				Тј = 125°C,	STBY = low,	IO = 30 mA		10	16		
	Clamp low VO(xVCC)		O(xVCC) at	10 mA, After res	et		0.275	0.8	v		
	voltage	VO(xVPP)		IO(xVPP) at 10 mA, After reset				0.275	0.8	v	
		IO(xVCC) High-impedance state IO(xVPP) High-impedance state		Tj = 25°C				1	10		
I	Lookogo ourront			Tj = 125°C				2	50	μA	
lkg	Leakage current			Тј = 25°С				1	10	<u>יי בי</u>	
				Тј = 125°С				2	50		
		IO(xVCC)		$T_{.1} = 85^{\circ}C$, output powered into a short to GND		1		2.2	Α		
	Short-circuit	IO(xVPP)		$I_{J} = 85^{\circ}C$, output powered into a short to GND		250		500	mA		
los	output current	Standby mode IO((VCC)	TJ = 85°С,			35	50	65		
	limit [†]	Standby mode I _{O(xVPP)}		Output powered into a short to GND, STBY = 0 V		30	50	60	mA		
			(VPP)								
	Current limit response time‡	xVCC switch xVPP switch		100-mΩ shor	t circuit			100		μs	
		XVPP Switch	T					16	2		
			^I I(3.3V)	V	V	,		0.01	2 120		
		Normal operation	II(5V)	VO(xVCC) =	VO(xVPP) = 5 \	,		6	120	μΑ	
II Input current§	and in reset	^I I(12V)					100	120			
	mode	¹ I(3.3V)	$V_{I(5V)} = 0,$					120			
	input currents	(5V)		VO(xVCC) = VO(xVPP) =	3.3 V, 12 V			22	30	μA	
			li(12V)	· U(XVPP) =				22			
		Shutdown mode	¹ I(3.3V)	Variation		⊔i 7			1		
		Shutdown mode II(5V)		×O(xVCC) =	Hi-Z, VO(xVPF	p) = ⊓-∠			1	μA	
		Trip a slat T	^I I(12V)					455	1		
	Thermal	Trip point, TJ						155		°C	
	shutdown‡	Hysteresis						10			

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature (250-µs-wide pulse, less than 0.5% duty cycle); thermal effects must be taken into account separately.

[‡] Specified by design, not tested in production.

§ Input currents do not include logic input currents (presented in electrical characteristics for logic section); clock is inactive.

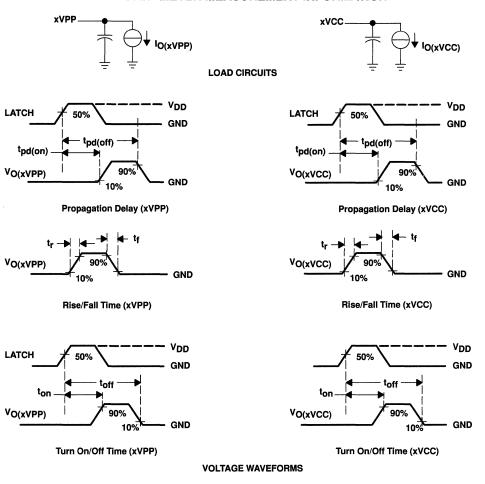
NOTE: $V_{I(3,3V)}$ or $V_{I(5V)}$ must be biased for switches to function.

logic section (CLOCK, DATA, LATCH, MODE, RESET, RESET, STBY, OC)

	PARAMETER	TEST CONDITIONS	MIN	ΤΥΡ	MAX	UNIT
		$V_{I(RESET)} = 5 V \text{ or } V_{I(RESET)} = 0 V$		30	50	
	II(RESET) or II(RESET) [†]	$V_{I(RESET)} = 0 V \text{ or } V_{I(RESET)} = 5 V$			1	
	t	VI(MODE) = 5 V		30	50	
Logic input current	II(MODE) ^T	VI(MODE) = 0 V			1	μA
	II(STBY) [†]	$V_{I}(\overline{STBY}) = 5 V$			1	
		$V_{I}(\overline{STBY}) = 0 V$		30	50	
	II(CLOCK) or II(DATA) or II(LATCH)				1	
Logic input high love	1	V _{I(5V)} = 5 V	2			v
Logic input high leve		V _{I(5V)} = 0 V	2			v
Logic input low level					0.8	٧
Logic output high level, OC		V _{I(5V)} = 5 V, I _O = 1 mA	V _{I(5V)} -0.4			v
		V _{I(5V)} = 0 V, I _O = 1 mA	V _{I(3.3V)} -0.4			v
Logic output low level, OC		I _O = 1 mA			0.4	v

[†]RESET and MODE have internal 150-k Ω pulldown resistors; RESET and STBY have internal 150-k Ω pullup resistors.

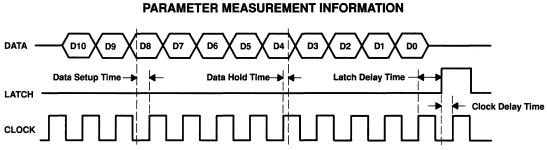
	PARAMETER [†]	LOAD CONDITION [†]	TEST CONDITIO	NS†	MIN TYP	MAX	UNIT
		C _L (xVCC) = 0.1 μF, C _L (xVPP) = 0.1 μF,	VO(xVCC)	VO(xVCC)			
	Output rise times‡	$I_{O(xVCC)} = 0$ $I_{O(xVPP)} = 0$	V _{O(xVPP)}		0.8		ms
tr		C _{L(XVCC)} = 150 μF, C _{L(XVPP)} = 10 μF,	V _{O(xVCC)}	VO(xVCC)			
		$I_O(xVCC) = 1 A,$ $I_O(xVPP) = 50 mA$	V _{O(xVPP)}		2.5		
		$C_{L(xVCC)} = 0.1 \mu\text{F},$ $C_{L(xVPP)} = 0.1 \mu\text{F},$	V _{O(xVCC)}		0.01		
ŀf	Output fall times‡	$I_O(xVCC) = 0$ $I_O(xVPP) = 0$	V _{O(xVPP)}		0.01		ms
Ŧ	Output fail times+	C _{L(xVCC)} = 150 μF, C _{L(xVPP)} = 10 μF,	VO(xVCC)		3		115
		$I_O(xVCC) = 1 A,$ $I_O(xVPP) = 50 mA$	V _{O(xVPP)}		8		
			Latch↑ to xVPP (12 V)	^t pd(on)	3		
				^t pd(off)	25		
			Latch↑ to xVPP (5 V)	^t pd(on)	0.6		l
			^t pd(off)	8.5			
			Latch↑ to xVPP (3.3 V),	^t pd(on)	0.6		ms
		C _{L(xVCC)} = 0.1 μF,	V _{I(5V)} = 5 V	^t pd(off)	9		
		$C_{L(xVPP)} = 0.1 \mu\text{F},$	Latch↑ to xVPP (3.3 V), VI(5V) = 0 V	^t pd(on)	1.4		
		I _{O(xVCC)} = 0§, I _{O(xVPP)} = 0§		^t pd(off)	9		
			Latch↑ to xVCC (5 V)	^t pd(on)	0.3		
				^t pd(off)	15		
			Latch↑ to xVCC (3.3 V), V _{I(5V)} = 5 V	tpd(on)	0.2		
				^t pd(off)	15		
			Latch↑ to xVCC (3.3 V), VI(5V) = 0 V	^t pd(on)	0.4		
	Propagation delay‡			^t pd(off)	15		
pd	i topagation delay		Latch1 to xVPP (12 V)	tpd(on)	4.5		
				^t pd(off)	13		
			Latch1 to xVPP (5 V)	^t pd(on)	3.3		
				tpd(off)	8		
			Latch↑ to xVPP (3.3 V),	t _{pd(on)}	3		
		C _{L(xVCC)} = 150 μF,	V _{I(5V)} = 5 V	^t pd(off)	9		
		$C_{L(xVPP)} = 10 \mu\text{F},$	Latch↑ to xVPP (3.3 V),	t _{pd(on)}	3		
		$I_O(xVCC) = 1 A,$	V _{I(5V)} = 0 V	tpd(off)	9		
		IO(xVPP) = 50 mA		tpd(on)	1		
			Latch1 to xVCC (5 V)	^t pd(off)	12		
			Latch [↑] to xVCC (3.3 V),	t _{pd(on)}	0.6		
			V _{I(5V)} = 5 V	^t pd(off)	12		
			Latch↑ to xVCC (3.3 V),	tpd(on)	1		
			$V_{I(5V)} = 0 V$	tpd(off)	12		


switching characteristics

[†] Refer to Parameter Measurement Information

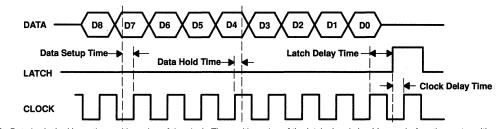
[‡] Specified by design: not tested in production.

§ No card inserted, assumes 0.1-μF recommended output capacitor (see Figure 34).



PARAMETER MEASUREMENT INFORMATION

Figure 1. Test Circuits and Voltage Waveforms



SLVS206A - JULY 1999

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D10, see the control logic table.

Figure 2. Serial-Interface Timing for Independent xVPP Switching When MODE = 5 V or 3.3 V

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D8, see the control logic table.

Figure 3. Serial-Interface Timing When MODE = 0 V or Floating

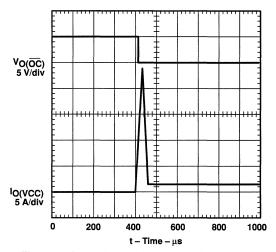
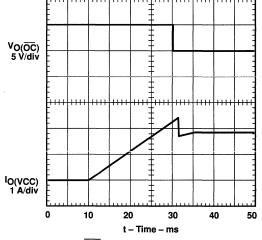
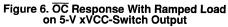

Table of Timing Diagrams[†]

	FIGURE
Short-circuit current response, short applied to powered-on 5-V xVCC switch output	4
Short-circuit current response, short applied to powered-on 12-V xVPP switch output	5
OC response with ramped load on 5-V xVCC switch output	6
OC response with ramped load on 12-V xVPP switch output	7


[†] Timing tests are conducted at free-air temperature, V_{I(5V)} = 5 V, V_{I(3.3V)} = 3.3 V, V_{I(12V)} = 12 V, C_L = 0.1 μF on each output, STBY floating.




SLVS206A - JULY 1999

PARAMETER MEASUREMENT INFORMATION

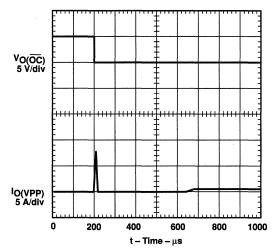
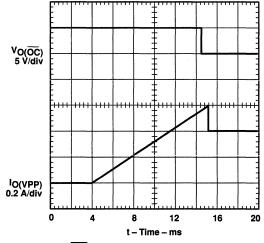
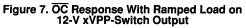




Figure 5. Short-Circuit Response, Short Applied to Powered-On 12-V xVPP-Switch Output

SLVS206A - JULY 1999

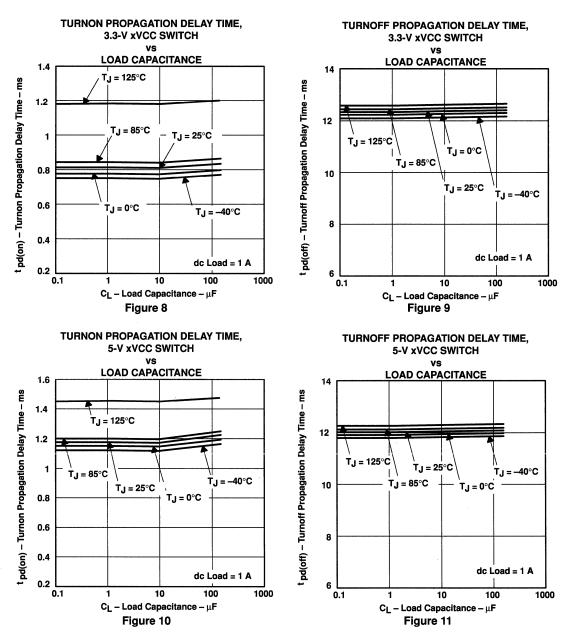
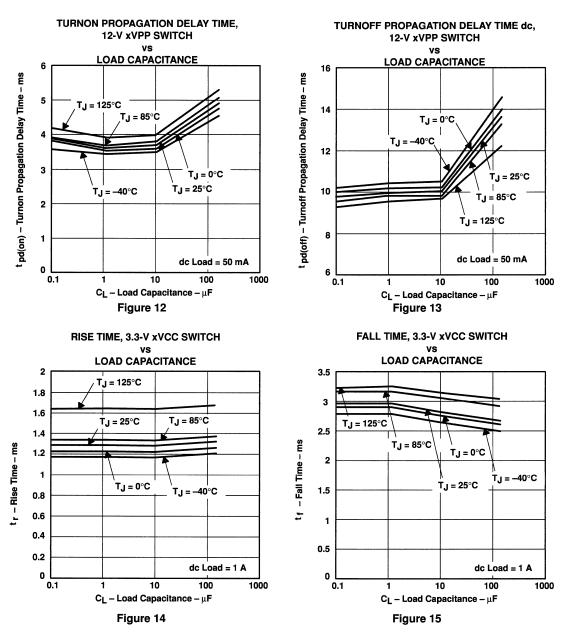
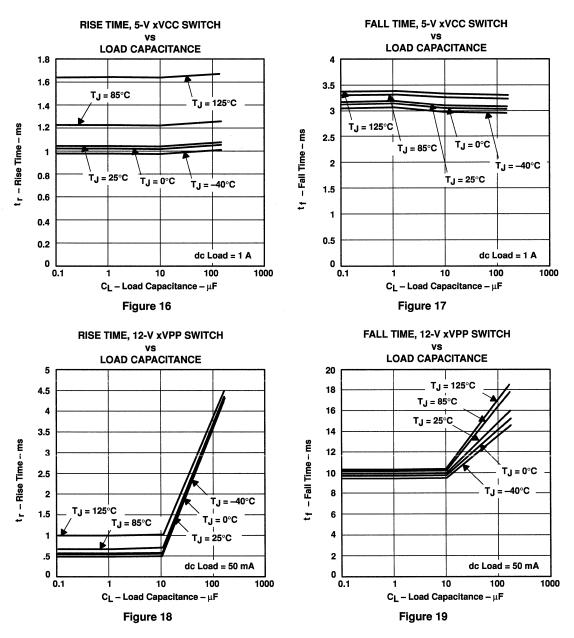

TYPICAL CHARACTERISTICS

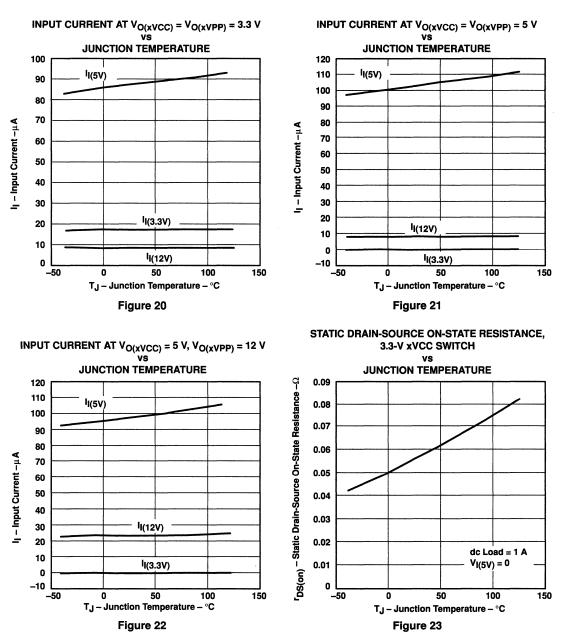
Table of Graphs

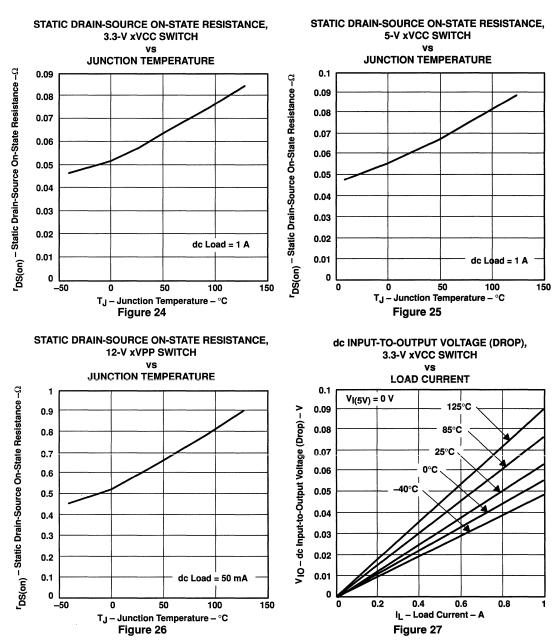
			FIGURE
^t pd(on)	Turnon propagation delay time, 3.3-V xVCC switch	vs Load capacitance	8
^t pd(off)	Turnoff propagation delay time, 3.3-V xVCC switch	vs Load capacitance	9
^t pd(on)	Turnon propagation delay time, 5-V xVCC switch	vs Load capacitance	10
^t pd(off)	Turnoff propagation delay time, 5-V xVCC switch	vs Load capacitance	11
^t pd(on)	Turnon propagation delay time, 12-V xVPP switch	vs Load capacitance	12
^t pd(off)	Turnoff propagation delay time, 12-V xVPP switch	vs Load capacitance	13
tr	Rise time, 3.3-V xVCC switch	vs Load capacitance	14
tf	Fall time, 3.3-V xVCC switch	vs Load capacitance	15
tr	Rise time, 5-V xVCC switch	vs Load capacitance	16
tf	Fall time, 5-V xVCC switch	vs Load capacitance	17
t _r	Rise time, 12-V xVPP switch	vs Load capacitance	18
tf	Fall time, 12-V xVPP switch	vs Load capacitance	19
	Input current at VO(xVCC) = VO(xVPP) =3.3 V	vs Junction temperature	20
ų	Input current at V _{O(xVCC)} = V _{O(xVPP)} =5 V	vs Junction temperature	21
	Input current at V _{O(xVCC)} = 5 V, V _{O(xVPP)} =12 V	vs Junction temperature	22
	Static drain-source on-state resistance, 3.3-V xVCC switch (VI(5V)=0)	vs Junction temperature	23
	Static drain-source on-state resistance, 3.3-V xVCC switch	vs Junction temperature	24
^r DS(on)	Static drain-source on-state resistance, 5-V xVCC switch	vs Junction temperature	25
	Static drain-source on-state resistance, 12-V xVPP switch	vs Junction temperature	26
	dc input-to-output voltage (drop), 3.3-V xVCC switch (VI(5V)=0)	vs Load current	27
VIO(xVCC)	dc input-to-output voltage (drop), 3.3-V xVCC switch	vs Load current	28
· · ·	dc input-to-output voltage (drop), 5-V xVCC switch	vs Load current	29
VIO(xVPP)	dc input-to-output voltage (drop), 12-V xVPP switch	vs Load current	30
	Short-circuit current limit, 3.3-V xVCC switch	vs Junction temperature	31
los	Short-circuit current limit, 5-V xVCC switch	vs Junction temperature	32
	Short-circuit current limit, 12-V xVPP switch	vs Junction temperature	33


NOTE: Electrical characteristics tests are conducted at VI(5V) = 5 V, VI(3.3V) = 3.3 V, VI(12V) = 12 V, CL = 0.1 µF on each output, STBY floating (unless otherwise noted on Figures).

