
• TEXAS
INSTRUMENTS

TSP50C1x Family
Speech Synthesizer

1993 Linear Products

TSP50C1x Family

Speech Synthesizer

Design Manual

~TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated (Til reserves the right to make changes to its
products or to discontinue any semiconductor product or service without notice,
and advises its customers to obtain the latest version of relevant information to
verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to
current specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems necessary to
support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support
appliances, devices, or systems. Use of TI product in such applications requires
the written approval of the appropriate TI officer. Certain applications using
semiconductor devices may involve potential risks of personal injury, property
damage, or loss of life. In order to minimize these risks, adequate design and
operating safeguards should be provided by the customer to minimize inherent
or procedural hazards. Inclusion of TI products in such applications is understood
to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that any license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process
in which such semiconductor products or services might be or are used.

Copyright © 1993, Texas Instruments Incorporated

Printed in the U.S.A.

Contents

Section Title Page

1 Introduction to the TSP50Clx Family of Devices 1-1
1.1 Applications... 1-1
1.2 Description.. 1-1
1.3 TSP50C1x Family Features ... 1-3
1.4 TSP50C12 Features ... 1-3
1.5 TSP50C14 Features ... 1-4
1.6 D/ A Options ... 1-4

1.6.1 Two-Pin Push Pull (Option 1) - Accurate to 10 Bits (:t 1/2 LSB) 1-4
1.6.2 Single-Pin Single Ended (Option 2) - Accurate to Only 9 Bits (± 1 LSB) 1-6
1.6.3 Single-Pin Double Ended (Option 3) - Accurate to 10 Bits (± 1/2 LSB) 1-7

1. 7 TSP50C10/11 Pin Assignments and Descriptions 1-8
1.8 TSP50C12 Pin Assignments and Descriptions. .. 1-11
1.9 TSP50C14 Pin Assignments and Descriptions 1-12
1.10 Introduction to LPC (Linear Predictive Coding) 1-13

1.10.1 The Vocal Tract .. 1-13
1.10.2 The LPC Model ... 1-14
1.10.3 LPC Data Compression ... 1-14

2 TSP50Clx Family Architecture .. 2-1
2.1 Read-Only Memory (ROM) ... " 2-3
2.2 Program Counter. .. 2-3
2.3 Program Counter Stack ... " 2-3
2.4 TSP50ClO/11 Random-Access Memory (RAM) 2-4
2.5 TSP50C12 Random-Access Memory (RAM) 2-5
2.6 TSP50C14 Random-Access Memory (RAM) 2-6
2.7 Arithmetic Logic Unit (ALU) .. 2-6
2.8 A Register .. 2-6
2.9 X Register .. 2-6
2.10 B Register ... 2-6
2.11 Status Flag .. 2-7
2.12 Integer Mode Flag ... 2-7
2.13 Timer Register ... 2-7
2.14 Timer Prescale Register .. 2-7
2.15 Pitch Register .. 2-8
2.16 Speech Address Register ... 2-9
2.17 Parallel-to-Serial Register ... 2-9
2.18 Input/Output Ports .. 2-9
2.19 Mode Register ... 2-10
2.20 Speech Synthesizer .. 2-11

2.20.1 SynthesizerModeO-OFF ... 2-11
2.20.2 Synthesizer Mode 1 - LPC .. 2-11

iii

Contents (Continued)

Section Title Page
2.20.3 Synthesizer Mode 2 - PCM .. 2-12
2.20.4 Synthesizer Mode 3 - PCM and LPC .. 2-12
2.20.5 Use of RAM by the Synthesizer 2-12
2.20.6 Frame-Length Control .. 2-13
2.20.7 Digital-to-Analog Converter .. 2-13

2.21 Interrupts... 2-13
2.22 TSP50C12 LCD Functional Description 2-14

2.22.1 TSP50C12 LCD Driver ... 2-14
2.22.2 TSP50C12 LCD Drive Type A .. 2-15
2.22.3 TSP50C12 LCD Drive Type B .. 2-17

2.23 TSP50C12 LCD Reference Voltage and Contrast Adjustment 2-18
2.24 TSP50C12 Clock Options. .. 2-18

3 TSP50Clx Electrical Specifications ... 3-1
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range 3-1
3.2 TSP50C1x Recommended Operating Conditions 3-1
3.3 TSP50C1x D/A Options Timing Requirements 3-1
3.4 TSP50C1x Initialization Timing Requirement 3-2
3.5 TSP50C1x Write Timing Requirements (Slave Mode) 3-2
3.6 TSP50C1x Read Timing Requirements (Slave Mode) 3-3
3.7 TSP50C10/11 Electrical Characteristics Over Recommended Ranges of Supply Voltage

and Operating Free-Air Temperature (unless otherwise noted) 3-4
3.8 TSP50C12 Electrical Characteristics Over Recommended Ranges of Supply Voltage and

Operating Free-Air Temperature (unless otherwise noted) 3-5
3.9 TSP50C14 Electrical Characteristics Over Recommended Ranges of Supply Voltage and

Operating Free-Air Temperature (unless otherwise noted) 3-6

4 TSP50Clx Assembler .. 4-1
4.1 Description of Notation Used .. 4-1
4.2 Invoking the Assembler .. 4-1

4.2.1 Command-Line Options .. 4-1
4.2.1.1 BYTE Unlist Option 4-2
4.2.1.2 DATA Unlist Option 4-2
4.2.1.3 XREF Unlist Option 4-2
4.2.1.4 TEXT Unlist Option 4-2
4.2.1.5 WARNING Unlist Option 4-2
4.2.1.6 Complete XREF Switch 4-2
4.2.1.7 Object Module Switch 4-3
4.2.1.8 Listing File Switch .. 4-3
4.2.1.9 Page Eject Disable Switch 4-3
4.2.1.10 Error to Screen Switch 4-3
4.2.1.11 Instruction Count Switch 4-3
4.2.1.12 Binary Code File Disable Switch 4-3

4.2.2 Assembler Input and Output Files 4-3
4.2.2.1 Assembly Source File 4-3

iv

Contents (Continued)

Section Title Page

4.2.2.2 Assembly Binary Object File. .. 4-3
4.2.2.3 Assembly Tagged Object File 4-4
4.2.2.4 Assembly Listing File 4-4

4.3 Source-Statement Format ... 4-4
4.3.1 Label Field .. 4-4
4.3.2 Command Field .. 4-5
4.3.3 Operand Field .. 4-5
4.3.4 Comment Field .. 4-5
4.3.5 Constants .. 4-5

4.3.5.1 Decimal Integer Constants 4-5
4.3.5.2 Binary Integer Constants 4-5
4.3.5.3 Hexadecimal Integer Constants 4-6
4.3.5.4 Character Constants 4-6
4.3.5.5 Assembly-Time Constants , .. " 4-6

4.3.6 Symbols .. 4-6
4.3.7 Character String .. 4-7
4.3.8 Expressions 4-7

4.3.8.1 Arithmetic Operators in Expressions 4-7
4.3.8.2 Parentheses In Expressions 4-8

4.4 Assembler Directives .. 4-8
4.4.1 AORG Directive ... " 4-10
4.4.2 BYTE Directive ... 4-10
4.4.3 COPY Directive ... 4-10
4.4.4 DATA Directive ... 4-10
4.4.5 EQU Directive .. 4-11
4.4.6 END Directive .. 4-11
4.4.7 IDT Directive ... 4-11
4.4.8 LIST Directive .. 4-11
4.4.9 NARROW Directive. 4-12
4.4.10 OPTION Directive ... 4-12

4.4.10.1 BUNLST - Byte Unlist Option " 4-12
4.4.10.2 DUNLST-DataUnlistOption 4-12
4.4.10.3 FUNLST - Byte, Data, and Text Unlist Option 4-13
4.4.10.4 I COUNT - Instruction Count List Option 4-13
4.4.10.5 LSTUNL - Listing Unlist Option 4-13
4.4.10.6 OBJUNL- Object File Unlist Option 4-13
4.4.10.7 PAGEOF - Page Break Inhibit Option 4-13
4.4.10.8 RXREF - Reduced XREF Option .. 4-13
4.4.10.9 SCRNOF - Screen Error Message Unlist Option 4-13
4.4.10.10 TUNLST - Text Unlist Option 4-13
4.4.10.11 WARNOFF - Warning Message Unlist Option 4-13
4.4.10.12 XREF - Cross-Reference Listing Enable 4-13

v

Contents (Continued)

Section Title Page
4-13
4-14
4-14

4.4.10.13 990- Tagged Object Output Switch
4.4.11 PAGE Directive .. .
4.4.12 RBYTE Directive
4.4.13 RDATA Directive .. 4-14
4.4.14 RTEXT Directive .. 4-14
4.4.15 TEXT Directive ... 4-15
4.4.16 TITL Directive .. 4-15
4.4.17 UNL Directive .. 4-15
4.4.18 WIDE Directive ... 4-16

5 Instruction Set .. 5-1

vi

5.1 Instruction Format .. 5-4
5.2 ABAAC - Add B to A ... 5-5
5.3 ACAAC - Add Constant to A Register 5-6
5.4 AGEC - A Register Greater Than or Equal To Constant 5-7
5.5 AMAAC - Add Memory to A Register 5-8
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34

ANDCM - Logical AND a Constant With Memory 5-9
ANEC - A Not Equal to Constant ... 5-10
AXCA - A Times Constant .. 5-11
AXMA - A Times Memory 5-12
AXTM - A Times Timer .. 5-13
BR - Branch If Status Set .. 5-14
BRA - Branch Always to Address in A Register. 5-15
CALL- Call Subroutine If Status Set 5-16
CLA - Clear A Register . 5-17
CLB - Clear B Register ... 5-18
CLX - Clear X Register . 5 -19
DECMN - Decrement Memory ... 5-20
DECXN - Decrement X Register. .. 5-21
EXTSG - Extended-Sign Mode 5-22
GET - Get Data From ROM/RAM .. 5-23
lAC - Increment A Register .. 5-25
IBC - Increment B Register .. 5-26
INCMC - Increment Memory .. 5-27
INTGR - Integer Mode ... 5-28
IXC - Increment X Register .. 5-29
LUAA - Look-up With A Register .. 5-30
LUAB - Look-up With B Register ... 5-31
LUAPS - Indirect Look-up With A Register . 5-32
ORCM - OR Constant With Memory 5-33
RETI - Return From Interrupt .. 5-34
RETN - Return From Subroutine. .. 5-35
SALA - Shift A Register Left .. 5-36
SALA4 - Shift A Register Left Four Bits 5-37
SARA - Shift A Register Right One Bit 5-38

Contents (Continued)

Section Title Page
5.35 SBAAN - Subtract B Register From A Register 5-39
5.36 SBR - Short Branch If Status Set .. 5-40
5.37 SETOFF-Set Processor to Off Mode 5-41
5.38 SMAAN - Subtract Memory From A Register 5-42
5.39 TAB - Transfer A Register to B Register 5-43
5.40 TAM - Transfer A Register to Memory .. 5-44
5.41 TAMD - Transfer A Register to Memory Direct 5-45
5.42 TAMIX - Transfer A Register to Memory and Increment X Register 5-46
5.43 TAMODE - Transfer A Register to Mode Register 5-47
5.44 TAPSC - Transfer A Register to Prescale Register 5-48
5.45 TASYN - Transfer A Register to Synthesizer Register 5-49
5.46 TATM - Transfer A Register to Timer Register 5-50
5.47 TAX - Transfer A Register to X Register 5-51
5.48 TBM - Transfer B Register to Memory 5-52
5.49 TCA - Transfer Constant to A Register 5-53
5.50 TCX - Transfer Constant to X Register 5-54
5.51 TMA - Transfer Memory to A Register. 5-55
5.52 TMAD - Transfer Memory to A Register Direct 5-56
5.53 TMAIX - Transfer Memory to A Register and Increment X Register 5-57
5.54 TMXD - Transfer Memory Direct to X Register 5-58
5.55 TRNDA - Transfer Random Number into A Register 5-59
5.56 TSTCA - Test Constant With A Register 5-60
5.57 TSTCM - Test Constant With Memory 5-61
5.58 TTMA - Transfer Timer Register to A Register 5-62
5.59 TXA - Transfer X Register to A Register 5-63
5.60 XBA - Exchange Contents of B Register and A Register 5-64
5.61 XBX - Exchange Contents of B Register and X Register 5-65
5.62 XGEC- X Register Greater Than or Equal to Constant 5-66

6 Applications. .. 6-1
6.1 Synthesizer Control ... 6-1

6.1.1 Speech Coding and Decoding .. 6-1
6.1.2 RAM Usage ... 6-3
6.1.3 ROM Usage ... 6-5
6.1.4 Program Overview .. 6-5

6.1.4.1 Initialization ... 6-5
6.1.4.2 Phrase Selection .. 6-6
6.1.4.3 Speech Initialization 6-6
6.1.4.4 Level-I-Interrupt Service Routine 6-6
6.1.4.5 Frame-Update Routine 6-6

6.1.5 Synthesis Program Walk-Through 6-6
6.2 Arithmetic Modes .. 6-28
6.3 Operation of the Multiply Instruction. .. 6-30
6.4 Standby Mode ... 6-30
6.5 Slave Mode .. 6-30

vii

Contents (Continued)

Section Title Page
6.5.1 Slave-Mode Write Operation 6-31
6.5.2 Slave-Mode Read Operation .. 6-32

6.6 TSP60C18 Interface .. 6-33
6.6.1 External ROM Mode ... 6-33
6.6.2 TSP60C18 I/O Signals .. 6-33
6.6.3 TSP60C18 Addressing 6-34
6.6.4 TSP60C18 Addressing Modes 6-34

6.6.4.1 TSP60C18 Direct-Addressing Mode 6-35
6.6.4.2 TSP60C18 Indirect-Addressing Mode 6-35

6.6.5 TSP60C18 Control 6-36
6.6.5.1 Initialization of the TSP60C18 6-36
6.6.5.2 Direct-Address Initialization of the TSP60C18 6-37
6.6.5.3 8-Bit Indirect-Address Initialization of the TSP60C18 6-37
6.6.5.4 16-Bit Indirect-Address Initialization of the TSP60C18 6-38

6.6.6 Placing the TSP60C18 in a Low-Power Standby Condition 6-39
6.7 Use of the GET Instruction ... 6-39

6.7.1 GET From Internal ROM .. 6-41
6.7.2 GET From External ROM ... 6-41
6.7.3 GET From Internal RAM .. 6-42

6.8 External ROM Interface .. 6-43
6.9 Generating Tones Using PCM .. 6-43

6.9.1 Operation of the TASYN Instruction in PCM Mode 6-43
6.9.2 Timing Considerations in PCM Mode 6-44
6.9.3 DTMF Program Walk-Through 6-44

7 Customer Information .. 7-1
7.1 Development Cycle ... 7-1
7.2 Summary of Speech Development/Production Sequence 7-2
7.3 N016 300-Mil Plastic Dual-In-Line Package 7-3
7.4 FN068 68-Lead Plastic Leaded Chip Carrier (PLCC) Package 7-5
7.5 Ordering Information .. 7-7
7.6 New Product Release Form (TSP50Clx) 7-7

7.6.1 New Product Release Form for TSP50CI0A and TSP50CllA 7-8
7.6.2 New Product Release Form for TSP50C12 7-10
7.6.3 New Product Release Form for TSP50C14 7-12

A Script Preparation and Speech Development Tools A·l
Al Script Generation ... A-I

Al.l Speaker Selection ... A-I
Al.2 Speech Collection ... A-I
A.I.3 LPC Editing ... A-2
A.I.4 Pitfalls .. A-2

A2 Speech Development Tools ... A-2

B TSPSOC1x Sample Synthesis Program ... B·1

C External ROM Initialization ... C·1

viii

Contents (Continued)

Section Title Page

D DTMF Program ... D-I

E TSPSOCIO/ll Sample Music Program ..•.. E-I

ix

Figure

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

1-9

1-10

1-11

1-12

1-13

1-14

1-15

1-16

1-17

2-1

2-2

2-3

2-4

2-5

2--6

2-7

3-1

3-2

3-3

6-1

6-2

6-3

x

List of Illustrations

TItle Page

TSP5OCI0/11 Functional Block Diagram 1-2

TSP5OC12 Functional Block Diagram ... 1-2

TSP5OC14 Functional Block Diagram ... 1-3

D/A Output Waveform for Two-Pin Push Pull (Option 1) 1-5

Four-Transistor Amplifier Circuit ... " 1-5

Operational Amplifier Interface Circuit .. 1-6

Power Amplifier Interface Circuit .. 1-6

D/ A Output Waveform for Single Ended (Option 2) 1-7

One-Transistor Amplifier Circuit ... 1-7

D/A Output Waveform - Single-Pin Double Ended (Option 3) 1-8

Operational Amplifier Interface Circuit .. 1-8

TSP5OClO/11 Pin Assignments .. 1-9

Power-Up Initialization Circuit .. 1-10

Oscillator Circuit ... " 1-10

TSP5OC12 Pin Assignments

TSP5OC14 Pin Assignments

1-11

1-12

LPC-12 Vocal Tract Model ... 1-14

TSP50Clx System Block Diagram .. 2-2

TSP5OClO/11 RAM Map ... 2-4

TSP5OC12 RAM Map .. 2-5

RAM Map During Speech Generation .. 2-12

TSP5OC12 LCD Driver Type A Timing Diagram. .. 2-16

TSP5OC12 LCD Driver Type B Timing Diagram. .. 2-17

TSP5OC12 Voltage Doubler .. 2-18

Initialization Timing Diagram .. 3-2

Write Timing Diagram (Slave Mode) .. 3-2

Read Timing Diagram (Slave Mode) .. 3-3

D6 Frame Decoding ... 6-2

Speech Parameter Unpacking and Decoding 6-3

ACAAC in Extended-Sign Mode .. 6-29

List of Illustrations (Continued)

Figure Title Page

6-4 ACAAC in Integer Mode .. 6-30

6-5 Slave-Mode Write Operation .. 6-32

6-6 Slave-Mode Read-Then-Write Operation 6-32

6-7 TSP60CI8-to-TSP50Clx Hookup ... 6-36

6-8 Register Connections for GET Instruction 6-40

6-9 Parallel-to-Serial Operation for GET 5 Instruction 6-41

6-10 Operation of TASYN in PCM Mode .. 6-44

6-11 Format of Data in A Register Before TASYN 6-44

7-1 Speech Development Cycle .. 7-1

7-2 TSP50CI0/11/14 16-Pin N Package ... 7-3

7-3 TSP50C12 68-Lead PLCC Package ... 7-5

A-I SDS5000 .. A-2

A-2 EVM50CIX .. A-3

A-3 SEB50CIX .. A-3

A-4 SEB60CXX .. A-3

A-5 ADP50C12 .. A-4

xi

List of Tables

Table

1-1

1-2

1-3

Title Page

TSP5OClO/11 Terminal Functions .. 1-9

TSP5OClO/ll I/O Configurations .. 1-10

TSP5OC12 Terminal Functions .. 1-12

1-4 TSP5OC14 Terminal Functions .. 1-13

2-1 Reserved ROM Locations 2-3

2-2 I/O Registers .. 2-10

2-3 Mode Register ... " 2-11

2-4 Interrupt-1 Vectors .. 2-13

2-5 Interrupt-2 Vectors .. 2-14

2""'{) TSP5OC12 Display RAM Map 2-15

4-1 Switches and Options .. 4-2

4-2 Summary of Assembler Directives .. 4-9

5-1 TSP50C1x Instruction Set .. 5-1

5-2 TSP50C1x Instruction Table .. 5-3

6-1 D6 Parameter Size ... 6-2

6-2 Hardware-Fixed RAM Locations ... 6-4

6-3 Other RAM Locations Used in Sample Program 6-4

6-4 FLAGS Bit Descriptions for Sample Program 6-5

6-5 ROM Usage .. 6-5

6-6 TXA Operation .. 6-29

6-7 TSP60C18 Pin Functional Descriptions 6-34

6-8 TSP6OC18 Pinout .. 6-34

6-9 TSP6OC18 Addressing Modes .. 6-35

6-10 Indirect Address Example .. 6-35

6-11 Mode Register Control of GET Data Source 6-40

6-12 Relative Weights of DAC Magnitude Bits 6-44

6-13 Sample Rates . 6-45

xii

1 Introduction to the TSP50C1x Family of Devices
The TSP50C 1 x uses a revol utionary architecture to com bi ne an 8-bit microprocessor, a speech synthesizer,
ROM, RAM, and I/O in a low-cost single-chip system. The architecture uses the same ALU (Arithmetic Logic
Unit) for the synthesizer and the microprocessor, thus reducing chip area and cost and enabling the
microprocessor to do a multiply operation in 1.6 [is. Linear Predictive Coding (LPC) is used to synthesize
high-quality speech at a low data rate.

1.1 Applications
The TSP50C1 x is highly flexible and programmable, making it suitable for a wide variety of applications. Its
low system cost opens up new applications for solid-state speech. They include:

Talking Clocks

Toys

Telephone Answering Machines

Home Monitors

Navigation Aids

Laboratory Instruments

Personal Computers

Inspection Controls

Inventory Controls

Machine Controls

Warehouse Systems

Warning Systems

Appliances

Mailboxes

Equipment for the Handicapped

Learning Aids

Computer-Aided Instruction

Magazine and Direct-Mail Advertisements

Point-of-Sale Displays

1.2 Description
The TSP50C1 x can be divided into several functional blocks (Figure 1-1, 1-2, 1-3). The ALU and RAM are
shared by the speech synthesizer and the microcomputer.

The TSP50C1x implements an LPC-12 speech synthesis algorithm using a 12-pole lattice filter. The internal
microprocessor fetches speech data from the internal or external ROM (TSP60C18), decodes the speech
data, and sends the decoded data to the synthesizer. The microprocessor also interpolates (smooths) the
speech data between fetches. The output of the synthesizer can be used to drive transistor or
integrated-circuit amplifiers. Some digital low-pass filtering is provided inside the TSP50C1x.

The general-purpose microprocessor in the TSP50C1 x is also capable of a variety of logical, arithmetic, and
control functions and can often be used for the nonsynthesis tasks of the customer's application as well.

1-1

PortA
Port S

~

Microcomputer

I
I I/O
I I ALU Speech

Synthesizer

I Microprocessorl RAM ~

~
I

PortA -+-.......
PortS -+-.......

1-2

Analog

I
Output

ROM Timing

I Oscillator I ~

t t
OSC1 OSC2

Figure 1-1. TSP50C10/11 Functional Block Diagram

Microcomputer

I/O

Microprocessor

ROM

SCommon
LCD Outputs

RAM

24-Segment
LCD Outputs

Timing

Oscillator

OSC1 OSC2

Speech
Synthesizer

Analog
Output

Figure 1-2. TSP50C12 Functional Block Diagram

I
I

J
DA2
DA1

1---+- DA2
1---1-- DA1

PortA
Port 8

....

Microcomputer

I Speech I I/O ALU
Synthesizer I

I Microprocessor I RAM

I Analog

I I
Output

ROM Timing
.... ..

I I ... r
Oscillator

Figure 1-3. TSP50C14 Functional Block Diagram

1.3 TSP50C1x Family Features
Programmable LPC-12 Speech Synthesizer

8-Bit Microprocessor With 61 Instructions

16 Twelve-Bit Words and 112 Bytes of RAM

4-V to 6-V CMOS Technology for Low Power Dissipation

3 D/A Configurations - Mask Selectable

1 a-kHz or 8-kHz Speech Sample Rate

8K-Byte ROM (TSP50C10) or 16K-Byte ROM (TSP50C11/12/14)

10 Software Controllable I/O Lines (9 I/O Lines With Two-Pin D/A Output)

Internal Timer

External Interrupt

Single-Cycle Multiply Instruction

Executes Up to 600,000 Instructions Per Second

Built-in Interface to TSP60C18 Speech ROM

Built-In Slave Mode to Act as Microprocessor Peripheral

1.4 TSP50C12 Features

Direct LCD Drive Capability for an 8 x 24 (192-Segment) Display

1/8 Duty Cycle and 1/4 Bias Drive With On-Chip Voltage Reference

Internal Contrast Adjustment

24 Bytes of Display RAM

Two D/A Configurations - Mask Selectable

Limited Direct Speaker Drive Capability

RC Oscillator Option

I

I

DA2
DA1

1-3

1.S TSPSOC14 Features
Direct Speaker Drive Capability

Internal Clock Generator That Requires No External Components

Two-Pin D/A Output and 10 Pins of I/O Simultaneously Possible

• Two D/A Configurations - Mask Selectable

Optional Doubling of the D/A Output

16 Twelve-Bit Words and 48 Bytes of RAM

1.6 D/A Options
The TSP50C1 x offers three D/A (digital-to-analog) output options to match different applications. The DAC
(digital-to-analog converter) is a pulse-width-modulated type with 9 bits or 1 0 bits of resolution and a 16-kHz
or 20-kHz sampling rate. Each option has a range of 480 to -480 segments per sample period, with two
options having a resolution of ± 1/2 LSB and the third having a resolution of ± 1 LSB.

The DAC produces samples at twice the rate that data is received from the LPC filter. For example, if the
LPC filter is running at approximately 10kHz, then the DAC is running at approximately 20 kHz.

The TSP50C12 and TSP50C14 can be used with a normal-sized pulse width or with the PW2 option. The
PW2 option causes the processor to produce a double-sized pulse width. This results in a higher volume
output, which includes some risk of clipping the output.

1.6.1 Two-Pin Push Pull (Option 1) - Accurate to 10 Bits (±1/2 LSB)

Option 1 works well with a very efficient and inexpensive four-transistor amplifier. It requires two pins, so
the I/O pin B 1 is used for the second pin, meaning that only 9 bits of I/O are available. When the DAC is idle,
orthe output value is 0, both pins are high. When the output value is positive, DA1 goes low with a duty cycle
proportional to the output value, while DA2 stays high. When the output value is negative, DA2 goes low
with a duty cycle proportional to the output value, while DA 1 stays high. This option offers a resolution of
10 bits.

Figure 1-4 shows examples of D/A output waveforms with different output values. Each pulse of the DAC
is divided into 480 segments per sample period. For a positive output value x = 0 to 480, DA 1 will go low
for x segments while DA2 stays high. When the DAC is idle or the output value is 0, both DA 1 and DA2 are
high. For a negative value x = 0 to -480, DA2 will go low for Ixl segments while DA 1 stays high.

1-4

480-x 240

High

rLJL DA1

Low I I
x 240 479

DA2
High

Low

0 2 o 1 2
Output Value = x

where x = 0 to 480

(as shown x = 360)

Output Value = 240 Output Value = 479 Output Value = 480

High
DA1

Low

DA2
High

Low

480 + x

lJlJ
Ixl

0 2
Output Value = x

where x = Oto-480

(as shown x = -120)

240

~
240

0 2
Output Value = -240 Output Value = 0 Output Value = -480

Figure 1-4. D/A Output Waveform for Two-Pin Push Pull (Option 1)

Figures 1-5,1--6, and 1-7 show examples of circuits that can be used with this option.

5V

DA1

DA2

Figure 1-5. Four-Transistor Amplifier Circuit

1-5

10kQ

v
1 J.tF 47 kQ

OA 1 ----11 f-----f\,/'V'v-_____ -i

OA2 ----1If-----f\,/'V'v--e-i
>----- .. 2.5 V pop

10 kQ

V/2

Figure 1-6. Operational Amplifier Interface Circuit
VOO

R1
OA1~-~AA~-----~--__ ~2

R1
0A2~-~AA~~--e~-~--+-~3

R2 C1

TSP50C10

2kQ
OUTPUT~-----~~~~~

VSS~------------

8-Q
Speaker

NOTES: R1 .. 56 kQ 10%
R2 = 2 kQ 10%
C1 = 0.022 J.tF 20%
R2 and C1 set low-pass cutoff frequency: fc = 1/(2ltR2 x C1)
For values given above, fc = 3.6 kHz
Gain control can beadded by connecting a 1 O-J.tF capacitor in series with a 1 O-kQ pot. This series combination
is connected between pins 1 and 8. When this is done, R1 should be increased to approximately 250 kQ.

Figure 1-7. Power Amplifier Interface Circuit

1.6.2 Single-Pin Single Ended (Option 2) - Accurate to Only 9 Bits (± 1 LSB)
Option 2 is designed for use with a single-transistor amplifier, offering the lowest-cost solution and still
retaining all 10 I/O pins. It has only 9 bits of resolution, and the amplifier power consumption is higher than
the four-transistor amplifier mentioned above. It is available on the TSP50C10, TSP50C11, and the
TSP50C14. The duty cycle of the output is proportional to the output value. If the output value is 0, the duty
cycle is 50%. As the output value increases from ° to the maximum, the duty cycle goes from being high
50% of the time up to 100% high. As the value goes from 0 to the most negative value, the duty cycle
decreases from 50% high to 0%.

Each pulse of the DAC is divided into 480 segments per sample period. As shown in Figure 1-8, when the
output value is x = -480 to 480, DA 1 will go low for 1x/2-2401 segments. When the output value is 0, DA 1
goes low for 240 segments.

1-6

NOTE: Using Option 2 causes a click at the beginning and end of speech and (under certain conditions)
during synthesis. Software is available to minimize these clicks.

DA1

DA1

High

Low

1x12 + 2401

JlJ
1><12-2401

o 1 2
Output Value = x

where x = 480 to- 480
(as shown x = 240)

o 1 2 o 2 o 1 2
Output Value = 120 Output Val ue = 480 Output Value = 0

~: t- t- Jlf' t-rT- t-n
~ ~ ~ ~

o 2 o 2 o 2 o 1 2
Output Value = - 480 Output Value = 2 Output Value = 478 Output Value = -240

Figure 1-8. D/A Output Waveform for Single Ended (Option 2)

Figure 1-9 shows an example of a circuit that can be used with option 2.

VDD-------.~------~----~

SOOO
DA1----~~--_+~

+ +

vss-------e------~~--~

Figure 1-9. One-Transistor Amplifier Circuit

O.1-IAF
Disc

1.6.3 Single-Pin Double Ended (Option 3) - Accurate to 10 Bits (±1/2 LSB)

Option 3 is provided for use with operational and power amplifiers. It offers both 10 bits of resolution and
10 I/O pins and is available on the TSP50C1 0, TSP50C11, and the TSP50C12. When the output value is
zero, the D/A output is biased at approximately 1/2 Voo. When the output value is positive, the D/A output
pulses to about 1/2 Voo -1 V. The duty cycle is proportional to the output value. When the output value is
negative, the D/A output pulses to 1/2 Voo+1 V with a duty cycle proportional to the output value.

Figure 1-10 shows examples of D/A output waveforms with different output values. Each pulse of the DAC
is divided into 480 segments per sample period. For a positive output value x = 0 to 480, DA 1 will go low
to 1/2 Voo -1 V for x segments. When the DAC is idle, or the output value is 0, DA1 will go to 1/2 Voo. For
a negative value x = 0 to -480, DA1 will go high to 1/2 VOO + 1 V for Ixl segments.

1-7

1/2VOO+1 V

OA1 1/2VOO

1/2VOO-1 V

1/2VOO+1 V

OA1 1/2VOO

1/2VOO-1 V

480-x -rr
x

0 2
Output Value = x

where x = 0 to 480
(as shown x = 360)

Ixl _m
480+x

o 2
Output Value = x

where x = 0 to-480
(as shown x = -360)

240 1

n.rr T-T--- --------

240 479

0 2 0 2 0 2
OU1put Value = 240 OU1put Value = 479 Output Value = 480

240

_lliL --------
240

o 2 o 1 2 o 2
Output Value = -240 Output Value = 0 Output Value =-480

Figure 1-10. D/A Output Waveform - Single-Pin Double Ended (Option 3)

Figure 1-11 shows an example of a circuit that can be used with option 3.

11l-F 47 kQ
OA 1 ----lII-----'VV'v-_____ ---I

10 kQ

VOO/2

100 kQ

V

>-...... -~2Vp·p

Figure 1-11. Operational Amplifier Interface Circuit

1.7 TSP50C10/11 Pin Assignments and Descriptions
Figure 1-12 shows the pin assignments for the TSP50C10/11. Table 1-1 provides terminal functional
descriptions. Table 1-2 shows the possible TSP50C1 0/11 I/O configurations. Figure 1-13 illustrates the
recommended power-up initialization circuit. Note thatthe pull up resistor is required to be lower than 50 kQ.
Figure 1-14 illustrates the recommended clock circuit. Refer to Section 6 for more information on I/O
configuration.

1-8

PIN

NAME NO.

DA1 11

DA2 10t

INIT 6

OSC1 7

OSC2 8

PAD-PA7 1-4,13-16

PBO-PB1 9-10t

VDD 12

VSS 5

PA3
PA2
PA1

PAO
VSS

INIT
OSC1
OSC2

N PACKAGE

(TOP VIEW)

PA4
PA5
PA6
PA7
VDD

DA1
PB1/DA2
PBO

Figure 1-12. TSP50C10/11 Pin Assignments

Table 1-1. TSP50C10/11 Terminal Functions

I/O DESCRIPTION

a D/A output. Three mask options are available.

a D/A output. Three mask options are available.

Initialize input. When INIT goes low, the clock stops, the TSP50C10/11 goes

I
into low-power mode, the program counter is set to zero, and the contents of
the RAM are retained. An INIT pulse of 1 I-ls is sufficient to reset the
processor.

Clock input. Crystal or ceramic resonator between OSC1 and OSC2, or
I signal into OSC1. 9.6 MHz for 10-kHz sampling rate or 7.68 MHz for 8-kHz

sampling rate.

- Clock return

I/O 8-bit bidirectional I/O port

I/O 2-bit bidirectional I/O port

- 5-V supply voltage

- Ground terminal

t The operation of this pin depends on the D/A option selected.

1-9

1-10

Table 1-2. TSP50C10/11 I/O Configurations

MASTER SLAVE MASTER
PIN 1·PIN D/A 1·PIN D/A

1·PIN D/A 1·PIN D/Af 2·PIN D/A 6OC18

4 PAO PAO PAO DO CO
3 PA1 PA1 PA1 01 C1
2 PA2 PA2 PA2 02 C2
1 PA3 PA3 PA3 03 C3
16 PA4 PA4 PA4 04 PA4
15 PA5 PA5 PA5 05 PA5
14 PA6 PA6 PA6 06 PA6
13 PA7 PA7 PA7 BUSY/07 SRCK
9 PBO PBO PBO CE STR
10 PB1 IRQ OA2 RIW RIW

t With external interrupt

VDD

Optional

47 kQ Switch 1 Reset

O.1I-tF
INIT P

Figure 1-13. Power-Up Initialization Circuit

TSP5OC1x

eLK

1 MQ

OSC1 OSC2

9.S-MHz or 7.68-MHz
Crystal or Ceramic Resonator

T 30pF

Figure 1-14. Oscillator Circuit

1.8 TSP50C12 Pin Assignments and Descriptions
Figure 1-15 shows the pin assignments for the TSP50C12. Table 1-3 provides terminal functional
descriptions. The I/O configurations in Table 1-2 also applies to the TSP50C12, but the pin numbers given
are different. Figure 1-13 illustrates the recommended power-up initialization circuit, and Figure 1-14
illustrates the recommended clock circuit. The TSP50C12 is available as a 68-pin PLCC or as a die. Refer
to Section 6 for more information on I/O configuration.

C\J~

PLCC PACKAGE
(TOP VIEW)

~ &5 &5 ~ It:: ~ ~ C\i ~ () () () () () () U ()
~OO~~wwwwzzzzzzzz

PB1/DA2
9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

10 60 NC

VDD 11

DA1 12

VSS 13

C8 14

C7 15

C6 16

C5 17

C4 18

C3 19

59 NC
58 NC
57 NC
56 NC
55 S19
54 S18

53 S17
52 S16

51 S15
C2 20 50 VC1

C1 21 49 VLCD

SO 22 48 VC2

S1 23 47 VX2

S2 24 46 S14
S3 25 45 S13

S4 26 44 S12
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

NC - No internal connection

Figure 1-15. TSPSOC12 Pin Assignments

1-11

Table 1-3. TSP50C12 Terminal Functions

PIN
I/O DESCRIPTION

NAME NO.

DA2 10t 0 D/A output. D/A options 1 and 3 are available.

DA1 12 0 D/A output. D/A options 1 and 3 are available.

PB1 10t I/O Bidirectional I/O pin

PBO 9 I/O Bidirectional I/O pin

Initialize input. When INIT goes low, the clock stops, the

INIT 5 I
TSP50C12 goes into low-power mode, the program counter is set
to zero, and the contents of the RAM are retained. An INIT pulse
of 1 [!S is sufficient to reset the processor.

OSC1:j:
Clock input. Crystal or ceramic resonator between OSC1 and

7 I OSC2, or signal into OSC1. 9.6 MHz for 1 O-kHz sampling rate or
7.68 MHz for 8-kHz sampling rate.

OSC2:j: 8 - Clock return

PAO-PA7 31-38 I/O 8-bit bidirectional I/O port

C1-C8 14-21 0 LCD common lines (rows)

1-4,22-26,
SEG1-SEG24 28-30,39-41, 0 LCD segment lines (columns)

43-46, 51 -55

VC1 50 -
VC2 48 - Voltage doubler capacitor connection

VX2 47 -
VLCD 49 - LCD supply voltage

VDD 11,27 - 5-V supply voltage

VSS 6,13,42 - Ground terminals

t The operation of this pin depends on the D/A option selected.
:j: Ceramic resonator requires two pins. RC oscillator requires one pin for timing and one buffered clock output for trim

monitoring.

1.9 TSP50C14 Pin Assignments and Descriptions
Figure 1-16 shows the pin assignments for the TSP50C14. Table 1-4 provides terminal functional
descriptions. The I/O configurations in Table 1-2 apply to the TSP50C14 with the exception of the pin
numbering and the DA2 pin assignment. Figure 1-13 illustrates the recommended power-up initialization
circuit for the TSP50C14. For most configurations, OSC1 should be tied to either Vss or VDD. Refer to
Section 6 for more information on I/O configurations.

1-12

PA3
PA2
PA1

PAO
Vss

INIT
OSC1

PBO

N PACKAGE
(TOP VIEW)

PA4
PA5
PAS

PA7
DA1
DA2

VDD

PB1

Figure 1-16. TSP50C14 Pin ASSignments

Table 1-4. TSP50C14 Terminal Functions

PIN

NAME NO.
I/O DESCRIPTION

DA1 11 0 D/A output. D/A options 1 and 2 are available.t

DA2 12 0 D/A output. D/A options 1 and 2 are available.t

Initialize input. When INIT goes low, the clock stops, the TSP50C14 goes

INIT 6 I
into low-power mode, the program counter is set to zero, and the contents
of the RAM are retained. An INIT pulse of 1 [.IS is sufficient to reset the pro-
cessor.

OSC1 7 I Clock input. When not in use, OSC1 should be tied to VSS or VDD.

PAD-PA7 1-4,13-16 I/O 8-bit bidirectional I/O port

PBO-PB1 8-9 I/O 2-bit bidirectional I/O port

VDD 10 - 5-V supply voltage

VSS 5 - Ground terminal

t Both DA 1 and DA2 are driven with the same levels, if option 2 is selected.

1.10 Introduction to LPC (Linear Predictive Coding)
The LPC-12 system uses a mathematical model of the human vocal tract to enable efficient digital storage
and recreation of realistic speech. To understand LPC, it is essential to understand how the vocal tract
works. This introduction, therefore, begins with a short description of the vocal tract, after which the LPC
model and data compression techniques are addressed. A short discussion of the techniques and pitfalls
of collecting, analyzing, and editing speech for LPC synthesis is included in Appendix A. For more
information, contact your TI Field Sales Representative or Regional Technology Center.

1.10.1 The Vocal Tract

Speech is the result ofthe interaction among three elements in the vocal tract-air from the lungs, a restriction
that converts the air flow to sound, and the vocal cavities that are positioned to resonate properly.

Air from the lungs is expelled through the vocal tract when the muscles of the chest and diaphragm are
compressed. Pressure is used as a volume control with higher pressure for louder speech.

As air flows through the vocal tract, it makes little sound if there is no restriction. The vocal cords are one
type of restriction. They can be tightened across the vocal tract to stop the flow of air. Pressure builds up
behind them and forces them open. This happens over and over, generating a series of pulses. The tension
on the vocal cords can be varied to change the frequency of the pulses. Many speech sounds, such as the
A sound, are produced by this type of restriction, which is called voiced speech.

A different type of restriction in the mouth causes a hissing sound called white noise. The S sound is a good
example. White noise occurs when the tongue and some part of the mouth are in close contact or when the
lips are pursed. This restriction causes high flow velocities that cause turbulence that produces white noise,
which is called unvoiced speech.

The pulses from the vocal cords and the noise from the turbulence have fairly broad, flat spectral
characteristics. In other words, they are noise, not speech. The shape of the oral cavity changes noise into
recognizable speech. The positions of the tongue, the lips, and the jaws change the resonance of the vocal
tract, shaping the raw noise of restricted airflow into understandable sounds.

1-13

1.10.2 The LPC Model

The LPC model incorporates elements analogous to each of the elements of the vocal tract previously
described. It has an excitation function generator that models both types of restriction, a gain multiplication
stage to model the possible levels of pressure from the lungs, and a digital filter to model the resonance in
the oral and nasal cavities.

Figure 1-17 shows the LPC model in schematic form. The excitation function generator accepts coded pitch
information as an input and can generate a series of pulses similar to vocal cord pulses. It can also generate
white noise. The waveform is then multiplied by an energy factor that corresponds to the pressure from the
lungs. Finally, the signal is passed through a digital filter that models the shape of the oral cavity. In the
TSP50C1 x, this filter has twelve poles, so the synthesis is referred to as LPC-12.

Pitch

Periodic

...IlIlIL/L

LPC-12
Digital
Filter

White Noise i r
~ Energy K1-K12

Filter
Coefficients

Figure 1-17. LPC-12 Vocal Tract Model

1.10.3 LPC Data Compression

DAC

The data compression for LPC-12 takes advantage of other characteristics of speech. Speech changes
fairly slowly, and the oral and nasal cavities tend to fall into certain areas of resonance more than others.
The speech is analyzed in frames generally from 10 ms to 25 ms long. The inputs to the model are calculated
as an average for the entire frame. The synthesizer smooths or interpolates the data during the frame so
that there is not an abrupt transition at the end of each frame. Often speech changes even more slowly than
the frame.

The Texas Instruments LPC model allows for a repeat frame in which the only values changed are the pitch
and the energy. The filter coefficients are kept constant from the previous frame. To take advantage of the
recurrent nature of resonance in the oral cavity, all the coefficients are encoded with anywhere from seven
to three bits for each coefficient. The coding table is designed so that more coverage is given to the
coefficient values that occur frequently.

1-14

2 TSP50C1x Family Architecture
As shown in the block diagram in Figure 2-1, the major components of the TSP50C1x are a speech
synthesizer, an 8-bit microprocessor, an internal 8K-byte (TSP50C10) or 16K-byte (TSP50C11/12/14)
ROM, and input/output ports.

When synthesis is disabled, instructions are fetched by the microprocessor from the ROM 600,000 (1 O-kHz
speech sample rate) or 480,000 (8-kHz speech sample rate) times per second. These instructions control
the actions of the TSP50C1 x. By placing different instruction patterns in the ROM, the TSP50C 1 x can be
programmed to accomplish a wide variety of tasks. To generate speech, the processor accesses speech
data from either the internal ROM or an external source such as a TSP60C18 speech ROM, an EPROM,
or a host processor. Once the data has been read, the processor must unpack and decode the individual
speech parameters and store the results in a dedicated section of the RAM.

The synthesizer shares access to the RAM and addresses the individual parameter locations as needed
when generating speech. The instruction execution rate slows to 280,000 or 224,000 instruction cycles per
second during synthesis because the synthesizer also shares the ALU (Arithmetic Logic Unit) and ROM
data paths with the microprocessor. The microprocessor must perform interpolation during each frame as
well as fetch the data for the next frame.

The I/O consists of one 8-bit bidirectional port (Port A) and one 2-bit bidirectional port (Port B). Each bit can
be software configured for input or output and for push pull or open drain (no pullup driver). There are two
specialized I/O modes for specific functions. Slave mode configures the TSP50C1x to act as a peripheral
to a host microprocessor. External ROM mode allows the TSP50C1 x to interface with a TSP60C18 speech
ROM.

2-1

D/A Output

Figure 2-1. TSP50C1x System Block Diagram

2-2

2.1 Read-Only Memory (ROM)
The TSP50C1 0 has an 8K-byte ROM. The TSP50C11 /12/14 each have a 16K-byte ROM. It can be used
for program instructions and speech data as required by the application. Certain locations in the ROM,
described in Table 2-1, are reserved for specific purposes.

Table 2-1. Reserved ROM Locations

ADDRESS FUNCTION

0000 Execution start location after INIT rising edge

0010-001F Interrupt start locations (see Section 2.21)

1FEO-1FFF Texas Instruments test code for TSP50C1 0

3FEO-3FFF Texas Instruments test code for TSP50C11/12/14

The ROM may be accessed in the following four ways:

1 . The program counter is used to address processor instructions.

2. The GET instruction can be used to transfer 1 to 8 bits from the ROM to the A register. The GET
counter is initialized by the LUAPS instruction. The SAR (speech address register) points to the
ROM location to be used.

3. The LUAA instruction can be used to transfer a byte from the ROM into the A register. The value in
the A register when LUAA is executed points to the ROM address to be used.

4. The LUAB instruction can be used to transfer a byte from the ROM into the B register. The value in
the A register when LUAB is executed points to the ROM address to be used

2.2 Program Counter
The TSP50C1 x has a 14-bit program counter that points to the next instruction to be executed. After the
instruction is executed, the program counter is normally incremented to point to the next instruction.

The following instructions modify the program counter:

BR
BRA
SBR
CALL
RETN
RETI

- branch
- branch to address in A register
- short branch
- call subroutine
- return from subroutine
- return from interrupt

2.3 Program Counter Stack
The program counter stack has three levels. When a subroutine is called or an interrupt occurs, the contents
of the program counter are pushed onto the stack. When an RETN (return from subroutine) or an RETI
(return from interrupt) is executed, the contents of the top stack location are popped into the program
counter.

2-3

2.4 TSP50C10/11 Random-Access Memory (RAM)
The TSP50C10/11 RAM has 128 locations (Figure 2-2). The first 16 RAM locations are used by the
synthesizer and are 12 bits long. The remaining 112 locations are 8 bits long. When not synthesizing speech,
the entire RAM may be used for algorithm data storage. The I/O control registers are also mapped into the
RAM address space from 80 to 87. For more information, see Section 2.18.

2-4

11 10 9 8 7 6 5 4 3 2 0

I I I I I I I I I I I I I

I I I I I I I I I

Address

00 (Synthesis RAM)

01

OE

OF

10 (General-Purpose RAM)

11

7E

7F

80 (I/O)

81

86

87

Figure 2-2. TSP50C10/11 RAM Map

2.5 TSP50C12 Random-Access Memory (RAM)
The TSP50C12 RAM has 1612-bit synthesizer RAM locations and 112 8-bit general purpose RAM locations
(Figure 2-3). The RAM also has 24 8-bit display RAM locations and one 4-bit contrast adjustment register.
The I/O ports are mapped into RAM address space from FO-F7.

11 10 9 8 7 6 5 4 3 2 1 0 Address

I I I I I I I I I I I I I :~y~esISRAM)

111111111

I I I I I I I I I
I
I

II I I I I I I I

OE

OF

10 (General-Purpose RAM)

11

7E

7F

80 (Display)

81

96

97

98 (Contrast)

FO (I/O)

F1

F6

F7

Figure 2-3. TSP50C12 RAM Map

2-5

2.6 TSP50C14 Random-Access Memory (RAM)
The TSP50C14 RAM has the same RAM layout as the TSP50C1 0/11 (see Figure 2-2) with one exception.
The general-purpose RAM location range is from 1 0 to 3F.

2.7 Arithmetic Logic Unit (ALU)
The ALU performs arithmetic and logic functions for the microprocessor and the synthesizer. The ALU is
14 bits in length, providing the resolution needed for speech synthesis. When 8-bit data are transferred to
the ALU, they are right justified. The input to the upper 6 bits may be either zeros (integer mode) or equal
to the MSB of the 8-bit data (extended-sign mode) depending on the arithmetic mode selected using the
EXTSG and INTGR instructions. See the description of each instruction for specific information. All bit and
comparison operations are performed on the lower 8 bits. The ALU is capable of doing an 8-bit by 14-bit
multiply with a 14-bit scaled result in a single instruction cycle.

2.8 A Register
The A register or accumulator is the primary 14-bit register and is used for arithmetic and logical operations.
Its contents can be transferred to or from ROM, RAM, and most of the other registers. The contents are
saved in a dedicated storage register during level-1 interrupts and restored by the RETI instruction.

13 12 11 10 9

I I I I I I
2.9 X Register

A Register
8 765

I I I
4 3 2 o

The X register is an 8-bit register used as a RAM index register. All RAM access instructions except for the
direct-addressing instructions TAMD, TMAD, and TMXD use the X register to point to a specific RAM
location. The X register can also be used as a general-purpose counter. The contents of the X register are
saved during level-1 interrupts and restored by the RETI instruction. If a RAM location with an illegal address
is loaded via the X register, the EVM board with the TSE chip will accept it, but a problem will appear on the
TSP chip.

X Register
765 432 0

I I I I
2.10 B Register
The 14-bit B register is used for temporary storage. It is helpful for storing a RAM address because it can
be exchanged with the X register using the XBX instruction. The B register can be added to, subtracted from,
or exchanged with the A register, making it useful for data storage after calculations. The contents of the
B register are saved during level-1 interrupts and restored by the RETI instruction.

B Register
13 12 11 10 9 8 765 4 3 2 o

I I I I I I I I I

2-6

2.11 Status Flag
The status flag is set or cleared by various instructions depending on the result of the instruction. Refer to
the individual description of instructions in Section 5 to determine the effect an instruction has on the value
of the status flag. The BR, SBR, and CALL instructions are conditional, modifying the program counter only
when the status flag is set. The value of the status flag is unknown at power up. Therefore, if the first
instruction after power up is one of these conditional instructions, the execution of the instruction cannot be
predicted. The value of the status flag is saved during interrupts and restored by the RETI instruction.

2.12 Integer Mode Flag

Status Flag
o

D

The integer mode flag is set by the INTGR instruction and cleared by the EXTSG instruction. When the
integer mode flag is set (integer mode), the upper bits of data less then 14 bits in length will be zero filled
when being transferred to, added to, or subtracted from the A and B registers. When the integer mode flag
is cleared (extended-sign mode), the upper bits of data less than 14 bits in length will be sign extended when
being transferred to, added to, or subtracted from the A and B registers. The value of the integer mode flag
is saved during interrupts and restored by the RETI instruction.

2.13 Timer Register

Integer Mode Flag
o

D

The a-bit timer register is used for generating interrupts and for counting events. It decrements once each
time the timer prescale register goes from 00 to FF. It can be loaded using the TATM instruction and
examined with the TIMA instruction. When it decrements from 00 to FF, a level-2 interrupt request is
generated. If interrupts are enabled and no interrupt is being processed already, an immediate interrupt
occurs; if not, the interrupt request remains pending until interrupts are enabled. The timer continues to
count whether or not it is reloaded. The timer will not decrement before it is initialized. However, on the EVM,
the timer will decrement after a STOP/RUN.

Timer Register
765 432 0

I I I I I I
2.14 Timer Prescale Register
The a-bit timer prescale register is a programmable divider between the processor clock and the timer
register. When it decrements from 00 to FF, the timer register is also decremented. The timer prescale
register is then reloaded with the value in its preset latch, and the counting starts again.

The timer prescale register clock comes from an internal clock. The internal clock runs at 1/16 the clock
frequency of the chip; thus, the timer prescale register decrements once every instruction cycle when not
in LPC mode. The TAPSC instruction loads the timer prescale register's preset latch. If the timer has not
yet been initialized with the TATM instruction, the TAPSC instruction also loads the timer prescale register.

Timer Prescale Register
765 4 321 0

I I I I
2-7

2.15 Pitch Register
Although the 14-bit pitch register and pitch period counter are part of the synthesizer, they affect the
microprocessor in many ways. The pitch period counter controls the timing of the periodic impulse
(excitation function) that simulates the vocal cords. On the TSP50C1 x, the pitch period counter is also used
to control the interpolation of all speech parameters during each frame. This pitch-synchronous interpolation
helps to minimize the inevitable noise from interpolation by making it occur at the lowest energy part ofthe
speech and by making it a harmonic of the speech fundamental frequency.

The pitch register is used when LPC speech is being synthesized. The following discussion presumes that
the LPC mode is active. The pitch register is loaded with the TASYN instruction. When speech starts, the
pitch period counter is cleared. The pitch period counter is decremented by 2016 for each speech sample,
with speech samples occurring at an 8-kHz or 1 O-kHz rate. When the pitch period counter decrements past
zero, the pitch register is added to it. When the pitch period counter goes below 20016 or when a pitch register
is added to it with a result less than 20016, a level-1 interrupt occurs. This interrupt can be used for
interpolation. The excitation function is put out when the pitch period counter is between 14016 and 00. For
further information, see Section 6.

13 12 11 10 9

I I I I I
Pitch Register
8 7 6 5

I I I
4 3 2 o

I I
For voiced or unvoiced frames, the LSB and the MSB ofthe A register must be zero when data is transferred
from the A register to the pitch register with the TASYN instruction (see the following illustration). If this is
not done, problems with the TSP50C1 x chip may occur. Also, these problems may not be apparent when
using the TSE50C1x chip.

13 12 11 10 9

I 0 I I I I I

13 12 11 10 9

I 0 I I I I I

A Register
8 7 6 5

I I I I

Pitch Register

8 7 6 5

I I I

4 3 2 o

4 3 2 o

For voiced frames, the pitch register must be loaded with a value no higher than 1 FFE16. In addition, there
are three recommendations for the minimum pitch register value for voiced frames. First, it is required that
the pitch register value be 4216 or higher. If this is not done, problems with the TSP chip may occur which
are not apparent with the TSE Chip. Second, it is strongly recommended that the pitch register be loaded
with a value of 14216 or higher. This permits the complete excitation pulse to be used in the LPC synthesis.
Third, for best results with the recommended software algorithms, a pitch register value of 20216 or higher
is recommended. The requirement that the pitch register value be less than or equal to 1 FFE16 and the
recommendation of a value greater than or equal to 14216 result in a pitch range of 39 Hz to 994 Hz when
operating with a 1 O-kHz sample rate.

For unvoiced frames, the pitch register is required to be loaded with a value between 4216 and 3FE16. If this
is not done, problems with the TSP chip may occur which are not apparent with the TSE chip.

2-8

2.16 Speech Address Register
The speech address register (SAR) is a 14-bit register that is used to point to data in internal ROM. The
LUAPS instruction transfers the value in A to the speech address register and loads the parallel-to-serial
register (see Section 2.17) with the internal ROM value pointed to by the SAR. The GET instruction can then
be used to bring 1 to 8 bits at a time from the parallel-to-serial register into the accumulator. Whenever the
parallel-to-serial register becomes empty, it is loaded with the internal ROM value pointed to by the SAR,
and the SAR is incremented.

