ABT
 Advanced BiCMOS Technology
 A High-Performance Line of 5-V and 3.3-V Products

Data Book

General Information
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {M }}$ 4
ABT Widebus+ ${ }^{\text {TM }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {™ }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

ABT
 Advanced BiCMOS Technology
 Data Book

A High-Performance Line of 5-V and 3.3-V Products

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1993, Texas Instruments Incorporated
Printed in the U.S.A.

EPIC, EPIC-IIB, SCOPE, UBE, UBT, Widebus, Shrink Widebus, and Widebus+ are trademarks of Texas Instruments Incorporated.

INTRODUCTION

As the operating frequencies of microprocessors increase, the period of time allotted for memory access, arithmetic computation, or similar operations decreases. With this in mind, a new series of advanced bus-interface products, developed with the Texas Instruments submicron Advanced BiCMOS (ABT) process technology, assumes a prominent role as the key high-performance logic needed in today's workstation, personal and portable computer, and telecom systems. The goal of this family of products is to provide to system designers a bus-interface solution combining high-drive capability, lower power consumption, signal integrity, and propagation delays fast enough to appear transparent with respect to overall system performance. Fine-pitch package options simplify layout, reduce required board space, and decrease overall system costs. Novel circuit design techniques add value over competitive solutions.

Texas Instruments presents the 1993 ABT Advanced BiCMOS Technology Data Book. Included in this updated edition is the broadest line of advanced bus products in the industry. As new bus architectures and logic standards are being developed, Texas Instruments continues to lead the industry in producing advanced logic to support these emerging technologies. Products such as enhanced transceiver logic (ETL), Gunning transceiver logic (GTL), low-voltage JTAG, and LVT memory drivers have been added to illustrate this technology leadership. Data sheets have also been added to other sections to reflect new products under development. All of the devices contained in this data book incorporate the Texas Instruments high-performance EPIC-IIB ${ }^{\text {M }}$ submicron BiCMOS process.

The products described in this data book have been designed specifically to help system engineers meet the varied and stringent requirements of their end equipments. Products range from the simple and popular octal buffer/transceiver to the extremely complex 36-bit universal bus transceiver (UBT ${ }^{\text {TM }}$). For midscale integration, a whole series of 16 -bit Widebusi ${ }^{\text {TM }}$ products exist. Because board costs also affect system costs, it is desirable for chips to be housed in a variety of packaging options to save space. Each of the products in the data book are offered in a number of different surface-mount and fine-pitch package options such as the shrink small-outline package (SSOP) and the thin shrink small-outline package (TSSOP). Circuit design techniques built into the silicon such as mixed mode, power on demand, and bus hold offer enhanced parametrics and save having to discretely implement these enhancements.

Most of the products in the data book are available in production quantities. Please contact your local authorized distributor or Texas Instruments representative for details on any of these devices. Some of the devices in this data book are not yet available in production quantities; information on these devices is included as Product Previews. Texas Instruments is also evaluating many other devices for market introduction. Some of these are listed along with a description of their function in tables at the front of each section. Please contact the Advanced System Logic hotline at (214) 997-5202 to learn more about plans for these devices.

Finally, in addition to specific information on the products, the data book contains other useful sections including mechanical data, application notes, and characterization information.

We hope you agree that Texas Instruments has the most complete line of high-performance bus-interface logic in the industry. We hope that these products will meet your system and design needs.

EPIC-IIB, UBT, and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCT STAGE STATEMENTS

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

The next statements must be used in combination:
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

If any of the pages contain PRODUCT PREVIEW information, this statement must appear at the lower left on those pages:

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

If any of the pages contain ADVANCE INFORMATION, this statement must appear at the lower left on those pages:

ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.
General Information
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Contents

Page
Alphanumeric Index 1-3
Glossary 1-5
Explanation of Function Tables 1-8
D Flip-Flop and Latch Signal Conventions 1-10
Thermal Information 1-11
Functional Index 1-13

ALPHANUMERIC INDEX

DEvice		PAGE
Advanced BiCMOS Technology (ABT)		
SN54ABT125	SN74ABT125	2-3
SN54ABT126	SN74ABT126	2-7
SN54ABT240	SN74ABT240	2-13
SN54ABT241	SN74ABT241	2-19
SN54ABT244	SN74ABT244	2-25
SN54ABT245	SN74ABT245	2-31
SN54ABT273	SN74ABT273	2-37
SN54ABT373	SN74ABT373	2-43
SN54ABT374	SN74ABT374	2-49
SN54ABT377	SN74ABT377	2-55
SN54ABT533	SN74ABT533	2-61
SN54ABT534	SN74ABT534	2-67
SN54ABT540	SN74ABT540	2-73
SN54ABT541	SN74ABT541	2-77
SN54ABT543	SN74ABT543	2-81
SN54ABT544	SN74ABT544	2-87
SN54ABT573	SN74ABT573	2-91
SN54ABT574	SN74ABT574	2-97
SN54ABT620	SN74ABT620	2-103
SN54ABT623A	SN74ABT623	2-109
SN54ABT640	SN74ABT640	2-115
SN54ABT646	SN74ABT646	2-119
SN54ABT646A	SN74ABT646A	2-127
SN54ABT651	SN74ABT651	2-135
SN54ABT652	SN74ABT652	2-143
SN54ABT652A	SN74ABT652A	2-153
SN54ABT657	SN74ABT657	2-163
SN54ABT821	SN74ABT821	2-171
SN54ABT823	SN74ABT823	2-177
SN54ABT827	SN74ABT827	2-181
SN54ABT828	SN74ABT828	2-187
SN54ABT833	SN74ABT833	2-193
SN54ABT841	SN74ABT841	2-201
SN54ABT843	SN74ABT843	2-207
SN54ABT853	SN74ABT853	2-213
SN54ABT861	SN74ABT861	2-219
SN54ABT862	SN74ABT862	2-225
SN54ABT863	SN74ABT863	2-229
SN54ABT2240	SN74ABT2240	6-5
SN54ABT2241	SN74ABT2241	6-11
SN54ABT2244	SN74ABT2244	6-17
SN54ABT2245	SN74ABT2245	6-23
SN54ABT2952	SN74ABT2952	2-235
SN54ABT2952A	SN74ABT2952A	2-241
SN54ABT5400	SN74ABT5400	6-27
SN54ABT5401	SN74ABT5401	6-33
SN54ABT5402	SN74ABT5402	6-37
SN54ABT5403	SN74ABT5403	6-43
SN54ABT8245	SN74ABT8245	9-5
SN54ABT8543	SN74ABT8543	9-27
SN54ABT8646	SN74ABT8646	9-49
SN54ABT8652	SN74ABT8652	9-73
SN54ABT8952	SN74ABT8952	9-97

DEVICE

SN54ABT16240 SN54ABT16241
SN54ABT16244
SN54ABT16245
SN54ABT16260
SN54ABT16373A
SN54ABT16374A
SN54ABT16377
SN54ABT16460
SN54ABT16470
SN54ABT16500B
SN54ABT16501
SN54ABT16540
SN54ABT16541
SN54ABT16543
SN54ABT16600
SN54ABT16601
SN54ABT16623
SN54ABT16640
SN54ABT16646
SN54ABT16648
SN54ABT16651
SN54ABT16652
SN54ABT16657
SN54ABT16821
SN54ABT16823
SN54ABT16825
SN54ABT16826
SN54ABT16827
SN54ABT16828
SN54ABT16833
SN54ABT16841
SN54ABT16843
SN54ABT16853
SN54ABT16863
SN54ABT16952
SN54ABT162240
SN54ABT162244
SN54ABT162245
SN54ABT162260
SN54ABT162460
SN54ABT162500
SN54ABT162501
SN54ABT162540
SN54ABT162541
SN54ABT162600
SN54ABT162601
SN54ABT162827
SN54ABT18245 SN74ABT18245 9-119
SN54ABT18502A SN74ABT18502A................... 9-147
SN54ABT18504A SN74ABT18504A................... 9-157
SN54ABT18646A SN74ABT18646A................... 9-167
SN54ABT18652A SN74ABT18652A 9-177
SN74ABT25241 7-3

INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY LETTER SYMBOLS)

C_{i}	Input capacitance
	The internal capacitance at an input of the device
Co	Output capacitance
	The internal capacitance at an output of the device
$C_{\text {pd }}$	Power dissipation capacitance
	Used to determine the no-load dynamic power dissipation per logic function (see individual circuit pages): $P_{D}=C_{p d} V_{C C}^{2} f+I_{C C} V_{C C}$.
$f_{\text {max }}$	Maximum clock frequency
	The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.
Icc	Supply current
	The current into* the V_{CC} supply terminal of an integrated circuit
$\Delta_{\text {l }} \mathbf{C}$	Supply current change
	The increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}
$I_{\text {CEX }}$	Output high leakage current
	The maximum leakage current into the collector of the pulldown output transistor when the output is high and the output forcing condition $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$.
$l_{\text {(hold }}$)	Input hold current
	Input current that holds the input at the previous state when the driving device goes to a high-impedance state
$\mathbf{I I H}$	High-level input current
	The current into* an input when a high-level voltage is applied to that input
$I_{\text {IL }}$	Low-level input current
	The current into* an input when a low-level voltage is applied to that input
$I_{\text {off }}$	Input/output power-off leakage current
	The maximum leakage current into/out of the input/output transistors when forcing the input/output to 4.5 V and $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
IOH^{\prime}	High-level output current
	The current into* an output with input conditions applied that, according to the product specification, will establish a high level at the output.
IOL	Low-level output current
	The current into* an output with input conditions applied that, according to the product specification, will establish a low level at the output.

[^0]The propagation time between the specified reference points on the input and output voltage waveforms with the output changing from either of the defined active levels (high or low) to a high-impedance (off) state.
NOTE: For 3-state outputs, $\mathrm{t}_{\text {dis }}=\mathrm{t}_{\text {PHZ }}$ or $\mathrm{t}_{\text {PLZ }}$. Open-collector outputs will change only if they are low at the time of disabling so $t_{\text {dis }}=$ tpLH .

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level

$\mathbf{t}_{\text {PHZ }} \quad$ Disable time (of a 3-state output) from high level

The time interval between the specified reference points on the input and the output voltage waveforms with the 3 -state output changing from the defined high level to a high-impedance (off) state
$\mathbf{t P L H} \quad$ Propagation delay time, low-to-high level output
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level

tpLZ Disable time (of a 3-state output) from low level

The time interval between the specified reference points on the input and the output voltage waveforms with the 3 -state output changing from the defined low level to a high-impedance (off) state

tpZH Enable time (of a 3-state output) to high level

The time interval between the specified reference points on the input and output voltage waveforms with the 3 -state output changing from a high-impedance (off) state to the defined high level.
tpZL \quad Enable time (of a 3-state output) to low level
The time interval between the specified reference points on the input and output voltage waveforms with the 3-state output changing from a high-impedance (off) state to the defined low level.
$t_{\text {su }} \quad$ Setup time
The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal.
NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is guaranteed.
$\mathbf{t}_{\mathbf{w}} \quad$ Pulse duration (width)
The time interval between specified reference points on the leading and trailing edges of the pulse waveform
High-level input voltage
An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables.
NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is to be expected.

VIL Low-level input voltage

An input voltage within the less positive (more negative) of the two ranges of values used to represent the binary variables.
NOTE: A maximum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is to be expected.

$\mathrm{VOH}_{\mathrm{OH}} \quad$ High-level output voltage

The voltage at an output terminal with input conditions applied that, according to product specification, will establish a high level at the output.
VOL Low-level output voltage
The voltage at an output terminal with input conditions applied that, according to product specification, will establish a low level at the output.
$\mathbf{V}_{\mathbf{T}_{+}} \quad$ Positive-going threshold level
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T}.
$V_{\text {T- }} \quad$ Negative-going threshold level
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, $\mathrm{V}_{\mathrm{T}_{+}}$.

The following symbols are used in function tables on TI data sheets:

H	$=$ high level (steady state)
L	= low level (steady state)
\uparrow	$=$ transition from low to high level
\downarrow	$=$ transition from high to low level
\longrightarrow	= value/level or resulting value/level is routed to indicated destination
\sim	= value/level is re-entered
X	$=$ irrelevant (any input, including transitions)
Z	$=$ off (high-impedance) state of a 3-state output
a...h	$=$ the level of steady-state inputs A through H respectively
Q_{0}	$=$ level of Q before the indicated steady-state input conditions were established
\bar{Q}_{0}	$=$ complement of Q_{0} or level of \bar{Q} before the indicated steady-state input conditions were established
Q_{n}	$=$ level of Q before the most recent active transition indicated by \downarrow or \uparrow
Ω	$=$ one high-level pulse
Ч	= one low-level pulse
Toggle	$=$ each output changes to the complement of its previous level on each active transition indicated by \downarrow or \uparrow

If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.
If, in the input columns, a row contains H, L, and/or X together with \uparrow and/or \downarrow, this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady-state levels. If the output is shown as a level $\left(H, L, Q_{0}\right.$, or $\left.\bar{Q}_{0}\right)$, it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as a pulse, $_$, or \smile, the pulse follows the indicated input transition and persists for an interval dependent on the circuit.)

Among the most complex function tables are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. Below is the function table of a 4-bit bidirectional universal shift register, e.g., type SN74194.

FUNCTION TABLE

			INPUTS							OUTPUTS			
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathbf{Q A}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	Q_{C}	QD
	S1	S0		LEFT	RIGHT	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	Q ${ }_{\text {AO }}$	$Q_{B 0}$	QCo	QD0
H	H	H	\uparrow	X	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	x	H	H	H	H	H	H	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	L	H	\uparrow	X	L	L	L	L	L	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	H	L	\uparrow	H	X	X	X	X	X	$Q_{B n}$	$Q_{C n}$	QDn	H
H	H	L	\uparrow	L	X	X	X	X	X	$Q_{B n}$	$Q_{C n}$	QDn	L
H	L	L	X	X	X	X	X	X	X	Q ${ }_{\text {AO }}$	$Q_{B 0}$	QC0	QD0

The first line of the table represents a synchronous clearing of the register and says that if clear is low, all four outputs will be reset low regardless of the other inputs. In the following lines, clear is inactive (high) and so has no effect.

The second line shows that so long as the clock input remains low (while clear is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of clear high and clock low was established. Since on other lines of the table only the rising transition of the clock is shown to be active, the second line implicitly shows that no further change in the outputs will occur while the clock remains high or on the high-to-low transition of the clock.

The third line of the table represents synchronous parallel loading of the register and says that if S1 and S0 are both high then, without regard to the serial input, the data entered at A will be at output Q_{A}, data entered at B will be at Q_{B}, and so forth, following a low-to-high clock transition.
The fourth and fifth lines represent the loading of high-and low-level data, respectively, from the shift-right serial input and the shifting of previously entered data one bit; data previously at Q_{A} is now at Q_{B}, the previous levels of Q_{B} and Q_{C} are now at Q_{C} and Q_{D}, respectively, and the data previously at Q_{D} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S 1 is low and S 0 is high and the levels at inputs A through D have no effect.
The sixth and seventh lines represent the loading of high- and low-level data, respectively, from the shift-left serial input and the shifting of previously entered data one bit; data previously at Q_{B} is now at Q_{A}, the previous levels of Q_{C} and Q_{D} are now at Q_{B} and Q_{C}, respectively, and the data previously at Q_{A} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S 1 is high and SO is low and the levels at inputs A through D have no effect.
The last line shows that as long as both inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady-state combination of clear high and both mode inputs low was established.

The function table functional tests do not reflect all possible combinations or sequential modes.

D FLIP-FLOP AND LATCH SIGNAL CONVENTIONS

It is normal TI practice to name the outputs and other inputs of a D-type flip-flop or latch and to draw its logic symbol based on the assumption of true data (D) inputs. Outputs that produce data in phase with the data inputs are called Q and those producing complementary data are called \bar{Q}. An input that causes a Q output to go high or a \bar{Q} output to go low is called preset (PRE). An input that causes a \bar{Q} output to go high or a Q output to go low is called clear (CLR). Bars are used over these pin names (PRE and CLR) if they are active low.
The devices on several data sheets are second-source designs, and the pin name conventions used by the original manufacturers have been retained. That makes it necessary to designate the inputs and outputs of the inverting circuits $\overline{\mathrm{D}}$ and Q .
In some applications, it may be advantageous to redesignate the data input from D to \bar{D} or vice versa. In that case, all the other inputs and outputs should be renamed as shown below. Also shown are corresponding changes in the graphical symbols. Arbitrary pin numbers are shown.

The figures show that when Q and \bar{Q} exchange names, the preset and clear pins also exchange names. The polarity indicators (\triangle) on $\overline{\text { PRE }}$ and $\overline{C L R}$ remain, as these inputs are still active low, but the presence or absence of the polarity indicator changes at $D($ or $\overline{\mathrm{D}}), \mathrm{Q}$, and $\overline{\mathrm{Q}}$. $\operatorname{Pin} 5(\mathrm{Q}$ or $\overline{\mathrm{Q}})$ is still in phase with the data input (D or $\overline{\mathrm{D}}$); their active levels change together.

In digital system design, consideration must be given to thermal management of components. The small size of the small-outline package makes this even more critical. Figure 1 shows the thermal resistance of these packages for various rates of air flow.

The thermal resistances in Figure 1 can be used to approximate typical and maximum virtual junction temperatures for the ABT family. In general, the junction temperature for any device can be calculated using using the following equation.

$$
T_{J}=R_{\theta J A} \times P_{t}+T_{A}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ virtual junction temperature
$\mathrm{R}_{\theta \mathrm{JA}}=$ thermal resistance, junction to free air
$P_{t}=$ total power dissipation of the device (see Section 15, package thermal considerations)
$T_{A}=$ free-air temperature
JUNCTION-TO-AMBIENT THERMAL RESISTANCE
vs

Figure 1

DERATING CURVES FOR 210-MIL SHRINK SMALL-OUTLINE PACKAGE (DB)

Figure 2

Figure 4

Figure 3

Figure 5

The following tables outline the logic functions Texas Instruments offers in a variety of technologies. The tables are organized by function type and list all available or planned options of that function. The technology columns identify the appropriate family and a particular data book where more information can be found. The applicable literature number, composed of either seven or eight alphanumeric characters, can be found at the lower right-hand corner on the back cover of each publication.
List of additional Advanced System Logic data books:

AC and ACT Devices
ALS and AS Devices ${ }^{\dagger}$
BCT Devices ${ }^{\dagger}$
F Devices \dagger
FIFO Devices ${ }^{\dagger}$
HC and HCT Devices
LV, LVC, LVT, and ALVC Devices ${ }^{\dagger}$
SCOPE ${ }^{\text {TM }}$ Devices
Std TTL, LS, and S Devices
\dagger Updated data book planned for this technology.

Advanced CMOS Logic Data Book SCAD001C
ALS/AS Logic Data Book SDAD001B
BiCMOS Bus-Interface Logic Data Book SCBD001B
F Logic (SN54/74F) Data Book SDFD001A
High-Performance FIFO Memories Data Book SCAD003
High-Speed CMOS Logic Data Book SCLD001C
Low-Voltage Logic Data Book SCBD003
SCOPE ${ }^{\text {TM }}$ Product Information SSYV001
TTL Logic Data Book SDLD001A

Contents

Page
GATES . 1-15
Positive-NAND Gates . 1-15
Positive-AND Gates .. 1-15
Positive-OR/NOR Gates . 1-16
OR/NOR Gates . 1-16
AND-OR Gates .. . 1-16
INVERTING/NONINVERTING BUFFERS ..1-17
Hex Inverters/Noninverters . 1-17
BUFFERS/DRIVERS AND BUS TRANSCEIVERS 1-18
Buffers/Drivers ... 1-18
Universal Bus Transceivers (UBTTM)/Universal Bus Exchangers (UBE ${ }^{\text {TM }}$) . . 1-19
Bus Transceivers .. 1-20
MOS Memory Drivers/Transceivers 1-23
TESTABILITY BUS-INTERFACE CIRCUITS 1-24
JTAG/IEEE 1149.1 Testability Circuits .. . 1-24
FLIP-FLOPS AND LATCHES .. 1-25
Flip-Flops 1-25
Latches 1-27
Contents (continued)
Page
REGISTERS 1-29
Shift Registers 1-29
Register Files 1-29
COUNTERS 1-30
Synchronous Counters - Positive Edge Triggered 1-30
Asynchronous Counters (Ripple Clock) - Negative Edge Triggered 1-30
8-Bit Binary Counters With Registers 1-30
DECODERS, ENCODERS, DATA SELECTORS/MULTIPLEXERS 1-31
Encoders/Data Selectors/Multiplexers 1-31
Decoders/Demultiplexers 1-32
Shifters 1-32
COMPARATORS AND PARITY GENERATORS/CHECKERS 1-33
Comparators 1-33
Address Comparators 1-33
Parity Generators/Checkers 1-33
BUS SWITCHES AND 5-V/3-V VOLTAGE TRANSLATORS 1-34
Crossbar Technology (CBT) 1-34
ARITHMETIC CIRCUITS 1-34
Parallel Binary Adders 1-34
Accumulators, Arithmetic Logic Units, Look-Ahead Carry Generators 1-34
FIFO MEMORIES 1-35
First-In, First-Out Memories (FIFOs) 1-35
CLOCK DISTRIBUTION CIRCUITS 1-37
Clock Distribution Circuits (CDC) 1-37
ECL TRANSLATORS 1-37
ECL-to-TTL or TTL-to-ECL Translators 1-37

GATES

Positive-NAND Gates

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY										
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LV	LVC
8-Input		'30	\checkmark	\checkmark	\checkmark								
		'11030						\checkmark	\checkmark				
13-Input		'133	\checkmark			\checkmark							
Dual 2-Input		'8003	\checkmark										
Dual 4-Input		'20	\checkmark	\checkmark	\checkmark	\checkmark							
		'40	\checkmark										
		'11020						\checkmark	\checkmark				
Triple 3-Input		'10	\checkmark	\checkmark	\checkmark	\checkmark							$+$
		'1010	\checkmark										
		'11010						\checkmark	\checkmark				
Quad 2-Input		'00	\checkmark	ν	\checkmark	\checkmark	\checkmark					\checkmark	$+$
		'11000						\checkmark	\checkmark				
		'37	\checkmark										
	OC	'38	\checkmark		\checkmark								
		'132				\checkmark							
		'11132						\checkmark	\checkmark				
		'1000		\checkmark									
Hex 2-Input		'804	\checkmark	\checkmark									
Quad 2-Input	OC	'01	\checkmark			\checkmark							
		'03	\checkmark			\checkmark							

Positive-AND Gates

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY										
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LV	LvC
Quad 2-Input	OC	'09	\checkmark			\checkmark							
		'7001				\checkmark							
Dual 4-Input		'21	\checkmark	\checkmark	\checkmark	\checkmark							
		'11021						\checkmark	\checkmark				
Triple 3-Input		'11	\checkmark	\checkmark	\checkmark	\checkmark							
		'11011						\checkmark	\checkmark				
Quad 2-Input		'08	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	$+$
		'1008		\checkmark									
		'11008						\checkmark	\checkmark				
Hex 2-Input		'808		\checkmark									

\checkmark Product available in technology indicated

+ New product planned in technology indicated

GATES (continued)

Positive-OR/NOR Gates

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY										
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LV	LVC
Triple 3-Input		'4075				\checkmark							
Quad 2-Input		'32	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	$+$
		'1032		\checkmark									
		'11032						\checkmark	\checkmark				
		'7032				\checkmark							
Hex 2-Input		'832	\checkmark	\checkmark		\checkmark							
Dual 5-Input		'260			\checkmark								
Triple 3-Input		'27	\checkmark	\checkmark	\checkmark	\checkmark							
		'11027						\checkmark	\checkmark				
Quad 2-Input		'02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	$+$
	OC	'33	\checkmark										
		'7002				\checkmark							
		'11002						\checkmark	\checkmark				
Hex 2-Input		'805	\checkmark	\checkmark		\checkmark							

OR/NOR Gates

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY										
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LV	LVC
Quad 2-Input Exclusive-OR Gates With Totem-Pole Outputs		'86	\checkmark	\checkmark	\checkmark	\checkmark							$+$
		'11086						\checkmark	\checkmark				
Quad 2-Input Exclusive-OR Gates	OC	'136	\checkmark										
Quad 2-Input Exclusive-NOR Gates	OD	'266				ν							
		'810	\checkmark										
	OC	'811	\checkmark										

AND-OR Gates

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY								
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
Dual 2-Wide 2-Input, 3-Input		'51			\checkmark						

\checkmark Product available in technology indicated

+ New product planned in technology indicated

INVERTING/NONINVERTING BUFFERS

Hex Inverters/Noninverters

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY										
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LV	LVC
Hex Inverters		'04	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	$+$
		'U04				\checkmark						\checkmark	$+$
		'11004						\checkmark	\checkmark				
	OC	'05	\checkmark			\checkmark							
		'14				ν						\checkmark	$+$
		'11014						\checkmark	\checkmark				
		'1004	\checkmark	\checkmark									
		'1005	\checkmark										
Hex Noninverters		'11034						\checkmark	\checkmark				
	OC	'35	\checkmark										
		'1034	\checkmark	\checkmark									
	OC	'1035	\checkmark										

\checkmark Product available in technology indicated

+ New product planned in technology indicated

BUFFERS/DRIVERS AND BUS TRANSCEIVERS

Buffers/Drivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY												
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Quad Buffers/Drivers	35	'125			\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		+	
		'126			\checkmark	\checkmark				\checkmark	\checkmark				
Noninverting Hex Buffers/Drivers	35	'365				\checkmark									
		'367				\checkmark									
Inverting Hex Buffers/Drivers	35	'368				\checkmark									
Noninverting Octal Buffers/Drivers	35	'241	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark				
		'11241						\checkmark	\checkmark						
		'25241									+				
		'244	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	+	
		'244A										\checkmark			
		'11244						\checkmark	\checkmark						
		'1244	\checkmark												
		'25244								\checkmark	$+$				
		'541	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			+	
	OC	'757		\checkmark						\checkmark					
		'760	\checkmark	\checkmark						\checkmark					
		'25760								+					
Inverting Octal Buffers/Drivers	35	'240	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	$+$	
		'11240						\checkmark	\checkmark						
		'1240	\checkmark												
		'25240								\checkmark					
		'466	\checkmark												
		'540	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark			$+$	
	OC	'756	\checkmark	\checkmark						\checkmark					
		'763	\checkmark	ν											
Inverting and Noninverting Octal Buffers/Drivers	35	'230		\checkmark											
	OC	'762		\checkmark											
Triple 4-Input OR/NOR Drivers		'11802							\checkmark						
Noninverting 10-Bit Buffers/Drivers	35	'827									\checkmark				
		'11827						\checkmark	\checkmark						
		'29827	\checkmark							\checkmark					
Inverting 10-Bit Buffers/Drivers	35	'828									+				
		'11828						\checkmark	\checkmark						
		'29828	\checkmark							\checkmark					
Noninverting 16-Bit Buffers/Drivers	35	'16241							\checkmark		\checkmark				
		'16244						\checkmark	\checkmark		\checkmark			+	+
		'16244A										\checkmark			
		'16541							\checkmark		\checkmark				

\checkmark Product available in technology indicated

+ New product planned in technology indicated

BUFFERS/DRIVERS AND BUS TRANSCEIVERS (continued)

Buffers/Drivers (continued)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY												
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Inverting 16-Bit Buffers/Drivers	3 3	'16240						\checkmark	\checkmark		\checkmark			$+$	$+$
		'16540							\checkmark		\checkmark				
Noninverting 18-Bit Buffers/Drivers	35	'16825							\checkmark		\checkmark				
Inverting 18-Bit Buffers/Drivers	35	'16826									\pm				
Noninverting 20-Bit Buffers/Drivers	35	'16827							\checkmark		\checkmark				t
Inverting 20-Bit Buffers/Drivers	$3 S$	'16828									\pm				\pm
Octal Buffers/Drivers With Input Pullup Resistors		'746	\checkmark												

Universal Bus Transceivers (UBT ${ }^{T M}$)/Universal Bus Exchangers (UBE ${ }^{T M}$)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY							
			AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Noninverting 18-Bit Universal Bus Transceivers (UBT ${ }^{\text {TM }}$)	35	'16500					$+$			$+$
		'16500B				\checkmark				
Noninverting 18-Bit Universal Bus Transceivers (UBT ${ }^{\text {TM }}$)	3 S	'16501				\checkmark	$+$		$+$	$+$
		'16600				\checkmark				+
		'16601				\checkmark				$+$
Noninverting 36-Bit Universal Bus Transceivers (UBT ${ }^{\text {™ }}$)	35	'32501				\checkmark				
Noninverting 16-Bit Tri-Port Universal Bus Exchangers (UBE ${ }^{T M}$)	35	'32316				\checkmark				
Noninverting 18-Bit Tri-Port Universal Bus Exchangers (UBE ${ }^{\text {TM }}$)	35	'32318				\checkmark				
18-Bit Universal Bus Transceivers (UBT ${ }^{\top M}$) With Series Resistors on B Port	3 S	'162500				$+$				
		'162501				$+$				
		'162600				$+$				
		'162601				\checkmark				
SCOPETM 18 -Bit Universal Bus Transceivers (UBT ${ }^{\text {TM }}$)	35	'18502				\checkmark	$+$			
$\begin{aligned} & \text { SCOPE } \\ & \text { Universal Bus Transceivers (UBTTM } 20 \text { Bit } \end{aligned}$	35	'18504				\checkmark	$+$			

\checkmark Product available in technology indicated

+ New product planned in technology indicated

BUFFERS/DRIVERS AND BUS TRANSCEIVERS (continued)

Bus Transceivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY												
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Noninverting Quad Transceivers	35	'243	\checkmark		\checkmark										
Inverting Quad Transceivers	OC	'758	\checkmark												
	35	'242			\checkmark										
Noninverting Octal Transceivers	35	'245	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	$+$	
		'1245	\checkmark												
		'11245						\checkmark	\checkmark						
		'25245								\checkmark	\checkmark				
		'645	\checkmark	\checkmark		\checkmark	\checkmark								
		'1645	\checkmark												
	OC	'621	\checkmark	\cdot	\checkmark										
		'641	\checkmark	\checkmark											
	OC/3S	'639	\checkmark	\checkmark											
Inverting Octal Transceivers	35	'620	\checkmark							\checkmark	\checkmark				
		'623	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark				
		'11623							\checkmark						
		'640	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark				
		'1640	\checkmark												
		'11640							\checkmark						
	OC	'642	\checkmark												
		'25642								\checkmark					
	OC/3S	'638	\checkmark	\checkmark											
Noninverting 9-Bit Transceivers	35	'863						:			\checkmark			$+$	
		'29863	\checkmark							\checkmark					
Inverting 9-Bit Transceivers	35	'29864								\checkmark					
Noninverting 10-Bit Transceivers	35	'861									$+$				
		'29861								\checkmark					
Inverting 10-Bit Transceivers	35	'29862					.			\checkmark					
Noninverting 16-Bit Transceivers	35	'16245						\checkmark	\checkmark		\checkmark	v		$+$	$+$
		'16623						\checkmark	\checkmark		\checkmark				
Inverting 16-Bit Transceivers	35	'16640						\checkmark	\checkmark		\checkmark				
		'16620						\checkmark	\checkmark		$+$				
Noninverting 18-Bit Transceivers	35	'16863							\checkmark		\checkmark				
Inverting 18-Bit Transceivers	35	'16864									$+$				

\checkmark Product available in technology indicated

+ New product planned in technology indicated

BUFFERS/DRIVERS AND BUS TRANSCEIVERS (continued)

Bus Transceivers (continued)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY												
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Noninverting 20-Bit Transceivers	35	'16861							\checkmark		$+$				
Inverting 20-Bit Transceivers	3 S	'16862									\pm				
Noninverting Octal Registered Transceivers	3 S	'11470							\checkmark						
		'543			\checkmark					\checkmark	\checkmark	\checkmark		$+$	
		'11543							\checkmark						
		'646	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		$+$	
		'646A									\checkmark				
		'11646						\checkmark	\checkmark						
		'652	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		$+$	
		'11652						\checkmark	\checkmark						
		'2952								\checkmark	$+$	\checkmark		$+$	
		'2952A									\checkmark				
	OC/3S	'653	\checkmark												
		'654	\checkmark												
Inverting Octal Registered Transceivers	35	'544								\checkmark	$+$				
		'11544							\checkmark						
		'648	\checkmark	\checkmark						\checkmark	$+$				
		'11648							\checkmark						
		'651	\checkmark	\checkmark						\checkmark	\checkmark				
		'2953							.	\checkmark	$+$				
Noninverting 16-Bit Registered Transceivers	35	'16470							\checkmark		\checkmark				
		'16543						\checkmark	\checkmark		\checkmark	$+$		$+$	$+$
		'16646						\checkmark	\checkmark		\checkmark	$+$		$+$	$+$
		'16652						\checkmark	\checkmark		\checkmark	$+$		$+$	$+$
		'16952							\checkmark		\checkmark	$+$		$+$	$+$
Inverting 16-Bit Registered Transceivers	35	'16471									$+$				
		'16544							\checkmark		$+$				
		'16648							\checkmark		$+$				
		'16651							\checkmark		$+$				
		'16953									$+$				

\checkmark Product available in technology indicated
\dagger New product planned in technology indicated

BUFFERS/DRIVERS AND BUS TRANSCEIVERS (continued)

Bus Transceivers (continued)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY												
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Noninverting 18-Bit Registered Transceivers	35	'16472						\checkmark							
		'16474							\checkmark						
		'16500									\checkmark	$+$		\pm	$+$
		'16501									\checkmark	$+$		$+$	$+$
		'16600									\checkmark				$+$
		'16601									\checkmark				$+$
Inverting 18-Bit Registered Transceivers	35	'16475							\checkmark		${ }^{\prime}$				
Noninverting 36-Bit Transceivers	3 3	'32245									\dagger				
Noninverting 36-Bit Registered Transceivers	35	'32501									\checkmark				
		'32543									\checkmark				
8-/9-Bit Bus Transceivers With Parity Checkers/ Generators	35	'657			\checkmark					\checkmark	$+$				
		'659					\checkmark								
		'833									$+$				
		'834									$+$				
		'853									$+$				
		'854									$+$				
		'899								\checkmark					
	3S/OC	'29833	\checkmark							\checkmark					
		'29834								\checkmark					
		'29853	\checkmark							\checkmark					
		'29854	\checkmark							\checkmark					
Dual 8-/9-Bit Bus Transceivers With Parity Checkers/ Generators	35	'16833							\checkmark		\checkmark				
		'16657							\checkmark		\checkmark				
		'16853									\checkmark				
Universal Transceivers/Port Controllers	35	'856		\checkmark											
Noninverting 16-Bit Tri-Port Registered Bus Exchangers	35	'32316									\checkmark				
Noninverting 18-Bit Tri-Port Registered Bus Exchangers	3 3	'32318	:								\checkmark				

\checkmark Product available in technology indicated

+ New product planned in technology indicated

BUFFERS/DRIVERS AND BUS TRANSCEIVERS (continued)

MOS Memory Drivers/Transceivers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY								
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
Octal Transceivers With Series Resistors on Output	35	'2623		\checkmark							
Octal Buffers/Drivers With Series Resistors on Output	3 S	'2240	\checkmark							\checkmark	\checkmark
		'2241								\checkmark	\checkmark
		'2244								\checkmark	\checkmark
		'2541	\checkmark								
Octal Transceivers With Series Resistors on B Port	35	'2245								\checkmark	+
Octal Latches With Series Resistors on Output	35	'2574								+	
10-Bit Buffers/Drivers With Series Resistors	3 S	'2827								\checkmark	
		'2828								\checkmark	
11-Bit Buffers/Drivers With Series Resistors	3 S	'2410								\checkmark	
		'2411								$+$	
		'5400									\checkmark
		'5401									\checkmark
12-Bit Buffers/Drivers With Series Resistors	35	'5402									\checkmark
		'5403									\checkmark
16-Bit Buffers/Drivers With Series Resistors	35	'162240									$+$
		'162244									\checkmark
16-Bit Transceivers With Series Resistors	35	'162245									$+$
18-Bit Universal Bus Transceivers (UBT ${ }^{\top M}$) With Series Resistors on B Port	35	'162500									$+$
		'162501									$+$
		'162600									$+$
		'162601									\checkmark
12-to-24 Multiplexed D-Type Latches With Series Resistors on B Port	35	'162260									\checkmark

\checkmark Product available in technology indicated

+ New product planned in technology indicated

TESTABILITY BUS-INTERFACE CIRCUITS

JTAG/IEEE 1149.1 Testability Circuits

DESCRIPTION	NO. OF BITS	OUTPUT	TYPE	TECHNOLOGY							
				F	HC	HCT	AC	ACT	BCT	ABT	LVT
Buffers/Drivers	8	35	'8240A						\checkmark		
			'8244A						\checkmark		
Transceivers	8	35	'8245							\checkmark	
			'8245A						\checkmark		
	18	35	'18245							\checkmark	$+$
Transparent Latches	8	35	'8373A						\checkmark		
Flip-Flops	8	35	'8374A						\checkmark		
Registered Transceivers.	8	35	'8543							\checkmark	
			'8646							\checkmark	
			'8652							\checkmark	
			'8952							\checkmark	
	18	35	'18502							\checkmark	$+$
			'18646							\checkmark	
			'18652							$+$	
	20	35	'18504							\checkmark	$+$
Test Bus Controllers		35	'8990					\checkmark			
Digital Bus Monitors		35	'8994					\checkmark			
Scan Path Linkers With Identification Buses	4	35	'8997					\checkmark			
	8	35	'8999					\checkmark			

\checkmark Product available in technology indicated

+ New product planned in technology indicated

FLIP-FLOPS AND LATCHES

Flip-Flops

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY												
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Dual J-K Edge Triggered		'73				\checkmark									
		'76				\checkmark									
		'109	\checkmark	\checkmark	\checkmark	\checkmark									
		'11109						\checkmark	\checkmark						
		'112	\checkmark		\checkmark	\checkmark								$+$	
		'11112						\checkmark	\checkmark						
		'113	\checkmark			\checkmark									
		'114	\checkmark												
Dual D-Type		'74	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	4	
		'11074						\checkmark	\checkmark						
Dual D-Type With 2-Input NAND/NOR Gates		'7074				\checkmark									
		'7075				\checkmark									
		'7076				\checkmark									
Dual 4-Bit D-Type Edge Triggered	35	'874	\checkmark	\checkmark											
		'11874							\checkmark						
		'876	\checkmark	\checkmark											
		'879	\checkmark	\checkmark											
Quad D-Type		'173				\checkmark									
		'175	\checkmark	\checkmark	\checkmark	\checkmark									
		'11175						\checkmark	\checkmark					1	
Hex D-Type		'174	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark		
		'11174						\checkmark	\checkmark						
		'378			\checkmark	\checkmark									
	35	'374	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		$+$	$+$	
Octal D-Type True Data		'11374						\checkmark	\checkmark						
		'574	\checkmark	\checkmark	\checkmark	v	\checkmark			\checkmark	\checkmark	\checkmark	$+$	$+$	
Octal D-Type True Data With Clear		'273	\checkmark			\checkmark	\checkmark				\checkmark	\checkmark	$+$		
		'11273						\checkmark	\checkmark						
	35	'575	\checkmark	\checkmark											
		'874	\checkmark	\checkmark											
Octal D-Type True Data With Clock Enable	,	'377			\checkmark	\checkmark	\checkmark				\checkmark				
		'11377						\checkmark	\checkmark	.					
Octal D-Type Inverting	35	'534	\checkmark	\checkmark		\checkmark	.			\checkmark	\checkmark				
		'11534						\checkmark	\checkmark						
		'564	\checkmark												
		'576	\checkmark	\checkmark											
		'29826								\checkmark					

\checkmark Product available in technology indicated

+ New product planned in technology indicated

FLIP-FLOPS AND LATCHES (continued)

Flip-Flops (continued)

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY												
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Octal Dual-Ranked True Data	35	'4374		\checkmark											
Octal Inverting With Clear	35	'577	\checkmark												
		'879	\checkmark	\checkmark											
Octal Inverting With Preset	35	'876	\checkmark	\checkmark											
Octal True Data	35	'825		\checkmark											
		'11825							\checkmark						
		'29825								\checkmark					
9-Bit True Data	35	'823		ν							+			$+$	
		'29823	\checkmark							\checkmark					
9-Bit Inverting	35	'824		\checkmark											
		'29824	\checkmark												
10-Bit True Data	35	'821		\checkmark							\checkmark			$+$	
		'1821		\checkmark											
		'11821							\checkmark						
		'29821	\checkmark							\checkmark					
10-Bit Inverting	35	'29822								\checkmark					
16-Bit D-Type True Data With Clock Enable	.	'16377									+				
16-Bit Noninverting	35	'16374						\checkmark	\checkmark		\checkmark	$+$	+	$+$	$+$
16-Bit Inverting	3 S	'16534									+				
18-Bit Noninverting	35	'16823							\checkmark		\checkmark				$+$
20-Bit Noninverting	35	'16821							\checkmark		\checkmark				$+$

\checkmark Product available in technology indicated
\mp New product planned in technology indicated

FLIP-FLOPS AND LATCHES (continued)
Latches

DESCRIPTION	NO. OF BITS	OUTPUT	TYPE	TECHNOLOGY												
				ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
Bistable	4		'75				\checkmark									
			'375				\checkmark									
D-Type Edge Triggered Inverting and Noninverting	8		'996	\checkmark											.	
D-Type Transparent Readback Latch, True	8	35	'990	\checkmark												
	9	35	'992	\checkmark												
	10	35	'994	\checkmark												
D-Type Transparent With Clear, True Outputs	8	3 S	'666	\checkmark												
D-Type Transparent With Clear, Inverting Outputs	8	3 S	'667	\checkmark												
D-Type Transparent True	8	35	'373	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		$+$	+	
			'11373						\checkmark	\checkmark						
			'573	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	$+$	+	
	16	35	'16373						\checkmark	\checkmark		\checkmark	$+$		$+$	$+$
			'16373A									\checkmark				
	32	35	'32373									$+$				
D-Type Dual 4-Bit	8	35	'873	\checkmark	\checkmark											
Transparent			'11873						\checkmark							
D-Type Transparent Inverting	8	3 S	'533	\checkmark	\checkmark						\checkmark	\checkmark				
			'11533						\checkmark	\checkmark						
			'563'	\checkmark			\checkmark									
			'580	\checkmark	\checkmark											
	16	35	'16533	:								\pm				
Dual 4-Bit Transparent Inverting	8	35	'880	\checkmark	\checkmark											
2-Input Multiplexed	8	35	'604				\checkmark									
Addressable	8	2 S	'259	\checkmark			\checkmark									
		Q	'4724				\checkmark									

Product available in technology indicated

+ New product planned in technology indicated

FLIP-FLOPS AND LATCHES (continued)

Latches (continued)

DESCRIPTION	NO. OF BITS	OUTPUT	TYPE	TECHNOLOGY												
				ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LVT	LV	LVC	ALVC
D-Type True inputs	8	35	'845	\checkmark												
			'29845	\checkmark												
	9	35	'843	\checkmark	\checkmark							$+$			+	
			'1843		\checkmark											
			'29843								\checkmark					
	10	35	'841	\checkmark	\checkmark							$+$			$+$	
			'29841	\checkmark							\checkmark					
	18	35	'16843									$+$				$+$
	20	35	'16841							\checkmark		\checkmark				$+$
D-Type Inverting Inputs	8	35	'846	\checkmark												
			'29846								\checkmark					
	9	35	'29844								\checkmark					
	10	35	'842	\checkmark	\checkmark											
			'29842	\checkmark												

[^1]REGISTERS

Shift Registers

DESCRIPTION	NO. OF BITS	OUTPUT	TYPE	TECHNOLOGY								
				ALS	AS	F	HC	HCT	AC	ACT	BCT	LV
Parallel In, Parallel Out, Bidirectional	4		'194		\checkmark							
			'11194						\checkmark	\checkmark		
	8		'299	\checkmark		\checkmark						
			'323	\checkmark								
Parallel In, Parallel Out	4		'195		\checkmark							
Serial In, Parallel Out	8		'164	\checkmark			\checkmark					+
Parallel In, Serial Out	8		'165	\checkmark			\checkmark					
			'166	\checkmark			\checkmark					
Serial In, Parallel Out With Output Latches	8	35	'594				\checkmark					
			'595				\checkmark					
Parallel Out	10		'11898						\checkmark	\checkmark		
Noninverting	8	35	'299	\checkmark								
	9	35	'29823	\checkmark								

Register Files

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY								
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
Dual 16 Word $\times 4$ Bits	35	'870	\checkmark								
		'871		\checkmark							

[^2]+ New product planned in technology indicated

COUNTERS
Synchronous Counters - Positive Edge Triggered

DESCRIPTION	PARALLEL LOAD	TYPE	TECHNOLOGY							
			ALS	AS	F	HC	HCT	AC	ACT	BCT
4-Bit Decade Up/Down	Sync	'568	\checkmark							
4-Bit Binary	Sync	'161	\checkmark	\checkmark	\checkmark	\checkmark				
		'163	\checkmark	\checkmark	\checkmark	\checkmark				
		'561	\checkmark							
4-Bit Binary Up/Down	Sync	'169	\checkmark	\checkmark	\checkmark					
		'569	\checkmark							
		'8169	\checkmark							
	Async	'191	\checkmark			\checkmark	,			
		'11191						\checkmark	\checkmark	
		'193	\checkmark			\checkmark				
8-Bit Up/Down	Sync Clear	'869	\checkmark	\checkmark						
	Async Clear	'867	\checkmark	\checkmark						
		'11867							\checkmark	
Divide-by-10 Counter	Sync	'4017				\checkmark				

Asynchronous Counters (Ripple Clock) - Negative Edge Triggered

DESCRIPTION	PARALLEL LOAD	TYPE	TECHNOLOGY							
			ALS	AS	F	HC	HCT	AC	ACT	BCT
Dual 4-Bit Binary	None	'393				\checkmark				
12-Bit Binary	Sync	'4040				\checkmark				
14-Bit Binary	Sync	'4020				\checkmark				
		'4060				\checkmark				
		'4061				\checkmark				

8-Bit Binary Counters With Registers

DESCRIPTION	$\begin{aligned} & \text { PARALLEL } \\ & \text { LOAD } \end{aligned}$	TYPE	TECHNOLOGY							
			ALS	AS	F	HC	HCT	AC	ACT	BCT
Parallel Register Outputs	35	'590				\checkmark				
		'11590						\checkmark	\checkmark	
Parallel Register Inputs	35	'11593						\checkmark	\checkmark	

\checkmark Product available in technology indicated
\uparrow New product planned in technology indicated

DECODERS, ENCODERS, DATA SELECTORS/MULTIPLEXERS

Encoders/Data Selectors/Multiplexers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY										
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LV	LVC
Quad 2-to-1		'157	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						$+$
		'11157						\checkmark	\checkmark				
		'158	\checkmark	\checkmark	\checkmark	\checkmark							
		'11158						\checkmark	\checkmark				
		'298		\checkmark									
	35	'257	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						$+$
		'11257						\checkmark	\checkmark				
		'258	\checkmark	\checkmark	\checkmark	\checkmark							
		'11258							\checkmark				
Dual 4-to-1		'153	\checkmark	\checkmark	\checkmark	\checkmark		-					
		'11153						\checkmark	\checkmark				
		'352	\checkmark										
	35	'253	\checkmark	\checkmark	\checkmark	\checkmark							
		'11253						\checkmark	\checkmark				
		'353		\checkmark									
		'11353							\checkmark				
Hex 2-to-1 Universal Multiplexer	35	'857	\checkmark										
8 -to-1		'151	\checkmark	\checkmark	\checkmark	\checkmark							
		'11151						\checkmark	\checkmark				
	35	'251	\checkmark		\checkmark	\checkmark							
		'11251						\checkmark	\checkmark				
		'354				\checkmark							
16-to-1	35	'250		\checkmark									
		'850		\checkmark									
		'851		\checkmark									
Full BCD		'147				\checkmark							
Cascadable Octal		'148				\checkmark							

\checkmark Product available in technology indicated
\uparrow New product planned in technology indicated

DECODERS, ENCODERS, DATA SELECTORS/MULTIPLEXERS (continued)

Decoders/Demultiplexers

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY										
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	LV	LVC
Dual 2-to-4		'239				\checkmark							
Dual 2-to-4		'139	\checkmark			\checkmark	\checkmark						$+$
		'11139		.				\checkmark	\checkmark				
	OC	'156	\checkmark										
3-to-8		'138	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	$+$
		'11138						\checkmark	\checkmark				
		'238					\checkmark						
		'11238						\checkmark	\checkmark				
3-to-8 With Address Registers		'131		\checkmark									
		'137	\checkmark			\checkmark							$+$
3-to-8 With Address Latches		'237				\checkmark							
4-to-10 BCD-to-Decimal		'42				\checkmark							
4-to-16		'154				\checkmark							
4-to-16 With Address Latches		'4514				\checkmark							
		'4515				\checkmark							
Dual 2-to-4 for Battery Backed-Up Memories		'2414								\checkmark			

Shifters

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY								
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
4-Bit Shifter	3 S	'350			\checkmark						

\checkmark Product available in technology indicated
\mp New product planned in technology indicated

COMPARATORS AND PARITY GENERATORS/CHECKERS

Comparators

DESCRIPTION								TYPE	TECHNOLOGY							
INPUT	$\mathbf{P}=\mathbf{Q}$	$\overline{\mathbf{P}=\mathbf{Q}}$	$P>Q$	P>Q	P<Q	OUTPUT	ENABLE		ALS	AS	F	HC	HCT	AC	ACT	BCT
$\begin{aligned} & \text { 8-Bit With } \\ & 20 \text {-k } \Omega \\ & \text { Pullup } \end{aligned}$	Yes	No	No	No	No	OC	Yes	'518	\checkmark							
								'520	\checkmark		\checkmark					
	No	Yes	No	No	No	25	Yes	'11520						\checkmark	\checkmark	
	No	Yes	No	No	No	OC	Yes	'522	\checkmark							
	No	Yes	No	Yes	No	2 S	No	'682				\checkmark				
8-Bit Standard	Yes	No	No	No	No	OC	Yes	'519	\checkmark							
	No	Yes	No	No	No			'521	\checkmark		\checkmark					
					No	25	Yes	'11521						\checkmark	\checkmark	
	No	Yes	No	Yes	No	2 S	No	'684				\checkmark				
	No	Yes	No	No	No	25	Yes	'688	\checkmark			\checkmark				
8-Bit Latched P	No	No	Yes	No	Yes	2 S	Yes	'885		\checkmark						
8-Bit Latched P and Q	Yes	No	Yes	No	Yes	L	Yes	'866		\checkmark						

Address Comparators

DESCRIPTION	OUTPUT ENABLE	TYPE	TECHNOLOGY								
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
16-Bit to 4-Bit	Yes	'677	\checkmark								
12-Bit to 4-Bit	Yes	'679	\checkmark								

Parity Generators/Checkers

DESCRIPTION	NO. OF BITS	TYPE	TECHNOLOGY								
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
Odd/Even Generators/Checkers	9	'280	\checkmark	\checkmark	\checkmark	\checkmark					
		'11280						\checkmark	\checkmark		
		'286		\checkmark							
		'11286						\checkmark	\checkmark		

[^3]
BUS SWITCHES AND 5-V/3-V VOLTAGE TRANSLATORS

Crossbar Technology (CBT)

DESCRIPTION	TYPE	TECHNOLOGY
		CBT
Dual 4-Bit With '244 Pinout	'3244	$+$
8-Bit With '245 Pinout	'3245	$+$
10-Bit Bus Exchanger	'3383	$+$
Dual 5-Bit	'3384	$+$
10-Bit With Precharged Outputs for Live Insertion	'6800	$+$
18-Bit Bus Exchanger	'16209	$+$
24-Bit Bus Exchanger	'16212	$+$
12-Bit 3-to-1 Bus Select	'16214	$+$

ARITHMETIC CIRCUITS

Parallel Binary Adders

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY									
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT	
4-Bit		'283			\checkmark	\checkmark						

Accumulators, Arithmetic Logic Units, Look-Ahead Carry Generators

DESCRIPTION	OUTPUT	TYPE	TECHNOLOGY								
			ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
4-Bit Arithmetic Logic Units: Function Generator		'181		\checkmark							
		'11181							\checkmark		
		'881		\checkmark							
4-Bit Arithmetic Logic Units With Ripple Carry		'382			\checkmark						

\checkmark Product available in technology indicated

+ New product planned in technology indicated

FIFO MEMORIES
First-In, First-Out Memories (FIFOs)

DESCRIPTION		OUTPUT	TYPE	TECHNOLOGY										
SIZE	TYPEt			LS	S	ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
16 Words $\times 4$ Bits	U	35	'232B			\checkmark								
16 Words $\times 5$ Bits	U	35	'225		\checkmark									
			'229B		.	\checkmark								
			'233B			\checkmark								
32 Words $\times 9$ Bits	B	35	'2238			\checkmark								
64 Words $\times 4$ Bits	U	35	'234			\checkmark								
			'236			\checkmark								
64 Words $\times 5$ Bits	U	35	'235			\checkmark								
64 Words $\times 8$ Bits	U	35	'2232A			\checkmark								
64 Words $\times 9$ Bits	U	35	'2233A			\checkmark								
64 Words $\times 18$ Bits	U, C	35	'7813									\checkmark		
	U	35	'7814									\checkmark		
64 Words $\times 36$ Bits	B, C	3 S	'3612											$+$
			'3614											$+$
	U, C	35	'3611											$+$
			'3613											$+$
Dual 64×1	C	35	'2226									\checkmark		
			'2227									\checkmark		
Dual 256×1	C	35	'2228									\checkmark		
			'2229									\checkmark		
256 Words $\times 9$ Bits	U	35	'7200									\checkmark		
256 Words $\times 18$ Bits	U, C	35	'7805									\checkmark		
	U	35	'7806									\checkmark		
$256 \times 36 \times 2$ Bits	B, C	35	'3622									$+$		
512 Words $\times 9$ Bits	U	35	'7201									\checkmark		
	U, S	35	'72211									\checkmark		
512 Words $\times 18$ Bits	U, C	35	'7803									\checkmark		
	U	35	'7804									\checkmark		
	B, C	35	'7819											\checkmark
	B	3 S	'7820											\checkmark
512 Words $\times 32$ Bits	B, C	35	'3638									$+$		
512 Words $\times 36$ Bits	U, C	35	'3631									+		
	B, C	35	'3632									\checkmark		

TU = Unidirectional
$B=$ Bidirectional
$\mathrm{C}=$ Clocked
S = Synchronized
\checkmark Product available in technology indicated

+ New product planned in technology indicated

FIFO MEMORIES (continued)

First-In, First-Out Memories (FIFOs) (continued)

DESCRIPTION		OUTPUT	TYPE	TECHNOLOGY										
SIZE	TYPE \dagger			LS	S	ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
1 K Words $\times 9$ Bits	B	3 S	'2235									\checkmark		
			'2236									\checkmark		
	U	3 S	'7202									\checkmark		
	U, s	35	'72221									\checkmark		
1 K Words $\times 18$ Bits	U, C	35	'7801									\checkmark		
			'7811									\checkmark		
			'7881									$+$		
	U	35	'7802									\checkmark		
1 K Words $\times 36$ Bits	U, C	3 S	'3641									$+$		
$1 \mathrm{~K} \times 36 \times 2$ Bits	B, C	35	'3642									$+$		
2 K Words $\times 9$ Bits	U, C	35	'7807									\checkmark		
	u	35	'7203									$+$		
			'7808									\checkmark		
	U, S	35	'72231				\checkmark					\checkmark		
2 K Words $\times 18$ Bits	U, C	3 S	'7882									$+$		
2 K Words $\times 36$ Bits	U, C	3 S	'3651									$+$		
4K Words $\times 9$ Bits	U	3 S	'7204									\checkmark		
	U, S	3 S	'72241									\checkmark		
4K Words $\times 18$ Bits	U, C	3 S	'7884									$+$		

$\dagger \mathrm{U}=$ Unidirectional
$\mathrm{B}=$ Bidirectional
C = Clocked
S = Synchronized
\checkmark Product available in technology indicated

+ New product planned in technology indicated

CLOCK DISTRIBUTION CIRCUITS

Clock Distribution Circuits (CDC)

DESCRIPTION	TYPE	TECHNOLOGY								
		ALS	AS	F	HC	HCT	AC	ACT	BCT	ABT
3.3-V Hex Inverting Clock Drivers/Buffers	'203						\checkmark			
Hex Inverting Clock Drivers/Buffers	'204						\checkmark			
Dual 1-to-4 Clock Drivers/Buffers	'208							\checkmark		
	'209						\checkmark			
Octal Divide-by-2 Clock Drivers (6 Inverting, 2 Noninverting)	'303		\checkmark							
Octal Divide-by-2 Clock Drivers (8 Noninverting)	'305		\checkmark							
Octal Divide-by-2 Clock Drivers (4 Inverting, 4 Noninverting)	'304		\checkmark							
1-to-6 Clock Drivers	'328									\checkmark
	'328A									\checkmark
	'329									\checkmark
	'329A									\checkmark
1-to-6 Clock Drivers With Output Enable	'391									\checkmark
	'392									\checkmark
1-to-8 Clock Drivers	'340									\checkmark
	'341									\checkmark
1-to-8, Divide-by-2 Clock Drivers	'337									\checkmark
	'339									\checkmark
Phase-Lock Loop 1-to-12 Clock Drivers	'582									$+$
	'586									+
	'2586									$+$

\checkmark Product available in technology indicated

+ New product planned in technology indicated

ECL TRANSLATORS

ECL-to-TTL or TTL-to-ECL Translators

DESCRIPTION	LEVEL TRANSLATION	OUTPUT	TYPE	
Octal Bus Driver, Inverting	ECL-to-TTL	35	$10 \mathrm{KHT5540}$	
	TTL-to-ECL	OE	$10 \mathrm{KHT5542}$	
Octal Bus Driver, Noninverting	ECL-to-TTL	35	$10 \mathrm{KHT5541}$	
	TTL-to-ECL	OE	10KHT5543	
			100 KT 5543	
Octal D-Type Latch, True	ECL-to-TTL	35	$10 \mathrm{KHT5573}$	
			100 KT 5573	
Octal D-Type Flip-Flop, True	ECL-to-TTL	35	$10 \mathrm{KHT5574}$	
	TTL-to-ECL	OE	$10 \mathrm{KHT5578}$	
			100 KT 5578	

General Information

ABT Octals 2
ABT Widebus ${ }^{\text {tM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus ${ }^{\text {TM }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {™ }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

ABT OCTALS

Features

- EPIC-IIB ${ }^{\text {TM }}$ BiCMOS process
- $0.8-\mu \mathrm{m}$ CMOS core logic
- Bipolar output transistors
- Industry-standard corner-pin V_{CC} and GND pinout
- $-40^{\circ} / 85^{\circ}$ characterization
- DIP, SOIC, and EIAJ SSOP package options
- TI has established two alternate sources

Benefits

- Sub-5-ns maximum propagation delays for improved cycle time and performance
- Very low standby power consumption
- -32-/64-mA drive capability for high fanout and advanced backplane interface
- Drop-in replaceable to existing layouts and designs for easy upgradeability
- Industrial temperature range for field applications
- Flexible approaches for many board-space-saving needs
- Standardization that comes from a common product approach

The following table lists ABT octal devices currently being evaluated for market introduction. Customers interested in learning more about Tl's plans for these devices should contact the Advanced System Logic Marketing hotline at (214) 997-5202.

DEVICE	PIN COUNT	DESCRIPTION
'ABT563	20	Octal D-Type Transparent Latch
'ABT564	20	Octal D-Type Flip-Flop
'ABT648	24	Octal Registered Bus Transceiver
'ABT825	24	Octal Register
'ABT834	24	Octal Registered Bus Transceiver
'ABT845	24	Octal Latch
'ABT854	24	Octal Registered Bus Transceiver
'ABT864	24	9-Bit Transceiver

- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0}$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, 64-mA IoL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT125 bus buffer features independent line drivers with 3 -state outputs. Each output is disabled when the associated output-enable (OE) input is high.

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistof; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT125 . . J PACKAGE
SN74ABT125 . . D, DB, OR N PACKAGE (TOP VIEW)

SN54ABT125 . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN74ABT125 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT125 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT125 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT OE A Y L H H L L L H X Z	

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

Pin numbers shown are for the $\mathrm{D}, \mathrm{DB}, \mathrm{J}$, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT125		SN74ABT125		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		${ }^{4} 0.8$		0.8	V
V_{1}	Input voltage		V_{CC}	0	V_{CC}	V
IOH^{2}	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	${ }^{2}$	10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.

> PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other change or discontinue these products without notice.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This data sheet limit may vary among suppliers.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or $G N D$.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT125		SN74ABT125		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpLH ${ }^{\text {II }}$	A	Y	1	3.2	4.3	1	6.7	1	5.8	ns
${ }_{\text {tPHL }}{ }^{\text {¹ }}$			1	3.7	4.9	1	46.2	1	5.9	
tPZH ${ }^{\text {II }}$	OE	Y	1	3.6	4.8	1	6	1	5.9	ns
tpZL ${ }^{\text {a }}$			1	4.9	6.3	1	7.5	1	7.4	
tphz	$\overline{\mathrm{OE}}$	Y	1	3.5	5.4	$\bigcirc 1$	6.3	1	6.2	ns
tplz ${ }^{\text {a }}$			1	3.3	5.3	${ }^{8} 1$	7.2	1	6.3	

IT This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {t }}$	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT126, SN74ABT126 QUADRUPLE BUS BUFFER GATES
 WITH 3-STATE OUTPUTS
 D3768, FEBRUARY 1991 - REVISED APRIL 1993

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}$, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA IOH, $64-\mathrm{mA} \mathrm{loL}^{\text {) }}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT126 bus buffer features independent line drivers with 3 -state outputs. Each output is disabled when the associated output-enable (OE) input is low.
To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
The SN74ABT126 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT126 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT126 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT OE A Y H H H H L L L X Z	

logic symbolt

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Pin numbers shown are for the $\mathrm{D}, \mathrm{DB}, \mathrm{J}$, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

-0.5 V to 7 V
Supply voltage range, V_{CC} -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots .$.
Current into any output in the low state, I_{O} : SN54ABT126 ... 96 mA
SN74ABT126 .. 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): D package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .7 \mathrm{~W}$
DB package 0.6 W

Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.'
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		SN54ABT126		SN74ABT126		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2	4	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage		V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	2	5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT126	SN74ABT126		UNIT
			MIN	TYP \dagger	MAX	MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2	-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\text {OH }}=-3 \mathrm{~mA}$		2.5			2.5	2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3	3		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$				0.55	0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$			0.55	V
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND				± 1	± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	-50		-50	$\mu \mathrm{A}$
Ioff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100	Q^{2}		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	6 50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-200	-50 -200	-50	-200	mA
${ }^{\prime} \mathrm{CC}$	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{C C} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250	8\% 250		250	$\mu \mathrm{A}$
		Outputs low		24	30	30		30	mA
		Outputs disabled		0.5	250	250		250	$\mu \mathrm{A}$
$\Delta{ }^{\prime} \mathrm{Cc}{ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND	Outputs enabled			1.5	1.5		1.5	mA
		Outputs disabled			50	50		50	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3					pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT126		SN74ABT126		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}+$	A	Y	1	2.9	4.9	1	4.3	1	6.3	ns
tpHLt			1	2.5	5.1	1	\% 5.9	1	5.7	
tpZH \dagger	OE	Y	1	4.4	5.8	1	5.3	1	6.5	ns
tPZL†			1	4.4	5.9	3	6.4	1	6.5	
tPHZ \dagger	OE	Y	1	3	5.7	-1	6.9	1	6.8	ns
tplZ \dagger			1	3	5.8	Q 1	7.2	1	6.7	

\dagger This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\mathrm{OH}}$ 64-mA IoL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'ABT241 and 'ABT244, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs, and complementary OE and $\overline{\mathrm{OE}}$ inputs.

The 'ABT240 is organized as two 4-bit buffers/line drivers with separate output-enable ($\overline{\mathrm{OE}}$) inputs. When $\overline{\mathrm{OE}}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{O E}$ is high, the outputs are in the high-impedance state.

SN54ABT240 . . . J PACKAGE
SN74ABT240 . . DB, DW, OR N PACKAGE
(TOP VIEW)

SN54ABT240 . . . FK PACKAGE (TOP VIEW)

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT240 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT240 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT240 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer) INPUTS OUTPUT OE A Y L H L L L H H X Z.	

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\ddagger}$
Supply voltage range, V_{CC} -0.5 V to 7 V

Voltage applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots \ldots \ldots .$.
Current into any output in the low state, I_{0} : SN54ABT240 ... 96 mA
SN74ABT240 ... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .65 \mathrm{~W}$
DW package . 0.85 W
N package . 1.3 W
Storage temperature range
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause pemanent damage to the device. These are stress ratings onily, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			SN54ABT240		SN74ABT240		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	$\mathrm{V}_{\text {CC }}$	0	V_{CC}	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		5		5	ns / V
TA	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT240		SN74ABT240		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				$10 \S$		10§		10§	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10§		-10§		-10§	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{l}=0$,	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{Cc}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, }$ One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ This data sheet limit may vary among suppliers.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT240		SN74ABT240		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.9	4.1	0.8	5.5	1	4.8	ns
tPHL			1.6	3.1	4.3	1	5.5	1.6	4.8	
tpZH	$\overline{\mathrm{OE}}$	Y	1.1	3.1	4.7	0.8	7.5	1.1	5.2	ns
tPZL			1.1	2.7	5.8	0.8	7.7	1.1	6.2	
tphz	$\overline{O E}$	Y	1.8	4.6	5.7	1.7	7	1.8	6.4	ns
tplZ			1.6	4	5.4	1.3	7.2	1.6	5.8	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t P L H}^{\prime}$ tPHL	Open
tPLZ/tPZL	7 V
t PHZ/tPZH	Open

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\text {, }}$ 64-mA IOL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters, Taken together with the 'ABT240 and 'ABT244, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{O E}$ (active-low output-enable) inputs, and complementary OE and $\overline{\mathrm{OE}}$ inputs.

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
The SN74ABT241 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT241 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT241 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLES

INPUTS		OUTPUT
$\mathbf{1 0 E}$	$\mathbf{1 A}$	$\mathbf{1 Y}$
L	H	H
L	H	H
L	L	L

INPUTS		OUTPUT
2OE	2A	
H	H	H
H	L	L
L	X	Z

logic symbolt

\dagger This symbol is in accordance with ANSI//EEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots . .$.

SN74ABT241 ... 128 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.65 W
DW package . 0.85 W
N package . 1.3 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT241		SN74ABT241		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$		0.55			0.55				V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
lozh	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\begin{array}{ll} \\ \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V} & \end{array}$				50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,			-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$10=0$,	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta^{\prime} C C^{\prime \prime}$	$V_{C C}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V ${ }_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT241		SN74ABT241		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.6	4.1	0.8	5.3	1	4.6	ns
tPHL			1	2.9	4.2	0.8	5	1	4.6	
tPZH	$\overline{O E}$ or OE	Y	1.1	4.8	6.3	1	7	1.1	6.8	ns
tpZL			1.3	4.3	5.8	1	7	1.3	6.8	
tpHz	$\overline{\text { OE }}$ or OE	Y	1.6	4.6	6.1	0.8	7.9	1.6	7.1	ns
tplz			1	3.9	5.4	0.8	6.2	1	5.9	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA lor, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'ABT240 and 'ABT241, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs, and complementary OE and $\overline{O E}$ inputs.
The 'ABT244 is organized as two 4-bit buffers/line drivers with separate output-enable ($\overline{\mathrm{OE}}$) inputs. When $\overline{O E}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{O E}$ is high, the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT244 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT OE A Y L H H L L L H X Z	

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\boldsymbol{\dagger}}$
Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{I} (see Note 1) -0.5 V to 7 V
Voltage applied to any output in the high state or power-off state, V_{O} 96 mA
SN74ABT244 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ $-18 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.65 W
DW package 0.85 W
N package $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		SN54ABT244		SN74ABT244		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{1} \mathrm{OH}$	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns/V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^4]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ This data sheet limit may vary among suppliers.
${ }^{1}$ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $\mathrm{V}_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT244		SN74ABT244		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.6	4.1	1	5.3	1	4.6	ns
tphL			1	2.9	4.2	1	5	1	4.6	
tPZH	$\overline{\mathrm{OE}}$	Y	1.1	3.1	4.6	0.8	5.7	1.1	5.1	ns
tPZL			2.1	4.1	5.6	1.2	7.9	2.1	6.1	
tphz	$\overline{\mathrm{OE}}$	Y	2.1	4.1	5.6	1.2	7.6	2.1	6.6	ns
tpLZ			1.7	3.7	5.2	1	7.9	1.7	5.7	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=\mathbf{2 0 0} \mathbf{~ p F , R}=\mathbf{0}$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{IOH}_{\mathrm{O}}$ 64-mA IoL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal bus transceivers are designed for asynchronous communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so the buses are effectively isolated.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT245 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OPERATION
$\overline{\text { OE }}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To 7 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage range, V_{1} (except I/O ports) (see Note 1) ... -0.5 V to 7 V
Voltage applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots \ldots \ldots . .$.
Current into any output in the low state, I_{O} : SN54ABT245 ... 96 mA
SN74ABT245 .. 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots . .$.
DW package 0.85 W
N package .. 1.3 W
Storage temperature range ... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		SN54ABT245		SN74ABT245		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
IOH	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns/V
TA	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT245		SN74ABT245		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$l_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5				v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$							
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55	0.55 V		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$		$0.55 \ddagger$							
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Control inputs A or B ports				± 1		± 1		± 1	$\mu \mathrm{A}$
						± 100		± 100		± 100	
lOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,					107		109		1071	$\mu \mathrm{A}$
IOZL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-107		-1097		-109	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
$10^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-140	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		5	250		250		250	$\mu \mathrm{A}$
			Outputs low		22	30		30		30	mA
			Outputs disabled		1	250		250		250	$\mu \mathrm{A}$
$\Delta \mathrm{cc} \mathrm{c}^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			50		50		50	$\mu \mathrm{A}$
		Control inputs				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		4						pF
C_{io}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		8						pF

[^5]switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT245		SN74ABT245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.6	4.1	1	4.8	1	4.6	ns
tphL			1	2.9	4.2	1	4.8	1	4.6	
tPZH	$\overline{\mathrm{OE}}$	A or B	1.3	3.3	4.8	1	5.9	1.3	5.3	ns
tPZL			2.3	4.3	5.8	2	7.5	2.3	6.3	
tPHZ	$\overline{\mathrm{OE}}$	A or B	$1.7{ }^{\dagger}$	4.7	6.2	1.7	7.4	$1.7 \dagger$	7.2	ns
tplZ			$1.7 \dagger$	4.3	5.8	1.7	6.5	$1.7 \dagger$	6.3	

\dagger This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce)
$<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA I_{OH}, 64-mA $\mathrm{IOL}_{\mathrm{O}}$)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT273 is an 8-bit positive edge-triggered D-type flip-flop with a direct clear (CLR) input. It is particularly suitable for implementing buffer and storage registers, shift registers, and pattern generators.

Information at the data (D) inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock (CLK) input is at either the high or low level, the D-input signal has no effect at the output.

SN54ABT273 . . . J PACKAGE
SN74ABT273 . . . DB, DW, OR N PACKAGE (TOP VIEW)

SN54ABT273 . . . FK PACKAGE (TOP VIEW)

The SN74ABT273 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT273 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT273 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
CLR	CLK	D	
L	X	X	L
H	\uparrow	H	H
H	\uparrow	L	L
H	L	X	Q $_{0}$

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\boldsymbol{\#}}$

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \ldots \ldots . . . \text {. } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}}: \text { SN54ABT273 .. } 96 \text { mA } \\
& \text { SN74ABT273 } 128 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0\right) \text {. }-50 \mathrm{~mA} \\
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DB package . } 0.65 \mathrm{~W} \\
& \text { DW package } 0.85 \text { W } \\
& \text { N package . } 1.3 \mathrm{~W} \\
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT273		SN74ABT273		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		${ }_{4} 0.8$		0.8	V
V_{1}	Input voltage		v_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
l OL	Low-level output current	Q	48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		10		10	ns/V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT273		SN74ABT273		UNIT
			MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$				3	2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$		Q		0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1				± 1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100	\bigcirc			± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-100	-20071	-50	-200'1	-50	-2007	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0 \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	4007		4009		400 Il	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
${ }^{\text {l }} \mathrm{Cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V			7						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This data sheet limit may vary among suppliers.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			$\begin{aligned} & \mathbf{V}_{\mathbf{C C}} \\ & \mathbf{T}_{\mathbf{A}}= \end{aligned}$	$5 \mathrm{~V},$	SN54ABT273	SN74A	T273	UNIT
			MIN	MAX	MIN MAX	MIN	MAX	
${ }_{\text {f }}$ lock	Clock frequency		0	150	$0 \quad 150$	0	150	MHz
	P	CLK high or low	3.3		3.3 \$	3.3		
\%	Se duration	$\overline{\text { CLR }}$ low	3.3		3.3 \% ${ }^{4}$	3.3		ns
		Data high	2		2	2		
$\mathrm{t}_{\text {su }}$	Setup time before CLK \uparrow	Data low	2.5		2.5	2.5		ns
		$\overline{\text { CLR high }}$	2		\bigcirc	2		
th	Hold time after CLK \uparrow	Data high or low	$1.2 \dagger$		$81.2 \dagger$	$1.2 \dagger$		ns

\dagger This data sheet limit may vary among suppliers.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT273	SN74ABT273		UNIT
			MIN	TYP MAX	MIN MAX	MIN	MAX	
$f_{\text {max }}$			0	150	0 O 450	0	150	MHz
tPLH	CLK	Q	2.5	6	2.5 , 6.8	2.5	6.5	ns
tPHL			3.3	6.8	$3.3 \% 7$	3.3	7.3	
tPHL	$\overline{C L R}$	Q	2.5	$6.7 \dagger$	2.507 .6	2.5	$7.4 \dagger$	ns

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES:
A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32 -mA $\mathbf{I O H}^{\prime}$, $64-\mathrm{mA} \mathrm{IOL}_{\text {) }}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The eight latches of the 'ABT373 are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs will follow the data (D) inputs. When the latch enable is taken low, the Q outputs are latched at the logic levels set up at the D inputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable ($\overline{\mathrm{OE}}$) input does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT373 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT373 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each latch)

INPUTS			OUTPUT
$\mathbf{O E}$	LE	D	Q
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\ddagger}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT373		SN74ABT373		UNIT
			MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
$\mathrm{VOH}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				$10 \S$		108		$10 \S$	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10§		-10§		-10§	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\text {CC }}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} & \\ \hline \end{array}$				50		50		50	$\mu \mathrm{A}$
10^{17}			-50	-100	-180	-50	-180	-50	-180	mA
${ }^{\text {I C C }}$	$\begin{aligned} & v_{C C}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{1}=\mathrm{v}_{C C} \text { or } G N D \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
		Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta^{\prime} C^{\#}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			6						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ This data sheet limit may vary among suppliers.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified $T \mathrm{LL}$ voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}= \end{aligned}$	$5 \mathrm{~V},$	SN54A	T373	SN74A	T373	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_{w}	Pulse duration, LE high		3.3		3.3		3.3		ns
${ }_{\text {tsu }}$	Setup time, data before LE \downarrow	High	1.9		2.5		1.9		ns
		Low	1.5		2.5		1.5		
th	Hold time, data after LE \downarrow	High or low	1		2.5		1		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT373		SN74ABT373		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Q	1.9	3.9	5.4	1.3	6.8	1.9	5.9	ns
tPHL			2.2	4.2	5.7	2	7	2.2	6.2	
tPLH	LE	Q	2.6	4.6	6.1	1.8	7.7	2.6	6.6	ns
tPHL			3.2	5.2	6.7	2.5	7.7	3.2	7.2	
tpZH	$\overline{\mathrm{OE}}$	Q	1.2	3.2	4.7	1	6.2	1.2	5.2	ns
tPZL			2.7	4.7	6.2	1.5	7.2	2.7	6.7	
tpHZ	$\overline{O E}$	Q	2.5	4.9	6.4	2.4	8	2.5	6.9	ns
tpLZ			2	4.5	6	2	7	2	6.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathrm{OH}}$, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 8-bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'ABT374 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels that were set up at the data (D) inputs.

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low) or a high-impedance state. In

- the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. The output-enable $(\overline{\mathrm{OE}})$ input does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT374 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUȚS			OUTPUT
$\overline{\text { OE }}$	CLK	D	Q
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.

SN54ABT374, SN74ABT374

OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCBS111C - D3770, FEBRUARY 1991 - REVISED JULY 1993

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54AB	T374	SN74A	T374	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
${ }^{1} \mathrm{OL}$	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		5		5	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT374		SN74ABT374		UNIT
			MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				0.55 \ddagger				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				$10 \S$		$10 \S$		$10 \S$	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10§		-10§		-10§	$\mu \mathrm{A}$
Ioff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
${ }^{\text {I C C }}$	$\begin{aligned} & \mathrm{v}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{v}_{C C} \text { or } G N D \end{aligned}$	Outputs high			250		250		250	$\mu \mathrm{A}$
		Outputs low			30		30		30	mA
		Outputs disabled			250		250		250	$\mu \mathrm{A}$
$\Delta^{\prime \prime} \mathrm{CC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			2.5						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ This data sheet limit may vary among suppliers.
IN Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

\dagger This data sheet limit may vary among suppliers.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT374		SN74ABT374		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150	200		150		150		MHz
tPLH	CLK	Q	2.2	4.2	5.7	1.8	6.6	2.2	6.2	ns
${ }_{\text {tPHL }}$			3.1	5.1	6.6	2.6	7.6	3.1	7.1	
tPZH	$\overline{\mathrm{OE}}$	Q	1.2	3.2	4.7	0.8	5.7	1.2	5.2	ns
tPZL			2.7	4.7	6.2	1.5	7.2	2.7	6.7	
tPHZ	$\overline{\mathrm{OE}}$	Q	2.5	4.5	6	1.3	7.2	2.5	6.5	ns
tPLZ			2	4.5	6	1	7	2	6.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL tPLZ/tPZL tPHZ/tPZH	Open 7 V Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathrm{IOH}_{\mathrm{O}}$, 64-mA IoL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT377 is a 8 -bit positive-edge-triggered D-type flip-flop with a clock (CLK) input. It is particularly suitable for implementing buffer and storage registers, shift registers, and pattern generators.
Data (D) input information that meets the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the common clock-enable (CLKEN) input is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the buffered clock (CLK) input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at CLKEN.
The SN74ABT377 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT377 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT377 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			$\underset{Q}{\substack{\text { OUTPUT }}}$
CLKEN	CLK	D	
H	X	X	Q_{0}
L	\uparrow	H	H
L	\uparrow	L	L
x	H or L	x	Q_{0}

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}. -0.5 V to 7 V
Input voltage range, V_{1} (see Note 1) . 0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . \mathrm{m}^{2} .0 .5 \mathrm{~V}$ to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT377 . 96 mA
SN74ABT377 128 mA
Input clamp current, $\mathrm{l}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$. 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .65 \mathrm{~W}$
DW package . 0.85 W
N package . 1.3 W
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT377		SN74ABT377		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{I} O H}$	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns / V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT377		SN74ABT377		UNIT
			MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,		2			2				V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	v
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or G				± 1		± 1		± 1	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100		± 500		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		. 50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
${ }^{1} \mathrm{CCC}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

\# This data sheet limit may vary among suppliers.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT377		SN74ABT377		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f max }}$			150			150		150		MHz
tPLH	CLK	Q	2.2	4.5	6	2.2	7	2.2	6.5	ns
tPHL			3.1	5.3	6.8	2	7.6	3.1	7.3	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
t PLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS
NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathrm{OH}}$, 64-mA IOL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT533 is an 8-bit transparent D-type latch with 3 -state outputs designed specifically for driving highly capacitive or relatively lowimpedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
When the latch-enable (LE) input is high, the $\overline{\mathbf{Q}}$ outputs follow the complements of the data (D) inputs. When LE is taken low, the \bar{Q} outputs are latched at the inverse of the levels set up at the D inputs. The 'ABT533 provides inverted data at its outputs.

SN54ABT533 ...J PACKAGE
SN74ABT533 ... DB, DW, OR N PACKAGE
(TOP VIEW)

SN54ABT533 . . FK PACKAGE (TOP VIEW)

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

The output-enable ($\overline{\mathrm{OE}})$ input does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT533 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT533 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT533 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each latch)

INPUTS			
OUTPUT			
$\overline{\text { OE }}$	LE	D	$\overline{\text { Q }}$
L	H	H	L
L	H	L	H
L	L	X	\bar{Q}_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots .$.
Current into any output in the low state, I_{O} : SN54ABT533 ... 96 mA
SN74ABT533 .. 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .0 .65 \mathrm{~W}$

N package 1.3 W
Storage temperature range .. $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT533		SN74ABT533		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		${ }_{8} 0.8$		0.8	V
V_{1}	Input voltage		V_{CC}	0	V_{CC}	V
I^{OH}	High-level output current		-24		-32	mA
IOL	Low-level output current	-	48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	\bigcirc	10		10	ns/V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^6]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT533	SN74ABT533		UNIT
			MIN	TYP \dagger	MAX	MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2	-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5	2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}^{2}=-3 \mathrm{~mA}$		3			3	3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55	0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$			0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1	41		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				10§	410§		10§	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10§	Q-10§		-10§	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 150	0		± 150	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	$8 \quad 50$		50	$\mu \mathrm{A}$
$10]$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-140	-180	\% $0^{*} 50-180$	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250	250		250	$\mu \mathrm{A}$
		Outputs low		24	30	30		30	mA
		Outputs disabled		0.5	250	250		250	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{Cc}^{\#}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND	Outputs enabled			1.5	1.5		1.5	mA
		Outputs disabled			1.5	1.5		1.5	
		Control inputs			1.5	1.5		1.5	
C_{i}.	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3					pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			9					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ This data sheet limit may vary among suppliers.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT533		SN74ABT533		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	$\overline{\mathbf{Q}}$	1.9	4.2	5.4	1.9	6.7	1.9	6.4	ns
tPHL			3.1	4.9	6.3	3.1	6.9	3.1	6.6	
${ }_{\text {tPLH }}$	LE	$\overline{\mathbf{Q}}$	2.7	4.9	6.2	2.7	${ }^{+} 7.6$	2.7	7.3	ns
tPHL			3.5	5.4	6.8	3.5	7.5	3.5	7.3	
tpZH	$\overline{\mathrm{OE}}$	$\overline{\mathbf{Q}}$	1.6	3.7	4.8	1.6	5.8	1.6	5.7	ns
tPZL			2.4	4.2	6.2	2.4	6.9	2.4	6.7	
tPHZ	$\overline{\mathrm{OE}}$	$\overline{\mathbf{Q}}$	2.8	5.1	6.2	¢ 2.8	7.2	2.8	6.9	ns
tplZ			2	4.1	6	2	6.9	2	6.5	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, 64-mA IoL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT534 is an 8 -bit flip-flop with 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, l/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the 'ABT534 are edge-triggered D-type flip-flops. On the positive transition of the clock, the \bar{Q} outputs will be set to the complement of the logic levels that were set up at the data (D) inputs. The 'ABT534 provides inverted data at its outputs.

> SN54ABT534...J PACKAGE
> SN74ABT534 . . DB, DW, OR N PACKAGE
> (TOP VIEW)

SN54ABT534 ... FK PACKAGE (TOP VIEW)

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable ($\overline{\mathrm{OE}})$ input does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT534 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT534 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT534 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
c
FUNCTION TABLE
(each flip-flop)

INPUTS			
OUTPUT			
$\overline{\text { OE }}$	CLK	D	\bar{Q}
L	\uparrow	H	L
L	\uparrow	L	H
L	H or L	X	\bar{Q}_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

SN54ABT534, SN74ABT534 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
 WITH 3-STATE OUTPUTS
 D3773, FEBRUARY 1991 - REVISED JULY 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

> Supply voltage range, V_{CC} -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
SN74ABT534 .. 128 mA

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): } \mathrm{DB} \text { package } \ldots . .0 .65 \mathrm{~W}
\end{aligned}
$$

> N package 1.3 W
> Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
> NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT534		SN74ABT534		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			${ }_{4} 0.8$		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current					-32	mA
lOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT534	SN74ABT534		UNIT
			MIN	TYPt	MAX	MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2	-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			- 2.5	2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3	3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OL}=48 \mathrm{~mA}$				0.55	0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$			0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1	41		± 1	$\mu \mathrm{A}$
Iozh	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	4 50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	${ }^{2}-50$		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{C C}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100	5		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	$\bigcirc 50$		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-140	-2007	-50-2007	-50	-2007	mA
ICC	$\left\lvert\, \begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}\right.$	Outputs high		1	250	250		250	$\mu \mathrm{A}$
		Outputs low		24	30	30		30	mA
		Outputs disabled		0.5	250	250		250	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{Cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND		-		1.5	1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3					pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			8					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IThis data sheet limit may vary among suppliers.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	,		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}= \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 5^{\circ} \mathrm{C} \end{aligned}$	SN54ABT534	SN74A	T534	UNIT
			MIN	MAX	MIN MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency			125	425		125	MHz
t_{w}	Pulse duration	CLK high or low	3.5		$3.50{ }^{3}$	3.5		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	High or low	1.6		1.68	1.6		ns
th	Hold time, data after CLK \uparrow	High or low	1.6"		1.67	1.67		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT534		SN74ABT534		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125	175		125	\%	125		MHz
tpLH	CLK	Q	2.6	4.5	$6.1 \dagger$	2.6	${ }^{*} 7$	2.6	6.7	ns
tPHL			3.4	5.5	6.7	3.4	-7.9	3.4	7.6	
tPZH	$\overline{\mathrm{OE}}$	Q	1	3.4	$5.2 \dagger$	1	5.8	1	$5.6 \dagger$	ns
tPZL			2.6	4	5.8	26	7	2.6	6.8	
tpHZ	$\overline{\mathrm{OE}}$	Q	2.4	4.7	6.6	$\bigcirc 2.4$	7.6	2.4	7.3	ns
tPLZ			2.3	3.8	5.8	\& 2.3	6.8	2.3	6.5	

\dagger This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {P/ }}$	Open
tPLZ/PZL	7 V
tPHZ/tPZH	Open

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA IOH, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT540 octal buffers and line drivers are ideal for driving bus lines or buffer memory address registers. The device features inputs and outputs on opposite sides of the package that facilitate printed-circuit-board layout.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$) input is high, all corresponding outputs are in the high-impedance state.

SN54ABT540 . . . J PACKAGE
SN74ABT540... DB, DW, OR N PACKAGE
(TOP VIEW)

SN54ABT540 . . . FK PACKAGE (TOP VIEW)

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT540 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT540 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT540 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUT
$\mathbf{O E 1}$	$\overline{\text { OE2 }}$	A	
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (see Note 1) . } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots . . \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}}: \text { SN54ABT540 .. } 96 \mathrm{~mA} \\
& \text { SN74ABT540 } 128 \text { mA }
\end{aligned}
$$

> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package . 0.65 W
> DW package . 0.85 W
> N package . 1.3 W
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT540		SN74ABT540		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	\%	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
OH	High-level output current			-24		-32	mA
l OL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or Jow.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT540		SN74ABT540		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		<41		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		\% 50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
Ioff	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100)			± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	\bigcirc	50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	$88^{2}-50$	-180	-50	-180	mA
${ }^{\prime} \mathrm{CC}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$10=0$,	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta_{C C C}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
	One input at 3.4 V , Other inputs at		Outputs disabled			0.05		0.05		0.05	
	$V_{C C} \text { or GND }$	Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			8							pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT540		SN74ABT540		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.9	4.1	1		1	4.8	ns
tPHL			1.6	3.1	4.3	1.6		1.6	4.8	
tPZH	$\overline{O E}$	Y	1.2	3.4	4.9	1.2		1.2	5.9	ns
tPZL			1.2	3	4.4	12		1.2	5.1	
tPHZ	$\overline{O E}$	Y	3.1	5.3	6.5	6. 1		3.1	7.3	ns
tpLZ			2.5	4.4	5.7	Q 2.5		2.5	6.2	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}$, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT541 octal buffer and line driver is ideal for driving bus lines or buffering memory address registers. The device features inputs and outputs on opposite sides of the package to facilitate printed-circuit-board layout.
The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$) input is high, all eight outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT541 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT541 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT541 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUT
$\mathbf{O E 1}$	$\overline{\text { OE2 }}$	A	Y
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

SN54ABT541 ... J PACKAGE
 SN74ABT541 . . DB, DW, OR N PACKAGE (TOP VIEW)

SN54ABT541 . . FK PACKAGE (TOP VIEW)

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			SN54ABT541	SN74ABT541		UNIT
			MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.55 .5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2 5	2		V
V_{IL}	Low-level input voltage		${ }_{0}^{4} 0$		0.8	V
V_{1}	Input voltage		$0 \mathrm{~s}^{\circ} \mathrm{VCC}$	0	V_{CC}	V
IOH	High-level output current		b) -24		-32	mA
loL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	$8 \quad 5$		5	ns/V
T_{A}	Operating free-air temperature		-55 125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IThis is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT541		SN74ABT541		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.6	4.1	1	4.6	1	4.6	ns
tphL			1	2.9	4.2	1	4.7	1	4.6	
tPZH	$\overline{O E}$	Y	1.1	3.1	4.8	$1.1{ }^{2}$		1.1	5.3	ns
tpZL			2.1	4.4	5.9	2.	6.5	2.1	6.4	
tPHZ	$\overline{O E}$	Y	2.1	5.1	6.6	2.1	7.1	2.1	7.1	ns
tplZ			1.7	4.7	6.2	Q 1.7	6.7	1.7	6.7	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}$, $\mathbf{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA lon, $64-\mathrm{mA} \mathrm{IOL}^{\text {) }}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{O E B A})$ inputs are provided for each register to permit independent control in either direction of data flow.
The A-to-B enable ($\overline{\mathrm{CEAB}}$) input must be low in order to enter data from A or to output data from B. If $\overline{C E A B}$ is low and $\overline{\mathrm{LEAB}}$ is low, the A-to-B latches are transparent; a subsequent low-to-high transition of $\overline{L E A B}$ puts the A latches in the storage mode. With $\overline{\mathrm{CEAB}}$ and $\overline{\mathrm{OEAB}}$ both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.

```
SN54ABT543 ... JT PACKAGE
SN74ABT543 ... DB, DW, OR NT PACKAGE
(TOP VIEW)
```

LEBA		J_{24}	V_{CC}
OEBA	2	23	CEBA
A1[3	22	B1
A2	4	21	B2
A3[5	20	B3
A4	6	19	B4
A5	7	18	B5
A6	8	17	B6
A7	9	16	B7
A8	10	15	B8
CEAB	11	14	$\overline{\text { LEAB }}$
GND	12	13	$\overline{O E A B}$

SN54ABT543 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT543 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT543 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT543 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

FUNCTION TABLE \dagger				
INPUTS				OUTPUT
$\overline{C E A B}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	A	B
H	X	X	X	Z
X	X	H	X	Z
L	H	L	x	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	L	L	L
L	L	L	H	H

†A-to-B data flow is shown; B-to-A flow control is the same except that it uses $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$.
\ddagger Output level before the indicated steady-state input conditions were established.

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}
-0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots . .-0.5 \mathrm{~V}$ to 5.5 V

SN74ABT543 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .7 \mathrm{~W}$
DW package . 1 W
NT package 1.3 W

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT543	SN74ABT543		UNIT
			MIN MAX	MIN	MAX	
V_{CC}	Supply voltage		4.55 .5	4.5	5.5	V
V_{IH}	High-level input voltage		25	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		${ }_{4}^{3} 0.8$		0.8	V
V_{1}	Input voltage		$0<^{*} V_{C C}$	0	V_{CC}	V
OH	High-level output current) -24		-32	mA
l OL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	\% 5		5	ns / V
T_{A}	Operating free-air temperature		-55 125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT543		SN74ABT543		UNIT	
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX		
V_{IK}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V	
V_{OH}	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		-	2.5		2.5		v	
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{OH}=-3 \mathrm{~mA}$		3			3		3			
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2					
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$					2			
VOL	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V	
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$		8		0.55		
	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		${ }_{4}^{41}$		± 1	$\mu \mathrm{A}$	
1			A or B ports			± 100		4 ± 100		± 100		
lOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				107		107		107	$\mu \mathrm{A}$	
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-109		-109		-109	$\mu \mathrm{A}$	
loff	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100	\%			± 100	$\mu \mathrm{A}$	
ICEX	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$	
$10^{\#}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA	
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		1	250		250		250	$\mu \mathrm{A}$	
			Outputs low		24	$34 \\|$		347		349	mA	
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$	
${ }^{\prime}{ }^{\prime} C^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V,Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		4						pF	
C_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		7						pF	

[^7]timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT543		SN74ABT543		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tplH	A or B	B or A	1.9	4.4	5.9	1.9		1.9	6.9	ns
tPHL			1.9	4.4	5.9	1.9		1.9	6.9	
tplu	$\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	A or B	1.6	4.1	5.6	1.6	+	1.6	6.6	ns
tPHL			2.1	4.6	6.1	2.1		2.1	7.1	
tpZH	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	1.4	3.9	5.4	1.4		1.4	6.4	ns
tPZL			2.5	5	6.5	2.5		2.5	7.5	
tPHZ	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	$2.5 \dagger$	5.9	7.4	2.54		$2.5 \dagger$	8.4	ns
tPLZ			3	5.5	7	- 3		3	8	
tpZH	$\overline{\text { CEBA }}$ or $\overline{C E A B}$	A or B	1.4	3.9	5.4	Q 1.4		1.4	6.4	ns
tPZL			2.5	5	6.5	2.5		2.5	7.5	
tpHZ	$\overline{\text { CEBA }}$ or $\overline{C E A B}$	A or B	$3.2 \dagger$	5.9	7.4	$3.2 \dagger$		$3.2 \dagger$	8.4	ns
tplZ			3	5.5	7	3		3	8	

\dagger This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA loH, $64-\mathrm{mA} \mathrm{IOL}^{\text {) }}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT544 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch-enable ($\overline{\text { LEAB }}$ or $\overline{\text { LEBA }}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{O E B A})$ inputs are provided for each register to permit independent control in either direction of data flow.
The A-to-B enable ($\overline{\mathrm{CEAB}}$) input must be low in order to enter data from A or to output data from B. If $\overline{C E A B}$ is low and $\overline{\mathrm{LEAB}}$ is low, the A-to-B latches are transparent; a subsequent low-to-high transition of $\overline{\text { LEAB }}$ puts the A latches in the storage mode. With $\overline{\mathrm{CEAB}}$ and $\overline{\mathrm{OEAB}}$ both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to $\mathrm{V}_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT544 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT544 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT544 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger			
INPUTS OUTPUT B CEAB $\overline{\text { LEAB }}$ $\overline{\text { OEAB }}$ A H X X X L X H X L H L X L L L L L H L L L H L			

\dagger A-to-B data flow is shown; B -to-A flow control is the same except that it uses CEBA, LEBA, and OEBA.
\ddagger Output level before the indicated steady-state input conditions were established.

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}

-0.5 V to 7 V

Input voltage range, V_{1} (except I/O ports) (see Note 1) .. -0.5 V to 7 V Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT544 .. 96 mA SN74ABT544 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .7 \mathrm{w}$
DW package 1 W
NT package 1.3 W
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN54ABT544, SN74ABT544
OCTAL REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
D3775, FEBRUARY 1991 - REVISED JULY 1993

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT544		SN74ABT544		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V},$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL		$\mathrm{I} \mathrm{OL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\begin{array}{\|l} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ \hline \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ \hline \end{array}$	$\mathrm{I} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
lOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ \hline \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{I}^{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	34\#		34\#		$34{ }^{\#}$	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {d }} \mathrm{CC}{ }^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V,Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		4						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		7						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and IOZL include the input leakage current.
If Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This data sheet limit may vary among suppliers.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

SN54ABT573, SN74ABT573 OCTAL TRANSPARENT D-TYPE LATCHES
 WITH 3-STATE OUTPUTS
 D3663, JANUARY 1991 - REVISED JULY 1993

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathbf{C}=\mathbf{2 0 0}$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{2}$ 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 8 -bit latches feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the 'ABT573 are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When the latch enable is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

SN54ABT573 . . . J PACKAGE
SN74ABT573 . . . DB, DW, OR N PACKAGE (TOP VIEW)

$\overline{O E}$	$1 \square_{20}$		
			V_{CC}
1D	2	19	1Q
2D	3	18	2Q
3D	4	17	3Q
4D	5	16	4Q
5D	6	15	5Q
6D	7	14	6Q
7D	8	13	$7 Q$
8D	9	12	8Q
GND	10	11	LE

SN54ABT573 . . . FK PACKAGE (TOP VIEW)

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

The output-enable ($\overline{\mathrm{OE}})$ input does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT573 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT573 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT573 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

(each latch)

INPUTS			OUTPUT
$\overline{\mathbf{O E}}$	LE	\mathbf{D}	\mathbf{Q}
\mathbf{L}	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device: These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER PARAMETER	TEST CONDITIONS TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT573		SN74ABT573		UNIT UNIT
			MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~m}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$		3			3		3		
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2				v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}^{2}=48 \mathrm{~mA}$				0.55		0.55	.		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{l}^{2}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	v
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		10		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-10		-50	$\mu \mathrm{A}$
loff	$V_{C C}=0, \quad V_{1}$ or $V_{0} \leq 4.5$				± 100		± 500		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
		Outputs high		1	250		250		250	$\mu \mathrm{A}$
ICC	$\mathrm{V} C \mathrm{CC}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0,$ $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	Outputs low		24	30		30		30	mA
		Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\prime \prime} \mathrm{Cc}{ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input a Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			6						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

,			$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT573		SN74ABT573		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_{w}	Pulse duration, LE high		3.3		3.3		3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before LE \downarrow	High	1.9		2.5		1.9		ns
		Low	1.5	?	2.5		1.5		
th	Hold time, data after LE \downarrow		1		2.5		1		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT573		SN74ABT573		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Q	1.9	3.2	5.4	1.4	6.4	1.9	5.9	ns
tPHL			2.2	4.2	5.7	1.6	6.7	2.2	6.2	
$\mathrm{t}_{\text {PLH }}$	LE	Q	2.2	4	6.1	2	7.1	2.2	6.6	ns
tPHL			3.2	5.2	6.7	2.8	7.5	3.2	7.2	
tPZH	$\overline{\mathrm{OE}}$	Q	1.2	3.2	4.7	0.8	6.2	1.2	5.2	ns
tPZL			2.7	4.7	6.2	2	7.2	2.7	6.7	
tPHZ	$\overline{\mathrm{OE}}$	Q	2.5	4.9	6.4	2.2	7.7	2.5	6.9	ns
tPLZ			2	4.2	6	1.4	7	2	6.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tPLH }}$ /tPHL	Open
tplz/tpzL	7 V
${ }^{\text {tPHZ }}$ /tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 . \mathrm{V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathrm{IOH}^{\text {, }}$ 64-mA IOL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 8 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, l/O ports, bidirectional bus drivers, and working registers.
The eight flip-flops of the 'ABT574 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels that were set up at the data (D) inputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable $(\overline{\mathrm{OE}})$ input does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT574 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT574 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT574 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			$\begin{gathered} \text { OUTPUT } \\ \mathbf{Q} \end{gathered}$
$\overline{O E}$	CLK	D	
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	z

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT574		SN74ABT574		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{cc}	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
${ }^{1} \mathrm{OL}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
TA	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT574		SN74ABT574		UNIT
			MIN	TYP'	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2				V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I} \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		10		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-10		-50	$\mu \mathrm{A}$
Ioff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100		± 500		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{C C} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
		Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {alccll }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3						pF
C_{0}.	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			8						pF.

[^8]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \\ & \mathrm{T}_{\mathrm{A}}= \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 5^{\circ} \mathrm{C} \end{aligned}$	SN54A	T574	SN74A	T574	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency			150		150		150	MHz
t_{w}	Pulse duration, CLK high or low		3.3		3.3		3.3		ns
	Setup time, data before	High	1		1.5		1		
	tup time, data before	Low	1.5		2		1.5		
th	Hold time, data after CLK \uparrow	High or low	$1.5{ }^{\dagger}$		2		$1.5 \dagger$		ns

\dagger This data sheet limit may vary among suppliers.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT574		SN74ABT574		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150	200		150		150		MHz
tpLH	CLK	Q	2.2	3.9	6.2	2.2	7	2.2	6.8	ns
tPHL			3	4.8	6.6	3	7.4	3	7.1	
tpZH	$\overline{\mathrm{OE}}$	Q	1	3.3	4.3	1	6	1	5.1	ns
tPZL			2.5	4.7	5.9	2.5	6.8	2.5	6.7	
tPHZ	$\overline{\mathrm{OE}}$	Q	2.4	4.9	6.2	2.4	7.3	2.4	7	ns
tplZ			2	4	5.8	2	6.9	2	6.5	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA I_{OH}, 64-mA $\mathrm{IOL}_{\mathrm{O}}$)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT620 bus transceiver is designed for asynchronous communication between data buses. The control function implementation allows for maximum flexibility in timing. The 'ABT620 provides inverted data at its outputs.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable (OEAB and OEBA) inputs.

SN54ABT620 . . . J PACKAGE
SN74ABT620 . . . DB, DW, OR N PACKAGE
(TOP VIEW)

SN54ABT620 . . . FK PACKAGE

 (TOP VIEW)

The output-enable inputs can be used to disable the device so that the buses are effectively isolated. The dual-enable configuration gives the transceivers the capability of storing data by simultaneously enabling OEAB and $\overline{O E B A}$. When both OEAB and $\overline{O E B A}$ are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. In this way, each output reinforces its input in this configuration.

To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN74ABT620 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT620 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT620 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS		OPERATION
$\overline{\text { OEBA }}$	OEAB	
L	L	\bar{B} data to A bus
L	H	\bar{B} data to A bus,
H	L	Iata to B bus
H	H	\bar{A} dataon

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage range, V_{1} (except I/O ports) (see Note 1) ... -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT620 ... 96 mA
SN74ABT620 ... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.65 W
DW package 0.85 W
N package . 1.3 W

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT620	SN74ABT620		UNIT
				MIN	TYP \dagger	MAX	MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2	-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5	2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3			3	3		
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~m}$		2			2			
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55	0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$			0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1	+		± 1	$\mu \mathrm{A}$
			A or B ports			± 100	± 100		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	- 50		50	$\mu \mathrm{A}$
lozL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	C -50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100	${ }^{\circ}$		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	50		50	$\mu \mathrm{A}$
107	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}^{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		5	250	250		250	$\mu \mathrm{A}$
			Outputs low		24	30	30		30	mA
			Outputs disabled		0.5	250	250		250	$\mu \mathrm{A}$
${ }^{\text {I }} \mathrm{CC}{ }^{\text {\# }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND	ata inputs	Outputs enabled			1.5	1.5		1.5	mA
		Data inputs	Outputs disabled			0.05	0.05		0.05	
		Control inputs				1.5	1.5		1.5	
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		4					pF
C_{io}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		7					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT620	SN74ABT620		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
tPLH	A or B	B or A	1		4.1	1	1	4.8	ns
tPHL			1		4.3	1 ,	1	4.8	
tPZH	$\overline{\text { OEBA }}$	A	1.3		4.6	1.3 \%	1.3	5.5	ns
tPZL			1		6.1	18	1	7.1	
tpHZ	$\overline{\text { OEBA }}$	A	2		6.3	2,	2	7	ns
tplZ			1.4		5.4	1.4	1.4	5.8	
tpZH	OEAB	B	1.6		6.2	46	1.6	6.8	ns
tPZL			2		5.9	Q 2	2	6.4	
tPHZ	OEAB	B	1.2		5.6	1.2	1.2	6.5	ns
tPLZ			1.1		4.7	1.1	1.1	5.6	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

OLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, $64-\mathrm{mA} \mathrm{IOL}^{\text {) }}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The SN54ABT623A and SN74ABT623 bus transceivers are designed for asynchronous communication between data buses. The control function implementation allows for maximum flexibility in timing. The SN54ABT623A and SN74ABT623 provide true data at their outputs.
These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable (OEAB and $\overline{O E B A}$) inputs.

The output-enable inputs can be used to disable the device so that the buses are effectively isolated. The dual-enable configuration gives the transceivers the capability of storing data by simultaneously enabling OEAB and $\overline{O E B A}$. Each output reinforces its input in this configuration. When both OEAB and $\overline{O E B A}$ are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states.

To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
The SN74ABT623 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT623A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT623 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OPERATION
OEBA	OEAB	
L	L	B data to A bus
L	H	B data to A bus, A data to B bus H
H	Isolation	
H	H	A data to B bus

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Sup	-0.5 V to 7 V
Input voltage range, V_{I} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O}	-0.5 V to 5.5 V
Current into any output in the low state, l_{O} : SN54ABT623A	96 mA
SN74ABT623	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package	0.65 W
DW package	0.85 W
N package	. 1.3 W
orage temperature range	

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^9]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§The parameters lozH and lozL include the input leakage current.
If Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	.TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT623A		SN74ABT623		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.6	4.1	1	4.6	1	4.6	ns
tPHL			1	2.6	4.2	1	4.6	1	4.6	
tPZH	$\overline{\text { OEBA }}$	A	1.7	3.4	6.5	1.7	7.5	1.7	7.5	ns
tPZL			1.7	3.8	6.5	1.7	7.5	1.7	7.5	
tPHZ	$\overline{\text { OEBA }}$	A	1.7	4.2	6.5	1.7	7.5	1.7	7.5	ns
tplZ			1.7	4.7	6.5	1.7	7.5	1.7	7.5	
tPZH	OEAB	B	1.7	4.8	6.5	1.7	7.5	1.7	7.5	ns
tPZL			1.7	4	6.5	1.7	7.5	1.7	7.5	
tPHZ	OEAB	B	1.7	3.9	6.5	1.7	7.5	1.7	7.5	ns
tPLZ			1.7	3.2	6.5	1.7	7.5	1.7	7.5	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIBM ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{l O H}^{\mathbf{O H}}$ 64-mA IoL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT640 bus transceiver is designed for asynchronous communication between data buses. These devices transmit data from the \mathbf{A} bus to the B bus or from the B bus to the A bus depending upon the level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}}$) input can be used to disable the device so that the buses are effectively isolated.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT640 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT640 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT640 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS		OPERATION
$\overline{\text { OE }}$	DIR	
L	L	\bar{B} data to A bus
L	H	\bar{A} data to B bus
H	X	Isolation

SN54ABT640 ...J PACKAGE
 SN74ABT640 . . DB, DW, OR N PACKAGE

(TOP VIEW)

SN54ABT640 . . . FK PACKAGE

 (TOP VIEW)
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT640		SN74ABT640		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	\%	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
IOH	High-level output current			-24		-32	mA
l OL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	\bigcirc	5		5	ns/V
TA	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT640	SN74ABT640		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.7	4.2	1 5	1	4.9	ns
tphL			1.5	2.7	4.3	1.5×5	1.5	4.9	
tPZH	$\overline{O E}$	A or B	1.5	3.7	4.9	$1.500^{3} 5.9$	1.5	5.8	ns
tpZL			1.3	5	5.9	$4.36^{\text {c }} 7.4$	1.3	7.3	
tphz	$\overline{O E}$	A or B	2.5	4.1	6.5	$25 \quad 6.9$	2.5	6.8	ns
tplz			2	3.3	5.3	25.6	2	5.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0)$
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA \mathbf{I}_{OH}, 64-mA IOL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT646.
Output-enable ($\overline{\mathrm{OE}}$) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both.

SN54ABT646 . . . JT PACKAGE
SN74ABT646 . . . DB, DW, OR NT PACKAGE
(TOP VIEW)

CLKAB	1		V_{CC}
SAB	2	23] CLKBA
DIR	3	22	SBA
A1	4	21	$\overline{\mathrm{OE}}$
A2	5	20	B1
A3	6	19]2
A4	7	18]3
A5	8	17] ${ }^{\text {4 }}$
A6	9	16	B5
A7	10	15]6
A8	11	14	B7
GND	12	13	B8

SN54ABT646 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus will receive data when $\overline{\mathrm{OE}}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT646 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT646 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT646 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Figure 1. Bus-Management Functions
Pin numbers shown are for DB, DW, JT, and NT packages.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATION OR FUNCTION
$\overline{\mathrm{OE}}$	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input	Unspecified \dagger	Store A, B unspecified \dagger
X	X	X	\uparrow	X	X	Unspecified \dagger	Input	Store B, A unspecified \dagger
H	X	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
H	X	Hor L	H or L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	x	H or L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	H or L	x	H	x	Input	Output	Stored A data to B bus

\dagger The data output functions may be enabled or disabled by various signals at the $\overline{\text { OE }}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

logic symbol \ddagger

\ddagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and NT packages.

SN54ABT646, SN74ABT646
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS
SCBS068D - D3659, JULY 1991 - REVISED JULY 1993
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

SN54ABT646, SN74ABT646
 OCTAL BUS TRANSCEIVERS AND REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{l}} \text { (except } \mathrm{I} / \mathrm{O} \text { ports) (see Note 1) ... }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT646 ... } 96 \mathrm{~mA} \\
& \text { SN74ABT646 .. } 128 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DB package } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\
& \text { DW package } 1 \text { W } \\
& \text { NT package 1.3 W } \\
& \text { Storage temperature range .. }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. }
\end{aligned}
$$

recommended operating conditions (see Note 2)

		SN54ABT646		SN74ABT646		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		\$0.8		0.8	V
V_{1}	Input voltage		$\mathrm{V}_{\text {cc }}$	0	$\mathrm{V}_{\text {CC }}$	V
IOH	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns / V
TA	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or $1 / \mathrm{O}$) must be held high or low.

WITH 3-STATE OUTPUTS

SCBS068D - D3659, JULY 1991 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT646	SN74ABT646	UNIT
			MIN	TYP \dagger MAX	MIN MAX	MIN MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \Pi=-18 \mathrm{~mA}$			-1.2	-1.2	-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$		2.5		2.5	2.5	V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~m}$		3		3	3	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{O} \mathrm{OH}=-24 \mathrm{~m}$		2		2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$			2	
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$			0.55	0.55		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}^{2}=64 \mathrm{~mA}$			$0.55 \ddagger$		0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$	Control inputs		± 1	析	± 1	$\mu \mathrm{A}$
		A or B ports		± 100	1100	± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			107	$)^{2} 50$	107	$\mu \mathrm{A}$
$\mathrm{l}^{\text {I ZL }}$ §	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-109	\& -50	-10¢	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5$			± 100	${ }^{3}$	± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	$9 \quad 50$	50	$\mu \mathrm{A}$
$10^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	${ }^{2}-50-180$	$\begin{array}{ll}-50 & -180\end{array}$	mA
ICC	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		250	250	250	$\mu \mathrm{A}$
		Outputs low		30	30	30	mA
		Outputs disabled		250	250	250	$\mu \mathrm{A}$
$\Delta^{\prime} C^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V	Control inputs		7			pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V	A or B ports		12			pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
II This data sheet limit may vary among suppliers.
\# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \mathrm{V}_{\mathbf{C C}}= \\ & \mathrm{T}_{\mathbf{A}}= \end{aligned}$		SN54A	T646	SN74A	T646	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$f_{\text {clock }}$	Clock frequency		0	125	0		0	125	MHz
t_{w}	Pulse duration, CLK high or low		4		4		4		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	High	3.5		35		3.5		ns
		Low	3		${ }^{3} 3$		3		
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow		0		0		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT646		SN74ABT646		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125					125		MHz
tPLH	CLKBA or CLKAB	A or B	2.2	4	6.8			2.2	7.8	ns
tPHL			1.7	4	7.4			1.7	8.4	
tPLH	A or B	B or A	1.5	3	5.9		3	1.5	6.9	ns
tPHL			1.5	3.3	5.9		$\stackrel{3}{4}$	1.5	6.9	
tPLH	SAB or SBA \dagger	B or A	1.5	4	6.1			1.5	7.1	ns
tPHL			1.5	3.6	6.9			1.5	7.9	
tPZH	$\overline{\mathrm{OE}}$	A or B	1	4.3	5.3	,		1	6.3	ns
tPZL			2.1	5.8	7.4	${ }^{4}$		2.1	8.8	
tPHZ	$\overline{\mathrm{OE}}$	A or B	1.5	3.5	7.3			1.5	8.3	ns
tplz			1.5	3	7			1.5	7.5	
tpZH	DIR	A or B	1.2	4.5	5.7			1.2	6.7	ns
tPZL			2.5	6.5	9			2.5	9.5	
tPHZ	DIR	A or B	1.5	3.8	6.7			1.5	7.7	ns
tPLZ			1.5	3.8	7.2			1.5	8.2	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
t PHZ $^{\prime}$ tPZH	Open

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {M }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA I_{OH}, 64-mA l_{OL})
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT646A.
Output-enable ($\overline{\mathrm{OE}}$) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both.

SN54ABT646A . . . JT PACKAGE
SN74ABT646A ... DB, DW, OR NT PACKAGE
(TOP VIEW)

CLKAB 1	24	V_{CC}
SAB 2	23	CLKBA
DIR 3	22	SBA
A1 4	21	$\overline{\mathrm{OE}}$
A2 5	20	B1
A3 6	19	B2
A4 7	18	B3
A5 8	17	B4
A6 9	16	B5
A7 10	15	B6
A8 11	14	B7
GND 12	13	B8

SN54ABT646A ... FK PACKAGE

 (TOP VIEW)

NC - No internal connection

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus will receive data when $\overline{O E}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT646A is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT646A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT646A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Figure 1. Bus-Management Functions
Pin numbers shown are for the DB, DW, JT, and NT packages.