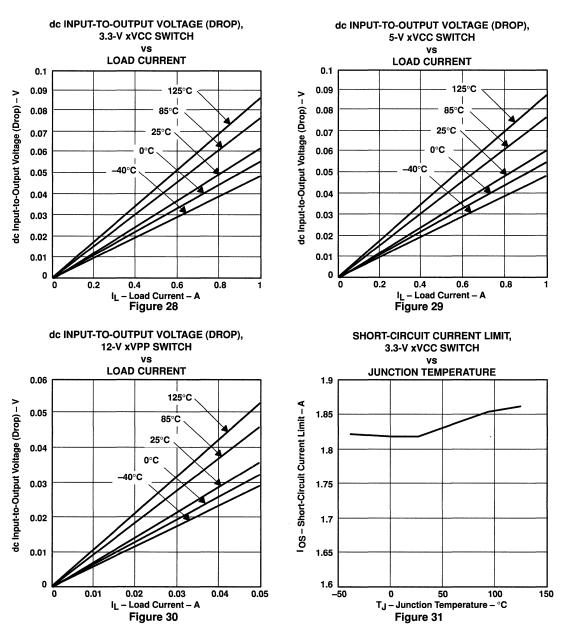


SLVS206A - JULY 1999





SLVS206A - JULY 1999



SLVS206A - JULY 1999

SLVS206A - JULY 1999

SHORT-CIRCUIT CURRENT LIMIT, 5-V xVCC SHORT-CIRCUIT CURRENT LIMIT, 12-V xVPP SWITCH SWITCH vs VS JUNCTION TEMPERATURE JUNCTION TEMPERATURE 1.9 0.4 OS – Short-Circuit Current Limit – A OS – Short-Circuit Current Limit – A 1.85 0.38 1.8 0.36 1.75 0.34 1.7 0.32 1.65 1.6 0.3 -50 ٥ 50 100 150 -50 0 50 100 150 T_{.1} – Junction Temperature – °C T_J – Junction Temperature – °C Figure 32 Figure 33

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association), comprising members from leading computer, software, PC Card, and semiconductor manufacturers, was established. One key goal was to realize the plug-and-play concept. Cards and hosts from different vendors should be compatible or able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connector. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

APPLICATION INFORMATION

designing for voltage regulation

The current PCMCIA specification for output voltage regulation, $V_{O(reg)}$, of the 5-V output is 5% (250 mV). In a typical PC power-system design, the power supply has an output-voltage regulation, $V_{PS(reg)}$, of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses, V_{PCB} , in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than 1% (50 mV) of the output voltage. Therefore, the allowable voltage drop, V_{DS} , for the TPS2214 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

$$V_{DS} = V_{O(reg)} - V_{PS(reg)} - V_{PCB}$$

Typically, this would leave 100 mV for the allowable voltage drop across the 5-V switch. The specification for output voltage regulation of the 3.3-V output is 300 mV; so, using the same equation by deducting the voltage drop percentages (2%) for power-supply regulation and PCB resistive loss (1%), the allowable voltage drop for the 3.3-V switch is 200 mV. The voltage drop is the output current multiplied by the switch resistance of the TPS2214. Therefore, the maximum output current, I_O max, that can be delivered to the PC Card in regulation is the allowable voltage drop across the IC, divided by the output-switch resistance.

$$I_O^{max} = \frac{V_{DS}}{r_{DS(on)}}$$

The xVCC outputs can deliver 1 A continuously at 5 V and 3.3 V within regulation over the operating temperature range. The xVPP outputs of the IC can deliver 200 mA continuously.

overcurrent and overtemperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power-supply or PCB trace damage. Even systems robust enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.

The TPS2214 takes a two-pronged approach to overcurrent protection, which is designed to activate if an output is shorted or when an overcurrent condition is present when switches are powered up. First, instead of fuses, sense FETs monitor each of the xVCC and xVPP power outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. Excessive current generates an error signal that limits the output current of only the affected output, preventing damage to the host. Each xVCC output overcurrent limits from 1 A to 2.2 A, typically around 1.6 A; the xVPP outputs limit from 250 mA to 500 mA, typically around 375 mA.

Second, when an overcurrent condition is detected, the TPS2214 asserts an active low \overline{OC} signal that can be monitored by the microprocessor or controller to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates. This shuts down all power outputs until the device cools to within a safe operating region, which is ensured by a thermal shutdown hysteresis.

SLVS206A - JULY 1999

APPLICATION INFORMATION

12-V supply not required

Many PC Card switches use the externally supplied 12 V to power gate drive and other chip functions; this requires that power be present at all times. The TPS2214 offers considerable power savings by using an internal charge pump to generate the required higher gate drive voltages from the 5-V or 3.3-V power supplies. Therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Additional power savings are realized by the IC during shutdown mode, in which quiescent current drops to a maximum of 1 µA.

3.3-V low-voltage mode

The TPS2214 will operate in 3.3-V low-voltage mode when 3.3 V is the only available input voltage (VI(5V) = 0, $V_{I(12V)} = 0$). This feature allows host and PC Cards to be operated in low-power 3.3-V-only modes such as sleep modes. Note that in this operation mode, the IC will derive its bias current from the 3.3-V input pin and can only provide 3.3 V to the outputs.

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2214 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on 3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This action ensures that sensitive 3.3-V circuitry is not subjected to any residual 5-V charge and functions as a power reset. PC Card specification requires that V_{CC} be discharged within 100 ms. PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. The TPS2214 includes discharge transistors on all xVCC and xVPP outputs to meet the specification requirement.

shutdown mode

In the shutdown mode, which can be controlled by bit D8 of the input serial DATA word, each of the xVCC and xVPP outputs is forced to a high-impedance state. In this mode, the chip quiescent current is limited to 1 µA or less to conserve battery power.

standby mode

The TPS2214 can be put in standby mode by pulling STBY low to conserve power during low-power operation. In this mode, all of the power outputs (xVCC and xVPP) will have a nominal current limit of 50 mA. STBY has an internal 150-k Ω pullup resistor. The output-switch status of the device must be set, allowing the output capacitors to charge, prior to enabling the standby mode. Changing the setting of the output switches with the device in standby mode may cause an overcurrent response to be generated.

mode

The mode pin programs the switches in either TPS2214 or TPS2206 mode. An internal 150-k Ω pulldown resistor is connected to the pin. Floating or pulling the mode pin low sets the switches in TPS2206 mode; pulling the mode pin high sets the switches in TPS2214 mode. In TPS2206 mode, xVPP outputs are dependent on xVCC outputs. In TPS2214 mode, xVPP is programmed independent of xVCC. Refer to TPS2214 control-logic tables for more information.

APPLICATION INFORMATION

power supply considerations

The TPS2214 has multiple pins for each of its 3.3-V and 5-V power inputs and for the switched xVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is higher than that specified, resulting in increased voltage drops and less power. It is recommended that all input and output power pins be paralleled for optimum operation. Because the two 12-V pins are not internally connected, they must be tied together externally.

To increase the noise immunity of the TPS2214, the power-supply inputs should be bypassed with a $1-\mu F$ electrolytic or tantalum capacitor paralleled by a $0.047-\mu F$ to $0.1-\mu F$ ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a $0.1-\mu F$ (or larger) ceramic capacitor; doing so improves the immunity of the IC to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the IC and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken, or allowed to fall, below -0.3 V.

RESET and RESET inputs

To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at the same time as the host by applying low impedance paths from xVCC and xVPP terminals to ground. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The active-high RESET or active low RESET input will close internal switches S1, S4, S7, and S11 with all other switches left open. The TPS2214 remains in the low-impedance output state until the signal is deasserted and further data is clocked in and latched. The input serial data can not be latched during Reset mode. RESET and RESET are provided for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The RESET pin has an internal 150-k Ω pulldown resistor and the RESET pin has an internal 150-k Ω pullup resistor. The device will be reset automatically when powered up.

calculating junction temperature

The switch resistance, $r_{DS(on)}$, is dependent on the junction temperature, T_J , of the die. The junction temperature is dependent on both $r_{DS(on)}$ and the current through the switch. To calculate T_J , first find $r_{DS(on)}$ from Figures 23 through 26, using an initial temperature estimate about 50°C above ambient. Then calculate the power dissipation for each switch, using the formula:

$$P_D = r_{DS(on)} \times I^2$$

Next, sum the power dissipation of all switches and calculate the junction temperature:

$$\mathsf{T}_{\mathsf{J}} = \left(\sum \mathsf{P}_{\mathsf{D}} \times \mathsf{R}_{\theta \mathsf{J} \mathsf{A}}\right) + \mathsf{T}_{\mathsf{A}}$$

Where:

 $R_{\theta JA}$ is the inverse of the derating factor given in the dissipation rating table.

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic inputs and outputs

The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive edge of the clock (see Figures 2 and 3). The 11-bit (D0–D10) serial data word is loaded during the positive edge of the latch signal. The positive edge of the latch signal should occur before the next positive edge of the clock occurs.

SLVS206A - JULY 1999

APPLICATION INFORMATION

logic inputs and outputs (continued)

The TPS2214 serial interfaces are compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan Electronic Industry Development Association (JEIDA) standards.

An overcurrent output (\overline{OC}) is provided to indicate an overcurrent or overtemperature condition in any of the xVCC and xVPP outputs as previously discussed.

TPS2214 control logic

TPS2214 mode (MODE pulled high)

xVPP

	AVPP CONTROL SIGNALS			OUTPUT	BVPP CONTROL SIGNALS				OUTPUT
D8 (SHDN)	D0	D1	D9	V_AVPP	D8 (SHDN)	D4	D5	D10	V_BVPP
1	0	0	X	0 V	1	0	0	Х	0 V
1	0	1	0	3.3 V	1	0	1	0	3.3 V
1	0	1	1	5 V	1	0	1	1	5 V
1	1	0	Х	12 V	1	1	0	Х	12 V
1	1	1	Х	Hi-Z	1	1	1	Х	Hi-Z
0	x	X	X	Hi-Z	0	x	X	х	Hi-Z

xVCC

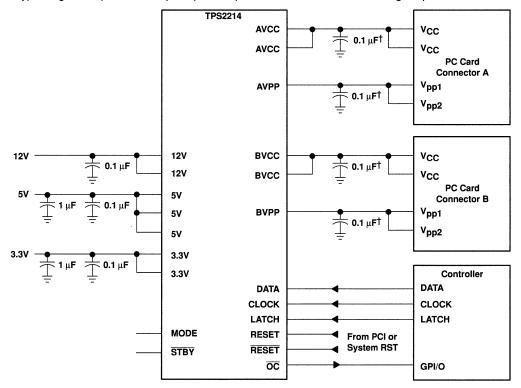
	AVCC CONTROL SIGNALS		OUTPUT	BVCC CONTROL SIGNALS			OUTPUT
D8 (SHDN)	D3	D2	V_AVCC	D8 (SHDN)	D6	D7	V_BVCC
1	0	0	0 V	1	0	0	0 V
1	0	1	3.3 V	1	0	1	3.3 V
1	1	0	5 V	1	1	0	5 V
1	1	1	0 V	1	1	1	0 V
0	Х	Х	Hi-Z	0	Х	Х	Hi-Z

TPS2206 mode (MODE floating or pulled low)

xVPP

	AVPP CONTROL SIGNALS		OUTPUT	BVPF	OUTPUT		
D8 (SHDN)	D0	D1	V_AVPP	D8 (SHDN)	D4	D5	V_BVPP
1	0	0	0 V	1	0	0	0 V
1	0	1	V_AVCC	1	0	1	V_BVCC
1	1	0	12 V	1	1	0	12 V
1	1	1	Hi-Z	1	1	1	Hi-Z
0	х	х	Hi-Z	0	х	Х	Hi-Z

xVCC


D8 (SHDN)	AVCC CONTROL SIGNALS		OUTPUT	BVCC CONTROL SIGNALS			OUTPUT
	D3	D2	V_AVCC	D8 (SHDN)	D6	D7	V_BVCC
1	0	0	0 V	1	0	0	0 V
1	0	1	3.3 V	1	0	1	3.3 V
1	1	0	5 V	1	1	0	5 V
1	1	1	0 V	1	1	1	0 V
0	Х	Х	Hi-Z	0	X	Х	Hi-Z

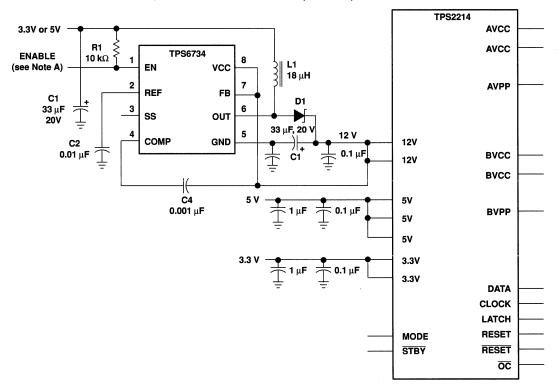
APPLICATION INFORMATION

ESD protections (see Figure 34)

All TPS2214 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-body-model discharge as defined in MIL-STD-883C, Method 3015. The xVCC and xVPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu$ F capacitors protects the devices from discharges up to 10 kV.

[†] Maximum recommended output capacitance for xVCC is 220 μF and for xVPP is 10 μF without OC glitch when switches are powered on.

Figure 34. Detailed Interconnections and Capacitor Recommendations


SLVS206A - JULY 1999

APPLICATION INFORMATION

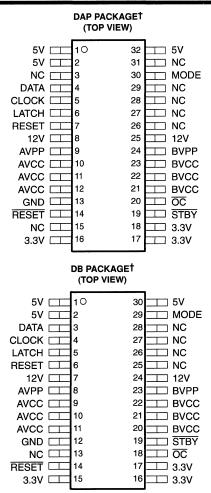
12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 35, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in² of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to 3 µA when 12 V is not needed.

The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the 0.7-Ω MOSFET and improve efficiency at input voltages below 5 V. Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.

Figure 35. TPS2214 with TPS6734 12-V, 120-mA Supply


SLVS179C - MARCH 1999 - REVISED JULY 1999

- Fully Integrated xVCC and xVPP Switching
- xVPP Programmed Independent of xVCC
- 3.3-V, 5-V, and/or 12-V Power Distribution
- Low r_{DS(on)} (60-mΩ xVCC Switch Typical)
- Short Circuit and Thermal Protection
- 150-µA (maximum) Quiescent Current
- Standby Mode: 50-mA Current Limit (Typ)
- 12-V Supply Can Be Disabled
- 3.3-V Low-Voltage Mode
- Meets PC Card[™] Standards
- TTL-Logic Compatible Inputs
- Available in 30-Pin SSOP (DB) and 32-Pin TSSOP (DAP) Packages
- Break-Before-Make Switching
- Internal Power-On Reset

description

The TPS2216 PC Card power-interface switch provides an integrated power-management solution for two PC Cards. All of the discrete power MOSFETs, a logic section, current limiting, and thermal protection for PC Card control are combined on a single integrated circuit. This device allows the distribution of 3.3-V, 5-V, and/ or 12-V power to the card. The current-limiting feature eliminates the need for fuses. Currentlimit reporting can help the user isolate a system fault.

The TPS2216 features a 3.3-V low-voltage mode that allows for 3.3-V switching without the need for 5-V power. This feature facilitates low-power system designs such as sleep modes where only 3.3 V is available. This device also has the ability to program the xVPP outputs independent of the xVCC outputs. A standby mode that changes all output-current limits to 50 mA (typical) has been incorporated.

[†] The TPS2216 is identical to the TPS2214 in all respects except packaging and pin assignments. NC – No internal connection

End-equipment applications for the TPS2216 include: notebook computers, desktop computers, personal digital assistants (PDAs), digital cameras, and bar-code scanners.

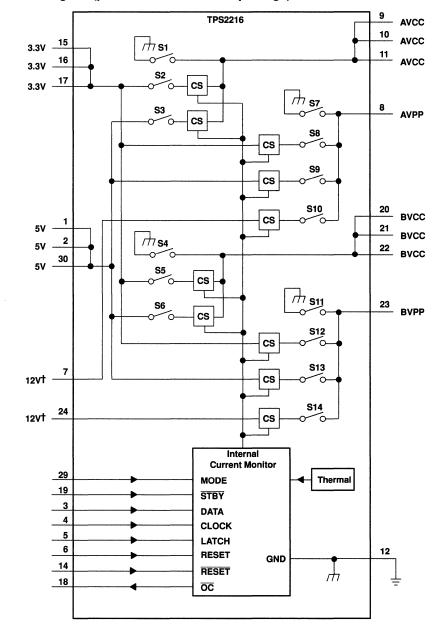
The TPS2216 is backward-compatible with the TPS2202A and TPS2206.

PC Card is a trademark of PCMCIA (Personal Computer Memory Card International Association).

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

AVAILABLE OPTIONS								
	PACKAGED DEVICES [†]							
Tj	PLASTIC SMALL OUTLINE (DB)	PowerPAD PLASTIC SMALL OUTLINE™ (DAP)						
-40°C to 125°C	TPS2216DB(R)	TPS2216DAP(R)						

[†] The DB and DAP packages are available in tubes and left-end taped and reeled. Add R suffix to device type (e.g., TPS2216DBR) for taped and reeled.