13 12 11 10

I I I I I
Speech Address Register

9 8 7 6 5 4

I I I I
2.17 Parallel-to-Serial Register

3 2 o

The 8-bit parallel-to-serial register is used primarily to unpack speech data. It can be loaded with 8 bits of
data from internal ROM pointed to by the speech address register, internal RAM pointed to by the X register,
or external TSP60C18 speech ROM pointed to by the SAR in the TSP60C 18. The LUAPS instruction is used
to initialize the parallel-to-serial register and zero its bit counter. GET instructions can then be used to
transfer one to eight bits from the parallel-to-serial register to the accumulator. When the parallel-to-serial
register is empty, it is automatically reloaded. When the GET is from RAM, however, the X register is not
automatically incremented. The EXTROM and RAMROM bits in the mode register control the source for the
parallel-to-serial register. See the speech address register description in Section 2.16 for more information.

2.18 Input/Output Ports

Parallel-to-Serial Register
765 4 321 0

I I I

Ten bidirectional lines - 8-bit Port A and 2-bit Port B - are available for interfacing with external devices. Each
bit is individually programmable as an input or an output under the control of the respective data direction
register. In addition, each output bit can be individually programmed using the pullup enable register for one
of two output modes - push pull or open drain (no pullup). Each input bit can be programmed by the same
register for resistive pull up or high impedance. The four registers associated with each of the two I/O ports
are memory mapped. Only two bits of Port B are available on the outside of the chip, and the states of the
upper six bits of its registers are undetermined. Transfers from any of the I/O port registers to the A register
leave the upper six bits (bits 13-9) of the A register undetermined. Details of the I/O registers are shown
in Table 2-2.

2-9

Table 2-2. I/O Registers

LOCATIONt
REGISTER TYPE

PORTA PORTB

Data Input Register (DIR) Read Only 80 84
Pullup Enable Register (PER) Read/Write 81 85

Data Direction Register (DDR) Read/Write 82 86
Data Output Register (DOR) Read/Write 83 87

t For the TSP50C12, the register locations are FO-F7.

DESIRED PIN FUNCTION DOR DDR PER PIN STATE
Input, High Impedance X 0 0 High Impedance

Input, Internal Pullup X 0 1 Passive Pullup
Output, Active Pullup 0 1 0 0
Output, Active Pullup 1 1 0 1
Output, Open Drain 0 1 1 0
Output, Open Drain 1 1 1 High Impedance

A read of the DDR, PER, and DOR registers indicates the last value written to them.

A read of the DIR always indicates the actual level on the I/O pin, which is true even when the DDR is set
for output. This allows true bidirectional data flow without having to switch the port between input and output.
To avoid high-current conditions, this should only be attempted on pins set for open drain with a 1 written
to the data register.

Leaving a high-impedance I/O pin unconnected could cause power consumption to rise while the processor
is in run mode. The power consumption will be between VDD and VSS, with no increase in current through
the input. This should cause no problem with device functionality.

When the part is in standby mode, unconnected high-impedance pins have no effect on either power
consumption or device functionality.

The I/O can also be put in slave mode, making the TSP50C1x usable as a peripheral to a host
microprocessor. Port A can be connected to an 8-bit data bus and controlled by R/W (Port B 1) and chip
enable (Port BO). A read (R/W high and chip enable low) puts the Port A output latch values out on Port A.
A write (R/W low and chip enable low) latches the value on the data bus into the Port A input latch. In addition,
bit 7 of the A output latch is cleared. This makes it possible to use A7 as a write handshake line. Any lines
that are to be used on the data bus in this mode should be configured as inputs.

In external ROM mode, the TSP50C1 x can be interfaced easily to a TSP60C18 speech ROM. Port BO is
used as a chip enable strobe output to the TSP60C18, and Port A7 is used as a clock. Port AO to A3 are
used for address and data transfer, and one other bit must be used for read/write control ofthe TSP60C18.

When the two-pin push-pull option is selected for the D/A output on the TSP50C1 0/11/12, Port B 1 is used
for the second D/A pin, making it unavailable for I/O. In this case, no attempt should be made to use the B1
interrupt.

If the PCM and LPC mode register bits are both cleared, a high-to-Iow transition on B1 causes a level-1
interrupt. This can be used to generate an interrupt with an external event.

2.19 Mode Register
The mode register (Table 2-3) is an 8-bit write-only register that controls the operating mode of the
TSP50C1x. When the INIT pin goes low, all mode register bits are cleared. The mode register is not saved
during a subroutine call or interrupt.

2-10

2.20 Speech Synthesizer
The task of generating synthetic speech is divided between the programmable microprocessor and the
dedicated speech synthesizer. The four speech synthesizer modes, which are set by the LPC and PCM bits
in the mode register, are discussed in the following paragraphs.

Table 2-3. Mode Register

7 654 3 2 1 o
UNV MASTER I RAMROM I EXTROM I ENA2 PCM LPC 1 ENA1

BIT NAME BIT LOW BIT HIGH

ENA1 Disables level-1 interrupt Enables level-1 interrupt

LPG
Disables LPG processor - all instruction cycles Enables LPG processor - 53% of instruction
used by the microprocessor. cycles dedicated to LPG synthesis.

Enables PGM mode. LPG high causes an interrupt

Disables PGM mode. Level-1 interrupt is either rate of fosc/960 and microprocessor control of
PGM PPG < 20016 in LPG mode or pin 81 otherwise. LPG excitation value. LPG low causes an interrupt

rate of fosc/480 and microprocessor control of
D/A register.

ENA2 Disables level-2 interrupt Enables level-2 interrupt

EXTROM Disables operation of external ROM hardware Enables operation of external ROM hardware
interface. interface.

RAMROM
Enables data source for GET instructions to be Enables data source for GET instructions to be
either internal or external ROM. internal RAM.

Enables I/O master operation. All available I/O Enables I/O slave operation. Pin 80 becomes
MASTER pins are controlled by internal microprocessor. hardware chip enable strobe, and 81 becomes

R/W. Port A is controlled by 80 and 81.

UNV
Enables pitch-controlled excitation sequence Enables random excitation sequence when in LPG
when in LPG mode (PGM low, voiced). mode (PGM low, unvoiced).

2.20.1 SyntheSizer Mode 0 - OFF

When the PCM and LPC bits are both cleared, the synthesizer is disabled. All instruction cycles are devoted
to the microprocessor. The TASYN instruction transfers the A register to the pitch register, making it easy
to load the pitch register before starting the LPC synthesizer. In this mode, the level-1 interrupt is triggered
by a high-to-Iow transition on pin B1.

2.20.2 SyntheSizer Mode 1 - LPC

This is the normal speaking mode. The TASYN instruction loads the pitch register, and the level-1 interrupt
is triggered by the pitch register going below 20016. Fifty-three percent of the instruction cycles are used
by the synthesizer.

The microprocessor controls speech synthesis by unpacking and decoding parameters, by setting the
update interval (frame rate), and by interpolating the parameters during the frame. The speech synthesizer
acts as a 12-pole digital lattice filter, a pitch-controlled or white-noise excitation generator, a 2-pole digital
low-pass filter, and a digital-to-analog converter. Speech parameter input is received from dedicated space
in the microprocessor RAM, and speech samples are generated at 8 kHz or 10kHz. Communication
between the microprocessor and the speech synthesizer takes place via a shared memory space in the
microprocessor RAM. Refer to Section 6 for more information.

2-11

2.20.3 Synthesizer Mode 2 - PCM

This mode is used for tone and music generation or for very-high-bit-rate speech. The microprocessor uses
all the instruction cycles, and the TASYN instruction transfers the A register directly to the D/A register. The
level-1 interrupt occurs at a rate twice the speech sample rate (16 kHz or 20 kHz), giving access to the
unfiltered D/A output.

2.20.4 Synthesizer Mode 3 - PCM and LPC

When both the PCM and LPC bits are set, the LPC synthesizer runs normally with its excitation function
provided by software. The level-1 interrupt occurs at the speech sample rate, and the TASYN instruction
transfers the A register to the excitation function input of the synthesizer. This mode is included for use with
RELPS (Residual Encoded Linear Predictive Synthesis) and similar techniques. The synthesizer takes 50%
of the instruction cycles in this mode.

2.20.5 Use of RAM by the Synthesizer

The synthesizer uses locations 01 to OF in the RAM. When synthesis is taking place, the parameters for the
synthesizer come directly from these RAM locations. The addresses are shown in Figure 2-4.

Address 11 10 9 8 7 6 5 4 3 2 0 Comments

00 not used for synthesis

01 Energy

02 K12 (LPC-12 values)

03 K11

04 K10

05 K9

06 K8

07 K7

08 K6

09 K5

OA K4

08 K3

OC K2

00 K1

OE C1 (low-pass filter)

OF C2

Figure 2-4. RAM Map During Speech Generation

2-12

2.20.6 Frame-Length Control

The frame length is controlled by: a) The value put into the prescale register and b) The range over which
the timer is allowed to vary. Typical synthesis and interpolation routines let the timer decrement through a
range of fixed size, so the prescale value should be selected to give the proper frame duration based on
the timer's range.

2.20.7 Digital-to-Analog Converter

The TSP50C1x contains an internal digital-to-analog converter (DAC) connected to the output of the
synthesizer. The DAC is available in three pulse-width-modulated forms for the TSP50C10/11 and two
pulse-width modulated forms for the TSP50C12/14. See Section 1.6 for more information. The DAC outputs
samples at a rate given by fosc/480. For a 9.6-MHz oscillator, this results in an output sample rate of 20
kHz. For a 7.68-MHz oscillator, this results in an output sample rate of 16 kHz. The DAC output rate is twice
the speech sample rate, with a digital low-pass filter in all modes except PCM mode. When the synthesizer
is off (mode 0), the DAC goes to an off state. This state is the same as a zero state for the two-pin and
double-ended one-pin modes, but in the single-pin single-ended mode, the DAC goes to the maximum
negative value. This fact must be taken into account to minimize clicks during speech.

2.21 Interrupts
The TSP50C1x has two interrupts: interrupt-1 and interrupt-2. Both are enabled and disabled by bits in the
mode register. Interrupt-1 is a synthesis interrupt and has a higher priority. It also has more hardware
support. When an interrupt-1 occurs, the program counter is placed on the program counter stack, and the
status flag, integer mode flag, A register, B register, and X register are all saved in dedicated storage
registers. The mode register is not saved and restored during interrupts. Then the program counter is loaded
with the interrupt start location and execution of the interrupt routine begins. When the interrupt routine
returns, all these registers are restored, and the program counter is popped from the stack.

Interrupt-1 is caused by 1 of 4 conditions depending on the state ofthe two mode-register bits PCM and LPC.
These conditions, as well as the interrupt routine start address for each case, are shown in Table 2-4.

Table 2-4. Interrupt-1 Vectors

ADDRESS PCM LPC INTERRUPT TRIGGER

001816 0 1 Pitch counter less than 20016 (see Section 2.15)

001A16 0 0 Pin 81 goes from high to low (see Section 2.18)

001C16 1 1 fosc/960 clock (see Section 2.20.4)

001E16 1 0 fosc/480 clock (see Section 2.20.3)

Interrupt-2 has a lower priority and cannot interrupt the interrupt-1 routine. It can be interrupted by
interrupt-1. During a level-2 interrupt, the program counter, status bit, and integer mode flag are the only
registers saved. The A register, X register, and B register must be saved by the program if they are used
by both it and the routine being interrupted. The mode register is not saved. Interrupt-2 is always caused
by a timer underflow - the timer going from 0 to FF - but it starts at different addresses depending on the
state of two mode-register bits. Table 2-5 shows the interrupt-2 vectors.

2-13

Table 2-5. Interrupt-2 Vectors

ADDRESS PCM LPC INTERRUPT TRIGGER

001016 0 1

001216 0 0

001416 1 1
Alilevel-2 interrupts caused by timer underflow

001616 1 0

NOTE: All addresses in this manual are in hexadecimal format unless otherwise noted. All
other numbers are in decimal format unless otherwise noted.

The interrupting conditions for interrupt-1 and interrupt-2 set interrupt-pending latches. If an interrupt is
enabled (and in the interrupt-2 case, not overridden by an interrupt-1-pending condition), the interrupt is
taken immediately. If, however, the interrupt is not enabled, the pending-interrupt latch causes an interrupt
to occur as soon as the respective interrupt is enabled in the mode register.

Interrupts will not be taken in the middle of double-byte instructions, during branch or call instructions, or
during the subroutine or interrupt returns (RETN or RETI). A single instruction software loop (instruction of
BRANCH, BRA, CALL, or SBR to itself) should be avoided since an interrupt will never be taken.
Consecutively executed branches or calls delay interrupts until after the execution of the instruction at the
eventual destination of the string of branches (or calls).

If consecutive branches (or calls) are avoided, the worst-case interrupt delay in the main level will be four
instruction cycles. The worst-case delay occurs when the interrupt occurs during the first execution cycle
of a branch and the first instruction at the branch destination address is a double-cycle instruction.

When the interrupt occurs, execution begins at the interrupt address. The state ofthe status bit is not known
when the interrupt occurs, so a BR or CALL instruction should not be used for the first instruction. Two SBRs
may be used, since one of them is always taken, or it may be possible to use some other instruction that
sets the status bit, followed by an SBR.

The mode register is not saved and restored during interrupts. Any changes made to the mode register
during interrupts will remain in effect after the return, including the enabling and disabling of interrupts.

2.22 TSP50C12 LCD Functional Description
The LCD functionality of the TSP50C12 was included without adding instructions to the instruction set. An
additional 192 bits of RAM were added to serve as the display RAM. The display RAM is physically placed
at RAM addresses 80 - 97. As a result, Port A's registers are mapped from FO to F3 and Port B's registers
are mapped from F4 to F7. This RAM mapping is consistent with the SE50C1 0 emulator device used in the
extended RAM mode (pin controllable).

When data is stored into the display RAM locations, it may immediately affect the voltage levels on the LCD
segment outputs. Because the microprocessor access of RAM is time multiplexed with LCD access, there
will be no asynchronous ambiguities on segment outputs. If the display RAM update routines are slow, it
may be necessary to buffer the display data in another area of RAM and then transfer it to the display RAM
in a more time efficient block move.

An LCD voltage reference generator is also included on the TSP50C12. This circuit eliminates the need for
an external voltage reference generator.

2.22.1 TSP50C12 LCD Driver

The TSP50C12 can drive an 8 x 24 (192-segment) LCD display with 1/8 duty cycle. The driver function for
the LCD is controlled by internal timing hardware. Display data for the LCD is stored in a dedicated section
of RAM. This data is stored in pixel form with 24 consecutive 8-bit words. Table 2-6 shows the memory
locations for each pixel.

2-14

Table 2-6. TSP50C12 Display RAM Map

ADDRESS msb

80 S23c1 S22c1 S21c1 S20c1 S19c1

81 S15c1 S14c1 S13c1 S12c1 S11c1

82 S7c1 S6c1 S5c1 S4c1 S3c1

83 S23c2 S22c2 S21c2 S20c2 S19c2

84 S15c2 S14c2 S13c2 S12c2 S11c2

85 S7c2 S6c2 S5c2 S4c2 S3c2

86 S23c3 S22c3 S21c3 S20c3 S19c3

87 S15c3 S14c3 S13c3 S12c3 S11c3

88 S7c3 S6c3 S5c3 S4c3 S3c3

89 S23c4 S22c4 S21c4 S20c4 S19c4

8A S15c4 S14c4 S13c4 S12c4 S11c4

88 S7c4 S6c4 S5c4 S4c4 S3c4

8e S23c5 S22c5 S21c5 S20c5 S19c5

80 S15c5 S14c5 S13c5 S12c5 S11c5

8E S7c5 S6c5 S5c5 S4c5 S3c5

8F S23c6 S22c6 S21c6 S20c6 S19c6

90 S15c6 S14c6 S13c6 S12c6 S11c6

91 S7c6 S6c6 S5c6 S4c6 S3c6

92 S23c7 S22c7 S21c7 S20c7 S19c7

93 S15c7 S14c7 S13c7 S12c7 S11c7

94 S7c7 S6c7 S5c7 S4c7 S3c7

95 S23c8 S22c8 S21c8 S20c8 S19c8

96 S15c8 S14c8 S13c8 S12c8 S11c8

97 S7c8 S6c8 S5c8 S4c8 S3c8

NOTES: S-Segment or pixel on a given row (common time)
c:-Row (common time)

S18c1

S10c1

S2c1

S18c2

S10c2

S2c2

S18c3

S10c3

S2c3

S18c4

S10c4

S2c4

S18c5

S10c5

S2c5

S18c6

S10c6

S2c6

S18c7

S10c7

S2c7

S18c8

S10c8

S2c8

Isb

s17c1 S16c1

S9c1 S8c1

S1c1 SOc1

s17c2 S16c2

S9c2 S8c2

S1c2 SOc2

s17c3 S16c3

S9c3 S8c3

S1c3 SOc3

s17c4 S16c4

S9c4 S8c4

S1c4 SOc4

s17c5 S16c5

S9c5 S8c5

S1c5 SOc5

s17c6 S16c6

S9c6 S8c6

S1c6 SOc6

s17c7 S16c7

S9c7 S8c7

S1c7 SOc7

s17c8 S16c8

S9c8 S8c8

S1c8 SOc8

All addresses in this manual are in hexadecimal format unless otherwise noted. All other
numbers are in decimal format unless otherwise noted.

2.22.2 TSP50C12 LCD Drive Type A

The Type A drive method places limitations on the series resistance and pixel capacitance of the display.
This drive type requires a more complex LCD display. The Type A option must be selected by the customer
and given to TI before releasing the device for mask tooling.

2-15

c1

c2

C8

51
(C1/c3/C8 on)

52
(c1/c2/c6 on)

2-16

53
(c1 -c8 on)

51c1 "on"

51c2 "off"

140--------- 1 Frame Period ----------+1

Differential Voltage Across Pixel 51c1 (Vcommon - Vsegment>

Figure 2-S. TSPSOC12 LCD Driver Type A Timing Diagram

Vr
-Vr'
Vc'
Vr'

- -Vr

Vr
-Vr'
Vc'
Vr'

-Vr

Vr
-Vr'
Vc'
Vr'

-Vr

Vr
-Vr'
Vc'
Vr'

-Vr

Vr
-Vr'
Vc'
Vr'

-Vr

Vr
-Vr'
Vc'
Vr'

-Vr

4tN
/',.v

O/',.V
-/',.V

- -4/',.V

2/',.V
/',.v

O/',.V
-/',.V

-UV

2.22.3 TSP50C12 LCD Drive Type 8

The Type B drive method operates at a lower frequency, allowing the common signal to go high on the first
frame and to go low on the next frame. This option is preferred for applications that have large capacitance
pixel loads and high series trace resistances. This method also might be used if the microprocessor is
operated at higher frequencies. The Type B option must be selected by the customer and given to TI before
releasing the device for mask tooling.

c1

c2

c8

S1
(c1/c3/c8 on)

S2
(c1/c2/c6 on)

S3
(c1 -c8 on)

S1c1 "on"

S1c2 "off"

. Vr ---------------------..,....----------1- -. -Vr'
- - - - - - - - - - - - - - - - - - -. Vc'
- - - - - - - - - - - - - - - - - - -. Vr'
- - - - - - - - - - - - - - - - - - - . -Vr

1+--- 1 Frame Period ---+I
---------------------. Vr

,.---------\- - . -Vr'
- - - - - - - - - - - - - - - -. Vc'
- - - - - - - - - - - - - - . Vr'
- - - - - - - - - - - - - - - - . -Vr

---------------------. Vr 1----------..., ----. -Vr'
- - - - - - - - - - - - - - - - - - - -. Vc'

~---------~------------------- . Vr'
- - . -Vr

- -. Vr
- - - - . -Vr'

"'--------' - - - -. Vc'
- -. Vr'
- - - - - - - - - - - - - - - - - - - . -Vr

------. Vr
- - - - - - . -Vr'

L..._-j_ -. Vc'
- -. Vr'

- . -Vr

~----------~--. W
- . -Vr'

- -. Vc'
- -. Vr'

1------------+ ------------------- . -Vr

Differential Voltage Across Pixel S1 c1 (V common - V segment>

4tN
tN

--------- OtN
--------- -I!.V

- - - - - - - - - - - - - - - - - - - . -41!. V

UV
6.V

--------- OI!.V
--------- -I!.V

- - - - - - - - - - - - - - - - . -UV

Figure 2-6. TSPSOC12 LCD Driver Type B Timing Diagram

2-17

2.23 TSP50C12 LCD Reference Voltage and Contrast Adjustment
The TSP50C12 contains an internal voltage reference generator to regulate and adjust the LCD reference
voltages. The voltage generator is comprised of a voltage doubler, a bandgap reference, a voltage regulator,
and a final trim DAC. VLCO provides an isolated voltage supply for the voltage doubler. VLCO can be
connected to VOO or, for example, can be connected to a 4.5-V tap of a 4-cell battery supply to improve the
power efficiency ofthe circuit. An external capacitor should be connected between V C1 and V C2. An external
capacitor should be connected between VX2 and VLCO. The bandgap provides a reference voltage for the
voltage regulator. The voltage regulator has a nominal output of 4.9 V (±200 mY). The reference voltage
can be trimmed by writing to the DAC (memory-mapped to the lower four bits at RAM location 98). The trim
control will range from -8 steps (0000) to +7 steps (1111) from nominal with each step being approximately
100 mY. The value of this RAM location will not be initialized and must be set by the initialization software
routine.

,..---- VC1

Cpump 1
0.01 llF T __ _

VC2

Cstore
0.047 llF

1'--- VX2

T

TSP5OC12

Figure 2-7. TSP50C12 Voltage Doubler

2.24 TSP50C12 Clock Options
The RC oscillator requires a single external resistor between VOO and OSC1 with OSC21eft unconnected
to set the operating frequency. The frequency shift, as VOO changes, is limited to 10% over the operating
range of 4 V to 6.5 V. The center frequency as a function of resistance will require trimming. For applications
requiring greater clock preCision, a ceramic resonator option is also available. The RC oscillator/ceramic
resonator selection must be made by the customer and given to TI before releasing the device for mask
tooling.

2-18

3 TSP50C1 x Electrical Specifications

3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range

Supply voltage range, VDD (see Note 1) -0.3 V to 8 V
Input voltage range, VI (see Note 1) -0.3 V to VDD + 0.3 V
Output voltage range, Vo (see Note 1) -0.3 V to VDD + 0.3 V
Operating free-air temperature range, TA ooe to 70°C
Storage temperature range. .. -30°C to 125°C

NOTE 1: All voltages are with respect to ground.

3.2 TSP50C1x Recommended Operating Conditions

Voo Supply voltage t
VOO =4 V

VIH High-level input voltage VOO = 5 V

VOO =6V

VOO =4 V

Vil low-level input voltage VOO=5V

VOO =6V

Operating free-air Device functionality
TA temperature lCO reference spec (TSP50C12 only)

1 O-kHz speech sample ratel
fosc Clock frequency

8-kHz speech sample ratel

fclock ROM clock frequency
External ROM mode interface
TSP60C18 speech ROMs

t Unless otherwise noted, all voltages are with respect to VSS.
l Speech sample rate = fosc/960.

3.3 TSP50C1x CIA Options Timing Requirements

tr
Rise time, PA, PS,
O/A options 1, 2

Fall time, PA, PS,
VOO = 4 V, Cl = 100 pF

tf O/A options 1, 2

to

MIN NOM MAX UNIT

4 6.5 V

3 4

3.8 5 V

4.5 6

0 0.8

0 1 V

0 1.3

0 70 DC
10 40

9.6
MHz

7.68

fosc/ 4 MHz

MIN NOM MAX UNIT

22 ns

10 ns

3-1

3.4 TSPSOC1x Initialization Timing Requirement

MIN MAX

INIT pulsed low while the TSP50C1x has power applied

Figure 3-1. Initialization Timing Diagram

3.S TSPSOC1x Write Timing Requirements (Slave Mode)

MIN MAX UNIT

tsu(81) Setup time, 81 low before 80 goes low 20 ns

tsu(d) Setup time, data valid before 80 goes high 100 ns

th(81) Hold time, 81 low after 80 goes high 20 ns

th(d) Hold time, data valid after 80 goes high 30 ns

tw Pulse duration, 80 low 100 ns

tr Rise time, 80 50 ns

tf Fall time, 80 50 ns

B1

BO

tsu(B1)~ --+I i~ th(B1)

14 tw .1 1

~ 11~----------
t,-.I ~ ~ 14- tr

~tSU(d)~ 1

1 --t>I 5' th(d)

---------~< D."V.II. ~-----PA

Figure 3-2. Write Timing Diagram (Slave Mode)

3-2

3.6 TSP50C1x Read Timing Requirements (Slave Mode)

MIN MAX UNIT

tsu(81) Setup time, 81 before 80 goes low 20 ns

th(81) Hold time, 81 after 80 goes high 20 ns

tdis Output disable time, data valid after 80 goes high 0 30 ns

tw Pulse duration, 80 low 100 ns

tr Rise time, 80 50 ns

tf Fall time, 80 50 ns

td Delay time for 80 low to data valid 50 ns

//flT
tsu(B1) j+-

~\\
I
!+- th(B1)

B1

BO

-+I -+I
'.. __ --.; .. 1 ,

I'" tw "I ie--------
N1I;",.: ____ ~Y!

tf ---.I j+- ~ :.- tr

td -J j.- -+I lOIII- tdis

-~Y ',----\ Data Valid .r--PA

Figure 3-3. Read Timing Diagram (Slave Mode)

3-3

3.7 TSP50C10{11 Electrical Characteristics Over Recommended Ranges of
Supply Voltage and Operating Free-Air Temperature (unless otherwise
noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

Positive-going VOO = 4.5V 2.7
VT+ V threshold voltage VOO = 6V 3.65

Negative-going VOO = 4.5 V 2.3
VT- V threshold voltage VOO = 6V 3.15

Hysteresis VOO = 4.5 V 0.4
Vhys V

(VT+-VT-) VOO = 6V 0.5

Ilkg Input leakage current 1 fAA
Istandby Standby current (INIT low) 10 fAA
loot Supply current O/A option 1, 2, or 3 5 mA

VOO = 4 V, VOH=3.5V -4 -6

VOO = 5V, VOH =4.5V -5 -7.5 mA
High-level output VOO =6V, VOH = 5.5V -6 -9.2

IOH current (PA, PB,
VOO =4 V, VOH =2.67V -8 -13 O/A options 1,2)
VOO = 5V, VOH = 3.33 V -14 -20 mA

VOO =6V, VOH =4 V -20 -29

VOO = 4V, VOL= 0.5 V 10 17

VOO = 5V, VOL = 0.5 V 13 20 mA
Low-level output VOO =6V, VOL= 0.5 V 15 25

IOL current (PA, PB,
VOO = 4V, VOL= 1.33V 20 32 O/A options 1,2)
VOO = 5 V, VOL= 1.67V 30 52 mA

VOO =6V, VOL=2V 41 71

Pull-up resistance
Resistors selected with software and

15 30 60 kQ
connected between pin and VOO

t Operating current assumes all inputs are tied to either VSS or VOO with no input currents due to programmed pullup
resistors. The OAC output and other outputs are open circuited.

3-4

3.8 TSP50C12 Electrical Characteristics Over Recommended Ranges of
Supply Voltage and Operating Free-Air Temperature (unless otherwise
noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

Positive-going threshold VOO =4.5V 2.7
VT+ V voltage VOO =6V 3.65

Negative-going threshold VOO=4.5V 2.3
VT- V voltage VOO = 6V 3.15

Hysteresis VOO=4.5V 0.4
Vhys V

(VT+-VT-) VOO = 6V 0.5

Vr 4.7 4.9 5.1

-Vr' 3.717 3.875 4.033
LCO reference Vc' OAC register = 1000, TA = 25°C,

2.734 2.85 2.966 V voltages See Figures 2-5 and 2-6
Vr ' 1.751 1.825 1.899

-Vr 0.767 0.8 0.833

Vr LCO temperature coefficient t TA = O°C to 40°C -2.5 mV/oC

OAC step
OAC step control ofVr with respect

74 100 124 mV
to -Vr, VOO = 5 V, TA = 25°C

Ilkg Input leakage current 1 fAA
Istandby Standby current (INIT low) 10 fAA
100+ Supply current O/A option 1 or 3 5 mA

VOO = 4V, VOH=3.5V -4 -6

VOO = 5V, VOH=4.5V -5 -7.5 mA

High-level output current (PA, VOO = 6V, VOH=5.5V -6 -9.2
IOH PB, O/A options 1, 2) VOO = 4 V, VOH =2.67V -8 -13

VOO = 5V, VOH = 3.33 V -14 -20 mA

VOO = 6V, VOH = 4V -20 -29

VOO = 4V, VOL=0.5V 10 17

VOO = 5V, VOL= 0.5 V 13 20 mA

Low-level output current (PA, VOO = 6V, VOL=0.5V 15 25
IOL PB, 0/ A options 1, 2) VOO = 4V, VOL=1.33V 20 32

VOO = 5V, VOL= 1.67V 30 52 mA

VOO = 6V, VOL=2V 41 71

Resistors selected with software
Pull up resistance and connected between pin and 15 30 60 kQ

VOO

OAC buffer drive 32-Q load connected across DA 1 60 mA (O/A option 1) and OA2, VOO = 4.5 V

LCO frame rate fOSC = 9.6 MHz 96 Hz

t This negative temperature coefficient is normally advantageous because it tracks the tem perature variation of most LCO
materials.

:I: Operating current assumes all inputs are tied to either VSS or VOO with no input currents due to programmed pullup
resistors. The OAC output and other outputs are open circuited.

3-5

3.9 TSP50C14 Electrical Characteristics Over Recommended Ranges of
Supply Voltage and Operating Free-Air Temperature (unless otherwise
noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

Positive-going VDD = 4.5V 2.7
VT+ V threshold voltage VDD =6V 3.65

Negative-going VDD= 4.5V 2.3
VT- V threshold voltage VDD = 6V 3.15

Hysteresis VDD= 4.5V 0.4
Vhys V

(VT+ -VT-) VDD =6V 0.5

Ilkg Input leakage current 1 flA
Istandby Standby current (INIT low) 10 flA
IDDt Supply current DAC option 1 or 2 5 mA

VDD =4V, VOH =3.5V -27 -41

VDD = 5V, VOH =4.5V -34 -51 mA
High-level output VDD = 6 V, VOH =5.5V -41 -63

IOH current (PA, PB, D/A
VDD = 4 V, VOH =2.67V -54 -68 options 1, 2)
VDD = 5 V, VOH =3.33V -95 -136 mA

VDD = 6 V, VOH =4V -136 -197

VDD = 4V, VOL = 0.5 V 27 41

VDD = 5V, VOL = 0.5 V 34 51 mA
Low-level output VDD = 6V, VOL=0.5 V 41 63

IOL current (PA, PB, D I A
VDD = 4V, VOL = 1.33 V 54 88 options 1, 2)
VDD = 5V, VOL=1.67V 95 136 mA

VDD = 6V, VOL=2V 136 197

Pullup resistance
Resistors selected with software and

15 30 60 kQ connected between pin and VDD

7.68-MHz target frequency, VDD = 4 V,
7.21 7.68 8.15

fosc Oscillator frequency+
TA = 25°C

MHz
9.6-MHz target frequency, VDD = 4 V,

9.02 9.6 10.2
TA = 25°C

t Operating current assumes all inputs are tied to either VSS or VDD with no input currents due to programmed pullup
resistors. The DAC output and other outputs are open circuited.

:j: The frequency ofthe internal clock has a temperature coefficient of approximately -0.2 %/oC and a VDD coefficient of
approximately + 1.4% IV.

3-6

4 TSP50C1 x Assembler

4.1 Description of Notation Used
The notation used in this document is as follows:

An optional field is indicated by brackets; for example, [LABEL].

User-supplied contents are indicated by braces; for example,

<num>

A reseNed keyword is given in capital letters.

A required blank is indicated by a caret (").

EXAMPLE

[<name>] A SBR A <number> A [<comment>]

4.2 Invoking the Assembler
The assembler is invoked by typing:

ASM10" [<options>] A <source[.ext]>

where:

Options represents a list of assembler options (see Section 4.2.1).

Source is the name of the source file with the extension optional.

If the extension is not given, then the default extension of" .ASM" is

assumed.

For example:

ASMIO -1 PROGRAM

would run the assembler using the source file "PROGRAM.ASM" and would generate the output object file
"PROGRAM.BIN". No list file would be generated.

4.2.1 Command-Line Options
Several options can be invoked from the command line (Table 4-1). They are invoked by listing their
abbreviation prefixed by a minus sign. For example:

ASMIO -10 PROGRAM.ASM

would assemble the program in file "PROGRAM.ASM" but would not generate either a listing file or an Object
file; however, any errors would be written to the console. The available options are detailed below. See
Section 4.4.10 for information on invoking options from within the source code.

4-1

Table 4-1. Switches and Options

CHARACTER
OR ACTION

NUMBER

B or b Lists only the first data byte in BYTE or RBYTE

D ord Lists only the first data byte in DATA or RDATA

lor i Counts the number of times a valid instruction has been used

L or I Displays error messages without generating a list

o oro Disables object file output

P or p Prints listing without page breaks

R or r Produces a reduced cross-reference list

S or s Writes no errors on screen unless listing file is generated

Tor t Lists only the first data byte in TEXT or RTEXT

Worw Suppresses the warning message

Xorx Adds a cross-reference list at the end

9 Generates object file in TI-990 tagged object format

4.2.1.1 BYTE Unlist Option
Placing a b or B in the command-line option field causes the assembler to list only the first opcode in a BYTE
or RBYTE statement. Normally, if a BYTE or RBYTE statement has n arguments, they are listed in a column
running down the page in the opcode column of the listing, taking n lines to completely list the resulting
opcodes. If the BYTE unlist switch is set, then only the first line (which also contains the source line listing)
is written to the listing file.

4.2.1.2 DATA Unlist Option
Placing a d or D inthe command-line option field causes the assembler to list only the first opcode in a DATA
or RDATA statement. Normally, if a DATA or RDATA statement has n arguments, they are listed in a column
running down the page in the opcode column of the listing, taking n lines to completely list the resulting
opcodes. If the DATA unlist switch is set, then only the first line (which also contains the source line listing)
is written to the listing file.

4.2.1.3 XREF Unlist Option
Placing an x or X in the command-line option field causes the assembler to add a cross-reference listing
at the end of the listing file.

4.2.1.4 TEXT Unlist Option
Placing a tor T in the command-line option field causes the assemblerto list only the first opcode in a TEXT
or RTEXT statement in the listing file. Normally, if a TEXT or RTEXT statement has as an argument a string
containing n characters, the ASCII representation of these n characters is written in a column in the opcode
column ofthe listing. If the TEXT unlist switch is set, only the first line (also containing the source line listing)
is written to the list file.

4.2.1.5 WARNING Unlist Option
Placing a w or W in the command-line option field causes the assembler to suppress WARNING messages.
Warnings are still counted and error messages are still generated.

4.2.1.6 Complete XREF Switch
Placing an r or R in the command-line option field causes the assembler to produce a reduced XREF listing
if one is produced. Normally, all symbols (whether used or not) are listed in the XREF listing. The r option
causes the assembler to omit from the XREF listing all symbols from the copy files that were never used.

4-2

4.2.1.7 Object Module Switch

Placing an 0 or 0 in the command-line option field causes the assembler to not generate any object output
modules.

4.2.1.8 Listing File Switch
Placing an I or L in the command-line option field causes the assembler to not generate the listing file but
to display any error messages to the screen.

4.2.1.9 Page Eject Disable Switch

Placing a p or P in the command-line option field causes the assembler to print the listing in a continual
manner without division into separate pages. When desired, aform feed may still be forced using the PAGE
command.

4.2.1.10 Error to Screen Switch

Placing an s or S in the command-line option field causes the assembler to not write errors to the screen
unless no listing file is being generated.

4.2.1.11 Instruction Count Switch

Placing an i or I in the command-line option field causes the assembler to generate a table containing the
number oftimes each valid instruction was used in the program.

4.2.1.12 Binary Code File Disable Switch

Placing a 9 in the command-line option field causes the assembler to generate the object module in tagged
object format in a file with a ".MPO" extension instead of the normal binary formatted object module in a file
with a ".BIN" extension.

4.2.2 Assembler Input and Output Files

The assembler takes as input a file containing the assembly source and produces as output a listing file and
an object file in either binary format or tagged object format.

4.2.2.1 Assembly Source File

The assembly source file is specified in the command line. If the file name given in the command line has
an extenSion, then the file name is used as given. If no extension is specified, then the extension ".asm" is
assumed.

For example:

ASMIO PROGRAM.SRC

uses the file PROGRAM.SRC as the assembly source file.

ASMIO PROGRAM

uses the file PROGRAM.ASM as the assembly source file.

4.2.2.2 Assembly Binary Object File

The assembly process produces an Object file in binary format by default. The object output is placed in a
file with the same file name as the assembly source except that the extension is ".bin". If the binary file is
not desired, it can be disabled either as a command-line option or with an OPTION statement.

4-3

For example:

ASMIO PROGRAM.SRC

uses the file "PROGRAM.SRC" as the assembly source file and the file "PROGRAM.BIN" as the binary
object output file.

ASMIO -0 PROGRAM.SRC

uses the file PROGRAM.SRC as the assembly source file and produces no object output.

4.2.2.3 Assembly Tagged Object File
If desired, the assembler can substitute an Object file in tagged Object format instead of the Object file in
binary format. If produced, the object output is placed in a file with the samefile name as the assembly source
except that the extension is ".mpo".

For example:

ASMIO -9 PROGRAM.SRC

uses the file "PROGRAM.SRC" as the assembly source file and the file "PROGRAM.MPO" as the tagged
object output file. No binary-formatted object file is produced.

4.2.2.4 Assembly Listing File
The assembly process produces a listing file that contains the source instructions, the assembled code, and
(optionally) a cross-reference table. The listing file is placed in a file with the same file name as the assembly
source except that the extension is ".Ist".

For example:

ASMIO PROGRAM.SRC

uses the file "PROGRAM.SRC" as the assembly source file and the file "PROGRAM.LST" as the assembly
listing file.

4.3 Source-Statement Format
An assembly-language source program consists of source statements contained in the assembly source
file(s) that may contain assembler directives, machine instructions, or comments. Source statements may
contain four ordered fields separated by one or more blanks. These fields (label, command, operand, and
comment) are discussed in the following paragraphs.

The source statement may be as long as 80 characters. If the form width is set to 80 characters (the default),
the assembler will truncate the source line at 60 characters. The user should ensure that nothing other than
comments extend past column 60.

Any source line starting with an asterisk (*) inthefirst character position is treated as a comment in its entirety
and as such is ignored by the assembler and has no effect on the assembly process.

The syntax of the source statements is:

[<label>] A COMMAND A <operand> A [<comment>]

A source statement may have an optional label that is defined by the user. One or more blanks separate
the label from the COMMAND mnemonic. One or more blanks separate the mnemonic from the operand
(if required by the command). One or more blanks separate the operand from the comment field. Comments
are ignored by the assembler.

4.3.1 Label Field

The label field begins in character position one of the source line. If position one is a character other that
a blank or an asterisk, the assembler assumes that the symbol is a label. If a label is omitted, then the first

4-4

character position must be a blank. The label may contain up to ten characters consisting of alphabetic
characters (a - z, A - Z), numbers (0 - 9), and some other characters (@,$,J. The first character should
be an alphabetic character, and the remaining 9 character positions may be any ofthe legal characters listed
above.

4.3.2 Command Field

The command field begins after the blank that terminates the label field or in the first nonblank character
past the first character position (which must be blank when the label is omitted). The command field is
terminated by one or more blanks and may not extend past the sixtieth character position. The command
field may contain either an assembler mnemonic (e.g., TAX) or an assembler directive (e.g., OPTION). The
assembler does not distinguish between capital and small letters in the command name; for example TAX,
Tax, and tAX are all identical names to the assembler.

4.3.3 Operand Field

The operand field begins following the blank that terminates the command field and may not extend past
the sixtieth column position. The operand may contain one or more constants or expressions described
below. Terms in the operand field are separated by commas. The operand field is terminated by the first blank
encountered.

4.3.4 Comment Field

The comment field begins after the blank that terminates the operand field or the blank that terminates the
command field if no operand is required. The comment field may extend to the end of the source record and
may contain any ASCII character including blanks.

4.3.5 Constants

The assembler recognizes the following five types of constants:

Decimal integer constants

Binary integer constants

Hexadecimal integer constants

Character constants

Assembly-time constants

4.3.5.1 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits. The range of values of decimal integers
is -32,768 to 65,535. Positive decimal integer constants greater than 32,767 are considered negative when
interpreted as two's complement values.

The following are valid decimal constants:

1000 Constant equal to 1000 or #03E8

P32768 Constant equal to -32768 or #8000

Constant equal to 25 or #0019 25

4.3.5.2 Binary Integer Constants

A binary integer constant is written as a string of up to 16 binary digits (0/1) preceded by a question mark
(?). If less than 16 digits are specified, the assembler right justifies the given bits in the resulting constant.

4-5

The following are valid binary constants:

?0000000000010011

?0111111111111111

?11110

Constant equal to 19 or #0013

Constant equal to 32767 or #7FFF

Constant equal to 30 or #001 E

4.3.5.3 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal digits preceded by a number
sign (#) or a greater than sign (». If less than four hexadecimal digits are specified, the assembler
right-justifies the bits that are specified in the resulting constant. Hexadecimal digits include the decimal
values 0 through 9 and the letters a (or A) through f (or F).

The following are valid hexadecimal constants:

#7F Constant equal to 127 (or #007F)

> 7f Constant equal to 127 (or #007F)

#307a Constant equal to 12410 (or #307A)

4.3.5.4 Character Constants

A character constant is written as a string of one or two alphabetic characters enclosed in single quotes.
A single quote can be represented within the character constant by two successive quotes. If less than two
characters are specified, the assembler right-justifies the given bits in the resulting constant. The characters
are represented internally as 8-bit ASCII characters. A character constant consisting of only two single
quotes (no character) is valid and is assigned the value 0000 (Hex).

The following are valid character constants:

'AB' Constant equal to #4142

'C' Constant equal to #0043

'"D' Constant equal to #2744

4.3.5.5 Assembly-Time Constants

An assembly-time constant is a symbol given a value by an EQU directive (see Section 4.4.5). The value
of the symbol is determined at assembly time and may be assigned values with expressions using any of
the above constant types.

4.3.6 Symbols

Symbols are used in the label field and the operand field. A symbol is a string of ten or less alphanumeric
characters (a through z, A through Z, 0 through 9, and the characters @, _, and $). Upper-case and
lower-case characters are not distinguished from one another; for example, A 1 and a1 are treated identically
by the assembler. No character may be blank. When more than ten characters are used in a symbol, the
assembler prints all the characters but issues a warning message that the symbol has been truncated and
uses only the first ten characters for processing.

Symbols used in the label field become symbolic addresses. They are associated with locations in the
program and must not be used in the label field of other statements. Mnemonic operation codes and
assembler directives may also be used as valid user-defined symbols when placed in the label field.

Symbols used in the operand field must be defined in the assembly, usually by appearing in the label field
of a statement or in the operand field of an EQU directive.

4-6

The following are examples of valid symbols:

START

Start

strt 1

Predefined Symbol $

The dollar sign ($) is a predefined symbol given the value of the current location within the program. It can
be used in the operand field to indicate relative program offsets.

For example:

BR $+6

would result in a branch to six locations beyond the current location.

4.3.7 Character String
Several assembler directives require character strings in the operand field. A character string is written as
a string of characters enclosed in single quotes. A quote may be represented in the string by two successive
quotes. The maximum length of the string is defined for each directive that requires a character string. The
characters are represented internally as 8-bit ASCII.

The following are valid character strings:

SAMPLE PROGRAM

Plan "C"

4.3.8 Expressions
Expressions are used in the operand fields of assembler instructions and directives. An expression is a
constant or symbol, a series of constants or symbols, or a series of constants and symbols separated by
arithmetic operators.

Each constant or symbol may be preceded by a minus sign (unary minus) or a plus sign (unary plus). Unary
minus is the same as taking the two's complement of the value. An expression must not contain embedded
blanks. The valid range of values in an expression is -32,768 to 65,535. The value of all terms of an
expression must be known at assembly time.

4.3.8.1 Arithmetic Operators in Expressions

The following arithmetic operators may be used in an expression:

+ for addition

for subtraction

*

%

&

++

&&

for multiplication

for division (remainder is truncated)

for modulo (remainder after division)

for bitwise AND

for bitwise OR

for bitwise EXCLUSIVE-OR

In evaluating an expression, the assembler first negates any constant or symbol preceded by a unary minus
and then performs the arithmetic operations from left to right. The assembler does not assign arithmetic
operation precedence to any operation other than unary plus or unary minus (so that the expression 4+5*2
would be evaluated as 18, not 14).

4-7

4.3.8.2 Parentheses In Expressions
The assembler supports the use of parentheses in expressions to alter the order of evaluating the
expression. Nesting of pairs of parentheses within expressions is also supported. When parentheses are
used, the portion of the expression within the innermost parentheses is evaluated first, and then the portion
of the expression within the next innermost pair is evaluated. When evaluation of the portions of the
expression within the parentheses has been completed, the evaluation is completed from left to right.
Evaluation of portions of an expression within parentheses at the same nesting level is considered as
simultaneous. Parenthetical expressions may not be nested more than eight deep.

4.4 Assembler Directives
Assembler directives (Table 4-2) are instructions that modify the assembler operation. They are invoked
by placing the directive mnemonic in the command field and any modifying operands in the operand field.
The valid directives are described in the following paragraphs.

4-8

Table 4-2. Summary of Assembler Directives

DIRECTIVES THAT AFFECT THE LOCATION COUNTER

Mnemonic Directive Syntax

AORG Absolute origin [<label> j'AORG' <expression> '[<comment>]

DIRECTIVES THAT AFFECT ASSEMBLER OUTPUT

Mnemonic Directive Syntax

IDT Program identifier [<label>]'IDT"<string>"[<comment>]

LIST Restart source listing [<label>]'LlSr<expression>'[<comment>]

NARROW aD-column form width [<label>]'NARROW'[<comment>]

OPTION Output options [<label>j'OPTION'<option list>'[<comment>]

PAGE Page eject [<label>]'PAGE'[<comment>]

TITL Page title [<label>j'TITL"<string>"[<comment>]

UNL Stop source listing [<label>j'UNL '[<comment>]

WIDE 130-column form width [<label>]'WIDE'[<comment>]

DIRECTIVES THAT INITIALIZE CONSTANTS

Mnemonic Directive Syntax

BYTE Initialize byte [<label>j' BYTE' <expr-1 > '[,<expr-2>, ,
<expr-n>]'[<comment>]

RBYTE Reverse bit initialization of byte [<label>j'RBYTE' <expr-1 > '(,<expr-2>, , <expr-
n>n<comment>]

DATA Initialize word
[<label>j'DATA' <expr-1 > '(,<expr-2>, ,
<expr-n>]'[<comment>]

RDATA Reverse bit initialization of word [<label>]'RDATA'<expr-1 >'[,<expr-2>, ,
<expr-n>]'[<comment>]

EQU Define assembly time [<label>j'EQU'[<comment>]

TEXT Initialize text [<label>]'TEXT'[-]'<string>"[<comment>]

RTEXT Reverse byte initialization of text [<label>j'RTEXT'(-j'<string>"[<comment>]

MISCELLANEOUS DIRECTIVES

Mnemonic Directive Syntax

COpy Copy source file [<label>j'COPY'<filename>'[<comment>]

END Program end [<label>rEND'<symbol>'[<comment>]

4-9

4.4.1 AORG Directive
The AORG directive places the value found in the expression in the operand field into the location counter.
Subsequent instructions have addresses starting atthis value. The use ofthe label field is optional. but when
a label is used. it is assigned the value found in the operand field.

The syntax of the AORG directive is as follows:

[<label>] " AORG " <expression> " [<commenb]

EXAMPLE

AORG #1000+0ffset

The symbol Offset must be previously defined. If Offset has a value of 8. the location counter is set to #1 008
by this directive. Had a label been included. the label also would have been assigned the value of #1008.

4.4.2 BYTE Directive
The BYTE directive places the value of one or more expressions into successive bytes of program memory.
The range of each term is Oto 127. The command field contains BYTE. The operand field contains a series
of one or more terms separated by commas and terminated by a blank that represents the values to be
placed in the successive bytes of program memory.

The syntax of the BYTE directive is as follows:

[<label>]" BYTE A <expr_1>[.<expr_2> <expr_n>] A [<commenb]

EXAMPLE

BYTE #EO,5,data+5

The value of the symbol data must be defined in the assembly process. The example places the numbers
224. 5. and the result of the arithmetic operation data +5 into the next three bytes of program memory.

4.4.3 COPY Directive
The COpy directive causes the assembler to read source statements from a different file. The assembler
gets subsequent statements from the copy file until either an end-of-file marker is found or an END directive
is found in the copy file. A copy file cannot contain another COPY directive. The command field contains
COPY. The operand field contains the name of the file from which the source files are to be read.

The syntax of the COPY directive is as follows:

[<label>] A COpy A <file name> A [<commenb]

EXAMPLE

COpy copy.fil

The directive in the example causes the assembler to take its source statements from a file called copy.fil.
Atthe end-of-file for copy.fil or when an END directive is found in copy.fil. the assembler resumes processing
source statements from the original source file.

4.4.4 DATA Directive
The DATA directive places the value of one or more expressions into successive words of program memory.
The range of each term is 0 to 65.535. The command field contains DATA. The operand field contains a
series of one or more terms separated by commas and terminated by a blank that represents the values
to be placed in the successive bytes of program memory.

The syntax of the DATA directive is as follows:

[<label>] A DATA A <expr_1>[.<expr_2> <expr_n>]" [<commenb]

EXAMPLE

4-10

DATA #EOOO,'AB'

The example places the following bytes into successive locations in program memory: #EO, #00, #41, #42

4.4.5 EQU Directive
The EQU directive assigns a value to a symbol. The label field contains the name of the symbol to which
a value is assigned. The command field contains EQU. The operand field contains the value to be assigned
to the symbol.

The syntax of the EQU directive is as follows

[<label>]" EQU " <expression> " [<commenb]

EXAMPLE

Offset EQU #100

The example assigns the numeric value of 256 (100 Hex) to the symbol Offset.

4.4.6 END Directive
The ENO directive signals the end of the source or copy file. It is treated by the program as an end-of-file
marker. If it is found in a copy file, the copy file is closed and subsequent statements are taken from the
source file. If it is found in the source file, the assembly process terminates at that point in the file.

The syntax of the ENO directive is as follows

[<label>]" ENO " [<commenb]

EXAMPLE

ACMC 1

END

CLA

In the example, the ACMC 1 instruction is assembled, but the CLA and any subsequent instructions are
ignored.

4.4.7 IDT Directive
The lOT directive assigns a name to the object module produced. Use of the label field is optional. When
used, a label assumes the current value of the location counter. The command field contains lOT. The
operand field contains the module name <string>, a character string of up to eight characters within single
quotes. When a character string of more than eight characters is entered, the assembler prints a truncation
warning message and retains the first eight characters as the program name.

The syntax of the lOT directive is as follows:

[<label>]" lOT '<string>' " [<commenb]

EXAMPLE

AORG 20

L1 lDT 'Example'

The example assigns the value of20tothe symbol L 1 and assigns the name 'Example' to the module being
assembled. The module name is then printed in the source listing as the operand of the lOT directive and
appears in the page heading of the source listing. The module name is also placed in the object code (if the
tagged object format code is being produced).

4.4.8 LIST Directive
The LIST directive restores printing of the source listing. This directive is required only when a
no-source-listing (UNL) directive is in effect and causes the assembler to resume listing. This directive is
not printed in the source listing, but the line counter increments.

4-11

The syntax of the LIST directive is as follows:

[<label>] " LIST" [<comment>]

EXAMPLE

AORG 10

Tl LIST Turn on source listing

In the example, the label T1 is assigned the value 10 and listing is resumed. The line is not printed out so
that although the label T1 is entered into the symbol table and appears in the cross-reference listing, the
line in which it is assigned a value does not appear in the listing file.

4.4.9 NARROW Directive
The NARROW directive causes the assembler to assume an aD-column form width for the listing file. The
default is aD columns. (See WIDE.)

The syntax of the NARROW directive is as follows:

[<label>] " NARROW" [<comment>]

EXAMPLE

AORG 10

Tl NARROW Switch to aO-column listing format

4.4.10 OPTION Directive
The OPTION directive selects several options that affect assembler operation. The <option-list> operand
is a list of keywords separated by commas; each keyword selects an assembly feature. Only the first
character of the keyword is significant. Use of the label field is optional. When used, the label assumes the
current value of the location counter. The available options are listed in the paragraphs below.

The syntax of the OPTION directive is as follows:

[<label>] " OPTION" <option-list> " [<comment>]

EXAMPLE

OPTION

OPTION

OPTION

990,XREF,SCRNOF

990,XREF,SCREEN

9,X,S

The three examples above have an identical effect. The binary object file is replaced by an object file in
tagged object format. The cross-reference listing is produced, and the error messages are not sent to the
screen (unless no source listing file is being produced). See Section 4.2.1 for information on invoking options
from the command line.

4.4.10.1 BUNLST - Byte Unlist Option
Placing any valid symbol starting with B or b in the option list enables the byte unlist option. This option limits
the listing of BYTE or RBYTE directives to one line. Normally, if a BYTE or RBYTE directive has more than
one operand, the resulting object code is listed in a column in the opcode column of the source listing. If the
directive has ten operands, ten lines are required in the source listing to list it. The BUNLST is used to avoid
this.

4.4.10.2 DUNLST - Data Unlist Option
Placing any valid symbol starting with D or d in the option list enables the data unlist option. This option limits
the listing of DATA or RDATA directives to one line. Normally, if a DATA or RDATA directive has more than
one operand, the resulting object code is listed in a column in the opcode column ofthe source listing. If the

4-12

directive has ten operands, ten lines are required in the source listing to list it. The DUNLST is used to avoid
this.

4.4.10.3 FUNLST - Byte, Data, and Text Unlist Option
Placing any valid symbol starting with For f in the option list limits the listing of BYTE, RBYTE, DATA, RDATA,
TEXT, or RTEXT directives to one line. In effect, it is like calling the DUNLST, BUN LST, and TUNLST
directives all at the same time.

4.4.10.4 I COUNT - Instruction Count List Option

Placing any valid symbol starting with I or i in the option list causes the program to generate a table containing
the number oftimes each valid instruction was used in the program. If used, it should be placed at the start
of the program.

4.4.10.5 LSTUNL- Listing Unlist Option
Placing any valid symbol starting with L or I in the option list inhibits the listing file from being produced. It
takes precedence over the LIST directive.

4.4.10.6 OBJUNL - Object File Unlist Option

Placing any valid symbol starting with 0 or 0 in the option list enables the object file unlist option. This option
inhibits either of the object output files from being produced.