FUNCTION TABLE

INPUTS						DATA I/Os		OPERATION OR FUNCTION
$\overline{\mathbf{O E}}$	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input	Unspecified \dagger	Store A, B unspecified \dagger
X	X	X	\uparrow	x	X	Unspecified \dagger	Input	Store B, A unspecified \dagger
H	X	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
H	X	H or L	Hor L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	Hor L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	H or L	X	H	X	Input	Output	Stored A data to B bus

\dagger The data output functions may be enabled or disabled by various signals at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

logic symbol \ddagger

\ddagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} -0.5 V to 5.5 V
Current into any output in the low state, l_{O} : SN54ABT646A 96 mA
SN74ABT646A 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ $-18 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.7 W
DW package 1 W
NT package 1.3 W
Storage temperature range $-65^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT646A		SN74ABT646A		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT646A, SN74ABT646A

OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS
SCBS069D - D3856, JULY 1991 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT646A	SN74ABT646A	UNIT
			MIN	TYP \dagger MAX	MIN MAX	MIN MAX	
VIK	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$			-1.2	-1.2	-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		2.5	2.5	V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~m}$		3		3	3	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2		2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I} \mathrm{OH}=-32 \mathrm{~m}$		$2 \ddagger$			2	
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$			0.55	0.55		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$			$0.55 \ddagger$		0.55	
1	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Control inputs		± 1	± 1	± 1	$\mu \mathrm{A}$
		A or B ports		± 100	± 100	± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			107	1071	1011	$\mu \mathrm{A}$
lozL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-109	-109	-1091	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	50	50	$\mu \mathrm{A}$
$10^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50 -180	-50 -180	mA
${ }^{1} \mathrm{CC}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{v}, \quad \mathrm{IO}=0, \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or GND } \end{aligned}$	Outputs high		250	250	250	$\mu \mathrm{A}$
		Outputs low		30	30	30	mA
		Outputs disabled		250	250	250	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{cc}^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V	Control inputs		7			pF
C_{io}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V	A or B ports		12			pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
IT This data sheet limit may vary among suppliers.
\# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT646A		SN74ABT646A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f max }}$			125			125		125		MHz
tPLH	CLKBA or CLKAB	A or B	2.2	4	5.1	2.2	6.7	2.2	5.6	ns
tPHL			1.7	4	5.1	1.2	6.7	1.7	5.6	
tPLH	A or B	B or A	1.5	3	4.3	1.5	5	1.5	4.8	ns
tPHL			1.5	3.3	4.6	1.5	5.6	1.5	5.4	
tPLH	SAB or SBA ${ }^{\text {t }}$	B or A	1.5	4	5.1	1.5	7.8	1.5	6.5	ns
tpHL			1.5	3.6	4.9	1.5	6.2	1.5	5.9	
tPZH	$\overline{O E}$	A or B	1.5	4.3	5.3	1.5	7	1.5	6.3	ns
tpZL			3	5.8	7.4	3	10.5	3	8.8	
tPHZ	$\overline{O E}$	A or B	1.5	3.5	4.5	1	7.3	1.5	5	ns
tplz			1.5	3	4	1.5	5.7	1.5	4.5	
tPZH	DIR	A or B	1.5	4.5	5.7	1.5	7.3	1.5	6.7	ns
tPZL			2.5	6.5	9	2.5	11	2.5	9.5	
tphz	DIR	A or B	1.5	3.8	5	1	9	1.5	5.7	ns
tplZ			1.5	3.8	4.7	1.2	6.7	1.5	6	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
t PLZ $^{\prime}$ tPZL	$7 \mathbf{V}$
t PHZ 2 PPZH	Open

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{ZO}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA I_{OH}, 64-mA $\mathrm{IOL}_{\text {) }}$
- Multiplexed Real-Time and Stored Data
- Inverting Data Paths
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Output-enable (OEAB and $\overline{O E B A}$) inputs are provided to control the transceiver functions. The select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT651.

SN54ABT651 ... JT PACKAGE
SN74ABT651 ... DB, DW, OR NT PACKAGE
(TOP VIEW)

NC - No internal connection

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all the other data sources to the two sets of bus lines are at high impedance, each set will remain at its last state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OEBA}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver (B to A). OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver (A to B).
The SN74ABT651 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

description (continued)

The SN54ABT651 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT651 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	H or L	X	X	Input	Unspecified \dagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	X	Input	Output	Store \mathbf{A} in both registers
L	X	HorL	\uparrow	X	x	Unspecified \dagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	x	X \ddagger	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time \bar{B} data to A bus
L	L	X	HorL	X	H	Output	Output	Stored \bar{B} data to A bus
H	H	X	X	L	X	Input	Output	Real-time \bar{A} data to B bus
H	H	H or L	X	H	X	Input	Output	Stored \bar{A} data to B bus
H	L	HorL	H or L	H	H	Output	Output	Stored \bar{A} data to B bus and stored B data to A bus

\dagger The data output functions may be enabled or disabled by various signals at the OEAB or $\overline{\mathrm{OEBA}}$ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.
\ddagger When select control is low, clocks can occur simultaneously so long as allowances are made for propagation delays from A to B (B to A) plus setup and hold times. When select control is high, clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions
Pin numbers shown are for the DB, DW, JT, and NT packages.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{I} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, I_{O} SN54ABT651 ... 96 mA
SN74ABT651 ... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .7 \mathrm{~W}$
DW package 1 W
NT package 1.3 W
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

WITH 3-STATE OUTPUTS

SCBS083B-D3709, JANUARY 1991 -REVISED OCTOBER 1992

recommended operating conditions (see Note 2)

		SN54ABT651		SN74ABT651		UNIT
		MIN	MAX	Min	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2	4	2		V
V_{IL}	Low-level input voltage		${ }^{0} 0$		0.8	V
V_{1}	Input voltage		V_{CC}	0	V_{CC}	V
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT651	SN74ABT651		UNIT
			MIN	TYPt	MAX	MIN MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5	2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3	3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55	0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$			0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Control inputs			± 1	${ }^{1}$		± 1	$\mu \mathrm{A}$
		A or B ports			± 100	± 100		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50) 50		50	$\mu \mathrm{A}$
$\mathrm{IOZL}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	C) -50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\text {CC }}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100	${ }^{3}$		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	$\bigcirc \quad 50$,	50	$\mu \mathrm{A}$
1 l	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50 -180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high			250	250		250	$\mu \mathrm{A}$
		Outputs low			30	30		30	mA
		Outputs disabled			250	250		250	$\mu \mathrm{A}$
${ }^{\text {a }} \mathrm{CCC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND				1.5	1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V	Control inputs		6					pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V	A or B ports		7.5					pF

[^10]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{IOZL}_{\text {include the the input leakage current. }}$
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT651		SN74ABT651		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f clock }}$	Clock frequency	0	125	0	${ }^{125}$	0	125	MHz
${ }^{\text {tw }}$	Pulse duration, CLK high or low	4				4		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	3		8		3		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	0		80		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT651		SN74ABT651		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f }}^{\text {max }}$			125			125		125		MHz
tpLH	CLKBA or CLKAB	A or B	2.2	4	5.1	2.2	5.9	2.2	5.6	ns
tPHL			1.7	4	5.1	1.7	5.9	1.7	5.6	
tPLH	A or B	B or A	1.5	4	5.1	1.5	64	1.5	6.2	ns
tPHL			1.5	3.3	4.6	1.5	\$6.6	1.5	5.4	
tPLH	SAB or SBA ${ }^{\dagger}$	A or B	1.5	4	5.1	1.5	4.8	1.5	6.5	ns
tPHL			1.5	3.6	4.9	1.5	6.2	1.5	5.9	
tPZH	$\overline{\text { OEBA }}$	A	1.3	3.6	4.6	18	5.9	1.3	5.8	ns
tPZL			2.5	5.7	6.8	02.5	8.9	2.5	8.5	
tPHZ	$\overline{\text { OEBA }}$	A	1.5	3.2	4.5	\% 1.5	6.2	1.5	5	ns
tPLZ			1.5	3	3.8	1.5	4.3	1.5	4.1	
tPZH	OEAB	B	1.8	4.3	6.1	1.8	6.7	1.8	6.5	ns
tPZL			2.9	5.5	6.5	2.9	7.6	2.9	7.4	
tPHZ	OEAB	B	1.5	3.3	4.5	1.5	6.5	1.5	5.5	ns
tplz			1.5	3.4	4.4	1.5	5.2	1.5	5.1	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tPHL tpLz/tpZL tPHz/tPZH	Open 7 V Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

SN54ABT652, SN74ABT652
 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS
 SCBS070C - D3660, JULY 1991 - REVISED JULY 1993

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}$, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{IOH}_{\mathrm{OH}}$, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.
Output-enable (OEAB and $\overline{O E B A}$) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT652.

SN54ABT652 . . JT PACKAGE
SN74ABT652 . . . DB, DW, OR NT PACKAGE
(TOP VIEW)

SN54ABT652 . . FK PACKAGE
(TOP VIEW)

NC - No internal connection

Data on the A or B data bus, or both, can be stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each output reinforces its input. Therefore, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remain at its last state.
To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver (B to A). OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver (A to B).

SN54ABT652, SN74ABT652

OCTAL BUS TRANSCEIVERS AND REGISTERS

description (continued)

The SN74ABT652 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT652 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT652 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O \dagger		OPERATION OR FUNCTION
OEAB	$\overline{O E B A}$	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L.	H	\uparrow	\uparrow	x	x	Input	Input	Store A and B data
X	H	\uparrow	HorL	x	x	Input	Unspecified \ddagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	x	Input	Output	Store A in both registers
L	X	H orL	\uparrow	x	x	Unspecified \ddagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	X \ddagger	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
H	H	X	X	L	x	Input	Output	Real-time A data to B bus
H	H	H or L	X	H	X	Input	Output	Stored A data to B bus
H	L	HorL	H or L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

\dagger The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L; clocks can occur simultaneously.
Select control = H; clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions

Pin numbers shown are for the DB, DW, JT, and NT packages.

SN54ABT652, SN74ABT652

OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS
SCBSO70C - D3660, JULY 1991 - REVISED JULY 1993
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT652 .. 96 mA
SN74ABT652 ... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
DW package . 1 W
NT package 1.3 W
Storage temperature range . .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT652	SN74ABT652		UNIT
		MIN MAX	MIN	M12	
V_{CC}	Supply voltage	$4.5 \quad 5.5$	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2 \%	2		V
V_{IL}	Low-level input voltage	${ }_{4} 0.8$		0.8	V
V_{1}	Input voltage	$0, \mathrm{Q}^{2} \mathrm{CC}$	0	V_{CC}	V
lOH	High-level output current	- -24		-32	mA
${ }^{\text {IOL}}$	Low-level output current	48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	\bigcirc		5	ns/V
T_{A}	Operating free-air temperature	-55 125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT652	SN74ABT652	UNIT
			MIN	TYP ${ }^{\text {MAX }}$	MIN MAX	MIN MAX	
$V_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	-1.2	-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		2.5		2.5	2.5	V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~m}$		3		3	3	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2		2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$			2	
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$			0.55	0.55		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}^{2}=64 \mathrm{~mA}$			$0.55 \ddagger$	5	0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Control inputs		± 1	1	± 1	$\mu \mathrm{A}$
		A or B ports		± 100	*100	± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	< ${ }^{\circ} 50$	50	$\mu \mathrm{A}$
$\mathrm{l}^{\text {OZL }}$ §	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$)^{5} \quad-50$	-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\text {CC }}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100	\bigcirc	± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	Q 50	50	$\mu \mathrm{A}$
107	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50 -180	-50 -180	mA
ICC	$\begin{array}{ll} \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{l}=0, \\ \mathrm{v}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or GND } \end{array}$	Outputs high		250	250	250	$\mu \mathrm{A}$
		Outputs low		30	30	30	mA
		Outputs disabled		250	250	250	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{CC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V	Control inputs		7			pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V	A or B ports		12			pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT652		SN74ABT652		UNIT
			MIN	TYP	MIN	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125	200		125		125		MHz
tPLH	CLK	B or A	2.2	5.3	6.8	2.2	8.2	2.2	7.8	ns
tPHL			1.7	5.9	7.4	1.7	8.8	1.7	8.4	
tPLH	A or B	B or A	1.5	4.4	5.7	1.5	7	1.5	6.7	ns
tPHL			1.5	4.4	5.7	1.5	87	1.5	6.7	
tPLH	SAB or SBA ${ }^{\dagger}$	B or A	1.5	4.6	5.9	1.5	47.4	1.5	6.9	ns
tPHL			1.5	5.4	6.7	1.59	8	1.5	7.7	
tPZH	$\overline{\text { OEBA }}$	A	1.3	3.3	4.6	1.3	6	1.3	5.8	ns
tPZL			2.5	4.5	6.8	2.5	8.9	2.5	8.5	
tPHZ	$\overline{\text { OEBA }}$	A	1.5	6.2	7.7	Q 1.5	8.3	1.5	8.2	ns
tplz			1.5	5	6.3	1.5	7.1	1.5	6.8	
tPZH	OEAB	B	1.8	3.8	6.1	1.8	6.9	1.8	6.5	ns
tPZL			2.9	4.9	6.5	2.9	7.6	2.9	7.4	
tPHZ	OEAB	B	1.5	4.5	5.7	1.5	7.1	1.5	6.9	ns
tplz			1.5	4.1	5.3	1.5	6.6	1.5	6.2	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {tPLZ/tPZL }}$	Open
7 V	
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = $\mathbf{2 0 0}$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathrm{IOH}_{\mathrm{O}}$, 64-mA IOL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.
Output-enable (OEAB and $\overline{O E B A}$) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT652A.
SN54ABT652A . . . JT PACKAGE
SN74ABT652A ... DB, DW, OR NT PACKAGE (TOP VIEW)

SN54ABT652A... FK PACKAGE (TOP VIEW)

NC - No internal connection

Data on the A or B data bus, or both, can be stored in the internal D -type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each output reinforces its input. Therefore, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remain at its last state.

To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver (B to A). OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver (A to B).

EPIC-IIB is a trademark of Texas Instruments Incorporated.

OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS

SCBS072C - D3875, SEPTEMBER 1991 - REVISED JULY 1993

description (continued)

The SN74ABT652A is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT652A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT652A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/Ot		OPERATION OR FUNCTION
OEAB	$\overline{\text { OEBA }}$	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
L	H	HorL	H or L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	H or L	x	X	Input	Unspecified \ddagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	X	Input	Output	Store A in both registers
L	X	H or L	\uparrow	x	x	Unspecified \ddagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	X \ddagger	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	x	HorL	X	H	Output	Input	Stored B data to A bus
H	H	X	X	L	X	Input	Output	Real-time A data to B bus
H	H	HorL	X	H	X	Input	Output	Stored A data to B bus
H	L	Hor L	H or L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

\dagger The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or OEBA inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
\ddagger Select control =-L; clocks can occur simultaneously.
Select control $=\mathrm{H}$; clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} -0.5 V to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT652A 96 mA
SN74ABT652A 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{KK}}\left(\mathrm{V}_{\mathrm{l}}<0\right)$ -18 mA
Output clamp current, $\mathrm{l}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ - 50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.7 W
DW package 1 W
NT package 1.3 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54AB	T652A	SN74AB	T652A	
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
${ }^{1} \mathrm{OH}$	High-level output current		-24		-32	mA
${ }^{\text {l }} \mathrm{L}$	Low-level output current		48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$.	Input transition rise or fall rate		5		5	ns/V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT652A, SN74ABT652A OCTAL BUS TRANSCEIVERS AND REGISTERS
 WITH 3-STATE OUTPUTS
 SCBS072C - D3875, SEPTEMBER 1991 - REVISED JULY 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & \mathrm{V}_{\mathbf{C C}}= \\ & \mathrm{T}_{\mathbf{A}}= \end{aligned}$	$5 \mathrm{~V},$	SN54AB	652A	SN74AB	652A	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {f clock }}$	Clock frequency	0	125	0	125	0	125	MHz
t_{w}	Pulse duration, CLK high or low	4		4		4		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	3		3.5		3		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	0		1.5		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT652A		SN74ABT652A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125	200		125		125		MHz
tPLH	CLK	B or A	2.2	4	5.1	1.7	5.9	2.2	5.6	
tPHL			1.7	4	5.1	1.7	5.9	1.7	5.6	
tPLH	A or B	B or A	1.5	3	4.3	1	5	1.5	4.8	ns
tPHL			1.5	3.3	4.6	1	5.6	1.5	5.4	ns
tPLH	SAB or SBA \dagger	B or A	1.5	4	5.1	1.5	6.8	1.5	6.5	ns
tPHL			1.5	3.6	4.9	1.5	6.2	1.5	5.9	ns
tPZH	$\overline{\text { OEBA }}$	A	2	3.6	4.6	2	6.8	2	5.8	ns
tPZL			3	5.7	6.8	3	9.2	3	8.5	ns
tPHZ	$\overline{\text { OEBA }}$	A	1.5	3.2	4.5	1	7.5	1.5	5	ns
tPLZ			1.5	3	3.8	1	4.6	1.5	4.1	ns
tPZH	OEAB	B	2	4.3	6.1	2	7.8	2	6.5	ns
tPZL			3	5.5	6.5	3	8.9	3	7.4	ns
tPHZ	OEAB	B	1.5	3.3	4.5	1	8	1.5	5.5	ns
tPLZ			1.5	3.4	4.4	1.5	6.8	1.5	5.1	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = $\mathbf{2 0 0}$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA \mathbf{I}_{OH}, 64-mA $\mathrm{IOL}^{\text {) }}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT657 contains eight noninverting buffers with parity generator/checker circuits and control signals. The transmit/receive (T/信) input determines the direction of data flow. When T / R is high, data flows from the A port to the B port (transmit mode); when T / \bar{R} is low, data flows from the B port to the A port (receive mode). When the output-enable ($\overline{\mathrm{OE}})$ input is high, both the A and B ports are in the high-impedance state.
Odd or even parity is selected by a logic high or low level on the ODD/EVEN input. PARITY carries the parity bit value; it is an output from the parity generator/checker in the transmit mode and an input to the parity generator/checker in the receive mode.
In the transmit mode, after the A bus is polled to determine the number of high bits, PARITY is set to the logic level that maintains the parity sense selected by the level at the ODD/EVEN input. For example, if ODD/EVEN is low (even parity selected) and there are five high bits on the A bus, then PARITY is set to the logic high level so that an even number of the nine total bits (eight A-bus bits plus parity bit) are high.
In the receive mode, after the B bus is polled to determine the number of high bits, the error (ERR) output logic level indicates whether or not the data to be received exhibits the correct parity sense. For example, if ODD/EVEN is high (odd parity selected), PARITY is high, and there are three high bits on the B bus, then ERR is low, indicating a parity error.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT657 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

EPIC-IIB is a trademark of Texas Instruments Incorporated.

description (continued)

The SN54ABT657 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT657 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

NUMBER OF A OR B INPUTS THAT ARE HIGH	INPUTS			INPUT/OUTPUT PARITY	OUTPUTS	
	$\overline{\mathrm{OE}}$	T/ \bar{R}	ODD/EVEN		ERR	OUTPUT MODE
0, 2, 4, 6, 8	L	H	H	H	Z	Transmit
	L	H	L	L	Z	Transmit
	L	L	H	H	H	Receive
	L	L	H	L	L	Receive
	L	L	L	H	L	Receive
	L	L	L	L	H	Receive
1, 3, 5, 7	L	H	H	L	Z	Transmit
	L	H	L	H	Z	Transmit
	L	L	H	H	L	Receive
	L	L	H	L	H	Receive
	L	L	L	H	H	Receive
	L	L	L	L	L	Receive
Don't care	H	X	X	Z	Z	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} 0.5 V to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT657 96 mA
SN74ABT657 $-18 \mathrm{~mA}$
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{L}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.7 W
DW package 1 W
NT package 1.3 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT657		SN74ABṪ657		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT657		SN74ABT657		UNIT
				MIN	TYPt MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3		3		3		
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2		2				
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \S$				2		
VoL	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55			V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$			0.55 §				0.55	
1	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs		± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports		± 100		± 100		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		50		50	$\mu \mathrm{A}$
lozl§	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50		-50		-50	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50		50		50	$\mu \mathrm{A}$
$1{ }^{1}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$10=0$,	Outputs high		250		250		250	$\mu \mathrm{A}$
			Outputs low		30		30		30	mA
			Outputs disabled		250		250		250	$\mu \mathrm{A}$
${ }^{\text {I }} \mathrm{Cc}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled		1		1.5		1	mA
			Outputs disabled		0.05		0.05		0.05	
		Control inputs			1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs							pF
C_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports							pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{l}_{\mathrm{OZL}}$ include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TL voltage level rather than $\mathrm{V}_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT657		SN74ABT657		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {tPLH }}$	A or B	B or A	1.1	3.3	5	1.1		1.1	5.5	ns
tPHL			1.2	3	4.3	1.2		1.2	4.8	
tpLH	A	PARITY	2.6	6.5	8.7	2.6		2.6	10.1	ns
tPHL			3.2	7	9.1	3.2		3.2	10.6	
tPLH	ODD/EVEN	PARITY, $\overline{\text { ERR }}$	1.7	5	6.6	1.7		1.7	7.3	ns
tPHL			1.9	5	6.6	1.9		1.9	7.3	
tPLH	B	$\overline{\text { ERR }}$	5.3	9.2	11.7	5.3		5.3	13.8	ns
tpHL			5.2	9.6	12.1	5.2		5.2	14.5	
tPLH	PARITY	$\overline{E R R}$	2.8	6	7.6	2.8		2.8	9.4	ns
tPHL			3.5	6.4	8	3.5		3.5	9.4	
tPZH	$\overline{O E}$	A, B, PARITY, or ERR	1.3	3.8	5.6	1.3		1.3	6.6	ns
tPZL			1.9	4.4	7	1.9		1.9	8.2	
tPHZ	$\overline{O E}$	A, B, PARITY, or ERR	3.1	5.1	7	3.1		3.1	7.6	ns
tpLZ			3.4	5.4	7.6	3.4		3.4	8.1	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIBNM BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\mathbf{O}}$, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 10 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, l/O ports, bidirectional bus drivers with parity, and working registers.

The ten flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the ten outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

SN54ABT821 SN74ABT821...DB (TO	. JT PACKAGE , DW, OR NT PACKAGE VIEW)
OE 1	$\cup_{24} \mathrm{~V}_{\mathrm{cc}}$
10 2	${ }^{23} 10$
2 D 3	22.20
3 D 4	$21] 3 \mathrm{Q}$
4D 5	20.4 Q
50 6	19]5Q
6 C 7	18 6Q
7D 8	17.70
8 C 9	16 8Q
9 D 10	$15] 9 \mathrm{Q}$
10D 11	14 10Q
GND 12	13 CLK

SN54ABT821 . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The output-enable ($\overline{\mathrm{OE}}$) input does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT821 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT821 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT821 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
(each flip-flop)

INPUTS			OUTPUT
$\mathbf{O E}$	CLK	\mathbf{D}	
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

SN54ABT821, SN74ABT821 10-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} -0.5 V to 5.5 V
Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}:$ SN54ABT821 96 mA
SN74ABT821 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ $-18 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.7 W
DW package 1 W
NT package 1.3 W
Storage temperature range $-65^{\circ} \mathrm{C}$ t $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the "recommended operating conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT821		SN74ABT821		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2	8	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage		V_{CC}	0	V_{CC}	V
IOH	High-level output current		-24	,	-32	mA
lOL	Low-level output current		48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.

SN54ABT821, SN74ABT821
 10-BIT BUS-INTERFACE FLIP-FLOPS
 WITH 3-STATE OUTPUTS
 D3779, FEBRUARY 1991 - REVISED JULY 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT821	SN74ABT821		UNIT
			MIN	TYPt	MAX	MIN MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}=-18 \mathrm{~mA}$				-1.2	-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5	2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3	3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55	0.55			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$	\%		0.55	V
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1	$\pm \pm 1$		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	\% 50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	人, -50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100	0^{5}		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-140	-180	-50 -180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{lO}_{0}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250	250		250	$\mu \mathrm{A}$
		Outputs low		24	38	38		38	mA
		Outputs disabled		0.5	250	250		250	$\mu \mathrm{A}$
$\Delta \mathrm{CCCl}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5	1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			4					pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT821		SN74ABT821		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125			125	s	125		MHz
tPLH	CLK	Q	$1.6 \dagger$	4.1	5.6	$1.6 \dagger$	86.9	$1.6{ }^{\dagger}$	6.2	ns
tPHL			$2.1{ }^{\dagger}$	4.6	6.2	$2.1{ }^{\dagger}$	\$6.9	$2.1{ }^{\dagger}$	6.7	
tPZH	$\overline{O E}$	Q	1	3	4.5	-	5.5	1	5.3	ns ${ }^{\text {d }}$
tPZL			2.2	4.1	5.6	$2 ?$	6.4	2.2	6.3	
tPHZ	$\overline{O E}$	Q	2.7	4.7	6.2	2.7	6.9	2.7	6.7	ns
tPLZ			$1.7{ }^{\dagger}$	4.6	6.1	Q $1.7 \dagger$	7	$1.7 \dagger$	6.5	

\dagger This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BICMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0}$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\circ}$ 64-mA IOL)
- Buffered Control Inputs to Reduce DC Loading Effects
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 9-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.
With the clock-enable ($\overline{\text { CLKEN }}$) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high will disable the clock buffer, thus latching the outputs. The 'ABT823 has noninverting data (D) inputs. Taking the clear ($\overline{\mathrm{CLR}}$) input low causes the nine Q outputs to go low independently of the clock.

SN54ABT823 . . . JT PACKAGE
SN74ABT823 ... DB, DW, OR NT PACKAGE
(TOP VIEW)

SN54ABT823 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

A buffered output-enable ($\overline{\mathrm{OE}})$ input can be used to place the nine outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable $(\overline{\mathrm{OE}})$ input does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT823 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

description (continued)

The SN54ABT823 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT823 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each flip-flop)

INPUTS				OUTPUT	
$\mathbf{O E}$	$\overline{\text { CLR }}$	$\overline{\text { CLKEN }}$	CLK	D	Q
L	L	X	X	X	L
L	H	L	\uparrow	H	H
L	H	L	\uparrow	L	L
L	H	H	X	X	Q_{0}
H	X	X	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.

logic diagram (positive logic)

To Eight Other Channels
Pin numbers shown are for the DB, DW, JT, and NT packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (see Note 1) .. -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, I_{O} : SN54ABT823 ... 96 mA
SN74ABT823 ... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.7 W
DW package . 1 W

Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stesses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the "recommended operating conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN54ABT823, SN74ABT823

9-BIT BUS-INTERFACE FLIP-FLOPS

WITH 3-STATE OUTPUTS

SCBS158-D3695, JANUARY 1991 - REVISED DECEMBER 1992

recommended operating conditions (see Note 2)

		SN54ABT823		SN74ABT823		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
IOH	High-level output current		-24		-32	mA
${ }^{\text {OLI}}$	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT823		SN74ABT823		UNIT
			MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\prime}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}^{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, . \mathrm{IOH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VoL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				$10 \S$		$10 \S$		$10 \S$	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10§		-10§		-10§	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} & \\ \hline \end{array}$				50		50		50	$\mu \mathrm{A}$
10			-50	-140	-180	-50	-180	-50	-180	mA
${ }^{\prime} \mathrm{CC}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
		Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {alcc }}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V									pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V									pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ This data sheet limit may vary among suppliers.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{l O H}_{\mathrm{OH}}$, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs
description
These 10-bit buffers or bus drivers provide a high-performance bus interface for wide data paths or buses carrying parity.
The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE}} 1$ or $\overline{\mathrm{OE} 2}$) input is high, all ten outputs are in the high-impedance state. The 'ABT827 provides true data at its outputs.
To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT827 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
SN54ABT827 . . . JT PACKAGE
SN74ABT827 ... DB, DW, OR NT PACKAGE
(TOP VIEW)

$\overline{O E 1} \sqrt{1}$	$\left.\bigcirc_{24}\right] \mathrm{v}_{\mathrm{CC}}$
A1 2	${ }_{23} \mathrm{Y} \mathrm{Y} 1$
A2 3	22 Y 2
A3 4	21.13
A4 5	$20 . \mathrm{Y} 4$
A5 6	${ }_{19} \mathrm{Y} 5$
A6 7	$18 \mathrm{Y} \mathrm{Y}^{1}$
A7 ${ }^{\text {8 }}$	${ }_{17} \mathrm{Y} \mathrm{Y}$
A8 9	16 Y 8
A9 10	$10 \quad 15] \mathrm{Y} 9$
A10 11	11014 Y 10
GND 12	$12 \quad 13$ J ${ }^{1}$

SN54ABT827 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN54ABT827 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT827 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUT
$\overline{\text { OE1 }}$	$\overline{\text { OE2 }}$	A	
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

logic diagram (positive logic)

To Nine Other Channels

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and the NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT827 .. 96 mA
SN74ABT827 ... 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
DW package . 1 W
NT package 1.3 W
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT827		SN74ABT827		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		${ }^{4} 0.8$		0.8	V
V_{1}	Input voltage		$\mathrm{V}_{\text {CC }}$	0	$\mathrm{V}_{\text {cc }}$	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
${ }^{\mathrm{IOL}}$	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT827	SN74ABT827		UNIT
			MIN	TYPt	MAX	MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2	-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5	2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$		3			3	3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}^{2}=48 \mathrm{~mA}$				0.55	0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$			0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1	\%		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				$10 \S$	4		$10 \S$	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10§	\% $5^{5}-10$		-10§	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100	6		± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} & \\ \hline \end{array}$				50	$5 \quad 50$		50	$\mu \mathrm{A}$
107			-50	-140	-225§	\% $20-225$ §	-50	-225§	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		80	250	250		250	$\mu \mathrm{A}$
		Outputs low		35	40§	40		$40 \S$	mA
		Outputs disabled		80	250	250		250	$\mu \mathrm{A}$
${ }^{\text {I }} \mathrm{Cc}{ }^{\#}$	$V_{C C}=5.5 \mathrm{~V}$ One input at 3.4 V , Other inputs at V_{CC} or GND	Outputs enabled			1.5	1.5		1.5	mA
		Outputs disabled			50	50		50	$\mu \mathrm{A}$
		Control inputs			1.5	1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			4					pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			8					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ This data sheet limit may vary among suppliers.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT827		SN74ABT827		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1.1	2.6	4.4	1.1	4.5	1.1	4.8	ns
tPHL			1.1	2.3	4.1	1.1	\% 4.8	1.1	4.7	
tPZH	$\overline{\mathrm{OE}}$	Y	$1 \dagger$	3.2	5.1		6	$1 \dagger$	5.9	ns
tpZL			$1 \dagger$	3.3	5.9	5	7.1	$1 \dagger$	6.9	
tPHZ	$\overline{O E}$	Y	2	4.9	6.3	O2	7	2	6.8	ns
tPLZ			$1.3{ }^{\text {¢ }}$	4.2	6.6	$8{ }^{8} 1.3$	7.9	1.3 †	6.9	

\dagger This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH $^{\prime / t}$ PHL tpLZ/tpZL tphzflpzH	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING
NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = $\mathbf{2 0 0} \mathbf{~ p F}$, $R=0$)
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\mathbf{O H}}$ 64-mA IoL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 10-bit buffers and bus drivers provide a high-performance bus interface for wide data paths or buses carrying parity.
The 3-state control gate is a 2 -input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE} 1}$ or OE 2) input is high, all ten outputs are in the high-impedance state. The. 'ABT828 provides inverting data at its outputs.
To ensure the high-impedance state during power up or power down, OE should be tied to $V_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT828 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT828 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT828 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUT\mathbf{Y}
OE1	$\overline{\mathrm{OE} 2}$	A	
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	z

logic symbol \dagger

logic diagram (positive logic)

To Nine Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\ddagger}$

Input voltage range, V_{I} (see Note 1) .. -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} SN54ABT828 .. 96 mA
SN74ABT828 .. . 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. \quad... 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.7 W
NT package 1.3 W
DW package . 1 W

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		SN54ABT828		SN74ABT828		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	$\mathrm{V}_{\text {cc }}$	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT828		SN74ABT828		
			MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \backslash=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{OL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} & \\ \hline \end{array}$				50		50		50	$\mu \mathrm{A}$
10^{\S}			-50	-140	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{v}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{v}_{1}=\mathrm{v}_{C C} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
		Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta \mathrm{Cc} \mathrm{l}^{\text {l }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at V_{CC} or GND	Outputs enabled			1.5		1.5		1.5	mA
		Outputs disabled			50		50		50	$\mu \mathrm{A}$
		Control inputs			1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			4						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7						pF

[^11]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT828		SN74ABT828		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {tPLH }}$	A	Y	1.1	3	4.4	1.1		1.1	4.8	ns
tPHL			1.1	2.9	4.1	1.1		1.1	4.7	
${ }_{\text {tPZH }}$	$\overline{\mathrm{OE}}$	Y	1.6	3.7	5.1	1.6		1.6	5.9	ns
tPZL			2.6	4.6	5.9	2.6		2.6	6.9	
tpHz	$\overline{\mathrm{OE}}$	Y	2	4.8	6.3	2		2	6.8	ns
tplZ			2.5	5.1	6.6	2.5		2.5	6.9	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE•AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs ($-32-\mathrm{mA} \mathbf{I O H}^{\mathrm{OH}}$ 64-mA IoL)
- Parity Error Flag With Parity Generator/Checker
- Register for Storage of the Parity Error Flag
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT833 8-bit to 9 -bit parity transceiver is designed for communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the open-collector parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable ($\overline{\mathrm{OEA}}$ and $\overline{\mathrm{OEB}}$) inputs can be used to disable the device so that the buses are effectively isolated. The 'ABT833 provides true data at its outputs.

SN54ABT833 . . . JT PACKAGE
SN74ABT833... DB, DW, OR NT PACKAGE
(TOP VIEW)

SN54ABT833... FK PACKAGE (TOP VIEW)

NC - No internal connection

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the l/O ports with the ERR flag. The parity-error output is clocked into the register on the rising edge of the clock (CLK) input. The error flag register is cleared with a low pulse on the clear (CLR) input. When both $\overline{\text { OEA }}$ and $\overline{O E B}$ are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT833 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT833 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT833 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

D3781, FEBRUARY 1991 - REVISED OCTOBER 1992

INPUTS						OUTPUT AND I/O				FUNCTION
OEB	OEA	CLR	CLK	$\begin{gathered} \mathrm{Ai} \\ \Sigma \text { OF H's } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \Sigma \text { OF H's } \end{gathered}$	A	B	PARITY	ERR ${ }^{\ddagger}$	
L	H	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	NA	A data to B bus and generate parity
H	L	H	\uparrow	NA	Odd Even	B	NA	NA	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	B data to A bus and check parity
X	X	L	X	X	X	X	NA	NA	H	Check error flag register
H	H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	No \uparrow No \uparrow \uparrow \uparrow	$\begin{gathered} \hline X \\ X \\ \text { Odd } \\ \text { Even } \end{gathered}$	X	Z	z	Z	$\begin{gathered} \mathrm{NC} \\ \mathrm{H} \\ \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Isolation§
L	L	X	X	Odd Even	NA	NA	A	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	NA	A data to B bus and generate inverted parity

NA = not applicable, NC = no change, $X=$ don't care
\dagger Summation of high-level inputs includes PARITY along with Bi inputs.
\ddagger Output states shown assume the ERR output was previously high.
§ In this mode, the ERR output (when clocked) shows inverted parity of the A bus.

logic symbolif

IT This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

INPUTS		INTERNAL TO DEVICE	OUTPUT PRE-STATE	OUTPUT$\overline{\text { ERR }}$	FUNCTION
$\overline{\text { CLR }}$	CLK	POINT "P"	$E R^{\text {n }}$-1 ${ }^{\dagger}$		
H	\uparrow	H	H	H	
H	\uparrow	X	L	L	Sample
H	\uparrow	L	X	L	
L	X	X	X	H	Clear

\dagger The state of the $\overline{\text { ERR }}$ output before any changes at $\overline{\text { CLR }}, \mathrm{CLK}$, or point " P ".

error-flag waveforms

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)t

Input voltage range, V_{1} (except I/O ports) (see Note 1) .. -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . .-0.5 \mathrm{~V}$ to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT833 96 mA
SN74ABT833 ... 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. .. 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .7 \mathrm{~W}$
DW package 1 W
NT package 1.3 W
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54AB	7833	SN74A	T833	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	$\mathrm{V}_{\text {cc }}$	V
V_{OH}	High-level output voltage	ERR		5.5		5.5	V
${ }^{1} \mathrm{OH}$	High-level output current	Except ERR		-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		5		5	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT833		SN74ABT833		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$V_{C C}=4.5 \mathrm{~V}, \quad I_{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
$\mathrm{VOH}^{\text {O }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$	All outputs except ERR	2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$					0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}^{2}=64 \mathrm{~mA}$					$0.55 \ddagger$				0.55	
${ }^{1} \mathrm{OH}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	ERR								$\mu \mathrm{A}$
1	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
IIL	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{1}=$ GND	A or B ports			-50		-50		-50.	$\mu \mathrm{A}$
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	μA^{\prime}
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
107	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & v_{C C}=5.5 \mathrm{~V}, \\ & 10=0, \\ & V_{1}=v_{C C} \text { or } \\ & G N D \end{aligned}$	A or B ports	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta^{\prime} C^{\#}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					50		50		50	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs								pF
$\mathrm{C}_{\text {io }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports								pF

[^12]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT833		SN74ABT833		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A								ns
tPHL										
tPZH	$\overline{\mathrm{OE}}$	A or B								ns
tPZL										
tPHZ	$\overline{\mathrm{OE}}$	A or B								ns
tplZ										
tPLH	A or $\overline{O E}$	PARITY								ns
tPHL										
tPLH	CLR	$\overline{\text { ERR }}$			4.4				5.2	ns
tPHL	CLK				5.7				6.2	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t P L H}^{/ t^{\prime}}$ PHL tplz/tpZL tPHZ/tPZH	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

ERR	S1
tPHL (see Note E)	$\mathbf{7 V}$
tpLH (see Note F)	$\mathbf{7 V}$

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.
E. tPHL is measured at 1.5 V .
F. tpLH is measured at $\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA I_{OH}, 64-mA IOL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT841 10-bit latch is designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The ten latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the ten outputs in either a normal logic state (high or low levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
SN54ABT841 . . . JT PACKAGE
SN74ABT841 . . . DB, DW, OR NT PACKAGE
(TOP VIEW)

SN54ABT841 . . FK PACKAGE

(TOP VIEW)

NC - No internal connection

The output-enable $(\overline{\mathrm{OE}})$ input does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT841 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT841 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT841 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE			
INPUTS			OUTPUT
$\mathbf{O E}$	LE	D	Q
L	H	H	H
L	H	L	L
L	L	X	Q $_{0}$
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.

SN74ABT841 .. . 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
DW package 1 W
NT package 1.3 W
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the "recommended operating conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54AB	T841	SN74A	T841	
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{1} \mathrm{OH}$	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate		5		5	ns / V
TA	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT841		SN74ABT841		UNIT
			MIN	TYP'	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	
$\mathrm{VOH}^{\text {OH}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$V_{C C}=0, \quad V_{1}$ or $V_{O} \leq 4$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$				50		50		50	$\mu \mathrm{A}$
$1 \mathrm{O}^{\text {§ }}$			-50	-140	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
		Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{CCl}{ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V Other inputs at V_{CC} or GND	Outputs enabled			1.5		1.5		1.5	mA
		Outputs disabled			50		50		50	$\mu \mathrm{A}$
		Control inputs			1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V									pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V									pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \mathrm{V}_{\mathbf{C C}} \\ & \mathrm{T}_{\mathbf{A}}= \end{aligned}$	$5 \mathrm{~V},$	SN54A	T841	SN74A	T841	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_{w}	Pulse duration, LE high or low		3.8		3.8		3.8		ns
	Setup time data before LE	High	2.5		2.5		2.5		
tsu	Selup time, data before LE \downarrow	Low	1.5		1.5		1.5		\%
	ld time data after LE \downarrow	High	1.5		1.5		1.5		
th	, ime, data after LE \downarrow	Low	1		1		1		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT841		SN74ABT841		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Q	2.1	4.1	5.5	2.1	6.2	2.1	6.2	ns
tPHL			2	4	5.4	2	6.1	2	6.1	
tPLH	LE	Q	2.1	4.1	5.8	2.1	6.2	2.1	6.2	ns
tPHL			2.8	4.6	6.2	2.8	6.7	2.8	6.7	
tPZH	$\overline{O E}$	Q	1	3	4.5	1	5.3	1	5.3	ns
tPZL			2.2	4.1	5.6	2.2	6.3	2.2	6.3	
tPHZ	$\overline{\mathrm{OE}}$	Q	2.7	4.7	6.2	2.7	7.1	2.7	7.1	ns
tplz			2.8	4.6	6.1	2.8	6.5	2.8	6.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
t PHZ $^{\prime}$ tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING
NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT843, SN74ABT843 9-BIT BUS-INTERFACE D-TYPE LATCHES
 WITH 3-STATE OUTPUTS
 D3784, FEBRUARY 1991 - REVISED OCTOBER 1992

- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = $\mathbf{2 0 0}$ pF, R=0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\prime}$, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The'ABT8439-bit latch is designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The nine latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the nine outputs in either a normal logic state (high or low levels) or a high-impedance state. The outputs are also in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered-down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable ($\overline{\mathrm{OE}}$) input does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT843 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT843 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT843 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

INPUTS					OUTPUT Q
$\overline{\text { PRE }}$	$\overline{\text { CLR }}$	$\overline{\text { OE }}$	LE	D	
L	X	L	X	X	H
H	L	L	X	X	L
H	H	L	H	L	L
H	H	L	H	H	H
H	H	L	L	X	Q_{0}
X	X	H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI／IEEE Std 91－1984 and IEC Publication 617－12．
Pin numbers shown are for the DB，DW，JT，and NT packages．

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (see Note 1) . 0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots . \mathrm{m}^{2} .0 .5 \mathrm{~V}$ to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT843 . 96 mA
SN74ABT843 . 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
DW package . 1 W
NT package 1.3 W
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the "recommended operating conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		SN54ABT843		SN74ABT843		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
IOH	High-level output current		-24		-32	mA
${ }^{\text {IOL}}$	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT843		SN74ABT843		UNIT
			MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55	+		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
lozh	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4$.				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} & \\ \hline \end{array}$.		50		50		50	$\mu \mathrm{A}$
10^{\S}			-50	-140	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{lO}_{2}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{C C} \text { or } G N D \end{aligned}$	Outputs high		1	250		250		250	$\mu \mathrm{A}$
		Outputs low		24	30		30		30	mA
		Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta \mathrm{cc}{ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			4						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7						pF

[^13]timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT843		SN74ABT843		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Q	1.6	3.6	5.2	1.6		1.6	6	ns
${ }_{\text {tPHL }}$			2.2	5	6.3	2.2		2.2	7.2	
tPLH	LE	Q	2	4.1	5.6	2		2	6.5	ns
tPHL			2.8	4.8	6.3	2.8		2.8	6.9	
tPLH	$\overline{\text { PRE }}$	Q	2.2	4.7	6.2	2.2		2.2	7.4	ns
tPHL			3	5.2	6.5	3		3	7.2	
tPLH	$\overline{C L R}$	Q	2.5	5	6.3	2.5		2.5	7.1	ns
tPHL			3.1	5.5	6.8	3.1		3.1	8	
tPZH	$\overline{\mathrm{OE}}$	Q	1	2.7	4.2	1		1	5.2	ns
tPZL			2	4.2	5.5	2		2	6.5	
tPHZ	$\overline{\mathrm{OE}}$	Q	2.9	4.9	6.2	2.9		2.9	6.8	ns
$t P L Z$			2.2	5	6.3	2.2		2.2	5.7	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

D3786, FEBRUARY 1991 - REVISED OCTOBER 1992

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, $R=0)$
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathbf{O}}$, 64-mA $\mathrm{IOL}^{\text {) }}$
- Parity Error Flag With Parity Generator/Checker
- Latch for Storage of the Parity Error Flag
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT853 8-bit to 9-bit parity transceiver is designed for communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the open-collector parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable ($\overline{\mathrm{OEA}}$ and $\overline{\mathrm{OEB}}$) inputs can be used to disable the device so that the buses are effectively isolated. The 'ABT853 provides true data at its outputs.

SN54ABT853 . . . JT PACKAGE
SN74ABT853 . . . DB, DW, OR NT PACKAGE
(TOP VIEW)

SN54ABT853 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with the ERR flag. The parity-error output can be passed, sampled, stored, or cleared from the latch using the latch-enable ($\overline{\mathrm{LE})}$) and clear ($\overline{\mathrm{CLR}}$) control inputs. When both $\overline{\mathrm{OEA}}$ and $\overline{\mathrm{OEB}}$ are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT853 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT853 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT853 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

D3786, FEBRUARY 1991 - REVISED OCTOBER 1992

FUNCTION TABLE

NA $=$ not applicable, $\mathrm{NC}=$ no change, $\mathrm{X}=$ don't care
\dagger Summation of high-level inputs includes PARITY along with Bi inputs.
\ddagger Output states shown assume the ERR output was previously high.
\S In this mode, the ERR output (when clocked) shows inverted parity of the A bus.

logic symbolll

IT This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

PRODUCT PREVIEW
ERROR FLAG FUNCTION TABLE

INPUTS		INTERNAL TO DEVICE	OUTPUT PRE-STATE	$\begin{aligned} & \text { OUTPUT } \\ & \text { ERR } \end{aligned}$	FUNCTION
$\overline{\text { CLR }}$	$\overline{\text { LE }}$	POINT "P"	$\overline{E R R}_{\mathbf{n}-1}{ }^{\dagger}$		
L	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Pass
H	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	Sample
L	H	X	X	H	Clear
H	H	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Store

\dagger The state of the $\overline{\text { ERR }}$ output before any changes at $\overline{C L R}, \overline{L E}$, or point "P".

error-flag waveforms

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (except I/O ports) (see Note 1) .. -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT853 96 mA
SN74ABT853 .. 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.

NT package 1.3 W

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN54ABT853, SN74ABT853 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

D3786, FEBRUARY 1991 - REVISED OCTOBER 1992
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I / O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT853		SN74ABT853		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$	All outputs except ERR	2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VoL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=24 \mathrm{~mA}$	$\mathrm{IOL}=24 \mathrm{~mA}$				0.55		0.55	0.55 V		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\mathrm{IOL}=64 \mathrm{~mA}$		$0.55 \ddagger$							
IOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{OH}}=5.5 \mathrm{~V}$		ERR								$\mu \mathrm{A}$
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
1 IL	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{1}=$ GND	A or B ports			-50		-50		-50	$\mu \mathrm{A}$
lOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \quad$ Outputs high					50		50		50	$\mu \mathrm{A}$
107	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {a }} \mathrm{Cc} \mathrm{C}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					50		50		50	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs								pF
$\mathrm{C}_{\text {io }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports								pF

[^14]- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}$, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA IOH, $64-\mathrm{mA} \mathrm{IOL}_{\mathrm{O}}$)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT861 is a 10 -bit transceiver designed for asynchronous communication between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable ($\overline{O E A B}$ and $\overline{\mathrm{OEBA}}$) inputs.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT861 . . . JT PACKAGE
SN74ABT861 ... DB, DW, OR NT PACKAGE (TOP VIEW)

OEBA ${ }_{1}$	$\cup_{24} \mathrm{~V}_{\mathrm{cc}}$
A1 2	23 B1
A2 3	22 B2
А 34	21 B3
A4 5	20 B4
A5 6	19 B5
A6 7	18 B6
A7 8	17 B7
A8 9	16 B8
A9 10	15] B9
A10 11	14 B10
GND [12	$2 \quad 13$ OEAB

SN54ABT861 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN74ABT861 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT861 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT861 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OPERATION
$\overline{\text { OEAB }}$	$\overline{\text { OEBA }}$	
L	H	A data to B bus
H	L	B data to A bus
H	H	Isolation
L	L	Latch A and B $(A=B)$

logic symbol \dagger

\dagger This symbol is in accordance with ANSI／IEEE Std 91－1984 and IEC Publication 617－12．
Pin numbers shown are for the DB，DW，JT，and NT packages．

logic diagram（positive logic）

To Nine Other Channels

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\ddagger

Input voltage range， V_{1}（except I／O ports）（see Note 1）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 0.5 V to 7 V
Voltage range applied to any output in the high state or power－off state， $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots . .$.
Current into any output in the low state， I_{O} ：SN54ABT861 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 96 mA
SN74ABT861 ．．． 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$（in still air）： DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 . .$.

NT package ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．1．3 W
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTE 1：The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．

recommended operating conditions (see Note 2)

			SN54ABT861		SN74ABT861		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT861		SN74ABT861		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$I_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
$10]$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}^{2}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{CCO}$	$V_{C C}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		4						pF
C_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		7						pF

[^15]switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT861		SN74ABT861		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1.1	3.4	4.9	1.1		1.1	5.2	ns
tphL			1	3.2	4.4	1		1	4.9	
tPZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A	1.2	3.5	5	1.2		1.2	5.9	ns
tPZL			2.4	4.6	6	2.4		2.4	6.9	
tpHz	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A	3.1	5.3	6.5	3.1		3.1	7.5	ns
tPLZ			3.7	5.3	6.6	3.7		3.7	7.1	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA I_{OH}, 64-mA $\mathrm{IOL}_{\text {) }}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT862 is a 10-bit transceiver designed for asynchronous communication between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable ($\overline{O E A B}$ and OEBA) inputs.

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT862 . . JT PACKAGE
SN74ABT862 . . DB, DW, OR NT PACKAGE
(TOP VIEW)

A1[0	24
23	23

A 2 [32 B2
АЗ[4 21] B3
$\mathrm{A} 4[5$ 20]B4
A5 $6 \quad 19]$ B5
A6筸 7 18 B6
$A 7$ [8 17 B7
A8[9 16 B8
A9 10 15 B9
A10 $11 \quad 14$ B10
GND $12 \quad 13$ OEAB
SN54ABT862... FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN74ABT862 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT862 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT862 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OPERATION
$\overline{\text { OEAB }}$	$\overline{\text { OEBA }}$	
L	H	\bar{A} data to B bus
H	L	\bar{B} data to A bus
H	H	Isolation
L	L	Latch A and B $(A=\bar{B})$

logic symbol \dagger

logic diagram (positive logic)

To Nine Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage range, V_{I} (except I/O ports) (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots .$. . 0.5 V to 5.5 V
Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}:$ SN54ABT862 96 mA

DW package . 1 W
NT package .. 1.3 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT862		SN74ABT862		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$l_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		50		50	$\mu \mathrm{A}$
${ }^{\text {OZZL }}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
$l_{\text {off }}$	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{Cc}{ }^{\#}$	$V_{C C}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		4						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		7						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and lozL include the input leakage current.
If Not more than one output should be tested at a time, and the duration of the test should not exceed one second:
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}$, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA $\mathbf{l O H}_{\mathrm{OH}}$, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT 863 is a 9 -bit transceiver designed for asynchronous communication between data buses. The control function implementation allows for maximum flexibility in timing.
These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$) inputs.
The outputs are in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered-down.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to $V_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT863 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN74ABT863 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT863 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT863 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS				
OPERATION				
	$\overline{\text { OEAB2 }}$	$\overline{\text { OEBA1 }}$	$\overline{\text { OEBA2 }}$	
L	L	L	L	Latch A and B
L	L	H	X	A to B
L	L	X	H	
H	X	L	L	B to A
X	H	L	L	
H	X	H	X	
H	X	X	H	Isolation
X	H	X	H	
X	H	H	X	

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

To Eight Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	T863	SN74A	T863	
			MIN	MAX	MIN	MAX	UNT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			co. 8		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
${ }^{\mathrm{O}} \mathrm{H}$	High-level output current					-32	mA
lOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled	∞	5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT863, SN74ABT863

9-BIT BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
D3789, FEBRUARY 1991 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND .
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT863		SN74ABT863		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.6	4.1	1	5	1	5.7	ns
tPHL			1	2.3	3.3	1	83.9	1	3.9	
tpZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A	1	3.2	4.3	1.		1	5.5	ns
tpZL			1	3.3	4.4	1	5.5	1	5.4	
tPHZ	$\overline{\text { OEAB }}$ or $\overline{\text { OEBA }}$	B or A	2.5	4.8	6	2.5	6.8	2.5	6.7	ns
tplz			1.5	4.4	5.9	Q1.5	7.8	1.5	6.9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/PZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathbf{C}=\mathbf{2 0 0}$ pF, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Two 8-Bit Back-to-Back Registers Store Data Flowing in Both Directions
- Noninverting Outputs
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT2952 consists of two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input provided that the clock-enable (CLKENAB or CLKENBA) input is low. Taking the output-enable ($\overline{O E A B}$ or $\overline{O E B A}$) input low accesses the data on either port.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to $V_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT2952 . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN74ABT2952 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT2952 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT2952 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLEt				
INPUTS				OUTPUT
CLKENAB	CLKAB	OEAB	A	B
H	X	L	X	$\mathrm{B}_{0} \ddagger$
X	Hor L	L	X	$\mathrm{B}_{0} \ddagger$
L	\uparrow	L	L	L
L	\uparrow	L	H	H
X	X	H	X	Z

\dagger A-to-B data flow is shown; B -to-A data flow is similar but uses CLKENBA, CLKBA, and OEBA.
\ddagger Level of B before the indicated steady-state input conditions were established.
logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots . . .-0.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT2952 .. } 96 \mathrm{~mA} \\
& \text { SN74ABT2952 } 128 \text { mA } \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {. .. } 18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DB package } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 . .
\end{aligned}
$$

$$
\begin{aligned}
& \text { NT package } 1.3 \mathrm{~W}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT2952		SN74ABT2952		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	-	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
IOH	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT2952		SN74ABT2952		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150			150		150		MHz
tPLH	CLKAB or CLKBA	B or A								ns
tPHL										
tPZH	$\overline{\text { OEBA }}$ or $\overline{\text { OEAB }}$	A or B								ns
tpZL										
tPHZ	$\overline{\text { OEBA }}$ or $\overline{\text { OEAB }}$	A or B								ns
tplZ										

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}$, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Two 8-Bit Back-to-Back Registers Store Data Flowing in Both Directions
- Noninverting Outputs
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

The 'ABT2952A consists of two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input provided that the clock-enable (CLKENAB or CLKENBA) input is low. Taking the output-enable ($\overline{O E A B}$ or $\overline{O E B A}$) input low accesses the data on either port.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

NC - No internal connection

The SN74ABT2952A is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT2952A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT2952A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLET			
INPUTS OUTPUT CLKENAB CLKAB $\overline{\text { OEAB }}$ A B X L X H B^{\ddagger} X H or L L X B^{\ddagger} L \uparrow L L L \uparrow L H X X H X X Z			

\dagger A-to-B data flow is shown; B-to-A data flow is similar but uses CLKENBA, CLKBA, and OEBA.
\ddagger Level of B before the indicated steady-state input conditions were established.

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, and NT packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

SN54ABT2952A, SN74ABT2952A OCTAL BUS TRANSCEIVERS AND REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{I} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or power-off s	-0.5 V to 5.5 V
Current into any output in the low state, I_{0} : SN54ABT2952A	96 mA
SN74ABT2952A.	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package	0.7 W
DW package	1 W
NT package	1.3 W
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT2952A		SN74ABT2952A		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	8	2		V
V_{IL}	Low-level input voltage			80.8		0.8	V
V_{1}	Input voltage			V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
IOH	High-level output current			-24		-32	mA
${ }^{\text {l }}$	Low-level output current		8	48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled	6	10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT2952A		SN74ABT2952A		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
V_{OH}		$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$			3			3		3		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$					0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$					$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		建		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		fion		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		Q 50		50	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OZL }}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{C C}=0, \quad V_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	 $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ Outputs high					50		50		50	$\mu \mathrm{A}$
10^{7}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	35		35		35	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
${ }^{\text {l }} \mathrm{cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3.5						pF
$\mathrm{C}_{\text {io }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		7.5						pF

${ }^{\dagger}$ All typical values are at $\mathrm{V} C \mathrm{~V}=5 \mathrm{~V}$.
\ddagger On products compliant to MLL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT2952A		SN74ABT2952A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {max }}$			150			150		150		MHz
tPLH	CLKAB or CLKBA	B or A	2	3.3	5.2	2	6.3	2	5.9	ns
tphL			2.5	4	6.1	2.5	¢ 6.8	2.5	6.3	
tPZH	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	1.5	3.2	4.7	1.5	5.7	1.5	5.6	ns
tPZL			2	3.7	5.7	2	6.7	2	6.6	
tphz	$\overline{\text { OEBA }}$ or OEAB	A or B	1.5	3.5	5.1	15	6.5	1.5	6.4	ns
tpLZ			1.5	3.4	5.9	${ }_{1.5}$	6.7	1.5	6.2	

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms
General Information
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {™ }}$ 4
ABT Widebus $+{ }^{\text {TM }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {™ }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- Enhanced ac performance over ABT octals
- JEDEC standard 48-/56-pin SSOP package
- New EIAJ standard Shrink Widebus ${ }^{\text {™ }}$ TSSOP package
- Flow-through package pinout organizes all inputs on one side and all outputs on the other side
- Distributed V_{CC} and GND pinouts
- Universal bus transceiver (UBT™) architectures
- Hot-card insertion and power-up 3-state circuitry
- TI has established an alternate source

Benefits

- Improved propagation delay versus number of outputs switching. Superior pin-to-pin output skew; 15-20\% faster speed
- 16,18 , or 20 bits of logic in the same space as that of a typical octal
- 30% board space improvement over SSOP Widebus ${ }^{\text {™ }}$ package; meets $1.1-\mathrm{mm}$ height requirements for memory card and other thin applications
- Facilitates easy board layout; pin compatible with popular AC/ACT Widebus ${ }^{\text {TM }}$ functions
- Minimized mutual coupling and 2:1 I/O-to-GND rates result in < 0.8-V simultaneous switching noise typically
- Advanced integration, as one UBT ${ }^{\text {TM }}$ can replace nearly all common bus-interface logic
- Device protection for end-equipmentspecific applications such as telecom
- Standardization that comes from a common product approach

The following table lists ABT Widebus ${ }^{\text {TM }}$ devices currently being evaluated for market introduction. Customers interested in learning more about Tl's plans for these devices should contact the Advanced System Logic Marketing hotline at (214) 997-5202.

DEVICE	PIN COUNT	DESCRIPTION
'ABT16544	56	16-Bit Registered Transceiver
'ABT16620	48	16-Bit Transceiver
'ABT16861	56	20-Bit Transceiver
'ABT16953	56	16-Bit Registered Transceiver

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V $_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, $64-\mathrm{mA}$ IoL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16240 is a 16 -bit buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4 -bit buffers, two 8 -bit buffers, or one 16 -bit buffer. This device provides inverting outputs and symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs.
SN54ABT16240 . . . WD PACKAGE
SN74ABT16240 . . DL PACKAGE
(TOP VIEW)
(TOP VIEW)

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16240 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16240 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16240 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 4-bit buffer)		
InPUTS		OUTPUT
$\overline{\mathrm{OE}}$	A	
L	H	L
L	L	H
H	X	z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

> Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . .-0.5 \mathrm{~V}$ to 5.5 V
> Current into any output in the low state, I_{O} : SN54ABT16240 96 mA
> SN74ABT16240 128 mA
> Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. .. -18 mA

> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) .. 0.85 W
> Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

[^16]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16240		SN74ABT16240		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.7	3.8	0.8	4.8	1	4.7	ns
tPHL			1.1	3.1	4.3	1.1	4.9	1.1	4.8	
tPZH	$\overline{O E}$	Y	1.3	3.3	4.3	1.3	5.4	1.3	5.3	ns
tPZL			1.4	3.4	6.2	1.4	7.2	1.4	7.1	
tPHZ	$\overline{O E}$	Y	1.6	3.6	4.8	1.6	7.2	1.6	6.1	ns
tpLZ			1.4	3	5.1	1.4	5.7	1.4	5.6	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tPLH }} /{ }^{\prime}$ PHL tpLz/tpzL ${ }^{\text {tPHZ }} / \mathrm{t}^{2} \mathrm{PZH}$	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

NOTES:
A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{c c}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\prime}$, 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16241 is a 16 -bit buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4 -bit buffers, two 8 -bit buffers, or one 16 -bit buffer. This device provides true outputs and complementary output-enable (OE and OE) inputs.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to $V_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN74ABT16241 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16241 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16241 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.
FUNCTION TABLES

INPUTS		OUTPUTS
$\mathbf{1 0 E}, \mathbf{4} \overline{\mathrm{OE}}$	$\mathbf{1 A}, \mathbf{4 A}$	$\mathbf{1 Y}, \mathbf{4 Y}$
L	H	H
L	L	L
H	X	Z

INPUTS		OUTPUTS
2OE, 3OE	2A, 3A	
H	H	H
H	L	L
L	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54AB	T16241	SN74A	T16241	
			MIN	MAX	MIN	MAX	NT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
$\mathrm{IOH}^{\mathrm{I}}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16241		SN74ABT16241		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.7	3.4	0.9	3.8	1	3.7	ns
tpHL			1	2.7	3.9	0.9	4.6	1	4.5	
tPZH	OE or $\overline{O E}$	Y	1.2	3.3	4.2	1.2	5.1	1.2	5	ns
tpZL			1.3	3.4	5.9	1.3	7	1.3	6.9	
tphz	OE or $\overline{\mathrm{OE}}$	Y	1.5	4.1	5	1.5	7	1.5	6.2	ns
tpLZ			1.7	3.6	5.1	1.7	5.7	1.7	5.6	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH $/$ tPHL	Open
tPLZ/tPZL	7 V
tPHZ $^{\text {tPZH }}$	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA IOL)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The SN54ABT16244 and SN74ABT16244A are 16-bit buffers and line drivers designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The devices can be used as four 4-bit buffers, two 8 -bit buffers, or one 16 -bit buffer. These devices provide true outputs and symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16244A is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16244A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT $\overline{O E}$ A \mathbf{Y} L H H L L L H X Z	

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . .-0.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { SN74ABT16244A } 128 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DGG package } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 . \mathrm{F}^{\mathrm{W}} \\
& \text { DL package . } 0.85 \mathrm{~W} \\
& \text { Storage temperature range ... }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. }
\end{aligned}
$$

recommended operating conditions (see Note 2)

[^17]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \dagger$			SN54ABT16244		SN74ABT16244A		UNIT
				MIN	TYP \ddagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	
	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ \hline \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \hline \end{array}$	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
		$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text {, }$	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$		$2 §$					2		
		$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
VOL	$\begin{array}{\|l} \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ \hline \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ \hline \end{array}$	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 §$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				107		10		107	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-107		-10		-109	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5$					± 100		± 100		± 100	$\mu \mathrm{A}$
ICEX	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$		Outputs high			50		50		50	$\mu \mathrm{A}$
$10^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Outputs high			3		2		3	mA
			Outputs low			32		32		32	
			Outputs disabled			3		2		3	
${ }^{\text {a }} \mathrm{Cc}{ }^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled			0.05		1.5		0.05	mA
			Outputs disabled			0.05		1		0.05	
		Control inputs				0.05		1.5		0.05	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8						pF

\dagger Characteristics for $\mathrm{TA}=25^{\circ} \mathrm{C}$ apply to the SN74ABT16244A only.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
§ On products compliant to MIL-STD-883, Class B, this parameter does not apply.
II This data sheet limit may vary among suppliers.
\# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
$I^{1 I}$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{Ct} \\ & \hline \end{aligned}$			SN54ABT16244		SN74ABT16244A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.3	3.2	0.7	3.7	1	3.5	ns
tPHL			1	2.6	3.7	0.5	4.3	1	4.1	
tpZH	$\overline{O E}$	Y	1	3	3.8	0.7	5	1	4.8	ns
tpZL			1	3.2	4	0.9	5	1	4.8	
tPHZ	$\overline{O E}$	Y	1	3.6	4.4	1	5	1	4.8	ns
tpLZ			1	2.9	3.7	1	4.3	1	4.1	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH ${ }^{/ t p H L}$ tpLz/tpZL tphz/tpZH	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BICMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA lor, 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16245 is a 16-bit (dual-octal) noninverting 3 -state transceiver designed for synchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}})$ input can be used to disable the device so that the buses are effectively isolated.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16245 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 8-bit section)	
INPUTS OPERATION $\overline{\text { OE }}$ DIR L L B data to A bus L H A data to B bus H X Isolation	

[^18]
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16245		SN74ABT16245		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$I=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
$\mathrm{VOH}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{l}^{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				107		10		109	$\mu \mathrm{A}$
lozL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-109		-10		-109	$\mu \mathrm{A}$
loff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
$10^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
${ }^{\prime \prime} \mathrm{Cc} C^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		1		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
$\mathrm{C}_{\text {io }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		8.5						pF

[^19]\ddagger On products compliant to MIL-STD-883, Ciass B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
IT This data sheet limit may vary among suppliers.
\# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16245		SN74ABT16245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.2	3.4	0.5	4	1	3.9	ns
tPHL			1	2.1	3.8	0.5	4.6	1	4.5	
tpZH	OE	B or A	1	3.1	4.4	0.8	5.5	1	5.4	ns
tPZL			1	3	6.1	0.9	7.3	1	7.2	
tPHZ	OE	B or A	1.3	3.5	4.7	1.3	6.3	1.3	5.5	ns
tpLZ			1.4	3.2	4.7	1.4	5.3	1.4	5.2	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

TEST	S1
tPLH/tPHL	Open
tPLZ/tpZL	7 V
tPHZ $^{\text {tPRZH }}$	Open

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

> VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical $V_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathrm{OH}}$ 64-mA I_{OL})
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16260 is a 12 -bit to 24 -bit multiplexed D-type latch used in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor- or bus-interface applications. This device is also useful in memory-interleaving applications.

SN54ABT16260 ... WD PACKAGE
SN74ABT16260 ... DL PACKAGE
(TOP VIEW)

Three 12-bit l/O ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output-enable ($\overline{\mathrm{OE} 1 \mathrm{~B}}, \overline{\mathrm{OE} 2 \mathrm{~B}}$, and $\overline{\mathrm{OEA}}$) inputs control the bus transceiver functions. The $\overline{\mathrm{OE} 1 \mathrm{~B}}$ and $\overline{\mathrm{OE} 2 \mathrm{~B}}$ control signals also allow bank control in the A to B direction.
Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16260 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16260 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16260 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

Function Tables
B TO A $(\overline{O E B}=H)$

INPUTS						OUTPUT
1B	2B	SEL	LE1B	LE2B	$\overline{\text { OEA }}$	
H	X	H	H	X	L	H
L	X	H	H	X	L	L
X	X	H	L	X	L	A $_{0}$
X	H	L	X	H	L	H
X	L	L	X	H	L	L
X	X	L	X	L	L	A0
X	X	X	X	X	H	Z

A TO B ($\overline{(O E A}=H)$

INPUTS					OUTPUTS	
A	LEA1B	LEA2B	OE1B	OE2B	1 B	2B
H	H	H	L	L	H	H
L	H	H	L	L	L	L
H	H	L	L	L	H	$2 \mathrm{~B}_{0}$
L	H	L	L	L	L	$2 \mathrm{~B}_{0}$
H	L	H	L	L	$1 \mathrm{~B}_{0}$	H
L	L	H	L	L	$1 \mathrm{~B}_{0}$	L
X	L	L	L	L	$1 \mathrm{~B}_{0}$	$2 \mathrm{~B}_{0}$
X	X	X	H	H	Z	Z
X	X	X	L	H	Active	Z
X	x	X	H	L	Z	Active
X	X	X	L	L	Active	Active

logic diagram (positive logic)

To 11 Other Channels

SN54ABT16260, SN74ABT16260
 12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCHES
 WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{0}: \text { SN54ABT16260 . } 96 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0\right) \text {. }-50 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions

			SN54A	T16260	SN74AB	T16260	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	\%	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			40.8		0.8	V
V_{1}	Input voltage			V_{CC}	0	V CC	V
${ }^{1} \mathrm{OH}$	High-level output current			-24		-32	mA
${ }^{\mathrm{OL}}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	¢	10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16260		SN74ABT16260		UNIT
			MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}^{\prime}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}=48 \mathrm{~mA}$				0.55		0.55	-		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				0.55 \ddagger				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Control inputs			± 1		- ${ }^{\text {a }}$		± 1	
		A or B ports			± 100		${ }^{7} 700$		± 100	
$1 /$ (hold)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=0.8 \mathrm{~V}$	A or B ports						100		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=2 \mathrm{~V}$					0		-100		$\mu \mathrm{A}$
lOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50	ω^{3}	50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50	8	-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
$1{ }^{1}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-225	-50	-225	-50	-225	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high			1.5		1.5		1.5	mA
		Outputs low			63		63		63	
		Outputs disabled			1		1		1	
$\Delta^{\prime} \mathrm{cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			11.5						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT16260	SN74ABT16260		UNIT
		MIN	MAX	MIN MAX	MIN	MAX	
t_{w}	Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high	3.3		33^{3} \&	3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before LE1B, LE2B, LEA1B, or LEA2B \downarrow	1.5		1.5	1.5		ns
th	Hold time, data after LE1B, LE2B, LEA1B, or LEA2B \downarrow	1		9	1		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT16373A, SN74ABT16373A
 16-BIT TRANSPARENT D-TYPE LATCHES
 WITH 3-STATE OUTPUTS
 SCBS160 - DECEMBER 1992

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA IOH, 64-mA IOL)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16373A is a 16 -bit transparent D-type latch with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The device can be used as two 8 -bit latches or one 16 -bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components
The output enable ($\overline{\mathrm{OE}}$) does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16373A is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16373A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16373A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
c
FUNCTION TABLE
(each latch)

INPUTS			
OU	OUTPUT		
Q	LE	D	
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54ABT16373A, SN74ABT16373A 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

> Supply voltage range, V_{CC}. -0.5 V to 7 V
> Input voltage range, V_{I} (see Note 1) . 0.5 V to 7 V
> Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
> Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}:$ SN54ABT16373A . 96 mA
> SN74ABT16373A 128 mA

> Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DGG package . 0.8 W
> DL package . 0.85 W
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16373A		SN74ABT16373A		UNIT
			MIN	TYP \dagger MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3		3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-24 \mathrm{~mA}$		2		2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}^{2}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ \hline \end{array}$			50		50		50	$\mu \mathrm{A}$
$10^{\text {§ }}$				-100 -180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		2		2		2	mA
		Outputs low		85		85		85	
		Outputs disabled		2		2		2	
${ }^{\text {a }} \mathrm{CCl}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND			1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		3.5		.				pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			9.5					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16373A		SN74ABT16373A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Q	1.4	3.7	5.3	1.4	6.5	1.4	6.3	ns
tPHL			2	4	5.4	2	6.5	2	6.2	
tPLH	LE	Q	1.7	4.1	5.7	1.7	- 7	1.7	6.7	ns
tPHL			2.3	4.3	5.6	2.3	6.3	2.3	6.1	
tPZH	$\overline{O E}$	Q	1.1	3.4	5	1.1	6.4	1.1	6.1	ns
tpZL			1.5	3.5	4.9	1.5	5.8	1.5	5.6	
tPHZ	$\overline{O E}$	Q	2.4	5.1	7.1	2.4	8.5	2.4	8.1	ns
tplz			1.6	4.4	5.8	1.6	8	1.6	6.5	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA $\mathrm{IOL}_{\text {) }}$
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380 -mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16374A is a 16-bit edge-triggered D-type flip-flop with 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

SN54ABT1637 SN74ABT16374A	374A... W ... DGG (TOP VIEW)	D PACKAG OR DL PAC)
1 $\overline{O E}$	${ }_{1} U_{48}$	1CLK
1Q1	247	1D1
1Q2	36	1D2
GND	45	GND
1Q3	54	1D3
1Q4	$6 \quad 43$	1D4
V_{Cc}	72	$V_{C C}$
1Q5	841	1D5
1Q6	940	1D6
GND	1039	GND
1Q7	1138	1D7
1Q8	$12 \quad 37$	1D8
2Q1	13.36	2D1
2Q2	$14 \quad 35$	2D2
GND	$15 \quad 34$	GND
2Q3	16 33	2D3
2Q4	$17 \quad 32$	2D4
v_{CC}	1831	V_{CC}
2Q5	1930	2D5
2Q6	$20 \quad 29$	2D6
GND	21	GND
2Q7	$22 \quad 27$	2D7
2Q8	$23 \quad 26$	2D8
2OE	$24 \quad 25$	2CLK

The device can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.

A buffered output-enable ($\overline{\mathrm{OE}})$ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components

The output enable ($\overline{\mathrm{OE}})$ does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16374A is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16374A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16374A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^20]FUNCTION TABLE
(each flip-flop)
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984
and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT16374A..................................
SN74ABT16374A 128 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
DL package . 0.85 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IIThis is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT16374A		SN74ABT16374A		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	0	150	0	150	0	150	MHz
t_{w}	Pulse duration, CLK high or low	3.3		3.3		3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	1.1		1.3		1.1		ns
th	Hold time, data after CLK \uparrow	1.3		1.5		1.3		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16374A		SN74ABT16374A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150			150		150		MHz
tplH	CLK	Q	1.8	4.3	5.4	1.5	6.9	1.8	6.2	ns
tPHL			2.7	4.7	5.6	2.2	6.9	2.7	5.9	
tpZH	$\overline{O E}$	Q	1.2	3.4	4.8	0.8	6.1	1.2	5.6	ns
tPZL			1.6	3.5	4.7	1.2	5.5	1.6	5.3	
$t_{\text {PHZ }}$	$\overline{\mathrm{OE}}$	Q	2.2	5.5	7.1	1.8	9.6	2.2	8.2	ns
tPLZ			2.2	4.3	5.8	1.8	7.2	2.2	6.6	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {tPL }}$ (tPZL	Open
tPHZ/tPZH	7 V
Open	

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical VoLp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathrm{IOH}_{\mathrm{OH}}$, 64-mA I_{OL})
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16377 is a 16-bit positive-edge-triggered D-type flip-flop with a clock (1CLK or 2CLK) input. It is particularly suitable for implementing buffer and storage registers, shift registers, and pattern generators.
The device can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.
Data input information that meets the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if the common clock-enable (1 $\overline{\mathrm{CLKEN}}$ or $2 \overline{\mathrm{CLKEN}}$) input is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the buffered clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at CLKEN.

The SN74ABT16377 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16377 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16377 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
c
FUNCTION TABLE
(each flip-flop)

INPUTS			
OUTPUT			
CLKEN	CLK	D	Q
H	X	X	Q_{0}
L	\uparrow	H	H
L	\uparrow	L	L
X	H or L	X	Q_{0}

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

SN54ABT16377, SN74ABT16377
 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS
 WITH CLOCK ENABLE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

> Supply voltage range, V_{CC} -0.5 V to 7 V
> Input voltage range, V_{I} (see Note 1) .. -0.5 V to 7 V
> Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
> Current into any output in the low state, I_{O} : SN54ABT16377 96 mA
> SN74ABT16377 128 mA

> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) .. 0.85 W
> Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT16377		SN74ABT16377		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^21]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16377		SN74ABT16377		UNIT
			MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
$\mathrm{VOH}^{\text {O }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\circ} \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{lOL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OL}}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{l}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high			2		2		2	mA
		Outputs low			67	,	67		67	
		Outputs disabled			2		2		2	
$\Delta \mathrm{CCC}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V									pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V									pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SN54ABT16460, SN74ABT16460 4-TO-1 MULTIPLEXED/DEMULTIPLEXED REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
 OCTOBER 1992 - REVISED JULY 1993

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathbf{C =} \mathbf{2 0 0}$ pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical $V_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs ($-32-\mathrm{mA}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{I}_{\mathrm{OL}}$)
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16460 is a 4-bit-to-1-bit multiplexed registered transceiver used in applications where four separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor- or bus-interface applications. This device is also useful in memory-interleaving applications.

SN54ABT16460 ... WD PACKAGE
SN74ABT16460... DL PACKAGE
(TOP VIEW)

Five 4-bit I/O ports ($1 \mathrm{~A}-4 \mathrm{~A}, 1 \mathrm{B1}-4,2 \mathrm{~B} 1-4,3 B 1-4$, and $4 \mathrm{~B} 1-4$) are available for address and/or data transfer. The output-enable ($\overline{\mathrm{OEB}}, \overline{\mathrm{OEB1}}-\overline{\mathrm{OEB}} 4$, and $\overline{\mathrm{OEA}}$) inputs control the bus transceiver functions. These control signals also allow 4-bit or 16-bit control depending on the $\overline{\text { OEB }}$ level.
Address and/or data information can be stored using the internal storage latches/flipflops. The latch-enable (LEB1-LEB4, LEBA, and LEAB1-LEAB4) and clock/clock-enable (CLK/CLKEN) inputs are used to control data storage. When either one of the latch-enable inputs is high, the latch is transparent (clock is a don't care as long as the latch-enable is high). When the latch-enable input goes low (providing that the clock does not transit from low to high), the data present at the inputs is latched and remains latched until the latch-enable input is returned high. When the clock-enable is low and the corresponding latch-enable is low, data can be clocked on the low to high transition of the clock. When either the clock-enable or the corresponding latch-enable is high, the clock is a don't care.

Four select pins (SELO, SEL1, CE_SELO, and CE_SEL1) are provided to multiplex data (A port), or to select one of four clock-enables (B port). This allows the user to have the flexibility of controlling one bit at a time.

Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

description (continued)

To ensure the high-impedance state during power-up or power-down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16460 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16460 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16460 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE A-TO-B OUTPUT-ENABLE \dagger

INPUTS		OUTPUT
Bn		
$\overline{\text { OEB }}$	$\overline{\text { OEBn }}$	
H	H	Z
H	L	Z
L	H	Z
L	L	Active

FUNCTION TABLE
A-TO-B STORAGE (ASSUMING $\overline{\text { OEB }}=\mathrm{L}, \overline{\mathrm{OEBn}}=\mathrm{L}$) ${ }^{\boldsymbol{}}$

INPUTS								OUTPUTS			
CLKENAB	CE_SEL1	CE_SELO	CLKAB	LEAB1	LEAB2	LEAB3	LEAB4	B1	B2	B3	B4
X	X	X	H or L	H	L	L	L	A	A_{0}	A_{0}	A_{0}
X	X	X	Hor L	H	H	H	L	A	A	A	A_{0}
L	x	X	L	L	L	L	L	A_{0}	A_{0}	A_{0}	A_{0}
L	L	L	\uparrow	L	L	L	L	A	A_{0}	A_{0}	A_{0}
L	L	H	\uparrow	L	L	L	L	A_{0}	A	A_{0}	A_{0}
L	H	L	\uparrow	L	L	L	L	A_{0}	A_{0}	A	A_{0}
L	H	H	\uparrow	L	L	L	L	A_{0}	A_{0}	A_{0}	A
H	X	X	\uparrow	L	L	L	L	A_{0}	A_{0}	A_{0}	A_{0}

\ddagger This table does not cover all the latch-enable cases since they have similar results.

Function Tables
B-TO-A STORAGE (BEFORE POINT "P")

INPUTS								"P"
CLKENB	CLKBA	LEB1	LEB2	LEB3	LEB4	SEL1	SELO	
X	X	H	L	L	L	L	L	B1
X	X	L	H	L	L	L	H	B2
X	X	L	L	H	L	H	L	B3
X	X	L	L	L	H	H	H	B4
L	\uparrow	L	L	L	L	L	L	B1
						L	H	B2
						H	L	B3
						H	H	B4
L	Hor L	L		L	L	L	L	B10 ${ }^{\dagger}$
						L	H	B20 ${ }^{\text {t }}$
						H	L	B30 ${ }^{\dagger}$
						H	H	B40 ${ }^{\dagger}$

INPUTS					OUTPUT A
CLKENBA	CLKBA	LEBA	OEA	B	
X	X	X	H	X	Z
X	X	H	L	L	L
X	X	H	L	H	H
H	X	L	L	X	$\mathrm{A}_{0}{ }^{\dagger}$
L	\uparrow	L	L	L	L
L	\uparrow	L	L	H	H
L	H or L	L	L	X	$\mathrm{A}_{0} \dagger$

\dagger Output level before the indicated steady-state input conditions were established.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, I_{O} : SN54ABT16460 96 mA
SN74ABT16460 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. .. 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) $\ldots \ldots . .1 \mathrm{~W}$
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)| PARAMETER | TEST CONDITIONS | | | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | | SN54ABT16460 | | SN74ABT16460 | | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | MIN | TYPt MAX | MIN | MAX | MIN | MAX | |
| $\mathrm{V}_{\text {IK }}$ | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ | | | -1.2 | | -1.2 | | -1.2 | V |
| VOH | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $1 \mathrm{OH}=-3 \mathrm{~mA}$ | | 2.5 | | 2.5 | | 2.5 | | V |
| | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{IOH}=-3 \mathrm{~mA}$ | | 3 | | 3 | | 3 | | |
| | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$, | $\mathrm{IOH}^{\prime}=-24 \mathrm{~mA}$ | | 2 | | 2 | | | | |
| | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $1 \mathrm{OH}=-32 \mathrm{~mA}$ | | $2 \ddagger$ | | | | 2 | | |
| VOL | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$, | $\mathrm{IOL}=48 \mathrm{~mA}$ | | | 0.55 | | 0.55 | | | V |
| | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{IOL}=64 \mathrm{~mA}$ | | | $0.55 \ddagger$ | | | | 0.55 | |
| 1 | $\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ | | Control inputs | | $\pm \pm$ | | ± 1 | | ± 1 | $\mu \mathrm{A}$ |
| | | | A or B ports | | ± 100 | | ± 100 | | ± 100 | |
| $1 /($ hold $)$ | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$, | $\mathrm{V}_{1}=0.8 \mathrm{~V}$ | A or B ports | | | | | 100 | | $\mu \mathrm{A}$ |
| | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{V}_{1}=2 \mathrm{~V}$ | | | | | | -100 | | |
| $\mathrm{lOZH}^{\text {§ }}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ | | | 50 | | 50 | | 50 | $\mu \mathrm{A}$ |
| $\mathrm{l}_{\text {OLL }}{ }^{\text {§ }}$ | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ | | | -50 | | -50 | | -50 | $\mu \mathrm{A}$ |
| loff | $\mathrm{V}_{\mathrm{CC}}=0$, | V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$ | | | ± 100 | | | | ± 100 | $\mu \mathrm{A}$ |
| ICEX | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ | Outputs high | | 50 | | 50 | | 50 | $\mu \mathrm{A}$ |
| 10% | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | | -50 | -100-200 | -50 | -200 | -50 | -200 | mA |
| ICC | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ | A or B ports | Outputs high | | 2 | | 2 | | 2 | mA |
| | | | Outputs low | | 35 | | 35 | | 35 | |
| | | | Outputs disabled | | 2 | | 2 | | 2 | |
| $\Delta^{\prime} C^{\#}{ }^{\text {\# }}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at $V_{C C}$ or GND | | | | 1.5 | | 1.5 | | 1.5 | mA |
| C_{i} | $\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V | | Control inputs | | | | | | | pF |
| $\mathrm{C}_{\text {io }}$ | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V | | A or B ports | | | | | , | | pF |

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				SN54AB	16460	SN74AB	16460	
				MIN	MAX	MIN	MAX	NTT
${ }^{\text {clock }}$	Clock frequency			0	150	0	150	MHz
	Pulse duration	LEAB or LEBA high				4		
'w	Pulse duration	CLKAB or CLKBA high or low				4		
			A or B			2		
	Setup	Before CLK \uparrow	$\overline{\text { CLKEN }}$			3		
stu	Setup time	A before LEAB \downarrow or B before LEBA \downarrow	CLK high			2		ns
		A before LEAB \downarrow or B before LEBA \downarrow	CLK low			2		
			A or B			2		
$t^{\text {h }}$	Hold time	After CLK \uparrow	$\overline{\text { CLKEN }}$			2		ns
		A after LEAB \downarrow or B after LEBA \downarrow				3		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16460		SN74ABT16460		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A							7	ns
tPHL									7	
tPLH	CLKAB	B								ns
tPHL										
tPLH	CLKBA	A								ns
tPHL										
tpLH	LEAB	B							7	ns
tPHL									7	
tPLH	LEBA	A							6	ns
tPHL									6	
tPLH	LEB	A							8	ns
tPHL									8	
tPLH	SEL	A							8	ns
tPHL									8	
tPLH	CE_SEL	B								ns
tPHL								.		
tPZH	$\overline{\mathrm{OE}}$	A or B							10	ns
tpZL									10	
tPHZ	$\overline{O E}$	A or B							10	ns
tplz									10	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA lon, 64-mA lol)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16470 is a 16 -bit registered transceiver that contains two sets of D-type flip-flops for temporary storage of data flowing in either direction. The 'ABT16470 can be used as two 8-bit transceivers or one 16-bit transceiver. Separate clock (CLKAB or CLKBA) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{\mathrm{OEBA}}$) inputs are provided for each register to permit independent control in either direction of data flow.

To avoid false clocking of the flip-flops, clock enable ($\overline{C L K E N})$ should not be switched from high to low while CLK is high.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16470 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16470 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16470 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^22]
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

FUNCTION TABLE \dagger

INPUTS				OUTPUT
CLKENAB	CLKAB	$\overline{\text { OEAB }}$	A	B
H	X	X	X	Z
X	X	H	X	Z
L	L	L	X	$\mathrm{B}_{0} \ddagger$
L	\uparrow	L	L	L
L	\uparrow	L	H	H

\dagger A-to- B data flow is shown: B-to-A flow is similar but uses $\overline{\text { CLKENBA, CLKBA, and } \overline{O E B A} \text {. }}$
\ddagger Output level before the indicated steady-state input conditions were established.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§
Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) 0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.

SN74ABT16470 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$.. 18 mA

Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
§ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	T16470	SN74A	16470	
			MIN	MAX	MIN	MAX	NT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			\% 0.8		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
IOH	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or $1 / 0$) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT16470 MIN $_{2}$ MAX	SN74ABT16470		UNIT
		MIN	MAX		MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	0	150	$0^{2} \geqslant 150$	0	150	MHz
${ }^{\text {tw }}$ II	Pulse duration, CLKAB or CLKBA high or low	3.3		3.35	3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLKAB \uparrow or CLKBA \uparrow	4		84	4		ns
th	Hold time, data after CLKAB \uparrow or CLKBA \uparrow	1		1	1		ns

II This parameter is specified by design but not tested.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16470		SN74ABT16470		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			150			150		150		MHz
$t_{\text {tPLH }}$	CLK	A or B	1.4	3.1	4.8	1.4	5.1	1.4	4.9	ns
tPHL			1.3	3.2	4.6	1.3	5.1	1.3	4.9	
tpZH	$\overline{\mathrm{OE}}$	A or B	1	3.1	4.3	1	\% 5	1	4.9	ns
tPZL			1.2	3.6	5.8	1.2	\% 6.9	1.2	6.8	
$t^{\text {PHZ }}$	$\overline{\mathrm{OE}}$	A or B	1.9	3.7	4.9	1.2	6	1.9	5.5	ns
tPLZ			1.6	3.3	4.8	\$6	5.4	1.6	5.3	
tpZH	CLKEN	A or B	1	3.4	4.6	\& 1	5.8	1	5.7	ns
tPZL			1.2	3.9	6	1.2	7.3	1.2	7.2	
tPHZ	CLKEN	A or B	1.7	3.9	5.2	1.7	6.2	1.7	5.8	ns
tplZ			1.5	3.6	5.3	1.5	5.5	1.5	5.4	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- ESD Protection Exceeds 2000 V

Per MIL-STD-883C, Method 3015

- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18 -bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock ($\overline{C L K A B}$ and $\overline{\text { CLKBA }}$) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if $\overline{C L K A B}$ is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable OEAB is active-high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and $\overline{C L K B A}$. The output enables are complementary (OEAB is active high and OEBA is active low).
To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN74ABT16500B is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16500B is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16500B is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{O E B A}, ~ L E B A, ~ a n d ~ C L K B A . ~$
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54ABT16500B, SN74ABT16500B

18-BIT UNIVERSAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS

SCBS057D - D3658, DECEMBER 1990 - REVISED APRIL 1993

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{C}		
Input voltage range, V_{1} (except I/O ports) (see Note 1)		
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$		
Output clamp current, $\mathrm{l}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$		
Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. DL package . 1 W		
Storage temperature range		

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or $1 / \mathrm{O}$) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16500B		SN74ABT16500B		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			3			3		3		v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VoL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$					0.55		0.55			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$					$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 20		¢ 20		± 20	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					10		¢ 10		10	$\mu \mathrm{A}$
IOZL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-10		-10		-10	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100	\bigcirc			± 100	$\mu \mathrm{A}$
ICEX	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$		Outputs high			50	8	50		50	$\mu \mathrm{A}$
107	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}^{2}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{C C} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high			3		3		3	mA
			Outputs low			36		36		36	
			Outputs disabled			3		3		3	
${ }^{\text {d }} \mathrm{Cc}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND					50		50		50	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
$\mathrm{C}_{\text {io }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		9						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

SCBS057D - D3658, DECEMBER 1990 - REVISED APRIL 1993
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				SN54ABT16500B	SN74AB	16500B	
				MIN MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency			$0 \quad 150$	0	150	MHz
		LEAB or LEBA high		2.5 \%	2.5		
		$\overline{\text { CLKAB }}$ or CLKBA high or low		3 S	3		ns
		A before $\overline{C L K A B} \downarrow$		$3{ }^{\circ}$	3		
		B before $\overline{\text { CLKBA }} \downarrow$		3 m	3		
tsu		A before LEAB \downarrow or B before LEBA \downarrow	$\overline{\text { CLK }}$ high	d	1		
		A before LEAB \downarrow or B before LEBA \downarrow	CLK low	22.5	2.5		
	Hold time	A after $\overline{\text { CLKAB }} \downarrow$ or B after $\overline{\text { CLKBA }} \downarrow$		0	0		
th	Hold time	A after LEAB \downarrow or B after LEBA \downarrow		2	2		

\dagger This parameter is specified by design but not tested.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16500B		SN74ABT16500B		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150	200		150		150		MHz
tPLH	A or B	B or A	1	2.5	3.6	1	4.2	1	4	ns
${ }_{\text {tPHL }}$			1	3.2	4.5	1	5.7	1	4.9	
tPLH	LEAB or LEBA	B or A	1	3.2	4.5	1	5.6	1	5	ns
tpHL			1	3.4	4.5	1	5.4	1	5	
tPLH	$\overline{\text { CLKAB }}$ or $\overline{C L K B A}$	B or A	1	3.5	4.7	1	5.4	1	5.3	ns
${ }_{\text {tPHL }}$			1	3.5	4.7	1	5.4	1	5.3	
tpZH	OEAB or $\overline{O E B A}$	B or A	1	3.4	4.6	$\bigcirc 1$	5.3	1	5.1	ns
tpZL			1.5	3.8	4.7	$Q_{1.5}$	5.6	1.5	5.4	
tphZ	OEAB or $\overline{O E B A}$	B or A	1.5	4.5	5.7	1.5	6.9	1.5	6.5	ns
tPLZ			1.4	3.4	4.7	1.4	5.8	1.4	5.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tpLH }} /{ }^{\prime}$ PHL tpLz/tpZL tphz/tpZH	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {m }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18-bit universal bus transceivers consist of storage elements that can operate either as D-type latches or D-type flip-flops to allow data flow in transparent or clocked modes.
Data flow in each direction is controlled by output-enable (OEAB and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and CLKBA. The output enables are complementary ($O E A B$ is active high and $\overline{O E B A}$ is active low).
To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN74ABT16501 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16501 is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16501 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Widebus+, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

FUNCTION TABLEt

INPUTS				OUTPUT
OEAB	LEAB	CLKAB	A	B
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\uparrow	L	L
H	L	\uparrow	H	H
H	L	H	X	$B_{0} \ddagger$
H	L	L	X	$B_{0} \S$

$\dagger \mathrm{A}$-to-B data flow is shown: B -to-A flow is similar but uses $\overline{O E B A}, ~ L E B A$, and CLKBA.
\ddagger Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low.
§ Output level before the indicated steady-state input conditions were established.

logic symboll

IThis symbol is in accordance with ANSIIIEEE STd 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To 17 Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC}

$$
-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
$$

Input voltage range, V_{I} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT16501 96 mA
SN74ABT16501 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots$
DL package . 1 W
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT16501	SN74AB	16501	
			MIN MAX	MIN	MAX	NTT
V_{CC}	Supply voltage		4.5 5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2.5	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		${ }^{4} 0.8$		0.8	V
V_{1}	Input voltage		o V_{CC}	0	V_{CC}	V
IOH^{\prime}	High-level output current		S $\quad-24$		-32	mA
${ }^{\mathrm{O}} \mathrm{L}$	Low-level output current		48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled	\& 10		10	ns / V
T_{A}	Operating free-air temperature		-55 125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16501		SN74ABT16501		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$V_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-24$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$					0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{lOL}=64 \mathrm{~mA}$					$0.55 \ddagger$		5		0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		$\pm \pm 1$		± 1	$\mu \mathrm{A}$
			A or B ports	± 100			${ }^{2} \pm 100$		± 100		
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100	Q			± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} & \\ \hline \end{array}$					50		50		50	$\mu \mathrm{A}$
107				-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high			3		5		3	mA
			Outputs low			76		76		76	
			Outputs disabled			3.3		5.3		3.3	
${ }^{\text {l }} \mathrm{Cc}{ }^{\#}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \text { One input at } \\ & 3.4 \mathrm{~V}, \end{array}$ Other inputs at V_{CC} or GND.		Control inputs			5		6		5	mA
			A or B ports			1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		4						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		8						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{l}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				SN54AB	16501	74AB	16501	
				MIN	MAX	MIN	MAX	UNT
$\mathrm{f}_{\text {clock }}$	Clock frequency	AB or CLKBA		0	105	0	105	MHz
	Pulse duration	LEAB or LEBA high		3.3		3.3		
${ }^{\prime}{ }^{+}$	Pulse duration	CLKAB or CLKBA high or low		4.7		4.7		ns
		A before CLKAB \uparrow or B before CLKB				3.5		
${ }^{\text {tsu }}$	Setup time	A before LEAB \downarrow or B before LEBA	CLK high	4		4		ns
		A before LEAB \downarrow or B before LEBA	CLK low	C'5		1.5		
		A after CLKAB \uparrow or B after CLKBA \uparrow		Q 1		1		
th	Hold time	A after LEAB \downarrow or B after LEBA \downarrow		2.5		2.5		ns

\dagger This parameter is specified by design but not tested.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16501	SN74ABT16501		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
$f_{\text {max }}$	CLKAB or CLKBA		105	160		105	105		MHz
tPLH	A or B	B or A	1	2.6	3.4	13.9	1	3.7	ns
tPHL			1	2.6	3.4	1 A.	1	4	
$t_{\text {PLH }}$	LEAB or LEBA	B or A	1.3	3.3	4.3	$1.3 \quad 5.4$	1.3	5.1	ns
tPHL			1.4	3.1	4.1	$1.4)^{*} 4.6$	1.4	4.4	
tpLH	CLKAB or CLKBA	B or A	1.5	3.5	4.5	1.55	1.5	5	ns
tpHL			1.3	3.1	4.1	1)3 4.6	1.3	4.4	
$t_{\text {PZH }}$	OEAB or $\overline{\text { OEBA }}$	B or A	1	3	. 4	< 114.8	1	4.7	ns
tPZL			2.6	4.9	5.9	2.66 .6	2.6	6.5	
tPHZ	OEAB or $\overline{O E B A}$	B or A	1.6	3.9	4.9	1.6 . 5.9	1.6	5.8	ns
tplZ			1.1	3.4	4.4	1.15 .1	1.1	4.9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

OLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed Vcc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{l O H}^{\circ}$, 64-mA lol)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 16-bit buffers and bus drivers provide a high-performance bus interface for wide data paths.
The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$) input is high, all corresponding outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16540 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16540 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16540 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each 8-bit section)

INPUTS			OUTPUT
OE1	$\overline{\text { OE2 }}$	A	
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

[^23]
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage range, V_{1} (see Note 1) ... -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots .$.
Current into any output in the low state, I_{O} : SN54ABT16540 96 mA
SN74ABT16540 . 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
DL package . 0.85 W
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	T16540	SN74A	T16540	
			MIN	MAX	MIN	MAX	UNIT
V_{CC}	Supply voltage		4.5	5.5.	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			${ }^{2} 0.8$		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current		-	-24		-32	mA
${ }^{\text {IOL}}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^24]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

16-BIT BUFFERS/DRIVERS

WITH 3-STATE OUTPUTS
D3796, FEBRUARY 1991 - REVISED OCTOBER 1992
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16540		SN74ABT16540		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.3	3.3	1	4.2	1	4.1	ns
tPHL			1.1	2.5	4.1	1.1	4.4	1.1	4.3	
tpZH	$\overline{\mathrm{OE}}$	Y	1.1	3.1	4.2		\&5.2	1.1	5.1	ns
tPZL			1.6	3.7	4.8	Q1.6	6	1.6	5.9	
${ }^{\text {tPHZ }}$	$\overline{\mathrm{OE}}$	Y	1.6	3.4	4.6	1.6	5.4	1.6	5.3	ns
tPLZ			1.4	2.9	4.1	1.4	4.7	1.4	4.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPL $/$ /tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
 PROPAGATION DELAY TIMES
 INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{ZO}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BICMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathrm{IOH}^{\mathrm{OH}}$ 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16541 is a noninverting 16 -bit buffer composed of two 8 -bit sections with separate output-enable signals. For either 8 -bit buffer section, the two output-enable ($1 \overline{\mathrm{OE}} 1$ and $1 \overline{\mathrm{OE} 2}$ or $2 \overline{\mathrm{OE}} 1$ and $2 \overline{\mathrm{OE} 2}$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 8 -bit buffer section are in the high-impedance state.

SN54ABT16541 . . . WD PACKAGE
 SN74ABT16541 ... DGG OR DL PACKAGE (TOP VIEW)

10E1 1		10E2
${ }_{1} \mathrm{Y}_{1} \mathrm{Cl}_{2}$	47	1A1
1 Y 2	46	1 A 2
GND ${ }^{4}$	45	GND
$1 \mathrm{Y} \square^{5}$	44	1 A 3
$1 \mathrm{Y} 4{ }^{6}$	43	1A4
$\mathrm{v}_{\mathrm{cc}}[7$	42	V_{CC}
1 Y 58	41	1 A 5
$1 \mathrm{Y} 6{ }^{\text {d }}$	40	1A6
GND 10	39	GND
$1 \mathrm{Y7} 11$	38	1A7
1 Y 812	37	1A8
$2 \mathrm{Y}_{1}{ }^{13}$		2A1
2 Y 214	35	2A2
GND 15	34	GND
$2{ }^{2} 316$	33	2A3
2 Y 417	32	2A4
VCC^{18}	31	$1 \mathrm{~V}_{\mathrm{CC}}$
2 Y 519	30	2A5
2 Y 620	29	2 A 6
GND 21	28	GND
$2 \mathrm{Y7} 22$	27	2 A 7
$2 \mathrm{Y8} 23$	26	12 AB
$2 \mathrm{OE1}{ }^{24}$		$2 \overline{2}$

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16541 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16541 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16541 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each 8-bit section)

INPUTS			
OUTPUT			
$\overline{\text { OE1 }}$	$\overline{\text { OE2 }}$	A	Y
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

[^25]
logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, I_{O} : SN54ABT16541 96 mA
SN74ABT16541 .. 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
DL package . 0.85 W
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT16541		SN74ABT16541		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	${ }^{3}$	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			¢ 0.8		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
IOH^{2}	High-level output current			-24		-32	mA
lOL	Low-level output current		O	48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	8	10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16541		SN74ABT16541		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$			2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\text {OH}}=-24$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$					0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$					$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		\$50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$				-100	-180	- 50	-180	-50	-180	mA
${ }^{\prime} \mathrm{CC}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{v}, \quad \mathrm{lO}=0, \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
${ }^{\text {l }} \mathrm{Cc} \mathrm{Cl}^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				7						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				7						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IThis is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16541		SN74ABT16541		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.1	3	1	3.5	1	3.4	ns
tPHL			1	2.5	3.6		C4.3	1	4.2	
tPZH	$\overline{\mathrm{OE}}$	Y	1.3	3.2	4.3	13.	\&5.3	1.3	5.2	ns
tPZL			1.6	3.8	4.7	$8{ }^{1}$	6.2	1.6	6	
tphz	$\overline{O E}$	Y	1.3	3.4	4.4	1.3	5.4	1.3	5.1	ns
tplZ			1	2.7	3.6	1	4.3	1	3.9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {tPLZ/tPZL }}$	Open
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA lor, 64-mA lol)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16543 16-bit registered transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. The 'ABT16543 can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or OEBA) inputs are provided for each register to permit independent control in either direction of data flow.
The A-to-B enable ($\overline{\mathrm{CEAB}}$) input must be low in order to enter data from A or to output data from B. If $\overline{C E A B}$ is low and $\overline{\mathrm{LEAB}}$ is low, the A-to-B latches are transparent; a subsequent low-to-high transition of $\overline{\text { LEAB }}$ puts the A latches in the storage mode. With $\overline{C E A B}$ and $\overline{O E A B}$ both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to $\mathrm{V}_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16543 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16543 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16543 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger
(each 8-bit section)

INPUTS				OUTPUT
$\mathbf{C E A B}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	A	B
H	X	X	X	Z
X	X	H	X	Z
L	H	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	L	L
L	L	L	H	H

\dagger A-to-B data flow is shown; B-to-A flow control is the same except that it uses $\overline{C E B A}, \overline{L E B A}$, and $\overline{\mathrm{OEBA}}$.
\ddagger Output level before the indicated steady-state input conditions were established.

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { SN74ABT16543 .. . } 128 \text { mA } \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {. .. } 18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DGG package } \ldots \\
& \text { DL package . } 1 \text { W } \\
& \text { Storage temperature range }
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	16543	SN74A	16543	
			MIN	MAX	MIN	MAX	T
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
IOH	High-level output current			-24		-32	mA
lol	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT16543, SN74ABT16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16543		SN74ABT16543		UNIT
				MIN	TYP ${ }^{\text {MAX }}$	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$		2.5		2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3		3		3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2		2				
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$			0.55		0.55			V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$		Control inputs		± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports		± 100		± 100		± 100	
$\mathrm{lozH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50		-50		-50	$\mu \mathrm{A}$
Ioff	$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50		50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100-200	-50	-200	-50	-200	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\begin{array}{\|l} A \text { or } B \\ \text { ports } \end{array}$	Outputs high		2		2		2	mA
			Outputs low		35		35		35	
			Outputs disabled		2		2		2	
${ }^{\text {l }} \mathbf{C c}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND				0.5		0.5		0.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3					pF
C_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		8.5					pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16543		SN74ABT16543		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.5	3.3	0.8	3.9	1	3.8	ns
tPHL			1	2.7	4.4	0.9	5.2	1	5.1	
tPLH	$\overline{\text { LE }}$	A or B	1	3.1	4.3	1	5.3	1	5.2	ns
tPHL			1.2	3.3	4.8	1.2	5.7	1.2	5.6	
tPZH	$\overline{\mathrm{OE}}$	A or B	1	3.4	4.3	0.8	5.3	1	5.2	ns
tPZL			1.1	3.8	5.9	1.1	7.1	1.1	7	
tPHZ	$\overline{\mathrm{OE}}$	A or B	1.9	4	5	1.9	7.2	1.9	5.7	ns
tPLZ			1.6	3.3	4.2	1.6	5	1.6	4.6	
tpZH	$\overline{\mathrm{CE}}$	A or B	1	3.8	4.9	0.9	6.3	1	6.2	ns
tPZL			1.2	4.2	6.5	1.2	7.9	1.2	7.8	
tPHZ	$\overline{C E}$	A or B	2	4.5	5.6	2	7.3	2	6.6	ns
tpLZ			1.7	3.9	5.1	1.7	5.6	1.7	5.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tpLz/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BICMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18 -bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.
Data flow in each direction is controlled by output-enable ($\overline{O E A B}$ and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the high-to-low transition of $\overline{C L K A B}$. Output enable $\overline{O E A B}$ is active low. When $\overline{O E A B}$ is low, the outputs are active. When $\overline{O E A B}$ is high, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{\mathrm{OEBA}}, \operatorname{LEBA}, \overline{\mathrm{CLKBA}}$, and $\overline{\text { CLKENBA }}$.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to $\mathrm{V}_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16600 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16600 is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16600 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Widebus, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

FUNCTION TABLEt

INPUTS					$\begin{gathered} \text { OUTPUT } \\ \text { B } \end{gathered}$
CLKENAB	$\overline{\text { OEAB }}$	LEAB	$\overline{\text { CLKAB }}$	A	
X	H	X	X	X	Z
X	L	H	X	L	L
X	L	H	X	H	H
H	L	L	x	X	$\mathrm{B}_{0}{ }^{\ddagger}$
H	L	L	X	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	L	\downarrow	L	L
L	L	L	\downarrow	H	H
L	L	L	H	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	L	L	X	B_{0} §

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{O E B A}$, LEBA, CLKBA, and CLKENBA.
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

logic diagram (positive logic)

TeXAS

INSTRUMENTS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{I} (except I/O ports) (see Note 1) - 0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT16600
96 mA
SN74ABT16600 . 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots$
DL package . 1 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT16600		SN74ABT16600		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	4	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{OH}}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	\%	10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^26]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			SN54ABT16600	SN74ABT16600		UNIT	
		MIN MAX	MIN	MAX			
${ }_{\text {flock }}$	Clock frequency		$0 \quad 150$	0	150	MHz	
$t_{\text {w }}$	Pulse duration		LEAB or LEBA high	2.5 R	2.5		ns
		$\overline{\text { CLKAB }}$ or CLKBA high or low	3 范	3			
$\mathrm{t}_{\text {su }}$	Setup time	A before $\overline{\mathrm{CLKAB}} \downarrow$ or B before $\overline{\mathrm{CLKBA}} \downarrow$		3		ns	
		A before LEAB \downarrow or B before LEBA \downarrow	$2.5{ }^{2}$	2.5			
		$\overline{\text { CLKEN }}$ before CLK \downarrow	25	2.5			
th	Hold time	A after $\overline{\text { CLKAB }} \downarrow$ or B after $\overline{\text { CLKBA }} \downarrow$	S0	0		ns	
		A after LEAB \downarrow or B after LEBA \downarrow	< 2	2			
		$\overline{\text { CLKEN after CLK } \uparrow ~}$	1	1			

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16600		SN74ABT16600		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150			150		150		MHz
$t_{\text {PLH }}$	A or B	B or A	1.5	2.5	3.6	1.5	4.2	1.5	4	ns
${ }_{\text {tPHL }}$			1.5	3.2	4.5	1.5	54	1.5	4.9	
tPLH	LEAB or LEBA	B or A	2	3.2	4.5	2	$\sqrt{5.6}$	2	5	ns
tPHL			2	3.4	4.5	2	¢ 5.4	2	5	
$\mathrm{tPLH}^{\text {P }}$	$\overline{\text { CLKAB }}$ or $\overline{\text { CLKBA }}$	B or A	2	3.5	4.7	2	5.4	2	5.3	ns
tPHL			2	3.5	4.3	2	5.2	2	5	
tpZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A	1.5	3.4	4.6	0.5	5.3	1.5	5.1	ns
tPZL			2	3.8	4.7	Q 2	5.6	2	5.4	
tPHZ	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A	2	4.5	5.4	2	6.6	2	6.2	ns
tpLZ			1.5	3.4	4.7	1.5	5.8	1.5	5.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {"TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BICMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {mu }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation In Transparent, Latched, Clocked, or Clock-Enabled Mode
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged In Plastic 300-mil Shrink Small-Outline Packages and $380-\mathrm{mil}$ Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable ($\overline{O E A B}$ and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output enable $\overline{O E A B}$ is active low. When $\overline{O E A B}$ is low, the outputs are active. When $\overline{O E A B}$ is high, the outputs are in the high-impedance state.

SN54ABT16601 .. . WD PACKAGE
SN74ABT16601 . . . DL PACKAGE
(TOP VIEW)

OEAB ${ }_{1}$	56 CLKENAB
LEAB [2	55 CLKAB
A1 [3	54 B1
GND ${ }^{4}$	53 GND
A2 ${ }^{5}$	52 B2
A3 ${ }^{6}$	51 В B3
V_{CC} [7	50 V ${ }_{\text {cc }}$
A4 8	49 B4
A5 ${ }^{\text {a }}$	48 B5
A6 10	47 B6
GND [11	46 GND
A7 12	45 B7
A8 [${ }^{13}$	44 B8
A9 14	43 ¢ ${ }^{\text {B9 }}$
A10 15	42 B10
A11 16	41 B11
A12 17	40 - ${ }^{12}$
GND 18	39 GND
A13 19	38 [B13
A14 20	37 [14
A15 21	36 B15
$\mathrm{V}_{\text {cc }}$ [22	${ }^{35} \mathrm{~J} \mathrm{Vcc}$
A16 ${ }^{23}$	34 B16
A17[24	${ }^{3}$ [17 ${ }^{\text {B17 }}$
GND 25	32 GND
A18 26	31 B18
OEBA [27	30 CLKBA
LEBA [28	29 CLKENBA

Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}, ~ L E B A, ~ C L K B A, ~ a n d ~ C L K E N B A . ~ . ~$
To ensure the high-impedance state during power up or power down, \bar{O} should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16601 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16601 is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16601 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLEt					
INPUTS					OUTPUT
CLKENAB	OEAB	LEAB	CLKAB	A	B
X	H	X	X	X	Z
X	L	H	X	L	L
X	L	H	X	H	H
H	L	L	X	X	$\mathrm{B}_{0}{ }^{\ddagger}$
H	L	L	X	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	L	\uparrow	L	L
L	L	L	\uparrow	H	H
L	L	L	L	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	L	H	X	$\mathrm{B}_{0}{ }^{\text {§ }}$

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, CLKBA, and CLKENBA.
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT16601 .. 96 mA
SN74ABT16601 .. 128 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air) .. 1 W
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT16601	SN74AB	16601	
			MIN MAX	MIN	MAX	UNT
V_{Cc}	Supply voltage		$4.5 \quad 5.5$	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2 E	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		${ }^{4} 0$		0.8	V
V_{1}	Input voltage		$0 e^{2} V_{C C}$	0	V CC	V
${ }^{1} \mathrm{OH}$	High-level output current		-24		-32	mA
10L	Low-level output current		\bigcirc		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	- 10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55 125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or fioating pins (input or $1 / 0$) must be held high or low.

SN54ABT16601, SN74ABT16601

18-BIT UNIVERSAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS

JUNE 1992-REVISED SEPTEMBER 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883; Class B, this parameter does not apply.
§ The parameters IOZH and lozL include the input leakage current.
TNot more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16601		SN74ABT16601		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150	200		150		150		MHz
tplH	A or B	B or A	1.5	2.5	3.6	1.5	4.2	1.5	4	
tpHL			1.5	3.4	4.7	1.5	5	1.5	4.9	ns
tpLH	LEAB or LEBA	B or A	2	3.4	4.7	2	S3.6	2	5	
tPHL			2	3.7	5	2	- 5.5	2	5.2	
tPLH	CLKAB or CLKBA	B or A	1.5	3.2	4.5	1.5	4.9	1.5	4.7	ns
tphL			1.5	3.2	4.4		4.8	1.5	4.6	
tpZH	$\overline{O E A B}$ or $\overline{O E B A}$	B or A	2	4	5		5.7	2	5.5	ns
tpZL			2	4.2	5.6	82	6	2	5.8	ns
tPHZ	$\overline{O E A B}$ or $\overline{O E B A}$	B or A	2	4.5	5.4	2	6.6	2	6.2	ns
tplZ			1.5	3.4	4.7	1.5	5.8	1.5	5.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tPHL tplz/tpZL tPHz/tPZH	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

Voltage waveforms
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

> VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA IOH, 64-mA Iol)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16623 is a 16 -bit transceiver designed for asynchronous communication between data buses. The control function implementation allows for maximum flexibility in timing. The 'ABT16623 provides true data at its outputs.
This device can be used as two 8-bit transceivers or one 16 -bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable (OEAB and OEBA) inputs. The output-enable inputs can be used to disable the device so that the buses are effectively isolated. The dual-enable configuration gives the transceivers the capability of storing data by simultaneously enabling OEAB and OEBA. Each output reinforces its input in this configuration. When both OEAB and OEBA are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (32 in all) will remain at their last states.

To ensure the high-impedance state during power up or power down, $\overline{\text { OEBA }}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN74ABT16623 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16623 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16623 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^27]FUNCTION TABLE
(each 8-bit section)

INPUTS		OPERATION
OEBA	OEAB	
L	L	B data to A bus
L	H	B data to A bus,
A data to B bus		
H	L	Isolation
H	H	A data to B bus

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots . . . \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}}: \text { SN54ABT16623 .. } 96 \text { mA } \\
& \text { SN74ABT16623 . } 128 \text { mA }
\end{aligned}
$$

> Storage temperature range
> $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or $1 / 0$) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters I I_{ZH} and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
${ }^{1}$ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16623	SN74ABT16623		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
tPLH	A or B	B or A	1	2	3.2	1.3 .7	1	3.6	ns
tphL			1	2.2	3.4	1.34 .4	1	4.3	
tPZH	$\overline{\text { OEBA }}$ or OEAB	A or B	1.1	3	4	1.1 \% 5	1.1	4.9	ns
tPZL			1.4	3.3	4.9	6.4.4 6.2	1.4	6	
tphz	$\overline{\text { OEBA }}$ or OEAB	A or B	1	3.5	4.9	+ 6.2	1	6	ns
tplz			1.4	2.8	4.7	1.45 .6	1.4	5.4	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WÀVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

> VOLTAGE WAVEFORMS
> ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA IOH, 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16640 is an inverting 16-bit transceiver designed for asynchronous communication between data buses.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic level at the direction-control (1DIR and 2DIR) inputs. The output-enable ($1 \overline{\mathrm{OE}}$ and $2 \overline{\mathrm{OE}}$) inputs can be used to disable the device so that the buses are effectively isolated.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16640 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16640 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16640 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each section)

INPUTS		OPERATION
$\overline{\text { OE }}$	DIR	
L	L	$\overline{\bar{B}}$ data to A bus
L	H	\bar{A} data to B bus
H	X	Isolation

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{I} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or powe	-0.5 V to 5.5 V
Current into any output in the low state, Io: SN54ABT16640	96 mA
SN74ABT16640	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{l}}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	0.85 W
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16640	SN74ABT16640		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
tPLH	A or B	B or A	1	2.5	3.4	1×4.4	1	4.3	ns
tpHL			1.1	2.8	3.6	1.1 .8	1.1	3.9	
tPZH	$\overline{O E}$	A or B	1.2	3.5	4.5	1.5	1.2	5.5	ns
tPZL			1.5	3.9	5	8754 6.4	1.5	6.3	
tphz	$\overline{\mathrm{OE}}$	A or B	1.8	3.8	4.8	1.86	1.8	6.3	ns
tplZ			1.5	3	3.9	1.54 .4	1.5	4.2	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	$7 \mathbf{V}$
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
 INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT16646, SN74ABT16646
 16-BIT BUS TRANSCEIVERS AND REGISTERS
 WITH 3-STATE OUTPUTS
 JUNE 1992 - REVISED MAY 1993

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical $V_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathrm{OH}}$ 64-mA IOL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16646 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers.
The device can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT16646.