Terminal Functions

TERMINAL		TERMINAL		
NAME NO.		I/O	DESCRIPTION	
NAME	DB	DAP		
3.3V	15, 16, 17	16, 17, 18		3.3-V input for card power and/or chip power if 5 V is not present
5V	1, 2, 30	1, 2, 32	I	5-V input for card power and/or chip power
12V	7, 24	8, 25	I	12-V V _{pp} input card power
AVCC	9, 10, 11	10, 11, 12	0	VCC output: 3.3-V, 5-V, GND or high impedance to card
AVPP	8	9	0	VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card
BVCC	20, 21, 22	21, 22, 23	0	VCC output: 3.3-V, 5-V, GND or high impedance to card
BVPP	23	24	0	VPP output: 3.3-V, 5-V, 12-V, GND or high impedance to card
GND	12	13		Ground
MODE	29	30	I	TPS2206 operation when floating or pulled low; must be pulled high externally for TPS2216 operation. MODE is internally pulled low with a 150-k Ω pulldown resistor.
ŌĊ	18	20	0	Logic-level output that goes low when an overcurrent or overtemperature condition exists.
RESET	6	7	1	Logic-level reset input active high. Do not connect if $\overline{\text{RESET}}$ pin is used. RESET is internally pulled low with a 150-k Ω pulldown resistor.
RESET	14	14	1	Logic-level reset input active low. Do not connect if RESET pin is used. The pin is internally pulled high with a 150-k Ω pullup resistor.
STBY	19	19	1	Logic-level active low input sets the TPS2216 to standby mode and sets all current limits to 50 mA. The pin is internally pulled high with a 150-k Ω pullup resistor.
CLOCK	4	5	1	Logic-level clock for serial data word
DATA	3	4	1	Logic-level serial data word
LATCH	5	6	1	Logic-level latch for serial data word
NC	13, 25, 26, 27, 28	3, 15, 26, 27, 28, 29, 31		No internal connection

PowerPAD is a trademark of Texas Instruments Incorporated.

SLVS179C - MARCH 1999 - REVISED JULY 1999

functional block diagram (pin numbers refer to DB package)

[†]Both 12V pins must be connected together.

SLVS179C - MARCH 1999 - REVISED JULY 1999

absolute maximum ratings over operating virtual free-air temperature (unless otherwise noted)[†]

Input voltage range for card power: VI(3.3V)	–0.3 V to 6 V
V _{I(5V)}	–0.3 V to 6 V
$V_{l(12V)}$	–0.3 V to 14 V
Logic input voltage	
Output voltage range: VO(xVCC)	–0.3 V to 6 V
V _{O(xVPP)}	–0.3 V to 14 V
Continuous total power dissipation	See Dissipation Rating Table
Output current: IO(xVCC)	Internally limited
IO(xVPP)	Internally limited
Operating virtual junction temperature range, T ₁	
Storage temperature range, T _{stg}	–55°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE T _A ≤ 25°C POWER RATINO		DERATING FACTOR [‡] ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
DB	1095 mW	10.99 mW/°C	602 mW	438 mW	
DAP	4255 mW	42.55 mW/°C	2340 mW	1702 mW	

[‡] These devices are mounted on an JEDEC low-k board (2 oz. traces on surface), 1-W power applied.

recommended operating conditions

		MIN	MAX	UNIT
	V _{I(3.3V)}	2.7	5.25	v
Input voltage, V _I	V _{I(5V)}	2.7	5.25	v
	V _{I(12V)}	2.7	13.5	v
Output current, IO	lO(VCC) at T _A = 70°C		1	Α
Output current, 10	IO(VPP) at T _A = 70°C		200	mA
Clock frequency			2.5	MHz
	Data	200		
Pulse duration	Latch	250		ns
	Clock	100		
Data hold time§		100		ns
Data setup time§		100		ns
Latch delay time§		100		ns
Clock delay time§		250		ns
Operating virtual jun	tion temperature, TJ	-40	125	°C

§ Refer to Figures 2 and 3.

electrical characteristics, $T_J = 25^{\circ}C$, $V_{I(5V)} = 5$ V, $V_{I(3.3V)} = 3.3$ V, $V_{I(12V)} = 12$ V, STBY floating, all outputs unloaded (unless otherwise noted)

power switch

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT			
		Тј = 25°С,	I _O = 1 A			60	85				
		3.3 V to xVCC, with one		T _J = 125°C,	l _O = 1 A			90	120		
		switch on		TJ = 25°C,	$V_{I(5V)} = 0,$	I _O = 1 A		65	85		
				Т _Ј = 125°С,	$V_{I(5V)} = 0,$	I _O = 1 A		90	130		
		5 V to xVCC, with o	5 V to xVCC, with one		I _O = 1 A			60	85		
		switch on		TJ = 125°C,	I _O = 1 A			90	120		
				Т _Ј = 25°С,	I _O = 1 A each			65	105	mΩ	
		3.3 V to xVCC, with	n two	TJ = 125°C,	I _O = 1 A each			95	140		
	Switch	switches on		Тј = 25°С,	$V_{I(5V)} = 0,$	I _O = 1 A each		70	105		
	resistance [†]			TJ = 125°C,	$V_{1(5V)} = 0,$	I _O = 1 A each		100	140		
		5 V to xVCC, with t	wo	T _J = 25°C,	IO = 1 A each			70	105		
		switches on		T _J = 125°C,	I _O = 1 A each			100	140		
		0.0.1/5.1/4.0.1/4		Т _Ј = 25°С,	IO = 50 mA			0.7	1		
		3.3 V/5 V/12 V to x	VPP	T _J = 125°C,	I _O = 50 mA			1.4	2.5		
				T _J = 25°C,	STBY = low,	l _O = 30 mA		1.4	2	~	
		3.3 V/5 V to xVCC		T _J = 125°C,	STBY = low,	I _O = 30 mA		2	3	Ω	
			T _J = 25°C,	STBY = low,	I _O = 30 mA		5	7			
		3.3 V/5 V/12 V to xVPP		T _J = 125°C,	STBY = low,	I _O = 30 mA		10	16		
	Clamp low	VO(xVCC)		O(xVCC) at	10 mA, After res	et		0.275	0.8	v	
	voltage	VO(xVPP)			0 mA, After rese			0.275	0.8	v	
		IO(xVCC) High-impedance		TJ = 25°C				1	10		
		state		T _J = 125°C				2	50		
lkg	Leakage current	IO(xVPP) High-impedance		TJ = 25°C				1	10	μA	
		state						2	50		
		O(xVCC)		T 0500 substitution and inters should be		1		2.2	A		
	Short-circuit	IO(xVPP)		$T_J = 85^{\circ}C$, output powered into a short to GND		250		500	mA		
los	output current	Standby mode IO()		T.I = 85°C,			35	50	65		
	limit [†]				Output powered into a short to GND,					mA	
		Standby mode IO()	(VPP)	STBY = 0 V			30	50	60		
	Current limit	xVCC switch		100-m Ω short	circuit			100		μs	
	response time‡	xVPP switch						16		μ.	
			^I I(3.3V)					0.01	2		
		Normal operation	^I I(5V)	VO(xVCC) =	$V_{O(xVPP)} = 5$	/		100	120	μA	
II Input current§		and in reset	^I I(12V)					6	10		
		mode	^I I(3.3V)	V_{V} = 0	V _{O(x} VCC) =	331		100	120		
	Input current§		¹ I(5V)	$V_{O(xVPP)} = 0$	12 V			0		μΑ	
			l(12V)	0(x111)				22	30		
			I _{I(3.3V)}						1]	
		Shutdown mode	l _{l(5V)}	VO(xVCC) =	Hi-Z, VO(xVPF	p ₎ = Hi-Z			1	μΑ	
		I(12V)		· · · · · ·				1			
	Thermal	Trip point, T _J						155		°C	
	shutdown‡	Hysteresis		1				10		U	

[†] Pulse-testing techniques maintain junction temperature close to ambient temperature (250-µs-wide pulse, less than 0.5% duty cycle); thermal effects must be taken into account separately.

[‡] Specified by design, not tested in production.

§ Input currents do not include logic input currents (presented in electrical characteristics for logic section); clock is inactive.

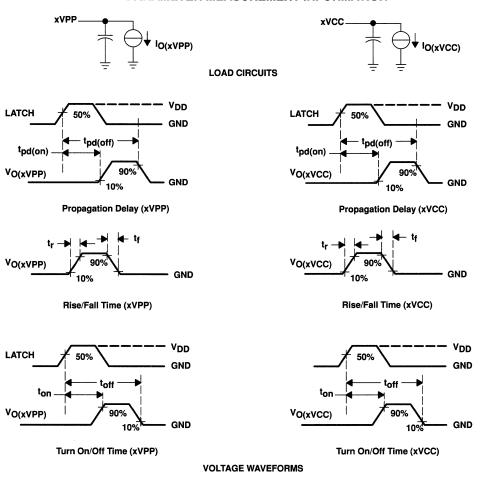
NOTE: $V_{I(3.3V)}$ or $V_{I(5V)}$ must be biased for switches to function.

logic section (CLOCK, DATA, LATCH, MODE, RESET, RESET, STBY, OC)

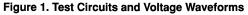
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		VI(RESET) = 5 V or VI(RESET) = 0 V		30	50	
	II(RESET) or II(RESET) [†]	VI(RESET) = 0 V or VI(RESET) = 5 V			1	
		VI(MODE) = 5 V		30	50	
Logic input current	II(MODE) ^T	VI(MODE) = 0 V			1	μA
	++	$V_{I}(\overline{STBY}) = 5 V$				
	II(STBY) [†]	$V_{I}(\overline{STBY}) = 0 V$		30	50	
	II(CLOCK) or II(DATA) or II(LATCH)				1	
Logio input high love		V _{I(5V)} = 5 V	2			v
Logic input high leve	1	V _{I(5V)} = 0 V	2			v
Logic input low level					0.8	٧
		V _{I(5V)} = 5 V, I _O = 1 mA	VI(5V)-0.4			v
Logic output high lev		$V_{I(5V)} = 0 V$, $I_{O} = 1 mA$	V _{I(3.3V)} -0.4			v
Logic output low leve	əl, OC	I _O = 1 mA			0.4	v

[†] RESET and MODE have internal 150-k Ω pulldown resistors; RESET and STBY have internal 150-k Ω pullup resistors.

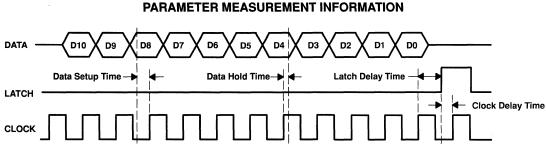
	PARAMETER [†]	LOAD CONDITION [†]	TEST CONDITION	NST	MIN	ТҮР	MAX	UNIT
		C _L (xVCC) = 0.1 μF, C _L (xVPP) = 0.1 μF,	V _{O(xVCC)}			1		
	Output rise times [‡]	$I_{O(xVCC)} = 0$ $I_{O(xVPP)} = 0$	V _{O(xVPP)}			0.8		
tr	Output rise times+	C _L (xVCC) = 150 μF, C _L (xVPP) = 10 μF,	V _{O(xVCC)}			1.2		ms
		$I_{O(xVCC)} = 1 \text{ A},$ $I_{O(xVPP)} = 50 \text{ mA}$	VO(xVPP)			2.5		
		$C_{L(xVCC)} = 0.1 \ \mu$ F, $C_{L(xVPP)} = 0.1 \ \mu$ F,	VO(xVCC)			0.01		
F	Output fall times‡	$I_O(xVCC) = 0$ $I_O(xVPP) = 0$	VO(xVPP)			0.01		ms
	Output fair times+	$C_{L(xVCC)} = 150 \mu\text{F},$ $C_{L(xVPP)} = 10 \mu\text{F},$	V _{O(x} VCC)			3	/	mo
		$I_O(xVCC) = 1 A,$ $I_O(xVPP) = 50 mA$	V _{O(xVPP)}			8		
			Latch [↑] to xVPP (12 V)	tpd(on)		3 25		
						0.6		
			Latch↑ to xVPP (5 V)	t _{pd(on)}		8.5		
				tpd(off)		0.6		
		$\begin{split} & C_{L(xVCC)} = 0.1 \ \mu\text{F}, \\ & C_{L(xVPP)} = 0.1 \ \mu\text{F}, \\ & I_{O(xVCC)} = 0 \\ \end{split}$	Latch↑ to xVPP (3.3 V), VI(5V) = 5 V	tpd(on)		9.0		
			Latch1 to xVPP (3.3 V), VI(5V) = 0 V	tpd(off)		1.4		
						9		
		IO(xVCC) = 00, IO(xVPP) = 0	VI(5V) = 0 V	tpd(on) tpd(off) tpd(on) tpd(off)		0.3		
			Latch↑ to xVCC (5 V)			15		
			•			0.2		
			Latch ^{\uparrow} to xVCC (3.3 V),	tpd(on)		15		
			V _{I(5V)} = 5 V	^t pd(off)				
			Latch \uparrow to xVCC (3.3 V),	^t pd(on)		0.4		
d	Propagation delay‡		V _{I(5V)} = 0 V	^t pd(off)				ms
			Latch [↑] to xVPP (12 V)	tpd(on)		4.5		
				^t pd(off)				
			Latch↑ to xVPP (5 V)	^t pd(on)		3.3		
				^t pd(off)		8		
			Latch↑ to xVPP (3.3 V),	tpd(on)		3		
		C _{L(xVCC)} = 150 μF,	V _{I(5V)} = 5 V	^t pd(off)		9		
		$C_{L(XVPP)} = 10 \mu F,$	Latch1 to xVPP (3.3 V),	^t pd(on)		3		
		$I_O(xVCC) = 1 A,$ $I_O(xVPP) = 50 mA$	V _{I(5V)} = 0 V	^t pd(off)		9		
			Latch↑ to xVCC (5 V)	^t pd(on)		1		
				^t pd(off)	ļ	12		
			Latch↑ to xVCC (3.3 V),	^t pd(on)		0.6		
			V _{I(5V)} = 5 V	^t pd(off)		12		
			Latch↑ to xVCC (3.3 V),	tpd(on)		1		
			V _{I(5V)} = 0 V	^t pd(off)		12		


switching characteristics

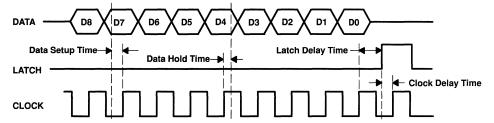
† Refer to Parameter Measurement Information


[‡] Specified by design: not tested in production.

 $\$ No card inserted, assumes 0.1- μ F recommended output capacitor (see Figure 34).



PARAMETER MEASUREMENT INFORMATION



SLVS179C - MARCH 1999 - REVISED JULY 1999

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D10, see the control logic table.

Figure 2. Serial-Interface Timing for Independent xVPP Switching When MODE = 5 V or 3.3 V

NOTE: Data is clocked in on the positive edge of the clock. The positive edge of the latch signal should occur before the next positive edge of the clock. For definition of D0 to D8, see the control logic table.

Figure 3. Serial-Interface Timing When MODE = 0 V or Floating

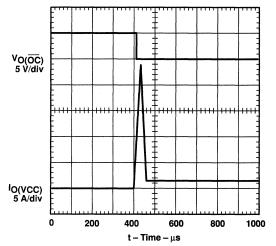
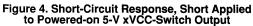
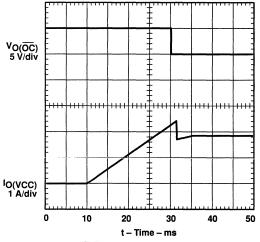
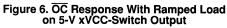

Table of Timing Diagrams[†]

	FIGURE
Short-circuit current response, short applied to powered-on 5-V xVCC switch output	4
Short-circuit current response, short applied to powered-on 12-V xVPP switch output	5
OC response with ramped load on 5-V xVCC switch output	6
OC response with ramped load on 12-V xVPP switch output	7


[†] Timing tests are conducted at free-air temperature, $V_{I(5V)} = 5 V$, $V_{I(3.3V)} = 3.3 V$, $V_{I(12V)} = 12 V$, $C_L = 0.1 \mu$ F on each output, STBY floating.




