2－$\mu \mathrm{m}$ CMOS Standard Cell Data Book
 1986

总
SystemCell ${ }^{\text {TM }}$ Series

Texas INSTRUMENTS

General Information

Definitions, Ratings, and Glossary

Product Guide

Data Sheets

IEEE Symbols

Design Considerations

2- $\mu \mathrm{m}$ CMOS Standard Cell Data Book

SystemCell ${ }^{T M}$ Series

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes in the devices or the device specifications identified in this publication without notice. TI advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current.

TI warrants performance of its semiconductor products, including SNJ and SMJ devices, to current specifications in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems such testing necessary to support this warranty. Unless mandated by government requirements, specific testing of all parameters of each device is not necessarily performed.

In the absence of written agreement to the contrary, TI assumes no liability for TI applications assistance, customer's product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used.

Specifications contained in this data book supersede all data for these products published by TI in the United States before September 1986.

PREFACE

This data book contains a wealth of information to assist you in designing an Application-Specific IC (ASIC) using TI's new, 2- $\mu \mathrm{m}$ CMOS standard cell family - called SystemCellim. Included are; a selection guide, a crossreference guide, a definition of symbols and glossary of common terms, a section on design guidelines, detailed mechanical data on the extensive range of SystemCell ${ }^{\text {TM }}$ package options and, comprehensive, detailed data sheets covering more than 320 cell types including:

- SSI logic functions ("'gates")
- MSI logic functions ("macros")
- I/O cells
- Boolean functions
- CompilerCell ${ }^{T M}$ functions (SRAM, ROM, PLA and Pipeline Test Register)

Fabricated in TI's advanced $2-\mu \mathrm{m}$ (1.6- $\mu \mathrm{m}$ effective), double-level metal (DLM), twin-well, silicon-gate CMOS technology, ICs designed with the SystemCell ${ }^{\text {m }}$ family can offer many significant benefits.

- Lower system cost
- Increased functionality
- Unique, secure product designs
- Shorter "product-to-market" times
- Reduced package count and board space
- Improved reliability

The advanced CMOS technology and high-volume production processes developed to support Tl's high-density memory products provide the "driving force" behind the significant performance and density advances embodied in the new SystemCell ${ }^{T M}$ family. Using this approach, minimum feature sizes, an inverse indicator of performance and complexity, have been successfully reduced from $3-\mu \mathrm{m}$ used in the CircuitCell ${ }^{T M}$ family to $2-\mu \mathrm{m}$ in the SystemCell ${ }^{\text {TM }}$ family, with a $1-\mu \mathrm{m}$ family already on the horizon!

In designing the SystemCell ${ }^{\text {TM }}$ family, TI's ASIC development team was directed by the people who made TTL $^{\text {s }}$ an industry standard and who then went on to invent Low Power Schottky ${ }^{\dagger}$ (LS-TTL). They were determined that TI 's standard cell products should be easier to design with, and as well specified as conventional standard logic circuits.

Designers familiar with the industry standard SN54/74 TTL functions will immediately appreciate the easy transition to standard cell design. These same popular logic functions are replicated in TI's standard cell libraries. Wherever possible, the same function number as the standard product has been used. For example, if the 'LS244 is the function you need, simply select the 'ASC244-it's the same function!

The similarity with industry standard logic functions does not end with type numbers. Each individual SystemCell ${ }^{m}$ data sheet presents the cell data in a format similar to the corresponding standard device data sheet and contains comprehensive, solid specifications (min's and max's over the full temperature range, not just typical values). In fact, just like TTL and LS-TTL, TI's SystemCell ${ }^{\text {TM }}$ family provides data you can depend on!

From design concept to a completed design, TI's Regional Technology Centers offer a worldwide network of customer and design support services. Local design support capabilities also are available through TI's authorized ASIC distributors across North America. In addition, SystemCell ${ }^{\text {TM }}$ is supported on many of the popular engineering workstations to allow maximum utilization of existing in-house design tools for those wishing to complete the design themselves.
To learn more about TI^{\prime} s SystemCell ${ }^{T 1}$ family, the most comprehensively specified, fastest growing cell library in the industry, please read on.