SN54ABT16646... WD PACKAGE
SN74ABT16646... DL PACKAGE
(TOP VIEW)

Output-enable ($\overline{\mathrm{OE}})$ and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. The direction control (DIR) determines which bus receives data when $\overline{O E}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16646 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16646 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16646 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

Figure 1. Bus-Management Functions

logic symbolt

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

FUNCTION TABLE

INPUTS						DATA IOO		OPERATION OR FUNCTION
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input Unspecified \dagger	Unspecified \dagger Input	Store A, B unspecified \dagger Store B, A unspecified \dagger
X	x	X	\uparrow	X	X			
H	X	\uparrow	\uparrow	X	X	Input Input disabled	Input Input disabled	Store A and B data Isolation, hold storage
H	X	L	L	X	X			
L	L	X	X	X	L	Output Output	Input	Real-time B data to A bus Stored B data to A bus
L	L	X	L	X	H		Input	
L	H	X	X	L	X	Input Input	Output	Real-time A data to B bus Stored A data to B bus
L	H	L	X	H	X		Output	

\dagger The data output functions may be enabled or disabled by various signals at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . . \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}}: \text { SN54ABT16646 . } 96 \mathrm{~mA} \\
& \text { SN74ABT16646 . } 128 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \ddagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. }
\end{aligned}
$$

recommended operating conditions (see Note 2)

			SN54A	T16646	SN74A	T16646	
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	$\mathrm{V}_{\text {cc }}$	V
${ }^{\text {IOH}}$	High-level output current			-24		-32	mA
l OL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or falfrate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters lozH and lozL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT16646		SN74ABT16646		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {f clock }}$	Clock frequency	0	125	0	125	0	125	MHz
${ }^{\text {t }}$ w	Pulse duration, CLK high or low	4.3		4.3		4.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	3		4		3		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	0		0.5		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16646		SN74ABT16646		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125			125		125		MHz
tPLH	CLKBA or CLKAB	A or B	1.5	3.1	4	1	5	1.5	4.9	n
tPHL			1.5	3.2	4.1	1	5	1.5	4.7	ns
tPLH	A or B	B or A	1	2.3	3.2	0.6	4	1	3.9	ns
${ }_{\text {tPHL }}$			1	3	4.1	0.6	4.9	1	4.6	ns
tPLH	SAB or SBAT	B or A	1	2.9	4.3	0.6	5.3	1	5	S
tPHL			1	3.1	4.3	0.6	5.3	1	5	S
tPZH	$\overline{\mathrm{OE}}$	A or B	1	3.4	4.6	0.6	5.9	1	5.5	ns
tpZL			1.5	3.5	4.9	1	6	1.5	5.7	ns
tPHZ	$\overline{\mathrm{OE}}$	A or B	1.5	3.9	4.9	1	6.4	1.5	5.4	ns
tPLZ			1.5	3.1	4.1	1	4.7	1.5	4.5	ns
tPZH	DIR	A or B	1	3.2	4.5	0.6	5.8	1	5.4	ns
tPZL			1.5	3.4	4.8	1	6.7	1.5	5.6	
${ }_{\text {tPHZ }}$	DIR	A or B	2	4.2	5.7	1.2	7.1	2	6.7	ns
tPLZ			1.5	3.6	5.1	1	6.2	1.5	5.9	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tPHL tPLZ/tPZL tPHZ/tpZH	Open $7 \mathrm{~V}$ Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds $\mathbf{5 0 0} \mathrm{mA}$ Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}^{\circ}$ 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16648 is a 16 -bit bus transceiver that consists of D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. The device can be used as two 8 -bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT16648.

Output-enable ($\overline{\mathrm{OE}}$) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. The direction control (DIR) determines which bus will receive data when $\overline{\mathrm{OE}}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data may be stored in one register and/or B data may be stored in the other register.
When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to $V_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16648 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16648 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16648 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Figure 1. Bus-Management Functions

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

FUNCTION TABLE
(each 8-bit section)

INPUTS						DATA I/O		OPERATION OR FUNCTION
$\overline{\mathbf{O E}}$	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input	Unspecified ${ }^{\dagger}$	Store A, B unspecified \dagger
X	X	X	\uparrow	X	X	Unspecified \dagger	Input	Store B, A unspecified \dagger
H	x	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
H	X	L	L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time \bar{B} data to A bus
L	L	X	L	X	H	Output	Input	Stored \bar{B} data to A bus
L	H	X	X	L	X	Input	Output	Real-time \bar{A} data to B bus
L	H	L	X	H	X	Input	Output	Stored \bar{A} data to B bus

\dagger The data output functions may be enabled or disabled by a variety of level combinations at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage range, V_{CC}	
Input voltage range, V_{I} (except I/O ports) (see Note 1) . - 0.5 V V to 7 V	
Current into any output in the low state, I_{O} : SN54ABT16648	96 mA
SN74ABT16648	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	1 W
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT16648		SN74ABT16648		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	VCC	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current			-24		-32	mA
${ }^{\mathrm{O} \mathrm{OL}}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and IOZL include the input leakage current.
If Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds $\mathbf{5 0 0} \mathrm{mA}$ Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed Vcc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA loh, 64-mA IoL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16651 is a 16 -bit bus transceiver that consists of D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The device can be used as two 8 -bit transceivers or one 16-bit transceiver.

Output-enable (OEAB and $\overline{O E B A}$) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT16651.

SN54ABT1665 SN74ABT1685 (TO	... WD PACKAGE 1 ... DL PACKAGE VIEW)
10eab 1	\bigcirc_{56} 1
1CLKAb 2	551 CLKBA
1SAB 3	54 1SBA
GND 4	53 GND
$1 \mathrm{~A} 1{ }^{\text {d }} 5$	52 1B1
1 A 26	51 1B2
$\mathrm{v}_{\mathrm{CC}}[7$	$50 . \mathrm{V}_{\mathrm{CC}}$
1 А 3 -	49] 183
$1 \mathrm{~A} 4 \mathrm{C}_{9}$	48184
1A5 10	47 1B5
GND 11	46 GND
1A6 12	45186
$1 \mathrm{~A} \mathrm{Cl}_{13}$	$441 \mathrm{B7}$
1A8 14	43188
2A1 15	42] 2B1
2A2 16	${ }^{41}$ 2B2
2A3 17	40 283
GND 18	39 GND
2A4 19	38 284
2A5 20	${ }^{37}$ 2B5
2A6 21	36 2B6
$\mathrm{v}_{\mathrm{CC}}{ }^{22}$	${ }^{35} \mathrm{~V}$ cc
2A7 23	34 2B7
2A8 24	33 2B8
GND 25	$32 . \mathrm{GND}$
2SAB 26	$31.25 B A$
2 LLKAB [27	30 2CLKBA
20EAB [28	29] 2ОEBA

Data on the A or B data bus, or both, can be stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each output reinforces its input. Therefore, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remain at its last state.

[^28]
description (continued)

To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver (B to A). OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver (A to B).
The SN74ABT16651 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16651 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16651 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE								
INPUTS						DATA I/O		
OEAB	$\overline{\text { OEBA }}$	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	OPERATION OR FUNCTION
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	Hor L	x	x	Input	Unspecified \dagger	Store A, hold B
H	H	\uparrow	\uparrow	x \ddagger	x	input	Output	Store A in both registers
L	X	H or L	\uparrow	x	x	Unspecified \dagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	x	x \ddagger	Output	input	Store B in both registers
L	L	x	X	X	L	Output	Input	Real-time \bar{B} data to A bus
L	L	x	Hor L	X	H	Output	Output	Stored \bar{B} data to A bus
H	H	X	x	L	x	Input	Output	Real-time \bar{A} data to B bus
H	H	H or L	x	H	x	Input	Output	Stored \bar{A} data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored \bar{A} data to B bus and stored B data to A bus

\dagger The data output functions may be enabled or disabled by various signals at the OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.
\ddagger When select control is low, clocks can occur simultaneously so long as allowances are made for propagation delays from A to $B(B$ to $A)$ plus setup and hold times. When select control is high, clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

SN54ABT16651，SN74ABT16651

16－BIT BUS TRANSCEIVERS AND REGISTERS

WITH 3－STATE OUTPUTS
OCTOBER 1992
absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) . } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . . \text {. } \quad \text {. } .5 \mathrm{~V} \text { to } 5.5 \cdot \mathrm{~V} \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT16651 ... } 96 \mathrm{~mA} \\
& \text { SN74ABT16651 . } 128 \text { mA }
\end{aligned}
$$

> Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air) . 1 W
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTE 1：The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．
recommended operating conditions（see Note 2）

			SN54ABT16651		SN74ABT16651		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High－level input voltage		2		2		V
V_{IL}	Low－level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
IOH	High－level output current			－24		－32	mA
lOL	Low－level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns／V
$\mathrm{T}_{\text {A }}$	Operating free－air temperature		－55	125	－40	85	${ }^{\circ} \mathrm{C}$

NOTE 2：Unused or floating pins（input or $1 / O$ ）must be held high or low．
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16651		SN74ABT16651		UNIT
				MIN	TYPt MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5		2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3		3		3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2		2				
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$						
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=48 \mathrm{~mA}$			0.55		0.55			V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs		± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports		± 100		± 100		± 100	
$\mathrm{lozH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		50		50	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OZL }}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ Outputs high			50		50		50	$\mu \mathrm{A}$
107	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,			-50	-100 -180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & l_{0}=0, \\ & V_{I}=V_{C C} \text { or } G N D \end{aligned}$	A or B ports	Outputs high		2		2		2	mA
			Outputs low		72		72		30	
			Outputs disabled		2		2		2	
${ }^{\text {I }} \mathrm{CC}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled		1		1.5		1	mA
			Outputs disabled		0.05		0.05		0.05	
		Control inputs			1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs							pF
C_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports							pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V_{Cc} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{l O H}_{\mathrm{OH}}$, $64-\mathrm{mA}$ IoL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16652 is a 16 -bit bus transceiver that consists of D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The device can be used as two 8 -bit transceivers or one 16 -bit transceiver.
Output-enable (OEAB and $\overline{O E B A}$) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT16652.
Data on the A or B data bus, or both, can be stored in the internal D -type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each output reinforces its input. Therefore, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remain at its last state.

To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver (B to A). OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver (A to B).
The SN74ABT16652 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

[^29]
description (continued)

The SN54ABT16652 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
The SN74ABT16652 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS								DATA IOT		OPERATION OR FUNCTION
OEAB	$\overline{\text { OEBA }}$	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8			
L	H	L	L	X	X	Input	Input	Isolation		
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data		
X	H	\uparrow	L	X	X	Input	Unspecified \ddagger	Store A, hold B		
H	H	\uparrow	\uparrow	X \ddagger	X	Input	Output	Store A in both registers		
L	X	L	\uparrow	X	X	Unspecified \ddagger	Input	Hold A, store B		
L	L	\uparrow	\uparrow	X	X \ddagger	Output	Input	Store B in both registers		
L	L	X	X	X	L	Output	Input	Real-time B data to A bus		
L	L	X	L	X	H	Output	Input	Stored B data to A bus		
H	H	X	X	L	X	Input	Output	Real-time A data to B bus		
H	H	L	X	H	X	Input	Output	Stored A data to B bus		
H	L	L	L	H	H	Output	Output	Stored A data to B bus and		
stored B data to A bus										

\dagger The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or $\overline{\text { OEBA }}$ inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L; clocks can occur simultaneously.
Select control $=\mathrm{H}$; clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT16652 } 96 \mathrm{~mA} \\
& \text { SN74ABT16652 .. . } 128 \text { mA }
\end{aligned}
$$

> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) $\ldots \ldots .$.
> Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	T16652	SN74A	16652	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
$\mathrm{IOH}^{\text {I }}$	High-level output current			-24		-32	mA
lol	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and $\mathrm{IOZL}_{\text {include }}$ the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		SN54ABT16652		SN74ABT16652		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	0	125	0	125	0	125	MHz
t_{w}	Pulse duration, CLK high or low	4.3		4.3		4.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	3		4		3		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	0		0.5		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16652		SN74ABT16652		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125			125		125		MHz
tpLH	CLK	B or A	1.5	3.1	4	1	5	1.5	4.9	ns
tPHL			1.5	3.2	4.1	1	5	1.5	4.7	ns
tPLH	A or B	B or A	1	2.3	3.2	0.6	4	1	3.9	ns
tPHL			1	3	4.1	0.6	4.9	1	4.6	
tpLH	SAB or SBA \dagger	B or A	1	2.9	4.3	0.6	5.3	1	5	ns
${ }_{\text {tPHL }}$			1	3.1	4.3	0.6	5.3	1	5	
tPZH	$\overline{\text { OEBA }}$	A	1	2.8	4.1	0.6	5.2	1	5	ns
tPZL			1.5	3.1	4.4	1	5.4	1.5	5.3	
$\mathrm{t}_{\text {PHZ }}$	$\overline{\text { OEBA }}$	A	1.5	3.4	4.4	0.8	5.3	1.5	4.9	ns
tplZ			1.5	2.7	3.6	1	5.3	1.5	4	
$\mathrm{t}_{\mathrm{P} Z \mathrm{H}}$	OEAB	B	1	2.6	3.6	0.8	4.7	1	4.2	ns
tPZL			1.5	2.8	3.9	1	5	1.5	4.6	
${ }_{\text {tPHZ }}$	OEAB	B	2	4.2	5.5	1	6.4	2	5.9	ns
tPLZ			1.5	3.4	4.5	1	5.9	1.5	5.2	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{f} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

SN54ABT16657, SN74ABT16657 16-BIT TRANCEIVERS WITH PARITY GENERATORS/CHECKERS AND 3-STATE OUTPUTS
 SCBS103-D3983, FEBRUARY 1992 - REVISED JUNE 1992

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds $\mathbf{5 0 0} \mathrm{mA}$ Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {cc }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{l O H}$, 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16657 contains two noninverting octal transceiver sections with separate parity generator/checker circuits and control signals. For either section, the transmit/receive ($1 T / \overline{\mathrm{R}}$ or $2 T / \overline{\mathrm{R}}$) input determines the direction of data flow. When $1 T / \overline{\mathrm{R}}$ (or $2 T / \overline{\mathrm{R}}$) is high, data flows from the 1 A (or 2A) port to the 1B (or 2B) port (transmit mode); when $1 T / \bar{R}$ (or $2 T / \bar{R}$) is low, data flows from the $1 B$ (or 2B) port to the 1A (or 2A) port (receive mode). When the output-enable ($1 \overline{\mathrm{OE}}$ or $2 \overline{\mathrm{OE}}$) input is high, both the 1 A (or 2 A) and 1 B (or 2 B) ports are in the high-impedance state.

SN54ABT16657 . . . WD PACKAGE
SN74ABT16657... DL PACKAGE
(TOP VIEW)

10E ${ }_{1}$	U $5611 / \bar{R}$
NC ${ }^{2}$	55 10DD/EVEN
1 ERR [3	54 1Parity
GND 4	53 GND
1A1 ${ }^{5}$	52 1B1
1A2 6	51 1B2
$v_{C C}[7$	$50 . \mathrm{V}_{\mathrm{CC}}$
143 8	49 183
144 9	48] 184
1A5 10	47 1B5
GND 11	46 GND
1A6 12	45186
1A7 13	44 1B7
1A8 14	43 188
2A1 15	42 2B1
2A2 16	41.2 C 2
2A3 17	40 2B3
GND 18	39 GND
2A4 19	38 2B4
2A5 20	37.285
2A6 21	36 286
$\mathrm{v}_{\mathrm{CC}} \mathrm{C}^{2}$	${ }^{35} \mathrm{~V}_{\mathrm{CC}}$
2A7 23	$34] 2$ B7
2A8 [24	33 2B8
GND 25	32 GND
2ERR 26	31.2 PARITY
NC 27	30 20DD/EVEN
$2 \overline{O E}$	29] $2 T / \bar{R}$

Odd or even parity is selected by a logic high or low level, respectively, on the 1ODD/EVEN (or 2ODD/EVEN) input. 1PARITY (or 2PARITY) carries the parity bit value; it is an output from the parity generator/checker in the transmit mode and an input to the parity generator/checker in the receive mode.

In the transmit mode, after the 1A (or 2A) bus is polled to determine the number of high bits, 1PARITY (or 2PARITY) is set to the logic level that maintains the parity sense selected by the level at the 10DD/EVEN (or 2ODD/EVEN) input. For example, if 1ODD/EVEN is low (even parity selected) and there are five high bits on the 1A bus, then 1PARITY is set to the logic high level so that an even number of the nine total bits (eight 1A-bus bits plus parity bit) are high.
In the receive mode, after the 1B (or 2B) bus is polled to determine the number of high bits, the $1 \overline{\mathrm{ERR}}$ (or 2 $\overline{\mathrm{ERR}}$) output logic level indicates whether or not the data to be received exhibits the correct parity sense. For example, if 1ODD/EVEN is high (odd parity selected), 1PARITY is high, and there are three high bits on the 1B bus, then $1 \overline{\mathrm{ERR}}$ is low, indicating a parity error.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to $\mathrm{V}_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

description (continued)

The SN74ABT16657 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16657 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16657 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each 8-bit section)

NUMBER OF A OR B INPUTS THAT ARE HIGH	INPUTS			INPUT/OUTPUT PARITY	OUTPUTS	
	$\overline{\mathrm{OE}}$	T/R	ODD/EVEN		ERR	OUTPUT MODE
0, 2, 4, 6, 8	L	H	H	H	Z	Transmit
	L	H	L	L	Z	Transmit
	L	L	H	H	H	Receive
	L	L	H	L	L	Receive
	L	L	L	H	L	Receive
	L	L	L	L.	H	Receive
1, 3, 5, 7	L	H	H	L	Z	Transmit
	L	H	L	H	Z	Transmit
	L	L	H	H	L	Receive
	L	L	H	L	H	Receive
	L	L	L	H	H	Receive
	L	L	L	L	L	Receive
Don't care	H	X	X	Z	Z	Z

SN54ABT16657, SN74ABT16657 16-BIT TRANCEIVERS WITH PARITY GENERATORS/CHECKERS
 AND 3-STATE OUTPUTS
 SCBS103 - D3983, FEBRUARY 1992 - REVISED JUNE 1992

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram, each transceiver (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)| PARAMETER | TEST CONDITIONS | | | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | | SN54ABT16657 | SN74ABT16657 | | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | MIN | TYPt MAX | MIN MAX | MIN | MAX | |
| V_{IK} | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{I}=-18 \mathrm{~mA}$ | | | -1.2 | -1.2 | | -1.2 | V |
| VOH | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$ | | 2.5 | | 2.5 | | | V |
| | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$ | | 3 | | 3 | 3 | | |
| | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{l}^{\mathrm{OH}}=-24 \mathrm{~mA}$ | | 2 | | 2 | | | |
| | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOH}^{\mathrm{O}}=-32 \mathrm{~m}$ | | 2^{*} | | | 2 | | |
| VoL | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$ | | | 0.55 | 0.55 | | | V |
| | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOL}=64 \mathrm{~mA}$ | | | 0.55* | 20 | | 0.55 | |
| 1 | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ | | Control inputs | | ± 1 | 4 | | ± 1 | $\mu \mathrm{A}$ |
| | | | A or B ports | | ± 100 | 6100 | | ± 100 | |
| ${ }^{\text {OZZH }}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ | | | 50 | - 50 | | 50 | $\mu \mathrm{A}$ |
| lozl ${ }^{\ddagger}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ | | | -50 | \% -50 | | -50 | $\mu \mathrm{A}$ |
| loff | $\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$ | | | | ± 100 | * ± 450 | | ± 100 | $\mu \mathrm{A}$ |
| ICEX | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ | Outputs high | | 50 | 50 | | 50 | $\mu \mathrm{A}$ |
| 10^{\S} | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | | | -50 | -100 $\quad-180$ | -50 -180 | -50 | -180 | mA |
| Icc | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{O}=0, \\ & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$ | A or B ports | Outputs high | | 2 | 2 | | 2 | mA |
| | | | Outputs low | | 36 | 36 | | 36 | |
| | | | Outputs disabled | | 2 | 2 | | 2 | |
| $\Delta C_{C C}{ }^{\text {l }}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND | | | | 50 | 50 | | 50 | $\mu \mathrm{A}$ |
| C_{i} | $\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V | | Control inputs | | 3 | | | | pF |
| C_{io} | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V | | A or B ports | | 9 | | | | pF |

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{l}_{\text {OZL }}$ include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

* On products compliant to MIL-STD-883, Class B, this parameter is not production tested.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16657		SN74ABT16657		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1.5	2.5	3.3	1.5	4.2	1.5	4.1	ns
tPHL			2	3.1	3.9	2	4.5	2	4.3	
tPLH	A	PARITY	2	4.6	5.4	2	7	2	6.7	ns
tPHL			2	4.3	5.1	2	6.5	2	6.1	
tPLH	ODD/EVEN	PARITY, $\overline{\text { ERR }}$	2	4.6	5.4	2	7	2	6.7	ns
tPHL			2	4.3	5.1	2	$6: 5$	2	6.1	
tPLH	B	$\overline{E R R}$	2	4.6	5.4	2	\% 7	2	6.7	ns
tPHL			2	4.3	5.1		6.5	2	6.1	
tPLH	PARITY	$\overline{\text { ERR }}$	2	4.6	5.4	2	7	2	6.7	ns
tPHL			2	4.3	5.1	$\bigcirc 2$	6.5	2	6.1	
tpZH	$\overline{\mathrm{OE}}$	A or B	2	3.9	4.9	$)^{\text {¢ }} 2$	5.8	2	5.6	ns
tpZL			2.5	4.3	5.1	2.5	6.2	2.5	6	
tPHZ	$\overline{\mathrm{OE}}$	A or B	2	3.6	4.5	2	5.5	2	5.4	ns
tpLZ			1.5	3	3.8	1.5	4.7	1.5	4.3	
tPZH	$\overline{\mathrm{OE}}$	PARITY, ERR	2	4	4.9	2	5.8	2	5.6	ns
tPZL			2.5	4.1	5.1	2.5	6.2	2.5	6	
tPHZ	$\overline{\mathrm{OE}}$	PARITY, $\overline{\text { ERR }}$	1	3.5	4.5	1	5.5	1	5.4	ns
tPLZ			1.5	3	3.8	1.5	4.7	1.5	4.3	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL tPLZ/tPZL tPHZ/tPZH	Open 7 V Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT16821, SN74ABT16821 20-BIT BUS-INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathrm{OH}}$, 64-mA IOL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 20 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.
The 'ABT16821 can be used as two 10-bit flip-flops or one 20 -bit flip-flop. The twenty flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs.

SN54ABT16821 . . . WD PACKAGE
SN74ABT16821 . . . DL PACKAGE
(TOP VIEW)

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the ten outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable ($\overline{\mathrm{OE}})$ input does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16821 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16821 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16821 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^30]FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
$\overline{O E}$	CLK	\mathbf{D}	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Nine Other Channels

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (see Note 1) . } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . . \\
& \text { Current into any output in the low state, IO: SN54ABT16821 } 96 \text { mA } \\
& \text { SN74ABT16821 . } 128 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those jindicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16821	SN74ABT16821	UNIT
			MIN	TYP ${ }^{\text {MAX }}$	MIN MAX	MIN MAX	
$\mathrm{V}_{\text {IK }}$	$V_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$			-1.2	-1.2	-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		2.5		2.5	2.5	V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3		3	3	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}^{2}=-24 \mathrm{~mA}$		2		2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~m}$		$2 \ddagger$			2	
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OL}}=48 \mathrm{~mA}$			0.55	0.55		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I} \mathrm{OL}=64 \mathrm{~mA}$			$0.55 \ddagger$	4	0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or			± 1	${ }^{4} \pm 1$	± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	$8^{4} 50$	50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	3 -50	-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{C C}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4$			± 100	${ }^{\circ}$	± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	Q 50	50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -200	-50 -200	-50 -200	mA
${ }^{\text {I C C }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{C C} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		500	500	500	$\mu \mathrm{A}$
		Outputs low		89	89	89	mA
		Outputs disabled		500	500	500	$\mu \mathrm{A}$
$\Delta \mathrm{cc}{ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3.5			pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7.5			pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT16821		SN74ABT16821		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	0	150	0	\$150	0	150	MHz
t_{w}	Pulse duration, CLK high or low	3.3				3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	1.8		${ }^{6}+8$		1.8		ns
t_{h}	Hold time, data after CLK \uparrow	1.3		1.3		1.3		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16821		SN74ABT16821.		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150			150	4	150		MHz
$t_{\text {PLH }}$	CLK	Q	1.3	3.7	5.1		\% 6.7	1.3	6.1	ns
${ }^{\text {tPHL }}$			1.6	3.9	5.1	1.6%	5.8	1.6	5.4	
$t_{\text {P }}$	$\overline{O E}$	Q	1.1	3.2	4.7	1.4	5.8	1.1	5.7	ns
tPZL			1.6	3.8	5	4.6	5.7	1.6	5.6	
tPHZ	$\overline{\mathrm{OE}}$	Q	2	4.5	5.7	- 2	6.6	2	6.5	ns
tplZ			1.8	4.1	5.8	1.8	8.4	1.8	7.1	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA IOH, 64-mA IOL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.
The 'ABT16823 can be used as two 9-bit flip-flops or one 18 -bit flip-flop. With the clock-enable ($\overline{\text { CLKEN }}$) input low, the D-type flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, thus latching the

A buffered output-enable $(\overline{\mathrm{OE}})$ input can be used to place the nine outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable $(\overline{\mathrm{OE}})$ input does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to $\mathrm{V}_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16823 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16823 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16823 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^31]UNCTION TABLE
(each 9-bit stage)

INPUTS					OUTPUT
$\mathbf{O E}$	CLR	CLKEN	CLK	D	Q
L	L	X	X	X	L
L	H	L	\uparrow	H	H
L	H	L	\uparrow	L	L
L	H	L	L	X	Q_{0}
L	H	H	X	X	Q_{0}
H	X	X	X	X	Z

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16823		SN74ABT16823		UNIT
			MIN	TYPt MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{OH}=-3 \mathrm{~mA}$	$\mathrm{OH}=-3 \mathrm{~mA}$	2.5		2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~m}$		3		3		3.		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$	$1 \mathrm{OH}=-24 \mathrm{~mA}$	2		2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~m}$	$1 \mathrm{OH}=-32 \mathrm{~mA}$	$2 \ddagger$				2		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{lOL}=48 \mathrm{~mA}$	$\mathrm{l} \mathrm{OL}=48 \mathrm{~mA}$	0.55		0.55				V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}, \mathrm{ll}=64 \mathrm{~mA}$	$\mathrm{IOL}=64 \mathrm{~mA}$	0.55 \ddagger					0.55	
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-50		-50		-50	$\mu \mathrm{A}$
loff	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{ll}\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} & \mathrm{~V}_{0}=2.5 \mathrm{~V}\end{array}$	Outputs high		50		50		50	$\mu \mathrm{A}$
10^{\S}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-100-200	-50	-200	-50	-200	mA
${ }^{\prime} \mathrm{CC}$	$\begin{aligned} & v_{C C}=5.5 v, \quad I O=0, \\ & v_{1}=v_{C C} \text { or GND } \end{aligned}$	Outputs high		0.5		0.5		0.5	mA
		Outputs low		80		80		80	
		Outputs disabled		0.5		0.5		0.5	
$\Delta \mathrm{Cc} \mathrm{Cl}^{\text {l }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		3.5						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		7.5						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		SN54ABT16823		SN74ABT16823		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {f clock }}$	Clock frequency		0	150	0	150	0	150	MHz
tw	Pulse duration	CLR low	3.3		3.3		3.3		ns
		CLK high or low	3.3		3.3		3.3		
${ }^{\text {tsu }}$	Setup time before CLK \uparrow	$\overline{\text { CLR inactive }}$	1.6		2		1.6		ns
		Data	1.7		1.7		1.7		
		CLKEN low	2.8		2.8		2.8		
th	Hold time after CLK \uparrow	Data	1.2		1.2		1.2		ns
		CLKEN low	0.6		0.6		0.6		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT16823		SN74ABT16823		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {max }}$			150			150		150		MHz
tpLH	CLK	Q	1.6	3.9	5.5	1.6	7.7	1.6	6.8	ns
tPHL			2.1	3.9	5.4	2.1	6.4	2.1	6	
tPHL	$\overline{C L R}$	Q	1.9	4.1	5.3	1.9	6.3	1.9	6.1	ns
tPZH	$\overline{O E}$	Q	1	3.1	4.2	1	5.1	1	4.9	ns
tpZL			1.5	3.5	4.6	1.5	5.7	1.5	5.5	
tPHZ	$\overline{\mathrm{OE}}$	Q	2.2	4.3	5.6	2.2	6.8	2.2	6.1	ns
tplz			1.6	4.3	6.4	1.6	9.9	1.6	8.7	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {tPL }}$ (tPZL	Open
7 V	
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\mathbf{C C}}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA $\mathrm{IOL}_{\mathrm{O}}$)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16825 is an 18-bit buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as two 9-bit buffers or one 18-bit buffer. It provides true data.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$) input is high, all nine affected outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16825 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16825 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16825 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
(each 9-bit section)

INPUTS			OUTPUT
$\mathbf{O E 1}$	$\overline{\text { OE2 }}$	A	\mathbf{Y}
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

[^32]logic symbol \dagger

logic diagram (positive logic)

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, Io: SN54ABT16825 96 mA
SN74ABT16825 128 mA

Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16825		SN74ABT16825		UNIT
			MIN	TYPt MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		2.5		2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}^{2}=-3 \mathrm{~mA}$		3		3		3		v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}^{2}=-24 \mathrm{ra}$		2		2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$				2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$			$0.55 \ddagger$		3		0.55	V
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or	GND		± 1		44		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		850		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	\bigcirc	50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50	-180	-50	-180	mA
		Outputs high		2		2		2	
${ }^{\text {I C C }}$	$\left\lvert\, \begin{aligned} & V_{C C}=5.5 V, \\ & V_{1}=V_{C C} \text { or } G N D \end{aligned} \quad \mathrm{IO}_{2}=0\right.,$	Outputs low		32		32		32	mA
		Outputs disabled		2		2		2	
$\Delta^{\prime} \mathrm{Cc}{ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input Other inputs at V_{CC} or GND	$3.4 \mathrm{~V},$		1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V								pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V								pF

[^33]switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16825		SN74ABT16825		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	1.9	3.6	1	4.1	1	3.9 ,	ns
tPHL			1	2.1	3.9	1	\% 4.7	1	4.4	
tpZH	$\overline{\mathrm{OE}}$	Y	1	2.8	5.5		6.4	1	6.1	ns
tPZL			1	2.8	5.4	,	6.3	1	6	
tpHZ	$\overline{\mathrm{OE}}$	Y	2.4	4.5	6.8	< 2.4	7.1	2.4	6.9	ns
tplZ			1.6	3.7	6.2	* 1.6	7.6	1.6	6.6	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL tpLz/tpZL tPHz/tPZH	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical VOLP (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA loH, 64-mA IoL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16826 is an 18 -bit buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as two 9-bit buffers or one 18 -bit buffer. It provides true data.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$) input is high, all nine affected outputs are in the high-impedance state.

SN54ABT16826 . . . WD PACKAGE
SN74ABT16826... DL PACKAGE
(TOP VIEW)

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16826 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16826 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16826 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each 9-bit section)

INPUTS			
OUTPUT			
OE1	$\overline{\text { OE2 }}$	A	Y
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

[^34]logic symbol \dagger

logic diagram (positive logic)

To Eight Other Channels

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . .-0.5 \mathrm{~V}$ to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT16826 96 mA
SN74ABT16826 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) $\ldots \ldots .1 \mathrm{~W}$
Storage temperature range ... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16826		SN74ABT16826		UNIT
			MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
$\mathrm{VOH}^{\text {O }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$1 \mathrm{OH}=-3 \mathrm{~mA}$	2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\text {OH }}=-24$	$\mathrm{I}^{\mathrm{O}} \mathrm{OH}=-24 \mathrm{~mA}$	2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32$	$\mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$	$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\mathrm{IOL}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			± 1		± 1		± 1	$\mu \mathrm{A}$
lozh	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\text {CC }}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4$	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-100	-180	-50	-180	-50	-180	mA
${ }^{1} \mathrm{CC}$	$\begin{aligned} & V_{C C}=5.5 V, \quad \mathrm{~V}=0, \\ & V_{1}=V_{C C} \text { or } G N D \end{aligned}$	Outputs high			2		2		2	mA
		Outputs low			32		32		32	
		Outputs disabled			2		2		2	
${ }^{\Delta l} \mathrm{CCl}^{\text {l }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V									pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V									pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds $\mathbf{5 0 0}$ mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{c c}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA loh, 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16827 is a noninverting 20 -bit buffer composed of two 10 -bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1 \overline{\mathrm{OE}} 1$ and $1 \overline{\mathrm{OE} 2}$ or $2 \overline{\mathrm{OE}} 1$ and $2 \overline{\mathrm{OE} 2}$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to $V_{C C}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16827 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16827 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16827 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

UNCTION TABLE
(each 10-bit section)

INPUTS			OUTPUT
$\overline{\text { OE1 }}$	$\overline{\text { OE2 }}$	A	
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

[^35]logic symbol \dagger

logic diagram (positive logic)

To Nine Other Channels

To Nine Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT16827 96 mA
SN74ABT16827 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) ... 1 W
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16827	SN74ABT16827		UNIT
			MIN	TYP \dagger MAX	MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2	-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-3 \mathrm{~mA}$		2.5		2.5	2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-3 \mathrm{~m}$		3		3	3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2		2			
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$			2		
V OL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{lOL}=48 \mathrm{~mA}$			0.55	0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$			$0.55 \ddagger$	a		0.55	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or	ND		± 1	41		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	$\bigcirc 50$		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	\bigcirc		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}} \leq 4$			± 100	5		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	$\bigcirc \quad 50$		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50 -180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		2	2		2	mA
		Outputs low		32	32		32	
		Outputs disabled		2	2		2	
	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3				pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7.5				pF

[^36]\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16827		SN74ABT16827		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	1.9	3.1	1	3.6	1	3.4	ns
${ }_{\text {tPHL }}$			1	2.1	3.7		44.5	1	4.2	
tpZH	$\overline{\mathrm{OE}}$	Y	1	2.8	5		5.9	1	5.6	ns
tPZL			1	2.8	4.9		5.8	1	5.5	
tPHZ	$\overline{\mathrm{OE}}$	Y	2.4	4.5	6.5	2.4	6.8	2.4	6.6	ns
tplZ			1.6	3.7	5.7	\% 1.6	7.1	1.6	6.1	

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V ${ }_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{l O H}_{\mathrm{OH}}$, 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16828 is an inverting 20-bit buffer composed of two 10-bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1 \overline{\mathrm{OE} 1}$ and $1 \overline{\mathrm{OE} 2}$ or $2 \overline{\mathrm{OE} 1}$ and $2 \overline{\mathrm{OE} 2}$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10-bit buffer section are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT16828 . . WD PACKAGE
SN74ABT16828... DL PACKAGE
(TOP VIEW)

The SN74ABT16828 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16828 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16828 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE		
(each 10-bit section)		
INPUTS OUTPUT OE1 $\overline{\text { OE2 }}$ A Y L L L H L L H L H X X Z X H X Z		

[^37]logic symbol \dagger

logic diagram (positive logic)

To Nine Other Channels

To Nine Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage range, V_{CC}	
Input voltage range, V_{I} (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . .$.	
Current into any output in the low state, l_{0} : SN54ABT16828	96 mA
SN74ABT16828	128 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54AB	T16828	SN74A	T16828	
			MIN	MAX	MIN	MAX	NT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{1}$	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed Vcc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA IOH, 64-mA loL)
- Parity Error Flag With Parity Generator/Checker
- Register for Storage of the Parity Error Flag
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16833 consists of two noninverting 8-bit to 9-bit parity bus transceivers and is designed for communication between data buses. For each transceiver, when data is transmitted from the A bus to the B bus, an odd-parity bit is generated and output on the parity I/O pin (1PARITY or 2PARITY). When data is transmitted from the B bus to the A bus, 1PARITY (or 2PARITY) is configured as an input and combined with the B input data to generate an active-low error flag if odd parity is not detected.

SN54ABT16833 . . . WD PACKAGE
SN74ABT16833 . . . DL PACKAGE
(TOP VIEW)

The error (1 $\overline{\mathrm{ERR}}$ or $2 \overline{\mathrm{ERR}}$) output is configured as an open-collector output. The B-to-A parity error flag is clocked into $1 \overline{\mathrm{ERR}}$ (or 2 $\overline{\mathrm{ERR}}$) on the low-to-high transition of the clock (1CLK or 2CLK) input. 1 $\overline{\mathrm{ERR}}$ (or 2 $\overline{\mathrm{ERR}}$) is cleared (set high) by taking the clear (1 $\overline{\mathrm{CLR}}$ or $2 \overline{\mathrm{CLR}}$) input low.
The output-enable ($\overline{\mathrm{OEA}}$ and $\overline{\mathrm{OEB}}$) inputs can be used to disable the device so that the buses are effectively isolated. When both $\overline{O E A}$ and $\overline{O E B}$ are low, data is transferred from the A bus to the B bus and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16833 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16833 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16833 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

FUNCTION TABLE										
INPUTS						OUTPUT AND I/O				FUNCTION
$\overline{O E B}$	$\overline{\text { OEA }}$	$\overline{\text { CLR }}$	CLK	$\begin{gathered} \text { Ai } \\ \text { 工OF H's } \end{gathered}$	$\begin{gathered} \text { Bif } \\ \text { ェOFH's } \end{gathered}$	A	B	PARITY	ERR \ddagger	
L	H	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	NA	A data to B bus and generate parity
H	L	H	\uparrow	NA	Odd Even	B	NA	NA	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	B data to A bus and check parity
X	X	L	X	X	X	X	NA	NA	H	Check error flag register
H	H	H	No \uparrow	X	X	Z	Z	Z	NC	Isolation§
			No \uparrow	X					H	
		H	\uparrow	Odd					H	
		H	\uparrow	Even					L	
L	L	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	NA	A data to B bus and generate inverted parity

NA $=$ not applicable, $\mathrm{NC}=$ no change, $\mathrm{X}=$ don't care
\dagger Summation of high-level inputs includes PARITY along with Bi inputs.
\ddagger Output states shown assume the ERR output was previously high.
\S In this mode, the ERR output (when clocked) shows inverted parity of the A bus.
logic symbolt

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

ERROR FLAG FUNCTION TABLE

INPUTS		INTERNAL TO DEVICE	OUTPUT PRE-STATE	OUTPUT ERR	FUNCTION
CLR	CLK	POINT "P"	ERR $_{\mathrm{n}-1}$		
H	\uparrow	H	H	H	
H	\uparrow	X	L	L	Sample
H	\uparrow	L	X	L	
L	X	X	X	H	Clear

†The state of the $\overline{\text { ERR }}$ output before any changes at CLR, CLK, or point " P ".

error-flag waveforms

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage range, V_{I} (except I/O ports) (see Note 1) . 0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . \mathrm{m}$. 0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT16833 .. 96 mA
SN74ABT16833 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$. 18 mA

Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not. implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	16833	SN74AB	16833	
			MIN	MAX	MIN	MAX	UNT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage		2	4	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			4		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
V_{OH}	High-level output voltage	ERR		5.5		5.5	V
${ }^{1} \mathrm{OH}$	High-level output current	Except ERR		-24		-32	mA
${ }^{1} \mathrm{OL}$	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \mathbf{V}_{\mathbf{C C}} \\ & \mathrm{T}_{\mathbf{A}}= \end{aligned}$		SN54ABT16833	SN74A	16833	UNIT
			MIN	MAX	MIN MAX	MIN	MAX	
t_{w}	Pulse duration	CLK high or low	3		$3{ }^{3}$	3		ns
	Setup time before CLK \uparrow	A port	4.5		4.5	4.5		ns
${ }^{\text {su }}$	Setup time before CLK \uparrow	$\overline{\text { CLR }}$	1		< 1	1		ns
th	Hold time after CLK \uparrow	A port	0		0	0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16833		SN74ABT16833		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1.5	2.5	3.3	1.5	4.2	1.5	4.1	ns
tPHL			2	3.1	3.9	2	4.5	2	4.3	
tpZH	$\overline{\mathrm{OE}}$	A or B	2	3.9	4.9	2	5.8	2	5.6	ns
tPZL			2.5	4.3	5.1	2.5	6.2	2.5	6	
tPHZ	$\overline{\mathrm{OE}}$	A or B	2	3.6	4.5	2	45.5	2	5.4	ns
tPLZ			1.5	3	3.8	1.5	4 4.7	1.5	4.3	
tPLH	A or $\overline{\mathrm{OE}}$	PARITY	2	4.6	5.4		7	2	6.7	ns
tPHL			2	4.3	5.1	2	6.5	2	6.1	
tpZH	$\overline{\mathrm{OE}}$	PARITY	2	3.6	5	$\bigcirc 2$	5.8	2	5.7	ns
tPZL			2.5	4.4	5.8	Q 2.5	6.7	2.5	6.5	
tPHZ	$\overline{\mathrm{OE}}$	PARITY	1.5	3.2	4	1.5	4.8	1.5	4.7	ns
tPLZ			1.5	2.9	3.7	1.5	4.2	1.5	4.1	
tPLH	CLK, $\overline{\text { CLR }}$	$\overline{\text { ERR }}$	2	3.4	4.2	2	4.8	2	4.6	ns
tPHL	CLK		2	2.8	3.6	2	4.1	2	3.9	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

TEST	S1
tPLH/tpHL $^{\text {t }}$	Open
tPLZ/tPZL	7 V
tPHZ 2 tPZH	Open

$\overline{\text { ERR }}$	S1
tPHL (see Note E)	7 V
tpLH (see Note F)	7 V

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

Note B)

Output

Output

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.
E. tPHL is measured at 1.5 V .
F. tPLH is measured at $\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathrm{OH}}$, 64-mA I_{OL})
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and $380-\mathrm{mil}$ Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 20-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

SN54ABT16841 . . . WD PACKAGE
SN74ABT16841 . . . DL PACKAGE
(TOP VIEW)

The 'ABT16841 can be used as two 10-bit latches or one 20-bit latch. The twenty latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs. While the latch-enable (1LE or 2LE) input is high, the Q outputs of the corresponding 10-bit latch follow the D inputs. When LE is taken low, the Q outputs are latched at the levels that were set up at the D inputs.
A buffered output-enable ($1 \overline{\mathrm{OE}}$ or $2 \overline{\mathrm{OE}}$) input can be used to place the outputs of the corresponding 10-bit latch in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly.
The output-enable input does not affect the internal operation of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16841 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16841 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16841 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each 10-bit latch)

INPUTS			OUTPUT
$\mathbf{O E}$	LE	\mathbf{D}	\mathbf{Q}
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Nine Other Channels

To Nine Other Channels

SN54ABT16841, SN74ABT16841
 20-BIT BUS-INTERFACE D-TYPE LATCHES WITH 3-STATE OUTPUTS
 SEPTEMBER 1992 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	T16841	SN74A	16841	
			MIN	MAX	MIN	MAX	IT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	\%	2		V
V_{IL}	Low-level input voltage			¢0.8		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
${ }^{\mathrm{OH}}$	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	8	10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.

SN54ABT16841, SN74ABT16841

20-BIT BUS-INTERFACE D-TYPE LATCHES

WITH 3-STATE OUTPUTS

SEPTEMBER 1992 -REVISED APRIL 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16841	SN74ABT16841	UNIT
			MIN	TYPt MAX	MIN MAX	MIN MAX	
V_{IK}	$V_{C C}=4.5 \mathrm{~V}, \quad I_{1}=-18 \mathrm{~mA}$			-1.2	-1.2	-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3$		2.5		2.5	2.5	V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$		3		3	3	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24$		2		2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32$		$2 \ddagger$			2	
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{lOL}=48 \mathrm{~mA}$			0.55	0.55		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}^{2}=64 \mathrm{~m}$			$0.55 \ddagger$	\$	0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or			± 1	\pm	± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	250	50	$\mu \mathrm{A}$
lozL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	\&-50	-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\text {CC }}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq$			± 100	5	± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	$\bigcirc 50$	50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50 - 180	-50 -180	mA
ICC	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{v}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		0.5	0.5	0.5	mA
		Outputs Iow		89	89	89	
		Outputs disabled		0.5	0.5	0.5	
${ }^{\text {a }} \mathrm{Cc} \mathrm{Cl}^{\text {l }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3.5			pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7.5			pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16841		SN74ABT16841		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpLH	D	Q	1.1	3.2	4.3	1.1	5.7	1.1	5	ns
tPHL			1.6	3.5	4.5	1.6	5.8	1.6	5.1	
tPLH	LE	Q	1.1	3.2	4.4		\% 5.6	1.1	5	ns
tPHL			1.6	3.4	4.6	1.6	5.3	1.6	5	
tPZH	$\overline{O E}$	Q	1.2	3.2	4.7	1.2	5.8	1.2	5.7	ns
tpZL			1.7	3.6	5	07	5.7	1.7	5.6	
tphz	$\overline{O E}$	Q	2.2	4.1	5.7	${ }^{2} 2$	6.6	2.2	6.5	ns
tplz			1.9	4.4	5.8	1.9	8.4	1.9	7.1	

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {Cc }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, 64-mA $\mathrm{IOL}^{\text {) }}$
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16843 18-bit latch is designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The 'ABT16843 can be used as two 9-bit latches or one 18-bit latch. The eighteen latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs.

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the nine outputs in either a normal logic state (high or low levels) or a high-impedance state. The outputs are also in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered-down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

The output-enable ($\overline{\mathrm{OE}})$ input does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16843 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

description（continued）

The SN54ABT16843 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ． The SN74ABT16843 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．

FUNCTION TABLE （each 9－bit latch）				
INPUTS OUTPUT （ \bar{y} PRE CLR $\overline{\text { OE }}$ LE D Q L X L X X H H L L X X L H H L H L L H H L H H H H H L L X Q X X H X X Z				

logic diagram (positive logic)

WITH 3-STATE OUTPUTS

OCTOBER 1992 - REVISED FEBRUARY 1993
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots . .-0.5 \mathrm{~V}$ to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT16843 96 mA
SN74ABT16843 128 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) $\ldots \ldots . .1 \mathrm{~W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.

SN54ABT16843, SN74ABT16843
 18-BIT BUS-INTERFACE D-TYPE LATCHES
 WITH 3-STATE OUTPUTS

OCTOBER 1992 - REVISED FEBRUARY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT16843		SN74ABT16843		UNIT
			MIN	TYP ${ }^{\text {P MAX }}$	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3		3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		2		2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{ma}$		$2 \ddagger$				2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or	GND		± 1		± 1		± 1	$\mu \mathrm{A}$
Iozh	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50		50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50		-50		-50	$\mu \mathrm{A}$
Ioff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4$			± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & v_{C C}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{C C} \text { or } G N D \end{aligned}$	Outputs high		500		500		500	mA
		Outputs low		85		85		85	
		Outputs disabled		500		500		500	
$\Delta \mathrm{Cc}{ }^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3.5					pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			7.5				,	pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT16843		SN74ABT16843		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_{w}	Pulse duration	CLR low	3.3		3.3		3.3		ns
		PRE low	3.3		3.3		3.3		
		LE high	3.3		3.3		3.3		
$t_{\text {su }}$	Setup time, data before LE \downarrow	High	1		1		1		ns
		Low	1		1		1		
th	Hold time, data after LE \downarrow		1.4		1.4		1.4		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16843		SN74ABT16843		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	D	Q	1.1	3	4.4	1.1	6	1.1	5.2	ns
tpHL			1.4	3.2	4.9	1.4	5.6	1.4	5.4	
tplh	LE	Q	1.4	3.6	5.2	1.4	7	1.4	6.2	ns
tPHL			1.9	3.7	5.1	1.9	6.2	1.9	5.8	
tPLH	$\overline{\text { PRE }}$	Q	1	3.8	5.9	1	7.6	1	6.6	ns
tPHL			1.7	3.6	5	1.7	6	1.7	5.6	
tPLH	$\overline{\text { CLR }}$	Q	1.2	3.6	5.1	1.2	7.2	1.2	6.1	ns
tPHL			2	4.2	6.1	2	6.9	2	6.7	
tPZH	$\overline{\mathrm{OE}}$	Q	1	2.9	4.6	1	5.8	1	5.7	ns
tPZL			1.4	3.3	5.1	1.4	5.7	1.4	5.6	
tPHZ	$\overline{\mathrm{OE}}$	Q	2.4	4.1	6	2.4	6.6	2.4	6.5	ns
tplZ			1.9	4.2	6	1.9	9.6	1.9	7.7	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t P L H}^{/ t_{\text {PHL }}}$ tPLZ/tPZL tphz/tpzH	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA IOH, 64-mA IoL)
- Parity Error Flag With Parity Generator/Checker
- Latch for Storage of the Parity Error Flag
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16853 dual 8-bit to 9 -bit parity transceiver is designed for communication between data buses. When data is transmitted from the A bus to the B bus, a parity bit is generated. When data is transmitted from the B bus to the A bus with its corresponding parity bit, the open-collector parity-error (ERR) output indicates whether or not an error in the B data has occurred. The output-enable ($\overline{\mathrm{OEA}}$ and $\overline{\mathrm{OEB}}$) inputs can be used to disable the device so that the buses are effectively isolated. The 'ABT16853 provides true data at its outputs.

SN54ABT16853 . . . WD PACKAGE
SN74ABT16853 . . . DL PACKAGE
(TOP VIEW)

1 $\overline{\text { EB }}$ [1	$56] \overline{O E A}$
1动]2	551 1 CLR
1 $\overline{\text { ERR }}$ [3	54 1PARIT
GND [4	53 GND
1A1 ${ }^{5}$	$52] 1 \mathrm{B1}$
1A2 6	51 1B2
$\mathrm{v}_{\mathrm{CC}}{ }^{7}$	$50 . \mathrm{v}_{\mathrm{CC}}$
143 ${ }^{8}$	49 183
144 ${ }^{\text {a }}$	48 184
1A5 10	47 1B5
GND [11	46 GND
1 A 612	45 1B6
$1 \mathrm{~A} \mathrm{C}_{13}$	44187
1A8 14	${ }^{43} 188$
2A1 15	$42] 2 \mathrm{B1}$
2A2 16	41.2 C 2
2 A 317	40 2B3
GND 18	$39]$ GND
2A4 19	38 2B4
2 A 520	37 2B5
2 A 621	36 2B6
$\mathrm{V}_{\mathrm{CC}}{ }^{22}$	${ }^{35} \mathrm{v}_{\mathrm{CC}}$
$247{ }^{23}$	34] 287
2A8 24	33 288
GND 25	32 GND
2ERR 26	$31] 2$ PARIT
$2 \overline{L E}$ 27	$30] 2 \overline{C L R}$
$2 \overline{O E B}$ [28	29] 2OEA

A 9-bit parity generator/checker generates a parity-odd (PARITY) output and monitors the parity of the I/O ports with the ERR flag. The parity-error output can be passed, sampled, stored, or cleared from the latch using the latch-enable ($\overline{\mathrm{LE}}$) and clear ($\overline{\mathrm{CLR}}$) control inputs. When both $\overline{\mathrm{OEA}}$ and $\overline{\mathrm{OEB}}$ are low, data is transferred from the A bus to the B bus, and inverted parity is generated. Inverted parity is a forced error condition that gives the designer more system diagnostic capability.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16853 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16853 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16853 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

D4519, OCTOBER 1992-REVISED DECEMBER 1992

FUNCTION TABLE										
INPUTS						OUTPUT AND I/O				FUNCTION
OEB	OEA	CLR	LE	$\begin{gathered} \mathrm{Ai} \\ \mathrm{\Sigma OFH} \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 工OFH } \end{gathered}$	A	B	PARITY	ERR \ddagger	
L	H	X	X	Odd Even	NA	NA	A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	NA	A data to B bus and generate parity
H	L	X	L	NA	Odd Even	B	NA	NA	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	B data to A bus and check parity
H	L	H	H	NA	X	X	NA	NA	NC	Store error flag
X	X	L	H	X	X	X	NA	NA	H	Clear error flag register
H	H	H	H	X	X	Z	Z	Z	NC	Isolation§ (parity check)
		L		X					H	
		X	L	L Odd					H	
		X	L	H Even					L	
L	L	X	X	Odd Even	NA	NA	A	H	NA	A data to B bus and generate inverted parity

NA = not applicable, $\mathrm{NC}=$ no change, $\mathrm{X}=$ don't care
\dagger Summation of high-level inputs includes PARITY along with Bi inputs.
\ddagger Output states shown assume the $\overline{\text { ERR }}$ output was previously high.
§ In this mode, the ERR output (when clocked) shows inverted parity of the A bus.
logic diagram (each transceiver) (positive logic)

ERROR FLAG FUNCTION TABLE

INPUTS		INTERNAL TO DEVICE	OUTPUT	$\frac{\text { OUTPUT }}{\text { ERR }}$	FUNCTION
$\overline{\text { CLR }}$	$\overline{\text { LE }}$	POINT P	$\overline{E R R}_{\mathbf{n - 1}} \dagger$		
L	L	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Pass
H	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	Sample
L	H	X	X	H	Clear
H	H	X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Store

\dagger The state of the $\overline{E R R}$ output before any changes at $\overline{C L R}, \overline{L E}$, or point P

SN54ABT16853, SN74ABT16853

error-flag waveforms

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} 96 mA
SN74ABT16853 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ $-18 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DL package 1 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16853		SN74ABT16853		UNIT
				MIN	TYPt	MAX	MI	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\boldsymbol{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	All outputs except ERR	2.5	3		2.				V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{OH}=-3 \mathrm{~mA}$		3	3.4				3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-24 \mathrm{~mA}$									
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$	2.7				2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=24 \mathrm{~mA}$			0.25	0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$			0.3	0.55 \ddagger				0.55	
${ }^{\mathrm{IOH}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$	ERR			20		20		20	$\mu \mathrm{A}$
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
ILL	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$,	$\begin{array}{ll}\mathrm{V}_{1}=\text { GND } \\ \mathrm{V}_{0}=2.7 \mathrm{~V} & \text { A or } \mathrm{B} \text { ports }\end{array}$				-50		< 80		-50	$\mu \mathrm{A}$
$\mathrm{lozH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		\% 50		50	$\mu \mathrm{A}$
lozL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50	Q	50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$				-100	-180	-5	-180		-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \end{aligned}$	A or B ports	Outputs high		1.5	2		2		2	mA
			Outputs low		32	40		40		40	
			Outputs disabled		1	2		2		2	
$\Delta^{\prime} \mathrm{CC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND					50		50		50	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		9						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and I IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SN54ABT16853, SN74ABT16853 DUAL 8-BIT TO 9-BIT PARITY BUS TRANSCEIVERS

D4519, OCTOBER 1992 - REVISED DECEMBER 1992
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16853		SN74ABT16853		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tplH	A or B	B or A	1.5	2.5	3.3	1.5	4.2	1.5	4.1	ns
${ }_{\text {tPHL }}$			2	3.1	3.9	2	4.5	2	4.3	
tPLH	A or $\overline{O E}$	PARITY	2	4.6	5.9	2	7.3	2	7.1	ns
tPHL			2	4.8	6.2	2	7.6	2	7.2	
tPLH	$\overline{\text { CLR }}$	ERR	2	3.7	5.1	2	5.9	2	5.7	ns
tpZH	$\overline{\mathrm{OE}}$	A or B	2	3.9	4.9	2	+5.8	2	5.6	ns
tPZL			2.5	4.3	5.1	2.5	- 6.2	2.5	6	
tphz	$\overline{\mathrm{OE}}$	A or B	2	3.6	4.5		5.5	2	5.4	ns
tpLZ			1.5	3	3.8	15	4.7	1.5	4.3	
tPZH	$\overline{\mathrm{OE}}$	PARITY	2	3.6	5	$\bigcirc 2$	5.8	2	5.7	ns
tPZL			2.5	4.4	5.8	- 2.5	6.7	2.5	6.5	
tPHZ	$\overline{\mathrm{OE}}$	PARITY	1.5	3.2	4	1.5	4.8	1.5	4.7	ns
tPLZ			1.5	2.9	3.7	1.5	4.2	1.5	4.1	
tPLH	$\overline{\mathrm{LE}}$	$\overline{\text { ERR }}$	2	3.5	4.2	2	5	2	4.8	ns
tPHL			2	3.4	4.4	2	5.2	2	4.9	
tPLH	, B, or PARIT	$\overline{\text { ERR }}$	2	4.5	6.3	2	7.5	2	7.2	ns
tPHL			2	4.8	6.3	2	7.7	2	7.4	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

TEST	S1
tPLH/tPHL $^{\text {t }}$	Open
tPLZ/PZL	7 V
tPHZ/tPZH	Open

$\overline{\text { ERR }}$	S1
tPHL (see Note E)	7 V
tPLH (see Note F)	7 V

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

F. tPLH is measured at $\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {Cc }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}_{\mathrm{OH}}$, 64-mA I_{OL})
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16863 is an 18-bit noninverting transceiver designed for asynchronous communication between data buses. The control function implementation minimizes external timing requirements.
The 'ABT16863 can be used as two 9-bit transceivers or one 18-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{\mathrm{OEBA}}$) inputs.

SN54ABT16863 ... WD PACKAGE
SN74ABT16863... DL PACKAGE
(TOP VIEW)

1 $\overline{O E A B}$		$1 \overline{\text { OEBA }}$
1B1	255	1A1
1B2	354	1A2
GND	453	$]$ GND
1B3	52	1 AB
1B4	$6 \quad 51$	1 1-4
V_{CC}	50	V_{Cc}
1B5	$8 \quad 49$	1 A 5
1B6	948	1A6
1B7	$10 \quad 47$	1A7
GND	1146	$]$ GND
1B8	1245	1 AB
1B9	$13 \quad 44$	1A9
GND	$14 \quad 43$	$]$ GND
GND	1542	$]$ GND
2B1	$16 \quad 41$] 2A1
2B2	1740	2A2
GND	$18 \quad 39$	$]$ GND
2B3	$19 \quad 38$	2A3
2B4	$20 \quad 37$] 2A4
2B5	$21 \quad 36$	2A5
V_{CC}	$22 \quad 35$	$V_{C C}$
2B6	$23 \quad 34$	2A6
2B7	$24 \quad 33$	2A7
GND	$25 \quad 32$	GND
2B8	$26 \quad 31$] 2A8
2B9	$27 \quad 30$] 2A9
$2 \overline{O E A B}$	$28 \quad 29$	$]$ 2 $\overline{O E B A}$

The outputs are in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered down.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16863 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16863 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16863 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each 9-bit section)

INPUTS		OPERATION
$\overline{\text { OEAB }}$	$\overline{\text { OEBA }}$	
H	L	B data to A bus
L	H	A data to B bus
H	H	Isolation

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

logic symbol \dagger

logic diagram (positive logic)

To Eight Other Channels

To Eight Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\boldsymbol{\mp}}$

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{I} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or powe	-0.5 V to 5.5 V
Current into any output in the low state, l_{O} : SN54ABT16863	96 mA
SN74ABT16863	128 mA
Input clamp current, $\mathrm{l}_{\text {IK }}\left(\mathrm{V}_{\mathrm{I}}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	1 W
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	16863	SN74A	16863	
			MIN	MAX	MIN	MAX	UNT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	\%	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			v_{CC}	0	V_{CC}	V
${ }^{\text {IOH}}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16863		SN74ABT16863		UNIT
				MIN	TYP ${ }^{\text {t }}$	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
$\mathrm{VOH}^{\text {O }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{OL}=48 \mathrm{~mA}$				0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs.			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		$\pm 100{ }^{\text {a }}$		± 100	
$\mathrm{lozH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		55		50	$\mu \mathrm{A}$
lozL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{C}} \mathrm{C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		S 50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ Outputs high				50		50		50	$\mu \mathrm{A}$
10		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	- 60	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
$\Delta^{\prime} \mathrm{cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3.5						pF
$\mathrm{C}_{\text {io }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		9.5						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and $\mathrm{IOZL}_{\text {include }}$ the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16863		SN74ABT16863		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {tPLH }}$	A or B	B or A	1	2.2	3.2	1	37	1	3.5	ns
tPHL			1	2.2	3.4	1	84.2	1	3.9	
tPZH	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	1	2.9	4.5	1	5.7	1	5.4	ns
tPZL			1	2.6	4.1		5.2	1	4.8	
tPHZ	$\overline{\text { OEBA }}$ or $\overline{\text { OEAB }}$	A or B	1.6	4.1	5.4	1.6	6.3	1.6	6	ns
tplZ			1.5	3.3	4.5	\$1.5	5.3	1.5	5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
t PHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. CL includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed Vcc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA $\mathbf{I O H}$, 64-mA loL)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT16952 is a 16 -bit registered transceiver that contains two sets of D-type flip-flops for temporary storage of data flowing in either direction. The'ABT16952 can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input provided that the clock-enable (CLKENAB or CLKENBA) input is low. Taking the output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{\mathrm{OEBA}}$) input low accesses the data on either port.

SN54ABT16952 ... WD PACKAGE
SN74ABT16952... DGG OR DL PACKAGE (TOP VIEW)

$1 \overline{\text { EAB }}$ [1	$\cup_{56} \overline{\text { OEBA }}$
1 CLKAB [2	551 CLKBA
$1 \overline{\text { CLKENAB }} 3$	$541 \overline{\text { CLKENBA }}$
GND 4	

GND 43 GND
1A2 61 1B2
$\mathrm{V}_{\mathrm{CC}}[7 \quad 50] \mathrm{V}_{\mathrm{CC}}$

1АЗ 8 49] 1B3
1A4 ${ }^{48} 1$ 1B4
1A5 10 47 1B5

GND			GND
146	12	45	$1 \mathrm{B6}$
1 A 7	13	44	187
1A8	14	43	1 B 8
2 A 1	15	42	2 B 1
2 A 2	16	41	2 B 2
2 A 3	17	40	2 B 3
GND	18	39	GND
2A4	19	38	2B4
2A5	20	37.	2B5
2A6	21	36	2B6
V_{CC}	22	35	V_{Cc}
2A7	23	34	$2 \mathrm{C7}$
2 A 8	24	33	2B8
GND	25	32	GND
$2 \overline{\text { CLKENAB }}$	26	31	$2 \overline{C L K E N B A}$
2CLKAB	27	30	2CLKBA
$2 \overline{E E A B}$	28	29.	$2 \overline{O E B A}$

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT16952 is packaged in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT16952 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16952 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE			
INPUTS OUTPUT CLKENAB CLKAB $\overline{\text { OEAB }}$ A B H X L X B B^{\ddagger} X L L X $\mathrm{B}_{0} \ddagger$ L \uparrow L L L \uparrow L H X X H X X H			

\dagger A-to-B data flow is shown; B -to-A data flow is similar but uses CLKENBA, CLKBA, and OEBA.
\ddagger Level of B before the indicated steady-state input conditions were established.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots . . \ldots . . \\
& \text { Current into any output in the low state, Io: SN54ABT16952 } 96 \mathrm{~mA} \\
& \text { SN74ABT16952 .. . } 128 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DGG package } \ldots .1 \mathrm{~W}
\end{aligned}
$$

[^38]SN54ABT16952, SN74ABT16952

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT16952		SN74ABT16952		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	+	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
OH	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT16952		SN74ABT16952		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		0	150	0	150	0	150	MHz
$t_{w}{ }^{\text {¢ }}$	Pulse duration, CLKAB or CLKBA high or low		3.3		3.3		3.3		ns
	Setup time, before CLKAB \uparrow or CLKBA \uparrow	A or B	3.5				3.5		ns
$t_{\text {su }}$		CLKENAB or CLKENBA	3		©		3		
	Hold time, after CLKAB \uparrow or CLKBA \uparrow	A or B	1		9		1		ns
th		$\frac{\overline{\text { CLKENAB }}}{}$ CLKENBA	1		1		1		

\dagger This parameter is specified by design but not tested.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16952		SN74ABT16952		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f max }}$			150			150		150		MHz
tPLH	CLK	A or B	1	2.6	3.9		4.4	1	4.3	ns
${ }_{\text {tPHL }}$			1	2.6	4.2	1	\% 4.6	1	4.5	
tPZH	$\overline{O E}$	A or B	1	2.5	3.8	${ }^{1}$	4.7	1	4.6	ns
tPZL			1	2.8	5.1	4	6.1	1	6	
tPHZ	$\overline{\mathrm{OE}}$	A or B	1.7	3.4	4.7	1.7	6.1	1.7	5.5	ns
${ }^{\text {t PLZ }}$			1.3	3	3.9	1.3	4.8	1.3	4.2	

 change or discontinue these products without notice.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tpLH }} /{ }^{\prime t}$ PHL tpLz/tpZL tPHz/tpZH	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES:
A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus ${ }^{\text {TM }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- Supports the VME64 ETL specification
- Reduced, TTL-compatible, input threshold range
- JEDEC standard 48-/56-pin SSOP package
- New EIAJ standard Shrink Widebus ${ }^{\text {TM }}$ TSSOP package
- Flow-through package pinout organizes all inputs on one side and all outputs on the other side
- Distributed V_{CC} and GND pinouts
- High-drive outputs ($\mathrm{I}_{\mathrm{OH}}=-60 \mathrm{~mA}$, $l_{\mathrm{OL}}=90 \mathrm{~mA}$)
- 25- Ω series-damping resistor on B port
- Improved propagation delay versus number of outputs switching. Superior pin-to-pin output skew; 15-20\% faster speed
- 30% board space improvement over SSOP Widebus ${ }^{\text {TM }}$ package; meets $1.1-\mathrm{mm}$ height requirements for memory card and other thin applications
- Minimized mutual coupling and 2:1 I/O-to-GND rates result in < 0.8-V simultaneous switching noise typically
- Supports the VME64 ETL Specification
- Reduced, TTL-Compatible, Input Threshold Range
- High-Drive Outputs ($\mathrm{I}_{\mathrm{OH}}=-60 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{OL}}=90 \mathrm{~mA}$) Support 25- Ω Incident-Wave Switching
- $\mathbf{V}_{\mathrm{Cc}}{ }^{\text {BIAS }}$ Pin Minimizes Signal Distortion During Live Insertion
- Internal Pullup Resistor on $\overline{\mathrm{OE}}$ Keeps Outputs in High-Impedance State During Power Up or Power Down
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- 25- Ω Series-Dampening Resistor on B Port
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Packaged in Plastic 300-mil Shrink

Small-Outline and Thin Shrink
Small-Outline Packages

description

The SN74ABTE16245 is a 16-bit (dual-octal) noninverting 3 -state transceiver designed for synchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.
This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable $(\overline{\mathrm{OE}})$ input can be used to disable the device so that the buses are effectively isolated.

The B port has a $25-\Omega$ series output resistor to reduce ringing. Active bus-hold inputs are also found on the B port to hold unused or floating inputs at a valid logic level.
The A port provides for the precharging of the outputs via $\mathrm{V}_{\mathrm{CC}} \mathrm{BIAS}$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.
The SN74ABTE16245 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN74ABTE16245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE （each 8－bit section）
INPUTS OPERATION $\overline{\text { OE }}$ DIR L L B data to A bus L H A data to B bus H X Isolation

logic diagram（positive logic）

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTE 1：The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．
recommended operating conditions (see Note 2)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		4.75	5.25	V
	High-level input voltage	Except control pins	1.6		V
V_{IH}	High-level input volage	Control pins	2		V
	Low-level input voltage	Except control pins		1.4	V
$V_{\text {IL }}$	Low-level input voltage	Control pins		0.8	V
V_{1}	Input voltage		0	V_{CC}	V
${ }^{1} \mathrm{OH}$	High-level output current	B bus		-12	mA
${ }^{\text {IOL }}$	Low-level output current	B bus		12	mA
	High-level output current	A bus		-32	mA
OH	High-level output current	A bus		-60 \dagger	
	Low-level output current	A bus		64	mA
	Low-level output current			$90 \dagger$	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10	ns/V
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or A-bus I/O) must be held high or low.
\dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

SN74ABTE16245
16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER

WITH 3-STATE OUTPUTS

JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.2	V
V_{OH}	B port	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{v}_{\mathrm{CC}}-1$	V
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{IOH}=-1 \mathrm{~mA}$		2.4	
			$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$		2	
	A port	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$		4	
			$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		2.4	
			$\mathrm{I}^{\mathrm{OH}}=-60 \mathrm{~mA}$		2	
V_{OL}	B port	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=1 \mathrm{~mA}$		0.4	
			$\mathrm{IOL}^{\prime}=12 \mathrm{~mA}$		0.8	v
	A port	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=64 \mathrm{~mA}$		0.55	
			$\mathrm{l}^{\mathrm{OL}}=90 \mathrm{~mA}$		0.9	
$1 /$ (hold)	B port	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$		100	$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2 \mathrm{~V}$		-100	
1	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		± 1	$\mu \mathrm{A}$
	A or B ports				± 100	
${ }^{1} \mathrm{OZH}^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$		10	$\mu \mathrm{A}$
${ }_{\text {lozl }}{ }^{\text { }}$		$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-10	$\mu \mathrm{A}$
loff		$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=0$	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$	± 100	$\mu \mathrm{A}$
ICC	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{l}=0$,	Outputs high		mA
				Outputs low		
				Outputs disabled		
C_{i}	Control inputs	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				pF
$\mathrm{Cio}_{\text {io }}$	B port	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			9	pF
	A port	Per IEEE 1194.0-1991			9	pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{l}_{\mathrm{OZL}}$ include the input leakage current.
live insertion specifications over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS				MIN	TYP	MAX	UNIT
ICC (VCCBIAS)	$\mathrm{V}_{\mathrm{CC}}=0$ to 4.75 V ,		$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=4.75 \mathrm{~V}$ to 5.25 V ,	$\mathrm{O}(\mathrm{DC})=0$			500	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V ,		$\mathrm{V}_{\text {CC }}$ BIAS $=4.75 \mathrm{~V}$ to 5.25 V ,	$\mathrm{O}(\mathrm{DC})=0$			20	
V_{O}	$\mathrm{V}_{\mathrm{CC}}=0$,		$\mathrm{V}_{\text {CC }}$ BIAS $=4.75 \mathrm{~V}$	A port	1.3	1.5	1.7	V
Io	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{O}}=0$,	$\mathrm{V}_{\text {CC }}$ BIAS $=4.75 \mathrm{~V}$	A port	-20		-100	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$,	$\mathrm{V}_{\text {CC }}$ BIAS $=4.75 \mathrm{~V}$		20		100	

extended output characteristics over recommended temperature and supply operating ranges (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	LOAD	MIN	TYP MAX	UNIT
$t_{\text {sk(pr) }}{ }^{\dagger}$	A	B	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Constant }, \\ \Delta \mathrm{T}_{\mathrm{A}}=20^{\circ} \mathrm{C} \end{gathered}$			2.5	ns
	B	A		$\mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{R}_{\mathrm{X}}=55.6 \Omega$		4	
$t_{\text {sk }}(\text { load })^{\dagger}$	B	A	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Constant }, \\ \text { Temperature }=\text { Constant } \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{O}}=50,25, \text { or } 12.5 \Omega, \\ \mathrm{RX}_{\mathrm{X}}=55.6,26.3, \text { or } 12.8 \Omega \end{gathered}$.	4	ns
t_{t}	B	A	Time between 1 V and 2 V	$\mathrm{Z}_{\mathrm{O}}=25 \Omega, \mathrm{RX}^{\prime}=26.3 \Omega$	1.2	3	ns
	A	B	Rise or fall time 10\%-90\%		3		

$\mathrm{t}_{\text {sk(}}$ (pr) $+\mathrm{t}_{\text {sk }}($ load $)<6 \mathrm{~ns}$

 tPHLn, $n=1$ to 16), with any combination of the inputs switching coincidently.

Figure 1. Voltage Waveforms for Extended Characteristics

PARAMETER MEASUREMENT INFORMATION

$\dagger \mathrm{RX}_{\mathrm{X}}=\mathbf{1 2 . 8}, \mathbf{2 6} . \mathbf{3 , 5 5 . 6 \Omega}$
LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

TEST	S1	S2
tPLH/tPHL (A port)	Down	X
tPLH/tPHL (B port)	Up	Open
tPLZ/tPZL	Up	7 V
tPHZ/tPZH	Up	Open

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

- Supports the VME64 ETL Specification
- Reduced, TTL-Compatible, Input Threshold Range
- High-Drive Outputs ($\mathrm{I}_{\mathrm{OH}}=-60 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{OL}}=90 \mathrm{~mA}$) Support 25- Ω Incident-Wave Switching
- VCCBIAS Pin Minimizes Signal Distortion During Live Insertion
- Internal Pullup Resistor on $\overline{\text { OE Keeps }}$ Outputs in High-Impedance State During Power Up or Power Down
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Distributed V $\mathbf{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- 25- Ω Series-Dampening Resistor on B Port
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages

description

The SN74ABTE16246 is an 11-bit noninverting transceiver designed for synchronous two-way communication between buses.

This device consists of open-collector and 3-state outputs. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable $(\overline{\mathrm{OE}})$ input can be used to disable the device so that the buses are effectively isolated. When $\overline{\mathrm{OE}}$ is low, the device is active.
The B port has a 25- Ω series output resistor to reduce ringing. Active bus-hold inputs are also found on the B port to hold unused or floating inputs at a valid logic level.
The A port provides for the precharging of the outputs via $\mathrm{V}_{\mathrm{CC}} \mathrm{BIAS}$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.
The SN74ABTE16246 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN74ABTE16246 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE		
INPUTS		OPERATION
OE	DIR	
L	L	A data to B bus
L	H	B data to A bus
H	X	Isolation

[^39]
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, $\mathrm{V}_{\text {cc }}$	-0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O}	-0.5 V to 7 V
Current into any output in the low state, I_{0}	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	$-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package DL package .	$\begin{array}{r} 0.8 \mathrm{~W} \\ 0.85 \mathrm{~W} \end{array}$
Storage temperature range	$5^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		4.75	5.25	V
	High-level input voltage	Except control pins	1.6		V
V_{1}	High-level input volage	Control pins	2		
	Low-level input voltage	Except control pins		1.4	V
VIL	Low-level input volage	Control pins		0.8	
V_{1}	Input voltage		0	V_{CC}	V
V_{OH}	High-level output voltage	1A-8A		5.25	V
${ }^{\mathrm{OH}}$	High-level output current	B bus		-12	mA
${ }^{1} \mathrm{OL}$	Low-level output current	B bus		12	mA
${ }^{1}$	High-level output current	9A-11A		-32	mA
	High-level outpur curnent	9A-11A		-60 \ddagger	
				64	mA
	Low-level output current	A bus		$90 \ddagger$	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10	ns / V
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or A-bus I/O) must be held high or low.
\ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters lozH and lozL include the input leakage current.
live insertion specifications over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS				MIN	TYP	MAX	UNIT
ICC (VCCBIAS)			$\mathrm{V}_{\text {CC }}$ BIAS $=4.75 . \mathrm{V}$ to 5.25 V ,	$\mathrm{I}_{(0, D C)}=0$			500	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V},$		$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=4.75 \mathrm{~V}$ to 5.25 V ,	$\mathrm{O}(\mathrm{DC})=0$			20	
V_{O}	$V_{C C}=0$,		$\mathrm{V}_{\text {CC }}$ BIAS $=4.75 \mathrm{~V}$	A port	1.3	1.5	1.7	V
'0	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{O}}=0$,	$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=4.75 \mathrm{~V}$	A port	-20		-100	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$,	$\mathrm{V}_{\text {CC }} \mathrm{BIAS}=4.75 \mathrm{~V}$		20		100	

extended output characteristics over recommended temperature and supply operating ranges (see Figures 1 and 2)

PARAMETER	$\begin{aligned} & \hline \text { FROM } \\ & \text { (INPUT) } \\ & \hline \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	LOAD	MIN	TYP MAX	UNIT
${ }^{\text {skg(pr) }}{ }^{\dagger}$	A	B	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\text { Constant }, \\ \Delta \mathrm{T}_{\mathrm{A}}=20^{\circ} \mathrm{C} \end{gathered}$			2.5	ns
	B	A		$\mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{R}_{\mathrm{X}}=55.6 \Omega$		4	
${ }^{\text {skk(load) }}{ }^{\dagger}$	B	A	$\mathrm{V}_{\mathrm{CC}}=$ Constant, Temperature = Constant	$\begin{gathered} Z_{O}=50,25, \text { or } 12.5 \Omega, \\ R_{X}=55.6,26.3, \text { or } 12.8 \Omega \end{gathered}$		4	ns
t_{t}	B	A	Time between 1 V and 2 V	$\mathrm{Z}_{\mathrm{O}}=25 \Omega, \mathrm{R}_{X}=26.3 \Omega$	1.2	3	ns
	A	B	Rise or fall time 10\%-90\%		3		

$\dagger_{\mathrm{t}_{\mathrm{sk}}(\mathrm{pr})}+\mathrm{t}_{\mathrm{sk}}(\mathrm{load})<6 \mathrm{~ns}$

Output skew, $\mathrm{t}_{\mathrm{sk}(\mathrm{pr})}$, is calculated as the greater of the difference between the fastest and slowest of $\mathrm{t}_{\text {PLH }}$ and $\mathrm{tPHL}^{(e . g ., ~ t P L H n}, \mathrm{n}=1$ to 16; and tPHLn, $n=1$ to 16), with any combination of the inputs switching coincidently.

Figure 1. Voltage Waveforms for Extended Characteristics

PARAMETER MEASUREMENT INFORMATION

$\dagger_{\mathrm{R}}^{\mathrm{R}}=12.8,26.3,55.6 \Omega$
LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

NOTES：A．C_{L} includes probe and jig capacitance．

TEST	S1	S2
$\mathbf{t P L H} / \mathbf{\text { PHL }}$（A port）	Down	\mathbf{X}
$\mathbf{t P L H} / \mathbf{t P H L}$（B port）	Up	Open
tPLZ／tPZL	$\mathbf{U p}$	7 V
$\mathbf{t P H Z} / \mathbf{t P Z H}$	$\mathbf{U p}$	Open

OPEN COLLECTOR	S1	$\mathbf{S 2}$
tPHL（see Note E）	Up	7 V
tPLH（see Note F）	Up	7 V

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

B．All input pulses are supplied by generators having the following characteristics：$P R R \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．
C．Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control． Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control．
D．The outputs are measured one at a time with one transition per measurement．
E．tpHL is measured at 1.5 V ．
F．tpLH is measured at $\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ ．
Figure 2．Load Circuit and Voltage Waveforms

General Information

ABT Octals2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {™ }}$ 4
ABT Widebus+ ${ }^{\text {TM }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {™ }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- 32- and 36-bit bus interface
- EIAJ standard 80-, 100-, and 120-pin shrink quad flat packages (SQFPs)
- Enhanced UBT ${ }^{\text {TM }}$ architectures that include global controls and parity generate and check
- Multiport universal bus exchanger (UBE ${ }^{\text {TM }}$) architectures
- Symmetrical flowthrough pinouts with controls at the poles
- Bit partitioning
- Distributed pinout with 12 GND pins and $4 \mathrm{~V}_{\mathrm{CC}}$ pins
- Bus-hold circuitry
- Power-on-demand active feedback circuit
- TI has established an alternate source

Benefits

- Single-chip implementation for highest level of logic integration
- 35% less board space than equivalent PQFPs; over 50% less board space than four octal SOIC equivalents
- Special features for use in high-performance RISC/CISC/X86 microprocessor systems
- Multiplexing and memory interleaving capability for interbus communication
- Ease of board layout; provides compatible top-side or bottom-side mount
- Global, $\times 18$-, or $\times 9$-bit capability for flexible partitioning
- 3:1 signal-to-GND ratio minimizes simultaneous switching noise and mutual coupling effects
- Reduces component count by eliminating need for external pullup or pulldown resistors on I/O pins configured as inputs left unused or floating
- Reduces enabled static power consumption (ICCL) by over 50%
- Standardization that comes from a common product approach
- Members of the Texas Instruments Widebus + ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{C C}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Packaged in 100-Pin Plastic Shrink Quad Flat Packages (SQFP) With $14 \times 14-\mathrm{mm}$ Package Body Using 0.5-mm Lead Pitch

description

The 'ABT32245 is a 36-bit (quad 9-bit) noninverting 3-state transceiver designed for synchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

description (continued)

This device can be used as four 9-bit transceivers, two18-bit transceivers, or one 36-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) inputs. The output-enable ($\overline{\mathrm{OE}}$) inputs can be used to disable the device so that the buses are effectively isolated.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{C} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABT32245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT32245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 9-bit section)	
INPUTS OPERATION $\overline{\text { OE }}$ DIR L L B data to A bus L H H X Isolation	

logic diagram (positive logic)

To Eight Other Channels

To Eight Other Channels

To Eight Other Channels

To Eight Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

WITH 3-STATE OUTPUTS

JUNE 1992 - REVISED OCTOBER 1992
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters $\mathrm{I}_{\mathrm{OZH}}$ and lozL include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABT32316, SN74ABT32316 16-BIT TRI-PORT UNIVERSAL BUS EXCHANGERS

- Members of the Texas Instruments Widebus $\boldsymbol{t}^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBE ${ }^{\top \mathrm{M}}$ (Universal Bus Exchanger) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}$, 64-mA $\mathrm{IOL}_{\mathrm{L}}$)
- Bus-Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Packaged in 80-Pin Plastic Shrink Quad Flat Packages (SQFP) With $12 \times 12-\mathrm{mm}$ Package Body Using 0.5-mm Lead Pitch

SN74ABT32316 . . . PN PACKAGE (TOP VIEW)

NC - No internal connection

description

The 'ABT32316 consists of three 16-bit registered input/output (I/O) ports. These registers combine D-type latches and flip-flops to allow data flow in transparent, latch, and clock modes. Data from one input port can be exchanged to one or more of the other ports. Because of the universal storage element, multiple combinations of real-time and stored data can be exchanged among the three ports.
Data flow in each direction is controlled by the output-enable ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$, and $\overline{\mathrm{OEC}}$), select-control (SELA, SELB, and SELC), latch-enable (LEA, LEB, and LEC), and clock (CLKA, CLKB, and CLKC) inputs. The A data register operates in the transparent mode when LEA is high. When LEA is low, data is latched if CLKA is held at a high or low logic level. If LEA and clock-enable A (CLKENA) are low, data is stored on the low-to-high transition of CLKA. Output data selection is accomplished by the select-control pins. All three ports have active-low output enables, so when the output-enable input is low, the outputs are active; when the output-enable input is high, the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABT32316 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT32316 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Storage function tablet

INPUTS				OUTPUT
CLKENA	CLKA	LEA	A	
H	X	L	X	$\mathrm{Q}_{0^{\ddagger}}$
L	\uparrow	L	L	L
L	\uparrow	L	H	H
X	H	L	X	$\mathrm{Q}_{0^{\ddagger}}$
X	L	L	X	$\mathrm{Q}_{0^{\ddagger}}$
X	X	H	L	L
X	X	H	H	H

[^40]Function Tables
A-PORT OUTPUT

INPUTS		OUTPUT
$\mathbf{O E A}$	SELA	\mathbf{A}
H	X	Z
L	H	Output of C register
L	L	Output of B register

B-PORT OUTPUT

INPUTS		OUTPUT
$\mathbf{O E B}$	SELB	B
H	X	Z
L	H	Output of A register
L	L	Output of C register

C-PORT OUTPUT

INPUTS		OUTPUT
OEC	SELC	C
H	X	Z
L	H	Output of B register
L	L	Output of A register

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (except I/O ports) (see Note 1) 0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.
Current into any output in the low state, I_{O} : SN54ABT32316 96 mA
SN74ABT32316 ... 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) ... 1.1 W
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	T32316	SN74A	T32316	
			MIN	MAX	MIN	MAX	NT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	4	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			4		0.8	V
V_{1}	Input voltage			V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
${ }^{\text {IOL }}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	\bigcirc	10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating control pins must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54ABT32316		SN74ABT32316			UNIT			
		MIN	MAX	MIN	TYPt	MAX							
V_{IK}					$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$I_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		2.5		2.5			v			
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{OH}=-3 \mathrm{~mA}$		3		3						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-24 \mathrm{~mA}$		2								
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\mathrm{O}}=-32 \mathrm{~mA}$				2						
VOL		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OL}}=48 \mathrm{~mA}$			0.55	0.55			V			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$										
1	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$V_{1}=V_{C C}$ or GND						± 1	$\mu \mathrm{A}$			
	A, B, or C ports					5			± 100				
11 (hold)	A, B, or C ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=0.8 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$			\%	100			$\mu \mathrm{A}$			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2 \mathrm{~V}$				-100						
$\mathrm{l}^{\text {OZH }}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$						50	$\mu \mathrm{A}$			
lozL ${ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$						-50	$\mu \mathrm{A}$			
loff		$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$		${ }^{4}$				± 100	$\mu \mathrm{A}$			
ICEX		V $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			$-\quad 50$			$\mu \mathrm{A}$			
Io§		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$					-50		-180	mA			
ICC		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{v}, \quad \mathrm{IO}=0, \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Outputs high					2	mA			
		Outputs low			'		40						
		Outputs disabled					1						
${ }^{\text {alccll }}$				$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND							0.5	mA	
C_{i}	Control inputs			$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V						3		pF	
$\mathrm{C}_{\text {io }}$	A, B, or C ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V						11.5		pF			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters lozH and lozL include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

				SN54A	32316	SN74A	32316	
				MIN	MAX	MIN	MAX	UNIT
${ }^{\text {f }}$ lock	Clock frequency			0	150	0	150	MHz
	Pulse duration	!	LE high	3.3		3.3		ns
'w	Puse duration		CLK high or low	3.3		3.3		
			A, B, or C before CLK \uparrow	2.4		2.4		
$\mathrm{t}_{\text {su }}$	Setup time		A or B before LE \downarrow	2.1		2.1		ns
			CLKEN before CLK \uparrow	3.2		3.2		
			A, B, or C after CLK \uparrow	14		1.4		
$t_{\text {h }}$	Hold time		A or B after LE \downarrow	2.1		2.1		ns
			CLKEN after CLK \uparrow	1.1		1.1		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54ABT32316		SN74ABT32316		UNIT
			MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150		150		MHz
tPLH	A, B, or C	C, B, or A	1.4	6.5	1.4	6.1	ns
tPHL			1.1	6.8	1.1	6.6	
tPLH	SEL	C, B, or A	1.4	6.7	1.4	6.5	ns
tPHL			1.8	6.8	1.8	6.5	
tPLH	LE	C, B, or A	2.6	\% 8	2.6	7.5	ns
tPHL			2.6	7.4	2.6	6.9	
tPLH	CLK	C, B, or A	2.5	8	2.5	7.5	ns
tPHL			2.5	7.2	2.5	6.7	
tpZH	$\overline{\mathrm{OE}}$	C, B, or A	¢ 4.5	6.7	1.5	6.4	ns
tpZL			2.4	6.9	2.4	6.8	
${ }_{\text {tPHZ }}$	$\overline{\mathrm{OE}}$	C, B, or A	1.5	6.1	1.5	6	ns
tplZ			1.9	6.4	1.9	6.1	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ $^{\text {tPRZ }}$	GND

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments Widebus $\boldsymbol{~}^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBE ${ }^{\text {TM }}$ (Universal Bus Exchanger) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V OLP (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs (-32-mA \mathbf{I}_{OH}, 64-mA IOL)
- Bus-Hold Inputs Eliminate the Need for External Pullup/Pulldown Resistors
- Packaged in 80-Pin Plastic Thin Quad Flat Packages (TQFP) With $12 \times 12-\mathrm{mm}$ Package Body Using 0.5-mm Lead Pitch

SN74ABT32318 . . . PN PACKAGE
(TOP VIEW)

SN54ABT32318, SN74ABT32318 18-BIT TRI-PORT UNIVERSAL BUS EXCHANGERS

description

The 'ABT32318 consists of three 18-bit registered input/output (I/O) ports. These registers combine D-type latches and flip-flops to allow data flow in transparent, latch, and clock modes. Data from one input port can be exchanged to one or more of the other ports. Because of the universal storage element, multiple combinations of real-time and stored data can be exchanged among the three ports.
Data flow in each direction is controlled by the output-enable ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$, and $\overline{\mathrm{OEC}}$), select-control (SELA, SELB, and SELC), latch-enable (LEA, LEB, and LEC), and clock (CLKA, CLKB, and CLKC) inputs. The A data register operates in the transparent mode when LEA is high. When LEA is low, data is latched if CLKA is held at a high or low logic level. If LEA is low, data is stored on the low-to-high transition of CLKA. Output data selection is accomplished by the select-control pins. All three ports have active-low output enables, so when the output-enable input is low, the outputs are active; when the output-enable input is high, the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABT32318 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT32318 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

STORAGE FUNCTION TABLE \dagger

INPUTS			OUTPUT
CLKA	LEA	A	
\uparrow	L	L	L
\uparrow	L	H	H
H	L	X	$Q_{0} \ddagger$
L	L	X	Q_{0}^{\ddagger}
X	H	L	L
X	H	H	H

$\dagger \mathrm{A}$-port register shown. B and C ports are similar but use CLKB, CLKC, LEB, and LEC.
\ddagger Output level before the indicated steady-state input conditions were established.

Function Tables
A-PORT OUTPUT

INPUTS		OUTPUT
$\overline{\text { OEA }}$	SELA	A
H	X	Z
L	H	Output of C register
L	L	Output of B register

B-PORT OUTPUT		
INPUTS		OUTPUT
OEB	SELB	B
H	X	Z
L	H	Output of register
L	L	Output of C register

C-PORT OUTPUT

INPUTS		OUTPUT
OEC	SELC	C
H	X	Z
L	H	Output of B register
L	L	Output of A register

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	T32318	SN74	32318	
			MIN	MAX	MIN	MAX	NT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	4	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			80.8		0.8	V
V_{1}	Input voltage		0	v_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled	\%	10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating control pins must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54ABT32318		SN74ABT32318			UNIT	
		MIN		MIN	TYPt	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$\boldsymbol{I}=-18 \mathrm{~mA}$			-1.2	V		
VIK		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l}^{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		2.5			v	
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3		3				
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$1 \mathrm{OH}=-24 \mathrm{~mA}$			2					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{OHH}=-32 \mathrm{~mA}$				2				
			$\mathrm{I}^{\mathrm{OL}}=48 \mathrm{~mA}$			0.55			0.55	V	
VOL		CC $=4.5 \mathrm{~V}$	$\mathrm{OL}=64 \mathrm{~mA}$						0.55	\checkmark	
4	Control inputs	$V C C=5.5 \mathrm{~V}$	= VCCO						± 1	μ	
1	A, B, or C ports	$V_{C C}=5.5$	$=V_{\text {CC }}$			\%			± 100	$\mu \mathrm{A}$	
			$\mathrm{V}_{1}=0.8 \mathrm{~V}$				100				
1 (hold)	A, B, or C ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=2 \mathrm{~V}$				-100			$\mu \mathrm{A}$	
${ }^{\text {l }} \mathrm{ZZH}^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		6				50	$\mu \mathrm{A}$	
lozL ${ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$						-50	$\mu \mathrm{A}$	
$\mathrm{l}_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{0} \leq 4$		8				± 100	$\mu \mathrm{A}$	
ICEX		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high					50	$\mu \mathrm{A}$	
$1 \mathrm{l}^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$				-50	-100	-180	mA	
				Outputs high					2		
ICC		$V_{C C}=5.5$	$\mathrm{l} \text { = }=0,$	Outputs low					45	mA	
				Outputs disabled					1		
$\Delta \mathrm{Cc} \mathrm{Cl}^{\prime \prime}$		$\mathrm{V}_{\mathrm{CC}}=5.5$ Other inputs	One input at CC or GND						0.5	mA	
C_{i}	Control inputs	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or						3		pF	
$\mathrm{C}_{\text {io }}$	A, B, or C ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$						11.5		pF	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters $\mathrm{l}_{\mathrm{OZH}}$ and lozL include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ABT32318		SN74ABT32318		UNIT
			MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150		150		MHz
tplu	A, B, or C	C, B, or A	1.4	6.5	1.4	6.1	ns
tPHL			1.1	6.8	1.1	6.6	
tpLH	SEL	C, B, or A	1.4	6,7	1.4	6.5	ns
tPHL			1.8	68	1.8	6.5	
tpliH	LE	C, B, or A	2.6	\% 8	2.6	7.5	ns
tPHL			2.6	7.4	2.6	6.9	
tPLH	CLK	C, B, or A	2.5	8	2.5	7.4	ns
tpHL			25	7.2	2.5	6.7	
tpZH	$\overline{\mathrm{OE}}$	C, B, or A	< 4.4	6.9	1.4	6.8	ns
tPZL			2.4	7.2	2.4	7.1	
tPHZ	$\overline{\mathrm{OE}}$	C, B, or A	1	6.4	1	6.2	ns
tplZ			2	6.4	2	6	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT32501, SN74ABT32501 36-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

- Members of the Texas Instruments Widebus $+^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {тм }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200$ pF, $R=0)$
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical VOLP (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs (-32-mA $\mathbf{I O H}$, 64-mA I_{OL})
- Packaged in 100-Pin Plastic Thin Quad Flat Packages (TQFP) With $14 \times 14-\mathrm{mm}$ Package Body Using 0.5-mm Lead Pitch

SN74ABT32501 . . . PZ PACKAGE (TOP VIEW)

description

These 36-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.
Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. Output-enable OEAB is active high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and CLKBA. The output enables are complementary (OEAB is active high, and $\overline{O E B A}$ is active low).
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OEBA}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver (B to A). OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver (A to B).
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABT32501 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT32501 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger

INPUTS				OUTPUT
B				
OEAB	LEAB	CLKAB	A	
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\uparrow	L	L
H	L	\uparrow	H	H
H	L	H	X	$\mathrm{B}_{0} \ddagger$
H	L	L	X	$\mathrm{B}_{0} \S$

\dagger A-to-B data flow is shown: B -to-A flow is similar but uses OEBA, LEBA, and CLKBA.
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.
logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) .. }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT32501 .. } 96 \mathrm{~mA} \\
& \text { SN74ABT32501 .. } 128 \text { mA }
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	32501	SN74	32501	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	${ }_{3}^{4}$	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{OH}}$	High-level output current			-24		-32	mA
l OL	Low-level output current		-	48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled	\%	10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT32501, SN74ABT32501 36-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
 JUNE 1992 - REVISED JANUARY 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54ABT32501		SN74ABT32501			UNIT
		MIN		MIN	TYPt	MAX				
V_{IK}			$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		MAX			-1.2	V
VOH		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5		2.5			V
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~m}$		3		3			
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-32 \mathrm{~mA}$				2			
V OL		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$			0.55			0.55	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=64 \mathrm{~mA}$						0.55	
		C $=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$						1	
1		C $=5.5 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{GND}$						-5	
I	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {CC }}$			\%			50	
	A or B pors	$\mathrm{VCC}=5.5 \mathrm{~V}$	$\mathrm{V}_{1}=$ GND						-50	
	A or	V CC $=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$					120		A
	,	C $=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=2 \mathrm{~V}$		A			-40		
lozH^{\ddagger}		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		${ }^{3}$				1	$\mu \mathrm{A}$
lozı ${ }^{\ddagger}$		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		\bigcirc				-1	$\mu \mathrm{A}$
loff		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4$						± 100	$\mu \mathrm{A}$
ICEX	.	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high					50	$\mu \mathrm{A}$
10^{\S}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$				-50	-100	-180	mA
				Outputs high					6	
I'ç		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GN} \end{aligned}$	$10=0,$	Outputs low					90	mA
				Outputs disabled					6	
$\Delta^{\text {ched }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ Other inputs at V	One input at C or GND						1	mA
C_{i}	Control inputs	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V						3.5		pF
C_{io}	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5						11.5		pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters $\mathrm{l}_{\mathrm{OZH}}$ and lozL include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			SN54ABT32501	SN74A	32501	
			MIN MAX	MIN	MAX	NT
$\mathrm{f}_{\text {clock }}$	Clock frequency		5	0	150	MHz
	Pulse duration	LE high	5	3.3		
tw	Pulse duration	CLK high or low	${ }^{2}$	3.3		s
		A or B before CLK \uparrow	4	3.5		
${ }^{\text {su }}$	Setup time	A or B before LE \downarrow		1.6		ns
		A or B after CLK \uparrow	\bigcirc	0		
th	Id time	A or B after LE \downarrow	\%	1.6		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO(OUTPUT)	SN54ABT32501			SN74ABT32501			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
$f_{\text {max }}$						150			MHz
tplH	A or B	B or A				1.3	2.9	4.8	ns
tPHL						1.4	2.7	5.4	
tpLH	LEAB or LEBA	B or A				1.6	3.4	5.3	ns
tPHL				8		1.9	3.6	5.5	
tPLH	CLKAB or CLKBA	B or A				1.5	3.2	5.3	ns
tpHL						1.7	3.3	5.4	
tPZH	OEAB or $\overline{O E B A}$	B or A				1.2	3.2	5.6	ns
tPZL						1.5	3.6	6	
tphz	OEAB or $\overline{\text { OEBA }}$	B or A				1.8	3.6	5.9	ns
tplZ						1.7	3.5	5.6	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
t PHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT32543，SN74ABT32543 36－BIT REGISTERED BUS TRANSCEIVERS
 WITH 3－STATE OUTPUTS
 JUNE 1992 －REVISED OCTOBER 1992

－Members of the Texas Instruments Widebus $\boldsymbol{~}^{\text {TM }}$ Family
－State－of－the－Art EPIC－IIB ${ }^{\text {TM }}$ BICMOS Design Significantly Reduces Power Dissipation
－ESD Protection Exceeds 2000 V Per MIL－STD－883C，Method 3015；Exceeds 200 V Using Machine Model （ $\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$ ）
－Latch－Up Performance Exceeds 500 mA Per JEDEC Standard JESD－17
－Typical Volp（Output Ground Bounce） $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
－Distributed VCC and GND Pin Configuration Minimizes High－Speed Switching Noise
－High－Drive Outputs（－32－mA IOH， 64－mA Iol）
－Bus－Hold Inputs Eliminate the Need for External Pullup Resistors
－Packaged in 100－Pin Plastic Shrink Quad Flat Packages（SQFP）With 14×14－mm Package Body Using $0.5-\mathrm{mm}$ Lead Pitch

SN74ABT32543．．．PZ PACKAGE
（TOP VIEW）

description

The 'ABT32543 is a 36 -bit registered transceiver that contains two sets of D-type latches for temporary storage of data flowing in either direction. The device can be used as two 18-bit transceivers or one 36 -bit transceiver. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{\mathrm{OEBA}}$) inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable ($\overline{C E A B}$) input must be low in order to enter data from A or to output data from B. If $\overline{C E A B}$ is low and $\overline{\text { LEAB }}$ is low, the A -to-B latches are transparent; a subsequent low-to-high transition of $\overline{\mathrm{LEAB}}$ puts the A latches in the storage mode. With CEAB and OEAB both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABT32543 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT32543 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger (each 18-bit section)				
INPUTS				OUTPUT
$\overline{C E A B}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	A	B
H	X	X	X	Z
X	X	H	x	Z
L	H	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	L	L
L	L	L	H	H

\dagger A-to-B data flow is shown; B-to-A flow control is the same except that it uses $\overline{\mathrm{CEBA}}, \overline{\mathrm{LEBA}}$, and $\overline{\mathrm{OEBA}}$.
\ddagger Output level before the indicated steady-state input conditions were established.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) .. . } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{0} \text { : SN54ABT32543 ... } 96 \text { mA } \\
& \text { SN74ABT32543 ... } 128 \text { mA }
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions. beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions

			SN54	T32543	SN74	T32543	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
l OL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54ABT32543		SN74ABT32543			UNIT			
		MIN	MAX	MIN	TYP \dagger	MAX							
$\mathrm{V}_{\text {IK }}$					$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	1 =			-1.2			-1.2	V
VOH		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	IOH^{\prime}		2.5		2.5			V			
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	${ }^{\mathrm{O}} \mathrm{OH}$		3		3						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=$		2								
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$					2						
V_{OL}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=$			0.55			0.55	V			
		${ }^{\prime} \mathrm{OL}=$						0.55					
I	Control inputs		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND						± 1	$\mu \mathrm{A}$		
	A or B ports								± 100				
$1 /$ (hold)	A or B ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0$				100	-		$\mu \mathrm{A}$			
			$\mathrm{V}_{1}=2$				-100						
lozH^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=$						50	$\mu \mathrm{A}$			
${ }^{\text {OZZL }}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=$						-50	$\mu \mathrm{A}$			
$l_{\text {off }}$		$V_{C C}=0$,	V_{1} or						± 100	$\mu \mathrm{A}$			
ICEX		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=$	Outputs high					50	$\mu \mathrm{A}$			
$10^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$				-50	-100	-180	mA			
ICC		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$		Outputs high					2	mA			
		Outputs low					5						
		Outputs disabled					0.5						
$\Delta^{\prime} C^{\text {d }}$				$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND							1	mA	
C_{i}	Control inputs			$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5								pF	
$\mathrm{C}_{\text {io }}$	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5								pF			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters IOZH and IOZL include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

SN54ABT32952, SN74ABT32952 32-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
 JUNE 1992 - REVISED OCTOBER 1992

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs (-32-mA IOH, 64-mA IOL)
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Packaged in 100-Pin Plastic Shrink Quad Flat Packages (SQFP) With 14×14-mm Package Body Using 0.5-mm Lead Pitch

description

The 'ABT32952 is a 32-bit (quad 8-bit) transceiver with edge-triggered D-type flip-flops and 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. The 'ABT32952 can be used as four 8 -bit flip-flops, two 16-bit flip-flops, or one 32 -bit flip-flop. Provided that the clock-enable (CLKENAB or CLKENBA) input is low on the positive transition of the clock (CLKAB or CLKBA) input, the output (B or A) of the flip-flop takes on the logic level set up at the input (A or B). The 'ABT32952 allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the output-enable inputs.
A buffered output-enable ($\overline{O E A B}$ or OEBA) input can be used to place the 32 outputs in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output enable ($\overline{O E A B}$ or OEBA) does not affect the internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver (A to B). OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver (B to A).
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABT32952 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT32952 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger
(each flip-flop)

INPUTS				OUTPUT
CLKENAB	OEAB	CLKAB	A	B
L	L	\uparrow	H	H
L	L	\uparrow	L	L
H	L	X	X	Q_{0}
X	L	L	X	Q_{0}
X	H	X	X	Z

\dagger A-to-B data flow is shown; B -to-A data flow is similar but uses CLKENBA, OEBA, and CLKBA.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or powe	-0.5 V to 5.5 V
Current into any output in the low state, lo: SN54ABT32952	96 mA
SN74ABT32952	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	1.2 W
Storage temperature range	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions

			SN54	32952	SN74A	32952	
			MIN	MAX	MIN	MAX	N
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{O}} \mathrm{H}$	High-level output current			-24		-32	mA
lOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

SN54ABT32952, SN74ABT32952 32-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
 JUNE 1992 - REVISED OCTOBER 1992

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The parameters lOZH^{2} and lozL include the input leakage current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
General Information 1
ABT Octals
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {™ }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT $25-\Omega$ Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

ABT MEMORY DRIVERS

Features

- Output ports have $25-\Omega$ series resistors included on chip
- Octal, Widebus ${ }^{\text {TM }}$ and Widebus+ ${ }^{\text {TM }}$ functional equivalents with complete pinout and package compatibility
- 8-, 9-, 10-, 11-, and 12-bit options
- 16-, 18-, 20-, 32-, and 36-bit options
- Typical $\mathrm{V}_{\text {OLV }}$ (voltage output low-level valley) $<0.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Symmetrical, balanced output-drive capability of 12 mA
- Reduce component count and save valuable board space
- Drop-in replaceable series resistor options with characteristic ABT advanced system performance and minimal system power
- Reliably drive address lines of $64 \mathrm{~K}, 256 \mathrm{~K}$, $1 \mathrm{M}, 4 \mathrm{M}$, and 16M MOS dynamic random access memories (DRAMs)
- Highly integrated, undershoot-dampened line drivers for advanced lump load transmission conditions
- Reduced output undershoot experienced at the receiver input for increased system reliability
- Equivalent output high and low current levels optimally drive highly capacitive inputs

The following table lists ABT memory driver devices currently being evaluated for market introduction. Customers interested in learning more about Tl's plans for these devices should contact the Advanced System Logic Marketing hotline at (214) 997-5202.

DEVICE	PIN COUNT	DESCRIPTION
'ABT2540	20	Octal Memory Driver
'ABT2541	20	Octal Memory Driver
'ABT2620	20	Octal Memory Driver
'ABT2623	20	Octal Memory Driver
'ABT2640	20	Octal Memory Driver
'ABT2827	24	10-Bit Inverting Memory Driver
'ABT2863	24	9-Bit Memory Driver
'ABT5410	24	12-Bit Memory Driver
'ABT5411	24	12-Bit Memory Driver
'ABT5412	24	12-Bit Memory Driver
'ABT5413	24	12-Bit Memory Driver
'ABT162241	48	Noninverting 16-Bit Buffer/Driver With Series Output Resistors
'ABT162825	56	Noninverting 18-Bit Buffer/Driver With Series Output Resistors
'ABT162827	56	Noninverting 20-Bit Buffer/Driver With Series Output Resistors
'ABT162861	56	Noninverting 20-Bit Transceiver With Series Output Resistors
'ABT162863	56	Noninverting 18-Bit Transceiver With Series Output Resistors
'ABT322245	100	$36-B i t ~ B u s ~ T r a n s c e i v e r ~ W i t h ~ S e r i e s ~ O u t p u t ~ R e s i s t o r s ~$
'ABT322316	80	$16-B i t ~ T r i-P o r t ~ U n i v e r s a l ~ B u s ~ E x c h a n g e r ~ W i t h ~ S e r i e s ~ O u t p u t ~ R e s i s t o r s ~$
'ABT322318	80	$18-B i t ~ T r i-P o r t ~ U n i v e r s a l ~ B u s ~ E x c h a n g e r ~ W i t h ~ S e r i e s ~ O u t p u t ~ R e s i s t o r s ~$
'ABT322501	100	$36-B i t ~ U n i v e r s a l ~ B u s ~ T r a n s c e i v e r ~ W i t h ~ S e r i e s ~ O u t p u t ~ R e s i s t o r s ~$
'ABT322543	100	$36-B i t ~ R e g i s t e r e d ~ B u s ~ T r a n s c e i v e r ~ W i t h ~ S e r i e s ~ O u t p u t ~ R e s i s t o r s ~$

- Output Ports Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'ABT2241 and 'ABT2244, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs, and complementary OE and $\overline{\mathrm{OE}}$ inputs. These devices feature high fan-out and improved fan-in.

The 'ABT2240 is organized as two 4-bit line drivers with separate output-enable ($\overline{\mathrm{OE}}$) inputs. When $\overline{\mathrm{OE}}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{\mathrm{OE}}$ is high, the outputs are in the high-impedance state.

SN54ABT2240 . . . J PACKAGE
SN74ABT2240... DB, DW, OR N PACKAGE
(TOP VIEW)

1 $\overline{O E}$	1	20	$V_{C C}$
1A1	2	19	$2 \overline{O E}$
2Y4	3	18	1Y1
1A2	4	17	2A4
2 Y3	5	16	1 Y 2
1A3	6	15	2A3
2 Y 2	7	14	1 Y 3
1A4	8	13	2A2
2 Y 1	9	12	1 Y 4
GND	10	11	2A1

SN54ABT2240 . . . FK PACKAGE (TOP VIEW)

The outputs, which are designed to sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT2240 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT2240 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT2240 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT $\overline{\text { OE }}$ A \mathbf{Y} L H L L L H H X Z	

EPIC-IIB is a trademark of Texas Instruments Incorporated.
specifications per the terms of Texas Instruments standard warranty.
specifications per the terms of Texas Instruments standard warranty.
Production processing does not necessarily include testing of all
Production
parameters.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
schematic of Y outputs

logic diagram (positive logic)

SN54ABT2240, SN74ABT2240 OCTAL BUFFERS AND LINE/MOS DRIVERS
 WITH 3-STATE OUTPUTS
 D3697, JANUARY 1991 - REVISED OCTOBER 1992

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

recommended operating conditions (see Note 2)

			SN54A	2240	SN74	2240	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	3	2		V
V_{IL}	Low-level input voltage			4 0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current			-24		-32	mA
IOL	Low-level output current		${ }^{2}$	12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.

OCTAL BUFFERS AND LINE/MOS DRIVERS

WITH 3-STATE OUTPUTS
D3697, JANUARY 1991 - REVISED OCTOBER 1992
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted) otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT2240		SN74ABT2240		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$I_{1}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3			3				
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$							
V_{OL}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$				0.8		0.8		0.8	V
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1		${ }_{4}^{+1}$		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		450		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10^{\S}	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
${ }^{\prime} \mathrm{CC}$	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{l}=0$,	Outputs high		1	250	Q	250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta_{C C l}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
	One input at 3.4 V , Other inputs at		Outputs disabled			0.05		0.05		0.05	
	$\mathrm{V}_{\text {CC }}$ or GND	Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8.5						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT2240		SN74ABT2240		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	3	4	1	5	1	4.9	ns
tPHL			3	4.8	5.8	3	\$6.1	3	6	
tPZH	$\overline{\mathrm{OE}}$	Y	1.5	3.7	4.7	1.5	4.1	1.5	5.8	ns
tPZL			4.2	6.5	7.6	42	8.6	4.2	8.4	
tPHZ	$\overline{\mathrm{OE}}$	Y	1.9	3.8	5	1.98	5.7	1.9	5.6	ns
tplz			2.5	4.7	5.8	2.5	6.9	2.5	6.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES
(see Note C)

$$
\begin{gathered}
\text { VOLTAGE WAVEFORMS } \\
\text { PROPAGATION DELAY TIMES } \\
\text { INVERTING AND NONINVERTING OUTPUTS }
\end{gathered}
$$

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Output Ports Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'ABT2240 and 'ABT2244, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{O E}$ (active-low output-enable) inputs, and complementary OE and $\overline{\mathrm{OE}}$ inputs. These devices feature high fan-out and improved fan-in.

The outputs, which are designed to sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN74ABT2241 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT2241 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT2241 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLES		
INPUTS	OUTPUT	
1 $\overline{O E}$	1A	IY
L	H	H
L	L	L
H	X	Z

INPUTS		OUTPUT
$\mathbf{2 O E}$	$2 \mathbf{2 A}$	
H	H	H
H	L	L
L	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW, J, and N packages.
logic diagram (positive logic)

schematic of Y outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54	2241	SN74	2241	
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	\$	2		V
V_{IL}	Low-level input voltage			${ }_{4} 0.8$		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current					-32	mA
lOL	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	\$	5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^41]
WITH 3-STATE OUTPUTS

JANUARY 1991 - REVISED JUNE 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT2241		SN74ABT2241		UNIT
				MIN	TYP ${ }^{\text {t }}$	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$				0.8		0.8		0.8	V
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1		± 1		± 1	$\mu \mathrm{A}$
lozh	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				50		5 50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5$	Outputs high			50		50		50	$\mu \mathrm{A}$
$10^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	- 50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{l}=0$,	Outputs high		1	250	<	250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta \mathrm{CCC}{ }^{\text {d }}$	$V_{C C}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8.5						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT2241		SN74ABT2241		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpLH	A	Y	1	3	4.3	1	\$ 4.8	1	4.7	ns
tPHL			1	4.3	5.3	1	5.7	1	5.6	
tPZH	OE or $\overline{\mathrm{OE}}$	Y	1.1	3.5	4.8	1.1	6.1	1.1	5.8	ns
tPZL			2.1	6.2	7.6	2.1	8.6	2.1	8.4	
tphz	OE or $\overline{O E}$	Y	1.7	4.2	5.6	17	6.7	1.7	6.6	ns
tpLZ			1.7	3.9	5.8	81.7	6.9	1.7	6.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT2244, SN74ABT2244 OCTAL BUFFERS AND LINE/MOS DRIVERS
 WITH 3-STATE OUTPUTS

SCBS106A - D3710, JANUARY 1991 - REVISED JULY 1993

- Output Ports Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. Taken together with the 'ABT2240 and 'ABT2241, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{O E}$ (active-low output-enable) inputs, and complementary OE and $\overline{\mathrm{OE}}$ inputs. These devices feature high fan-out and improved fan-in.

The outputs, which are designed to sink up to. 12 mA , include $25-\Omega$ series resistors to reduce * overshoot and undershoot.

SN54ABT2244 . . . J PACKAGE
 SN74ABT2244 ... DB, DW, OR N PACKAGE (TOP VIEW)

	$20]$
1A1 ${ }^{2}$	19.2 COE
$2 \mathrm{Y} 4 \mathrm{C}_{3}$	18 1Y1
$2{ }^{4}$	17.
$2 \mathrm{Y}^{3}$	16 1Y2
$1 \mathrm{~A}^{6} 6$	15 2A3
$2 \mathrm{Y}_{2} \mathrm{Cl}_{7}$	14 1Y3
1 A 48	13 2A2
$2 \mathrm{Y} 1{ }^{\text {a }}$	12 1Y4
GND 10	11] 2 A 1

SN54ABT2244 . . FK PACKAGE (TOP VIEW)

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT2244 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT2244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT2244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)
INPUTS OUTPUT $\overline{\text { OE }}$ A \mathbf{Y} L H H L L L H X Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
schematic of Y outputs

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\qquad
Input voltage range, V_{1} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .65 \mathrm{~W}$
DW package . 0.85 W
N package . 1.3 W
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN5	2244	SN74	2244	
			MIN	MAX	MIN	MAX	UNT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	$\mathrm{V}_{\text {CC }}$	0	$\mathrm{V}_{\text {CC }}$	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
lOL	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.