SLVS179C - MARCH 1999 - REVISED JULY 1999

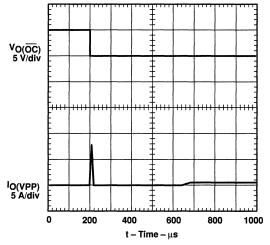
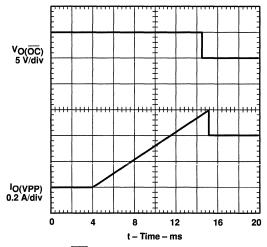



Figure 5. Short-Circuit Response, Short Applied to Powered-on 12-V xVPP-Switch Output

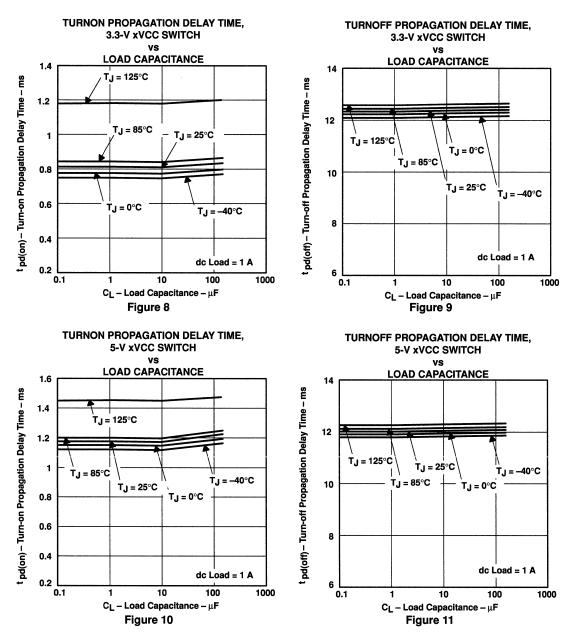
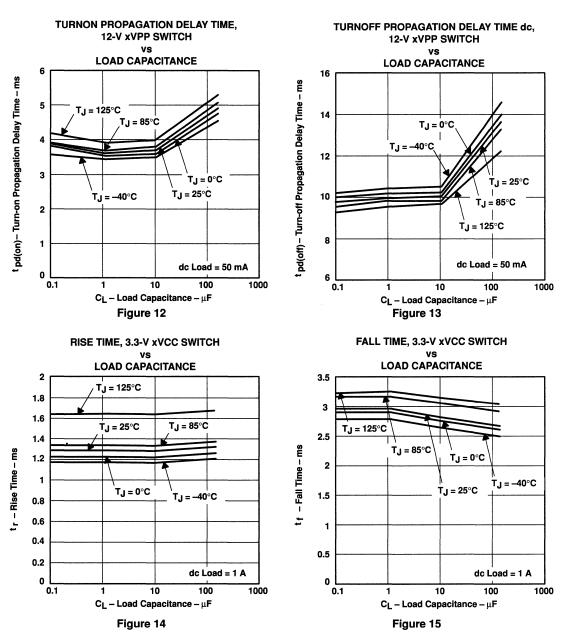
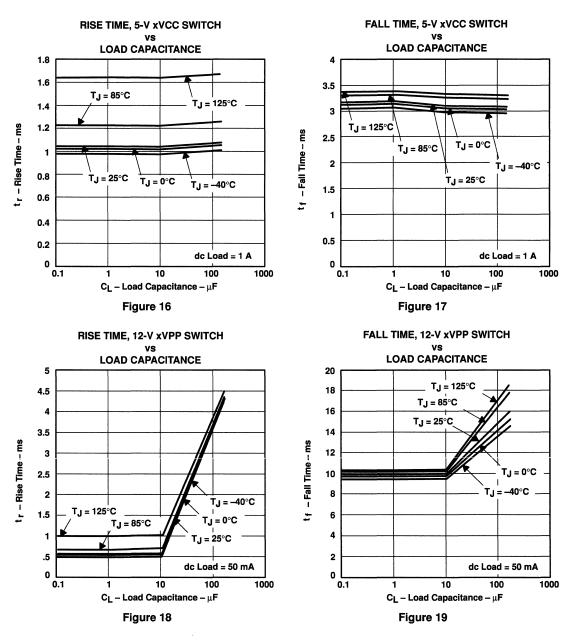

TYPICAL CHARACTERISTICS

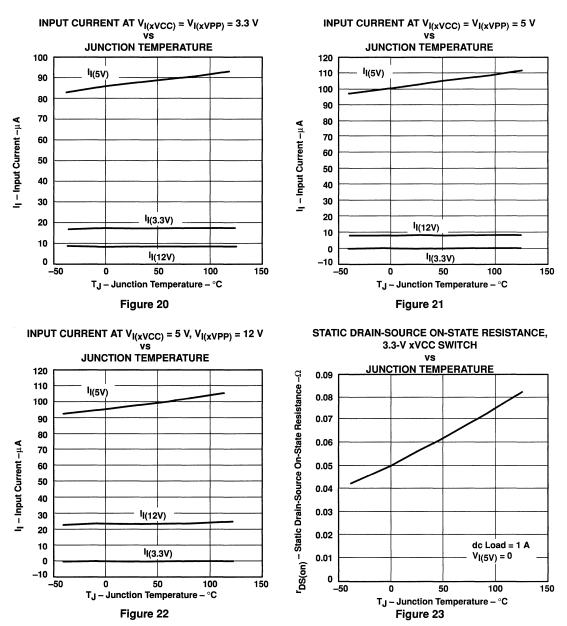
Table of Graphs

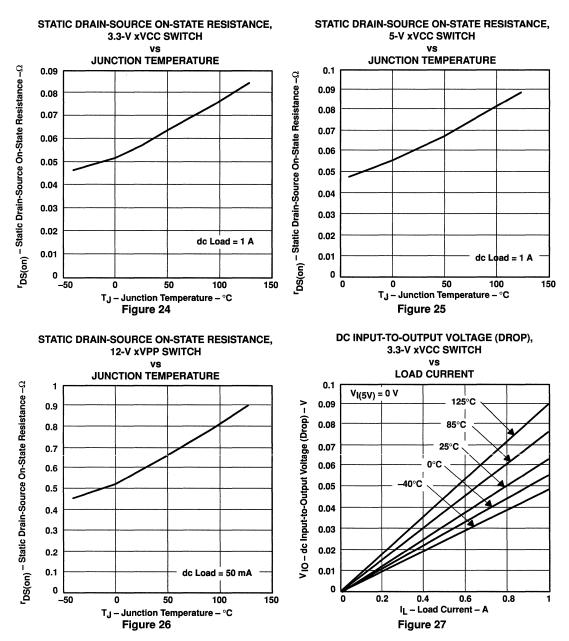
			FIGURE
^t pd(on)	Turnon propagation delay time, 3.3-V xVCC switch	vs Load capacitance	8
^t pd(off)	Turnoff propagation delay time, 3.3-V xVCC switch	vs Load capacitance	9
^t pd(on)	Turnon propagation delay time, 5-V xVCC switch	vs Load capacitance	10
^t pd(off)	Turnoff propagation delay time, 5-V xVCC switch	vs Load capacitance	11
^t pd(on)	Turnon propagation delay time, 12-V xVPP switch	vs Load capacitance	12
^t pd(off)	Turnoff propagation delay time, 12-V xVPP switch	vs Load capacitance	13
tr	Rise time, 3.3-V xVCC switch	vs Load capacitance	14
tf	Fall time, 3.3-V xVCC switch	vs Load capacitance	15
tr	Rise time, 5-V xVCC switch	vs Load capacitance	16
tf	Fall time, 5-V xVCC switch	vs Load capacitance	17
tr	Rise time, 12-V xVPP switch	vs Load capacitance	18
tf	Fall time, 12-V xVPP switch	vs Load capacitance	19
	Input current at VO(XVCC) = VO(XVPP) =3.3 V	vs Junction temperature	20
lμ –	Input current at V _{O(xVCC)} = V _{O(xVPP)} =5 V	vs Junction temperature	21
	Input current at VO(XVCC) = 5 V, VO(XVPP) = 12 V	vs Junction temperature	22
	Static drain-source on-state resistance, 3.3-V xVCC switch (VI(5V)=0)	vs Junction temperature	23
.	Static drain-source on-state resistance, 3.3-V xVCC switch	vs Junction temperature	24
rDS(on)	Static drain-source on-state resistance, 5-V xVCC switch	vs Junction temperature	25
	Static drain-source on-state resistance, 12-V xVPP switch	vs Junction temperature	26
	DC input-to-output voltage (drop), 3.3-V xVCC switch (VI(5V)=0)	vs Load current	27
VIO(xVCC)	DC input-to-output voltage (drop), 3.3-V xVCC switch	vs Load current	28
	DC input-to-output voltage (drop), 5-V xVCC switch	vs Load current	29
VIO(xVPP)	DC input-to-output voltage (drop), 12-V xVPP switch	vs Load current	30
	Short-circuit current limit, 3.3-V xVCC switch	vs Junction temperature	31
los	Short-circuit current limit, 5-V xVCC switch	vs Junction temperature	32
	Short-circuit current limit, 12-V xVPP switch	vs Junction temperature	33


NOTE: Electrical characteristics tests are conducted at VI(5V) = 5 V, VI(3.3V) = 3.3 V, VI(12V) = 12 V, CL = 0.1 µF on each output, STBY floating (unless otherwise noted on Figures).

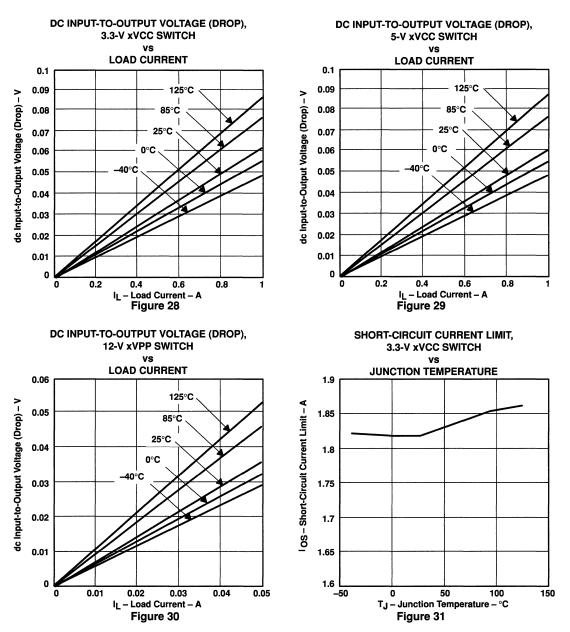


SLVS179C - MARCH 1999 - REVISED JULY 1999

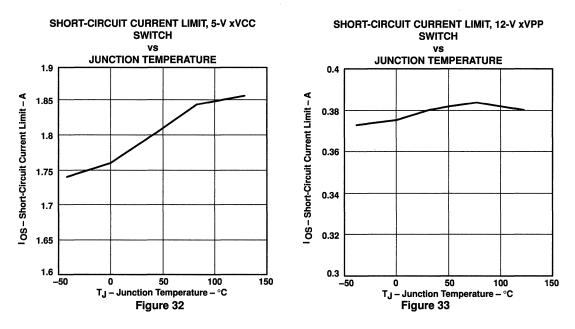




SLVS179C - MARCH 1999 - REVISED JULY 1999



SLVS179C - MARCH 1999 - REVISED JULY 1999



SLVS179C - MARCH 1999 - REVISED JULY 1999

TYPICAL CHARACTERISTICS

overview

PC Cards were initially introduced as a means to add EEPROM (flash memory) to portable computers with limited onboard memory. The idea of add-in cards quickly took hold; modems, wireless LANs, Global Positioning Satellite System (GPS), multimedia, and hard-disk versions were soon available. As the number of PC Card applications grew, the engineering community quickly recognized the need for a standard to ensure compatibility across platforms. To this end, the PCMCIA (Personal Computer Memory Card International Association), comprising members from leading computer, software, PC Card, and semiconductor manufacturers, was established. One key goal was to realize the plug-and-play concept. Cards and hosts from different vendors should be compatible or able to communicate with one another transparently.

PC Card power specification

System compatibility also means power compatibility. The most current set of specifications (PC Card Standard) set forth by the PCMCIA committee states that power is to be transferred between the host and the card through eight of the 68 terminals of the PC Card connector. This power interface consists of two V_{CC}, two V_{pp}, and four ground terminals. Multiple V_{CC} and ground terminals minimize connector terminal and line resistance. The two V_{pp} terminals were originally specified as separate signals, but are commonly tied together in the host to form a single node to minimize voltage losses. Card primary power is supplied through the V_{CC} terminals; flash-memory programming and erase voltage is supplied through the V_{pp} terminals.

APPLICATION INFORMATION

designing for voltage regulation

The current PCMCIA specification for output voltage regulation, $V_{O(reg)}$, of the 5-V output is 5% (250 mV). In a typical PC power-system design, the power supply has an output-voltage regulation, $V_{PS(reg)}$, of 2% (100 mV). Also, a voltage drop from the power supply to the PC Card will result from resistive losses, V_{PCB} , in the PCB traces and the PCMCIA connector. A typical design would limit the total of these resistive losses to less than 1% (50 mV) of the output voltage. Therefore, the allowable voltage drop, V_{DS} , for the TPS2216 would be the PCMCIA voltage regulation less the power supply regulation and less the PCB and connector resistive drops:

Typically, this would leave 100 mV for the allowable voltage drop across the 5-V switch. The specification for output voltage regulation of the 3.3-V output is 300 mV; so, using the same equation by deducting the voltage drop percentages (2%) for power-supply regulation and PCB resistive loss (1%), the allowable voltage drop for the 3.3-V switch is 200 mV. The voltage drop is the output current multiplied by the switch resistance of the TPS2216. Therefore, the maximum output current, I_O max, that can be delivered to the PC Card in regulation is the allowable voltage drop across the IC, divided by the output-switch resistance.

$$I_O max = \frac{V_{DS}}{r_{DS(on)}}$$

The xVCC outputs can deliver 1 A continuously at 5 V and 3.3 V within regulation over the operating temperature range. The xVPP outputs of the IC can deliver 200 mA continuously.

overcurrent and overtemperature protection

PC Cards are inherently subject to damage that can result from mishandling. Host systems require protection against short-circuited cards that could lead to power-supply or PCB trace damage. Even systems robust enough to withstand a short circuit would still undergo rapid battery discharge into the damaged PC Card, resulting in the rather sudden and unacceptable loss of system power. Most hosts include fuses for protection. However, the reliability of fused systems is poor, as blown fuses require troubleshooting and repair, usually by the manufacturer.

The TPS2216 takes a two-pronged approach to overcurrent protection, which is designed to activate if an output is shorted or when an overcurrent condition is present when switches are powered up. First, instead of fuses, sense FETs monitor each of the xVCC and xVPP power outputs. Unlike sense resistors or polyfuses, these FETs do not add to the series resistance of the switch; therefore voltage and power losses are reduced. Overcurrent sensing is applied to each output separately. Excessive current generates an error signal that limits the output current of only the affected output, preventing damage to the host. Each xVCC output overcurrent limits from 1 A to 2.2 A, typically around 1.6 A; the xVPP outputs limit from 250 mA to 500 mA, typically around 375 mA.

Second, when an overcurrent condition is detected, the TPS2216 asserts an active low \overline{OC} signal that can be monitored by the microprocessor or controller to initiate diagnostics and/or send the user a warning message. In the event that an overcurrent condition persists, causing the IC to exceed its maximum junction temperature, thermal-protection circuitry activates. This shuts down all power outputs until the device cools to within a safe operating region, which is ensured by a thermal shutdown hysteresis.

SLVS179C - MARCH 1999 - REVISED JULY 1999

APPLICATION INFORMATION

12-V supply not required

Many PC Card switches use the externally supplied 12 V to power gate drive and other chip functions; this requires that power be present at all times. The TPS2216 offers considerable power savings by using an internal charge pump to generate the required higher gate drive voltages from the 5-V or 3.3-V power supplies. Therefore, the external 12-V supply can be disabled except when needed for flash-memory functions, thereby extending battery lifetime. Additional power savings are realized by the IC during shutdown mode, in which quiescent current drops to a maximum of 1 μ A.

3.3-V low-voltage mode

The TPS2216 will operate in 3.3-V low-voltage mode when 3.3 V is the only available input voltage ($V_{I(5V)} = 0$, $V_{I(12V)} = 0$). This feature allows host and PC Cards to be operated in low-power 3.3-V-only modes such as sleep modes. Note that in this operation mode, the IC will derive its bias current from the 3.3-V input pin and can only provide 3.3 V to the outputs.

voltage transitioning requirement

PC Cards are migrating from 5 V to 3.3 V to minimize power consumption, optimize board space, and increase logic speeds. The TPS2216 meets all combinations of power delivery as currently defined in the PCMCIA standard. The latest protocol accommodates mixed 3.3-V/5-V systems by first powering the card with 5 V, then polling it to determine its 3.3-V compatibility. The PCMCIA specification requires that the capacitors on 3.3-V-compatible cards be discharged to below 0.8 V before applying 3.3-V power. This action ensures that sensitive 3.3-V circuitry is not subjected to any residual 5-V charge and functions as a power reset. PC Card specification requires that V_{CC} be discharged within 100 ms. PC Card resistance can not be relied on to provide a discharge path for voltages stored on PC Card capacitance because of possible high-impedance isolation by power-management schemes. The TPS2216 includes discharge transistors on all xVCC and xVPP outputs to meet the specification requirement.

shutdown mode

In the shutdown mode, which can be controlled by bit D8 of the input serial DATA word, each of the xVCC and xVPP outputs is forced to a high-impedance state. In this mode, the chip quiescent current is limited to 1 μ A or less to conserve battery power.

standby mode

The TPS2216 can be put in standby mode by pulling $\overline{\text{STBY}}$ low to conserve power during low-power operation. In this mode, all of the power outputs (xVCC and xVPP) will have a nominal current limit of 50 mA. $\overline{\text{STBY}}$ has an internal 150-k Ω pullup resistor. The output-switch status of the device must be set, allowing the output capacitors to charge, prior to enabling the standby mode. Changing the setting of the output switches with the device in standby mode may cause an overcurrent response to be generated.

mode

The mode pin programs the switches in either TPS2216 or TPS2206 mode. An internal $150-k\Omega$ pulldown resistor is connected to the pin. Floating or pulling the mode pin low sets the switches in TPS2206 mode; pulling the mode pin high sets the switches in TPS2216 mode. In TPS2206 mode, xVPP outputs are dependent on xVCC outputs. In TPS2216 mode, xVPP is programmed independent of xVCC. Refer to TPS2216 control-logic tables for more information.

SLVS179C - MARCH 1999 - REVISED JULY 1999

APPLICATION INFORMATION

power supply considerations

The TPS2216 has multiple pins for each of its 3.3-V and 5-V power inputs and for the switched xVCC outputs. Any individual pin can conduct the rated input or output current. Unless all pins are connected in parallel, the series resistance is higher than that specified, resulting in increased voltage drops and less power. It is recommended that all input and output power pins be paralleled for optimum operation. Because the two 12-V pins are not internally connected, they must be tied together externally.

To increase the noise immunity of the TPS2216, the power-supply inputs should be bypassed with a 1- μ F electrolytic or tantalum capacitor paralleled by a 0.047- μ F to 0.1- μ F ceramic capacitor. It is strongly recommended that the switched outputs be bypassed with a 0.1- μ F (or larger) ceramic capacitor; doing so improves the immunity of the IC to electrostatic discharge (ESD). Care should be taken to minimize the inductance of PCB traces between the IC and the load. High switching currents can produce large negative voltage transients, which forward biases substrate diodes, resulting in unpredictable performance. Similarly, no pin should be taken, or allowed to fall, below –0.3 V.

RESET and RESET inputs

To ensure that cards are in a known state after power brownouts or system initialization, the PC Cards should be reset at the same time as the host by applying low impedance paths from xVCC and xVPP terminals to ground. A low-impedance output state allows discharging of residual voltage remaining on PC Card filter capacitance, permitting the system (host and PC Cards) to be powered up concurrently. The active-high RESET or active low RESET input will close internal switches S1, S4, S7, and S11 with all other switches left open. The TPS2216 remains in the low-impedance output state until the signal is deasserted and further data is clocked in and latched. The input serial data can not be latched during Reset mode. RESET and RESET are provided for direct compatibility with systems that use either an active-low or active-high reset voltage supervisor. The RESET pin has an internal 150-k Ω pulldown resistor and the RESET pin has an internal 150-k Ω pullup resistor. The device will be reset automatically when powered up.

calculating junction temperature

The switch resistance, $r_{DS(on)}$, is dependent on the junction temperature, T_J , of the die. The junction temperature is dependent on both $r_{DS(on)}$ and the current through the switch. To calculate T_J , first find $r_{DS(on)}$ from Figures 23 through 26, using an initial temperature estimate about 50°C above ambient. Then calculate the power dissipation for each switch, using the formula:

$$P_D = r_{DS(on)} \times l^2$$

Next, sum the power dissipation of all switches and calculate the junction temperature:

$$\mathsf{T}_{\mathsf{J}} = \left(\sum \mathsf{P}_{\mathsf{D}} \times \mathsf{R}_{\theta \mathsf{J} \mathsf{A}}\right) + \mathsf{T}_{\mathsf{A}}$$

Where:

 $R_{\theta JA}$ is the inverse of the derating factor given in the dissipation rating table.