[^0]
ALPHANUMERIC INDEX

		PAGE			PAGE
SN54ASC00	SN74ASC00	4-3	SN54ASC590	SN74ASC590	4-289
SN54ASC02	SN74ASC02	4-7	SN54ASC593X	SN74ASC593X	4-295
SN54ASC04	SN74ASC04	4-11	SN54ASC595	SN74ASC595	4-303
SN54ASC08	SN74ASC08	4-15	SN54ASC598X	SN74ASC598X	4-307
SN54ASC10	SN74ASC10	4-19	SN54ASC651	SN74ASC651	4-315
SN54ASC11	SN74ASC11	4-23	SN54ASC652	SN74ASC652	4-315
SN54ASC20	SN74ASC20	4-27	SN54ASC669	SN74ASC669	4-327
SN54ASC21	SN74ASC21	4-31	SN54ASC686	SN74ASC686	4-333
SN54ASC27	SN74ASC27	4-35	SN54ASC688	SN74ASC688	4-339
SN54ASC30	SN74ASC30	4-37	SN54ASC888	SN74ASC888	4-343
SN54ASC32	SN74ASC32	4-39	SN54ASC890	SN74ASC890	4-347
SN54ASC74	SN74ASC74	4-43	SN54ASC2022	SN74ASC2022	4-349
SN54ASC75	SN74ASC75	4-55	SN54ASC2024	SN74ASC2024	4-351
SN54ASC85	SN74ASC85	4-59	SN54ASC2102	SN74ASC2102	4-353
SN54ASC86	SN74ASC86	4-65	SN54ASC2108	SN74ASC2108	4-359
SN54ASC109	SN74ASC109	4-67	SN54ASC2310	SN74ASC2310	4-363
SN54ASC137	SN74ASC137	4-71	SN54ASC2311	SN74ASC2311	4-367
SN54ASC138	SN74ASC138	4-77	SN54ASC2320	SN74ASC2320	4-371
SN54ASC139	SN74ASC139	4-81	SN54ASC2321	SN74ASC2321	4-373
SN54ASC151	SN74ASC151	4-85	SN54ASC2322	SN74ASC2322	4-377
SN54ASC153	SN74ASC153	4-89	SN54ASC2325	SN74ASC2325	4-381
SN54ASC155	SN74ASC155	4-93	SN54ASC2330	SN74ASC2330	4-383
SN54ASC157	SN74ASC157	4-97	SN54ASC2331	SN74ASC2331	4-385
SN54ASC158	SN74ASC158	4-101	SN54ASC2340	SN74ASC2340	4-387
SN54ASC161A	SN74ASC161A	4-105	SN54ASC2341	SN74ASC2341	4-389
SN54ASC163A	SN74ASC163A	4-113	SN54ASC2342	SN74ASC2342	4-391
SN54ASC164	SN74ASC164	4-121	SN54ASC2350	SN74ASC2350	4-393
SN54ASC165	SN74ASC165	4-127	SN54ASC2370	SN74ASC2370	4-397
SN54ASC166	SN74ASC166	4-133	SN54ASC2371	SN74ASC2371	4-399
SN54ASC173	SN74ASC173	4-141	SN54ASC2372	SN74ASC2372	4-401