SN54ABT2244, SN74ABT2244
OCTAL BUFFERS AND LINE/MOS DRIVERS
WITH 3-STATE OUTPUTS
SCBS106A - D3710, JANUARY 1991 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$			SN54ABT2244		SN74ABT2244		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2			-1.2	-1.2		V
V_{OH}	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$					0.8		0.8		0.8	V
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
O OH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
$1 \mathrm{I}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{v}, \quad \mathrm{I}=0, \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Outputs high		1	250		250		250	$\mu \mathrm{A}$
			Outputs low		24	30		30		30	mA
			Outputs disabled		0.5	250		250		250	$\mu \mathrm{A}$
$\Delta \mathrm{CCCl}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{\mathrm{l}}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8.5						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT2244		SN74ABT2244		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpLH	A	Y	1	3.4	4.3	1	5.3	1	4.7	ns
tpHL			1	4.5	5.3	1	6.8	1	5.6	
tPZH	$\overline{O E}$	Y	1.1	3.8	4.8	1.1	6.5	1.1	5.5	ns
tPZL			2.1	6.3	7.3	2.1	10.2	2.1	8.3	
tphz	$\overline{O E}$	Y	2.1	4.5	5.6	2.1	7	2.1	6.6	ns
tplz			1.7	4.3	5.3	1.7	7.4	1.7	5.8	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- B-Port Outputs Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal transceivers and line drivers are designed for asynchronous communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}}$) input can be used to disable the device so the buses are effectively isolated.
The A-port outputs, which are designed to sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT2245 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54ABT2245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT2245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS		OPERATION
$\overline{\text { OE }}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
schematic of A-port outputs

All resistor values shown are nominal.
logic diagram (positive logic)

To Seven Other Channels
schematic of B-port outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots \ldots . \mathrm{m}_{\mathrm{o}}$. 0.5 V to 5.5 V
Current into any output in the low state, I_{0} : SN54ABT2245 (except B port) . 96 mA
SN74ABT2245 (except B port) . 128 mA
B port . 30 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package . 0.65 W DW package . 0.85 W N package . 1.3 W
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $\mathbf{1 5 0}^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54	2245	SN74	2245	
			MIN	MAX	MIN	MAX	NIT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
IOH	High-level output current			-24		-32	mA
${ }^{\text {IOL}}$	Low-level output current	A port		48		64	mA
		B port		12		12	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

- Output Ports Have 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical Volv (Output Undershoot) $<0.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic 300-mil DIPs

description

These 11-bit buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The 3-state control gate is a 2 -input AND gate with active-low inputs so that if either output-enable ($\overline{O E 1}$ or $\overline{O E 2}$) input is high, all 11 outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT5400 . . . JT PACKAGE
SN74ABT5400 ... DW PACKAGE
(TOP VIEW)

SN54ABT5400... FK PACKAGE (TOP VIEW)

The SN54ABT5400 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT5400 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS			OUTPUT
$\overline{\text { OE1 }}$	$\overline{\mathbf{O E}}$	D	\mathbf{Y}
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW and JT packages.

logic diagram (positive logic)

To Ten Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Input voltage range, V_{I} (see Note 1) . - 0.5 l . V to 7 V	
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.	
Current into any output in the low state, l_{O}	0 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DW package	
Storage temperature range	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			SN54A	5400	SN74	5400	
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	${ }^{3}$	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	$\mathrm{v}_{\text {CC }}$	0	V_{CC}	V
1 OH	High-level output current			-12		-12	mA
lOL	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	8	10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\S This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT5400		SN74ABT5400		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	D	Y	2	4.5	5.7	2	6.7	2	6.5	ns
tPHL			1.5	3.7	4.5	1.5	5.5	1.5	5.2	
tpZH	$\overline{\mathrm{OE}}$	Y	2.5	5.7	6.6	2.5	-8.6	2.5	8.5	ns
tPZL			2	4.4	5.5	${ }^{2}$	6.9	2	6.8	
${ }_{\text {tPHZ }}$	$\overline{\mathrm{OE}}$	Y	1.5	3.6	4.4	185	5.5	1.5	5.2	ns
tplZ			1.5	4.2	5.4	1.5	7.4	1.5	6.9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Output Ports Have 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\text {OLV }}$ (Output Undershoot) $<0.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic 300-mil DIPs

description

These 11-bit buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE} 1}$ or $\overline{\mathrm{OE} 2}$) input is high, all 11 outputs are in the high-impedance state. These devices provide inverted data.

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT5401 . . FK PACKAGE (TOP VIEW)

The SN54ABT5401 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT5401 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUT
OE1	OE2	D	\mathbf{Y}
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12
Pin numbers shown are for the DW and JT packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54ABT5401		SN74ABT5401		UNIT
	,		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	$\stackrel{3}{4}$	2		V
V_{IL}	Low-level input voltage			$\bigcirc 0.8$		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{I} O H}$	High-level output current			-12		-12	mA
OL	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT5401		SN74ABT5401		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$I_{\text {I }}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$		3.35	3.7		3.3		3.35		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$		3.85	4.2		3.8		3.85		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$						3		3.1		v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$			2.6					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=8 \mathrm{~mA}$							0.8		0.65	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~m}$									0.8	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		$\checkmark 50$		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-25	-45	-100	-25	-100	-25	-100	mA
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0$			-50		-200	S50	-200	-50	-200	mA
Icc	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \quad \mathrm{O}=0, \\ & \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{C C} \text { or } G N D \end{aligned}$		Outputs high		5	50		50		50	$\mu \mathrm{A}$
			Outputs low		36	45		45		45	mA
			Outputs disabled		1	50		50		50	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{CC}{ }^{\S}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V, Other inputs at V_{CC} or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V			3							pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V										pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT5401	SN74ABT5401		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
tPLH	D	Y	2	4.5	6.1	$2 \quad 7$	2	6.9	ns
tPHL			1.5	4.4	5.2	1.5×5.9	1.5	5.7	
tPZH	$\overline{\mathrm{OE}}$	Y	2.5	5.7	6.6	$2.5 \sim 3.6$	2.5	8.5	ns
tPZL			2	4.4	5.5	${ }^{2}{ }^{4} 6.9$	2	6.8	
tPHZ	$\overline{\mathrm{OE}}$	Y	1.5	3.6	4.4	15.5 .5	1.5	5.2	ns
tplZ			1.5	4.2	5.4	1.57 .4	1.5	6.9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

Voltage waveforms
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Output Ports Have 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical Volv (Output Undershoot) $<0.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic 300-mil DIPs

description

These 12-bit buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The 3 -state control gate is a 2 -input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE}}$ or $\overline{\mathrm{OE} 2}$) input is high, all 12 outputs are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT5402 ... JT PACKAGE
SN74ABT5402 ... DW PACKAGE
(TOP VIEW)

SN54ABT5402 ... FK PACKAGE (TOP VIEW)

The SN54ABT5402 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT5402 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS			OUTPUT
$\overline{\text { OE1 }}$	$\overline{\text { OE2 }}$	D	\mathbf{Y}
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW and JT packages.

logic diagram (positive logic)

To 11 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{I} (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} 0.5 V to 5.5 V
Current into any output in the low state, Io 30 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$ $-18 \mathrm{~mA}$
Output clamp current, $\mathrm{IOK}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DW package 1.2 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

INSTRUMENTS

recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT5402		SN74ABT5402		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$!=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-1 \mathrm{~mA}$			3.35	3.7		3.3		3.35		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$			3.85	4.2		3.8		3.85		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$						3		3.1		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-12 \mathrm{~mA}$			2.6					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}^{\mathrm{OL}}=8 \mathrm{~mA}$							0.8		0.65	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$									0.8	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{ll}\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}\end{array}$		Outputs high			50		50		50	$\mu \mathrm{A}$
10			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-25	-45	-100	-25	-100	-25	-100	mA
los ${ }^{\ddagger}$	$\mathrm{V}_{\mathrm{C}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0$			-50		-200	-50	-200	-50	-200	mA
lec	$\begin{aligned} & v_{C C}=5.5 v, \quad I O=0, \\ & v_{1}=v_{C C} \text { or } G N D \end{aligned}$		Outputs high		5	50		50		50	$\mu \mathrm{A}$
			Outputs low		36	45		45		45	mA
			Outputs disabled		1	50		50		50	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{Cc} \mathrm{C}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1.5		1.5		1.5	mA
			Outputs disabled			0.05		0.05		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT5402	SN74ABT5402		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
tPLH	D	Y	2	4.5	5.7	$2 \quad 6.7$	2	6.5	ns
tPHL			1.5	3.7	4.5	$1.5<5.5$	1.5	5.2	
tPZH	$\overline{\mathrm{OE}}$	Y	2.5	5.7	6.6	2.5 , $\mathrm{L}^{8} 8.6$	2.5	8.5	ns
tpZL			2	4.4	5.5	246.9	2	6.8	
tpHz	$\overline{O E}$	Y	1.5	3.6	4.4	1.58	1.5	5.2	ns
tpLZ			1.5	4.2	5.4	1.57 .4	1.5	6.9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

Figure 1. Load Circuit and Voltage Waveforms

- Output Ports Have 25- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BICMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical Volv (Output Undershoot) $<0.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic 300-mil DIPs

description

These 12 -bit buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The 3 -state control gate is a 2 -input AND gate with active-low inputs so that if either output-enable ($\overline{\mathrm{OE}}$ or $\overline{\mathrm{OE} 2}$) input is high, all 12 outputs are in the high-impedance state. These devices provide inverted data.

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT5403 ... JT PACKAGE
SN74ABT5403 ... DW PACKAGE
(TOP VIEW)

SN54ABT5403... FK PACKAGE (TOP VIEW)

The SN54ABT5403 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT5403 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			OUTPUT
$\mathbf{O E 1}$	$\overline{\mathbf{O E 2}}$	D	\mathbf{Y}
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW and JT packages.

logic diagram (positive logic)

To 11 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . .$.

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DW package 1.2 W

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	5403	SN74	5403	
			MIN	MAX	MIN	MAX	NTT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2	5	2		V
V_{IL}	Low-level input voltage			-0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current			-12		-12	mA
lOL	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT5403	SN74ABT5403		UNIT
			MIN	TYP	MAX	MIN MAX	MIN	MAX	
tPLH	D	Y	2	4.5	6.1	$2 \quad 7$	2	6.9	ns
tPHL			1.5	4.4	5.2	$1.5<5.9$	1.5	5.7	
tpZH	$\overline{\mathrm{OE}}$	Y	2.5	5.7	6.6	$2.50{ }^{88.6}$	2.5	8.5	ns
tPZL			2	4.4	5.5	<2\% 6.9	2	6.8	
tpHZ	$\overline{\mathrm{OE}}$	Y	1.5	3.6	4.4	1.5	1.5	5.2	ns
tplZ			1.5	4.2	5.4	1.57	1.5	6.9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Output Ports Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT162240 is a 16 -bit buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4 -bit buffers, two 8 -bit buffers, or one 16 -bit buffer. This device provides inverting outputs and symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs.

SN54ABT162240 . . . WD PACKAGE
SN74ABT162240 . . . DL PACKAGE
(TOP VIEW)

1OE 1	48] $\overline{O E}$
1Y1 2	47	1A1
1Y2 3	46	1A2
GND[4	45	GND
1Y3 5	44	1 A3
1 Y 46	43] 1 A 4
$\mathrm{V}_{\mathrm{CC}}{ }^{7}$	42	V_{CC}
2Y1 8	41] 2A1
2Y2[9	40	2 A 2
GND 10	39	GND
2Y3 11	38] 2 A
2Y4 12	37] 2A4
3Y1 13	36	3A1
3Y2 14	35	3A2
GND 15	34	GND
3Y3 16	33	3A3
3Y4 17	32	3A4
$\mathrm{V}_{\text {CC }} 18$	31	$] \mathrm{V}_{\mathrm{CC}}$
4Y1 19	30] 411
4Y2 20	29] 42
GND 21	28	GND
4Y3-22	27] 4 A 3
4Y4 23	26	4A4
4 $\overline{O E}$ ¢ 24	25] $3 \overline{O E}$

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT162240 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT162240 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162240 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 4-bit buffer)
INPUTS OUTPUT $\overline{\text { OE }}$ A Y L H L L L H H X Z

Widebus and EPIC-IIB are trademarks of Texas instruments Incorporated.
logic symbol \dagger
logic diagram（positive logic）

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_{1} (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high stat	-0.5 V to 5.5 V
Current into any output in the low state, I_{0}	30 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{l}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	0.85 W
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162240		SN74ABT162240		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-1 \mathrm{~mA}$		3.35			3.3		3.35		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-1 \mathrm{~mA}$			3.85			3.8		3.85		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-3$			3.1			3		3.1		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-12 \mathrm{~mA}$			$2.6 \ddagger$					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{IL}^{2}=8 \mathrm{~mA}$				0.4	0.8		0.8		0.65	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=12 \mathrm{~mA}$									0.8	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
$10^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{C C} \text { or } G N D \end{aligned}$		Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
$\Delta^{\text {c }} \mathrm{Cc}^{\text {d }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V},$ One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		1		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				7						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				7						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
IT This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPL//tPHL	Open
tPLZ $/$ tPZ	$\mathbf{7 V}$
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

星

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

- Output Ports Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical VoLP (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{c c}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT162244 is a 16 -bit buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4 -bit buffers, two 8 -bit buffers, or one 16 -bit buffer. This device provides noninverting outputs and symmetrical $\overline{O E}$ (active-low output-enable) inputs.
The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT162244 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT162244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 4-bit baffer)
INPUTS OUTPUT OE A Y L H H L L L H X Z

Widebus and EPIC-IIB are trademarks of Texas Instruments incorporated.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 2)

			SN54A	T162244	SN74	162244	
			MIN	MAX	MIN	MAX	UNT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	\%	2		V
V_{IL}	Low-level input voltage			40.8		0.8	V
V_{1}	Input voltage		0	$\mathrm{Q}^{\text {V }}$ CC	0	V_{CC}	V
IOH^{2}	High-level output current			-12		-12	mA
l OL	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	8	10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162244		SN74ABT162244		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-1 \mathrm{~mA}$			3.35			3.3		3.35		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$			3.85			3.8		3.85		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$			3.1			3		3.1		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$			$2.6 \ddagger$					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=8 \mathrm{~mA}$				0.4	0.8		0.8		0.65	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=12 \mathrm{~mA}$									0.8	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND					± 1		\% ${ }^{\text {a }}$		± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					10		T0		10	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-10		¢ 10		-10	$\mu \mathrm{A}$
loff	$\mathrm{V}_{C C}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100		± 100		± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ \hline \end{array}$					50		50		50	$\mu \mathrm{A}$
10^{\S}				-25	-55	-100	-25	-100	-25	-100	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$		Outputs high			2		2		2	mA
			Outputs low			30		30		30	
			Outputs disabled			2		2		2	
${ }^{\text {a }} \mathrm{CCl}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			50		50		50	$\mu \mathrm{A}$
			Outputs disabled			50		50		50	
		Control inputs				50		50		50	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				3						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				8						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT162244		SN74ABT162244		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.5	3.2	1	4.1	1	3.9	ns
tPHL			1	3.1	4	1	4 5	1	4.8	
tPZH	OE	Y	1	3.2	4.2	1	5.6	1	5.4	ns
tpZL			1	3.2	4.1	15	5.2	1	5.1	
tpinz	$\overline{\mathrm{OE}}$	Y	1	3.2	4	1	4.7	1	4.6	ns
tplZ			1	3.1	3.9	$¢_{1} 1$	4.6	1	4.5	

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- A-Port Outputs Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $\mathbf{V}_{\mathbf{C C}}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT162245 is a 16-bit (dual-octal) noninverting 3 -state transceiver designed for synchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

SN54ABT162245 . . . WD PACKAGE SN74ABT162245... DGG OR DL PACKAGE (TOP VIEW)
1DIR 1
1B1 2 - 47 1A1
1B2[3 46] 1A2
GND[4 45] GND
1B3 5441 13
1B4 6 63 1A4
$\mathrm{V}_{\mathrm{CC}} 7842 \mathrm{~V}_{\mathrm{CC}}$
1B5[8 81 1] 1A5
1B6[9 40] 1A6
GND[10 39] GND
1B7 11 38] 1A7
1B8[12 37] 1A8
$2 \mathrm{B1} 1313 \mathrm{ll}$ [2A1
2B2[14 35] 2A2
GND[15 34] GND
2B3[16 33] 2A3
2B4[17 32] 2A4
$\mathrm{V}_{\mathrm{CC}}[18 \quad 31] \mathrm{V}_{\mathrm{CC}}$
2B5[19 30] 2A5
2B6[20 29] 2A6
GND[21-28] GND
2B7 22 27]2A7
2B8[23 26-2A8
$2 \mathrm{DIRT} 24 \quad 25] \overline{O E}$

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}}$) input can be used to disable the device so that the buses are effectively isolated.
The A-port outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT162245 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT162245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 8-bit section)	
INPUTS OPERATION $\overline{\text { OE }}$ DIR L L B data to A bus L H A data to B bus H X Isolation	

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			SN54A	162245	SN74A	162245	
			MIN	MAX	MIN	MAX	NT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
	High-level output current	B port		-24		-32	mA
H	俍-level output current	A port		-12		-12	ma
	Low-level output current	B port		48		64	mA
	-level output	A port		12		12	
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40.	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162245		SN74ABT162245		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	B port	2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$	A port	$2.6 \ddagger$					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=8 \mathrm{~mA}$	A port		0.4	0.8		0.8		0.65	V
		$\mathrm{IOL}=12 \mathrm{~mA}$								0.8	
		$\mathrm{l} \mathrm{OL}=48 \mathrm{~mA}$	B port			0.55		0.55			
		$1 \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
IOZL§	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
Ioff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & V_{1}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
${ }^{\text {I }} \mathrm{CC}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		1		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V				7						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				7						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

- B-Port Outputs Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathbf{~ p F , ~ R ~ = ~ 0) ~}$
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical $V_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V CC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Bus-Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT162260 is a 12-bit to 24-bit multiplexed D-type latch used in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor or bus-interface applications. This device is also useful in memory-interleaving applications.

Three 12-bit I/O ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output-enable ($\overline{\mathrm{OE} 1 \mathrm{~B}}, \overline{\mathrm{OE} 2 \mathrm{~B}}$, and $\overline{\mathrm{OEA}}$) inputs control the bus transceiver functions. The $\overline{\mathrm{OE} 1 \mathrm{~B}}$ and $\overline{\mathrm{OE} 2 \mathrm{~B}}$ control signals also allow bank control in the A to B direction.

Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latch-enable input is returned high.

The B-port outputs, which are designed to sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

description (continued)

The SN74ABT162260 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT162260 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162260 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLES
B TO A ($\overline{\mathrm{OEB}}=\mathrm{H}$)

INPUTS						OUTPUT
1B	2B	SEL	LE1B	LE2B	$\overline{\text { OEA }}$	A
H	X	H	H	X	L	H
L	X	H	H	X	L	L
X	X	H	L	X	L	A_{0}
X	H	L	X	H	L	H
X	L	L	X	H	L	L
X	X	L	X	L	L	A_{0}
X	X	X	X	X	H	Z

A TO B $(\overline{\text { OEA }}=\mathrm{H})$									
INPUTS								OUTPUTS	
A	LEA1B	LEA2B	$\overline{\text { OE1B }}$	$\overline{\text { OE2B }}$	1B	2B			
H	H	H	L	L	H	H			
L	H	H	L	L	L	L			
H	H	L	L	L	H	$2 B_{0}$			
L	H	L	L	L	L	$2 B_{0}$			
H	L	H	L	L	$1 B_{0}$	H			
L	L	H	L	L	$1 B_{0}$	L			
X	L	L	L	L	$1 B_{0}$	$2 B_{0}$			
X	X	X	H	H	Z	Z			
X	X	X	L	H	Active	Z			
X	X	X	H	L	Z	Active			
X	X	X	L	L	Active	Active			

logic diagram (positive logic)

SN54ABT162260, SN74ABT162260

12-BIT TO 24-BIT MULTIPLEXED D-TYPE LATCHES

WITH SERIES-DAMPING RESISTORS AND 3-STATE OUTPUTS

JUNE 1992 - REVISED JUNE 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger


```
Input voltage range, \(\mathrm{V}_{\mathrm{I}}\) (see Note 1) .................................................................... -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, \(\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .\).
Current into any output in the low state, \(\mathrm{I}_{\mathrm{O}}:\) SN54ABT162260 (A port) ............................... 96 mA
SN74ABT162260 (A port) . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
B port ........................................................... . . 30 mA
Input clamp current, \(I_{I K}\left(V_{I}<0\right)\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 mA
Output clamp current, \(\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -50 mA
Maximum power dissipation at \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) (in still air) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
```

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating control inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT162260	SN74ABT162260	UNIT
			MIN	TYPt MAX	MIN MAX	MIN MAX	
$\mathrm{V}_{\text {IK }}$	$V_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	-1.2	-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		2.5	2.5	v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3		3	3	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$		2		2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$		$2 \ddagger$			2	
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}^{2}=48 \mathrm{~mA}$	A port		0.55	0.55		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$			$0.55 \ddagger$		0.55	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{IOL}^{2}=12 \mathrm{~mA}$	B port		0.8	0.8	0.8	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Control inputs		± 1	4	± 1	$\mu \mathrm{A}$
		A or B ports		± 100	± 100	± 100	
I (1)hold	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=0.8 \mathrm{~V}$	A or B ports			${ }_{6}$	100	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=2 \mathrm{~V}$				k	-100	
$\mathrm{IOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	$\bigcirc \quad 50$	50	$\mu \mathrm{A}$
${ }^{\text {OZLL }}$ §	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	\% - 50	-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{C C}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	50	50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -225	-50 -225	-50 -225	mA
ICC	$\left\lvert\, \begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{lO}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}\right.$	Outputs high		1.5	1.5	1.5	mA
		Outputs low		63	63	63	
		Outputs disabled		1	1	1	
${ }^{\text {a }} \mathrm{Cc}^{\#}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1	1.5	1	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3			pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			11.5			pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{l}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		SN54ABT162260		SN74ABT162260		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\text {w }}$	Pulse duration, LE1B, LE2B, LEA1B, or LEA2B high	3.3			Ba	3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before LE1B, LE2B, LEA1B, or LEA2B \downarrow	1.5				1.5		ns
th	Hold time, data after LE1B, LE2B, LEA1B, or LEA2B \downarrow	1				1		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT162260		SN74ABT162260		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	B	1.4	3.6	5.2	1.4	6.3	1.4	6.1	ns
tPHL			2.7	4.8	6.4	2.7	7.4	2.7	7.1	
tPLH	B	A	1.6	3.6	5.2	1.6	6.4	1.6	6	ns
tPHL			1.7	3.8	5.5	1.7	6.5	1.7	6.2	
tPLH	LE	A	1.8	3.9	5.3	1.8	6.6	1.8	6.3	ns
tPHL			2.3	4.1	5.4	2.3	6.4	2.3	5.8	
$t_{\text {PLH }}$	LE	B	1.6	3.7	5.4	1.6	6.4	1.6	6.1	ns
tPHL			2.8	4.9	6.4	2.8	\% 7.5	2.8	7.1	
tPLH	SEL (1B)	A	1.5	3.6	5	1.5	5.9	1.5	5.6	ns
$\mathrm{t}_{\text {PHL }}$			1.8	3.5	4.8	1.85	5.2	1.8	5	
${ }^{\text {tPLH }}$	SEL (2B)	A	1.2	3.6	5.1	12	6.5	1.2	6.3	ns
tPHL			1.7	4	5.5	Q1.7	6.5	1.7	6.2	
$\mathrm{t}_{\mathrm{P} Z \mathrm{H}}$	$\overline{\mathrm{OE}}$	*	1.1	3.5	5.2	1.1	6.5	1.1	6.3	ns
tPZL			2.1	4.2	5.7	2.1	6.6	2.1	6.5	
tPZH	$\overline{\mathrm{OE}}$	B	1	3.4	4.9	1	6.4	1	6.3	ns
tpZL			2.9	5.5	6.8	2.9	8.3	2.9	8.2	
$t_{\text {PHZ }}$	$\overline{O E}$	A	2.5	4.5	5.9	2.5	6.9	2.5	6.7	ns
tPLZ			1.8	3.4	4.8	1.8	5.6	1.8	5.2	
${ }_{\text {tPHZ }}$	$\overline{\mathrm{OE}}$	B	2.1	4.4	5.7	2.1	7.7	2.1	7.5	ns
tPLZ			1.7	3.9	5.4	1.7	6.3	1.7	6.2	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH $^{/ \text {tPHL }}$	Open
tPLZ $/$ tPZL	$7 \mathbf{V}$
tPHZ $/$ tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

voltage waveforms PULSE DURATION

voltage waveforms
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

SN54ABT162460, SN74ABT162460 4-TO-1 MULTIPLEXED/DEMULTIPLEXED REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
 FEBRUARY 1993

- B-Port Outputs Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathbf{C =} \mathbf{2 0 0} \mathbf{~ p F , ~ R ~ = ~ 0) ~}$
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT162460 is a 4-bit-to-1-bit multiplexed registered transceiver used in applications where four separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor or bus-interface applications. This device is also useful in memory-interleaving applications.
Five 4-bit //O ports (1A-4A, 1B1-4, 2B1-4, 3B1-4, and 4B1-4) are available for address and/or data transfer. The output-enable ($\overline{\mathrm{OEB}}, \overline{\mathrm{OEB1}}-\overline{\mathrm{OEB4}}$, and $\overline{\mathrm{OEA}}$) inputs control the bus transceiver functions. These control signals also allow 4-bit or 16-bit control depending on the $\overline{\mathrm{OEB}}$ level.

Address and/or data information can be stored using the internal storage latches/flip-flops. The latch-enable (LEB1-LEB4, LEBA, and LEAB1-LEAB4) and clock/clock-enable (CLK/CLKEN) inputs are used to control data storage. When either one of the latch-enable inputs is high, the latch is transparent (clock is a don't care as long as the latch-enable is high). When the latch-enable input goes low (providing that the clock does not transit from low to high), the data present at the inputs is latched and remains latched until the latch-enable input is returned high. When the clock-enable is low and the corresponding latch-enable is low, data can be clocked on the low to high transition of the clock. When either the clock-enable or the corresponding latch-enable is high, the clock is a don't care.
Four select (SELO, SEL1, CE_SELO, and CE_SEL1) pins are provided to multiplex data (A port), or to select one of four clock-enables (B port). This allows the user to have the flexibility of controlling one bit at a time.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

4-TO-1 MULTIPLEXED/DEMULTIPLEXED REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS

description (continued)

The B-port outputs, which are designed to sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.
To ensure the high-impedance state during power-up or power-down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT162460 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT162460 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162460 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

A-TO-B OUTPUT-ENABLE TABLE \dagger

INPUTS		OUTPUT
$\overline{\text { OEB }}$	$\overline{\text { OEBn }}$	Bn
H	H	Z
H	L	Z
L	H	Z
L	L	Active

$\dagger \mathrm{n}=1,2,3,4$
A-TO-B STORAGE TABLE (ASSUMING $\overline{\mathrm{OEB}}=\mathrm{L}, \overline{\mathrm{OEBn}}=\mathrm{L}$) \ddagger

INPUTS											OUTPUTS			
CLKENAB	CE_SEL1	CE_SEL0	CLKAB	LEAB1	LEAB2	LEAB3	LEAB4	B1	B2	B3	B4			
X	X	X	H or L	H	L	L	L	A	A_{0}	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$			
X	X	X	H or L	H	H	H	L	A	A	A	A_{0}			
L	X	X	L	L	L	L	L	A_{0}	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$			
L	L	L	\uparrow	L	L	L	L	A	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$			
L	L	H	\uparrow	L	L	L	L	A_{0}	A	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$			
L	H	L	\uparrow	L	L	L	L	A_{0}	$\mathrm{~A}_{0}$	A	$\mathrm{~A}_{0}$			
L	H	H	\uparrow	L	L	L	L	A_{0}	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$	A			
H	X	X	\uparrow	L	L	L	L	A_{0}	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$	$\mathrm{~A}_{0}$			

\ddagger This table does not cover all the latch-enable cases since they have similar results.

B-TO-A STORAGE TABLE (BEFORE POINT "P")

INPUTS								"P"
CLKENB	CLKBA	LEB1	LEB2	LEB3	LEB4	SEL1	SELO	
X	X	H	L	L	L	L	L	B1
X	X	L	H	L	L	L	H	B2
X	X	L	L	H	L	H	L	B3
X	X	L	L	L	H	H	H	B4
L	\uparrow	L	L	L	L	L	L	B1
						L	H	B2
						H	L	B3
						H	H	B4
L	L	L			L	L	L	B10 ${ }^{\text {¢ }}$
						L	H	B20 ${ }^{\dagger}$
						H	L	B30 ${ }^{\dagger}$
						H	H	B40 ${ }^{\dagger}$

B-TO-A STORAGE TABLE (AFTER POINT "P")

INPUTS					OUTPUTA
$\overline{\text { CLKENBA }}$	CLKBA	LEBA	$\overline{\text { OEA }}$	B	
X	X	X	H	X	Z
X	X	H	L	L	L
X	X	H	L	H	H
H	X	L	L	X	$\mathrm{A}_{0}{ }^{\dagger}$
L	\uparrow	L	L	L	L
L	\uparrow	L	L	H	H
L	L	L	L	X	$\mathrm{A}_{0}{ }^{\dagger}$

[^42]
SN54ABT162460, SN74ABT162460
 4-T0-1 MULTIPLEXED/DEMULTIPLEXED REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
 FEBRUARY 1993

logic diagram (positive logic)

Texas
INSTRUMENTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}}: \text { SN54ABT162460 (A port) } 96 \mathrm{~mA} \\
& \text { SN74ABT162460 (A port) . } 128 \text { mA } \\
& \text { B port . } 30 \mathrm{~mA} \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {. } 18 \mathrm{~mA} \\
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0\right) \text {. }-50 \mathrm{~mA} \\
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air) . } 1 \mathrm{~W} \\
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposúre to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. }
\end{aligned}
$$

recommended operating conditions (see Note 2)

			SN54ABT162460		SN74ABT162460		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V	Input voltage		0	V_{CC}	0	V_{CC}	V
IOH	High-level output current			-24		-32	mA
${ }^{\text {IOL}}$	Low-level output current	A port		48		64	mA
		B port		12		12	
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT162460, SN74ABT162460

4-T0-1 MULTIPLEXED/DEMULTIPLEXED REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
FEBRUARY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162460		SN74ABT162460		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}^{2}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{IOH}^{2}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$	A port			0.55		0.55			V
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$	B port			0.8		0.8		0.8	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
1 (hold)	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	A or B ports						100		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2 \mathrm{~V}$							-100		
$\mathrm{lOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozL ${ }^{\text {¢ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{C C}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
$10]$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-200	-50	-200	-50	-200	mA
ICC	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{C C} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high			2		2		2	mA
			Outputs low			35		35		35	
			Outputs disabled			2		2		2	
$\Delta^{\prime} C^{\#}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs								pF
$\mathrm{C}_{\text {io }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports								pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
II Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				SN54A	162460	SN74A	162460	UNIT
				MIN	MAX	MIN	MAX	UNT
${ }^{\text {clock }}$	Clock frequency			0	150	0	150	MHz
	Pulseduration	LEAB or LEBA high				4		
tw	Puse duration	CLKAB or CLKBA high or low				4		
		Before CLK \uparrow	A or B			2		
	Setup time	Before CLK	CLKEN			3		
$t_{\text {su }}$	Setup time	A before LEAB \downarrow or B before LEBA \downarrow	CLK high			2		
		A before LEAB \downarrow or B before LEBA \downarrow	CLK low			2		
		After CLK \uparrow	A or B			2		
th	Hold time	After CLK	$\overline{\text { CLKEN }}$			2		ns
		A after LEAB \downarrow or B after LEBA \downarrow				3		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT162460		SN74ABT162460		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150			150		150		MHz
tPLH	A or B	B or A							7	ns
tphL									7	
tPLH	CLKAB	B								ns
tphL										
tPLH	CLKBA	A								ns
tPHL										
tPLH	LEAB	B							7	ns
tPHL									7	
tpLH	LEBA	A							6	ns
tPHL									6	
tPLH	LEB	A							8	ns
tpHL									8	
tPLH	SEL	A							8	ns
tpHL									8	
tPLH	CE_SEL	B								ns
tPHL										
tPZH	$\overline{O E}$	A or B							10	ns
tPZL									10	
tphz	$\overline{\mathrm{OE}}$	A or B							10	ns
tplZ									10	

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

- B-Port Outputs Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {тM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes. Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock ($\overline{C L K A B}$ and $\overline{C L K B A})$ inputs.

SN54ABT162500 . . . WD PACKAGE
SN74ABT162500 . . . DL PACKAGE
(TOP VIEW)

For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if $\overline{C L K A B}$ is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable OEAB is active high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and $\overline{C L K B A}$. The output enables are complementary (OEAB is active high and $\overline{O E B A}$ is active low).
The B-port outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Widebus+, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

18-BIT UNIVERSAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS
JUNE 1992 - REVISED OCTOBER 1992

description (continued)

The SN74ABT162500 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT162500 is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162500 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLET				
INPUTS				OUTPUT
OEAB	LEAB	CLKAB	A	B
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\downarrow	L	L
H	L	\downarrow	H	H
H	L	H	X	$B_{0} \ddagger$
H	L	L	X	$B_{0} \S$

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{O E B A}, ~ L E B A$, and CLKBA.
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

INSTRUMENTS
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{I} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}:$ SN54ABT162500 (A port) 96 mA
SN74ABT162500 (A port) 128 mA
B port 30 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. .. 18 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) ... 1 W
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		,	SN54ABT162500		SN74ABT162500		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{I} O H}$	High-level output current	A port		-24		-32	mA
		B port		-12		-12	
${ }^{\text {IOL}}$	Low-level output current	A port		48		64	mA
		B port	\checkmark	12		12	
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162500		SN74ABT162500		UNIT		
		MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX					
V_{IK}				$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
VOH	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.5			2.5		2.5		V		
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	3			3		3				
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-24 \mathrm{~mA}$	2			2						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	$2 \ddagger$					2				
	B port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	3.35			3.3		3.35				
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{O}_{\mathrm{OH}}=-1 \mathrm{~mA}$	3.85			3.8		3.85				
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$	3.1			3		3.1				
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{l}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2.6					2.6				
VOL	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55			V		
			$\mathrm{IOL}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55			
	B port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$			0.8		0.8		0.8			
4	Control inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				± 1		± 1		± 1	$\mu \mathrm{A}$		
	A or B ports					± 20		± 20		± 20			
${ }^{1} \mathrm{OZH}^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				10		10		10	$\mu \mathrm{A}$		
${ }^{\text {O }}$ ILL ${ }^{\text {§ }}$		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10		-10		-10	$\mu \mathrm{A}$		
$1{ }_{\text {off }}$		$V_{C C}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$		
ICEX		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	Outputs high	50			50			50	$\mu \mathrm{A}$		
$10]$	A port	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-100	-180	-50	-180	-50	-180	mA		
	B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-25	-55	-100	-25	-100	-25	-100			
ICC	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high			3		3		3	mA		
			Outputs low			36		36		36			
			Outputs disabled			3		3		3			
${ }^{\text {I }} \mathrm{CCW}{ }^{\text {\# }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND				50		50		50	$\mu \mathrm{A}$		
C_{i}	Control inputs	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3						pF		
$\mathrm{C}_{\text {io }}$	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			9						pF		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{IOZL}^{\text {include the input leakage current. }}$
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

				SN54A	162500	SN74A	62500	
				MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency			0	150	0	150	MHz
	Pulse duration	LEAB or LEBA high						ns
tw	Pulse duration	$\overline{\text { CLKAB }}$ or CLKBA high or low						ns
		A before $\overline{C L K A B} \downarrow$						
		B before $\overline{\text { CLKBA }} \downarrow$						
${ }^{\text {tsu}}$	Setup time	A before LEAB \downarrow or B before LEBA \downarrow	$\overline{\text { CLK }}$ high					ns,
		A before LEAB \downarrow or B before	CLK low					
		A after $\overline{C L K A B} \downarrow$ or B after $\overline{C L K B A} \downarrow$						
th	Hold time	A after LEAB \downarrow or B after LEBA \downarrow						ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT162500		SN74ABT162500		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150	200		150		150		MHz
tPLH	A or B	B or A								ns
tPHL										
tPLH	LEAB or LEBA	B or A								ns
tPHL										
tPLH	$\overline{\text { CLKAB }}$ or CLKBA	B or A								ns
tPHL										
tPZH	OEAB or $\overline{\text { OEBA }}$	B or A								ns
tPZL										
tPHZ	OEAB or $\overline{\text { OEBA }}$	B or A								ns
tpLZ										

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tpHL tpLz/tpZL tpHz/tpZH	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT162501, SN74ABT162501 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SEPTEMBER 1992 - REVISED OCTOBER 1992

- B-Port Outputs Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {тм }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18-bit universal bus transceivers consist of storage elements that can operate either as D-type latches or D-type flip-flops to allow data flow in transparent or clocked modes.

```
SN54ABT162501 ... WD PACKAGE
SN74ABT162501 ... DL PACKAGE
            (TOP VIEW)
```


Data flow in each direction is controlled by output-enable (OEAB and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).
The B-port outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
The SN74ABT162501 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

[^43]
description (continued)

The SN54ABT162501 is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162501 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

INPUTS				$\begin{gathered} \text { OUTPUT } \\ \text { B } \end{gathered}$
OEAB	LEAB	CLKAB	A	
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\uparrow	L	L
H	L	\uparrow	H	H
H	L	H	X	$\mathrm{B}_{0} \ddagger$
H	L	L	X	B_{0} §

†A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{O E B A}$, LEBA, and CLKBA.
\ddagger Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low.
§ Output level before the indicated steady-state input conditions were established.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram（positive logic）

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

Input voltage range， V_{1}（except I／O ports）（see Note 1）．． 0.5 V to 7 V
Voltage range applied to any output in the high state or power－off state， $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state， I_{O} ：SN54ABT162501（A port）$\ldots .$.
SN74ABT162501（A port）．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 128 mA
B port ．． 30 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$（in still air）$\ldots \ldots \ldots$
Storage temperature range ．．．$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTE 1：The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162501		SN74ABT162501		UNIT		
		MIN	TYPt	MAX	MIN	MAX	MIN	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
V_{OH}	A port	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$	2.5			2.5		2.5		V		
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$	3			3		3				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-24 \mathrm{~mA}$	2			2						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$	$2 \ddagger$.					2				
	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-1 \mathrm{~mA}$	3.35			3.3		3.35				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-1 \mathrm{~mA}$	3.85			3.8		3.85				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$	3.1			3		3.1				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.6					2.6				
VOL	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$			0.55		0.55			V		
			$\mathrm{IOL}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55			
	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=12 \mathrm{~mA}$			0.8		0.8		0.8			
1	Control inputs	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$				± 1		± 1		± 1	$\mu \mathrm{A}$		
	A or B ports					± 20		± 20		± 20			
IOZH^{\S}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			10		10		10	$\mu \mathrm{A}$		
lozl ${ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-10		-10		-10	$\mu \mathrm{A}$		
$l_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100				± 100	$\mu \mathrm{A}$		
ICEX		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	Outputs high			50		50		50	$\mu \mathrm{A}$		
109	A port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA		
	B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-25	-55	-100	-25	-100	-25	-100			
ICC	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high			3		3		3	mA		
			Outputs low			36		36		36			
			Outputs disabled			3		3		3			
$\Delta^{\prime} \mathrm{CC}^{\#}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND				50		50		50	$\mu \mathrm{A}$		
C_{i}	Control inputs	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V			3						pF		
$\mathrm{C}_{\text {io }}$	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			9						pF		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

- Output Ports Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {м }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 16-bit buffers and bus drivers provide a high-performance bus interface for wide data paths.

The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{O E 1}$ or $\overline{O E 2}$) input is high, all corresponding outputs are in the high-impedance state.

SN54ABT162540... WD PACKAGE
SN74ABT162540 ... DL PACKAGE
(TOP VIEW)

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT162540 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT162540 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162540 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each 8-bit section)

INPUTS			
$\overline{\text { OE1 }}$	$\overline{\text { OE2 }}$	OUTPUT	
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

[^44]logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.

Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	162540	SN74A	162540	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
${ }^{\mathrm{IOH}}$	High-level output current			-12		-12	mA
${ }^{\text {OLI}}$	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162540		SN74ABT162540		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
$\mathrm{VOH}^{\text {O }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$			3.35			3.3		3.35		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$			3.85			3.8		3.85		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			3.1			3		3.1		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-12 \mathrm{~mA}$			$2.6 \ddagger$					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OL}=8 \mathrm{~mA}$				0.4	0.8		0.8		0.65	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I} \mathrm{OL}=12 \mathrm{~mA}$									0.8	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
${ }^{\text {OZHH }}$	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozL§	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$		Outputs high			50		50		50	$\mu \mathrm{A}$
101	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
${ }^{\text {I }} \mathrm{CC}{ }^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, }$ One input at 3.4 V , Other inputs at V_{CC} or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		1		0.05	
		Control inputs				1.5		1.5		1.5	
C_{1}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V			7					,		pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V				7						pF

[^45]
- Output Ports Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed V_{Cc} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT162541 is a noninverting 16 -bit buffer composed of two 8 -bit sections with separate output-enable signals. For either 8 -bit buffer section, the two output-enable (1 $\overline{\mathrm{OE}} 1$ and $1 \overline{\mathrm{OE} 2}$ or2 $\overline{\mathrm{OE}}$ and $2 \overline{\mathrm{OE} 2}$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 8 -bit buffer section are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT162541 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT162541 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162541 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each 8-bit section)

INPUTS			OUTPUT
OE1	$\overline{\text { OE2 }}$	A	Y
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

[^46]logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162541		SN74ABT162541		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$			3.35			3.3		3.35		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$			3.85			3.8		3.85		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			3.1			3		3.1		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$			$2.6 \ddagger$					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}^{\mathrm{OL}}=8 \mathrm{~mA}$				0.4	0.8		0.8		0.65	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I} \mathrm{OL}=12 \mathrm{~mA}$									0.8	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
$\mathrm{l}^{\text {OZH }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5$					± 100				± 100	$\mu \mathrm{A}$
ICEX	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & V_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$		Outputs high			50		50		50	$\mu \mathrm{A}$
10 !	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
$\Delta^{\prime} \mathrm{CC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		1		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V} \text { or } 0.5 \mathrm{~V}$			7							pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V										pF

[^47]
SN54ABT162600, SN74ABT162600 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
 JUNE 1992 - REVISED OCTOBER 1992

- B-Port Outputs Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {™ }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18 -bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

SN54ABT162600 ... WD PACKAGE
SN74ABT162600 ... DL PACKAGE (TOP VIEW)

OEAB ${ }_{1}$	U_{56}	1 CLKENAB
LEAB 2	55	1 CLKAB
A1 3	54	B1
GND[4	53	GND
A2 5	52	B2
А3	51	B3
v CC [7	50	V_{CC}
A4	49] B4
A5 9	48	B5
A6 10	047	B6
GND 11	146	GND
A7 12	245	B7
A8 13	3. 44	B8
A9 14	43	B9
A10 15	542	B10
A11 16	$6 \quad 41$	B11
A12 17	$7 \quad 40$	B12
GND 18	839] GND
A13 19	938	B13
A14 20	- 37	B14
A15 21	136	B15
$\mathrm{v}_{\mathrm{CC}}{ }^{22}$	235	V_{CC}
A16[23	34	B16
A17 24	4.33	B17
GND 25	53] GND
A18 26	- 31	B18
OEBA 27	730	$\overline{\text { CLKBA }}$
LEBA [28	$8 \quad 29$	$]$ CLKENBA

Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), and clock ($\overline{\text { CLKAB }}$ and $\overline{\text { CLKBA }}$) inputs. The clock can be controlled by the clock-enable ($\overline{\text { CLKENAB }}$ and $\overline{C L K E N B A}$) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the high-to-low transition of $\overline{C L K A B}$. Output-enable $\overline{O E A B}$ is active-low. When $\overline{O E A B}$ is low, the outputs are active. When $\overline{O E A B}$ is high, the outputs are in the high-impedance state. Data flow

The B-port outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT162600 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT 162600 is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162600 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^48]| FUNCTION TABLE \dagger | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUTS | | | | | $\begin{gathered} \text { OUTPUT } \\ \text { B } \end{gathered}$ |
| CLKENAB | $\overline{\text { OEAB }}$ | LEAB | $\overline{\text { CLKAB }}$ | A | |
| X | H | X | X | X | Z |
| X | L | H | X | L | L |
| X | L | H | X | H | H |
| H | L | L | x | x | $\mathrm{B}_{0} \ddagger$ |
| H | L | L | X | x | $\mathrm{B}_{0} \ddagger$ |
| L | L | L | \downarrow | L | L |
| L | L | L | \downarrow | H | H |
| L | L | L | H | X | $\mathrm{B}_{0} \ddagger$ |
| L | L | L | L | X | B_{0} § |

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{O E B A}$, LEBA, CLKBA, and CLKENBA.
\ddagger Output level before the indicated steady-state input conditions were established.
§Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (except I/O ports) (see Note 1) .. }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT162600 (A port) } 96 \mathrm{~mA} \\
& \text { SN74ABT162600 (A port) } 128 \text { mA } \\
& \text { B port } 30 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Storage temperature range .. }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

			SN54	162600	SN74	62600	
			MIN	MAX	MIN	MAX	UNT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
	High-level output current	A port		-24		-32	mA
${ }^{\text {IOH }}$	ghevel output current	B port		-12		-12	A
		A port		48		64	
IOL	Low-level output current	B port		12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or $1 / 0$) must be held high or low.

SN54ABT162600, SN74ABT162600 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
 JUNE 1992 - REVISED OCTOBER 1992

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162600		SN74ABT162600		UNIT		
		MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2		-1.2	V
VOH	A port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.5			2.5		2.5		V		
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	3			3		3				
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-24 \mathrm{~mA}$	2			2						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-32 \mathrm{~mA}$	$2 \ddagger$					2				
	B port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-1 \mathrm{~mA}$	3.35			3.3		3.35				
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-1 \mathrm{~mA}$	3.85			3.8		3.85				
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	3.1			3		3.1				
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$	2.6					2.6				
VOL	A port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=48 \mathrm{~mA}$			0.55		0.55			V		
			$\mathrm{IOL}=64 \mathrm{~mA}$			$0.55 \ddagger$				0.55			
	B port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$			0.8		0.8		0.8			
I	Control inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				± 1		± 1		± 1	$\mu \mathrm{A}$		
	A or B ports					± 20		± 20		± 20			
${ }^{1} \mathrm{ZZH}{ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$				10		10		10	$\mu \mathrm{A}$		
lozl ${ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-10		-10		-10	$\mu \mathrm{A}$		
loff		$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$				± 100				± 100	$\mu \mathrm{A}$		
ICEX		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	Outputs high			50		50		50	$\mu \mathrm{A}$		
107	A port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100	-180	-50	-180	-50	-180	mA		
	B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-25	-55	-100	-25	-100	-25	-100			
ICC	A or B ports	$\begin{aligned} & v_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high			3		3		3	mA		
			Outputs low			36		36		36			
			Outputs disabled			3		3		3			
$\Delta^{\prime} \mathrm{CC}^{\#}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND				50		50		50	$\mu \mathrm{A}$		
C_{i}	Control inputs	$\mathrm{V}_{1}=2.5 \dot{\mathrm{~V}}$ or 0.5 V			3						pF		
$\mathrm{C}_{\text {io }}$	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V			9						pF		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
t $_{\text {PLZ }} /$ tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT162601, SN74ABT162601 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
 AUGUST 1992 - REVISED JULY 1993

- B-Port Outputs Have Equivalent 25- Ω Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Mode
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable ($\overline{O E A B}$ and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable ($\overline{\mathrm{CLKENAB}}$ and $\overline{\mathrm{CLKENBA}}$) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable $\overline{O E A B}$ is active-low. When $\overline{O E A B}$ is low, the outputs are active. When $\overline{O E A B}$ is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, CLKBA, and CLKENBA.

The B-port outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT162601 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT162601 is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162601 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

INPUTS					$\begin{gathered} \text { OUTPUT } \\ \text { B } \end{gathered}$
CLKENAB	OEAB	LEAB	CLKAB	A	
X	H	X	X	X	Z
X	L	H	X	L	L
X	L	H	X	H	H
H	L	L	X	X	$\mathrm{B}_{0}{ }^{\ddagger}$
H	L	L	X	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	L	\uparrow	L	L
L	L	L	\uparrow	H	H
L	L	L	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	H	X	B_{0} §

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{O E B A}$, LEBA, CLKBA, and CLKENBA.
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC}

$$
-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
$$

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, Io: SN54ABT162601 (A port) 96 mA SN74ABT162601 (A port) 128 mA
B port .. 30 mA

Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1:. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	162601	SN74A	162601	
			MIN	MAX	MIN	MAX	NIT
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	DCC	0	V_{CC}	V
	h-level output current	A port		-24		-32	A
${ }^{\text {IOH}}$	g-level output current	B port		-12		-12	A
		A port		48		64	
${ }^{\text {O }} \mathrm{OL}$	w-level output current	B port	\square^{2}	12		12	A
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT162601, SN74ABT162601 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
 AUGUST 1992 - REVISED JULY 1993

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

SN54ABT162601, SN74ABT162601
18-BIT UNIVERSAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
AUGUST 1992-REVISED JULY 1993
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT162601		SN74ABT162601		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			150			150		150		MHz
tPLH	A	B	1.5	2.8	4	1.5	5.1	1.5	4.8	ns
tphL			2	3.7	5.2	2	6.1	2	5.7	
tPLH	B	A	1	2.5	3.6	1	4.2	1	4	ns
tpHL			2	3.3	4.5	2	5.1	2	4.9	
tPLH	LEBA	A	2	3.3	4.5	2	5.6	2	5	ns
tPHL			2	3.6	4.7	2	5.4	2	5	
tPLH	LEAB	B	2	3.4	4.8	2	6.1	2	5.6	ns
tPHL			2	3.8	5.2	2	6.4	2	5.9	
tpLH	CLKBA	A	1.5	3.1	4.7	1.50	5.4	1.5	5.3	ns
tPHL			1.5	3.1	4.3	1.5	5.2	1.5	5	
tPLH	CLKAB	B	1.5	3.3	4.7	125	6	1.5	5.5	ns
tphL			1.5	3.5	4.8	1.5	5.8	1.5	5.3	
tPZH	$\overline{\text { OEBA }}$	A	2	3.5	4.6	2	5.3	2	5.1	ns
tpZL			2	3.7	4.7	2	5.6	2	5.4	
tPZH	$\overline{\text { OEAB }}$	B	2	3.8	5.3	2	6.6	2	6.1	ns
tPZL			2	3.6	5.1	2	6.2	2	5.7	
tPHZ	$\overline{\text { OEBA }}$	A	2.	3.6	5.4	2	6.6	2	6.2	ns
tPLZ			1.5	3.2	4.7	1.5	5.8	1.5	5.4	
tPHZ	$\overline{\text { OEAB }}$	B	2	3.4	4.8	2	5.6	2	5.4	ns
tplz			1.5	3.2	4.5	1.5	5.7	1.5	5.2	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Output Ports Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed $V_{C c}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and $380-\mathrm{mil}$ Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'ABT162827 is a noninverting 20 -bit buffer composed of two 10 -bit sections with separate output-enable signals. For either 10-bit buffer section, the two output-enable ($1 \overline{\mathrm{OE}} 1$ and $1 \overline{\mathrm{OE} 2}$ or2 $\overline{\mathrm{OE}}$ and $2 \overline{\mathrm{OE} 2}$) inputs must both be low for the corresponding Y outputs to be active. If either output-enable input is high, the outputs of that 10 -bit buffer section are in the high-impedance state.

The outputs, which are designed to source or sink up to 12 mA , include $25-\Omega$ series resistors to reduce overshoot and undershoot.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT162827 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54ABT162827 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT162827 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

	FUNCTION TABLE (each 10-bit section)			
	INPUTS			$\begin{gathered} \text { OUTPUT } \\ \mathbf{Y} \end{gathered}$
	$\overline{0.1}$	$\overline{O E 2}$	A	
	L	L	L	L
	L	L	H	H
	H	X	X	Z
	X	H	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Nine Other Channels

To Nine Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	0.5 V to 7 V
Input voltage range, V_{1} (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state	-0.5 V to 5.5 V
Current into any output in the low state, I_{0}	30 mA
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{1}<0\right)$	18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	1 W
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating inputs must be held high or low.

WITH 3-STATE OUTPUTS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT162827		SN74ABT162827		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}^{\mathrm{OH}}=-1 \mathrm{~mA}$			3.35			3.3		3.35		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{IOH}=-1 \mathrm{~mA}$			3.85			3.8		3.85		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-3 \mathrm{~mA}$			3.1			3		3.1		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-12 \mathrm{~mA}$			$2.6 \ddagger$					2.6		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{lOL}=8 \mathrm{~mA}$				0.4	0.8		0.8		0.65	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{ILL}^{2}=12 \mathrm{~mA}$									0.8	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\text {CC }}$ or GND					± 1		± 1		± 1	$\mu \mathrm{A}$
$\mathrm{l}^{\text {OZH }}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
${ }^{\text {O }}$ L ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100				± 100	$\mu \mathrm{A}$
ICEX	 $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ Outputs high $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
$10]$				-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{lO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{C C} \text { or } G N D \end{aligned}$		Outputs high			2		2		2	mA
			Outputs low			32		32		32	
			Outputs disabled			2		2		2	
${ }^{\prime} \mathrm{Cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Data inputs	Outputs enabled			1		1.5		1	mA
			Outputs disabled			0.05		1		0.05	
		Control inputs				1.5		1.5		1.5	
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V										pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V										pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and lozL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus ${ }^{\text {™ }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

ABT 25- Ω INCIDENT-WAVE SWITCHING DRIVERS

Features

- Incident-wave switching (IWS)
- Increased output-drive capability over standard ABT devices
- Designed for output drive of $\mathrm{I}_{\mathrm{OH}}=-80 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=188 \mathrm{~mA}$ across temperature and V_{CC} conditions
- Sub-5-ns speed
- Power-on-demand active feedback circuitry
- Low input/output capacitance
- Widebus ${ }^{\text {TM }}$ functionality planned with equivalent SSOP pinout
- Improve system frequency response and reliability by eliminating $2 t_{\text {pd }}$ delay shelf in the transition region caused by reflected waves
- Ideally suited to drive transmission lines on the incident wave at impedances as low as 10Ω typically
- Ensure IWS at the input of receivers in highly capacitive, heavily loaded, or advanced backplane conditions where equivalent impedances go as low as 25Ω worst case
- High-performance equivalent to standard ABT
- Allow for low static enable current consumption equivalent to standard ABT
- As receiving devices, do not load down the driving devices
- Low simultaneous switching noise, $\mathrm{V}_{\text {OLP }}<0.8 \mathrm{~V}$ typically
- Drop-in replaceable to standard Widebus ${ }^{\text {TM }}$ SSOP pinouts
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $\mathbf{R = 0}$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Designed to Facilitate Incident-Wave Switching for Line Impedances of 25Ω or Greater
- Distributed V_{CC} and GND Pins Minimize Noise Generated by the Simultaneous Switching of Outputs
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs

description

The SN74ABT25241 is a $25-\Omega$ octal buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented transceivers.
The SN74ABT25241 contains complementary output-enable ($1 \overline{\mathrm{OE}}$ and 2OE) inputs. When $1 \overline{\mathrm{OE}}$ is low and 2OE is high, the device transmits data from the A inputs to the Y outputs. When $1 \overline{O E}$ and 2OE are high, the outputs are in the high-impedance state. Output-enable 1 $\overline{\mathrm{OE}}$ affects only the 1 Y outputs; output-enable 2OE affects only the 2 Y outputs.

This buffer/driver is capable of sinking 188 mA of I_{OL} current, which facilitates switching $25-\Omega$ transmission lines on the incident wave. The distributed V_{CC} and GND pins minimize switching noise for more reliable system operation.
Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to $\mathrm{V}_{c c}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
The SN74ABT25241 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLES		
INPUTS		OUTPUT
10E	1A	1 Y
L	H	H
L	L	L
H	X	Z

INPUTS		OUTPUT
2OE	2A	
H	H	H
H	L	L
L	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram. (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	V
V_{IH}	High-level input voltage		2		V
V_{IL}	Low-level input voltage			0.8	V
V_{1}	Input voltage		0	$\mathrm{V}_{\text {CC }}$	V
IIK	Input clamp current			-18	mA
${ }^{\mathrm{IOH}}$	High-level output current			-80	mA
lOL	Low-level output current			188	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10	ns/V
TA	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$.

NOTE 2: Unused or floating inputs must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)| PARAMETER | TEST CONDITIONS | | | MIN | TYP ${ }^{\text {M }}$ MX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IK }}$ | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\boldsymbol{I}=-18 \mathrm{~mA}$ | | | -1.2 | V |
| V_{OH} | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{I} \mathrm{OH}=-3 \mathrm{~mA}$ | | 2.7 | | V |
| | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{I}^{\mathrm{OH}}=-80 \mathrm{~mA}$ | | 2.4 | | |
| VOL | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ | $\begin{aligned} & \mathrm{l} \mathrm{OL}=94 \mathrm{~mA} \\ & \hline \mathrm{IOL}=188 \mathrm{~mA} \end{aligned}$ | | | 0.55 | V |
| | | | | | 0.7 | |
| 1 | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND | | | ± 1 | $\mu \mathrm{A}$ |
| IOZH | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ | | | 50 | $\mu \mathrm{A}$ |
| IOZL | $V_{C C}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ | | | -50 | $\mu \mathrm{A}$ |
| loff | $V_{C C}=0$, | V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$ | | | ± 100 | $\mu \mathrm{A}$ |
| ICEX | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ | Outputs high | | 50 | $\mu \mathrm{A}$ |
| 10^{\ddagger} | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | | -50 | 180 | mA |
| ICC | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$ | Outputs open, | Outputs high | | 500 | $\mu \mathrm{A}$ |
| | | | Outputs low | | 30 | mA |
| | | | Outputs disabled | | 500 | $\mu \mathrm{A}$ |
| ${ }^{\Delta} \mathrm{CC}{ }^{\text {§ }}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND | | | | 1 | mA |
| C_{i} | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND | | | | pF |
| C_{0} | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND | | | | pF |

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at V CC $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Designed to Facilitate Incident-Wave Switching for Line Impedances of 25Ω or Greater
- Distributed $V_{C C}$ and GND Pins Minimize Noise Generated by the Simultaneous Switching of Outputs
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs

description

The SN74ABT25244 is a $25-\Omega$ octal buffer and line driver designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented transceivers.
When the output-enable ($1 \overline{\mathrm{OE}}$ and $2 \overline{\mathrm{OE}}$) inputs are low, the device transmits data from the A inputs to the Y outputs. When $1 \overline{\mathrm{OE}}$ and $2 \overline{\mathrm{OE}}$ are high, the outputs are in the high-impedance state.
This buffer/driver is capable of sinking 188 mA of IOL current, which facilitates switching $25-\Omega$ transmission lines on the incident wave. The distributed V_{CC} and GND pins minimize switching noise for more reliable system operation.
Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{Cc} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT25244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each buffer)

INPUTS		OUTPUT
$\mathbf{O E}$	A	
L	H	H
L	L	L
H	X	Z

EPIC-IIB is a trademark of Texas Instruments Incorporated.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 2)

		MIN	MAX
V_{CC}	Supply voltage	UNIT	
V_{IH}	High-level input voltage	4.5	5.5
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	2	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	V	
IIK	Input clamp current	0.8	V
IOH	High-level output current	V	VCC
IOL	Low-level output current	V	
$\Delta \mathrm{I} / \Delta \mathrm{V}$	Input transition rise or fall rate	-18	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-80	mA

NOTE 2: Unused or floating inputs must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP \dagger MAX	UNIT
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V
V_{OH}	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.7		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-80 \mathrm{~mA}$		2.4		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$\mathrm{IOL}=94 \mathrm{~mA}$			0.55	V
		$\mathrm{l}^{\mathrm{OL}}=188 \mathrm{~mA}$			0.7	
1	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			± 1	$\mu \mathrm{A}$
IOZH	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	$\mu \mathrm{A}$
10^{\ddagger}	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	180	mA
ICC	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs open,	Outputs high		500	$\mu \mathrm{A}$
			Outputs low		30	mA
			Outputs disabled		500	$\mu \mathrm{A}$
${ }^{1} \mathrm{Cc} \mathrm{C}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, }$ Other inputs at $V_{C C}$ or GND	One input at 3.4 V ,			1	mA
C_{i}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				pF
C_{0}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND				pF

[^49]- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}$, $\mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Designed to Facilitate Incident-Wave Switching for Line Impedances of 25Ω or Greater
- Distributed $V_{C C}$ and GND Pins Minimize Noise Generated by the Simultaneous Switching of Outputs
- Bus-Hold Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs

DW OR NT PACKAGE
(TOP VIEW)

A1 1	U_{24} DIR
GND [2	23 B1
A2 [3	22 B2
A3 4	$21 . \mathrm{V}_{\text {cc }}$
GND [5	20.18
A4 ${ }^{6}$	$19 . \mathrm{B} 4$
A5 7	18 B5
GND [8	17 B6
A6 ${ }^{9}$	$16 . \mathrm{V}_{\mathrm{CC}}$
A7 10	$15]$ B7
GND [11	14 B8
A8 12	${ }_{13} \overline{O E}$

description

The SN74ABT25245 is a $25-\Omega$ octal bus transceiver designed for asynchronous communication between data buses. It improves both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented transceivers.
The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}})$ input can disable the device so that both buses are effectively isolated.
This transceiver is capable of sinking 188 mA of loL current, which facilitates switching $25-\Omega$ transmission lines on the incident wave. The distributed V_{CC} and GND pins minimize switching noise for more reliable system operation.
Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT25245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS		OPERATION
$\overline{O E}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

EPIC-IIB is a trademark of Texas Instruments Incorporated.
logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

				MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage			4.5	5.5	V
V_{IH}	High-level input voltage			2		V
V_{IL}	Low-level input voltage				0.8	V
V_{1}	Input voltage			0	$\mathrm{V}_{\text {CC }}$	V
IIK	Input clamp current				-18	mA
IOH	High-level output current		A port		-80	mA
			B port		-32	
${ }^{\text {IOL}}$	Low-level output current		A port		188	mA
			B port		64	
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled	Control inputs		4	ns / V
			A or B ports		10	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature			-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN74ABT25245

25- Ω OCTAL BUS TRANSCEIVER

WITH 3-STATE OUTPUTS

JUNE 1992 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \dagger MAX	$\frac{\text { UNIT }}{V}$	
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\prime}=-18 \mathrm{~mA}$		-1.2			
VOH	A port	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		2.7		v	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OH}=-80 \mathrm{~mA}$		2.4			
	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5			
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$1 \mathrm{OH}=-3 \mathrm{~mA}$		3			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$		2			
V_{OL}	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l}^{\mathrm{OL}}=94 \mathrm{~mA}$		0.55		V	
			$\mathrm{l} \mathrm{OL}=188 \mathrm{~mA}$		0.7			
	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{OL}=64 \mathrm{~mA}$	$\mathrm{IOL}=64 \mathrm{~mA}$		0.55			
1	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 1	$\mu \mathrm{A}$	
	A or B ports					± 100		
1 I(hold)	A or B ports	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$		100		$\mu \mathrm{A}$	
			$\mathrm{V}_{1}=2 \mathrm{~V}$		-100			
$\mathrm{l}^{\text {OZH }}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$	
lozL ${ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$	
$l_{\text {off }}$		$V_{C C}=0,$	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$			± 100	$\mu \mathrm{A}$	
ICEX		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	$\mu \mathrm{A}$	
10^{\S}	B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-210	mA	
ICC		$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs open,	Outputs high		500	$\mu \mathrm{A}$	
		Outputs low			20	mA		
		Outputs disabled			500	$\mu \mathrm{A}$		
$\Delta_{\text {cc }}{ }^{\text {d }}$			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at $V_{C C}$ or GND	One input at 3.4 V , D		1		mA
C_{i}	Control inputs		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			4	pF
C_{io}	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND			11.5	pF	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters $I_{I H}$ and $I_{I L}$ include the off-state output current.
§ Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
tPLH	A or B	B or A	1	2.3	3.5	1	3.9	ns
tPHL			1	2.4	3.5	1	4.3	
tPZH	OE	A or B	1.5	3.7	5.4	1.5	6.5	ns
tpZL			1.4	4	5.8	1.4	6.8	
tPHZ	$\overline{\mathrm{OE}}$	A or B	2	4.3	6.1	2	7.2	ns
tpLZ			2	3.9	5.8	2	6.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

General Information

ABT Octals2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {™ }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {™ }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- Fully compatible with IEEE 1194.1-1991 (BTL) and IEEE 896-1991 (Futurebus+) standards
- Sub-5-ns performance
- 7-, 8-, and 9-bit versions
- 18-channel transceiver version
- TTL A port and BTL B port
- BTL edge rates > $2 \mathrm{~ns} / \mathrm{V}$
- Split I/O TTL port
- BIAS V CC_{C} pin
- TTL input clamp circuitry
- Open-collector BTL outputs
- Isolated logic GNDs and bus GNDs
- JTAG test access port (TAP) availability on Futurebus+ transceivers
- 52-pin standard quad flat package and 100-pin shrink quad flat package availability
- TI has established an alternate source

Benefits

- Execute proper BTL and Futurebus+ protocol
- ABT speed for Futurebus+ or advanced backplane transceiving
- Perform status/synch functions in Futurebus+ applications as well as UBT ${ }^{\text {TM }}$ function in general-purpose BTL applications
- Can implement a full Futurebus+ interface with single-side mounting
- TTL-BTL and BTL-TTL translation
- High-throughput interface ideally suited for low-noise backplane applications
- Input and output pin separation allows for simultaneous data load/unload
- Minimize distortion during live insertion/withdrawal
- Allow for active termination
- High-drive 100-mA sink capability provides IWS capability down to 10Ω
- Minimize device-generated noise and transmission environment noise
- Pins allocated for 4-wire IEEE 1149.1-1990 standard test bus, which will be implemented in future versions
- Fine-pitch surface-mount packaging saves valuable board space and meets Futurebus+ connector requirements
- Standardization that comes from a common product approach
- Compatible With IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) Standards
- TTL A Port, Backplane Transceiver Logic \bar{B} Port
- Open-Collector \bar{B}-Port Outputs Sink 100 mA
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise
- Packaged in the High-Power Shrink Quad Flat Packages (SQFP) With $0.5-\mathrm{mm}$ Pin Pitch
- $\overline{\text { B }}$-Port Biasing Network Preconditions the Connector and PC Trace to the Backplane Transceiver Logic High-Level Voltage
- TTL Input Structures Incorporate Active Clamping and Bus Hold Networks

18-BIT TTL/BTL UNIVERSAL STORAGE TRANSCEIVER

AUGUST 1992-REVISED JULY 1993

description

The SN74FB1650 contains two 9-bit transceivers designed to translate signals between TTL and backplane transceiver logic (BTL) environments. It is specifically designed to be compatible with IEEE 1194.1-1 (BTL) and IEEE 896.2-1991 (Futurebus+) standards.
The \bar{B} port operates at BTL signal levels. The open-collector \bar{B} ports are specified to sink 100 mA . Two output enables, OEB and $\overline{\mathrm{OEB}}$, are provided for the $\overline{\mathrm{B}}$ outputs. When OEB is low, $\overline{\mathrm{OEB}}$ is high, or V_{CC} is typically less than 2.5 V , the $\overline{\mathrm{B}}$ port is turned off.

The A port operates at TTL signal levels. The A outputs reflect the inverse of the data at the \bar{B} port when the A-port output enable, OEA, is high. When OEA is low or when V_{CC} is typically less than 2.5 V , the A outputs are in the high-impedance state.
Active bus-hold circuitry is provided to hold unused or floating TTL inputs at a valid logic state.
BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.
$B G V_{C C}$ and $B G$ GND are the supply inputs for the bias generator.
The SN74FB1650 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

functional block diagram

TRANSCEIVER FUNCTION TABLE

INPUTS				FUNCTION
OEA	OEA	OEB	OEB	
X	X	H	L	\bar{A} data to B bus
L	H	X	X	\bar{B} data to A bus
L	H	H	L	\bar{A} data to B bus, \bar{B} data to A bus
$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	X	L	X H	B-bus isolation
H	X	X	X	A-bus isolation
X	L	X	X	A-bus isolation

STORAGE MODE TABLE

INPUTS		FUNCTION
LE	CLK	
H	X	Transparent
L	\uparrow	Store data
L	L	Storage

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{1} (except \bar{B} port) . 1.2 V to 7 V
V_{1} (\bar{B} port) -1.2 V to 3.5 V
Input current range (except \bar{B} port) -40 mA to 5 mA
Voltage range applied to any \bar{B} output in the disabled or power-off state -5 V to 5.5 V
Voltage range applied to any output in the high state -5 V to V_{CC}
Current applied to any single output in the low state: A port 96 mA
\bar{B} port 200 mA
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions (see Note 1)

			MIN	NOM	MAX	UNIT
$\mathrm{V}_{\mathrm{CC}}, \mathrm{BG} \mathrm{V}_{\mathrm{CC}}$	Supply voltage		4.75	5	5.25	V
BIAS VCC	Supply voltage		4.5	5	5.5	V
V_{IH}	High-level input voltage	$\overline{\text { B port }}$	1.62		2.3	V
		Except \bar{B} port	2			
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\overline{\text { B port }}$	0.75		1.47	V
		Except $\overline{\text { B port }}$			0.8	
IIK	Input clamp current				-18	mA
IOH	High-level output current	A port			-3	mA
IOL	Low-level output current	A port			24	mA
		$\overline{\text { B port }}$			100	
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

NOTE 1: Unused or floating pins (input or I/O) must be held high or low.

AUGUST 1992 - REVISED JULY 1993

electrical characteristics over recommended operating free-air temperature range

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters $I_{I H}$ and $I_{I L}$ include the off-state output current.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
live insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MIN	TYP MAX	UNIT
ICC (BIAS VCC)		$\mathrm{V}_{\mathrm{CC}}=0$ to 4.75 V ,	$\mathrm{V}_{\mathrm{B}}=0$ to 2 V	$\mathrm{V}_{1}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V		450	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=4.25 \mathrm{~V}$ to 5.25 V				10	
V_{O}	$\overline{\mathrm{B}}$ port	$V_{C C}=0$,	$\mathrm{V}_{1}\left(\right.$ BIAS $\left.\mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V		1.62	2.1	V
'o	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{B}}=1 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}\left(\right.$ BIAS $\left.\mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V	-1		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0$ to 5.25 V ,	$\mathrm{OEB}=0$ to 0.8 V			100	
		$\mathrm{V}_{\mathrm{CC}}=0$ to 2.2 V ,	$\mathrm{OEB}=0$ to 5 V			100	

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			MIN	TYP

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP†	MAX	UNIT
tPLH	A	\bar{B}			5	ns
tPHL					5	
tplH	LEAB	\bar{B}			6	ns
$\mathrm{t}_{\mathrm{pHL}}$					6	
tPLH	CLKAB	\bar{B}			6	ns
$\mathrm{t}_{\mathrm{PHL}}$					6	
tPLH	LEBA	A			6	ns
tPHL					6	
tPLH	CLKBA	A			6	ns
tPHL					6	
${ }^{\text {tPLH }}$	\bar{B}	A			5	ns
tpHL					5	
tplH	OEB or $\overline{\text { OEB }}$	\bar{B}			5	ns
tPHL					5	
tPZH	OEA or $\overline{O E A}$	A			5	ns
tpZL					5	
tPHZ	OEA or $\overline{\text { OEA }}$	A			5	ns
tPLZ					5	
$\mathrm{t}_{\text {sk }}(\mathrm{p})^{\ddagger}$	Skew for any single channel \mid tPHL $^{-t \text { tPLH }} \mid$	A to \bar{B} or \bar{B} to A		0.5		ns
$\mathrm{t}_{\text {sk }}(0)^{\ddagger}$	Skew between drivers in the same package	A to \bar{B} or \bar{B} to A		1		ns
t_{t}	Transition time, $\overline{\mathrm{B}}$ outputs (1.3 V to 1.8 V)		1	2	3	ns
tPR	$\overline{\mathrm{B}}$-port input pulse rejection			1		ns

[^50]PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: TTL Inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$. BTL Inputs - PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54FB2031, SN74FB2031 9-BIT TTL/BTL ADDRESS/DATA TRANSCEIVERS

- Compatible With IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) Standards
- TTL A Port, Backplane Transceiver Logic \bar{B} Port
- Open-Collector $\overline{\mathrm{B}}$-Port Outputs Sink 100 mA
- Minimum \bar{B}-Port Edge Rate $=2$ ns
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise

SN54FB2031 . . . WD PACKAGE
(TOP VIEW)

OEB 1	U_{48} ¢ $\overline{\text { OEB }}$
OEA[2	47 TCK
BIAS $V_{\text {cC }}[3$	$46 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{v}_{\mathrm{CC}}{ }^{4}$	45 TMS
A1 ${ }^{5}$	44 GND
GND 6	43 B1
A2 7	42 GND
А3 8	$41 . \overline{B 2}$
GND 9	40 GND
A4 10	$39]$
A5 11	38 GND
GND 12	$37 \overline{\text { B4 }}$
A6 13	${ }^{36}$ GND
A7 14	$\overline{B 5}$
GND 15	$34]$ GND
A8 16	33] $\overline{\mathrm{B}}$
A9 17	$32 . \mathrm{GND}$
SEL1 18	$31 \overline{\text { B7 }}$
LCB 19	30 GND
BG $V_{C C} \int_{20}$	$29] \overline{B 8}$
LCA 21	${ }^{28}$ GND
BG GND 22	27 ¢ $\overline{\text { B9 }}$
SELO ${ }_{23}$	${ }^{26}$ - ${ }_{\text {c }}$
TDO 24	25 TDI

- BIAS VCC Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- Available in Plastic Quad Flatpack (RC) and Ceramic Flatpack (WD) Packages
- $\overline{\mathrm{B}}$-Port Biasing Network Preconditions the Connector and PC Trace to the Backplane Transceiver Logic High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination

SN74FB2031... RC PACKAGE
(TOP VIEW)

description

The 'FB2031 is a 9-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments. It is specifically designed to be compatible with IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) standards.

The \bar{B} port operates at BTL-signal levels. The open-collector \bar{B} ports are specified to sink 100 mA and have minimum output edge rates of 2 ns . Two output enables, OEB and $\overline{O E B}$, are provided for the \bar{B} outputs. When OEB is low, $\overline{\mathrm{OEB}}$ is high, or V_{CC} is typically less than 2.5 V , the $\overline{\mathrm{B}}$ port is turned off.
The A port operates at TTL-signal levels. The A outputs reflect the inverse of the data at the \bar{B} port when the A-port output enable, OEA, is high. When OEA is low or when V_{CC} is typically less than 2.5 V , the A outputs are in the high-impedance state.

SN54FB2031, SN74FB2031 9-BIT TTL/BTL ADDRESS/DATA TRANSCEIVERS

NOVEMBER 1991 - REVISED JULY 1993

description (continued)

Pins are allocated for the four-wire IEEE 1149.1 (JTAG) test bus, which will be implemented in a future version of the 'FB2031. Currently TMS and TCK are not connected and TDI is shorted to TDO.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.
$B G V_{C C}$ and $B G$ GND are the supply inputs for the bias generator.
The SN54FB2031 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74FB2031 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TRANSCEIVER FUNCTION TABLE

INPUTS			FUNCTION
OEA	OEB	$\overline{\text { OEB }}$	
L	H	L	\bar{A} data to B bus
H	L	X	\bar{B} data to A bus
H	X	H	
H	H	L	\bar{A} data to B bus, \bar{B} data to A bus
L	L	X	Isolation
L	X	H	

STORAGE MODE TABLE

LCA, LCB	RESULT
0	Transparent
1	Latches latched
\uparrow	Flip-flops triggered

SELECT FUNCTION TABLE

SEL1	SELO	MUX $\mathbf{A} \rightarrow \mathbf{B}$	MUX $\mathbf{B} \rightarrow \mathbf{A}$
0	0	Latch	Latch
0	1	Thru	Thru
1	0	Flip-flop	Flip-flop
1	1	Flip-flop	Latch

functional block diagram

Pin numbers shown are for the RC package.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC} -0.5 V to 7 V

Voltage range applied to any $\overline{\mathrm{B}}$ output in the disabled or power-off state $\ldots \ldots . \ldots$.

Current applied to any single output in the low state: A port .. 96 mA

Storage temperature range .. $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

9-BIT TTL/BTL ADDRESS/DATA TRANSCEIVERS

NOVEMBER 1991 - REVISED JULY 1993
recommended operating conditions (see Note 1)

NOTE 1: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54FB2031			SN74FB2031			UNIT		
		MIN	TYP \dagger	MAX	MIN	TYPt	MAX					
VIK	$\overline{\text { B port }}$			$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$						-1.2	V
	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-40 \mathrm{~mA}$						-0.5			
V_{OH}	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$							V		
			$\mathrm{IOH}=-3 \mathrm{~mA}$				2.5	3.3				
VOL	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=20 \mathrm{~mA}$							v		
			$\mathrm{I} \mathrm{OL}=24 \mathrm{~mA}$					0.35	0.5			
	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=80 \mathrm{~mA}$				0.75		1.1			
			$\mathrm{IOL}=100 \mathrm{~mA}$									
11	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$						50	$\mu \mathrm{A}$		
liH^{\ddagger}	Except \bar{B} port	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			-			50	$\mu \mathrm{A}$		
ILL^{\ddagger}	Except B port	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$						-50	$\mu \mathrm{A}$		
	\bar{B} port ${ }^{\text {¢ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.75 \mathrm{~V}$						-100			
IOH	\bar{B} port	$\mathrm{V}_{\text {CC }}=0$ to 5.5 V ,	$\mathrm{V}_{\mathrm{O}}=2.1 \mathrm{~V}$						100	$\mu \mathrm{A}$		
$\mathrm{los}^{\text {§ }}$	A port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$				-30		-150	mA		
ICC	A port to B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{l}=0$				25			mA		
	$\overline{\text { B port to A port }}$											
	Outputs disabled											
Ci_{i}		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND							5	pF		
C_{0}	A port	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND								pF		
$\mathrm{c}_{i 0}$	$\overline{\text { B port per P1194.0 }}$	$\mathrm{V}_{\mathrm{CC}}=0$ to 4.5 V							6			
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V							5			

\dagger All typical values are at $\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters I_{IH} and $\mathrm{IIL}_{\mathrm{IL}}$ include the off-state output current.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		SN54FB2031		SN74FB2031		UNIT
			MIN	TYP MAX	MIN	MAX	MIN	MAX	
tPLH	A (thru mode)	\bar{B}		5					ns
tpHL				5					
tPLH	A (transparent)	$\overline{\text { B }}$		6					ns
tPHL				6					
tPLH	LCA	$\overline{\text { B }}$		7					ns
tphL				7					
tPLH	LCB	A		9					ns
tPHL				9					
tPLH	SEL1 or SEL0	A		5.5					ns
tPHL				5.5					
tPLH	SEL1 or SELO	$\overline{\text { B }}$		7					ns
tPHL				7					
tPLH	$\overline{\mathrm{B}}$ (thru mode)	A		6					ns
tphL				6					
tPLH	$\overline{\mathrm{B}}$ (transparent)	A		7					ns
tPHL				7					
tPLH	OEB or $\overline{\text { OEB }}$	$\overline{\text { B }}$		5.5					ns
tPHL				5.5					
tPZH	OEA	A		4					ns
tPZL				4					
tPHZ	OEA	A		5					ns
tplZ				5					
$t_{\text {sk }}(\mathrm{p})$	Skew for any single channel \mid tphL $^{\text {- }}$ PLH \mid	A to \bar{B} or \bar{B} to A		0.5					ns
$\mathrm{t}_{\text {sk }}(\mathrm{o})$	Skew between drivers in the same package	A to \bar{B} or \bar{B} to A		1					ns
t_{t}	Transition time, \bar{B} outputs (1.3 V to 1.8 V)			2			1	3	ns
tPR	$\overline{\mathrm{B}}$-port input pulse rejection						1		ns

live insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			SN54FB2031		SN74FB2031		UNIT			
		MIN	MAX	MIN	MAX							
${ }^{\text {I CC }}$ (${ }^{\text {BIAS V }}$ CC)					$\mathrm{V}_{\mathrm{CC}}=0$ to 4.5 V	$\mathrm{V}_{\mathrm{B}}=0$ to 2 V	$\mathrm{V}_{\mathrm{I}}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V				450	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V						10				
V_{0}	$\overline{\text { B port }}$	$V_{C C}=0$,	$\mathrm{V}_{1}\left(\right.$ BIAS $\left.\mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V				1.62	2.1	V			
10	\bar{B} port	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{B}}=1 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V			-1		$\mu \mathrm{A}$			
		$\mathrm{V}_{\mathrm{CC}}=0$ to 5.5 V ,	$\mathrm{OEB}=0$ to 0.8 V					100				
		$\mathrm{V}_{\mathrm{CC}}=0$ to 2.2 V ,	OEB $=0$ to 5 V					100				

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR A OUTPUTS

TEST	S1
tPLH／tPHL	Open
tPLZ／tPZL	7 V
tPHZ／tPZH	GND

LOAD CIRCUIT FOR B OUTPUTS

NOTES：A．C_{L} includes probe and jig capacitance．
B．All input pulses are supplied by generators having the following characteristics：TTL Inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$ ， $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．BTL Inputs－PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．
C．Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control． Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control．
D．The outputs are measured one at a time with one transition per measurement．
Figure 1．Load Circuit and Voltage Waveforms

- Compatible With IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) Standards
- TTL A Port, Backplane Transceiver Logic \bar{B} Port
- Open-Collector \bar{B}-Port Outputs Sink 100 mA
- Minimum \bar{B}-Port Edge Rate $=2$ ns
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise

SN54FB2032 ... WD PACKAGE
(TOP VIEW)

OEB[$1 \square_{48}$	$\overline{O E B}$
OEA[247	TCK
BIAS V_{CC} [346	V_{CC}
V_{CC} [45	TMS
A1	544	GND
GND[$6 \quad 43$	$\overline{B 1}$
A2	$7 \quad 42$	GND
A3	841	$\overline{B 2}$
GND[940	GND
A4[1039	$\overline{B 3}$
A5	$11 \quad 38$	GND
GND	$12 \quad 37$	$\overline{B 4}$
A6	$13 \quad 36$	GND
A7	$14 \quad 35$	$\overline{B 5}$
GND[$15 \quad 34$	GND
A8	$16 \quad 33$	$\overline{B 6}$
AP	$17 \quad 32$	GND
GND[$18 \quad 31$	$\overline{\text { B7 }}$
WIN	$19 \quad 30$	GND
v_{CC}	$20 \quad 29$	$\overline{\text { B8 }}$
LE [$21 \quad 28$	GND
GND	$22 \quad 27$	$\overline{B P}$
COMPETE	$23 \quad 26$	V_{CC}
TDO[$24 \quad 25$	TDI

- BIAS VCC Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- Available in Plastic Quad Flatpack (RC) and Ceramic Flatpack (WD) Packages
- \bar{B}-Port Biasing Network Preconditions the Connector and PC Trace to the Backplane Transceiver Logic High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination

description

The 'FB2032 is a 9-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments and to perform bus arbitration. It is specifically designed to be compatible with IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) standards.
The \bar{B} port operates at BTL-signal levels. The open-collector \bar{B} ports are specified to sink 100 mA and have minimum output edge rates of 2 ns . Two output enables, OEB and $\overline{\mathrm{OEB}}$, are provided for the $\overline{\mathrm{B}}$ outputs. When OEB is low, $\overline{\mathrm{OEB}}$ is high, or V_{CC} is typically less than 2.5 V , the $\overline{\mathrm{B}}$ port is turned off.

The A port operates at TTL-signal levels. The A outputs reflect the inverse of the data at the \bar{B} port when the A-port output enable, OEA, is high. When OEA is low or when V_{CC} is typically less than 2.5 V , the A outputs are in the high-impedance state.

description (continued)

The A-port data can be latched by taking the latch enable (LE) high. When LE is low, the latches are transparent.
The Futurebus+ protocol logic can be activated by taking COMPETE low. The module (device) then compares its A data (arbitration number) against the A data of another identical module also connected to the \bar{B} arbitration bus, and sets WIN high if the A data is greater than the A data of the other module (i.e., has higher priority). A8 and $\overline{\mathrm{B}}$ are the most significant bits, and A 1 and $\overline{\mathrm{B} 1}$ are the least significant bits. If OEB is high and $\overline{\mathrm{OEB}}$ is low during this operation, and the A bus of the first module wins priority, it will assert its arbitration number on the $\overline{\mathrm{B}}$-arbitration bus.
AP and $\overline{\mathrm{BP}}$ are the bus parity bits. The winning module may assert $\overline{\mathrm{BP}}$ low if its parity bit (AP) is high.
In a typical operating sequence, a Futurebus+ arbitration controller will latch its arbitration number into the A port and wait for the results of a competition. When the competition is complete, and if the controller's arbitration number did not win, the controller will read back the current value of the \bar{B} bus (by taking OEA high) and determine the winning arbitration number. This allows the module to change its arbitration number for the next competition cycle, if desired.
Pins are allocated for the four-wire IEEE 1149.1 (JTAG) test bus, which will be implemented in a future version of the 'FB2032. Currently TMS and TCK are not connected and TDI is shorted to TDO.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.
$B G V_{C C}$ and $B G$ GND are the supply inputs for the bias generator.
The SN54FB2032 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74FB2032 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TRANSCEIVER FUNCTION TABLE

INPUTS			FUNCTION
OEA	OEB	$\overline{\text { OEB }}$	
L	H	L	\bar{A} data to B bus
H	L	X	$\overline{\text { B data to } A \text { bus }}$
H	X	H	
H	H	L	\bar{A} data to B bus, \bar{B} data to A bus
L	L	X	Isolation
L	X	H	

STORAGE MODE TABLE

LCA, LCB	RESULT
0	Transparent
1	Latches latched
\uparrow	Flip-flops triggered

SELECT FUNCTION TABLE

SEL1	SEL0	MUX $\mathbf{A} \rightarrow \mathbf{B}$	MUX $\mathbf{B} \rightarrow \mathbf{A}$
0	0	Latch	Latch
0	1	Thru	Thru
1	0	Flip-flop	Flip-flop
1	1	Flip-flop	Latch

SN54FB2032, SN74FB2032 9-BIT TTLBTL COMPETITION TRANSCEIVERS

functional block diagram

Pin numbers shown are for the RC package.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except } \overline{\mathrm{BP}}, \overline{\mathrm{~B}} \text { port) . }-1.2 \mathrm{~V} \text { to } 7 \mathrm{~V}
\end{aligned}
$$

> Voltage range applied to any $\overline{\mathrm{B}}$ output in the disabled or power-off state $\ldots \ldots . \ldots . \ldots .$.
> Voltage range applied to any output in the high state $\ldots \ldots .$.
> Current applied to any single output in the low state: A port . 96 mA
> B port . 200 mA
> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): RC package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions (see Note 1)

			SN54FB2032			SN74FB2032			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
BIAS VCC	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
		$\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port	1.62		2.3	1.62		2.3	
$\mathrm{V}_{\text {IH }}$	High-level input voltage	Except $\overline{\mathrm{B}}$ port	2			2			
VII	Low-level input voltage	$\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port	0.75		1.47	0.75		1.47	V
VIL	Low-level input volage	Except \bar{B} port			0.8			0.8	
lik	Input clamp current				-18			-18	mA
OH	High-level output current	AP, WIN, A port						-3	mA
10		AP, WIN, A port						24	
'OL	, output curr	$\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port			100			100	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

NOTE 1: Unused or floating pins (input or I/O) must be held high or low.

NOVEMBER 1991 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54FB2032			SN74FB2032			UNIT		
		MIN	TYPt	MAX	MIN	TYP ${ }^{\text {t }}$	MAX					
V_{IK}	BP, \bar{B} port			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$						-1.2	V
	Except $\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$,	$\mathrm{I}=-40 \mathrm{~mA}$						-0.5			
V_{OH}	AP, WIN, A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l}^{\mathrm{OH}}=-1 \mathrm{~mA}$							V		
			$1 \mathrm{OH}=-3 \mathrm{~mA}$				2.5	3.3				
$\mathrm{V}_{\text {OL }}$	AP, WIN, A port	$V_{C C}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=20 \mathrm{~mA}$							V		
			$\mathrm{IOL}=24 \mathrm{~mA}$					0.35	0.5			
	$\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=80 \mathrm{~mA}$				0.75		1.1			
			$\mathrm{IOL}=100 \mathrm{~mA}$									
1	Except $\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$						50	$\mu \mathrm{A}$		
${ }_{11}{ }^{\ddagger}$	Except $\overline{B P}, \bar{B}$ port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$						50	$\mu \mathrm{A}$		
$1 / L^{\ddagger}$	Except $\overline{B P}, \bar{B}$ port	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$						-50	$\mu \mathrm{A}$		
	$\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port ${ }^{\text {¢ }}$		$\mathrm{V}_{\mathrm{I}}=0.75 \mathrm{~V}$						-100			
1 OH	$\overline{\mathrm{BP}}, \overline{\mathrm{B}}$ port	$\mathrm{V}_{\mathrm{CC}}=0$ to 5.5 V ,	$\mathrm{V}_{\mathrm{O}}=2.1 \mathrm{~V}$						100	$\mu \mathrm{A}$		
los§	AP, WIN, A port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$				-30		-150	mA		
ICC	A port to \bar{B} port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$10=0$				$\frac{25}{60}$			mA		
	$\overline{\text { B port to } A \text { port }}$											
	Outputs disabled											
C_{i}		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND							5	pF		
C_{0}	A port	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND								pF		
$c_{i o}$	$\overline{\mathrm{B}}$ port per P1194.0	$\mathrm{V}_{\mathrm{CC}}=0$ to 4.5 V							6	pF		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V							5			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters $I_{I_{H}}$ and $I_{I L}$ include the off-state output current.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOVEMBER 1991 - REVISED JULY 1993
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54FB2032		SN74FB2032		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or AP	$\overline{\mathrm{B}}$ or $\overline{\mathrm{BP}}$							8	ns
tPHL									8	
tPLH	A	\bar{B}_{n-1}							9	ns
tPHL									9	
tPLH	A	$\overline{B P}$							10	ns
tPHL									10	
tPLH	\bar{B}	\bar{B}_{n-1}							9	ns
tPHL									9	
tPLH	LE	$\overline{\text { B }}$							7.5	ns
tPHL									7.5	
tpLH	LE	$\overline{B P}$							7.5	ns
tPHL									7.5	
tPLH	$\overline{\mathrm{B}}$ or $\overline{\mathrm{BP}}$	A or AP							7.5	ns
tPHL									7.5	
tpLH	$\overline{\text { B }}$	WIN							8.5	ns
tPHL									8.5	
tPLH	A	WIN							7.6	ns
tPHL									7.6	
tPLH	LE	WIN							7	ns
tPHL									7	
tpLH	COMPETE	WIN							5.5	ns
tPHL									5.5	
tPLH	$\overline{\mathrm{OEB}}$	WIN							6	ns
tPHL									6	
tPLH	COMPETE	$\overline{\text { B }}$							7.5	ns
tPHL									7.5	
tpLH	COMPETE	$\overline{B P}$							6.5	ns
tpHL									6.5	
tPLH	OEB	$\overline{\text { B }}$							6.5	ns
tPHL									6.5	
tPLH	$\overline{\mathrm{OEB}}$	\bar{B}							6.5	ns
tPHL									6.5	
tPZH	OEA	A							5.5	ns
tPZL									5.5	
tPHZ	OEA	A							7	ns
tplZ									7	
t_{t}	Transition time, $\overline{\mathrm{B}}$ outputs (1.3 V to 1.8 V)		2					1	3	ns
tPR	$\overline{\mathrm{B}}$-port input pulse rejection								1	ns

live insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		SN54FB2032		SN74FB2032		UNIT		
		MIN	MAX	MIN	MAX					
${ }^{\text {ICC }}$ (BIAS VCC)				$\mathrm{V}_{\mathrm{CC}}=0$ to 4.5 V	$\mathrm{V}_{\mathrm{B}}=0$ to $2 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V				450	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V					10			
V_{O}	\bar{B} port	$V_{C C}=0$,	$\mathrm{V}_{1}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V			1.62	2.1	V		
10	\bar{B} port	$V_{C C}=0$,	$\mathrm{V}_{\mathrm{B}}=1 \mathrm{~V}, \quad \mathrm{~V}_{1}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V			-1		$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{CC}}=0$ to $5.5 . \mathrm{V}$,	$\mathrm{OEB}=0$ to 0.8 V				100			
		$\mathrm{V}_{\mathrm{CC}}=0$ to 2.2 V ,	OEB $=0$ to 5 V				100			

PARAMETER MEASUREMENT INFORMATION

NOTES:
A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: TTL Inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$. BTL Inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- TTL A Port, Backplane Transceiver Logic (BTL) B Port
- Open-Collector \bar{B}-Port Outputs Sink 100 mA
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise
- BIAS VCc Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- Packaged in Plastic Quad Flat Packages (PQFP) With 0.65-mm Pin Pitches
- \bar{B}-Port Biasing Network Preconditions the Connector and PC Trace to the Backplane Transceiver Logic High-Level Voltage
- TTL-Input Structures Incorporate Active Clamping Networks to Aid in Line Termination

description

The SN74FB2033 is an 8-bit transceiver featuring a split input (AI) and output (AO) bus on the TTL-level A port. The common I/O, open-collector \bar{B} port operates at backplane transceiver logic (BTL) signal levels.

The logic element for data flow in each direction is configured by two mode inputs (IMODE1 and IMODE0 for B-to-A, OMODE1 and OMODE0 for A-to-B) as a buffer, a D-type flip-flop, or a D-type latch. When configured in the buffer mode, the inverse of the input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock input (CLKAB/LEAB or CLKBA/LEBA). In the latch mode, the clock pins serve as transparent-high latch enables.

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, \bar{B}-port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element (prior to inversion) is the B-to-A input.

description (continued)

The AO port enable/disable control is provided by OEA. When OEA is low or when V_{CC} is less than 2.5 V , the AO port is in the high-impedance state. When OEA is high, the AO port is active (high or low logic levels).

The \bar{B} port is controlled by OEB and $\overline{O E B}$. If OEB is low or $\overline{O E B}$ is high or when $V_{C C}$ is typically less than 2.5 V the \bar{B} port is inactive. If OEB is high and $\overline{O E B}$ is low, the B port is active.
$B G V_{C C}$ and $B G$ GND are the bias generator reference inputs.
The A-to-B and B-to-A logic elements are active regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO port) or inactive ($\overline{\mathrm{B}}$ port) states.

Output clamps are provided on the BTL outputs to reduce switching noise. One clamp reduces inductive ringing effects on V_{OH} during a low-to-high transition. The other clamps out ringing below the $\mathrm{BTL} \mathrm{V}_{\mathrm{OL}}$ voltage of 0.75 V . Both these clamps are only active during AC switching and do not affect the BTL outputs during steady-state conditions.

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.
The SN74FB2033 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
FUNCTION TABLE

INPUTS								FUNCTION/MODE
OEA	OEB	$\overline{\text { OEB }}$	OMODE1	OMODE0	IMODE1	IMODE0	LOOPBACK	
L	L	X	X	X	X	X	X	Isolation
L	X	H	X	X	X	X	X	
X	H	L	L	L	X	X	X	Al to \bar{B}, buffer mode
X	H	L	L	H	X	X	X	Al to $\overline{\mathrm{B}}$, flip-flop mode
X	H	L	H	X	X	X	X	Al to \bar{B}, latch mode
H	L	X	X	X	L	L	L	\bar{B} to AO, buffer mode
H	X	H	X	X	L	L	L	
H	L	X	X	X	L	H	L	\bar{B} to AO, flip-flop mode
H	X	H	X	X	L	H	L	
H	L	X	X	X	H	X	L	\bar{B} to $A O$, latch mode
H	X	H	X	X	H	X	L	
H	L	X	X	X	L	L	H	Al to AO, buffer mode
H	X	H	X	X	L	L	H	
H	L	X	X	X	L	H	H	Al to AO, flip-flop mode
H	X	H	X	X	L	H	H	
H	L	X	X	X	H	X	H	Al to AO, latch mode
H	X	H	X	X	H	X	H	
H	H	L	X	X	X	X	L	Al to \bar{B}, \bar{B} to $A O$

Function Tables

ENABLE/DISABLE

INPUTS			OUTPUTS	
OEA	OEB	$\overline{\text { OEB }}$	AO	$\overline{\text { B }}$
L	X	X	Z	
H	X	X	Active (H or L)	
X	L	L		Inactive (H)
X	L	H		Inactive (H)
X	H	L		Active (H or L)
X	H	H		Inactive (H)

BUFFER

INPUT	OUTPUT
L	H
H	L

LATCH

INPUTS		OUTPUT
CLK/LE	DATA	
H	L	H
H	H	L
L	X	Q_{0}

LOOPBACK	
LOOPBACK	Q \dagger
L	$\overline{\mathrm{B}}$ port
H	Point $\mathrm{P} \ddagger$

$\dagger Q$ is the input to the B-to-A logic element.
$\ddagger P$ is the output of the A-to-B logic element (see functional block diagram).

SELECT		
INPUTS		SELECTED LOGIC
MODE1	MODE0	ELEMENT
L	L	Buffer
L	H	Flip-flop
H	X	Latch

FLIP-FLOP

INPUTS		OUTPUT
CLK/LE	DATA	
L	X	Q_{0}
\uparrow	L	H
\uparrow	H	L

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, $\mathrm{V}_{\text {CC }}$. - 0.5 V V to 7 V	
Input voltage range, V_{1} (except $\overline{\mathrm{B}}$ port) . -1.2 V to 7 V	
$\mathrm{V}_{1}(\overline{\mathrm{~B}}$ port)	-1.2 V to 3.5 V
Input current range, (except \bar{B} port) . -40 mA to 5 mA	
Voltage range applied to any B output in the disabled or power-off state $\ldots \ldots . \ldots \ldots . . .$.	
Voltage range applied to any output in the high state . - 0.5 V to $\mathrm{V}_{\text {CC }}$	
Current applied to any single output in the low state: A port . 96 mA	
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air)	0.85 W
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions (see Note 1)

			MIN	NOM MAX	UNIT
$\mathrm{V}_{\mathrm{CC}}, \mathrm{BG} \mathrm{V}_{\mathrm{CC}}$	Supply voltage		4.75	$5 \quad 5.25$	V
BIAS V_{CC}	Supply voltage		4.5	$5 \quad 5.5$	V
V_{IH}	High-level input voltage	\bar{B} port	1.62	2.3	V
		Except \bar{B} port	2		
$V_{\text {IL }}$	Low-level input voltage	$\overline{\text { B port }}$	0.75	1.47	V
		Except \bar{B} port		0.8	
${ }^{\mathrm{OH}}$	High-level output current	AO port		-3	mA
${ }^{1} \mathrm{OL}$	Low-level output current	AO port		24	mA
		$\overline{\bar{B}}$ port		100	
$T_{\text {A }}$	Operating free-air temperature		0	70	${ }^{\circ} \mathrm{C}$

[^51]
SN74FB2033

8-BIT TTL/BTL REGISTERED TRANSCEIVER

D4521, NOVEMBER 1990 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unléss otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2	V
VOH	AO port	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V ,	$\mathrm{I} \mathrm{OH}=-10 \mu \mathrm{~A}$			-1.1	V
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	2.5	2.85	3.4	
			$\mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$	2			
VOL	AO port	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$1 \mathrm{OL}=20 \mathrm{~mA}$		0.33	0.5	V
			$1 \mathrm{OL}=55 \mathrm{~mA}$			0.8	
	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{IOL}=100 \mathrm{~mA}$	0.75		1.1	
			$\mathrm{IOL}=4 \mathrm{~mA}$	0.5			
11	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{1}=5.25 \mathrm{~V}$			100	$\mu \mathrm{A}$
${ }^{\text {IIH }}$	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
	\bar{B} port ${ }^{\text {¢ }}$	$\mathrm{V}_{\mathrm{CC}}=0$ to 5.25 V ,	$\mathrm{V}_{1}=2.1 \mathrm{~V}$			100	
IIL	Except \bar{B} port	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$
	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=0.75 \mathrm{~V}$			-100	
IOH	\bar{B} port	$\mathrm{V}_{\mathrm{CC}}=0$ to 5.25 V ,	$\mathrm{V}_{\mathrm{O}}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$
IOZH	AO port	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
lozl	AO port	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$
los ${ }^{\ddagger}$	AO port	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-40	-80	-150	mA
ICC	All outputs on	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{I}=0$		45	60	mA
C_{i}	Al port and control inputs	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			5		pF
C_{0}	AO port	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND			5		pF
$\mathrm{Cio}^{\text {§ }}$	$\overline{\text { B port per P1194.0 }}$	$\mathrm{V}_{\mathrm{CC}}=0$ to 4.75 V				6	pF
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V				6	

\dagger For I/O ports, the parameters $I_{I H}$ and $I_{I L}$ include the off-state output current.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
§ Parameter is based on characterization data but is not tested.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
$f_{\text {max }}$			150			150		MHz
tplH	Al (thru mode)	\bar{B}	2.3	3.8	5.3	1.8	6.5	ns
tPHL			1.2	2.6	4	1.2	4.2	
tPLH	$\overline{\mathrm{B}}$ (thru mode)	AO	2.2	3.9	5.7	1.9	6.6	ns
tPHL			3.8	5.2	6.7	3.2	7.3	
tPLH	Al (transparent)	\bar{B}	3.5	5	6.7	2.9	8.1	ns
tpHL			2.1	3.6	5.3	2	5.7	
tple	$\overline{\mathrm{B}}$ (transparent)	AO	2.6	4.3	6.3	2.3	7.2	ns
tPHL			4.3	5.6	7.1	3.7	7.6	
tPLH	$\overline{\mathrm{OEB}}$	\bar{B}	2.4	3.7	5.3	2	6.4	ns
tPHL			1.2	2.6	4.1	1.2	4.4	
tPLH	$\overline{\mathrm{OEB}}$	$\overline{\text { B }}$	2.5	3.8	5.3	2.2	6.4	ns
tPHL			1.4	2.9	4.5	1.3	4.9	
tPZH	OEA	AO	1.8	3.5	5.1	1.5	5.6	ns
tpZL			2.6	4.3	5.9	1.8	6.2	
tPHZ	OEA	AO	1.7	3.5	5.3	1.4	5.7	ns
tplz			1	2.7	4.5	1	4.9	
tpLH	CLKAB/LEAB	$\overline{\text { B }}$	3.5	5	6.7	3	8.1	ns
tpHL			2	3.6	5.2	1.9	5.5	
tPLH	CLKBA/LEBA	AO	2.2	3.8	5.4	1.9	5.8	ns
tPHL			2.7	4.1	5.6	2.4	5.7	
${ }_{\text {tPLH }}$	OMODE	$\overline{\text { B }}$	3.2	4.8	6.5	2.7	7.9	ns
tPHL			1.9	3.5	5.2	1.7	5.7	
tpLH	IMODE	AO	2	3.6	5.3	1.7	6	ns
tPHL			2.5	4.1	5.6	1.8	5.8	
tPLH	LOOPBACK	AO	2.3	4.6	6.8	2	7.5	ns
tPHL			3.2	4.8	6.4	2.9	6.4	
tPLH	AI	AO	2.1	3.7	5.4	1.9	5.8	ns
tPHL			2.9	4.3	5.9	2.5	6.4	
t_{t}	Rise time 1.3 V to 1.8 V	$\overline{\text { B }}$		1.5				ns
	Fall time 1.8 V to 1.3 V			1.5				
	Rise or fall time 10\% to 90%	AO		3.5				
tPR	$\overline{\mathrm{B}}$-port input pulse rejection					1		ns

live insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MIN	TYP MAX	UNIT
ICC (BIAS V_{CC})		$\mathrm{V}_{\mathrm{CC}}=0$ to 4.5 V	$\mathrm{V}_{\mathrm{B}}=0$ to 2 V ,	$\mathrm{V}_{\mathrm{I}}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V		400	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				10	
V_{O}	\bar{B} port	$V_{C C}=0$,	$\mathrm{V}_{\mathrm{I}}\left(\right.$ BIAS $\left.\mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V		1.62	2.1	V
Io	$\overline{\text { B port }}$	$V_{C C}=0$,	$\mathrm{V}_{\mathrm{B}}=1 \mathrm{~V}$,	$\mathrm{V}_{1}\left(\right.$ BIAS $\left.\mathrm{V}_{C C}\right)=4.5 \mathrm{~V}$ to 5.5 V	-1		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0$ to 5.5 V ,	$\mathrm{OEB}=0$ to 0.8 V			100	
		$\mathrm{V}_{\mathrm{CC}}=0$ to 2.2 V ,	$\mathrm{OEB}=0$ to 5 V			100	

miscellaneous characteristics

				TEST CONDITIONS	MIN	TYP
$\mathrm{V}_{\mathrm{OHP}}{ }^{\dagger}$ Peak bus voltage during turnoff of 100 mA into 40 nH	$\overline{\mathrm{B}}$ port	See Figure 1	UNIT			
$\mathrm{V}_{\mathrm{OHV}}{ }^{\dagger}$	Minimum bus voltage during turnoff of 100 mA into 40 nH	$\overline{\mathrm{B}}$ port	See Figure 1	4	V	
$\mathrm{~V}_{\mathrm{OLV}}$	Minimum bus voltage during high to low switch	$\overline{\mathrm{B}}$ port	$\mathrm{I}_{\mathrm{OL}}=-50 \mathrm{~mA}$	1.62	0.3	V

\dagger Parameter is based on characterization data but not tested.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit $V_{\text {OHP }}, V_{\text {OHV }}$

LOAD CIRCUIT FOR A OUTPUTS
LOAD CIRCUIT FOR B OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES (A to B)

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES (B to A)

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES (A port)

VOLTAGE WAVEFORMS MISCELLANEOUS CHARACTERISTICS

NOTES: A. C_{L} includes probe and jig capacitance.
B_{4} All input pulses are supplied by generators having the following characteristics: $T \mathrm{TL}$ inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{BTL}$ inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

- Compatible With IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) Standards
- TTL A Port, Backplane Transceiver Logic \bar{B} Port
- Open-Collector \bar{B}-Port Outputs Sink 100 mA
- Minimum \bar{B}-Port Edge Rate $=\mathbf{2}$ ns
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise

SN54FB2040 . . . WD PACKAGE
(TOP VIEW)

- BIAS VCC Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- Available in Plastic Quad Flatpack (RC) and Ceramic Flatpack (WD) Packages
- \bar{B}-Port Biasing Network Preconditions the Connector and PC Trace to the Backplane Transceiver Logic High-Level Voltage

(TOP VIEW)

description

The 'FB2040 is an 8-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments. It is specifically designed to be compatible with IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) standards.
The \bar{B} port operates at BTL-signal levels. The open-collector \bar{B} ports are specified to sink 100 mA and have minimum output edge rates of 2 ns . Two output enables, $O E B$ and $\overline{O E B}$, are provided for the \bar{B} outputs. When OEB is high and $\overline{O E B}$ is low, the \bar{B} port is active and reflects the inverse of the data present at the A-input pins. When OEB is low, $\overline{O E B}$ is high, or $V_{C C}$ is typically less than 2.5 V , the \bar{B} port is turned off.

description (continued)

The A port operates at TTL-signal levels and has split input and output pins. The A outputs reflect the inverse of the data at the \bar{B} port when the A-port output enable, OEA, is high. When OEA is low or when $V_{C C}$ is typically less than 2.5 V , the A outputs are in the high-impedance state.
Pins are allocated for the four-wire IEEE 1149.1 (JTAG) test bus, which will be implemented in a future version of the 'FB2040. Currently TMS and TCK are not connected and TDI is shorted to TDO.
BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.
The SN54FB2040 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74FB2040 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			FUNCTION
OEB	$\overline{\text { OEB }}$	OEA	
$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	Isolation
$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathbf{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\overline{\mathrm{B}}$ data to AO bus
H	L	L	$\overline{A l}$ data to B bus
H	L	H	$\overline{\mathrm{Al}}$ data to B bus, $\overline{\mathrm{B}}$ data to $A O$ bus

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the RC package.

functional block diagram

Pin numbers shown are for the RC package.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any $\overline{\mathrm{B}}$ output in the disabled or power-off state \ldots.

Current applied to any single output in the low state: A port .. 96 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): RC package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .85 \mathrm{~W}$
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions（see Note 1）

NOTE 1：Unused or floating pins（input or I / O ）must be held high or low．
electrical characteristics over recommended operating free－air temperature range（unless
otherwise noted）

PARAMETER		TEST CONDITIONS		SN54FB2040			SN74FB2040			UNIT		
		MIN	TYPt	MAX	MIN	TYP \dagger	MAX					
VIK	$\overline{\text { B port }}$			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ ，	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$						－1．2	V
	Except \bar{B} port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ ，	$\boldsymbol{I}=-40 \mathrm{~mA}$						－0．5			
VOH	AO port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$							V		
			$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$				2.5	3.3				
VOL	AO port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=20 \mathrm{~mA}$							V		
			$\mathrm{l}^{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5			
	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=80 \mathrm{~mA}$				0.75		1.1			
			$\mathrm{IOL}=100 \mathrm{~mA}$						1.15			
11	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ，	$\mathrm{V}_{1}=5.5 \mathrm{~V}$						50	$\mu \mathrm{A}$		
${ }_{11}{ }^{\ddagger}$	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ，	$\mathrm{V}_{1}=2.7 \mathrm{~V}$						50	$\mu \mathrm{A}$		
$1_{1 L}{ }^{\ddagger}$	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ，	$\mathrm{V}_{1}=0.5 \mathrm{~V}$						－50	$\mu \mathrm{A}$		
	$\overline{\text { B port }}$＋	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$ ，	$\mathrm{V}_{\mathrm{I}}=0.75 \mathrm{~V}$						－100			
${ }^{\mathrm{IOH}}$	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=0$ to 5.5 V	$\mathrm{V}_{\mathrm{O}}=2.1 \mathrm{~V}$						100	$\mu \mathrm{A}$		
lozh	AO port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ，	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$						50	$\mu \mathrm{A}$		
lozl	AO port	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$ ，	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$						－50	$\mu \mathrm{A}$		
los§	AO port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ，	$\mathrm{V}_{\mathrm{O}}=0$				－30		－150	mA		
ICC	Al port to \bar{B} port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ ，	$10=0$				25			mA		
	\bar{B} port to AO port											
	Outputs disabled											
C_{i}	Al port and control inputs	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND								pF		
C_{0}	AO port	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GN								pF		
c_{i}	$\overline{\text { B port per P1194．0 }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V							6	pF		
									5			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
\ddagger For I／O ports，the parameters $I_{I H}$ and $I_{I L}$ include the off－state output current．
§ Not more than one output should be shorted at a time，and the duration of the short circuit should not exceed one second．
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54FB2040		SN74FB2040		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tplH	AI	$\overline{\text { B }}$		3.9						ns
tPHL				3.6						
tpLH	\bar{B}	AO		3.9						ns
tphL				3.8						
tPLH	OEB	\bar{B}		5.1						ns
tpHL				4.3						
tPLH	OEB	\bar{B}		4.4						ns
tpHL				4.1						
tpZH	OEA	AO		3.2						ns
tpZL				3						
tphz	OEA	AO		3.2						ns
tpLZ				2.7						
$t_{\text {sk }}(\mathrm{p})$		Al to $\overline{\mathrm{B}}$ or $\overline{\mathrm{B}}$ to AO							0.75	ns
$t_{\text {sk(}}(0)$	Skew between drivers in the same package	Al to $\overline{\mathrm{B}}$ or $\overline{\mathrm{B}}$ to AO		1	1.5				2	ns
t_{t}	Transition time, $\overline{\mathrm{B}}$ outputs (1.3 V to 1.8 V)			2				1	3	ns
tPR	$\overline{\mathrm{B}}$-port input pulse rejection							1		ns

live insertion specifications over recommended operating free-air temperature range

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR A OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: TTL Inputs - $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$. BTL Inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Compatible With IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) Standards
- TTL A Port, Backplane Transceiver Logic B Port
- Open-Collector \bar{B}-Port Outputs Sink 100 mA
- Minimum \bar{B}-Port Edge Rate $=\mathbf{2}$ ns
- Isolated Logic-Ground and Bus-Ground Pins Reduce Noise
- BIAS VCC Pin Minimizes Signal Distortion During Live Insertion/Withdrawal
- Packaged in Plastic Quad-Flat Packages (PQFP) With 0.65-mm Pin Pitches
- \bar{B}-Port Biasing Network Preconditions the Connector and PC Trace to the Backplane Transceiver Logic High-Level Voltage

description

The SN74FB2041 is a 7-bit transceiver designed to translate signals between TTL and backplane transceiver logic (BTL) environments. It is specifically designed to be compatible with IEEE 1194.1-1991 (BTL) and IEEE 896.2-1991 (Futurebus+) standards.
The \bar{B} port operates at BTL-signal levels. The open-collector \bar{B} ports are specified to sink 100 mA and have minimum output edge rates of 2 ns . Two output enables, OEB and $\overline{O E B}$, are provided for the \bar{B} outputs. When OEB is high and $\overline{O E B}$ is low, the \bar{B} port is active and reflects the inverse of the data present at the A-input pins. When OEB is low, $\overline{O E B}$ is high, or $V_{C C}$ is typically less than 2.5 V , the \bar{B} port is turned off. The enable/disable logic partitions the device as two 3-bit sections and one 1-bit section.

The A port operates at TTL-signal levels and has split input and output pins. The A outputs reflect the inverse of the data at the \bar{B} port when the A-port output enable, OEA, is high. When OEA is low or when $V_{C C}$ is typically less than 2.5 V , the A outputs are in the high-impedance state.

Pins are allocated for the four-wire IEEE 1149.1 (JTAG) test bus, which will be implemented in a future version of the SN74FB2041. Currently TMS and TCK are not connected and TDI is shorted to TDO.

description (continued)

BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected.
The SN74FB2041 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE			
INPUTS			FUNCTION
OEB	$\overline{O E B}$	OEA	
L	X	L	
X	H	L	\bar{B} data to $A O$ bus
L	X	H	$\overline{A l}$ data to B bus
X	H	H	
H	L	L	
H	L	H	$\overline{A l}$ data to B bus, \bar{B} data to $A O$ bus

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 1)

			MIN	NOM	MAX	UNIT
V_{CC}, BIAS V_{CC}	Supply voltage		4.5	5	5.5	V
V_{IH}	High-level input voltage	$\overline{\text { B poit }}$	1.62		2.3	V
		Except $\overline{\text { B port }}$	2			
V_{IL}	Low-level input voltage	$\overline{\text { B port }}$	0.75		1.47	V
		Except $\overline{\text { B port }}$			0.8	
IIK	Input clamp current				-18	mA
IOH	High-level output current	AO port			-3	mA
Iol	Low-level output current	AO port			24	mA
		$\overline{\text { B port }}$			100	
T_{A}	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

NOTE 1: Unused or floating pins (input or $1 / 0$) must be held high or low.