Compare the calculated junction temperature with the initial temperature estimate. If the temperatures are not within a few degrees of each other, recalculate using the calculated temperature as the initial estimate.

logic inputs and outputs

The serial interface consists of DATA, CLOCK, and LATCH leads. The data is clocked in on the positive edge of the clock (see Figures 2 and 3). The 11-bit (D0–D10) serial data word is loaded during the positive edge of the latch signal. The positive edge of the latch signal should occur before the next positive edge of the clock occurs.

SLVS179C - MARCH 1999 - REVISED JULY 1999

APPLICATION INFORMATION

logic inputs and outputs (continued)

The TPS2216 serial interfaces are compatible with serial-interface PCMCIA controllers and current PCMCIA and Japan Electronic Industry Development Association (JEIDA) standards.

An overcurrent output (\overline{OC}) is provided to indicate an overcurrent or overtemperature condition in any of the xVCC and xVPP outputs as previously discussed.

TPS2216 control logic

TPS2216 mode (MODE pulled high)

xVPP

	AVPP CONTROL SIGNALS			OUTPUT	BVPP CONTROL SIGNALS				OUTPUT
D8 (SHDN)	D0	D1	D9	V_AVPP	D8 (SHDN)	D4	D5	D10	V_BVPP
1	0	0	х	ov	1	0	0	Х	0 V
1	0	1	0	3.3 V	1	0	1	0	3.3 V
1	0	1	1	5 V	1	0	1	1	5 V
1	1	0	Х	12 V	1	1	0	Х	12 V
1	1	1	Х	Hi-Z	1	1	1	Х	Hi-Z
0	X	X	Х	Hi-Z	0	x	X	X	Hi-Z

xVCC

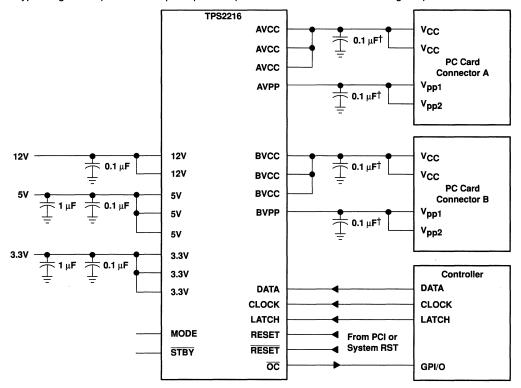
	AVCC CONTR	OL SIGNALS	OUTPUT	BVCC	OUTPUT		
D8 (SHDN)	D3	D2	V_AVCC	D8 (SHDN)	D6	D7	V_BVCC
1	0	0	0 V	1	0	0	0 V
1	0	1	3.3 V	1	0	1	3.3 V
1	1	0	5 V	1	1	0	5 V
1	· 1	1	0 V	1	1	1	0 V
0	Х	х	Hi-Z	0	х	х	Hi-Z

TPS2206 mode (MODE floating or pulled low)

xVPP

	AVPP CONTROL SIGNALS		OUIFUI			BVPP CONTROL SIGNALS				
D8 (SHDN)	D0	D1	V_AVPP	D8 (SHDN)	D4	D5	V_BVPP			
1	0	0	0 V	1	0	0	0 V			
1	0	1	V_AVCC	1	0	1	V_BVCC			
1	1	0	12 V	1	1	0	12 V			
1	1	1	Hi-Z	1	1	1	Hi-Z			
0	Х	Х	Hi-Z	0	Х	Х	Hi-Z			

xVCC


	AVCC CONTROL SIGNALS		OUTPUT	BVCC	OUTPUT			
D8 (SHDN)	D3	D2	V_AVCC	D8 (SHDN)	D6 D7		V_BVCC	
1	0	0	0 V	1	0	0	0 V	
1	0	1	3.3 V	1	0	1	3.3 V	
1	1	0	5 V	1	1	0	5 V	
1	. 1	1	0 V	1	1	1	0 V	
0	X	Х	Hi-Z	0	Х	Х	Hi-Z	

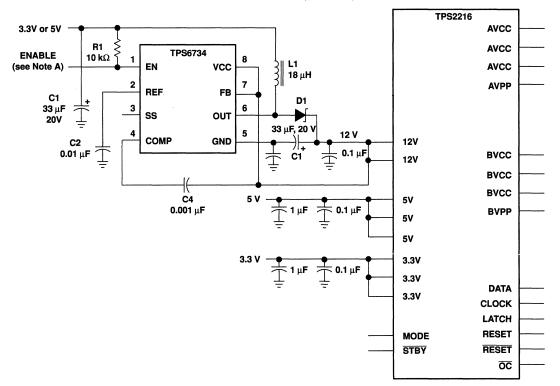
APPLICATION INFORMATION

ESD protections (see Figure 34)

All TPS2216 inputs and outputs incorporate ESD-protection circuitry designed to withstand a 2-kV human-body-model discharge as defined in MIL-STD-883C, Method 3015. The xVCC and xVPP outputs can be exposed to potentially higher discharges from the external environment through the PC Card connector. Bypassing the outputs with $0.1-\mu$ F capacitors protects the devices from discharges up to 10 kV.

[†] Maximum recommended output capacitance for xVCC is 220 µF and for xVPP is 10 µF without OC glitch when switches are powered on.

Figure 34. Detailed Interconnections and Capacitor Recommendations


SLVS179C - MARCH 1999 - REVISED JULY 1999

APPLICATION INFORMATION

12-V flash memory supply

The TPS6734 is a fixed 12-V output boost converter capable of delivering 120 mA from inputs as low as 2.7 V. The device is pin-for-pin compatible with the MAX734 regulator and offers the following advantages: lower supply current, wider operating input-voltage range, and higher output currents. As shown in Figure 35, the only external components required are: an inductor, a Schottky rectifier, an output filter capacitor, an input filter capacitor, and a small capacitor for loop compensation. The entire converter occupies less than 0.7 in² of PCB space when implemented with surface-mount components. An enable input is provided to shut the converter down and reduce the supply current to 3 μ A when 12 V is not needed.

The TPS6734 is a 170-kHz current-mode PWM (pulse-width modulation) controller with an n-channel MOSFET power switch. Gate drive for the switch is derived from the 12-V output after start-up to minimize the die area needed to realize the $0.7-\Omega$ MOSFET and improve efficiency at input voltages below 5 V. Soft start is accomplished with the addition of one small capacitor. A 1.22-V reference (pin 2) is brought out for external use. For additional information, see the TPS6734 data sheet (SLVS127).

NOTE A. The enable terminal can be tied to a general-purpose I/O terminal on the PCMCIA controller or tied high.

Figure 35. TPS2216 with TPS6734 12-V, 120-mA Supply

General Information (Vol. 1)	1
Linear Voltage Regulators	2
Shunt Regulators	3
Precision Virtual Grounds	4
Mechanical Data	5
General Information (Vol. 2)	6
Processor PS Controllers	7
Switching PS and DC/DC Converters	8
MOSFET Drivers	9
Supervisors	10。
Mechanical Data	11
General Information (Vol. 3)	12
Power Distribution Switches	13
LED Drivers	14
Voltage Rail Splitters	15
Special Functions	16
Mechanical Data	17

14–1

LED Drivers 4

14–2

TLC5904 LED DRIVER

SLLS381 - AUGUST 1999

- Drive Capability and Output Counts
 80 mA (Current Sink) × 16 Bits
 100 mA (Current Sink) × 0 Bits
- 120 mA (Current Sink) × 8 Bits
- Constant Current Output Range
 - 5 mA to 80 mA/10 mA to 120 mA (Selectable by MODE Terminal) (Current Value Setting for All Output Terminals Using External Resistor and Internal Brightness Control Register)
- Constant Current Accuracy
 - ±4% (Maximum Error Between Bits)
- Voltage Applied to Constant Current Output Terminals
 - Minimum 0.4 V (Output Current 5 mA to 40 mA
 - Minimum 0.7 V (Output Current 40 mA to 80 mA
- 256 Gray Scale Display
 - Pulse Width Control 256 Steps
- Brightness Adjustment
 - Output Current Adjustment for 32 Steps (Adjustment for Brightness Deviation Between LEDs)
 - 8 Steps Brightness Control by 8 Times Speed Gray Scale Control Clock (Brightness Adjustment for Panel)
- Voltage Monitor
 - Monitor Voltage on Constant Current Output Terminals (Detect LED Disconnection and Short Circuit)

- Output Signal Check
 Check Output Signal
 - Check Output Signal When Protection Circuit is Operating
- Data Output Timing Selectable

 Select Data Output Timing for Shift Register Relative to Clock
- Data Input

 Clock Synchronized 8 Bit Parallel Input (Schmitt Triggered Input)
- Data Output

 Clock Synchronized 8 Bit Parallel Output (3-State Output)
- Input Signal Level: CMOS Level
- Power Supply Voltage: 4.5 V to 5.5 V
- Maximum Output Voltage: 17 V (Max)
- Data Transfer Rate: 15 MHz (Max)
- Gray Scale Clock Frequency: 8 MHz (Max)
 - Operating Free-Air Temperature Range
- Protection
 - WDT Function (Turn Output Off When Scan Signal Stopped)
 - TSD Function (Turn Output Off When Junction Temperature Exceeds Limit)
- Package: 100 Pin HTQFP (P_D = 4.7 W, T_A = 25°C

description

The TLC5904 is a constant current driver incorporating shift register, data latch, constant current circuitry with current value adjustable, and 256 gray scale display using pulse width control. The output current can be selected as maximum 80 mA with 16 bits or 120 mA with 8 bit, and the current value of constant current output can be set by one external register. After this device is mounted on PCB, the brightness deviation between LEDs (ICs) can be adjusted by external data input, and the brightness control for panel can be accomplished by brightness adjustment circuitry. Also, the device incorporates the voltage monitor circuitry used for LED failure detection to monitor constant current output. Moreover, the device incorporates WDT (watch-dog timer) circuitry, which turns constant current output off when scan signal stopped at dynamic scanning operation, and thermal shutdown (TSD) circuitry, which turns constant current output off when the junction temperature exceeds the limit.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

Copyright © 1999, Texas Instruments Incorporated

PRODUCT PREVIEW

General Information (Vol. 1)	1
Linear Voltage Regulators	2
Shunt Regulators	3
Precision Virtual Grounds	4
Mechanical Data	5
General Information (Vol. 2)	6
Processor PS Controllers	7
Switching PS and DC/DC Converters	8
MOSFET Drivers	9
Supervisors	10
Mechanical Data	11
General Information (Vol. 3)	12
Power Distribution Switches	13
LED Drivers	14
Voltage Rail Splitters	15
Special Functions	16
Mechanical Data	17

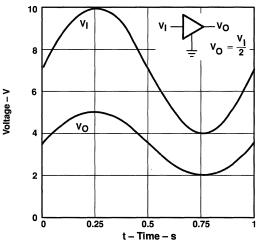
Voltage Rail Splitters

15–2

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D – AUGUST 1991 – REVISED MAY 1998

- 1/2 V_I Virtual Ground for Analog Systems
- Self-Contained 3-terminal TO-226AA
 Package
- Micropower Operation . . . 170 μ A Typ, V_I = 5 V
- Wide V_I Range . . . 4 V to 40 V
- High Output-Current Capability – Source . . . 20 mA Typ
 - Sink . . . 20 mA Typ

description


In signal-conditioning applications utilizing a single power source, a reference voltage equal to one-half the supply voltage is required for termination of all analog signal grounds. Texas Instruments presents a precision virtual ground whose output voltage is always equal to one-half the input voltage, the TLE2426 "rail splitter."

The unique combination of a high-performance, micropower operational amplifier and a precision-trimmed divider on a single silicon chip results in a precise V_O/V_I ratio of 0.5 while sinking and sourcing current. The TLE2426 provides a low-impedance output with 20 mA of sink and source capability while drawing less than 280 μ A

- Excellent Output Regulation

 -45 μV Typ at I_O = 0 to -10 mA
 +15 μV Typ at I_O = 0 to +10 mA
 - +15 µv lyp at IO = 0 to +10 MA
- Low-Impedance Output . . . 0.0075 Ω Typ
- Noise Reduction Pin (D, JG, and P Packages Only)

INPUT/OUTPUT TRANSFER CHARACTERISTICS

of supply current over the full input range of 4 V to 40 V. A designer need not pay the price in terms of board space for a conventional signal ground consisting of resistors, capacitors, operational amplifiers, and voltage references. The performance and precision of the TLE2426 is available in an easy-to-use, space saving, 3-terminal LP package. For increased performance, the optional 8-pin packages provide a noise-reduction pin. With the addition of an external capacitor (C_{NR}), peak-to-peak noise is reduced while line ripple rejection is improved.

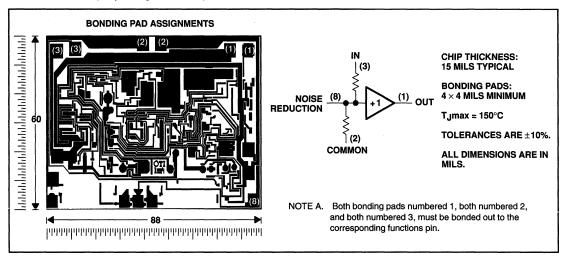
Initial output tolerance for a single 5-V or 12-V system is better than 1% with 3.6% over the full 40-V input range. Ripple rejection exceeds 12 bits of accuracy. Whether the application is for a data acquisition front end, analog signal termination, or simply a precision voltage reference, the TLE2426 eliminates a major source of system error.

	PA	CKAGED DEVICE	S		
тд	T _A SMALL OUTLINE (D) (JG) CERAMIC DIP (JG)		PLASTIC (LP)	PLASTIC DIP (P)	CHIP FORM (Y)
0°C to 70°C	TLE2426CD	—	TLE2426CLP	TLE2426CP	
-40°C to 85°C	TLE2426ID		TLE2426ILP	TLE2426IP	TLE2426Y
-55°C to 125°C	TLE2426MD	TLE2426MJG	TLE2426MLP	TLE2426MP	

AVAILABLE OPTIONS

The D and LP packages are available taped and reeled in the commercial temperature range only. Add R suffix to the device type (e. g., TLC2426CDR). Chips are tested at 25°C.

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D - AUGUST 1991 - REVISED MAY 1998


description (continued)

The C-suffix devices are characterized for operation from 0° C to 70° C. The I suffix devices are characterized for operation from -40° C to 85° C. The M suffix devices are characterized over the full military temperature range of -55° C to 125° C.

TLE2426Y chip information

This chip, properly assembled, displays characteristics similar to the TLE2426C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D – AUGUST 1991 – REVISED MAY 1998

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Continuous input voltage, V ₁	
Continuous filter trap voltage	±80 mA
Duration of short-circuit current at (or below) 25°C (see Note 1)	
Operating free-air temperature range, T _A : C suffix	
M suffix	°C to 125°C
Storage temperature range, T _{stg}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P packageLead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or LP package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

	DISSIPATION RATING TABLE										
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING						
D	725 mV	5.8 mW/°C	464 mW	377 mW	145 mW						
JG	1050 mV	8.4 mW/°C	672 mW	546 mW	210 mW						
LP	775 mV	6.2 mW/°C	496 mW	403 mW	155 mW						
Р	1000 mV	8.0 mW/°C	640 mW	520 mW	200 mW						

recommended operating conditions

	C SUFFIX		C SUFFIX I SUFFIX		M SUFFIX		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Input voltage, VI	4	40	4	40	4	40	v
Operating free-air temperature, T _A	0	70	-40	85	-55	125	°C

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D - AUGUST 1991 - REVISED MAY 1998

electrical characteristics at specified free-air temperature, $V_I = 5 V$, $I_O = 0$ (unless otherwise noted)

	TEST CONDITIONS		- +	TI	LIANT			
PARAMETER			τ _A †	MIN	TYP	MAX	UNIT	
	V _I = 4 V			1.98	2	2.02		
Outra data la contra da contr	V _I = 5 V V _I = 40 V		25°C	2.48	2.5	2.52	v	
Output voltage				19.8	20	20.2		
	VI = 5 V		Full range	2.475		2.525		
Temperature coefficient of output voltage			Full range		25		ppm/°C	
Currente current	Nalaad	VI = 5 V	25°C		170	300		
Supply current	No load	V _I = 4 to 40 V	Full range			400	μΑ	
	$I_{O} = 0$ to -10 mA		25°C		-45	±160		
Output voltage regulation (sourcing current) [‡]			Full range			±250	μν	
	I _O = 0 to -20 mA	25°C		-150	±450			
Output voltage regulation (sinking current)‡	I _O = 0 to 10 mA		25°C		15	±160		
			Full range			±250	μV	
	I _O = 0 to 20 mA	25°C		65	±235			
Output impedance			25°C		7.5	22.5	mΩ	
Noise-reduction impedance			25°C		110		kΩ	
Short-circuit current	Sinking current,	V _O = 5 V	25°C		26			
Short-circuit current	Sourcing current,	V _O = 0	25-0		-47	mA		
Output noise voltage, rms	f = 10 Hz to 10 kHz	C _{NR} = 0	25°C		120			
Oulput hoise voltage, mis		C _{NR} = 1 μF	23 0	30			μV	
	V_{O} to 0.1%, $I_{O} = \pm 10 \text{ mA}$	CL = 0	25°C		290		1	
Output voltage current step response	VO 10 0.1%, IO = 110 IIA	C _L = 100 pF	25 0		275			
Output voltage current step response	V_{O} to 0.01%, $I_{O} = \pm 10 \text{ mA}$	C _L = 0	25°C		400		μs	
		C _L = 100 pF	20 0		390			
Step response	$V_1 = 0 \text{ to } 5 \text{ V}, V_0 \text{ to } 0.1\%$		25°C	20				
Steh Leshouse	$V_{I} = 0 \text{ to } 5 \text{ V}, V_{O} \text{ to } 0.01\%$	C _L = 100 pF	25.0		160		μs	

[†] Full range is 0°C to 70°C.