4.4.10.7 PAGEOF - Page Break Inhibit Option
Placing any valid symbol starting with P or p in the option list enables the page break inhibit option. This
option causes the listing file to be printed in a continuous stream without page breaks.

4.4.10.8 RXREF - Reduced XREF Option
Placing any valid symbol starting with R or r in the option list enables the reduced XREF option. This option
causes symbols that were found in copy files but never used to be omitted from the cross-reference listing
(if produced).

4.4.10.9 SCRNOF - Screen Error Message Unlist Option
Placing any valid symbol starting with S or s in the option list enables the screen error message unlist option.
This option causes the error messages to not be listed to the screen unless the listing file is not being
produced.

4.4.10.10 TUNLST - Text Unlist Option

Placing any valid symbol starting with T or t in the option list enables the text unlist option. This option limits
the listing ofT EXT or RTEXT directives to one line. A TEXT or RTEXT directive normally takes as many lines
to list as there are characters in the operand. The TUNLST causes only the first line of the directive listing
to be produced.

4.4.10.11 WARNOFF - Warning Message Unlist Option
Placing any valid symbol starting with W or w in the option list inhibits the listing of warning diagnostics.
Warnings are still counted and the total is still printed at the end of the source listing.

4.4.10.12 XREF - Cross-Reference Listing Enable
Placing any valid symbol starting with X or x in the option list causes a cross-reference listing to be produced
at the end of the source listing. If used, it should be placed at the start of the program.

4.4.10.13 990 - Tagged Object Output Switch

Placing any valid symbol starting with 9 in the option list causes the assembler to omit the binary coded
object module (normally produced as a .BIN file) and to produce a tagged object module (as a .MPO file)
instead.

4-13

4.4.11 PAGE Directive
The PAGE directive forces the assembler to continue the source program listing on a new page. The PAGE
directive is not printed in the source listing, but the line counter increments. Use of the label field is optional.
When used, a label assumes the current value of the location counter. The command field contains PAGE.
The operand field is not used.

The syntax of the PAGE directive is as follows:

[<label>] A PAGE A [<commenb]

EXAMPLE

AORG 10

T1 PAGE Force Page Eject

In the example, the label T1 is assigned the value 10, and listing is resumed. The line is not printed out, so
that although the label T1 is entered into the symbol table and appears in the cross-reference listing, the
line in which it is assigned a value does not appear in the listing file.

4.4.12 RBYTE Directive
The RBYTE directive places the value of one or more expressions into successive bytes of program memory
in a bit-reversed form. The range of each term is 0 to 127. The command field contains RBYTE. The operand
field contains a series of one or more terms separated by commas and terminated by a blank that represents
the values to be placed in the successive bytes of program memory.

The syntax of the RBYTE directive is as follows:

[<Iabe!>] A RBYTE A <expr_1>[,<expr_2>, ... ,<expr_n>] A [<commenb]

EXAMPLE

RBYTE #EO,S,data+S

The value of the symbol data must be defined in the assembly process. The example places the numbers
7 (07 Hex), 160 (AO Hex), and the bit-reversed result ofthe arithmetic operation (data +5) in successive bytes
of program memory.

4.4.13 RDATA Directive
The RDATA directive places the value of one or more expressions into successive words of program
memory in a bit-reversed form. The range of each term is 0 to 65,535. The command field contains RDATA.
The operand field contains a series of one or more terms separated by commas and terminated by a blank
that represents the values to be placed in the successive words of program memory.

The syntax of the RDATA directive is as follows:

[<label>] A RDATA <expr_1>[,<expr_2>, ... ,<expr_n>] A [<comment>]

EXAMPLE

RDATA #EOOO, 'AB'

The example places the following bytes into successive locations in program memory: #00, #07, #42, #82

4.4.14 RTEXT Directive
The RTEXT directive writes an ASCII string to the object file in reverse order. If the string is preceded by
a minus sign, the last character in the string to be written (which is the first character of the string as given)
is written with its most significant bit set high. The use of the label field is optional. When used, the label
assumes the current value of the location counter. The command field contains RTEXT. The operand field
contains a character string of up to 52 characters long enclosed in single quotes (optionally preceded by
a minus sign).

4-14

The syntax of the RTEXT directive is as follows:

[<label>] A RTEXT A [-]'<string>' A [<comment>]

EXAMPLE

RTEXT -'This is a test'

RTEXT 'This is a test'

Both examples write the string 'tset a si sihT' to the output file. The first example writes the first 'T' in the word
This' (which is the last character to be written with its most significant bit set high (that is, as a #04 instead
of a #54).

4.4.15 TEXT Directive
The TEXT directive writes an ASCII string to the object file. Ifthe string is preceded by a minus sign, the last
character in the string is written with its most significant bit set high. The use of the label field is optional.
When used, the label assumes the current value of the location counter. The command field contains TEXT.
The operand field contains a character string of up to 52 characters in length enclosed in single quotes
(optionally preceded by a minus sign).

The syntax of the TEXT directive is as follows:

[<Iabe!>] A TEXT A [-]'<string>' A [<comment>]

EXAMPLE

TEXT -'This is a test'

TEXT 'This is a test'

Both examples write the string This is a test' to the output file. The first example writes the final 't' in the word
'test' with its most significant bit set high (that is, as a #F4 instead of a #74)

4.4.16 TITL Directive
The TITL directive supplies a title to be printed in the heading of each page of the source listing. When a
title is desired in the heading of the listing's page, a TITL directive must be the first source statement
submitted to the assembler. Unlike the lOT directive, the TITL directive is not printed in the source listing.
The assembler does not print the comment because the TITL directive is not printed, but the line counter
does increment. Use of the label field is optional. When used, a label field assumes the current value of the
location counter. The command field contains TITl. The operand field contains the title (string) - a character
string of up to 50 characters in length enclosed in single quotes. When more that 50 characters are entered,
the assembler retains the first 50 characters as the title and prints a syntax error message. The comment
field is optional.

The syntax of the TITL directive is as follows:

[<label>] A TITL '<string>' A [<comment>]

EXAMPLE

TITL 'Sample Program' This is a sample line

The example causes the title 'Sample Program' to be printed in the page heading ofthe source listing. When
a TITL directive is the first source statement in a program, the title is printed on all pages until another TITL
directive is processed. Otherwise, the title is printed on the next page after the directive is processed and
on subsequent pages until another TITL directive is processed. None of this line is printed to the listing file.

4.4.17 UNL Directive
The UNL directive inhibits the printing of the source listing output until the occurrence of a LIST directive.
It is not printed in the source listing, but the source line counter is incremented. The label field is optional.

4-15

When used, the label assumes the value of the location counter. The command field contains the symbol
UNL. The operand field is not used.

The syntax of the UNL directive is as follows:

[<label>] " UNL " [<commenb]

EXAMPLE

T1

AORG 10

UNL Turn off source listing

In the example, the label T1 is assigned the value 10, and listing is inhibited.

4.4.18 WIDE Directive

The WIDE directive causes the assembler to assume a 130-column form width forthe listing file. The default
is 80 columns. (See NARROW.)

The syntax of the WIDE directive is as follows:

[<label>] " WIDE" [<commenb]

EXAMPLE

T1

4-16

AORG 10

WIDE switch to 130-column listing format

5 Instruction Set
There are 61 different TSP50C1x instructions (Tables 5-1 and 5-2). Most of them require only one
instruction cycle to execute, although a few require two. Each instruction cycle consists of 16 clock cycles;
therefore, a clock speed of 9.6MHz translates to 600,000 instructions per second. When LPC synthesis is
enabled, every other instruction cycle is taken for synthesis calculations, and two additional cycles are used
for excitation function look up. This causes the instruction cycle rate for the program to drop to 280,000
cycles per second.

Table 5-1. TSP50C1x Instruction Set

OPERAND SIZE (BITS)

INSTRUCTION CYCLES REQUIRED

MNEMONIC
STATUS (1 ALWAYS SET, C CONDITIONAL

NUMBER OF BYTES REQUIRED

OPCODE (HEX)

DESCRIPTION

ABAAC 1 C 1 2C Add Ato B

ACAAC 12 2 C 1 70 Add constant to A

AGEC 8 2 C 2 63 A greater than or equal to constant

AMAAC 1 C 1 28 Add memory to A

ANDCM 8 2 1 2 65 AND constant and memory

ANEC 8 2 C 2 60 A not equal to constant

AXCA 8 2 1 2 68 A times constant

AXMA 1 1 1 39 A times memory

AXTM 1 1 1 38 A times timer

BA 13 2 1 2 40 Branch if status set

BAA 1 1 1 1F Branch always to address in A register

CALL 12 2 1 2 00 Call if status set

CLA 1 1 1 2F Clear A

CLB 1 1 1 24 Clear B

CLX 1 1 1 20 Clear X

DECMN 1 C 1 27 Decrement memory

DECXN 1 C 1 22 Decrement X

EXTSG 1 1 1 3C Extended-sign mode

GET 3 2 C 1 30 Get bits

lAC 1 C 1 3A IncrementA

IBC 1 C 1 25 Increment B

INCMC 1 C 1 26 Increment memory

INTGA 1 C 1 3B Set integer mode

IXC 1 C 1 21 Increment X

LUAA 2 1 1 6B Look up A, result to A

LUAB 2 1 1 6D Look up A, result to B

5-1

Table 5-1. TSP50C1x Instruction Set (continued)

OPERAND SIZE (BITS)

INSTRUCTION CYCLES REQUIRED

MNEMONIC
STATUS (1 ALWAYS SET, C CONDITIONAL

NUMBER OF BYTES REQUIRED

OPCODE (HEX)

DESCRIPTION

LUAPS 2 1 1 6C Start parallel-to-serial transfer

ORCM 8 2 1 2 64 OR constant with memory

RETI 1 C 1 3E Return from interrupt

RETN 1 1 1 3D Return from subroutine

SALA 1 C 1 2E Shift A left

SALA4 1 1 1 1B Shift A left 4 bits

SARA 1 1 1 15 Shift A right

SBAAN 1 C 1 2D Subtract B from A

SBR 7 1 1 1 80 Short branch if status set

SETOFF 1 1 1 3F Turn processor off

SMAAN 1 C 1 29 Subtract memory from A

TAB 1 1 1 1A Transfer A to B

TAM 1 1 1 16 Transfer A to memory

TAMD 8 2 1 2 6A Transfer A to memory direct

TAMIX 1 1 1 13 Transfer A to memory, increment X

TAM ODE 1 1 1 10 Transfer A to mode register

TAPSC 1 1 1 19 Transfer A to prescale register

TASYN 1 1 1 1C Transfer A to synthesizer register

TATM 1 1 1 1E Transfer A to timer register

TAX 1 1 1 18 Transfer A to X

TBM 1 1 1 2A Transfer B to memory

TCA 8 2 1 2 6E Transfer constant to A

TCX 8 2 1 2 62 Transfer constant to X

TMA 1 1 1 11 Transfer memory to A

TMAD 8 2 1 2 69 Transfer memory to A direct

TMAIX 1 1 1 14 Transfer memory to A, increment X

TMXD 8 2 1 2 6F Transfer memory direct to X

TRNDA 1 1 1 2B Transfer random number to A

TSTCA 8 2 C 2 67 Test constant and A

TSTCM 8 2 C 2 66 Test constant and memory

TTMA 1 1 1 17 Transfer timer to A

TXA 1 1 1 10 Transfer X to A

5-2

Table 5-1. TSP50C1x Instruction Set (continued)

OPERAND SIZE (BITS)

INSTRUCTION CYCLES REQUIRED

MNEMONIC
STATUS (1 ALWAYS SET, C CONDITIONAL

NUMBER OF BYTES REQUIRED

OPCODE (HEX)

DESCRIPTION

XBA 1 1 1 12 Exchange A and B

XBX 1 1 1 23 Exchange B and X

XGEC 8 2 C 2 61 X greater than or equal to constant

Table 5-2. TSPSOC1x Instruction Table

MSB
LSB

0 1 2 3 4 5 6 7 8-F

0 CALL TXA CLX GET 1 BR BR ANEC ACAAC SBR

1 CALL TMA IXC GET2 BR BR XGEC ACAAC SBR

2 CALL XBA DECXN GET3 BR BR Tex ACAAC SBR

3 CALL TAMIX XBX GET4 BR BR AGEC ACAAC SBR

4 CALL TMAIX CLB GET5 BR BR ORCM ACAAC SBR

5 CALL SARA IBC GET6 BR BR ANDCM ACAAC SBR

6 CALL TAM INCMC GET7 BR BR TSTCM ACAAC SBR

7 CALL TTMA DECMN GET8 BR BR TSTCA ACAAC SBR

8 CALL TAX AMAAC AXTM BR BR AXCA ACAAC SBR

9 CALL TAPSC SMAAN AXMA BR BR TMAD ACAAC SBR

A CALL TAB TBM lAC BR BR TAMD ACAAC SBR

B CALL SALA4 TRNDA INTGR BR BR LUAA ACAAC SBR

C CALL TASYN ABAAC EXTSG BR BR LUAPS ACAAC SBR

B CALL TAMODE SBAAN RETN BR BR LUAB ACAAC SBR

E CALL TATM SALA RETI BR BR TCA ACAAC SBR

F CALL BRA CLA SETOFF BR BR TMXD ACAAC SBR

5-3

5.1 Instruction Format
The source code instruction format is:

[<label>]A<opcode mnemonic>A[<operand>]A ••• [<cornment>]

The fields are:

a 1 O-character optional label field,

a 6-character opcode field,

an opcode-dependent operand field,

and an optional comment field.

Each of the fields is separated by one or more tabs or spaces.

5-4

5.2 ABAAC - Add B to A
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Adds the contents of the B register to the contents of the A register and stores
the result in the A register.

2C

[<LABEl> r ABAAC" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION 1..-1 0-'-1_0 1--'-1 o--,I'---LI---,-I_o ..1-1 0--,1

EXECUTION RESULTS: (A) + (B) - (A)

STATUS FLAG:

NOTE:

1 if there is a carry into bit eight of the ALU; 0 if not.

The addition is performed independent of the arithmetic mode (EXTSG or
I NTGR) as an unsigned addition of all 14 bits of the B register and A register.

5-5

5.3 ACAAC - Add Constant to A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Adds the 12-bit constant specified by the operand to the contents of the A
register and stores the result in the A register.

70-7F

[<LABEL>]"ACMC"<CONST12>" ... [<COMMENT>]

7 6 5 4 3 2 o
INSTRUCTION 0 I I I 1 I I I I+-4 most significant bits of constant

CONSTANT '--____ C_O_N_S_T_1_2 ___ --' +- 8 least significant bits of constant

EXECUTION RESULTS: (A) + CONST12 ~ (A)

STATUS FLAG:

NOTE:

EXAMPLE:

5-6

1 ifthere is a carry into bit 8 of the ALU; 0 if not.

The results of the addition are dependent on the arithmetic mode. If the
processor is in integer mode (INTGR), then the addition is of a 12-bit unsigned
number with a 14-bit unsigned number. If the processor is in extended-sign
mode (EXTSG), then the 12-bit constant is sign extended to a 14-bit two's
complement number prior to the addition.

This instruction is useful when a table index has been placed in the A register.
The base address of the table can be added to the index with this instruction,
and a look-up can be completed to fetch the desired table element.

TABLE

TMAD INDEX Bring table index in from memory

ACAAC TABLE Add address of start of table

LUAA Bring table element into A register

5.4 AGEC - A Register Greater Than or Equal to Constant
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Compares the contents of the lower 8 bits of the A register and the 8-bit constant
specified in the operand. Sets the status flag if the contents of the lower 8 bits
of the A register are greater than the operand.

63

[<LABEL>] AAGECA <CONST8> A ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 543 2 o

CONST8

EXECUTION RESULTS: (A) ~ CONST8 -+ (SF)

STATUS FLAG:

NOTE:

EXAMPLE:

1 if the lower 8 bits of the A register are greater than or equal to the 8-bit constant;
o if not.

Comparison is always done on an unsigned basis, i.e., FF is greater than FE.
Only the lower eight bits of the A register are compared to the 8-bit constant
value. The upper 6 bits of the A register are not considered, so the result is
independent of the arithmetic mode (EXTSG or INTGR).

CLA

LOOP lAC

Prepare A register

Increment A register

TARGET

AGEC TEST Is A reg greater than TEST

SBR TARGET Yes, escape loop

SBR LOOP No, continue loop

5-7

5.5 AMAAC - Add Memory to A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Adds the contents of RAM addressed by the X register to the A register and
stores the result in the A register.

28

[<LABEl>] "AMAAC" ... [<COMMENT>]

7 6 5 4 321 0

INSTRUCTION

EXECUTION RESULTS: (A) + (*X) -+ (A)

STATUS FLAG:

NOTE:

EXAMPLE:

5-8

1 if there is a carry into bit 8 of the ALU; 0 if not.

When the most significant bit of the memory being used is set, the addition
results are dependent on the arithmetic mode (EXTSG or INTGR). A carry into
bit eight sets the status flag in all cases.

This instruction may be used when the sUhl of two variables is desired.

TMAD VALUE! Fetch value from memory

TCX VALUE2 Point to second value

AMAAC Add two values

TAMD VALUE3 Store sum in memory

5.6 ANDCM - Logical AND a Constant With Memory
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Bit-wise ANDs the contents of the memory addressed by the X register and an
8-bit constant and stores the results in the memory location addressed by the
X register.

65

[<LABEl>] "ANDCM" <CONST8>" ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 5 4 3 2 1 0

1°111110101110111
CONST8

EXECUTION RESULTS: (*X) && CONST8 ~ (*X)

STATUS FLAG:

NOTE:

EXAMPLE:

1 always

The operation is performed independent of the arithmetic mode (EXTSG or
INTGR) on the lower 8 bits of the RAM location; any other bits are unaffected.

TCXFLAGS

ANDCM #FO

Point to FLAGS

Reset lower 4 bits to zero

5-9

5.7 ANEC - A Not Equal to Constant
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Compares the lower 8 bits of the A register to the constant specified by the
operand and sets the status flag if they are not equal.

60

[<LABEl>] AANECA <CONST8> A ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 54321 0

EXECUTION RESULTS: (A) .. CONST8 ~ (SF)

STATUS FLAG:

NOTE:

EXAMPLE:

5-10

1 if the lower 8 bits of the A register are not equal to the 8-bit operand; 0 if they
are equal.

Only the lower eight bits of the A register are compared to the 8-bit constant
value. This instruction is independent of the arithmetic mode (EXTSG or
INTGR).

CLA Prepare A register

LOOP lAC Increment A register

ANEC TEST Is A register equal to TEST

SBR LOOP No, continue loop

SBR TARGET Yes, escape loop

TARGET

5.8 AXCA - A Times Constant
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Multiplies the contents of the A register and the operand and leaves the results
(right shifted 7 bits) in the A register.

68

[<LABEl>] "AXCN <CONST8> " ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6

01
5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 0 I
CONST8

EXECUTION RESULTS: ((A) x CONST8)/128 (A)

STATUS FLAG:

NOTE:

EXAMPLE:

1 always

The operation is performed independent of the arithmetic mode (EXTSG or
INTGR) as a two's complement multiplication of all 14 bits of the A register and
the 8-bit constant. The result is right shifted 7 bits so that the most significant
14 bits of the 21-bit result are available for further use.

TeA #3F

AXCA #IF

Load first value

Multiply by second value

(result is #OF)

5-11

5.9 AXMA - A Times Memory
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Multiplies the contents of the A register and the lower 8 bits of the contents of
the memory location addressed by the X register; leaves the results (right
shifted by 7 bits) in the A register.

39

[<LABEl>] "AXMA" ... [<COMMENT>J

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 1 I
EXECUTION RESULTS: «A) x (*X))/128 --+ (A)

STATUS FLAG:

NOTE:

EXAMPLE:

5-12

1 always

The operation is performed independent of the arithmetic mode (EXTSG or
INTGR) as a two's complement multiplication of all 14 bits of the A register and
the 8-bit value fetched from memory. The result is right shifted 7 bits so that the
most significant 14 bits of the 21-bit result are available for further use.

TCA #3F Load first value

TCX RAMLOC Point to memory

TAM Store value in RAM

TCA

AXMA

#IF Load second value

Multiply first value by second value

(result is #OF)

5.10 AXTM - A Times Timer
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Multiplies the contents ofthe A register and the contents ofthe timer register and
stores the results (right shifted by 7 bits) in the A register.

38

[<LABEl>] AAXTMA ... [<COMMENT>]

7 6 5 43210

INSTRUCTION

EXECUTION RESULTS: ((A) x (TM))/128 -- (A)

STATUS FLAG:

NOTE:

EXAMPLE:

1 always

The operation is performed independent of the arithmetic mode
(EXTSG/INTGR) as a two's complement multiplication of all 14 bits of the A
register and the 8-bit value of the timer register. The result is right shifted 7 bits
so that the most significant 14 bits of the 21-bit result are available for further
use.

TCA

TATM

TCA

AXTM

#3F

#IF

Load first value

Store first value in timer register

Load second value

Multiply first value by second value

(result is #OF if timer has

not decrementd)

5-13

5.11 BR - Branch If Status Set
ACTION: If the status flag is set to 1, the program counter is loaded with the address

specified by the operand and execution proceeds from that address. If the status
flag is set to 0, the instruction following the BR instruction executes.

OPCODE:

SOURCE CODE:

OBJECT CODE:

INSTRUCTION

CONSTANT

40

[<LABEl>] ABRA <ADDR13> A ... [<COMMENT>]

7 6 5 4 3 2 1 0

01 1 0 1 1 1 1 1- 5 moot ,;,00,,,,\ bit> of d,~;oat;oo add,,,,

ADDR13 -- 8 least significant bits of destination address

EXECUTION RESULTS: if SF = 1, then ADDR13 -+ Program Counter

STATUS FLAG:

NOTE:

EXAMPLE:

5-14

if SF = 0, then Program Counter -+ Program Counter

1 always

The branch instruction is a conditional instruction. When a branch is used
following an instruction that always leaves the status flag set high, the branch
can be viewed as unconditional. To execute an unconditional branch after a
command that affects the status flag, repeat the branch as shown below.

ACMC #3F Perform addition

BR LOC

BR LOC

5.12 BRA - Branch Always to Address in A Register
ACTION: The program counter is loaded with the 14-bit address contained in the A

register, and execution proceeds from that address.

OPCODE: 1F

SOURCE CODE: [<LABEl>rBRA" ... [<COMMENT>J

OBJECT CODE:
7 6 5 4 3 2 o

INSTRUCTION I I
EXECUTION RESULTS: (A) - Program Counter

STATUS FLAG:

NOTE:

EXAMPLE:

NOTE:

1 always

This instruction is useful when a subroutine address has been placed in a table.
The base address of the table can be added to the index and the address
contained in the table can be fetched to the A register.

TABLE

TMAD INDEX Bring table index in from memory

ACAAC TABLE Add address of start of table

LUAA Bring new address into A register

BRA Branch to new address

The BRA instruction is an unconditional instruction. The branch is always taken,
regardless of the value of the status register.

While the extended-sign mode does not affect the operation of this instruction,
it does affect the operation of many other instructions, including most
instructions used to transfer values to the A register. Care should be taken that
sign extension is not in effect when transferring values to the A register that are
subsequently used by the BRA instruction, because the value may be changed
during the transfer and unexpected results obtained.

5-15

5.13 CALL - Call Subroutine If Status Set
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

If the status flag is 1, the contents of the program counter are pushed onto the
stack, and the program counter is loaded with the address specified by the
operand. Execution proceeds from that address. If the status flag is 0, the
instruction following the CALL instruction executes.

00

[<LABEL>]"CALL A<ADDR12>A ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 5 432

o I 0 I 0 I I I
ADDR12

1 o

EXECUTION RESULTS: If SF = 1, then Program Counter -+ Stack, and ADDR12 -+ Program Counter

If SF = 0, then Program Counter -+ Program Counter

STATUS FLAG:

NOTE:

5-16

1 always

The program counter stack is capable of storing addresses up to three levels
deep. An address is pushed onto the stack whenever a CALL instruction occurs
or whenever a hardware interrupt is executed. As addresses are pushed to the
stack more than three levels deep, the last three addresses pushed to the stack
are retained, and previous addresses are lost.

The CALL instruction is a conditional instruction. When a call is used following
an instruction that always leaves STATUS high, it can be viewed as
unconditional. Because the CALL address is only 12 bits, subroutines should
be placed in the lower 4K bytes of ROM. The BR instruction has 13 bits of
address, making it possible to branch to the lower 8K bytes of ROM. Subroutines
can therefore be located in the second 4K bytes of ROM by having the entry
point in the lower 4K bytes with an immediate branch to the higher 4K bytes.

5.14 CLA - Clear A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Sets the contents of the A register to o.
2F

[<LABEl>] "'CLAI\ ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 1 I 0 I 1 I ·1 I 1 I 1 I
EXECUTION RESULTS: 0 -- (A)

STATUS FLAG: 1 always

5-17

5.15 CLB - Clear B Register
ACTION: Sets the contents of the B register to O.

OPCODE: 24

SOURCE CODE: [<LABEL>] "CLB" ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 1 I 0 I 0 I 1 I 0 I 0 I
EXECUTION RESULTS: 0 ~ (B)

STATUS FLAG: 1 always

NOTE: This instruction is used to initialize the B register.

5-18

5.16 CLX - Clear X Register
ACTION: Sets the contents of the X register to O.

OPCODE: 20

SOURCE CODE: [<LABEL>] ACLXA ... [<COMMENT>]

OBJECT CODE:

7 6 5 432 1 0

INSTRUCTION I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 0 I

EXECUTION RESULTS: 0 --+ (X)

STATUS FLAG: 1 always

NOTE: This instruction is used to initialize the X register.

5-19

5.17 DECMN - Decrement Memory
ACTION: Decrements the contents of the a-bit RAM location pointed to by the X register.

OPCODE:

SOURCE CODE:

OBJECT CODE:

If the a bits are all zero, they are set to one and the status flag is set. If not, they
are simply decremented and the status flag is cleared.

Because the action taken by the DECMN instruction is to add #OFF to the RAM
value, when this instruction is used with 12-bit RAM locations, the lower a bits
are decremented and the upper 4 bits are incremented whenever there is an
overflow from the lower a bits.

27

[<LABEL>] ~DECMN" ... [<COMMENT>]

7 6 5 4 3 2 1 o
INSTRUCTION

EXECUTION RESULTS: (*X) + #OFF -+ (*X)

STATUS FLAG: 1 if the lower a bits of memory went from all zeros to all ones; a if not.

5-20

5.18 DECXN - Decrement X Register
ACTION: Decrements the contents of the X register. If the X register contains 00, it is set

to FF and the status flag is set to 1. Otherwise, the X register is decremented
and the status flag is cleared to zero.

OPCODE: 22

SOURCE CODE: [<LABEL>] "DECXN" ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 0

INSTRUCTION I 0 I 0 I 1 I 0 I 0 I 0 I 1 I 0 I

EXECUTION RESULTS: (X) - 1 -+ (X)

STATUS FLAG: 1 if X register went from 00 to FF; 0 if not.

5-21

5.19 EXTSG - Extended-Sign Mode
ACTION: Changes TSP50C1x to extended-sign mode

OPCODE: 3C

SOURCE CODE: [<LABEL>] "EXTSG" ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 1 I 1 I 1 I 1 I 0 I 0 I
EXECUTION RESULTS: The TSP50C1x is put into extended-sign mode. All data less than 14 bits in

length will be sign extended when being added to, subtracted from, or
transferred to the A and B registers.

STATUS FLAG:

NOTE:

5-22

1 always

Sign extension means that the most significant bit of the data is copied into bits
from 13 to the most significant bit of the data. For example, a 12-bit RAM
location's most significant bit is bit 11. In extended-sign mode, bit 11 is copied
into bits 12 and 13 when the data are transferred from the RAM location to the
A register. This mode is useful if signed arithmetic must be done on values
greater than 8 bits. Refer to each instruction description to determine if the
arithmetic mode affects that particular instruction.

5.20 GET - Get Data From ROM/RAM
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Transfers 1 to 8 bits of data from internal ROM, external ROM (TSP60C18), or
internal RAM to the A register via the parallel-to-serial register.

30 to 37

[<LABEl>] ~GET~<N> ~ ... [<COMMENT>]

76543 2 0

INSTRUCTION N-1 I
EXECUTION RESU LTS: N bits of data are shifted from the LSB of the parallel-to-serial register into the

LSB of the A register. This reverses the order of the bits in the A register from
the order in the parallel-to-serial register. If more bits are required than are in the
parallel-to-serial register, an additional byte is fetched from ROM or RAM.

STATUS FLAG: 1 if the parallel-to-serial register buffer was emptied and needs to be reloaded
on the next GET; 0 if not.

NOTE: The data is shifted out of the LSB of the parallel-to-serial register and into the
LSB of the A register, resulting in a bit reversal of any single byte of data
transferred into the A register from the order stored in the ROM.

PARALLEL-TO-SERIAL
REGISTER '---'----'-_'---'----'---'_...L--'

If more bits are requested than are immediately available in the parallel-to-serial
register, the next data byte is loaded to the parallel-to-serial register and the
remaining bits are transferred to the A register to satisfy the GET instruction.

When the> parallel-to-serial register is reloaded from ROM, the SAR, which is the
address pointer for the GET instruction, is autoincremented as needed. When
the parallel-to-serial register is reloaded from RAM, the X register is the address
pointer and is not autoincremented.

5-23

5-24

PRIOR TO GET 5 INSTRUCTION

PARALLEL-TO-SERIAL
REG ISTER '----'----'----'-_'---'----'---'----'

A REGISTER 0

AFTER GET 5 INSTRUCTION

PARALLEL-TO-SERIAL
REGISTER L...-...I...---L...----1._L..-....L....--L---.L---l

A REGISTER 0

Prior to the first use of the GET instruction, the GET counter, the
parallel-to-serial register, and the mode register must be initialized. This
initialization is accomplished by the TAMODE instruction and the LUAPS
instruction, in that order. When using the GET instruction from RAM, a dummy
GET 8 instruction must be performed after the LUAPS instruction and before the
real GET. See Section 6.7.3 for a sample program using RAM GET.

The source for the data fetched by the GET instruction can be either internal or
external ROM or internal RAM. The TAMODE instruction is used to control the
source of the data.

When used to fetch data from external ROM, the GET instruction cannot fetch
more than 4 bits of data at a time.

If the LPC bit is set and the first GET instruction after the LUAPS loads the
maximum number of bits allowed (i.e., a GET 4 from external ROM or a GET
8 from internal ROM or RAM). the same data will be loaded twice in a row. To
avoid this problem, either perform the first GET before entering LPC mode or
do a dummy GET (in the case of a GET from internal RAM, a total of two dummy
GET 8 commands would be required). Refer to section 6.6 and 6.7 for more
information.

5.21 lAC - Increment A Register
ACTION: Increments the contents of the A register by 1

OPCODE: 3A

SOURCE CODE: [< LAB El>j "IAC" ... [<COMMENT>j

OBJECT CODE:

7 6 5 4 3 2 o
INSTRUCTION I I 0 I

EXECUTION RESULTS: (A) + 1 -+ (A)

STATUS FLAG: 1 if the lower 8 bits of the A register go from FF to 00; 0 if not.

NOTE: This instruction increments all 14 bits of the A register, but only the lower 8 bits
are used for status-flag determination.

EXAMPLE:

LOOP

DONE

lAC Increment loop counter

SBR DONE Branch if loop counter overflow

SBR LOOP Branch if no loop counter overflow

5-25

5.22 IBe -Increment B Register
ACTION: Increments the contents of the B register by 1

OPCODE: 25

SOURCE CODE: [<LABEl>] "IBC" ... [<COMMENT>]

OBJECT CODE:
7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 1 I 0 I 0 I 1 I 0 I I
EXECUTION RESULTS: (B) + 1 --+ (B)

STATUS FLAG:

NOTE:

EXAMPLE:

5-26

1 if the lower 8 bits of the B register go from FF to 00; 0 if not.

This instruction increments all 14 bits of the B register, but only the lower 8 bits
are used for status-flag determination.

LOOP

DONE

IBC Increment loop counter

SBR DONE Branch if loop counter overflow

SBR LOOP Branch if no loop counter overflow

5.23 INCMC - Increment Memory
ACTION: Increments the contents of the RAM location pOinted to by the X register. If the

lower 8 bits are all ones, they are cleared to all zeros and the status flag is set
to 1. When this instruction is used with 12-bit RAM locations, the upper 4 bits
will increment whenever the lowest 8 bits change from all 1 s to all Os.

OPCODE: 26

SOURCE CODE:

OBJECT CODE:

7 6 5 432 0

INSTRUCTION I 0 I 0 I 1 I 0 I 0 I 1 I 1 I 0 I
EXECUTION RESULTS: (*X) + 1 -00 (*X)

STATUS FLAG: 1 if the lower 8 bits of memory go from #FF to 00; 0 if not.

5-27

5.24 INTGR - Integer Mode
ACTION: Changes TSP50C1x to integer mode

OPCODE: 38

SOURCE CODE: [<LA8El>] "INTGR" ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 0

INSTRUCTION I 0 I 0 I 1 I 1 I 1 I 0 I I 1 I
EXECUTION RESULTS: The upper bits of data less than 14 bits in length will be zero filled when being

transferred to, added to, or subtracted from the A and 8 registers.

STATUS FLAG:

NOTE:

5-28

1 always

This instruction affects all data from RAM, the X register, orthe timer registerthat
are transferred to, added to, or subtracted from the A and 8 registers. It is used
when only positive numbers, or numbers of 8 bits or less, are being used.

5.25 IXC - Increment X Register
ACTION: Increments the contents of the X register by 1

OPCODE: 21

SOURCE CODE: [<LABEl>] "IXC" ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 1 0

INSTRUCTION

EXECUTION RESULTS: (X) + 1 ~ (X)

STATUS FLAG:

NOTE:

EXAMPLE:

1 if the contents of the X register go from FF to 00; 0 if not.

The status flag is only set when the X register contains #FF prior to the execution
ofthe IXC instruction. In this case, the status flag is set and the X register value
is O.

LOOP

DONE

IXC Increment loop counter

SBR DONE Branch if loop counter overflow

SBR LOOP Branch if no loop counter overflow

5-29

5.26 LUAA - Look Up With A Register
ACTION: Replaces the contents of the A register with the contents of the ROM addressed

by the A register. When in extended-sign mode, the value fetched is sign
extended to 14 bits.

OPCODE: 6B

SOURCE CODE: [<LABEl>]J\LUAN ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 o
INSTRUCTION

EXECUTION RESULTS: (*A) ~ (A)

STATUS FLAG:

WARNING:

EXAMPLE:

5-30

1 always.

When in extended-sign mode (EXTSG) , the value loaded to the A register is sign
extended. This can cause problems in two areas: when loading the target
address to the A register, the address may be changed if bit 7 is high, causing
incorrect data to be loaded with the LUAA instruction; and the data fetched may
be sign extended. These problems can be avoided by ensuring that the
processor is in integer mode (lNTGR) prior to loading the A register.

INTGR Ensure integer mode

TCA TABLE Load table address

ACAAC INDEX Add table offset

LUAA Fetch table entry

5.27 LUAB - Look Up With B Register
ACTION: Replaces the contents ofthe B register with the contents of the ROM addressed

by the A register. When in extended-sign mode, the value fetched is sign
extended to 14 bits.

OPCODE: 6D

SOURCE CODE: [<LABEL>]I\LUABI\ ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 1 I 1 I 0 I 1 I 1 I 0 I I
EXECUTION RESULTS: (*A) -+ (B)

STATUS FLAG:

WARNING:

EXAMPLE:

1 always.

When in extended-sign mode (EXTSG) the value loaded to either the B register
or the A register is sign extended. This can cause problems in two areas: when
loading the target address to the A register, the address may be changed if bit
7 is high, causing incorrect data to be loaded with the LUAB instruction; and the
data fetched to the B register may be sign extended. These problems can be
avoided by ensuring that the processor is in integer mode (INTGR) prior to
loading the A register.

INTGR Ensure integer mode

TCA TABLE Load table address

ACAAC INDEX Add table offset

LUAB Fetch table entry to B register

5-31

5.28 LUAPS - Indirect Look Up With A Register
ACTION: Transfers A register contents to speech address register (SAR) and uses the

resulting address to look up a speech data word. The data word is placed into
the parallel-to-serial buffer and SAR is incremented.

OPCODE: 6C

SOURCE CODE: [<LABEl>j"LUAPS" ... [<COMMENT>j

OBJECT CODE:

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 1 I 1 I 0 I 1 I 1 I 0 I 0 I
EXECUTION RESULTS: (A) -+ (SAR); (*SAR) -+ (PS); (SAR) + 1 -+ (SAR)

STATUS FLAG:

NOTE:

EXAMPLE:

5-32

1 always

This instruction is used to initialize the parallel-to-serial register prior to GET
instructions. It should be used even if the data are coming from external ROM
or internal RAM. In these cases, the SAR does not need initialization, but the bit
counter in the parallel-to-serial register still does.

TCA SPEECH Load address of data

LUAPS Initialize PS register

GET 4 Get first data

5.29 ORCM - OR Constant With Memory
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Logically ORs the contents of RAM pointed to by the X register with the 8-bit
operand and stores the results in RAM.

64

[<LABEL>] "ORCM" <CONST8> " ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 54321 0

EXECUTION RESULTS: (*X) II CONST8 -to (*X)

STATUS FLAG: 1 always

NOTE: This instruction can be used to set an individual bit in RAM to 1.

EXAMPLE:

SILENCE EQU #01

TCX FLAGS Point to flags variable

ORCM SILENCE Set silence bit high

5-33

5.30 RETI - Return From Interrupt
ACTION: If the interrupt is a level-1 interrupt, retrieves the old contents of the A register,

B register, status flag, integer mode bit, and X register from the interrupt storage
locations; pops the top value from the stack to the program counter; and
resumes execution from the new address in the program counter. If the interrupt
is a level-2 interrupt, only the status flag, integer mode bit, and program counter
are retrieved. If an RETI instruction is executed with interrupts enabled and
without an interrupt first occurring, the stack control can be corrupted. The mode
register is not saved and restored during interrupts. Any changes made to the
mode register during interrupts stay in effect after the RETI instruction.

OPCODE: 3E

SOURCE CODE: [<LABEl>] "RETI" ... [<COMMENT>]

OBJECT CODE:

7 6 5 4 3 2 0

INSTRUCTION I 0 I 0 I 1 I 1 I 1 I 1 I I 0 I
EXECUTION RESULTS: level-1: (A') -+ (A); (B') -+ (B);(X') -+ (X); (SF') -+ (SF);

(IF') -+ (IF)

STATUS FLAG:

5-34

(Top of Program Counter Stack) -+ (Program Counter)

level-2: (SF') -+ (SF); (IF') -+ (IF)

(Top of Program Counter Stack) -+ (Program Counter)

Restored to value before interrupt

5.31 RETN - Return From Subroutine
ACTION: Pops the top value from the stack and resumes execution from the new address.

OPCODE: 3D

SOURCE CODE: [<LABEl>] ARETNA ... [<COMMENT>]

OBJECT CODE:

7 6 5 432 1 0

INSTRUCTION I 0 I 0 I 1 I 1 I 1 I 1 I 0 I 1 I
EXECUTION RESULTS: (Top of Stack) -+ (Program Counter)

STATUS FLAG:

NOTE:

1 always

If stack is underflowed, RETN will function as a no-operation command. Control
will go to the next consecutive address. Calls can be made indefinitely, but calls
can only return three levels.

5-35

5.32 SALA - Shift-A Register Left
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Shifts the A register left towards MSB by one bit and fills the LSB with a O.

2E

[<LABEl>] "SALA" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 1 I 0 I 1 I 1 I 1 I 0 I
EXECUTION RESULTS: (A)i -+ (A)i + 1; 0 -+ (A)O

STATUS FLAG:

NOTE:

5-36

1 if (A)7 was a 1 before execution; 0 if (A)7 was a 0 before execution.

The bit shifted out of bit 13 of the A register is lost. The results do not depend
on the arithmetic mode (EXTSG or INTGR).

5.33 SALA4 - Shift A Register Left Four Bits
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Shifts the A register left towards MSB by four bits and fills the lower 4 bits with
zeros.

1B

[<LABEl>] "SALA4" ... [<COMMENT>]

7 6 5 4 3 2 0

INSTRUCTION I 0 I 0 I 0 I 1 I 1 I 0 I 1 I 1 I
EXECUTION RESULTS: (A)i --+ (A)i + 4; a --+ (A)a - (A)3

STATUS FLAG:

NOTE:

1 always.

Bits 1 a to 13 of the A register are lost. The results do not depend on the
arithmetic mode (EXTSG or INTGR).

5-37

5.34 SARA - Shift A Register Right One Bit
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Shifts the A register right towards LSB by one bit and fills the MSB with its old
value.

15

[<LABEl>] ~SARA" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 0 I 1 I 0 I 1 I
EXECUTION RESULTS: (A)i -+ (A)i -1; (A)13 -+ (A)13

STATUS FLAG:

NOTE:

5-38

1 always.

Data shifted out of bit 0 of the A register is lost. The results do not depend on
the arithmetic mode (EXTSG or INTGR).

5.35 SBAAN - Subtract B Register From A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Subtracts the contents of the B register from the contents of the A register and
stores the result in the A register. If the subtraction requires a borrow operation
from bit 8 of the A register, the status flag is set to 1. Otherwise, the status flag
is cleared to o.
2D

[<LABEl>] ASBAAW ... [<COMMENT>]

7 6 543 2 1 0

INSTRUCTION I 0 I I I 0 I I
EXECUTION RESULTS: (A) - (B) -+ (A)

STATUS FLAG:

NOTE:

1 if the lower 8 bits of A register are less than the lower 8 bits of the B register;
o if not.

The addition is performed independent of the arithmetic mode (EXTSG or
INTGR) as a two's complement subtraction of all 14 bits of the B register from
the A register.

5-39

5.36 SBR - Short Branch If Status Set
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

When the status flag is set to 1 , the lower seven bits of the program counter are
replaced by the value specified and execution proceeds from that address.
Otherwise, the instruction following the SBR instruction is executed.

80 to FF

[<LABEl>] "SBR" <ADDR7> " ... [<COMMENT>]

7 6 5 4 3 2 0

INSTRUCTION I 1 I ADDR7 I
EXECUTION RESULTS: If SF = 1, ADDR7 + Program Counter PAGE --+ PC

If SF = 0, Program Counter --+ Program Counter

STATUS FLAG:

NOTE:

5-40

1 always

The short branch instruction is a conditional instruction. When a short branch
is used following an instruction that always leaves the status flag high, the short
branch can be viewed as unconditional.

The program counter is incremented when the instruction is fetched. Because
the program counter value is 80 when the instruction is executed, placing an
SBR with an operand of 1 at address 7F results in a branch to 81.

An SBR instruction executed at XX7F or XXFF with status cleared (branch not
taken) goes to XXOO or XX80, respectively. Version 1.06 or greater of the
assembler generates a warning message for all SBR instructions that occur at
addresses ending in 7F or FF.

5.37 SETOFF - Set Processor to Off Mode
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Places the processor in a low-power mode. The clock is stopped and I/O ports
are placed in a high-impedance state.

3F

[<LABEl>] ASETOFFA ... [<COMMENT>]

7 6 5 4 3 2 o
INSTRUCTION I I

EXECUTION RESULTS: Processor powered down

STATUS FLAG:

NOTE:

State at power up not guaranteed

A rising edge on the INIT pin is necessary to restart the processor. The register
values are not retained, but the RAM values are retained provided that power
continues to be applied to the chip.

5-41

5.38 SMAAN - Subtract Memory From A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Subtracts the contents of RAM addressed by the X register from the contents
of the A register and stores the result in the A register. If the initial value in the
lower 8 bits of the A register is less than the value in the lower 8 bits of RAM,
the status bit is set to 1 ; otherwise, the status bit is cleared to O. If the processor
is in extended-sign mode, the value stored in memory is sign extended to a
14-bit value prior to the subtraction.

29

[<LABEl>] "SMAAN" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 1 I 0 I 1 I 0 I 0 I I
EXECUTION RESULTS: (A) - (*X) ~ (A)

STATUS FLAG:

NOTE:

EXAMPLE:

5-42

1 if the lower 8 bits of A register are less than the lower 8 bits in the RAM; 0 if
not.

When the most significant bit of the memory being used is set, the subtraction
results are dependent on the arithmetic mode (EXTSG or INTGR). A borrow
from bit 8 sets the status flag in all cases.

This instruction may be used when the difference between two variables is
desired. It subtracts the contents of the memory indexed by the X register from
the A register.

TMAD VALUEl Fetch value from memory

TCX VALUE2 Point to second value

SMAAN Subtract two values

TAMD VALUE3 Store result in memory

5.39 TAB - Transfer A Register to B Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents of the A register into the B register

1A

[<LABEL>] "TAB" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 1 I 0 I 1 I 0 I
EXECUTION RESULTS: (A) --+ (B)

STATUS FLAG: 1 always

5-43

5.40 TAM - Transfer A Register to Memory
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents of the A register into the memory location addressed by the
X register. Since the memory location is too small to hold the complete contents
of the A register, the most significant bits are lost in the transfer.

16

[<LABEl>] "TAM" ... [<COMMENT>]

7 6 5 432 0

INSTRUCTION I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 0 I
EXECUTION RESULTS: (A) --+ (*X)

STATUS FLAG: 1 always

5-44

5.41 TAMD - Transfer A Register to Memory Direct
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents of the A register into the memory location addressed by the
operand. Since the memory location is too small to hold the complete contents
of the A register, the most significant bits are lost in the transfer.

6A

[<LABEL>] "TAMD" <CONSTB> " ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 5 4 3 2 o

EXECUTION RESULTS: (A) --+ (*CONSTB)

STATUS FLAG: 1 always

5-45

5.42 TAMIX - Transfer A Register to Memory and Increment X Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents of the A register into the memory location addressed by the
X register and then increments the X register. Since the memory location is too
small to hold the complete contents ofthe A register, the most significant bits are
lost in the transfer.

13

[<LABEL>] "TAMIX" ... [<COMMENT>]

7 6 5 4 3 2 0

INSTRUCTION I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 1 I
EXECUTION RESULTS: (A) (*X); (X) + 1 (X)

STATUS FLAG: 1 always

5-46

5.43 TAMODE - Transfer A Register to Mode Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the lower 8 bits of the A register into the mode register

10

[<LABEL>] ~TAMODE~ ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 1 I 1 I 0 I 1 I
EXECUTION RESULTS: (A) ---+ (Mode Register)

STATUS FLAG: 1 always

NOTE: The bit definition for the mode register is in Section 2.19, Mode Register.

5-47

5.44 TAPSC - Transfer A Register to Prescale Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the lower 8 bits of the A register into the pre scale register

19

[<lP.BEl>]/'TAPSCA ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 1 I
EXECUTION RESULTS: (A) --+ (Prescale Register)

STATUS FLAG:

NOTE:

5-48

1 always

The prescale circuit divides the timer clock by the value set by this instruction
plus 1. The output of the prescale circuit is used as a clock for the timer register.
Refer to Section 2.14, Timer Prescale Register, for more information.

5.45 TASYN - Transfer A Register to Synthesizer Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the 14-bit A registerto a speech-processor register. The specific register
and resulting control function depend on the operating mode: LPC (load 14-bit
pitch register; MSB and LSB of A register must be set to zero), PCMjLPC (load
14-bit LPC excitation register), and PCM (load 12-bit DAC register; see Section
6.9). If none ofthese modes are active, the value goes into the pitch register just
as if LPC mode were active. This is done to allow preloading the pitch before
turning on LPC mode.

1C

[<LABEL>] "TASYW ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION

EXECUTION RESULTS: (A) -+ (Speech-Processor Register)

STATUS FLAG:

NOTE:

1 always

The TASYN copies the 14-bit contents of the A register to the following
destinations depending on the contents of the MODE register
(see Section 2.19).

MODE BIT
TASYN DESTINATION

LPC PCM

0 0 Pitch register

0 1 DAC register

1 0 Pitch register

1 1 Excitation register

When loading the pitch register:

1. The least significant bit and most significant bit of the A register are required
to be zero.

2. For voiced frames, the value in the A register:

a. is required to be 004216 or higher

b. is strongly recommended to be 014216 or higher

c. is recommended to be 20216 or higher (see Section 2.15)

3. For unvoiced frames, the value in the A register is required to be between
004216 and 03FE16. Note that even when a frame is unvoiced, a pitch
register value must be loaded.

5-49

5.46 TATM - Transfer A Register to Timer Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the lower 8 bits of the A register into the timer register

1E

[<LABEl>]I\TATMI\ ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 1 I 1 I 1 I 0 I
EXECUTION RESULTS: (A) --+ (Timer Register)

STATUS FLAG: 1 always

5-50

5.47 TAX - Transfer A Register to X Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents of the lower 8 bits of the A register into the X register

18

[<LABEL>] "TAX" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 1 I 0 I 0 I 0 I
EXECUTION RESULTS: (A) -+ (X)

STATUS FLAG: 1 always

5-51

5.48 TBM - Transfer B Register to Memory
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents of the B register into the memory location addressed by the
X register. Since the memory location is too small to hold the complete contents
of the B register, the most significant bits are lost in the transfer.

2A

[<LABEL>] ~TBM~ ... [<COMMENT>]

7 6 5 432 0

INSTRUCTION I 0 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I
EXECUTION RESULTS: (B) --+ (*X)

STATUS FLAG: 1 always

5-52

5.49 TCA - Transfer Constant to A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

EXECUTION RESULTS:

STATUS FLAG:

Copies the S-bit constant specified by the operand into the A register. When in
extended-sign mode, the S-bit value is sign extended to a 14-bit two's
complement value in the A register.

6E

[<LABEL>] ATCN <CONSTS> A ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 543 2 o

extended-sign mode: CONSTS -- (A)7--O; CONSTS (7) -- (A)13-S

integer mode: CONST8 -- (A)7--O; a -- (A)13-8

1 always

5-53

5.50 TCX - Transfer Constant to X Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the S-bit constant specified by the operand into the X register

62

[<LABEL>] ATCXA <CONSTS> A ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 5 432 1 0

01111101010111°1
CONST8 .

EXECUTION RESULTS: CONSTS --+ (X)

STATUS FLAG: 1 always

5-54

5.51 TMA - Transfer Memory to A Register
ACTION:

OPCODE:

SOURCE COCE:

OBJECT COCE:

Copy the contents ofthe memory addressed by the X register into the A register.
When in extended-sign mode, the value fetched from RAM is sign extended to
a 14-bit two's complement value in the A register.

11

[<LABEl>]ATMA" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 1 I
EXECUTION RESULTS: (*X) ~ (A)

STATUS FLAG:

Result depends on whether the TSP50C1 x is in integer mode or extended-sign
mode.

1 always

5-55

5.52 TMAD - Transfer Memory to A Register Direct
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents ofthe memory addressed by the operand into the A register.
When in extended-sign mode, the value fetched from memory is sign extended
to a 14-bit two's complement value in the A register

69

[<LABEl>] "TMAO" <CONSTS> " ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 5 4 3 2 1 0

EXECUTION RESULTS: (*CONSTS) -+ (A)

STATUS FLAG:

5-56

Result depends on whether the TSP50C1 x is in integer mode or extended-sign
mode

1 always

5.53 TMAIX - Transfer Memory to A Register and Increment X Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the contents of the memory location addressed by the X register into the
A register and then increments the X register. When the processor is in
extended-sign mode, the value fetched from RAM is sign extended to a 14-bit
two's complement in the A register.

14

[<LABEL>] I\TMAIXI\ ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I
EXECUTION RESULTS: (*X) -+ (A)

STATUS FLAG:

Result depends on whether the TSP50C1 x is in integer mode or extended-sign
mode

1 always

5-57

5.54 TMXD - Transfer Memory Direct to X Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies the lower 8 bits of the memory addressed by the operand into the X
register

6F

[<LABEl>] "TMXD" <CONST8> " ... [<COMMENT>]

INSTRUCTION

CONSTANT

EXECUTION RESULTS: (*CONST8) --+ (X)

STATUS FLAG: 1 always

5-58

5.55 TRNDA - Transfer Random Number into A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Copies an 8-bit random number into the A register. Extended-sign mode does
not affect the operation of this instruction. The value is not sign extended.

2B

[<LABEL> 1 ~TRNDN ... [<COMMENT> 1

7 6 5 4 3 2 1 o
INSTRUCTION

EXECUTION RESULTS: (Random Number) -+ (A)

STATUS FLAG:

NOTE:

1 always

The random number register generates a pseudo-random count with 32,767
states. The algorithm is summarized in the following paragraph.

At power up, the random number is initialized to O. At every subsequent
instruction cycle, the register is left shifted once, and bit 0 is set to the exclusive
OR of bits 13 and 14. The transfer to the A register in response to TRNDA is
done prior to this operation.

5-59

5.56 TSTCA - Test Constant With A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

EXECUTION RESULTS:

STATUS FLAG:

NOTE:

5-60

Compares the constant specified by the operand and the contents of the A
register. If any bit in the operand is high with the corresponding bit in the A
register low, the status flag is cleared to zero. Otherwise, the status flag is set
to 1.

67

[<LABEL>] ATSTCA" <CONST8> A ... [<COMMENT>]

7 6 5 4 3 2 0

INSTRUCTION I 0 I 1 I 1 I 0 I 0 I 1 I 1 I
1 I CONSTANT CONST8

((A) && CONST8 == CONST8) --+ (SF)

Conditionally set to 1 if every bit that is high in the operand has a corresponding
high bit in the A register; otherwise set to O.

This instruction logically ANDs the value stored in the A register with the value
of the 8-bit constant and sets the status flag if the result is equal to the 8-bit
constant. The value in the A register does not change.

5.57 TSTCM - Test Constant With Memory
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Compares the constant specified by the operand and the contents of the
memory location addressed by the X register. If any bit in the operand is high
with the corresponding bit in the memory location low, the status flag is cleared
to zero. Otherwise, the status flag is set to 1 .

66

[<LABEl> 1 ~TSTCM~ <CONST8> ~ ... [<COMMENT> 1

INSTRUCTION

CONSTANT

7 6 543 2

CONST8

1 o

EXECUTION RESULTS: ((*X) && CONST8 == CONST8) --00 (SF)

STATUS FLAG:

NOTE:

Conditionally set to 1 if every bit that is high in the operand has a corresponding
high bit in the memory addressed by the X register; otherwise set to O.

This instruction logically ANDs the value stored in the RAM location pointed to
by the X register with the value of the 8-bit constant and sets the status flag if
the result is equal to the 8-bit constant. The value in memory is not affected.

5-61

5.58 TTMA - Transfer Timer Register to A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

EXECUTION RESULTS:

STATUS FLAG:

5-62

Copies the contents of the timer register into the A register. When in
extended-sign mode, the value fetched from the timer register is sign extended
to a 14-bit two's complement number in the A register.