SN74FB2041
 7-BIT TTL/BTL TRANSCEIVER

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP \dagger MAX	UNIT
V_{IK}	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.2	V
	Except \bar{B} port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{l}=-40 \mathrm{~mA}$		-0.5	V
VOH	AO port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$			V
			$1 \mathrm{OH}=-3 \mathrm{~mA}$	2.5	3.3	
VOL	AO port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=20 \mathrm{~mA}$			V
			$1 \mathrm{OL}=24 \mathrm{~mA}$		$0.35 \quad 0.5$	
	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=80 \mathrm{~mA}$	0.75	1.1	
			$\mathrm{l} \mathrm{OL}=100 \mathrm{~mA}$		1.15	
11	Except $\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		50	$\mu \mathrm{A}$
${ }_{11}{ }^{\ddagger}$	Except \bar{B} port	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$		50	$\mu \mathrm{A}$
${ }_{1 / 2}{ }^{\ddagger}$	Except \bar{B} port	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.5 \mathrm{~V}$		-50	$\mu \mathrm{A}$
	$\overline{\text { B port }}{ }^{\text {b }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.75 \mathrm{~V}$		-100	
IOH	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=0$ to 5.5 V ,	$\mathrm{V}_{\mathrm{O}}=2.1 \mathrm{~V}$		100	$\mu \mathrm{A}$
IOZH	AO port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		50	$\mu \mathrm{A}$
lozl	AO port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-50	$\mu \mathrm{A}$
los§	AO port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	-30	-150	mA
ICC	Al port to $\overline{\text { B p port }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$10=0$		25	mA
	$\overline{\text { B port to AO port }}$				65	
	Outputs disabled					
C_{i}	Al port and control inputs	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				pF
C_{0}	AO port	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND				pF
Cio_{1}	$\overline{\text { B port per P1194.0 }}$	$\mathrm{V}_{\text {CC }}=0$ to 4.5 V			6	pF
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V			5	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I / O ports, the parameters $I_{I H}$ and $I_{I L}$ include the off-state output current.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
tPLH	AI	\bar{B}		3.9				ns
tpHL				3.6				
tPLH	\bar{B}	AO		3.8				ns
tphL				3.8				
tPLH	OEB	\bar{B}		4.8				ns
tpHL				4.3				
tPLiH	OEB	$\overline{\text { B }}$		4.2				ns
tPHL				3.8				
tPZH	OEA	AO		3				ns
tPZL				3				
tPHZ	OEA	AO		3.3				ns
tplZ				2.6				
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Skew for any single channel \qquad	Al to $\overline{\mathrm{B}}$ or $\overline{\mathrm{B}}$ to AO					0.75	ns
$\mathrm{t}_{\text {sk }}(0)$	Skew between drivers in the same package	Al to $\overline{\mathrm{B}}$ or $\overline{\mathrm{B}}$ to AO		1	1.5		2	ns
t_{t}	Transition time, $\overline{\mathrm{B}}$ outputs (1.3 V to 1.8 V)			2		1	3	ns
tPR	$\overline{\mathrm{B}}$-port input pulse rejection					1		ns

live insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MIN	TYP MAX	UNIT
ICC (BIAS VCC)		$\mathrm{V}_{\mathrm{CC}}=0$ to 4.5 V	$\mathrm{V}_{\mathrm{B}}=0$ to 2 V ,	$\mathrm{V}_{1}\left(\right.$ BIAS $\left.\mathrm{V}_{C C}\right)=4.5 \mathrm{~V}$ to 5.5 V		450	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V				10	
V_{O}	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{I}}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V		1.62	2.1	V
Io	$\overline{\text { B port }}$	$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{B}}=1 \mathrm{~V}$,	$\mathrm{V}_{1}\left(\mathrm{BIAS} \mathrm{V}_{\mathrm{CC}}\right)=4.5 \mathrm{~V}$ to 5.5 V	-1		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0$ to 5.5 V ,	$\mathrm{OEB}=0$ to 0.8 V			100	
		$\mathrm{V}_{\mathrm{CC}}=0$ to 2.2 V ,	OEB $=0$ to 5 V			100	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR A OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES (A to B)

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES (B to A)

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: TTL Inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$. BTL Inputs $-\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {™ }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- Compatibility with IEEE Standard 1149.1-1990 (JTAG) test access port (TAP) and boundary-scan architecture
- EPIC-IIBTM submicron process technology
- Sub-6-ns maximum propagation delays
- Octal and Widebus ${ }^{\text {TM }}$ availability
- EIAJ TSSOP, JEDEC SSOP, and EIAJ TQFP fine-pitch surface-mount packaging
- Bus-hold circuitry ('ABT18XXXA devices only)
- 18 - and 20 -bit UBT ${ }^{T M}$ architectures
- Additional SCOPE ${ }^{\text {TM }}$ instructions available such as:
- Parallel Signature Analysis (PSA)
- Pseudo-Random Pattern Generation (PRPG)
- Test-mode or normal-mode operation
- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ family of testability products
- TI has established an alternate source

Benefits

- Facilitate testing of complex circuit board assemblies via a 4-wire test access port
- High-performance, low-power, high-drive, low-noise equivalents of standard ABT buffers/drivers/transceivers
- No system throughput or cycle time penalty for boundary-scan implementation
- Functional equivalents to standard ABT devices offer system and test designers flexible integration options
- Save valuable board space
- Reduce component count by eliminating need for external pullup or pulldown resistors on I/O pins configured as inputs left unused or floating
- Advanced integration, as one UBT ${ }^{\text {TM }}$ can replace nearly all common bus-interface logic
- Built-in self-test feature allows easy upgrade for advanced JTAG test applications
- IEEE Standard 1149.1-1990 protocol can be bypassed for applications not requiring boundary scan
- Compatible with complete line of system-level test products including controllers, bus monitors, scan path linkers, scan path selectors, application-specific products, and very large-scale integration products
- Standardization that comes from a common product approach

The following table lists ABT JTAG/IEEE 1149.1 devices currently being evaluated for market introduction. Customers interested in learning more about Tl's plans for these devices should contact the Advanced System Logic Marketing hotline at (214) 997-5202.

DEVICE	PIN COUNT	DESCRIPTION
'ABT8240	24	Scan Test Device With Octal Driver
'ABT8244	24	Scan Test Device With Octal Buffer
'ABT8373	24	Scan Test Device With Octal Latch
'ABT8374	24	Scan Test Device With Octal Flip-Flop
'ABT18640	56	Scan Test Device With 18-Bit Inverting Bus Transceiver

Information regarding the tap control state diagram, signal descriptions, and other related JTAG/IEEE 1149.1 information is similar for the 'ABT18245, 'ABT.18502A, 'ABT18504A, 'ABT18646A, and 'ABT18652A. Therefore, this information will only be provided in the data sheet for the 'ABT18245. Please contact your local TI sales representative for further information.

DEVICE	DESCRIPTION	AVAILABILITY
'ABT8245	8-Bit Bus Transceiver	Now
'ABT8543	8-Bit Latched Transceiver	Now
'ABT8646	8-Bit Transceiver and Register	Now
'ABT8652	8-Bit Transceiver and Register	Now
'ABT8952	8-Bit Clocked Transceiver	Now
'ABT18245	18-Bit Bus Transceiver	Now
'ABT18502	18-Bit Universal Bus Transceiver	Now
'ABT18502A \dagger	18-Bit Universal Bus Transceiver	1 Q94
'ABT18504	20-Bit Universal Bus Transceiver	Now
'ABT18504A†	20-Bit Universal Bus Transceiver	1Q94
'ABT18646	18-Bit Transceiver and Register	Now
'ABT18646A \dagger	18-Bit Transceiver and Register	1Q94
'ABT18652	18-Bit Transceiver and Register	Now
'ABT18652A†	18-Bit Transceiver and Register	1Q94

† With the exception of the 'ABT18245, the 'ABT18XXX family is being redesigned in order to enhance test mode as well as normal mode operation. As such, the 'ABT18XXXA devices are recommended for new designs and the data sheets for these devices are provided in this data book. Please note that the AC parameters shown are from the 'ABT18XXX device data sheets and serve as preliminary information design goals for the 'ABT18XXXA devices.

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Functionally Equivalent to SN54/74F245 and SN54/74ABT245 in the Normal Function Mode
- SCOPE ${ }^{\text {TM }}$ Instruction Set:
- IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs With Masking Option
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Even-Parity Opcodes
- Two Boundary-Scan Cells per I/O for Greater Flexibility
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic DIPs

description

The SN54ABT8245 and SN74ABT8245 scan test devices with octal bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4 -wire test access port (TAP) interface.

SN54ABT8245 . . JT PACKAGE
SN74ABT8245 ... DW PACKAGE
(TOP VIEW)

DIR	24] $\overline{O E}$
B1 2	23 A1
B2 [3	22.12
B3 4	21 A3
B4 0^{5}	20 A4
GND 6	19 A5
B5 7	$18 . \mathrm{V}_{\mathrm{CC}}$
B6 [8	17.18
B7 ${ }^{\text {a }}$	16 A7
B8 10	15 A8
TDO ${ }^{11}$	14 TDI
TMS 12	13. TCK

SN54ABT8245 . . FK PACKAGE (TOP VIEW)

NC - No internal connection

In the normal mode, these devices are functionally equivalent to the SN54/74F245 and SN54/74ABT245 octal bus transceivers. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ octal bus transceivers.
Data flow is controlled by the direction-control (DIR) and output-enable ($\overline{\mathrm{OE}}$) inputs. Data transmission is allowed from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at DIR. The output-enable ($\overline{\mathrm{OE}}$) input can be used to disable the device so that the buses are effectively isolated.
In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations as described in IEEE Standard 1149.1-1990.

description (continued)

Four dedicated test pins are used to control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.

The SN54ABT8245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT8245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (normal mode)	
INPUTS OPERATION $\overline{\text { OE }}$ DIR L L B data to A bus L H A data to B bus H X Isolation	

functional block diagram

Pin numbers shown are for the DB, DW, and JT packages.

Terminal Functions

PIN NAME	DESCRIPTION
A1-A8	Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1-B8	Normal-function B-bus I/O ports. See function table for normal-mode logic.
DIR	Normal-function direction-control input. See function table for normal-mode logic.
GND	Ground
$\overline{\text { OE }}$	Normal-function output-enable input. See function table for normal-mode logic.
TCK	Test clock. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four terminals required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four terminals required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four terminals required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage

test architecture

Serial test information is conveyed by means of a 4-wire test bus or test access port (TAP), that conforms to IEEE Standard 1149.1-1990. Test instructions, test data, and test control signals are all passed along this serial test bus. The TAP controller monitors two signals from the test bus, namely TCK and TMS. The function of the TAP controller is to extract the synchronization (TCK) and state control (TMS) signals from the test bus and generate the appropriate on-chip control signals for the test structures in the device. Figure 1 shows the TAP controller state diagram.
The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures that data to be captured is valid for fully one-half of the TCK cycle.

The functional block diagram illustrates the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship between the test bus, the TAP controller, and the test registers. As illustrated, the device contains an 8-bit instruction register and three test data registers: a 36-bit boundary-scan register, an 11-bit boundary-control register, and a one-bit bypass register.

Figure 1. TAP Controller State Diagram

INSTRUMENTS

state diagram description

The test access port (TAP) controller is a synchronous finite state machine that provides test control signals throughout the device. The state diagram is illustrated Figure 1 and is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states based on the level of TMS at the rising edge of TCK.

As illustrated, the TAP controller consists of sixteen states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is defined as a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.

There are two main paths though the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time.

Test-Logic-Reset

The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data registers can also be reset to their power-up values.

The state machine is constructed such that the TAP controller will return to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that will force it high if left unconnected or if a board defect causes it to be open circuited.

For the 'ABT8245, the instruction register is reset to the binary value 11111111, which selects the BYPASS instruction. Each bit in the boundary-scan register is reset to logic 0 . The boundary-control register is reset to the binary value 00000000010, which selects the PSA test operation with no input masking.

Run-Test/Idle

The TAP controller must pass through the Run-Test/Idle state (from Test-Logic-Reset) before executing any test operations. The Run-Test/Idle state can also be entered following data register or instruction register scans. Run-Test/Idle is provided as a stable state in which the test logic can be actively running a test or can be idle.

The test operations selected by the boundary-control register are performed while the TAP controller is in the Run-Test/Idle state.

Select-DR-Scan, Select-IR-Scan

No specific function is performed in the Select-DR-Scan and Select-IR-Scan states, and the TAP controller will exit either of these states on the next TCK cycle. These states are provided to allow the selection of either data register scan or instruction register scan.

Capture-DR

When a data register scan is selected, the TAP controller must pass through the Capture-DR state. In the Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK upon which the TAP controller exits the Capture-DR state.

Shift-DR

Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the selected data register.

state diagram description (continued)

While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-DR state.

Exit1-DR, Exit2-DR

The Exit1-DR and Exit2-DR states are temporary states used to end a data register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.
On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.

Pause-DR

No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state provides the capability of suspending and resuming data register scan operations without loss of data.

Update-DR

If the current instruction calls for the selected data register to be updated with current data, then such update occurs on the falling edge of TCK following entry to the Update-DR state.

Capture-IR

When an instruction register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK upon which the TAP controller exits the Capture-IR state.

For the 'ABT8245, the status value loaded in the Capture-IR state is the fixed binary value 10000001.

Shift-IR

Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the instruction register.

While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-IR state.

Exit1-IR, Exit2-IR

The Exit1-IR and Exit2-IR states are temporary states used to end an instruction register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.
On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.

Pause-IR

No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state provides the capability of suspending and resuming instruction register scan operations without loss of data.

Update-IR

The current instruction is updated and takes effect on the falling edge of TCK following entry to the Update-IR state.

register overview

With the exception of the bypass register, any test register can be thought of as a serial shift register with a shadow latch on each bit. The bypass register differs in that it contains only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register.

instruction register description

The instruction register (IR) is eight bits long and is used to tell the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the three data registers is to be selected for inclusion in the scan path during data register scans, and the source of data to be captured into the selected data register during Capture-DR.

Table 3 lists the instructions supported by the'ABT8245. The even-parity feature specified for SCOPE ${ }^{\text {TM }}$ devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE ${ }^{\text {TM }}$ devices but are not supported by this device default to BYPASS.
During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value will be shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated, and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 11111111, which selects the BYPASS instruction.

The instruction register order of scan is illustrated in Figure 2.

Figure 2. Instruction Register Order of Scan

data register description

boundary-scan register

The boundary-scan register (BSR) is 36 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin, two BSCs for each normal-function I/O pin (one for input data and one for output data), and one BSC for each of the internally decoded output-enable signals (OEA and OEB). The BSR is used 1) to store test data that is to be applied internally to the inputs of the normal on-chip logic and/or externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.

The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or in Test-Logic-Reset, the value of each BSC is reset to logic 0.

When external data is to be captured, the BSCs for signals OEA and OEB capture logic values determined by the following positive-logic equations: OEA $=\overline{\overline{\mathrm{OE}}} \bullet \overline{\mathrm{DIR}}$, and $\mathrm{OEB}=\overline{\overline{\mathrm{OE}}} \cdot$ DIR. When data is to be applied externally, these BSCs control the drive state (active or high-impedance) of their respective outputs.
The boundary-scan register order of scan is from TDI through bits 35-0 to TDO. Table 1 shows the boundary-scan register bits and their associated device pin signals.

Table 1. Boundary-Scan Register Configuration

BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL
35	OEB	31	B8-I	23	B8-O	15	A8-I	7	A8-O
34	OEA	30	B7-I	22	B7-O	14	A7-I	6	A7-O
33	DIR	29	B6-I	21	B6-O	13	A6-I	5	A6-O
32	$\overline{O E}$	28	B5-I	20	B5-O	12	A5-I	4	A5-O
-	-	27	B4-I	19	B4-O	11	A4-I	3	A4-O
-	-	26	B3-1	18	B3-O	10	A3-1	2	A3-O
-	-	25	B2-I	17	B2-O	9	A2-I	1	A2-O
-	-	24	B1-I	16	B1-O	8	A1-I	0	A1-O

boundary-control register

The boundary-control register (BCR) is 11 bits long. The BCR is used in the context of the RUNT instruction to implement additional test operations not included in the basic SCOPE ${ }^{\text {TM }}$ instruction set. Such operations include pseudo-random pattern generation (PRPG), parallel signature analysis (PSA) with input masking, and binary count up (COUNT). Table 4 shows the test operations that are decoded by the BCR.

During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 00000000010 , which selects the PSA test operation with no input masking.
The boundary-control register order of scan is from TDI through bits 10-0 to TDO. Table 2 shows the boundary-control register bits and their associated test control signals.

data register description (continued)

Table 2. Boundary-Control Register Configuration

BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL
10	MASK8	6	MASK4	2	OPCODE2
9	MASK7	5	MASK3	1	OPCODE1
8	MASK6	4	MASK2	0	OPCODE0
7	MASK5	3	MASK1	-	-

bypass register

The bypass register is a one-bit scan path that can be selected to shorten the length of the system scan path, thereby reducing the number of bits per test pattern that must be applied to complete a test operation.
During Capture-DR, the bypass register captures a logic 0 . The bypass register order of scan is illustrated in Figure 3.

Figure 3. Bypass Register Order of Scan
Table 3. Instruction Register Opcodes

BINARY CODE BIT 7 \rightarrow BIT 0 MSB \rightarrow LSB	SCOPE OPCODE	DESCRIPTION	SELECTED DATA REGISTER	MODE
00000000	EXTEST	Boundary scan	Boundary scan	Test
10000001	BYPASS \ddagger	Bypass scan	Bypass	Normal
10000010	SAMPLE/PRELOAD	Sample boundary	Boundary scan	Normal
00000011	INTEST	Boundary scan	Boundary scan	Test
10000100	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000101	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000110	HIGHZ	Control boundary to high impedance	Bypass	Modified test
10000111	CLAMP	Control boundary to $1 / 0$	Bypass	Test
10001000	BYPASS \ddagger	Bypass scan	Bypass	Normal
00001001	RUNT	Boundary run test	Bypass	Test
00001010	READBN	Boundary read	Boundary scan	Normal
10001011	READBT	Boundary read	Boundary scan	Test
00001100	CELLTST	Boundary self test	Boundary scan	Normal
10001101	TOPHIP	Boundary toggle outputs	Bypass	Test
10001110	SCANCN	Boundary-control register scan	Boundary control	Normal
00001111	SCANCT	Boundary-control register scan	Boundary control	Test
All others	BYPASS	Bypass scan	Bypass	Normal

\dagger Bit 7 is used to maintain even parity in the 8 -bit instruction.
\ddagger The BYPASS instruction is executed in lieu of a SCOPE ${ }^{\text {TM }}$ instruction that is not supported in the 'ABT8245.

instruction register opcode description

The instruction register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction.

boundary scan

This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST and INTEST instructions. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. Data that has been scanned into the input BSCs is applied to the inputs of the normal on-chip logic, while data that has been scanned into the output BSCs is applied to the device output pins. The device operates in the test mode.

bypass scan

This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode.

sample boundary

This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. The device operates in the normal mode.

control boundary to high impedance

This instruction conforms to the IEEE P1149.1A HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed.

control boundary to $\mathbf{1 / 0}$

This instruction conforms to the IEEE P1149.1A CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input BSCs is applied to the inputs of the normal on-chip logic, while data in the output BSCs is applied to the device output pins. The device operates in the test mode.

boundary run test

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the boundary-control register is executed during Run-Test/Idle. The five test operations decoded by the boundary-control register are: sample inputs/toggle outputs (TOPSIP), pseudo-random pattern generation (PRPG), parallel signature analysis (PSA), simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT).

boundary read

The boundary-scan register is selected in the scan path. The value in the boundary-scan register remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation.

boundary self test

The boundary-scan register is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way, the contents of the shadow latches can be read out to verify the integrity of both shift register and shadow latch elements of the boundary-scan register. The device operates in the normal mode.

instruction register opcode description (continued)

boundary toggle outputs

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK in Run-Test//dle and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK in Run-Test/Idle. Data in the selected input BSCs remains constant and is applied to the inputs of the normal on-chip logic. Data appearing at the device input pins is not captured in the input BSCs. The device operates in the test mode.

boundary-control register scan

The boundary-control register is selected in the scan path. The value in the boundary-control register remains unchanged during Capture-DR. This operation must be performed prior to a boundary run test operation in order to specify which test operation is to be executed.

Table 4. Boundary-Control Register Opcodes

BINARY CODE BIT $2 \rightarrow$ BIT 0 MSB \rightarrow LSB	DESCRIPTION
X00	Sample inputs/toggle outputs (TOPSIP)
X01	Pseudo-random pattern generation/16-bit mode (PRPG)
X10	Parallel signature analysis/16-bit mode (PSA)
011	Simultaneous PSA and PRPG/8-bit mode (PSA/PRPG)
111	Simultaneous PSA and binary count up/8-bit mode (PSA/COUNT)

boundary-control register opcode description

The boundary-control register opcodes are decoded from BCR bits 2-0 as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test/Idle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms.

It should be noted, in general, that while the control input BSCs (bits 35-32) are not included in the sample, toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits 35-34 of the BSR) do control the drive state (active or high impedance) of the selected device output pins. It also should be noted that these BCR instructions are only valid when the device is operating in one direction of data flow (that is, OEA $\neq \mathrm{OEB}$). Otherwise, the bypass instruction is operated.

PSA input masking

Bits $10-3$ of the boundary-control register are used to specify device input pins to be masked from PSA operations. Bit 10 selects masking for device input pin A8 during A-to-B data flow or for device input pin B8 during B-to-A data flow. Bit 3 selects masking for device input pins A1 or B1 during A-to-B or B-to-A data flow, respectively. Bits intermediate to 10 and 3 mask corresponding device input pins in order from most significant to least significant, as indicated in Table 3. When the mask bit which corresponds to a particular device input has a logic 1 value, the device input pin is masked from any PSA operation, meaning that the state of the device input pin is ignored and has no effect on the generated signature. Otherwise, when a mask bit has a logic 0 value, the corresponding device input is not masked from the PSA operation.

boundary-control register opcode description (continued)

sample inputs/toggle outputs (TOPSIP)

Data appearing at the selected device input pins is captured in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK.

pseudo-random pattern generation (PRPG)

A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK and then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK. This data is also updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Figures 4 and 5 illustrate the 16 -bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.$=-\square$

Figure 4. 16-Bit PRPG Configuration (OEA $=0, O E B=1$)

Figure 5. 16-Bit PRPG Configuration (OEA=1, $O E B=0$)

boundary-control register opcode description (continued)

parallel signature analysis (PSA)

Data appearing at the selected device input pins is compressed into a 16 -bit parallel signature in the shift-register elements of the selected BSC s on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shadow latches of the selected output BSCs remains constant and is applied to the device outputs. Figures 6 and 7 illustrate the 16 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

\oplus
$=+\square$

Figure 6. 16-Bit PSA Configuration ($O E A=0, O E B=1$)

Figure 7. 16-Bit PSA Configuration ($O E A=1, O E B=0$)

boundary-control register opcode description (continued)

simultaneous PSA and PRPG (PSA/PRPG)

Data appearing at the selected device input pins is compressed into an 8 -bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit pseudo-random pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. Figures 8 and 9 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 8. 8-Bit PSA/PRPG Configuration ($O E A=0, O E B=1$)

Figure 9. 8-Bit PSA/PRPG Configuration ($O E A=1, O E B=0$)

boundary-control register opcode description (continued)

simultaneous PSA and binary count up (PSA/COUNT)

Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit binary count-up pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. In addition, the shift-register elements of the opposite output BSCs are used to count carries out of the selected output BSCs and, thereby, extend the count to 16 bits. Figures 10 and 11 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 10. 8-Bit PSA/COUNT Configuration ($O E A=0, O E B=1$)

Figure 11. 8-Bit PSA/COUNT Configuration (OEA =1, OEB = 0)

timing description

All test operations of the 'ABT8245 are synchronous to the test clock (TCK). Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as illustrated in Figure 1) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK.
A simple timing example is illustrated in Figure 12. In this example, the TAP controller begins in the Test-Logic-Reset state and is advanced through its states as necessary to perform one instruction register scan and one data register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The TAP controller is then returned to the Test-Logic-Reset state. Table 5 explains the operation of the test circuitry during each TCK cycle.

Table 5. Explanation of Timing Example

$\begin{gathered} \text { TCK } \\ \text { CYCLE(S) } \end{gathered}$	TAP STATE AFTER TCK	DESCRIPTION
1	Test-Logic-Reset	TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state.
2	Run-Test/ldie	
3	Select-DR-Scan	
4	Select-IR-Scan	
5	Capture-IR	The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state.
6	Shift-IR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
7-13	Shift-IR	One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8 -bit binary value 11111111 is serially scanned into the IR. At the same time, the 8 -bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the instruction register scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
14	Exit1-IR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
15	Update-IR	The IR is updated with the new instruction (BYPASS) on the falling edge of TCK.
16	Select-DR-Scan	
17	Capture-DR	The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state.
18	Shift-DR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
19-20	Shift-DR	The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21	Exit1-DR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
22	Update-DR	In general, the selected data register is updated with the new data on the falling edge of TCK.
23	Select-DR-Scan	
24	Select-IR-Scan	, . ${ }^{\text {c }}$
25	Test-Logic-Reset	Test operation completed

3-State (TDO) or Don't Care (TDI)
Figure 12. Timing Example

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 7 V Input voltage range, V_{1} (except I/O ports) (see Note 1) ... -0.5 V to 7 V
 Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$. Current into any output in the low state, I_{O} : SN54ABT8245 .. 96 mA SN74ABT8245 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings can be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABT8245, SN74ABT8245
SCAN TEST DEVICES WITH

OCTAL BUS TRANSCEIVERS

SCBS124A - D4505, AUGUST 1992 - REVISED AUGUST 1993
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 13)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8245		SN74ABT8245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	2	3.5	4.3	2	5.8	2	4.8	ns
tpHL			2	3.4	4.2	2	5.5	2	5.1	
tpZH	$\overline{\mathrm{OE}}$	B or A	2.5	4.5	5.5	2.5	6.9	2.5	6.8	ns
tpZL			3	5.2	6	3	8.1	3	7.5	
tPHZ	$\overline{\mathrm{OE}}$	B or A	3	6.1	7.1	3	8.9	3	8.4	ns
tpLZ			3	5.5	6.6	3	8	3	7.5	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8245		SN74ABT8245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		MHz
tplH	TCK \downarrow	A or B	3.5	8	9.5	3.5	12.5	3.5	12	
tPHL			3	7.7	9	3	12	3	11.5	ns
tplH	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
${ }_{\text {tPHL }}$			2.5	4.2	5.5	2.5	7	2.5	6.5	
tpZH	TCK \downarrow	A or B	4.5	8.2	9.5	4.5	12.5	4.5	12	ns
tPZL			4.5	9	10.5	4.5	13.5	4.5	13	
tpZH	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
tPZL			2.5	4.9	6	2.5	7.8	2.5	7	
tpHZ	TCK \downarrow	A or B	3.5	8.4	10.5	3.5	14.2	3.5	13.5	ns
tplZ			3	8	10.5	3	13.5	3	13	
tPHZ	TCK \downarrow	TDO	3	5.9	7	2	9	3	8.5	ns
tPLZ			3	5	6.5	3	8	3	7.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

Output
Control

Output
Waveform 1
S1 at 7 V
(see Note C)

Output
Waveform 2
S1 at Open
(see Note C)

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 13. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Functionally Equivalent to SN54/74F543 and SN54/74ABT543 in the Normal Function Mode
- SCOPE ${ }^{\text {M }}$ Instruction Set:
- IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs With Masking Option
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Even-Parity Opcodes
- Two Boundary-Scan Cells per I/O for Greater Flexibility
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Package Options Include Plastic Small-Outline and Shrink Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic DIPs

description

The SN54ABT8543 and SN74ABT8543 scan test devices with octal registered bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

SN54ABT8543 . . . JT PACKAGE
SN74ABT8543 . . . DL OR DW PACKAGE
(TOP VIEW)

LEAB 1	28	$\overline{\text { LEBA }}$
CEAB 2	27	$\overline{\text { CEBA }}$
$\overline{\text { OEAB }} 3$	26	$\overline{\text { OEBA }}$
A1 4	25	B1
A2 5	24	B2
A3 6	23	B3
GND 7	22	B4
A4 8	21	$V_{C C}$
A5 9	20	B5
A6 10	19	B6
A7 11	18	B7
A8 12	17	B8
TDO 13	16	TDI
TMS 14	15	TCK

SN54ABT8543 . . . FK PACKAGE (TOP VIEW)

In the normal mode, these devices are functionally equivalent to the SN54/74F543 and SN54/74ABT543 octal registered bus transceivers. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPE ${ }^{\top M}$ octal registered bus transceivers.

Data flow in each direction is controlled by latch-enable ($\overline{\mathrm{LEAB}}$ and $\overline{\mathrm{LEBA}})$, chip-enable ($\overline{\mathrm{CEAB}}$ and $\overline{\mathrm{CEBA}}$), and output-enable ($\overline{O E A B}$ and $\overline{O E B A}$) inputs. For A-to-B data flow, the device operates in the transparent mode when $\overline{L E A B}$ and $\overline{C E A B}$ are both low. When either $\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{CEAB}}$ is high, the A data is latched. The B outputs are active when $\overline{O E A B}$ and $\overline{C E A B}$ are both low. When either $\overline{O E A B}$ or $\overline{C E A B}$ is high, the B outputs are in the high-impedance state. Control for B-to-A data flow is similar to that for A-to- B but uses $\overline{\mathrm{LEBA}}, \overline{\mathrm{CEBA}}$, and $\overline{\mathrm{OEBA}}$.

SN54ABT8543, SN74ABT8543
 SCAN TEST DEVICES WITH
 OCTAL REGISTERED BUS TRANSCEEVERS
 SCBS120B - D4509, AUGUST 1991 - REVISED AUGUST 1993

description (continued)

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ registered bus transceiver is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations as described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.

The SN54ABT8543 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT8543 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
(normal mode, each register)

INPUTS				$\begin{gathered} \text { OUTPUT } \\ \mathbf{B} \end{gathered}$
$\overline{C E A B}$	$\overline{\text { OEAB }}$	$\overline{\text { LEAB }}$	A	
L	L	L	L	L
L	L	L	H	H
L	L	H	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	H	X	x	Z
H	X	X	X	Z

\dagger A-to-B data flow is shown. B-to-A data flow is similar but uses CEBA, OEBA, and LEBA.
\ddagger Output level before the indicated steady-state input conditions were established.
functional block diagram

Pin numbers shown are for DL, DW, and JT packages.

Terminal Functions

PIN NAME	DESCRIPTION
A1-A8	Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1-B8	Normal-function B-bus I/O ports. See function table for normal-mode logic.
$\overline{\mathrm{CEAB}}, \overline{\mathrm{CEBA}}$	Normal-function chip-enable inputs. See function table for normal-mode logic.
GND	Ground
$\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}$	Normal-function latch-enable inputs. See function table for normal-mode logic.
$\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}$	Normal-function output-enable inputs. See function table for normal-mode logic.
TCK	Test clock. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK, and outputs change on the falling edge of TCK.
TDI	Test data input. One of four terminals required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four terminals required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four terminals required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage

test architecture

Serial test information is conveyed by means of a 4 -wire test bus or test access port (TAP), that conforms to IEEE Standard 1149.1-1990. Test instructions, test data, and test control signals are all passed along this serial test bus. The TAP controller monitors two signals from the test bus, namely TCK and TMS. The function of the TAP controller is to extract the synchronization (TCK) and state control (TMS) signals from the test bus and generate the appropriate on-chip control signals for the test structures in the device. Figure 1 shows the TAP controller state diagram.

The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures that data to be captured is valid for fully one-half of the TCK cycle.

The functional block diagram illustrates the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship between the test bus, the TAP controller, and the test registers. As illustrated, the device contains an 8 -bit instruction register and three test data registers: a 40-bit boundary-scan register, an 11-bit boundary-control register, and a one-bit bypass register.

Figure 1. TAP Controller State Diagram

state diagram description

The test access port (TAP) controller is a synchronous finite state machine that provides test control signals throughout the device. The state diagram is illustrated in Figure 1 and is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states based on the level of TMS at the rising edge of TCK.

As illustrated, the TAP controller consists of sixteen states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is defined as a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.
There are two main paths though the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time.

Test-Logic-Reset

The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data registers can also be reset to their power-up values.
The state machine is constructed such that the TAP controller will return to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that will force it high if left unconnected or if a board defect causes it to be open circuited.
For the 'ABT8543, the instruction register is reset to the binary value 11111111, which selects the BYPASS instruction. Each bit in the boundary-scan register is reset to logic 0 . The boundary-control register is reset to the binary value 00000000010 , which selects the PSA test operation with no input masking.

Run-Test/Idle

The TAP controller must pass through the Run-Test/ldle state (from Test-Logic-Reset) before executing any test operations. The Run-Test/Idle state can also be entered following data register or instruction register scans. Run-Test/Idle is provided as a stable state in which the test logic can be actively running a test or can be idle.
The test operations selected by the boundary-control register are performed while the TAP controller is in the Run-Test/Idle state.

Select-DR-Scan, Select-IR-Scan

No specific function is performed in the Select-DR-Scan and Select-IR-Scan states, and the TAP controller will exit either of these states on the next TCK cycle. These states are provided to allow the selection of either data register scan or instruction register scan.

Capture-DR

When a data register scan is selected, the TAP controller must pass through the Capture-DR state. In the

* Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK upon which the TAP controller exits the Capture-DR state.

Shift-DR

Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the selected data register.
While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-DR state.

state diagram description (continued)

Exit1-DR, Exit2-DR

The Exit1-DR and Exit2-DR states are temporary states used to end a data register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.

On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.

Pause-DR

No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state provides the capability of suspending and resuming data register scan operations without loss of data.

Update-DR

If the current instruction calls for the selected data register to be updated with current data, then such update occurs on the falling edge of TCK following entry to the Update-DR state.

Capture-IR

When an instruction register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK upon which the TAP controller exits the Capture-IR state.

For the 'ABT8543, the status value loaded in the Capture-IR state is the fixed binary value 10000001.

Shift-IR

Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the instruction register.

While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-IR state.

Exit1-IR, Exit2-IR

The Exit1-IR and Exit2-IR states are temporary states used to end an instruction register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.
On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.

Pause-IR

No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state provides the capability of suspending and resuming instruction register scan operations without loss of data.

Update-IR

The current instruction is updated and takes effect on the falling edge of TCK following entry to the Update-IR state.

register overview

the parity With the exception of the bypass register, any test register can be thought of as a serial shift register with a shadow latch on each bit. The bypass register differs in that it contains only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register.

instruction register description

The instruction register (IR) is eight bits long and is used to tell the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the three data registers is to be selected for inclusion in the scan path during data register scans, and the source of data to be captured into the selected data register during Capture-DR.

Table 3 lists the instructions supported by the'ABT8543. The even-parity feature specified for SCOPE ${ }^{\text {TM }}$ devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE ${ }^{\text {TM }}$ devices but are not supported by this device default to BYPASS.

During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value will be shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated, and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 11111111, which selects the BYPASS instruction.
The instruction register order of scan is illustrated in Figure 2.

Figure 2. Instruction Register Order of Scan

data register description

boundary-scan register

The boundary-scan register (BSR) is 40 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin, two BSC s for each normal-function I/O pin (one for input data and one for output data), and one BSC for each of the internally decoded output-enable signals (OEA and OEB). The BSR is used 1) to store test data that is to be applied internally to the inputs of the normal on-chip logic and/or externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.
The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or in Test-Logic-Reset, the value of each BSC is reset to logic 0 .

When external data is to be captured, the BSCs for signals OEA and OEB capture logic values determined by the following positive-logic equations: $\mathrm{OEA}=\overline{\overline{O E B A}}+\overline{\mathrm{CEBA}}$, and $\mathrm{OEB}=\overline{\overline{O E A B}}+\overline{\mathrm{CEAB}}$. When data is to be applied externally, these BSCs control the drive state (active or high-impedance) of their respective outputs.
The boundary-scan register order of scan is from TDI through bits 39-0 to TDO. Table 1 shows the boundary-scan register bits and their associated device pin signals.

Table 1. Boundary-Scan Register Configuration

BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL
39	OEB	31	A8-I	23	A8-O	15	B8-I	7	B8-O
38	OEA	30	A7-I	22	A7-O	14	B7-I	6	B7-O
37	$\overline{\text { OEAB }}$	29	A6-I	21	A6-O	13	B6-I	5	B6-O
36	$\overline{\text { OEBA }}$	28	A5-I	20	A5-O	12	B5-I	4	B5-O
35	$\overline{\text { LEAB }}$	27	A4-I	19	A4-O	11	B4-I	3	B4-O
34	$\overline{\text { LEBA }}$	26	A3-I	18	A3-O	10	B3-1	2	B3-O
33	$\overline{\text { CEAB }}$	25	A2-I	17	A2-O	9	B2-I	1	B2-O
32	$\overline{\text { CEBA }}$	24	A1-I	16	A1-O	8	B1-I	0	B1-O

boundary-control register

The boundary-control register (BCR) is 11 bits long. The BCR is used in the context of the RUNT instruction to implement additional test operations not included in the basic SCOPE TM instruction set. Such operations include pseudo-random pattern generation (PRPG), parallel signature analysis (PSA) with input masking, and binary count up (COUNT). Table 4 shows the test operations that are decoded by the BCR.
During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 00000000010 , which selects the PSA test operation with no input masking.

The boundary-control register order of scan is from TDI through bits 10-0 to TDO. Table 2 shows the boundary-control register bits and their associated test control signals.

data register description (continued)

Table 2. Boundary-Control Register Configuration

BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL
10	MASK8	6	MASK4	2	OPCODE2
9	MASK7	5	MASK3	1	OPCODE1
8	MASK6	4	MASK2	0	OPCODE0
7	MASK5	3	MASK1	-	-

bypass register

The bypass register is a one-bit scan path that can be selected to shorten the length of the system scan path, thereby reducing the number of bits per test pattern that must be applied to complete a test operation.

During Capture-DR, the bypass register captures a logic 0 . The bypass register order of scan is illustrated in Figure 3.

Figure 3. Bypass Register Order of Scan
Table 3. Instruction Register Opcodes

$\begin{gathered} \hline \text { BINARY CODE才 } \\ \text { BIT } 7 \rightarrow \text { BIT } 0 \\ \text { MSB } \rightarrow \text { LSB } \end{gathered}$	SCOPE OPCODE	DESCRIPTION	SELECTED DATA REGISTER	MODE
00000000	EXTEST	Boundary scan	Boundary scan	Test
10000001	BYPASS \ddagger	Bypass scan	Bypass	Normal
10000010	SAMPLE/PRELOAD	Sample boundary	Boundary scan	Normal
00000011	INTEST	Boundary scan	Boundary scan	Test
10000100	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000101	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000110	HIGHZ	Control boundary to high impedance	Bypass	Modified test
10000111	CLAMP	Control boundary to 1/0	Bypass	Test
10001000	BYPASS \ddagger	Bypass scan	Bypass	Normal
00001001	RUNT	Boundary run test	- Bypass	Test
00001010	READBN	Boundary read	Boundary scan	Normal
10001011	READBT	Boundary read	Boundary scan	Test
00001100	CELLTST	Boundary self test	Boundary scan	Normal
10001101	TOPHIP	Boundary toggle outputs	Bypass	Test
10001110	SCANCN	Boundary-control register scan	Boundary control	Normal
00001111	SCANCT	Boundary-control register scan	Boundary control	Test
All others	BYPASS	Bypass scan	Bypass	Normal

\dagger Bit 7 is used to maintain even parity in the 8 -bit instruction.
\ddagger The BYPASS instruction is executed in lieu of a SCOPE ${ }^{\text {TM }}$ instruction that is not supported in the 'ABT8543.

instruction register opcode description

The instruction register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction.

boundary scan

This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST and INTEST instructions. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. Data that has been scanned into the input BSCs is applied to the inputs of the normal on-chip logic, while data that has been scanned into the output BSCs is applied to the device output pins. The device operates in the test mode.

bypass scan

This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode.

sample boundary

This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. The device operates in the normal mode.

control boundary to high impedance

This instruction conforms to the IEEE P1149.1A HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed.

control boundary to $\mathbf{1 / 0}$

This instruction conforms to the IEEE P1149.1A CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input BSCs is applied to the inputs of the normal on-chip logic, while data in the output BSCs is applied to the device output pins. The device operates in the test mode.

boundary run test

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the boundary-control register is executed during Run-Test/ldle. The five test operations decoded by the boundary-control register are: sample inputs/toggle outputs (TOPSIP), pseudo-random pattern generation (PRPG), parallel signature analysis (PSA), simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT).

boundary read

The boundary-scan register is selected in the scan path. The value in the boundary-scan register remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation.

boundary self test

The boundary-scan register is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way, the contents of the shadow latches can be read out to verify the integrity of both shift register and shadow latch elements of the boundary-scan register. The device operates in the normal mode.

instruction register opcode description (continued)

boundary toggle outputs

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK in Run-Test/Idle and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK in Run-Test/Idle. Data in the selected input BSCs remains constant and is applied to the inputs of the normal on-chip logic. Data appearing at the device input pins is not captured in the input BSCs. The device operates in the test mode.

boundary-control register scan

The boundary-control register is selected in the scan path. The value in the boundary-control register remains unchanged during Capture-DR. This operation must be performed prior to a boundary run test operation in order to specify which test operation is to be executed.

Table 4. Boundary-Control Register Opcodes

BINARY CODE BIT 2 \rightarrow BIT 0 MSB \rightarrow LSB	
X00	DESCRIPTION
$\times 01$	Pseudo-random pattern generation/16-bit mode (PRPG)
X10	Parallel signature analysis/16-bit mode (PSA)
011	Simultaneous PSA and PRPG/8-bit mode (PSA/PRPG)
111	Simultaneous PSA and binary count up/8-bit mode (PSA/COUNT)

boundary-control register opcode description

The boundary-control register opcodes are decoded from BCR bits 2-0 as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test/Idle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms.
It should be noted, in general, that while the control input BSCs (bits 39-32) are not included in the sample, toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits $39-38$ of the BSR) do control the drive state (active or high impedance) of the selected device output pins. It also should be noted that these BCR instructions are only valid when the device is operating in one direction of data flow (that is, OEA $\neq \mathrm{OEB}$). Otherwise, the bypass instruction is operated.

PSA input masking

Bits $10-3$ of the boundary-control register are used to specify device input pins to be masked from PSA operations. Bit 10 selects masking for device input pin A8 during A-to-B data flow or for device input pin B8 during B-to-A data flow. Bit 3 selects masking for device input pins A 1 or B 1 during A -to- B or B -to-A data flow, respectively. Bits intermediate to 10 and 3 mask corresponding device input pins in order from most significant to least significant, as indicated in Table 3. When the mask bit which corresponds to a particular device input has a logic 1 value, the device input pin is masked from any PSA operation, meaning that the state of the device input pin is ignored and has no effect on the generated signature. Otherwise, when a mask bit has a logic 0 value, the corresponding device input is not masked from the PSA operation.

SN54ABT8543, SN74ABT8543
 SCAN TEST DEVICES WITH
 OCTAL REGISTERED BUS TRANSCEIVERS
 SCBS120B - D4509, AUGUST 1991 - REVISED AUGUST 1993

boundary-control register opcode description (continued)

sample inputs/toggle outputs (TOPSIP)

Data appearing at the selected device input pins is captured in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK.

pseudo-random pattern generation (PRPG)

A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK and then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK. This data is also updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Figures 4 and 5 illustrate the 16-bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 4. 16-Bit PRPG Configuration ($O E A=0, O E B=1$)

Figure 5. 16-Bit PRPG Configuration ($O E A=1, O E B=0$)

boundary-control register opcode description (continued)

parallel signature analysis (PSA)

Data appearing at the selected device input pins is compressed into a 16-bit parallel signature in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shadow latches of the selected output BSCs remains constant and is applied to the device outputs. Figures 6 and 7 illustrate the 16 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 6. 16-Bit PSA Configuration (OEA = 0, OEB = 1)

Figure 7. 16-Bit PSA Configuration (OEA =1, $O E B=0$)

boundary-control register opcode description (continued)

simultaneous PSA and PRPG (PSA/PRPG)

Data appearing at the selected device input pins is compressed into an 8 -bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit pseudo-random pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. Figures 8 and 9 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 8. 8-Bit PSA/PRPG Configuration (OEA $=0, \mathrm{OEB}=1$)

Figure 9. 8-Bit PSA/PRPG Configuration (OEA $=1, \mathrm{OEB}=0$)

boundary-control register opcode description (continued)

simultaneous PSA and binary count up (PSA/COUNT)
Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit binary count-up pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. In addition, the shift-register elements of the opposite output BSCs are used to count carries out of the selected output BSCs and, thereby, extend the count to 16 bits. Figures 10 and 11 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 10. 8-Bit PSA/COUNT Configuration (OEA = $0, O E B=1$)

Figure 11. 8 -Bit PSA/COUNT Configuration ($O E A=1, O E B=0$)

timing description

All test operations of the 'ABT8543 are synchronous to the test clock (TCK). Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as illustrated in Figure 1) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK.
A simple timing example is illustrated in Figure 12. In this example, the TAP controller begins in the Test-Logic-Reset state and is advanced through its states as necessary to perform one instruction register scan and one data register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The TAP controller is then returned to the Test-Logic-Reset state. Table 5 explains the operation of the test circuitry during each TCK cycle.

Table 5. Explanation of Timing Example

$\begin{gathered} \text { TCK } \\ \text { CYCLE(S) } \end{gathered}$	TAP STATE AFTER TCK	DESCRIPTION
1	Test-Logic-Reset	TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state.
2	Run-Test/Idle	
3	Select-DR-Scan	
4	Select-IR-Scan	
5	Capture-IR	The IR captures the 8 -bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state.
6	Shift-IR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
7-13	Shift-IR	One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic \uparrow value, the 8 -bit binary value 11111111 is serially scanned into the IR. At the same time, the 8 -bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the instruction register scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
14	Exit1-IR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
15	Update-IR	The IR is updated with the new instruction (BYPASS) on the falling edge of TCK.
16	Select-DR-Scan	
17	Capture-DR	The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state.
18	Shift-DR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
19-20	Shift-DR	The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21	Exit1-DR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
22	Update-DR	In general, the selected data register is updated with the new data on the falling edge of TCK.
23	Select-DR-Scan	
24	Select-IR-Scan	
25	Test-Logic-Reset	Test operation completed

3-State (TDO) or Don't Care (TDI)
Figure 12. Timing Example
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings can be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT8543		SN74ABT8543		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2	${ }^{3}$	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		80.8		0.8	V
V_{1}	Input voltage	0	V_{C}	0	V CC	V
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

SN54ABT8543, SN74ABT8543
 SCAN TEST DEVICES WITH OCTAL REGISTERED BUS TRANSCEIVERS
 SCBS120B - D4509, AUGUST 1991 - REVISED AUGUST 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT8543		SN74ABT8543		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$			2			2				V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$					0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$					$0.55 \ddagger$				0.55	
1	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \hline \end{array}$		$\overline{\mathrm{CE}}, \overline{\mathrm{LE}}, \overline{\mathrm{OE}}, \mathrm{TCK}$			± 1		± 1.		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		$\pm 100^{\circ}$		± 100	
IIH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$V_{1}=V_{C C}$	TDI, TMS			10		S10		10.	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=$ GND	TDI, TMS			-160		-160		-160	$\mu \mathrm{A}$
lOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozl ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	${ }^{8}$	-50		-50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$					± 100	\&			± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high			50		50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		0.9	2		2		2	mA
			Outputs low		30	38		38		38	
			Outputs disabled		0.9	2		2		2	
${ }^{\text {a }} \mathrm{CC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		10						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		TDO		8						pF

[^52]timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 13)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)

			SN54ABT8543	SN74A	T8543	
			MIN MAX	MIN	MAX	UNT
$\mathrm{f}_{\text {clock }}$	Clock frequency	TCK	050	0	50	MHz
t_{w}	Pulse duration	TCK high or low	5	5		ns
		A or B or $\overline{C E}$ or $\overline{\mathrm{LE}}$ or $\overline{\mathrm{OE}}$ before TCK \uparrow	5 \%	5		
$\mathrm{t}_{\text {su }}$	Setup time	TDI before TCK \uparrow	6 \%	6		ns
		TMS before TCK \uparrow	6%	6		
		A or B or $\overline{C E}$ or $\overline{L E}$ or $\overline{\overline{O E}}$ after TCK \uparrow	0	0		
th	Hold time	TDI after TCK \uparrow	\bigcirc	0		ns
		TMS after TCK \uparrow	\% 0	0		
t_{d}	Delay time	Power up to TCK \uparrow	50	50		ns
t_{r}	Rise time	$\mathrm{V}_{\text {CC }}$ power up	1	1		$\mu \mathrm{s}$

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 13)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8543		SN74ABT8543		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {tPLH }}$	A or B	B or A	2	3.7	4.5	2	5.5	2	5.2	ns
tPHL			1.5	3.5	4.4	1.5	5.8	1.5	5.5	
tpLH	$\overline{\text { LEAB }}$ or $\overline{\text { LEBA }}$	B or A	2	4.7	5.6	2	81	2	7.8	ns
${ }_{\text {tPHL }}$			1.5	4.1	5	1.5	7.3	1.5	6.9	
tpZH	$\overline{\mathrm{CEAB}}$ or $\overline{\mathrm{CEBA}}$	B or A	2	4.2	5.2	2	¢ 7.5	2	7.2	ns
tPZL			2	4.7	5.7		8.4	2	8.3	
tPZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A	2	4.4	5.4	\square^{2}	6.7	2	6.5	ns
tPZL			2	5.2	6.2	$\bigcirc 2$	7.6	2	7.5	
tPHZ	$\overline{\mathrm{CEAB}}$ or $\overline{\mathrm{CEBA}}$	B or A	2.5	5.8	6.8	- 2.5	9.1	2.5	8.8	ns
tPLZ			2.5	5.3	6.3	2.5	8.7	2.5	8	
tPHZ	$\overline{O E A B}$ or $\overline{O E B A}$	B or A	2	5.9	6.9	2	8.3	2	7.9	ns
tplZ			2	5.2	6.2	2	7.8	2	. 7.4	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8543		SN74ABT8543		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		MHz
$t_{\text {PLH }}$	TCK \downarrow	A or B	3.5	8	9.5	3.5	12.5	3.5	12	ns
tpHL			3	7.7	9	3	12	3	11.5	
${ }^{\text {tPLH }}$	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
tpHL			2.5	4.2	5.5	2.5	- 7	2.5	6.5	
tpZH	TCK \downarrow	A or B	4.5	8.2	9.5	4.5	12.5	4.5	12	ns
tPZL			4.5	9	10.5	4.5	13.5	4.5	13	
tpZH	TCK \downarrow	TDO	2.5	4.3	5.5	25	7	2.5	6.5	ns
tPZL			2.5	4.9	6	2.5	7.5	2.5	7	
${ }_{\text {tPHZ }}$	TCK \downarrow	A or B	3.5	8.4	10.5	3.5	14	3.5	13.5	ns
tplZ			3	8	10.5	3	13.5	3	13	
tPHZ	TCK \downarrow	TDO	3	5.9	7	3	9	3	8.5	ns
tplZ			3	5	6.5	3	8	3	7.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 13. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Functionally Equivalent to SN54/74F646 and SN54/74ABT646 in the Normal Function Mode
- SCOPE ${ }^{\text {TM }}$ Instruction Set:
- IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs With Masking Option
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Even-Parity Opcodes
- Two Boundary-Scan Cells per I/O for Greater Flexibility
- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- Package Options Include Plastic Small-Outline and Shrink Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic DIPs

description

The SN54ABT8646 and SN74ABT8646 scan test devices with octal bus transceivers and registers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4 -wire test access port (TAP) interface.

SN54ABT8646 . . . JT PACKAGE SN74ABT8646... DL OR DW PACKAGE (TOP VIEW)

$\mathrm{Al}^{2} 425$ B1
A2[5 - 24 B2
A3 ${ }^{23}$ B3
GND[7] 22 B4
A4 $8 \quad 21$ VCC
A5[90] 95
A6[10 19] B6
$A 7$ [11 18 [12
A8[12 17] B8
TDO[$13 \quad 16$ TDI
TMS $\left.14 \begin{array}{ll}15 & 15\end{array}\right]$ TCK

SN54ABT8646 . . FK PACKAGE (TOP VIEW)

In the normal mode, these devices are functionally equivalent to the SN54/74F646 and SN54/74ABT646 octal bus transceivers and registers. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ octal bus transceivers and registers.
Transceiver function is controlled by output-enable ($\overline{(\overline{O E})}$ and direction (DIR) inputs. When $\overline{O E}$ is low, the transceiver is active and operates in the A-to-B direction when DIR is high or in the B-to-A direction when DIR is low. When $\overline{O E}$ is high, both the A and B outputs are in the high-impedance state, effectively isolating both buses.

description (continued)

Data flow is controlled by clock (CLKAB and CLKBA) and select (SAB and SBA) inputs. Data on the A bus is clocked into the associated registers on the low-to-high transition of CLKAB. When SAB is low, real-time A data is selected for presentation to the B bus (transparent mode). When SAB is high, stored A data is selected for presentation to the B bus (registered mode). The function of the CLKBA and SBA inputs mirrors that of CLKAB and $S A B$, respectively. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT8646.
In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers and registers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations as described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.

The SN54ABT8646 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT8646 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATION OR FUNCTION
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input Unspecified \dagger	Unspecified \dagger Input	Store A, B unspecified \dagger Store B, A unspecified \dagger
X	X	X	\uparrow	X	X			
H	X	\uparrow	\uparrow	X	X	Input Input disabled	Input Input disabled	Store A and B data Isolation, hold storage
H	X	L	L	X	X			
L	L	X	X	X	L	Output Output	Input Input disabled	Real-time B data to A bus Stored B data to A bus
L	L	X	L	X	H			
L	H	X	X	L	X	Input Input disabled	Output	Real-time A data to B bus Stored A data to B bus
L	H	L	X	H	x		Output	

\dagger The data output functions can be enabled or disabled by various signals at the $\overline{\text { OE }}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

Figure 1. Bus-Management Functions
Pin numbers shown are for DL, DW, and JT packages.
functional block diagram

Pin numbers shown are for the DL, DW, and JT packages.

Terminal Functions

PIN NAME	DESCRIPTION
A1-A8	Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1-B8	Normal-function B-bus I/O ports. See function table for normal-mode logic.
CLKAB, CLKBA	Normal-function clock inputs. See function table for normal-mode logic.
DIR	Normal-function direction-control input. See function table for normal-mode logic.
GND	Ground
$\overline{\text { OE }}$	Normal-function output-enable input. See function table for normal-mode logic.
SAB, SBA	Normal-function select inputs. See function table for normal-mode logic.
TCK	Test clock. One of four pins required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK, and outputs change on the falling edge of TCK.
TDI	Test data input. One of four pins required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four pins required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four pins required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage

OCTAL BUS TRANSCEIVERS AND REGISTERS
 SCBS123B - D4508, AUGUST 1992-REVISED AUGUST 1993

test architecture

Serial test information is conveyed by means of a 4-wire test bus or test access port (TAP), that conforms to IEEE Standard 1149.1-1990. Test instructions, test data, and test control signals are all passed along this serial test bus. The TAP controller monitors two signals from the test bus, namely TCK and TMS. The function of the TAP controller is to extract the synchronization (TCK) and state control (TMS) signals from the test bus and generate the appropriate on-chip control signals for the test structures in the device. Figure 2 shows the TAP controller state diagram.

The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures that data to be captured is valid for fully one-half of the TCK cycle.
The functional block diagram illustrates the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship between the test bus, the TAP controller, and the test registers. As illustrated, the device contains an 8-bit instruction register and three test data registers: a 40-bit boundary-scan register, an 11-bit boundary-control register, and a one-bit bypass register.

Figure 2. TAP Controller State Diagram

SN54ABT8646, SN74ABT8646
 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS AND REGISTERS
 SCBS123B - D4508, AUGUST 1992 - REVISED AUGUST 1993

state diagram description

The test access port (TAP) controller is a synchronous finite state machine that provides test control signals throughout the device. The state diagram is illustrated in Figure 2 and is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states based on the level of TMS at the rising edge of TCK.

As illustrated, the TAP controller consists of sixteen states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is defined as a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.

There are two main paths though the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time.

Test-Logic-Reset

The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data registers can also be reset to their power-up values.

The state machine is constructed such that the TAP controller will return to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that will force it high if left unconnected or if a board defect causes it to be open circuited.

For the 'ABT8646, the instruction register is reset to the binary value 11111111, which selects the BYPASS instruction. Each bit in the boundary-scan register is reset to logic 0 . The boundary-control register is reset to the binary value 00000000010, which selects the PSA test operation with no input masking.

Run-Test/Idle

The TAP controller must pass through the Run-Test/ldle state (from Test-Logic-Reset) before executing any test operations. The Run-Test/Idle state can also be entered following data register or instruction register scans. Run-Test/Idle is provided as a stable state in which the test logic can be actively running a test or can be idle.

The test operations selected by the boundary-control register are performed while the TAP controller is in the Run-Test/Idle state.

Select-DR-Scan, Select-IR-Scan

No specific function is performed in the Select-DR-Scan and Select-IR-Scan states, and the TAP controller will exit either of these states on the next TCK cycle. These states are provided to allow the selection of either data register scan or instruction register scan.

Capture-DR

When a data register scan is selected, the TAP controller must pass through the Capture-DR state. In the Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK upon which the TAP controller exits the Capture-DR state.

Shift-DR

Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the selected data register.

While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-DR state.

state diagram description (continued)

Exit1-DR, Exit2-DR

The Exit1-DR and Exit2-DR states are temporary states used to end a data register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.
On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.

Pause-DR

No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state provides the capability of suspending and resuming data register scan operations without loss of data.

Update-DR

If the current instruction calls for the selected data register to be updated with current data, then such update occurs on the falling edge of TCK following entry to the Update-DR state.

Capture-IR

When an instruction register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK upon which the TAP controller exits the Capture-IR state.
For the 'ABT8646, the status value loaded in the Capture-IR state is the fixed binary value 10000001.

Shift-IR

Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the instruction register.
While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-IR state.

Exit1-IR, Exit2-IR

The Exit1-IR and Exit2-IR states are temporary states used to end an instruction register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.
On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.

Pause-IR

No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state provides the capability of suspending and resuming instruction register scan operations without loss of data.

Update-IR

The current instruction is updated and takes effect on the falling edge of TCK following entry to the Update-IR state.

register overview

With the exception of the bypass register, any test register can be thought of as a serial shift register with a shadow latch on each bit. The bypass register differs in that it contains only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register.

instruction register description

The instruction register (IR) is eight bits long and is used to tell the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the three data registers is to be selected for inclusion in the scan path during data register scans, and the source of data to be captured into the selected data register during Capture-DR.
Table 3 lists the instructions supported by the'ABT8646. The even-parity feature specified for SCOPE ${ }^{\text {TM }}$ devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE ${ }^{\text {TM }}$ devices but are not supported by this device default to BYPASS.

During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value will be shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated, and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 11111111, which selects the BYPASS instruction.

The instruction register order of scan is illustrated in Figure 3.

Figure 3. Instruction Register Order of Scan

data register description

boundary-scan register

The boundary-scan register (BSR) is 40 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin, two BSCs for each normal-function I/O pin (one for input data and one for output data), and one BSC for each of the internally decoded output-enable signals (OEA and OEB). The BSR is used 1) to store test data that is to be applied internally to the inputs of the normal on-chip logic and/or externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.
The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or in Test-Logic-Reset, the value of each BSC is reset to logic 0 .

When external data is to be captured, the BSCs for signals OEA and OEB capture logic values determined by the following positive-logic equations: OEA $=\overline{\overline{\mathrm{OE}}} \bullet \overline{\mathrm{DIR}}$, and $\mathrm{OEB}=\overline{\overline{\mathrm{OE}}} \bullet$ DIR. When data is to be applied externally, these BSCs control the drive state (active or high-impedance) of their respective outputs.

The boundary-scan register order of scan is from TDI through bits 39-0 to TDO. Table 1 shows the boundary-scan register bits and their associated device pin signals.

Table 1. Boundary-Scan Register Configuration

BSR BIT NUMBER	DEVICE SIGNAL								
39	OEB	31	A8-I	23	A8-O	15	B8-I	7	B8-O
38	OEA	30	A7-1	22	A7-0	14	B7-I	6	B7-0
37	DIR	29	A6-I	21	A6-O	13	B6-1	5	B6-O
36	$\overline{\mathrm{OE}}$	28	A5-I	20	A5-0	12	B5-1	4	B5-O
35	CLKAB	27	A4-I	19	A4-O	11	B4-I	3	B4-O
34	CLKBA	26	A3-I	18	A3-O	10	B3-1	2	B3-O
33	SAB	25	A2-I	17	A2-O	9	B2-I	1	B2-O
32	SBA	24	A1-1	16	A1-O	8	B1-I	0	B1-0

boundary-control register

The boundary-control register (BCR) is 11 bits long. The BCR is used in the context of the RUNT instruction to implement additional test operations not included in the basic SCOPE ${ }^{\top M}$ instruction set. Such operations include pseudo-random pattern generation (PRPG), parallel signature analysis (PSA) with input masking, and binary count up (COUNT). Table 4 shows the test operations that are decoded by the BCR.
During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 00000000010 , which selects the PSA test operation with no input masking.
The boundary-control register order of scan is from TDI through bits $10-0$ to TDO. Table 2 shows the boundary-control register bits and their associated test control signals.

data register description (continued)

Table 2. Boundary-Control Register Configuration

BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL
10	MASK8	6	MASK4	2	OPCODE2
9	MASK7	5	MASK3	1	OPCODE1
8	MASK6	4	MASK2	0	OPCODE0
7	MASK5	3	MASK1	-	-

bypass register

The bypass register is a one-bit scan path that can be selected to shorten the length of the system scan path, thereby reducing the number of bits per test pattern that must be applied to complete a test operation.
During Capture-DR, the bypass register captures a logic 0 . The bypass register order of scan is illustrated in Figure 4.

Figure 4. Bypass Register Order of Scan
Table 3. Instruction Register Opcodes

BINARY CODE才 BIT 7 \rightarrow BIT 0 MSB \rightarrow LSB	SCOPE OPCODE	DESCRIPTION	SELECTED DATA REGISTER	MODE
00000000	EXTEST	Boundary scan	Boundary scan	Test
10000001	BYPASS \ddagger	Bypass scan	Bypass	Normal
10000010	SAMPLE/PRELOAD	Sample boundary	Boundary scan	Normal
00000011	INTEST	Boundary scan	Boundary scan	Test
10000100	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000101	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000110	HIGHZ	Control boundary to high impedance	Bypass	Modified test
10000111	CLAMP	Control boundary to $1 / 0$	Bypass	Test
10001000	BYPASS \ddagger	Bypass scan	Bypass	Normal
00001001	RUNT	Boundary run test	Bypass	Test
00001010	READBN	Boundary read	Boundary scan	Normal
10001011	READBT	Boundary read	Boundary scan	Test
00001100	CELLTST	Boundary self test	Boundary scan	Normal
10001101	TOPHIP	Boundary toggle outputs	Bypass	Test
10001110	SCANCN	Boundary-control register scan	Boundary control	Normal
00001111	SCANCT	Boundary-control register scan	Boundary control	Test
All others	BYPASS	Bypass scan	Bypass	Normal

[^53]
OCTAL BUS TRANSCEIVERS AND REGISTERS
 SCBS123B - D4508, AUGUST 1992 - REVISED AUGUST 1993

instruction register opcode description

The instruction register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction.

boundary scan

This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST and INTEST instructions. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. Data that has been scanned into the input BSCs is applied to the inputs of the normal on-chip logic, while data that has been scanned into the output BSCs is applied to the device output pins. The device operates in the test mode.

bypass scan

This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode.

sample boundary

This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. The device operates in the normal mode.

control boundary to high impedance

This instruction conforms to the IEEE P1149.1A HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed.

control boundary to $\mathbf{1 / 0}$

This instruction conforms to the IEEE P1149.1A CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input BSCs is applied to the inputs of the normal on-chip logic, while data in the output BSCs is applied to the device output pins. The device operates in the test mode.

boundary run test

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the boundary-control register is executed during Run-Test/ldle. The five test operations decoded by the boundary-control register are: sample inputs/toggle outputs (TOPSIP), pseudo-random pattern generation (PRPG), parallel signature analysis (PSA), simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT).

boundary read

The boundary-scan register is selected in the scan path. The value in the boundary-scan register remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation.

boundary self test

The boundary-scan register is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way, the contents of the shadow latches can be read out to verify the integrity of both shift register and shadow latch elements of the boundary-scan register. The device operates in the normal mode.

instruction register opcode description (continued)

boundary toggle outputs

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK in Run-Test/Idle and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK in Run-Test/Idle. Data in the selected input BSCs remains constant and is applied to the inputs of the normal on-chip logic. Data appearing at the device input pins is not captured in the input BSCs. The device operates in the test mode.

boundary-control register scan

The boundary-control register is selected in the scan path. The value in the boundary-control register remains unchanged during Capture-DR. This operation must be performed prior to a boundary run test operation in order to specify which test operation is to be executed.

Table 4. Boundary-Control Register Opcodes

BINARY CODE BIT 2 \rightarrow BIT 0 MSB \rightarrow LSB	DESCRIPTION
X00	Sample inputs/toggle outputs (TOPSIP)
X01	Pseudo-random pattern generation/16-bit mode (PRPG)
X10	Paraliel signature analysis/16-bit mode (PSA)
011	Simultaneous PSA and PRPG/8-bit mode (PSA/PRPG)
111	Simultaneous PSA and binary count up/8-bit mode (PSA/COUNT)

boundary-control register opcode description

The boundary-control register opcodes are decoded from BCR bits 2-0 as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test/Idle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms.

It should be noted, in general, that while the control input BSCs (bits 39-32) are not included in the sample, toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits 39-38 of the BSR) do control the drive state (active or high impedance) of the selected device output pins. It also should be noted that these BCR instructions are only valid when the device is operating in one direction of data flow (that is, OEA $\neq \mathrm{OEB}$). Otherwise, the bypass instruction is operated.

PSA input masking

Bits 10-3 of the boundary-control register are used to specify device input pins to be masked from PSA operations. Bit 10 selects masking for device input pin A8 during. A-to-B data flow or for device input pin $B 8$ during B-to-A data flow. Bit 3 selects masking for device input pins A1 or B1 during A-to-B or B-to-A data flow, respectively. Bits intermediate to 10 and 3 mask corresponding device input pins in order from most significant to least significant, as indicated in Table 3. When the mask bit which corresponds to a particular device input has a logic 1 value, the device input pin is masked from any PSA operation, meaning that the state of the device input pin is ignored and has no effect on the generated signature. Otherwise, when a mask bit has a logic 0 value, the corresponding device input is not masked from the PSA operation.

boundary-control register opcode description (continued)

sample inputs/toggle outputs (TOPSIP)

Data appearing at the selected device input pins is captured in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK.

pseudo-random pattern generation (PRPG)

A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK and then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK. This data is also updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Figures 5 and 6 illustrate the 16 -bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.
\oplus

Figure 5. 16-Bit PRPG Configuration (OEA = 0, OEB = 1)

Figure 6. 16-Bit PRPG Configuration ($O E A=1, O E B=0$)

boundary-control register opcode description (continued)

parallel signature analysis (PSA)

Data appearing at the selected device input pins is compressed into a 16 -bit parallel signature in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shadow latches of the selected output BSCs remains constant and is applied to the device outputs. Figures 7 and 8 illustrate the 16 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 7. 16-Bit PSA Configuration (OEA = $0, O E B=1$)

Figure 8. 16-Bit PSA Configuration (OEA =1, $O E B=0$)

boundary-control register opcode description (continued)

simultaneous PSA and PRPG (PSA/PRPG)

Data appearing at the selected device input pins is compressed into an 8 -bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit pseudo-random pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. Figures 9 and 10 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 9. 8-Bit PSA/PRPG Configuration ($O E A=0, O E B=1$)

Figure 10. 8-Bit PSA/PRPG Configuration ($O E A=1, O E B=0$)

boundary-control register opcode description (continued)

simultaneous PSA and binary count up (PSA/COUNT)

Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit binary count-up pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. In addition, the shift-register elements of the opposite output BSCs are used to count carries out of the selected output BSCs and, thereby, extend the count to 16 bits. Figures 11 and 12 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 11. 8 -Bit PSA/COUNT Configuration ($O E A=0, O E B=1$)

Figure 12. 8 -Bit PSA/COUNT Configuration ($O E A=1, O E B=0$)

timing description

All test operations of the 'ABT8646 are synchronous to the test clock (TCK). Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as illustrated in Figure 2) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK.
A simple timing example is illustrated in Figure 13. In this example, the TAP controller begins in the Test-Logic-Reset state and is advanced through its states as necessary to perform one instruction register scan and one data register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The TAP controller is then returned to the Test-Logic-Reset state. Table 5 explains the operation of the test circuitry during each TCK cycle.

Table 5. Explanation of Timing Example

TCK CYCLE(S)	TAP STATE AFTER TCK	DESCRIPTION
1	Test-Logic-Reset	TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state.
2	Run-Test/Idle	
3	Select-DR-Scan	
4	Select-IR-Scan	
5	Capture-IR	The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state.
6	Shift-IR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
7-13	Shift-IR	One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8 -bit binary value 11111111 is serially scanned into the IR. At the same time, the 8 -bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the instruction register scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
14	Exit1-IR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
15	Update-IR	The IR is updated with the new instruction (BYPASS) on the falling edge of TCK.
16	Select-DR-Scan	
17	Capture-DR	The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state.
18	Shift-DR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
19-20	Shift-DR	The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21	Exit1-DR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
22	Update-DR	In general, the selected data register is updated with the new data on the falling edge of TCK.
23	Select-DR-Scan	\cdots
24	Select-IR-Scan	+
25	Test-Logic-Reset	Test operation completed

Figure 13. Timing Example
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Input voltage range, V_{l} (l/O ports) (see Note 1)	-0.5 V to 5.5 V
Voltage range applied to any output in the high state or pow	-0.5 V to 5.5 V
Current into any output in the low state, l_{O} : SN54ABT8646	96 mA
SN74ABT8646	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{I}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT8646		SN74ABT8646		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2	5	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		${ }^{50.8}$		0.8	V
V_{1}	Input voltage		${ }^{\text {V }}$ CC	0	V_{CC}	V
IOH^{2}	High-level output current		-24		-32	mA
${ }^{1} \mathrm{OL}$	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and $\mathrm{IOZL}_{\text {include }}$ the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 14)

			SN54ABT8646	SN74ABT8646		UNIT
			MIN MAX	MIN	MAX	
$f_{\text {clock }}$	Clock frequency	CLKAB or CLKBA	0.100	0	100	MHz
$\mathrm{t}_{\text {w }}$	Pulse duration	CLKAB or CLKBA high or low	$0^{3}{ }^{4}$	3		ns
$\mathrm{t}_{\text {su }}$	Setup time	A before CLKAB \uparrow or B before CLKBA \uparrow	84.5	4.5		ns
th	Hold time	A after CLKAB \uparrow or B after CLKBA \uparrow	0	0		ns

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 14)

SN54ABT8646, SN74ABT8646
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 14)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8646		SN74ABT8646		UNIT
			MiN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CLKAB or CLKBA	.	100	130		100		100		MHz
$t_{\text {tPLH }}$	A or B	B or A	2	3.7	4.5	2	5.5	2	5.2	ns
tPHL			2	3.5	4.4	2	5.8	2	5,5	
tpLH	CLKAB or CLKBA	B or A	3	4.4	5.3	3	6.3	3	6	ns
${ }_{\text {tPHL }}$			2.5	4.3	5.2	2.5	67	2.5	6.2	
tPLH	SAB or SBA	B or A	2	4.8	6	2	3.5	2	7.3	ns
tPHL			2	4.7	5.9		8 7.8	2	7.4	
tpZH	DIR	B or A	2.5	4.4	5.3	2.5	6.6	2.5	6.5	ns
tPZL			3	4.8	6.2	${ }^{3}$	7.3	3	7.1	
tpZH	$\overline{\mathrm{OE}}$	B or A	2.5	4.4	5.4	* 2.5	6.7	2.5	6.5	ns
tPZL			3	5.2	6.2	3	7.6	3	7.5	
tpHZ	DIR	B or A	3	6	7	3	8.9	3	8.6	ns
tplZ			3	5.2	6.2	3	8.1	3	7.9	
tPHZ	$\overline{\mathrm{OE}}$	B or A	3	5.9	6.9	3	8.3	3	7.9	ns
tPLZ			3	5.2	6.2	3	7.8	3	7.4	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 14)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8646		SN74ABT8646		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		MHz
tPLH	TCK \downarrow	A or B	3.5	8	9.5	3.5	12.5	3.5	12	ns
tPHL			3	7.7	9	3	12	3	11.5	
${ }_{\text {tPLH }}$	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
${ }_{\text {tPHL }}$			2.5	4.2	5.5	2.5	± 7	2.5	6.5	
tpZH	TCK \downarrow	A or B	4.5	8.2	9.5	4.5	\$2.5	4.5	12	ns
tPZL			4.5	9	10.5	4.5	13.5	4.5	13	
tpZH	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
tPZL			2.5	4.9	6	$\bigcirc 2.5$	7.5	2.5	7	
tpHZ	TCK \downarrow	A or B	3.5	8.4	10.5	< 3.5	14	3.5	13.5	ns
tplZ			3	8	10.5	3	13.5	3	13	
tphz	TCK \downarrow	TDO	3	5.9	7	3	9	3	8.5	ns
tplZ			3	5	6.5	3	8	3	7.5	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL tPLZ/tPZL tpHZ/tpZH	Open 7 V Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 14. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Functionally Equivalent to SN54/74F652 and SN54/74ABT652 in the Normal Function Mode
- SCOPE ${ }^{\text {TM }}$ Instruction Set:
- IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs With Masking Option
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Even-Parity Opcodes
- Two Boundary-Scan Cells per I/O for Greater Flexibility
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Package Options Include Plastic Small-Outline and Shrink Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic DIPs

description

The SN54ABT8652 and SN74ABT8652 scan test devices with octal bus transceivers and registers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4 -wire test access port (TAP) interface.

SN54ABT8652 . . . JT PACKAGE
SN74ABT8652 . . . DL OR DW PACKAGE
(TOP VIEW)

SN54ABT8652 . . . FK PACKAGE
(TOP VIEW)

In the normal mode, these devices are functionally equivalent to the SN54/74F652 and SN54/74ABT652 octal bus transceivers and registers. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ octal bus transceivers and registers.

description (continued)

Data flow in each direction is controlled by clock (CLKAB and CLKBA), select (SAB and SBA), and output-enable (OEAB and $\overline{O E B A}$) inputs. For A-to-B data flow, data on the A bus is clocked into the associated registers on the low-to-high transition of CLKAB. When SAB is low, real-time A data is selected for presentation to the B bus (transparent mode). When $S A B$ is high, stored A data is selected for presentation to the B bus (registered mode). When OEAB is high, the B outputs are active. When OEAB is low, the B outputs are in the high-impedance state. Control for B-to-A data flow is similar to that for A-to-B data flow but uses CLKBA, SBA, and OEBA inputs. Since the $\overline{O E B A}$ input is active-low, the A outputs are active when $\overline{O E B A}$ is low and are in the high-impedance state when OEBA is high. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT8652.

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers and registers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations as described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
The SN54ABT8652 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT8652 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
L	H	L	L	X	X	Input disabled	Input disabled	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	L	x	X	Input	Unspecified \dagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	X	Input	Output	Store A in both registers
L	X	L	\uparrow	x	x	Unspecified \dagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	x	X \ddagger	Output	Input	Store B in both registers
L	L	x	X	x	L	Output	Input	Real-time B data to A bus
L	L	x	L	X	H	Output	Input	Stored B data to A bus
H	H	X	x	L	X	Input	Output	Real-time A data to B bus
H	H	L	X	H	X	Input	Output	Stored A data to B bus
H	L	L	L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

\dagger The data output functions can be enabled or disabled by a variety of level combinations at the OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L: clocks can occur simultaneously.
Select control = H: clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions
Pin numbers shown are for the DL, DW, and JT packages.
functional block diagram

Pin numbers shown are for the DL, DW, and JT packages.

Terminal Functions

PIN NAME	DESCRIPTION
A1-A8	Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1-B8	Normal-function B-bus I/O ports. See function table for normal-mode logic.
CLKAB, CLKBA	Normal-function clock inputs. See function table for normal-mode logic.
GND	Ground
OEAB, OEBA	Normal-function output-enable inputs. See function table for normal-mode logic.
SAB, SBA	Normal-function select inputs. See function table for normal-mode logic.
TCK	Test clock. One of four pins required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK, and outputs change on the falling edge of TCK.
TDI	Test data input. One of four pins required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four pins required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four pins required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage

test architecture

Serial test information is conveyed by means of a 4-wire test bus or test access port (TAP), that conforms to IEEE Standard 1149.1-1990. Test instructions, test data, and test control signals are all passed along this serial test bus. The TAP controller monitors two signals from the test bus, namely TCK and TMS. The function of the TAP controller is to extract the synchronization (TCK) and state control (TMS) signals from the test bus and generate the appropriate on-chip control signals for the test structures in the device. Figure 2 shows the TAP controller state diagram.

The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures that data to be captured is valid for fully one-half of the TCK cycle.

The functional block diagram illustrates the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship between the test bus, the TAP controller, and the test registers. As illustrated, the device contains an 8-bit instruction register and three test data registers: a 38-bit boundary-scan register, an 11-bit boundary-control register, and a one-bit bypass register.

Figure 2. TAP Controller State Diagram

state diagram description

The test access port (TAP) controller is a synchronous finite state machine that provides test control signals throughout the device. The state diagram is illustrated in Figure 2 and is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states based on the level of TMS at the rising edge of TCK.

As illustrated, the TAP controller consists of sixteen states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is defined as a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.

There are two main paths though the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time.

Test-Logic-Reset

The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data registers can also be reset to their power-up values.

The state machine is constructed such that the TAP controller will return to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that will force it high if left unconnected or if a board defect causes it to be open circuited.

For the 'ABT8652, the instruction register is reset to the binary value 11111111, which selects the BYPASS instruction. Each bit in the boundary-scan register is reset to logic 0 except bit 36 , which is reset to logic 1 . The boundary-control register is reset to the binary value 00000000010, which selects the PSA test operation with no input masking.

Run-Test/ldle

The TAP controller must pass through the Run-Test/Idle state (from Test-Logic-Reset) before executing any test operations. The Run-Test/Idle state can also be entered following data register or instruction register scans. Run-Test/Idle is provided as a stable state in which the test logic can be actively running a test or can be idle.

The test operations selected by the boundary-control register are performed while the TAP controller is in the Run-Test/Idle state.

Select-DR-Scan, Select-IR-Scan

No specific function is performed in the Select-DR-Scan and Select-IR-Scan states, and the TAP controller will exit either of these states on the next TCK cycle. These states are provided to allow the selection of either data register scan or instruction register scan.

Capture-DR

When a data register scan is selected, the TAP controller must pass through the Capture-DR state. In the Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK upon which the TAP controller exits the Capture-DR state.

state diagram description (continued)

Shift-DR

Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the selected data register.

While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-DR state.

Exit1-DR, Exit2-DR

The Exit1-DR and Exit2-DR states are temporary states used to end a data register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.

On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.

Pause-DR

No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state provides the capability of suspending and resuming data register scan operations without loss of data.

Update-DR

If the current instruction calls for the selected data register to be updated with current data, then such update occurs on the falling edge of TCK following entry to the Update-DR state.

Capture-IR

When an instruction register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK upon which the TAP controller exits the Capture-IR state.
For the 'ABT8652, the status value loaded in the Capture-IR state is the fixed binary value 10000001.

Shift-IR

Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the instruction register.
While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-IR state.

Exit1-IR, Exit2-IR

The Exit1-IR and Exit2-IR states are temporary states used to end an instruction register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.

On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.

state diagram description (continued)

Pause-IR

No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state provides the capability of suspending and resuming instruction register scan operations without loss of data.

Update-IR

The current instruction is updated and takes effect on the falling edge of TCK following entry to the Update-IR state.

register overview

With the exception of the bypass register, any test register can be thought of as a serial shift register with a shadow latch on each bit. The bypass register differs in that it contains only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register.

instruction register description

The instruction register (IR) is eight bits long and is used to tell the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered); the test operation to be performed, which of the three data registers is to be selected for inclusion in the scan path during data register scans, and the source of data to be captured into the selected data register during Capture-DR.
Table 3 lists the instructions supported by the'ABT8652. The even-parity feature specified for SCOPE ${ }^{\top M}$ devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE ${ }^{\text {M }}$ devices but are not supported by this device default to BYPASS.
During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value will be shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated, and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 11111111, which selects the BYPASS instruction.
The instruction register order of scan is illustrated in Figure 3.

Figure 3. Instruction Register Order of Scan

data register description

boundary-scan register

The boundary-scan register (BSR) is 38 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin and two BSCs for each normal-function I/O pin (one for input data and one for output data). The BSR is used 1) to store test data that is to be applied internally to the inputs of the normal on-chip logic and/or externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.

The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or in Test-Logic-Reset, the value of each BSC is reset to logic 0 except BSC 36, which is reset to logic 1.
The boundary-scan register order of scan is from TDI through bits $37-0$ to TDO. Table 1 shows the boundary-scan register bits and their associated device pin signals.

Table 1. Boundary-Scan Register Configuration

BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL
37	OEAB	31	A8-I	23	A8-O	15	B8-I	7	B8-O
36	OEBA	30	A7-1	22	A7-O	14	B7-I	6	
35	CLKAB	29	A6-I	21	A6-O	13	B6-I	5	B7-O
34	CLKBA	28	A5-I	20	A5-O	12	B5-I	4	B5-O
33	SAB	27	A4-I	19	A4-O	11	B4-I	3	B4-O
32	SBA	26	A3-I	18	A3-O	10	B3-I	2	B3-O
-	-	25	A2-I	17	A2-O	9	B2-I	1	B2-O
-	-	24	A1-I	16	A1-O	8	B1-I	0	B1-O

boundary-control register

The boundary-control register (BCR) is 11 bits long. The BCR is used in the context of the RUNT instruction to implement additional test operations not included in the basic SCOPE ${ }^{\text {TM }}$ instruction set. Such operations include pseudo-random pattern generation (PRPG), parallel signature analysis (PSA) with input masking, and binary count up (COUNT). Table 4 shows the test operations that are decoded by the BCR.
During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 00000000010 , which selects the PSA test operation with no input masking.
The boundary-control register order of scan is from TDI through bits 10-0 to TDO. Table 2 shows the boundary-control register bits and their associated test control signals.

Table 2. Boundary-Control Register Configuration

BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL
10	MASK8	6	MASK4	2	OPCODE2
9	MASK7	5	MASK3	1	OPCODE1
8	MASK6	4	MASK2	0	OPCODE0
7	MASK5	3	MASK1	-	-

data register description (continued)

bypass register

The bypass register is a one-bit scan path that can be selected to shorten the length of the system scan path, thereby reducing the number of bits per test pattern that must be applied to complete a test operation.
During Capture-DR, the bypass register captures a logic 0 . The bypass register order of scan is illustrated in Figure 4.

Figure 4. Bypass Register Order of Scan
Table 3. Instruction Register Opcodes

$\begin{gathered} \hline \text { BINARY CODE } \dagger \\ \text { BIT } 7 \rightarrow \text { BIT } 0 \\ \text { MSB } \rightarrow \text { LSB } \\ \hline \end{gathered}$	SCOPE OPCODE	DESCRIPTION	SELECTED DATA REGISTER	MODE
00000000	EXTEST	Boundary scan	Boundary scan	Test
10000001	BYPASS \ddagger	Bypass scan	Bypass	Normal
10000010	SAMPLE/PRELOAD	Sample boundary	Boundary scan	Normal
00000011	INTEST	Boundary scan	Boundary scan	Test
10000100	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000101	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000110	HIGHZ	Control boundary to high impedance	Bypass	Modified test
10000111	CLAMP	Control boundary to 1/0	Bypass	Test
10001000	BYPASS \ddagger	Bypass scan	Bypass	Normal
00001001	RUNT	Boundary run test	Bypass	Test
00001010	READBN	Boundary read	Boundary scan	Normal
10001011	READBT	Boundary read	Boundary scan	Test
00001100	CELLTST	Boundary self test	Boundary scan	Normal
10001101	TOPHIP	Boundary toggle outputs	Bypass	Test
10001110	SCANCN	Boundary-control register scan	Boundary control	Normal
00001111	SCANCT	Boundary-control register scan	Boundary control	Test
All others	BYPASS	Bypass scan	Bypass	Normal

\dagger Bit 7 is used to maintain even parity in the 8-bit instruction.
\ddagger The BYPASS instruction is executed in lieu of a SCOPE ${ }^{\text {TM }}$ instruction that is not supported in the 'ABT8652.

instruction register opcode description

The instruction register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction.

boundary scan

This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST and INTEST instructions. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. Data that has been scanned into the input BSCs is applied to the inputs of the normal on-chip logic, while data that has been scanned into the output BSCs is applied to the device output pins. The device operates in the test mode.

bypass scan

This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode.

sample boundary

This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. The device operates in the normal mode.

control boundary to high impedance

This instruction conforms to the IEEE P1149.1A HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed.

control boundary to $1 / 0$

This instruction conforms to the IEEE P1149.1A CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input BSCs is applied to the inputs of the normal on-chip logic, while data in the output BSCs is applied to the device output pins. The device operates in the test mode.

boundary run test

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the boundary-control register is executed during Run-Test/Idle. The five test operations decoded by the boundary-control register are: sample inputs/toggle outputs (TOPSIP), pseudo-random pattern generation (PRPG), parallel signature analysis (PSA), simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT).

boundary read

The boundary-scan register is selected in the scan path. The value in the boundary-scan register remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation.

boundary self test

The boundary-scan register is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way, the contents of the shadow latches can be read out to verify the integrity of both shift register and shadow latch elements of the boundary-scan register. The device operates in the normal mode.

instruction register opcode description (continued)

boundary toggle outputs

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK in Run-Test/ldle and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK in Run-Test/Idle. Data in the selected input BSCs remains constant and is applied to the inputs of the normal on-chip logic. Data appearing at the device input pins is not captured in the input BSCs. The device operates in the test mode.

boundary-control register scan

The boundary-control register is selected in the scan path. The value in the boundary-control register remains unchanged during Capture-DR. This operation must be performed prior to a boundary run test operation in order to specify which test operation is to be executed.

Table 4. Boundary-Control Register Opcodes

BINARY CODE BIT $2 \rightarrow$ BIT 0 MSB \rightarrow LSB	DESCRIPTION
X00	Sample inputs/toggle outputs (TOPSIP)
X01	Pseudo-random pattern generation/16-bit mode (PRPG)
X10	Parallel signature analysis/16-bit mode (PSA)
011	Simultaneous PSA and PRPG/8-bit mode (PSA/PRPG)
111	Simultaneous PSA and binary count up/8-bit mode (PSA/COUNT)

boundary-control register opcode description

The boundary-control register opcodes are decoded from BCR bits 2-0 as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test/ldle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms.
It should be noted, in general, that while the control input BSCs (bits 37-32) are not included in the sample, toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits 37-36 of the BSR) do control the drive state (active or high impedance) of the selected device output pins. It also should be noted that these BCR instructions are only valid when the device is operating in one direction of data flow (that is, OEAB = $\overline{O E B A}$). Otherwise, the bypass instruction is operated.

PSA input masking

Bits 10-3 of the boundary-control register are used to specify device input pins to be masked from PSA operations. Bit 10 selects masking for device input pin A8 during A-to-B data flow or for device input pin B8 during B-to-A data flow. Bit 3 selects masking for device input pins A1 or B1 during A-to-B or B-to-A data flow, respectively. Bits intermediate to 10 and 3 mask corresponding device input pins in order from most significant to least significant, as indicated in Table 3. When the mask bit which corresponds to a particular device input has a logic 1 value, the device input pin is masked from any PSA operation, meaning that the state of the device input pin is ignored and has no effect on the generated signature. Otherwise, when a mask bit has a logic 0 value, the corresponding device input is not masked from the PSA operation.
boundary-control register opcode description (continued)

sample inputs/toggle outputs (TOPSIP)

Data appearing at the selected device input pins is captured in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK.

pseudo-random pattern generation (PRPG)

A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK and then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK. This data is also updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Figures 5 and 6 illustrate the 16-bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 5. 16-Bit PRPG Configuration (OEAB $=1, \overline{\mathrm{OEBA}}=1$)

Figure 6. 16-Bit PRPG Configuration ($O E A B=0, \overline{O E B A}=0$)

boundary-control register opcode description (continued)

parallel signature analysis (PSA)
Data appearing at the selected device input pins is compressed into a 16 -bit parallel signature in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shadow latches of the selected output BSCs remains constant and is applied to the device outputs. Figures 7 and 8 illustrate the 16 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 7. 16-Bit PSA Configuration ($O E A B=1, \overline{O E B A}=1$)

Figure 8. 16-Bit PSA Configuration ($O E A B=0, \overline{O E B A}=0$)

boundary-control register opcode description (continued)

simultaneous PSA and PRPG (PSA/PRPG)

Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit pseudo-random pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. Figures 9 and 10 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 9. 8-Bit PSA/PRPG Configuration (OEAB $=1, \overline{\mathrm{OEBA}}=1$)

Figure 10. 8-Bit PSA/PRPG Configuration (OEAB $=0, \overline{\mathrm{OEBA}}=0$)

SN54ABT8652, SN74ABT8652
 SCAN TEST DEVICES WITH OCTAL BUS TRANSCEIVERS AND REGISTERS

boundary-control register opcode description (continued)

simultaneous PSA and binary count up (PSA/COUNT)

Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit binary count-up pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. In addition, the shift-register elements of the opposite output BSCs are used to count carries out of the selected output BSCs and, thereby, extend the count to 16 bits. Figures 11 and 12 illustrate the 8-bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 11. 8-Bit PSA/COUNT Configuration (OEAB =1, $\overline{O E B A}=1$)

Figure 12. 8-Bit PSA/COUNT Configuration (OEAB $=0, \overline{\mathrm{OEBA}}=0$)

timing description

All test operations of the 'ABT8652 are synchronous to the test clock (TCK). Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as illustrated in Figure 2) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK.

A simple timing example is illustrated in Figure 13. In this example, the TAP controller begins in the Test-Logic-Reset state and is advanced through its states as necessary to perform one instruction register scan and one data register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The TAP controller is then returned to the Test-Logic-Reset state. Table 5 explains the operation of the test circuitry during each TCK cycle.

Table 5. Explanation of Timing Example

TCK CYCLE(S)	TAP STATE AFTER TCK	DESCRIPTION
1	Test-Logic-Reset	TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state.
2	Run-Test/Idle	
3	Select-DR-Scan	
4	Select-IR-Scan	
5	Capture-IR	The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state.
6	Shift-IR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
7-13	Shift-IR	One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8 -bit binary value 11111111 is serially scanned into the IR. At the same time, the 8 -bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the instruction register scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
14	Exit1-IR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
15	Update-IR	The IR is updated with the new instruction (BYPASS) on the falling edge of TCK.
16	Select-DR-Scan	
17	Capture-DR	The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state.
18	Shift-DR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
19-20	Shift-DR	The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21	Exit1-DR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
22	Update-DR	In general, the selected data register is updated with the new data on the falling edge of TCK.
23	Select-DR-Scan	
24	Select-IR-Scan	
25	Test-Logic-Reset	Test operation completed

3-State (TDO) or Don't Care (TDI)
Figure 13. Timing Example

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT8652		SN74ABT8652		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		40.8		0.8	V
V_{1}	Input voltage		VCC	0	V_{CC}	V
${ }^{1} \mathrm{OH}$	High-level output current	S	-24		-32	mA
l OL	Low-level output current	9	48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	\%	10		10	ns / V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)| PARAMETER | TEST CONDITIONS | | | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | | | SN54ABT8652 | SN74ABT8652 | | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | MIN | TYPt | MAX | MIN MAX | MIN | MAX | |
| VIK | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$, | $\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ | | | | -1.2 | -1.2 | | -1.2 | V |
| V_{OH} | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$ | | 2.5 | | | 2.5 | 2.5 | | v |
| | $\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$, | $\mathrm{IOH}=-3 \mathrm{~mA}$ | | 3 | | | 3 | 3 | | |
| | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$, | $\mathrm{IOH}=-24 \mathrm{~mA}$ | | 2 | | | 2 | | | |
| | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$, | $1 \mathrm{OH}=-32 \mathrm{~mA}$ | | $2 \ddagger$ | | | | | | |
| VOL | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$, | $\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$ | | | | 0.55 | 0.55 | | | V |
| | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, | $\mathrm{IOL}=64 \mathrm{~mA}$ | | | | $0.55 \ddagger$ | | | 0.55 | |
| 1 | $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & V_{1}=V_{C C} \text { or } G N D \end{aligned}$ | | $\begin{aligned} & \text { CLK, OEAB, } \\ & \text { OEBA, S, TCK } \end{aligned}$ | | | ± 1 | ± 1 | | ± 1 | $\mu \mathrm{A}$ |
| | | | A or B ports | | | ± 100 | 1700 | | ± 100 | |
| 1 IH | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ | TDI, TMS | | | 10 | \% 10 | | 10 | $\mu \mathrm{A}$ |
| ILL | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{1}=\mathrm{GND}$ | TDI, TMS | | | -160 | ${ }^{+}-160$ | | -160 | $\mu \mathrm{A}$ |
| lOZH^{\S} | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ | | | | 50 | 350 | | 50 | $\mu \mathrm{A}$ |
| $\mathrm{l}_{\text {OLL }}{ }^{\text {§ }}$ | $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ | | | | -50 | ¢) -50 | | -50 | $\mu \mathrm{A}$ |
| IOFF | $\mathrm{V}_{\text {CC }}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ | V_{1} or $\mathrm{V}_{0} \leq 5.5 \mathrm{~V}$ | | | | ± 100 | 8^{8} | | ± 100 | $\mu \mathrm{A}$ |
| ICEX | V $\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, | $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ Outputs high | | | | 50 | 50 | | 50 | $\mu \mathrm{A}$ |
| 10 | | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | | -50 | -100 | -180 | -50 -180 | -50 | -180 | mA |
| Icc | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$ | A or B ports | Outputs high | | 0.9 | 2 | 2 | | 2 | mA |
| | | | Outputs low | | 30 | 38 | 38 | | 38 | |
| | | | Outputs disabled | | 0.9 | 2 | 2 | | 2 | |
| ${ }^{\text {I }} \mathrm{CCO}^{\text {\# }}$ | $V_{C C}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND | One input at 3.4 V , c or GND | | | | 1.5 | 1.5 | | 1.5 | mA |
| C_{i} | $\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V | | Control inputs | | 3 | | | | | pF |
| $\mathrm{C}_{\text {io }}$ | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V | | A or B ports | | 10 | | | | | pF |
| C_{0} | $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V | | TDO | | 8 | | | | | pF |

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters lozH and lozL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 14)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 14)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 14)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8652		SN74ABT8652		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CLKAB or CLKBA		100	130		100		100		MHz
tPLH	A or B	B or A	2	3.7	4.5	2	5.5	2	5.2	ns
tpHL			1.5	3.5	4.4	1.5	5.8	1.5	5.5	
${ }^{\text {tPLH }}$	CLKAB or CLKBA	B or A	2.5	4.4	5.3	2.5	6.3	2.5	6	ns
tpHL			2.5	4.3	5.2	2.5	-6.7	2.5	6.2	
tpLH	SAB or SBA	B or A	2	4.8	6		7.5	2	7.3	ns
tPHL			2	4.7	5.9	${ }^{2}$	7.8	2	7.4	
tpZH	OEAB or $\overline{O E B A}$	B or A	2	4.4	5.4	$\bigcirc 2$	6.7	2	6.5	ns
tpZL			2	5.2	6.2	*" 2	7.6	2	7.5	
tpHZ	OEAB or $\overline{\text { OEBA }}$	B or A	2	5.9	6.9	2	8.3	2	7.9	ns
tplZ			2	5.2	6.2	2	7.8	2	7.4	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 14)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8652		SN74ABT8652		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		'MHz
$\mathrm{t}_{\text {PLH }}$	TCK \downarrow	A or B	3.5	8	9.5	3.5	12.5	3.5	12	ns
tPHL			3	7.7	9	3	12	3	11.5	
${ }_{\text {tPLH }}$	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
tPHL			2.5	4.2	5.5	2.5	4 7	2.5	6.5	
tpZH	TCK \downarrow	A or B	4.5	8.2	9.5	4.5	12.5	4.5	12	ns
tPZL			4.5	9	10.5	4.5	13.5	4.5	13	
tPZH	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
tPZL			2.5	4.9	6	$\bigcirc 2.5$	7.5	2.5	7	
tPHZ	TCK \downarrow	A or B	3.5	8.4	10.5	- 3.5	14	3.5	13.5	ns
tplZ			3	8	10.5	3	13.5	3	13	
tpHZ	TCK \downarrow	TDO	3	5.9	7	3	9	3	8.5	ns
tplZ			3	5	6.5	3	8	3	7.5	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 14. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Functionally Equivalent to SN54/74BCT2952 and SN54/74ABT2952 in the Normal Function Mode
- SCOPE ${ }^{\text {тM }}$ Instruction Set:
- IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs With Masking Option
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Even-Parity Opcodes
- Two Boundary-Scan Cells per I/O for Greater Flexibility
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Package Options Include Plastic Small-Outline and Shrink Small-Outline Packages, Ceramic Chip Carriers, and Standard Ceramic DIPs

description

The SN54ABT8952 and SN74ABT8952 scan test devices with octal registered bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

SN54ABT8952 . . . JT PACKAGE
SN74ABT8952... DL OR DW PACKAGE
(TOP VIEW)

SN54ABT8952 . . . FK PACKAGE (TOP VIEW)

In the normal mode, these devices are functionally equivalent to the SN54/74BCT2952 and SN54/74ABT2952 octal registered bus transceivers. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in normal mode does not affect the functional operation of the SCOPE ${ }^{T M}$ octal registered bus transceivers.
Data flow in each direction is controlled by clock (CLKAB and CLKBA), clock-enable ($\overline{\text { CLKENAB }}$ and $\overline{C L K E N B A})$, and output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}})$ inputs. For A-to-B data flow, A-bus data is stored in the associated registers on the low-to-high transition of CLKAB provided that CLKENAB is low. Otherwise, if CLKENAB is high or CLKAB remains at a static low or high level, the register contents are not changed. When $\overline{O E A B}$ is low, the B outputs are active. When $\overline{O E A B}$ is high, the B outputs are in the high-impedance state. Control for B-to-A data flow is similar to that for A-to-B but uses CLKBA, CLKENBA, and OEBA.

description (continued)

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ registered bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations as described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
The SN54ABT8952 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT8952 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger (normal mode, each register)				
INPUTS				OUTPUT
OEAB	CLKENAB	CLKAB	A	B
L	L	\uparrow	L	L
L	L	- \uparrow	H	H
L	H	X	X	B_{0}
L	X	L	X	B_{0}
H	X	X	X	Z

\dagger A-to- B data flow is shown; B-to-A data flow is similar but use $\overline{\text { OEBA }}, \overline{\text { CLKENBA, and CLKBA. }}$

functional block diagram

Pin numbers shown are for the DL, DW, and JT packages.

Terminal Functions

PIN NAME	DESCRIPTION
A1-A8	Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1-B8	Normal-function B-bus I/O ports. See function table for normal-mode logic.
CLKAB, CLKBA	Normal-function clock inputs. See function table for normal-mode logic.
$\overline{\text { CLKENAB, } \overline{\text { CLKENBA }}}$	Normal-function clock-enable inputs. See function table for normal-mode logic.
GND	Ground
$\overline{\text { OEAB }} \overline{\text { OEBA }}$	Normal-function output-enable inputs. See function table for normal-mode logic.
TCK	Test clock. One of four pins required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four pins required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four pins required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four pins required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage

SN54ABT8952, SN74ABT8952
 SCAN TEST DEVICES WITH OCTAL REGISTERED BUS TRANSCEIVERS
 SCBS121B - D4506, AUGUST 1992 - REVISED AUGUST 1993

test architecture

Serial test information is conveyed by means of a 4-wire test bus or test access port (TAP), that conforms to IEEE Standard 1149.1-1990. Test instructions, test data, and test control signals are all passed along this serial test bus. The TAP controller monitors two signals from the test bus, namely TCK and TMS. The function of the TAP controller is to extract the synchronization (TCK) and state control (TMS) signals from the test bus and generate the appropriate on-chip control signals for the test structures in the device. Figure 1 shows the TAP controller state diagram.
The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures that data to be captured is valid for fully one-half of the TCK cycle.
The functional block diagram illustrates the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship between the test bus, the TAP controller, and the test registers. As illustrated, the device contains an 8-bit instruction register and three test data registers: a 38 -bit boundary-scan register, an 11-bit boundary-control register, and a one-bit bypass register.

Figure 1. TAP Controller State Diagram

state diagram description

The test access port (TAP) controller is a synchronous finite state machine that provides test control signals throughout the device. The state diagram is illustrated in Figure 1 and is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states based on the level of TMS at the rising edge of TCK.

As illustrated, the TAP controller consists of sixteen states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is defined as a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.

There are two main paths though the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time.

Test-Logic-Reset

The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data registers can also be reset to their power-up values.

The state machine is constructed such that the TAP controller will return to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that will force it high if left unconnected or if a board defect causes it to be open circuited.

For the 'ABT8952, the instruction register is reset to the binary value 11111111, which selects the BYPASS instruction. Each bit in the boundary-scan register is reset to logic 0 except bits $37-36$, which are reset to logic 1. The boundary-control register is reset to the binary value 00000000010, which selects the PSA test operation with no input masking.

Run-Test/Idle

The TAP controller must pass through the Run-Test/Idle state (from Test-Logic-Reset) before executing any test operations. The Run-Test//dle state can also be entered following data register or instruction register scans. Run-Test/Idle is provided as a stable state in which the test logic can be actively running a test or can be idle.

The test operations selected by the boundary-control register are performed while the TAP controller is in the Run-Test/ddle state.

Select-DR-Scan, Select-IR-Scan

No specific function is performed in the Select-DR-Scan and Select-IR-Scan states, and the TAP controller will exit either of these states on the next TCK cycle. These states are provided to allow the selection of either data register scan or instruction register scan.

Capture-DR

When a data register scan is selected, the TAP controller must pass through the Capture-DR state. In the Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK upon which the TAP controller exits the Capture-DR state.

state diagram description (continued)

Shift-DR

Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the selected data register.
While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-DR state.

Exit1-DR, Exit2-DR

The Exit1-DR and Exit2-DR states are temporary states used to end a data register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.
On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.

Pause-DR

No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state provides the capability of suspending and resuming data register scan operations without loss of data.

Update-DR

If the current instruction calls for the selected data register to be updated with current data, then such update occurs on the falling edge of TCK following entry to the Update-DR state.

Capture-IR

When an instruction register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK upon which the TAP controller exits the Capture-IR state.
For the 'ABT8952, the status value loaded in the Capture-IR state is the fixed binary value 10000001.

Shift-IR

Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO and, on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the instruction register.
While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-IR state.

Exit1-IR, Exit2-IR

The Exit1-IR and Exit2-IR states are temporary states used to end an instruction register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.
On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.

state diagram description (continued)

Pause-IR

No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state provides the capability of suspending and resuming instruction register scan operations without loss of data.

Update-IR

The current instruction is updated and takes effect on the falling edge of TCK following entry to the Update-IR state.

register overview

With the exception of the bypass register, any test register can be thought of as a serial shift register with a shadow latch on each bit. The bypass register differs in that it contains only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register.

instruction register description

The instruction register (IR) is eight bits long and is used to tell the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the three data registers is to be selected for inclusion in the scan path during data register scans, and the source of data to be captured into the selected data register during Capture-DR.

Table 3 lists the instructions supported by the 'ABT8952. The even-parity feature specified for SCOPE ${ }^{\text {M }}$ devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE ${ }^{\text {TM }}$ devices but are not supported by this device default to BYPASS.
During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value will be shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated, and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 11111111, which selects the BYPASS instruction.
The instruction register order of scan is illustrated in Figure 2.

Figure 2. Instruction Register Order of Scan

data register description

boundary-scan register

The boundary-scan register (BSR) is 38 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin and two BSCs for each normal-function I/O pin (one for input data and one for output data). The BSR is used 1) to store test data that is to be applied internally to the inputs of the normal on-chip logic and/or externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.

The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test/ldle as determined by the current instruction. At power up or in Test-Logic-Reset, the value of each BSC is reset to logic 0 except BSCs $37-36$, which are reset to logic 1.
The boundary-scan register order of scan is from TDI through bits $37-0$ to TDO. Table 1 shows the boundary-scan register bits and their associated device pin signals.

Table 1. Boundary-Scan Register Configuration

BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL	BSR BIT NUMBER	DEVICE SIGNAL
37	$\overline{\text { OEAB }}$	31	A8-I	23	A8-O	15	B8-I	7	B8-O
36	$\overline{\text { OEBA }}$	30	A7-I	22	A7-O	14	B7-I	6	B7-O
35	CLKAB	29	A6-I	21	A6-O	13	B6-I	5	B6-O
34	CLKBA	28	A5-I	20	A5-O	12	B5-1	4	B5-O
33	CLKENAB	27	A4-I	19	A4-O	11	B4-1	3	B4-O
32	$\overline{\text { CLKENBA }}$	26	A3-I	18	A3-O	10	B3-I	2	B3-O
-	-	25	A2-I	17	A2-O	9	B2-1	1	B2-O
-	-	24	A1-I	16	A1-O	8	B1-I	0	B1-O

boundary-control register

The boundary-control register (BCR) is 11 bits long. The BCR is used in the context of the RUNT instruction to implement additional test operations not included in the basic SCOPE ${ }^{\text {TM }}$ instruction set. Such operations include pseudo-random pattern generation (PRPG), parallel signature analysis (PSA) with input masking, and binary count up (COUNT). Table 4 shows the test operations that are decoded by the BCR.

During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 00000000010 , which selects the PSA test operation with no input masking.
The boundary-control register order of scan is from TDI through bits 10-0 to TDO. Table 2 shows the boundary-control register bits and their associated test control signals.

Table 2. Boundary-Control Register Configuration

BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL	BCR BIT NUMBER	TEST CONTROL SIGNAL
10	MASK8	6	MASK4	2	OPCODE2
9	MASK7	5	MASK3	1	OPCODE1
8	MASK6	4	MASK2	0	OPCODE0
7	MASK5	3	MASK1	-	-

data register description (continued)

bypass register

The bypass register is a one-bit scan path that can be selected to shorten the length of the system scan path, thereby reducing the number of bits per test pattern that must be applied to complete a test operation.
During Capture-DR, the bypass register captures a logic 0 . The bypass register order of scan is illustrated in Figure 3.

Figure 3. Bypass Register Order of Scan
Table 3. Instruction Register Opcodes

BINARY CODE才 BIT 7 \rightarrow BIT 0 MSB \rightarrow LSB	SCOPE OPCODE	DESCRIPTION	SELECTED DATA REGISTER	MODE
00000000	EXTEST	Boundary scan	Boundary scan	Test
10000001	BYPASS \ddagger	Bypass scan	Bypass	Normal
10000010	SAMPLE/PRELOAD	Sample boundary	Boundary scan	Normal
00000011	INTEST	Boundary scan	Boundary scan	Test
10000100	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000101	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000110	HIGHZ	Control boundary to high impedance	Bypass	Modified test
10000111	CLAMP	Control boundary to $1 / 0$	Bypass	Test
10001000	BYPASS \ddagger	Bypass scan	Bypass	Normal
00001001	RUNT	Boundary run test	Bypass	Test
00001010	READBN	Boundary read	Boundary scan	Normal
10001011	READBT	Boundary read	Boundary scan	Test
00001100	CELLTST	Boundary self test	Boundary scan	Normal
10001101	TOPHIP	Boundary toggle outputs	Bypass	Test
10001110	SCANCN	Boundary-control register scan	Boundary control	Normal
00001111	SCANCT	Boundary-control register scan	Boundary control	Test
All others	BYPASS	Bypass scan	Bypass	Normal

\dagger Bit 7 is used to maintain even parity in the 8 -bit instruction.
\ddagger The BYPASS instruction is executed in lieu of a SCOPE ${ }^{\text {TM }}$ instruction that is not supported in the 'ABT8952.

instruction register opcode description

The instruction register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction.

boundary scan

This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST and INTEST instructions. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. Data that has been scanned into the input BSCs is applied to the inputs of the normal on-chip logic, while data that has been scanned into the output BSCs is applied to the device output pins. The device operates in the test mode.

bypass scan

This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode.

sample boundary

This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The boundary-scan register is selected in the scan path. Data appearing at the device input pins is captured in the input BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the output BSCs. The device operates in the normal mode.

control boundary to high impedance

This instruction conforms to the IEEE P1149.1A HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed.

control boundary to $\mathbf{1 / 0}$

This instruction conforms to the IEEE P1149.1A CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input BSCs is applied to the inputs of the normal on-chip logic, while data in the output BSCs is applied to the device output pins. The device operates in the test mode.

boundary run test

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the boundary-control register is executed during Run-Test/Idle. The five test operations decoded by the boundary-control register are: sample inputs/toggle outputs (TOPSIP), pseudo-random pattern generation (PRPG), parallel signature analysis (PSA), simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT).

boundary read

The boundary-scan register is selected in the scan path. The value in the boundary-scan register remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation.

boundary self test

The boundary-scan register is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way, the contents of the shadow latches can be read out to verify the integrity of both shift register and shadow latch elements of the boundary-scan register. The device operates in the normal mode.

instruction register opcode description (continued)

boundary toggle outputs

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK in Run-Test/Idle and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK in Run-Test/Idle. Data in the selected input BSCs remains constant and is applied to the inputs of the normal on-chip logic. Data appearing at the device input pins is not captured in the input BSCs. The device operates in the test mode.

boundary-control register scan

The boundary-control register is selected in the scan path. The value in the boundary-control register remains unchanged during Capture-DR. This operation must be performed prior to a boundary run test operation in order to specify which test operation is to be executed.

Table 4. Boundary-Control Register Opcodes

BINARY CODE BIT $2 \rightarrow$ BIT 0 MSB \rightarrow LSB	
X00	DESCRIPTION
X01	Pseudo-random pattern generation/16-bit mode (PRPG)
X10	Parallel signature analysis/16-bit mode (PSA)
011	Simultaneous PSA and PRPG/8-bit mode (PSA/PRPG)
111	Simultaneous PSA and binary count up/8-bit mode (PSA/COUNT)

boundary-control register opcode description

The boundary-control register opcodes are decoded from BCR bits 2-0 as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test/Idle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms.
It should be noted, in general, that while the control input BSCs (bits 37-32) are not included in the sample, toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits 37-36 of the BSR) do control the drive state (active or high impedance) of the selected device output pins. It also should be noted that these BCR instructions are only valid when the device is operating in one direction of data flow (that is, $\overline{O E A B} \neq \overline{\mathrm{OEBA}}$). Otherwise, the bypass instruction is operated.

PSA input masking

Bits $10-3$ of the boundary-control register are used to specify device input pins to be masked from PSA operations. Bit 10 selects masking for device input pin A8 during A-to-B data flow or for device input pin B8 during B-to-A data flow. Bit 3 selects masking for device input pins A1 or B1 during A-to-B or B-to-A data flow, respectively. Bits intermediate to 10 and 3 mask corresponding device input pins in order from most significant to least significant, as indicated in Table 3. When the mask bit which corresponds to a particular device input has a logic 1 value, the device input pin is masked from any PSA operation, meaning that the state of the device input pin is ignored and has no effect on the generated signature. Otherwise, when a mask bit has a logic 0 value, the corresponding device input is not masked from the PSA operation.

boundary-control register opcode description (continued)

sample inputs/toggle outputs (TOPSIP)
Data appearing at the selected device input pins is captured in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shift-register elements of the selected output BSCs is toggled on each rising edge of TCK and is then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK.

pseudo-random pattern generation (PRPG)

A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK and then updated in the shadow latches and thereby applied to the associated device output pins on each falling edge of TCK. This data is also updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Figures 4 and 5 illustrate the 16 -bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 4. 16-Bit PRPG Configuration ($\overline{\mathrm{OEAB}}=0, \overline{\overline{O E B A}}=1$)
\oplus

Figure 5. 16-Bit PRPG Configuration ($\overline{\mathrm{OEAB}}=1, \overline{\mathrm{OEBA}}=0$)

boundary-control register opcode description (continued)

parallel signature analysis (PSA)

Data appearing at the selected device input pins is compressed into a 16 -bit parallel signature in the shift-register elements of the selected BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. Data in the shadow latches of the selected output BSCs remains constant and is applied to the device outputs. Figures 6 and 7 illustrate the 16 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 6. 16-Bit PSA Configuration ($\overline{\mathrm{OEAB}}=0, \overline{\mathrm{OEBA}}=1$)

Figure 7. 16-Bit PSA Configuration ($\overline{\mathrm{OEAB}}=1, \overline{\mathrm{OEBA}}=0$)

boundary-control register opcode description (continued)

simultaneous PSA and PRPG (PSA/PRPG)

Data appearing at the selected device input pins is compressed into an 8-bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8 -bit pseudo-random pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. Figures 8 and 9 illustrate the 8 -bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. Note that a seed value of all zeroes will not produce additional patterns.

Figure 8. 8-Bit PSA/PRPG Configuration ($\overline{\mathrm{OEAB}}=0, \overline{\mathrm{OEBA}}=1$)

Figure 9. 8-Bit PSA/PRPG Configuration ($\overline{\mathrm{OEAB}}=1, \overline{\overline{O E B A}}=0$)

boundary-control register opcode description (continued)

simultaneous PSA and binary count up (PSA/COUNT)

Data appearing at the selected device input pins is compressed into an 8 -bit parallel signature in the shift-register elements of the selected input BSCs on each rising edge of TCK. This data is then updated in the shadow latches of the selected input BSCs and, thereby, applied to the inputs of the normal on-chip logic. At the same time, an 8-bit binary count-up pattern is generated in the shift-register elements of the selected output BSCs on each rising edge of TCK and then updated in the shadow latches and, thereby, applied to the associated device output pins on each falling edge of TCK. In addition, the shift-register elements of the opposite output BSCs are used to count carries out of the selected output BSCs and, thereby, extend the count to 16 bits. Figures 10 and 11 illustrate the 8-bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 10. 8-Bit PSA/COUNT Configuration $(\overline{\mathrm{OEAB}}=0, \overline{\mathrm{OEBA}}=1)$

Figure 11. 8-Bit PSA/COUNT Configuration ($\overline{\mathrm{OEAB}}=1, \overline{\mathrm{OEBA}}=0$)

timing description

All test operations of the 'ABT8952 are synchronous to the test clock (TCK). Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as illustrated in Figure 1) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK.

A simple timing example is illustrated in Figure 12. In this example, the TAP controller begins in the Test-Logic-Reset state and is advanced through its states as necessary to perform one instruction register scan and one data register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The TAP controller is then returned to the Test-Logic-Reset state. Table 5 explains the operation of the test circuitry during each TCK cycle.