[‡]The listed values are not production tested.

TLE2426, TLE2426Y THE "RAIL SPLITTER" **PRECISION VIRTUAL GROUND**

SLOS098D - AUGUST 1991 - REVISED MAY 1998

120

	T			TLE2426C				
PARAMETER	TEST CONDITIO	NS	τ _A †	MIN	TYP	MAX	UNIT	
	V ₁ = 4 V			1.98	2	2.02		
o · · · ·	V _I = 12 V	25°C	5.95	6	6.05			
Output voltage	V _I = 40 V		19.8	20	20.2	v		
	V _I = 12 V		Full range	5.945		6.055	1	
Temperature coefficient of output voltage			Full range		35		ppm/°C	
		V ₁ = 12 V	25°C		195	300		
Supply current	No load	$V_{I} = 4 \text{ to } 40 \text{ V}$	Full range			400	μA	
	$I_{O} = 0 \text{ to} - 10 \text{ mA}$		25°C		-45	±160		
Output voltage regulation (sourcing current)‡			Full range			±250	µV	
sourcing current/+	$I_{O} = 0 \text{ to } -20 \text{ mA}$	25°C		- 150	±450			
Dutput voltage regulation sinking current)‡	I _O = 0 to 10 mA		25°C		15	±160		
			Full range			±250	μV	
	IO = 0 to 20 mA	25°C		65	±235			
Output impedance			25°C		7.5	22.5	mΩ	
Noise-reduction impedance			25°C		110		kΩ	
Short-circuit current	Sinking current, V _O = 12 V		25°C		31			
	Sourcing current,	V _O = 0	2510		-70		mA	
Output noise voltage, rms	f = 10 Hz to 10 kHz	C _{NR} = 0	25°C		120		μV	
Culput hoise voltage, mis		C _{NR} = 1 μF	25 0		30			
	V_{O} to 0.1%, $I_{O} = \pm 10$ mA	CL = 0	25°C		290		- μs	
Output voltage current step response	$V_0 = \pm 10 \text{ mA}$	C _L = 100 pF	200		275			
Sarbar voltage callent step lesh0158	V_{O} to 0.01%, $I_{O} = \pm 10$ mA	CL = 0	25°C		400			
		C _L = 100 pF	200		390			
Step response	$V_{I} = 0$ to 12 V, V_{O} to 0.1%	C _I = 100 pF	25°C		20			
oreh reshouse	$V_1 = 0$ to 12 V. Vo to 0.01%		250		120		μs	

 $V_{I} = 0$ to 12 V, V_{O} to 0.01%

electrical characteristics at specified free-air temperature. V = 12 V, $l_0 = 0$ (unless otherwise noted)

[†] Full range is 0°C to 70°C. [‡] The listed values are not production tested.

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D – AUGUST 1991 – REVISED MAY 1998

electrical characteristics at specified free-air temperature, $V_I = 5 V$, $I_O = 0$ (unless otherwise noted)

DADANETED	TEST CONDITIO		T .+	Т	UNIT			
PARAMETER	TEST CONDITIC	INS	TAT	MIN	TYP	MAX	UNII	
	V ₁ = 4 V			1.98	2	2.02		
Output voltage	V _l = 5 V		25°C	2.48	2.5	2.52		
Ouput voltage	Vj = 40 V			19.8	20	20.2	v	
	V _I = 5 V Full range	Full range	2.47		2.53			
Temperature coefficient of output volt- age			Full range		25		ppm/°C	
Supply ourrest	No load	V ₁ = 5 V	25°C		170	300		
Supply current			Full range			400	μA	
	1- 0 to 10 mA		25°C		-45	±160		
Output voltage regulation (sourcing current) [‡]	$I_O = 0$ to -10 mA		Full range			±250	ο μν	
	$I_{O} = 0$ to -20 mA		25°C		-150	±450		
	IO = 0 to 10 mA		25°C		15	±160		
Output voltage regulation (sinking current) [‡]	IO = 0 to 8 mA		Full range	ull range		±250	μV	
	IO = 0 to 20 mA		25°C		65	±235		
Output impedance			25°C		7.5	22.5	mΩ	
Noise-reduction impedance			25°C		110		kΩ	
Short-circuit current	Sinking current,	V _O = 5 V	25°C		26		mA	
	Sourcing current,	V _O = 0	25'0		-47			
Output noise voltage, rms	f = 10 Hz to 10 kHz	C _{NR} = 0	25°C		120			
Output hoise voltage, fins		C _{NR} = 1 μF	2510	30			μV	
	V_{O} to 0.1%, $I_{O} = \pm 10 \text{ mA}$	CL = 0	25°C		290			
Output voltage current step response	$V_0 10 0.1\%, 10 = \pm 10 11A$	C _L = 100 pF	250	275]		
		CL = 0	25°C		400		μs	
	V_{O} to 0.01%, $I_{O} = \pm 10 \text{ mA}$	C _L = 100 pF	250		390			
Stop rospono	$V_{I} = 0 \text{ to } 5 \text{ V}, V_{O} \text{ to } 0.1\%$	C _I = 100 pF	25°C					
Step response	$V_{I} = 0 \text{ to } 5 \text{ V}, V_{O} \text{ to } 0.01\%$		25%		160		μs	

[†] Full range is -40°C to 85°C.

[‡]The listed values are not production tested.

TLE2426, TLE2426Y THE "RAIL SPLITTER" **PRECISION VIRTUAL GROUND**

SLOS098D - AUGUST 1991 - REVISED MAY 1998

PARAMETER	TEST CONDITIO		T . †	Т	UNIT			
PARAMETER	TEST CONDITIO	NS .	τ _A †	MIN	TYP	MAX	UNIT	
	V _I = 4 V			1.98	2	2.02		
Output voltogo	VI = 12 V		25°C	5.95	6	6.05		
Output voltage	VI = 40 V	_		19.8	20	20.2] `	
	VI = 12 V	VI = 12 V F		5.935		6.065		
Temperature coefficient of output voltage			Full range		35		ppm/°C	
Our also automat	No load		25°C	1	195	300		
Supply current			Full range	1		400	μΑ	
	I _O = 0 to – 10 mA		25°C		-45	±160		
Output voltage regulation (sourcing current) [‡]			Full range			±250	μV	
(Solicing current)	IO = 0 to -20 mA		25°C		-150	150 ±450		
	I _O = 0 to 10 mA		25°C		15	±160		
Output voltage regulation (sinking current) [‡]	l _O = 0 to 8 mA		Full range			±250	μV	
	I _O = 0 to 20 mA		25°C		65	±235		
Output impedance			25°C		7.5	22.5	mΩ	
Noise-reduction impedance			25°C		110		kΩ	
Short-circuit current	Sinking current,	V _O = 12 V	25°C		31			
	Sourcing current,	V _O = 0	250		-70		mA	
	f = 10 Hz to 10 kHz	C _{NR} = 0	25°C		120			
Output noise voltage, rms		C _{NR} = 1 μF	25'0	30		μV		
	V_{O} to 0.1%, $I_{O} = \pm 10 \text{ mA}$	CL = 0	25°C		290			
Output voltage current step response	V_{O} to 0.1%, $I_{O} = \pm 10 \text{ mA}$	C _L = 100 pF	25'0		275]	
		C _L = 0			400		μs	
V_{O} to 0.01%, I_{O} =		C _L = 100 pF	25°C		390			
Stop response	V _I = 0 to 12 V, V _O to 0.1%	0. 100 -5	25°C		20			
Step response	$V_{\rm I} = 0$ to 12 V, V _O to 0.01% C _L = 100 pF		25%		120		μs	

electrical characteristics at specified free-air temperature, $V_I = 12 V$, $I_O = 0$ (unless otherwise noted)

[†] Full range is -40°C to 85°C. [‡] The listed values are not production tested.

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D - AUGUST 1991 - REVISED MAY 1998

electrical characteristics at specified free-air temperature, $V_I = 5 V$, $I_O = 0$ (unless otherwise noted)

DADAMETED	TEOT COMPLETIO		TAT	TI				
PARAMETER	TEST CONDITIO	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
	V _I = 4 V			1.98	2	2.02		
O day do sales as	V _I = 5 V		25°C	2.48	2.5	2.52	v	
Output voltage	V _I = 40 V			19.8	20	20.2	l v	
	V _l = 5 V		Full range	2.465		2.535		
Temperature coefficient of output voltage			Full range		25		ppm/°C	
Our also a sum and	No. Lo col	V _I = 5 V	25°C	1	170	300		
Supply current No load		V _I = 4 to 40 V	Full range			400	μA	
			25°C		-45	±160		
Output voltage regulation (sourcing current) [‡]	$I_{O} = 0$ to -10 mA		Full range			±250	μV	
(solicing current)+	$I_{O} = 0 \text{ to} -20 \text{ mA}$		25°C		-150	±450		
	l _O = 0 to 10 mA		25°C		15	±160		
Output voltage regulation (sinking current) ^{\ddagger} $I_0 = 0 \text{ to } 3 \text{ r}$	IO = 0 to 3 mA		Full range			±250	μV	
	I _O = 0 to 20 mA		25°C		65	±235		
Output impedance			25°C		7.5	22.5	mΩ	
Noise-reduction impedance			25°C		110		kΩ	
Short-circuit current	Sinking current,	V _O = 5 V			26			
Short-circuit current	Sourcing current,	V _O = 0	25°C		-47		mA	
Output noise voltage, rms	f = 10 Hz to 10 kHz	C _{NR} = 0	25°C		120		μV	
Output hoise voltage, mis		C _{NR} = 1 μF	25 0		30		μv	
	V_{O} to 0.1%, $I_{O} = \pm 10 \text{ mA}$	CL = 0	25°C		290		1	
Output voltage current step response	VO 10 0.1%, IO = ±10 IIIA	CL = 100 pF	250		275			
	V_{O} to 0.01%, $I_{O} = \pm 10 \text{ mA}$	CL = 0	25°C		400		μs	
	$V_{0,0,0,1,0}^{0,0,0,1,0}$, $V_{0,0,0,1,0}^{0,0,0,1,0}$, $V_{0,0,0,1,0}^{0,0,0,1,0,0}$	C _L = 100 pF	200		390			
Step response	$V_{I} = 0 \text{ to } 5 \text{ V}, V_{O} \text{ to } 0.1\%$	C _I = 100 pF	25°C		20			
Steh Leshouse	$V_{I} = 0 \text{ to } 5 \text{ V}, V_{O} \text{ to } 0.01\%$		250		120		μs	

[†] Full range is -55°C to 125°C.

[‡] The listed values are not production tested.

TLE2426, TLE2426Y THE "RAIL SPLITTER" **PRECISION VIRTUAL GROUND**

SLOS098D - AUGUST 1991 - REVISED MAY 1998

DADAMETED	TEGT OONDITIO		T.+		TLE2426M		
PARAMETER	TEST CONDITIO	NS	T₄†	MIN	TYP	MAX	UNIT
	V _I = 4 V			1.98	2	2.02	
Output welfang	VI = 12 V		25°C	5.95	6	6.05	v
Output voltage	VI = 40 V			19.8	20	20.2	ľ
	VI = 12 V	V _I = 12 V Ful		5.925		6.075	1
Temperature coefficient of output voltage			Full range		35		ppm/°C
Supply current	No load	V _l = 12 V	25°C		195	250	μA
Supply current	No load	V _I = 4 to 40 V	Full range			350	μΑ
	la 040 10 mt		25°C		-45	±160	
Output voltage regulation (sourcing current) [‡]	I _O = 0 to – 10 mA		Full range			±250	μV
	$I_{O} = 0$ to -20 mA		25°C		-150	±450	
	I _O = 0 to 10 mA		25°C		15	±160	
Output voltage regulation (sinking current) [‡]	I _O = 0 to 8 mA		Full range			±250	μV
	I _O = 0 to 20 mA		25°C		65	±235	
Output impedance			25°C		7.5	22.5	mΩ
Noise-reduction impedance			25°C		110		kΩ
Short-circuit current	Sinking current,	V _O = 12 V	25°C		31		
Short-circuit current	Sourcing current,	V _O = 0	250		-70		mA
Output noise voltage, rms	f = 10 Hz to 10 kHz	C _{NR} = 0	0500		120		μV
Ouput hoise voltage, mis		C _{NR} = 1 μF	25°C		30		μv
	V_{O} to 0.1%, $I_{O} = \pm 10 \text{ mA}$	CL = 0	25°C		290		
Output voltage current step response	$V_{0} = \pm 10 \text{ IIA}$	C _L = 100 pF	25'0		275		
		CL = 0	25°C		400		μs
	V_{O} to 0.01%, $I_{O} = \pm 10 \text{ mA}$	C _L = 100 pF	250		390		
Stop rosponso	$V_{I} = 0$ to 12 V, V_{O} to 0.1%	C _I = 100 pF	25°C		12		
Step response	$V_{I} = 0$ to 12 V, V_{O} to 0.01%		20.0	120		μs	

electrical characteristics at specified free-air temperature. $V_1 = 12 V_1 I_0 = 0$ (unless otherwise noted)

[†] Full range is -55°C to 125°C. [‡] The listed values are not production tested.

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D - AUGUST 1991 - REVISED MAY 1998

electrical characteristics at specified free-air temperature, V_I = 5 V, I_O = 0, T_A = 25°C (unless otherwise noted)

				TL	E2426Y	·	
PARAMETER	I IE	TEST CONDITIONS			TYP	MAX	UNIT
Output voltage	V ₁ = 5 V				2.5		v
Supply current	No load				170		μA
	I _O = 0 to - 10 m/	4			-45		
Output voltage regulation (sourcing current)†	$I_0 = 0$ to -20 m/	A			-150		μV
Output voltage regulation (sinking current) [†]	I _O = 0 to 10 mA	I _O = 0 to 10 mA			15		
Output voltage regulation (sinking current)	I _O = 0 to 20 mA	$I_{O} = 0$ to 20 mA			65		μV
Output impedance					7.5		mΩ
Noise-reduction impedance					110		kΩ
Short-circuit current	Sinking current,		V _O = 5 V		26		mA
Short-circuit current	Sourcing current	3	V _O = 0		-47		mA
Output noise voltage, rms	f = 10 Hz to 10 k		C _{NR} = 0	= 0 120			
Culput hoise voltage, mis	T = 10 HZ 10 10 K	Г І Z	C _{NR} = 1 μF		30		μV
	Vo to 0.1%,	$I_{O} = \pm 10 \text{ mA}$	CL = 0		290		
Output voltage current step response	VO 10 0.1%,	$O = \pm 10 \text{ IIIA}$	C _L = 100 pF		275		
Output voltage current step response	Via to 0.01%	la +10 mA	CL = 0		400		μs
	V _O to 0.01%,	$I_{O} = \pm 10 \text{ mA}$	C _L = 100 pF		390		
Step response	V _I = 0 to 5 V,	V _O to 0.1%	C _I = 100 pF		20		
Oreh reshouse	$V_{1} = 0$ to 5 V,	VO to 0.01%			160		μs

[†] The listed values are not production tested.

electrical characteristics at specified free-air temperature, V_I = 12 V, I_O = 0, T_A = 25°C (unless otherwise noted)

				TI	E2426Y	1	
PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT
Output voltage	V _I = 12 V				6		· v
Supply current	No load				195		μA
	I _O = 0 to - 10 m	A			-45		
Output voltage regulation (sourcing current)†	$I_0 = 0 \text{ to } -20 \text{ m}$	A			-150		μV
Output voltage regulation (sinking current) [†]	$I_{O} = 0$ to 3 mA	$I_{O} = 0$ to 3 mA		l	15		μV
Output voltage regulation (sinking current)	I _O = 0 to 20 mA	I _O = 0 to 20 mA			65		
Output impedance					7.5		mΩ
Noise-reduction impedance					110		kΩ
	Sinking current,	Sinking current,			31		mA
Short-circuit current	Sourcing curren	t,	V _O = 0		-70		IIIA
Output noise voltage, rms	f = 10 Hz to 10 l	2U7	C _{NR} = 0		120		μV
Odiput hoise voltage, mis	1 = 10 H2 10 10 1	кп <i>2</i> .	$C_{NR} = 1 \mu F$		30		μv
	V _O to 0.1%,	$I_{O} = \pm 10 \text{ mA}$	CL = 0		290		
Output voltage current, step response	VO 10 0.1%,	$O = \pm 10 \text{ IIIA}$	C _L = 100 pF		275		
Output voltage current, step response	Via to 0.01%	$l_{0} = \pm 10 \text{ mA}$	CL = 0		400		μs
	V _O to 0.01%,	$I_{O} = \pm 10 \text{ mA}$	C _L = 100 pF		390		
Stop response	V _I = 0 to 12 V,	V _O to 0.1%	CL = 100 pF		12		
Step response	$V_{I} = 0$ to 12 V,	V _O to 0.01%			120		μs

[†] The listed values are not production tested.