17

[<LABEl>] ATIMN ... [<COMMENT>]

7 6 5 4 3 2 0

INSTRUCTION I 0 I 0 I 0 I 1 I 0 I 1 I 1 I 1 I

extended-sign mode: (Timer Register) -+ {A)7-O; {Timer Register)7 -+ {A)13-8

integer mode: (Timer Register) -+ (A) 7-0; 0 -+ (A)13-8

1 always

5.59 TXA - Transfer X Register to A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

EXECUTION RESULTS:

STATUS FLAG:

Copies the contents of the X register into the A register. When in extended-sign
mode, the value transferred from the X register is sign extended into a 14-bit
two's complement number in the A register.

10

[<LABEL>] "TXA" ... [<COMMENT>]

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I

extended-sign mode: (X) -+ (A)?-Q; (X)? -+ (A)13-8

integer mode: (X) -+ (A)?-Q; 0 -+ (A)13-8

1 always

5-63

5.60 XBA - Exchange Contents of B Register and A Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Exchanges the contents of the B register with the contents of the A register

12

[<LABEL>] "XBN ... [<COMMENT>J

7 6 5 4 3 2 1 0

INSTRUCTION I 0 I 0 I 0 I 1 I 0 I 0 I 1 I 0 I
EXECUTION RESULTS: (A) -<+ (B)

STATUS FLAG: 1 always

5-64

5.61 XBX - Exchange Contents of B Register and X Register
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

EXECUTION RESULTS:

STATUS FLAG:

Exchanges the contents of the B register with the contents of the X register. The
upper 6 bits of the B register are truncated in the move to the X register. When
in extended-sign mode, the value transferred from the X register is sign
extended into a 14-bit two's complement number in the B register.

23

[<LABEl>] "XBX" ... [<COMMENT>]

7 6 5 4 3 2 0

INSTRUCTION I 0 I 0 I 1 I 0 I 0 I 0 I 1 I 1 I

sign-extended mode: (X) - (B)7-o; (X)7 - (B)13-8; (B) - (X)

integer mode: (X) - (B)7-o; 0 - (B) 13-8; (B) - (X)

1 always

5-65

5.62 XGEC - X Register Greater Than or Equal to Constant
ACTION:

OPCODE:

SOURCE CODE:

OBJECT CODE:

Compares the contents of the X register and the constant specified by the
operand and sets the status flag if the contents of the X register are greater than
or equal to the operand.

61

[<LABEL>]"XGEC"<CONST8>" ... [<COMMENT>]

INSTRUCTION

CONSTANT

7 6 5 4 3 2 1 0

EXECUTION RESULTS: SF = (X) <!: CONST8

STATUS FLAG:

EXAMPLE:

5-66

1 if the contents of the X register are greater than or equal to the operand; 0 if
not.

LESS

GTE

XGEC TESTV Is X <!: TESTV

SBR GTE Branch if so

6 Applications
The following sections present programming techniques for specific parts of a TSP50C1x device:

6.1 - Synthesizer Control

6.2 - Arithmetic Modes

6.3 - Operation of the Multiply Instruction

6.4 - Standby Mode

6.5 - Slave Mode

6.6 - TSP60C18 Interface

6.7 - Use of the GET Instruction

6.8 - External ROM Interface

6.9 - Generating Tones Using PCM

6.1 Synthesizer Control
In this section, a sample program demonstrates how to control the synthesizer in a TSP50C1 x device. This
program causes the device to synthesize speech from data stored in D6 format. It is described in the
following sections:

6.1.1 - Speech Coding and Decoding

6.1.2 - RAM Usage

6.1.3 - ROM Usage

6.1.4 - Program Overview

6.1.5 - Synthesis Program Walk-Through

6.1.1 Speech Coding and Decoding
The TSP50C1 x device supports linear predictive coding (LPC) with ten or twelve K parameters. The LPC
model requires the following three types of information: (1) pitch, (2) energy, and (3) up to 12 K parameters.
The pitch parameter controls the input into the LPC system by providing one of two excitation signals. If the
coded pitch code is nonzero, a periodic pulse similar to that produced by human vocal cords is created. A
good example of the periodic sound is the A vowel sound. If the coded pitch code is 0, a white noise source
similar to the turbulence generated by constricted air flow in the mouth is used. An example of this is the
F sound. The LPC model is entirely digital; thus, the excitation function is a series of digital data samples.

The excitation function specified by the pitch code is multiplied by the energy parameter. The output of the
multiplication is put into a filter whose resonance is determined by a number of K parameters (normally 10
or 12) to model the resonance of the human vocal tract. The output of the LPC model is a series of digital
samples, typically at an 8-kHz or 1 O-kHz clock rate, that are put into the digital-to-analog converter.

The pitch, energy, and K parameters are stored in a coded form in a series of frames of various bit lengths.
The sample program uses the D6 format for storing the speech data. In this format, each frame represents
200 samples. For a 1 O-kHz sampling rate, this corresponds to 20 ms per frame. Each parameter is stored
using a set number of bits (Table 6-1).

As shown in Figure 6-1, the differentframe sizes range from 4 bits to 55 bits depending on which parameters
are needed for the specific frame type. The D6 format is an LPC-10 model, meaning that it uses ten K
parameters to control the digital filter. K11 and K12 are therefore always set to zero and no bits are needed
to specify them.

A silence is represented with a silent frame (specified by an energy of zero). No additional information is
needed. A stop frame, indicated by an energy value of 1111 (binary), tells the processor that a particular word

6-1

A silence is represented with a silent frame (specified by an energy of zero). No additional information is
needed. A stop frame, indicated by an energy value of 1111 (binary), tells the processor that a particular word
or phrase has ended and that control must be returned to the phrase selection program. Because a zero
energy indicates a silence frame and a coded energy of 15 represents a stop frame, valid audible energies
can range from 1 to 14.

The voiced frame is the longest frame type. All ten K parameters are used together with energy and pitch
to specify a voiced frame. An unvoiced frame is indicated by a zero pitch value. It is specified by a nonzero
energy, a zero pitch, and the first four K parameters.

If the vocal tract resonances change relatively slowly (e.g., with long vowels), two or more frames in a row
may have the same values for their K parameters. If this occurs, the repeat bit is set high, and the K
parameters are omitted. This is called a repeat frame.

All of the frames are arranged as serial bit streams. This means that a frame can start at any bit position
within a given byte of memory. The GET instruction is used to get bits from memory in a serial fashion, freeing
the programmer from bit-manipulation tasks. Once the bits for a particular parameter are extracted from the
bit stream, they must be decoded before use in the synthesizer. The K1 0 unpacking and decoding process
is shown in Figure 6-2.

6-2

Table 6-1.06 Parameter Size

Frame Energy Repeat Pitch K1 K2 K3 K4 K5 K6 K7 K8 Kg K10

Voiced
55 bits

Unvoiced
34 bits

Repeat
12 bits

Silent
4 bits

Stop
4 bits

0000

1111

0 I I I I I I
0 0000000

1

Figure 6-1.06 Frame Decoding

Current Frame I Next Frame
I

K5 K6 K7 K8 K9 K101 E R Pitch K1 K2

Coded Speech

(Binary)

\ \
Unpacked K10 (Binary) \ 100\

\ \
\ \

K10 Coding Table \ \
\ \

K10 Coded Values (Binary) 000 001 010 011 1100 I 101 110 111

K10 Decoded Values (Hex) C3 E6 F3 I FD I 06 11 1E 43

Synthesizer RAM 06
K10

Figure 6-2. Speech Parameter Unpacking and Decoding

To decode speech, the processor must do the following three things: (1) determine the frame type, (2)
unpack each parameter, and (3) using a table lookup, decode each parameter. The specific details of these
operations are given in Section 6.1.4. The processor is also required to decide if each frame should be
interpolated. Interpolation is used to smooth out the transitions between frames.

Most of the time, speech changes smoothly. If 20-ms frames are used without interpolation, changes occur
abruptly and the speech sounds rough. The TSP50C1x devices require the program to interpolate the
parameters. When speech changes quickly, as in the case of a transition between a voiced frame and an
unvoiced frame, interpolation should not be performed. Therefore, the sample program disables
interpolation at voicing transition.

6.1.2 RAM Usage

In the following discussion, all the addresses are given in hexadecimal notation.

The sample program uses 3C16 RAM locations. During synthesis, use of the 12-bit RAM locations 0116
through OF16 is fixed by the architecture of the TSP50G1x. As shown in Table 6-2, these locations are
assumed by the synthesizer to contain the working values ofthe LPG speech parameters. The names given
in parentheses are the variable names used in the sample program. When synthesis is disabled, these
locations may be used at the programmer's discretion.

Use of other RAM locations is detailed in Table 6-3. Energy, pitch, and the first four K factors are stored with
12 bits of precision, with the most significant byte stored in one location and the least significant nibble stored
in the next consecutive location. The remaining K factors are stored with 8 bits of precision.

The program maintains copies of each decoded speech parameter for two separate frames: the current
frame and the new frame. Normally, the synthesis routine interpolates smoothly between the current value
of a given speech parameter and its new value. The interpolated value is written to the working value.
However, in cases for which interpolation is not desired, the current value is written to the working value.

The value in the timer register is used for two purposes; to determine when a frame update needs to be
performed and as a scale factor during interpolation. To serve these two purposes, two locations are
reserved for freezing values read from the timer register. FLAGS contains the status and control flags as
detailed in Table 6-4. Because the mode register cannot be read, the sample program maintains a copy
of it in RAM in the location MODE_BUF.

6-3

Table 6-2. Hardware-Fixed RAM Locations

RAM LOCATION FUNCTION

01 Energy working value (EN)

02 K12 working value (K12)

03 K11 working value (K11)

04 K10 working value (K10)

OS K9 working value (K9)

06 K8 working value (K8)

07 K7 working value (K7)

08 K6 working value (K6)

09 KS working value (KS)

OA K4 working value (K4)

OB K3 working value (K3)

OC K2 working value (K2)

OD K1 working value (K1)

OE C1 working value (C1)

OF C2 working value (C2)

Table 6-3. Other RAM Locations Used in Sample Program

10 New energy value (ENV2) 11 Current energy value (ENV1)

12 New pitch value (PHV2) 13 New fractional pitch value

14 Current pitch value (PHV1) 1S Current fractional pitch value

16 New K1 value (K1V2) 17 New fractional K1 value

18 Current K1 value (K1 V1) 19 Current fractional K1 value

1A New K2 value (K2V2) 1B New fractional K2 value

1C Current K2 value (K2V1) 10 Current fractional K2 value

1E New K3 value (K3V2) 1F New fractional K3 value

20 Current K3 value (K3V1) 21 Current fractional K3 value

22 New K4 value (K4V2) 23 New fractional K4 value

24 Current K4 value (K4V1) 2S Current fractional K4 value

26 New KS value (KSV2) 27 Current KS value (KSV1)

28 New K6 value (K6V2) 29 Current K6 value (K6V1)

2A New K7 value (K7V2) 2B Current K7 value (K7V1)

2C New K8 value (K8V2) 2D Current K8 value (K8V1)

2E New K9 value (K9V2) 2F Current K9 value (K9V1)

30 New K10 value (K10V2) 31 Current K10 value (K10V1)

32 New K11 value (K11V2) 33 Current K11 value (K11 V1)

34 New K12 value (K12V2) 3S Current K12value (K12V1)

36 Stored value of timer used to determine if update needed (TIMER)

37 Stored value of timer used in I NTP routine (SCALE)

38 LPC status and control flags (FLAGS)

39 Miscellaneous flags (FLAG1)

3A Buffer used to store current mode register contents (MODE BUF)

3B Most significant byte of phrase address (ADR MSB)

3C Least significant byte of phrase address (ADR LSB)

6-4

Table 6-4. FLAGS Bit Descriptions for Sample Program

BIT USAGE

0 Set if stop frame detected.

1 Set if new frame is a repeat frame.

2 Set if an update has been performed.

3 Set if current frame is a silent frame.

4 Set if current frame is an unvoiced frame.

5 Set if interpolation is not desired for frame.

6 Set if new frame is a silent frame

7 Set if new frame is an unvoiced frame.

6.1.3 ROM Usage
The sample program uses approximately 1.4K-bytes of ROM, leaving approximately 6.6K-bytes (50C10)
or 14.6K-bytes (50C11/12/14) for other functions and speech data. Table 6-5 summarizes ROM usage.

Table 6-5. ROM Usage

ROM LOCATIONS
FUNCTION

TSP50C10 TSP50C11/12/14

OOOO-OOOF OOOO-OOOF Device initialization code

0010-001F 0010-001F Interrupt vector branches

0020-05BE 0020-05BE Synthesis program and tables

05BF -1FDF 05BF -3FDF Available for user program and speech data

1FEO 3FEO Test codes and excitation codes (not available to user)

6.1.4 Program Overview
The sample synthesis program, parts of which are used in this section for explanation, is reproduced in its
entirety in Appendix B. The following is an outline of the program flow.

Initialize processor

Initialize speech address register, pitch, C1, and C2

Decode second frame of speech

Start synthesizer

Enable interrupt.

Until stop frame reached:

Decode each frame

When interrupt occurs, recalculate working parameter values

Wait two frames, then stop synthesizer

Return to calling routine.

The five main sections of the program are summarized in the following sections.

6.1.4.1 Initialization
The device state is unknown at device power up. The initialization section initializes the RAM and the mode
register to a known state. In the sample program, this is accomplished by writing zeros to all RAM locations
and to the mode register.

6-5

6.1.4.2 Phrase Selection

In general, this section contains all application-specific code. In the sample program, this section merely
contains repeated calls to the subroutine SPEAK, causing successive utterances to be spoken.

6.1.4.3 Speech Initialization

This section consists ofthe subroutine SPEAK. It decodes the number contained in the A register for a series
of words into the addresses in ROM. It initializes the TSP50C1 x for LPC synthesis and speaks the series
of words that comprises the desired sentence. For each word in the sentence, it enables synthesis and the
level-1 interrupt and loops until the utterance is complete. It then branches back to speak the next word in
the sentence. This continues until the sentence is complete.

During each branch of the loop, the value in the timer register is polled. The next frame of speech data is
read in each time the timer register underflows.

6.1.4.4 Level-1-lnterrupt Service Routine.

Once the synthesizer is enabled by SPEAK, it writes a new value to the digital-to-analog converter (DAC)
once every 30 instruction cycles. The value that is written is calculated from the values contained in RAM
locations 01 to OF and the contents of the pitch period counter (PPC). Loading these locations with the
correct values is the responsibility of the level-1-interrupt service routine (lNTP). This routine is invoked
whenever the interrupt is enabled and the PPC decrements below 20016.

If interpolation is not inhibited, INTP performs a linear interpolation between the current value of each
speech parameter and its new value using the value in the timer register to scale the interpolation. While
it is possible to simply load the frame data to the working data, in practice, this results in speech that sounds
rough due to the sharp transition between the different frames. To minimize this problem, INTP normally
performs a linear interpolation between the current and new frames for each of the speech parameters.
However, this is not always appropriate; there are two cases in which the interpolation is inhibited and the
transition is handled abruptly. When this is done, INTP simply copies the current values into the working
values.

The first case is in transition between voiced and unvoiced frames or between unvoiced and voiced frames.
A different number of K factors are used in voiced frames than in unvoiced frames, and the K factors are
different. Attempting to interpolate across the voicing transition would result in strange sounds.

The second case is the case of an unvoiced frame following a silence. Plosives (e. g. the 'Phaa' in the letter
P) are abrupt unvoiced sounds. Trying to interpolate this case would result in a gradual ramp up of a plosive,
which would be incorrect. In the corresponding case of a voiced frame following a silence, it is acceptable
to interpolate.

6.1.4.5 Frame-Update Routine

LPC speech is coded as a series of frames spaced in time. Periodically, the next frame must be read so that
INTP (the level-1-interrupt service routine) has new data to work with. This is the responsibility of the update
routine. It reads the coded speech data contained in the next frame, determines what type of frame it is,
decodes the speech data contained in the frame, and determines whether or not interpolation should be
performed by INTP.

If a stop frame is encountered, a flag is set that causes the INTP routine to interpolate down to a silence.
The synthesizer and the level-1 interrupt are both inhibited on the next pass through the update routine.

6.1.5 SyntheSiS Program Walk-Through

What follows is a walk-through of a simple TSP50C1 x speech synthesis program. The approach used in
this program is not the only possible approach, but it has the advantage of being relatively easy to explain.
The complete listing of this program can be found in Appendix B.

6-6

On power up, the processor begins executing code at location 0016. This code initializes the processor by
clearing the mode register and the RAM. After that, the processor branches around the interrupt vectors.
Since the first TMAD instruction after power up is not guaranteed to function correctly, a TMAD instruction
is included in the initialization code. This ensures that the internal addressing is initialized correctly.

0244
0245
0246
0247 0000
0248 0000 69

0001 00
0249
0250
0251
0252 0002
0253 0003
0254
0255
0256

2F
1D

20

* Start of program

AORG
TMAD

#0000
o

----------Initialize mode register------------------------

CLA
TAMODE

----------C1ear all ram to zero---------------------------

-Start at bottom of RAM 0257 0004
0258 0005
0259 0006

13 RAM LOOP
61

CLX
TAMIX
XGEC

-Clear RAM, increment pointer
MAX RAM+1 -Finished all RAM?

0007 80
0260 0008 40 BR GO yes, skip vector tables

0009 24
0261 OOOA 40 BR RAM LOOP no, loop back

OOOB 05

In this sample program, ROM addresses OC16 to OF16 are not used. ROM addresses 10 to 1 F contain
branches to the interrupt service routines. This section of the ROM address space is dedicated to this
purpose by the TSP50C1 x architecture. When an interrupt condition is generated, if the interrupt is enabled
in the mode register, the contents of the program counter are replaced by the address of the appropriate
interrupt vector. For example, when the PPC is decremented below 20016, the program counter is replaced
with the value 1816. When the next RETI instruction is encountered, the original value ofthe program counter
is restored. Normally, the instruction placed at the interrupt vector address is a branch to the actual routine.
Because any branch instruction is conditional upon the value of the status bit and the value of the status
bit is unknown, two short branches to the interrupt routine are used instead of a long branch. If the interrupt
service routine is not within reach of a short branch, the target of the short branches should be a long branch
to the interrupt service routine.

In this sample program, only one of the possible eight interrupt conditions is used. The remaining seven
vectors point to a dummy routine that has no effect. Because the routine INTP is out of reach of a short
branch, the interrupt vector points to INT_01, which is a long branch to INTP as previously discussed.

6-7

0263 ***

0264 * Interrupt vectors
0265 ***
0266 0010 AORG #0010
0267 0010 A2 SBR INT2 - 01 -Timer Underflow, PCM=O, LPC=l
0268 0011 A2 SBR INT2 01 -Timer Underflow, PCM=O, LPC=I -
0269 0012 A2 SBR INT2 - 00 -Timer Underflow, PCM=O, LPC=O
0270 0013 A2 SBR INT2 00 -Timer Underflow, PCM=O, LPC=O
0271 0014 A2 SBR INT2 11 -Timer Underflow, PCM=l, LPC=I
0272 0015 A2 SBR INT2 11 -Timer Underflow, PCM=l, LPC=l
0273 0016 A2 SBR INT2 - 10 -Timer Underflow, PCM=l, LPC=O
0274 0017 A2 SBR INT2 - 10 -Timer Underflow, PCM=l, LPC=O
0275 0018 AO SBR INTI 01 -PPC < 200 hex interrupt
0276 0019 AD SBR INTI 01 -PPC < 200 hex interrupt
0277 OOIA A2 SBR INTI - 00 -pin (B1) goes low interrupt
0278 OOIB A2 SBR INTI 00 -pin (B1) goes low interrupt
0279 001C A2 SBR INTI 11 -10 kHz Clock interrupt
0280 0010 A2 SBR INTI 11 -10 kHz Clock interrupt
0281 001E A2 SBR INTI - 10 -20 kHz Clock interrupt
0282 001F A2 SBR INTI - 10 -20 kHz Clock interrupt
0283 *
0284 0020 40 INTI 01 BR INTP -PPC < 200 hex interrupt

0021 B4
0285 *
0286 0022 INT2 00
0287 0022 INT2 01
0288 0022 INT2 10 -
0289 0022 INT2 11
0290 0022 INTI 00
0291 0022 INTI 10 -
0292 0022 2F INTI 11 CLA
0293 0023 3E RETI

Generally, user programs have several levels of indirection in their use of speech address tables. Often,
there are three levels of pointers: (1) sentence pOinters that point to the start addresses of entries in the
concatenation tables, (2) concatenation tables that contain lists of word numbers that define specific
sentences (each word number is used as an index into the word address table), and (3) a word address table
containing the actual address of the start of each word in memory.

Sometimes there are several sentences randomly selected for a given situation. This can lead to a fourth
level of pointers that pointto sentence groups. All of these levels of pointers are easily accessed using either
the GET, LUAA, or LUAB instructions. The structure is dependent on the specific application.

This sample program uses three levels of indirection as previously described. The three tables are shown
below. Note that the use of single bytes to store the word numbers in the concatenation table restricts the
vocabulary to 255 words. If a larger vocabulary is required, the BYTE directive should be replaced with a
DATA directive and the appropriate changes made in the routine SPEAK.

The label VOC has the value of the start of the speech data. The number that is added to it is the offset into
the speech data where a given word begins. Each of these word addresses occupies two bytes of memory.

6-8

1565
1566
1567
1568
1569

* *
*
*

This is the lookup table giving the starting address *
of each concatenation list. *

* *
1570 ***

1571 05BF 05C5' SENTENCE DATA PHRASEO
1572 05Cl 05CA' DATA PHRASE 1
1573 05C3 05CF' DATA PHRASE2
1574
1575
1576
1577
1578
1579
1580

*
*
*
*
*

This is the concatenation table giving the lists
of word numbers that define each phrase. Each
list is terminated by an #FF.

*
*
*
*
*

01 PHRASE 0
04 PHRASE 1
05 PHRASE 2

BYTE
BYTE
BYTE

1,2,3,4,#FF
4,3,2,1,#FF
5,4,3,2,1,#FF

1581 05C5
1582 05CA
1583 05CF
1584 ***

1585 *
1586 *
1587 *
1588 *

This is the lookup table for the speech stored at
voc.

*
*
*
*

1589 ***

1590 05D5 0000' SPEECH
1591 05D7 05E3'
1592 05D9 0667'
1593 050B 06D9'
1594 05DD 075D'
1595 05DF 07C3'
1596 05El 086F'

DATA
DATA
DATA
DATA
DATA
DATA
DATA

#0000
#OOOO+VOC
#0084+VOC
#00F6+VOC
#0 17A+VOC
#OIEO+VOC
#028C+VOC

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6

1I0ne"

II Two"

"Three"
IIFour"

"Five"
I'Six"

The following code speaks a series of sentences and then turns off the processor. The number ofthe desired
sentence is loaded into the A register and the routine SPEAK is called to process the sentence. Three
sentences are spoken, and then the processor is turned off.

0294
0295
0296
0297 0024 6E

0025 00
0298 0026 00

0027 31
0299
0300 0028 6E

0029 01
0301 002A 00

002B 31

* Speak phrases

GO TCA 0 -Speak 1st phrase

CALL SPEAK

*
TCA 1 -Speak 2nd phrase

CALL SPEAK

6-9

0302 *
0303 002C 6E TCA 2 -Speak 3rd phrase

0020 02
0304 002E 00 CALL SPEAK

002F 31
0305 *
0306 0030 3F SETOFF -Quit program

What follows is the routine SPEAK, which is called to speak each of the sentences. Before this routine is
entered, the desired sentence number is loaded in the A register. Because each sentence pointer is two
bytes long, the sentence number is doubled to get the correct offset into the sentence pOinter table. This
offset is added to the start address of the table to get the address of the table entry. The LUAA and LUAB
instructions are used to get the two bytes of the address of the concatenation table entry.

0307 ***
0308 * Speak utterance - Phrase number in A register
0309 ***
0310 0031 3B SPEAK lNTGR
0311 0032 2E SALA -Double index to get offset
0312 0033 75 ACAAC SENTENCE -Add base of table

0034 BF
0313 0035 60 LUAB -get address MSB
0314 0036 3A lAC
0315 0037 6B LUAA -Get address LSB
0316 0038 12 XBA
0317 0039 IB SALA4 -Combine MSB and LSB
0318 003A IB SALM
0319 003B 2C ABAAC

The selected concatenation table entry contains the word number of the first word in the selected sentence.
The address of the selected concatenation table entry is stored in ADR_MSB and ADR_LSB.

0321 003C lA TAB -Save address
0322 0030 6A TAMD ADR LSB -Save LSB of address

003E 3C
0323
0324 003F 68 AXCA 1 -Shift address right

0040 01
0325 0041 15 SARA by 8 bits
0326
0327 0042 6A TAMD ADR MSB -Save MSB of address

0043 3B
0328 0044 12 XBA
0329 0045 40 BR SPEAK2

0046 59
0330

The following code gets the address of the current concatenation table entry, increments to the next entry,
and then stores that address. This code is reached when the processor has finished speaking one word in
a sentence and is ready to speak the next word.

6-10

0331 0047
0048

0332 0049
0333 004A

69 SPEAK1
3C
1A
69

004B 3B
0334 004C
0335 0040
0336 004E
0337
0338 004F
0339
0340 0050
0341 0051

1B
1B
2C

3A

1A
6A

0052 3C
0342
0343 0053

0054
0344 0055
0345
0346 0056

0057
0347 0058

68
01
15

6A
3B
12

TMAO AOR LSB

TAB
TMAO AOR MSB

SALA4
SALA4
ABAAC

lAC

TAB
TAMO AOR LSB

AXCA 1

SARA

TAMD AOR MSB

XBA

-Fetch and combine

address

-Increment address

-Save new address
-Save LSB of address

-Shift address right

by 8 bits

-Save MSB of address

The next section of code uses the LUAA instruction to fetch the next byte of the concatenation table entry,
tests to see if it marks the end of the concatenation table entry, and, if so, exits the routine.

0349 0059
0350 005A

005B
0351 005C

0050
0352 005E

6B SPEAK2
60
FF
40
5F
3D

LUAA
ANEC

BR

RETN

-Get word number
StopWord -End of phrase?

SPEAK3 no, continue

yes, exit loop

Now a word number is in the A register. It needs to be used as an index into the word address table to get
the starting address of the word in memory. Because each address in the table is two bytes long, the word
number is doubled to get the correct offset into the table before adding the address of the start of the table
to the offset.

0354 005F
0355 0060

2E SPEAK3
75

SALA -Double index to get offset
ACAAC SPEECH -Add base of table

The A register now contains the address in ROM where the starting address of the desired word is stored.
The following fragment retrieves this address and loads it into the SAR (speech address register). The LUAB
instruction gets the most significant byte of the address into the B register. The LUAA gets the least
significant byte of the address into the A register. The most significant byte is then left shifted by 8 bits and
the least significant byte is added to it. The complete address is now in the A register. The LUAPS transfers
this address into the SAR. Speech begins at this address.

6-11

0356 0062 6D LUAB -Get address MSB
0357 0063 3A lAC
0358 0064 6B LUAA -Get address LSB
0359 0065 12 XBA
0360 0066 1B SALM -Combine LSB and MSB
0361 0067 1B SALM
0362 0068 2C ABAAC
0363
0364 0069 6C LUAPS -Load Speech Address Register

Because LPC-10 coding is used in this example, the parameters K11 and K12 are not used. This section
of code clears K11 and K12 and sets ali the speech flags to the default condition (zero).

0366 006A 2F CLA -Kill K11 and K12 parameters
0367 006B 6A TAMD Kll

006C 03
0368 006D 6A TAMD K12

006E 02
0369
0370 006F 6A TAMD FLAGS -lnit flags for speech

0070 38

The values in C1 and C2 control the behavior of the output filter. For most applications, the values should
be set as shown below.

0372 0071 2F CLA -Load C2 parameter
0373 0072 7B ACAAC C2 Value (a device constant)

0073 67
0374 0074 6A TAMD C2

0075 OF
0375
0376 0076 2F CLA -Load C1 parameter
0377 0077 7F ACAAC C1 Value (a device constant)

0078 61

0378 0079 6A TAMD C1
007A OE

A default pitch is now assigned to cover the case in which the first frame is a silence frame. Ifthis is the case,
and no pitch was otherwise loaded, the pitch period counter would be loaded with a zero and the synthesis
of the first frame would be incorrect.

0383 007B 70 ACAAC #OC
007C OC

0384 007D 6A TAMD PHV1
007E 14

0385 007F 6A TAMD PHV2
0080 12

The first two frames are now preloaded. Each cali to UPDATE loads one frame of speech. With two frames
loaded into memory, the synthesis routine can properly do its interpolation function.

6-12

0389 0081
0082

0390 0083

01
B5
01

0084 B5

CALL

CALL

UPDATE -Load first frame

UPDATE -Load 2nd frame

The first interpolation is done by calling the routine INTP. This is the same routine that is invoked by the
interrupt after it is enabled later. Before INTP is called, however, the timer and prescaler values need to be
initialized so that the interpolation function of INTP yields the correct value.

0397 0085 6E TCA PSVALUE -Initialize prescale
0086 2E

0398 0087 19 TAPSC
0399 0088 6E TCA #7F -Pretend there was a previous

0089 7F
0400 008A 6A TAMD TIMER update

008B 36
0401 008C 6E TCA #FF -Set timer to max value to

008D FF
0402 008E IE TATM disable interpolation
0403 008F 00 CALL INTP -Do first interpolation

0090 B4

The last step before the start of speech is to turn on the synthesizer and then enable the interrupt. This is
done by setting the appropriate bits in the mode register with the TAMODE instruction.

There are many cases in which a program may need to know what value is currently in the mode register.
This is a problem because there is no way to read directly from the mode register. The best way around this
problem is to maintain a copy of the mode register that can be read. This program, therefore, designates
a RAM location as MODE_BUF. Any changes to the mode register are made in the following three-step
procedure: (1) the change is made in MODE_BUF, (2) the value in MODE_BUF is transferred to the A
register, and (3) the mode register is changed with a TAMODE instruction.

In the following code, first the synthesizer is turned on and then a RETI is executed to ensure that the
interrupt-pending latch is not set before interrupts are enabled. Once the interrupt is enabled, the routine
INTP is reached whenever the pitch period counter decrements below 20016'

0412 0091 62 TCX MODE BUF -Turn on LPC synthesizer
0092 3A

0413 0093 64 ORCM LPC
0094 02

0414 0095 11 TMA
0415 0096 ID TAMODE
0416
0417 0097 3E RETI -Reset interrupt pending latch
0418
0419 0098 64 ORCM INTI -Enable interrupt

0099 01
0420 009A 11 TMA
0421 009B ID TAMODE

6-13

When the synthesis routine detects the stop frame, it branches back to SPEAK1 to start speaking the next
word. Until then, the program polls the value of the timer register and updates the frame data whenever the
timer decrements below zero. First, it tests whether the timer has already decremented below zero; if so,
an update is performed. Second, it tests whether the timer is equal to zero; if so, UPDATE is immediately
called. By the time UPDATE completes processing, the timer register will have underflowed.

0430 009C SPEAK LP
0431 009C 62 TCX FLAGS

009D 38
0432 009E 66 TSTCM update_Flg -Is Update already done?

009F 04
0433 OOAO 40 BR SPEAK LP yes, loop

OOAI 9C
0434
0435 00A2 62 TCX TIMER -Get old timer

00A3 36
0436 OOM 11 TMA register value
0437 00A5 lA TAB into B register
0438
0439 00A6 17 TTMA -Get new timer register
0440 00A7 15 SARA value and scale it.
0441
0442 00A8 16 TAM -Store new value
0443 00A9 12 XBA -Exchange new and old values
0444 OOAA 2D SBAAN -Subtract new from old
0445 OOAB 41 BR UPDATE -If underflowed, do an update

OOAC B5
0446
0447 OOAD 11 TMA -Get new timer value again.
0448 OOAE 60 ANEC 0 -Is it about to underflow?

OOAF 00
0449 OOBO 40 BR SPEAK LP no, loop again

OOBI 9C
0450 00B2 41 BR UPDATE yes, do update now

00B3 B5

INTP is the interrupt service routine for the level-1 interrupt. It is reached whenever the pitch period counter
decrements below 20016. Its purpose is to do any necessary interpolation of the reflection coefficients (K
factors) and to load the result into the working registers.

On entry to INTP, the current value of the timer register is stored. This value will be used later when
interpolation is performed.

0461 00B4 3B INTP INTGR -Ensure we are in integer mode
0462 00B5 17 TTMA -Get timer register contents
0463 00B6 15 SARA shift to make positive
0464 00B7 6A TAMD SCALE and store it

00B8 37

6-14

If interpolation has been turned off by the UPDATE routine, INTP is exited.

0469 00B9 62 TCX FLAG 1 -Point to flag
OOBA 39

0470 OOBB 66 TSTCM Int Off -If routine disabled ..•
OOBC 01

0471 OOBO 41 BR IRETI •.• branch to exit point
OOBE B3·

If there is a transition between a voiced frame and an unvoiced frame, then no interpolation should be
performed between the two frames because the K parameters of a voiced frame are not compatible with
the K parameters of an unvoiced frame. Any transition between frame types is detected in the UPDATE
routine and signaled by setting the InUnh bit in FLAGS. The following code tests FLAGS to see if
interpolation should be performed between frames.

0479 OOBF 62 TINTP TCX FLAGS -Point to status flags
OOCO 38

0480 00C1 66 TSTCM Int Inh -Is interpolation inhibited?
00C2 20

0481 00C3 40 BR NOINT yes, inhibit interpolation
00C4 C7

0482 OOCS 40 BR INTPCH no, interpolate
00C6 E4

The following code is reached if interpolation is inhibited. It sets the stored value of the timer register to 7F,
which ~ffectively forces the interpolation to yield the old values for the working values, thereby effectively
disabling interpolation.

0490 00C7
00C8

0491 00C9
OOCA

6E NOINT
7F
6A
37

TCA

TAMO

#7F -Set Scale factor to

SCALE highest value

If there is a transition between a voiced and an unvoiced frame, the energy needs to be cleared until the
K parameters and the unvoiced bit in the mode register all have been updated. This prevents the processor's
LPC filter from using a mixture of voiced and unvoiced parameters. If the unvoiced bit in the mode register
does not match the unvoiced bit in FLAGS, the energy is cleared.

0501 OOCB 62 TCX FLAGS
OOCC 38

0502 OOCO 66 TSTCM Unv_Flg2 -Is current frame unvoiced?
OOCE 80

0503 OOCF 40 BR Uv yes, go to unvoiced branch
0000 09

0504
0505 0001 62 TCX Mode Buf -Current frame is voiced

0002 3A
0506 0003 66 TSTCM UNV -Has mode changed to unvoiced?

0004 80
0507 0005 40 BR ClrEN yes, clear the energy

6-15

0006 OF
0508 0007 40 BR INTPCH no, no action required

0008 E4
0509
0510 0009 62 UV TCX Mode Buf -New frame is unvoiced

OOOA 3A
0511 OOOB 66 TSTCM UNV -Has voicing mode changed?

OOOC 80
0512 0000 40 BR INTPCH no, no action required

OOOE E4
0513
0514 OOOF 2F ClrEN CLA -Zero Energy during update
0515 OOEO 6A TAMO EN

00E1 01
0516 00E2 40 BR INTPCH

00E3 E4

We are now ready to do the interpolation. The interpolation is done with the standard linear equation:

y = mx + b

rewritten to:

P (Pcurrent - Pnew) x TIMER + Pnew

where:

P = interpolated parameter

Pcurrent = value of parameter in current frame

Pnew = value of parameter in new frame

TIMER = value in TIMER

The multiplication using the AXMA function scales the result by 8016. The value in TIMER ranges from 7F 16
to zero. If interpolation is inhibited, TIMER will contain 7F16 and the interpolation will result in P = Pcurrent.

The following code interpolates pitch. Pitch (as well as K1 and K2) is stored using two bytes. The program
reads the most significant byte, left shifts it by one nibble, and then adds the least significant nibble of the
value (stored in the second byte). The result is a 12-bit value. This is done both for the current and new
values.

Unlike the K parameters, decoded pitch will always be positive. The INTGR instruction ensures the integer
mode so that when the program gets the decoded pitch from the decoding tables, it is not sign extended.
(see Section 6.2 for additional information on arithmetic modes).

0522 00E4 62
00E5 12

0523 00E6 14
0524 00E7 1B
0525 00E8 28
0526 00E9 21
0527 OOEA 1A
0528 OOEB 14
0529 OOEC 1B

6-16

INTPCH TCX

TMAIX
SALA4
AMAAC
IXC
TAB
TMAIX
SALA4

PHV2 -Combine new pitch and new

fractional pitch and
leave in the B register

-Combine current pitch and
current fractional pitch

0530 OOED 28 AMAAC and leave in A register
0531
0532 OOEE 2D SBAAN -(Pcurrent - Pnew)
0533 OOEF 62 TCX SCALE

OOFO 37
0534 00F1 39 AXMA -(Pcurrent-Pnew)*Timer
0535 00F2 2C ABAAC -Pnew+(Pcurrent-Pnew)*Timer

Unlike the other speech parameters, the interpolated pitch is not written to RAM. Instead, it is written to the
pitch period counter using the TASYN instruction. Because the value in the PPC is used to address the
excitation function values, each of which is two bytes long, the interpolated pitch needs to be multiplied by
two before writing it to the PPC. This is done using the SALA instruction.

0536 00F3
0537 00F4

2E
1C

SALA
TASYN

-Adjust for 2 byte excitation
-write to pitch register

Because the decoded K parameters can be both positive and negative, the program goes to extended-sign
mode so that the values will not change sign when they are read into the A or B registers.

0542 00F5 3C EXTSG -Allow negative K parameters

K1 through K4 are interpolated in the same manner as energy. The interpolation of K1 is shown below. K2
through K4 are not shown.

0543 00F6 62 TCX K1V2 -Combine New K1 and New
00F7 16

0544 00F8 14 TMAIX fractional K1 and
0545 00F9 1B SALM leave in the B register
0546 OOFA 28 AMAAC
0547 OOFB 21 IXC
0548 OOFC 1A TAB
0549
0550 OOFD 14 TMAIX -Combine current K1 and
0551 OOFE 1B SALM current fractional K1 and
0552 OOFF 28 AMAAC leave in the A register
0553
0554 0100 2D SBAAN -(K1current - K1new)
0555 0101 62 TCX SCALE

0102 37
0556 0103 39 AXMA -(K1current - K1new) * Timer
0557 0104 2C ABAAC -K1new+(K1current-K1new)*Timer
0558 0105 6A TAMD K1 -Load interpolated K1 value

0106 OD

Since K5 through K10 are stored using an 8-bit precision instead of the 12-bit precision used for K1 through
K4, the interpolation is simpler. The following fragment shows the interpolation used for K5. The code for
K6 through K10 is similar.

6-17

0623 013A 62 TCX K5V2 -Put New K5 (adjusted to
013B 26

0624 013C 14 TMAIX 12 bits) in B register
0625 013D 1B SALM
0626 013E 1A TAB
0627 013F 14 TMAIX -Put Current K5 (adjusted to
0628 0140 1B SALA4 12 bits) in A register
0629
0630 0141 2D SBAAN -(K5current - K5new)
0631 0142 62 TCX SCALE

0143 37
0632 0144 39 AXMA -(K5current - K5new) * Timer
0633 0145 2C ABAAC -KSnew+(K5current-K5new)*Timer
0634 0146 6A TAMD K5 -Load interpolated K5 value

0147 09

The decoded energy, like the pitch, will always be positive. The INTGR instruction places the processor in
integer mode so that the decoded energy will not be sign extended. The following code interpolates the
energy.

0761 018E 3B INTGR -Back to integer mode for energy
0762 018F 62 TCX ENV2 -Combine new energy and

0190 10
0763 0191 14 TMAIX fractional energy and
0764 0192 1B SALA4 leave in the B register
0765 0193 1A TAB
0766 0194 14 TMAIX -Combine current energy and
0767 0195 1B SALA4 current fractional energy
0768 0196 2D SBAAN -(Ecurrent - Enew)
0769 0197 62 TCX SCALE

0198 37
0770 0199 39 AXMA -(Ecurrent - Enew) * Timer
0771 019A 2C ABAAC -Enew+(Ecurrent-Enew)*Timer
0772 019B 6A XBA -Save energy

If there has been a voicing change, the mode register needs to be changed to reflect the new value. The
following code fragment changes the voicing bit in the mode register to reflect the state of the current frame
(which is stored in FLAGS). After changing the mode register, the program stores the interpolated energy
and then exits from the INTP routine with either RETN or RETI depending on whether this routine was
reached using a subroutine call or in response to an interrupt.

0781 019C 62 STMODE TCX FLAGS
019E 38

0782 019E 65 ANDCM -Update_Flg -Signal that interp done
019F FB

0783 01AO 66 TSTCM Unv_Flg2 -Is current frame unvoiced?
01A1 80

0784 01A2 41 BR SETUV -yes, set mode to unvoiced
01A3 AA

0785 01M 62 TCX MODE BUF no, ...

6-18

01A5 3A
0786 01A6 65 ANDCM -UNV ••• set mode to voiced

01A7 7F
0787 01A8 41 BR WRITEMODE

01A9 AE
0788
0789 OlAA 62 SETUV TCX MODE BUF -Current frame is unvoiced, so

OIAB 3A
0790 OIAC 64 ORCM UNV -set mode to unvoiced.

OIAD 80
0790
0792 OlBl 11 WRITEMODE TMA -Write mode information
0793 OlAF 10 TAMODE to mode register
0794
0795 OIBO 12 XBA -write energy
0796 OlBl 62 TAMD EN to filter

01B2 01
0797
0798 01B3 3E IRETI RETI -Return from interrupt
0799 01B4 3D RETN -Return from first call

The last major section in this sample program is the routine that reads in the next frame and decodes it. The
routine is called both from the speech-initialization section (where it is used to preload the first two frames
before enabling synthesis) and from the SPEAK _ LP loop (where it is used to refresh the speech parameters
when necessary).

The routine UPDATE does the following:

If stop frame encountered on last pass, stop speaking

Copy new unvoiced flag to current unvoiced flag

Copy new silence flag to current silence flag

Set new silence flag, new unvoiced flag, and interpolation flag to zero

Copy new speech parameters to current speech parameters

Get coded energy

If silence frame, set new silence flag

If stop frame, set stop flag

Look up decoded energy from table and put in new energy

Inhibit interpolation if last frame was silent and this one is not.

Get repeat bit, set repeat flag if it is a one.

Get coded pitch

If unvoiced frame, set new unvoiced flag.

Look up decoded pitch from table and store as new pitch.

If new voicing is different from current voicing, inhibit interpolation.

Get coded K parameters

6-19

Look up decoded K parameters from table and store as new values.

First, the level-1 interrupt is disabled so that an interpolation is not attempted during the period that the frame
data is not valid. The level-1 interrupt is reenabled before exiting UPDATE.

0805 01B5 62 UPDATE TCX MODE BUF
01B6 3A

0806 01B7 65 ANDCM -INT1
01B8 FE

0807 01B9 11 TMA
0808 01BA 1D TAMODE

To prevent double updates, if the stored value of the timer register is zero, then it needs to be changed to
7F. If this is not done, then the polling routine will discover an underflow and call UPDATE a second time.

0815 01BB 62 TCX TIMER -Get stored value
01BC 36

0816 01BD 11 TMA of Timer into A
0817
0818 01BE 60 ANEC 0 -Is it zero?

01BF 00
0819 01CO 41 BR UPDTOO no, do nothing

01C1 C5
0820 01C2 6E TCA #7F yes, replace value

01C3 7F
0821 01C4 16 TAM

Now the program tests the stop flag. If it was set on the last pass through UPDATE, then the end of the
current utterance has been reached, and the program needs to disable synthesis and branch back to
prepare for the next utterance in the phrase.

0828 01C5 62 UPDTOO TCX FLAGS
01C6 38

0829 01C7 66 TSTCM STOPFLAG -Was stop frame encountered
01C8 01

0830 01C9 42 BR STOP yes, stop speaking
01CA EF

Now, before the next frame is loaded in, the flags from the new frame (the ones that tell the voicing of the
frame and whether the frame is silent or not) need to be copied into the flags for the current frame.

0835 01CB 66 TSTCM Unv_Flg1 -Was previous frame unvoiced?
01CC 10

0836 01CD 41 BR SUNVL yes, current frame=unvoiced
01CE D3

0837 01CF 65 ANDCM -Unv_Flg2 no, current frame=voiced
01DO 7F

0838 0101 41 BR TSIL and continue
01D2 D5

0839

6-20

0840 0103 64 SUNVL ORCM Unv_Flg2 -Set current frame unvoiced.
0104 80

0845 0105 66 TSIL TSTCM Sil_Flgl -Was previous frame silent?
0106 08

0846 0107 41 BR SSIL yes, current frame silent
0108 00

0847 0109 65 ANOCM -Sil_Flg2 no, current frame not silo
OlOA BF

0848 OlOB 41 BR ZROFLG and continue
OlOC OF

0849
0850 0100 64 SSIL ORCM Sil_Flg2 -Set current frame silent

OlOE 40

Now the program resets the repeat flag, silence flag, unvoiced flag, and interpolation-inhibit flag to zero.
They will be set later if the next frame requires them to be set.

0856 OlOF 62 ZROFLG TCX FLAGS
OlEO 38

0857 OlEl 65 ANOCM #C5
01E2 C5

Now the new speech parameters are saved as current speech parameters prior to loading the next frame.

0862 01E3
01E4

0863 01E5
0864 01E6
0865
0866 01E7
0867 01E8

01E9
0868

0869 OlEA
0870 OlEB
0871 OlEC
0872
0873 OlEO
0874 01EE

01EF
0875 01FO
0876 01F1
0877 01F2

0911
0912 020F
0913 0210

62
10
14
13

14
6A
14

14
21
13

14
6A
18
14
21
13

14
13

TCX

TMAIX
TAM I X

*-----PI TCH-----
TMAIX
TAMO

TMAIX
IXC
TAM I X

*-----Kl-----
TMAIX
TAMO

TMAIX
IXC
TAM I X

*-----K10----
TMAIX
TAM I X

ENV2

PHVI

KlVl

-Transfer new frame energy

from new frame location
to current frame location

-Transfer new frame pitch
to current frame location

-Transfer new fractional pitch
to current frame location

-Transfer new frame K1 par am.
to current frame location

-Transfer new fractional K1
to current frame location

-Transfer new frame K10 paramo
to current frame location

6-21

The program is now ready to read in the new frame, decode it, and store the decoded values. Energy and
pitch require special handling because of the special significance attached to certain values.

If energy has a value of 0, then the new frame is a silence frame. If the energy has a coded value of 15 (in
this example), then the new frame is a stop frame. I n the case of a stop frame, the program interpolates down
to zero and then stops speaking. Between these two values, energy is decoded using a table look-up. The
decoded value is stored in RAM.

The following code fragment reads the coded energy, sets the silence flag if the energy is zero and sets the
stop-frame flag and the silent-frame flag if the energy is 15. If the coded energy is either zero or 15, the
processor branches to a section of code that clears the energy and the K parameters.

0932 0211 2F CLA
0933 0212 62 TCX FLAGS

0213 38
0934 0214 33 GET EBITS -Get coded energy
0935 0215 60 ANEC ESILENCE -Is it a silent frame?

0216 00
0936 0217 42 BR UPOTO No, continue

0218 10
0937 0219 64 ORCM Sil_Flgl+Int_Inh Yes, set silence flag

021A 28
0938 021B 42 BR ZeroKs and zero K params

021C CO
0939 *
0940 0210 60 UPOTO ANEC ESTOP -Is it a stop frame?

021E OF
0941 021F 42 BR UPOTI no, continue

0220 25
0942 0221 64 ORCM STOPFLAG+Sil_Flgl+Int_Inh yes, set flags

0222 29
0943 0223 42 BR ZeroKs and zero Ks

0224 CO

Now the energy is decoded. The LUAA instruction is used to get the decoded energy.

0945 0225 73 UPOTI ACAAC TBLEN -Add table offset to energy
0226 27

0946 0227 6B LUAA -Get decoded energy
0947 0228 6A TAMO ENV2 -Store the Energy in RAM

0229 10

If this is a silent frame (tested for earlier), no more parameters need to be read. In this case, the program
branches to the routine exit point.

0953 022A 62 TCX FLAGS
022B 38

0954 022C 66 TSTCM Sil_Flgl -Is this a silent frame?
0220 08

0955 022E 43 BR RTN yes, exit
022F OC

6-22

The next code fragment is reached if the new frame is not silent. It reads the repeat bit. This bit is set to
indicate that all of the K parameters between the new frame and the previous are identical. If this is so, the
K factors are not provided. A flag is set indicating that this is a repeat frame. Later, this flag is tested, and
if this flag is not set, new K factors are read in.

0960 0230 30 UPDT2 GET RBITS -Get the Repeat bit
0961 0231 67 TSTCA #01 -Is this a repeat frame?

0232 01
0962 0233 42 BR SFLG1 yes, set repeat flag

0234 37
0963 0235 42 BR UPDT3

0236 39
0964
0965 0237 64 SFLG1 ORCM R FLAG -Set repeat flag

0238 02

The next step is to read the coded pitch. This value is zero for an unvoiced frame and nonzero for a voiced
frame. If it is unvoiced, then the unvoiced flag is set.

0969 0239
0970 023A
0971 023B

2F UPDT3
33
32

0972 023C 60
0230 00

0973 023E C1
0974 023F 64

0240 10

CLA
GET
GET
ANEC

SBR
ORCM

4

3

-Get coded pitch
-Get coded pitch

PUnVoiced -Is the frame unvoiced?

UPDT3A
unv_Flg1

no, continue
yes, set unvoiced flag

Now the pitch is decoded. The SALA instruction doubles the index to compensate for the fact that pitch is
stored as two bytes. The LUAB instruction gets the most significant byte of the decoded pitch. The LUAA
gets the least significant nibble of the decoded pitch.

0976 0241
0977 0242

2E UPDT3A
73

0243 37
0978
0979 0244
0980 0245
0981 0246
0982
0983 0247

60
3A
6B

62
0248 12

0984 0249
0985 024A
0986 024B

2A
21
16

SALA
ACAAC

LUAB
lAC
LUAA

TCX

TBM
IXC
TAM

-Double coded pitch and
TBLPH add table offset to point

-Get decoded pitch

-Get decoded fractional pitch

PHV2 -Store the pitch and

fractional pitch in RAM

If the voicing has changed between voiced and unvoiced or vice versa, interpolation needs to be inhibited
because the tonal qualities of an unvoiced frame differ markedly from those of a voiced frame. It is
inappropriate to blend them with an interpolation. The following code tests for a change in voicing and sets
a flag to inhibit interpolation if necessary. First, the new frame is tested.

6-23

0991 024C 62 TCX FLAGS
0240 38

0992 024E 66 TSTCM unv_Flg1 -Is the new frame unvoiced?
024F 10

0993 0250 03 SBR UPOT3B yes, continue
0994 0251 42 BR VOICE no, go to voiced code

0252 50

If the frame is unvoiced, the program reaches the following code. It tests the current frame to see if it is silent
or voiced. If either condition is true, then a flag is set to inhibit interpolation. If the previous frame was silent,
interpolation should be inhibited to avoid distorting a plosive that follows a silence. A plosive is an abrupt
unvoiced sound that should not be interpolated. First, the program tests to see if the previous frame was
silent.

1002 0253
0254

1003 0255

66 UPOT3B
40
42

0256 63

TSTCM

BR

Sil_Flg2 -Was the last frame silent?

UPOT5 yes, inhibit interpolation

Then the program tests to see if the previous frame was voiced.

1005 0257 66 TSTCM Unv_Flg2 -Was the last frame unvoiced
0258 80

1006 0259 42 BR UPOT4 yes, don't change anything
025A 65

1007 025B 42 BR UPDT5 no, inhibit interpolation
025C 63

The following code is reached if the new frame is voiced. It simply tests to see if the previous frame was also
voiced. If it was not, then interpolation is inhibited. Because it is acceptable to ramp up a voiced frame, the
program does not need to test for a leading silent frame as with the unvoiced frame.

1014 0250 66 VOICE TSTCM unv_Flg2 -Was the last frame voiced?
025E 80

1015 025F 42 BR UPOT5 no, disable interpolation
0260 63

1016 0261 42 BR UPOT4 yes, continue
0262 65

The following code inhibits interpolation.

1018 0263 64 UPOT5 ORCM Int Inh -Inhibit interpolation
0264 20

Previously, the repeat bit was read to see if this is a repeat frame. If it is a repeat frame, then the new K
parameters are the same as the current K parameters and no further action needs to be taken. If it is not
a repeat frame, the program needs to continue reading the new K factors. This section of code branches
to the general routine exit if this is a repeat frame.

1025 0265 66 UPOT4 TSTCM R FLAG -Is repeat flag set?

6-24

0266 02
1026 0267 43 BR RTN yes, exit routine

0268 OC

The first four K factors (K1 through K4) are now loaded. Each of these decoded K factors is a 12-bit value
that is stored in two bytes. The most significant a bits are contained in the first byte, and the least significant
4 bits are contained in the second byte.

The GET instruction reads the coded K factor into the A register. It is left shifted (multiplied by two) to convert
it into an offset in the table that contains the two-byte uncoded K factors. The offset is added to the starting
address of the table with the ACMC instruction. The LUAB instruction reads the most significant byte of
the K factor, and the LUM instruction reads the byte containing the least significant nibble. K1 is shown
below. K2 through K4 are similar to K1.

1046 *--K1--
1047 0269 2F CLA
1048 026A 33 GET 4 -Get coded K1
1049 026B 31 GET 2 -Get coded K1
1050 026C 2E SALA -Convert it to a
1051 0260 74 ACAAC TBLK1 pointer to table element

026E 37
1052 026F 60 LUAB -Fetch MSB of uncoded K1
1053 0270 3A lAC
1054 0271 6B LUAA -Fetch fractional K1
1055 0272 62 TCX K1V2

0273 16
1056 0274 2A TBM -Store uncoded K1
1057 0275 21 IXC
1058 0276 16 TAM -Store fractional K1

Nowthe program needs to testto see ifthe new frame is unvoiced. Unvoiced frames use only four K factors,
and the remaining K factors are set to zero. At this point, the first four K factors are already loaded. The
following code fragment tests to see if the new frame is unvoiced, and, if it is, branches to code that zeroes
the rest of the K factors.

1098 029B 62 TCX FLAGS
029C 38

1099 0290 66 TSTCM Unv_Flg1 -Is this an unvoiced frame?
029E 10

1100 029F 42 BR UNVC Yes, zero rest of factors
02AO EO

The remaining K factors differ from the first four K factors in that they have only an a-bit preciSion for their
decoded values instead of the 12-bit precision used for the first four K factors. This precision reduction
simplifies the code. K5 is shown below. K6 through K10 are similar to K5.

1109 *--K5--
1110 02A1 2F CLA
1111 02A2 33 GET K5BITS -Get Index into K5 table
1112 02A3 75 ACAAC TBLK5 and add offset of table

02M 77

6-25

1113
1114 02A5 6B LUAA -Get uncoded K5
1115 02A6 6A TAMO K5V2 and store it in RAM

02A7 26

After all the K factors for a voiced frame have been loaded, the UPDATE routine can be exited by branching
to the general routine exit.