Table 5. Explanation of Timing Example

$\begin{gathered} \text { TCK } \\ \text { CYCLE(S) } \end{gathered}$	TAP STATE AFTER TCK	DESCRIPTION
1	Test-Logic-Reset	TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state.
2	Run-Test/Idle	
3	Select-DR-Scan	
4	Select-IR-Scan	
5	Capture-IR	The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state.
6	Shift-IR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
7-13	Shift-IR	One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8 -bit binary value 11111111 is serially scanned into the IR. At the same time, the 8 -bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the instruction register scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
14	Exit1-IR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
15	Update-IR	The IR is updated with the new instruction (BYPASS) on the falling edge of TCK.
16	Select-DR-Scan	
17	Capture-DR	The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state.
18	Shift-DR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
19-20	Shift-DR	The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21	Exit1-DR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
22	Update-DR	In general, the selected data register is updated with the new data on the falling edge of TCK.
23	Select-DR-Scan	
24	Select-IR-Scan	
25	Test-Logic-Reset	Test operation completed

SCBS121B - D4506, AUGUST 1992 - REVISED AUGUST 1993

Figure 12. Timing Example

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT8952		SN74ABT8952		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2	5	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage		V_{CC}	0	V_{CC}	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current		-24		-32	mA
l OL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	\bigcirc	10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and IOZL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 13)

			SN54ABT8952	SN74A	T8952	
			MIN MAX	MIN	MAX	UNIT
${ }^{\text {c }}$ lock	Clock frequency	CLKAB or CLKBA	0100	0	100	MHz
t_{w}	Pulse duration	CLKAB or CLKBA high or low	3 \%	3		ns
	Setup time	A before CLKAB \uparrow or B before CLKBA \uparrow	4.58	4.5		
	Setup time	$\overline{\text { CLKEN }}$ before CLK \uparrow	4.5	4.5		ns
	old time	A after CLKAB \uparrow or B after CLKBA \uparrow	50	0		
th	did time	$\overline{\text { CLKEN }}$ after CLK \uparrow	Q 0	0		ns

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 13)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8952		SN74ABT8952		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$	CLK	A or B	100	130		100	4	100		MHz
tpLH	CLKAB or CLKBA	B or A	3	4.6	5.4	3	6.5	3	6.3	ns
tPHL			2.5	3.8	4.6	2.5	5.5	2.5	5.3	
tpZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A	2	4.1	4.9	2	5.9	2	5.8	ns
tPZL			2.5	4.7	5.5	25	7.1	2.5	6.9	
tPHZ	$\overline{\text { OEAB }}$ or $\overline{\text { OEBA }}$	B or A	2.5	5.3	6.1	2.5	7.5	2.5	7.3	ns
tPLZ			3	4.5	5.3	3	6.3	3	6.1	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 13)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT8952		SN74ABT8952		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		MHz
tPLH	TCK \downarrow	A or B	3.5	8	9.5	3.5	12.5	3.5	12	ns
$\mathrm{t}_{\text {PHL }}$			3	7.7	9	3	12	3	11.5	
$t_{\text {PLH }}$	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
tPHL			2.5	4.2	5.5	2.5	+7	2.5	6.5	
tpZH	TCK \downarrow	A or B	4.5	8.2	9.5	4.5	\$12.5	4.5	12	ns
tpZL			4.5	9	10.5	4.5	13.5	4.5	13	
tpZH	TCK \downarrow	TDO	2.5	4.3	5.5	2.5	7	2.5	6.5	ns
tPZL			2.5	4.9	6	2.5	7.5	2.5	7	
$t^{\text {P }} \mathrm{HZ}$	TCK \downarrow	A or B	3.5	8.4	10.5	* 3.5	14	3.5	13.5	ns
tplz			3	8	10.5	3	13.5	3	13	
$\mathrm{t}_{\mathrm{pH}} \mathrm{C}$	TCK \downarrow	TDO	3	5.9	7	3	9	3	8.5	ns
tplZ			3	5	6.5	3	8	3	7.5	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 13. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- SCOPE ${ }^{\mathrm{TM}}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Packaged in Plastic 300-mil Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The SN54ABT18245 and SN74ABT18245 scan test devices with 18 -bit bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4 -wire test access port (TAP) interface.

SN54ABT18245 ... WD PACKAGE
SN74ABT18245 . . . DL PACKAGE
(TOP VIEW)

1DIR 1	$\sigma_{56} \square_{1 \overline{O E}}$
$1 \mathrm{B1} \mathrm{C}_{2}$	55 1A1
$1 \mathrm{B2} 3$	54 1A2
GND 4	53 GND
183 5	52 1A3
$1 \mathrm{B4}{ }^{6}$	51.1 A 4
$\mathrm{v}_{\mathrm{CC}} \mathrm{C}_{7}$	${ }_{50} \mathrm{~V}_{\mathrm{CC}}$
$1 \mathrm{B5} 8$	49 1A5
186	48 1a6
187 10	$0{ }^{0} 47$ 1A7
GND 11	$146]$ GND
188	2451 AB
$1 \mathrm{B9}{ }^{13}$	3 44 1A9
$2 \mathrm{B1} 1^{14}$	443241
$2 \mathrm{B2} 15$	5 42-2A2
$2 \mathrm{B3} 16$	$6 \quad 41$ 2A3
2B4 17	$7 \quad 40$ 2A4
GND 18	839 GND
28519	93 2A5
$2 \mathrm{B6} 20$	- 37 2A6
$2 \mathrm{B7} 21$	136247
$\mathrm{V}_{\mathrm{CC}}{ }^{22}$	$235] \mathrm{V}_{\mathrm{CC}}$
$2 \mathrm{B8}$ [23	34 2A8
$2 \mathrm{B9} 24$	43 2A9
GND 25	32 GND
2DIR 26	$6 \quad 31 / 2 \overline{O E}$
TDO 27	7301
TMS[28	8 29] TCK

In the normal mode, these devices are 18-bit noninverting bus transceivers. They can be used either as two 9 -bit transceivers or one 18 -bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers.
Data flow is controlled by the direction-control (DIR) and output-enable ($\overline{\mathrm{OE}}$) inputs. Data transmission is allowed from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at DIR. The output-enable ($\overline{\mathrm{OE}}$) can be used to disable the device so that the buses are effectively isolated.
In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

description (continued)

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.

The SN74ABT18245 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT18245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT18245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(normal mode, each 9-bit section)

INPUTS		OPERATION
$\overline{O E}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
\dot{H}	X	Isolation

functional block diagram

Terminal Functions

PIN NAME	DESCRIPTION
GND	Ground
TCK	Test clock. One of four pins required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four pins required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four pins required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four pins required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage
1A1-1A9, 2A1-2A9	Normal-function A-bus I/O ports. See function table for normal-mode logic.
1B1-1B9, 2B1-2B9	Normal-function B-bus I/O ports. See function table for normal-mode logic.
1DIR, 2DIR	Normal-function direction controls. See function table for normal-mode logic.
1OE, 2 $\overline{O E E}$	Normal-function output enables. See function table for normal-mode logic.

test architecture

Serial test information is conveyed by means of a 4-wire test bus or test access port (TAP), that conforms to IEEE Standard 1149.1-1990. Test instructions, test data, and test control signals are all passed along this serial test bus. The TAP controller monitors two signals from the test bus, namely TCK and TMS. The function of the TAP controller is to extract the synchronization (TCK) and state control (TMS) signals from the test bus and generate the appropriate on-chip control signals for the test structures in the device. Figure 1 shows the TAP controller state diagram.
The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and output data changes on the falling edge of TCK. This scheme ensures that data to be captured is valid for fully one-half of the TCK cycle.
The functional block diagram illustrates the IEEE Standard 1149.1-1990 4-wire test bus and boundary-scan architecture and the relationship between the test bus, the TAP controller, and the test registers. As illustrated, the device contains an 8-bit instruction register and four test data registers: a 44-bit boundary-scan register, a 3-bit boundary-control register, a 1-bit bypass register, and a 32-bit device identification register.

Figure 1. TAP Controller State Diagram

state diagram description

The test access port (TAP) controller is a synchronous finite state machine that provides test control signals throughout the device. The state diagram is illustrated in Figure 1 and is in accordance with IEEE Standard 1149.1-1990. The TAP controller proceeds through its states based on the level of TMS at the rising edge of TCK.
As illustrated, the TAP controller consists of sixteen states. There are six stable states (indicated by a looping arrow in the state diagram) and ten unstable states. A stable state is defined as a state the TAP controller can retain for consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.
There are two main paths though the state diagram: one to access and control the selected data register and one to access and control the instruction register. Only one register can be accessed at a time.

Test-Logic-Reset

The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset and is disabled so that the normal logic function of the device is performed. The instruction register is reset to an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data registers can also be reset to their power-up values.

The state machine is constructed such that the TAP controller returns to the Test-Logic-Reset state in no more than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that forces it high if left unconnected or if a board defect causes it to be open circuited.
For the 'ABT18245, the instruction register is reset to the binary value 10000001, which selects the IDCODE instruction. Each bit in the boundary-scan register is reset to logic 0 . The boundary-control register is reset to the binary value 010, which selects the PSA test operation.

Run-Test/ldle

The TAP controller must pass through the Run-Test/Idle state (from Test-Logic-Reset) before executing any test operations. The Run-Test/Idle state can also be entered following data register or instruction register scans. Run-Test/ldle is provided as a stable state in which the test logic can be actively running a test or can be idle.
The test operations selected by the boundary-control register are performed while the TAP controller is in the Run-Test/ldle state.

Select-DR-Scan, Select-IR-Scan

No specific function is performed in the Select-DR-Scan and Select-IR-Scan states, and the TAP controller exits either of these states on the next TCK cycle. These states are provided to allow the selection of either data register scan or instruction register scan.

Capture-DR

When a data register scan is selected, the TAP controller must pass through the Capture-DR state. In the Capture-DR state, the selected data register can capture a data value as specified by the current instruction. Such capture operations occur on the rising edge of TCK upon which the TAP controller exits the Capture-DR state.

Shift-DR

Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO, and on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the selected data register.
While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-DR state.

state diagram description (continued)

Exit1-DR, Exit2-DR

The Exit1-DR and Exit2-DR states are temporary states used to end a data register scan. It is possible to return to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register.

On the first falling edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.

Pause-DR

No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain indefinitely. The Pause-DR state provides the capability of suspending and resuming data register scan operations without loss of data.

Update-DR

If the current instruction calls for the selected data register to be updated with current data, such update occurs on the falling edge of TCK following entry to the Update-DR state.

Capture-IR

When an instruction register scan is selected, the TAP controller must pass through the Capture-IR state. In the Capture-IR state, the instruction register captures its current status value. This capture operation occurs on the rising edge of TCK upon which the TAP controller exits the Capture-IR state.

For the 'ABT18245, the status value loaded in the Capture-IR state is the fixed binary value 10000001.

Shift-IR

Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO, and on the first falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level present in the least significant bit of the instruction register.

While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to Shift-IR). The last shift occurs on the rising edge of TCK upon which the TAP controller exits the Shift-IR state.

Exit1-IR, Exit2-IR

The Exit1-IR and Exit2-IR states are temporary states used to end an instruction register scan. It is possible to return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register.

On the first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.

Pause-IR

No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain indefinitely. The Pause-IR state provides the capability of suspending and resuming instruction register scan operations without loss of data.

Update-IR

The current instruction is updated and takes effect on the falling edge of TCK following entry to the Update-IR state.

register overview

With the exception of the bypass and device identification registers, any test register can be thought of as a serial shift register with a shadow latch on each bit. The bypass and device identification registers differ in that they contain only a shift register. During the appropriate capture state (Capture-IR for instruction register, Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or Update-DR), the shadow latches are updated from the shift register.

instruction register description

The instruction register (IR) is eight bits long and is used to tell the device what instruction is to be executed. Information contained in the instruction includes the mode of operation (either normal mode, in which the device performs its normal logic function, or test mode, in which the normal logic function is inhibited or altered), the test operation to be performed, which of the four data registers is to be selected for inclusion in the scan path during data register scans, and the source of data to be captured into the selected data register during Capture-DR.

Table 3 lists the instructions supported by the 'ABT18245. The even-parity feature specified for SCOPE ${ }^{\text {™ }}$ devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any instructions that are defined for SCOPE ${ }^{\text {TM }}$ devices but are not supported by this device default to BYPASS.

During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value is shifted out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the binary value 10000001, which selects the IDCODE instruction.

The instruction register order of scan is illustrated in Figure 2.

Figure 2. Instruction Register Order of Scan

data register description

boundary-scan register

The boundary-scan register (BSR) is 44 bits long. It contains one boundary-scan cell (BSC) for each normal-function input pin, one BSC for each normal-function I/O pin (one single cell for both input data and output data), and one BSC for each of the internally decoded output-enable signals (1OEA, 2OEA, 1OEB, 2OEB). The BSR is used 1) to store test data that is to be applied externally to the device output pins, and/or 2) to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device input pins.

The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or in Test-Logic-Reset, the value of each BSC is reset to logic 0 .
When external data is to be captured, the BSCs for signals 1OEA, 2OEA, 1OEB, and 2OEB capture logic values determined by the following positive-logic equations: 1OEA $=1 \overline{\mathrm{OE}} \cdot \overline{1 \mathrm{DIR}}, 2 \mathrm{OEA}=2 \overline{\mathrm{OE}} \cdot \overline{2 \mathrm{DIR}}$, $1 O E B=\overline{1 \overline{O E}} \cdot$ DIR, and 2OEB $=\overline{2 \overline{O E}} \bullet$ DIR. When data is to be applied externally, these BSCs control the drive state (active or high impedance) of their respective outputs.
The boundary-scan register order of scan is from TDI through bits 43-0 to TDO. Table 1 shows the boundary-scan register bits and their associated device pin signals.

Table 1. Boundary-Scan Register Configuration

BSR BIT NUMBER	DEVICE SIGNAL								
43	20EB	35	2A9-I/O	26	1A9-I/O	17	2B9-I/O	8	1B9-I/O
42	10EB	34	2A8-1/O	25	1A8-1/O	16	2B8-I/O	7	1B8-1/O
41	20EA	33	2A7-I/O	24	1A7-I/O	15	2B7-1/O	6	1B7-1/O
40	10EA	32	2A6-I/O	23	1A6-I/O	14	2B6-I/O	5	1B6-I/O
39	2DIR	31	2A5-1/O	22	1A5-I/O	13	2B5-1/O	4	1B5-I/O
38	1DIR	30	2A4-1/O	21	1A4-I/O	12	2B4-I/O	3	1B4-I/O
37	$2 \overline{\mathrm{OE}}$	29	2A3-1/O	20	1A3-1/O	11	2B3-1/O	2	1B3-1/O
36	$1 \overline{\mathrm{OE}}$	28	2A2-1/O	19	1A2-I/O	10	2B2-1/O	1	1B2-I/O
-	-	27	2A1-I/O	18	1A1-I/O	9	2B1-I/O	0	1B1-I/O

boundary-control register

The boundary-control register (BCR) is three bits long. The BCR is used in the context of the RUNT instruction to implement additional test operations not included in the basic SCOPE ${ }^{\text {TM }}$ instruction set. Such operations include pseudo-random pattern generation (PRPG), parallel signature analysis (PSA), and binary count up (COUNT). Table 4 shows the test operations that are decoded by the BCR.

During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is reset to the binary value 010, which selects the PSA test operation.
The boundary-control register order of scan is illustrated in Figure 3.

Figure 3. Boundary-Control Register Order of Scan

data register description (continued)

bypass register

The bypass register is a 1-bit scan path that can be selected to shorten the length of the system scan path, reducing the number of bits per test pattern that must be applied to complete a test operation.
During Capture-DR, the bypass register captures a logic 0 . The bypass register order of scan is illustrated in Figure 4.

Figure 4. Bypass Register Order of Scan

device identification register

The device identification register (IDR) is 32 bits long. It can be selected and read to identify the manufacturer, part number, and version of this device.
During Capture-DR, the binary value 00000000000000000101000000101111 (0000502F, hex) is captured in the device identification register to identify this device as Texas Instruments SN54/74ABT18245, version 0.
The device identification register order of scan is from TDO through bits $31-0$ to TDO. Table 2 shows the device identification register bits and their significance.

Table 2. Device Identification Register Configuration

IDR BIT NUMBER	IDENTIFICATION SIGNIFICANCE	IDR BIT NUMBER	IDENTIFICATION SIGNIFICANCE	IDR BIT NUMBER	IDENTIFICATION SIGNIFICANCE
31	VERSION3	27	PARTNUMBER15	11	MANUFACTURER10 \dagger
30	VERSION2	26	PARTNUMBER14	10	MANUFACTURER09 \dagger
29	VERSION1	25	PARTNUMBER13	9	MANUFACTURER08 \dagger
28	VERSION0	24	PARTNUMBER12	8	MANUFACTURER07 \dagger
-	-	23	PARTNUMBER11	7	MANUFACTURER06 \dagger
-	-	22	PARTNUMBER10	6	MANUFACTURER05 \dagger
-	-	21	PARTNUMBER09	5	MANUFACTURER04 \dagger
-	-	19	PARTNUMBER07	3	MANUFACTURER02 \dagger
-	-	18	PARTNUMBER06	2	MANUFACTURER01 \dagger
-	-	17	PARTNUMBER05	1	MANUFACTURER00 \dagger
-	-	16	PARTNUMBER04	0	LOGIC1 \dagger
-	-	14	PARTNUMBER03	-	-
-	-	PARTNUMBER02	-	-	
-	-	13	PARTNUMBER01	-	-
-	-	PARTNUMBER00	-		

\dagger Note that for Tl products, bits 11-0 of the device identification register always contains the binary value 000000101111 (02F, hex).

Table 3. Instruction Register Opcodes

BINARY CODEt BIT 7 \rightarrow BIT 0 MSB \rightarrow LSB	SCOPE OPCODE	DESCRIPTION	SELECTED DATA REGISTER	MODE
00000000	EXTEST	Boundary scan	Boundary scan	Test
10000001	IDCODE	Identification read	Device identification	Normal
10000010	SAMPLE/PRELOAD	Sample boundary	Boundary scan	Normal
00000011	BYPASS \ddagger	Bypass scan	Bypass	Normal
10000100	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000101	BYPASS \ddagger	Bypass scan	Bypass	Normal
00000110	HIGHZ	Control boundary to high impedance	Bypass	Modified test
10000111	CLAMP	Control boundary to 1/0	Bypass	Test
10001000	BYPASS \ddagger	Bypass scan	Bypass	Normal
00001001	RUNT	Boundary read	Bypass	Test
00001010	READBN	Boundary read	Boundary scan	Normal
10001011	READBT	Boundary self test	Boundary scan	Test
00001100	CELLTST	Boundary toggle outputs	Boundary scan	Normal
10001101	TOPHIP	SCANCN	Boundary-control register scar	Boundary control
10001110	SCANCT	Boundary-control register scan	Boundary control	Nost
00001111	Bypass scan	Test		
All others	BYPASS	Bypass	Normal	

\dagger Bit 7 is used to maintain even parity in the 8 -bit instruction.
\ddagger The BYPASS instruction is executed in lieu of a SCOPE ${ }^{\text {TM }}$ instruction that is not supported in the 'ABT18245.

instruction register opcode description

The instruction register opcodes are shown in Table 3. The following descriptions detail the operation of each instruction.

boundary scan

This instruction conforms to the IEEE Standard 1149.1-1990 EXTEST instruction. The boundary-scan register is selected in the scan path. Data appearing at the device input and I/O pins is captured in the associated BSCs. Data that has been scanned into the input BSCs is applied to the inputs of the normal on-chip logic, while data scanned into the I/O BSCs for pins in the output mode is applied to the device I/O pins. Data present at the device I/O pins is passed through the I/O BSCs to the normal on-chip logic. For I/O pins, the operation of a pin as input or output is determined by the contents of the output-enable BSCs (bits 43-40 of the BSR). When a given output enable is active (logic 1), the associated I/O pins operate in the output mode. Otherwise, the I/O pins operate in the input mode. The device operates in the test mode.

identification read

This instruction conforms to the IEEE Standard 1149.1-1990 IDCODE instruction. The device identification register is selected in the scan path. The device operates in the normal mode.

sample boundary

This instruction conforms to the IEEE Standard 1149.1-1990 SAMPLE/PRELOAD instruction. The boundary-scan register is selected in the scan path. Data appearing at the device input pins and I/O pins in the input mode is captured in the associated BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the BSCs associated with I/O pins in the output mode. The device operates in the normal mode.

instruction register opcode description (continued)

bypass scan

This instruction conforms to the IEEE Standard 1149.1-1990 BYPASS instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the normal mode.

control boundary to high impedance

This instruction conforms to the IEEE P1149.1A HIGHZ instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins remain operational, and the normal on-chip logic function is performed.

control boundary to $\mathbf{1 / 0}$

This instruction conforms to the IEEE P1149.1A CLAMP instruction. The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the input BSCs is applied to the inputs of the normal on-chip logic, while data in the I/O BSCs for pins in the output mode is applied to the device I/O pins. The device operates in the test mode.

boundary run test

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the test mode. The test operation specified in the boundary-control register is executed during Run-Test/Idle. The five test operations decoded by the boundary-control register are: sample inputs/toggle outputs (TOPSIP), pseudo-random pattern generation (PRPG), parallel signature analysis (PSA), simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up (PSA/COUNT).

boundary read

The boundary-scan register is selected in the scan path. The value in the boundary-scan register remains unchanged during Capture-DR. This instruction is useful for inspecting data after a PSA operation.

boundary self test

The boundary-scan register is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR. In this way, the contents of the shadow latches can be read out to verify the integrity of both shift register and shadow latch elements of the boundary-scan register. The device operates in the normal mode.

boundary toggle outputs

The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the shift-register elements of the selected output-mode BSCs ${ }^{\circ}$ is toggled on each rising edge of TCK in Run-Test/Idle and is then updated in the shadow latches and thereby applied to the associated device I/O pins on each falling edge of TCK in Run-Test/Idle. Data in the input-mode BSCs remains constant. Data appearing at the device input or I/O pins is not captured in the input-mode BSCs. The device operates in the test mode.

boundary-control register scan

The boundary-control register is selected in the scan path. The value in the boundary-control register remains unchanged during Capture-DR. This operation must be performed prior to a boundary run test operation in order to specify which test operation is to be executed.

Table 4. Boundary-Control Register Opcodes

BINARY CODE BIT $2 \rightarrow$ BIT 0 MSB \rightarrow LSB	DESCRIPTION
X00	Sample inputs/toggle outputs (TOPSIP)
X01	Pseudo-random pattern generation/36-bit mode (PRPG)
X10	Parallel signature analysis/36-bit mode (PSA)
011	Simultaneous PSA and PRPG/18-bit mode (PSA/PRPG)
111	Simultaneous PSA and binary count up/18-bit mode (PSA/COUNT)

boundary-control register opcode description

The boundary-control register opcodes are decoded from BCR bits 2-0 as shown in Table 4. The selected test operation is performed while the RUNT instruction is executed in the Run-Test/Idle state. The following descriptions detail the operation of each BCR instruction and illustrate the associated PSA and PRPG algorithms.
In general, while the control input BSCs (bits 43-36) are not included in the toggle, PSA, PRPG, or COUNT algorithms, the output-enable BSCs (bits 43-40 of the BSR) control the drive state (active or high impedance) of the selected device output pins. These BCR instructions are only valid when both bytes of the device are operating in one direction of data flow (that is, 1OEA $\neq 10 E B$ and 2OEA $\neq 2 O E B$) and in the same direction of data flow (that is, 10EA = 2OEA and $10 E B=20 E B$). Otherwise, the bypass instruction is operated.

sample inputs/toggle outputs (TOPSIP)

Data appearing at the selected device input-mode I/O pins is captured in the shift-register elements of the associated BSCs on each rising edge of TCK. Data in the shift-register elements of the selected output-mode BSCs is toggled on each rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling edge of TCK.

pseudo-random pattern generation (PRPG)

A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device output-mode I/O pins on each falling edge of TCK. Figures 5 and 6 illustrate the 36 -bit linear-feedback shift-register algorithms through which the patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. A seed value of all zeroes will not produce additional patterns.

Figure 5. 36-Bit PRPG Configuration ($10 E A=20 E A=0,10 E B=20 E B=1$)

Figure 6. 36-Bit PRPG Configuration ($10 E A=20 E A=1,10 E B=20 E B=0$)

boundary-control register opcode description (continued)

parallel signature analysis (PSA)

Data appearing at the selected device input-mode I/O pins is compressed into a 36-bit parallel signature in the shift-register elements of the selected BSCs on each rising edge of TCK. Data in the shadow latches of the selected output-mode BSCs remains constant and is applied to the associated device I/O pins. Figures 7 and 8 illustrate the 36 -bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 7. 36-Bit PSA Configuration $(10 E A=20 E A=0,10 E B=20 E B=1)$

Figure 8. 36 -Bit PSA Configuration (10EA $=20 E A=1,10 E B=20 E B=0$)

boundary-control register opcode description (continued)

simultaneous PSA and PRPG (PSA/PRPG)

Data appearing at the selected device input-mode I/O pins is compressed into an 18-bit parallel signature in the shift-register elements of the selected input-mode BSCs on each rising edge of TCK. At the same time, an 18-bit pseudo-random pattern is generated in the shift-register elements of the selected output-mode BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling edge of TCK. Figures 9 and 10 illustrate the 18-bit linear-feedback shift-register algorithms through which the signature and patterns are generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation. A seed value of all zeroes will not produce additional patterns.

Figure 9. 18-Bit PSA/PRPG Configuration $(10 E A=20 E A=0,10 E B=20 E B=1)$

Figure 10. 18-Bit PSA/PRPG Configuration (10EA = 20EA =1, 10EB = 20EB =0)

boundary-control register opcode description (continued)

simultaneous PSA and binary count up (PSA/COUNT)

Data appearing at the selected device input-mode I/O pins is compressed into an 18-bit parallel signature in the shift-register elements of the selected input-mode BSCs on each rising edge of TCK. At the same time, an 18-bit binary count-up pattern is generated in the shift-register elements of the selected output-mode BSCs on each rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling edge of TCK. Figures 11 and 12 illustrate the 18-bit linear-feedback shift-register algorithms through which the signature is generated. An initial seed value should be scanned into the boundary-scan register prior to performing this operation.

Figure 11. 18-Bit PSA/COUNT Configuration (10EA $=20 E A=0,10 E B=20 E B=1$)

Figure 12. 18 -Bit PSA/COUNT Configuration (10EA $=20 E A=1,10 E B=20 E B=0$)

timing description

All test operations of the 'ABT18245 are synchronous to the test clock (TCK). Data on the TDI, TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as illustrated in Figure 1) by changing the value of TMS on the falling edge of TCK and then applying a rising edge to TCK.
A simple timing example is illustrated in Figure 13. In this example, the TAP controller begins in the Test-Logic-Reset state and is advanced through its states as necessary to perform one instruction register scan and one data register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used to output serial data. The TAP controller is then returned to the Test-Logic-Reset state. Table 5 explains the operation of the test circuitry during each TCK cycle.

Table 5. Explanation of Timing Example

$\begin{array}{\|c\|} \hline \text { TCK } \\ \text { CYCLE(S) } \end{array}$	TAP STATE AFTER TCK	DESCRIPTION
1	Test-Logic-Reset	TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward the desired state.
2	Run-Test/Idle	,
3	Select-DR-Scan	
4	Select-IR-Scan	,
5	Capture-IR	The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the Capture-IR state.
6	Shift-IR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
7-13	Shift-IR	One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8 -bit binary value 11111111 is serially scanned into the IR. At the same time, the 8-bit binary value 10000001 is serially scanned out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the instruction register scan on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR to Exit1-IR.
14	Exit1-IR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
15	Update-IR	The IR is updated with the new instruction (BYPASS) on the falling edge of TCK.
16	Select-DR-Scan	
17	Capture-DR	The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the Capture-DR state.
18	Shift-DR	TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP on the rising edge of TCK as the TAP controller advances to the next state.
19-20	Shift-DR	The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.
21	Exit1-DR	TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.
22	Update-DR	In general, the selected data register is updated with the new data on the falling edge of TCK.
23	Select-DR-Scan	
24	Select-IR-Scan	
25	Test-Logic-Reset	Test operation completed

3-State (TDO) or Don't Care (TDI)
Figure 13. Timing Example
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC}
-0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1) .. -0.5 V to 7 V

Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, I_{O} : SN54ABT18245 ... 96 mA
SN74ABT18245 ... 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

Continuous current through GND ... 1152 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2) 950 mW .
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings can be exceeded if the input and output clamp-current ratings are observed.
2. For the SN74ABT18245 (DL package), the power derating factor for ambient temperatures greater than $55^{\circ} \mathrm{C}$ is $-11.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

recommended operating conditions (see Note 3)

		SN54A	T18245	N74A	18245	
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2	4	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		80.8		0.8	V
V_{1}	Input voltage		V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
l OL	Low-level output current	8	48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	${ }^{6}$	10		10	ns/V
TA	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused or floating pins (input or I/O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT18245		SN74ABT18245		UNIT
				MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
$\mathrm{VOH}^{\text {O }}$	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$		2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-3 \mathrm{~mA}$		3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	${ }^{\mathrm{OH}}=-24 \mathrm{~mA}$		2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$		$2 \ddagger$					2		
VOL	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$				0.55		0.55			V
		$\mathrm{I}^{\mathrm{OL}}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		DIR, $\overline{O E}$, TCK			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
$\mathrm{IIH}^{\text {H }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$		TDI, TMS			10		10		10	$\mu \mathrm{A}$
ILL	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { GND } \\ & \hline \end{aligned}$		TDI, TMS			-150		-150		-150	$\mu \mathrm{A}$
$\mathrm{l}^{\text {OZH }}$ §	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		4 50		50	$\mu \mathrm{A}$
IOZL ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
IOZPU	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=0 \text { to } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \end{aligned}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
IozPD	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V} \text { to } 0, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50	Q^{2}	± 50		± 50	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100		± 450		± 100	$\mu \mathrm{A}$
ICEX	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$		Outputs high			50		50		50	$\mu \mathrm{A}$
10	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-110	-200	-50	-200	-50	-200	mA
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	A or B ports	Outputs high		3.5	5		5		5	mA
			Outputs low		33	38		38		38	
			Outputs disabled		2.9	4.5		4.5		4.5	
${ }^{\text {l }} \mathrm{CC}^{\#}$	$\mathrm{V} C \mathrm{~F}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V,Other inputs at V_{CC} or GND					50		50		50	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		10						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		TDO		8						pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{l}_{\mathrm{OZH}}$ and lozL include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 14)

			SN54ABT18245	SN74A	18245	
			MIN MAX	MIN	MAX	UNT
$\mathrm{f}_{\text {clock }}$	Clock frequency	TCK	050	0	50	MHz
$\mathrm{t}_{\text {w }}$	Pulse duration	TCK high or low	8.1	8.1		ns
		A, B, DIR, or $\overline{\mathrm{OE}}$ before TCK \uparrow	7 8	7		
${ }^{\text {tsu }}$	Setup time	TDI before TCK \uparrow	4.5 \&	4.5		ns
		TMS before TCK \uparrow	3.68	3.6		
		A, B, DIR, or $\overline{\mathrm{EE}}$ after TCK个	0	0		
th	Hold time	TDI after TCK \uparrow	S0	0		ns
		TMS after TCK \uparrow	80.5	0.5		
t_{d}	Delay time	Power up to TCK \uparrow	50	50		ns
tr_{r}	Rise time	$\mathrm{V}_{\text {CC }}$ power up	1	1		$\mu \mathrm{s}$

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Figure 14)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18245		SN74ABT18245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A or B	B or A	1.5	2.8	4.1	1.5	5.1	1.5	4.8	ns
tPHL			1.5	3.1	4.6	1.5	\% 5.8	1.5	5.4	
tpZH	$\overline{\mathrm{OE}}$	B or A	3	5.9	6.8		9.1	3	8.5	ns
tPZL			3	6.3	7.2	3	9.5	3	9	
tpHZ	$\overline{\mathrm{OE}}$	B or A	3	7.4	8.6	-3	10.4	3	9.5	ns
tpLZ			3	6.6	8.6	Q 3	10.2	3	9.5	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Figure 14)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18245		SN74ABT18245		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK \downarrow		50	90		50		50		MHz
$\mathrm{t}_{\text {PLH }}$	TCK \downarrow	A or B	3	7.1	10.1	3	14	3	13.1	ns
${ }_{\text {tPHL }}$			3	7	10.1	3	13.8	3	12.8	
tPLH	TCK \downarrow	TDO	2	3.4	5	2	6.4	2	6.1	ns
tPHL			2	3.9	5.6	2	+ 7	2	6.5	
tpZH	TCK \downarrow	A or B	4	7.5	10.6	4	14.1	4	13.4	ns
tpZL			4	7.6	10.5		14.3	4	13.6	
tPZH	TCK \downarrow	TDO	2	3.8	5.5	5^{2}	7	2	6.6	ns
tPZL			2.5	4	5.7	$0^{2.5}$	7.3	2.5	6.9	
tpHZ	TCK \downarrow	A or B	3.5	7.7	10.8	< 3.5	14.4	3.5	13.6	ns
tplZ			2.5	7.1	10.1	2.5	13.8	2.5	12.7	
tPHZ	TCK \downarrow	TDO	2	3.9	5.7	2	7.5	2	7.2	ns
tPLZ			1.5	3.5	5.4	1.5	6.7	1.5	6.3	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLz/tpZL tPHz/tpZH	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 14. Load Circuit and Voltage Waveforms

SN54ABT18502A, SN74ABT18502A SCAN TEST DEVICES WITH 18-BIT UNIVERSAL BUS TRANSCEIVERS
 SCBS164-AUGUST 1993

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- UBT ${ }^{\text {M }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- State-of-the-Art EPIC-IIB ${ }^{\text {™ }}$ BiCMOS Design Significantly Reduces Power Dissipation
- One Boundary-Scan Cell per I/O

Architecture Improves Scan Efficiency

- SCOPE ${ }^{\text {тм }}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in 64-Pin Plastic Thin Quad Flat Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Packages Using 25-mil Center-to-Center Spacings

SN54ABT18502A ... HV PACKAGE
(TOP VIEW)

NC - No internal connection

description

The SN54ABT18502A and SN74ABT18502A scan test devices with 18-bit universal bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are 18-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{T M}$ universal bus transceivers.
Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When $\overline{O E A B}$ is low, the B outputs are active. When OEAB is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the OEBA, LEBA, and CLKBA inputs.
In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

SN54ABT18502A, SN74ABT18502A
 SCAN TEST DEVICES WITH 18-BIT UNIVERSAL BUS TRANSCEIVERS
 SCBS164 - AUGUST 1993

description (continued)

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
Improved scan efficiency is accomplished through the adoption of a one boundary-scan cell (BSC) per I/O pin architecture. This architecture is implemented in such a way as to capture test data of most interest. A PSA/COUNT instruction is also included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

The SN54ABT18502A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT18502A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger
(normal mode, each register)

INPUTS				$\begin{gathered} \text { OUTPUT } \\ \text { B } \end{gathered}$
$\overline{\text { OEAB }}$	LEAB	CLKAB	A	
L	L	L	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	\uparrow	L	L
L	L	\uparrow	H	H
L	H	X	L	L
L	H	X	H	H
H	X	X	X	Z

\dagger A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{O E B A}, ~ L E B A, ~ a n d ~ C L K B A . ~$
\ddagger Output level before the indicated steady-state input conditions were established.
functional block diagram

Pin numbers shown are for the PM package.

Terminal Functions

PIN NAME	DESCRIPTION
GND	Ground
TCK	Test clock. One of four pins required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four pins required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four pins required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four pins required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
1A1-1A9, $2 A 1-2 A 9$	Supply voltage
1B1-1B9, $2 B 1-2 B 9$	Normal-function A-bus I/O ports. See function table for normal-mode logic.
$1 C L K A B, 1 C L K B A, ~$ $2 C L K A B, ~ 2 C L K B A ~$	Normal-function clock inputs. See function table for normal-mode logic.
1 LEAB, 1LEBA, $2 L E A B, ~ 2 L E B A ~$	Normal-function latch enables. See function table for normal-mode logic.
$1 \overline{O E A B}, 1 \overline{O E B A}$, $2 \overline{O E A B}, 2 \overline{O E B A}$	Normal-function output enables. See function table for normal-mode logic.

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings can be exceeded if the input and output clamp－current ratings are observed．
2．For the SN74ABT18502A（PM package），the power derating factor for ambient temperatures greater than $55^{\circ} \mathrm{C}$ is $-10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ．

recommended operating conditions

		SN54ABT18502A		SN74ABT18502A		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High－level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low－level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	$\mathrm{V}_{\text {CC }}$	V
IOH^{2}	High－level output current		－24		－32	mA
l_{OL}	Low－level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		10		10	ns／V
$\mathrm{T}_{\text {A }}$	Operating free－air temperature	－55	125	－40	85	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Note 3)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT18502A		SN74ABT18502A		UNIT
				MIN	TYPt	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=48 \mathrm{~mA}$				0.55	0.55				V
		(1) ${ }^{\text {l }}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		$\begin{aligned} & \text { CLK, LE, } \overline{O E}, \\ & \text { TCK } \end{aligned}$			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
1 IH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}$		TDI, TMS			10		10		10	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{GND}$		TDI, TMS			-150		-150		-150	$\mu \mathrm{A}$
1 I(hold)	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	A or B ports						100		$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2 \mathrm{~V}$							-100		
$\mathrm{IOZH}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
${ }^{\text {OZZL }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
IozPu	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \text { to } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \end{aligned}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
IOZPD	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V} \text { to } 0, \\ \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \\ \hline \end{array}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
loff	$V_{C C}=0, \quad V_{1}$ or $V_{O} \leq 4.5 \mathrm{~V}$					± 100		± 450		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \quad$ Outputs high					50		50		50	$\mu \mathrm{A}$
$10]$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-110	-200	-50	-200	-50	-200	mA
Icc	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & V_{\mathrm{I}}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high		2	3		3		3	mA
			Outputs low		16	22		22		22	
			Outputs disabled		1	1.5		1.5		1.5	
${ }^{\text {l }} \mathrm{Cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		10						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		TDO		8						pF

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

18－BIT UNIVERSAL BUS TRANSCEIVERS

SCBS164－AUGUST 1993
timing requirements over recommended ranges of supply voltage and operating free－air temperature（unless otherwise noted）（normal mode）（see Note 3 and Figure 1）

				54AB	8502A	74AB	8502A	
				MIN	MAX	MIN	MAX	NTT
$\mathrm{f}_{\text {clock }}$	Clock frequency	CLKAB or CLKBA		0	100	0	100	MHz
	Pulse duration	CLKAB or CLKBA high or low				3.5		ก
\％	Puse duration	LEAB or LEBA high				3.5		
		A before CLKAB \uparrow or B before CLKBA				4		
$\mathrm{t}_{\text {su }}$	Setup time	A beforeLEAB ${ }^{\text {or B b }}$（ere LEBA	CLK high			3.5		ns
		A before LEAB \downarrow or B before LEBA \downarrow	CLK low			2		
	Hold time	A after CLKAB \uparrow or B after CLKBA \uparrow				0		
th	Hold time	A after LEAB \downarrow or B after LEBA \downarrow				2		ns

timing requirements over recommended ranges of supply voltage and operating free－air temperature（unless otherwise noted）（test mode）（see Note 3 and Figure 1）

			SN54AB	18502A	SN74AB	18502A	
			MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	TCK	0	50	0	50	MHz
${ }^{\text {tw }}$	Pulse duration	TCK high or low			8		ns
		A，B，CLK，LE，or $\overline{\mathrm{OE}}$ before TCK \uparrow			4.5		
$\mathrm{t}_{\text {su }}$	Setup time	TDI before TCK \uparrow			7.5		ns
		TMS before TCK \uparrow			3		
		A，B，CLK，LE，or $\overline{\mathrm{OE}}$ after TCK个			0.5		
th	Hold time	TDI after TCK \uparrow			0.5		ns
		TMS after TCK \uparrow			0.5		
$\mathrm{t}_{\text {d }}$	Delay time	Power up to TCK \uparrow			50		ns
tr_{r}	Rise time	$\mathrm{V}_{\text {CC }}$ power up			1		$\mu \mathrm{s}$

NOTE 3：Product preview specifications are design goals only and are subject to change without notice．

SN54ABT18502A, SN74ABT18502A
 SCAN TEST DEVICES WITH 18-BIT UNIVERSAL BUS TRANSCEIVERS
 SCBS164-AUGUST 1993

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18502A		SN74ABT18502A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CLKAB or CLKBA		100	130		100		100		MHz
tPLH	A or B	B or A						2	6	ns
tPHL								2	6	
tPLH	CLKAB or CLKBA	B or A						2.5	6	ns
tPHL								2.5	6	
tPLH	LEAB or LEBA	B or A						2.5	7	ns
tPHL								2.5	7	
tPZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A						2	7	ns
tPZL								2.5	8	
tPHZ	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A						3	8.8	ns
tplz								2.5	7.3	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18502A		SN74ABT18502A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		MHz
tpLH	TCK \downarrow	A or B						2.5	13.5	ns
tPHL								2.5	12.4	
tPLH	TCK \downarrow	TDO						2	5.6	ns
tPHL								2	6	
tPZH	TCK \downarrow	A or B						4.5	13.4	ns
tPZL								5	14	
tPZH	TCK \downarrow	TDO						2.5	6.8	ns
tPZL								3	7.5	
tPHZ	TCK \downarrow	A or B						4	16.3	ns
tpLZ								3.5	15.3	
tPHZ	TCK \downarrow	TDO						3	7.6	ns
tplz								3	7.6	

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tPHL tplz/tpZL tPHZ/tPZH	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54ABT18504A, SN74ABT18504A
 SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS
 SCBS165 - AUGUST 1993

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments Widebus ${ }^{\text {™ }}$ Family
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- UBT ${ }^{\text {™ }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- One Boundary-Scan Cell per I/O

Architecture Improves Scan Efficiency

- SCOPE ${ }^{\text {TM }}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in 64-Pin Plastic Thin Quad Flat Packages Using $0.5-\mathrm{mm}$ Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Packages Using 25-mil Center-to-Center Spacings

description

The SN54ABT18504A and SN74ABT18504A scan test devices with 20-bit universal bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.
In the normal mode, these devices are 20-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{\text {M }}$ universal bus transceivers.

Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), clock-enable ($\overline{C L K E N A B}$ and $\overline{C L K E N B A}$), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while. $\overline{C L K E N A B}$ is high and/or CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low and $\overline{C L K E N A B}$ is low, A-bus data is stored on a low-to-high transition of CLKAB. When $\overline{O E A B}$ is low, the B outputs are active. When $\overline{O E A B}$ is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the $\overline{O E B A}, ~ L E B A, ~ \overline{C L K E N B A}$, and CLKBA inputs.

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the l/O boundary of the device. When enabled, the test circuitry performs boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

SN54ABT18504A, SN74ABT18504A
 SCAN TEST DEVICES WITH
 20-BIT UNIVERSAL BUS TRANSCEIVERS
 SCBS165-AUGUST 1993

description (continued)

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.

Improved scan efficiency is accomplished through the adoption of a one boundary-scan cell (BSC) per I/O pin architecture. This architecture is implemented in such a way as to capture test data of most interest. A PSA/COUNT instruction is also included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

The SN54ABT18504A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT18504A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger
(normal mode, each register)

INPUTS					OUTPUT B
$\overline{\text { OEAB }}$	LEAB	CLKENAB	CLKAB	A	
L	L	L	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	\uparrow	L	L
L	L	L	\uparrow	H	H
L	L	H	x	X	$\mathrm{B}_{0} \ddagger$
L	H	X	X	L	L
L	H	X	x	H	H
H	X	X	x	X	Z

\dagger A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKENBA, and CLKBA.
\ddagger Output level before the indicated steady-state input conditions were established.

20-BIT UNIVERSAL BUS TRANSCEIVERS

SCBS165 - AUGUST 1993
functional block diagram

Pin numbers shown are for the PM package.

Terminal Functions

PIN NAME	DESCRIPTION
A1-A20	Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1-B20	Normal-function B-bus I/O ports. See function table for normal-mode logic.
CLKAB, CLKBA	Normal-function clock inputs. See function table for normal-mode logic.
CLKENAB, CLKENBA	Normal-function clock enables. See function table for normal-mode logic.
GND	Ground
LEAB, LEBA	Normal-function latch enables. See function table for normal-mode logic.
$\overline{O E A B}, \overline{O E B A}$	Normal-function output enables. See function table for normal-mode logic.
TCK	Test clock. One of four pins required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four pins required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four pins required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four pins required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
V_{CC}	Supply voltage

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

Supply voltage range， V	0.5 V to 7 V
Input voltage range， V_{I}（except I／O ports）（see Note 1）	-0.5 V to 7 V
Input voltage range， V_{l}（l／O ports）（see Note 1）	-0.5 V to 5.5 V
Voltage range applied to any output in the high state or power－off s	-0.5 V to 5.5 V
Current into any output in the low state， I_{O} ：SN54ABT18504A	96 mA
SN74ABT18504A	128 mA
Input clamp current， $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$	－18 mA
Output clamp current， $\left.\mathrm{IOK}^{(} \mathrm{V} \mathrm{V}_{\mathrm{O}}<0\right)$	－50 mA
Continuous current through V_{CC}	576 mA
Continuous current through GND	1152 mA
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$（in still air）（see Note 2）	885 mW
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings can be exceeded if the input and output clamp－current ratings are observed．
2．For the SN74ABT18504A（PM package），the power derating factor for ambient temperatures greater than $55^{\circ} \mathrm{C}$ is $-10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ．

recommended operating conditions

		SN54ABT18504A		SN74ABT18504A		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High－level input voltage	2		2		V
V_{IL}	Low－level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High－level output current		－24		－32	mA
l OL	Low－level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free－air temperature	－55	125	－40	85	${ }^{\circ} \mathrm{C}$

SN54ABT18504A, SN74ABT18504A SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Note 3)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT18504A		SN74ABT18504A		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
V_{IK}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\prime} \mathrm{OH}=-3 \mathrm{~mA}$			2.5			2.5		2.5		v
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
		$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		CLK, CLKEN, LE, OE, TCK			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
IIH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$		TDI, TMS			10		10		10	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{GND}$		TDI, TMS			-150		-150		-150	$\mu \mathrm{A}$
1 (hold)	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	A or B ports						100		$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2 \mathrm{~V}$							-100		
$\mathrm{l}^{\text {OZH }}{ }^{\text {® }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
lozt ${ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
'ozpu	$\begin{aligned} & V_{C C}=0 \text { to } 2 \mathrm{~V}, \\ & V_{O}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \end{aligned}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
IOZPD	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V} \text { to } 0, \\ \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \end{array}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
$l_{\text {off }}$	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100		± 450		± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|l\|l\|l} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ \hline \end{array}$					50		50		50	$\mu \mathrm{A}$
10				-50	-110	-200	-50	-200	-50	-200	mA
ICC	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{C C} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high		2	3		3		3	mA
			Outputs low		18	24		24		24	
			Outputs disabled		1	1.5		1.5		1.5	
${ }^{\text {l }} \mathrm{CC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		10						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		TDO		8						pF

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and IOZL include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

20－BIT UNIVERSAL BUS TRANSCEIVERS

SCBS165－AUGUST 1993
timing requirements over recommended ranges of supply voltage and operating free－air temperature（unless otherwise noted）（normal mode）（see Note 3 and Figure 1）

timing requirements over recommended ranges of supply voltage and operating free－air temperature（unless otherwise noted）（test mode）（see Note 3 and Figure 1）

			SN54AB	18504A	SN74AB	18504A	
			MIN	MAX	MIN	MAX	NIT
${ }^{\text {clock }}$	Clock frequency	TCK	0	50	0	50	MHz
t_{w}	Pulse duration	TCK high or low			8		ns
		A，B，CLK，LE，or $\overline{O E}$ before TCK \uparrow			4.5		
$\mathrm{t}_{\text {su }}$	Setup time	TDI before TCK \uparrow			7.5		ns
		TMS before TCK \uparrow			3		
		A，B，CLK，LE，or $\overline{\mathrm{OE}}$ after TCK介			0.5		
th	Hold time	TDI after TCK \uparrow			0.5		ns
		TMS after TCK \uparrow			0.5		
t_{d}	Delay time	Power up to TCK \uparrow			50		ns
tr_{r}	Rise time	$\mathrm{V}_{\text {CC }}$ power up			1		$\mu \mathrm{s}$

NOTE 3：Product preview specifications are design goals only and are subject to change without notice．

SN54ABT18504A, SN74ABT18504A
 SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18504A		SN74ABT18504A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CLKAB or CLKBA		100	130		100		100		MHz
${ }_{\text {tPLH }}$	A or B	B or A						2	6	ns
tPHL								2	6.5	
tPLH	CLKAB or CLKBA	B or A						2.5	6.8	ns
tPHL								2.5	6.5	
tPLH	LEAB or LEBA	B or A						2.5	7.1	ns
tPHL								2.5	7.2	
tPZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A						2	7	ns
tpZL								2.5	8	
tphz	$\overline{\text { OEAB }}$ or $\overline{\text { OEBA }}$	B or A						3	8.8	ns
tpLZ								2.5	7.3	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18504A		SN74ABT18504A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		MHz
tpli	TCK \downarrow	A or B						2.5	13.5	ns
tPHL								2.5	12.5	
tPLH	TCK \downarrow	TDO						2	5.6	ns
tPHL								2	6.5	
tPZH	TCK \downarrow	A or B						4.5	13.8	ns
tpZL								5	14.5	
tPZH	TCK \downarrow	TDO						2	7	ns
tpZL								3	7.5	
tPHZ	TCK \downarrow	A or B						4	17	ns
tpLZ								3.5	16	
tphz	TCK \downarrow	TDO						3	7.5	ns
tplZ								3	7.5	

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

20-BIT UNIVERSAL BUS TRANSCEIVERS

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Include D-Type Flip-Flops and Control Circuitry to Provide Multiplexed Transmission of Stored and Real-Time Data
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- One Boundary-Scan Cell per I/O

Architecture Improves Scan Efficiency

- SCOPE ${ }^{\text {TM }}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in 64-Pin Plastic Thin Quad Flat Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Packages Using 25-mil Center-to-Center Spacings

SN74ABT18646A . . . PM PACKAGE
(TOP VIEW)

description

The SN54ABT18646A and SN74ABT18646A scan test devices with 18-bit bus transceivers and registers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4 -wire test access port (TAP) interface.
In the normal mode, these devices are 18-bit bus transceivers and registers that allow for multiplexed transmission of data directly from the input bus or from the internal registers. They can be used either as two 9 -bit transceivers or one 18 -bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers and registers.
Transceiver function is controlled by output-enable ($\overline{\mathrm{OE}}$) and direction (DIR) inputs. When $\overline{\mathrm{OE}}$ is low, the transceiver is active and operates in the A-to-B direction when DIR is high or in the B-to-A direction when DIR is low. When $\overline{O E}$ is high, both the A and B outputs are in the high-impedance state, effectively isolating both buses.

Data flow is controlled by clock (CLKAB and CLKBA) and select (SAB and SBA) inputs. Data on the A bus is clocked into the associated registers on the low-to-high transition of CLKAB. When SAB is low, real-time A data is selected for presentation to the B bus (transparent mode). When SAB is high, stored A data is selected for presentation to the B bus (registered mode). The function of the CLKBA and SBA inputs mirrors that of CLKAB and SAB, respectively. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT18646A.

SN54ABT18646A, SN74ABT18646A
 SCAN TEST DEVICES WITH 18-BIT TRANSCEIVERS AND REGISTERS

description (continued)

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers and registers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.
Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
Improved scan efficiency is accomplished through the adoption of a one boundary-scan cell (BSC) per I/O pin architecture. This architecture is implemented in such a way as to capture test data of most interest. A PSA/COUNT instruction is also included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.

The SN54ABT18646A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT 18646 A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(normal mode, each 9-bit section)

INPUTS						DATA I/O		OPERATION OR FUNCTION
$\overline{O E}$	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A9	B1 THRU B9	
X	X	\uparrow	X	X	X	Input	Unspecified \dagger	Store A, B unspecified \dagger
X	X	X	\uparrow	X	X	Unspecified \dagger	Input	Store B, A unspecified \dagger
H	X	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
H	X	L	L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	L	X	H	Output	Input disabled	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	L	X	H	X	Input disabled	Output	Stored A data to B bus

\dagger The data output functions can be enabled or disabled by various signals at the $\overline{O E}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.
MヨI^ヨyd LOnaOyd

$$
\begin{array}{ccccc}
\hline \text { OE } & \text { DIR } & \text { CLKAB } & \text { CLKBA } & \text { SAB } \\
\mathrm{L} & \mathrm{~L} & \mathrm{X} & \mathrm{X} & \mathrm{SBA} \\
& \text { REAL-TIME TRANSFER } \\
\text { BUS B TO BUS A }
\end{array}
$$

STORAGE FROM A, B, OR A AND B

Figure 1. Bus-Management Functions

functional block diagram

Pin numbers shown are for the PM package.

SN54ABT18646A, SN74ABT18646A SCAN TEST DEVICES WITH 18-BIT TRANSCEIVERS AND REGISTERS
 SCBS166 - AUGUST 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	. 5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Input voltage range, V_{1} (1/O ports) (see Note 1)	-0.5 V to 5.5 V
Voltage range applied to any output in the high state or power-off state, V_{O}	-0.5 V to 5.5 V
Current into any output in the low state, I_{O} : SN54ABT18646A	96 mA
SN74ABT18646A	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{l}}<0\right)$	$-18 \mathrm{~mA}$
Output clamp current, $\mathrm{l}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum package power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2)	885 mW
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. For the SN74ABT18646A (PM package), the power derating factor for ambient temperatures greater than $55^{\circ} \mathrm{C}$ is $-10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
recommended operating conditions

	.	SN54ABT18646A		SN74ABT18646A		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	$V_{\text {cc }}$	V
${ }^{\mathrm{IOH}}$	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate		10		10	ns/V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Note 3)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT18646A		SN74ABT18646A		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
VOH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-3 \mathrm{~mA}$			2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{l}^{\mathrm{OH}}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
		$\mathrm{IOL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		CLK, DIR, OE, S, TCK			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
IIH	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$		TDI, TMS			10		10		10	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{GND}$		TDI, TMS			-150		-150		-150	$\mu \mathrm{A}$
1 (hold)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	A or B ports						100		
		$\mathrm{V}_{1}=2 \mathrm{~V}$							-100		$\mu \mathrm{A}$
IOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OZL }}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
IozPu	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=0 \text { to } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
IozPD	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \text { to } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \end{aligned}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	$V_{C C}=0, \quad V_{1}$ or $V_{O} \leq 4.5 \mathrm{~V}$					± 100		± 450		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
107	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-110	-200	-50	-200	-50	-200	mA
${ }^{\text {ICC }}$	$\begin{aligned} & \mathrm{V}_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high		2	3		3		3	mA
			Outputs low		16	22		22		22	
			Outputs disabled		1	1.5		1.5		1.5	
${ }^{\prime} \mathrm{Cc}^{\#}{ }^{\text {(}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		10						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		TDO		8						pF

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters IOZH^{2} and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SN54ABT18646A, SN74ABT18646A SCAN TEST DEVICES WITH

18-BIT TRANSCEIVERS AND REGISTERS

SCBS166-AUGUST 1993
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Note 3 and Figure 2)

\left.| | | | SN54ABT18646A | SN74ABT18646A | UNIT |
| :--- | :--- | ---: | ---: | :---: | :---: |
| | | MIN | MAX | MIN | |$\right)$

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Note 3 and Figure 2)

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Note 3 and Figure 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18646A		SN74ABT18646A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CLKAB or CLKBA		100	130		100		100		MHz
tpLH	A or B	B or A						2	5.4	ns
tpHL								2	6.6	
tPLH	CLKAB or CLKBA	B or A						2.5	8	ns
tpHL								2.5	7.4	
tPLH	SAB or SBA	B or A						2	7.5	ns
tphL								2	8	
tPZH	DIR	B or A						2	8	ns
tPZL								3	9.1	
tPZH	$\overline{\mathrm{OE}}$	- B or A						2.5	8.6	ns
tPZL								3	9.3	
tPHZ	DIR	B or A						3.5	11.1	ns
tplz								3	'8.8	
tPHZ	$\overline{O E}$	B or A						3.5	10.5	ns
tplz								2	8.5	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Note 3 and Figure 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			SN54ABT18646A		SN74ABT18646A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f max }}$	TCK		50	90		50		50		MHz
tPLH	TCK \downarrow	A or B						2.5	13.5	ns
tPHL								2.5	12.5	
tPLH	TCK \downarrow	TDO						2	6.5	ns
tPHL								2	6.5	
tPZH	TCK \downarrow	A or B						4.5	13.8	ns
tpZL								5	14.5	
tPZH	TCK \downarrow	TDO						2	7	ns
tpZL								3	7.5	
tPHZ	TCK \downarrow	A or B						4	17	ns
tpLZ								3	16	
tPHZ	TCK \downarrow	TDO						3	9	ns
tplz								3	7.5	

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

SN54ABT18652A, SN74ABT18652A
 SCAN TEST DEVICES WITH 18-BIT BUS TRANSCEIVERS AND REGISTERS

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- Include D-Type Flip-Flops and Control Circuitry to Provide Multiplexed Transmission of Stored and Real-Time Data
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- One Boundary-Scan Cell per I/O Architecture Improves Scan Efficiency
- SCOPE ${ }^{\text {TM }}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in 64-Pin Plastic Thin Quad Flat Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Packages Using 25-mil Center-to-Center Spacings

SN54ABT18652A . . . HV PACKAGE (TOP VIEW)

NC - No internal connection

SCOPE, Widebus, and EPIC-IIB are trademarks of Texas Instruments Incorporated.

description

The SN54ABT18652A and SN74ABT18652A scan test devices with 18-bit bus transceivers and registers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

In the normal mode, these devices are 18-bit bus transceivers and registers that allow for multiplexed transmission of data directly from the input bus or from the internal registers. They can be used either as two 9 -bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers and registers.

Data flow in each direction is controlled by clock (CLKAB and CLKBA), select (SAB and SBA), and output-enable (OEAB and $\overline{O E B A}$) inputs. For A-to-B data flow, data on the A bus is clocked into the associated registers on the low-to-high transition of CLKAB. When SAB is low, real-time A data is selected for presentation to the B bus (transparent mode). When $S A B$ is high, stored A data is selected for presentation to the B bus (registered mode). When OEAB is high, the B outputs are active. When OEAB is low, the B outputs are in the high-impedance state. Control for B-to-A data flow is similar to that for A-to- B data flow but uses CLKBA, SBA, and OEBA inputs. Since the $\overline{O E B A}$ input is active-low, the A outputs are active when $\overline{O E B A}$ is low and are in the high-impedance state when $\overline{O E B A}$ is high. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT18652A.

description (continued)

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers and registers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
Improved scan efficiency is accomplished through the adoption of a one boundary-scan cell (BSC) per I/O pin architecture. This architecture is implemented in such a way as to capture test data of most interest. A PSAVCOUNT instruction is also included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.
The SN54ABT18652A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT18652A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(normal mode, each 9-bit section)

INPUTS						DATA I/O -		OPERATION OR FUNCTION
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1 THRU A9	B1 THRU B9	
L	H	L	L	X	X	Input disabled	Input disabled	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	L	x	X	Input	Unspecified \dagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	x	Input	Output	Store A in both registers
L	X	L	\uparrow	x	x	Unspecified \dagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	x \ddagger	Output	Input	Store B in both registers
L	L	X	x	X	L	Output	Input	Real-time B data to A bus
L	L	X	L	X	H	Output	Input	Stored B data to A bus
H	H	X	x	L	X	Input	Output	Real-time A data to B bus
H	H	L	x	H	x	Input	Output	Stored A data to B bus
H	L	L	L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

\dagger The data output functions can be enabled or disabled by a variety of level combinations at the OEAB or $\overline{\mathrm{OEBA}}$ inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L: clocks can occur simultaneously.
Select control $=\mathrm{H}$: clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions

functional block diagram

Pin numbers shown are for the PM package.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

ply voltage range	-0.5 V to 7 V
Input voltage range, V_{1} (except I/O ports) (see Note 1)	-0.5 V to 7 V
Input voltage range, V_{1} (1/O ports) (see Note 1)	-0.5 V to 5.5 V
Voltage range applied to any output in the high state or power-off state, V_{O}	-0.5 V to 5.5 V
Current into any output in the low state, l_{0} : SN54ABT18652A	96 mA
SN74ABT18652A	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{I}}\left(\mathrm{V}_{1}<0\right)$	-18 mA
Output clamp current, $\mathrm{l}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	-50 mA
Maximum package power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) (see Note 2)	885 mW
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. For the SN74ABT18652A (PM package), the power derating factor for ambient temperatures greater than $55^{\circ} \mathrm{C}$ is $-10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

recommended operating conditions

		SN54AB	8652A	SN74AB	8652A	
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{I}.	Input voltage	0	V_{CC}	0	V_{CC}	V
IOH	High-level output current		-24		-32	mA
lOL	Low-level output current		48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

SN54ABT18652A, SN74ABT18652A
 SCAN TEST DEVICES WITH 18-BIT BUS TRANSCEIVERS AND REGISTERS
 SCBS167 - AUGUST 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Note 3)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT18652A		SN74ABT18652A		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5		2.5		V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}^{\prime} \mathrm{OH}=-3 \mathrm{~mA}$			3			3		3		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}^{\prime}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$				0.55		0.55			V
		$\underline{\mathrm{l}} \mathrm{OL}=64 \mathrm{~mA}$				$0.55 \ddagger$				0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		$\begin{aligned} & \text { CLK, OEAB, } \\ & \text { OEBA, S, } \\ & \text { TCK } \end{aligned}$			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 100		± 100		± 100	
1 H	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}$		TDI, TMS			10		10		10	$\mu \mathrm{A}$
ILL	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{GND}$		TDI, TMS			-150		-150		-150	$\mu \mathrm{A}$
1 (hold)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	A or B ports						100		$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2 \mathrm{~V}$							-100		
$\mathrm{l}^{1} \mathrm{ZH}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50		50		50	$\mu \mathrm{A}$
- $\mathrm{IOZL}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50		-50		-50	$\mu \mathrm{A}$
Iozpu	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=0 \text { to } 2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \\ \hline \end{array}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
IozPD	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=0 \text { to } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \text { or } 0.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\overline{\mathrm{OE}}=0.8 \mathrm{~V}$			± 50		± 50		± 50	$\mu \mathrm{A}$
1 off	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100		± 450		± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|ll\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} & \text { Outputs high } \\ \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \\ \hline \end{array}$					50		50		50	$\mu \mathrm{A}$
$10]$				-50	-110	-200	-50	-200	-50	-200	mA
Icc	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{C C} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high		2	3		3		3	mA
			Outputs low		16	22		22		22	
			Outputs disabled		1	1.5		1.5		1.5	
${ }^{\text {I }} \mathrm{Cc}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					1.5		1.5		1.5	mA
C_{i}	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		10						pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		TDO		8						pF

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{IOZL}_{\text {include the }}$ the input leakage current.
Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Note 3 and Figure 2)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Note 3 and Figure 2)

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (normal mode) (see Note 3 and Figure 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18652A		SN74ABT18652A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	CLKAB or CLKBA		100	130		100		100		MHz
tPLH	A or B	B or A						2	5.4	ns
tPHL								2	6.6	
tpLH	CLKAB or CLKBA	B or A						2.5	8	ns
tPHL								2.5	7.4	
tPLH	SAB or SBA	B or A						2	7.5	ns
tPHL								2	8	
tPZH	OEAB or $\overline{O E B A}$	B or A						2.5	8.6	ns
tPZL								3	9.3	
tPHZ	OEAB or $\overline{O E B A}$	B or A						3.5	10.5	ns
tpLZ								2	8.5	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (test mode) (see Note 3 and Figure 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT18652A		SN74ABT18652A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$	TCK		50	90		50		50		MHz
tpLH	TCK \downarrow	A or B						2.5	13.5	ns
tPHL								2.5	12.5	
tPLH	TCK \downarrow	TDO						2	6.5	ns
tPHL								2	6.5	
tPZH	TCK \downarrow	A or B						4.5	13.8	ns
tPZL								5	14.5	
tPZH	TCK \downarrow	TDO						2	7	ns
tPZL								3	7.5	
tPHZ	TCK \downarrow	A or B						4	17	ns
tpLZ								3	16	
tphz	TCK \downarrow	TDO						3	9	ns
tplz								3	7.5	

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

18-BIT BUS TRANSCEIVERS AND REGISTERS

SCBS167-AUGUST 1993

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {tPL }}$	Open
tPLIPZL	7 V
t PHZ $^{\prime}$ tPZH	Open

Figure 2. Load Circuit and Voltage Waveforms
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {M }}$ 4
ABT Widebus ${ }^{T M}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- Compatibility with IEEE Standard 1149.1-1990 (JTAG) test access port (TAP) and boundary-scan architecture
- EPIC-IIB ${ }^{\text {TM }}$ BiCMOS process with special low-voltage enhancements
- EIAJ TSSOP, JEDEC SSOP, and EIAJ TQFP fine-pitch surface-mount packaging
- Bus-hold circuitry
- 18- and 20 -bit UBT ${ }^{\top \mathrm{M}}$ architectures
- Additional SCOPE ${ }^{\text {TM }}$ instructions available such as:
- Parallel Signature Analysis (PSA)
- Pseudo-Random Pattern Generation (PRPG)
- Test-mode or normal-mode operation
- Expanded V_{CC} range from 2.7 V to 3.6 V
- Members of the Texas Instruments SCOPE ${ }^{\text {M }}$ family of testability products
- TI has established an alternate source

Benefits

- Facilitate testing of complex circuit board assemblies via a 4 -wire test access port
- 3.3-V logic family with equivalent drive performance of 5-V ABT logic family - not just a recharacterized, scaled CMOS
- Complete input and output compatibility with $5-\mathrm{V}$, signals combined with a pure $3.3-\mathrm{V}$ internal supply signal - provides bidirectional $3-\mathrm{V}$ to $5-\mathrm{V}$ translation
- No system throughput or cycle time penalty for boundary-scan implementation
- Functional equivalents to standard ABT devices offer system and test designers flexible integration options
- Save valuable board space
- Reduce component count by eliminating need for external pullup or pulldown resistors on I/O pins configured as inputs left unused or floating
- Advanced integration, as one UBT ${ }^{\text {TM }}$ can replace nearly all common bus-interface logic
- Built-in self-test feature allows easy upgrade for advanced JTAG test applications
- IEEE Standard 1149.1-1990 protocol can be bypassed for applications not requiring boundary scan
- Compatible with complete line of system-level test products including controllers, bus monitors, scan path linkers, scan path selectors, application-specific products, and very large-scale integration products
- Standardization that comes from a common product approach

Information regarding the tap control state diagram, signal descriptions, and other related JTAG/IEEE 1149.1 information for the 'LVT18245, 'LVT18502, and 'LVT18504 is similar to that for the 'ABT18245. Therefore, this information will only be provided in the data sheet for the 'ABT18245 in section 9. Please contact your local TI sales representative for further information.

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments . Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V input and Output Voltages With 3.3-V Vcc)
- Supports Unregulated Battery Operation Down to 2.7 V
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- SCOPE ${ }^{\text {TM }}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT18245 ... WD PACKAGE
SN74LVT18245...DGG OR DL PACKAGE
(TOP VIEW)

	$V_{56}[1$
$1 \mathrm{B1} \mathrm{C}_{2}$	55 1A1
$1 \mathrm{B2} 3$	54 1A2
GND	$53]$ GND
3	52
4	51 1A4
$\mathrm{v}_{\mathrm{CC}}{ }^{7}$	$50] \mathrm{VCC}$
$1 \mathrm{B5}$-8	49-1A5
186	48
10	$10 \quad 47{ }^{1} 1$
GN	$11 \quad 46]$ GND
188	12451 188
$1 \mathrm{B9}{ }^{13}$	3441 199
2B1 14	14 43 2A1
$2 \mathrm{B2} 15$	42 L 22
2B3 16	$16 \quad 41$ 2A3
17	$17 \quad 40244$
18	18 39 GND
19	19 38 2A5
20	20 37 2A6
2 B 7	21 36] 2A7
\checkmark	$2235 \mathrm{~V}_{\mathrm{Cc}}$
2B8 23	$340{ }^{34}$
2B9 24	33249
GND 25	323 GND
2DIR 26	$3 \quad 31 / 2 \overline{O E}$
TDO[27	37 30 TDI
MS 28	88 29] TCK

description

The SN54LVT18245 and SN74LVT18245 scan test devices with 18-bit bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.

In the normal mode, these devices are 18-bit noninverting bus transceivers. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers.

[^54]
description (continued)

Data flow is controlled by the direction-control (DIR) and output-enable ($\overline{\mathrm{OE}}$) inputs. Data transmission is allowed from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at DIR. The output-enable $(\overline{\mathrm{OE}})$ can be used to disable the device so that the buses are effectively isolated.
In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry can perform boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT18245 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT18245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT18245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(normal mode, each 9-bit section)

INPUTS		OPERATION
$\overline{\mathrm{OE}}$	$\mathbf{D I R}$	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

functional block diagram

SN54LVT18245, SN74LVT18245

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT BUS TRANSCEIVERS
SCBS161-AUGUST 1993
Terminal Functions

PIN NAME	DESCRIPTION
GND	Ground
TCK	Test clock. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four terminals required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four terminals required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four terminals required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage
1A1-1A9, 2A1-2A9	Normal-function A-bus I/O ports. See function table for normal-mode logic.
1B1-1B9, 2B1-2B9	Normal-function B-bus I/O ports. See function table for normal-mode logic.
1DIR, 2DIR	Normal-function direction controls. See function table for normal-mode logic.
$1 \overline{O E}, 2 \overline{O E}$	Normal-function output enables. See function table for normal-mode logic.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \text { (see Note } 1 \text {) - } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54LVT18245 . } 96 \mathrm{~mA} \\
& \text { SN74LVT18245 . } 128 \text { mA } \\
& \text { Current into any output in the high state, } \mathrm{I}_{\mathrm{O}} \text { (see Note 2): SN54LVT18245 } 48 \mathrm{~mA}
\end{aligned}
$$

> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package . 1 W
> DL package 0.95 W
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings can be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

			SN54LV	T18245	SN74LV	18245	
			MIN	MAX	MIN	MAX	UNT
$\mathrm{V}_{\text {CC }}$	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voitage			5.5		5.5	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
l OL	Low-level output current			24		32	mA
IOL ${ }^{\ddagger}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^55]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Note 3)

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at V_{CC} or GND
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Note 3 and Figure 1)

			SN54LVT18245				SN74LVT18245				UNIT
			$\begin{gathered} \mathrm{V}_{C C}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	TCK					0	50			MHz
t_{w}	Pulse duration	TCK high or low					8.1				ns
$\mathrm{t}_{\text {su }}$	Setup time	A, B, DIR, or $\overline{\text { OE before TCK } \uparrow ~}$					7				ns
		TDI before TCK \uparrow					4.5				
		TMS before TCK \uparrow					3.6				
$t_{\text {h }}$	Hold time	A, B, DIR, or $\overline{\mathrm{OE}}$ after TCK \uparrow					0				ns
		TDI after TCK \uparrow					0				
		TMS after TCK \uparrow					0.5				
t_{d}	Delay time	Power up to TCK \uparrow					50				ns
t_{r}	Rise time	$\mathrm{V}_{\text {CC }}$ power up					1				$\mu \mathrm{s}$

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

SN54LVT18245, SN74LVT18245
 3.3-V ABT SCAN TEST DEVICES
 WITH 18-BIT BUS TRANSCEIVERS
 SCBS161-AUGUST 1993

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54LVT18245			SN74LVT18245			UNIT
			$\begin{gathered} \mathrm{VCC}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	$\begin{gathered} V_{C C}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	
			MIN	MAX	MAX	MIN	MAX	MAX	
tPLH	A or B	B or A				1.5	4.8		
tPHL						1.5	5.4		ns
tPZH	$\overline{O E}$	B or A				3	8.5		ns
tPZL						3	9		
tPHZ	$\overline{\mathrm{OE}}$	B or A				3	9.5		ns
tplz						3	9.5		

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	SN54LVT18245			SN74LVT18245			UNIT
			$\begin{gathered} \mathrm{v}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathbf{C C}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\frac{\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}}{\mathrm{MAX}}$	
			MIN	MAX	MAX	MIN	MAX		
$f_{\text {max }}$	TCK \downarrow					50			MHz
tPLH	TCK \downarrow	A or B				3	13.1		
tPHL						3	12.8		S
tPLH	TCK \downarrow	TDO				2	6.1		ns
tPHL						2	6.5		
tPZH	TCK \downarrow	A or B				4	13.4		ns
tPZL						4	13.6		
tPZH	TCK \downarrow	TDO				2	6.6		ns
tPZL						2.5	6.9		ns
tPHZ	TCK \downarrow	A or B				3.5	13.6		ns
tPLZ						2.5	12.7		
tPHZ	TCK \downarrow	TDO				2	7.2		s
tpLZ						1.5	6.3		

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL $^{\text {tPL }}$	Open
tPLZ/PZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
- Supports Unregulated Battery Operation Down to 2.7 V
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- SCOPE ${ }^{\text {TM }}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and *HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in 64-Pin Plastic Thin Quad Flat Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Packages Using 25-mil Center-to-Center Spacings

description

The SN54LVT18502 and SN74LVT18502 scan test devices with 18-bit universal bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.

Additionally, these devices are designed specifically for low-voltage (3.3-V) V_{Cc} operation, but with the capability to provide a TTL interface to a 5-V system environment.
In the normal mode, these devices are 18-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. They can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ universal bus transceivers.
Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When $\overline{O E A B}$ is low, the B outputs are active. When $\overline{O E A B}$ is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the OEBA, LEBA, and CLKBA inputs.

description (continued)

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ universal bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.
Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54LVT18502 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT18502 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger
(normal mode, each register)

INPUTS				OUTPUT
OEAB	LEAB	CLKAB	A	B
L	L	L	X	$\mathrm{B}_{0} \ddagger$
L	L	\uparrow	L	L
L	L	\uparrow	H	H
L	H	X	L	L
L	H	X	H	H
H	X	X	X	Z

\dagger A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{O E B A}, ~ L E B A, ~ a n d ~ C L K B A . ~$
\ddagger Output level before the indicated steady-state input conditions were established.

SN54LVT18502, SN74LVT18502

3.3-V ABT SCAN TEST DEVICES WITH

18-BIT UNIVERSAL BUS TRANSCEIVERS

SCBS162 - AUGUST 1993
functional block diagram

Pin numbers shown are for the PM package.

Terminal Functions

PIN NAME	DESCRIPTION
GND	Ground
TCK	Test clock. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four terminals required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four terminals required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four terminals required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage
1A1-1A9, 2A1-2A9	Normal-function A-bus I/O ports. See function table for normal-mode logic.
1B1-1B9, 2B1-2B9	Normal-function B-bus I/O ports. See function table for normal-mode logic.
1CLKAB, 1CLKBA, 2CLKAB, 2CLKBA	Normal-function clock inputs. See function table for normal-mode logic.
1LEAB, 1LEBA, 2LEAB, 2LEBA	Normal-function latch enables. See function table for normal-mode logic.
1OEAB, $\overline{O E E B A}$, $2 \overline{O E A B}, 2 \overline{O E B A}$	Normal-function output enables. See function table for normal-mode logic.

SN54LVT18502，SN74LVT18502

3．3－V ABT SCAN TEST DEVICES WITH

 18－BIT UNIVERSAL BUS TRANSCEIVERSSCBS162－AUGUST 1993

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

Voltage range applied to any output in the high state or power－off state， V_{O}（see Note 1）$\ldots .-0.5 \mathrm{~V}$ to 7 V
Current into any output in the low state，Io：SN54LVT18502 ．． 96 mA
SN74LVT18502 ．． 128 mA
Current into any output in the high state， I_{O}（see Note 2）：SN54LVT18502 ．．．．．．．．．．．．．．．．．．．．．．．．．．． 48 mA
SN74LVT18502 ．．．．．．．．．．．．．．．．．．．．．．．．．．． 64 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$（in still air）：PM package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings can be exceeded if the input and output clamp－current ratings are observed．
2．This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ ．
recommended operating conditions

\ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Note 3)

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at $V_{C C}$ or GND
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free－air temperature range（unless otherwise noted）（normal mode）（see Note 3 and Figure 1）

timing requirements over recommended operating free－air temperature range（unless otherwise noted）（test mode）（see Note 3 and Figure 1）

			SN54LVT18502				SN74LVT18502				UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	TCK					0	50			MHz
t_{w}	Pulse duration	TCK high or low					8				ns
$\mathrm{t}_{\text {su }}$	Setup time	A，B，CLK，LE，or $\overline{O E}$ before TCK \uparrow					4.5				ns
		TDI before TCK \uparrow					7.5				
		TMS before TCK \uparrow					3				
th	Hold time	A，B，CLK，LE，or $\overline{O E}$ after TCK \uparrow					0.5				ns
		TDI after TCK个					0.5				
		TMS after TCK \uparrow					0.5				
t_{d}	Delay time	Power up to TCK个					50				ns
t_{r}	Rise time	$\mathrm{V}_{\text {CC }}$ power up					1				$\mu \mathrm{s}$

NOTE 3：Product preview specifications are design goals only and are subject to change without notice．
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT18502			SN74LVT18502			UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			MIN	MAX	MAX	MIN	MAX	MAX	
$f_{\text {max }}$	CLKAB or CLKBA					100			MHz
tPLH	A or B	B or A				2	6		ns
tpHL						2	6		
tPLH	CLKAB or CLKBA	B or A				2.5	6		ns
tPHL						2.5	6		
tPLH	LEAB or LEBA	B or A				2.5	7		ns
tPHL						2.5	7		
tPZH	$\overline{\text { OEAB }}$ or $\overline{O E B A}$	B or A				2	7		ns
tPZL						2.5	8		ns
tphz	$\overline{\text { OEAB or }} \overline{\text { OEBA }}$	B or A				3	8.8		ns
tpLZ						2.5	7.3		ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54LVT18502			SN74LVT18502			UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$	
			MIN	MAX	MAX	MIN	MAX	MAX	
$f_{\text {max }}$	TCK					50			MHz
tpLH	TCK \downarrow	A or B				2.5	13.5		
tpHL						2.5	12.4		ns
tPLH	TCK \downarrow	TDO				2	5.6		s
tPHL						2	6		
tPZH	TCK \downarrow	A or B				4.5	13.4		ns
tPZL						5	14		ns
tPZH	TCK \downarrow	TDO		,		2.5	6.8		
tPZL						3	7.5		ns
tPHz	TCK \downarrow	A or B				4	16.3		s
tpLZ						3.5	15.3		ns
tphz	TCK \downarrow	TDO				3	7.6		ns
tplz						3	7.6		ns

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

Figure 1. Load Circuit and Voltage Waveforms

- Members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ Family of Testability Products
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- SCOPE ${ }^{\mathrm{TM}}$ Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions and P1149.1A CLAMP and HIGHZ
- Parallel Signature Analysis at Inputs
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in 64-Pin Plastic Thin Quad Flat Packages Using 0.5-mm Center-to-Center Spacings and 68-Pin Ceramic Quad Flat Packages Using 25-mil Center-to-Center Spacings

description

The SN54LVT18504 and SN74LVT18504 scan test devices with 20-bit universal bus transceivers are members of the Texas Instruments SCOPE ${ }^{\text {TM }}$ testability IC family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit board assemblies. Scan access to the test circuitry is accomplished via the 4 -wire test access port (TAP) interface.
Additionally, these devices are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.

In the normal mode, these devices are 20-bit universal bus transceivers that combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The test circuitry can be activated by the TAP to take snapshot samples of the'data appearing at the device pins or to perform a self test on the boundary test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPE ${ }^{\text {TM }}$ universal bus transceivers.

Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), clock-enable ($\overline{C L K E N A B}$ and CLKENBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKENAB is high and/or CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low and $\overline{C L K E N A B}$ is low, A-bus data is stored on a low-to-high transition of CLKAB. When $\overline{O E A B}$ is low, the B outputs are active. When $\overline{O E A B}$ is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the OEBA, LEBA, CLKENBA, and CLKBA inputs.

description (continued)

In the test mode, the normal operation of the SCOPE ${ }^{\text {TM }}$ universal bus transceivers is inhibited, and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled the test circuitry performs boundary scan test operations according to the protocol described in IEEE Standard 1149.1-1990.

Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry can perform other testing functions such as parallel signature analysis on data inputs and pseudo-random pattern generation from data outputs. All testing and scan operations are synchronized to the TAP interface.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54LVT18504 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT18504 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger
(normal mode, each register)

INPUTS					OUTPUT B
$\overline{\text { OEAB }}$	LEAB	CLKENAB	CLKAB	A	
L	L	L	L	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	L	L	\uparrow	L	L
L	L	L	\uparrow	H	H
L	L	H	x	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	H	X	X	L	L
L	H	X	X	H	H
H	x	x	x	X	z

\dagger A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{O E B A}$, LEBA, CLKENBA, and CLKBA.
\ddagger Output level before the indicated steady-state input conditions were established.

functional block diagram

Pin numbers shown are for the PM package.

Terminal Functions

PIN NAME	DESCRIPTION
A1-A2O	Normal-function A-bus I/O ports. See function table for normal-mode logic.
B1-B20	Normal-function B-bus //O ports. See function table for normal-mode logic.
CLKAB, CLKBA	Normal-function clock inputs. See function table for normal-mode logic.
$\overline{\overline{C L K E N A B}}$,	Normal-function clock enables. See function table for normal-mode logic.
$\overline{\text { CLKENBA }}$	Ground
GND	Normal-function latch enables. See function table for normal-mode logic.
$\overline{\text { OEAB }}, \overline{\text { OEBA }}$	Normal-function output enables. See function table for normal-mode logic.
TCK	Test clock. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to the test clock. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.
TDI	Test data input. One of four terminals required by IEEE Standard 1149.1-1990. The test data input is the serial input for shifting data through the instruction register or selected data register. An internal pullup forces TDI to a high level if left unconnected.
TDO	Test data output. One of four terminals required by IEEE Standard 1149.1-1990. The test data output is the serial output for shifting data through the instruction register or selected data register.
TMS	Test mode select. One of four terminals required by IEEE Standard 1149.1-1990. The test mode select input directs the device through its test access port (TAP) controller states. An internal pullup forces TMS to a high level if left unconnected.
VCC	Supply voltage

SN54LVT18504，SN74LVT18504

3．3－V ABT SCAN TEST DEVICES WITH

 20－BIT UNIVERSAL BUS TRANSCEIVERSSCBS163－AUGUST 1993

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

> Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots .-0.5 \mathrm{~V}$ to 7 V
> Current into any output in the low state, I_{O} : SN54LVT18504 .. 96 mA
> SN74LVT18504 ... 128 mA
> Current into any output in the high state, Io (see Note 2): SN54LVT18504 48 mA
> SN74LVT18504 64 mA
> Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{l}}<0\right)$. .. -50 mA

> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): PM package . 885 mW
> Storage temperature range .. $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings can be exceeded if the input and output clamp－current ratings are observed．
2．This current will only flow when the output is in the high state and $V_{O}>V_{C C}$ ．
recommended operating conditions

			SN54LVT18504		SN74LVT18504		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High－level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low－level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
${ }^{\mathrm{O}} \mathrm{OH}$	High－level output current			－24		－32	mA
lOL	Low－level output current			24		32	mA
lOL^{\ddagger}	Low－level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free－air temperature		－55	125	－40	85	${ }^{\circ} \mathrm{C}$

\ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Note 3)

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at V_{CC} or GND
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Note 3 and Figure 1)

				SN54LVT18504				SN74LVT18504				
				$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	CLKAB or CLKBA						0	100			MHz
t_{w}	Pulse duration	CLKAB or CLKBA high or low						4				ns
		LEAB or LEBA	CLK high or low					3.5				
$\mathrm{t}_{\text {su }}$	Setup time	A before CLKAB \uparrow or B before CLKBA \uparrow						4				ns
		A before LEAB \downarrow or B before LEBA \downarrow	CLK high					3.5				
			CLK Iow					2				
		CLKEN before CLK \uparrow						4				
th	Hold time	A after CLKAB \uparrow or B after CLKBA \uparrow						0				ns
		A after LEAB \downarrow or B after LEBA \downarrow						2				
		CLKEN after CLK \uparrow						0				
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Note 3 and Figure 1)												
				SN54LVT18504				SN74LVT18504				UNIT
				$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$v_{C C}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		
					MAX	MIN	MAX	MIN	MAX		MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	TCK						0	50			MHz
t_{w}	Pulse duration	TCK high or low						8				ns
$\mathrm{t}_{\text {su }}$	Setup time	A, B, CLK, CLKEN, LE, or OE before TCK \uparrow						4.5				ns
		TDI before TCK \uparrow						7.5				
		TMS before TCK \uparrow						3				
$t_{\text {h }}$	Hold time	A, B, CLK, $\overline{C L K E N}, L E$, or $\overline{O E}$ after TCK \uparrow						0.5				ns
		TDI after TCK \uparrow						0.5				
		TMS after TCK \uparrow						0.5				
$\mathrm{t}_{\text {d }}$	Delay time	Power up to TCK \uparrow						50				ns
$\mathrm{tr}^{\text {r }}$	Rise time	$\mathrm{V}_{\text {CC }}$ power up						1				$\mu \mathrm{s}$

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (normal mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	SN54LVT18504			SN74LVT18504			UNIT
			$\begin{gathered} \mathrm{VCC}_{\mathrm{Cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	$\begin{gathered} V_{C C}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	
			MIN	MAX	MAX	MIN	MAX	MAX	
$\mathrm{f}_{\max }$	CLKAB or CLKBA					100			MHz
tpLH	A or B	B or A				2	6		
tPHL						2	6.5		ns
tPLH	CLKAB or CLKBA	B or A				2.5	6.8		ns
tPHL						2.5	6.5		
tPLH	LEAB or LEBA	B or A				2.5	7.1		ns
tPHL					-	2.5	7.2		
tPZH	$\overline{O E A B}$ or $\overline{O E B A}$	B or A				2	7		ns
tpZL						2.5	8		
tphz	$\overline{\text { OEAB }}$ or $\overline{\text { OEBA }}$	B or A				3	8.8		ns
tpLZ						2.5	7.3		

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (test mode) (see Note 3 and Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT18504			SN74LVT18504			UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	
			MIN	MAX	MAX	MIN	MAX	MAX	
$\mathrm{f}_{\max }$	TCK					50			MHz
tple	TCK \downarrow	A or B				2.5	13.5		ns
tphL						2.5	12.5		,
tPLH	TCK \downarrow	TDO				2	5.6		ns
tphL						2	6.5		,
tPZH	TCK \downarrow	A or B				4.5	13.8		ns
tPZL						5	14.5		,
tPZH	TCK \downarrow	TDO				2	7		ns
tpZL						3	7.5		
tPHZ	TCK \downarrow	A or B				4	17		ns
tplz						3.5	16		
tPHZ	TCK \downarrow	TDO				3	7.5		ns
tplZ						3	7.5		

NOTE 3: Product preview specifications are design goals only and are subject to change without notice.

20-BIT UNIVERSAL BUS TRANSCEIVERS

SCBS163-AUGUST 1993

- PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms
General Information1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {™ }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- EPIC-IIB ${ }^{\text {TM }}$ BiCMOS process with special low-voltage enhancements
- Mixed-mode circuitry
- Expanded V_{CC} range from 2.7 V to 3.6 V
- Bus-hold circuitry
- Power-on-demand active feedback circuitry
- SOIC and EIAJ TSSOP packaging
- TI has established an alternate source

Benefits

- 3.3-V logic family with equivalent speed and drive performance of 5-V ABT logic family - not just a recharacterized or scaled CMOS
- Complete input and output compatibility with 5 signals combined with a pure 3.3-V internal st signal - provides bidirectional 3-V to 5-V translation
- AC performance optimized for both regulated supply and unregulated battery operation
- Reduces component count by eliminating nee for external pullup or pulldown resistors on I/O pins configured as inputs left unused or floatin
- Reduces disabled static power consumption (lccz) to as little as 0.1 mA for powerconscious portable and battery-powered equipment
- Space-saving and height-saving surface-mour package options, pin compatible with existing families for easy conversion
- Standardization that comes from a common product approach
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{C}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical $V_{\text {OLP }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

SN54LVT125... J PACKAGE
SN74LVT125 ... DB, DW, OR PW PACKAGE
(TOP VIEW)

SN54LVT125... FK PACKAGE

 (TOP VIEW)

NC - No internal connection

These bus buffers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The 'LVT125 features independent line drivers with 3-state outputs. Each output is in the high-impedance state when the associated output-enable ($\overline{\mathrm{OE}})$ input is high.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT125 is packaged in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54LVT125 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT125 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each buffer)

INPUTS		OUTPUT
$\overline{\mathbf{O E}}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

3.3-V ABT QUADRUPLE BUS BUFFERS

WITH 3-STATE OUTPUTS

SCBS133A - MAY 1992 - REVISED MARCH 1993

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, J, and PW packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots .-0.5 \mathrm{~V}$ to 7 V
Current into any output in the low state, I_{O} : SN54LVT125 ... 96 mA
SN74LVT125 .. 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT125 48 mA
SN74LVT125 64 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 50 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .6 \mathrm{~W}$
DW package . 0.85 W

Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

\dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{\text {CC }}$ or GND.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT125			SN74LVT125				UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	
			MIN	MAX	\$ MAX	MIN	TYPt	MAX	MAX	
tPLH	A	Y	1	4.2	4.7	1	2.7	4	4.5	ns
tPHL			1	$4.1{ }^{6}$	5.1	1	2.9	3.9	4.9	
tPZH	$\overline{O E}$	Y	1	4.9	6.2	1	3.4	4.7	6	ns
tpZL			1.1	84.9	6.7	1.1	3.4	4.7	6.5	
tPHZ	$\overline{\mathrm{OE}}$	Y	1.8	¢ 5.3	5.9	1.8	3.7	5.1	5.7	ns
tplZ			1.3	4.7	4.2	1.3	2.6	4.5	4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds $\mathbf{5 0 0} \mathrm{mA}$ Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically for low-voltage ($3.3-\mathrm{V}$) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

SN54LVT240... J PACKAGE
SN74LVT240 . . . DB, DW, OR PW PACKAGE
(TOP VIEW)

	20 $7 \mathrm{v}_{\mathrm{C}}$
$1{ }^{1}$	$19] 2$ OE
$2 \mathrm{Y} 4{ }^{\text {[}}$	18 1Y
A2 4	17
2 Y $^{\text {[}} 5$	16
143	$15]$ 2A3
2 Y [7	14.1
1 A 48	13 2A2
2 Y 1 [9	${ }_{12} 11 \mathrm{Y} 4$
GND 10	11 J

SN54LVT240 . . . FK PACKAGE (TOP VIEW)
 え

The 'LVT240 is organized as two 4-bit buffer/line drivers with separate output-enable ($\overline{\mathrm{OE}})$ inputs. When $\overline{\mathrm{OE}}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{O E}$ is high, the outputs are in the high-impedance state.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT240 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54LVT240 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT240 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT $\overline{\mathbf{O E}}$ A \mathbf{Y} L H L L L H H X Z	

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.

recommended operating conditions

			SN54	T240	SN74	T240	
			MIN	MAX	MIN	MAX	NT
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2	5	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			\%:8		0.8	V
V_{1}	Input voltage			-5.5		5.5	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current			-24		-32	mA
${ }^{\text {l OL }}$	Low-level output current			24		32	mA
lOL^{\dagger}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

\dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54LVT240			SN74LVT240				UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {cC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ \hline \text { MAX } \end{gathered}$	
			MIN	MAX	MAX	MIN	TYP \dagger	MAX		
tPLH	A	Y	1	4.5	4 5.4	1	2.5	4.3	5.2	ns
tphL			1	4.5	\% 5.2	1	2.5	4.3	5	
tPZH	$\overline{\mathrm{OE}}$	Y	1.	5.4 人	6.5	1	2.7	5.2	6.3	ns
tPZL			1	5.4	7.4	1	3.1	5.2	6.7	
tpHz	$\overline{\mathrm{OE}}$	Y	2	5.8	6.5	2	3.9	5.6	6.3	ns
tplZ			1.6	5.3	5.8	1.6	3.2	5.1	5.6	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
t PLZ/tPZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCBS135A - AUGUST 1992 -REVISED SEPTEMBER 1993

- State-of-the-Art Advanced BICMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCc)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal buffers and line drivers are designed specifically for low-voltage ($3.3-\mathrm{V}$) $\mathrm{V}_{\text {Cc }}$ operation, but with the capability to provide a TTL interface to a 5-V system environment.

SN54LVT244A . . . J PACKAGE
SN74LVT244A . . . DB, DW, OR PW PACKAGE
(TOP VIEW)

1 $\overline{\mathrm{OE}}$	$1 \square_{20}$	V_{Cc}
1A1	219	$] \overline{O E}$
2 Y 4	318	1 Y 1
1A2	417	2A4
2 Y 3	516	1 Y 2
1 A3	615	2A3
2 Y 2	714] 1 Y 3
1 A 4	813	2A2
2 Y 1	912	1 Y 4
GND	1011	2A1

SN54LVT244A . . . FK PACKAGE
(TOP VIEW)

The 'LVT244A is organized as two 4-bit line drivers with separate output-enable ($\overline{\mathrm{OE}}$) inputs. When $\overline{\mathrm{OE}}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{O E}$ is high, the outputs are in the high-impedance state.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT244A is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVT244A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT244A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each buffer)
INPUTS OUTPUT $\overline{O E}$ A \mathbf{Y} L H H L L L H X Z

WITH 3-STATE OUTPUTS

SCBS135A-AUGUST 1992 - REVISED SEPTEMBER 1993

logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\ddagger}$

Input voltage range, V_{1} (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots . .0 .5 \mathrm{~V}$ to 7 V	
SN74LVT244A	128 mA
Current into any output in the high state, I_{0} (see Note 2): SN54LVT244A	
SN74LVT244A	64 mA
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{1}<0\right)$	
DW package	0.85 W
PW package	0.6 W
Storage temperature range	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $V_{O}>V_{C C}$.
recommended operating conditions

			SN54LVT244A	SN74LV	244A	
			MIN MAX	MIN	MAX	
VCC	Supply voltage		2.73 .6	2.7	3.6	V
V_{IH}	High-level input voltage		2 A	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		S0:8		0.8	V
V_{1}	Input voltage		*		5.5	V
1 OH	High-level output current		人 -24		-32	mA
lOL	Low-level output current		$0^{3} 24$		32	mA
$1 \mathrm{OL}^{\dagger}$	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled	$8 \quad 10$		10	ns/V
T_{A}	Operating free-air temperature		-55 125	-40	85	${ }^{\circ} \mathrm{C}$

\dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

\dagger All typical values are at $\mathrm{V} C \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified $T T L$ voltage level rather than V_{CC} or GND .
switching characteristics over recommended operating free-air temperature range, $\mathbf{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54LVT244A			SN74LVT244A				UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {cC }}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\begin{array}{\|c} \hline V_{C C}=2.7 \mathrm{~V} \\ \hline \text { MAX } \\ \hline \end{array}$	
			MIN	MAX	s) MAX	MIN	TYP ${ }^{\text {t }}$	MAX		
tpLH	A	Y	0.5	4.7	5.2	1	2.5	4.1	5	
tPHL			0.5	4.48	5.4	1	2.5	4.1	5.2	ns
tPZH	$\overline{O E}$	Y	0.8	54.	6.5	1	2.7	5.2	6.3	
tpZL			0.8	s ${ }^{2}$	7.6	1.1	3.1	5.2	6.7	ns
tphz	$\overline{O E}$	Y	1.5	$\bigcirc_{6.2}$	6.9	1.9	3.9	5.6	6.3	
tplz			1.2	5.5	6	1.8	3.2	5.1	5.6	ns

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tPHL tplz/tpZL tPHZ/tPZH	$\begin{gathered} \hline \text { Open } \\ 6 \mathrm{~V} \\ \text { GND } \end{gathered}$

LOAD CIRCUIT FOR OUTPUTS

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal bus transceivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5 -V system environment.

The 'LVT245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}}$) input can be used to disable the device so the buses are effectively isolated.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT245 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54LVT245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OPERATION
$\overline{O E}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

SN54LVT245, SN74LVT245

3.3-V ABT OCTAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS
SCBS130B - D4504, MAY 1992 - REVISED AUGUST 1993

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\boldsymbol{}}$

Input voltage range, V_{I} (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) - 0.5 V to 7 V
Current into any output in the low state, Io: SN54LVT245 . 96 mA
SN74LVT245 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT245 48 mA
SN74LVT245 64 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots .$.
DW package 0.85 W
PW package . 0.6 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $V_{O}>V_{C C}$.

recommended operating conditions

			SN54LVT245		SN74LVT245		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2	4	2		V
V_{IL}	Low-level input voltage			50.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
IOH	High-level output current			-24		-32	mA
${ }^{\mathrm{OL}}$	Low-level output current			24		32	mA
IOL^{\dagger}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^56]
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at VCC or GND
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	SN54LVT245			SN74LVT245				UNIT
			$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \hline \text { MAX } \end{aligned}$	
			MIN	MAX	SMAX	MIN	TYPt	MAX		
tPLH	A or B	B or A	0.5	4.4	${ }^{5}$	1	2.4	4	4.7	ns
tpHL			0.5	4.2	4.8	1	2.4	4	4.6	ns
tPZH	$\overline{\mathrm{OE}}$	A or B	0.8	5.96	7.3	1.1	3.4	5.5	7.1	ns
tPZL			1	5.9	7.2	1.5	3.6	5.5	6.5	
tphz	$\overline{O E}$	A or B	1.5	6.5	7.2	2.2	4.3	5.9	6.5	ns
tpLZ			1.5	8.1	6.5	2	3.5	4.8	4.8	

$\dagger_{\text {All typical values are at }} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{C}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

SN54LVT273 . . . J PACKAGE
SN74LVT273 ... DB, DW, OR PW PACKAGE
(TOP VIEW)

SN54LVT273 . . FK PACKAGE (TOP VIEW)

description

These octal D-type flip-flops are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.

The 'LVT273 is a positive-edge-triggered flip-flop with a direct clear input. Information at the data (D) inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock (CLK) input is at either the high or low level, the D-input signal has no effect at the output.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT273 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVT273 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT273 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
CLR	CLK	D	Q
L	X	X	L
H	\uparrow	H	H
H	\uparrow	L	L
H	H or L	X	Q_{0}

logic symbolt

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}

 -0.5 V to 4.6 VInput voltage range, V_{1} (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V
Current into any output in the low state, I_{O} : SN54LVT273 . 96 mA
SN74LVT273 . 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT273 . 48 mA
SN74LVT273 64 mA

DW package 0.85 W
PW package . 0.6 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

		SN54LVT273		SN74LVT273		UNIT
		MIN	MAX	MIN	MAX	
$V_{\text {cc }}$	Supply voltage	2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		5.8		0.8	V
V_{1}	Input voltage		5.5		5.5	V
IOH	High-level output current		-24		-32	mA
IOL	Low-level output current		24		32	mA
lOL^{\ddagger}	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^57]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				N54LVT2			SN74LVT		
			$\mathrm{V}_{\mathrm{CC}}=3$	$\pm 0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3$	$\pm 0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	UNIT
			MIN	MAX	MIN	MIN	MAX	MIN	
$\mathrm{f}_{\text {clock }}$	Clock frequency					0	150		MHz
t_{w}	Pulse duration				-	3.3		3.3	ns
	Setup time	Data high or low			\%	2.3		2.7	
tsu	before CLK \uparrow	$\overline{\text { CLR }}$ high		8		2.7		3.2	ns
th	Hold time after CLK \uparrow	Data high or low				0		0	ns

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT273			SN74LVT273				UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\frac{V_{C C}=2.7 \mathrm{~V}}{M A X}$	$V_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ \hline \mathrm{MAX} \\ \hline \end{array}$	
			MIN	MAX		MIN	TYP \dagger	MAX		
$f_{\text {max }}$					\cdots	150				MHz
tPLH	CLK	Any Q			4^{2}	1.7	3.5	5.5	6.3	ns
tPHL	CLK	Any Q		${ }^{+}$		1.9	3.5	5.5	5.9	ns
tPHL	$\overline{C L R}$	Any Q		Q^{8}		1.3	3.2	5.1	6.2	ns

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH $^{\prime}$ tPHL	Open
tPLZ/tPZL	$6 \mathbf{V}$
tPHZ $^{\prime}$ tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal transceivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
The'LVT543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{O E B A})$ inputs are provided for each register to permit independent control in either direction of data flow.

SN54LVT543 . . . JT PACKAGE
SN74LVT543 . . DB, DW, OR PW PACKAGE
(TOP VIEW)

SN54LVT543... FK PACKAGE

 (TOP VIEW)

NC - No internal connection

The A-to-B enable ($\overline{C E A B}$) input must be low in order to enter data from A or to output data from B. If $\overline{C E A B}$ is low and $\overline{\mathrm{LEAB}}$ is low, the $\mathrm{A}-\mathrm{to}-\mathrm{B}$ latches are transparent; a subsequent low-to-high transition of $\overline{\mathrm{LEAB}}$ puts the A latches in the storage mode. With $\overline{C E A B}$ and $\overline{O E A B}$ both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.
Active bus-hoid circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT543 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54LVT543 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT543 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

3.3-V ABT OCTAL REGISTERED TRANSCEIVERS

WITH 3-STATE OUTPUTS
SCBS137A - D4518, MAY 1992 - REVISED MARCH 1993

FUNCTION TABLE \dagger				
INPUTS				OUTPUT
CEAB	LEAB	OEAB	A	B
H	X	X	X	Z
X	X	H	X	Z
L	H	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	L	L
L	L	L	H	H

† A-to-B data flow is shown; B-to-A flow control is the same except that it uses $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$. \ddagger Output level before the indicated steady-state input conditions were established.

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and PW packages.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and PW packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 4.6 V
Input voltage range, V_{I} (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V
Current into any output in the low state, I_{O} : SN54LVT543 96 mA
SN74LVT543 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT543 48 mA
SN74LVT543 64 mA
Input clamp current, $\mathrm{I}_{\mathrm{I}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ $-50 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package 0.7 W
DW package 1 W
PW package 0.65 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $V_{O}>V_{C C}$.

SN54LVT543, SN74LVT543

3.3-V ABT OCTAL REGISTERED TRANSCEIVERS

WITH 3-STATE OUTPUTS
SCBS137A-D4518, MAY 1992-REVISED MARCH 1993
recommended operating conditions

[^58]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at $V_{\text {CC }}$ or GND
IThis is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT543			SN74LVT543				UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ \mathrm{MAX} \end{gathered}$	
			MIN	MAX	MAX	MIN	TYPt	MAX		
tPLH	A or B	B or A	1	4.9	5.7	1	2.9	4.7	5.5	
tPHL			1	4.8	6	1	3.3	4.6	5.8	ns
tPLH	$\overline{\text { LE }}$	A or B	1	6.1	\$ 7.5	1	4	5.9	7.3	ns
tPHL			1	5.9	\& 7.5	1	4.1	5.7	7.3	
tPZH	$\overline{\mathrm{OE}}$	A or B	1	6	4.8	1	4.1	5.8	7.6	ns
tpZL			1.1	6.6	8.4	1.1	4.5	6.4	8.2	ns
tPHZ	$\overline{O E}$	A or B	2.4	6.7	7.3	2.4	4.8	6.5	7.1	ns
tPLZ			2	6	6.1	2	4	5.8	5.9	
tPZH	$\overline{\mathrm{CE}}$	A or B	1	Q6.2	7.8	1	4.2	6	7.6	ns
tpZL			1.4	6.9	8.5	1.4	4.7	6.7	8.3	
tphz	$\overline{C E}$	A or B	2.3	6.6	7.3	2.3	4.7	6.4	7.1	ns
tplz			2	5.6	5.8	2	3.8	5.4	5.6	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH $^{\prime}$ tpHL tpLz/tpzL tPHz/tpZH	$\begin{gathered} \text { Open } \\ 6 \mathrm{~V} \\ \text { GND } \end{gathered}$

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

[^59]NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal latches are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.

\section*{SN54LVT573 . . . J PACKAGE
 SN74LVT573 . . . DB, DW, OR PW PACKAGE
 (TOP VIEW)

SN54LVT573 . . FK PACKAGE (TOP VIEW)

The eight latches of the 'LVT573 are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When the latch enable is taken low, the Q outputs are latched at the logic levels that were set up at the D inputs.
A buffered output-enable ($\overline{\mathrm{OE}})$ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable ($\overline{\mathrm{OE}}$) input does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT573 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVT573 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT573 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each latch)

INPUTS			
OUTPUT			
OE	LE	D	Q
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $V_{O}>V_{C C}$.

recommended operating conditions

			SN54L	T573	SN74L	T573	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	s	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			\$0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
1 OL	Low-level output current			24		32	mA
lOL^{\dagger}	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^60]
SN54LVT573, SN74LVT573

3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES
 WITH 3-STATE OUTPUTS
 SCBS138A - MAY 1992-REVISED MARCH 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			SN54LVT573			SN74LVT573			UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {c }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\frac{V_{C C}=2.7 \mathrm{~V}}{\text { MiN }}$	
			MIN	MAX	人 MIN	MIN	MAX		
$\mathrm{t}_{\text {w }}$	Pulse duration, LE high		3.3		(8) 3.3	3.3		3.3	ns
$\mathrm{t}_{\text {su }}$	Setup time, data before LE \downarrow	High or low	0.7	¢0	0.6	0.7		0.6	ns
th	Hold time, data after LE \downarrow	High or low	1.6	\%	1.8	1.6		1.8	ns

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT573			SN74LVT573				UNIT
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$V_{C C}=2.7 \mathrm{~V}$	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\begin{gathered} V_{C C}=2.7 \mathrm{~V} \\ \hline \\ \hline \end{gathered}$	
			MIN	MAX	MAX	MIN	TYP \dagger	MAX		
tPLH	D	Q	1	4.4	+ 4.9	1	2.5	4.2	4.7	ns
tPHL			1	4.5	\% 5.4	1	2.7	4.3	5.2	
tpLH	LE	Q	1.6	5.8	6.5	1.6	3.5	5.6	6.3	ns
tPHL			2.5	6.7	7.4	2.5	4.3	6.5	7.2	
tPZH	$\overline{\mathrm{OE}}$	Q	1	5.3	6.4	1	2.8	5.1	6.2	ns
tPZL			1.3	5.7	6.8	1.3	3.3	5.5	6.6	
tpHz	$\overline{\mathrm{OE}}$	Q	2	5.9	6.9	2	3.7	5.7	6.7	ns
tPLZ			1.5	4.8	5.3	1.5	3	4.6	5.1	

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54LVT573, SN74LVT573

3.3-V ABT OCTAL TRANSPARENT D-TYPE LATCHES

WITH 3-STATE OUTPUTS
SCBS138A - MAY 1992 - REVISED MARCH 1993

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	$6 \mathbf{V}$
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{C}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model
($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal flip-flops are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
The eight flip-flops of the 'LVT574 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels that were set up at the data (D) inputs.

A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable $(\overline{\mathrm{OE}})$ input does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT574 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54LVT574 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT574 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each flip-flop)

INPUTS			
$\overline{O E}$	CLK	OUTPUT	
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots .-0.5 \mathrm{~V}$ to 7 V

SN74LVT574 .. 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT574 48 mA
SN74LVT574 64 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$.. 50 mA

DW package 0.85 W
PW package . 0.6 W
Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $V_{O}>V_{C C}$.
recommended operating conditions

			SN54L	T574	SN74L	T574	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	${ }^{3}$	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			5		0.8	V
V_{1}	Input voltage			5.5		5.5	V
${ }^{1} \mathrm{OH}$	High-level output current			-24		-32	mA
1 OL	Low-level output current			24		32	mA
${ }^{1} \mathrm{OL}^{\dagger}$	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

\dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V$V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			SN54LVT574				SN74LVT574				UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		0	150	Cio	150	0	150	0	150	MHz
t_{w}	Pulse duration, CLK high or low		3.3		$24^{3} 3$		3.3		3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	High or low	2	8	2.4		2		2.4		ns
th	Hold time, data after CLK \uparrow	High or low	0.3		0		0.3		0		ns

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54LVT574				SN74LVT574					UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	TYPt	MAX	MIN	MAX	
$f_{\text {max }}$			150		150		150			150		MHz
tPLH	CLK	Q	1.7	5.6	${ }^{5}$	6.4	1.7	3.6	5.4		6.2	
tPHL			2.4	6.1	\%	6.8	2.4	4.3	5.9		6.6	ns
tPZH	$\overline{\mathrm{OE}}$	Q	1	5 \%		6.1	1	2.9	4.8		5.9	ns
tpZL			1.3	5.3		6.4	1.3	3.4	5.1		6.2	ns
tPHZ	$\overline{O E}$	Q	1.9	57		6.1	1.9	4	5.5		5.9	ns
tpLZ			1.7	4.4		4.7	1.7	3.2	4.5		4.5	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

OLTAGE WAVEFORMS
PULSE DURATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These bus transceivers and registers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
The 'LVT646 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'LVT646.
Output-enable ($\overline{\mathrm{OE}}$) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both.

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus receives data when $\overline{\mathrm{OE}}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data may be stored in one register and/or B data may be stored in the other register.
When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT646 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

description (continued)

The SN54LVT646 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT646 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATION OR FUNCTION
$\overline{\mathrm{OE}}$	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input	Unspecified \dagger	Store A, B unspecified \dagger
X	X	X	\uparrow	X	X	Unspecified ${ }^{\text {t }}$	Input	Store B, A unspecified \dagger
H	X	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
H	X	L	L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	L	X	H	X	Input	Output	Stored A data to B bus

\dagger The data output functions may be enabled or disabled by various signals at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

Figure 1. Bus-Management Functions
Pin numbers shown are for the DB, DW, JT, and PW packages.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and PW packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and PW packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots .-0.5 \mathrm{~V}$ to 7 V
Current into any output in the low state, I_{O} : SN54LVT646, .. 96 mA
SN74LVT646 ... 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT646 48 mA
SN74LVT646 64 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DB package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
DW package 1 W
PW package . 0.65 W
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

			SN54L	T646	SN74L	T646	
			MIN	MAX	MIN	MAX	UNIT
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
${ }^{\text {IOL }}$	Low-level output current			24		32	mA
$\mathrm{l}^{\text {O }}{ }^{\ddagger}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^61]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at VCC or GND
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS
SCBS140A - MAY 1992 - REVISED AUGUST 1993
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT646			SN74LVT646				UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\begin{array}{\|c} \hline \mathrm{V}_{\mathbf{C C}}=2.7 \mathrm{~V} \\ \hline \text { MAX } \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ \mathrm{MAX} \end{gathered}$	
			MIN	MAX		MIN	TYPt	MAX		
$f_{\text {max }}$			150			150				MHz
tpLH	- CLKBA or CLKAB	A or B	1.2	5.9	6.9	1.8	3.8	5.7	6.7	
tPHL			1.2	5.9	6.6	2.1	3.8	5.7	6.4	ns
tPLH	A or B	B or A	0.8	4.9	5.6	1.3	2.8	4.7	5.4	S
tPHL			0.6	4.8	5.5	1	2.7	4.6	5.3	ns
tPLH	SBA or SAB \ddagger	A or B	1	6.4	7.4	1.4	3.7	6.2	7.2	ns
tPHL			1	6.4	7	1.4	3.8	6.2	6.8	ns
tPZH	$\overline{\mathrm{OE}}$	A or B	0.6	6	7.4	1	3	5.8	7.2	s
tPZL			0.6	6.2	7.5	1	3.2	6	7.3	n
tpHZ	$\overline{\mathrm{OE}}$	A or B	1.4	6.7	7.1	2.3	4.3	6.5	6.9	S
tPLZ			1.4	6.4	6.5	2.2	3.8	5.8	5.9	n
tPZH	DIR	A or B	0.6	6.7	7.7	1	3.4	6.5	7.5	ns
tPZL			0.8	6.5	7.3	1.2	3.4	6.3	7.1	ns
tPHZ	DIR	A or B	0.8	7.4	8.3	1.7	4.1	7.2	$8.1{ }^{\text {* }}$	
tPLZ			1	6.7	7	1.5	3.5	5.8	6.3	S

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

SN54LVT652, SN74LVT652 3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS
 SCBS141B-MAY 1992-REVISED MARCH 1993

- State-of-the-Art Advanced BiCMOS

Technology (ABT).Design for 3.3-V
Operation and Low-Static Power Dissipation

- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These bus transceivers and registers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
The 'LVT652 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers.

SN54LVT652 . . . JT PACKAGE
SN74LVT652 . . DB, DW, OR PW PACKAGE
(TOP VIEW)

CLKAB	1	\square_{24}	
SAB	2	23	CLKBA
OEAB	3	22	SBA
A1	4	21	$\overline{O E B A}$
A2	5	20	B1
A3	6	19	B2
A4	7	18	B3
A5	8	17	B4
A6	9	16	B5
A7	10	15	B6
A8	11	14	B7
GND	12	13	B8

SN54LVT652... FK PACKAGE (TOP VIEW)

NC - No internal connection

Output-enable (OEAB and $\overline{\text { OEBA }}$) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input selects real-time data, and a high input selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'LVT652.

Data on the A or B data bus, or both, can be stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each output reinforces its input. Therefore, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

SN54LVT652, SN74LVT652

3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS
SCBS141B - MAY 1992 - REVISED MARCH 1993

description (continued)

The SN74LVT652 is packaged in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVT652 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT652 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O \dagger		OPERATION OR FUNCTION
OEAB	$\overline{\text { OEBA }}$	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
L	H	L	L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	L	x	X	Input	Unspecified \ddagger	Store A, hold B
H	H	\uparrow	\uparrow	x \ddagger	x	Input	Output	Store A in both registers
L	X	L	\uparrow	x	X	Unspecified \ddagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	x	x \ddagger	Output	Input	Store B in both registers
L	L	x	X	x	L	Output	Input	Real-time B data to A bus
L	L	X	L	x	H	Output	Input	Stored B data to A bus
H	H	x	X	L	X	Input	Output	Real-time A data to B bus
H	H	L	x	H	x	Input	Output	Stored A data to B bus
H	L	L	L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

\dagger The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L; clocks can occur simultaneously.
Select control $=\mathrm{H}$; clocks must be staggered in order to load both registers.

3	21	1	23	2	22
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA
X	H	\uparrow	X	X	X
L	X	X	\uparrow	X	X
L	H	\uparrow	\uparrow	X	X

STORAGE FROM
A, B, OR A AND B

REAL-TIME TRANSFER BUS A TO BUS B

TRANSFER STORED DATA
TO A AND/OR B

Figure 1. Bus-Management Functions
Pin numbers shown are for the $\mathrm{DB}, \mathrm{DW}, \mathrm{JT}$, and PW packages.

logic symbolt

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and PW packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and PW packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \text { (see Note } 1 \text {) } \ldots . .-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54LVT652 }
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

[^62]
electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at $V_{C C}$ or GND
IThis is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	SN54LVT652				SN74LVT652					UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	TYPt	MAX	MIN	MAX	
$f_{\text {max }}$							150			150		MHz
tpLH	CLKBA or CLKAB	A or B					1.8	3.7	6		6.9	
tPHL							2	3.7	5.7		6.4	
tpLH	A or B	B or A					1.2	2.8	4.7		5.5	
tPHL					4		1	2.6	4.6		5.3	ns
tPLH	SBA or SAB \ddagger	A or B					1.4	3.7	6.4		7.6	ns
tPHL				9			1.4	4	6.2		6.8	
tPZH	$\overline{\text { OEBA }}$	A		0			1	2.9	5.8		7.2	
tpZL				8			1	3	6		7.3	ns
tphz	$\overline{\text { OEBA }}$	A		${ }^{2}$			2.2	3.9	6.5		6.9	ns
tplz							1.8	3.2	5.8		5.9	
tPZH	OEAB	B					1	3.3	6.5		7.5	ns
tPZL							1.2	3.4	6.3		7.1	
tPHZ	OEAB	B					1.7	4.5	7.2		8.1	ns
tpLZ							1.5	3.8	5.8		6.3	

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\text {PHL }}$	Open
t PLZ/tPZL	6 V
t $\mathbf{\text { PHZ }}$ /tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

SN54LVT2952, SN74LVT2952
 3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS
 WITH 3-STATE OUTPUTS
 SCBS152B - MAY 1992 - REVISED JULY 1993

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (SOIC), Shrink Small-Outline (SSOP), and Thin Shrink Small-Outline (TSSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These octal bus transceivers and registers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
The 'LVT2952 consists of two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input provided that the clock-enable (CLKENAB or CLKENBA) input is low. Taking the output-enable ($\overline{O E A B}$ or $\overline{O E B A}$) input low accesses the data on either port.