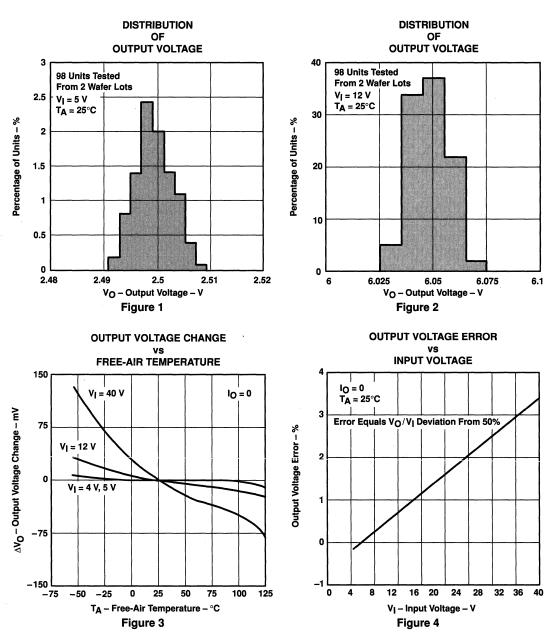
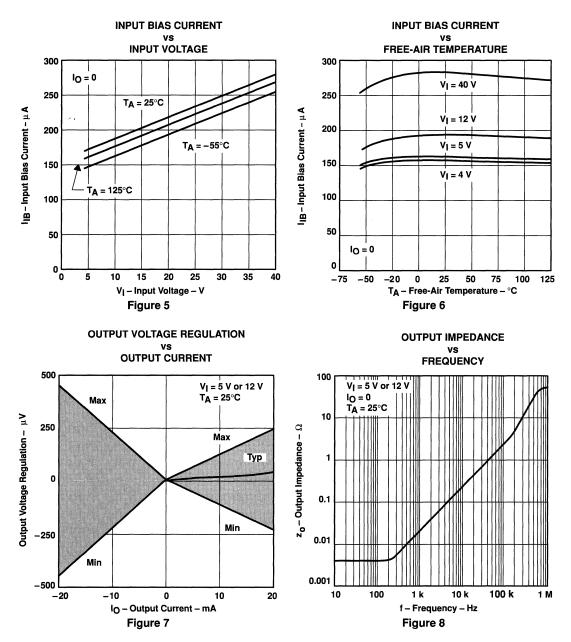

TYPICAL CHARACTERISTICS

Table Of Graphs

		FIGURE
Output voltage	Distribution	1,2
Output voltage change	vs Free-air temperature	3
Output voltage error	vs Input voltage	4
Input bias current	vs Input voltage	5
input bias current	vs Free-air temperature	6
Output voltage regulation	vs Output current	7
Output impedance	vs Frequency	8
Short-circuit output current	vs Input voltage	9,10
	vs Free-air temperature	11,12
Ripple rejection	vs Frequency	13
Spectral noise voltage density	vs Frequency	14
Output voltage response to output current step	vs Time	15
Output voltage power-up response	vs Time	16
Output current	vs Load capacitance	17

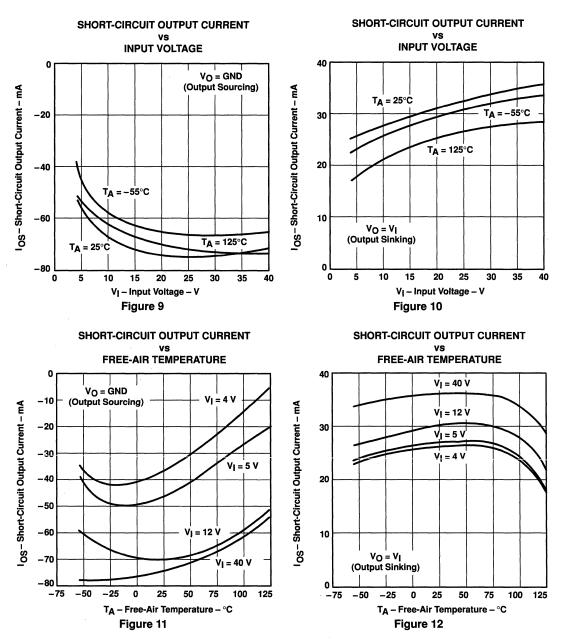
TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D – AUGUST 1991 – REVISED MAY 1998


TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TLE2426, TLE2426Y THE "RAIL SPLITTER" **PRECISION VIRTUAL GROUND**

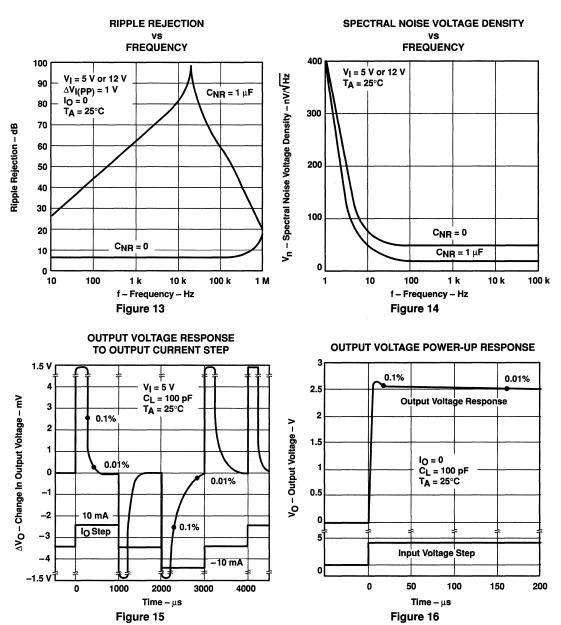
SLOS098D - AUGUST 1991 - REVISED MAY 1998



TYPICAL CHARACTERISTICS[†]

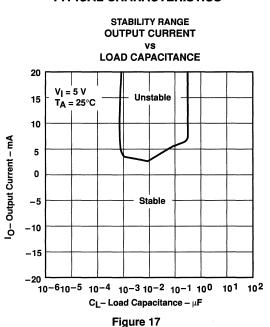
[†] Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D - AUGUST 1991 - REVISED MAY 1998


TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable within the rated operating free-air temperature ranges of the various devices.

TLE2426, TLE2426Y THE "RAIL SPLITTER" **PRECISION VIRTUAL GROUND**


SLOS098D - AUGUST 1991 - REVISED MAY 1998

TYPICAL CHARACTERISTICS

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D – AUGUST 1991 – REVISED MAY 1998

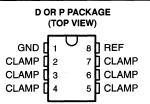
TYPICAL CHARACTERISTICS

TLE2426, TLE2426Y THE "RAIL SPLITTER" PRECISION VIRTUAL GROUND SLOS098D – AUGUST 1991 – REVISED MAY 1998

MACROMODEL INFORMATION

TLE2426 OPERATIONAL AMPLIFIER "MACROMODEL" SUBCIRCUIT * CREATED USING PARTS RELEASE 4.03 ON 08/21/90 AT 13:51 SUPPLY VOLTAGE: 5 V * REV (N/A) FILTER CONNECTIONS: INPUT I. COMMON 1 1 OUTPUT 1 1 * I .SUBCKT TLE2426 3 5 1 4 11 12 21.66E-12 C1 C2 7 30.00E-12 6 C3 87 0 10.64E-9 CPSR 85 86 15.9E-9 DCM+ 81 82 DX DCM-83 81 DX DC 5 53 DX DE 54 5 DX 90 91 DX DL P 92 90 DX DLN DP 4 3 DX 84 99 (2,99) 1 ECMR 0 POLY(2) (3,0) (4,0) 0 EGND 99 .5 .5 (3,4) -16.22E-6 3.24E-6 EPSR 85 0 POLY(1) (88,0) 120E-61 VB VC VE VLPVLNVPSR 0 74.8E6 -10E6 10E6 10E6 -10E6 74E6 ENSE 89 2 POLY(1)99 POLY(6) FB 7 0 11 12 320.4E-6 6 10 99 1.013E-9 GA 6 GCM 0 GPSR 85 86 (85,86) 100E-6 (4,11) 3.204E-4 (4,12) 3.204E-4 GRC1 4 11 GRC2 4 12 13 10 (13,10) 1.038E-3 GRE1 GRE2 14 10 (14,10) 1.038E-3 HLIM 90 0 VLIM 1K HCMR 80 1 POLY(2) VCM+ VCM-0 1E2 1E2IRP 3 4 146E-6 3 10 DC 24.05E-6 IEE IIO 2 0 .2E-9 88 0 1E-21 11 89 13 QX Ι1 Q1 Q2 12 80 14 QX ñ2 9 100.0E3 6 RCM 84 81 1K REE 10 99 8.316E6 RN1 87 0 2.55E8 87 88 11.67E3 RN2 RO1 8 5 63 7 99 62 RO2 VCM+ 82 99 1.0 VCM-83 99 -2.3 9 0 DC 0 VB VC 3 53 DC 1.400 4 DC 1.400 8 DC 0 VE 54 7 VLIM VLP 91 0 DC 30 0 92 DC VLN 30 VPSR 0 86 DC 0 5 RFB 2 1K RIN1 3 1 220K RTN2 1 4 220K .MODEL DX D(IS=800.OE-18) .MODEL QX PNP(IS=800.OE-18BF=480) .ENDS

General Information (Vol. 1)	1
Linear Voltage Regulators	2
Shunt Regulators	3
Precision Virtual Grounds	4
Mechanical Data	5
General Information (Vol. 2)	6
Processor PS Controllers	7
Switching PS and DC/DC Converters	8
MOSFET Drivers	9
Supervisors	10
Mechanical Data	11
General Information (Vol. 3)	12
Power Distribution Switches	13
LED Drivers	14
Voltage Rail Splitters	15
Special Functions	16
Mechanical Data	17



.7726 HEX CLAMPING CIRCUITS

SLAS078C - SEPTEMBER 1993 - REVISED JULY 1999

- **Protects Against Latch-Up**
- 25-mA Current Sink in Active State
- Less Than 1-mW Dissipation in Standby Condition
- Ideal for Applications in Environments Where Large Transient Spikes Occur
- Stable Operation for All Values of Capacitive Load
- No Output Overshoot

description

The TL7726 consists of six identical clamping circuits that monitor an input voltage with respect to a reference value, REF. For an input voltage (V_1) in the range of GND to < REF, the clamping circuits present a very high impedance to ground, drawing current of less than 10 μ A. The clamping circuits are active for V_I < GND or V_1 > REF when they have a very low impedance and can sink up to 25 mA.

These characteristics make the TL7726 ideal as protection devices for CMOS semiconductor devices in environments where there are large positive or negative transients to protect analog-to-digital converters in automotive or industrial systems. The use of clamping circuits provides a safeguard against potential latch-up.

The TL7726C is characterized for operation over the temperature range of 0°C to 70°C. The TL7726I is characterized for operation over the temperature range of -40°C to 85°C. The TL7726Q is characterized for operation over the temperature range of -40°C to 125°C.

AVAILABLE OF HONS							
т _А	SOIC (D)	PLASTIC DIP (P)					
0°C to 70°C	TL7726CD	TL7726CP					
-40°C to 85°C	TL7726ID	TL7726IP					
-40°C to 125°C	TL7726QD	TL7726QP					

AVAILABLE ODTIONS

The D package is available taped and reeled. Add the suffix R to the device type (i.e., TL7726CDR).

TL7726 HEX CLAMPING CIRCUITS

SLAS078C - SEPTEMBER 1993 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Reference voltage, V _{ref} Clamping current, I _{IK}	
Junction temperature, T _J	
Package thermal impedance, θ_{JA} (see Notes 1 and 2): D package	
P package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

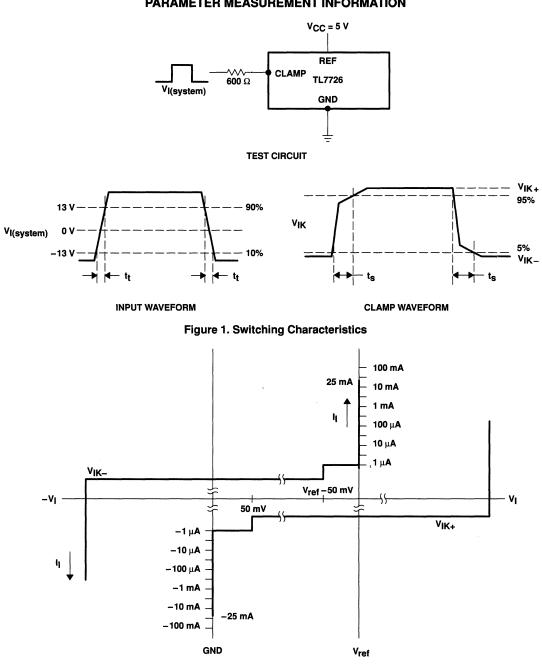
recommended operating conditions

		MIN	MAX	UNIT
Reference voltage, V _{ref}		4.5	5.5	V
Input clamping current, I _{IK}	$V_{I} \ge V_{ref}$		25	mA
	V ₁ ≤ GND	-25		IIIA
	TL7726C	0	70	
Operating free-air temperature range, TA	TL7726I	-40	85	°C
	TL7726Q	-40	125	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
VIK+	Positive clamp voltage	lı = 20 mA	Vref		V _{ref} +200	mV
VIK –	Negative clamp voltage	l _l = 20 mA	-200		0	mV
١z	Reference current	V _{ref} = 5 V		25	60	μA
		$V_{ref} - 50 \text{ mV} \le V_I \le V_{ref}$			10	
կ	Input current	$GND \le V_I \le 50 \text{ mV}$	-10			μA
		$50 \text{ mV} \le \text{V}_{\text{I}} \le \text{V}_{\text{ref}} - 50 \text{ mV}$	-1		1	

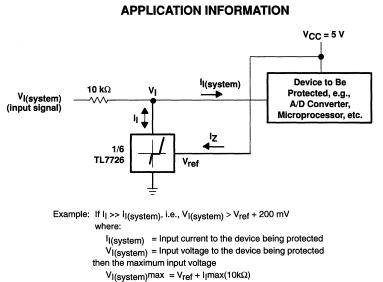
[‡] All typical values are at $T_A = 25^{\circ}C$.


switching characteristics specified at T_A = 25°C

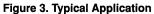
PARAMETER	TEST CONDITIONS	TEST CONDITIONS		MAX	UNIT
t _S Settling time	$V_{I(system)} = \pm 13 V$, $R_{I} = 600 G$ Measured at 10% to 90%, See Figur			30	μs

TL7726 **HEX CLAMPING CIRCUITS**

SLAS078C - SEPTEMBER 1993 - REVISED JULY 1999


PARAMETER MEASUREMENT INFORMATION

TL7726 HEX CLAMPING CIRCUITS


SLAS078C - SEPTEMBER 1993 - REVISED JULY 1999

 $= 5 V + 25 mA(10k\Omega)$

= 5 V + 250 V

= 255 V

01

2

з

4

5

6

7

9

10

TERMPWR

NC

NC

D0 🗆

D1 🞞

D2

D3

D4

NC

GND

SLVS072C - DECEMBER 1992 - REVISED OCTOBER 1995

20

19

18

17 **T** ⊐ D8

16

15

14

13

12

11

TERMPWR

□ NC

⊐ D6

□ D5

⊐ GND

NC

PW PACKAGE (TOP VIEW)

available features

- **Fully Integrated 9-Channel SCSI** Termination
- No External Components Required
- Maximum Allowed Current Applied at First **High-Level Step**
- 6-pF Typical Power-Down Output Capacitance
- Wide V_{term}[†] (Termination Voltage) Operating Range, 3.5 V to 5.5 V
- **TTL-Compatible Disable Feature**
- **Compatible With Active Negation**
- **Thermal Regulation**

NC - No internal connection

8

description

The TL2218-285 is a current-mode 9-channel monolithic terminator specially designed for single-ended small-computer-systems-interface (SCSI) bus termination. A user-controlled disable function is provided to reduce standby power. No impedance-matching resistors or other external components are required for its operation as a complete terminator.

The device operates over a wide termination-voltage (Vterm[†]) range of 3.5 V to 5.5 V, offering an extra 0.5 V of operating range when compared to the minimum termination voltage of 4 V required by other integrated active terminators. The TL2218-285 functions as a current-sourcing terminator and supplies a constant output current of 23 mA into each asserted line. When a line is deasserted, the device senses the rising voltage level and begins to function as a voltage source, supplying a fixed output voltage of 2.85 V. The TL2218-285 features compatibility with active negation drivers and has a typical sink current capability of 20 mA.

The TL2218-285 is able to ensure that maximum current is applied at the first high-level step. This performance means that the device should provide a first high-level step exceeding 2 V even at a 10-MHz rate. Therefore, noise margins are improved considerably above those provided by resistive terminators.

A key difference between the TL2218-285 current-mode terminator and a Boulay terminator is that the TL2218-285 does not incorporate a low dropout regulator to set the output voltage to 2.85 V. In contrast with the Boulay termination concept, the accuracy of the 2.85 V is not critical with the current-mode method used in the TL2218-285 because this voltage does not determine the driver current. Therefore, the primary device specifications are not the same as with a voltage regulator but are more concerned with output current.

The DISABLE terminal is TTL compatible and must be taken low to shut down the outputs. The device is normally active, even when DISABLE is left floating. In the disable mode, only the device startup circuits remain active, thereby reducing the supply current to just 500 µA. Output capacitance in the shutdown mode is typically 6 pF.

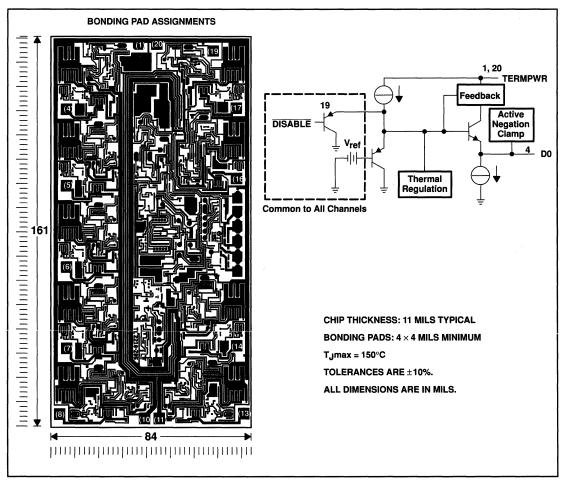
The TL2218-285 has on-board thermal regulation and current limiting, thus eliminating the need for external protection circuitry. A thermal regulation circuit that is designed to provide current limiting, rather than an actual thermal shutdown, is included in the individual channels of the TL2218-285. When a system fault occurs that leads to excessive power dissipation by the terminator, the thermal regulation circuit causes a reduction in the asserted-line output current sufficient to maintain operation. This feature allows the bus to remain active during a fault condition, which permits data transfer immediately upon removal of the fault. A terminator with thermal shutdown does not allow for data transfer until sufficient cooling has occurred. Another advantage offered by the TL2218-285 is a design that does not require costly laser trimming in the manufacturing process.

The TL2218-285 is characterized for operation over the virtual junction temperature range of 0°C to 125°C.

[†] This symbol is not presently listed within EIA/JEDEC standards for letter symbols.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

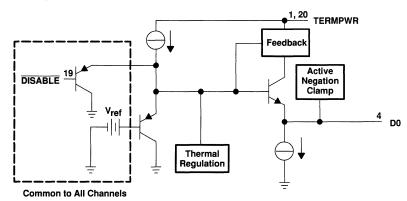
Copyright © 1995, Texas Instruments Incorporated


SLVS072C - DECEMBER 1992 - REVISED OCTOBER 1995

AVAILABLE OPTIONS			
Тј	SURFACE MOUNT (PW) [†]	CHIP FORM (Y)	
0°C to 125°C	TL2218-285PWLE	TL2218-285Y	

[†] The PW package is only available left-end taped and reeled.