1163 02CB 43 BR RTN
02CC OC

This section of code clears K parameters that are not used. Silent and stop frames result in a branch to
ZeroKs. Unvoiced frames result in a branch to UNVC.

1172 02CO 2F ZeroKs CLA
1173 02CE 6A TAMO ENV2 -Kill Energy

02CF 10
1174 0200 6A TAMO KIV2 -Kill Kl

0201 16
1175 0202 6A TAMO KIV2+1

0203 17
1176 0204 6A TAMO K2V2 -Kill K2

0205 lA
1177 0206 6A TAMO K2V2+1

0207 IB
1178 0208 6A TAMO K3V2 -Kill K3

0209 IE
1179 020A 6A TAMO K3V2+1

020B IF
1180 020C 6A TAMO K4V2 -Kill K4

0200 22
1181 020E 6A TAMO K4V2+1

020F 23
1182 02EO 2F UNVC CLA
1183 02El 6A TAMO K5V2 -Kill K5

02E2 26
1184 02E3 6A TAMO K6V2 -Kill K6

02E4 28
1185 02E5 6A TAMO K7V2 -Kill K7

02E6 2A
1186 02E7 6A TAMO K8V2 -Kill K8

02E8 2C
1187 02E9 6A TAMO K9V2 -Kill K9

02EA 2E
1188 02EB 6A TAMO KI0V2 -Kill KI0

02EC 30
1189 * TAMO K11V2 -Kill K11
1190 * TAMO K12V2 -Kill K12
1191 02EO 43 BR RTN

6-26

02EE OC

If the stop flag has been set, the following code is reached. It turns off the synthesizer, writes a zero to the
DAC in PCM mode, disables the interrupt, sets the vOicing to voiced as a default for the next utterance, and
then branches to SPEAK1 to begin the next utterance.

1201 02EF
02FO

1202 02F1
02F2

1203 02F3
02F4

1204 02F5
02F6

1205 02F7
02F8

1206 02F9
1207 02FA
1208 02FB
1209 02FC
1210 02FD

02FE
1211 02FF
1212 0300

0301
1213 0302

0303
1214 0304

0305
1215 0306

0307
1216 0308
1217 0309
1218 030A

62 STOP
3A
65
FD
65
FE
65
7F
64
04

11
1D
2F
1C
6E
FA
3A BACK
43
04
42
FF
62 OUT
3A
65
FB
11
1D
40

030B 47

TCX MODE BUF

ANDCM -LPC

ANDCM -INTI

ANDCM -UNV

ORCM PCM

TMA
TAMODE
CLA
TASYN
TCA #FA

-Turn off synthesis

-Disable interrupt

-Back to voiced for next word

-Enable PCM mode

-Set mode per above setting

-write a zero to the DAC

-Wait for minimum of 30 lAC
BR out instruction cycles

BR

TCX

ANDCM

TMA
TAMODE

back

MODE BUF -Disable PCM

-PCM

-Set mode per above setting
BR SPEAK1 -Go back for next word

The following code sets a flag to indicate that a new frame has been loaded and then tests to see if LPC
synthesis is enabled. If it is enabled, the processor reenables the level-1 interrupt and branches back to
SPEAK_LP where it waits until the next interrupt and periodically polls the timer register until the next frame
update is required. If LPC synthesis is not enabled, then the UPDATE routine was reached by a CALL
instruction to preload the first two frames, and a RETN is executed to exit the UPDATE routine.

1220 030C
030D

1221 030E

62 RTN
38
64

030F 04
1222
1223 0310

0311
1224 0312

62
3A
66

TCX FLAGS -Set a flag indicating that

ORCM the parameters are updated

TCX MODE BUF -Get mode

TSTCM LPC -Are we speaking yet?

6-27

0313 02
1225 0314 43 BR RTN1 yes, reenable interrupt

0315 17
1226 0316 3D RETN no, return for more data
1227
1228 0317 62 RTN1 TCX FLAG 1 -Inhibit any pending

0318 39
1229 0319 64 ORCM Int Off interpolation interrupt

031A 01
1230
1231 031B 62 TCX MODE BUF -Reenable the interrupt

031C 3A
1232 0310 64 ORCM INT1

031E 01
1233 031F 11 TMA
1234 0320 10 TAMOOE
1235
1236 0321 62 TCX FLAG 1 -Reenable execution

0322 39
1237 0323 65 ANOCM -Int Off of the interpolation routine

0324 FE
1238 0325 40 BR SPEAK LP -Go back to loop

0326 9C

The speech data decoding tables can be seen in the complete sample program shown in Appendix B.

6.2 Arithmetic Modes
The interpretation of the value stored in a register or memory location is arbitrary and depends on the
assumptions that programmers put into their software. A given value can represent a series of flags, a
character value, a fractional number, or a range of integers. Normally, multiplication instructions assume a
fractional value interpretation, and addition/subtraction instructions assume a range-of-integers
interpretation.

Even if it is known that the value represents a range of integers, a problem remains -what range of integers
is represented? If it is assumed that the contents of an 8-bit register represent a value ranging from -12810
to 12710 with 0016 representing the most negative value and FF 16 representing the most positive value, the
following problem arises: the addition of -12710 and 510 should yield -12210 instead of:

000000012 + 100001012 = 100001102, or 610'

To solve this problem, negative numbers are usually represented with twos complement notation. Using this
notation, a negative value is represented by one plus the inversion of its positive equivalent. Thus, to
represent a negative one, its positive equivalent 0000 0001 is inverted to 1111 1110 and one is added to it

1111 11102 + 0000 0001 2 = 1111 11112

Following is the calculation of the sum of -127 and 5 using this notation:

1000 00012 + 0000 01012 = 1000 01102, or -12210

This is the correct result and solves the problem with negative values, but it restricts the range of positive
values. The most significant bit now operates as a sign bit, leaving the remaining 7 bits to represent the
absolute value. Only 12710 discrete positive values can be represented with those 7 bits, which is too
restrictive in many applications.

6-28

To solve this problem, the TSP50C1x allows two different arithmetic modes. Upon initialization, the
processor is in integer mode. In the integer mode, numbers are presumed by the processor to be integers
ranging positive from zero. In the extended-sign mode, numbers are presumed by the processor to be
values ranging positive or negative from zero, with negative numbers represented by twos complement
notation.

The EXTSG and INTGR instructions are used to control the arithmetic mode of the TSP50C1 x. The EXTSG
instruction puts the processor in extended-sign mode, and the INTGR instruction puts the processor in
integer mode. Please note that the integer mode and the extended-sign mode are mutually exclusive; the
processor is either in extended-sign mode or in integer mode but cannot be in both at the same time.

Transferring a value between the X register and the A register illustrates the difference in operation between
the two modes. The X register has a size of 8 bits, and the A register has a size of 14 bits. A value of FF 16
in the X register represents 255 in integer mode or -1 in extended-sign mode. To maintain these values,
the value left in the A register needs to be different between the two modes. Table 6-6 illustrates the
difference.

Table 6-6. TXA Operation

MODE X REGISTER A REGISTER VALUE

Integer Mode FF16 - 00FF16 = 25510

Extended-Sign Mode FF16 - 3FFF16 = -110

Integer Mode 05 16 -+ 000516 = 510

Extended-Sign Mode 0516 - 000516 = 510

In extended-sign mode, the most significant bit acts as a sign bit. Because the value needs to be maintained
over the transfer, the high-order bits of the A register are set to the state of the most significant bit of the X
register. In integer mode, the high-order bits of the A register are simply set to zero.

Note that there is no difference in the operation between the two modes if the value represented is positive
because in extended-sign mode, the most significant bit of a positive value is zero. When the value is
transferred, the high-order bits are set to zero the same as in the integer mode.

The operation of the following instructions are modified by the arithmetic mode:

ACAAC Add 12-bit constant to A register
AMAAC Add memory data to A register
LUAA Look up memory addressed by A register, result in A register
LUAB Look up memory addressed by A register, result in B register
SMAAN Subtract memory data from A register
TCA Transfer 8-bit constant to A register
TMA Transfer memory data to A register (indirect)
TMAD Transfer memory data to A register (direct)
TMAIX Transfer memory data to A register, increment X register
TXA Transfer X register contents to A register
XBX Exchange B register and X register contents

In general, these instructions transfer a valueto the 14-bit A or B registers from a smaller register or memory
location. Figure 6-3 illustrates the operation of the ACMC instruction in extended-sign mode. The 12-bit
constant must be sign-extended to 14 bits (to match the size of the A register) prior to the addition. This
modifies the value of the constant added to the A register from FFF 16 to 3FFF 16.

CARRY 11 1111 1111 112
AREGISTER 3202161100100000001°2
CONSTANT FFF16 11 1111 1111 11112

RESULT 32011611 0010000000012

Figure 6-3. ACAAC in Extended-Sign Mode

6-29

Figure 6-4 illustrates the same operation in integer mode. In integer mode, the sign extension is not
performed; consequently, the value added to the A register remains FFF16.

CARRY 11 1111 1111 112
A REGISTER 32021611 0010000000102
CONSTANT FFF16 00 1111 1111 11112

RESULT 02011600 0010000000012

Figure 6-4. ACAAC in Integer Mode

6.3 Operation of the Multiply Instruction
On digital computers, a multiplication frequently results in a value that is much larger than either
multiplicand. An example is the multiplication of two 2-bit numbers:

112 x 112 = 10012

The result of multiplying two 2-bit numbers is a four-bit number. Similarly, multiplying the 14-bit A register
with the contents of an 8-bit memory location would result in a 22-bit value. This creates a problem because
this large of a value cannot be stored. One solution would be to limit the size of the multiplicands, but this
would severely restrict the utility of the multiply instruction. A better solution is to interpret the multiplicands
as fractions and to truncate the least significant part ofthe result. This solution minimizes overflow problems,
and truncation affects the least significant portion of the result instead of the most significant part. In this
scheme, an n-bit binary number is interpreted as follows:

value = (-A1 x 20) + (A2 x 2-1) + ... + (An x 21- n),

where A ... A are the bit values of the number. For example, the four-bit number 1010 would be interpreted
to have the following value:

value = -1 + (0 x 0.5) + (1 x 0.25) + (0 x 0.125) = -0.75

Several points need to emphasized:

1. The possible values using this scheme range from -1 to slightly less than 1.

2. Since the TSP50C1x instructions are all 8-bit by 14-bit multiply instructions, the lower 8 bits of
the result are truncated.

3. Since the lower 8 bits of the result are truncated, many multiplications will give a zero result; for
example:

(00 0000 0000 1111) x (0000 0011) = 00 0000 0000 0000 I 0010 1101
= 00 0000 0000 0000

6.4 Standby Mode
The TSP50C1x can be put in a low-power-dissipation standby mode by either executing a SETOFF
instruction or by taking INIT low. If the device is placed in standby with the SETOFF instruction, it may be
brought to an active state by pulsing INIT low and high. If the device is placed in a standby state by taking
INIT low, it may be brought to an active state by taking INIT high.

When the device is placed in the standby state, output data is cleared, the I/O pins are placed in input mode,
the program counter is cleared to zero, the registers are left in an undefined state, and the values stored
in RAM are retained. The clock stops running and no instructions are executed untillNIT goes from low to
high.

6.5 Slave Mode
Setting bit 6 of the mode register high places the TSP50C1 x in the slave mode. This specialized mode is
intended for applications in which the TSP50C1 x device needs to be controlled by a master microprocessor.

6-30

When in slave mode, the functionality of the following ports is modified:

80 becomes a chip enable strobe. It is normally held high. When it is taken low, data is read from or
written to the A(0-7) ports depending on the value of 81.

81 becomes a read/write select input. If 81 is low, data is written to the TSP50C1 x when 80 goes low.
If 81 is high, data may be read from the TSP50C1x when 80 goes low.

PortA becomes a general bidirectional portcontrolied by 80 and 81. PinA(7) is used as a busy signal.
If bit 7 in the output latch is set high by the software, A(7) is reset to a low state when 80 goes low
to write data to the TSP50C1 x.

8ecause A(7) is used as a busy flag, leaving only A(O--6) for data, normally only seven bits of data may be
exchanged between the master and the slave in anyone read operation from the TSP50C1x. In write
operations to the TSP50C1x, all 8 pins of port A can be used to transfer data.

During read operations from the slave TSP50C1x, the master is responsible for maintaining its outputs
connected to the TSP50C1 x port A in a high-impedance state. Otherwise, bus contention results.

The TSP50C1 x I/O ports must be configured in input mode for slave mode to work properly. Port A(7) may
be put in output mode, if desired. It will then function as a handshaking line rather than a polled handshake
bit.

Please note that simultaneous configuration of SLAVE and EXTROM is not allowed. The ten I/O lines cannot
be arranged to give both capabilities.

6.5.1 Slave-Mode Write Operation

A typical sequence for an 8-bit write operation to the TSP50C1 x in the slave mode is shown in Figure 6-5.

At the beginning ofthe operation, the TSP50C1 x has a low in the A(7) output latch. It is there either because
it was written there with software or because it was set low by the hardware on com pi eti on of a previ ous write
operation. The data transfer occurs as foliows:

1. The master microprocessor sets R/W high to indicate a read operation.

2. The master polis the output state of A(7) by pulsing STR (on 8(0)) low and reading the state of
A(7) while STR is low.

3. Eventually, the TSP50C1 x completes processing any previous data or instructions from the
master. When it does, it writes a one to the A(7) output latch.

4. When the master senses that A(7) has gone high, it sets the R/W signal low to indicate a write
operation.

5. The master presents valid data to port A(0-6).

6. The master pulses STR (on 8(0)) low, which causes the data on port A(0-6) pins to be latched
to the port A input latch. The TSP50C1 x hardware causes the A(7) output latch to be cleared to
zero, indicating that the TSP50C1x has accepted the data.

7. The TSP50C1x polis the A(7) output latch. When it sees it go low, it knows that data is being
written to the port A input latch.

8. The TSP50C1 x POllS the 80 (STR) input line. When 80 goes high, the write is complete, and the
data in AO is valid.

9. When it is ready to accept another command, the TSP50C1 x writes a one to the A(7) output latch,
thus starting another cycle.

6-31

B(~sm lJ
2

U
2

U
2 .Lf

A(7) Busy
(Output Latch)

B(1) R!W

Valid Data

PortA
(Input Latch)

1
3

----------------~
4

-<'----
------------------~<~

Figure 6-5. Slave-Mode Write Operation

6.5.2 Slave-Mode Read Operation

A typical sequence for an 8-bit read operation from the TSP50C1 x in the slave mode is shown in Figure 6-6.

6-32

B(~sm lJ u u Lf
A(7) Busy

(Output Latch)

B(1) R/W

A(0-6)

(Output Latch) ------------------~<~-
Figure 6-6. Slave-Mode Read-Then-Write Operation

At the beginning of the operation, the TSP50C1x has a low in the A(7) output latch. It has received a
command or a request for information from the master. When the TSP50C1 x is ready to respond, the data
transfer occurs as follows:

1. The TSP50C1x writes the data to A(O-6) and a logic one to port A(7). The one on port A(7) is a
signal that valid data is available in the pins connected to port A.

2. The master periodically polls port A. When it finds A(7) has gone high, it knows that A(O-6)
contains valid data.

3. A(7) remains high, indicating that the slave is prepared for another command. The master can
write to the slave at any time. When the slave polls the A(7) output latch and finds it low, it knows
that a new command from the master is in the port A latch.

6.6 TSP60C18 Interface
The TSP60C18 is 256 K-bit ROM organized internally as 16K-bits X 16 bits. It is designed specifically to
provide additional low-cost ROM storage for the Texas Instruments family of speech chips.

6.6.1 External ROM Mode

Setting bit 4 of the mode register high places the TSP50C1 x device in external ROM mode. When placed
in this mode, the TSP50C1 x port operation is modified to provide an efficient interface to the TSP60C18.
The ports affected are summarized below:

8(0) is dedicated as a strobe output. It should be configured as an output by the software. Its output
value is the logical AND of the 8(0) output latch and a hardware-generated strobe active signal.
Software pulses this signal low to write addresses to the TSP60C18. Hardware pulses this signal low
during GET instructions.

A(7) is dedicated as a system clock signal going to the TSP60C18. It should be configured by software
as an output with a logical one written to its output latch. Its value is the logical AND of the A(7) output
latch and a clock that runs at one-fourth the rate of the master clock.

Control of other ports is necessary to complete communications with the TSP60C18, but the selection of
which ports to use for which signal is optional.

NOTE: Simultaneous configuration of SLAVE and EXTROM is not allowed. The ten I/O lines cannot be
arranged to give both capabilities.

6.6.2 TSP60C18 I/O Signals

The TSP60C18 has ten functional pins in addition to power and ground. Table 6-7 summarizes the function
of each signal, and Table 6-8 details the pinout of the TSP60C18.

6-33

Table 6-7. TSP60C18 Pin Functional Descriptions

SIGNAL DIRECTION FUNCTION/ACTION

If this pin is low, the device is initialized and forced into an input mode
HCLB Input (output buffers are put in the high-impedance state). This signal is not

affected by the state of the CEB input.

If this pin is high, the C(O-3) pins are unconditionally in the
CEB Input high-impedance state. This pin is provided to permit ROM expansion to

greater than 1 Mbit.

STR Input
When this pin is taken low, depending upon the state ofthe R!W signal, data
is read from or an address is written to the TSP60C18.

When this pin is high, data is output from the device when STR goes low.
R!W Input When this pin is low, one nibble of the 16-bit address is input to the device

when STR goes low.

When STR goes low and R!W is low, the data present on these pins is
latched into the device as one nibble ofthe four-nibble address. When STR

C(O-3) I nput or Output goes low and R/W is high, one nibble of the currently addressed data is
presented on these pins for output. C(O) is the least significant bit and C(3)
is the most significant bit of the address/data nibble.

When this pin is low, the address that is loaded is understood to point
directly to the data that is desired for output. When this pin is high, the

AO Input address that is loaded is understood to point to a table entry that contains
the address ofthe data that is desired for output. See Section 6.6.4 for more
information.

SRCK Input Free-running system clock for internal sequential logic

Table 6-8. TSP60C18 Pinout

PIN PIN
FUNCTION FUNCTION

NAME NO. NAME NO.

AO 2 Address mode control pin NC 5 No internal connection

C(O) 14 Address/data bit 0 (LSB) NC 12 No internal connection

C(1) 15 Address/data bit 1 NC 13 No internal connection

C(2) 16 Address/data bit 2 R!W 8 I/O direction control

C(3) 1 Address/data bit 3 (MSB) SRCK 10 System clock

CEB 7 Chip enable input STR 9 Chip enable strobe signal

HCLB 6 Hardware clear input VOO 3 Positive supply, 2.5 Vto 6.5 V

NC 4 No internal connection VSS 11 Power return

6.6.3 TSP60C18 Addressing

The TSP60C18 address is a 16-bit address on 16-bit boundaries that provides addressing capabilities to
1 M bit. Each TSP60C18 has a storage capability of 256K-bits. To achieve the full 1 M-bit capability, the
address space of each TSP6DC18 is internally masked so that up to four TSP60C18s may be connected
in parallel to produce a 1 M-bit ROM system. When operated in this fashion, all like-numbered pins are
connected together; the two most significant bits of the 16-bit address control which chip is addressed, and
the remaining 14 bits control the relative address within the selected chip that is to be accessed.

6.6.4 TSP60C18 Addressing Modes

The TSP60C18 provides the following three addressing modes: 16-bit direct addressing, 16-bit indirect
addressing, and 8-bit indirect addressing. The signal AD determines which addressing mode is used.

When STR goes low to latch in the second and fourth nibbles of the address, AD is sampled. As shown in
Table 6-9, the state of AD during the two samples determines the addressing mode.

6-34

Table 6-9. TSP60C18 Addressing Modes

AODURING
ADDRESS MODE

Nibble 2 Nibble 4

0 0 16-bit direct address

0 1 16-bit indirect address

1 X 8-bit indirect address

If AO is high as the second nibble of the address is latched in, no further nibbles are latched in; the two bytes
that were clocked in are presumed to be the least significant byte of a two-byte address pointing to a 16-bit
boundary in the ROM. The most significant byte ofthe address is zero. The ROM is in indirect address mode,
meaning that the data located at the address that was clocked in is the address of the actual desired data.
If any additional address nibbles are latched in, they are treated as the beginning of a new and different
address.

If AO is low as the second nibble of the address is latched in, the address is presumed to be a 16-bit address.
The state of AO is sampled as the fourth nibble of the address is being latched in to determine if the address
is direct or indirect.

6.6.4.1 TSP60C18 Direct-Addressing Mode
If the TSP60C18 is loaded in the direct-addressing mode, the 16-bit address that is loaded is presumed to
point directly to the desired data.

6.6.4.2 TSP60C18 Indirect-Addressing Mode
Ifthe TSP60C18 is loaded in the indirect-addressing mode, the 8-bit or 16-bit address does not point directly
to the desired data. Instead, it points to a location in the ROM that contains the address that points to the
location of the desired data. The TSP60C18 then automatically sets the internal data pointer to the 16-bit
address found in this location.

WARNING: Because the indirect-addressing mode is an internal function within each chip and not between
chips, there are no special provisions made to use indirect addressing in multichip TSP60C18
systems. Unless the table data is repeated in each TSP60C18 device at the same lower 14-bit
address location, the function will not work properly and device damage may result. If care is
not taken to place identical tables within each chip, multiple devices may be enabled at the same
time, causing bus contention on C(3-0).

As an example, assume that the ROM contains the data shown in Table 6-10.

Table 6-10. Indirect Address Example

ADDRESS DATA

0000 05A2

0001 0200

0002 0302

0200 1234

0201 5678

If the address 0001 is latched into the TSP60C18 with the signal AO placing the device in the
indirect-addressing mode, the data that is fetched by subsequent GET operations is pointed to by the
address found in location 0001, that is, the data contained in location 0200. The first word returned by
subsequent GET statements is therefore 1234.

6-35

6.6.5 TSP60C18 Control

In the remaining discussion of the TSP60C18, the device is assumed to be connected to the TSP50C1x as
shown in Figure 6-7. BO must be used for the STR pin on the TSP60C18, and A7 must be used for SRCK.
The interconnection of the remaining pins is optional depending on the application.

TSP50C1x TSP6OC18

80 STR
81 R/W
AO CO
Ai C1
A2 C2
A3 C3
A4 low or high- AO
A5 high- HCL8
A6 SRCK
A7 f-- high low- CE8

INIT
OSC1
OSC2

DA1

Figure 6-7. TSP60C18-to-TSP50C1x Hookup

6.6.5.1 Initialization of the TSP60C18

The TSP60C18 can be initialized with either hardware or software. The TSP60C18 can be initialized with
hardware by taking the HCLB pin low and then high, which effectively does a power-up initialization of the
device. This initializes the internal pointer counter, puts the device in load mode, and resets the internal chip
enable. The desired starting address of data must still be loaded as described below.

In the hookup shown in Figure 6-7, the HCLB pin is not accessible to the TSP50C1 x. The second way that
the TSP60C18 can be initialized is through software, which is accomplished by the following sequence:

Configure Port Band A(O,1,2,3, 7) as outputs

Take B(O), B(1), and A(7) high

Place TSP50C1x in external ROM mode

Execute LUAPS to initialize TSP50C1x

Do a dummy load address operation

Do a dummy read

Load a valid address

Burn 8 or 16 instruction cycles, depending on address mode

Prime the device with two GET2 commands.

The following three sections discuss the process.

6-36

6.6.5.2 Direct-Address Initialization of the TSP60C18

The TSP60C18 can be initialized in the 16-bit direct mode in the following manner:

Hold AO of the TSP60C18 low

Configure Port Band A(0,1 ,2,3,7) as outputs

Take B(O), 8(1), and A(7) high

Place the TSP50C1 x in external ROM mode

Execute LUAPS to initialize TSP50C1x

Do a dummy read

Take R/W low

Pulse STR low

Take R/W high

Pulse STR low

Load the valid address

Present the least significant nibble of the address on CO-C3

Pulse STR low

Present the second nibble of the address on CO-C3

Pulse STR low

Present the third nibble of the address on CO-C3

Pulse STR low

Present the most significant nibble of the address on CO-C3

Pulse STR low

8urn eight instruction cycles

Execute two GET2 instructions.

The TSP60C18 is now prepared to output data to the TSP50C1 x in response to GET instructions. See
Section 6.7.3 for a sample listing of a routine that performs this function.

6.6.5.3 8-Bit Indirect-Address Initialization of the TSP60C18

The TSP60C18 can be initialized in the 8-bit indirect mode in the following manner:

Configure Port Band A(0,1 ,2,3,7) as outputs

Take 8(0),8(1), and A(7) high

Place the TSP50C1 x in external ROM mode

Execute LUAPS to initialize TSP50C1 x

Do a dummy read

Take R/Wlow

Pulse STR low

Take R/W high

6-37

Pulse STR low

Take AO of the TSP60C18 high

Load the valid address

Present the least significant nibble of the address on CO-C3

Pulse STR low

Present the second nibble of the address on CO-C3

Pulse STR low

8urn 16 instruction cycles

Execute two GET2 instructions.

The TSP60C18 is now prepared to output data to the TSP50C1 x in response to GET instructions. The data
is pointed to by the table entry located at the address that was loaded.

6.6.5.4 16-Bit Indirect-Address Initialization of the TSP60C18
The TSP60C18 can be initialized in the 16-bit indirect mode in the following manner:

6-38

Configure Port 8 and A(0,1 ,2,3,7) as outputs

Take 8(0), 8(1), and A(7) high

Place the TSP50C1 x in external ROM mode

Execute LUAPS to initialize TSP50C1 x

Do a dummy read

Take RlWlow

Pulse STR low

Take R/W high

Pulse STR low

Take AO of the TSP60C18 low

Load the least significant byte of address

Present the least significant nibble of the byte on CO-C3

Pulse STR low

Present the most significant nibble of the byte on CO-C3

Pulse STR low

Take AO of the TSP60C18 high

Load the most significant byte of address

Present the least significant nibble of the byte on CO-C3

Pulse STR low

Present the most significant nibble of the byte on CO-C3

Pulse STR low

8urn 16 instruction cycles

Execute two GET2 instructions.

The TSP60C18 is now prepared to output data to the TSP50C1 x in response to GET instructions. The data
is pointed to by the table entry located at the address that was loaded.

6.6.6 Placing the TSP60C18In a Low-Power Standby Condition
The TSP60C18 can be placed in a low-power standby condition by removing the clock while the nodes of
the device are in a precharged condition. This can be done in one of two ways.

1) Placing the TSP60C18 in a low-power mode by loading it with a partial address and maintaining R/W and
STR high, as shown below:

Configure Port 8 and A(0,1 ,2,3,7) as outputs

Load 8(0), 8(1), and A(7) output ports with a logical 1

Place the TSP50C1 x in external ROM mode

Load the partial address

Take R/W low

Pulse STR low

Put the TSP50C1 x in internal ROM mode

Maintain 8(0) and A(7) configured as outputs in the high state.

2) Placing the TSP60C18 in a low-power mode by loading it with a complete address and maintaining R/W
low and STR high, as shown below:

Configure Port 8 and A(0,1 ,2,3,7) as outputs

Load 8(0), 8(1), and A(7) output ports with a logical 1

Load A(O), A(1), A(2), and A(3) output ports with a logical 0

Place the TSP50C1 x in external ROM mode

Load the complete address

Take R/W low

Pulse STR low 4 times

Wait a minimum of 16 instruction cycles

Take R/W high

Take STR low

Put the TSP50C1x in internal ROM mode

Maintain 8(0) low and B(1) high.

To bring the TSP60C18 to an active condition, do an initialization as previously discussed.

NOTE: The SETOFF instruction places all outputs in a high-impedance state. If a SETOFF instruction is
executed to place the TSP50C1 x in a low-power state, then pull up or pull-down resistors should
be provided to maintain the TSP60C18 control lines in the correct state after the SETOFF is
executed.

6.7 Use of the GET Instruction
The GET instruction is used to retrieve a bit stream from RAM, internal ROM, or external ROM. It allows the
program to unpack speech data in a time-efficient manner. As shown in Figure 6-8, it is implemented
through the use of a parallel-to-serial shift register.

6-39

The parallel-to-serial register (PIS register) is loaded in a parallel manner from the parallel-to-serial buffer
(PIS buffer), which is in turn parallel loaded from the source of the data (which could be internal ROM,
external ROM, or internal RAM). When the GET instruction is executed, the number of bits specified in the
operand of the GET instruction are shifted out of the LSB of the PIS register into the LSB of the A register.

Parallel-to-Serial r"'-..1..-r"'-.x....,r"'-.x....,-I...,-:"""

Buffer '--r-'-...-'--r-'-..,..-J'-r-'-.,.-I--.--'-T-'

Parallel-to-Serial
Register '---'-_'---'---''---'---'_-'---'

A Register

Figure 6-8. Register Connections for GET Instruction

If the number of valid bits in the PIS register is less than the specified number of bits, the contents of the
PIS buffer are loaded on the fly to the PIS register and the contents of the PIS buffer are refreshed from the
data source the next time that a GET instruction is executed. The status bit is set. If the buffer did not need
to be reloaded, the status bit is cleared.

Note that because the data is shifted out of the LSB of the PIS register and into the LSB of the A register,
there is a byte reflection of the data in this process as illustrated in Figure 6-9. This figure shows the state
of the PIS register and the A register both before and after a GET 5 instruction. Prior to the GET 5, the PIS
register contains B716, and the A register contains all zeros. After the instruction, the least significant five
bits of the PIS register are shifted into the A register. Because of the bit flip, the A register contains 1°16
after the shift operation. The PIS register has only three valid bits left after the operation. If more than three
bits are requested in the next GET operation, the PIS register is reloaded from the PIS buffer.

The source for the data is controlled by the EXTROM and RAMROM bits in the mode register as shown in
Table 6-11.

Table 6-11. Mode Register Control of GET Data Source

MODE REGISTER BITS
DATA SOURCE

RAM ROM EXTROM

0 0 Internal ROM

0 1 External ROM

1 0 Internal RAM

1 1 Internal RAM

6-40

Prior to Get 5 Instruction

Parallel-to-Serial 1
Register L......-'----'L......-L..---I_-'------'_--'------'

A Register

After Get 5 Instruction

Parallel-to-Serial
Register '----'----''--...L..---'_...L..---L_-"----'

A Register

Figure 6-9. Parallel-to-Serial Operation for GET 5 Instruction

NOTE: Because oftiming problems that may cause the same data to be fetched from the data source twice
in a row the first two times the GET instruction is executed, unless special precautions are taken,
initialization for the GET instruction should not be done while the LPC bit of the mode register is set.

Specifically, if the LPC bit is set and the first GET instruction is a GET 4 from external ROM or a GET 8 from
internal ROM or RAM, the PIS is loaded with the same data twice in a row. To avoid this problem, either do
a double GET in this situation, or, more simply, never be in LPC mode during the interval between the LUAPS
instruction and the first GET instruction.

6.7.1 GET From Internal ROM

If both the RAMROM and EXTROM bits of the mode register are zero, the data source for GET instructions
is the internal ROM. As detailed in Section 6.7, the data is read into the A register in a byte-flipped form
referenced to the value stored in ROM, meaning that the LSB of the ROM data byte is shifted into the A
register first. The recommended sequence for preparing to GET from internal ROM is as follows:

1. Load the starting address of the first desired GET source into the A register

2. Execute a LUAPS instruction, which performs all required initialization. The processor is now
ready to execute a GET instruction starting at the address loaded in step 1.

3. If a nonsequential address is desired for a GET, repeat steps 1 and 2 for the new address.

6.7.2 GET From External ROM

If the RAMROM bit is cleared and the EXTROM bit is set in the mode register, the data source for GET
instructions is the external ROM. As detailed in Section 6.7, the data is read into the A register in a
byte-flipped form from the value stored in ROM, meaning that the LSB of the ROM data byte is shifted into
the A register first. Because the external ROM needs to be initialized in addition to the TSP50C1 x, the
procedure is somewhat more complicated than that for the internal ROM case. See Section 6.6 for details
on interfacing a TSP60C18 to the TSP50C1 x.

6-41

The recommended sequence for preparing to GET from external ROM is as follows:

1. Configure all control lines as outputs

2. Place the TSPSOC1x in external ROM mode

3. Execute LUAPS to initialize the counters in the TSPSOC1x. When preparing to execute a GET
from external ROM, the value in the A register during the LUAPS is unimportant.

4. Initialize the external ROM. The processor is now ready to execute a GET instruction starting at
the address loaded to the ROM in this step.

S. If a nonsequential address is desired for a GET, repeat steps 3 and 4 for the new address.

6. Be very careful not to disturb the value on the control lines when not doing GET instructions.

NOTE: When in external ROM mode, only four or fewer bits may be fetched at a time. While GET S, GET
6, GET 7, and GET 8 may work, the results are not guaranteed to be accurate because only four
bits are fetched from the ROM at a time. If more than four bits are required, the preferred solution
is to execute multiple GET instructions.

6.7.3 GET From Internal RAM

If the RAMROM bit is set in the mode register, the data source for GET instructions is the internal RAM. As
detailed in Section 6.7, the data is read into the A register in a byte-flipped form from the value stored in RAM,
meaning that the LSB of the RAM data byte is shifted into the A register first.

The usage of the GET instruction while in RAM mode is somewhat more complicated than when the data
source is from ROM because the burden of providing the address used to refresh the PIS buffer falls on the
software.

If a GET instruction exhausts the PIS register, the value stored in the PIS buffer is loaded into the PIS
register, and the GET instruction returns with status set. When the next GET instruction is executed, the PIS
buffer is loaded with the value stored in the RAM location pointed to by the X register.

The recommended sequence for preparing to GET from RAM is as follows:

6-42

1. Place the TSPSOC1x in internal RAM mode

2. Place the RAM address of the first desired GET source in the X register.

3. Execute LUAPS to initialize the counters in the TSPSOC1 x and to load the first byte from RAM
into the PIS register. When preparing to GET from RAM, the value in the A register during the
LUAPS is unimportant. After this, the PIS buffer is empty and the PIS register is full.

4. Execute a dummy GET 8 instruction

S. Load the X register with the RAM address of the second desired GET source

6. The following sequence occurs when the first GET is executed:

a. The PIS buffer is empty, so it is loaded with the value stored in the RAM location pointed to
by the X register.

b. The number of bits specified by the operand of the GET instruction is shifted into the A
register.

7. On all subsequent GET operations, the status at completion should be tested by software. If
status is set, then the PIS buffer is empty and the software should ensure that the X register
contains the next desired address before the next GET is executed.

Following is a sample program that uses the GET from RAM:

* SAMPLE PROGRAM USING RAM GET

DTA EQU #10

*
TCX DTA SET X REG TO POINT TO DTA

TCA #020 SET TO RAM MODE

TAMODE

LUAPS SET UP PARALLEL TO SERIAL REG

GET 8 DUMMY GET

CALL UPX

BR LOOP

*
UPX IXC

RETN

6.8 External ROM Interface
The external ROM mode is designed to optimize the interface to the TSP60C18, although it is possible to
use other devices for external memory. This section provides the information needed to interface to other
devices. Appendix C contains an external ROM initialization routine.

When the TSP50C1 x is placed in external ROM mode, the 8(0) and A(7) pins assume a specialized function.
The 8(0) pin becomes the strobe output and A(7) becomes a clock signal running at one-fourth the master
clock rate. A(0-3) are used to latch data in from the ROM. Other control signals needed by the ROM may
be assigned to the other output ports at the designer's discretion. These other signals should be
software-controlled.

The signal on the 8(0) pin is the logical AND of the value written to the data output latch of 8(0) and a
hardware-generated strobe. If the PIS buffer is found to be empty during a GET instruction, the
hardware-generated strobe pulses low, and the nibble present on A(0-3) is loaded into the PIS buffer.

The signal on the A(7) pin is the logical AND of the value written to the data output latch of A(7) and a
free-running 2.4-MHz clock (if the master clock is 9.6 MHz).

6.9 Generating Tones Using PCM
The TSP50C1 x can generate speech and tones using pulse code modulation (PCM) as well as LPC. When
using PCM, a periodically sampled waveform may be loaded directly into the DAC, providing the ability to
synthesize arbitrary waveforms. The value that is loaded into the DAC can be derived using a calculation,
a table look-up, or a combination of the two methods. Smoothing between the data points is provided by
the external low-pass filter.

PCM mode is enabled by setting the PCM bit in the mode register high and the LPC bit in the mode register
low. Once PCM mode is enabled, the software must load the DAC with a value every 30 or 60 instruction
cycles using the TASYN instruction.

6.9.1 Operation of the TASYN Instruction in PCM Mode
While in PCM mode, executing the TASYN instruction transfers the contents of the A register to the input
ofthe DAC as shown in Figure 6-1 O. TASYN transfers the data in the A register to a temporary buffer register
whose contents are periodically transferred to the DAC once every 30 instruction cycles.

6-43

A Register H ... __ ~_em_p_~H ... __ D_A_C __

Figure 6-10. Operation of TASYN in PCM Mode

The data in the A register should be in a modified two's complement format, described as follows:

The A register is 14 bits long. When the contents of the A register is transferred to the DAC, the bits are
interpreted as shown in Figure 6-11. The least significant bits (bits 0 and 1) are ignored. They are normally
set to zero. The two most significant bits (bits 12 and 13) are the sign bits. If they are 1 , then the value being
loaded to the DAC is negative. The remaining 10 bits of the A register (bits 2 -11) contain magnitude data.
The greatest magnitude is ::!: 480. Any greater magnitude is clipped. The relative weights of the magnitude
bits are listed in Table 6-12.

A Register

Sign Bits Zero Bits

Figure 6-11. Format of Data in A Register Before TASYN

Table 6-12. Relative Weights of DAC Magnitude Bits

Bit Position

Relative Weight

6.9.2 Timing Considerations in PCM Mode

While in PCM mode, the contents of the DAC are refreshed every 30 instruction cycles. The new data must
be loaded with TASYN instructions at an integer multiple of this rate. If the new data is not synchronous with
the 30-cycle refresh rate, samples may be missed or doubled, thereby resulting in tone deterioration.

There are two approaches to keeping the TASYN instruction synchronous with the DAC refresh. The first
(and normally preferred) approach is to use the level-1 interrupt to synchronize the program. When the mode
register is set with the PCM bit high, the LPC bit low, and the I NT1 bit high, a level-1 interrupt is generated
every 30 instruction cycles. If the interrupt-service routine is longer than 30 instruction cycles, the interrupt
is generated every 60 instruction cycles. The second approach is to program a tight loop using exactly 30
or 60 instruction cycles per loop. This method will work and avoids the instruction-cycle overhead associated
with the interrupt but is more difficult to program reliably.

6.9.3 DTMF Program Walk-Through

This section contains a walk-through of the DTMF (dual-tone multifrequency or touch-tone) program found
in Appendix D. The program generates a series of DTMF tones triggered by port A(O) going high and
terminated by A(O) going low.

Following are the RAM locations used in the program. For each of the two sine waves that are added
together to make the DTMF tone, a register that contains the angular difference between each data point
(PERIOD1 and PERIOD2) and a register that contains the current angle for each frequency (TIME1 and
TIME2) are required. Additionally, a temporary buffer is required to hold the intermediate result (PCMBUF).

In this application, each of these registers must be twelve bits long to maintain sufficient accuracy, which
means that they must be in the lower 16 locations of RAM. These are the same registers that are used in
the LPC routines, which is acceptable as long as LPC is not being executeed at the same time as PCM.

6-44

0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088

*
* PCM register variables

*
0000 PERIOD1
0001 TIME1
0002 PERIOD2
0003 TIME2
0004 PCMBUF

*
*

EQU
EQU
EQU
EQU
EQU

#00
#01
#02
#03
#04

-Period of 1st Wave
-Cumulative angle of 1st wave
-Period of 2nd Wave
-Cumulative angle of 2nd wave
-Intermediate data buffer

* LPC status variable locations

*
0010 MODE BUF EQU #10 ;Mode register buffer

*
* Device Constants

*
007F MAX RAM EQU #7F -Highest RAM location

*
* MODE Register Bit Definitions

*
0001 ENA1
0002 LPC
0004 PCM
0008 ENA2
0010 EXTROM
0020 RAMROM
0040 MASTER
0080 UNV

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

#01
#02
#04
#08
#10
#20
#40
#80

-Enable Level 1 interrupt
-Enable LPC synthesis
-Enable PCM synthesis
-Enable Level 2 interrupt
-Set external ROM mode
-Enable GETs from RAM
-Master/Slave Toggle
-Enable Unvoiced excitation

Next is the DTMF frequency definition table and the sine wave look-up table. Each line in the DTMF
frequency definition table contains four bytes, two bytes for each of the two frequencies that make up a
DTMF tone. These two-byte numbers represent the angular interval by which the sine wave must be
incremented between samples. For example, if the sample rate is 10,000 samples / second, the sine wave
table must be accessed at intervals of 25.092 degrees in order to produce a 697-Hz sine wave.

697 cycles/second x 360 degrees/cycle _ 092 d / I
10,000 samples/second - 25. egrees samp e

Note that the 10,000 samples / second figure in this equation assumes a 9.6-MHz crystal and a level-1
interrupt code length of between 30 and 60 instruction cycles. The following table contains sample rates
based on different assumptions:

Table 6-13. Sample Rates

CRYSTAL
LEVEL-1 INTERRUPT CODE LENGTH

< 30 INSTRUCTION CYCLES < 60 INSTRUCTION CYCLES

7.68 MHz 16,000 samples/second 8,000 samples/second

9.6 MHz 20,000 samples/second 10,000 sam pies / second

The sine wave table contains information for 32 points of a sine wave, spaced 11.25 degrees apart.
Therefore, the number that was calculated above is divided by 11.25 degrees to determine the number of
sine wave table entries to skip between samples.

6-45

25.092 degrees/sample _ 2230 t· / I
11.25 degrees/entry -. en nes samp e

Finally, the number is normalized, truncated, and converted to a two-byte hexadecimal value before placing
it in the OTMF frequency definition table.

TRUNC (2.230 x 128) = 28510 = 011016

The first byte on each line ofthe sine wave table is an amplitude and the second byte is an amplitude offset.
The offset byte is multiplied by a fractional value and added to the amplitude byte to allow interpolation of
the sine wave values. Because of the way the interpolation is performed, the fractional value for
odd-numbered table entries will be negative and the fractional value for even-numbered table entries will
be positive. Therefore, the first line of the table will have a positive fractional value that is multiplied by the
offset byte and then added to the amplitude byte to allow sin (0°) up through sin (11.25°) to be represented.
The second line of the table will have a negative fractional value that is multiplied by the offset byte and then
added to the amplitude byte to allow sin (22.5°) down through sin (11.25°) to be represented.

0102 0024
0103 0028
0104 002C
0105 0030
0106 0034
0107 0038
0108 003C
0109 0040
0110 0044
0111 0048
0112
0113
0114
0115 004C
0116 004E
0117 0050

0144 00B6
0145 0088
0146 008A

80
80
80
80
80
80
80
80
80
80

00
31
31

CF
CF
00

OTMF

*
*
*
SINEW

RBYTE #01,#81,#02,#23 -zero 941 Hz+1336 Hz
RBYTE #01,#10,#01,#EF -One 697 Hz+1209 Hz
RBYTE #01,#10,#02,#23 -two 697 Hz+1336 Hz
RBYTE #01,#10,#02,#50 -three= 697 Hz+1477 Hz
RBYTE #01,#3B,#01,#EF -four 770 Hz+1209 Hz
RBYTE #01,#3B,#02,#23 -five = 770 Hz+1336 Hz
RBYTE #01,#3B,#02,#50 -six 770 Hz+1477 Hz
RBYTE #01,#50,#01,#EF -seven= 852 Hz+1209 Hz
RBYTE #01,#50,#02,#23 -eight= 852 Hz+1336 Hz
RBYTE #01,#50,#02,#50 -nine = 852 Hz+1477 Hz

Digitized sine wave table

BYTE
BYTE
BYTE

BYTE
BYTE
BYTE

#00,#19
#31,#18
#31,#16

#CF,#16
#CF,#18
#00,#19

o degrees-->11_25 degrees
11.25 degrees-->22.5 degrees
22_5 degrees-->33.75 degrees

326.25 degrees-->337.5 degrees
337.5 degrees-->348.75 degrees
348.75 degrees-->360 degrees

Following is the executable code. The code that is used to clear RAM and the mode register is not shown.
After initializing the device, the program invokes the subroutine that generates the tone, passing the table
index that defines the tone in the A register.

0150 008C 6E GOGO TCA 0 -Tone 'Zero'
0080 00

0151 008E 00 CALL DO PCM
008F B5

0152 *
0153 0090 6E TCA 1 -Tone 'One'

0091 01

6-46

0154 0092 00 CALL DO PCM
0093 B5

0174 OOAC 6E TCA 8 -Tone 'Eight'
OOAD 08

0175 OOAE 00 CALL DO PCM
OOAF B5

0176 *
0177 OOBO 6E TCA 9 -Tone 'Nine'

00B1 09
0178 00B2 00 CALL DO PCM

00B3 B5
0179 *
0180 00B4 3F SETOFF

The following code is used to wait until DTMF tone generation is requested. The program loops until A(O)
goes high.

0192 00B5 62 DO PCM TCX #80 -Point to port A
00B6 80

0193 00B7 66 TSTCM #01 -Loop until A(O)
00B8 01

0194 00B9 40 BR GO PCM goes high
OOBA BD

0195 OOBB 40 BR DO PCM
OOBC B5

Since each table entry in the DTMF definition table is four bytes long, the value of the table index is
quadrupled by left shifting it twice. Then the address of the start of the table is added, and a LUAPS is
executed to point the speech address register to the desired table entry. The program uses two GET 8
instructions to fetch each number.

0197 OOBD 2E GO PCM SALA -Adjust value to
0198 OOBE 2E SALA table index
0199 OOBF 70 ACAAC DTMF -Add offset of table

OOCO 24
0200 00C1 6C LUAPS -Point to table entry
0201
0202 00C2 37 GET 8 -Get first frequency
0203 00C3 37 GET 8 period
0204 00C4 6A TAMD PERIOD 1 -Store it away

00C5 00
0205
0206 00C6 37 GET 8 -Get second frequency
0207 00C7 37 GET 8 period
0208 00C8 6A TAMD PERIOD2 -Store it away

00C9 02

6-47

The program initializes other necessary RAM locations and sets the mode register to enable PCM and
level-1 interrupt.

0210 OOCA 2F CLA -Clear cumulative data
0211 OOCB 6A TAMO TIMEI

OOCC 01
0212 OOCO 6A TAMO TIME2

OOCE 03
0213
0214 OOCF 62 TCX MODE BUF -Turn on PCM and INTI

0000 10
0215 0001 64 ORCM PCM

0002 04
0216 0003 64 ORCM ENAI

0004 01
0217 0005 11 TMA
0218 0006 10 TAMOOE

The actual PCM code is in the interrupt-service routine. When the program is not executing PCM code, A(O)
is continually polled. When A(O) goes low, the program disables PCM and returns for the next tone.

0220 0007 62 Ll TCX #80 -Loop until A(O)
0008 80

0221 0009 66 TSTCM #01 goes low
OOOA 01

0222 OOOB 40 BR L1
OOOC 07

0223
0224 0000 62 TCX MODE BUF -Turn off PCM and INTI

OOOE 10
0225 OOOF 65 ANOCM -PCM

OOEO FB
0226 OOEI 65 ANOCM -ENAI

00E2 FE
0227 00E3 11 TMA
0228 00E4 10 TAMOOE
0229 00E5 3D RETN

Following is the level-1 interrupt-service routine, I NTPCM. This code performs the actual PCM calculations,
which are done twice, once for each of the two sine waves. Then the results are summed together and
transferred to the DAC buffer with the TASYN instruction. Because the interrupt-service routine is longer
than 30 instruction cycles but less than 60 instruction cycles, it is invoked every 60 instruction cycles.

First the delta angle is added to the cumulative angle to generate a new cumulative angle.

0234 00E6 3B INTPCM INTGR
0235 00E7 20 CLX
0236
0237 00E8 14 TMAIX -Add delta angle to
0238 00E9 28 AMAAC cumulative angle

6-48

0239
0240 OOEA
0241 OOEB

16
11

TAM
TMA

-Save cumulative angle
-Discard high bits of cum

The cumulative angle is shifted right seven bits in order to strip off its fractional part. The result is shifted
left one bit to adjust for the two-byte size of each sine wave table entry. The address of the start of the table
is then added to get the address of the desired table entry.

0242
0243 OOEC 68 AXCA 0] -right shift 7 bits

OOED 01
0244 OOEE 2E SALA -Left 1 bit
0245 OOEF 70 ACAAC SINEW -Add table offset

OOFO 4C

The sine-wave amplitude byte is put into the B register and the offset byte is put into the A register. The offset
byte is multiplied by the fractional part of the cumulative angle and the result is added to the amplitude byte
to interpolate between points. The SALA4 instruction correctly positions the value in the A register for
transfer to the DAC buffer. This intermediate value is scaled for twist and then saved in PCMBUF before
calculating the other wave.

0247 00F1 3C EXTSG
0248 00F2 6D LUAB -get data point
0249 00F3 3A lAC
0250 00F4 6B LUAA -get slope between points
0251 00F5 39 AXMA -interpolate slope
0252 00F6 2C ABAAC -add interpolated slope
0253 00F7 1B SALM and scale for DAC
0254 00F8 68 AXCA #78 -Scale value for twist

00F9 78
0255
0256 OOFA 6A TAMD PCMBUF -Save intermediate data

OOFB 04

The only difference between the calculation of the first wave and the second wave is that the second wave
is not scaled for twist. After both waves have been calculated, the result for the second wave is placed in
the B register, the result for the first wave is retrieved to the A register, and the two values are added together.
The result is divided by two to correctly scale it. TASYN is used to transfer the result to the DAC.

0279 010E 1A TAB -Store 2nd data point
0280
0281 010F 21 IXC -Retrieve 1st data point
0282 0110 11 TMA
0283
0284 0111 2C ABAAC -Sum two waves together
0285 0112 15 SARA and normalize
0286 0113 1C TASYN -transfer data to D/A
0287 0114 3E RETI

6-49

6-50

7 Customer Information

7.1 Development Cycle
The TSP50C1 x development cycle is more complex than microprocessor development, because it adds
speech development to the normal microprocessor development cycle. (Figure 7-1). The software design
cycle is similar to that for other microprocessors. Speech development is discussed in Appendix A.

l Speech Specification I
I

I I I I
Speaker Recording Script Software Hardware
Selection Preparation Design Design

I I I I
I Speech Recording I Software Prototype

I
Writing Construction

I Speech Analysis I
I

I
I Speech Editing I I Software Debugging I

I
I Speech Evaluation I

I
I

I System Evaluation I
Figure 7-1. Speech Development Cycle

7-1

7.2 Summary of Speech Development/Production Sequence
The following is a summary of the speech development/production sequence:

1. ForTI to accept a custom device program, the customer must submit a new product release form
(NPRF) to TI. This form describes the custom features ofthe device (e.g., customer information,
prototype and production qualities, symbolization, etc.). The NPRF will be completed by product
ehgineering and product marketing personnel within TI. A copy of the NPRF can be found on
pages 7-8 and 7-10.

2. TI generates the prototype photomask and processes, manufactures, and tests 25 prototype
devices for shipment to the customer. Limited quantities in addition to the 25 prototypes may be
purchased for use in customer evaluation. All prototype devices are shipped againstthe following
disclaimer. "It is understood that, for expediency purposes, the initial 25 prototype devices (and
any additional prototype devices purchased) were assembled on a prototype (i.e., not
production-qualified) manufacturing line whose reliability has not been characterized. Therefore,
the anticipated inherent reliability of these devices cannot be expressly defined."

3. The customer verifies the operation and quality of these prototypes and responds with either
written customer prototype approval or disapproval.

4. A nonrecurring mask charge that includes the 25 prototype devices is incurred by the customer.

5. A minimum purchase might be required during the first year of production.

NOTE: Texas Instruments recommends that prototype devices not be used in production systems
because their expected end-use failure rate is undefined but is predicted to be greater than
standard qualified production.

7-2

7.3 N016 300-Mil Plastic Dual-In-Line Package
The dual-in-line package of the TSP50C10/11/14 (Figure 7-2) consists of a circuit mounted in a lead frame
and encapsulated within an electrically nonconductive plastic compound. The compound will withstand
soldering temperature with no deformation, and circuit performance characteristics will remain stable when
operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on 7,62
(0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the
package in the board during soldering. Leads require no additional cleaning or processing when used in
soldered assembly.