SN54LVT2952 . . FK PACKAGE
(TOP VIEW)

NC - No internal connection

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT2952 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVT2952 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT2952 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE†				
INPUTS				$\begin{array}{\|c} \text { OUTPUT } \\ \text { B } \end{array}$
CLKENAB	CLKAB	OEAB	A	
H	X	L	X	$\mathrm{B}_{0}{ }^{\ddagger}$
X	H or L	L	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	\uparrow	L	L	L
L	\uparrow	L	H	H
X	X	H	X	Z

\dagger A-to-B data flow is shown; B -to-A data flow is similar but uses CLKENBA, CLKBA, and OEBA.
\ddagger Level of B before the indicated steady-state input conditions were established.

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and PW packages.
logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and PW packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{C}}$.
recommended operating conditions

[^63]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at V_{CC} or GND
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

3.3-V ABT OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS
SCBS152B - MAY 1992 - REVISED SEPTEMBER 1993
timing requirement over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVT2952					SN74LVT2952					UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$V_{C C}=2.7 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\text {cC }}=2.7 \mathrm{~V}$		
			MIN	TYPt	MAX	MIN	MAX	MIN	TYPt	MAX	MIN	MAX	
$f_{\text {max }}$						5		150			150		MHz
tpl	CLKBA or CLKAB	A or B	1.3		6.4	N2.7	7.4	1.3	3.6	6.1	2.7	7.1	
tPHL			1.8		6.14	- 2.7	7	1.8	3.7	6	2.7	6.9	ns
tPZH	$\begin{aligned} & \overline{\mathrm{OEBA}} \text { or } \\ & \overline{\mathrm{OEAB}} \end{aligned}$	A or B	1		6.3	2.6	7.3	1	3.2	5.6	2.6	6.7	
tPZL			1.1		3.6	2.9	8.2	1.2	3.2	6.5	2.9	8	
tphz	$\begin{aligned} & \overline{\mathrm{OEBA}} \text { or } \\ & \overline{\mathrm{OEAB}} \end{aligned}$	A or B	1		-7	2.7	7.6	1	4.1	6.3	2.7	6.9	
tplz			1.6		5.8	1.7	6	1.6	3.3	5.1	1.8	5.3	ns

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- EPIC-IIBTM BiCMOS process with special low-voltage enhancements
- Mixed-mode circuitry
- Expanded V_{CC} range from 2.7 V to 3.6 V
- Bus-hold circuitry
- Power-on-demand active feedback circuitry
- Widebus ${ }^{T M}$ and UBT ${ }^{T M}$ architectures
- JEDEC SSOP (Widebus ${ }^{\text {M }}$) and EIAJ TSSOP (Shrink Widebus ${ }^{\text {TM }}$) packaging
- TI has established an alternate source

Benefits

- 3.3-V logic family with equivalent speed and drive performance of $5-\mathrm{V}$ ABT logic family - not just a recharacterized or scaled CMOS
- Complete input and output compatibility with $5-\mathrm{V}$ signals combined with a pure $3.3-\mathrm{V}$ internal supply signal - provides bidirectional $3-\mathrm{V}$ to $5-\mathrm{V}$ translation
- AC performance optimized for both regulated supply and unregulated battery operation
- Reduces component count by eliminating need for external pullup or pulldown resistors on I/O pins configured as inputs left unused or floating
- Reduces disabled static power consumption (lccz) to as little as 0.1 mA for power-conscious portable and battery-powered equipment
- 16 - and 18 -bit densities for flexible integration
- Space-saving and height-saving surface-mount package options, pin compatible with existing $5-\mathrm{V}$ families for easy conversion
- Standardization that comes from a common product approach
- State-of-the-Art Advanced BICMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments WIdebus ${ }^{\text {™ }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCc)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical VoLp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged In Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT16244A... WD PACKAGE
SN74LVT16244A ... DGG OR DL PACKAGE
(TOP VIEW)

description

The 'LVT16244A is a 16 -bit buffer and line driver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5 - V system environment. The device can be used as four 4 -bit buffers, two 8 -bit buffers, or one 16 -bit buffer. This device provides true outputs and symmetrical $\overline{O E}$ (active-low output-enable) inputs.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT16244A is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT16244A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16244A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^64]
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

FUNCTION TABLE
 (each buffer)

INPUTS		OUTPUT
$\mathbf{O E}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

			SN54LVT16244A	SN74LV	16244A	
			MIN MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		2.73 .6	2.7	3.6	V
V_{IH}	High-level input voltage		2 安	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		\$:8		0.8	V
V_{1}	Input voltage		* 2.5		5.5	V
1 OH	High-level output current		A -24		-32	mA
lOL	Low-level output current		$0^{3} 24$		32	mA
$1 \mathrm{OL}^{\ddagger}$	Low-level output current		0		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled	2 10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55 125	-40	85	${ }^{\circ} \mathrm{C}$

\ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

SN54LVT16244A, SN74LVT16244A

3.3-V ABT 16-BIT BUFFERS/DRIVERS

WITH 3-STATE OUTPUTS
SCBS 142A-MAY 1992-REVISED SEPTEMBER 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	SN54LVT16244A				SN74LVT16244A					UNIT
			$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}_{ \pm} 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$V_{C C}=2.7 \mathrm{~V}$		
			MIN	MAX	MIN	MAX	MIN	TYPt	MAX	MIN	MAX	
tpLH	A	Y	1	4.2	\%	5.1	1	2.3	4.1		5	
tPHL			1	4.2		5.3	1	2.3	4.1		5.2	ns
tPZH	$\overline{O E}$	Y	1	$5.2{ }^{2}$		6.4	1	2.6	5.2		6.3	
tpZL			1	$5{ }^{9}$		6.8	1	2.6	5.2		6.7	ns
tphz	$\overline{O E}$	Y	2.1	8.9		6.4	2.2	3.9	5.7	,	6.3	
tplz			1.9	$\chi^{2} 5$		5.7	2	3.7	5.1		5.6	ns

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tpHL tpLZ/tPZL tpHz/tpZH $^{\text {I }}$	Open 6 V GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10
C. Waveform 1 is for an output with internal conditions such that the output is low except whe
Waveform 2 is for an output with internal conditions such that the output is high except wh
D. The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10
C. Waveform 1 is for an output with internal conditions such that the output is low except when
Waveform 2 is for an output with internal conditions such that the output is high except when
D. The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10
C. Waveform 1 is for an output with internal conditions such that the output is low except whe
Waveform 2 is for an output with internal conditions such that the output is high except wh
D. The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms

SN54LVT16245, SN74LVT16245 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
 SCBS143A - MAY 1992 - REVISED MARCH 1993

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT16245... WD PACKAGE
SN74LVT16245...DGG OR DL PACKAGE
(TOP VIEW) (TOP VIEW)

description

The 'LVT16245 is a 16 -bit (dual-octal) noninverting 3 -state transceiver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
This device can be used as two 8 -bit transceivers or one 16 -bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}})$ input can be used to disable the device so that the buses are effectively isolated.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT16245 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT16245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 8-bit section)	
INPUTS OPERATION $\overline{\text { OE }}$ DIR L L B data to A bus L H A data to B bus H X Isolation	

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (see Note 1) . - 0.5 V V to 7 V	
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V	
Current into any output in the low state, I_{O} S SN4LVT16245 . 96 mA	
SN74LVT16245	128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT16245 . 48 mA	
SN74LVT16245	64 mA
Input clamp current, $\mathrm{I}_{1 \mathrm{~K}}\left(\mathrm{~V}_{1}<0\right)$	
DL package	0.85 W
Storage temperature range	$65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

[^65]
SN54LVT16245, SN74LVT16245

3.3-V ABT 16-BIT BUS TRANSCEIVERS
 WITH 3-STATE OUTPUTS
 SCBS143A - MAY 1992-REVISED MARCH 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^66]switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	SN54LVT16245				SN74LVT16245					UNIT
			$\mathrm{V}_{\mathbf{C C}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
			MIN	MAX	MiN	MAX	MIN	TYP \dagger	MAX	MIN	MAX	
tplH	A or B	B or A			S		1	2.4	4.1		5	ns
tpHL					2		1	2.3	4.1		5.2	
tPZH	$\overline{O E}$	A or B					1	3	5.3		6.3	ns
tpZL				5			1	3.1	5.2		6.7	
tpHz	$\overline{O E}$	A or B		5			2.7	4.6	6.4		7.2	ns
tpLz				Q			2.6	4.3	5.8		6.1	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	6 V
tPHZ/tPZH	GND

LOAD CIRCUIT FOR OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SN54LVT16373, SN74LVT16373 3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS
 SCBS144-MAY 1992 - REVISED NOVEMBER 1992

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCc)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

\section*{SN54LVT16373 . . . WD PACKAGE
 SN74LVT16373... DGG OR DL PACKAGE
 (TOP VIEW)

description

The 'LVT16373 is a 16-bit transparent D-type latch with 3-state outputs designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The device can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable ($\overline{\mathrm{OE}})$ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

The output-enable ($\overline{\mathrm{OE}})$ input does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

[^67]
SN54LVT16373, SN74LVT16373

3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES

WITH 3-STATE OUTPUTS

SCBS144 - MAY 1992 - REVISED NOVEMBER 1992

description (continued)

The SN74LVT16373 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT16373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16373 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

c
FUNCTION TABLE (each 8-bit section)
INPUTS $\mathbf{O E}$ OUTPUT Q LE D Q L H H H L H L L L L X Q $_{0}$ H X X Z

logic symbol \dagger

logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984
and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (uniess otherwise noted) \dagger

Supply voltage range, V_{CC}
-0.5 V to 4.6 V

Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots .-0.5 \mathrm{~V}$ to 7 V
Current into any output in the low state, I_{O} : SN54LVT16373 96 mA
SN74LVT16373 .. . 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT16373 48 mA
SN74LVT16373 64 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$... -50 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .0 .8 \mathrm{~W}$
DL package 0.85 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $V_{O}>V_{C C}$.
recommended operating conditions

			SN54LVT16373		SN74LVT16373		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
lOH	High-level output current			-24		-32	mA
IOL	Low-level output current			24		32	mA
lOL^{\ddagger}	Low-level output current	-		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^68]
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES

WITH 3-STATE OUTPUTS

SCBS144 - MAY 1992-REVISED NOVEMBER 1992
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^69]- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCc)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed Vcc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic $\mathbf{3 0 0}$-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT16374 . . . WD PACKAGE
SN74LVT16374 ... DGG OR DL PACKAGE
(TOP VIEW)
(TOP VIEW)

$1 \overline{O E}\left[{ }_{1}\right.$	U_{48}	ICLK
$1 \mathrm{Q1} \mathrm{C}_{2}$	47	1D1
1Q2 3	46	1 D 2
GND 4	45	GND
1Q3 5	44	1D3
1Q4 6	43	$1{ }^{1} 4$
$\mathrm{v}_{\mathrm{CC}} \mathrm{T}^{7}$	42	V_{Cc}
1 Q5 8	41	1 D 5
106 9	40	1D6
GND 10	39	GND
1 Q7 11	38	1D7
108 12	37	1D8
$2 \mathrm{Q} 1{ }^{13}$	36	2D1
2Q2 14	35	2D2
GND 15	34	GND
2Q3 16	33	2D3
2Q4 17	32	2D4
$\mathrm{v}_{\mathrm{CC}} 18$	31	V_{cc}
2Q5 19	30	2D5
2Q6 20	29	2D6
GND 21	28	GND
$2 \mathrm{Q7}$ [22	27	2D7
2Q8 23	26	1 2D8
2OE 24		2CLK

description

The 'LVT16374 is a 16 -bit edge-triggered D-type flip-flop with 3 -state outputs designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a $T \mathrm{LL}$ interface to a $5-\mathrm{V}$ system environment. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The 'LVT16374 can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the Q outputs of the flip-flop take on the logic levels set up at the D inputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable ($\overline{\mathrm{OE}})$ input does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT16374 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

SN54LVT16374, SN74LVT16374
3.3-V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS

WITH 3-STATE OUTPUTS
SCBS145-MAY 1992 -REVISED JULY 1993

description (continued)

The SN54LVT16374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each flip-flop)			
INPUTS			OUTPUT
$\overline{\mathbf{O E}}$	CLK	D	Q
L	\uparrow	H	H
L	\uparrow	L	L
L	H or L	X	Q_{0}
H	X	X	Z

logic symbol \dagger
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

[^70]electrical characteristics over recommended operating free－air temperature range（unless otherwise noted）

PARAMETER	TEST CONDITIONS			SN54LVT16374		SN74LVT16374		UNIT
				MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ ，	$1 \mathrm{l}=-18 \mathrm{~mA}$			－1．2		－1．2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=$ MIN to MAX $\ddagger, \mathrm{IOH}=-100 \mu \mathrm{~A}$			$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}-0.2$		V
	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ ，	$\mathrm{OH}=-8 \mathrm{~mA}$		2.4		2.4		
	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V}$ ，	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2				
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ ，	$\mathrm{IOH}^{\prime}=-32 \mathrm{~mA}$				2		
VOL	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ ，	$\mathrm{OL}=100 \mu \mathrm{~A}$			0.2		0.2	
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ ，	$\mathrm{IOL}=24 \mathrm{~mA}$			0.5		0.5	
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ ，	$\mathrm{IOL}=16 \mathrm{~mA}$			0.4		0.4	
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ ，	$\mathrm{IOL}=32 \mathrm{~mA}$			0.5	0.5		
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ ，	$1 \mathrm{OL}=48 \mathrm{~mA}$		0.55				
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ ，	$\mathrm{IOL}=64 \mathrm{~mA}$				0.55		
1	$\mathrm{V}_{\mathrm{CC}}=0$ or MAX \ddagger ，	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			10		10	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$ ，	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	Control pins	± 1		± 1		
	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$ ，	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$	Data pins		1	1		
	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$ ，	$\mathrm{V}_{1}=0$			－5		－5	
$l_{\text {off }}$	$\mathrm{V}_{\mathrm{CC}}=0$ ，	V_{1} or $\mathrm{V}_{0}=0$ to 4.5 V					± 100	$\mu \mathrm{A}$
$1 /$（hold）	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	Data inputs	75		75		$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2 \mathrm{~V}$		－75		－75		
IOZH	$\mathrm{V}_{C C}=3.6 \mathrm{~V}$ ，	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$			5		5	$\mu \mathrm{A}$
lozl	$\mathrm{V}_{C C}=3.6 \mathrm{~V}$ ，	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			－5		－5	$\mu \mathrm{A}$
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$10=0$,	Outputs high		0.1		0.1	mA
			Outputs low		5		5	
			Outputs disabled		0.1		0.1	
${ }^{\prime} \mathrm{Cc} \mathrm{C}^{\S}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V ，One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ ， Other inputs at $V_{C C}$ or GND				0.2		0.2	mA
C_{i}	$\mathrm{V}_{1}=3 \mathrm{~V}$ or 0							pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0							pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
\ddagger For conditions shown as MIN or MAX，use the appropriate value specified under recommended operating conditions．
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND．

SN54LVT16500, SN74LVT16500 3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS
 SCBS146 - MAY 1992 - REVISED JULY 1993

- State-of-the-Art Advanced BiCMOS

Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation

- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
- Supports Unregulated Battery Operation Down to 2.7 V
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT16500 . . . WD PACKAGE
SN74LVT16500 ... DGG OR DL PACKAGE
(TOP VIEW)

OEAB	
LEAB	

description

The 'LVT16500 is an 18-bit universal bus transceiver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
Data flow in each direction is controlled by output-enable (OEAB and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock ($\overline{\mathrm{CLKAB}}$ and $\overline{\mathrm{CLKBA}}$) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable OEAB is active high. When OEAB is high, the B-port outputs are active. When OEAB is low, the B-port outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and $\overline{C L K B A}$. The output enables are complementary (OEAB is active high, and $\overline{\text { OEBA }}$ is active low).
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

[^71]
description (continued)

The SN74LVT16500 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT16500 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16500 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

| FUNCTION TABLE \dagger | | | |
| :---: | :---: | :---: | :---: | :---: |
| INPUTS
 OUTPUT
 OEAB LEAB CLKAB A
 B
 L X X X
 H H X L
 H H X H
 H L \downarrow L
 H L \downarrow H
 H L H X
 H L L X
 $\mathrm{B}_{0} \ddagger$
 $\mathrm{~B}_{0} \S$ | | | |

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\text { OEBA }}, ~ L E B A$, and $\overline{C L K B A}$.
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram（positive logic）

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

Voltage range applied to any output in the high state or power－off state， V_{O}（see Note 1 ）$\ldots .-0.5 \mathrm{~V}$ to 7 V
Current into any output in the low state， I_{O} ：SN54LVT16500 ．． 96 mA
SN74LVT16500 ．． 128 mA
Current into any output in the high state， I_{O}（see Note 2）：SN54LVT16500 ．．．．．．．．．．．．．．．．．．．．．．．． 48 mA
SN74LVT16500 ．．．．．．．．．．．．．．．．．．．．．．．．．． 64 mA
Input clamp current， $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ ．．-50 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$（in still air）：DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .1 \mathrm{~W}$

Storage temperature range ．．$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．
2．This current will only flow when the output is in the high state and $V_{O}>V_{C C}$ ．

recommended operating conditions

[^72]
SN54LVT16500, SN74LVT16500

3.3-V ABT 18-BIT UNIVERSAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS
SCBS146-MAY 1992 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[^73]- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCc)
- Supports Unregulated Battery Operation Down to 2.7 V
- UBT ${ }^{\mathrm{TM}}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed Vcc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings
SN54LVT16501 . . . WD PACKAGE
SN74LVT16501 . . . DGG OR DL PACKAGE
(TOP VIEW)

description

The 'LVT16501 is an 18 -bit universal bus transceiver designed for low-voltage ($3.3-\mathrm{V}$) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
Data flow in each direction is controlled by output-enable (OEAB and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and CLKBA. The output enables are complementary (OEAB is active high, and $\overline{O E B A}$ is active low).
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

description (continued)

The SN74LVT16501 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT16501 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16501 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger				
INPUTS				OUTPUT
OEAB	LEAB	CLKAB	A	B
L	X	X	X	Z
H	H	x	L	L
H	H	x	H	H
H	L	\uparrow	L	L
H	L	\uparrow	H	H
H	L	H	x	$\mathrm{B}_{0} \ddagger$
H	L	L	X	B_{0} §

\dagger A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.
\ddagger Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low.
§ Output level before the indicated steady-state input conditions were established.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}
-0.5 V to 4.6 V

Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots .-0.5 \mathrm{~V}$ to 7 V
Current into any output in the low state, I_{O} : SN54LVT16501 .. 96 mA
SN74LVT16501 ... 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT16501 48 mA
SN74LVT16501 64 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .1 \mathrm{~W}$
DL package 1 W
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.

recommended operating conditions

\dagger Current duty cycle $\leq 50 \%, f \geq 1 \mathrm{kHz}$

WITH 3-STATE OUTPUTS

SCBS147 - MAY 1992 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at $V_{C C}$ or GND
Il This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

SN54LVT16543, SN74LVT16543 3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
 SCBS148 - MAY 1992 - REVISED JULY 1993

- State-of-the-Art Advanced BiCMOS

Technology (ABT) Design for 3.3-V
Operation and Low-Static Power Dissipation

- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{VCC}_{\text {) }}$
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings
SN54LVT16543 ... WD PACKAGE
SN74LVT16543 ... DGG OR DL PACKAGE
(TOP VIEW)

description

The 'LVT16543 is a 16 -bit registered transceiver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment. The device can be used as two 8 -bit transceivers or one 16 -bit transceiver. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{O E B A})$ inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable ($\overline{C E A B}$) input must be low in order to enter data from A or to output data from B. If $\overline{C E A B}$ is low and $\overline{\mathrm{LEAB}}$ is low, the A -to- B latches are transparent; a subsequent low-to-high transition of $\overline{\mathrm{LEAB}}$ puts the A latches in the storage mode. With $\overline{C E A B}$ and $\overline{O E A B}$ both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar but requires using the $\overline{C E B A}, \overline{L E B A}$, and OEBA inputs.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT16543 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT16543 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16543 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

FUNCTION TABLE \dagger (each 8-bit section)				
INPUTS				OUTPUT
CEAB	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	A	B
H	X	X	X	Z
X	X	H	X	Z
L	H	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	L	L
L	L	L	H	H

$\dagger \mathrm{A}$-to- B data flow is shown; B -to-A flow control is the same except that it uses CEBA, LEBA, and DEBA. \ddagger Output level before the indicated steady-state input conditions were established.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

Input voltage range, V_{I} (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V
Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}:$ SN54LVT16543 . 96 mA SN74LVT16543 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT16543 . 48 mA
SN74LVT16543 64 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package . 1 W
DL package . 1 W
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
§Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

			SN54LVT16543		SN74LVT16543		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
IOH	High-level output current			-24		-32	mA
${ }^{\mathrm{O}} \mathrm{OL}$	Low-level output current			24		32	mA
$\mathrm{l}^{\text {OLI }}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

TCurrent duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at VCC or GND
I This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

- State-of-the-Art Advanced BiCMOS

Technology (ABT) Design for 3.3-V

Operation and Low-Static Power Dissipation

- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V ${ }_{\text {Cc }}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical V OLP (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed $V_{\text {CC }}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT1664 SN74LVT16646..	646 ... WD DGG O TOP VIEW	PACKAGE DL PACKAGE
1DIR 1	$1 \bigcup_{56}$	$1 \overline{O E}$
1CLKAB 2	255	1CLKBA
1SAB [3	354	1SBA
GND [4	453	$]$ GND
1A1 5	52	1B1
1A2 6	651	1B2
$\mathrm{v}_{\mathrm{Cc}} 7$	750	V_{CC}
1A3 8	849	1B3
1A4 [9	948	1B4
1A5 10	1047	1B5
GND 1	1146	$]$ GND
1A6 1	1245	1B6
1A7 1	1344	1B7
1A8 1	$14 \quad 43$	1B8
2A1 1	1542	2B1
2A2 1	1641] 2B2
2A3 1	1740	2B3
GND 18	1839	$]$ GND
2A4 1	1938	2B4
2 A 5	$20 \quad 37$	2B5
2A6 2	$21 \quad 36$	2B6
V_{CC}	2235	V_{CC}
2A7 2	$23 \quad 34$] 2B7
2A8 2	$24 \quad 33$	2B8
GND [2	$25 \quad 32$	GND
2SAB	$26 \quad 31$	2SBA
2CLKAB 2	$27 \quad 30$	2CLKBA
2DIR [28	$28 \quad 29$	2OE

description

The'LVT16646 is a 16-bit bus transceiver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.
The device can be used as two 8-bit transceivers or one 16-bit transceiver. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'LVT16646.
Output-enable $(\overline{\mathrm{OE}})$ and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. The direction control (DIR) determines which bus receives data when $\overline{O E}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data may be stored in one register and/or B data may be stored in the other register.
When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B , may be driven at a time.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

Widebus is a trademark of Texas Instruments Incorporated.

description (continued)

The SN74LVT16646 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT16646 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16646 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE								
INPUTS						DATA I/O		OPERATION OR FUNCTION
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input	Unspecified \dagger	Store A, B unspecified \dagger
X	X	X	\uparrow	X	X	Unspecified \dagger	Input	Store B, A unspecified \dagger
H	X	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
H	X	L	L	x	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	L	X	H	X	Input	Output	Stored A data to B bus

\dagger The data output functions may be enabled or disabled by various signals at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

Figure 1. Bus-Management Functions
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

PRODUCT PREVIEW

SN54LVT16646, SN74LVT16646

3.3-V ABT 16-BIT BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS
SCBS149 - MAY 1992 - REVISED JULY 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \text { (see Note } 1 \text {) - } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54LVT16646 } 96 \mathrm{~mA} \\
& \text { SN74LVT16646 .. . } 128 \text { mA } \\
& \text { Current into any output in the high state, lo (see Note 2): SN54LVT16646 } 48 \mathrm{~mA} \\
& \text { SN74LVT16646 } 64 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DGG package } \ldots \\
& \text { DL package } 1 \text { W } \\
& \text { Storage temperature range ... }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 2. This current will only flow when the output is in the high state and } \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \text {. }
\end{aligned}
$$

recommended operating conditions

			SN54LVT16646		SN74LVT16646		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current			-24		-32	mA
${ }^{\text {IOL}}$	Low-level output current			24		32	mA
$\mathrm{l}^{\text {² }}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

\ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

electrical characteristics over recommended operating free-air temperature range (unless

 otherwise noted)
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at V_{CC} or GND
IThis is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

SN54LVT16652, SN74LVT16652 3.3-V ABT 16-BIT BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS
 SCBS150 - MAY 1992 - REVISED JULY 1993

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V ${ }_{\text {CC }}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed V CC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT16652 . . . WD PACKAGE
SN74LVT16652 . . . DGG OR DL PACKAGE
(TOP VIEW)

1OEAB 1	56	$1 \overline{O E B A}$
1CLKAB 2	55	1 CLKBA
1SAB 3	54] 1SBA
GND 44	53] GND
1A1 [5	52] 1B1
1A2 6	51	1B2
$V_{\text {CC }} 7$	50	V_{CC}
1A3 8	49	1B3
1A4 9	48	1B4
1A5 10	47	1B5
GND 11	46	$]$ GND
1A6 12	45] 1B6
1A7 13	44] 1B7
1A8 14	43] 1B8
2A1 15	42	2B1
2A2 16	41] 2B2
2A3 17	40] B 3
GND 18	39	$]$ GND
2A4 19	. 38	2B4
2A5 20	37	2B5
2A6 21	36] 2B6
$\mathrm{V}_{\text {CC }} 22$	35	V_{CC}
2A7 [23	34	2B7
2A8 24	33	2B8
GND 25	32	$]$ GND
2SAB [26	31	$]$ 2SBA
2CLKAB 27	30	2CLKBA
2OEAB 28	29	$2 \overline{O E B A}$

description

The 'LVT16652 is a 16-bit bus transceiver designed for low-voltage (3.3-V) $V_{C C}$ operation, but with the capability to provide a TTL interface to a 5-V system environment. The device can be used as two 8-bit transceivers or one 16-bit transceiver.

Complementary output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'LVT16652.

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the levels on the select-control or output-enable inputs. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and $\overline{O E B A}$. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus line are at high impedance, each set of bus lines remains at its last level configuration.

[^74]
SN54LVT16652, SN74LVT16652

3.3-V ABT 16-BIT BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS

SCBS150 - MAY 1992 - REVISED JULY 1993

description (continued)

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT16652 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT16652 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16652 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						DATA I/O \dagger		
OEAB	$\overline{\text { OEBA }}$	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	RATION OR FUNCTION
L	H	L	L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	x	x	Input	Input	Store A and B data
X	H	\uparrow	L	x	x	Input	Unspecified \ddagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	x	Input	Output	Store A in both registers
L	x	L	\uparrow	x	x	Unspecified \ddagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	x	x \ddagger	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	x	L	x	H	Output	Input	Stored B data to A bus
H	H	X	X	L	X	Input	Output	Real-time A data to B bus
H	H	L	X	H	x	Input	Output	Stored A data to B bus
H	L	L	L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

\dagger The data output functions may be enabled or disabled by a variety of level combinations at the OEAB or $\overline{\text { OEBA }}$ inputs. Data input functions are always enabled; i.e., data at the bus pins is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L; clocks can occur simultaneously.
Select control $=\mathrm{H}$; clocks must be staggered in order to load both registers.

Figure 1. Bus-Management Functions

3.3-V ABT 16-BIT BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS
SCBS150 - MAY 1992 - REVISED JULY 1993
logic symbol \dagger

1 $\overline{O E B A}$	56	EN1 [BA]
	1	
	55	
1CLKBA	54	PC3
1SBA		G4
1CLKAB	2	
	3	C5
$\underline{\text { 20EBA }}$	29	G6
20EBA	28	EN7 [BA]
20EAB	30	EN8 [AB]
2CLKBA		- C9
2SBA	31	
2 CLKAB	27	
	26	

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 4.6 V
Input voltage range, V_{l} (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V
Current into any output in the low state, I_{0} : SN54LVT16652 96 mA
SN74LVT16652 128 mA
Current into any output in the high state, I_{O} (see Note 2): SN54LVT16652 48 mA
SN74LVT16652 64 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$ $-50 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package 1 W
DL package 1 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

			SN54LVT16652		SN74LVT16652		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V_{IH}	High-level input voltage		2		2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
1 OL	Low-level output current			24		32	mA
lOL^{\ddagger}	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

\ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at V_{CC} or GND
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model
($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed $V_{c c}$ and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT16952 . . . WD PACKAGE SN74LVT16952 . . . DGG OR DL PACKAGE
(TOP VIEW)

10EAB	$1 \square_{56}$	$] 1 \overline{O E B A}$
1CLKAB	25	1CLKBA
1 $\overline{\text { CLKENAB }}$	34	1 $\overline{\text { CLKENBA }}$
GND	45	GND
1A1	52	1B1
1A2	51	1 1B2
$V_{\text {CC }}$	750	$1 \mathrm{~V}_{\mathrm{CC}}$
1 A3	849	1B3
1A4	98	1B4
1A5	1047	1B5
GND	1146	GND
1A6	1245	1B6
1A7	$13 \quad 44$	1B7
1A8	$14 \quad 43$	1B8
2A1	1542	2B1
2A2	$16 \quad 41$	[2B2
2A3	1740	2B3
GND	$18 \quad 39$	$]$ GND
2A4	$19 \quad 38$	2B4
2A5	$20 \quad 37$	2B5
2A6	2136	2B6
$V_{\text {cC }}$	2235	$1 \mathrm{~V}_{\mathrm{CC}}$
2A7	23 34	2 B 7
2A8	2433	2B8
GND	$25 \quad 32$	GND
2CLKENAB	$26 \quad 31$	2CLKENBA
2CLKAB	$27 \quad 30$	7 2CLKBA
2ОEAB	$28 \quad 29$	2ОEBA

description

The 'LVT16952 is a 16 -bit registered transceiver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment. The device can be used as two 8 -bit transceivers or one 16-bit transceiver. Data on the A or B bus is stored in the registers on the low-to-high transition of the clock (CLKAB or CLKBA) input provided that the clock-enable ($\overline{\text { CLKENAB }}$ or CLKENBA $)$ input is low. Taking the output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{\mathrm{OEBA}}$) input low accesses the data on either port.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT16952 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT16952 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT16952 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

FUNCTION TABLE \dagger				
INPUTS				OUTPUT B
CLKENAB	CLKAB	$\overline{\text { OEAB }}$	A	
H	X	L	X	$\mathrm{B}_{0} \ddagger$
X	L	L	X	$\mathrm{B}_{0}{ }^{\ddagger}$
L	\uparrow	L	L	L
L	\uparrow	L	H	H
X	X	H	X	Z

\dagger A-to-B data flow is shown; B-to-A data flow is similar but uses CLKENBA, CLKBA, and OEBA.
\ddagger Level of B before the indicated steady-state input conditions were established.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

> Supply voltage range, V_{CC} -0.5 V to 4.6 V

> Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) $\ldots .-0.5 \mathrm{~V}$ to 7 V
> Current into any output in the low state, I_{O} : SN54LVT16952 96 mA
> SN74LVT16952 ... 128 mA
> Current into any output in the high state, I_{O} (see Note 2): SN54LVT16952 48 mA
> SN74LVT16952 64 mA

> Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .1 \mathrm{~W}$
> DL package .. 1 W

Storage temperature range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.

recommended operating conditions

\ddagger Current duty cycle $\leq 50 \%, f \geq 1 \mathrm{kHz}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			SN54LVT16952		SN74LVT16952		UNIT
				MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {IK }}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$ to MAX	$\mathrm{IOH}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2$		$\mathrm{V}_{\mathrm{CC}}-0.2$		V
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$,	$\mathrm{IOH}=-8 \mathrm{~mA}$		2.4		2.4		
	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V}$,	$1 \mathrm{OH}=-24 \mathrm{~mA}$		2				
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$1 \mathrm{OH}=-32 \mathrm{~mA}$				2		
VOL	$\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.2		0.2	V
	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$,	$\mathrm{IOL}=24 \mathrm{~mA}$			0.5		0.5	
	$\mathrm{V}_{\text {CC }}=3 \mathrm{~V}$,	$\mathrm{IOL}=16 \mathrm{~mA}$			0.4		0.4	
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{IOL}=32 \mathrm{~mA}$			0.5		0.5	
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$			0.55			
	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{IOL}=64 \mathrm{~mA}$					0.55	
1	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	Control pins		± 1		± 1	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {CC }}=0$ or MAX \ddagger,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			10		10	
	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	A or B ports§		20		20	
	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$			1		1	
	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$,	$\mathrm{V}_{1}=0$			-5		-5	
$\mathrm{I}_{\text {off }}$	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V					± 100	$\mu \mathrm{A}$
I/(hold)	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	A or B ports	75		75		$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2 \mathrm{~V}$		-75		-75		
IOZH	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$			1		1	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-1		-1	$\mu \mathrm{A}$
Icc	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$10=0$,	Outputs high		0.1		0.1	mA
			Outputs low		5		5	
			Outputs disabled		0.1		0.1	
${ }^{1} \mathrm{Cc}{ }^{\text {l }}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V , One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND				0.2		0.2	mA
C_{i}	$\mathrm{V}_{1}=3 \mathrm{~V}$ or 0							pF
C_{10}	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0							pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at V_{CC} or GND
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {™ }}$ 4
ABT Widebus $+{ }^{\text {TM }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

LVT MEMORY DRIVERS

Features

- Output ports have $25-\Omega$ series resistors included on chip
- EPIC-IIB ${ }^{\text {TM }}$ BiCMOS process with special low-voltage enhancements
- Mixed-mode circuitry
- Expanded V_{CC} range from 2.7 V to 3.6 V
- Bus-hold circuitry
- Power-on-demand active feedback circuitry
- JEDEC SSOP (Widebus ${ }^{\text {TM }}$) and EIAJ TSSOP (Shrink Widebus ${ }^{\text {TM }}$) packaging
- Functional equivalents with complete pinout and package compatibility

Benefits

- 3.3-V logic family with equivalent speed and drive performance of 5-V ABT logic family - not just a recharacterized or scaled CMOS
- Complete input and output compatibility with $5-\mathrm{V}$ signals combined with a pure 3.3-V internal supply signal - provides bidirectional $3-\mathrm{V}$ to $5-\mathrm{V}$ translation
- AC performance optimized for both regulated supply and unregulated battery operation
- Reduces component count by eliminating need for external pullup or pulldown resistors on I/O pins configured as inputs left unused or floating
- Reduces disabled static power consumption ($\mathrm{I} C \mathrm{CZ}$) to as little as 0.1 mA for power-conscious portable and battery-powered equipment
- 16- and 18-bit densities for flexible integration
- Space-saving and height-saving surface-mount package options, pin compatible with existing 5-V families for easy conversion
- Drop-in replaceable series resistor options with characteristic LVT advanced system performance and minimal system power
- Reliably drives address lines of 64-K, 256-K, 1-M, 4-M, and 16-M MOS dynamic random access memories (DRAMs)
- Standardization that comes from a common product approach

SN54LVT162240, SN74LVT162240 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
 JULY 1993

- Output Ports Have Equivalent 22- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V
Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{C}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical $V_{\text {OLP }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT162240... WD PACKAGE
SN74LVT162240...DGG OR DL PACKAGE (TOP VIEW)

description

The 'LVT162240 is a 16-bit buffer and line driver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. This device provides inverting outputs and symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs.

The outputs, which are designed to source or sink up to 12 mA , include $22-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT162240 is available in Tl's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT162240 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT162240 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Widebus is a trademark of Texas Instruments Incorporated.

logic diagram (positive logic)

FUNCTION TABLE
(each 4-bit buffer)

InPUTS		OUTPUT Y
$\overline{O E}$	A	
L	H	L
L	L	H
H	X	z

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{I} (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) - 0.5 V to 7 V

Current into any output in the high state, l_{0} (see Note 2) . 30 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$. -50 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DGG package . 0.8 W
DL package . 0.85 W
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

			SN54LVT162240		SN74LVT162240		UNIT
			MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage		2.7	3.6	2.7	3.6	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage			5.5		5.5	V
${ }^{\mathrm{IOH}}$	High-level output current			-12		-12	mA
IOL	Low-level output current			12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

SN54LVT162240, SN74LVT162240

3.3-V ABT 16-BIT BUFFERS/DRIVERS

WITH 3-STATE OUTPUTS

JULY 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

- Output Ports Have Equivalent $22-\Omega$ Series Resistors, So No External Resistors Are Required
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{VCC}_{\text {C }}$
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

> SN54LVT162244... WD PACKAGE SN74LVT162244...DGG OR DL PACKAGE (TOP VIEW)

description

The 'LVT162244 is a 16 -bit buffer and line driver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. The device can be used as four 4-bit buffers, two 8 -bit buffers, or one 16-bit buffer. This device provides true outputs and symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs.
The outputs, which are designed to source or sink up to 12 mA , include $22-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT162244 is available in Tl's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT162244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT162244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^75]
WITH 3-STATE OUTPUTS

logic diagram (positive logic)

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT $\overline{\text { OE }}$ A \mathbf{Y} L H H L L L H X Z	

logic symbol \dagger
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54LVT162244, SN74LVT162244 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
 JUNE 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			SN54LVT162244		SN74LVT162244		UNIT
				MIN	MAX	MIN	MAX	
VIK	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$,	$1=-18 \mathrm{~mA}$			-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$		2		2		V
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{OL}=12 \mathrm{~mA}$			0.8		0.8	V
1	$\mathrm{V}_{\text {CC }}=0$ or MAX \ddagger,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			10		10	$\mu \mathrm{A}$
	$\mathrm{V}_{C C}=3.6 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{C}}$	Control pins	± 1			± 1	
	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$V_{1}=V_{C C}$	Data pins				1	
	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{1}=0 \quad$ Data pins			-5		-5	
loff	$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V					± 100	$\mu \mathrm{A}$
$1 /$ (hold)	$V_{C C}=3 \mathrm{~V}$	$$	A inputs	- 75		75		$\mu \mathrm{A}$
				-75		-75		
IOZH	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$			5		5	$\mu \mathrm{A}$
IOZL	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-5		-5	$\mu \mathrm{A}$
ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{l}=0$,	Outputs high		0.19		0.1	mA
			Outputs low		5		5	
			Outputs disabled		0.19		0.1	
$\Delta^{\prime} C^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V , One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND				0.2		0.2	mA
C_{i}	$\mathrm{V}_{1}=3 \mathrm{~V}$ or 0							pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0							pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V ${ }_{C C}$ or GND.

- A-Port Outputs Have Equivalent 22- Ω

Series Resistors, So No External Resistors Are Required

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical $\mathrm{V}_{\mathrm{OLP}}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

```
SN54LVT162245 . . . WD PACKAGE SN74LVT162245...DGG OR DL PACKAGE (TOP VIEW)
```


description

The 'LVT162245 is a 16-bit (dual-octal) noninverting 3-state transceiver designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment.
This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction-control (DIR) input. The output-enable $(\overline{\mathrm{OE}})$ input can be used to disable the device so that the buses are effectively isolated.

The A-port outputs, which are designed to source or sink up to 12 mA , include $22-\Omega$ series resistors to reduce overshoot and undershoot.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT162245 is available in Tl's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

[^76]SNLVT162245, SN74LVT162245
3.3-V ABT 16-BIT BUS TRANSCEIVERS

WITH 3-STATE OUTPUTS
JUNE 1993

description (continued)

The SN54LVT162245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT162245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (each 8-bit section)	
INPUTS OPERATION OE DIR L L B data to A bus L H A data to B bus H X Isolation	

logic symbol \dagger

MヨI^ヨyd \perp IOnaOyd

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

[^77]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. § Unused pins at V_{CC} or GND.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

- Output Ports Have Equivalent 22- Ω Series Resistors, So No External Resistors Are Required
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

SN54LVT162373 . . . WD PACKAGE SN74LVT162373 . . . DGG OR DL PACKAGE
(TOP VIEW)

description

The 'LVT162373 is a 16 -bit transparent D-type latch with 3-state outputs designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment. It is particularly suitable for implementing buffer registers, I / O ports, bidirectional bus drivers, and working registers.
The device can be used as two 8 -bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable $(\overline{\mathrm{OE}})$ input does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

[^78]
description (continued)

The outputs, which are designed to source or sink up to 12 mA , include $22-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT162373 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN54LVT162373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT162373 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic symbol \dagger

To Seven Other Channels

To Seven Other Channels

logic diagram (positive logic)

INPUTS			OUTPUT
$\mathbf{O E}$	LE	D	Q
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

FUNCTION TABLE
(each 8-bit section)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{1} \text { (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \text { (see Note 1) -0.5 } \mathrm{V} \text { to } 7 \mathrm{~V} \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text {. } 30 \mathrm{~mA} \\
& \text { Current into any output in the high state, } \mathrm{I}_{\mathrm{O}} \text { (see Note 2) . } 30 \mathrm{~mA} \\
& \text { Input clamp current, } \mathrm{l}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {. } 50 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DGG package } \ldots . . \\
& \text { DL package . } 0.85 \mathrm{~W} \\
& \text { Storage temperature range } \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 2. This current will only flow when the output is in the high state and } \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \text {. }
\end{aligned}
$$

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

- Output Ports Have Equivalent $22-\Omega$ Series Resistors, So No External Resistors Are Required
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$)
- Supports Unregulated Battery Operation Down to 2.7 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Distributed VCc and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The 'LVT162374 is a 16-bit edge-triggered D-type flip-flop with 3-state outputs designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a $5-\mathrm{V}$ system environment. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The 'LVT162374 can be used as two 8-bit flip-flops or one 16-bit flip-flop. On the positive transition of the clock (CLK), the Q outputs of the flip-flop take on the logic levels set up at the Dinputs.
A buffered output-enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output-enable $(\overline{\mathrm{OE}})$ input does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

[^79]
3.3-V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS

WITH 3-STATE OUTPUTS

JULY 1993

description (continued)

The outputs, which are designed to source or sink up to 12 mA , include $22-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN74LVT162374 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54LVT162374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74LVT162374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\boldsymbol{\dagger}$

Input voltage range, V_{l} (see Note 1) .. -0.5 V to 7 V	
Voltage range applied to any output in the high state or power-off sta	-0.5 V to 7 V
Current into any output in the low state, Io	30 mA
Current into any output in the high state, l_{O} (see Note 2)	30 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	$-50 \mathrm{~mA}$
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$	$-50 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package	0.8 W
DL package	0.85 W

Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

SN54LVT162374, SN74LVT162374

3.3-V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS
 WITH 3-STATE OUTPUTS
 JULY 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {™ }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Features

- High-speed GTL/TTL translating
- Output edge-rate control (OEC ${ }^{\text {TM }}$) options
- EPIC-IIB ${ }^{\text {TM }}$ BiCMOS process with special low-voltage enhancements
- Mixed-mode signal operation on A port
- Bus-hold circuitry
- Power-on-demand active feedback circuitry
- Widebus ${ }^{T M}$ and UBT ${ }^{T M}$ architectures
- JEDEC SSOP (Widebus™) and EIAJ TSSOP (Shrink Widebus ${ }^{\text {TM }}$) packaging

Benefits

- 3.3-V logic family with equivalent speed and drive performance of $5-\mathrm{V}$ ABT logic family - not just a recharacterized or scaled CMOS
- Complete input and output compatibility with $5-\mathrm{V}$ signals combined with a pure $3.3-\mathrm{V}$ internal supply signal - provides bidirectional $3-\mathrm{V}$ to $5-\mathrm{V}$ translation
- Reduces component count by eliminating need for external pullup or pulldown resistors on I/O pins configured as inputs left unused or floating
- Reduces disabled static power consumption (Iccz) to as little as 0.1 mA for power-conscious portable and battery-powered equipment
- 16 - and 18 -bit densities for flexible integration
- Space-saving and height-saving surface-mount package options, pin compatible with existing $5-\mathrm{V}$ families for easy conversion
- Ideal for high-speed bus applications
- Standardization that comes from a common product approach
- Translates Between GTL Signal Levels and LVCMOS, LVTTL, or 5-V TTL Signal Levels
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation on A Port (5-V Input and Output Voltages With 3.3-V VCC)
- State-of-the-Art BiCMOS Design for Low-Static Power Dissipation
- UBT ${ }^{\text {тм }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops With Qualified Storage Enable
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors on A Port
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages

description

This 18-bit registered bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

DGG OR DL PACKAGE
(TOP VIEW)
OEAB
LEAB

The B port operates at GTL levels while the A port and control pins are compatible with LVCMOS, LVTTL, or 5-V TTL logic levels.

Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock or latch-enable can be controlled by the chip-enable (CEAB and $\overline{C E B A}$) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CEAB is low and CLKAB is held at a high or low logic level. If $L E A B$ is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB if $\overline{C E A B}$ is also low. Output-enable $\overline{O E A B}$ is active-low. When $\overline{O E A B}$ is low, the outputs are active. When $\overline{O E A B}$ is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}, ~ L E B A, C L K B A$, and $\overline{C E B A}$.

To ensure the high-impedance state during power-up or power-down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74LVT16611 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74LVT16611 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

[^80]MARCH 1993
FUNCTION TABLE \dagger

INPUTS					OUTPUT B	MODE
CEAB	OEAB	LEAB	CLKAB	A		
X	H	X	X	X	Z	
L	L	L	H	X	$\mathrm{B}_{0}{ }^{\ddagger}$	Latched storage of A data
L	L	L	L	x	B_{0} §	
X	L	H	X	L	L	Tr
X	L	H	X	H	H	Transparent
L	L	L	\uparrow	L	L	
L	L	L	\uparrow	H	H	Clocked storage of A data
H	L	L	X	X	B_{0} §	Clock inhibit

\dagger A-to-B data flow is shown: B-to-A data flow is similar but uses $\overline{O E B A}, ~ L E B A, ~ \overline{C L K B A}$, and CEBA.
\ddagger Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low.
§ Output level before the indicated steady-state input conditions were established.

logic diagram (positive logic)

MARCH 1993						
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger						
Supply voltage range, 5-V $\mathrm{V}_{\text {CC }}$. - 0.5 V V to 7 V						
Input voltage range, V_{1} (see Note 1) . - 0.5 V V to 7 V						
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V						
Current into any A-port output in the low state, Io . 128 mA						
Current into any B-port output in the low state, I_{0}. 80 mA						
Current into any A-port output in the high state, 10 (see Note 2) . 64 mA						
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package . 1 W						
DL package 1 W						
Storage temperature range . -65 ${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$						
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.						
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.						
recommended operating conditions						
			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage, 3.3 V		3.15	3.3	3.45	v
	Supply voltage, 5 V		4.75	5	5.25	
VREF	Supply voltage			0.8		V
v_{1}	Input voltage	B port			V_{CC}	V
		Except B port			5.5	
V_{IH}	High-level input voltage	B port	$\begin{gathered} V_{\text {REF }} \\ +50 \mathrm{mV} \end{gathered}$			V
		Except B port	2			
V_{IL}	Low-level input voltage	B port			$V_{\text {REF }}$ 50 mV	V
		Except B port			0.8	
IIK	Input clamp current				-18	mA
IOH	High-level output current	A port			-32	mA
IOL	Low-level output current	A port \ddagger			64	mA
		B port			40	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

[^81]electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{REF}}=0.8 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN TYP	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$		-1.2	V
V_{OH}	A port	$\mathrm{V}_{\mathrm{CC}}=$ MIN to MAX \ddagger,	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$	$1 \mathrm{OH}=-8 \mathrm{~mA}$	2.4		
			$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	2		
V_{OL}	A port	$\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$	$\mathrm{OL}=100 \mu \mathrm{~A}$		0.2	V
			$\mathrm{l}^{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
			$\mathrm{l} \mathrm{OL}=32 \mathrm{~mA}$		0.5	
			$1 \mathrm{OL}=64 \mathrm{~mA}$		0.55	
	B port	$\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$,	$\mathrm{I} \mathrm{OL}=40 \mathrm{~mA}$		0.4	
I	Control pins	$\mathrm{V}_{\text {CC }}=0$ or MAX \ddagger,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
	A port§	$\mathrm{V}_{\mathrm{CC}}=3.45 \mathrm{~V}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		20	$\mu \mathrm{A}$
			$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$		1	
			$V_{1}=0$		-5	
	B port	$\mathrm{V}_{\mathrm{CC}}=3.45 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$		5	
			$\mathrm{V}_{1}=0$		-5	
loff	A port	$\mathrm{V}_{C C}=0$	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V		100	$\mu \mathrm{A}$
	B port		V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 1.2 V		100	
${ }^{1}$ (hold)	A port	$\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	75		$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2 \mathrm{~V}$	-75		
Iozh	A port	$\mathrm{V} C \mathrm{C}=3.45 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$		1	$\mu \mathrm{A}$
	B port		$\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{~V}$		10	
'OZL	A port	$\mathrm{V}_{\mathrm{CC}}=3.45 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-1	$\mu \mathrm{A}$
	B port		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-10	
ICC	A port to B port	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=3.45 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				mA
	B port to A port					
	Outputs disabled					
$\triangle \mathrm{Cc} \mathrm{Cl}^{\prime \prime}$		A or control inputs at V_{CC} or GND			1	mA
C_{i}	Control pins	$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0		4		pF
$\mathrm{C}_{\text {io }}$	A port	$\mathrm{V}_{\mathrm{O}}=3.15 \mathrm{~V}$ or 0		10		pF
$\mathrm{C}_{\text {io }}$	B port	Per IEEE1194.0-1991			5	pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ Unused pins at V_{CC} or GND
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{V}_{\mathrm{REF}}=0.8 \mathrm{~V}$ (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{V}_{\text {REF }}=0.8 \mathrm{~V}$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP	MAX	UNIT
$f_{\text {max }}$						MHz
tPLH	A	B			3.2	ns
tPHL					3.2	
tPLH	LEAB	B			4	ns
tphL					4	
tPLH	CLKAB	B			4.3	ns
tPHL					4.3	
tPLH	$\overline{\text { OEAB }}$	B			4.5	ns
tPHL					4.5	
${ }_{\text {t }}$	Transition time, B outputs (0.5 V to 1 V)			1.7		ns
$\mathrm{If}_{\text {f }}$	Transition time, B outputs (1 V to 0.5 V)			0.6		ns
tPLH	B	A			6.5	ns
tPHL					6.5	
tPLH	LEBA	A			6.3	ns
tPHL					6.3	
tPLH	CLKBA	A			6.3	ns
tPHL					6.3	
tEN	$\overline{\text { OEBA }}$	A			5.5	ns
tDIS					6	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tpLH}}{ }^{\prime / t} \mathbf{P H L}$ tpLz／tpZL tPHZ／tPZH	$\begin{gathered} \text { Open } \\ 6 \mathrm{~V} \\ \text { GND } \end{gathered}$

LOAD CIRCUIT FOR A OUTPUTS

LOAD CIRCUIT FOR B OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
（ $\mathrm{Vm}=1.5 \mathrm{~V}$ for A port and 0.8 V for B port）

NOTES：A．C_{L} includes probe and jig capacitance．
B．All input pulses are supplied by generators having the following characteristics： $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$ ．
C．Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control．
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control．
D．The outputs are measured one at a time with one transition per measurement．
Figure 1．Load Circuit and Voltage Waveforms

- Translates Between GTL Signal Levels and LVCMOS, LVTTL, or 5-V TTL Signal Levels
- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Supports Mixed-Mode Signal Operation on A Port (5-V Input and Output Voltages With 3.3-V VCC)
- State-of-the-Art BiCMOS Design for Low-Static Power Dissipation
- UBT ${ }^{\text {тм }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops With Qualified Storage Enable
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors on A Port
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages

description

This 17-bit registered bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes. It provides for a copy of CLKAB at GTL logic levels (CLKOUT). It also provides a conversion of the GTL clock to a TTL environment (CLKIN).
DGG OR DL PACKAGE
(TOP VIEW)
OEAB
LEAB
A1
GND
A2
A3
(TOP VIEW)

The B port operates at GTL levels while the A port and control pins are compatible with LVCMOS, LVTTL, or 5-V TTL logic levels.
Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock or latch-enable can be controlled by the chip-enable (CEAB and $\overline{C E B A})$ inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if $\overline{C E A B}$ is low and CLKAB is held at a high or low logic level. If $L E A B$ is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB if $\overline{C E A B}$ is also low. Output-enable $\overline{O E A B}$ is active-low. When $\overline{O E A B}$ is low, the outputs are active. When $\overline{\mathrm{OEAB}}$ is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}, ~ L E B A, ~ C L K B A$, and CEBA.

To ensure the high-impedance state during power-up or power-down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

[^82]
description (continued)

The SN74LVT16615 is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.
The SN74LVT16615 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
function tablet

INPUTS					OUTPUT B	MODE
$\overline{\text { CEAB }}$	OEAB	LEAB	CLKAB	A		
X	H	X	X	X	Z	
L	L	L	Hor L	X	$\mathrm{B}_{0}{ }^{\ddagger}$	Latched storage of A data
L	L	L	H or L	X	B_{0} §	
X	L	H	X	L	L	
X	L	H	X	H	H	Transparent
L	L	L	\uparrow	L	L	
L	L	L	\uparrow	H	H	Clocked storage of A data
H	L	L	X	X	$\mathrm{B}_{0}{ }^{\text {§ }}$	Clock inhibit

\dagger A-to-B data flow is shown: B-to-A data flow is similar but uses $\overline{\text { OEBA, }}$ LEBA, $\overline{\text { CLKBA }}$, and CEBA.
\ddagger Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low.
§ Output level before the indicated steady-state input conditions were established.
logic diagram (positive logic)

17-BIT GTLILVT UNIVERSAL BUS TRANSCEIVER WITH BUFFERED CLOCK OUTPUTS
 MARCH 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{I} (see Note 1) . -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V_{O} (see Note 1) -0.5 V to 7 V
Current into any A-port output in the low state, IO . 128 mA

Current into any A-port output in the high state, I_{O} (see Note 2) 64 mA
Input clamp current, $\mathrm{I}_{\mathbb{I}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. 50 . 50 mA

Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
DL package . .. 1 W
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current will only flow when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
recommended operating conditions

			MIN	NOM MAX	UNIT
$V_{C C}$	Supply voltage, 3.3 V		3.15	3.3 3.45	V
	Supply voltage, 5 V .		4.75	5 5 5.25	
VREF	Supply voltage			0.8	V
V_{1}	Input voltage	B port		VCC	V
		Except B port		5.5	
V_{IH}	High-level input voltage	B port	$\begin{array}{r} \mathrm{V}_{\mathrm{REF}} \\ +50 \mathrm{mV} \\ \hline \end{array}$		V
		Except B port	2		
V_{IL}	Low-level input voltage	B port		$\begin{array}{r} \mathrm{V}_{\mathrm{REF}} \\ -50 \mathrm{mV} \\ \hline \end{array}$	V
		Except B port		0.8	
IIK	Input clamp current			-18	mA
${ }^{1} \mathrm{OH}$	High-level output current	A port		-32	mA
lol	Low-level output current	A port \ddagger		64	mA
		B port		40	
T_{A}	Operating free-air temperature		0	70	${ }^{\circ} \mathrm{C}$

[^83]electrical characteristics over recommended operating free-air temperature range, $\mathbf{V}_{\text {REF }}=0.8 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN TYPt	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-1.2	V
VOH	A port	$\mathrm{V}_{\text {CC }}=$ MIN to MAX \ddagger,	$\mathrm{I}^{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}-0.2$		V
		$V_{C C}=3.15 \mathrm{~V}$	$\mathrm{IOH}^{\prime}=-8 \mathrm{~mA}$	2.4		
			$\mathrm{I}^{\mathrm{OH}}=-32 \mathrm{~mA}$	2		
VOL	A port	$V_{C C}=3.15 \mathrm{~V}$	$\mathrm{l} \mathrm{OL}=100 \mu \mathrm{~A}$		0.2	V
			$\mathrm{lOL}=16 \mathrm{~mA}$		0.4	
			$\mathrm{l} \mathrm{OL}=32 \mathrm{~mA}$		0.5	
			IOL $=64 \mathrm{~mA}$		0.55	
	B port	$\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OL}}=40 \mathrm{~mA}$		0.4	
11	Control pins	$\mathrm{V}_{\text {CC }}=0$ or MAX \ddagger,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
	A port§	$\mathrm{V}_{\mathrm{CC}}=3.45 \mathrm{~V}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		20	$\mu \mathrm{A}$
			$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$		1	
			$V_{1}=0$		-5	
	B port	$\mathrm{V}_{\mathrm{CC}}=3.45 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$		5	
			$V_{1}=0$		-5	
loff	A port	$v_{C C}=0$	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V		100	$\mu \mathrm{A}$
	B port		V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 1.2 V		100	
$1 /$ (hold)	A port	$V_{C C}=3.15 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	75		$\mu \mathrm{A}$
			$\mathrm{V}_{1}=2 \mathrm{~V}$	-75		
lozh	A port	$\mathrm{V}_{\mathrm{CC}}=3.45 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$		1	$\mu \mathrm{A}$
	Bport		$\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{~V}$		10	
Iozl	A port	$V_{C C}=3.45 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-1	$\mu \mathrm{A}$
	B port		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-10	
ICC	A port to B port	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=3.45 \mathrm{~V}, \\ & \mathrm{v}_{\mathrm{I}}=\mathrm{v}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	$\mathrm{l}=0$,			mA
	B port to A port					
	Outputs disabled					
$\Delta^{\prime} \mathrm{Cc} \mathrm{l}^{1}$		$V_{C C}=3.45 \mathrm{~V}$, A or control inputs at V_{CC} or GND One input at 2.7 V,			1	mA
C_{i}	Control pins	$\mathrm{V}_{\mathrm{I}}=3.15 \mathrm{~V}$ or 0		4		pF
C_{io}	A port	$\mathrm{V}_{\mathrm{O}}=3.15 \mathrm{~V}$ or 0		10		pF
c_{i}	B port	Per IEEE1194.0-1991			5	pF

[^84]timing requirements over recommended ranges of supply voltage and operating free-air temperature, $\mathbf{V}_{\text {REF }}=0.8 \mathrm{~V}$ (unless otherwise noted)

		MIN	MAX	UNIT
Clock frequency		0	150	MHz
Pulse duration	LEAB or LEBA high			ns
	CLKAB or CLKBA high or low			
$\mathrm{t}_{\text {su }}$ Setup time	A before CLKAB \uparrow	1.5		ns
	B before CLKAB \uparrow	3		
	A before LEAB \downarrow	0.5		
	B before LEBA \downarrow	1.5		
	CEAB before CLKAB \uparrow			
	CEBA before CLKBA \uparrow			
	$\overline{\text { CEAB }}$ before LEAB \downarrow			
	$\overline{\text { CEBA }}$ before LEBA \downarrow			
th Hold time	A after CLKAB \uparrow	1		ns
	B after CLKAB \uparrow	0		
	A after LEAB \downarrow	2.5		
	B after LEBA \downarrow	2		
	$\overline{\text { CEAB }}$ after CLKAB \uparrow			
	$\overline{\text { CEBA }}$ after CLKBA \uparrow			
	$\overline{\text { CEAB }}$ after LEAB \downarrow			
	$\overline{\text { CEBA }}$ after LEBA \downarrow			

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{V}_{\text {REF }}=0.8 \mathrm{~V}$ (see Figure 1)

PARAMETER	$\begin{aligned} & \hline \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \\ \hline \end{gathered}$	MIN	TYP MAX	UNIT
${ }_{\text {max }}$					MHz
tpLH	A	B		3.2	ns
tPHL				3.2	
tPLH	LEAB	B		4	ns
tPHL				4	
tpLH	CLKAB	B		4.3	ns
tpHL				4.3	
tPLH	CLKAB	CLKOUT	2.3	6.5	ns
tpHL			2.3	6.5	
tPLH	$\overline{\text { OEAB }}$	B		4.5	ns
tPHL				4.5	
tr_{r}	Transition time, B outputs (0.5 V to 1 V)			1.7	ns
t_{f}	Transition time, B outputs (1 V to 0.5 V)			0.6	ns
tpLH	B	A		6.5	ns
tPHL				6.5	
tPLH	LEBA	A		6.3	ns
tPHL				6.3	
tPLH	CLKBA	A		6.3	ns
tPHL				6.3	
tPLH	CLKOUT	CLKIN	4	13.5	ns
tPHL			4	13.5	
ten	$\overline{\text { OEBA }}$	A		5.5	ns
${ }_{\text {dis }}$				6	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR A OUTPUTS

LOAD CIRCUIT FOR B OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
($\mathrm{Vm}=1.5 \mathrm{~V}$ for A port and 0.8 V for B port)

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

- EPIC-IIB ${ }^{\text {TM }}$ (Enhanced-Performance Implanted CMOS) Submicron Process
- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Provides GTL Signals Levels on Both Inputs and Outputs
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($\mathrm{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages

description

The SN74GTL16821 has 20 single-bit flip-flops which are designed to provide terminated GTL logic levels.

The device can be used as two 10-bit flip-flops or one 20-bit flip-flop. The 20 flip-flops are edge-triggered D-type flip-flops. The SN74GTL16821 provides true data at the Q outputs on the positive transition of the clock (CLK) input.

The output-enable $(\overline{\mathrm{OE}})$ input can be used to place the outputs in a high state. The output-enable input does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN74GTL16821 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74GTL16821 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			OUTPUT
$\mathbf{O E}$	CLK	\mathbf{D}	
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{0}
H	X	X	Z

EPIC-IIB and Widebus are trademarks of Texas Instruments Incorporated.

logic diagram（positive logic）

To Nine Other Channels

absolute maximum ratings over operating free－air temperature range（unless otherwise noted）\dagger

Supply voltage range， V_{CC}	－0．5 V to 4．6 V
Input voltage range， V_{1}（see Note 1）	－0．5 V to 4．6 V
Current into any output in the low state， I_{0}	80 mA
Input clamp current， $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{1}<0\right)$	－50 mA
Output clamp current， $\mathrm{l}_{\text {OK }}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\mathrm{V}_{\mathrm{O}}>0$ ）	$\pm 50 \mathrm{~mA}$
Continuous current through $\mathrm{V}_{\text {CC }}$ or GND pins	$\pm 100 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$（in still air）：DGG package DL package ．	$\begin{gathered} . .1 \mathrm{w} \\ \ldots 1 \mathrm{w} \end{gathered}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under＂absolute maximum ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated under＂recommended operating conditions＂is not implied．Exposure to absolute－maximum－rated conditions for extended periods may affect device reliability．
NOTES：1．The input and output negative－voltage ratings may be exceeded if the input and output clamp－current ratings are observed．

recommended operating conditions

		MIN	NOM MAX	UNIT
$V_{C C}$	Supply voltage	3	3.6	V
$V_{\text {REF }}$	Supply voltage	$\begin{array}{\|r} 2 / 3 V_{C C} \\ -2 \% \end{array}$	$\begin{gathered} 0.8 \begin{array}{r} 2 / 3 V_{C C} \\ +2 \% \end{array} \end{gathered}$	V
V_{1}	Input voltage	0	VCC	V
V_{OH}	High-level output voltage		3.6	V
V_{IH}	High-level input voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{REF}} \\ +50 \mathrm{mV} \\ \hline \end{array}$		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage		$\begin{array}{r} V_{\text {REF }} \\ -50 \mathrm{mV} \end{array}$	V
IIK	Input clamp current		-18	mA
${ }^{\text {IOL}}$	Low-level output current		40	mA
T_{A}	Operating free-air temperature	0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{REF}}=0.8 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYPt	MAX	UNIT	
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$			-1.2	V	
V_{OL}		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{I}^{\mathrm{OL}}=40 \mathrm{~mA}$			0.4	V	
I		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$			5	$\mu \mathrm{A}$	
		$V_{1}=0$			-5			
IOH			$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=3.6 \mathrm{~V}$				$\mu \mathrm{A}$
ICC	Outputs high	$\begin{array}{\|l\|l} \hline \mathrm{V}_{\mathrm{CC}}=3 \mathrm{v}, & \mathrm{IO}=0, \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } & \\ \hline \end{array}$					mA	
	Outputs low							
C_{i}		Per IEEE1194.0-1991			4		pF	
C_{0}		Per IEEE1194.0-1991			6		pF	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus $+^{\text {TM }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Contents

Page
The Bypass Capacitor in High-Speed Environments 15-3
Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices 15-15
Mixing It Up With 3.3 Volts 15-29
Package Thermal Considerations 15-39
Recent Advancements in Bus-Interface Packaging and Processing 15-51
ABT Enables Optimal System Design 15-63

The Bypass Capacitor in High-Speed Environments

Advanced BiCMOS Technology
Ramzi Ammar
Advanced System Logic - Semiconductor Group
Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.
Contents
Title Page
Introduction 15-7
Bypass Definition 15-7
Bypassing Considerations 15-7
Capacitor Type 15-7
Capacitor Placement 15-8
Why This Location Is Very Important 15-8
Output Load Effect 15-9
Capacitor Size 15-12
Conclusion 15-14
References 15-14
List of Illustrations
FigureTitlePage
$1 \quad \mathrm{~V}_{\mathrm{CC}}$ Line Disturbance vs Frequency 15-7
2 Typical Power Layout 15-8
3 Capacitive Storage (Bypass Capacitor) 15-8
$4 \quad V_{C C}$ Line Disturbance vs Cap Size at Different Distances 15-9
$5 \quad \mathrm{~V}_{\mathrm{CC}}$ Line Disturbance vs Cap Size With Resistive Load at Different Frequencies 15-10
$6 \quad V_{C C}$ Line Disturbance vs Cap Size With 60-pF Load at Different Frequencies 15-11
$7 \quad \mathrm{~V}_{\mathrm{CC}}$ Line Disturbance vs Cap Size at Different Capacitive Loads 15-12
$8 \mathrm{I}_{\mathrm{CC}}$ vs Frequency 15-13
$9 \quad V_{C C}$ Line Disturbance vs Frequency 15-14

Introduction

High-speed switching environments generate noise on power lines (or planes) due to the charging and discharging of internal and external capacitors of an integrated circuit. The instantaneous current generated with the rising and falling edges of the outputs causes the power line (or plane) to ring. This behavior can violate the V_{CC} recommended operating conditions or generate false signals, creating serious problems. A simple and easy solution must be considered to prevent such a problem from occurring. This solution is the bypass capacitor.

Bypass Definition

A bypass capacitor stores an electrical charge that is released to the power line whenever a transient voltage spike occurs. It provides a low impedance supply, thereby minimizing the noise generated by the switching outputs of the device.

Bypassing Considerations

A system without bypassing techniques can create severe power disturbance and cause circuit failures. Figure 1 shows the V_{CC} line of the 'ABT541 ringing while all outputs are switching. Note that there is no bypass capacitor at the V_{CC} pin. There are a few issues that should be considered when bypassing power lines (or planes).

- The capacitor type
- The capacitor placement
- The output load effect :
- The capacitor size

Figure 1. Vcc Line Disturbance vs Frequency

Capacitor Type

In a high-speed environment the lead inductances of a bypass capacitor become very critical. High-speed switching of a part's outputs generates high frequency noise ($>100 \mathrm{MHz}$) on the power line (or plane). These harmonics cause the capacitor with high lead inductance to act as an open circuit, preventing it from supplying the power line (or plane) with the current needed to maintain a stable level, and resulting in functional failure of the circuit. Therefore, bypassing a power line (or plane) from the device internal noise requires capacitors with very small inductances. That is why the multilayer ceramic chip capacitors (MLC) are more favorable than others for bypassing power lines (or planes). They exhibit negligible internal inductance, thereby allowing the charge to flow easily, when needed, without degradation.

Capacitor Placement

Most of the printed circuit boards are designed to maintain a short distance between power and ground. This is done by laminating the power line (or plane) with the ground plane and can be electrically approximated with lumped capacitances as shown in Figure 2. However, this is not enough to have a reliable system, and another technique must be considered to provide a low-impedance path for the transient current to be grounded. This can be done by placing the bypass capacitor close to the power pin of the device.

Figure 2. Typical Power Layout

Why This Location Is Very Important

Consider a device driving a line from low to high having an impedance $\left(\mathrm{Z} \cong 100 \Omega\right.$) and a supply voltage ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$) (see Figure 3). In order for the device to change state, an output current $(I=50 \mathrm{~mA})$ is needed instantaneously. Note that for eight outputs switching $\mathrm{I}=50 \times 8=400 \mathrm{~mA}$. This current is provided by the power line (or plane) in a period \leq the rise time of the output (approximately 3 ns for ABT). The bypass capacitor must süpply the charge in that same period of time to avoid V_{CC} drop, therefore distance becomes an important issue. Line inductances can block the charge from flowing, leaving the power line (or plane) disturbed.

Using the formula for paralleled wires:

$$
\begin{equation*}
\mathrm{L}=1 \frac{\mu_{0}}{\pi} \operatorname{Ln} \frac{\mathrm{~d}}{\mathrm{r}} \tag{1}
\end{equation*}
$$

where d is the distance between the wires, r is the radius of the wires, 1 is the length of the wires and μ_{0} is the permeability of medium between wires, one can note that the inductance (L) is directly proportional to the distance between the lines as well as the length of the lines. Therefore, by reducing the loop ABCD in Figure 3, we can minimize the inductance and allow the capacitor to do its function more efficiently, and hence keep the noise off the power line (or plane).

Figure 3. Capacitive Storage (Bypass Capacitor)
Several tests were done on an 'ABT541 device to study the behavior of its power line (or plane) as the outputs switch simultaneously. This data is taken at different distances from the power pin ($0.3,1$, and 2 inches) using four chip capacitors ($0.001,0.01,0.1$, and $1 \mu \mathrm{~F}$), with an input frequency of 33 MHz and all eight outputs switching (worst case). Figure 4 shows the line disturbance increases as the capacitor is moved away from the power pin.

Figure 4. $\mathbf{V}_{\text {cc }}$ Line Disturbance vs Cap Size at Different Distances

Output Load Effect

Capacitive loads combined with increased frequency result in higher transient current and possible V_{CC} oscillation. If the output load is purely resistive, the increase in frequency does not affect the rising and falling edge of the outputs, therefore not increasing the V_{CC} line disturbance. Figure 5 shows the power line behavior across frequency while driving a resistive load only, and Figure 6 shows the same plot with an additional $60-\mathrm{pF}$ capacitive load.

Distance From V_{CC} Pin $=0.3$ Inch, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Outpút Load $=500 \Omega$
V_{CC} ringing amplitude due to the switching of the device outputs
Figure 5. VCC Line Disturbance vs Cap Size With Resistive Load at Different Frequencies

Figure 6. VCC Line Disturbance vs Cap Size With 60-pF Load at Different Frequencies
When driving large capacitive loads, more charge will need to be supplied to the output load, resulting in a slower rising or falling edge. However, if the bypass capacitor is not capable of providing the needed charge, power lines (or planes) start to ring and eventually oscillate causing failures across the board. These oscillations can be of a great amplitude, 2 to 3 V p-to-p. Figure 7 shows these oscillations at four different loads ($0,60,115$ and 200 pF) using four different bypass capacitors ($0.001,0.01,0.1$, and $1 \mu \mathrm{~F}$).

Figure 7. VCC Line Disturbance vs Cap Size at Different Capacitive Loads

Capacitor Șize

How can we choose the right bypass capacitor? The most important parameter is the capability of supplying instantaneous current when it is needed.

There are two ways for calculating the bypass capacitor size for a device:

1. One must know the amount of current needed to switch one output from low to high (I), the number of outputs switching (N), the time required for the capacitor to charge the line (ΔT), and the drop in V_{CC} that can be tolerated ($\Delta \mathrm{V}$).

The following equation can be used:

$$
\begin{equation*}
C=\frac{I \times N \times \Delta T}{\Delta V} \tag{2}
\end{equation*}
$$

where ΔT and ΔV can be assumed.

For example, say one has the following parameters: $\Delta \mathrm{V}=0.1 \mathrm{~V}, \Delta \mathrm{~T}=3 \mathrm{~ns}, \mathrm{~N}=8$, and I can be obtained from either Figure 3, for rough estimate or from the plot in Figure 8, assuming $50-\mathrm{MHz}$ frequency. We are going to use the latter parameter for our example, $\mathrm{I}=44 \mathrm{~mA}$.

Then the equation is as follows:

$$
\begin{equation*}
\mathrm{C}=\frac{44 \times 10^{-3} \times 8 \times 3 \times 10^{-9}}{0.1}=10080 \times 10^{-12}=0.01 \mu \mathrm{~F} \tag{3}
\end{equation*}
$$

2. Several of the capacitor manufacturers specify the maximum pulse slew rate. This allows the capacitor's maximum current to be calculated. For example, a $0.1-\mu \mathrm{F}$ capacitor rated at $50 \mathrm{~V} / \mu \mathrm{s}$ can supply: $\mathrm{i}=\mathrm{cdv} / \mathrm{dt}=0.1 \times 50=5 \mathrm{~A}$. This current is greater than the maximum current $(\mathrm{I} \times \mathrm{N}=44 \mathrm{~mA} \times 8$ outputs switching $=352 \mathrm{~mA}$) required by the device used in the previous example.

Figure 8. Icc vs Frequency

Conclusion

From what was mentioned previously, one can see how important is the bypassing technique. Bypass capacitors play a major role in achieving reliable systems. The absence of the bypass capacitor can generate false signals and create major problems across the entire board. Figure 1 shows the undesired ringing caused by simultaneously switching the outputs of the 'ABT541. Also, choosing a capacitor with negligible lead inductance can avoid unpredictable behavior at high frequencies. Locating the capacitor closer to the V_{CC} pin of a device can avoid further complications and eliminate the ringing entirely. Figure 6 shows the V_{CC} line behávior with the bypass capacitor placed 0.3 inches away from the V_{CC} pin, whereas Figure 9 shows the same plot with the same load, but the bypass capacitor is located at the pin, one can see the dramatic improvement achieved in the latter case. This technique can also be applied to Texas Instruments Widebus ${ }^{\mathrm{TM}}$ family by bypassing all V_{CC} pins. This was proven to be the most effective method for eliminating the V_{CC} line ringing. It is always important to minimize the loop between the V_{CC} pin, the ground, and the bypass capacitor. Finally, choosing the capacitor size by using either method mentioned earlier is highly recommended. If one considers all these issues, a good bypass technique can be achieved.

Figure 9. $\mathbf{V}_{\mathbf{C C}}$ Line Disturbance vs Frequency

References

[1] Texas Instruments, Advanced Schottky Family (ALS/AS) Applications
[2] Walton, D., P.C.B. Layout for High-Speed Schottky TTL

Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices

Advanced BiCMOS Technology

Jim Tuckwell
Advanced System Logic - Semiconductor Group
Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Printed in the U.S.A.

Contents

Title Page

Skews . 15-19
Source of Data . 15-19
Sources of Error in Data . 15-20
Conclusion .. 15 . 20. .

List of Illustrations
Figure Title Page
1 Skew $=$ It $_{\text {PLH }} 14$ - tpLH3 . 15-20
2 'ABT16240 - Single Switching . 15-21

4 'ABT16245 - Single Switching . 15-23
5 'ABT16952 - Single Switching . 15-24
6 'ABT16500A - Single Switching . 15-25
7 'ABT16500A - Simultaneous Switching . 15-26
8 'ABT244 - Single Switching . 15-27

Introduction

The data in this application note demonstrates the skew between the outputs of a sample of Texas Instruments Advanced BiCMOS (ABT) devices. This paper will explain which output skew is being examined, where the data for these curves comes from, and how the data is analyzed. Also, some of the errors that may be present in the data will be discussed.

Skews

Skew is a term that is used to define the difference, in time, between two different signal edges. There are several different types of skew currently being used, they are defined in JEDEC 99 clause 2.3.5:

Output Skew $\left(\mathrm{t}_{\mathrm{sk}(\mathrm{o})}\right)$ - The difference between two concurrent propagation delay times that originate at either a single input or two inputs switching simultaneously and terminating at different outputs.

InputSkew $\left(\mathrm{t}_{\text {sk(i) }}\right)$-The difference between two propagation delay times that originate at different inputs and terminate at a single output.

Pulse Skew $\left(\mathrm{t}_{\mathrm{sk}(\mathrm{p})}\right)$ - The difference between the propagation delay times $\mathrm{t}_{\text {PLH }}$ and $\mathrm{t}_{\mathrm{PHL}}$ when a single switching input causes one or more outputs to switch.

Process Skew $\left(\mathrm{t}_{\mathrm{sk}(\mathrm{pr})}\right)$-The difference between identically specified propagation delay times on any two samples of an IC at identical operating conditions.

Limit Skew $\left(\mathrm{t}_{\text {sk(1) }}\right)$ - The difference between: 1 . The greater of the maximum specified values of $\mathrm{t}_{\text {PLH }}$ and $t_{\text {PHL }}$ and 2. The lesser of the minimum specified values of $\mathrm{t}_{\text {PLH }}$ and $\mathrm{t}_{\mathrm{PHL}}$.

The skew discussed here is the skew of propagation delays across the outputs of a device. More specifically, it is the difference between the largest value obtained for a propagation delay and the smallest value across all of the outputs. For example, if output 3 has the largest propagation delay $\mathrm{t}_{\mathrm{PLH}}$ and output 14 has the smallest, then the output skew for this device would be the difference between the propagation delays for output 3 and output 14 (see Figure 1).

The majority of the curves presented in this paper consist of data taken on devices that have one output switching at a time. This produces a skew that should not be confused with the defined data sheet skew $\mathrm{t}_{\mathrm{sk}(\mathrm{o})}$. The data sheet value for $\mathrm{t}_{\mathrm{sk}(\mathrm{o})}$ is found by switching all of the outputs simultaneously. Two of the devices examined in this paper ('ABT16240, 'ABT16500A) include curves which present $\mathrm{t}_{\mathrm{sk}(\mathrm{o})}$ data.

Source of Data

The data used to produce the curves presented in this paper was extracted from the characterization data bases used to set the data sheets for the devices presented. The sample size of the data base is approximately thirty devices for each characterization lot (wafer) used.

The data was sorted so that the maximum skew for each device at a particular V_{CC} and temperature combination could be determined. Next, the maximum skew values were averaged to produce a data point for each transition. Further statistical analysis of this data was performed to calculate a standard deviation of the maximum skew across the devices. This value was then used to produce a three standard deviations data point for each V_{CC} and temperature combination. The data is presented as a family of curves across V_{CC} with each member of the family being an output skew versus temperature curve. The curves for each device are broken out by output transition (i.e. $t_{\text {PLH }}, t_{\text {PHL }}$). Each transition is further separated into a set of curves depicting the average skew across the devices and a set representing the average skew plus three standard deviations.

For those devices ('ABT16952 and 'ABT16500A) which have registers, the data path chosen for each device was the path which put the device in a transparent mode. Also, for the bidirectional devices ('ABT16245, 'ABT16952, and 'ABT16500A) the A-to-B direction was used.

Figure 1. Skew $=\mid t_{\text {PLH14 }}-$ tpLH3 \mid

Sources of Error in Data

The data in this paper was taken on an IMPACT tester, which is a piece of automatic test equipment used to characterize integrated circuits. The tester is offset using a golden unit which has had data taken on a lab bench setup. It is this process of offsetting which is the main source of error in the data.
Briefly the tester is offset in the following manner: First the golden unit has its propagation delay measurements taken at $25^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ using a pulse generator as the source and an oscilloscope as the measurement unit. The golden unit is then placed on the IMPACT and the data is again taken. The difference between the two values is the offset. The $25^{\circ} \mathrm{C}$ offsets are used for the data taken at $-55^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ while the $85^{\circ} \mathrm{C}$ offsets are used at $85^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$.

Great care is taken during this process to ensure that the induced error is kept to a minimum. For example, the boards are checked before use to ensure the output loads are correct, the oscilloscope is calibrated each day and the input signals are closely monitored to ensure that the intended signal is delivered to the golden unit.

This reduction in error is quite important in this application due to the fact that the average skews for the devices are about 200 ps . A 20-ps error in offsets translates into an approximate error of 10% in the output skew data.

However, it can be seen in the curves presented here that the error has been kept to a minimum and that the curves are fairly well behaved.

Conclusion

The family of curves presented in this paper demonstrates that the Texas Instruments Advanced BiCMOS family of devices can be expected to produce an average skew between outputs that will remain below 400 ps for devices with single switching outputs. Also, when a device has its outputs switching simultaneously, the average skew across the outputs can be expected to remain below 700 ps .

Figure 2. 'ABT16240 - Single Switching

Figure 3. 'ABT16240 - Simultaneous Switching

$\mathrm{X}-\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{Y}-\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},+/-\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Figure 4. 'ABT16245 - Single Switching
$t_{\text {PLH }}$ AVERAGE OF OUTPUT SKEWS

$t_{\text {PLH }}$

$t_{\text {PHL }}$
AVERAGE OF OUTPUT SKEWS

$t_{\text {PHL }}$

$$
\mathrm{X}-\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{Y}-\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},+1-\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}
$$

Figure 5. 'ABT16952 - Single Switching

$\mathrm{X}-\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{Y}-\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},+/-\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

Figure 6. 'ABT16500A - Single Switching
$t_{\text {PLH }}$ AVERAGE OF OUTPUT SKEWS

$t_{\text {PLH }}$

$t_{\text {PHL }}$
aVErage of output skews

$t_{\text {PHL }}$
AVERAGE + 3 STD DEVS

$$
X-V_{C C}=4.5 \mathrm{~V}, Y-V_{C C}=5 \mathrm{~V},+/-V_{C C}=5.5 \mathrm{~V}
$$

Figure 7. 'ABT16500A - Simultaneous Switching

$$
\mathrm{X}-\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{Y}-\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},+/-\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}
$$

Figure 8. 'ABT244 - Single Switching

Mixing It Up With 3.3 Volts

Ken Ristow
Steve Perna
Advanced System Logic - Semiconductor Group Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Tl covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.
Contents
Title Page
Introduction 15-33
The Market for Low Voltage 15-34
Migration to 3.3 V 15-34
Mixed-Mode Operation 15-35
LVT Family Characteristics 15-36
Bus Hold 15-38
Conclusion 15-38
List of Illustrations
Figure Title Page
1 3-V to 5-Vi Power vs Frequency Comparison 15-33
2 Comparison of 3.3-V and 5-V Interfaces 15-35
3 Simplified LVT Output Structure 15-37
4 ABT vs LVT Output Drive Comparison 15-37

Introduction

The evolution to a 3.3-V supply voltage is being driven by a complex matrix of requirements. Leading the way are the characteristics of advanced semiconductor processing and the need to reduce system power without a corresponding tradeoff in system performance. Reduction of the horizontal and vertical feature sizes of transistors is the most common method of increasing the density of cells that can be contained in an integrated circuit. These feature sizes or geometries are typically represented as minimum process dimensions for advanced products such as dynamic random access memories (DRAMs).

DRAM manufacturers have forecasted that all 64M-bit versions will be developed for operation from a supply voltage of $3.3 \pm 0.3 \mathrm{~V}$. For 16 M -bit DRAM products there is no such rule of thumb as certain vendors expect to operate from 3.3 V, while others will offer different product versions with differing voltage levels. An approach used by several manufacturers is to provide $5-\mathrm{V}$ power supply operation externally with internal step-down conversion to 3.3 V . For static random access memories (SRAMs), manufacturers have announced that most 16 M versions will operate at 3.3 V or lower (down to 2.7 V).

Typical 1M-bit DRAM geometries are on the order of $1.2 \mu \mathrm{~m}$, and it is not a problem to apply a $5-\mathrm{V}$ power supply to this type of product. However, as the feature sizes of DRAMs shrink, the stresses of 5-V operation can preclude their reliable operation due to high field-effect failures. One such effect is hot-carrier injection which over time increases the transistor's threshold, leading to eventual nonoperation. Another field-effect concern is the breakdown of the transistor's gate oxide causing internal shorts. Therefore, reducing the supply voltage is one way to ensure reliable operation of devices fabricated in state-of-the-art processes.

The reduction of V_{CC} from 5 V to 3.3 V reduces the power consumed by the device which increases system reliability while reducing costs associated with the removal of the heat. The power consumption of a device is primarily a function of its capacitive load, frequency of operation, and supply voltage. However, capacitive load and frequency have a linear effect on a device's power consumption while supply voltage has a square relationship. Because of this square relationship a small reduction in voltage significantly reduces the power consumed, as illustrated in Figure 1, and is a driving factor towards $3.3-\mathrm{V}$ operation.

POWER CONSUMPTION

vs
OPERATING FREQUENCY

Figure 1. 3-V to 5-V Power vs Frequency Comparison

The Market for Low Voltage

User demand for low-voltage products can be grouped into specific brackets depending on their performance-power priorities. End equipments such as multiuser servers, engineering workstations, high-end desktop PCs, and other high-performance motherboards favor high performance over low power, but are interested in 3.3-V products to reduce or eliminate bulky, noisy cooling fans in the attempt to shrink external case size for better desktop fit. Some end equipments favor low power at the expense of high performance such as battery-powered notebooks and palmtop computers, portable test equipment, and point-of-sale terminals. A few end equipments require equal priority for high performance and low power such as laptop computers, automotive and air/space products.

The universal benefits to users of low-voltage products are higher reliability and lower cost. The higher reliability is relative to standard 5-V solutions and results from lower stress gradients on device junctions and oxides, lower buildup of heat due to lower power consumption, and improved signal integrity from the reduction in ground bounce and signal noise. Lower power consumption usually yields lower costs since power costs money to generate and heat costs money to dissipate. All things considered, it is desirable to use inexpensive plastic packages instead of metal or ceramic to dissipate heat. For battery users, an added benefit of the lower power consumption of low-voltage products is one of increased battery lifetime.
Of all the end-equipment groups which can benefit from the use of low-voltage products, it appears that demand will be initially driven by battery-operated computers. This market segment is defined by notebook and palmtop computers, as well as point-of-sale terminals which are designed to capture data at remote field sites and either store it for downloading later or transmit it real time via an on-board transmitter. The goal for these systems is to have a battery life of 8 to 10 hours, roughly the equivalent of one work day or the time to complete a transcontinental airplane trip.

The unregulated battery market is itself quite varied, however, because different batteries exhibit very different voltage characteristics between fully charged and discharged states. Two AA batteries provide for $3-\mathrm{V}$ supply when charged, decreasing to about 2.7 V after use. Three NiCad batteries provide for a baseline $3.6-\mathrm{V}$ supply fully charged but the spread actually runs from about 3.3 V up to 3.9 V . For now the unregulated battery market demands low-voltage products which are optimized to run from 2.7 V up as high as 3.9 V . Since performance is directly related to supply voltage, it is more important for device optimization to be extended down to 2.7 V , where devices will slow down appreciably.

There are some barriers for low-voltage acceptance in the short term. Specification standardization remains an issue. Also, the access to adequate supplies of 3.3-V devices can be a problem. Generally, DRAM memories are leading the way into $3.3-\mathrm{V}$ operation with SRAM memories close behind. Coupled with the low-voltage microprocessors now available, systems are being implemented with the core components operating at 3.3 V , with volume requirements not beginning until the ' 94 -' 95 time frame. Hindering the migration to a full $3.3-\mathrm{V}$ system is the availability of support products such as: disk drives, LCDs, A/D converters, RF transmitters, and EPROMS.

Migration to 3.3 V

The need to migrate to power supplies with supply voltages less than 3.3 V has been an issue since 1984 when two JEDEC standards were adopted. Standard 8.0 was intended to address both regulated ($3-\mathrm{V}$ to $3.6-\mathrm{V}$) and unregulated (2-V to $3.6-\mathrm{V}$) battery applications. Standard 8.1 was intended to address higher-performance applications operating from a regulated power supply that could interface to a standard 5-V TTL device as well as a low-voltage device. Essentially Standard 8.0 established regulated low-voltage CMOS (LVCMOS) and unregulated low-voltage battery-operated (LVBO) interfaces, and Standard 8.1 established the low-voltage TTL (LVTTL) interface.

Committee members have since determined that the original two standards are inadequate. Since most systems currently require a TTL interface, Standard 8.1 LVTTL is the most critical one being reviewed now. When ratified, the new LVTTL standard will present methods for interfacing with 5-V systems and contain a provision for battery-operated systems. Until this happens, a generic lack of compatibility will exist between the various 3.3-V and 5-V interfaces.

Existing solutions for $3.3-\mathrm{V}$ operation have historically been $5 \mathrm{-V}$ products and processes characterized for $3.3-\mathrm{V}$ operation. A CMOS process is typically chosen because of the scaling effect of the inverter thresholds with respect to the supply voltage. HCMOS and Advanced CMOS devices support both $5-\mathrm{V}$ and $3.3-\mathrm{V}$ operation by this method. One drawback is slower propagation delay when compared to parts specifically designed for 3-V operation. A limitation of many of these devices is their inability to directly interface to a $5-\mathrm{V}$ system when running off a $3.3-\mathrm{V}$ supply, due to diodes from the input and input/output (I/O) pins to V_{CC}. This limits input voltages to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ and limits direct connection to a $5-\mathrm{V}$ system.

Mixed-Mode Operation

This dilemma of device incompatibility between the large installed base of 5-V systems with the newly emerging 3.3-V systems is a serious industry concern. Mixed-mode operation allows for direct communication between the two systems. Devices which support this mode must be designed for maximum input voltages of 5.5 V without any long-term reliability issues. Another concern is that the output drive must be capable of driving a standard-TTL backplane, while still providing for rail-to-rail switching for compatibility with 3-V CMOS systems.
Figure 2 compares the standard-TTL dc interface levels with two of the emerging low-voltage standards. Low-voltage CMOS (LVCMOS) is a pure CMOS specification that specifies low current rail-to-rail output drive along with input voltage levels, V_{IH} and V_{IL}, which are ratios of V_{CC}. Low-voltage TTL (LVTTL) utilizes the standard-TTL input levels of 0.8 and 2 V as well as specifying a higher dc output drive than LVCMOS. To ensure interoperability between these three varied standards, a multipurposed low-voltage interface device must meet all of the requirements of the three different specifications.

Figure 2. Comparison of $\mathbf{3 . 3 - V}$ and $5-\mathrm{V}$ Interfaces

LVT Family Characteristics

To address the need for a complete low-voltage interface solution, Texas Instruments has developed a new generation of logic parts capable of mixed-mode operation. The LVT series of parts rely on a state-of-the-art submicron BiCMOS process to provide up to a 90% reduction in static power dissipation over ABT devices, and provides the following family characteristics:
5.5-V maximum input voltage

Specified 2.7 - to $3.6-\mathrm{V}$ supply voltage
I/O structures that support power-on (live) insertion
Standard TTL output drives of:
$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{OL}}=0.55 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$
Rail-to-rail switching for driving CMOS
Maximum supply currents of:
$\mathrm{I}_{\mathrm{CC}(\mathrm{L})}=15 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CC}(\mathrm{H})}=250 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CC}(\mathrm{Z})}=250 \mu \mathrm{~A}$
Propagation delays of:
$\mathrm{t}_{\mathrm{pd}}<4.6 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{pd}}($ LE to Q$)<5.1 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{pd}}($ CLK to Q$)<6.3 \mathrm{~ns}$
Surface-mount packaging support including fine-pitch packages:
48- and 56-pin SSOP for LVT Widebus ${ }^{\text {TM }}$
20- and 24-pin TSSOP for standard LVT
LVT input/output characteristics
Figure 3 shows a simplified LVT output and illustrates the mixed-mode signal drive designed into the output stage. This combination of a high-drive TTL stage along with the rail-to-rail CMOS switching gives the LVT series of product extreme application flexibility. These parts have the same drive characteristics as 5-V ABT devices, as shown in Figure 4, providing the dc drive needed for existing 5-V backplanes and allowing for a simple solution to reduce system power via the migration to $3.3-\mathrm{V}$ operation.
Not only can LVT devices operate as 3-V-to-5-V level translators by supporting input or I/O voltages of 5.5 V with $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V , the inputs can withstand 5.5 V even when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. This allows for the devices to be used under partial system power-down applications or when live insertion is required.

Figure 3. Simplified LVT Output Structure

OUTPUT VOLTAGE
vs
OUTPUT CURRENT

Figure 4. ABT vs LVT Output Drive Comparison

Bus Hold

Many times devices are used in applications that do not provide a pullup or pulldown voltage to the input or I/O pin when the driving device goes into a high-impedance state, as in the case of CMOS buses or nonbused lines. To prevent application problems or oscillations, a large pullup resistor is typically used, but this consumes board area and contributes to driver loading. The LVT series of devices incorporate active circuitry that holds unused or floating inputs or I/Os at a valid logic level. This circuitry provides for a typical holding current, $\pm 100 \mu \mathrm{~A}$, that is sufficient enough to overcome any CMOS-type leakages. Since this is an active circuit, it does take current, approximately $\pm 500 \mu \mathrm{~A}$, to toggle the state of the input. This current is negligible when compared to the magnitude of current that is needed to charge a capacitive load, and does not affect the propagation delay of the driving output.

Conclusion

LVT devices solve the system need for a transparent interface between the low-voltage and $5-\mathrm{V}$ sections by providing for mixed-signal operation. The devices support live insertion or partial-power applications while providing low-input leakage currents. The outputs are capable of driving today's 5-V backplanes with a considerable reduction in the device's power consumption and are packaged in state-of-the-art fine-pitch surface-mount packages.

Package Thermal Considerations

Darla Wellheuser
Advanced System Logic - Semiconductor Group
Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.
Contents
Title Page
Abstract 15-43
Introduction 15-43
Reliability 15-44
Power Consumption 15-45
Power Calculations 15-46
CMOS 15-47
BiCMOS/Bipolar 15-47
Thermal Resistance Values 15-48
Conclusion 15-50
For Further Information 15-50
List of Illustrations
Figure Title Page
1 Advanced Packages 15-43
$2 \mathrm{I}_{\mathrm{CC}}$ vs Frequency (One Switching, Unused Outputs Low) 15-45
$3 \mathrm{I}_{\mathrm{CC}}$ vs Frequency (All Outputs Switching) 15-45
$4 \mathrm{I}_{\mathrm{CC}}$ vs Frequency (All Switching, 50\% Duty Cycle Enabled) 15-46
$5 \quad \mathrm{I}_{\mathrm{CC}}$ vs Duty Cycle Enabled (25 MHz) 15-46
6 48-Pin SSOP Θ_{JA} vs Trace Length 15-48
7 48-Pin SSOP $\Theta_{J A}$ vs Air Flow 15-49
8 48/56-Pin SSOP K-Factor Board Modeling 15-49

Abstract

In order to meet current and future system requirements of increasing speed and decreasing size, integrated circuit manufacturers are pushing the edge on existing packaging technology. No longer is a component's performance determined by process technology alone but also by the thermal limitations of its package. As a leader in package technology, Texas Instruments has introduced a number of fine pitch packages and is acutely aware of the thermal considerations which must be examined by systems designers. This paper is intended to create awareness and understanding of thermal issues and to explore factors which influence thermal performance.

Introduction

Thermal awareness became an industry concern when surface mount (SMT) packages began replacing through hole (DIP) packages in PCB designs. Circuits operating at the same power enclosed in a smaller package meant higher power. To add to the issue, systems were requiring increased through-put which resulted in higher frequencies, increasing the power density even further. Not only are these same concerns still haunting designers today, they are progressively getting more severe.

100-Pin SQFP

Height $=1.5 \mathrm{~mm}$

Figure 1. Advanced Packages

A glance at Figure 1 will explain part of the reason for increased attention to thermal issues. As a baseline for comparison the 24 -pin SOIC is pictured along with several fine-pitch packages supplied by TI, including the 24-pin SSOP (shrink small-outline), 48-pin SSOP and the 100-pin SQFP (shrink quad flat pack). The 24-pin SSOP (8, 9, 10 bits) allows for the same circuit functionality of the 24 -pin SOIC to be packaged in less than half the area, while the 48 -pin SSOP (16, 18,20 bits) occupies just slightly more area but has twice the functionality of the 24 -pin SOIC. This same phenomena is expanded even further with the 100-pin SQFP (32 and 36 bits) which is the functional equivalent of four 24-pin or two 48-pin devices with additional board savings over that of the SSOP packages. As the trend in packaging technology continues to give way to smaller packages, attention must be focused on the thermal issues this creates.

Reliability

The overriding effect of increased power densities in integrated circuits is a decrease in overall system reliability. A direct relationship exists between junction temperature and reliability which can be shown using the Arrhenius equation.

$$
\begin{equation*}
\mathrm{AF}=\operatorname{Exp}[\mathrm{Ea} / \mathrm{k}(1 / \mathrm{T} 1-1 / \mathrm{T} 2)] \tag{1}
\end{equation*}
$$

Where:
$\mathrm{AF}=$ acceleration factor
$\mathrm{Ea}=$ activation energy (eV)
$\mathrm{k}=$ Boltzmann's constant $\left(8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)$
$\mathrm{T} 1=$ use junction temperature (K)
$\mathrm{T} 2=$ stress junction temperature (K)
The acceleration factor can be used to determine the failure rate of a given component.

$$
\begin{equation*}
\mathrm{FR}(\text { failure rate })=1 / \mathrm{AF} \tag{2}
\end{equation*}
$$

Table 1 provides an example of a device with an initial junction temperature of $100^{\circ} \mathrm{C}$ and the calculated failure rate decrease as the in use junction temperature is lowered. The data given in Table 1 indicates that lower junction temperature will result in increased system reliability.

Table 1

TEMPERATURE ${ }^{\circ} \mathbf{C}$	AF	FR	\% FR DECREASE
100	1	1	0
90	1.54	0.65	35
80	2.41	0.41	59
70	3.9	0.26	74
60	6.48	0.15	85

$\mathrm{Ea}=0.5 \mathrm{eV}$
$\%$ FR decrease $=1-$ FR
A better understanding of the factors which contribute to junction temperature (Tj) will provide a system designer with more flexibility when attempting to solve thermal issues. Device junction temperature is determined by the following:

$$
\begin{equation*}
\mathrm{Tj}=\mathrm{Ta}+\left[\Theta_{\mathrm{JA}} \times \mathrm{P}_{\mathrm{T}}\right] \tag{3}
\end{equation*}
$$

Where:
$\mathrm{Tj}=$ junction (die) temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{Ta}{ }^{`}=$ ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\Theta_{\mathrm{JA}}=$ thermal resistance of the package from the junction to the ambient $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{P}_{\mathrm{T}}=$ total power of the device (W)
Among the things that can alter junction temperature are lower chip power consumption, longer trace length, heat sinks, forced airflow, package mold compound, lead frame size and material, surface area, and die size. Some of these are mechanically inherent to a particular package while others are controlled by the designer and are application specific. To understand which variables can be influenced by practicing good thermal design techniques requires a more detailed investigation of power considerations as well as thermal resistance measurements.

Power Consumption

One way to lower the junction temperature (Tj) of a device, thus improving reliability, is to lower the power consumption. A variety of options are available to help achieve this, such as, low power process technologies, reduced output swing, and reduced power supply voltage. A close look at the power performance and advantages of several popular logic families will assist the designer when choosing what best fits his/her needs.

The choices available from Texas Instruments for high speed bus-interface ranges from standard bipolar (F) to advanced CMOS (ACL/ACT) to state-of-the-art BiCMOS (BCT) and advanced BiCMOS (ABT). Figures 2-4 show current consumption comparisons of ' 244 functions for these technologies across frequency. As expected, the bipolar device consumes more current than the CMOS device at lower frequency, but as frequency increases this relationship no longer holds true. In fact, there exists a region in the frequency range where the CMOS device will consume more current than the bipolar device. The point at which they are equal is referred to as the cross-over frequency. Notice the low frequency where the cross-over point for ABT and ACT occurs.

Figure 2. Icc vs Frequency (One Switching, Unused Outputs Low)

Figure 3. Icc vs Frequency (All Outputs Switching)

Figure 4. Icc vs Frequency (All Switching, 50\% Duty Cycle Enabled)
Typical applications for bus-interface devices require them to be disabled or in the stand-by mode during certain periods of time, for instance, while other devices access the bus. This can result in a large decrease in current consumption for ABT, BCT, and ACT devices which have low stand-by current. These values are given in the data sheets as I_{CC} for ACT and $\mathrm{I}_{\mathrm{CCZ}}$ for $\mathrm{ABT}(250 \mu \mathrm{~A})$ and $\mathrm{BCT}(\cong 10 \mathrm{~mA})$. Current consumption data versus percent duty cycle enabled is shown in Figure 5 . The frequency of the data is held constant at 25 MHz and all outputs are switching.

Figure 5. Icc vs Duty Cycle Enabled ($\mathbf{2 5} \mathbf{~ M H z) ~}$
The power consumption data provided is limited to a small range of variations, however, using this data along with standard formulas power consumption can be calculated for specific applications.

Power Calculations

When calculating the total power consumption of a circuit, both the static and the dynamic currents must be taken into account.

Both bipolar and BiCMOS devices have varying static current levels depending on the state of the output $\left(\mathrm{I}_{\mathrm{CCL}}, \mathrm{I}_{\mathrm{CCH}}\right.$, $\mathrm{I}_{\mathrm{CCZ}}$), while a CMOS device has a single value for I_{CC}. (These values can be found in the individual data sheets.) ACT and ABT inputs when driven at TTL levels will also consume additional current because they may not be driven all the way to Vcc or GND, therefore the input transistors are not completely turned off. This value is known as $\Delta \mathrm{I}_{\mathrm{CC}}$ and is also provided in the datasheet.

Dynamic power consumption results from the charging and discharging of both internal parasitic capacitances as well as external load capacitance. The parameter for ACT and AC and devices which accounts for the parasitic capacitances is known as C_{pd} and is obtained using the following formula, and is found in the datasheet.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{pd}}=\left[\mathrm{I}_{\mathrm{CC}}(\text { dynamic }) /\left(\mathrm{V}_{\mathrm{CC}} \times \mathrm{Fi}\right)\right]-\mathrm{C}_{\mathrm{L}} \tag{4}
\end{equation*}
$$

Where:
$\mathrm{Fi}=$ input frequency (Hz)
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage (V)
$\mathrm{C}_{\mathrm{L}}=$ load capacitance (F)
$\mathrm{I}_{\mathrm{CC}}=$ measured value of current into the device
Although a C_{pd} value is not provided for $\mathrm{ABT}, \mathrm{BCT}$, or F devices, I_{CC} versus frequency curves display essentially the same information. The slope of the curve provides a value in the form of $\mathrm{mA} /(\mathrm{Mhzxbit})$, which when multiplied by the number of outputs switching and the desired frequency, provides the dynamic power dissipated by the device (without the load current).

The following equations can be used to calculate total power for CMOS, Bipolar, and BiCMOS devices.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{S}(\text { tatic })}+\mathrm{P}_{\mathrm{D}(\text { ynamic })} \tag{5}
\end{equation*}
$$

CMOS

AC (CMOS-level inputs)

$$
\begin{align*}
& \mathrm{P}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} \times \mathrm{I}_{\mathrm{CC}} \tag{6}\\
& \mathrm{P}_{\mathrm{D}}=\left[\left(\mathrm{C}_{\mathrm{pd}}+\mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\left.\mathrm{CC}^{2} \times \mathrm{f}_{1}\right] \mathrm{N}_{\mathrm{sw}}}\right.
\end{align*}
$$

ACT (TTL-level inputs)

$$
\begin{align*}
& P_{S}=V_{C C}\left[I_{C C}+\left(N_{T T L} \times \Delta I_{C C} \times D_{d}\right)\right] \tag{7}\\
& P_{D}=\left[\left(C_{p d}+C_{L}\right) \times V_{C C}{ }^{2} \times f_{1}\right] N_{s w}
\end{align*}
$$

BiCMOS/Bipolar

$$
\begin{align*}
& \mathrm{P}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}\left[\mathrm{DC}_{\mathrm{en}}\left(\mathrm{~N}_{\mathrm{H}} \times \mathrm{I}_{\mathrm{CCH}} / \mathrm{N}_{\mathrm{T}}+\mathrm{N}_{\mathrm{L}} \times \mathrm{I}_{\mathrm{CCL}} / \mathrm{N}_{\mathrm{T}}\right)\right. \tag{8}\\
& \left.+\left(1-\mathrm{DC}_{\mathrm{en}}\right) \mathrm{Iccz}\right]+\left(\mathrm{N}_{\mathrm{TTL}} \times \Delta \mathrm{Icc} \times \mathrm{DC}_{\mathrm{d}}\right)
\end{align*}
$$

Note: $\Delta \mathrm{I}_{\mathrm{CC}}=0$ for bipolar devices

$$
\begin{align*}
& P_{D}=\left[\mathrm{DC}_{\mathrm{en}} \times \mathrm{N}_{\mathrm{Sw}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{1} \times\left(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\right) \times \mathrm{C}_{\mathrm{L}}\right] \tag{9}\\
& +\left[\mathrm{DC}_{\mathrm{en}} \times \mathrm{N}_{\mathrm{sw}} \times \mathrm{V}_{\mathrm{cc}} \mathrm{f}_{2} \times(\mathrm{mA} / \mathrm{MHz} \times \mathrm{bit})\right] \times 10^{-3}
\end{align*}
$$

Where:

V_{CC}	$=$ supply voltage (V)
I_{CC}	$=$ power supply current (A) from the datasheet)
$\mathrm{I}_{\mathrm{CCL}}$	$=$ power supply current when outputs are in the low state (A) (from the datasheet)
$\mathrm{I}_{\mathrm{CCH}}$	$=$ power supply current when outputs are in the high state (A) (from the datasheet)
$\mathrm{I}_{\mathrm{CCZ}}$	$=$ power supply current when outputs are in the high-impedance state (A) (from the datasheet)
$\Delta \mathrm{I}_{\mathrm{CC}}$	$=$ power supply current when inputs are at a TTL level (A) (from the datasheet)
$\mathrm{DC}_{\mathrm{en}}$	$=\%$ duty cycle enabled ($50 \%=0.5$)
DC_{d}	$=\%$ duty cycle of the data $(50 \%=0.5)$
N_{H}	$=$ number of outputs in the high state
N_{L}	$=$ number of outputs in the low state
N_{sw}	$=$ total number of outputs switching
N_{T}	$=$ total number of outputs
f_{1}	$=$ operating frequency (Hz)
f_{2}	$=$ operating frequency (MHz)
V_{OH}	$=$ output voltage in the high state (V)
V_{OL}	$=$ output voltage in the low state (V)
C_{L}	$=$ external load capacitance (F)
$\mathrm{mA} /(\mathrm{Mhzxbit})$	$=$ slope of the I I_{CC} vs frequency curve

Thermal Resistance Values

Design trends requiring board size reduction have made way for circuit manufacturers to produce fine-pitch packages which appear to threaten the reliability of systems due to further thermal constraints. As a leader in packaging technology, Texas Instruments has done considerable research into the validity of traditional thermal measurements and data provided by circuit manufacturers.
Unlike datasheet parameters, where the industry has adopted a standard load for measurement ($50 \mathrm{pf}, 500 \Omega$), the measurement of Θ_{JA} has no standard to which all manufacturers comply. The problem facing the designer wishing to make comparisons of thermal data from several manufacturers is that this could be an apples to oranges type comparison. As a result, a software package has been developed at TI to allow designers to obtain thermal data based on their specific application.
The validity and usefulness of the traditional approach to presenting Θ_{JA} values became a pressing issue when TI and another manufacturer measured an identical package and obtained results which varied by 40%. Extensive research led to the conclusion that the methodology used to measure Θ_{JA} did not cause the discrepancy but the physical aspects such as trace length, trace width, number of devices per board, and proximity of the other devices did.

To demonstrate the extreme impact of trace length alone, Figure 6 shows graphs of the Θ_{JA} values for Texas Instruments 48 -pin shrink small-outline package (SSOP) at 0 lfm and 250 lfm with varying trace lengths. The 48 -pin SSOP is pictured in Figure 1 for a side by side comparison with the standard 24-pin SOIC, the 24-pin SSOP and the 100-pin SQFP. The data in Figure 6 clearly shows the need for more complete thermal data, not simply a single data point.

Figure 6. 48-Pin SSOP $\Theta_{J A}$ vs Trace Length
There are, of course, other methods to lower the Θ_{JA} of a device. Using heat sinks or blowing air across a device will certainly improve the ability to remove heat from its surface. Figure 7 provides Θ_{JA} data for the 48 -pin SSOP with trace lengths of 200 mils and 1 inch while varying the amount of airflow. Although many applications tend to limit the amount of airflow allowed, it provides excellent benefits when possible.

Figure 7. 48-Pin SSOP Θ_{JA} vs Airflow
A comparison was made of several variables which have a direct effect on Θ_{JA} values. This data is shown in Figure 8. Surprisingly, the major contributing factor is trace length not airflow. Once again, this validates the need for improvement not necessarily in the test methodology used to calculate Θ_{JA} values, but certainly in the way they are provided.

Figure 8. 48-/56-Pin SSOP K-Factor Board Modeling

Texas Instruments has taken the step of providing Θ_{JA} values for a variety of packages (including the SOIC, SSOP and QSOP) in a user-friendly software package. The program allows the designer to specify his/her own conditions such as trace length, airflow, proximity of other devices, and trace width in order to obtain realistic thermal solutions.

Conclusion

How can a system avoid being a reliability nightmare in today's world where:

- Eight-bit devices are being replaced by 16 and 32 bits in a single package, increasing the power.
- Higher operating frequencies add to the increase in power.
- Fine-pitch packages are reducing the amount of available surface area to remove heat from a device.

Semiconductor manufacturers must take the first step and provide realistic and useful thermal information which will provide designers key variables to focus on for thermal management.

For Further Information

Thermal Software

Contact the factory - (903) 868-7682

Power Dissipation

Advanced CMOS Logic Designer's Handbook, Texas Instruments, 1988
SSOP Designer's Handbook, Texas Instruments, 1991

Recent Advancements in Bus-Interface Packaging and Processing

Ken Ristow
Advanced System Logic - Semiconductor Group Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.
Contents
Title Page
Introduction 15-55
Evolutions in Device Packaging 15-55
Thermal Impedances of Fine-Pitch Packages 15-57
Evolutions in Device Processing 15-58
3.3-V Operation 15-59
Advanced Bus-Interface Solutions 15-59
Memory Driver Usages for the SSOP 15-59
Bus-Interface Usages for the SSOP 15-61
Conclusion 15-62
For Further Information 15-62
List of Illustrations
Figure Title Page
1 Packaging/Processing Evolution 15-55
2 24-Pin Surface Mount Comparison 15-56
3 High Pin-Count Comparison 15-56
$4 \quad \Theta_{\mathrm{JA}}$ vs Airflow for 24-Pin Packages 15-57
$5 \quad \Theta_{\mathrm{JA}}$ vs Airflow 15-57
6 48-Pin SSOP Θ_{JA} vs Trace Length 15-58
7 Loaded Z_{O} vs Distributed Capacitance 15-59
8 Typical $\mathrm{t}_{\text {pd }}$ vs Capacitive Load 15-60
9 Typical t_{pd} vs Capacitive Load 15-60
10 Typical t_{pd} vs Capacitive Load 15-60
11 Typical $\Delta \mathrm{t}_{\mathrm{pd}}$ vs Outputs Switching 15-61

Introduction

Over the past several years the advancements in semiconductor processing have been combined with advanced surface mount packages to offer solutions to board area concerns, as well as, providing for increased system performance. Figure 1 compares the reduction of the package's lead pitch to that of both CMOS and BiCMOS transistor geometries. This paper will explore the different types of fine pitch logic packages and the bus interface solutions provided when they are combined with sub-micron semiconductor processes.

Figure 1. Packaging/Processing Evolution

Evolutions in Device Packaging

With the need for increased functionality in less board area has come the consolidation of much of the board's logic into higher complexity devices. In many cases the discrete logic parts that remain, primarily interface/bus drivers, must occupy the board area leftover after the higher level chips, i.e., microprocessor, ASICs, memory, etc., have been laid out. To meet this task the standard small-outline Integrated circuit (SOIC) has evolved in two distinct paths. One path reduces the package's area and volume (see Figure 2), and the other increases the bit density of the device (see Figure 3).

One method to increase bit density is to keep the number of pins constant while reducing both the lead pitch and package area. The $20 / 24$ pin SSOPs utilize a $0.65-\mathrm{mm}$ lead pitch to achieve over a 50% reduction in area, compared to their standard SOIC counterparts. The package height is also reduced from 2.65 mm for the SOIC to 2 mm for the 20/24-pin SSOPs. This reduction in volume translates into tighter board to board spacing, allowing for denser memory arrays.
The advent of the Personal Computer Memory Card International Association (PCMCIA) standard has required that the package height be reduced even further, thus spawning the thin small-outline package (TSOP). This package utilizes $0.65-\mathrm{mm}$ lead pitch and has a maximum device height of 1.1 mm . With an area of $59 \mathrm{~mm}^{2}$, this package utilizes 86% less volume than the standard 24 -pin SOIC, facilitating the use of logic functions on these cards.

Figure 2. 24-Pin Surface Mount Comparison

24-Pin SOIC
Area $=165 \mathrm{~mm}^{2}$

48-Pin SSOP
Area $=171 \mathrm{~mm}^{2}$

$$
\begin{gathered}
100-\text { Pin SQFP and } \\
100-\text { Pin Cavity SQFP } \\
\text { Area = } 266 \mathrm{~mm}^{2}
\end{gathered}
$$

24-Pin SOIC

Height $=\mathbf{2 . 6 5} \mathbf{~ m m}$
Volume $=437 \mathrm{~mm}^{3}$
Lead Pitch $=1.27 \mathrm{~mm}$

Height $=\mathbf{2 . 7 4} \mathbf{~ m m}$ Volume $=469 \mathrm{~mm}^{3}$ Lead Pitch $=0.635 \mathrm{~mm}$

Height $=1.5 \mathrm{~mm}$
Volume $=399 \mathrm{~mm}^{3}$ Lead Pitch $=0.5 \mathrm{~mm}$

100-Pin Cavity SQFP

Height $=2.3 \mathrm{~mm}$
Volume $=612 \mathrm{~mm}^{3}$
Lead Pitch $=0.5 \mathrm{~mm}$

Figure 3. High Pin-Count Comparison
Another way to increase bit density is to reduce the lead pitch of the package. The 48/56-pin shrink small-outline package (SSOP) halves the lead pitch of the SOIC package from 1.27 mm to 0.635 mm , allowing for twice the number of I/0 pins in the same board area. Eight-, nine-, and ten-bit functions now become 16-, 18 -, and 20 -bit parts. The 100 -pin shrink quad flat package (SQFP), along with the high-power cavity-SQFP, further reduce the lead pitch to 0.5 mm . These packages double the bit density over the 48 -pin SSOP with only a 50% increase in area. Both of these high pin count packages allow for 32- and 36-bit logic functions, providing for efficient buffering of today's 32 -and 64-bit bus widths.