TL2218-285Y chip information


This chip, when properly assembled, displays characteristics similar to the TL2218-285. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

SLVS072C - DECEMBER 1992 - REVISED OCTOBER 1995

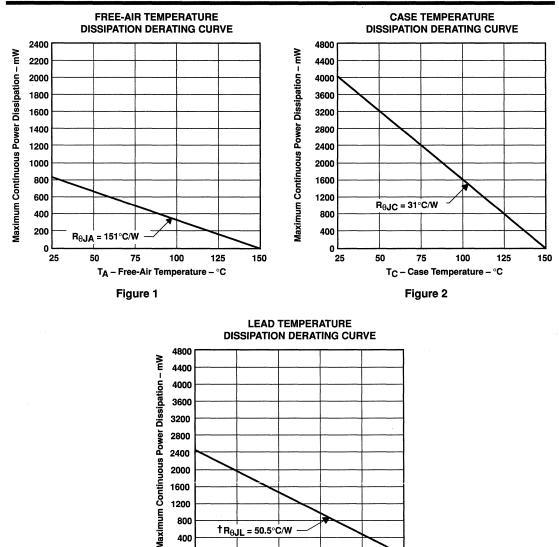
functional block diagram (each channel)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) (see Figures 1, 2, and 3)[†]

Continuous termination voltage	10 V
Continuous output voltage range	0 V to 5.5 V
Continuous disable voltage range	0 V to 5.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T _J	–55°C to 150°C
Storage temperature range, T _{stg}	–60°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE


PACKAGE	POWER RATING AT	T ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T = 25°C	T = 70°C POWER RATING	T = 85°C POWER RATING	T = 125°C POWER RATING
	TA	828 mW	6.62 mW/°C	530 mW	430 mW	166 mW
PW	т _С	4032 mW	32.2 mW/°C	2583 mW	2100 mW	812 mW
	т _L ‡	2475 mW	19.8 mW/°C	1584 mW	1287 mW	495 mW

[‡] R_{0,L} is the thermal resistance between the junction and device lead. To determine the virtual junction temperature (T_J) relative to the device lead temperature, the following calculations should be used: T_J = P_D x R_{0,L} + T_L, where P_D is the internal power dissipation of the device and T_L is the device lead temperature at the point of contact to the printed wiring board. R_{0,L} is 50.5°C/W.

> 400 0 25

SLVS072C - DECEMBER 1992 - REVISED OCTOBER 1995

+ Re, J is the thermal resistance between the junction and device lead. To determine the virtual junction temperature (T, J) relative to the device lead temperature, the following calculations should be used: T_J = P_D x R_{0JL} + T_L, where P_D is the internal power dissipation of the device, and T_L is the device lead temperature at the point of contact to the printed wiring board. Re.II is 50.5°C/W.

75

Figure 3

100

TL – Lead Temperature – °C

125

150

 $TR_{\theta JL} = 50.5^{\circ}C/W$

50

SLVS072C - DECEMBER 1992 - REVISED OCTOBER 1995

recommended operating conditions

	MIN	MAX	UNIT
Termination voltage	3.5	5.5	V
High-level disable input voltage, VIH	2	V _{term}	V
Low-level disable input voltage, VIL	0	0.8	V
Operating virtual junction temperature, TJ	0	125	°C

electrical characteristics, V_{term} = 4.75 V, V_O = 0.5 V, T_J = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output high voltage		2.5	2.85		٧	
	All data lines open		9		mA	
TERMPWR supply current	All data lines = 0.5 V		228			
	DISABLE = 0 V		500		μA	
Output current		-20.5	-23	-24	mA	
	DISABLE = 4.75 V			1		
Disable input current (see Note 1)	DISABLE = 0 V			600	μA	
Output leakage current	DISABLE = 0 V		100		nA	
Output capacitance, device disabled	V _O = 0 V, 1 MHz		6		pF	
Termination sink current, total	V _O = 4 V	1	20		mA	

NOTE 1: When DISABLE is open or high, the terminator is active.

SLVS072C - DECEMBER 1992 - REVISED OCTOBER 1995

THERMAL INFORMATION

The need for smaller surface-mount packages for use on compact printed-wiring boards (PWB) causes an increasingly difficult problem in the area of thermal dissipation. In order to provide the systems designer with a better approximation of the junction temperature rise in the thin-shrink small-outline package (TSSOP), the junction-to-lead thermal resistance ($R_{\theta,JL}$) is provided along with the more typical values of junction-to-ambient and junction-to-case thermal resistances, $R_{\theta,JA}$ and $R_{\theta,JC}$.

 $R_{\theta,JL}$ is used to calculate the device junction temperature rise measured from the leads of the unit. Consequently, the junction temperature is dependent upon the board temperature at the leads, $R_{\theta,JL}$, and the internal power dissipation of the device. The board temperature is contingent upon several variables, including device packing density, thickness, material, area, and number of interconnects. The $R_{\theta,JL}$ value depends on the number of leads connecting to the die-mount pad, the lead-frame alloy, area of the die, mount material, and mold compound. Since the power level at which the TSSOP can be used is highly dependent upon both the temperature rise of the PWB and the device itself, the systems designer can maximize this level by optimizing the circuit board. The junction temperature of the device can be calculated using the equation $T_J = (P_D \times R_{\theta,JL}) + T_L$ where $T_J =$ junction temperature, $P_D =$ power dissipation, $R_{\theta,JL} =$ junction-to-lead thermal resistance, and $T_L =$ board temperature at the leads of the unit.

The values of thermal resistance for the TL2218-285 PW are as follows:

Thermal Resistance	Typical Junction Rise
R _{0JA}	151°C/W
R _{0JC}	31 °C/W
R _{0JL}	50.5°C/W

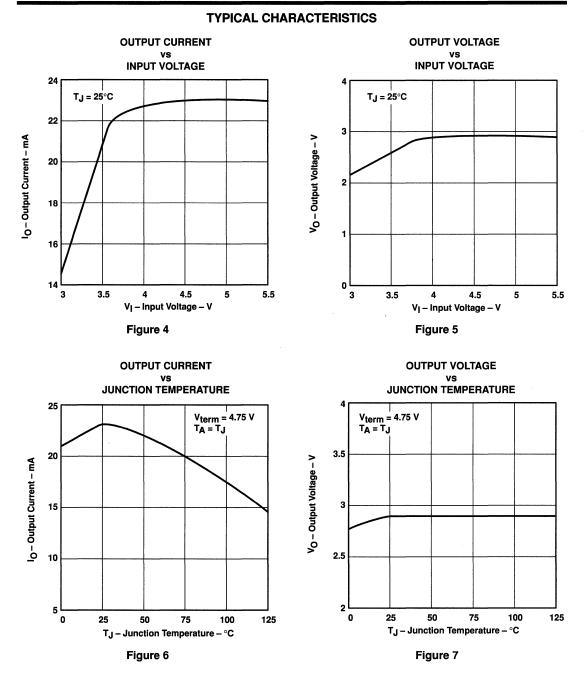

TYPICAL CHARACTERISTICS

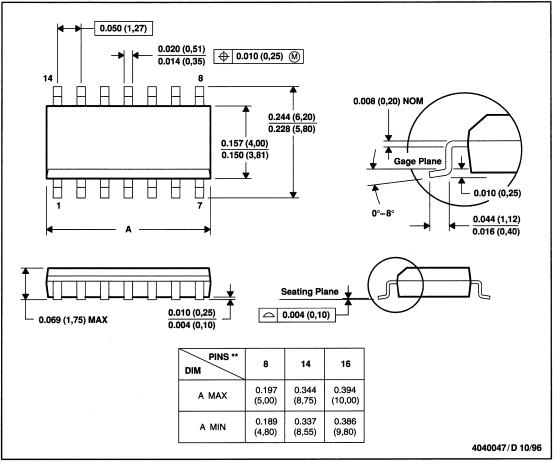
FIGURE ю Output current vs Input voltage 4 Vo Output voltage vs Input voltage 5 Output current vs Junction temperature 6 ю Output voltage vs Junction temperature 7 ٧o

Table of Graphs

SLVS072C - DECEMBER 1992 - REVISED OCTOBER 1995

General Information (Vol. 1)	1
Linear Voltage Regulators	2
Shunt Regulators	3
Precision Virtual Grounds	4
Mechanical Data	5
General Information (Vol. 2)	6
Processor PS Controllers	7
Switching PS and DC/DC Converters	8
MOSFET Drivers	9
Supervisors	10
Mechanical Data	11
General Information (Vol. 3)	12
Power Distribution Switches	13
LED Drivers	1 4
Voltage Rail Splitters	15
Special Functions	16
Mechanical Data	17

Mechanical Data


17–2

MECHANICAL DATA

D (R-PDSO-G**)

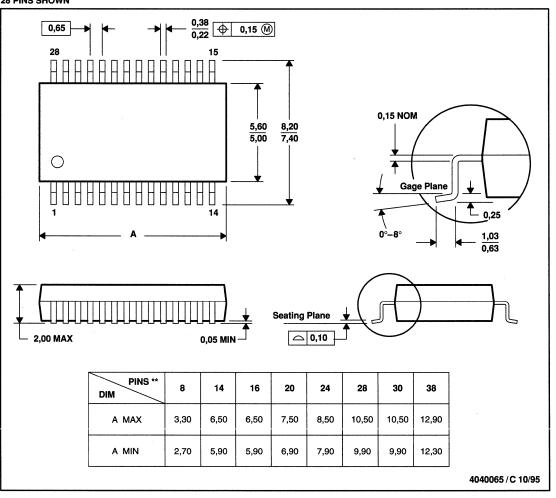
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012



MECHANICAL DATA

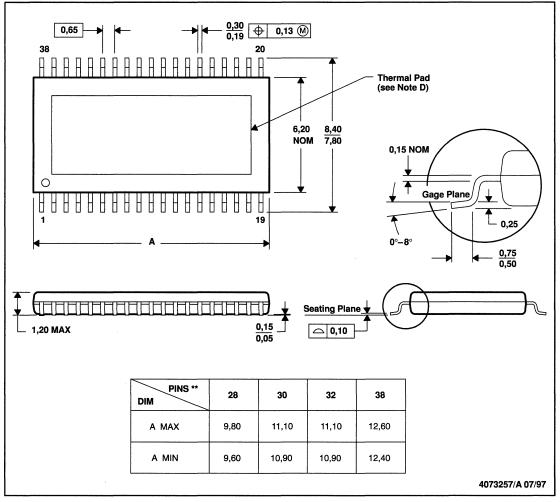
PLASTIC SMALL-OUTLINE PACKAGE

DB (R-PDSO-G**) 28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.


D. Falls within JEDEC MO-150

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

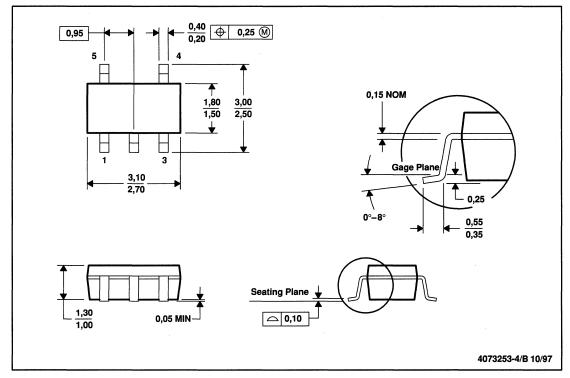
MECHANICAL INFORMATION

DAP (R-PDSO-G**) 38 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments Incorporated.

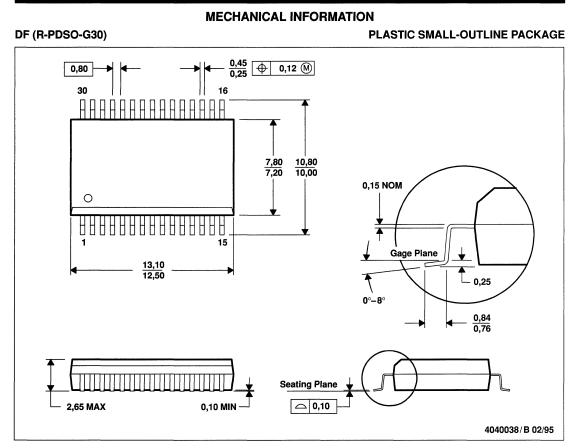


MECHANICAL DATA

MECHANICAL INFORMATION

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

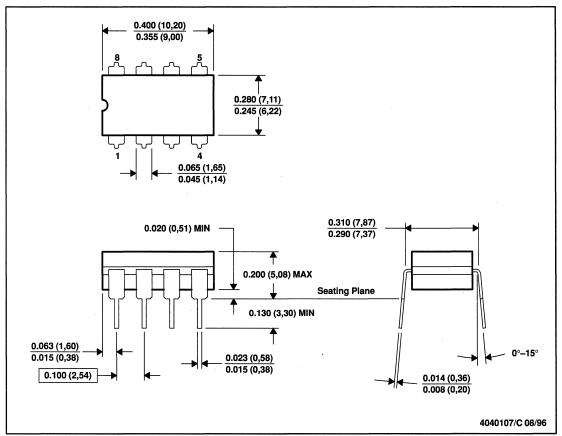


NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice.

C. Body dimensions include mold flash or protrusion.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

MECHANICAL INFORMATION

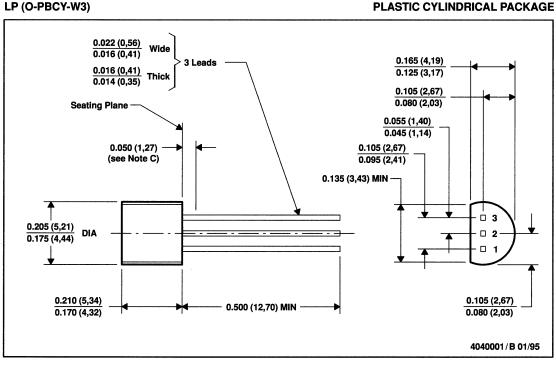
JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

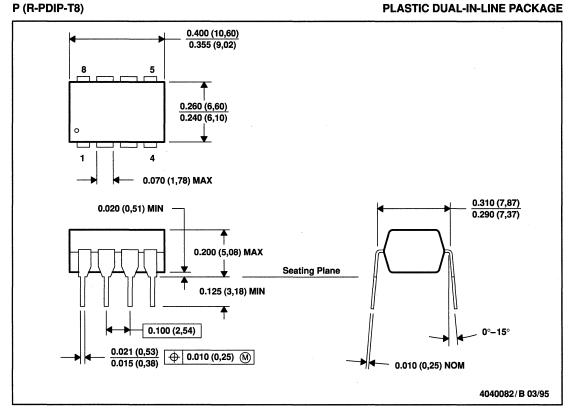
B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a ceramic lid using glass frit.


D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.

E. Falls within MIL-STD-1835 GDIP1-T8

LP (O-PBCY-W3)



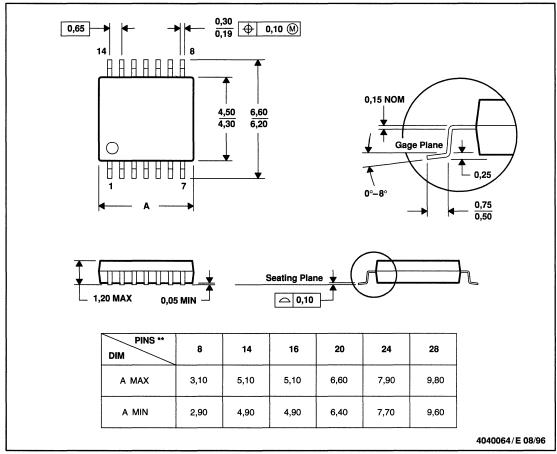
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Lead dimensions are not controlled within this area.
- D. Falls within JEDEC TO-226AA (TO-226AA replaces TO-92)

MECHANICAL INFORMATION

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

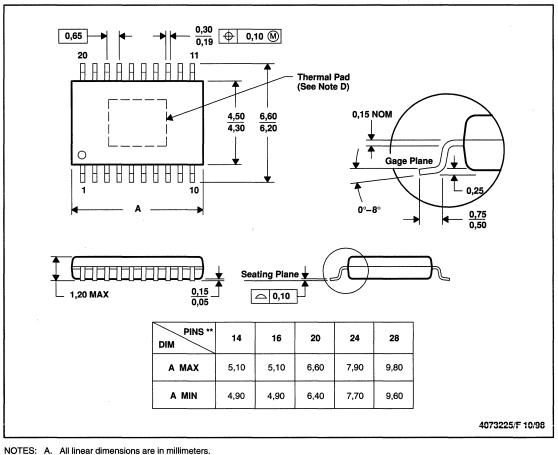

C. Falls within JEDEC MS-001

MECHANICAL INFORMATION

PW (R-PDSO-G**) 14 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153


.

MECHANICAL DATA

MECHANICAL INFORMATION

PWP (R-PDSO-G**) **20 PINS SHOWN**

PowerPAD™ PLASTIC SMALL-OUTLINE

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusions.

D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.

E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments Incorporated.

NOTES

TI Worldwide Technical Support

Internet

TI Semiconductor Home Page www.ti.com/sc

TI Distributors

www.ti.com/sc/docs/general/distrib.htm

Product Information Centers

Americas

Phone	+1(972) 644-5580
Fax	+1(972) 480-7800
Internet	www.ti.com/sc/ampic

Europe, Middle East, and Africa

Phone Belgium (English) France Germany Israel (English) Italy Netherlands (English) Spain Sweden (English) United Kingdom Fax Email Internet

Japan

Phone International Domestic Fax International Domestic Internet International Domestic

+32 (0) 27 45 55 32

+33 (0) 1 30 70 11 64

+49 (0) 8161 80 33 11

+81-3-3344-5311 0120-81-0026

+81-3-3344-5317 0120-81-0036

www.ti.com/sc/jpic www.tij.co.jp/pic

Asia

+886-2-23786800	
Local Access Code	<u>TI Number</u>
1-800-881-011	-800-800-1450
10810	-800-800-1450
800-96-1111	-800-800-1450
000-117	-800-800-1450
001-801-10	-800-800-1450
080-551-2804	-
1-800-800-011	-800-800-1450
000-911	-800-800-1450
105-11	-800-800-1450
800-0111-111	-800-800-1450
080-006800	-
0019-991-1111	-800-800-1450
886-2-2378-6808	
tiasia@ti.com	
www.ti.com/sc/apic	
	Local Access Code 1-800-881-011 10810 800-96-1111 000-117 001-801-10 080-551-2804 1-800-800-011 000-911 105-11 800-0111-111 080-006800 0019-991-1111 886-2-2378-6808 tiasia@ti.com

© 1999 Texas Instruments Incorporated Printed in the USA

A101299