N014, N016, N018, and N020
300-mil plastic dual-in-line package

MECHANICAL DATA

N014, N016, N018, AND N020 Designation per JEDEC Std 30:
(20-pin package used for illustration) PDIP-T14

20 11

10

~~~ ',"~""NO" ,,"~,~ 14 A1 -------.j 
-+i ~~ MIN_ ~ ~ 1,78(0.070) MAX 20 Places 

-. t ,-1- I I 
5,08 (0.200) MAX ~ h-ri--i-r-..,--,r-"'--''--,..,......,'-TToI 

-_ Seating ----,r--_-~ 
1050 Plane 
900 

20 Places -to\~ 0,36 (0.014) 
0,25 (0.010) 
20 Places 

(see Notes B and C) 

~ J l. 1,91 (0.075) 
~ 1,02 (0.040) 

4 Places 

VIEW A 

G 
4 Places 

Pin Spacing 2,54 (0.100) T.P. 
(see Note A) 0,533 (0.021) 

0,381 (0.015) 
20 Places 

(see Notes B and C) 
14------- A2 -------.j 

Alternate Side View 

H Pin Spacing 2,54 (0.100) T.P. 0,533 (0.021) 
4 Places (see Note A) 0,381 (0.015) 

20 Places 
(see Notes B and C) 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position. 
B. This dimension does not apply for solder-dipped leads. 
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 

0,51 (0.020) above seating plane. 

Figure 7-2. TSP5OC1 0/11/14 16-Pin N Package 

7-3 



MECHANICAL DATA 

N014, N016, N018, and N020 
300-mil plastic dual-in-line package (continued) 

7-4 

NOTES: A. This packaging characteristic is not specified. 
B. The 14-pin and 18-pin plastic dual-in-line package is only offered with the external pins shaped 

in their entirety. 



7.4 FN068 68-Lead Plastic Leaded Chip Carrier (PLCC) Package 
The 68-lead plastic chip carrier package, which is available only for the TSP50C12, consists of a circuit 
mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The 
compound withstands soldering temperatures with no deformation, and circuit performance characteristics 
remain stable when the device is operated in high-humidity conditions. The package is intended for surface 
mounting on solder lands with 1,27 (0.050) centers. Leads require no additional cleaning or processing 
when used in soldered assembly. 

MECHANICAL DATA 

FN020, FN028, FN044, FN052, FN068, and FN084 
plastic J-Ieaded chip carrier 

FN020, FN028, FN044, FN052, FN068, and FN084 
(20·PIN package used for Illustration) 

1,22 (0.048) 2 Places 
1,07 (0.042) 

Designation per JEDEC Std 30: 
S-PLCC.J20 S-PLCC.J28 
S-PLCC.J44 S-PLCC.J52 
S-PLCC.J68 S·PLCC.J84 

~ (see Note 0) r AI ~:~I~~t:I:)e 

0,51 (0.020) R. M:
2 

(0.056) U A -C- 0.10 (0.004) 

1,07 (0.042) It: ~:~ l~:~;l R. TYP 

~::! l~::~l TYP. f 1+10.18(0.007)~1 B~I A@i -rI--FC=:-r-' 
02,E2 

(see Note F) 

1,27 (0.050) T.P. (see Note F) I 
~ 4 Sides +-t---t=~3' 1 1+10.38 (D.015)®ID-E®1 L: ~ 1.lo.36(O.015)C§>IF-G~1 

(see Note C) * 
0,51 (0.020) MIN. 

(Includes Lead Finish) 

Sum of Dam Bar Protrusions -........, __ -~I+
to be 0,18 (0.007) Maximum 
Per Lead 

0,53 (0.021) 
0,33 (0.013) 0,64 (0.025) MIN. 

1+10.18 (0.007) i91 F-G ®I 
1+10.18(0.007)91 D-E~I 

(see table on following page for additional dimensions) 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

NOTES: A. All dimensions conform to JEDEC Specification MO·047ANAF. Dimensions and tolerancing are per ANSI Y14.5M -1982. 
B. Dimensions D1 and Et do not include mold flash protrusion. Protrusion shall not exceed 0,25 (0.010) on any side. Centerline o/center 

pin each side is within 0,10 (0.004) of package centerline by dimension B. The lead contact points are planar within 0,10 (0.004). 

C. Datums ~ and ~ for center leads are determined at datum~. 

D. Datum ~ is located at top of leads where they exit plastic body. 

E. Location of datums 1 -A -I and ~ to be determined at datum ~. 

F. Determined at seating plane 1-C -I. 

Figure 7-3. TSP50C12 68-Lead PLCC Package 

WARNING: 
When reflow soldering is required, refer to page 7-6 for special handling 
instructions. 

7-5 



MECHANICAL DATA 

FN020, FN028, FN044, FN052, FN068, and FN084 
plastic J-Ieaded chip carrier (continued) 

NOTES A: All dimensions conform to JEDEC Specification MO-D47AA/AF. Dimensions and tolerancing are per ANSI Y14.5M -1982. 

F: Determined at seating plane 1 - C - I. 

TSP50C12 (PLCC) Reflow Soldering Precautions 

Recent tests have identified an industry-wide problem experienced by surface mounted devices exposed 
to reflow soldering temperatures. The problem involves a package cracking phenomenon sometimes 
experienced by large (e.g., 68-lead) plastic leaded chip carrier (PLCC) packages during surface mount 
manufacturing. This phenomenon can occur if the TSP50C12 is exposed to uncontrolled levels of humidity 
prior to reflow solder. This moisture can flash to steam during solder reflow, causing sufficient stress to crack 
the package and compromise device integrity. If the TSP50C12 is being socketed, no special handling 
precautions are required. In addition, once the device is soldered into the board, no special handling 
precautions are required. 

In order to minimize moisture absorption, TI ships the TSP50C12 in dry pack shipping bags with a RH 
indicator card and moisture absorbing desiccant. These moisture-barrier shipping bags will adequately 
block moisture transmission to allow shelf storage for 12 months from date of seal when stored at less than 
60% relative humidity (RH) and less than 30DC. Devices may be stored outside the sealed bags indefinitely 
if stored at less than 25% RH and 30D C. 

Once the bag seal is broken, the devices should be stored at less than 60% RH and 30DC as well as 
reflow-soldered within two days of removal. In the event that either of the above conditions is not met, TI 
recommends these devices be baked in a clean oven at 125D C and 10% maximum RH for 24 hours. This 
restores the devices to their dry packed moisture level. 

NOTE: Shipping tubes will not withstand 125D C baking process. Devices should be transferred to a metal 
tray or tube before baking. Standard ESD precautions should be followed. 

In addition, TI recommends that the reflow process not exceed two solder cycles and the temperature not 
exceed 220D C. 

If you have any additional questions or concerns, please contact your local TI representative. 

7-6 



7.S Ordering Information 
Because the TSP50C1x are custom devices, they receive a distinct identification as follows: 

CSM 1XXXX X X 

Gate Code 
CSM-Custom 

Synthesizer 
With Memory 

ROM Code Revision 
Letter 

7.6 New Product Release Form (TSPSOC1x) 

Package or Die 
N - Plastic Dip 

V-Die 
FN - PLCC 

The new product release form is simply a form that is used to track and document all the steps involved in 
implementing a new speech code onto one of the parent speech devices. Blank TSP50C1x forms are 
provided in Sections 7.6.1 through 7.6.3 (note that the addresses on these forms are subject to change). 
To initiate this implementation process, the customer must begin either by obtaining one of these new 
product release forms (NPRFs) from their local TI field sales office or by generating one of their own forms 
using the blank forms as a guide. The next step is to complete Section 1. As seen on the blank forms, 
Section 1 allows the customer to choose the parent device for their particular code, as well as the options 
pertinent to the parent device they wish to use. Section 1 also allows the customer to choose their own 
customer part number used for ordering their parts. If no customer part number is indicated, then TI defaults 
to the CSM1 xxxxxx part number for ordering purposes. Completion of the company name, project name, 
and option fields is mandatory. Completion of all other fields in Section 1 is optional. After completion of 
Section 1, the customer must submit the NPRF (along with their speech code) to the speech products group 
via their local TI field sales office. 

Once the speech products group receives the speech code and the NPRF from the customer, they will take 
the initial steps involved in implementing this code onto production devices. Since all parent speech devices 
are mask programmable, the speech code must first be converted into a format that the speech products 
mask vendor can use to generate this new mask. This format is called a PG output. Once this PG output 
is generated, the original speech code is reconstructed from the PG output file and sent back to the customer 
for recheck. This recheck ensures the confidence that the PG output file was generated correctly. Along with 
the reconstructed speech code, the NPRF is also returned to the customer with Section 2 completed by TI. 
In this section, TI assigns their own CSMxxxxxx part number and, in the case of packaged devices, TI also 
proposes a symbol format to the customer. If the customer wishes to deviate from the suggested symbol 
format, they must consult TI for requested changes. 

After the customer verifies the reconstructed speech code and also accepts the proposed symbol format, 
they are required to sign Section 3 as authorization for TI to generate the mask, prototypes, and risk units 
in accordance with the pertinent purchase order. The customer then needs to send or fax the NPRF to the 
speech products group via the local TI field sales office. TI should have the prototypes shipped to the 
customer approximately six weeks after receiving the NPRF with Section 3 signed. Once the customer 
receives these prototypes, they need to verify the functionality of the prototypes, sign Section 4, and send 
the NPRF (with Section 4 signed) back to TI. At this point, the customer can start ordering production units. 

7-7 



7.6.1 New Product Release Form for TSP50C10A and TSP50C11A 

SECTION 1. OPTION SELECTION 

This section is to be completed by the customer and sent to TI along with the microprocessor code 
and speech data. 

Division: _____________ Company: ________________ _ 

Pr~ectName:~-------------------------------
Purchase Order #: __________________ -:-_----,_.,--_____ _ 
Management Contact: ________________ Phone: ( 
Technical Contact: __________________ Phone: ( 

Customer Part Number: _______________ _ 

Generic TI Part Number (Check one) : 

TSP50C10A 

TSP50C11A 

D/A Output (Check one) : 

__ 2 pin push pull 

__ single pin single ended 

__ single pin double ended 

Package Type (Check one) : 

__ N (plastic) 

die 

SECTION 2A. ASSIGNMENT OF TI PRODUCTION PART NUMBER 

This section is to be completed by TI. 

TI Part Number: 

SECTION 2B. ASSIGNMENT OF SYMBOLIZATION FORMAT 

7-8 

This section is to be completed by TI and 

approved by the customer. (Customer 

approval in Section 3) 



> 

TI 
LOGO 

TOP SIDE SYMBOLIZATION: (PACKAGED DEVICES ONLY) 

YWWLLLT 
{OPTIONAL 13 CHAR} 
{OPTIONAL 11 CHAR} 

YWW = DATE CODE 
LLL = LOT TRACE CODE 

T = ASSY SITE 
{FIRST LINE REQUIRED} 

... JcAA ••• ****Jc* ................. *Jc* ....... "" ... "':A:Jc*"" .......... ***Jc*""."'*********************JcJcJcJc************ ... ""******JcJc ...... ""******JcAJcJcJcAle ..... " ... """" 

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS 
This section is to be completed by the customer and sent to TI after the following criteria have 
been met: 

1) The customer has verified that the TI computer generated data matches the original data. 

2) The customer approves of the symbolization format in Section 2B. 
(Applies to packaged device only) 

I hereby certify that the TI generated verification data has been checked and found to be correct, and I 
authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in Section 1 
above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization 
format illustrated in 2B on all devices with the part number indicated in 2A. 

By: ____________________________________ _ Title: __________ _ 

Date: ___________ _ 

************k***********JcJcAJcAJcJcJcJcJcJcJcJcJcJcAJcAJcJcJcJcJc**JcJcAJcJc**JcJc***JcJcJcJcAJcJcAJcJcJcJcJcA****JcJcJc:A:***AJcJcJcAAJcJcA****JcJcA*AJcJcA*JcAAAJc.JcJc. 

SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION 
This section is to be completed by the customer after prototype devices have been received and 
tested. 

I hereby certify that the prototype devices have been received and tested and found to be acceptable, and 
I authorize TI to start normal production in accordance with purchase order # __________ _ 

By: ____________________________________ ___ Title: _________ __ 

Date: _________ _ 

.U:A**""AJc*****JcJc**JcJcJeJcJcJcJcAJcJc****"*leJcJc*****JcJcJcJcJcA*JcJc****JcJcJcJcJcJc***AJcIcJc""Jc**JcJcA*A****"":k ... :A:"*AJcJcA*****JcJcJcJcJc"'*'"***""A"AJc"*"'*Jc 

Return to: Texas Instruments, Inc. 
Attn: Bob Steel 
P.O. Box 655303, MIS 8211 
Dallas, TX 75265 

or Fax to: (214) 997-3471 
Attn. Bob Steel 

7-9 



7.6.2 New Product Release Form for TSP50C12 

SECTION 1. OPTION SELECTION 

This section is to be completed by the customer and sent to TI along with the microprocessor code 
and speech data. 

Division: ______________ Company: _________________ _ 

Pr~ectName:~---------------------------------------
PurchaseOrder#: ___________________________________ ~----~--~-------------
Management Contact: ______________________________ Phone: ( 
Technical Contact: ___________________________________ Phone: ( 

Customer Part Number: _____________________________ _ 

D/A Output (Check one) : 

LCD Drive: 

Oscillator: 

Package: 

__ 2 pin push pull 

__ single pin double ended 

__ Type A, Fast 

__ Type B, Slow 

__ RC (resistor/capacitor) 

__ CR (ceramic resonator) 

Die Form 

AAA*AJc************************************AJc***************"'***JcJcA""********************A***""****************AkAA***** 

SECTION 2. ASSIGNMENT OF TI PRODUCTION PART NUMBER 

This section is to be completed by TI. 

TI Part Number: 

AJc*****A**************Jc*******************************AAA •••••••••• " •••••••••••••••••••••••••••••••• "" •• "' •••• AAA****** 

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS 
This section is to be signed by the customer and sent to TI. 

I hereby certify that the TI generated verification data has been checked and found to be correct, and I 
authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in Section 1 
above. 

7-10 



By: ____________________________________ _ Title: _____________ _ 

Date: ____________________ _ 

..... **.U •• :A::A .............. * •••• ** .............. ** ...... ***"'AU ....... A ......... " ................................ ",,"' ••••••• Jd .................. ***A.A."'* •••• **."" •• 
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION 

This section is to be completed by the customer after prototype devices have been received and 
tested. 

I hereby certify that the prototype devices have been received and tested and found to be acceptable, and 
I authorize TI to start normal production in accordance with purchase order # __________ _ 

By:~----------------------------------- Title: __________ _ 

Date: ____________________ _ 

•••• "'" •• *****A********Jc***"'*:lcJd,**********Jc****Jc.***A****JcJcJc****Jc***********Jc****A"****A"'*********JcJcJc*****AkA**.****"''' 

Return to: Texas Instruments, Inc. 
Attn: Bob Steel 
P.O. Box 655303, MIS 8211 
Dallas, TX 75265 

or Fax to: (214) 997-3471 
Attn. Bob Steel 

7-11 



7.6.3 New Product Release Form for TSP50C14 

SECTION 1. OPTION SELECTION 

This section is to be completed by the customer and sent to TI along with the microprocessor code 
and speech data. 

Division: _____________ Company: _______________ _ 
Project Name: ______________________________ _ 
Purchase Order # : ____________________ ---.,. _______ _ 
Management Contact: ________________ Phone: ( 
Technical Contact Phone: ( 

Customer Part Number: _______________ _ 

D/A Output (Check one) : 

__ 2 pin push pull 

__ single pin single ended 

Internal RC Oscillator (Check one) 

9.6 MHz 

7.68 MHz 

Pulse-Width Modulated (Check one) 

PW1 

PW2 

Package Type (Check one) : 

__ N (plastic) 

die 

SECTION 2A. ASSIGNMENT OF TI PRODUCTION PART NUMBER 

This section is to be completed by TI. 

TI Part Number: 
SECTION 2B. ASSIGNMENT OF SYMBOLIZATION FORMAT 

> 

7-12 

This section is to be completed by TI and approved by the customer (customer approval in 
Section 3.) 

TI 
LOGO 

TOP SIDE SYMBOLIZATION: (PACKAGED DEVICES ONLY) 

YWWLLLT 
{OPTIONAL 13 CHAR} 
{OPTIONAL 11 CHAR} 

YWW = DATE CODE 
LLL = LOT TRACE CODE 

T = ASSY SITE 
{FIRST LINE REQUIRED} 



AAAAAAAAAAAAAAAAAA.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**AAAA*AA**AAA.AAAAAAAAA*****AAA**AAA* 

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS 
This section is to be completed by the customer and sent to TI after the following criteria have 
been met: 

1) The customer has verified that the TI computer generated data matches the original data. 

2) The customer approves of the symbolization format in Section 2B. 
(Applies to packaged device only) 

I hereby certify that the TI generated verification data has been checked and found to be correct, and I 
authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in Section 1 
above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization 
format illustrated in 2B on all devices with the part number indicated in 2A. 

By: ____________________________________ _ Title: __________ _ 

Date: _________ _ 

A*AAAAA*AAAA**AA*AAA***A.AA**.***.**A******.*.*.** •• ** •• **.** •••••• ** ••••••••••• * •••• ** ••• *.* ••• };.***.***.*'"* "'''''''''''''''''''''' 
SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION 

This section is to be completed by the customer after prototype devices have been received and 
tested. 

I hereby certify that the prototype devices have been received and tested and found to be acceptable, and 
I authorize TI to start normal production in accordance with purchase order # ___________ _ 

By: ____________________________________ _ Title: __________ _ 

Date: __________ _ 

"'''''''*AA*'''.*};};*** •• **.** •• *};** ••••• ******};*.*******.'''A'''.**.};};*.*****.A***.};.};};*** •• };.** ...... * •• * •• *.};.**.};**};.**};**"'**};* 

Return to: Texas Instruments, Inc. 
Attn: Bob Steel 
P.O. Box 655303, MIS 8211 
Dallas, TX 75265 

or Fax to: (214) 997-3471 
Attn. Bob Steel 

7-13 



7-14 



A Script Preparation and Speech Development Tools 
Script preparation and speech development can be done either by the customer or TI. The following are 
major considerations during the process. 

A.1 Script Generation 
The first step in designing a system using LPC is the generation of a system specification, including a script. 
A coding table that yields the best data rate for the voice selected at the level of quality required needs to 
be selected. The voice that is selected needs to be tested to verify that it synthesizes well. TI can 
recommend voices, or new voices can be auditioned. Each coding table and voice has its characteristic 
data rate. This can be used with a word count to determine the amount of memory required to store the 
speech for the system. 

There are three approaches to word use in a speech script: maximal reuse, partial concatenation, and no 
concatenation. The original synthetic products tended to use maximal reuse because memory was 
expensive and quality expectations were low. In maximal reuse systems, only one sample of each word 
is used regardless of the context in which the word occurs. The speech sounds robotic; it is flat with no 
inflection and there are delays between words. This yields good intelligibility at low data rates but does not 
provide natural quality. Natural speech has different inflections depending on the position of the word in a 
sentence and on whether the sentence is a question, statement, or an order. Additionally, all the words are 
run together; each word is changed by the last sound of the word before it and the first sound of the word 
after it. 

Recording and synthesizing each phrase separately is the easiest way to get natural speech, but memory 
constraints often force compromises. An expert speech editor can look at a script that lists each word in each 
context in which it occurs and determine what contexts are similar enough to permit reuse. 

Once a system script is defined and the coding table selected, a recording script must be generated. For 
systems with partial reuse, this script must include a recording of each word in all necessary contexts. The 
other two approaches are more straightforward with a word list or a phrase list being all that is required. 

A.1.1 Speaker Selection 

While the scripts are being generated, a speaker should be selected to read the script. If possible, several 
voices should be recorded and analyzed, as all voices do not analyze equally well. 

A.1.2 Speech Collection 

Collecting speech for any medium, be it LPC or digital tape, requires significant effort. For high-quality 
speech, a recording studio and a professional speaker are required. It is possible to achieve acceptable 
quality with a professional speaker and a quiet room. Nonprofessional speakers have trouble maintaining 
uniform levels, speaking properly, and providing the expression and inflection required. Additionally, the 
strain of speaking for long periods of time in a controlled manner is considerable. Nonprofessional speakers 
are best used only for prototyping. 

During the session, it may be necessary to experiment with inflection and expression to find the best 
approach. Ideally, the person making the final decision on product content and esthetics should be at the 
recording session. Leaving this task to others leads to repeat visits to the studio. 

There are various techniques that can be used to ensure that the speech will analyze and synthesize 
properly. Certain consonants need to be emphasized and spoken more clearly than they are in normal 
speech. The TI SOS5000 development tool (see Figure A-2) provides immediate feedback for synthetic 
speech making, making the collecting process much easier for inexperienced users. 

The actual collection process is fairly simple. The speech is converted into digital form and then analyzed 
with a computationally intensive algorithm. The SOS5000 uses a TMS32020 digital signal processing chip 

A-1 



to permit very rapid analysis. It consists of two boards that fit into an IBM PC®, software, and a 
documentation package. One of the boards contains the TMS32020 and related circuitry, and the other 
contains an analog-to-digital converter, a digital-to-analog converter, digital filters, amplifiers, and speech 
synthesizers to record and play digitized and synthetic speech. The software supports speech collection, 
analysis, and editing with extensive use of menus, windows, and other user-friendly interfaces. TI uses an 
algorithm that provides high quality but that requires low levels of phase distortion. For this reason, audio 
tape should not be used to collect speech. However, digital audio tape can be used. 

A.1.3 LPC Editing 

The speech often needs to be edited, both to define the boundaries of the words and to mask imperfections 
in the model, the analysis, and the speaker. Limited changes can be made to change inflection and 
emphasis, butthe best quality is achieved by having the desired sound and inflection well-recorded. Skillful 
editors can also reduce data rates significantly from those of analyzed speech. Good editing is a difficult 
skill to learn, requiring a good ear, linguistic knowledge, and a familiarity with computers. TI offers the 
SOS5000 speech development system, which eases many of these tasks by analyzing the speech 
immediately to provide quick feedback and to permit rerecording if the synthetic speech does not offer the 
desired quality. 

A.1.4 Pitfalls 

All speech interfaces, LPC or not, are human interfaces, so they are hard to design. Building a prototype 
system is often useful. The SDS5000 supports quick prototyping. 

LPC provides very-Iow-data-rate speech by virtue of its close modeling of the human vocal tract. Other 
sounds mayor may not be modeled accurately by this model. The best way to find out is to try recording 
and analyzing the sound on the SDS5000. 

A.2 Speech Development Tools 

wi '---------,IL----.-J~ 
8085000 

High-Speed Speech Analysis (2x RealTime) 

• Graphical and Numerical Speech Editing 

Microphone and Line-Level Inputs 

Headphone Outputs 

Supports TSP5220, TSP50C4X Devices 

IBM PC/XT 

• Requires IBM PCIXT, AT, or Compatible With CGA, EGA, or VGA Card 

• Hard Disk and Tape Backup Strongly Suggested 

Uses TMS32020 Digital Signal Processor 

Figure A-1. 5055000 

IBM PC is a registered trademark of IBM Corporation. 

A-2 



W l'-----EVM50C1xl '------' J 
IBM PC/XT 

In-Circuit Emulation 

• Hardware Breakpoints 

• Single Step 

Examine/Modify Registers/Memory 

• Includes Assembler 

Requires 1 Card Slot in IBM PC, PC/XT, PC/AT, and Compatibles 

Figure A-2. EVM5OC1X 

SEB50C1x 

• In-Circuit Emulation 

• Small Size, Low Power Consumption 

• Ideal for Demonstration and Field Test 

Requires Industry-Standard EPROM (TMS27C256) 

Figure A-3. SEB50C1X 

SEB60Cxx 

• In-Circuit Emulation of Up to Four TSP60CXXs 

Small Size, Low Power Consumption 

• Ideal for Debugging, Demonstration, and Field Test 

• Requires Industry-Standard EPROMs (TMS27C256) 

Figure A-4. SEB60CXX 

EPROM 
Programmer 

EPROM 
Programmer 

A-3 



A-4 

,-

w I J 
I [S I 

I I 
EVM50C1x I 

ADP50C12 
IBM PC/XT 

8 
I n? []] 

ADP50C12 EPROM 
Programmer 

Emulation of TSP50C12 for development purposes possible when using ADP50C12 and 
EVM50C1x 

Emulation of TSP50C12 for demonstration and field test purposes possible when using the 
ADP50C12 with an EPROM 

Figure A-5. ADP50C12 



B TSP50C1x Sample Synthesis Program 

0001 OPTION BUNLIST,DUNLIST,PAGEOF 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 

*-----------------------------------------------* 
* TSP50C1x LPC SYNTHESIS PROGRAM * 
* * 
* This is a sample speech synthesis program * 
* which runs on the TSP50C1x family of speech * 
* synthesis microprocessors. It simply speaks the * 
* numbers from one to five. * 
* * 
* This program uses the D6 Coding table format. * 
* * 
*-----------------------------------------------* 
* COPYRIGHT 1989, 1992 TI - SPEECH PRODUCTS * 
*-----------------------------------------------* 
* RAM MAP * 
*++----------------------------------------------* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

+---+---+---+---+---+---+---+---+ 
I 00 I 01 I 02 I 03 I 04 I 05 I 06 I 07 I 

+---+---+---+---+---+---+---+---+ 
I EN I K121 K111 K101 K9 I K8 I K7 I 

I I I I I I I I 

+---+---+---+---+---+---+---+---+ 
I 08 I 09 I OA I OB I OC I OD I OE I OF I 

+---+---+---+---+---+---+---+---+ 
I K6 I K5 I K4 I K3 I K2 I K1 I C1 I C2 I 

I I I I I I I I I 

+---+---+---+---+---+---+---+---+ 
I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 

+---+---+---+---+---+---+---+---+ 
I EN I EN I PH I PH I K1 
I V2 I V1 I V2 I V1 I V2 
+---+---+---+---+---+---+---+---+ 
I 18 I 19 I 1A I 1B I 1C I 1D I 1E I 1F I 

+---+---+---+---+---+---+---+---+ 
I K1 I K2 I K2 I K3 
I V1 I V2 I V1 I V2 
+---+---+---+---+---+---+---+---+ 
I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I 

+---+---+---+---+---+---+---+---+ 
I K3 I K4 I K4 I K5 I K5 I 

I V1 I V2 I V1 I V2 I V1 I 

+---+---+---+---+---+---+---+---+ 
I 28 I 29 I 2A I 2B I 2C I 2D I 2E I 2F I 

+---+---+---+---+---+---+---+---+ 
I K6 I K6 I K7 I K7 I K8 I K8 I K9 I K9 I 

I V2 I V1 I V2 I V1 I V2 I V1 I V2 I V1 I 

+---+---+---+---+---+---+---+---+ 

8-1 



0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 

B-2 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

I 30 I 31 I 32 I 33 I 34 I 35 I 36 I 37 I 
+-+-+-+-+-+-+-+-+ 
I K101 K101 KIll KIll K121 K121TIMRISCALI 
I V2 I VI I V2 I VI I V2 I VI I I I 
+-+-+-+-+--+-+-+-+ 
I 38 I 39 I 3A I 3B I 3C I 3D I 3E I 3F I 
+-+-+-+-+--+-+--+-+ 
IFLAGIFLAGIMOOEIAOR IAOR I 
I I 1 IBUF IMSB ILSB I 
+-+-+--+-+-+-+-+--+ 
I 40 I 41 I 42 I 43 I 44 I 45 I 46 I 47 I 
+-+-+--+-+-+-+--+-+ 

+-+--+-+-+--+-+--+--+ 
I 48 I 49 I 4A I 4B I 4C I 40 I 4E I 4F I 
+-+-+--+-+--+-+--+-+ 

+-+-+-+-+-+-+-+--+ 
I 50 I 51 I 52 I 53 I 54 I 55 I 56 I 57 I 
+-+-+-+--+--+-+--+--+ 

+-+-+-+--+-+-+--+-+ 
I 58 I 59 I SA I 5B I 5C I 50 I 5E I SF I 
+-+--+-+--+-+--+-+-+ 

+-+-+-+-+-+--+-+-+ 
I 60 I 61 I 62 I 63 I 64 I 65 I 66 I 67 I 
+-+-+-+-+-+-+-+--+ 

+-+--+--+-+-+-+-+-+ 
I 68 I 69 I 6A I 6B I 6C I 60 I 6E I 6F I 
+--+-+-+--+--+--+--+-+ 

+-+--+--+--+-+--+--+-+ 
I 70 I 71 I 72 I 73 I 74 I 75 I 76 I 77 I 
+-+-+-+--+-+-+-+-+ 

+-+-+--+-+-+--+-+-+ 
I 78 I 79 I 7A I 7B I 7C I 70 I 7E I 7F I 
+-+-+-+-+-+--+--+-+ 



0096 * 
0097 * +----+----+----+----+----+----+----+----+ 
0098 * 
0099 * * 
0100 * ADDRESS LABELS FOR SYNTHESIS ROUTINE * 
0101 * * 
0102 ******************************************** 

0103 * SYNTHESIZER RAM LOCATIONS 
0104 ******************************************** 

0105 * NOTE NEVER CHANGE LOCATIONS #01 TO #OF 
0106 * 
0107 0001 EN EQU #01 -Energy working value 
0108 0002 K12 EQU #02 -K12 Working Value 
0109 0003 K11 EQU #03 -K11 working Value 
0110 0004 K10 EQU #04 -K10 working Value 
0111 0005 K9 EQU #05 -K9 Working Value 
0112 0006 K8 EQU #06 -K8 working Value 
0113 0007 K7 EQU #07 -K7 Working Value 
0114 0008 K6 EQU #08 -K6 Working Value 
0115 0009 K5 EQU #09 -K5 working Value 
0116 OOOA K4 EQU #OA -K4 Working Value 
0117 OOOB K3 EQU #OB -K3 working Value 
0118 OOOC K2 EQU #OC -K2 working Value 
0119 0000 K1 EQU #00 -K1 working Value 
0120 OOOE C1 EQU #OE -C1 Parameter 
0121 OOOF C2 EQU #OF -C2 Parameter 
0122 0010 ENV2 EQU #10 -ENERGY New Value MSB 
0123 0011 ENV1 EQU #11 -ENERGY Current Value MSB 
0124 0012 PHV2 EQU #12 -PITCH New Value MSB 
0125 0014 PHV1 EQU #14 -PITCH Current Value MSB 
0126 0016 K1V2 EQU #16 -K1 New Value MSB 
0127 0018 K1V1 EQU #18 -K1 Current Value MSB 
0128 001A K2V2 EQU #lA -K2 New Value MSB 
0129 001C K2V1 EQU #1C -K2 Current Value MSB 
0130 001E K3V2 EQU #1E -K3 New Value MSB 
0131 0020 K3V1 EQU #20 -K3 Current Value MSB 
0132 0022 K4V2 EQU #22 -K4 New Value MSB 
0133 0024 K4V1 EQU #24 -K4 Current Value MSB 
0134 0026 K5V2 EQU #26 -K5 New Value 
0135 0027 K5V1 EQU #27 -K5 Current Value 
0136 0028 K6V2 EQU #28 -K6 New Value 
0137 0029 K6V1 EQU #29 -K6 Current Value 
0138 002A K7V2 EQU #2A -K7 New Value 
0139 002B K7V1 EQU #2B -K7 Current Value 
0140 002C K8V2 EQU #2C -K8 New Value 
0141 0020 K8V1 EQU #20 -K8 Current Value 
0142 002E K9V2 EQU #2E -K9 New Value 
0143 002F K9V1 EQU #2F -K9 Current Value 

8-3 



0144 
0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 

8-4 

0030 K10V2 
0031 K10V1 
0032 KllV2 
0033 KllV1 
0034 K12V2 
0035 K12V1 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

#30 
#31 
#32 
#33 
#34 
#35 

-K10 New Value 
-K10 Current Value 
-Kll New Value 
-K11 Current Value 
-K12 New Value 
-K12 Current Value 

0036 
0037 
0038 
0039 
003A 
003B 
003C 

0004 
0007 
0001 
0006 
0006 
0005 
0005 
0004 
0004 
0004 
0003 
0003 
0003 
0000 
0000 

* 
* 
* 
* 

LPC status variable locations 

TIMER 
SCALE 
FLAGS 
FLAG 1 
MODE BUF 
ADR MSB 
ADR LSB 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

#36 
#37 
#38 
#39 
#3A 
#3B 
#3C 

-Stored Timer value for update 
-Interpolation factor INTP 
-Flags used in LPC synthesis 
-Flags used in LPC synthesis 
-Stored value of Mode register 
-MSB of address 
-LSB of address 

************************************************************ 

* Constant Definitions 
************************************************************ 

* 
* Bit Size of Speech parameters 

* 
EBITS 
PBITS 
RBITS 
K1BITS 
K2BITS 
K3BITS 
K4BITS 
K5BITS 
K6BITS 
K7BITS 
K8BITS 
K9BITS 
K10BITS 
KllBITS 
K12BITS 

* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

* Prescale Values 

* 

4 

7 

1 

6 

6 

5 

5 

4 
4 

4 

3 

3 

3 

o 
o 

-Number of Energy Bits 
-Number of pitch Bits 
-Number of Repeat Bits 
-Number of K1 Bits 
-Number of K2 Bits 
-Number of K3 Bits 
-Number of K4 Bits 
-Number of K5 Bits 
-Number of K6 Bits 
-Number of K7 Bits 
-Number of K8 Bits 
-Number of K9 Bits 
-Number of K10 Bits 
-Number of K11 Bits 
-Number of K12 Bits 

* PSvalue = TRUNC(Samples * 2 * 30/256) 

* 
* 
* 
* 
* 
* 

This comes from the fact that samples come every 30 
instruction cycles in LPC mode. The factor of 2 
accounts for the cycle steal that happens in 
LPC mode. When not in LPC mode, samples come 
every 60 instruction cycles, so it comes out the 



0192 
0193 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 

* 
* 

same. The 256 divider is the full scale Timer 
register value. 

* 
* 

00C8 SAMPLES 
002E PSVALUE 

EQU 
EQU 

200 -Samples per frame 
(SAMPLES*60/256) -Prescale Value 

* 
* Device Constants 

* 
OF61 C1 Value 
OB67 C2 Value 
007F MAX RAM 

* 

EQU 
EQU 
EQU 

#F61 
#B67 
#7F 

* Special Energy Values 

* 
OOOF ESTOP 
0000 ESILENCE 

* 

EQU 
EQU 

15 
o 

* Special pitch Value 

* 
0000 PUnVoiced EQU o 

* 
* 
* End of sentence signal 

* 
OOFF StopWord EQU #FF 

* 

-C1 Value 
-C2 value 
-Highest RAM location 

-Stop code 
-Silence Code 

-UnVoiced Frame Code 

* FLAGS bit usage (and Set Masks) 

* 
STOPFLAG EQU 
R FLAG EQU 
update_FIg EQU 
Sil_Flg1 EQU 

-Stop frame reached 
-Repeat Frame = 1 
-Set high on update 
-New frame is silent 

1 

1 

0001 
0002 
0004 
0008 
0010 
0020 
0040 
0080 

Unv_Flg1 
Int Inh 
Sil_Flg2 
Unv_Flg2 

EQU 
EQU 
EQU 
EQU 

#01 
#02 
#04 
#08 
#10 
#20 
#40 
#80 

-New frame is unvoiced 1 
-Inhibit interpolation 1 
-Current frame silent = 1 
-Current frame unvoiced = 1 

* 
* FLAG1 bit usage (and Set Masks) 

* 
0001 Int Off EQU #01 -Disable INTP routine 1 

0001 
0002 
0004 
0008 

* 
* 
* 
INTI 
LPC 
PCM 
INT2 

MODE Register Bit Definitions 

EQU 
EQU 
EQU 
EQU 

#01 
#02 
#04 
#08 

-Enable Level 1 interrupt 
-Enable LPC synthesis 
-Enable PCM synthesis 
-Enable Level 2 interrupt 

8-5 



0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 0000 
0248 0000 

0249 
0250 
0251 

0001 

0252 0002 
0253 0003 
0254 
0255 
0256 
0257 0004 
0258 0005 
0259 0006 

0007 
0260 0008 

0009 
0261 OOOA 

OOOB 
0262 
0263 
0264 
0265 
0266 0010 
0267 0010 
0268 0011 
0269 0012 
0270 0013 
0271 0014 
0272 0015 
0273 0016 
0274 0017 
0275 0018 
0276 0019 
0277 001A 
0278 001B 
0279 001C 
0280 0010 
0281 001E 
0282 001F 
0283 

8-6 

0010 
0020 
0040 
0080 

69 
00 

2F 
10 

20 

EXTROM 
RAMROM 
MASTER 
UNV 

EQU 
EQU 
EQU 
EQU 

#10 
#20 
#40 
#80 

-Set external ROM mode 
-Enable GETs from RAM 
-Master/Slave Toggle 
-Enable Unvoiced excitation 

*********************************************************** 

* Start of program 
*********************************************************** 

AORG 
TMAO 

#0000 
o 

*----------Initialize mode register-------------------------* 

CLA 
TAMOOE 

*----------Clear all ram to zero----------------------------* 

-Start at bottom of RAM 
13 RAM LOOP 
61 

CLX 
TAMIX 
XGEC 

-Clear RAM, increment pointer 
MAX RAM+1 -Finished all RAM? 

80 
40 
24 
40 
05 

A2 
A2 
A2 
A2 
A2 
A2 
A2 
A2 
AO 
AD 

A2 
A2 
A2 
A2 
A2 
A2 

BR GO yes, skip vector tables 

BR RAM LOOP no, loop back 

* 
*********************************************************** 

* Interrupt vectors 
*********************************************************** 

* 

AORG 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 
SBR 

#0010 
INT2 01 
INT2 01 
INT2 00 
INT2 00 
INT2 11 
INT2 11 
INT2 10 
INT2 10 
INTI 01 
INTI 01 
INTI 00 
INTI 00 
INT! 11 
INTI 11 
INTI 10 
INTI 10 

-Timer Underflow, PCM=O, LPC=l 
-Timer Underflow, PCM=O, LPC=l 
-Timer Underflow, PCM=O, LPC=O 
-Timer Underflow, PCM=O, LPC=O 
-Timer Underflow, PCM=l, LPC=l 
-Timer Underflow, PCM=l, LPC=l 
-Timer Underflow, PCM=l, LPC=O 
-Timer Underflow, PCM=l, LPC=O 
-PPC < 200 hex interrupt 
-PPC < 200 hex interrupt 
-Pin (B1) goes low interrupt 
-pin (B1) goes low interrupt 
-10 kHz Clock interrupt 
-10 kHz Clock interrupt 
-20 kHz Clock interrupt 
-20 kHz Clock interrupt 



0284 0020 40 lNT1 01 BR lNTP -PPC < 200 hex interrupt 
0021 B4 

0285 * 
0286 0022 lNT2 00 
0287 0022 lNT2 01 -
0288 0022 lNT2 10 -
0289 0022 lNT2 11 -
0290 0022 lNT1 00 
0291 0022 lNT1 10 -
0292 0022 2F lNT1 11 CLA 
0293 0023 3E RETl 
0294 *********************************************************** 

0295 * Speak phrases 
0296 *********************************************************** 

0297 0024 6E GO TCA 0 -Speak 1st phrase 
0025 00 

0298 0026 00 CALL SPEAK 
0027 31 

0299 * 
0300 0028 6E TCA 1 -Speak 2nd phrase 

0029 01 
0301 002A 00 CALL SPEAK 

002B 31 
0302 * 
0303 002C 6E TCA 2 -Speak 3rd phrase 

002D 02 
0304 002E 00 CALL SPEAK 

002F 31 
0305 * 
0306 0030 3F SETOFF -Quit program 
0307 *********************************************************** 

0308 * Speak utterance - Phrase number in A register 
0309 *********************************************************** 

0310 0031 3B SPEAK lNTGR 
0311 0032 2E SALA -Double index to get offset 

0312 0033 75 ACAAC SENTENCE -Add base of table 
0034 BF 

0313 0035 6D LUAB -get address MSB 
0314 0036 3A lAC 
0315 0037 6B LUAA -Get address LSB 
0316 0038 12 XBA 
0317 0039 1B SALM -Combine MSB and LSB 
0318 003A 1B SALM 
0319 003B 2C ABAAC 
0320 
0321 003C 1A TAB -Save address 
0322 003D 6A TAMD ADR LSB -Save LSB of address 

003E 3C 

B-7 



0323 
0324 003F 68 AXCA 1 -Shift address right 

0040 01 
0325 0041 15 SARA by 8 bits 
0326 
0327 0042 6A TAMD ADR_MSB -Save MSB of address 

0043 3B 
0328 0044 12 XBA 
0329 0045 40 BR SPEAK2 

0046 59 
0330 
0331 0047 69 SPEAKI TMAD ADR LSB -Fetch and combine 

0048 3C 
0332 0049 lA TAB address 
0333 004A 69 TMAD ADR MSB 

004B 3B 
0334 004C IB SALA4 
0335 004D IB SALA4 
0336 004E 2C ABAAC 
0337 
0338 004F 3A lAC -Increment address 
0339 
0340 0050 lA TAB -Save new address 
0341 0051 6A TAMD ADR LSB -Save LSB of address 

0052 3C 
0342 
0343 0053 68 AXCA 1 -Shift address right 

0054 01 
0344 0055 15 SARA by 8 bits 
0345 
0346 0056 6A TAMD ADR MSB -Save MSB of address 

0057 3B 
0347 0058 12 XBA 
0348 
0349 0059 68 SPEAK2 LUAA -Get word number 
0350 005A 60 ANEC StopWord -End of phrase? 

0058 FF 
0351 005C 40 BR SPEAK3 no, continue 

005D SF 
0352 005E 3D RETN yes, exit loop 
0353 
0354 005F 2E SPEAK3 SALA -Double index to get offset 
0355 0060 75 ACAAC SPEECH -Add base of table 

0061 D5 
0356 0062 6D LUA8 -Get address MSB 
0357 0063 3A lAC 
0358 0064 68 LUAA -Get address LS8 
0359 0065 12 XBA 

8-8 



0360 0066 
0361 0067 
0362 0068 

0363 
0364 0069 
0365 
0366 006A 
0367 006B 

006C 
0368 006D 

006E 
0369 
0370 006F 

0070 
0371 
0372 0071 
0373 0072 

1B 
1B 
2C 

6C 

2F 
6A 
03 
6A 
02 

6A 
38 

2F 
7B 

0073 67 
0374 0074 6A 

0075 OF 
0375 
0376 0076 
0377 0077 

0078 
0378 0079 

007A 
0379 
0380 
0381 
0382 

0383 007B 

2F 
7F 
61 
6A 

OE 

70 
007C OC 

0384 007D 

007E 
0385 007F 

0080 
0386 
0387 
0388 
0389 0081 

0082 
0390 0083 

0084 
0391 
0392 
0393 
0394 
0395 

6A 

14 
6A 

12 

01 
B5 
01 
B5 

* 

SALA4 
SALA4 
ABAAC 

LUAPS 

CLA 
TAMD 

TAMD 

TAMD 

CLA 
ACAAC 

TAMD 

CLA 
ACAAC 

TAMD 

-Combine LSB and MSB 

-Load Speech Address Register 

-Kill K11 and K12 parameters 
Kll 

K12 

FLAGS -Init flags for speech 

-Load C2 parameter 
C2 Value (a device constant) 

C2 

-Load C1 parameter 
C1 Value (a device constant) 

C1 

* Now we give an initial value to the Pitch in case the 
* utterance starts with a silent frame. 

* 
ACAAC #OC 

TAMD PHV1 

TAMD PHV2 

* 
* Now we preload the first two frames. 

* 
CALL UPDATE -Load first frame 

CALL UPDATE -Load 2nd frame 

* 
* Now we give some values to the Timer and Prescaler so 
* that we can do a valid interpolation on the first call to 
* INTP. Then we do the first call to INTP to preload the 
* first valid interpolation. 

8-9 



0396 
0397 0085 

0086 
0398 0087 
0399 0088 

6E 
2E 
19 
6E 

0089 7F 
0400 008A 

008B 
0401 008C 

0080 
0402 008E 
0403 008F 

0090 
0404 
0405 
0406 
0407 
0408 
0409 
0410 
0411 
0412 0091 

0092 
0413 0093 

0094 
0414 0095 
0415 0096 
0416 
0417 0097 
0418 
0419 0098 

6A 
36 
6E 
FF 
IE 
00 
B4 

62 
3A 
64 
02 
11 
10 

3E 

64 
0099 01 

0420 009A 
0421 009B 
0422 
0423 
0424 
0425 
0426 
0427 
0428 
0429 

11 
10 

* 

* 

TCA 

TAPSC 
TCA 

TAMD 

TCA 

TATM 
CALL 

PSVALUE 

#7F 

TIMER 

#FF 

INTP 

-Initialize prescale 

-Pretend there was a previous 

update 

-Set timer to max value to 

disable interpolation 
-Do first interpolation 

* Now we enable the synthesizer for speech 

* 
* We do this in two stages so that we can reset the 
* interrupt pending latch without it being immediately 
* set again by the Bl(low) interrupt. 

* 

* 

TCX 

ORCM 

TMA 
TAMODE 

RETI 

ORCM 

TMA 
TAMODE 

MODE BUF -Turn on LPC synthesizer 

LPC 

-Reset interrupt pending latch 

INTI -Enable interrupt 

* Now we loop until the utterance is complete. When the 
* utterance is finished, the routine UPDATE will execute a 
* RETN instruction which will exit this routine. In the 
* meantime, this loop will poll the Timer register and 
* update the frame whenever it underflows. 

* 
0430 009C SPEAK LP 
0431 009C 

0090 
0432 009E 

009F 
0433 OOAO 

8-10 

62 
38 
66 
04 
40 

TCX 

TSTCM 

BR 

FLAGS 

Update_Flg -Is Update already done? 

SPEAK LP yes, loop 



00A1 9C 
0434 
0435 00A2 62 

00A3 36 
0436 OOM 
0437 00A5 
0438 
0439 00A6 
0440 00A7 
0441 
0442 00A8 
0443 00A9 
0444 OOAA 
0445 OOAB 

OOAC 
0446 
0447 OOAD 
0448 OOAE 

11 
1A 

17 
15 

16 
12 
2D 
41 
B5 

11 

60 
OOAF 00 

0449 OOBO 
00B1 

0450 00B2 
00B3 

0451 
0452 
0453 
0454 
0455 
0456 
0457 
0458 
0459 
0460 

40 
9C 
41 
B5 

* * * * * 

TCX 

TMA 
TAB 

TTMA 
SARA 

TAM 
XBA 
SBAAN 
BR 

TMA 
ANEC 

BR 

BR 

TIMER 

UPDATE 

o 

SPEAK LP 

UPDATE 

* INTERPOLATION ROUTINE 

* * * * * 

-Get old timer 

register value 
into B register 

-Get new timer register 
value and scale it. 

-Store new value 

-Exchange new and old values 