SN54ASC174	SN74ASC174	4-147	SN54ASC2373	SN74ASC2373	4-403
SN54ASC175	SN74ASC175	4-151	SN54ASC2374	SN74ASC2374	4-405
SN54ASC177	SN74ASC177	4-155	SN54ASC2401	SN74ASC2401	4-407
SN54ASC181	SN74ASC181	4-161	SN54ASC2402	SN74ASC2402	4-407
SN54ASC191	SN74ASC191	4-169	SN54ASC2403	SN74ASC2403	4-407
SN54ASC193	SN74ASC193	4-177	SN54ASC2404	SN74ASC2404	4-407
SN54ASC194A	SN74ASC194A	4-185	SN54ASC2405	SN74ASC2405	4-413
SN54ASC195A	SN74ASC195A	4-191	SN54ASC2406	SN74ASC2406	4-413
SN54ASC244	SN74ASC244	4-197	SN54ASC2407	SN74ASC2407	4-413
SN54ASC245	SN74ASC245	4-201	SN54ASC2408	SN74ASC2408	4-419
SN54ASC251	SN74ASC251	4-207	SN54ASC2500	SN74ASC2500	4-423
SN54ASC257A	SN74ASC257A	4-211	SN54ASC2502	SN74ASC2502	4-425
SN54ASC258A	SN74ASC258A	4-215	SN54ASC2503	SN74ASC2503	4-427
SN54ASC259	SN74ASC259	4-219	SN54ASC2507	SN74ASC2507	4-429
SN54ASC260	SN74ASC260	4-225	SN54ASC2508	SN74ASC2508	4-431
SN54ASC266	SN74ASC266	4-227	SN54ASC2519	SN74ASC2519	4-433
SN54ASC273	SN74ASC273	4-229	SN54ASC2901	SN74ASC2901	4-435
SN54ASC279	SN74ASC279	4-233	SN54ASC2902	SN74ASC2902	4-437
SN54ASC280	SN74ASC280	4-235	SN54ASC2904	SN74ASC2904	4-439
SN54ASC283	SN74ASC283	4-239	SN54ASC2910	SN74ASC2910	4-441
SN54ASC298	SN74ASC298	4-245	SN54ASC3003	SN74ASC3003	4-443
SN54ASC299	SN74ASC299	4-251	SN54ASC3004	SN74ASC3004	4-443
SN54ASC299X	SN74ASC299X	4-257	SN54ASC3005	SN74ASC3005	4-443
SN54ASC373	SN74ASC373	4-263	SN54ASC3006	SN74ASC3006	4-443
SN54ASC374	SN74ASC374	4-267	SN54ASC3010	SN74ASC3010	4-451
SN54ASC375	SN74ASC375	4-271	SN54ASC3011	SN74ASC3011	4-453
SN54ASC393	SN74ASC393	4-277	SN54ASC3103	SN74ASC3103	4-455
SN54ASC398	SN74ASC398	4-281	SN54ASC3200	SN74ASC3200	4-461
SN54ASC399	SN74ASC399	4-285	SN54ASC3430	SN74ASC3430	4-463