Thermal Impedances of Fine-Pitch Packages

As package area decreases, which is the case for the 20- and 24-pin SSOP and TSOP, the thermal impedance of the package to the ambient environment $\left(\Theta_{\mathrm{JA}}\right)$ increases. Figure 4 illustrates the fact that this relationship is almost linear, and for a 50% reduction in area, Θ_{JA} doubles for the 24 -pin SSOP and TSOP. Because of the higher Θ_{JA}, additional attention must be given to the power dissipation of the device to insure proper operation.

Figure 4. Θ_{JA} vs Airflow for 24-Pin Packages
A similar power consideration occurs with the high pin count packages due to the increased number of bits causing higher power dissipation per package. Figure 5 compares Θ_{JA} for the 24-pin SOIC, 48-pin SSOP, 100-pin SQFP, and cavity SQFP. The cavity package mounts the lead frame directly to one of the metal lids of the package. This mounting provides a direct path for the heat to flow from the die to the ambient environment. This package accommodates both cavity up or down assembly allowing for both conduction, into the board, or convection, into the ambient, cooling.

Figure 5. Θ_{JA} vs Airflow
One factor influencing Θ_{JA} is the trace length that is connected to the package lead finger. This is because some of the heat is taken out of the package through the lead and dissipated into the board as well as through the package top and into the ambient air. Non-standard trace length factors have been identified as a major contributing factor in differences between different manufacturer's published thermal values. Figure 6 shows the effect that trace length has on the 48-pin SSOP's Θ_{JA}.

Figure 6. 48-Pin SSOP Θ_{JA} vs Trace Length

Evolutions in Device Processing

With the improvements to microprocessor clock rates and memory access times, bus-interface devices have become a larger percentage of the total bus cycle time. To keep pace with the need for faster logic many semiconductor manufactures are utilizing sub-micron BiCMOS processes, utilizing shorter gate lengths and thinner gate oxide for device speed improvements. The reductions in transistor area result in less intrinsic capacitance allowing faster internal gate delays, as well as lowering the output capacitance (Ci / o). With a lower $\mathrm{Ci} / \mathrm{o}, \mathrm{ABT}$ devices minimize their impact to system loading.

In a transmission line environment, when the driver's edge rate is less than twice the line's propagation delay, distributed output loading has the effect of reducing the characteristic impedance (Zo) of the transmission line. The higher the distributed capacitive load, the lower the apparent impedance, making it harder for the driver to switch the line on the incident wave. This well known transmission line loading equations is:

$$
\begin{equation*}
Z_{o}^{\prime}=\frac{Z_{o}}{\sqrt{1+\frac{c_{d}}{c_{o}}}} \tag{1}
\end{equation*}
$$

where Z_{o} is the line's unloaded characteristic impedance, C_{0} is its intrinsic capacitance per unit length, and C_{d} is the distributed capacitive load per unit length.

Figure 7 shows how the a device's output capacitance can lower a line's impedance, as in the case of a backplane. If the effects of the other board capacitance contributors - connectors, vias, and trace stubs, are assumed to be constant regardless of the device used, and thus ignored, a comparison of transmission line loading between different technologies can be made.

Figure 7. Loaded Z_{O} vs Distributed Capacitance

3.3-V Operation

As process geometries move towards gate lengths of 0.5μ and below, coupled with the desire for lower power consumption, $3.3-\mathrm{V}$ operation becomes necessary. Because the migration to 3.3 V will be gradual, gated by the availability of semiconductor functions, the need for mixed signal level operation will be critical for bus interface devices. That is the input and I / O pins will be able to have input voltage levels up to 5.5 V without any conduction paths to V_{CC}. The outputs should also be capable of driving a standard $5-\mathrm{V}$ backplane, which would translate into drive currents of at least -15 mA of I_{OH} and 64 mA of I_{OL}.

Advanced Bus-Interface Solutions

Memory Driver Usages for the SSOP

As pointed out above, any of the SSOPs can be utilized as buffers in high-density memory arrays. In many instances, series-dampening termination is chosen, due to its ease of implementation and power savings. Numerous logic devices are available that incorporate the series-dampening resistor on chip, as in the BCT2XXX series of products, simplifying this type of termination. When these parts are packaged in the 20-pin SSOP, as in the 'BCT2240DB, a tremendous board real estate savings is realized over a discrete approach using external resisters and SOIC devices. For PCMCIA cards the driver must also offer low-power consumption, necessary for battery operation. The 'AC11244PW (TSOP package) can be used in these applications due to its low static power CMOS characteristics.
Many times when an output switches a large memory array the capacitive load is localized in close proximity to the driver and can be treated as a simple lumped load. In these instances it is useful to know how the propagation delay (t_{pd}) of the driver changes with the additional capacitive load. The change in the driver's t_{pd} is due to the interaction of its source impedance, R_{on}, with the capacitive load, C_{l}. Figures 8,9 , and 10 show this phenomena for the 'AC11244, 'BCT2240, 'ABT16244, and 'ABT32245 for both single and multiple outputs switching.

Solid = Single Output Switching Dashed = Eight Outputs Switching

Figure 8. Typical $\mathbf{t}_{\text {pd }}$ vs Capacitive Load

Solid = Single Output Switching
Dashed = All Outputs Switching
Figure 9. Typical tpd vs Capacitive Load

Solid = Single Output Switching Dashed = All Outputs Switching

Figure 10. Typical $\mathbf{t}_{\mathbf{p d}}$ vs Capacitive Load

These three figures illustrate the effect that the output impedance of the driver has over $t_{p d}$ degradation. Figure 8 shows that even though the 'AC11244 has symmetrical high and low output drive current ratings of $24 \mathrm{~mA}, \mathrm{t}_{\text {PHL }}$ show more degradation versus capacitive loading due to the graded turn-on of the output to minimize simultaneous switching noise [ground bounce]. Many advanced CMOS logic devices utilize this graded turn-on, but not without the penalty of slower propagation delays at higher capacitive loads. Figure 7 shows a similar asymmetrical tpHL performance, but now it is due to the inclusion of a $33-\Omega$ series output resistor. Contrasting the previous two graphs is Figure 10 which highlights the high-drive capability of the ABT16XXX and ABT32XXX devices, along with the symmetrical t_{pd} performance that the $-32 / 64 \mathrm{~mA}$ outputs deliver.

Bus-Interface Usages for the SSOP

The gains made by utilizing devices with faster propagation delays can be lost if the propagation delay degrades when multiple outputs on a package are switched simultaneously. This effect is greatly reduced when a device is packaged in the 48/56-pin SSOP, because this package allows the signal-to-ground ratio of a standard 8-bit function to be improved from 8:1 to $2: 1$, and the signal-to- $V_{C C}$ ratio improves from $8: 1$ to $4: 1$. This multiple power pin system translates into a quieter on-chip power system when multiple outputs switch, resulting in less propagation delay degradation compared to a standard 8-bit function. The same can be said of the 100 -pin SQFP and cavity SQFP which utilizes a $3: 1$ signal-to-ground ratio. Figure 11 compares the change in $t_{p d} v s$ number of outputs switching (in phase) of a typical' 244 , buffer-type function when packaged in a 48-pin SSOP and 100-pin SQFP to the performance in a 20-pin DIP and SOIC.

Figure 11. Typical $\Delta t_{\text {pd }}$ vs Outputs Switching

Conclusion

The various fine pitch surface-mount packages give the designer a wide range of solutions to today's system area and volume constraints. The high pin count SSOP and SQFP packages allow bus-interface devices to track the trend of wider data bus widths, while providing superior electrical performance when compared to the standard end-pin product. The cavity SQFP allows for higher power dissipation applications, allowing the interface device to operate at higher frequencies. The low pin count SSOPs occupy less volume than other surface mount devices, facilitating their use in height critical applications.

For Further Information

Transmission Lines

Advanced Schottky Family Applications, Texas Instruments Advanced Schottky Data Book, 1986
Advanced CMOS Logic Designer's Handbook, Texas Instruments, 1988
Power Dissipation
SSOP Designer's Handbook, Texas Instruments, 1991

ABT Enables Optimal System Design

Steve Perna

Advanced System Logic - Semiconductor Group Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

ABT ENABLES OPTIMAL SYSTEM DESIGN

Steve Perna
Texas Instruments
Strategic Marketing Manager
Advanced System Logic
P.O. Box 655303, M/S 8323
Dallas, Texas 75265

(214) 997-5210

As the operating frequencies of microprocessors increase, the period of time allotted for memory access, arithmetic computation or similar operation decreases. With this in mind, a new series of Advanced Bus Interface Logic (ABIL) products developed with Texas Instruments' sub-micron Advanced BiCMOS (ABT) process technology assume a prominent role as the key high performance logic needed in today's workstation, personal and portable computer, and telecom systems. The goal of this family of products is to provide system designers a bus interface solution combining high drive capability, low power consumption, signal integrity and propagation delays fast enough to appear transparent with respect to overall system performance. Fine pitch package options simplify layout, reduce required board space and decrease overall system costs. Novel circuit design techniques add value over competitive solutions.

TRENDS IMPORTANT FOR TODAY'S SYSTEM DESIGNER

Modern system designers face many complex challenges in meeting their design goals. The trends toward (need for) faster cycle times, lower power consumption, smaller footprints, greater reliability and lower total system cost combine to put ever increasing pressure on today's system designer.

The need for faster cycle time has traditionally been addressed by the microprocessor manufacturer. Clock and microprocessor
frequencies have increased steadily with each succeeding product generation. The most advanced RISC processors in development are touting frequencies in the area of 200 MHz . For production systems it is not unusual for processors to run on the order of 50 MHz and above. Increasing clock and microprocessor frequencies are now beginning to put pressure on surrounding memory and logic to make greater contributions in reducing overall system cycle times and improving overall system performance.

Higher performance systems require the designer to focus on total system power requirements. Faster systems traditionally require more power which often means more costly solutions. Power costs money to supply and heat buildup due to this power costs money to remove. Also, excess power consumption adversely affects reliability due to the increase in the junction temperature of the silicon components. Lower power devices reduce requirements for larger power supplies and high cost cooling techniques, and could lead to smaller system packaging.

Occurring in parallel with demands for increased system performance and reduced system power consumption is demand to house systems in smaller cases, boxes, chassis and cabinets. This miniaturization requires that each system component be optimally laid out in silicon, packaged and mounted on the PCB board.

Speed, power, size, cost and reliability are all parameters by which system and end
equipment success are measured. Semiconductor manufacturers must be sensitive to these parameters and be able to provide well-defined and designed products to meet these needs.

ADVANCED BUS INTERFACE LOGIC (ABIL) AS THE SYSTEM BUS INTERFACE

Semiconductor vendors are required by system design houses to provide new products which are faster, consume less power, exist in smaller packages and present a lower relative cost than their predecessors. Since the early 1970s many different logic product technologies have attempted to meet these demands.

Early logic product technologies often forced the system designer to make tradeoffs. As Figure 1 details, speed and power were the most typical design goals traded off. Solutions such as Schottky or HCMOS respectively offered high

technologies thrived because they were cheap and readily available.

The cycle time requirements for interface logic vary as a function of microprocessor and clock speed. In an $\mathbf{8 ~ M H z}$ system, the total system cycle available for completion of all operations is 250 nanoseconds. This can be roughly budgeted into 160 nanoseconds for the memory access, 45 nanoseconds for processor set-up and 45 nanoseconds for the interface logic (including signal propagation across printed circuit board traces). With 45 nanoseconds available for interface, a forgiving, low-performance technology such as Low-power Schottky or HCMOS can be utilized.

The situation changes dramatically when system speeds increase to 45 or 50 MHz . At 45 MHz only 44 nanoseconds of total cycle time is available to complete all operations. Now, more expensive memories are needed with access times down in the 20 nanosecond range. Microprocessor set-ups can only be 8 nanoseconds. This leaves only 16 nanoseconds for interface and signal trace propagation delay. The interface cycle time is a much higher percentage of the total system cycle time at 45 $\mathbf{M H z}$ than at $8 \mathbf{M H z}$.
As cycle time
requirements shrink, each
nanosecond becomes critical in
meeting the total system
'budget'. The system designer
has the option of using higher
performance \quad memories,
processors or interface logic in
squeezing additional
speed at the expense of low power or low power at the expense of high speed. In a typical system application this logic sat between only a few system blocks such as a simple 8 MHz processor, a slow 256K DRAM, and a local TTL bus. Their functional role was little more than small-scale integration (SSI) or medium-scale integration (MSI). Despite these shortcomings, early logic
nanoseconds out of the system delay. There is great demand for in using interface logic to meet these budget needs because it is typically much less expensive for the designer to use than higher performance memories or processors.

In light of decreasing total system cycle time requirements, the early logic technologies gave way to faster technologies. Significant gains made since the Schottky and HCMOS days result in products which no longer force the system designer into a tradeoff box. New product development in the area of complex memories, processors and ASIC's has led the way for an equal, if not greater, acceleration in new product development for advanced digital logic products.

This development has propelled logic up from the ranks of "glue" status, used to fill in design gaps around the other major system blocks, to its new position as the system "bus interface". Advanced Bus Interface Logic (ABIL) products are now responsible for controlling the signals between the backplane busses and the other major system design blocks. They have become a major system design block in their own right exerting significant influence over the performance of the final design.

In a modern-day system ABIL products are likely to connect many major system design blocks including application specific parallel processors, 4M DRAM's, fast cache SRAM's and complex ASIC gate arrays/standard cells. The task of this new breed of advanced logic is to effectively transceive the address, data and control signals of these IC elements to and from heavily loaded TTL/CMOS/BTL system backplanes.

A wide variety of industry standard and proprietary backplane specs add to the difficulty of the task. At the low-end of the scale, exhibiting data transfer rates in the range of $10-20$ MByte/sec, are the PC AT and EISA type busses. For mid-range server and graphics workstation applications, the 50-100 MByte/sec data transfer rate range of Multibus II and Microchannel type busses is typical. High-end server and mainframe computer applications require the greater than 100 MByte/sec data transfer rates of Futurebus + type busses. Transceivers connecting to each of these backplanes need to provide very high drive current capability to effectively and reliably migrate signals across. ABLL products from Texas Instruments uniquely address this need.

ENABLERS TO CONTINUOUS NEW PRODUCT DEVELOPMENT

Reduction in minimum process dimension, enhanced value-added circuit design techniques, utilization of fine-pitch packaging and incorporation of lower power supply voltages are the most important enablers to continuous new development for logic products.

The minimum process dimension represents the width of the transistor gate region and gives an indication of the switching speed of the transistor. In general, the smaller the minimum process dimension the faster the transistors will switch. An added advantage of reducing the minimum process dimension is the gain in gate density which can be achieved. A gain in gate density results in increased device functionality without a corresponding increase in silicon die area. Currently state-of-the-art high volume production logic processes consider a 0.8 micron minimum process dimension. However, work is ongoing to prototype more advanced processes characterized by $0.6,0.5$ and 0.35 micron minimum process dimensions.

Enhanced value-added circuit design techniques act to greatly increase the functionality of a logic device as well as improving its performance. These techniques often eliminate the need for the designer to utilize discrete components such as resistors, capacitors and diodes because these are built into the silicon device itself. Additionally optimizations in I/O or core circuitry can positively effect speed and power performance.

An aggressive drive exists to convert classic through-hole package approaches to totally above board surface mount approaches. Occurring in parallel is a drive to upgrade existing surface mount packages with finer pin-to-pin pitches so as to minimize total package area. With smaller packages come increased reliance on thermal management techniques however. The increased difficulty in removing heat from the smaller packages may preclude the use inexpensive plastic
packages. The necessity to use ceramic or other alternatives would act to drive design costs up.

Finally, system designers are beginning to drive the semiconductor industry to move below 5 Volts as the baseline for power supply of operation. The migration to lower voltages such as 3.3 Volts enhances the reliability of advanced process technologies exhibiting minimum process dimensions of 0.6 microns or lower. The need for low voltage memory and processor product interface, lower device generated noise levels, lower power consumption and increased battery life for unregulated portable systems accelerate the demand for 3.3 Volt logic. New 3.3 Volt logic opportunities will emerge as system designers continue to rely on advanced process technologies.

ABT employs a sub-micron 0.8 minimum process dimension. It combines elements of both bipolar and CMOS circuit/process technologies onto a single silicon chip. ABT offers the system designer the best combination of high speed, high drive and low power consumption in the industry. As shown in Figure 1, ABT provides a performance point closer to the origin of the speed/power graph than any other logic technology available. Specifically ABT is based on a CMOS core circuit structure with an NPN bipolar output transistor module added. This means adding about four additional masks to the CMOS process. The current single NPN transistor output structure of ABT has been optimized for 5 Volt operation.

Simplified input and output stages of an
WHAT IS ADVANCED BICMOS (ABT) ?

Advanced BiCMOS (ABT) is a product technology available today from Texas Instruments to aid designers doing high performance bus management. It is currently available in many different product options including 8 -bit octal, 16/18/20-bit Widebus and 32/36-bit Widebus + versions.

At TI ABT evolved from an earlier 1.5 micron BiCMOS process. It was

ABT INPUT STAGE

ABT OUTPUT STAGE

FIGURE 2. ABT INPUT/OUTPUT CIRCUIT STRUCTURE
designed to provide speeds equivalent to existing advanced bipolar solutions but with 90% less device power. This standard BiCMOS introduced high performance, lower power bus interface products to the marketplace two years ahead of the nearest competitor. Since its bus interface introduction in 1987, TI has utilized BiCMOS and Advanced BiCMOS in products such as mixed-signal integrated circuits, high performance gate arrays, high speed cache tags, and application specific processors like the SuperSPARC.
inputs are designed to offer TTL compatible levels with guaranteed switching between a Vih min of 2.0 Volts and a Vil max of 0.8 Volts. Since these inputs are implemented with CMOS circuitry they offer characteristic high impedance for low leakage and low capacitance for minimal bus loading. The CMOS supply voltage of the input stage is dropped by diode D1 and transistor Q1, centering the threshold around 1.5 Volts. When inputs are in the LOW state, Or raises the voltage of source Qp up to the rail ensuring proper
operation of the feedback stage. This stage provides about 100 mV of input hysteresis increasing noise margins and reducing oscillations.

ABT outputs utilize bipolar circuitry to provide the high speed and drive necessary for bus interface. A major advantage for using bipolar circuitry in the output stage is the reduced voltage swing which lowers ground noise, improves signal integrity and reduces dynamic power consumption. In the figure M1 acts as a current switch which drives the output LOW when conducting current from R1 through to the base of Q4. The base of $\mathbf{Q} 2$ is pulled LOW turning off the upper output. For a LOW to HIGH output transition, M1 turns off and current through R1 charges the base of Q2. As Q2 goes high, the Darlington pair Q2 and Q3 turns on. With its supply of base current now cut off, Q4 turns off and the output transition switches LOW to HIGH. R2 limits output current in the HIGH state and D1 is a blocking diode preventing current flow in power-down applications.

By virtue of its small minimum process geometry, tight metal pitch and shallow junctions, ABT can provide for strong output drive currents (sink currents speced at 64 milliamps and source currents speced at 32 milliamps) and low parasitic capacitances. As a result of these enhancements, internal propagation delays are very fast and very well behaved. Figure 3 shows that typical prop
delays are on the order of 2-3 nanoseconds across temperature. This excellent consistency allows ABT to be specified over the industrial temperature range of -40 to +85 degrees Celsius. The figure also shows that ABT performance is very well behaved across capacitive load and multiple output switching conditions.

Maximum prop delays for ABT are as low as 4-5 nanoseconds depending on the device type and propagation path. Figure 4 compares the datasheet maximums of several ABT 16-bit Widebus transceiver devices with competing FCTB/C CMOS and 74F/ALS bipolar solutions. It is clear from both Figure 3 and Figure 4 that ABT is the system designer's best choice for bus

	ARTIE98	2.EMFPa	Erent
Pd CLK to NB	4.6 ns	6.3 ns	9.0 ns
pal(n) OE to AB	6.0 ns	7.0 ns	10.0 ns
podida) OE to AB	5.5 ns	6.5 ns	0.0 ns
	ABTMes\%	Antery	Escy
Da A to 日	4.3 ns	5.5 ns	8.0 ns
pod A to Partly	6.7 ns	11.3 ns	16.0 ns
Pa B to ERROP	6.7 nt	15.7 ns	22.6 ns
Begitered Petiverumashys	Armens	Ecriess	Acrenass
pa A to B	4.3 ns	7.0 ns	10.0 ns
pd A to Party	6.7 ns	10.5 ns	15.0 ns
tpd CLK to ERRO	4.6 nB	15.0 ns	18.0 ns

interface applications which require consistent speed performance over many different conditions.

From a power (current) consumption standpoint the use of bipolar in the output stage is advantageous for two reasons. First the voltage swing is less than that of a CMOS output. The power consumed when charging or discharging internal circuit capacitances and the external load capacitance is reduced. Second the bipolar transistors are capable of turning off more efficiently than CMOS transistors. The wasteful flow of current from Vcc to GND is reduced. Although bipolar does tend to have a high static power consumption, its lower dynamic power consumption allows for better overall power performance at high frequencies than either pure bipolar or

CMOS. This is because the dynamic power component makes up the majority of a device's overall power consumption.

The ABT maximum high impedance supply currents (Iccz) range from about 50 microamps for 8 -bit octals to about 2-3 milliamps for 16 -bit Widebus products. Maximum dynamic supply currents (Iccl) range from about 30 milliamps for 8 -bit octals to about 34 milliamps for 16 -bit Widebus products. Power-on-demand, an enhanced circuit design improvement to the bipolar output stage on new ABT product families, reduces dynamic current consumption levels by up to 50%. High impedance and dynamic supply current goals for the new 32/36-bit Widebus + family are 500 microamps and 60 milliamps respectively.

Bus Hold, shown in Figure 5, is another
entities are periodically required to be in 3 -state. Bus Hold cells eliminate passive pull-up (to Vcc) or pull-down (to GND) termination resistors necessary to prevent application problems or oscillations. External provision for these resistors by the system designer consumes board area, increases bus capacitance, contributes to bus loading and lowers system performance. The Bus Hold feature is particularly effective when offered on products with a lot of I/O capability such as 32/36-bit Widebus + devices.

FINE-PITCH PACKAGING SHRINKS ABT

 DEVICE SIZEAs the push for smaller system sizes becomes intense, the system designer will require the logic manufacturer to house high performance silicon in increasingly space conscious packages. Most notably the system designer has been leveraging the advantages of plastic leaded chip carriers (PLCC's) and small outline integrated circuits (SOIC's).

Both PLCC and SOIC packages provide a gull wing lead profile. Both utilize a 1.27 millimeter pin-to-pin pitch spacing. The example of an enhanced, value-added circuit design technique available on new ABT product families. The Bus Hold cell provides for a small holding current of 100 microamps to be delivered to I/O pins configured as inputs left unused or floating. This current latches the last known input state to a valid logic level. Floating input conditions are common to CMOS backplanes or device bus interface situations where driving
reduced pitch offers a huge space improvement over bulky plastic dual-in-line (PDIP) through-hole packages. The major difference between PLCC and SOIC is philosophical. The PLCC has pins on all four sides (arranged either in square or rectangular configuration) while the SOIC has pins on only two sides (arranged in flow through configuration).
package while keeping the pin count and bit density constant. The second path considers increasing the bit density of the package by increasing pin count and reducing pin pitch. Figure 6 clearly shows both of these migratory
In spite of the advantages of PLCC and SOIC, system designers are beginning to specify surface mount packages with finer pitch values to keep their end equipments competitive in the

FIGURE 6. FINE-PITCH PACKAGE OPTIONS FOR ABT
marketplace or to avoid falling behind more aggressive rivals. Such fine pitch versions available in volume today offer improvements in the pin-to-pin pitch down to 0.635 millimeters. More advanced fine pitch alternatives exhibiting characteristic pitches of $0.5,0.4$ and 0.3 millimeters are on the horizon.

The plastic quad flat pack (PQFP) is a fine-pitch version of the PLCC package. It offers a 0.635 millimeter pitch and is widely used for microprocessors, ASIC's or other custom devices. The 44-pin PQFP is the smallest used in volume while the largest versions provide over 200 pin capability. For the system designer using ABIL products however, it is advantageous to combine the fine-pitch capability of the PQFP with the two-sided dual-in-line design of the SOIC.

SOIC's have evolved in two distinct paths to meet this need. The first path considers reducing the surface area and pin pitch of the
paths starting from the standard octal SOIC package in the upper left hand corner.

Package size reductions are shown vertically down the figure with each succeeding reduction occupying a new row at constant bit density and pin count. Bit density and pin count increases are shown horizontally across the figure.

There are five new fine-pitch packages represented in the figure. Four of these offer a density upgrade path for the SOIC. The fifth is a new package offering a density upgrade for the PQFP. All of these packages were developed and standardized exclusively for high performance ABIL ABT products by TI.

The Shrink Small Outline Package (SSOP) is available in two worldwide standard form factors. The first, approved by the Joint Electron Device Engineering Council (JEDEC), allows for 16-, 18 -, or 20 -bit I/O functions in a
package roughly the same size as the octal SOIC. The pin pitch for the JEDEC SSOP is 0.635 millimeters. The JEDEC SSOP is available in a 48 -pin version for basic 16 -bit driver and transceiver functions and in a 56 -pin version for complex 16 - to 20 -bit transceiver functions. The very popular ABT Widebus family uses the JEDEC approved SSOP.

The second form factor, approved by the Electronics Industry Association of Japan (EIAJ), allows for 8 - and 9 -bit I/O functions in a package about 40% of the size of the octal SOIC. The pin pitch for the EIAJ SSOP is 0.65 millimeters. The EIAJ SSOP is available in a 20 -pin version for basic ABT 8-bit driver and transceiver functions and in a 24 -pin version for complex ABT 8 - and 9 -bit transceiver functions.

Bottom row of figure 6 represents the third form factor upgrade to the SOIC available from TI. The Thin Shrink Small Outline Package (TSSOP) is EIAJ approved and offers a reduced thickness (height) spec of 1.1 millimeters. The pin pitch of the EIAJ TSOP is 0.65 millimeters. (The body width is 4.4 millimeters). The TSSOP is compatible to Type I and Type II card physical requirements of the Personal Computer Memory Card International Association (PCMCIA). TSSOP offers the smallest package size available for 20 -and 24 -pin drivers and transceivers. For denser memory arrays TSSOP facilitates front and back side mount in under 3.3 millimeter thickness specified by PCMCIA if card thicknesses are kept under 1.0 millimeters.

For wideword applications with extreme space and height restrictions, TI will offer Widebus devices in a new package called the Shrink Widebus (TM). Available in 48- and 56 -pin versions, this new package has a 1.1 millimeter maximum height, a 6.1 millimeter body width and a 0.5 millimeter lead-pitch. The Shrink Widebus package, developed by TI, is registered with the EIAJ, meets the requirements of the PCMCIA and consumes 40 percent less board area than the standard JEDEC SSOP.

Providing the density upgrade path for the PQFP is the EIAJ Shrink Quad Flat Pack
(SQFP). This 100 -pin package allows single chip 32- and 36 -bit I/O solutions in over 50% less area than with octal SOIC connections. The pin pitch for the EIAJ SQFP is 0.5 millimeters which is the smallest in production today. The reduced pitch of the SQFP offers a 35% area reduction over 100 -pin PQFP solutions. The new 32- and 36 -bit ABT Widebus + family, recently announced at the BUSCON ' 92 WEST trade show in Long Beach, California, uses the 100 -pin SQFP.

All the above fine-pitch package options are superior for space saving applications. The JEDEC SSOP and EIAJ SQFP are superior in several other areas as well. The JEDEC SSOP incorporates a flow-through architecture where input and output pins each have their own dedicated side of the package. Flow through pinouts offer the system designer a very easy route path for signal traces.

A standard SOIC octal package can only afford 1 GND pin for every 8 I/O's. This ratio improves to $2: 1$ and 3:1 for JEDEC SSOP and EIAJ SQFP respectively. Both the JEDEC SSOP and the EIAJ SQFP provide multiple Vcc and GND pins distributed along the sides. The improved GND number and distribution of these pinouts is very forgiving from a noise generation standpoint and allows for less propagation delay than octal functions. As a result, ABT octals, ABT Widebus and ABT Widebus + all exhibit less than 1 Volt of noise typically, even though the maximum number of switched outputs increases from 8- to 18 - to 36 -bits with each respective family.

As package area decreases, the thermal impedance of the package to the ambient environment increases. Thermal impedance represents the ability of a package to dissipate heat. The higher the thermal impedance the more difficulty the package has in dissipating heat. The higher thermal impedances of fine-pitch packages require additional attention and care from the system designer. Proper thermal management techniques as well as proper power dissipation guidelines must be used to ensure operation. Fortunately the low power of ABT ABIL products

FIGURE 7. ABT PRODUCT AND FEATURE TABLE
is more conducive to a fine-pitch packaging approach than competitive CMOS solutions.

ABT PRODUCTS PROVIDE EQUIPMENT SPECIFIC SOLUTIONS

Combining previously discussed state-of-the-art elements of the ABT process with its numerous advanced fine-pitch package options and its enhanced circuit design features yields a very impressive portfolio of new products. These new products emerge to eloquently serve distinct needs of the workstation, personal and portable computer, and telecom end equipment markets.

Figure 7 categorizes the entire ABIL product spectrum built with the ABT process technology. These families offer features and benefits dedicated to specific markets and industry standards. Figure 8 (next page) organizes these features and benefits graphically.

For high performance engineering workstation and server markets, the ABT Widebus and ABT Widebus + families provide the highest integration and performance. They are necessary to connect the most demanding CISC/RISC microprocessors to the most heavily loaded, high frequency backplanes.

The Universal Bus Transceiver (UBT) is unique in the industry because it can be operated in several distinct bus interface modes. Each package contains D-type latches and D-type flip-flops. Flexible control logic options provide for output enable, latch enable, clock and clock enable combinations.

UBT's can be configured as transparent data flow through transceivers (like the dedicated '245 function), latch enabled transceivers (like the dedicated '543 function), clocked registered transceivers (like the dedicated ' 646 function) and clock enabled registered transceivers (like the dedicated '952 function).

Workstation designers can minimize inventory and with UBT flexibility. Designed specifically for procurement requirements, costs and overhead workstation bus interface applications, the UBT is

ABT32318

8Enics	$\begin{aligned} & \text { Of } \\ & \text { BIT } \end{aligned}$	$\begin{gathered} \text { OF } \\ \text { Ponts } \end{gathered}$	$\begin{gathered} \text { PACK- } \\ \text { ACE } \end{gathered}$	$\begin{aligned} & \text { OF } \\ & \text { PINS } \end{aligned}$	PARTI TIONMG	PARITY OENCH	CONTHOL LOCIC			
16500	18	2	SSOP	56	$\times 18$	No	Yee	Yes	Yes	No
18600	18	2	ssop	58	$\times 18$	No	Yee	Yes	Yes	Yes
32816	18	3	SCFP	80	$\times 18$	No	Yee	Yes	Yes	Yee
32818	18	3	SCFP	80	$\times 18$	No	Yes	Yes	Yes	No
32500	36	2	SCFP	100	$\times 18$	No	Yes	Yep	Yes	No
32300	36	2	8GFP	100	X 18	No	Yee	Yee	Yes	Yee
32700	36	2	SCFP	120	$\times 9$	No	Yes	Yes	Yen	Yes
32000	88	2	SCAP	120	$x 9$	Yee	Yes	Yos	Yes	Yee

Nota: Positive and negative edge triggered clook, and eeries output dampening reeletor options avallable for each version in the table

FIGURE 9. UNIVERSAL BUS TRANSCIEVER
PORTFOLIO
in the series. The ABT16600 is an 18 -bit UBT packaged in the 56 -pin SSOP package. It can be configured in each of 4 different data flow modes between its A-port and B-port.

The ABT32318 is an 18 -bit muxed UBT which can be configured in each of 3 different data flow modes between its A-port, B-port and C-port. This UBT allows the system designer multiple combinations for real-time and stored data exchanges between the three ports. It is particularly useful for multi-bus communication, multi-way interleaving memory applications and high performance multiplexed address and data bus interface.

The ABT32901 (not pictured) is a 36 -bit UBT which provides the most flexibility to the designer packaged in a 120 -pin SQFP. The devices can be configured in transparent, latched,

Several ABT product families directly address upper end workstation and server equipment. A series of transceivers compliant to the I.E.E.E. 896.1 Futurebus + backplane interface standard are available. The special Futurebus + protocols dictate special electrical requirements of the transceivers in order to ensure proper connection to Futurebus + backplanes. Each of 7 transceivers in the series utilize backplane transceiver logic (BTL) switching levels in accordance with the Futurebus + standard.
Complementing these Futurebus + transceivers are a series of BTL transceivers compliant with the I.E.E.E. 1194.1 standard. Both transceiver series contain a TTL A-port along with the BTL B-port and can perform TTL-to-BTL and BTL-to-TTL level translation.

Scope transceivers and drivers are available in ABT which are compliant with the I.E.E.E. 1149.1 testability standard. For high reliability and fault-tolerant system needs these devices provide their own internal self-test capabilities. A complete line of Scope hardware and software system products have been developed by TI.

The personal computer market is characterized by very short design cycle times and intense pressure to lower costs. The major driving force is to put workstation-type performance in machines
clocked or clock enabled data flow modes and has additional benefits of parity generate and check as well as byte (x 9) enable. The 120 -pin SQFP offers the same 14×14 millimeter body sizes as the $100-\mathrm{pin}$ SQFP, but with a 0.4 millimeter leadpitch.
designed for desktop, home and portable applications. ABT in fine-pitch package options meets these needs nicely.

A new series of low voltage products definitively addresses the needs of the portable sub-segment of this market. The Low Voltage Technology (LVT) family has been developed
with the sub-micron ABT process and will be available in both 8 -bit octal and $16 / 18$-bit Widebus density versions. Supply voltage for LVT is specified from 2.7 Volts to 3.6 Volts. LVT 8-bit product uses the TSOP to facilitate the smallest area for portable applications. LVT Widebus product uses both the JEDEC SSOP and the 48/56-pin EIAJ Shrink Widebus SSOP.

Market requirements for 3.3 Volt logic products are being driven now by battery laptops and hand-held instruments. Higher performance desktop PC's and workstations could lag a year behind portables in their demand for 3.3 Volt logic.

As shown in Figure 10, the 5 Volt ABT I/O structure has been optimized for use with 3.3 Volt supply currents. LVT 3.3 Volt speed performance is equivalent to ABT 5 Volt speed performance. This special I/O circuitry also allows for a "mixed-mode" 3.3 Volt to 5 Volt interface capability. Designers can use the same LVT logic for core 3.3 Volt system partition as for external 5 Volt backplane interface. This is particularly important as other system elements (microprocessors, ASIC's, memories) migrate to 3.3 Volts at different rates.

LVT I/O circuitry provides multiple output current ratings for multiple system requirements. LVT devices are specified to drive at rail-to-rail low voltage CMOS levels and standard 5 Volt TTL levels. LVT employs Bus Hold and Power-on-demand circuits increasing reliability, decreasing discrete component count and minimizing enabled and disabled static power consumption. Maximum Iccl, Icch, and Iccz current specs are $5,0.1$ and 0.1 milliamps respectively.

The majority of classic telecom end equipments can be classified into switching and transmission categories. Switching equipment such as central offices, cross connects and branch exchanges are analogous to large mainframes or supercomputers. ABT octal and Widebus product families are targeted for these telecom equipments.

For transmission equipment such as line cards, bridgers and routers, product with enhanced
datasheet specifications covering hot card insertion and power up/down is required. In these applications a board (card) is typically removed (inserted) from an active (hot) system for upgrade, maintenance or repair. The additional specifications characterizo the device's performance when supply currents change (ramp) rapidly.

It is necessary to know how the device behaves when Vcc is 0 Volts, when Vcc is at the rail (5.5 Volts) and when Vce ramps between these voltages. To address this requirement specifically for telecom transmission applications, ABT transceiver datasheets take into account Ii, Iozh, Iozl and Ioz current conditions for various Vcc ramp rates. Transmission system designers can then profile ABT device performance in hot card insertion and power up/down conditions.

SUMMARY

Texas Instruments provides the system designer with the most advanced products to date aiding the solution of complex design challenges. Advanced Bus Interface Logic (ABIL) products processed in sub-micron Advanced BiCMOS (ABT) address specific end equipment demands of the workstation, personal and portable computer, and telecom markets. Advanced fine-pitch package options such as SSOP, TSOP and SQFP offer space saving form factors. Circuit design techniques such as Bus Hold and Power-on-demand add value over competitive solutions.

The evolutionary roadmaps of process and package technology are summarized graphically in Figure 11 (next page). Solid lines indicate process technology migration for CMOS and BiCMOS. The minimum process dimension is represented on the ordinate in units of microns. The dashed line indicates package technology migration from PDIP to SOIC to SSOP to SQFP. For the dashed line, the ordinate now represents minimum lead pitch in millimeters.

The figure points out some interesting trends. BiCMOS solutions, initially well behind
their CMOS cousins in terms of performance, have closed the gap almost completely during the past 6 years. For 5 Volt logic applications ABT offers significant opportunity over an equivalent CMOS version particularly with the advent of thermally sensitive fine-pitch packages like the SQFP.

The Advanced BiCMOS opportunity is to provide more processing capability and overall throughput at a time when the next generation CMOS technologies are not quite ready or where a mixed technology approach provides a more practical solution. For ABLL products the high performance and drive capability of ABT are necessary for rack-mount supercomputers, workstation and telecom switching equipment. However, the low power consumption of ABT is necessary if these end equipments are to easily
exist on the desktop. Low voltage LVT product appears positioned to supply personal computer and battery systems as they strive to incorporate workstation performance in portable formats.

As process geometries drop to 0.6 microns and below, Advanced BiCMOS and Advanced CMOS will continue to do battle in the pursuit of the best low voltage solutions. Future enhancements to Advanced BiCMOS may include extensions to a complementary structure of NPN and PNP transistors to better cope with reduction in power supply voltages. As supply voltages drop to 2.6 Volts and below, it appears more than likely that Advanced BiCMOS and Advanced CMOS will coexist as viable product technologies each supporting a dedicated group of customers. Time will tell.

General Information
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

ABT Advanced BiCMOS Technology Characterization Information

Mike Johnson
Chris Wellheuser
Darla Wellheuser
Advanced System Logic - Semiconductor Group
Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices, or systems. Use of TI product in such applications requires the written approval of the appropriate TI officer. Certain applications using semiconductor devices may involve potential risks of personal injury, property damage, or loss of life. In order to minimize these risks, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. Inclusion of TI products in such applications is understood to be fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Tl covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Printed in the U.S.A.

Contents

Title
 Page

Introduction 16-7
AC Performance 16-8
Power Considerations 16-13
Input Characteristics 16-14
ABT Input Circuitry 16-14
Input Current Loading 16-16
Supply Current Change ($\mathbf{\Delta I}_{\mathbf{C C}}$) 16-17
Proper Termination of Unused Inputs 16-18
Output Characteristics 16-19
Output Drive 16-20
Partial Power Down 16-22
Signal Integrity 16-23
Simultaneous Switching Phenomenon 16-23
Simultaneous Switching Solutions 16-25
Advanced Packaging 16-26
List of Illustrations
FigureTitlePage
1 Propagation Delay vs Free-Air Operating Temperature 16-9
2 Propagation Delay vs Number of Outputs Switching 16-11
3 Propagation Delay vs Capacitive Load 16-12
4 Supply Current vs Frequency 16-13
5 Simplified Input Stage of an ABT Circuit 16-14
6 Output Voltage vs Input Voltage 16-15
7 Input Current vs Input Voltage 16-16
8 Supply Current vs Input Voltage 16-17
9 Sample Input/Output Model 16-18
10 Simplified ABT Output Stage 16-19
11 Typical ABT Output Characteristics 16-20
12 'Reflected Wave Switching 16-21
13 Simplified Input Structures for CMOS and ABT Devices 16-22
14 Example of Partial System Power-Down 16-22
15 Simultaneous Switching Output Model 16-23
16 Simultaneous Switching Noise Waveform 16-23
17 TTL dc Noise Margin 16-24
18 'ABT646A Simultaneous Switching Waveform 16-25
19 'ABT16500A Simultaneous Switching Waveform 16-25
20 24-Pin Surface Mount Comparison 16-26
21 Distributed Pinout of 'ABT16244 16-26
Appendices
Title Page
Appendix \mathbf{A} 16-29
'ABT646A 16-31
Characterization Data 16-39
Appendix B 16-49
SN54ABT16244, SN74ABT16244A 16-51
Characterization Data 16-56
Appendix C 16-65
'ABT16500B 16-67
Characterization Data 16-74

INTRODUCTION

The purpose of this document is to assist the designers of high-performance digital logic systems in using the advanced BiCMOS technology logic family, referred to as ABT.
Detailed electrical characteristics of these bus interface devices are provided and, if available, tables and graphs have been included that compare specific parameters of the ABT family with those of other logic families.
In addition, typical data is provided to give the hardware designer a better understanding of how the ABT devices operate under various conditions.

The major subject areas covered in the report are as follows:

- AC Performance
- Power Considerations
- Input Characteristics
- Output Characteristics
- Signal Integrity
- Advanced Packaging
- Characterization Information

The characterization information provided is typical data and is not intended to be used as minimum or maximum specifications, unless noted as such.

For more information on Texas Instruments ABT logic products, please contact your local TI field sales office or an authorized distributor, or call Texas Instruments at 1-800-336-5236.

AC PERFORMANCE

As microprocessor operating frequencies increase, the period of time allotted for operations, such as memory access or arithmetic functions, decreases. With this in mind, Texas Instruments has developed a new family of bus interface devices-ABT, utilizing advanced BiCMOS technology. The goal of the ABT family of devices is to give system designers one bus interface solution which provides high drive capability, good signal integrity, and propagation delays short enough to appear transparent with respect to overall system performance.

Advances in IC process technology including smaller minimum feature size, tighter metal pitch, and shallower junctions, combine to provide stronger drive strengths and smaller parasitic capacitances. As a result, internal propagation delays have become extremely short. With the advent of the $0.8-\mu \mathrm{m}$, EPIC-IIB ${ }^{\text {TM }} \mathrm{BiCMOS}$ process and new circuit innovations, the ABT family offers typical propagation delays as low as 2-3 ns as shown in Figure 1. Maximum specifications are as low as 3-5 ns depending on the device type.
Figure 2 shows the propagation delay versus change in both temperature and supply voltage for an 'ABT16244A, 'FCT244A, and a 'F244 device. The graphs highlight two important aspects of the new ABT logic family. First, ABT interface devices have extremely short propagation delay
times. The figures clearly show the improvement in speed of an ABT device over that of a 74 F and 74 FCTA device. Second, the variance in speed with respect to both temperature and supply voltage is minimal for ABT. At low temperatures, the increase in CMOS performance compensates for the decrease in bipolar device strength. At high temperatures, the reverse occurs. This complementary performance of both CMOS and bipolar devices on a single chip results in a slope which is virtually flat across the entire temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

For most applications, the datasheet specifications may not provide all of the information a designer would like to see for a particular device. For instance, a designer might benefit from data such as propagation delay with multiple outputs switching or with various loads. This type of data is extremely difficult to test using automatic test equipment; therefore, it is provided in this document as family characteristics shown in Figure 2 and Figure 3.
In order to get a clear picture of where ABT stands in reference to other logic families, data is shown for a comparable (same function) 74F and 74FCTA device. It is clear that ABT is the designer's best choice for bus- interface applications which require consistent speed performance over various conditions.

NOTE: MAX is datasheet specification.
Figure 1. Propagation Delay vs Operating Free-Air Temperature A to Y

NOTE: MAX is datasheet specification.
Figure 1. Propagation Delay vs Operating Free-Air Temperature A to Y (continued)

Figure 2. Propagation Delay Time vs Number of Outputs Switching

(a). 'ABT16244A

(b). 'FCT244A

(c). 'F244

Figure 3. Propagation Delay Time vs Capacitive Load

POWER CONSIDERATIONS

With the challenge to make systems more dense while improving performance comes the need to replace power-hungry devices without compromising speed. The ABT family of drivers provides a solution with low CMOS power consumption and high-speed bipolar technology together on a single device.

There are two basic things to consider when calculating power consumption, static (dc) power and dynamic power. Static power is calculated using the value of I_{CC} as shown in the datasheet. This is a dc value with no load on the outputs. To understand the relationship between pure CMOS, pure bipolar, and advanced BiCMOS for dc power rating, see Table 1 which shows the various datasheet values. The bipolar device shows the highest I_{CC} values, with little relief regardless of the state of the outputs. This is not the case with ABT octals, which offer the low static power consumption of CMOS while in the high-impedance state, or when the outputs are high ($\mathrm{I}_{\mathrm{CCZ}}, \mathrm{I}_{\mathrm{CCH}}$).

Dynamic power involves the charging and discharging of internal capacitances as well as the external load capacitance. It is this dynamic component which makes up the majority of the total power dissipation. Figure 4 shows power as a function of frequency for ABT, FCT and F devices. Although bipolar devices tend to have extremely high static power, there is a point on the frequency curve, commonly referred to as the crossover point, where the CMOS device no longer consumes less power. With ABT devices, the power increase at higher frequencies is less than that of the pure CMOS FCT.

The use of bipolar transistors in the output stage is advantageous in two ways. First, the voltage swing is less than
with a CMOS output, reducing the power consumed when charging or discharging the external load. Second, bipolar transistors are capable of turning off more efficiently than CMOS transistors, thus reducing the flow of current from V_{CC} to GND. Combined, these features allow for better power performance at high frequencies.

Figure 4. Supply Current vs Frequency

Table 1. Supply Current

PARAMETER	TEST CONDITIONS		'F244	'FCT244	SN74ABT244
			MIN , MAX	MIN MAX	MIN MAX
ICC	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & l_{O}=0, \\ & V_{1}=V_{C C} \text { or } G N D \end{aligned}$	Outputs high	60 mA		$250 \mu \mathrm{~A}$
		Outputs low	90 mA		30 mA
		Outputs disabled	90 mA		$250 \mu \mathrm{~A}$
ICC	$\mathrm{V}_{\mathrm{CC}}=$ maximum, $\mathrm{V} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$			1.5 mA	

INPUT CHARACTERISTICS

ABT bus interface devices are designed to guarantee TTL-compatible input levels switching between 0.8 V and 2 V (typically 1.5 V). Additionally, these inputs are implemented with CMOS circuitry, resulting in high impedance (low leakage) and low capacitance which reduces overall bus loading. This section is an overview of the circuitry utilized for a typical ABT input, the corresponding electrical characteristics, and guidelines for proper termination of unused inputs.
order to shift the threshold voltage to be centered around 1.5 V (see Figure 6), the supply voltage of the input stage is dropped by the diode, D1, and the transistor, Q1. Reducing the voltage at the source of Q_{p} enables it to turn off more efficiently when flow is from V_{CC} to $\mathrm{GND}\left({\left.\Delta \mathrm{I}_{\mathrm{CC}}\right) \text {. When the }}\right.$ input is in the low state, Q_{r} raises the voltage of the source of Q_{p} to V_{CC} to ensure proper operation of the following stage. This feedback circuit provides approximately 100 mV of input hysteresis which increases the noise margin and helps ensure the device will be free from oscillations when operated within specified input ramp rates.

Figure 5 shows a typical ABT input schematic. A pure CMOS-input threshold is normally set at one half of V_{CC}. In

Figure 5. Simplified Input Stage of an ABT Circuit

Figure 6. Output Voltage vs Input Voltage

ABT FAMILY CHARACTERISTICS

INPUT CURRENT LOADING

The utilization of sub-micron $(0.8-\mu \mathrm{m})$ CMOS technology for the input stage of ABT devices causes minimal loading of the system bus due to low leakage currents and low capacitance. The small geometries of the EPIC-IIB ${ }^{\text {TM }}$ process have resulted in capacitances as low as 3 pF for inputs and 8 pF for $\mathrm{C}_{\mathrm{i} / 0}$ of a transceiver. Figure 7 and Table 2 indicate the low input current performance and specifications. Considering this low capacitance along with the negligible input current, it is clear that systems designers will be able to decrease their overall bus loading.

Figure 7. Input Current vs Input Voltage

Table 2. Input Current Specifications

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT245	SN74ABT245	UNIT
		MIN	TYP MAX	MIN MAX	MIN MAX	
1	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{C C}$ or GND		± 1	± 1	± 1	$\mu \mathrm{A}$
lozh \dagger	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$		50	50	50	$\mu \mathrm{A}$
lozl \dagger	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-50	-50	-50	$\mu \mathrm{A}$

\dagger The parameters IOZH and IOZL include the input leakage current

SUPPLY CURRENT CHANGE ($\Delta_{\mathbf{I}} \mathbf{C c}$)

Because ABT devices utilize a CMOS-input stage but operate in a TTL-level signal environment, there is a current specification unique to this set of conditions known as $\Delta \mathrm{I}_{\mathrm{CC}}$. Given a CMOS inverter with the input voltage set so that both the p and n channel devices are on, current will flow from $V_{C C}$ to GND. This can occur when the input to an ABT device is at a valid high level ($>2 \mathrm{~V}$) which will turn on the n-channel, but not high enough to completely turn off the p-channel
device. The current which flows under these conditions is specified in the datasheet $\left(\Delta \mathrm{I}_{\mathrm{CC}}\right)$ and is measured one input at a time with the input voltage set at 3.4 V . Figure 8 shows the change in I_{CC} as the input is ramped from 0 V to 5 V . For ABT non-storage devices, a feature is added which turns the input off when the outputs are disabled in order to reduce power consumption (see Table 3 for an example. Refer to individual datasheets for this specification).

Figure 8. Supply Current vs Input Voltage

Table 3. Supply Current Change ($\Delta \mathbf{I}_{\mathbf{C C}}$)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT244	SN74ABT244	UNIT
			MIN	TYP MAX	MIN MAX	MIN MAX	
$\Delta_{\text {l }} \mathrm{CC}^{\dagger}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at $V_{C C}$ or GND	Outputs enabled		1.5	1.5	1.5	mA
		Outputs disabled		50	50	50	$\mu \mathrm{A}$

\dagger This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

ABT FAMILY CHARACTERISTICS

Proper Termination of Unused Inputs

With advancements in speed, logic devices have become more sensitive to slow input edge rates. A slow input edge rate, coupled with the noise generated on the power rails when the output switches, can cause excessive output glitching or, in some cases, oscillations. Similar situations can occur if an unused input is left floating or not being actively held at a valid logic level.

These problems are due to voltage transients induced on the device's power system as the output load current (I_{O}) flows through the parasitic lead inductances during switching (see Figure 9). Since the device's internal power-supply nodes are used as voltage references throughout the integrated circuit, the inductive voltage spikes ($\mathrm{V}_{\mathrm{gnd}}$) affect the way signals appear to the internal gate structures. For instance, as the voltage at the device's ground node rises, the input signal $\left(\mathrm{V}_{\mathrm{i}}\right.$ ') will appear to decrease in magnitude. This undesirable
phenomena can erroneously change the output's transition if a threshold violation takes place.
In the case of a slowly rising input edge, if the ground movement is large enough, the apparent signal, $\mathrm{V}_{\mathrm{i}}{ }^{\prime}$, at the device will appear to be driven back through the threshold and the output will start to switch in the opposite direction. If worstcase conditions prevail (simultaneously switching all of the outputs with large transient load currents) the slow input edge will be repeatedly driven back through the threshold, resulting in output oscillation.

ABT devices are recommended to have input edge rates faster than $5 \mathrm{~ns} / \mathrm{V}$ for standard parts, and $10 \mathrm{~ns} / \mathrm{V}$ for the Widebus ${ }^{\mathrm{TM}}$ series of products when the outputs are enabled. A critical area for this edge rate is in the transition region between 1 V and 2 V . It is also recommended to hold inputs or I/O pins at a valid logic high or low when they are not being used or when the part driving them is in the high-impedance state.

Figure 9. Sample Input/Output Model

OUTPUT CHARACTERISTICS

The current trend is consolidation of the functionality of multiple logic devices into complex, high pin-count ASICs and programmables. There are a number of important advantages for utilizing bus-interface devices in standard high-volume packages. These include the need for high drive capability and good signal integrity. The use of bipolar circuitry in the output stage makes it possible to provide these requirements, along with increased speed, using the ABT family.

Figure 10 shows a simplified schematic of an ABT output stage. Data is transmitted to the gate of M1, which acts as a simple current switch. When M1 is turned on, current flows through R1 and M1 to the base of Q4, turning it on and driving the output low. At the same time, the base of Q 2 is pulled low, thus turning off the upper output. For a low-to-high transition,
the gate of M1 must be driven low, turning M1 off. Current through R1 will charge the base of Q2, pulling it high and turning on the Darlington pair consisting of Q2 and Q3. Meanwhile, with its supply of base drive cut off, Q4 turns off, and the output switches from low to high. R2 is used to limit output current in the high state, and D1 is a blocking diode used to prevent reverse current flow in specific power-down applications.

A clear advantage of using bipolar circuitry in the output stage (as opposed to CMOS) is the reduced voltage swing. This helps to lower ground noise and reduce power consumption. Refer to the sections on Signal Integrity and Power Considerations for further information.

Figure 10. Simplified ABT Output Stage

Output Drive

The I_{OH} and I_{OL} curves for a typical ABT output are shown in Figure 11. With a specified I_{OL} of 64 mA and I_{OH} of $-32 \mathrm{~mA}, \mathrm{ABT}$ will accommodate many standard backplane specifications. However, these devices are capable of driving well beyond these limits. This is important when considering switching a low-impedance backplane on the incident wave.

Incident-wave switching ensures that for a given transition (either high-to-low or low-to-high) the output will reach a valid $\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ level on the initial wave front (i.e., does not require reflections). Figure 12 shows the possible problems a designer might encounter when a device does not switch on the incident wave. A shelf below $\mathrm{V}_{\mathrm{IL}(\max)}$, signal A, will cause the propagation delay to slow by the amount of time it takes for the signal to reach the receiver and reflect back. Signal B shows the case where there is a shelf in the threshold region. When this happens the input to the receiver is uncertain and could cause several problems associated with slow input edges, depending on the length of time the shelf remains in this region. A signal as seen in example C will not cause a problem because the shelf does not occur until the necessary V_{IH} level has been attained.
Using typical V_{OH} and V_{OL} values along with data points from the curves, ABT devices can typically drive lines in the $25-\Omega$ range on the incident wave.
For a low-to-high transition, ($\mathrm{I}_{\mathrm{OH}}=85 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$)
$\mathrm{Z}_{\mathrm{LH}}=\frac{\mathrm{V}_{\mathrm{OH}}(\min)-\mathrm{V}_{\mathrm{OL}}(\mathrm{typ})}{\mathrm{I}_{\mathrm{OH}}}=\frac{2.4 \mathrm{~V}-0.3 \mathrm{~V}}{85 \mathrm{~mA}}=25 \Omega$
For a high-to-low transition,
($\mathrm{I}_{\mathrm{OL}}=135 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$)
$\mathrm{Z}_{\mathrm{HL}}=\frac{\mathrm{V}_{\mathrm{OH}}(\mathrm{typ})-\mathrm{V}_{\mathrm{OL}}(\text { max })}{\mathrm{I}_{\mathrm{OL}}}=\frac{3.5 \mathrm{~V}-0.5 \mathrm{~V}}{135 \mathrm{~mA}}=22 \Omega$

LOW-LEVEL OUTPUT VOLTAGE
V8 LOW-LEVEL OUTPUT CURRENT

HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT

Figure 11. Typical ABT Output Characteristics

Figure 12. Reflected Wave Switching

Partial Power Down

One application, addressed when designing the ABT family, is partial system power down. When using a standard CMOS device, there is a path from either the input or the output (or both) to V_{CC}. This prevents partial power down for such applications as hot card insertion without adding current limiting components. This is not the case with ABT as these paths have been eliminated with the use of blocking diodes.
(a) CMOS EQUIVALENT INPUT STRUCTURE

Figure 13 shows functionally equivalent schematics of the input structures for CMOS and ABT devices.

Consider the situation shown in Figure 14. The driving device is powered with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ while the receiving device is powered down $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$. If these devices are CMOS, the receiver can be powered up through the diode, D 2 , when the driver is in a high state. ABT devices do not have a comparable path and are thus immune to this problem, making them more desirable for this application.

(b) ABT EQUIVALENT INPUT STRUCTURE

Figure 13. Simplified Input Structures for CMOS and ABT Devices

Figure 14. Example of Partial System Power Down

SIGNAL INTEGRITY

A frequent concern system designers have is the performance degradation of ICs when outputs are switched. Texas Instruments priority when designing the ABT bus interface family is to insure signal integrity and eliminate the need for excess settling time of an output waveform. This section addresses the simultaneous switching performance of both the ABT octals and the Widebus ${ }^{\mathrm{TM}}$ functions.

Simultaneous Switching Phenomenon

NO TAG shows a simple model of an output pin, including the associated capacitance of the output load and the inherent
inductance of the ground lead. The voltage drop across the GND inductor, V_{L}, is determined by the value of the inductance and the rate of change in current across the inductor. When multiple outputs are switched from high to low, the transient current (di/dt) through the GND inductor generates a difference in potential on the chip ground with respect to the system ground. This induced GND variation can be observed indirectly as shown in Figure 16. The voltage output low peak ($\mathrm{V}_{\mathrm{OLP}}$) is measured on one quiet output when all others are switched from high to low.

Figure 15. Simultaneous Switching Output Model

NOTE: $\mathrm{V}_{\text {OLP }}=$ Maximum (peak) voltage induced on a quiescent low-level output during switching of other outputs

Figure 16. Simultaneous Switching Noise Waveform

ABT FAMILY CHARACTERISTICS

A similar phenomena occurs with respect to the V_{CC} plane on a low-to-high transition, known as voltage output high valley $\left(\mathrm{V}_{\mathrm{OHV}}\right)$. Most problems are associated with a large $\mathrm{V}_{\mathrm{OLP}}$ because the range for a logic 0 is much less than the range for a logic 1, as seen in Figure 17. For a comprehensive discussion of simultaneous switching, see the "Simultaneous Switching Evaluation and Testing" application note or the Advanced CMOS Logic Designer's Handbook from Texas Instruments.

The impact of these voltage noise spikes on a system can be extreme. The noise can cause loss of stored data, severe speed degradation, false clocking, and/or reduction in system noise immunity. For an overview of how propagation delay is affected by the switching of multiple outputs, please refer to the AC Performance section of this document.

Figure 17. TTL dc Noise Margin

Simultaneous Switching Solutions

Some methods an IC manufacturer can use to reduce the effects of simultaneous switching include: reducing the inductance of the power pins, adding multiple power pins, and controlling the turn on of the output. These techniques are described in depth in the 1988 Texas Instruments Advanced CMOS Logic (ACL) Designer's Handbook.

Octal ABT devices employ the standard end-pin GND and V_{CC} configuration while maintaining acceptable simultaneous switching performance, as seen in Figure 18. This is due to the TTL-level output swing ($0.3-3 \mathrm{~V}$) and a controlled feedback which limits the base drive to the lower output.

7 Switching 1 Low HL A \rightarrow B

Figure 18. ABT646A Simultaneous Switching Waveform

The ABT Widebus ${ }^{\text {TM }}$ series (16-, 18 -, and 20 -bit functions) are offered in an SSOP package (see the Packaging section of this document) which was developed by Texas Instruments to save valuable board space and reduce simultaneous switching effects. One might expect an increase in noise with sixteen outputs switching in a single package; however, the simultaneous switching performance is actually improved. There is a GND pin for every two outputs and a V_{CC} pin for every four. This allows the transient current to be distributed across multiple power pins and decreases the overall $\mathrm{d}_{\mathrm{i}} / \mathrm{d}_{\mathrm{t}}$ effect. This results in a typical $\mathrm{V}_{\mathrm{OLP}}$ value on the order of 500 mV for the ABT16500, as shown in Figure 19.

Figure 19. ABT16500A Simultaneous Switching Waveform

ABT FAMILY CHARACTERISTICS

ADVANCED PACKAGING

Along with a strong commitment to provide fast, low- power, high-drive integrated circuits, Texas Instruments is the clear-cut leader in logic packaging advancements. The development of the shrink small- outline package (SSOP) in 1989 provided system designers the opportunity to reduce the amount of board space required for bus interface devices by 50%. Several 24 -pin solutions including the familiar SOIC, the SSOP, and the TSOP (thin small-outline package) are shown in Figure 20.

The 48/56-pin SSOP packages allow for twice the functionality (16-, $18-$, and 20 -bit functions) in
approximately the same board area as a standard SOIC. This is accomplished by using a $25-\mathrm{mil}(0.635 \mathrm{~mm})$ lead pitch, as opposed to 50 -mil (1.27 mm) in SOIC. NO TAG shows a typical pinout structure for the 48 -pin SSOP. The flow-through architecture is standard for all Widebus ${ }^{\mathrm{TM}}$ devices, making signal routing easier during board layout. Also note the distributed GND and V_{CC} pins, which improve simultaneous switching effects as discussed in the Signal Integrity section of this document.

Figure 21. Distributed Pinout of 'ABT16244A

When using the small pin count SSOPs (8-, 9-, and 10-bit functions) the same functionality will occupy less than half the board area of a SOIC $\left(70 \mathrm{~mm}^{2}\right.$ vs $\left.165 \mathrm{~mm}^{2}\right)$. There is also a height improvement over the SOIC which is beneficial when the spacing between boards is a consideration. For very dense memory arrays the packaging evolution has been taken one step further with the emerging TSOP. The TSOP
thickness of 1.1 mm gives a 58% height improvement over the SOIC.

Table 4 provides a quick reference of the mechanical specifications of the various SSOP packages. If more specific information is required see the SSOP Designer's Handbook or the application note Advanced Bus Interface Solutions Utilizing Fine Pitch Surface Mount Packages.

Table 4. SSOP Metric Specifications

PACKAGE SPECIFICATIONS							PIN SPECIFICATIONS
PACKAGE TYPE	PINS	INDUSTRY STANDARD	THICKNESS $(\mathbf{m m})$	BODY WIDTH (mm)	STANDOFF HEIGHT $(\mathrm{mm}) \boldsymbol{t}$	PIN PITCH (mm)	PIN WIDTH (mm)
SSOP	20	EIAJ	2.00	5.3	0.05	0.650	0.30
SSOP	24	EIAJ	2.00	5.3	0.05	0.650	0.30
SSOP	28	JEDEC	2.59	7.5	0.20	0.635	0.25
SSOP	48	JEDEC	2.59	7.5	0.20	0.635	0.25
SSOP	56	JEDEC	2.59	7.5	0.20	0.635	0.25

\dagger Minimum values
All values are maximum typical values unless otherwise indicated.

APPENDIX A
 'ABT646A

SN54ABT646A, SN74ABT646A OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS
 SCBS069D - D3856, JULY 1991 - REVISED JULY 1993

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C=200$ pF, $R=0$)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32-mA \mathbf{I}_{OH}, 64-mA loL)
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'ABT646A.
Output-enable ($\overline{\mathrm{OE}}$) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both.

SN54ABT646A . . . JT PACKAGE
SN74ABT646A... DB, DW, OR NT PACKAGE
(TOP VIEW)

SN54ABT646A . . FK PACKAGE

 (TOP VIEW)

NC - No internal connection

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus will receive data when $\overline{\mathrm{OE}}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74ABT646A is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54ABT646A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
The SN74ABT646A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Figure 1. Bus-Management Functions
Pin numbers shown are for the DB, DW, JT, and NT packages.

FUNCTION TABLE

INPUTS						DATA I/Os		OPERATION OR FUNCTION
$\overline{\mathrm{OE}}$	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	
X	X	\uparrow	X	X	X	Input Unspecified \dagger	Unspecified ${ }^{\dagger}$ Input	Store A, B unspecified \dagger
X	X	X	\uparrow	X	X			Store B, A unspecified \dagger
H	X	\uparrow	\uparrow	X	X	Input Input disabled	InputInput disabled	Store A and B data
H	X	Hor L	Hor L	X	X			Isolation, hold storage
L	L	X	X	X	L	Output Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H		Input	Stored B data to A bus
L	H	X	X	L	X	Input Input	Output	Real-time A data to B bus
L	H	H or L	x	H	x		Output	Stored A data to B bus

\dagger The data output functions may be enabled or disabled by various signals at the $\overline{\text { OE }}$ and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

logic symbol \ddagger

\ddagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DB, DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DB, DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{C}} \text {. }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) . } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots . \ldots . \mathrm{m}_{\text {. }} \text { - } 0.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\
& \text { Current into any output in the low state, Io: SN54ABT646A . } 96 \text { mA } \\
& \text { SN74ABT646A . } 128 \text { mA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air): DB package . } 0.7 \mathrm{~W} \\
& \text { DW package . } 1 \text { W } \\
& \text { NT package .. } 1.3 \mathrm{~W} \\
& \text { Storage temperature range . }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

		SN54ABT646A		SN74ABT646A		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage	2		2		V
V_{IL}	Low-level input voltage		0.8		0.8	V
V_{1}	Input voltage	0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		5		5	ns/V
T_{A}	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

[^85]
SN54ABT646A, SN74ABT646A

OCTAL BUS TRANSCEIVERS AND REGISTERS

WITH 3-STATE OUTPUTS

SCBS069D - D3856, JULY 1991 - REVISED JULY 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT646A	SN74ABT646A	UNIT
			MIN	TYP \dagger MAX	MIN MAX	MIN MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}=-18 \mathrm{~mA}$			-1.2	-1.2	-1.2	V
$\mathrm{VOH}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$		2.5		2.5	2.5	V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$		3		3	3	
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{IOH}=-24 \mathrm{~m}$		2		2		
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad 1 \mathrm{OH}=-32 \mathrm{~mA}$		$2 \ddagger$			2	
VOL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{OL}}=48 \mathrm{~mA}$			0.55	0.55		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{OL}=64 \mathrm{~mA}$			$0.55 \ddagger$		0.55	
1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Control inputs		± 1	± 1	± 1	$\mu \mathrm{A}$
		A or B ports		± 100	± 100	± 100	
lOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$			10^{9}	109	109	$\mu \mathrm{A}$
$\mathrm{IOZL}^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-109	-107	-109	$\mu \mathrm{A}$
loff	$\mathrm{V}_{\text {CC }}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4$			± 100		± 100	$\mu \mathrm{A}$
ICEX	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}$	Outputs high		50	50	50	$\mu \mathrm{A}$
$10^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50 -180	-50 -180	mA
Icc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{IO}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$	Outputs high		250	250	250	$\mu \mathrm{A}$
		Outputs low		30	30	30	mA
		Outputs disabled		250	250	250	$\mu \mathrm{A}$
$\Delta^{\prime} \mathrm{Cc}{ }^{\prime \prime}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V	Control inputs		7			pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V	A or B ports		12			pF

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
§ The parameters lozH and lozL include the input leakage current.
IT This data sheet limit may vary among suppliers.
\# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
"This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		SN54ABT646A		SN74ABT646A		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency	0	125	0	125	0	125	MHz
$\mathrm{t}_{\text {w }}$	Pulse duration, CLK high or low	4		4		4		ns
$\mathrm{t}_{\text {su }}$	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	3		3.5		3		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	0		1.5		0		ns

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT646A		SN74ABT646A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			125			125		125		MHz
tpLH	CLKBA or CLKAB	A or B	2.2	4	5.1	2.2	6.7	2.2	5.6	ns
tpHL			1.7	4	5.1	1.2	6.7	1.7	5.6	
tPLH	A or B	B or A	1.5	3	4.3	1.5	5	1.5	4.8	ns
tPHL			1.5	3.3	4.6	1.5	5.6	1.5	5.4	
tPLH	SAB or SBA ${ }^{\text {t }}$	B or A	1.5	4	5.1	1.5	7.8	1.5	6.5	ns
tphL			1.5	3.6	4.9	1.5	6.2	1.5	5.9	
tPZH	$\overline{O E}$	A or B	1.5	4.3	5.3	1.5	7	1.5	6.3	ns
tpZL			3	5.8	7.4	3	10.5	3	8.8	
tPHZ	$\overline{O E}$	A or B	1.5	3.5	4.5	1	7.3	1.5	5	ns
tplZ			1.5	3	4	1.5	5.7	1.5	4.5	
tPZH	DIR	A or B	1.5	4.5	5.7	1.5	7.3	1.5	6.7	ns
tpZL			2.5	6.5	9	2.5	11	2.5	9.5	
tPHZ	DIR	A or B	1.5	3.8	5	1	9	1.5	5.7	ns
tplZ			1.5	3.8	4.7	1.2	6.7	1.5	6	

\dagger These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tPLH }} /{ }^{\text {tPHL }}$ tplz/tpZL $\mathbf{t P H z}^{\prime} \mathbf{t P Z H}^{2}$	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

Figure 2. Load Circuit and Voltage Waveforms

Propagation Delay Time vs Temperature

Propagation Delay Time vs Temperature

Propagation Delay Time vs Temperature

PROPAGATION DELAY TIME ENABLE-TO-HIGH-LEVEL OUTPUT Vs OPERATING FREE-AIR TEMPERATURE $\overline{\mathrm{OE}}$ to B

PROPAGATION DELAY TIME ENABLE-TO-LOW-LEVEL OUTPUT OPERATING FREE-AIR TEMPERATURE $\overline{\mathrm{OE}}$ to B

PROPAGATION DELAY TIME DISABLE-FROM-HIGH-LEVEL OUTPUT vs
OPERATING FREE-AIR TEMPERATURE $\overline{\mathrm{OE}}$ to B

PROPAGATION DELAY TIME DISABLE-FROM-LOW-LEVEL OUTPUT vs OPERATING FREE-AIR TEMPERATURE $\overline{O E}$ to B

Propagation Delay Time vs Temperature

Propagation Delay Time vs Number of Outputs Switching

PROPAGATION DELAY TIME
vs NUMBER OF OUTPUTS SWITCHING

PROPAGATION DELAY TIME
NUMBER OF OUTPUTS SWITCHING A to B

PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING A to B

Propagation Delay Time vs Load Capacitance

Propagation Delay Time vs Input Edge

PROPAGATION DELAY TIME
VS
INPUT EDGE
A to B

$\mathrm{V}_{\mathrm{OHV}}=$ Minimum (valley) voltage induced on a quiescent high-level output during switching of other outputs.
$\mathrm{V}_{\mathrm{OLP}}=$ Maximum (peak) voltage induced on a quiescent low-level output during switching of other outputs.

Supply Current vs Frequency
OUTPUTS ENABLED

APPENDIX B

SN54ABT16244, SN74ABT16244A

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA IOH, 64-mA lol)
- Packaged in Plastic 300-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

The SN54ABT16244 and SN74ABT16244A are 16-bit buffers and line drivers designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The devices can be used as four 4-bit buffers, two 8 -bit buffers, or one 16 -bit buffer. These devices provide true outputs and symmetrical $\overline{\mathrm{OE}}$ (active-low output-enable) inputs.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to $V_{C c}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
The SN74ABT16244A is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16244A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each buffer)

INPUTS		OUTPUT
$\mathbf{Y} \mathbf{O E}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

SN54ABT16244, SN74ABT16244A

16-BIT BUFFERS/DRIVERS

WITH 3-STATE OUTPUTS

SCBS073D - D3711, SEPTEMBER 1991 - REVISED AUGUST 1993
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Voltage range applied to any output in the high state or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT16244 } \\
& 96 \mathrm{~mA} \\
& \text { SN74ABT16244A } 128 \mathrm{~mA} \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{l}}<0\right) \text {. ... } 18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Maximum power dissipation at } T_{A}=55^{\circ} \mathrm{C} \text { (in still air): DGG package } \ldots . . \\
& \text { DL package } 0.85 \mathrm{~W} \\
& \text { Storage temperature range } \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
recommended operating conditions (see Note 2)

			SN54A	16244	SN74AB	16244A	
			MIN	MAX	MIN	MAX	NT
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5.5	4.5	5.5	V
V_{IH}	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\mathrm{IOH}}$	High-level output current			-24		-32	mA
l OL	Low-level output current			48		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{v}$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating inputs must be held high or low.

SN54ABT16244, SN74ABT16244A
 16-BIT BUFFERS/DRIVERS
 WITH 3-STATE OUTPUTS

SCBS073D - D3711, SEPTEMBER 1991 - REVISED AUGUST 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger Characteristics for TA $=25^{\circ} \mathrm{C}$ apply to the SN74ABT16244A only.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
§ On products compliant to MIL-STD-883, Class B, this parameter does not apply.
IT This data sheet limit may vary among suppliers.
\# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{Ct} \end{aligned}$			SN54ABT16244		SN74ABT16244A		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tPLH	A	Y	1	2.3	3.2	0.7	3.7	1	3.5	ns
tpHL			1	2.6	3.7	0.5	4.3	1	4.1	
tPZH	$\overline{\mathrm{OE}}$	Y	1	3	3.8	0.7	5	1	4.8	ns
tPZL			1	3.2	4	0.9	5	1	4.8	
tphZ	$\overline{O E}$	Y	1	3.6	4.4	1	5	1	4.8	ns
tplz			1	2.9	3.7	1	4.3	1	4.1	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\mathbf{t P L H}^{/ t} \mathbf{t P H L}^{2}$ tplzflthl $^{\prime}$ tPhzftpzH	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

Texas

Propagation Delay Time vs Temperature

Propagation Delay Time vs Number of Outputs Switching

PROPAGATION DELAY TIME Vs
NUMBER OF OUTPUTS SWITCHING
A to Y

PROPAGATION DELAY TIME
Vs
NUMBER OF OUTPUTS SWITCHING
$\overline{O E}$ to Y

PROPAGATION DELAY TIME
NUMBER OF OUTPUTS SWITCHING
$\overline{O E}$ to Y

Propagation Delay Time vs Load Capacitance

A to Y
1 OUTPUT SWITCHING

A to Y
8 OUTPUTS SWITCHING

A to Y
4 OUTPUTS SWITCHING

A to Y
16 OUTPUTS SWITCHING

Propagation Delay Time vs Input Edge

TEXAS

$\mathrm{V}_{\mathrm{OHV}}=$ Minimum (valley) voltage induced on a quiescent high-level output during switching of other outputs. VOLP $=$ Maximum (peak) voltage induced on a quiescent low-level output during switching of other outputs.

Typical Characteristics
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT

LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

IOL - Low-Level Output Current - mA

Supply Current vs Frequency

OUTPUTS DISABLED

APPENDIX C
 'ABT16500B

16-66

- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- UBT ${ }^{\text {TM }}$ (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Flow-Through Architecture Optimizes PCB Layout
- Packaged in Plastic $\mathbf{3 0 0}$-mil Shrink Small-Outline and Thin Shrink Small-Outline Packages and 380-mil Fine-Pitch Ceramic Flat Packages Using 25-mil Center-to-Center Spacings

description

These 18 -bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and $\overline{C L K B A})$ inputs. For A -to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. Output-enable OEAB is active-high. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.
Data flow for B to A is similar to that of A to B but uses $\overline{O E B A}$, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SN74ABT16500B is available in Tl's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABT16500B is characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT16500B is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE \dagger				
INPUTS				OUTPUT B
OEAB	LEAB	$\overline{\text { CLKAB }}$	A	
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\downarrow	L	L
H	L	\downarrow	H	H
H	L	H	X	$\mathrm{B}_{0} \ddagger$
H	L	L	X	$\mathrm{B}_{0} \S$

\dagger A-to-B data flow is shown: $\mathrm{B}-\mathrm{to}-\mathrm{A}$ flow is similar but uses $\overline{O E B A}, ~ L E B A$, and $\overline{C L K B A}$.
\ddagger Output level before the indicated steady-state input conditions were established.
§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{1} (except I/O ports) (see Note 1) .. -0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots . . .$.

SN74ABT16500B ... 128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$. ... 18 mA

Maximum power dissipation at $T_{A}=55^{\circ} \mathrm{C}$ (in still air): DGG package $\ldots \ldots \ldots$
DL package ... 1 W

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

SN54ABT16500B, SN74ABT16500B 18-BIT UNIVERSAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

recommended operating conditions (see Note 2)

			SN54ABT16500B		SN74ABT16500B		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2	4	2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			${ }_{0} 0.8$		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
IOH	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns / V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 2: Unused or floating pins (input or I / O) must be held high or low.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54ABT16500B		SN74ABT16500B		UNIT
				MIN	TYP \dagger	MAX	MIN	MAX	MIN	MAX	
VIK	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}=-18 \mathrm{~mA}$					-1.2		-1.2		-1.2	V
V_{OH}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$			2.5			2.5		2.5		
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=$			3			3		3		V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-24 \mathrm{~mA}$			2			2				
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l} \mathrm{OH}=-32 \mathrm{~mA}$			$2 \ddagger$					2		
V_{OL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$					0.55		0.55			V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$					$0.55 \ddagger$				0.55	\checkmark
1	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \\ & V_{I}=V_{C C} \text { or } G N D \end{aligned}$		Control inputs			± 1		± 1		± 1	$\mu \mathrm{A}$
			A or B ports			± 20		+20		± 20	
IOZH^{\S}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V}$					10		- 10		10	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{OZL}}{ }^{\text {§ }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-10		-10		-10	$\mu \mathrm{A}$
Ioff	$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$					± 100	${ }^{3}$			± 100	$\mu \mathrm{A}$
ICEX	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ \hline \end{array}$		Outputs high			50	\$	50		50	$\mu \mathrm{A}$
109	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$			-50	-100	-180	-50	-180	-50	-180	mA
lcc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	A or B ports	Outputs high			3		3		3	mA
			Outputs low			36		36		36	
			Outputs disabled			3		3		3	
$\Delta^{\text {l }} \mathrm{CC}^{\#}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad$ One input at 3.4 V , Other inputs at V_{CC} or GND					50		50		50	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=2.5 \mathrm{~V}$ or 0.5 V		Control inputs		3						pF
C_{i}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		A or B ports		9						pF

[^86]timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

\dagger This parameter is specified by design but not tested.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABT16500B		SN74ABT16500B		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			150	200		150		150		MHz
${ }_{\text {tPLH }}$	A or B	B or A	1	2.5	3.6	1	4.2	1	4	ns
tPHL			1.	3.2	4.5	1	5.1	1	4.9	
tPLH	LEAB or LEBA	B or A	1	3.2	4.5	1	+5.6	1	5	ns
tPHL			1	3.4	4.5	1	5.4	1	5	
$\mathrm{t}_{\text {PLH }}$	$\overline{\text { CLKAB }}$ or $\overline{C L K B A}$	B or A	1	3.5	4.7	1	5.4	1	5.3	ns
${ }_{\text {tPHL }}$			1	3.5	4.7	1	5.4	1	5.3	
${ }_{\text {tPZH }}$	OEAB or $\overline{\text { OEBA }}$	B or A	1	3.4	4.6	$\bigcirc 1$	5.3	1	5.1	ns
tPZL			1.5	3.8	4.7	* 1.5	5.6	1.5	5.4	
tPHZ	OEAB or $\overline{O E B A}$	B or A	1.5	4.5	5.7	1.5	6.9	1.5	6.5	ns
tplZ			1.4	3.4	4.7	1.4	5.8	1.4	5.4	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH $^{\prime}$ tPHL $^{\prime}$	Open
tPLZ/tPZL	7 V
tPHZ/tPZH	Open

LOAD CIRCUIT FOR OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

Propagation Delay Time vs Temperature
PROPAGATION DELAY TIME LOW-TO-HIGH-LEVEL OUTPUT

VS
OPERATING FREE-AIR TEMPERATURE
CLKAB to B

PROPAGATION DELAY TIME HIGH-TO-LOW-LEVEL OUTPUT vs
OPERATING FREE-AIR TEMPERATURE CLKAB to B

Propagation Delay Time vs Temperature

Propagation Delay Time vs Number of Outputs Switching

PROPAGATION DELAY TIME vs NUMBER OF OUTPUTS SWITCHING A to B

PROPAGATION DELAY TIME NUMBER OF OUTPUTS SWITCHING OEAB to B

PROPAGATION DELAY TIME
NUMBER OF OUTPUTS SWITCHING
OEAB to B

Texas

Propagation Delay Time vs Load Capacitance

A to B
18 OUTPUTS SWITCHING

Propagation Delay Time vs Input Edge

PROPAGATION DELAY TIME
vs
INPUT EDGE CLKAB to B

Texas

Propagation Delay Time vs Input Edge

PROPAGATION DELAY TIME
vS INPUT EDGE
OEAB to B

17 Switching 1 Low HL B \rightarrow A

$\mathrm{V}_{\mathrm{OHV}}=$ Minimum (valley) voltage induced on a quiescent high-level output during switching of other outputs.
$V_{\text {OLP }}=$ Maximum (peak) voltage induced on a quiescent low-level output during switching of other outputs.

Typical Characteristics
HIGH-LEVEL OUTPUT VOLTAGE Vs
HIGH-LEVEL OUTPUT CURRENT

IOH - High-Level Output Current - mA

LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

Supply Current vs Frequency

NOTE: Characteristics for latch mode are similar to those when in clock mode.

Supply Current vs Frequency

NOTE: Characteristics for latch mode are similar to those when in clock mode.
General Information 1
ABT Octals 2
ABT Widebus ${ }^{\text {TM }}$ 3
ABTE/ETL Widebus ${ }^{\text {TM }}$ 4
ABT Widebus ${ }^{\text {TM }}{ }^{\text {M }}$ 5
ABT Memory Drivers 6
ABT 25- Ω Incident-Wave Switching Drivers 7
Futurebus+/BTL Transceivers 8
ABT JTAG/IEEE 1149.1 9
LVT JTAG/IEEE 1149.1 10
LVT Octals 11
LVT Widebus ${ }^{\text {TM }}$ 12
LVT Memory Drivers 13
LVT/GTL Widebus ${ }^{\text {TM }}$ 14
Application Notes and Articles 15
ABT Characterization Information 16
Mechanical Data 17

Contents

Page
Ordering Instructions 17-3
D/R-PDSO-G** 17-5
DB/R-PDSO-G** 17-6
DGG/R-PDSO-G** 17-7
DL/R-PDSO-G** 17-8
DW/R-PDSO-G** 17-9
FK/S-CQCC-N** 17-10
HV/S-GQFP-F68 17-11
J/R-GDIP-T** 17-12
JT/R-GDIP-T** 17-13
N/R-PDIP-T** 17-14
NT/R-PDIP-T24 17-15
N/R-PDIP-T28 17-16
PZ/S-PQFP-G100 17-17
PM/S-PQFP-G64 17-18
PN/S-PQFP-G80 17-19
PW/R-PDSO-G** 17-20
RC/S-PQFP-G52 17-21
W/R-GDFP-F14 17-22
W/R-GDFP-F16 17-23
W/R-GDFP-F20 17-24
W/R-GDFP-F24 17-25
WD/R-GDFP-F** 17-26

Electrical characteristics presented in this data book, unless otherwise noted, apply for the circuit type(s) listed in the page heading regardless of package. The availability of a circuit function in a particular package is denoted by an alphabetical reference above the pin-connection diagram(s). These alphabetical references refer to mechanical outline drawings shown in this section.
Factory orders for circuits described in this catalog should include a four-part type number as explained in the following example.
Prefix
Blank $=$ (Standard product)
SN $=$ Standard prefix
SNJ $=$ Mil-Std-883, Class B

Unique Circuit Description

MUST CONTAIN FIVE TO NINE CHARACTERS
(from individual data sheet)

Package

MUST CONTAIN ONE TO THREE LETTERS

Tape and Reel Packaging

Valid for surface-mount packages only. All orders for tape and reel must be for whole reels.
MUST CONTAIN ONE OR TWO LETTERS
$L E=$ Left embossed tape and reel (required for DB and PW packages)
$R=$ Standard tape and reel (required for DGG; optional for D, DW, and DL packages)

DIM	$\mathbf{8}$	$\mathbf{1 4}$	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
A MIN	0.189 $(4,80)$	0.337 $(8,55)$	0.386 $(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within $0.005(0,127)$ radius of true postion at maximum material condition.
D. Body dimensions do not include mold flash or protrusion.
E. Mold protrusion shall not exceed $0.006(0,15)$.
F. Maximum deviation from coplanarity is $0.004(0,10)$.

DB/R-PDSO-G**

DIM PINS**	$\mathbf{8}$	14	16	20	24	28	30	38
A MAX	3,30	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	2,70	5,90	5,90	6,90	7,90	9,90	9,90	12,30
B MAX	0,68	1,30	0,98	0,83	0,68	1,03	0,70	0,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions include mold flash or protrusion.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions include mold flash or protrusion.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within $0.0035(0,089)$ radius of true postion at maximum material condition.
D. Body dimensions do not include mold flash, protrusion or gate burr.
E. Mold flash or protrusion or gate burr shall not exceed $0.015(0,381)$.
F. Lead tips coplanar within $0.004(0,102)$.
G. Lead length measured from lead top to point $0.010(0,254)$ above seating plane.

PINS	16	20	24	28
A MIN	0.400 $(10,16)$	0.500 $(12,70)$	0.602 $(15,29)$	0.696 $(17,68)$
A MAX	0.408 $(10,36)$	0.508 $(12,90)$	0.610 $(15,49)$	0.704 $(17,88)$

4040000/A-07/93

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within $0.10(0,25)$ radius of true postion at maximum material condition.
D. Body dimensions do not include mold flash or protrusion.
E. Mold flash or protrusion shall not exceed $0.006(0,15)$.
F. Lead tips coplanar within $\pm 0.004(\pm 0,10)$ exclusive of solder.

FK/S-CQCC-N**

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Three-layer ceramic base with a metal lid and braze seal.
D. FK package terminal assignments conform to JEDEC Standards 1,2 and 11.
E. The packages are intended for surface mounting on solder lands on $0.050(1,27)$ centers.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This dimension does not apply for solder dipped leads.
D. For solder dipped leads, dipping area of the leads extends from the lead tip to at least 0.020 (0.51) above seating plane.

INSTRUMENTS

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is glass seal.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Each pin centerline is located within $0.010(0,254)$ of its true longitudinal position.
D. This dimension does not apply for solder dipped leads.
E. For solder dipped leads, dipping area of the leads extends from the lead tip to at least $0.020(0,51)$ above seating plane.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Drawing source: SCJ Package handbook, 1990

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Drawing source: SCJ Package handbook, 1990

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Maximum deviation from caplanarity is $0,08 \mathrm{~mm}$.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Maximum deviation from coplanarity is $0,08 \mathrm{~mm}$.
D. Body dimensions do not include mold flash or protrusion.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Maximum deviation from coplanarity is $0,08 \mathrm{~mm}$.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Drawing source: SCJ Package handbook, 1990

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within $0.005(0,13)$ radius of true position (T.P.) at maximum material condition.
D. Falls within JEDEC MO-004AA dimensions.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within $0.005(0,13)$ radius of true position (T.P.) at maximum material condition.
D. Falls within JEDEC MO-004AA dimensions.
E. Index point is provided on cap for terminal identification only.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within $0.005(0,13)$ radius of true position (T.P.) at maximum material condition.
D. Index point is provided on cap for terminal identification only.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads are within $0.005(0,13)$ radius of true position (T.P.) at maximum material condition.
D. Falls within JEDEC MO-019AA dimensions.
E. Index point is provided on cap for terminal identification only.
F. End configuration of 24-pin package is at the option of TI.
G. Not applicable for solder-dipped leads. When solder-dipped leads are specified, dipped area extends from lead tip to within 0.050 $(1,27)$ of the package body.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
NOTES

NOTES

TI North American Sales Offices

ALABAMA: Huntsville: (205) 837-7530 ARIZONA: Phoenix: (602) 995-1007 CALIFORNIA: Irvine: (714) 660-1200 San Diego: (619) 278-9600 Santa Clara: (408) 980-9000
Woodland Hills: (818) 704-8100
COLORADO: Aurora: (303) 368-8000 CONNECTICUT: Wallingford: (203) 269-0074 FLORIDA: Altamonte Springs: (407) 260-2116 Fort Lauderdale: (305) 973-8502 Tampa: (813) 885-7588
GEORGIA: Norcross: (404) 662-7967 ILLINOIS: Arlington Heights: (708) 640-3000 INDIANA: Carmel: (317) 573-6400 Fort Wayne: (219) 489-4697
KANSAS: Overland Park: (913) 451-4511 MARYLAND: Columbla: (410) 964-2003 MASSACHUSETTS: Waltham: (617) 895-9100 MICHIGAN: Farmington HIIIs: (313) 553-1581 MINNESOTA: Eden Prairie: (612) 828-9300 MISSOURI: St. Louls: (314) 821-8400 NEW JERSEY: Iselin: (908) 750-1050 NEW MEXICO: Albuquerque: (505) 345-2555 NEW YORK: East Syracuse: (315) 463-9291 Fishkill: (914) 897-2900
Melville: (516) 454-6600
Pittsford: (716) 385-6770
NORTH CAROLINA: Charlotte: (704) 527-0930 Raleigh: (919) 876-2725
OHIO: Beachwood: (216) 765-7258
Beavercreek: (513) 427-6200
OREGON: Beaverton: (503) 643-6758 PENNSYLVANIA: Blue Bell: (215) 825-9500 PUERTO RICO: Hato Rey: (809) 753-8700 TEXAS: Austin: (512) 250-6769 Dallas: (214) 917-1264 Houston: (713) 778-6592
Midiand: (915) 561-7137
UTAH: Salt Lake CIty: (801) 466-8972 WISCONSIN: Waukesha: (414) 798-1001
CANADA: Nepean: (613) 726-1970
Richmond Hill: (416) 884-918
St. Laurent: (514) 335-8392

TI Regional Technology Centers

CALIFORNIA: Irvine: (714) 660-8140 Santa Clara: (408) 748-2222 GEORGIA: Norcross: (404) 662-7945 ILLINOIS: Arlington Heights: (708) 640-2909 INDIANA: Indianapolis: (317) 573-6400 MASSACHUSETTS: Waltham: (617) 895-9196 MEXICO: Mexico City: 491-70834 MINNESOTA: Minneapolis: (612) 828-9300 TEXAS: Dallas: (214) 917-3881 CANADA: Nepean: (613) 726-1970

TI Authorized North American Distributors

Alliance Electronics, Inc. (military product only)
Almac/Arrow
Anthem Electronics
Arrow/Schweber
Future Electronics (Canada)
GRS Electronics Co (Canada)
GRS Electronics Co., In
Hall-Mark Electronics
Hall-Mark Electronic
Marshall Industries
Newark Electronics*
Rochester Electronics, Inc. (obsolete product only) Wyle Laboratories
Zeus Components
*Not authorized for TI military products

TI Distributors

ALABAMA: Arrow/Schweber (205) 837-6955; Hall-Mark ALABAMA: Arrow/Schweber (205) 837-69
(205) 837-8700; Marshall (205) 881-9235. (205) 837-8700; Marshall (205) 881-9235. ARIZONA: Anthem (602) 966-6600; Arrow/Schweber
437-0750; Hall-Mark (602) 431-0030; Marshall (602) 437-0750; Hall-Mark (602) 431-00
496-0290; Wyle (602) 437-2088.
CALIFORNIA: Los Angeles/Orange County: Anthem CALIFORNIA: Los Angeles/Orange County: Anthem
(818) $775-1333$, 714) $768-4444$: Arrow/Schweber (818) (818) 775-1333, (714) 768-4444; Arrow/Schweber (818)
380-9686, (714) 587-0404; Hall-Mark (818) 773-4500, (714) 380-9686, (714) 587-0404; Hall-Mark (818) 773-4500, (714) (818) 880-9000, (714) 863-9953; Zeus (714) 921-9000, (818) 889-3838;

Sacramento: Anthem (916) 624-9744; Hall-Mark (916) 624-9781; Marshall (916) 635-9700; Wyle (916) 638-5282;
San Diego: Anthem (619) 453-9005; Arrow/Schweber San Dego: Anthem
(619) 565-4800; Hall-Mark (619) 268-1201; Marshall (619) 627-4140; Wyle (619) 565-9171; Zeus (619) 277-9681; San Francisco Bay Area: Anthem (408) 453-1200; San Francisco Bay Area: Anthem (408) 403-1200;
Arrow/Schweber (408) 441-9700, (510) 490-9477; Hall-Mark (408) 432-4000; Marshall (408) 942-4600; Wyle (408) 727-2500; Zeus (408) 629-4789.
COLORADO: Anthem (303) 790-4500; Arrow/Schweber (303) 799-0258; Hall-Mark (303) 790-1662; Marshall (303) 451-8383; Wyle (303) 457-9953.
CONNECTICUT: Anthem (203) 575-1575; Arrow/Schweber (203) 265-7741; Hall-Mark (203) 271-2844; Marshall (203) 265-3822.
FLORIDA: Fort Lauderdale: Arrow/Schweber (305) 429-8200; Halll-Mark (305) 971-9280; Marshall (305) 977-4880;
Orlando: Arrow/Schweber (407) 333-9300; Hall-Mark (407) 830-5855; Marshall (407) 767-8585; Zeus (407) 788-9100; Tampa: Hall-Mark (813) 541-7440; Marshall (813) 573-1399.
GEORGIA: Arrow/Schweber (404) 497-1300; Hall-Mark (404) 623-4400; Marshall (404) 923-5750.

ILLINOIS: Anthem (708) 884-0200; Arrow/Schweber (708) 250-0500; Hall-Mark (708) 860-3800; Marshall (708) 250-0500; Hall-Mark (708) 860-3800
490-0155; Newark (312)784-5100.
INDIANA: Arrow/Schweber (317) 299-2071; Hall-Mark (317) 872-8875; Marshall (317) 297-0483.

IOWA: Arrow/Schweber (319) 395-7230.
KANSAS: Arrow/Schweber (913) 541-9542; Hall-Mark KANSAS: Arrow/Schweber (913) 541-9542;
(913) 888-4747; Marshall (913) 492-3121.
(913) 888-4747; Marshall (913) 492-3121.

MARYLAND: Anthem (301) 995-6640; Arrow/Schweber (301) 596-7800; Hall-Mark (301) 988-9800; Marshall (301)

MASSACHUSETTS: Anthem (508) 657-5170;
Arrow/Schweber (508) 658-0900; Hall-Mark (508)
667-0902; Marshall (508) 658-0810; Wyle (617) 272-7300; Zeus (617) 246-8200.

MICHIGAN: Detrolt: Arrow/Schweber (313) 416-5800 Hall-Mark (313) 416-5800; Marshall (313) 525-5850; Newark (313) 967-0600.
MINNESOTA: Anthem (612) 944-5454; Arrow/Schweber (612) 941-5280; Hall-Mark (612) 881-2600; Marshall (612) 559-2211.
MISSOURI: Arrow/Schweber (314) 567-6888; Hall-Mark (314) 291-5350; Marshall (314) 291-4650.

NEW JERSEY: Anthem (201) 227-7960; Arrow/Schweber 201) 227-7880 (609) 596-8000. Hall-Mark (201) 515-3000, 609) 235-1900; Marshall (201) 882-0320, (609) 234-9100. NEW MEXICO: Alliance (505) 292-3360.
NEW YORK: Long Island: Anthem (516) 864-6600;
Arrow/Schweber (516) 231-1000; Hall-Mark (516) 737-0600; Marshall (516) 273-2424; Zeus (914) 937-7400; Rochester: Arrow/Schweber (716) 427-0300; Hall-Mark (716) 425-3300; Marshall (716) 235-7620;

Syracuse: Marshall (607) 785-2345.
NORTH CAROLINA: Arrow/Schweber (919) 876-3132;
Hall-Mark (919) 872-0712; Marshall (919) 878-9882.
OHIO: Cleveland: Arrow/Schweber (216) 248-3990; Hall-Mark (216) 349-4632; Marshall (216) 248-1788;
Columbus: Hall-Mark (614) 888-3313;
Dayton: Arrow/Schweber (513) 435-5563; Marshall (513) 898-4480; Zeus (513) 293-6162.
OKLAHOMA: Arrow/Schweber (918) 252-7537; Hall-Mark (918) 254-6110.

OREGON: Almac/Arrow (503) 629-8090; Anthem (503) 643-1114; Marshall (503) 644-5050; Wyie (503) 643-7900. PENNSYLVANIA: Anthem (215) 443-5150; PENNSYLVANIA: Anthem (215) 443-5150;
Arrow/Schweber (215) 928-1800; GRS (215) 922-7037; Arrow/ Sc4-8eber Marshall (412) 788-0441.
TEXAS: Austin: Arrow/Schweber (512) 835-4180; Hall-Mark (512) 258-8848; Marshall (512) 837-1991; Wyle Hall-Mark (512) 258-8848; Marshall (512) 837-1991; Wyla
(512) 345-8853; Dallas: Anthem (214) 238-7100; Arrow/Schweber (214) 233-5200; Wyle (214) 235-9953; Zeus (214) 783-7010; Houston: Arrow/Schweber (713) 530-4700; Hall-Mark Houston: Arrow/Schweber (713) 781-6100; Marshall (713) 467-1666. Wyle (713) 879-9953.
UTAH: Anthem (801) 973-8555; Arrow/Schweber (801) 973-6913; Hall-Mark (801) 269-0416; Marshall (801) 973-2288; Wyle (801) 974-9953.
WASHINGTON: Almac/Arrow (206) 643-9992; Anthem (206) 483-1700; Marshall (206) 486-5747; Wyle (206) 881 -1150.
WISCONSIN: Arrow/Schweber (414) 792-0150; Hall-Mark (414) 797-7844; Marshall (414) 797-8400. CANADA: Calgary: Future (403) 235-5325 Edmonton: Future (403) 438-2858;
Montreal: Arrow/Schweber (514) 421-7411; Future (514) 694-7710; Marshall (514) 694-8142;
Ottawa: Arrow/Schweber (613) 226-6903; Future (613) 820-8313;
Quebec: Future (418) 897-6666;
Toronto: Arrow/Schweber (416) 670-7769; Toronto: Arrow/Schweber (416) 670-7769;
Future (416) 612-9200; Marshall (416) 458-8046; Vancouver: Arrow/Schweber (604) 421-2333; Vancouver: Arrow/Sch
Future (604) 294-1166.

TI Die Processors

Chip Supply
Elmo Semiconductor
Minco Technology Labs
(407) 298-7100
(818) 768-7400
(512) 834-2022

Customer

Response Center

TOLL FREE: (800) 336-5236
OUTSIDE USA: (214) 995-6611
(8:00 a.m. - 5:00 p.m. CST)

TI Worldwide Sales Offices

ALABAMA: Huntsville: 4960 Corporate Drive, Suite 150, Huntsville, AL 35805, (205) 837-7530
ARIZONA: Phoenix: 8825 N. 23rd Avenue, Suite 100, Phoenix, AZ 85021, (602) 995-1007 CALIFORNIA: Irvine: 1920 Main Street, Suite 900, Irvine, CA 92714, (714) 660-1200; San Diego: 5625 Ruffin Road, Suite 100, San Diego, CA 92123, (619) 278-9600;
Santa Clara: 5353 Betsy Ross Drive,
Santa Clara, CA 95054, (408) 980-9000;
Woodland Hills: 21550 Oxnard Street, Suite 700, Woodland Hills, CA 91367, (818) 704-8100.
COLORADO: Aurora: 1400 S . Potomac Street Suite 101, Aurora, CO 80012, (303) 368-8000. CONNECTICUT: Wallingford: 9 Barnes Industrial Park So., Wallingford, CT 06492, (203) 269-0074.
FLORIDA: Altamonte Springs: 370 S. North Lake Boulevard, Suite 1008, Altamonte Springs, FL 32701, (407) 260-2116;
Fort Lauderdale: 2950 N.W. 62 nd Street,
Suite 100, Fort Lauderdale, FL 33309,
(305) 973-8502;

Tampa: 4803 George Road, Suite 390, Tampa, FL 33634-6234, (813) 885-7588.
GEORGIA: Norcross: 5515 Spalding Drive Norcross, GA 30092-2560, (404) 662-7967.
ILLINOIS: Arlington Heights: 515 West Algonquin, Arlington Heights, IL 60005 , (708) 640-2925.

INDIANA: Carmel: 550 Congressional Drive, Suite 100, Carmel, iN 46032, (317) 573-6400; Fort Wayne: 103 Airport North Office Park. Fort Wayne, IN 46825, (219) 489-4697.
KANSAS: Overland Park: 7300 College Boulevard, Lighton Plaza, Suite 150, Overland Park, KS 66210, (913) 451-4511.
MARYLAND: Columbla: 8815 Centre Park Drive, Suite 100, Columbia, MD 21045, (410) 964-2003.
MASSACHUSETTS: Waltham: Bay Colony Corporate Center, 950 Winter Street, Suite 2800 Waltham, MA 02154, (617) 895-9100.
MICHIGAN: Farmington Hills: 33737 W. 12 Mile Road, Farmington Hills, MI 48018, (313) 553-1581; MINNESOTA: Eden Prairie: 11000 W. 78th Street Suite 100, Eden Prairie, MN 55344, (612) 828-9300
MISSOURI: St. Louis: 12412 Powerscourt Drive, Suite 125, St. Louis, MO 63131, (314) 821-8400.
NEW JERSEY: Iselin: Metropolitan Corporate
Plaza, 485 Bldg. E. U.S. 1 South, Iselin, NJ 08830 Plaza, 485 Bldg.
(908) $750-1050$.
NEW MEXICO: Albuquerque: 2709 J . Pan American Freeway NE, Albuquerque, NM 87101 , (505) 345-2555.

NEW YORK: East Syracuse: 6365 Collamer Drive, East Syracuse, NY 13057, (315) 463-9291; Fishkill: 300 Westage Business Center, Suite 140 Fishkill, NY 12524, (914) 897-2900;
Melville: 48 South Service Road, Suite 100,
Melville, NY 11747, (516) 454-6601;
Pittsford: 2851 Clover Street, Pittsford, NY 14534, (716) 385-6770.

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, Suite 100, Charlotte, NC 28217, (704) 527-0930;
Raleigh: 2809 Highwoods Boulevard, Suite 100, Raleigh, NC 27625, (919) 876-2725.
OHIO: Beachwood: 23775 Commerce Park Road, Beachwood, OH 44122-5875, (216) 765-7528
Beavercreek: 4200 Colonel Glenn Highway,
Suite 600, Beavercreek, OH 45431,
(513) 427-6200.

OREGON: Beaverton: 6700 S.W. 105th Street Suite 110, Beaverton, OR 97005, (503) 643-6758. PENNSYLVANIA: Blue Bell: 670 Sentry Parkway, Suite 200, Blue Bell, PA 19422, (215) 825-9500. PUERTO RICO: Hato Rey: 615 Mercantil Plaza Building, Suite 505, Hato Rey, PR 00919 , (809) 753-8700.

TEXAS: Austin: 12501 Research Boulevard, Austin, TX 78759, (512) 250-6769;
Dallas: 7839 Churchill Way, Dallas, TX 75251, (214) 917-1264;

Houston: 9301 Southwest Freeway, Commerce Park, Suite 360, Houston, TX 77074,
(713) 778-6592

Midland: FM 1788 \& I-20, Midland, TX
79711-0448, (915) 561-7137.
UTAH: Salt Lake City: 2180 South 1300 East, Suite 335, Salt Lake City, UT 54106,
(801) 466-8972.

WISCONSIN: Waukesha: 20825 Swenson Drive, Suite 900, Waukesha WI 53186, (414) 798-1001.
CANADA: Nepean: 301 Moodie Drive, Suite 102, Mallorn Centre, Nepean, Ontario, Canada K2H Mall, (613) 726-1970;
Richmond Hill: 280 Centre Street East, Richmond Hill, Ontario, Canada L4C 1B1, (416) 884-9181; St. Laurent: 9460 Trans Canada Highway, St. Laurent, Quebec, Canada H4S 1R7, (514) 335-8392.

AUSTRALIA (\& NEW ZEALAND): Texas Instruments Australia Ltd., 6-10 Talavera Road, North Ryde (Sydney), New South Wales, Australia 2113, 2-878-9000; 14th Floor, 380 Street Kilda Road, Melbourne, Victoria, Australia 3000, 3-696-1211.
BELGIUM: Texas Instruments Belgium S.A./N.V., Avenue Jules Bordetlaan 11, 1140 Brussels, Belgium, (02) 2423080.
BRAZIL: Texas Instrumentos Electronicos do Brasil Ltda., Av. Eng. Luiz Carlos Berrini, 1461-110. andar, 04571, Sao Paulo, SP, Brazil, 11-535-5133. DENMARK: Texas Instruments A/S, Borupvang 2D, DK-2750 Ballerup, Denmark, (44) 687400. FINLAND: Texas Instruments OY, Ahertajantie 3, P.O. Box 86, 02321 Espoo, Finland, (0) 8026517. FRANCE: Texas Instruments France, 8-10 Avenue Morane-Saulnier, B.P. 67, 78141 Velizy Villacoublay Cedex, France, (1) 30701003. GERMANY: Texas Instruments Deutschland GmbH., Haggertystraße 1, 8050 Freising, (08161) 80-0; Kurfürstendamm 195-196, 1000 Berlin 15, (030) 88273 65; Düsseldorfer Straße 40, 6236 Eschborn 1, (06196) 80 70; Hollestraße 3, 4300 Essen 1, (0201) 2366 40; Kirchhorster Straße 2, 3000 Hannover 51, (0511) 64 68-0
Maybachstraße II, 7302 Ostfildern 2 (Nellingen), (0711) 3003257

HOLLAND: Texas Instruments Holland B.V., Hogehilweg 19, Postbus 12995, 1100 AZ Amsterdam-Zuidoost, Holland, (020) 5602911.
HONG KONG: Texas Instruments Hong Kong L.td., 8th Floor, World Shipping Centre, 7 Canton Road, Kowloon, Hong Kong, 737-0338.
HUNGARY: Texas Instruments Representation, Budaörsi u.42, H-1112 Budapest, Hungary, (1) 1666617.

IRELAND: Texas Instruments Ireland Ltd., 7/8 Harcourt Street, Dublin 2, Ireland (01) 755233.

ITALY: Texas Instruments Italia S.p.A., Centro Direzionale Colleoni, Palazzo Perseo-Via Paracelso 12, 20041 Agrate Brianza (Mi), Italy, (039) 63221; Via Castello della Magliana, 38, 00148 Roma, Italy (6) 6572651.

JAPAN: Texas Instruments Japan Ltd., Aoyama Fuji Building 3-6-12 Kita-Aoyama Minato-ku, Tokyo, Japan 107, 03-498-2111; MS Shibaura
Building 9F, 4-13-23 Shibaura, Minato-ku, Tokyo, Japan 108, 03-769-8700; Nissho-Iwai Building 5F 2-5-8 Imabashi, Chuou-ku, Osaka, Japan 541, 06-204-1881; Dai-ni Toyota Building Nishi-kan' $7 F$ 4-10-27 Meieki, Nakamura-ku, Nagoya, Japan 450, 052-583-8691; Kanazawa Oyama-cho Daiichi Seimei Building 6F, 3-10 Oyama-cho
Kanazawa-shi, Ishikawa, Japan 920
0762-23-5471; Matsumoto Showa Building 6F, 1-2-11 Fukashi, Matsumoto-shi, Nagano, Japan 390, 0263-33-1060; Daiichi Olympic Tachikawa Building 6F, 1-25-12, Akebono-cho, Tachikawa-shi, Tokyo, Japan 190, 0425-27-6760; Yokohama Business Park East Tower 10F, 134 Goudo-cho, Hodogaya-ku, Yokohama-shi, Kanagawa, Japan 240, 045-338-1220; Nihon Seimei Kyoto Yasaka Building 5F, 843-2, Higashi Shiokohji-cho
Higashi-iru, Nishinotoh-in, Shiokohji-dori,
Shimogyo-ku, Kyoto, Japan 600, 075-341-7713; Sumitomo Seimei Kumagaya Building 8F, 2-44 Yayoi, Kumagaya-shi, Saitama, Japan 360 0485-22-2440; 2597-1, Aza Harudai, Oaza Yasaka Kitsuki-shi, Oita, Japan 873, 09786-3-3211.
KOREA: Texas Instruments Korea Ltd., 28th Floor, Trade Tower, 159-1, Samsung-Dong, Kangnam-ku' Seoul, Korea, 2-551-2800.
MALAYSIA: Texas Instruments, Malaysia, Sdn Bhd., Asia Pacific, Lot 36.1 \#Box 93, Menara Maybank, 100 Jalan Tun Perak, 50050 Kuala Lumpur, Malaysia, 3-230-6001.
MEXICO: Texas Instruments de Mexico S.A. de C.V., Alfonso Reyes 115, Col. Hipodromo Condesa, Mexico, D.F., 06170, 5-515-6081.
NORWAY: Texas Instruments Norge A/S, B.P. 106, Refstad (Sinsenveien 53), 0513 Osio 5, Norway, (02) 155090.

PEOPLE'S REPUBLIC OF CHINA: Texas Instruments China Inc., Beijing Representative Office, 7-05 CITIC Building, 19 Jianguomenwai Dajie, Beijing, China, 500-2255, Ext. 3750.
PHILIPPINES: Texas Instruments Asia Ltd., Philippines Branch, 14th Floor, Ba-Lepanto Building 8747 Paseo de Roxas, 1226 Makati, Metro Manila Philippines, 2-817-6031.
PORTUGAL: Texas Instruments Equipamento Electronico (Portugal) LDA., Ing. Frederico Ulricho, 2650 Moreira Da Maia, 4470 Maia, Portugal (2) 9481003.

SINGAPORE (\& INDIA, INDONESIA, THAILAND):
Texas Instruments Singapore (PTE) Ltd., Asia Pacific, 101 Thomson Road, \#23-01, United Square, Singapore 1130, 350-8100.
SPAIN: Texas instruments España S.A., c/Gobelas 43, Urbanizasion La Florida, 28023, Madrid, Spain, (91) 372 8051; c/Diputacion, 279-3-5, 08007 Barcelona, Spain, (93) 3179180.
SWEDEN: Texas Instruments International Trade Corporation (Sverigefilialen), Box 30, S-164 93 Kista, Sweden, (08) 7525800
SWITZERLAND: Texas instruments Switzerland AG, Riedstrasse 6, CH-8953 Dietikon, Switzerland, (01) 7442811.

TAIWAN: Texas Instruments Taiwan Limited, Taipei Branch, 10th Floor, Bank Tower, 205 Tung Hua N. Road, Taipei, Taiwan, 10592, Republic of China, Road, Taipei, T.
(02) 7139311.

(02) 7139311.

UNITED KINGDOM: Texas instruments Ltd., Manton Lane, Bedford, England, MK41 7PA, (0234) 270111.

Texas Instrumbens

[^0]: Current out of a terminal is given as a negative value.

[^1]: \checkmark Product available in technology indicated

 + New product planned in technology indicated

[^2]: \checkmark Product available in technology indicated

[^3]: \checkmark Product available in technology indicated

 + New product planned in technology indicated

[^4]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^5]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
 II This data sheet limit may vary among suppliers.
 \# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

[^6]: NOTE 2: Unused or floating inputs must be held high or low.

[^7]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
 II This data sheet limit may vary among suppliers.
 \# Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 $\|$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

[^8]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^9]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^10]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^11]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^12]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^13]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

[^14]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters IOZH^{2} and IOZL include the input leakage current.
 I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 \# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

[^15]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
 I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 \# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[^16]: NOTE 2: Unused or floating inputs must be held high or low.

[^17]: NOTE 2: Unused or floating inputs must be held high or low.

[^18]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^19]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^20]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^21]: NOTE 2: Unused or floating inputs must be held high or low.

[^22]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^23]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^24]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^25]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^26]: NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

[^27]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^28]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^29]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^30]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^31]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^32]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^33]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 II This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[^34]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^35]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^36]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

[^37]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^38]: \dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[^39]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^40]: \dagger A-port register shown. B and C ports are similar but use CLKENB, CLKENC, CLKB, CLKC, LEB, and LEC.
 \ddagger Output level before the indicated steady-state input conditions were established.

[^41]: NOTE 2: Unused or floating inputs must be held high or low.

[^42]: \dagger Output level before the indicated steady-state input conditions were established.

[^43]: Widebus+, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

[^44]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^45]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters lozH and lozL include the input leakage current.
 If Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 \# This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

[^46]: Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.

[^47]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{I}_{\mathrm{OZL}}$ include the input leakage current.
 I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 \#. This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

[^48]: Widebus, EPIC-IIB, and UBT are trademarks of Texas Instruments Incorporated.

[^49]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 § This is the increase in supply current for each input that is at the specified TTL voltage level rather than $\mathrm{V}_{C C}$ or GND.

[^50]: \dagger All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger Skew values are applicable for through mode only.

[^51]: NOTE 1: Unused or floating pins (input or I/O) must be held high or low.

[^52]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters $\mathrm{IOZH}^{\text {and }}$ IOZL include the input leakage current.
 Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 \# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[^53]: \dagger Bit 7 is used to maintain even parity in the 8 -bit instruction.
 \ddagger The BYPASS instruction is executed in lieu of a SCOPE ${ }^{\text {TM }}$ instruction that is not supported in the 'ABT8646.

[^54]: SCOPE and Widebus are trademarks of Texas Instruments Incorporated.

[^55]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^56]: \dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^57]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^58]: \dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^59]: VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

[^60]: \dagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^61]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^62]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^63]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^64]: Widebus is a trademark of Texas Instruments Incorporated.

[^65]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^66]: All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 § Unused pins at V_{CC} or GND
 I This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

[^67]: Widebus is a trademark of Texas Instruments Incorporated

[^68]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^69]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 § This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

[^70]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^71]: Widebus and UBT are trademarks of Texas Instruments Incorporated.

[^72]: † Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^73]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 § Unused pins at V_{CC} or GND
 II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

[^74]: Widebus is a trademark of Texas Instruments Incorporated.

[^75]: Widebus is a trademark of Texas Instruments Incorporated.

[^76]: Widebus is a trademark of Texas Instruments Incorporated.

[^77]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^78]: Widebus is a trademark of Texas Instruments Incorporated.

[^79]: Widebus is a trademark of Texas Instruments Incorporated.

[^80]: Widebus and UBT are trademarks of Texas Instruments Incorporated.

[^81]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^82]: Widebus and UBT are trademarks of Texas Instruments Incorporated.

[^83]: \ddagger Current duty cycle $\leq 50 \%, \mathrm{f} \geq 1 \mathrm{kHz}$

[^84]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 § Unused pins at V_{CC} or GND
 II This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.

[^85]: NOTE 2: Unused or floating pins (input or I/O) must be held high or low.

[^86]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
 \ddagger On products compliant to MIL-STD-883, Class B, this parameter does not apply.
 § The parameters $\mathrm{I}_{\mathrm{OZH}}$ and $\mathrm{IOZL}_{\mathrm{OL}}$ include the input leakage current.
 Il Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
 \# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