-Subtract new from old 
-If underflowed, do an update 

-Get new timer value again. 
-Is it about to underflow? 

no, loop again 

yes, do update now 

* First we need to get the current value of the timer 
* register and store it away. It will be divided by two 
* with the SARA instruction so that the most significant 
* bit is guaranteed to be zero so that it will always be 
* interpreted as a positive number during the 
* interpolation. 

* * * * * 
0461 00B4 
0462 00B5 
0463 00B6 
0464 00B7 

3B INTP 
17 

INTGR 
TTMA 
SARA 

TAMD 

-Ensure we are in integer mode 
-Get timer register contents 

0465 
0466 
0467 
0468 

00B8 

0469 00B9 
OOBA 

0470 OOBB 
OOBC 

0471 OOBD 

15 
6A 
37 

62 
39 
66 
01 
41 

OOBE B3 

SCALE 

* * * * * 

shift to make positive 

and store it 

* See if this routine is enabled. If it is not, exit 

* the routine. 

* * * * * 
TCX FLAG 1 -Point to flag 

TSTCM Int Off -If routine disabled ••• 

BR IRETI ••• branch to exit point 

6-11 



0472 
0473 
0474 
0475 
0476 
0477 
0478 

* * * * * 
* Next we need to see if the frame type has changed between 
* voiced and unvoiced frames. If it has, we do not want to 
* interpolate between them; we just want to use the current 
* frame values until we have two frames of the same type to 
* interpolate between. 

* * * * * 
0479 OOBF 

OOCO 
0480 OOCI 

00C2 
0481 00C3 

00C4 
0482 00C5 

00C6 

62 TINTP 
38 

TCX FLAGS -Point to status flags 

0483 
0484 
0485 
0486 
0487 
0488 
0489 

66 
20 
40 
C7 
40 
E4 

TSTCM Int Inh -Is interpolation inhibited? 

BR NOINT yes, inhibit interpolation 

BR INTPCH no, interpolate 

* * * * * 
* The following code is reached if interpolation is 
* inhibited. It sets the stored timer value to #7F which 
* effectively forces the interpolation to yield the old 
* values for the working values, thus effectively disabling 
* interpolation. 

* * * * * 
0490 00C7 6E NOINT TCA #7F -Set Scale factor to 

00C8 7F 
0491 00C9 

OOCA 
0492 
0493 
0494 
0495 
0496 
0497 
0498 
0499 
0500 
0501 OOCB 

6A 
37 

62 
OOCC 38 

0502 OOCD 66 
OOCE 80 

0503 OOCF 40 
0000 09 

0504 
0505 0001 

0002 
0506 0003 

0004 
0507 0005 

0006 

B-12 

62 
3A 
66 
80 
40 
OF 

TAMD SCALE highest value 

* 
* If the new frame has a voicing different from the last 
* frame, we want to zero the energy until the Unvoiced bit 
* in the mode register is changed and the K parameters are 
* all to the correct values. We therefore check in this 
* section of code to see if the frame voicing is different 
* from the setting in the Mode Register. If it is, we zero 
* the energy until after the Mode Register is modified. 

* 
TCX FLAGS 

TSTCM unv_Flg2 -Is current frame unvoiced? 

BR Uv yes, go to unvoiced branch 

TCX Mode Buf -Current frame is voiced 

TSTCM UNV -Has mode changed to unvoiced? 

BR ClrEN yes, clear the energy 



0508 0007 40 
0008 E4 

0509 
0510 0009 62 UV 

OODA 3A 
0511 OODB 

OODC 
0512 0000 

66 

80 
40 

OODE E4 
0513 
0514 OODF 

0515 OOEO 

2F ClrEN 

6A 
00E1 01 

0516 00E2 

00E3 

40 

E4 

* 

BR 

TCX 

TSTCM 

BR 

CLA 
TAMD 

BR 

INTPCH no, no action required 

Mode Buf -New frame is unvoiced 

UNV -Has voicing mode changed? 

INTPCH no, no action required 

-Zero Energy during update 
EN 

INTPCH 

0517 
0518 
0519 
0520 
0521 

* Interpolate pitch and write the result to the pitch 
* register 

0522 00E4 
00E5 

0523 00E6 
0524 00E7 
0525 00E8 

0526 00E9 
0527 OOEA 
0528 OOEB 
0529 OOEC 
0530 OOED 

0531 
0532 OOEE 
0533 OOEF 

* 
62 INTPCH 
12 

14 
1B 
28 

21 
1A 
14 
1B 
28 

20 
62 

OOFO 37 

TCX 

TMAIX 
SALA4 
AMAAC 

IXC 
TAB 

TMAIX 
SALM 
AMAAC 

SBAAN 
TCX 

PHV2 

SCALE 

-Combine new pitch and new 

fractional pitch and 
leave in the B register 

-Combine current pitch and 
current fractional pitch 
and leave in A register 

-(Pcurrent - Pnew) 

-(Pcurrent-Pnew)*Timer 
-Pnew+(Pcurrent-Pnew)*Timer 

0534 00F1 
0535 00F2 
0536 00F3 
0537 00F4 
0538 

39 
2C 
2E 
1C 

AXMA 

ABAAC 
SALA 
TASYN 

-Adjust for 2 byte excitation 

0539 
0540 
0541 
0542 00F5 
0543 00F6 

3C 
62 

00F7 16 
0544 00F8 

0545 00F9 

0546 OOFA 

14 

1B 

28 

-Write to pitch register 

* 
* Interpolate K1 and store the result in the working K1 
* register 

* 
EXTSG 
TCX 

TMAIX 

SALM 

AMAAC 

K1V2 
-Allow negative K parameters 
-Combine New Kl and New 

fractional K1 and 
leave in the B register 

8-13 



0547 OOFB 21 IXC 
0548 OOFC 1A TAB 
0549 
0550 OOFO 14 TMAIX -Combine current K1 and 
0551 OOFE 1B SALA4 current fractional K1 and 
0552 OOFF 28 AMAAC leave in the A register 
0553 
0554 0100 20 SBAAN -(K1current - K1new) 
0555 0101 62 TCX SCALE 

0102 37 
0556 0103 39 AXMA -(Klcurrent - Klnew) * Timer 
0557 0104 2C ABAAC -K1new+(Klcurrent-K1new)*Timer 
0558 0105 6A TAMO Kl -Load interpolated K1 value 

0106 00 
0559 * 
0560 * Interpolate K2 and store the result in the 
0561 * working K2 register 
0562 * 
0563 0107 62 TCX K2V2 -Combine New K2 and New 

0108 1A 
0564 0109 14 TMAIX fractional K2 and 
0565 010A 1B SALA4 leave in the B register 
0566 010B 28 AMAAC 
0567 010C 21 IXC 
0568 0100 1A TAB 
0569 
0570 010E 14 TMAIX -Combine current K2 and 
0571 010F 1B SALA4 current fractional K2 and 
0572 0110 28 AMAAC leave in the A register 
0573 
0574 0111 20 SBAAN -(K2current - K2new) 
0575 0112 62 TCX SCALE 

0113 37 
0576 0114 39 AXMA -(K2current - K2new) * Timer 
0577 0115 2C ABAAC -K2new+(K2current-K2new)*Timer 
0578 0116 6A TAMO K2 -Load interpolated K2 value 

0117 OC 
0579 * 
0580 * Interpolate K3 and store the result in the working K3 
0581 * register 
0582 * 
0583 0118 62 TCX K3V2 -Combine New K3 and New 

0119 IE 
0584 011A 14 TMAIX fractional K3 and 
0585 011B 1B SALM leave in the B register 
0586 011C 28 AMAAC 
0587 0110 21 IXC 
0588 011E 1A TAB 

8-14 



0589 
0590 011F 14 TMAIX -Combine current K3 and 
0591 0120 1B SALA4 current fractional K3 and 

0592 0121 28 AMAAC leave in the A register 
0593 
0594 0122 20 SBAAN -(K3current - K3new) 

0595 0123 62 TCX SCALE 
0124 37 

0596 0125 39 AXMA -(K3current - K3new) * Timer 
0597 0126 2C ABAAC -K3new+(K3current-K3new)*Timer 
0598 0127 6A TAMO K3 -Load interpolated K3 value 

0128 OB 
0599 * 
0600 * Interpolate K4 and store the result in the working K4 

0601 * register 
0602 * 
0603 0129 62 TCX K4V2 -Combine New K4 and New 

012A 22 
0604 012B 14 TMAIX fractional K4 and 
0605 012C 1B SALA4 leave in the B register 
0606 0120 28 AMAAC 
0607 012E 21 IXC 
0608 012F 1A TAB 
0609 
0610 0130 14 TMAIX -Combine current K4 and 

0611 0131 1B SALA4 current fractional K4 and 
0612 0132 28 AMAAC leave in the A register 
0613 
0614 0133 20 SBAAN -(K4current - K4new) 
0615 0134 62 TCX SCALE 

0135 37 
0616 0136 39 AXMA -(K4current - K4new) * Timer 
0617 0137 2C ABAAC -K4new+(K4current-K4new)*Timer 
0618 0138 6A TAMO K4 -Load interpolated K4 value 

0139 OA 
0619 * 
0620 * Interpolate K5 and store the result in the working K5 
0621 * register 
0622 * 
0623 013A 62 TCX K5V2 -Put New K5 (adjusted to 

013B 26 
0624 013C 14 TMAIX 12 bits) in B register 

0625 0130 1B SALA4 
0626 013E 1A TAB 
0627 013F 14 TMAIX -Put Current K5 (adjusted to 
0628 0140 1B SALA4 12 bits) in A register 

0629 
0630 0141 20 SBAAN -(K5current - K5new) 

8-15 



0631 0142 62 TCX SCALE 
0143 37 

0632 0144 39 AXMA -(K5current - K5new) * Timer 
0633 0145 2C ABAAC -K5new+(K5current-K5new)*Timer 
0634 0146 6A TAMO K5 -Load interpolated K5 value 

0147 09 
0635 * 
0636 * Interpolate K6 and store the result in the working K6 
0637 * register 
0638 * 
0639 0148 62 TCX K6v2 -Put New K6 (adjusted to 

0149 28 
0640 014A 14 TMAIX 12 bits) in B register 
0641 014B 1B SALA4 
0642 014C 1A TAB 
0643 0140 14 TMAIX -Put Current K6 (adjusted to 
0644 014E 1B SALA4 12 bits) in A register 
0645 
0646 014F 20 SBAAN -(K6current - K6new) 
0647 0150 62 TCX SCALE 

0151 37 
0648 0152 39 AXMA -(K6current - K6new) * Timer 
0649 0153 2C ABAAC -K6new+(K6current-K6new)*Timer 
0650 0154 6A TAMO K6 -Load interpolated K6 value 

0155 08 
0651 * 
0652 * Interpolate K7 and store the result in the working K7 
0653 * register 
0654 * 
0655 0156 62 TCX K7V2 -Put New K7 (adjusted to 

0157 2A 
0656 0158 14 TMAIX 12 bits) in B register 
0657 0159 1B SALA4 
0658 015A 1A TAB 
0659 015B 14 TMAIX -Put Current K7 (adjusted to 
0660 015C 1B SALA4 12 bits) in A register 
0661 
0662 0150 20 SBAAN -(K7current - K7new) 
0663 015E 62 TCX SCALE 

015F 37 
0664 0160 39 AXMA -(K7current - K7new) * Timer 
0665 0161 2C ABAAC -K7new+(K7current-K7new)*Timer 
0666 0162 6A TAMO K7 -Load interpolated K7 value 

0163 07 
0667 * 
0668 * Interpolate K8 and store the result in the working K8 
0669 * register 
0670 * 

6-16 



0671 0164 62 TCX K8V2 -Put New K8 (adjusted to 
0165 2C 

0672 0166 14 TMAIX 12 bits) in B register 
0673 0167 1B SALA4 
0674 0168 1A TAB 
0675 
0676 0169 14 TMAIX -Put Current K8 (adjusted to 
0677 016A 1B SALA4 12 bits) in A register 
0678 
0679 016B 20 SBAAN -(K8current - K8new) 
0680 016C 62 TCX SCALE 

0160 37 
0681 016E 39 AXMA -(K8current - K8new) * Timer 
0682 016F 2C ABAAC -K8new+(K8current-K8new)*Timer 
0683 0170 6A TAMO K8 -Load interpolated K8 value 

0171 06 
0684 * 
0685 * Interpolate K9 and store the result in the working K9 
0686 * register 
0687 * 
0688 0172 62 TCX K9V2 -Put New K9 (adjusted to 

0173 2E 
0689 0174 14 TMAIX 12 bits) in B register 
0690 0175 1B SALA4 
0691 0176 1A TAB 
0692 
0693 0177 14 TMAIX -Put Current K9 (adjusted to 
0694 0178 1B SALA4 12 bits) in A register 
0695 
0696 0179 20 SBAAN -(K9current - K9new) 
0697 017A 62 TCX SCALE 

017B 37 
0698 017C 39 AXMA -(K9current - K9new) * Timer 
0699 017D 2C ABAAC -K9new+(K9current-K9new)*Timer 
0700 017E 6A TAMO K9 -Load interpolated K9 value 

017F 05 
0701 * 
0702 * Interpolate K10 and store the result in the working K10 
0703 * register 
0704 * 
0705 0180 62 TCX K10V2 -Put New K10 (adjusted to 

0181 30 
0706 0182 14 TMAIX 12 bits) in B register 
0707 0183 1B SALA4 
0708 0184 1A TAB 
0709 
0710 0185 14 TMAIX -Put Current K10 (adjusted to 
0711 0186 1B SALA4 12 bits) in A register 

B-17 



0712 
0713 0187 2D 
0714 0188 62 

0189 37 
0715 018A 39 
0716 018B 2C 
0717 018C 6A 

018D 04 
0718 
0719 
0720 
0721 
0722 
0723 
0724 
0725 
0726 
0727 
0728 
0729 
0730 
0731 
0732 
0733 
0734 
0735 
0736 
0737 
0738 
0739 
0740 
0741 
0742 
0743 
0744 
0745 
0746 
0747 
0748 
0749 
0750 
0751 
0752 
0753 
0754 
0755 
0756 
0757 

B-18 

* 

SBAAN 
TCX 

AXMA 
ABAAC 
TAMD 

SCALE 

K10 

-(K10current - K10new) 

-(K10current - K10new) * Timer 
-K10new+(K10current-K10new)*Timer 
-Load interpolated K10 value 

* K11 and K12 are not needed for LPC 10, so they have been 
* commented out. 

* 
* Interpolate K11 and store the result in the working K11 
* register 

* 
* TCX KllV2 

* TMAIX 

* SALA4 
* TAB 

* TMAIX 

* SALA4 

* SBAAN 

* TCX SCALE 

* AXMA 

* ABAAC 
* TAMDKll 

* 

-Put New K11 (adjusted to 
12 bits) in B register 

-Put Current K11 (adjusted to 
12 bits) in A register 

-(K11current - K11new) 

-(K11current - K11new) * Timer 
-K11new+(K11current-K11new)*Timer 
-Load interpolated K11 value 

* Interpolate K12 and store the result in the working 
* K12 register 

* 
* TCX K12V2 

* TMAIX 

* SALA4 

* TAB 

* TMAIX 
* SALA4 

* SBAAN 

* TCX SCALE 

* AXMA 

* ABAAC 
* TAMD K12 

* 
* 

-Put New K12 (adjusted to 
12 bits) in B register 

-Put Current K12 (adjusted to 
12 bits) in A register 

-(K12current - K12new) 

-(K12current - K12new) * Timer 
-K12new+(K12current-K12new)*Timer 
-Load interpolated K12 value 



0758 
0759 
0760 
0761 018E 
0762 018F 

0190 
0763 0191 
0764 0192 
0765 0193 
0766 0194 
0767 0195 
0768 0196 
0769 0197 

3B 
62 
10 
14 
1B 
1A 
14 
1B 
20 

62 
0198 37 

0770 0199 
0771 019A 
0772 019B 
0773 
0774 
0775 
0776 
0777 
0778 
0779 
0780 

39 
2C 
6A 

* Interpolate Energy 

* 
* 

* 

INTGR 
TCX 

TMAIX 
SALA4 
TAB 
TMAIX 
SALA4 
SBAAN 
TCX 

AXMA 
ABAAC 
XBA 

ENV2 

SCALE 

-Back to integer mode for energy 
-Combine new energy and 

fractional energy and 
leave in the B register 

-Combine current energy and 
current fractional energy 

-(Ecurrent - Enew) 

-(Ecurrent - Enew) * Timer 
-Enew+(Ecurrent-Enew)*Timer 
-Save energy 

* Set voiced/unvoiced mode according to current frame type. 
* This is done in a two step fashion: first the value in 
* the MODE_BUF register is adjusted with an AND or OR 
* operation, then the result is written to the synthesizer 
* with a TAMODE operation. We do it this way to keep a copy 
* of the current status of the synthesizer mode at all time. 

* 
0781 019C 62 STMODE TCX FLAGS 

019E 38 
0782 019E 

019F 
0783 01AD 

65 
FB 
66 

01A1 80 
0784 01A2 

01A3 
0785 01A4 

41 
AA 
62 

01A5 3A 
0786 01A6 

01A7 
0787 01A8 

65 
7F 
41 

01A9 AE 
0788 
0789 01AA 

01AB 
0790 01AC 

62 SETUV 
3A 
64 

01AD 80 
0791 
0792 01B1 
0793 OlAF 
0794 

11 WRITEMODE 
10 

ANDCM 

TSTCM 

BR 

TCX 

ANDCM 

BR 

TCX 

ORCM 

TMA 
TAMODE 

-Update_FIg -Signal that interp done 

Unv_Flg2 -Is current frame unvoiced? 

SETUV -yes, set mode to unvoiced 

MODE BUF no, ••• 

-UNV ... set mode to voiced 

WRITEMODE 

MODE BUF -Current frame is unvoiced, so 

UNV -set mode to unvoiced. 

-write mode information 
to mode register 

8-19 



0795 01BO 
0796 01B1 

12 
62 

XBA 
TAMD EN 

-Write energy 
to filter 

01B2 01 
0797 
0798 01B3 
0799 01B4 
0800 
0801 
0802 
0803 
0804 
0805 01B5 

01B6 
0806 01B7 

01B8 
0807 01B9 
0808 01BA 
0809 
0810 
0811 
0812 
0813 
0814 
0815 01BB 

01BC 
0816 01BD 
0817 
0818 01BE 

01BF 
0819 01CO 

01C1 
0820 01C2 

01C3 
0821 01C4 
0822 
0823 
0824 
0825 
0826 
0827 
0828 01C5 

01C6 
0829 01C7 

3E IRETI 
3D 

RETI 
RETN 

-Return from interrupt 
-Return from first call 

* Update the parameters for a new frame 

* 
* First we inhibit the operation of the interpolation 
* routine. 

* 
62 UPDATE 
3A 

TCX MODE BUF 

65 
FE 
11 
10 

62 
36 
11 

60 
00 
41 
C5 
6E 
7F 
16 

* 

ANDCM 

TMA 
TAMODE 

-INTI 

* To prevent double updates, if the stored value of the 
* timer register is zero, then we need to change it to #7F. 
* If we do not do this, then the polling routine will 
* discover an underflow and call Update a second time. 

* 
TCX TIMER -Get stored value 

TMA of Timer into A 

ANEC o -Is it zero? 

BR UPDTOO no, do nothing 

TCA #7F yes, replace value 

TAM 

* 
* First we need to test to see if a stop frame was 
* encountered on the last pass through the routine. If the 
* previous frame was a stop frame, we need to turn off the 
* synthesizer and stop speaking. 

* 
62 UPDTOO 
38 

TCX FLAGS 

66 TSTCM STOPFLAG -Was stop frame encountered 
01C8 01 

0830 01C9 
OICA 

0831 
0832 

8-20 

42 
EF 

BR STOP yes, stop speaking 

* 
* Transfer the state of the previous frame to the Unvoiced 



0833 
0834 
0835 OICB 

OICC 
0836 OlCD 

OICE 
0837 OlCF 

OIDO 
0838 OlDl 

66 
10 
41 
D3 
65 
7F 
41 

* flag (Current). 

* 
TSTCM 

BR 

ANDCM 

BR 

Unv_Flgl -Was previous frame unvoiced? 

SUNVL yes, current frame=unvoiced 

-Unv_Flg2 no, current frame=voiced 

TSIL and continue 
01D2 D5 

0839 
0840 01D3 

01D4 
0841 
0842 
0843 
0844 

64 SUNVL 
80 

* 

ORCM Unv_Flg2 -Set current frame unvoiced. 

* Transfer the state of the previous frame to the 
* Silence flag (Current). 

* 
66 TSIL 
08 
41 
DD 

TSTCM Sil_Flgl -Was previous frame silent? 

BR SSIL yes, current frame silent 

0845 01D5 
01D6 

0846 01D7 
01D8 

0847 01D9 
OIDA 

0848 OIDB 

65 ANDCM no, current frame not silo 
BF 
41 BR ZROFLG and continue 

OlOC DF 
0849 
0850 OIDD 

OIDE 
0851 
0852 
0853 
0854 
0855 
0856 OlDF 

OlEO 
0857 OlEl 

01E2 
0858 
0859 
0860 
0861 
0862 01E3 

64 SSIL 
40 

ORCM Sil_Flg2 -Set current frame silent 

* 
* Reset the Repeat Flag, new Silence Flag, new Unvoiced 
* Flag, and Interpolation Inhibit flag so that new 
* values can be loaded in this routine. 

* 
62 ZROFLG 
38 

TCX FLAGS 

65 ANDCM #C5 
C5 

* 
* Transfer the new frame parameters into the 
* storage location used for the current frame parameters. 

* 
62 TCX ENV2 -Transfer new frame energy 

01E4 10 
0863 01E5 
0864 01E6 
0865 
0866 01E7 
0867 01E8 

14 
13 

TMAIX 
TAMIX 

*-----PITCH-----
14 TMAIX 
6A TAMD PHVI 

from new frame location 
to current frame location 

-Transfer new frame pitch 
to current frame location 

8-21 



01E9 14 
0868 
0869 OlEA 14 TMAIX -Transfer new fractional pitch 
0870 01EB 21 IXC to current frame location 
0871 01EC 13 TAMIX 
0872 *---K1---
0873 01ED 14 TMAIX -Transfer new frame K1 paramo 
0874 01EE 6A TAMD K1V1 to current frame location 

01EF 18 
0875 01FO 14 TMAIX -Transfer new fractional K1 
0876 01F1 21 IXC to current frame location 
0877 01F2 13 TAMIX 
0878 *---K2---
0879 01F3 14 TMAIX -Transfer new frame K2 paramo 
0880 01F4 6A TAMD K2V1 to current frame location 

01F5 1C 
0881 01F6 14 TMAIX -Transfer new fractional K2 
0882 01F7 21 IXC to current frame location 
0883 01F8 13 TAM I X 
0884 *---K3---
0885 01F9 14 TMAIX -Transfer new frame K3 paramo 
0886 01FA 6A TAMD K3V1 to current frame location 

01FB 20 
0887 01FC 14 TMAIX -Transfer new fractional K3 
0888 01FD 21 IXC to current frame location 
0889 01FE 13 TAMIX 
0890 *---K4---
0891 01FF 14 TMAIX -Transfer new frame K4 paramo 
0892 0200 6A TAMD K4V1 to current frame location 

0201 24 
0893 0202 14 TMAIX -Transfer new fractional K4 
0894 0203 21 IXC to current frame location 
0895 0204 13 TAMIX 
0896 *---K5---
0897 0205 14 TMAIX -Transfer new frame K5 paramo 
0898 0206 13 TAMIX to current frame location 
0899 *---K6---
0900 0207 14 TMAIX -Transfer new frame K6 paramo 
0901 0208 13 TAM I X to current frame location 
0902 *---K7---
0903 0209 14 TMAIX -Transfer new frame K7 paramo 
0904 020A 13 TAMIX to current frame location 
0905 *---K8---
0906 020B 14 TMAIX -Transfer new frame K8 paramo 
0907 020C 13 TAM I X to current frame location 
0908 *---K9---
0909 020D 14 TMAIX -Transfer new frame K9 paramo 
0910 020E 13 TAMIX to current frame location 

8-22 



0911 
0912 020F 
0913 0210 
0914 
0915 
0916 
0917 
0918 
0919 
0920 
0921 
0922 
0923 
0924 
0925 
0926 
0927 
0928 
0929 
0930 
0931 
0932 0211 
0933 0212 

0213 
0934 0214 
0935 0215 

0216 
0936 0217 

0218 
0937 0219 

021A 
0938 021B 

021C 
0939 
0940 021D 

021E 
0941 021F 

*---K10---
14 TMAIX -Transfer new frame K10 paramo 

to current frame location 13 TAMIX 

2F 
62 
38 
33 
60 
00 
42 
1D 
64 
28 
42 
CD 

* 
* K11 and K12 are not used in LPC 10 synthesis. The code 
* has been commented out. 

* 
*---K11---
* TMAIX 
* TAMIX 
*---K12---
* TMAIX 
* TAMIX 

*---
* 

-Transfer new frame K11 paramo 
to current frame location 

-Transfer new frame K12 par am. 
to current frame location 

* We have now discarded the "current" values by replacing 
* them with the "new" values. We now need to read in 
* another frame of speech data and use them as the 
* new "new" values. 

* * * * * 
*--- ENERGY --

CLA 

* 

TCX 

GET 
ANEC 

BR 

ORCM 

BR 

FLAGS 

EBITS -Get coded energy 
ESILENCE -Is it a silent frame? 

UPDTO No, continue 

Yes, set silence flag 

ZeroKs and zero K params 

60 UPDTO 
OF 

ANEC ESTOP -Is it a stop frame? 

42 BR UPDT1 no, continue 
0220 25 

0942 0221 
0222 

0943 0223 
0224 

0944 
0945 0225 

64 
29 
42 
CD 

* 
73 UPDT1 

0226 27 
0946 0227 
0947 0228 

0229 

6B 
6A 
10 

ORCM 

BR 

ACAAC 

LUAA 
TAMD 

STOPFLAG+Sil_Flg1+Int_Inh yes, set flags 

ZeroKs and zero Ks 

TBLEN -Add table offset to energy 

-Get decoded energy 
ENV2 -Store the Energy in RAM 

8-23 



* 0948 
0949 
0950 
0951 
0952 

* If this is a silent frame, we are done with the update If 
* the previous frame was silent, the new frame should be 
* spoken immediately with no ramp up due to interpolation 

0953 022A 
022B 

0954 022C 
0220 

0955 022E 
022F 

62 
38 
66 
08 
43 
OC 

* 

* 

TCX FLAGS 

TSTCM Sil_F1g1 -Is this a silent frame? 

BR RTN yes, exit 

0956 
0957 
0958 
0959 

* A repeat frame will use the K parameter from the previous 
* frame. If it is a repeat frame, we need to set a flag. 

* 
0960 0230 
0961 0231 

30 UPDT2 
67 

0232 01 
0962 0233 

0234 
0963 0235 

42 
37 
42 

0236 39 
0964 
0965 0237 64 SFLG1 

0238 02 

GET 
TSTCA 

BR 

BR 

ORCM 

0966 
0967 
0968 

*----- PITCH -----

0969 0239 
0970 023A 
0971 023B 
0972 023C 

2F UPDT3 
33 
32 
60 

0230 00 
0973 023E 
0974 023F 

C1 
64 

0240 10 
0975 
0976 0241 
0977 0242 

0243 
0978 
0979 0244 
0980 0245 
0981 0246 
0982 
0983 0247 

2E UPDT3A 
73 
37 

60 
3A 
6B 

62 
0248 12 

0984 0249 2A 

6-24 

CLA 
GET 
GET 
ANEC 

SBR 
ORCM 

SALA 
ACAAC 

LUAB 
lAC 
LUAA 

TCX 

TBM 

RBITS 
#01 

SFLG1 

UPDT3 

R FLAG 

4 

3 

-Get the Repeat bit 
-Is this a repeat frame? 

yes, set repeat flag 

-Set repeat flag 

-Get coded pitch 
-Get coded pitch 

PUnvoiced -Is the frame unvoiced? 

UPDT3A 
Unv_Flg1 

TBLPH 

PHV2 

no, continue 
yes, set unvoiced flag 

-Double coded pitch and 
add table offset to point 

-Get decoded pitch 

-Get decoded fractional pitch 

-Store the pitch and 

fractional pitch in RAM 



0985 024A 
0986 024B 
0987 
0988 
0989 
0990 
0991 024C 

0240 
0992 024E 

21 
16 

62 
38 
66 

* 

IXC 
TAM 

* If the voicing has changed with the new frame, then we 
* need to change the voicing in the mode register. 

* 
TCX FLAGS 

TSTCM Unv_Flg1 -Is the new frame unvoiced? 
024F 10 

0993 0250 

0994 0251 
0252 

0995 
0996 
0997 
0998 

0999 
1000 
1001 
1002 0253 

0254 

1003 0255 
0256 

1004 
1005 0257 

0258 
1006 0259 

025A 
1007 025B 

025C 
1008 
1009 

1010 
1011 

1012 
1013 
1014 0250 

025E 
1015 025F 

0260 
1016 0261 

03 

42 
50 

* 

SBR 

BR 

UPOT3B 

VOICE 

yes, continue 

no, go to voiced code 

* The following code is reached if the new frame is 
* unvoiced. We inspect the flags to see if the previous 
* frame was either silent or voiced. If either condition 

* applies, then we branch to code which inhibits 
* interpolation. 

* 
66 UPOT3B 
40 

TSTCM Sil_Flg2 -Was the last frame silent? 

42 
63 

66 
80 
42 
65 
42 
63 

BR UPOT5 yes, inhibit interpolation 

TSTCM unv_Flg2 -Was the last frame unvoiced 

BR UPOT4 yes, don't change anything 

BR UPOT5 no, inhibit interpolation 

* 
* The following code is reached if the new frame is 
* voiced. We inspect the flags to see if the previous 
* frame was also voiced. If it was not, we need to inhibit 

* interpolation. 

* 
66 VOICE 
80 

TSTCM unv_Flg2 -Was the last frame voiced? 

42 BR UPOT5 no, disable interpolation 

63 
42 BR UPOT4 yes, continue 

0262 65 
1017 
1018 0263 

0264 

1019 
1020 

64 UPOT5 
20 

* 

ORCM Int Inh -Inhibit interpolation 

* Now we test the repeat flag. If the new frame is a repeat 

8-25 



1021 
1022 
1023 
1024 
1025 0265 

0266 
1026 0267 

0268 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1044 
1045 
1046 
1047 0269 
1048 026A 
1049 026B 
1050 026C 
1051 0260 

* frame, then the current values are used for the K factors, 
* so new values do not need to be loaded and we can exit the 
* routine now. 

* 
66 UPOT4 
02 

TSTCM R FLAG -Is repeat flag set? 

43 
OC 

BR RTN yes, exit routine 

* 
* Now we need to load the "new" K factors (K1 through K10). 
* The first four K factors are 12 bit values which will be 
* stored in two bytes. The most significant 8 bits in the 
* first byte, and the least significant 4 bits (called the 
* fractional value) in the second byte. For K5 through K12, 
* the fractional part is assumed to be zero. K11 and K12 are 
* not used in LPC10 synthesis, and the code loading them is 
* commented out. A coded factor is read into the A 
* register. It is then converted to a pointer to a table 
* element which contains the uncoded factor. Since the K1 
* through K4 table elements consist of two bytes, the 
* conversion consists of doubling the coded factor and adding 
* the result to the start of the table. Since the K5 through 
* K10 table elements consist of one byte, the coded factor is 
* added directly to the start of the table. Once the pointer 
* has been set up, the uncoded factor is fetched and stored 

* into RAM. 

* 
*---K1---

2F CLA 
33 
31 
2E 
74 

GET 
GET 
SALA 
ACAAC 

4 

2 

TBLK1 

-Get coded K1 
-Get coded K1 
-Convert it to a 

pointer to table element 
026E 37 

1052 026F 
1053 0270 
1054 0271 
1055 0272 

0273 
1056 0274 
1057 0275 
1058 0276 
1059 
1060 0277 
1061 0278 
1062 0279 
1063 
1064 027A 

8-26 

60 
3A 
6B 
62 
16 
2A 
21 
16 

2F 
33 
31 

2E 

LUAB 
lAC 
LUAA 
TCX 

TBM 
IXC 
TAM 

*---K2--
CLA 
GET 
GET 

SALA 

K1V2 

4 

2 

-Fetch MSB of uncoded K1 

-Fetch fractional K1 

-Store uncoded K1 

-Store fractional K1 

-Get coded K2 
-Get coded K2 

-Convert it to a 



1065 027B 74 ACAAC TBLK2 pointer to table element 
027C B7 

1066 
1067 0270 60 LUAB -Fetch MSB of uncoded K2 
1068 027E 3A lAC 
1069 027F 6B LUAA -Fetch fractional K2 
1070 0280 62 TCX K2V2 

0281 1A 
1071 0282 2A TBM -Store uncoded K2 
1072 0283 21 IXC 
1073 0284 16 TAM -Store fractional K2 
1074 *---K3---
1075 0285 2F CLA 
1076 0286 33 GET 4 -Get Index into K3 table 
1077 0287 30 GET 1 -Get Index into K3 table 
1078 0288 75 ACAAC TBLK3 and add offset of table 

0289 37 
1079 
1080 028A 6B LUAA -Get uncoded K3 
1081 028B 6A TAMO K3V2 -and store it in RAM 

028C 1E 
1082 0280 2F CLA 
1083 028E 6A TAMO K3V2+1 

028F 1F 
1084 *---K4---
1085 0290 2F CLA 
1086 0291 33 GET 4 -Get Index into K4 table 
1087 0292 30 GET 1 -Get Index into K4 table 
1088 0293 75 ACAAC TBLK4 and add offset of table 

0294 57 
1089 0295 6B LUAA -Get uncoded K4 
1090 0296 6A TAMO K4V2 -and store it in RAM 

0297 22 
1091 0298 2F CLA 
1092 0299 6A TAMO K4V2+1 

029A 23 
1093 * 
1094 * If this is an unvoiced frame, we only use four K factors, 
1095 * so we load zeroes to the rest of the K factors. If this 
1096 * is a voiced frame, load the rest of the uncoded factors. 
1097 * 
1098 029B 62 TCX FLAGS 

029C 38 
1099 0290 66 TSTCM Unv_Flg1 -Is this an unvoiced frame? 

029E 10 
1100 029F 42 BR UNVC Yes, zero rest of factors 

02AO EO 
1101 * 

6-27 



1102 * The following code is executed if the new frame is 
1103 * voiced. Since we assume that the fractional parameter is 
1104 * zero for the remaining K factors, the table elements are 
1105 * only one byte long. The conversion to 
1106 * a table pointer consists of adding the coded factor to the 
1107 * start of the table. 
1108 * 
1109 *---K5---
1110 02A1 2F CLA 
1111 02A2 33 GET K5BITS -Get Index into K5 table 
1112 02A3 75 ACAAC TBLK5 and add offset of table 

02A4 77 

1113 
1114 02A5 6B LUAA -Get uncoded K5 
1115 02A6 6A TAMD K5V2 and store it in RAM 

02A7 26 
1116 *---K6---
1117 02A8 2F CLA 
1118 02A9 33 GET K6BITS -Get Index into K6 table 
1119 02AA 75 ACAAC TBLK6 and add offset of table 

02AB 87 
1120 02AC 6B LUAA -Get uncoded K6 
1121 02AD 6A TAMD K6V2 and store it in RAM 

02AE 28 
1122 *---K7---
1123 02AF 2F CLA 
1124 02BO 33 GET K7BITS -Get Index into K7 table 
1125 02B1 75 ACAAC TBLK7 and add offset of table 

02B2 97 
1126 02B3 6B LUAA -Get uncoded K7 
1127 02B4 6A TAMD K7V2 and store it in RAM 

02B5 2A 
1128 *---K8---
1129 02B6 2F CLA 
1130 02B7 32 GET K8BITS -Get Index into K8 table 
1131 02B8 75 ACAAC TBLK8 and add offset of table 

02B9 A7 
1132 02BA 6B LUAA -Get uncoded K8 
1133 02BB 6A TAMD K8V2 and store it in RAM 

02BC 2C 
1134 *---K9---
1135 02BD 2F CLA 
1136 02BE 32 GET K9BITS -Get Index into K9 table 
1137 02BF 75 ACAAC TBLK9 and add offset of table 

02CO AF 
1138 02C1 6B LUAA -Get uncoded K9 
1139 02C2 6A TAMD K9V2 and store it in RAM 

02C3 2E 

8-28 



1140 *---K10---
1141 02C4 2F CLA 
1142 02C5 32 GET K10BITS -Get Index into K10 table 
1143 02C6 75 ACAAC TBLK10 and add offset of table 

02C7 B7 
1144 02C8 6B LUAA -Get uncoded K10 
1145 02C9 6A TAMO K10V2 and store it in RAM 

02CA 30 
1146 * 
1147 * Since K11 and K12 are not used in LPC 10, the K11 and K12 
1148 * code is commented out. 
1149 * 
1150 *---K11---
1151 * CLA 
1152 * GET K11BITS -Get Index into K11 table 
1153 * ACAAC TBLK11 and add offset of table 
1154 * LUAA -Get uncoded K11 
1155 * TAMO K11V2 and store it in RAM 
1156 *---K12---
1157 * CLA 
1158 * GET K12BITS -Get Index into K12 table 
1159 * ACAAC TBLK12 and add offset of table 
1160 * LUAA -Get uncoded K12 
1161 * TAMO K12V2 and store it in RAM 
1162 *---
1163 02CB 43 BR RTN 

02CC OC 
1164 * 
1165 * The following code is executed if the K parameters need to 
1166 * be zeroed out. If the new frame is a stop frame or a 
1167 * silent frame, we zero out all K parameters and set the 
1168 * energy to zero. If the new frame is an unvoiced frame, 
1169 * then we need to zero out the unused upper K parameters. 
1170 * 
1171 * 
1172 02CO 2F ZeroKs CLA 
1173 02CE 6A TAMO ENV2 -Kill Energy 

02CF 10 
1174 0200 6A TAMO K1V2 -Kill K1 

0201 16 
1175 0202 6A TAMO K1V2+1 

0203 17 
1176 0204 6A TAMO K2V2 -Kill K2 

0205 1A 
1177 0206 6A TAMO K2V2+1 

0207 1B 
1178 0208 6A TAMO K3V2 -Kill K3 

0209 IE 

B-29 



1179 02DA 6A 
02DB IF 

6A 
22 
6A 
23 

TAMD K3V2+1 

TAMD K4V2 -Kill K4 

TAMD K4V2+1 

1180 02DC 
0200 

1181 02DE 
02DF 

1182 02EO 
1183 02El 

02E2 
1184 02E3 

02E4 
1185 02E5 

02E6 
1186 02E7 

02E8 
1187 02E9 

2F UNVC 
6A 

CLA 
TAMD K5V2 -Kill K5 

26 
6A 
28 
6A 
2A 
6A 
2C 
6A 

02EA 2E 
1188 02EB 

02EC 
1189 
1190 
1191 02ED 

02EE 
1192 
1193 
1194 
1195 
1196 
1197 
1198 
1199 
1200 

6A 
30 

43 
OC 

* 
* 

* 

TAMD 

TAMD 

TAMD 

TAMD 

TAMD 

TAMD 
TAMD 
BR 

* STOP AND RETURN 

* 

K6V2 

K7V2 

K8V2 

K9V2 

KI0V2 

K11V2 
K12V2 
RTN 

-Kill K6 

-Kill K7 

-Kill K8 

-Kill K9 

-Kill KI0 

-Kill Kll 
-Kill K12 

* The following code has two entry points. STOP is reached 
* if the stop flag has been set. It turns off 
* synthesis and returns to the program. RTN is the general 
* exit point for the UPDATE routine, it sets the Update flag 
* and leaves the routine. 

* 
1201 02EF 

02FO 
1202 02Fl 

02F2 
1203 02F3 

02F4 
1204 02F5 

02F6 
1205 02F7 

62 STOP 
3A 

TCX MODE BUF 

65 
FD 
65 
FE 
65 
7F 
64 

02F8 04 
1206 02F9 
1207 02FA 
1208 02FB 
1209 02FC 
1210 02FD 

11 
10 
2F 
lC 
6E 

02FE FA 

8-30 

ANDCM -LPC -Turn off synthesis 

ANDCM -INTI -Disable interrupt 

ANDCM -UNV -Back to voiced for next word 

ORCM PCM -Enable PCM mode 

TMA 
TAMODE -Set mode per above setting 
CLA 
TASYN -Write a zero to the DAC 
TCA #FA 



1211 02FF 3A BACK lAC -Wait for minimum of 30 
1212 0300 43 BR out instruction cycles 

0301 04 
1213 0302 42 BR back 

0303 FF 
1214 0304 62 OUT TCX MODE BUF -Disable PCM 

0305 3A 
1215 0306 65 ANDCM -PCM 

0307 FB 
1216 0308 11 TMA 
1217 0309 ID TAMODE -Set mode per above setting 
1218 030A 40 BR SPEAKI -Go back for next word 

030B 47 
1219 
1220 030C 62 RTN TCX FLAGS -Set a flag indicating that 

030D 38 
1221 030E 64 ORCM Update_FIg the parameters are updated 

030F 04 
1222 
1223 0310 62 TCX MODE BUF -Get mode 

0311 3A 
1224 0312 66 TSTCM LPC -Are we speaking yet? 

0313 02 
1225 0314 43 BR RTNI yes, reenable interrupt 

0315 17 
1226 0316 3D RETN no, return for more data 
1227 
1228 0317 62 RTNI TCX FLAG 1 -Inhibit any pending 

0318 39 
1229 0319 64 ORCM Int Off interpolation interrupt 

031A 01 
1230 
1231 031B 62 TCX MODE BUF -Reenable the interrupt 

031C 3A 
1232 031D 64 ORCM INTI 

031E 01 
1233 031F 11 TMA 
1234 0320 ID TAMODE 
1235 
1236 0321 62 TCX FLAG 1 -Reenable execution 

0322 39 
1237 0323 65 ANDCM -Int Off of the interpolation routine 

0324 FE 
1238 0325 40 BR SPEAK LP -Go back to loop 

0326 9C 
1239 * 
1240 * D6 SPEECH DECODING TABLES. 
1241 * 

8-31 



1242 * Energy decoding table 
1243 * 
1244 0327 00 TBLEN BYTE #00,#01,#02,#03,#04,#05,#07,#OB 
1245 032F 11 BYTE #11,#lA,#29,#3F,#55,#70,#7F,#00 
1246 
1247 * 
1248 * pitch period decoding table 
1249 * 
1250 0337 OC TBLPH BYTE #OC,#OO 
1251 0339 10 BYTE #10,#00 
1252 033B 10 BYTE #10,#04 
1253 0330 10 BYTE #10,#08 
1254 033F 11 BYTE #11,#00 
1255 0341 11 BYTE #11,#04 
1256 0343 11 BYTE #11,#08 
1257 0345 11 BYTE #l1,#OC 
1258 0347 12 BYTE #12,#04 
1259 0349 12 BYTE #12,#08 
1260 034B 12 BYTE #12,#OC 
1261 0340 13 BYTE #13,#04 
1262 034F 13 BYTE #13,#08 
1263 0351 14 BYTE #14,#00 
1264 0353 14 BYTE #14,#04 
1265 0355 14 BYTE #14,#OC 
1266 0357 15 BYTE #15,#00 
1267 0359 15 BYTE #15,#08 
1268 035B 15 BYTE #15,#OC 
1269 0350 16 BYTE #16,#04 
1270 035F 16 BYTE #16,#OC 
1271 0361 17 BYTE #17,#00 
1272 0363 17 BYTE #17,#08 
1273 0365 18 BYTE #18,#00 
1274 0367 18 BYTE #18,#04 
1275 0369 18 BYTE #18,#OC 
1276 036B 19 BYTE #19,#04 
1277 0360 19 BYTE #19,#OC 
1278 036F 1A BYTE #lA,#04 
1279 0371 1A BYTE #lA,#OC 
1280 0373 1B BYTE #IB,#04 
1281 0375 1B BYTE #lB,#OC 
1282 0377 1C BYTE #lC,#04 
1283 0379 Ie BYTE #lC,#OC 
1284 037B 10 BYTE #10,#04 
1285 0370 10 BYTE #10,#OC 
1286 037F IE BYTE #lE,#04 
1287 0381 IF BYTE #IF,#OO 
1288 0383 IF BYTE #IF,#08 
1289 0385 20 BYTE #20,#00 

8-32 



1290 0387 20 BYTE #20,#OC 
1291 0389 21 BYTE #21,#04 
1292 038B 21 BYTE #21,#OC 
1293 038D 22 BYTE #22,#08 
1294 038F 23 BYTE #23,#00 
1295 0391 23 BYTE #23,#OC 
1296 0393 24 BYTE #24,#08 
1297 0395 25 BYTE #25,#00 
1298 0397 25 BYTE #25,#OC 
1299 0399 26 BYTE #26,#08 
1300 039B 27 BYTE #27,#04 
1301 039D 28 BYTE #28,#00 
1302 039F 28 BYTE #28,#OC 
1303 03A1 29 BYTE #29,#08 
1304 03A3 2A BYTE #2A,#04 
1305 03A5 2B BYTE #2B,#00 
1306 03A7 2B BYTE #2B,#OC 
1307 03A9 2C BYTE #2C,#08 
1308 03AB 2D BYTE #2D,#04 
1309 03AD 2E BYTE #2E,#04 
1310 03AF 2F BYTE #2F,#00 
1311 03B1 30 BYTE #30,#00 
1312 03B3 30 BYTE #30,#OC 
1313 03B5 31 BYTE #31,#OC 
1314 03B7 32 BYTE #32,#08 
1315 03B9 33 BYTE #33,#08 
1316 03BB 34 BYTE #34,#08 
1317 03BD 35 BYTE #35,#08 
1318 03BF 36 BYTE #36,#08 
1319 03C1 37 BYTE #37,#08 
1320 03C3 38 BYTE #38,#08 
1321 03C5 39 BYTE #39,#08 
1322 03C7 3A BYTE #3A,#08 
1323 03C9 3B BYTE #3B,#OC 
1324 03CB 3C BYTE #3C,#OC 
1325 03CD 3D BYTE #3D,#OC 
1326 03CF 3F BYTE #3F,#00 
1327 03D1 40 BYTE #40,#04 
1328 03D3 41 BYTE #41,#04 
1329 03D5 42 BYTE #42,#08 
1330 03D7 43 BYTE #43,#OC 
1331 03D9 45 BYTE #45,#00 
1332 03DB 46 BYTE #46,#04 
1333 03DD 47 BYTE #47,#08 
1334 03DF 49 BYTE #49,#00 
1335 03E1 4A BYTE #4A,#04 
1336 03E3 4B BYTE #4B,#OC 
1337 03E5 4D BYTE #4D,#00 

8-33 



1338 03E7 4E BYTE #4E,#08 
1339 03E9 50 BYTE #50,#00 
1340 03EB 51 BYTE #51,#04 
1341 03EO 52 BYTE #52,#OC 
1342 03EF 54 BYTE #54,#08 
1343 03F1 56 BYTE #56,#00 

1344 03F3 57 BYTE #57,#08 
1345 03F5 59 BYTE #59,#04 
1346 03F7 5A BYTE #5A,#OC 
1347 03F9 5C BYTE #5C,#08 
1348 03FB 5E BYTE #5E,#04 
1349 03FO 60 BYTE #60,#00 
1350 03FF 61 BYTE #61,#OC 
1351 0401 63 BYTE #63,#08 
1352 0403 65 BYTE #65,#04 
1353 0405 67 BYTE #67,#04 
1354 0407 69 BYTE #69,#00 
1355 0409 6B BYTE #6B,#00 
1356 040B 60 BYTE #60,#00 
1357 0400 6F BYTE #6F,#00 
1358 040F 71 BYTE #71,#00 
1359 0411 73 BYTE #73,#04 
1360 0413 75 BYTE #75,#04 
1361 0415 77 BYTE #77,#08 
1362 0417 79 BYTE #79,#OC 
1363 0419 7C BYTE #7C,#00 
1364 041B 7E BYTE #7E,#04 
1365 0410 80 BYTE #80,#08 
1366 041F 82 BYTE #82,#OC 
1367 0421 85 BYTE #85,#04 
1368 0423 87 BYTE #87,#OC 
1369 0425 8A BYTE #8A,#04 
1370 0427 8C BYTE #8C,#OC 
1371 0429 8F BYTE #8F,#08 
1372 042B 92 BYTE #92 ,#00 
1373 0420 94 BYTE #94,#OC 
1374 042F 97 BYTE #97,#08 
1375 0431 9A BYTE #9A,#04 
1376 0433 90 BYTE #90,#00 
1377 0435 AO BYTE #AO,#OO 
1378 
1379 * 
1380 * K1 parameter decoding table 
1381 * 
1382 0437 81 TBLK1 BYTE #81,#00 
1383 0439 82 BYTE #82,#04 
1384 043B 83 BYTE #83,#04 
1385 0430 84 BYTE #84,#08 

6-34 



1386 043F 85 BYTE #85,#OC 
1387 0441 87 BYTE #87,#00 
1388 0443 88 BYTE #88,#04 
1389 0445 89 BYTE #89,#OC 
1390 0447 8B BYTE #8B,#04 
1391 0449 8C BYTE #8C,#OC 
1392 044B 8E BYTE #8E,#04 
1393 0440 90 BYTE #90,#00 
1394 044F 91 BYTE #91,#OC 
1395 0451 93 BYTE #93,#08 
1396 0453 95 BYTE #95,#08 
1397 0455 97 BYTE #97,#04 
1398 0457 99 BYTE #99,#08 
1399 0459 9B BYTE #9B,#08 
1400 045B 90 BYTE #90,#08 
1401 0450 9F BYTE #9F,#OC 
1402 045F A2 BYTE #A2,#00 
1403 0461 A4 BYTE #A4 ,#04 
1404 0463 A6 BYTE #A6,#OC 
1405 0465 A9 BYTE #A9,#04 
1406 0467 AB BYTE #AB,#08 
1407 0469 AE BYTE #AE,#OO 
1408 046B BO BYTE #BO,#OC 
1409 0460 B3 BYTE #B3,#08 
1410 046F B6 BYTE #B6,#04 
1411 0471 B9 BYTE #B9,#00 
1412 0473 BC BYTE #BC,#OO 
1413 0475 BF BYTE #BF,#04 
1414 0477 C2 BYTE #C2,#04 
1415 0479 C5 BYTE #C5,#08 
1416 047B C8 BYTE #C8,#OC 
1417 0470 CC BYTE #CC,#04 
1418 047F CF BYTE #CF,#OC 
1419 0481 03 BYTE #03,#08 
1420 0483 07 BYTE #07,#08 
1421 0485 OB BYTE #OB,#04 
1422 0487 OF BYTE #OF ,#04 
1423 0489 E3 BYTE #E3,#08 
1424 048B E7 BYTE #E7,#OC 
1425 0480 EC BYTE #EC,#OO 
1426 048F FO BYTE #FO,#04 
1427 0491 F4 BYTE #F4,#OC 
1428 0493 F9 BYTE #F9,#OC 
1429 0495 FE BYTE #FE,#OC 
1430 0497 04 BYTE #04,#04 
1431 0499 09 BYTE #09,#OC 
1432 049B OF BYTE #OF,#04 
1433 0490 15 BYTE #15,#08 

8-35 



1434 049F lC BYTE #IC,#08 
1435 04Al 23 BYTE #23,#08 
1436 04A3 2A BYTE #2A,#OC 
1437 04A5 32 BYTE #32,#08 
1438 04A7 3A BYTE #3A,#08 
1439 04A9 42 BYTE #42,#OC 
1440 04AB 4B BYTE #4B,#08 
1441 04AO 54 BYTE #54,#00 
1442 04AF 5C BYTE #5C,#04 
1443 04Bl 65 BYTE #65,#00 
1444 04B3 6E BYTE #6E,#00 
1445 04B5 78 BYTE #78,#08 
1446 
1447 * 
1448 * K2 parameter decoding table 
1449 * 
1450 04B7 8A TBLK2 BYTE #8A,#00 
1451 04B9 98 BYTE #98,#00 
1452 04BB A3 BYTE #A3,#OC 
1453 04BO AD BYTE #AO,#OC 
1454 04BF B4 BYTE #B4,#08 
1455 04Cl BA BYTE #BA,#08 
1456 04C3 CO BYTE #CO,#OO 
1457 04C5 C5 BYTE #C5,#00 
1458 04C7 C9 BYTE #C9,#OC 
1459 04C9 CE BYTE #CE,#04 
1460 04CB 02 BYTE #02,#OC 
1461 04CO 06 BYTE #06,#OC 
1462 04CF OA BYTE #OA,#OC 
1463 0401 DE BYTE #OE,#08 
1464 0403 E2 BYTE #E2,#00 
1465 0405 E5 BYTE #E5,#OC 
1466 0407 E9 BYTE #E9,#04 
1467 0409 EC BYTE #EC,#OC 
1468 040B FO BYTE #FO,#OO 
1469 0400 F3 BYTE #F3,#04 
1470 040F F6 BYTE #F6,#08 
1471 04El F9 BYTE #F9,#OC 
1472 04E3 FO BYTE #FO,#OO 
1473 04E5 00 BYTE #00,#00 
1474 04E7 03 BYTE #03,#04 
1475 04E9 06 BYTE #06,#04 
1476 04EB 09 BYTE #09,#04 
1477 04EO OC BYTE #OC,#04 
1478 04EF OF BYTE #OF,#04 
1479 04Fl 12 BYTE #12,#08 
1480 04F3 15 BYTE #15,#08 
1481 04F5 18 BYTE #18,#08 

8-36 



1482 04F7 1B BYTE #lB,#08 
1483 04F9 IE BYTE #lE,#08 
1484 04FB 21 BYTE #21,#08 
1485 04FD 24 BYTE #24,#OC 
1486 04FF 27 BYTE #27,#OC 
1487 0501 2A BYTE #2A,#OC 
1488 0503 2D BYTE #2D,#OC 
1489 0505 30 BYTE #30,#OC 
1490 0507 34 BYTE #34,#00 
1491 0509 37 BYTE #37,#00 
1492 050B 3A BYTE #3A,#04 
1493 050D 3D BYTE #3D,#00 
1494 050F 40 BYTE #40,#00 
1495 0511 43 BYTE #43,#00 
1496 0513 46 BYTE #46,#00 
1497 0515 49 BYTE #49,#00 
1498 0517 4C BYTE #4C,#00 
1499 0519 4F BYTE #4F,#04 
1500 051B 52 BYTE #52,#04 
1501 051D 55 BYTE #55,#04 
1502 051F 58 BYTE #58,#04 
1503 0521 5B BYTE #5B,#04 
1504 0523 5E BYTE #5E,#00 
1505 0525 61 BYTE #61,#00 
1506 0527 63 BYTE #63,#OC 
1507 0529 66 BYTE #66,#08 
1508 052B 69 BYTE #69,#04 
1509 052D 6C BYTE #6C,#00 
1510 052F 6F BYTE #6F,#00 
1511 0531 72 BYTE #72,#00 
1512 0533 76 BYTE #76,#04 
1513 0535 7C BYTE #7C,#00 
1514 
1515 * 
1516 * K3 parameter decoding table 
1517 * 
1518 0537 8B TBLK3 BYTE #8B,#9A,#A2,#A9,#AF,#B5,#BB,#CO 
1519 053F C5 BYTE #C5,#CA,#CF,#D4,#D9,#DE,#E2,#E7 
1520 0547 EC BYTE #EC,#Fl,#F6,#FB,#01,#07,#OD,#14 
1521 054F 1A BYTE #lA,#22,#29,#32,#3B,#45,#53,#6D 
1522 
1523 * 
1524 * K4 parameter decoding table 
1525 * 
1526 0557 94 TBLK4 BYTE #94,#BO,#C2,#CB,#D3,#D9,#DF,#E5 
1527 055F EA BYTE #EA,#EF,#F4,#F9,#FE,#03,#07,#OC 
1528 0567 11 BYTE #11,#15,#lA,#lF,#24,#29,#2E,#33 
1529 056F 38 BYTE #38,#3E,#44,#4B,#53,#5A,#64,#74 

8-37 



1530 
1531 * 
1532 * K5 parameter decoding table 

1533 * 
1534 0577 A3 TBLK5 BYTE #A3,#C5,#D4,#EO,#EA,#F3,#FC,#04 
1535 057F OC BYTE #OC,#15,#1E,#27,#31,#3D,#4C,#66 

1536 
1537 * 
1538 * K6 parameter decoding table 

1539 * 
1540 0587 AA TBLK6 BYTE #AA,#D7,#E7,#F2,#FC,#05,#OD,#14 
1541 058F 1C BYTE #1C,#24,#2D,#36,#40,#4A,#55,#6A 
1542 
1543 * 
1544 * K7 parameter decoding table 
1545 * 
1546 0597 A3 TBLK7 BYTE #A3,#C8,#D7,#E3,#ED,#F5,#FD,#05 

1547 059F OD BYTE #OD,#14,#1D,#26,#31,#3C,#4B,#67 
1548 
1549 * 
1550 * K8 parameter decoding table 
1551 * 
1552 05A7 C5 TBLK8 BYTE #C5,#E4,#F6,#05,#14,#27,#3E,#58 
1553 
1554 * 
1555 * K9 parameter decoding table 
1556 * 
1557 05AF B9 TBLK9 BYTE #B9,#DC,#EC,#F9,#04,#10,#1F,#45 
1558 
1559 * 
1560 * K10 parameter decoding table 
1561 * 
1562 05B7 C3 TBLK10 BYTE #C3,#E6,#F3,#FD,#06,#11,#1E,#43 

1563 
1564 
1565 *********************************************************** 

1566 * * 
1567 * This is the lookup table giving the starting address * 
1568 * of each concatenation list. * 
1569 * * 
1570 *********************************************************** 

1571 05BF 05C5' SENTENCE DATA PHRASEO 
1572 05C1 05CA' DATA PHRASE 1 

1573 05C3 05CF' DATA PHRASE2 
1574 *********************************************************** 

1575 * * 
1576 * This is the concatenation table giving the lists * 
1577 * of word numbers that define each phrase. Each * 

6-38 



1578 * list is terminated by an #FF. * 
1579 * * 
1580 *********************************************************** 

1581 05C5 01 PHRASEO BYTE l,2,3,4,#FF 
1582 05CA 04 PHRASE 1 BYTE 4,3,2,l,#FF 
1583 05CF 05 PHRASE2 BYTE 5,4,3,2,l,#FF 

1584 *********************************************************** 

1585 * * 
1586 * This is the lookup table for the speech stored at * 
1587 * voc. * 
1588 * * 
1589 *********************************************************** 

1590 0505 0000' SPEECH DATA #0000 
1591 0507 05E3' DATA #OOOO+VOC Word 1 1I0ne " 

1592 0509 0667' DATA #0084+VOC Word 2 IITwo" 

1593 05DB 0609' DATA #00F6+VOC Word 3 "Three" 

1594 0500 0750' DATA #0 17A+VOC Word 4 JlFour" 

1595 05DF 07C3' DATA #OlEO+VOC Word 5 "Five" 
1596 05E1 086F' DATA #028C+VOC Word 6 IlSix" 
1597 *********************************************************** 

1598 * * 
1599 * This is the DTS speech coded with the 06 coding * 
1600 * table * 
1601 * * 
1602 *********************************************************** 

1603 05E3 VOC 
1604 05E3 68 BYTE #68,#89,#84,#FB,#lA,#53,#64,#B2 

1605 05EB 84 BYTE #84,#87,#33,#C9,#35,#28,#9B,#A1 

1606 05F3 01 BYTE #D1,#BA,#22,#3A,#94,#8D,#08,#BD 
1607 05FB BE BYTE #BE,#40,#lC,#6D,#BA,#BC,#14,#7E 

1608 0603 33 BYTE #33,#CE,#4E,#75,#8D,#EE,#2F,#03 
1609 060B BB BYTE #BB,#96,#4A,#46,#D7,#CF,#4A,#DD 
1610 0613 4A BYTE #4A,#23,#54,#CE,#26,#B7,#74,#A5 

1611 061B 9B BYTE #9B,#49,#7B,#62,#44,#B7,#32,#2D 
1612 0623 95 BYTE #95,#D9,#C8,#B4,#5B,#9A,#35,#5A 

1613 062B 80 BYTE #8D,#C2,#DC,#2C,#CC,#5A,#CC,#OA 
1614 0633 2B BYTE #2B,#6E,#EE,#66,#19,#69,#98,#27 

1615 063B 75 BYTE #75,#33,#CB,#80,#36,#AC,#94,#E6 

1616 0643 A9 BYTE #A9,#85,#CE,#4B,#lB,#EC,#CD,#D4 

1617 064B 2C BYTE #2C,#50,#71,#52,#F5,#76,#AA,#lB 

1618 0653 9B BYTE #9B,#38,#98,#58,#33,#56,#B6,#35 
1619 065B 02 BYTE #D2,#58,#A3,#99,#C8,#7B,#AE,#D5 
1620 0663 A8 BYTE #A8,#5E,#FB,#01,#04,#BO,#78,#BA 
1621 066B 2B BYTE #2B,#CO,#5D,#lB,#6D,#00,#F7,#65 
1622 0673 BA BYTE #BA,#01,#64,#BA,#13,#29,#B7,#06 

1623 067B 36 BYTE #36,#81,#C9,#FE,#92,#DB,#5C,#15 

1624 0683 20 BYTE #20,#B8,#7F,#29,#AF,#8A,#CA,#10 
1625 068B DC BYTE #DC,#3F,#35,#12,#56,#47,#2A,#FA 

8-39 



1626 0693 9F BYTE #9F,#FA,#26,#61,#97,#OC,#ED,#77 
1627 069B 43 BYTE #43,#9A,#6E,#97,#9A,#F7,#8A,#01 
1628 06A3 2E BYTE #2E,#CE,#8D,#29,#7B,#48,#17,#Bl 
1629 06AB CF BYTE #CF,#86,#B4,#4E,#64,#04,#47,#77 
1630 06B3 Al BYTE #Al,#4B,#26,#32,#83,#9B,#13,#31 
1631 06BB AD BYTE #AD,#23,#59,#E3,#DA,#5E,#90,#B2 
1632 06C3 85 BYTE #85,#AC,#68,#65,#OD,#70,#E9,#4D 
1633 06CB 36 BYTE #36,#44,#38,#13,#87,#74,#12,#BB 
1634 06D3 8D BYTE #8D,#52,#59,#90,#E4,#3D,#08,#60 
1635 06DB CA BYTE #CA,#86,#13,#40,#66,#lA,#46,#00 
1636 06E3 B9 BYTE #B9,#EC,#8B,#00,#14,#59,#B7,#OA 
1637 06EB 90 BYTE #90,#5A,#35,#9A,#EC,#lE,#D9,#86 
1638 06F3 A4 BYTE #A4,#EA,#5C,#41,#69,#85,#B2,#A6 
1639 06FB EE BYTE #EE,#21,#AF,#CC,#24,#46,#63,#F7 
1640 0703 94 BYTE #94,#53,#26,#E1,#65,#B1,#7B,#C9 
1641 070B 3B BYTE #3B,#A5,#77,#B8,#92,#3E,#E5,#9B 
1642 0713 B4 BYTE #B4,#7B,#18,#EE,#9F,#OA,#5B,#52 
1643 071B 02 BYTE #02,#B4,#EE,#4F,#8D,#23,#CF,#06 
1644 0723 2A BYTE #2A,#B7,#A7,#FE,#96,#04,#OA,#DD 
1645 072B DF BYTE #DF,#D2,#70,#B6,#24,#C6,#9D,#25 
1646 0733 61 BYTE #61,#3C,#FO,#lC,#F3,#ED,#A4,#30 
1647 073B 59 BYTE #59,#74,#8E,#70,#E7,#96,#9B,#4C 
1648 0743 OA BYTE #OA,#47,#74,#3B,#D1,#CC,#07,#95 
1649 074B 21 BYTE #21,#BE,#19,#65,#A6,#B3,#27,#20 
1650 0753 CE BYTE #CE,#4C,#62,#93,#58,#41,#B4,#77 
1651 075B OA BYTE #OA,#3E,#80,#00,#A6,#6A,#03,#01 
1652 0763 54 BYTE #54,#A6,#4F,#OC,#10,#C6,#D1,#OB 
1653 076B 80 BYTE #80,#97,#D4,#EO,#12,#2A,#D7,#37 
1654 0773 87 BYTE #87,#58,#09,#E9,#18,#B7,#3F,#OD 
1655 077B BD BYTE #BD,#87,#74,#8A,#99,#9F,#86,#DE 
1656 0783 43 BYTE #43,#D9,#26,#EA,#37,#C5,#EC,#A1 
1657 078B A9 BYTE #A9,#BO,#F3,#91,#71,#FE,#30,#60 
1658 0793 83 BYTE #83,#B3,#B1,#C4,#7F,#lA,#B3,#ED 
1659 079B 8E BYTE #8E,#D4,#A2,#3F,#CC,#84,#AD,#4A 
1660 07A3 1B BYTE #lB,#E8,#lF,#D6,#EA,#38,#A4,#lC 
1661 07AB E6 BYTE #E6,#OF,#5B,#63,#49,#D4,#OF,#F3 
1662 07B3 B9 BYTE #B9,#83,#B1,#7B,#E2,#87,#7B,#DD 
1663 07BB D5 BYTE #D5,#BA,#A8,#E8,#C5,#5D,#OF,#00 
1664 07C3 08 BYTE #08,#90,#FB,#51,#23,#80,#AB,#19 
1665 07CB 4A BYTE #4A,#00,#B9,#97,#OD,#01,#34,#59 
1666 07D3 49 BYTE #49,#OC,#DO,#A5,#29,#11,#80,#E5 
1667 07DB 86 BYTE #86,#58,#EA,#BE,#32,#36,#27,#F5 
1668 07E3 69 BYTE #69,#B5,#4C,#18,#CB,#9B,#DA,#B5 
1669 07EB 7A BYTE #7A,#AA,#EC,#61,#45,#6B,#4B,#33 
1670 07F3 FO BYTE #FO,#6F,#D1,#94,#25,#A5,#ED,#15 
1671 07FB 37 BYTE #37,#68,#EA,#9C,#D4,#75,#BA,#ED 
1672 0803 34 BYTE #34,#6D,#4E,#19,#7B,#CD,#76,#9A 
1673 080B 7A BYTE #7A,#BB,#CC,#A2,#F2,#18,#4D,#B9 

8-40 



1674 0813 59 BYTE #59,#96,#59,#71,#B4,#A4,#3C,#2A 
1675 081B CB BYTE #CB,#BC,#5A,#5C,#52,#67,#A6,#40 
1676 0823 36 BYTE #36,#36,#AA,#61,#17,#03,#2E,#6F 
1677 082B 22 BYTE #22,#93,#F4,#05,#61,#lF,#56,#52 
1678 0833 69 BYTE #69,#E7,#41,#B3,#OF,#32,#E1,#AC 
1679 083B E2 BYTE #E2,#BO,#09,#EB,#95,#34,#5C,#7E 
1680 0843 52 BYTE #52,#EC,#E5,#44,#lB,#4A,#79,#C1 
1681 084B F6 BYTE #F6,#3A,#60,#lC,#9A,#76,#66,#BB 
1682 0853 51 BYTE #51,#32,#16,#89,#94,#99,#00,#96 
1683 085B 8F BYTE #8F,#69,#C9,#6A,#05,#6E,#F2,#52 
1684 0863 21 BYTE #21,#62,#6A,#62,#37,#24,#20,#22 
1685 086B 11 BYTE #11,#97,#07,#00,#04,#FO,#2A,#08 
1686 0873 13 BYTE #13,#CO,#BF,#F9,#44,#00,#FF,#EE 
1687 087B 95 BYTE #95,#00,#7C,#A5,#03,#02,#FO,#B5 
1688 0883 DA BYTE #DA,#94,#62,#C6,#17,#8D,#D9,#B7 
1689 088B 4B BYTE #4B,#BE,#97,#8B,#25,#CB,#D7,#A5 
1690 0893 SA BYTE #5A,#AA,#4D,#72,#F7,#DB,#D4,#2F 
1691 089B BO BYTE #BD,#4C,#75,#EA,#6B,#5A,#84,#15 
1692 08A3 D1 BYTE #D1,#DD,#BD,#11,#00,#80,#01,#lC 
1693 08AB 6F BYTE #6F,#6B,#01,#78,#AC,#BE,#05,#EO 
1694 08B3 SF BYTE #5F,#75,#62,#80,#7F,#DO,#9D,#01 
1695 08BB BE BYTE #BE,#8F,#7B,#02,#78,#3B,#50,#lE 
1696 08C3 08 BYTE #08,#FO,#15,#3E,#13,#CO,#57,#F3 
1697 08CB 4C BYTE #4C,#00,#7F,#CF,#38,#01,#FC,#81 
1698 0803 32 BYTE #32,#OC,#FO,#5F,#C2,#85,#62,#C5 
1699 08DB OD BYTE #OD,#85,#59,#9B,#5A,#25,#D5,#87 
1700 08E3 A4 BYTE #A4,#AA,#67,#A5,#5A,#04,#5B,#62 
1701 08EB 07 BYTE #07,#DC,#52,#4B,#9A,#C9,#A9,#F2 
1702 08F3 49 BYTE #49,#E9,#46,#6D,#37,#94,#FE,#C4 
1703 08FB 8C BYTE #8C,#75,#B3,#58,#52,#CB,#64,#A6 
1704 0903 2C BYTE #2C,#53,#23,#47,#A6,#35,#6B,#DE 
1705 090B C8 BYTE #C8,#9A,#23,#6B,#A5,#55,#EO,#36 
1706 0913 C9 BYTE #C9,#lA,#B7,#D2,#3E,#OE,#26,#67 
1707 091B 80 BYTE #8D,#4B,#66,#AF,#26,#99,#BB,#D5 
1708 0923 40 BYTE #40,#B5,#97,#20,#36,#95,#3A,#E6 
1709 092B 03 BYTE #03,#00,#A6,#2A,#5A,#BE,#D6,#45 
1710 0933 E8 BYTE #E8,#50,#C9,#5C,#A9,#EC,#7A,#76 
1711 093B A9 BYTE #A9,#8C,#91,#65,#B8,#FD,#B6,#54 
1712 0943 06 BYTE #06,#3C,#52,#AC,#D9,#5A,#8A,#9B 
1713 094B E9 BYTE #E9,#11,#6D,#3F,#2D,#E5,#29,#96 

1714 0953 50 BYTE #50,#AE,#E7,#A6,#FE,#92,#2B,#28 
1715 095B 75 BYTE #75,#AB,#OD,#A6,#8F,#29,#04,#D9 
1716 0963 59 BYTE #59,#00,#OC,#BO,#08,#04,#OA,#CO 
1717 096B 13 BYTE #13,#E6,#AE,#00,#6B,#7D,#9B,#02 
1718 0973 8C BYTE #8C,#E5,#32,#OF,#A4,#25,#53,#73 
1719 097B 57 BYTE #57,#50,#53,#D1,#93,#C5,#3C,#5B 
1720 0983 65 BYTE #65,#99,#18,#CA,#7C,#99,#65,#BC 
1721 098B CE BYTE #CE,#8D,#65,#4A,#OF,#40,#90,#53 

8-41 



1722 0993 C6 BYTE #C6,#9E,#03,#lC,#65,#4E,#2C,#23 
1723 099B 3F BYTE #3F,#3B,#52,#02,#4F,#95,#9E,#9F 
1724 09A3 10 BYTE #10,#29,#E9,#A7,#4A,#37,#B7,#4F 
1725 09AB A5 BYTE #A5,#B2,#35,#A5,#9B,#OB,#A7,#52 
1726 09B3 09 BYTE #09,#9A,#02,#C9,#93,#93,#A8,#74 
1727 09BB 40 BYTE #40,#E9,#96,#09,#F2,#54,#B2,#BA 
1728 09C3 8C BYTE #8C,#F2,#BA,#09,#69,#90,#59,#46 
1729 09CB 65 BYTE #65,#lE,#99,#96,#56,#4C,#A3,#38 
1730 0903 54 BYTE #54,#CC,#5B,#OB,#B9,#91,#AO,#lB 
1731 090B 9E BYTE #9E,#C5,#45,#09,#18,#73,#C2,#OC 
1732 
1733 *EXCITATION FUNCTION 
1734 
1735 4000 AORG #4000 
1736 4000 00 BYTE #00,#A2,#00,#AF,#00,#BA,#00,#C2 
1737 4008 00 BYTE #00,#C7,#00,#C9,#00,#CA,#00,#C6 
1738 4010 00 BYTE #00,#C2,#00,#BC,#00,#B5,#00,#AO 
1739 4018 00 BYTE #00,#A5,#00,#9E,#00,#9A,#00,#95 
1740 4020 00 BYTE #00,#95,#00,#98,#00,#9F,#00,#A8 
1741 4028 00 BYTE #00,#B8,#00,#CA,#00,#E3,#00,#FE 
1742 4030 01 BYTE #01,#lF,#01,#41,#01,#69,#01,#91 
1743 4038 01 BYTE #01,#BO,#01,#E8,#02,#16,#02,#40 
1744 4040 02 BYTE #02,#6C,#02,#92,#02,#B9,#02,#09 
1745 4048 02 BYTE #02,#F8,#03,#OF,#03,#25,#03,#32 
1746 4050 03 BYTE #03,#3F,#03,#43,#03,#47,#03,#45 
1747 4058 03 BYTE #03,#45,#03,#3F,#03,#30,#03,#3A 
1748 4060 03 BYTE #03,#30,#03,#41,#03,#4E,#03,#5F 
1749 4068 03 BYTE #03,#7B,#03,#AO,#03,#02,#04,#00 
1750 4070 04 BYTE #04,#57,#04,#AO,#05,#11,#05,#82 
1751 4078 06 BYTE #06,#00,#06,#8A,#07,#lF,#07,#BO 
1752 4080 08 BYTE #08,#64,#09,#11,#09,#C1,#OA,#74 
1753 4088 OB BYTE #OB,#26,#OB,#05,#OC,#7F,#00,#20 
1754 4090 00 BYTE #00,#B7,#OE,#40,#OE,#BB,#OF,#24 
1755 4098 OF BYTE #OF,#7A,#OF,#BC,#OF,#E9,#OF,#FF 
1756 40AO OF BYTE #OF,#FF,#OF,#E9,#OF,#BC,#OF,#7A 
1757 40A8 OF BYTE #OF,#24,#OE,#BB,#OE,#40,#00,#B7 
1758 40BO 00 BYTE #00,#20,#OC,#7F,#OB,#05,#OB,#26 
1759 40B8 OA BYTE #OA,#74,#09,#C1,#09,#11,#08,#64 
1760 40CO .07 BYTE #07,#BO,#07,#lF,#06,#8A,#06,#00 
1761 40C8 05 BYTE #05,#82,#05,#11,#04,#AO,#04,#57 
1762 4000 04 BYTE #04,#00,#03,#02,#03,#AO,#03,#7B 
1763 4008 03 BYTE #03,#5F,#03,#4E,#03,#41,#03,#30 
1764 40EO 03 BYTE #03,#3A,#03,#30,#03,#3F,#03,#45 
1765 40E8 03 BYTE #03,#45,#03,#47,#03,#43,#03,#3F 
1766 40FO 03 BYTE #03,#32,#03,#25,#03,#OF,#02,#F8 
1767 40F8 02 BYTE #02,#09,#02,#B9,#02,#92,#02,#6C 
1768 4100 02 BYTE #02,#40,#02,#16,#01,#E8,#01,#BO 
1769 4108 01 BYTE #01,#91,#01,#69,#01,#41,#01,#lF 

8-42 



1770 4110 00 BYTE #00,#FE,#00,#E3,#00,#CA,#00,#B8 
1771 4118 00 BYTE #00,#A8,#00,#9F,#00,#98,#00,#95 
1772 4120 00 BYTE #00,#95,#00,#9A,#00,#9E,#00,#A5 
1773 4128 00 BYTE #00,#AD,#00,#B5,#00,#BC,#00,#C2 
1774 4130 00 BYTE #00,#C6,#00,#CA,#00,#C9,#00,#C7 
1775 4138 00 BYTE #00,#C2,#00,#BA,#00,#AF,#00,#A2 
1776 4140 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80 
1777 4148 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80 
1778 4150 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80 
1779 4158 05 BYTE #05,#80,#05,#80,#05,#80,#05,#80 
1780 4160 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80 
1781 4168 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80 
1782 4170 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80 
1783 4178 3A BYTE #3A,#80,#3A,#80,#3A,#80,#3A,#80 
1784 4180 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1785 4188 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1786 4190 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1787 4198 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1788 41AO FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1789 41A8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1790 41BO FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1791 41B8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1792 41CO FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 
1793 41C8 FF BYTE #FF,#FF,#FF,#FF,#FF,#FF,#FF,#FF 

8-43 



6-44 



C External ROM Initialization 

0001 ***************************************************** 

0002 * This is the TSP50C10/11 assembler source for the 

0003 * initialization routine for the TSP60C18 speech ROM. 

0004 * It assumes that the desired starting byte address 

0005 

0006 

0007 

0008 

0009 

0010 

0011 

0012 

0013 

0014 

0015 

0016 

0017 

0018 

0019 

0020 

0021 

0022 

0023 

0024 

0025 

0026 

0027 

0028 

0029 

0030 

0031 

0032 

0033 

0034 

0035 

0036 

0037 

* is located at an arbitrary point in RAM. For 

* purposes of checkout, this routine uses the memory 

* location #10 for the most significant byte of the 

* address and the memory location #11 for the least 

* significant byte of the address. 

* 
* In actual use, the values given for Addr MSB and 

* Addr LSB in the equate block should be replaced so 

* as to point to the actual location in RAM used in 

* the program. 

* 
* The following interconnections are assumed by the 

* routine: 

* 
* TSP50C10/11 TSP60C18 

* 

* B(O) STR 

* B( 1) R/W 

* A(O) C(O) 

* A( 1) C(l) 

* A(2) C(2) 

* A(3) C(3) 

* A(7) SCLK 

* 

* AO and CEB on the TSP60C18 should be tied 

* HCLB on the TSP60C18 should be tied high. 

* 
* After calling this program, use the standard 

* synthesis routine. 

* 
* To use internal speech afterwards, clear the 

* EXTROM bit of the mode register. 

* 

low. 

C-1 



0038 

0039 

0040 

0041 

0042 

0043 

0044 

0045 

0046 

0047 

0048 

0049 

0050 

0051 

0052 

0053 

0054 

0055 

0056 

0057 

0058 

0059 

0060 

0061 

0062 

0063 

0064 

0065 

0066 

0067 

0068 

0069 

0070 

0071 

0072 

0073 

0074 

0075 

0076 

C-2 

* The strategy used in this routine is as follows: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Put the TSP50C10/11 in external ROM mode. 

Do a dummy write. 

Load the 16-bit starting ROM address four 

bits at a time. For each nibble of the 

address, present the nibble to the 

TSP60C18 by outputting it on the TSP50C10/11 

ports A(O) to A(3) and then pulsing B(O) 

low. 

Do a dummy read to ensure that the internal 

pointers in the TSP60C18 are OK. 

Burn eight instruction cycles. 

Perform two GET 2 instructions. 

If the 16-bit address is odd, then do a GET 8. 

* Although the TSP60C18 is internally organized on 

* word (16-bit) boundaries, the address that this 

* subroutine uses is expressed in byte (8-bit) 

* boundaries. The address located at Addr MSB and 

* Addr LSB is therefore right-shifted one bit before 

* being loaded to the TSP60C18. If the original 

* address contains a one in the least significant bit 

* position, a GET8 instruction is executed at the 

* end of the program to move one byte further 

* (halfway between word boundaries) in memory. 

* 
* When this routine is used to address an external 

* ROM, both pins of Port Band A(0,1,2,3,7) are 

* dedicated for use in addressing the ROM. The Port 

* B pins and A(7) need to be maintained as outputs 

* in their initialized state when not in this routine 

* or the address loaded in the ROM may be lost. 

* 
* This routine is reached by a 

* 
* CALL INIT 

* 



0077 

0078 

0079 

0080 

0081 

0082 

0083 

0084 

0085 

0086 

0087 

0088 

0089 

0090 

0091 

0092 

0093 

0094 

0095 

0096 

0097 

0098 

0099 

0100 

0101 

0102 

0103 

0104 

0105 

0106 

0107 

0108 

0109 

0110 

0111 

0112 

0113 

0114 

0115 

* instruction. 

* 
* 
***************************************************** 

* 
* EQUATE BLOCK 

* 
***************************************************** 

* 
* Data Address 

* 
0010 Addr_MSB EQU 

0011 Addr_LSB EQU 

* 

#10 

#11 

Most significant byte of addr 

Least significant byte of addr 

* Mode Buffer - Because the contents of the mode 

* register cannot be read and because other bits in 

* the mode register need to be maintained when a bit 

* is set or cleared, a copy of the mode register 

* is maintained in RAM. The copy is first changed 

* and then the copy is written to the mode register. 

* 
0012 Mode buf EQU #12 Address of copy of mode register 

0013 

* 
* Temp - A scratch working register to 

* use for massaging the address. 

* 
Temp EQU #13 Temporary working register 

* 
* The following data is used to set or clear the 

* EXTROM bit in the MODE Register. 

* 
ooio ExtRom 

OOEF IntRom 

EQU 

EQU 

#10 

#EF 

Logically OR mode with this 

Logically AND mode with this 

* 
* Output port definitions 

* 
EQU Read here for Port A input 

Set to 1 for open drain 

0080 

0081 

0082 

Special_A EQU 

10 A EQU 

#80 

#81 

#82 Set to 0 for input, 1 for output 

C-3 



0116 

0117 

0118 

0119 

0120 

0121 

0122 

0123 

0124 

0125 

0126 

0127 

0128 

0129 

0130 

0131 

0132 

0133 

0134 

0135 

0136 

0137 

0138 

0139 

0140 

0141 

0142 

0143 

0144 

0145 

0146 

C-4 

0083 

0084 

0085 

0086 

0087 

0000 62 

0001 82 

0002 65 

0003 7F 

0004 64 

0005 80 

0006 62 

0007 83 

0008 65 

0009 7F 

OOOA 64 

OOOB 80 

OOOC 6E 

OOOD 03 

OOOE 6A 

OOOF 87 

0010 6A 

Output_A EQU 

Input_B EQU 

Special_B EQU 

10 B EQU 

Output_B EQU 

#83 

#84 

#85 

#86 

#87 

write here for Port A output 

Read here for Port B input 

Set to 1 for open drain 

Set to 0 for input, 1 for output 

write here for Port B output 

****************************************************** 

* 
* Start Routine 

* 
****************************************************** 

* 
* In general, when A(0,1,2,3,7) are used as outputs, 

* the other Port A pins should not be disturbed, so 

* the required bits are masked. An OR is performed 

* in the required high states. 

* 
* 
INIT TCX 10 A Set up Port A7 to output 

ANDCM #7F 

ORCM #80 

TCX Output_A Set Port A7 to 1 

ANDCM #7F 

ORCM #80 

* 
* 
* The B port is simpler because all Port B pins 

* are changed. 

* 
TCA #03 Set Port B output data 

TAMD Output_B bits high 

TAMD 10 B Set Port B to output state 



0147 

0148 

0149 

0150 

0151 

0152 

0153 

0154 

0155 

0156 

0157 

0158 

0159 

0160 

0161 

0162 

0163 

0164 

0165 

0166 

0167 

0168 

0169 

0170 

0171 

0172 

0173 

0174 

0175 

0011 86 

0012 62 

0013 12 

0014 64 

0015 10 

0016 11 

00171D 

0018 62 

0019 87 

001A 6 

001B FD 

001C 65 

001D FE 

001E 64 

001F 01 

0020 64 

0021 03 

0022 6C 

0023 62 

0024 82 

0025 64 

0026 8F 

* 
* Set external ROM mode by ~Ring the correct bit in 

* the RAM location that is used to maintain a copy of 

* the current state of the mode register. Then 

* write the result to the mode register. 

* 
TCX 

ORCM 

TMA 

TAMODE 

* Do a dummy write 

TCX 

ANDCM 

ANDCM 

ORCM 

ORCM 

* 

Mode buf Point to local copy 

ExtRom Set bit to local copy 

#FD 

#FE 

#01 

#03 

Copy local copy 

to mode register 

B1 BO 

o STRB 

o STRB 

o STRB 

1 STRB 

1 

o 

1 

1 

* Intialize the internal registers of the TSP50C10/11 

* for new input by performing a LUAPS. 

* 
LUAPS 

* 
* Set up AO-A3,A7 as output. 

* 
TCX 10 A 

ORCM #8F 

* 
* 
* Present lower nibble of LSB of address to ROM. 

C-5 



0176 * 
0177 0027 69 TMAD Addr LSB Get LSB 

0028 11 

0178 0029 15 SARA Divide address by 2 

0179 002A 62 TCX TEMP 

002B 13 

0180 002C 16 TAM Move to working register 

0181 002D 65 ANDCM #OF Mask off upper nibble 

002E OF 

0182 002F 64 ORCM #80 Ensure A(7) high 

0030 80 

0183 0031 11 TMA Move nibble through A reg 

0184 0032 6A TAMD Output_A to output 

0033 83 

0185 * 
0186 * Latch first nibble of address to ROM. 

0187 * 
0188 0034 6E TCA #00 Str Low 

0035 00 

0189 0036 6A TAMD Output_B 

0037 87 

0190 * 
0191 0038 6E TCA #01 Str High 

0039 01 

0192 003A 6A TAMD Output_B 

003B 87 

0193 * 
0194 * Present upper nibble of LSB of address to ROM. 

0195 * 
0196 003C 69 TMAD Addr LSB Get LSB 

003D 11 

0197 003E 15 SARA Position 2nd 

0198 003F 15 SARA nibble 

0199 0040 15 SARA 

0200 0041 15 SARA 

0201 0042 15 SARA 

0202 0043 16 TAM Move to working register 

0203 0044 65 ANDCM #OF Mask off high bits 

0045 OF 

C-6 



0204 0046 64 ORCM #88 Ensure A( 7), high bit of 

0047 88 nibble set high 

0205 * 
0206 * If lower bit of MSB is low, then transfer 

0207 * that to upper bit of upper LSB nibble. 

0208 * 
0209 0048 62 TCX Addr MSB Look at MSB of address 

0049 10 

0210 004A 66 TSTCM #01 Is lower bit high? 

004B 01 

0211 004C 40 BR INIT 1 yes, do nothing 

004D 52 

0212 004E 62 TCX TEMP no, reset bit in working 

004F 13 

0213 0050 65 ANDCM #F7 register to same state 

0051 F7 

0214 * 
0215 0052 69 INIT 1 TMAD TEMP Move nibble through A reg 

0053 13 

0216 0054 6A TAMD Output_A to output 

0055 83 

0217 * 
0218 * Latch second nibble of address to ROM. 

0219 * 
0220 0056 6E TCA #00 Str Low 

0057 00 

0221 0058 6A TAMD Output_B 

0059 87 

0222 * 
0223 005A 6E TCA #01 Str High 

005B 01 

0224 005C 6A TAMD Output_B 

005D 87 

0225 * 
0226 * Present lower nibble of MSB of address to ROM. 

0227 * 
0228 005E 69 TMAD Addr MSB Get MSB 

005F 10 

0229 0060 62 TCX Temp 

C-7 



0061 13 

0230 0062 15 SARA Divide address by 2 

0231 0063 16 TAM Move to working register 

0232 0064 65 ANDCM #OF Mask off upper nibble 

0065 OF 

0233 0066 64 ORCM #80 Ensure A(7) high 

0067 80 

0234 0068 11 TMA Move nibble through A reg 

0235 0069 6A TAMD Output_A to output 

006A 83 

0236 * 
0237 * Latch third nibble of address to ROM. 

0238 * 
0239 006B 6E TCA #00 Str Low 

006C 00 

0240 006D 6A TAMD Output_B 

006E 87 

0241 * 
0242 006F 6E TCA #01 Str High 

0070 01 

0243 0071 6A TAMD Output_B 

0072 87 

0244 * 
0245 * Present upper nibble of MSB of address to ROM. 

0246 * 
0247 0073 69 TMAD Addr MSB Get MSB 

0074 10 

0248 0075 15 SARA Position most significant 

0249 0076 15 SARA nibble for 

0250 0077 15 SARA output 

0251 0078 15 SARA 

0252 0079 15 SARA 

0253 007A 16 TAM Move to working register 

0254 007B 65 ANDCM #OF Mask off upper nibble 

007C OF 

0255 007D 64 ORCM #80 Ensure A(7) high 

007E 80 

0256 007F 11 TMA Move nibble through A reg 

0257 0080 6A TAMD Output_A to output 

C-8 



0081 83 

0258 * 
0259 * Latch fourth nibble of address to ROM. 

0260 * 
0261 0082 6E TCA #00 Str Low 

0083 00 

0262 0084 6A TAMD Output_B 

0085 87 

0263 * 
0264 0086 6E TCA #01 Str High 

0087 01 

0265 0088 6A TAMD Output_B 

0089 87 

0266 * 
0267 * Place Port AO-A3 in the high-impedance state. 

0268 * 
0269 008A 62 TCX 10 A 

008B 82 

0270 008C 65 ANDCM #FO 

0080 FO 

0271 * 
02'72 * Set R/W_ to 1. 

0273 * 
0274 008E 62 TCX Output_B 

008F 87 

0275 0090 64 ORCM #03 

0091 03 

0276 * 
0277 * Burn 8 instruction cycles. 

0278 * 
0279 0092 2F CLA 

0280 0093 2F CLA 

0281 0094 2F CLA 

0282 0095 2F CLA 

0283 0096 2F CLA 

0284 0097 2F CLA 

0285 0098 2F CLA 

CLA 

0286 * 

C-9 



0287 

0288 

0289 

0290 

0291 

0292 

0293 

0294 

0295 

0296 

0297 

0298 

0299 

0300 

0301 

0302 

0303 

0304 

0305 

0306 

0307 

0308 

C-10 

0099 31 

009A 31 

009B 62 

009C 11 

009D 66 

009E 01 

009F 40 

OOAO A2 

00A1 3D 

00A2 31 

00A3 31 

OOM 33 

00A5 3D 

* Do 2 GET2s. 

* 

* 

GET 

GET 

2 

2 

* As the above address was loaded, it was divided 

* to change it from the byte address that 

* was loaded in RAM into the word address that 

* the ROM expects. If the original address 

* was odd, get 8 bits from the ROM to 

* move one byte further into the ROM to get to the 

* correct byte boundary. 

* 

INIT 2 

TCX 

TSTCM 

BR 

RETN 

GET 

GET 

GET 

RETN 

Addr LSB Look at MSB of address 

#01 

INIT 2 

2 

2 

4 

Is address odd? 

yes, get another byte 

no, do nothing 

Get a byte in 3 stages 

******************************************************* 



D DTMF Program 
DTMF.asm 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 0000 
0012 0000 

TSP50C10 Assembler Version 1.08 

OPTION BUNLIST,DUNLIST,PAGEOF 
*********************************************************** 

* 
* DTMF GEN 

* 
* 
* 
* 
* 

This is a sample program which generates 
a DTMF tone. In this sample, tones are 
generated in sequence, triggered by 
bit 0 of port A going high, and stopped 
by that bit going low. 

* 
* 
* 

* 
* 
* 
* 

*********************************************************** 

69 GO 
AORG 
TMAD 

#0000 
o 

0001 00 
0013 
0014 0002 
0015 0003 
0016 
0017 0004 
0018 0005 
0019 0006 

0007 
0020 0008 

0009 
0021 OOOA 

OOOB 
0022 
0023 
0024 
0025 0010 
0026 
0027 0010 
0028 0011 
0029 
0030 0012 
0031 0013 
0032 
0033 0014 
0034 0015 
0035 
0036 0016 
0037 0017 
0038 
0039 0018 
0040 0019 
0041 
0042 001A 

2F 
1D 

20 
13 RAM LOOP 
61 
80 
40 
8C 
40 
05 

CLA 
TAMODE 

CLX 
TAM I X 
XGEC 

BR 

BR 

-Initialize mode register 

-Initialize All RAM to zeros 
MAX RAM+1 

GOGO 

RAM LOOP 

*********************************************************** 

A2 
A2 

A2 
A2 

A2 
A2 

A2 
A2 

A2 
A2 

A2 

* Interrupt vectors 
*********************************************************** 

AORG 

SBR 
SBR 

SBR 
SBR 

SBR 
SBR 

SBR 
SBR 

SBR 
SBR 

SBR 

#0010 

INT2 01 
INT2 01 

INT2 00 
INT2 00 

INT2 11 
INT2 11 

INT2 10 
INT2 10 

INTI 01 
INTI 01 

INTI 00 

-Timer Underflow, PCM=O, LPC=l 
-Timer Underflow, PCM=O, LPC=l 

-Timer Underflow, PCM=O, LPC=O 
-Timer Underflow, PCM=O, LPC=O 

-Timer Underflow, PCM=l, LPC=l 
-Timer Underflow, PCM=l, LPC=l 

-Timer Underflow, PCM=l, LPC=O 
-Timer Underflow, PCM=l, LPC=O 

-PPC < 16 samples interrupt 
-PPC < 16 samples interrupt 

-pin (B1) goes low interrupt 

D-1 



0043 001B 
0044 
0045 001C 
0046 0010 
0047 
0048 001E 
0049 001F 
0050 
0051 0020 

0021 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 0022 
0060 0023 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 

0-2 

A2 

A2 
A2 

AO 
AO 

* 
40 INTI 10 
E6 

0022 
0022 
0022 
0022 
0022 
0022 

* 
INTI 01 
INT2 00 
INT2 01 
INT2 10 
INT2 11 
INTI 00 

2F INTI 11 
3E 

* 

SBR 

SBR 
SBR 

SBR 
SBR 

BR 

CLA 
RETI 

INTI 00 

INTI 11 
INTI 11 

INTI 10 
INTI 10 

INTPCM 

* PCM register variables 

0000 
0001 
0002 
0003 
0004 

* 
PERIOD 1 
TIME1 
PERIOD2 
TIME2 
PCMBUF 

* 
* 

EQU 
EQU 
EQU 
EQU 
EQU 

#00 
#01 
#02 
#03 
#04 

-Pin (B1) goes low interrupt 

-10 kHz Clock interrupt 
-10 kHz Clock interrupt 

-20 kHz Clock interrupt 
-20 kHz Clock interrupt 

-PCM service routine 

-Period of 1st Wave 
-Cumulative angle of 1st wave 
-Period of 2nd Wave 
-Cumulative angle of 2nd wave 
-Intermediate data buffer 

* LPC status variable locations 

* 
0010 MODE BUF EQU #10 ;Mode register buffer 

* 
* Device Constants 

* 
007F MAX RAM EQU #7F -Highest RAM location 

* 
* MODE Register Bit Definitions 

* 
0001 ENA1 
0002 LPC 
0004 PCM 
0008 ENA2 
0010 EXTROM 
0020 RAMROM 
0040 MASTER 
0080 UNV 

* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

#01 
#02 
#04 
#08 
#10 
#20 
#40 
#80 

-Enable Level 1 interrupt 
-Enable LPC synthesis 
-Enable PCM synthesis 
-Enable Level 2 interrupt 
-Set external ROM mode 
-Enable GETs from RAM 
-Master/Slave Toggle 
-Enable Unvoiced excitation 



0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 0024 
0103 0028 
0104 002C 
0105 0030 
0106 0034 
0107 0038 
0108 003C 
0109 0040 
0110 0044 
0111 0048 
0112 
0113 
0114 
0115 004C 
0116 004E 
0117 0050 
0118 0052 
0119 0054 
0120 0056 
0121 0058 
0122 005A 
0123 005C 
0124 005E 
0125 0060 
0126 0062 
0127 0064 
0128 0066 
0129 0068 
0130 006A 
0131 006C 
0132 006E 
0133 0070 
0134 0072 
0135 0074 
0136 0076 
0137 0078 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

80 OTMF 
80 
80 
80 
80 
80 
80 
80 
80 
80 

* 
* 
* 

00 SINEW 
31 
31 
5A 
5A 
75 
75 
7F 
7F 
75 
75 
5A 
5A 
31 
31 
00 
00 
CF 
CF 
A6 
A6 
8B 
8B 

OTMF tone definition table 

Program assumes a 10kHz sampling frequency and 
has a spacing of 11.25 degrees between entries in 
the sine wave table, so value for a frequency is 

(freq * 360 degrees) 
value * 128 

(10kHZ * 11.25 degrees) 

The bottom 8 bits are fractional 

RBYTE 
RBYTE 
RBYTE 
RBYTE 
RBYTE 
RBYTE 
RBYTE 
RBYTE 
RBYTE 
RBYTE 

#01,#81,#02,#23 
#01,#10,#01,#EF 
#01,#10,#02,#23 
#01,#10,#02,#50 
#01,#3B,#01,#EF 
#01,#3B,#02,#23 
#01,#3B,#02,#50 
#01,#50,#01,#EF 
#01,#50,#02,#23 
#01,#50,#02,#50 

-zero 
-One 

941 Hz+1336 Hz 
697 Hz+1209 Hz 

-two 697 Hz+1336 Hz 
-three= 697 Hz+1477 Hz 
-four 770 Hz+1209 Hz 
-five = 770 Hz+1336 Hz 
-six 770 Hz+1477 Hz 
-seven= 852 Hz+1209 Hz 
-eight= 852 Hz+1336 Hz 
-nine = 852 Hz+1477 Hz 

oigitized sine wave table 

BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 
BYTE 

#00,#19 
#31,#18 
#31,#16 
#5A,#13 
#5A,#10 
#75,#OB 
#75,#08 
#7F,#02 
#7F,#FE 
#75,#F8 
#75,#F5 
#5A,#FO 
#5A,#EO 
#31,#EA 
#31,#E8 
#00,#E7 
#00,#E7 

o degrees-->11.25 degrees 
11.25 degrees-->22.5 degrees 
22.5 degrees-->33.75 degrees 
33.75 degrees-->45 degrees 
45.0 degrees-->56.25 degrees 
56.25 degrees-->67.5 degrees 
67.5 degrees-->78.75 degrees 
78.75 degrees-->90 degrees 
90.0 degrees-->101.25 degrees 
101.25 degrees-->112.5 degrees 
112.5 degrees-->123.75 degrees 
123.75 degrees-->135.0 degrees 
135.0 degrees-->146.25 degrees 
146.25 degrees-->157.5 degrees 
157.5 degrees-->168.75 degrees 
168.75 degrees-->180.0 degrees 
180.0 degrees-->191.25 degrees 

#CF,#E8 191.25 degrees-->202.5 degrees 
#CF,#EA 
#A6,#EO 
#A6,#FO 
#8B,#F5 
#BB,#FB 

202.5 degrees-->213.75 degrees 
213.75 degrees-->225.0 degrees 
225.0 degrees-->236.25 degrees 
236.25 degrees-->247.5 degrees 
247.5 degrees-->258.75 degrees 

0-3 



0138 007A 81 BYTE #81,#FE 258.75 degrees->270.0 degrees 
0139 007C 81 BYTE #81,#02 270.0 degrees->281.25 degrees 
0140 007E 8B BYTE #8B,#08 281.25 degrees->292.5 degrees 
0141 0080 8B BYTE #8B,#OB 292.5 degrees->303.75 degrees 
0142 0082 A6 BYTE #A6,#10 303.75 degrees->315.0 degrees 
0143 0084 A6 BYTE #A6,#13 315.0 degrees->326.25 degrees 
0144 0086 CF BYTE #CF,#16 326.25 degrees->337.5 degrees 
0145 0088 CF BYTE #CF,#18 337.5 degrees->348.75 degrees 
0146 008A 00 BYTE #00,#19 348.75 degrees->360 degrees 
0147 *********************************************************** 
0148 * Main body of program 
0149 *********************************************************** 

0150 008C 6E GOGO TCA 0 -Tone 'Zero' 
0080 00 

0151 008E 00 CALL DO PCM 
008F B5 

0152 * 
0153 0090 6E TCA 1 -Tone 'One' 

0091 01 
0154 0092 00 CALL DO PCM -

0093 B5 
0155 * 
0156 0094 6E TCA 2 -Tone 'Two' 

0095 02 
0157 0096 00 CALL DO PCM 

0097 B5 
0158 * 
0159 0098 6E TCA 3 -Tone 'Three' 

0099 03 
0160 009A 00 CALL DO PCM 

009B B5 
0161 * 
0162 009C 6E TCA 4 -Tone 'Four' 

009D 04 
0163 009E 00 CALL DO PCM 

009F B5 
0164 * 
0165 OOAO 6E TCA 5 -Tone 'Five' 

00A1 05 
0166 00A2 00 CALL DO PCM 

00A3 B5 
0167 * 
0168 00A4 6E TCA 6 -Tone 'Six' 

00A5 06 
0169 00A6 00 CALL DO PCM 

00A7 B5 
0170 * 
0171 00A8 6E TCA 7 -Tone 'Seven' 

0-4 



00A9 07 
0172 OOAA 00 CALL DO PCM 

OOAB B5 
0173 * 
0174 OOAC 6E TCA 8 -Tone 'Eight' 

OOAD 08 
0175 OOAE 00 CALL DO PCM 

OOAF B5 
0176 * 
0177 OOBO 6E TCA 9 -Tone 'Nine' 

00B1 09 
0178 00B2 00 CALL DO PCM 

00B3 B5 
0179 * 
0180 00B4 3F SETOFF 
0181 * 
0182 *********************************************************** 

0183 * 
0184 * DO PCM 
0185 * 
0186 * This is the routine that sets up the DTMF tone. 
0187 * It waits for port PAO to go high, then plays 
0188 * the DTMF tone specified by the contents of the 
0189 * A register until PAO goes low. 
0190 * 
0191 *********************************************************** 

0192 00B5 62 DO PCM TCX #80 -Point to port A 
00B6 80 

0193 00B7 66 TSTCM #01 -Loop until A(O) 
00B8 01 

0194 00B9 40 BR GO PCM goes high 
OOBA BD 

0195 OOBB 40 BR DO PCM 
OOBC B5 

0196 * 
0197 OOBD 2E GO PCM SALA -Adjust value to 
0198 OOBE 2E SALA table index 
0199 OOBF 70 ACAAC DTMF -Add offset of table 

OOCO 24 
0200 00C1 6C LUAPS -Point to table entry 
0201 
0202 00C2 37 GET 8 -Get first frequency 
0203 00C3 37 GET 8 period 
0204 00C4 6A TAMD PERIOD1 -Store it away 

00C5 00 
0205 
0206 00C6 37 GET 8 -Get second frequency 
0207 00C7 37 GET 8 period 

0-5 



0208 00C8 6A TAMD PERIOD2 -Store it away 
00C9 02 

0209 
0210 OOCA 2F CLA -Clear cumulative data 
0211 OOCB 6A TAMD TIME1 

OOCC 01 
0212 OOCD 6A TAMD TIME2 

OOCE 03 
0213 
0214 OOCF 62 TCX MODE BUF -Turn on PCM and INTI 

0000 10 
0215 0001 64 ORCM PCM 

0002 04 
0216 0003 64 ORCM ENA1 

0004 01 
0217 0005 11 TMA 
0218 0006 10 TAMODE 
0219 
0220 0007 62 L1 TCX #80 -Loop until A(O) 

0008 80 
0221 0009 66 TSTCM #01 goes low 

OODA 01 
0222 OODB 40 BR L1 

OODC 07 
0223 
0224 0000 62 TCX MODE BUF -Turn off PCM and INTI 

OODE 10 
0225 OODF 65 ANDCM -PCM 

OOEO FB 
0226 OOEl 65 ANDCM -ENA1 

00E2 FE 
0227 00E3 11 TMA 
0228 00E4 10 TAMODE 
0229 00E5 3D RETN 
0230 
0231 *********************************************************** 

0232 * PCM interrupt service routine 
0233 *********************************************************** 

0234 00E6 3B INTPCM INTGR 
0235 00E7 20 CLX 
0236 
0237 00E8 14 TMAIX -Add delta angle to 
0238 00E9 28 AMAAC cumulative angle 
0239 
0240 OOEA 16 TAM -Save cumulative angle 
0241 OOEB 11 TMA -Discard high bits of cum 
0242 
0243 OOEC 68 AXCA 01 -right shift 7 bits 

D--6 



OOED 01 
0244 OOEE 2E SALA -Left 1 bit 
0245 OOEF 70 ACAAC SINEW -Add table offset 

OOFO 4C 
0246 
0247 00F1 3C EXTSG 
0248 00F2 6D LUAB -get data point 
0249 00F3 3A lAC 
0250 00F4 6B LUAA -get slope between points 
0251 00F5 39 AXMA -interpolate slope 
0252 00F6 2C ABAAC -add interpolated slope 
0253 00F7 1B SALA4 and scale for DAC 
0254 00F8 68 AXCA #78 -Scale value for twist 

00F9 78 
0255 
0256 OOFA 6A TAMD PCMBUF -Save intermediate data 

OOFB 04 
0257 
0258 OOFC 3B INTGR 
0259 OOFD 21 IXC 
0260 OOFE 14 TMAIX -Add delta angle to 
0261 OOFF 28 AMAAC cumulative angle 
0262 
0263 0100 16 TAM -Save cumulative angle 
0264 0101 11 TMA -Discard high bits of angle 
0265 
0266 0102 68 AXCA 01 -right shift 7 bits 

0103 01 
0267 0104 2E SALA -Left 1 bit 
0268 0105 70 ACAAC SINEW -Add table offset 

0106 4C 
0269 
0270 0107 3C EXTSG 
0271 0108 6D LUAB -get data point 
0272 0109 3A lAC 
0273 010A 6B LUAA -get slope between points 
0274 010B 39 AXMA -interpolate slope 
0275 
0276 010C 2C ABAAC -add interpolated slope 
0277 010D 1B SALA4 and scale 
0278 
0279 010E 1A TAB -Store 2nd data point 
0280 
0281 010F 21 IXC -Retrieve 1st data point 
0282 0110 11 TMA 
0283 
0284 0111 2C ABAAC -Sum two waves together 
0285 0112 15 SARA and normalize 

0-7 



0286 0113 
0287 0114 

D-8 

Ie 
3E 

TASYN 
RET! 

-transfer data to D/A 



E TSP50C10/11 Sample Music Program 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 

0000 
0000 
0001 

0001 
OOOC 
OOOD 
OOOE 
OOOF 

0010 
0011 
0012 
0013 

OF61 
OB67 
007F 

0001 
0002 
0004 
0008 
0010 
0020 
0040 
0080 

69 
00 

OPTION BUNLIST,DUNLIST,PAGEOF 
*********************************************************** 

* 
* MINUET.ASM 

* 
* LPC can also be used to generate music. In this 
* program, the LPC filter is set to a narrow bandwidth 
* filter that will only pass a single frequency. 
* by appropriately varying the parameters, we play 
* Minuet in G by Mozart. 

* 
*********************************************************** 

* RAM USAGE 
*********************************************************** 

EN EQU #01 -EN working value 
K2 EQU #OC -K2 Working Value 
K1 EQU #OD -K1 Working Value 
C1 EQU #OE -C1 Parameter 
C2 EQU #OF -C2 Parameter 

TIME EQU #10 -Note Duration 
ENERGY EQU #11 -Temp storage for energy 
MODE BUF EQU #12 -Mode register Buffer 
EndSong EQU #13 -End of song flag 

* 
* Device Constants 

* 
C1 Value EQU #F61 -C1 Value 
C2 Value EQU #B67 -C2 Value 
MAX RAM EQU #7F -Highest RAM location 

* 
* MODE Register Bit Definitions 

* 
ENA1 EQU #01 -Enable Level 1 interrupt 
LPC EQU #02 -Enable LPC systhesis 
PCM EQU #04 -Enable PCM synthesis 
ENA2 EQU #08 -Enable Level 2 interrupt 
EXTROM EQU #10 -Set external ROM mode 
RAMROM EQU #20 -Enable GETs from RAM 
MASTER EQU #40 -Master/Slave Toggle 
UNV EQU #80 -Enable Unvoiced excitation 
*********************************************************** 

* BEGINNING OF PROGRAM 
*********************************************************** 

AORG 
TMAD 

#0000 
o 

E-1 



0047 
0048 0002 2F CLA -Initialize mode register 
0049 0003 10 TAMOOE 
0050 
0051 0004 20 CLX 
0052 0005 13 RAM LOOP TAM I X -Initialize All RAM to zeros 
0053 0006 61 XGEC MAX RAM+1 
0054 0008 40 BR GOGO 

0009 21 
0055 OOOA 40 BR RAM LOOP 

OOOB 05 
0056 *********************************************************** 

0057 * Interrupt vectors 
0058 *********************************************************** 

0059 0010 AORG #0010 
0060 0010 AO SBR INT2 01 -Timer Underflow, PCM=O, LPC=l 
0061 0011 AD SBR INT2 01 -Timer Underflow, PCM=O, LPC=l 
0062 0012 AO SBR INT2 - 00 -Timer Underflow, PCM=O, LPC=O 
0063 0013 AO SBR INT2 00 -Timer Underflow, PCM=O, LPC=O 
0064 0014 AO SBR INT2 11 -Timer Underflow, PCM=l, LPC=1 
0065 0015 AO SBR INT2 11 -Timer Underflow, PCM=l, LPC=1 
0066 0016 AO SBR INT2 10 -Timer Underflow, PCM=l, LPC=O -
0067 0017 AD SBR INT2 10 -Timer Underflow, PCM=l, LPC=O -
0068 0018 AD SBR INTI 01 -PPC < 16 Samples interrupt 
0069 0019 AO SBR INTI 01 -PPC < 16 Samples interrupt -
0070 001A AD SBR INTI 00 -pin (B1 ) goes low interrupt 
0071 001B AO SBR INTI 00 -pin (B1) goes low interrupt -
0072 001C AD SBR INTI 11 -10 kHz Clock interrupt 
0073 0010 AO SBR INTI 11 -10 kHz Clock interrupt 
0074 001E AO SBR INTI 10 -20 kHz Clock interrupt 
0075 001F AD SBR INTI 10 -20 kHz Clock interrupt -
0076 0020 INTI 01 
0077 * 
0078 0020 INT2 00 -
0079 0020 INT2 01 -
0080 0020 INT2 10 -
0081 0020 INT2 11 
0082 0020 INTI 00 
0083 0020 INTI 10 -
0084 0020 3E INTI 11 RETI 
0085 * 
0086 *********************************************************** 

0087 * MAIN BODY OF PROGRAM 
0088 *********************************************************** 

0089 0021 2F GOGO CLA -Point to start of song 
0090 0022 70 ACAAC NOTES 

0023 84 
0091 0024 6C LUAPS 

E-2 



0092 
0093 0025 2F CLA -Load C1 Value 
0094 0026 7F ACAAC C1 VALUE 

0027 61 
0095 0028 6A TAMO C1 

0029 OE 
0096 
0097 002A 2F CLA -Load C2 Value 
0098 002B 7B ACAAC C2 VALUE 

002C 67 
0099 0020 6A TAMO C2 

002E OF 
0100 
0101 002F 33 GET 4 -Get song tempo 
0102 0030 33 GET 4 
0103 0031 19 TAPSC 
0104 
0105 0032 00 CALL LoadNote -Load the first note data 

0033 56 
0106 
0107 0034 62 TCX Mode Buf -Turn on LPC Mode 

0035 12 
0108 0036 64 ORCM LPC 

0037 02 
0109 0038 11 TMA 
0110 0039 10 TAMOOE 
0111 
0112 003A 6E TCA Iff -Start countdown timer 

003B FF 
0113 003C 1E TATM 
0114 
0115 0030 69 Loop TMAO EndSong -Test end of song flag 

003E 13 
0116 003F 63 AGEe 1 -Is song over? 

0040 01 
0117 0041 40 BR StopSong yes, turn off LPC 

0042 4F 
0118 
0119 0043 17 TTMA -Get timer value 
0120 0044 60 ANEC 0 -Time to decrement TIME? 

0045 00 
0121 0046 40 BR Loop no, loop back 

0047 3D 
0122 
0123 0048 62 TCX TIME -Point to note duration 

0049 10 
0124 004A 27 OECMN -Is it time to get new note? 
0125 004B 00 CALL LoadNote yes, get new note 

E-3 



004C 56 
0126 0040 40 BR Loop no, wait some more 

004E 30 
0127 

0128 004F 62 StopSong TCX Mode Buf -Turn off LPC Mode 
0050 12 

0129 0051 65 ANOCM -LPC 
0052 FO 

0130 0053 11 TMA 
0131 0054 10 TAMODE 
0132 

0133 0055 3F SETOFF -Turn of device 
0134 

0135 *********************************************************** 

0136 * This subroutine loads in data for the next note 
0137 *********************************************************** 

0138 0056 2F LoadNote CLA -Zero energy while we change 
0139 0057 6A TAMD EN the filter parameters 

0058 01 
0140 

0141 0059 33 GET 4 -Get the note duration 
0142 005A 33 GET 4 
0143 005B 6A TAMO TIME 

005C 10 
0144 

0145 0050 60 ANEC 0 -End of song? 
005E 00 

0146 005F 40 BR Continue no, continue 
0060 67 

0147 

0148 0061 6E TCA 1 -Signal. •• 

0062 01 
0149 0063 6A TAMO EndSong end of song ••. 

0064 13 
0150 0065 40 BR RelaxK2 and allow sound to die 

0066 7E 
0151 

0152 0067 37 Continue GET 8 -Get Note Energy 
0153 0068 6A TAMO ENERGY 

0069 11 
0154 
0155 006A 37 GET 8 -Get pitch value 
0156 006B 37 GET 8 
0157 006C 1C TASYN 
0158 

0159 0060 37 GET 8 -Get first filter parameter 
0160 006E 37 GET 8 
0161 006F 6A TAMO Kl 

E-4 



0070 OD 
0162 
0163 0071 2F CLA -Get bandwidth 
0164 0072 77 ACAAC #7f8 

0073 F8 
0165 0074 6A TAMD K2 

0075 OC 
0166 
0167 0076 69 TMAD ENERGY -Load energy to filter 

0077 11 
0168 0078 6A TAMD EN 

0079 01 
0169 
0170 007A 60 ANEC 0 -Is note a rest? 

007B 00 
0171 007C 40 BR LoadNoteX no, exit routine 

007D 83 
0172 
0173 007E 2F RelaxK2 CLA -Note is a rest, 
0174 007F 77 ACAAC #780 relax filter bandwidth 

0080 80 
0175 0081 6A TAMD K2 so sound can die down 

0082 OC 
0176 
0177 0083 30 LoadNoteX RETN 
0178 
0179 
0180 0084 C8 NOTES RBYTE #13 Tempo 
0181 0085 02 RBYTE #40,#06,#01,#B4,#08,#D6 note 17, fre 
0182 008B 04 RBYTE #20,#06,#02,#8E,#08,#60 note 10, fre 
0183 0091 04 RBYTE #20,#06,#02,#46,#08,#79 note 12, fre 
0184 0097 04 RBYTE #20,#06,#02,#06,#08,#99 note 14, fre 
0185 0090 04 RBYTE #20,#06,#01,#EA,#08,#AA note 15, fre 
0186 
0187 00A3 02 RBYTE #40,#06,#01,#B4,#08,#D6 note 17, fre 
0188 00A9 1C RBYTE #38,#06,#02,#8E,#08,#60 note 10, fre 
0189 OOAF 10 RBYTE #08,#00,#02,#8E,#08,#60 REST 
0190 00B5 Ie RBYTE #38,#06,#02,#8E,#08,#60 note 10, fre 
0191 OOBB 10 RBYTE #08,#00,#02,#8E,#08,#60 REST 
0192 
0193 00C1 02 RBYTE #40,#06,#01,#84,#09,#00 note 19, fre 
0194 00C7 04 RBYTE #20,#06,#01,#EA,#08,#AA note 15, fre 
0195 OOeD 04 RBYTE #20,#06,#01,#B4,#08,#06 note 17, fre 
0196 0003 04 RBYTE #20,#06,#01,#84,#09,#00 note 19, fre 
0197 00D9 04 RBYTE #20,#06,#01,#5A,#09,#51 note 21, fre 
0198 
0199 OODF 02 RBYTE #40,#06,#01,#46,#09,#7A note 22, fre 
0200 00E5 Ie RBYTE #38,#06,#02,#8E,#08,#60 note 10, fre 

E-5 



0201 OOEB 10 RBYTE #08,#00,#02,#8E,#08,#60 REST 
0202 00F1 1C RBYTE #38,#06,#02,#8E,#08,#60 note 10, fre 
0203 00F7 10 RBYTE #08,#00,#02,#8E,#08,#60 REST 
0204 
0205 OOFO 02 RBYTE #40,#06,#01,#EA,#08,#AA note 15, fre 
0206 0103 04 RBYTE #20,#06,#01,#B4,#08,#06 note 17, fre 
0207 0109 04 RBYTE #20,#06,#01,#EA,#08,#AA note 15, fre 
0208 010F 04 RBYTE #20,#06,#02,#06,#08,#99 note 14, fre 
0209 0115 04 RBYTE #20,#06,#02,#46,#08,#79 note 12, fre 
0210 
0211 011B 02 RBYTE #40,#06,#02,#06,#08,#99 note 14, fre 
0212 0121 04 RBYTE #20,#06,#01,#EA,#08,#AA note 15, fre 
0213 0127 04 RBYTE #20,#06,#02,#06,#08,#99 note 14, fre 
0214 0120 04 RBYTE #20,#06,#02,#46,#08,#79 note 12, fre 
0215 0133 04 RBYTE #20,#06,#02,#8E,#08,#60 note 10, fre 
0216 
0217 0139 02 RBYTE #40,#06,#02,#B4,#08,#56 note 9, freq 
0218 013F 04 RBYTE #20,#06,#02,#8E,#08,#60 note 10, fre 
0219 0145 04 RBYTE #20,#06,#02,#46,#08,#79 note 12, fre 
0220 014B 04 RBYTE #20,#06,#02,#06,#08,#99 note 14, fre 
0221 0151 04 RBYTE #20,#06,#02,#8E,#08,#60 note 10, fre 
0222 
0223 *** 
0224 
0225 0157 02 RBYTE #40,#06,#02,#06,#08,#99 note 14, fre 
0226 0150 1C RBYTE #38,#06,#02,#46,#08,#79 note 12, fre 
0227 0163 10 RBYTE #08,#00,#02,#46,#08,#79 REST 
0228 0169 1C RBYTE #38,#06,#02,#46,#08,#79 note 12, fre 
0229 016F 10 RBYTE #08,#00,#02,#46,#08,#79 REST 
0230 
0231 0175 02 RBYTE #40,#06,#01,#B4,#08,#06 note 17, fre 
0232 017B 04 RBYTE #20,#06,#02,#8E,#08,#60 note 10, fre 
0233 0181 04 RBYTE #20,#06,#02,#46,#08,#79 note 12, fre 
0234 0187 04 RBYTE #20,#06,#02,#06,#08,#99 note 14, fre 
0235 0180 04 RBYTE #20,#06,#01,#EA,#08,#AA note 15, fre 
0236 
0237 0193 02 RBYTE #40,#06,#01,#B4,#08,#06 note 17, fre 
0238 0199 1C RBYTE #38,#06,#02,#8E,#08,#60 note 10, fre 
0239 019F 10 RBYTE #08,#00,#02,#8E,#08,#60 REST 
0240 01A5 1C RBYTE #38,#06,#02,#8E,#08,#60 note 10, fre 
0241 o lAB 10 RBYTE #08,#00,#02,#8E,#08,#60 REST 
0242 
0243 01B1 02 RBYTE #40,#06,#01,#84,#09,#00 note 19, fre 
0244 01B7 04 RBYTE #20,#06,#01,#EA,#08,#AA note 15, fre 
0245 01BO 04 RBYTE #20,#06,#01,#B4,#08,#06 note 17, fre 
0246 01C3 04 RBYTE #20,#06,#01,#84,#09,#00 note 19, fre 
0247 01C9 04 RBYTE #20,#06,#01,#5A,#09,#51 note 21, fre 
0248 

E-6 



Printed in U.S.A. 
0393-1P-5 

~ThxAs 
INSTRUMENTS 

SPSS011A 