		PAGE			PAGE
SN54ASC3800	SN74ASC3800	4-465	SN54ASC6022	SN74ASC6022	4-635
SN54ASC4002	SN74ASC4002	4-467	SN54ASC6023	SN74ASC6023	4-637
SN54ASC4072	SN74ASC4072	4-469	SN54ASC6024	SN74ASC6024	4-639
SN54ASC4075	SN74ASC4075	4-473	SN54ASC6025	SN74ASC6025	4-641
SN54ASC4078	SN74ASC4078	4-477	SN54ASC6026	SN74ASC6026	4-643
SN54ASC5000	SN74ASC5000	4-479	SN54ASC6027	SN74ASC6027	4-645
SN54ASC5001	SN74ASC5001	4-481	SN54ASC6028	SN74ASC6028	4-647
SN54ASC5002	SN74ASC5002	4-483	SN54ASC6029	SN74ASC6029	4-649
SN54ASC5003	SN74ASC5003	4-485	SN54ASC6032	SN74ASC6032	4-651
SN54ASC5004	SN74ASC5004	4-487	SN54ASC6034	SN74ASC6034	4-653
SN54ASC5005	SN74ASC5005	4-489	SN54ASC6035	SN74ASC6035	4-655
SN54ASC5006	SN74ASC5006	4-491	SN54ASC6048	SN74ASC6048	4-657
SN54ASC5007	SN74ASC5007	4-493	SN54ASC6049	SN74ASC6049	4-659
SN54ASC5010	SN74ASC5010	4-495	SN54ASC6052	SN74ASC6052	4-661
SN54ASC5013	SN74ASC5013	4-497	SN54ASC6053	SN74ASC6053	4-663
SN54ASC5100	SN74ASC5100	4-499	SN54ASC6054	SN74ASC6054	4-665
SN54ASC5103	SN74ASC5103	4-503	SN54ASC6055	SN74ASC6055	4-667
SN54ASC5104	SN74ASC5104	4-507	SN54ASC6056	SN74ASC6056	4-669
SN54ASC5105	SN74ASC5105	4-511	SN54ASC6057	SN74ASC6057	4-671
SN54ASC5106	SN74ASC5106	4-513	SN54ASC6058	SN74ASC6058	4-673
SN54ASC5107	SN74ASC5107	4-517	SN54ASC6059	SN74ASC6059	4-675
SN54ASC5108	SN74ASC5108	4-521	SN54ASC6062	SN74ASC6062	4-677
SN54ASC5109	SN74ASC5109	4-523	SN54ASC6063	SN74ASC6063	4-679
SN54ASC5110	SN74ASC5110	4-525	SN54ASC6064	SN74ASC6064	4-681
SN54ASC5111	SN74ASC5111	4-529	SN54ASC6065	SN74ASC6065	4-683
SN54ASC5120	SN74ASC5120	4-533	SN54ASC6066	SN74ASC6066	4-685
SN54ASC5121	SN74ASC5121	4-537	SN54ASC6067	SN74ASC6067	4-687
SN54ASC5123	SN74ASC5123	4-541	SN54ASC6068	SN74ASC6068	4-689
SN54ASC5124	SN74ASC5124	4-543	SN54ASC6069	SN74ASC6069	4-691
SN54ASC5125	SN74ASC5125	4-547	SN54ASC6072	SN74ASC6072	4-693
SN54ASC5200	SN74ASC5200	4-551	SN54ASC6073	SN74ASC6073	$4-695$
SN54ASC5201	SN74ASC5201	4-555	SN54ASC6074	SN74ASC6074	4-697
SN54ASC5202	SN74ASC5202	4-559	SN54ASC6075	SN74ASC6075	4-699
SN54ASC5203	SN74ASC5203	4-563	SN54ASC6082	SN74ASC6082	4-701
SN54ASC5206	SN74ASC5206	4-567	SN54ASC6083	SN74ASC6083	4-703
SN54ASC5207	SN74ASC5207	4-571	SN54ASC6084	SN74ASC6084	4-705
SN54ASC5217	SN74ASC5217	4-575	SN54ASC6088	SN74ASC6088	4-707
SN54ASC5220	SN74ASC5220	4-579	SN54ASC6100	SN74ASC6100	4-709
SN54ASC5221	SN74ASC5221	4-583	SN54ASC6101	SN74ASC6101	4-711
SN54ASC5226	SN74ASC5226	4-587	SN54ASC6102	SN74ASC6102	4-713
SN54ASC5227	SN74ASC5227	4-591	SN54ASC6103	SN74ASC6103	4-715
SN54ASC5239	SN74ASC5239	4-595	SN54ASC6105	SN74ASC6105	4-717
SN54ASC5246	SN74ASC5246	4-599	SN54ASC6106	SN74ASC6106	4-719
SN54ASC5250	SN74ASC5250	4-603	SN54ASC6108	SN74ASC6108	4-721
SN54ASC6002	SN74ASC6002	4-607	SN54ASC6110	SN74ASC6110	4-725
SN54ASC6003	SN74ASC6003	4-609	SN54ASC6111	SN74ASC6111	4-727
SN54ASC6004	SN74ASC6004	4-611	SN54ASC6112	SN74ASC6112	4-731
SN54ASC6005	SN74ASC6005	4-613	SN54ASC6113	SN74ASC6113	4-733
SN54ASC6006	SN74ASC6006	4-615	SN54ASC6115	SN74ASC6115	4-737
SN54ASC6007	SN74ASC6007	4-617	SN54ASC6116	SN74ASC6116	4-739
SN54ASC6008	SN74ASC6008	4-619	SN54ASC6118	SN74ASC6118	4-741
SN54ASC6009	SN74ASC6009	4-621	SN54ASC6120	SN74ASC6120	4-745
SN54ASC6012	SN74ASC6012	4-623	SN54ASC6121	SN74ASC6121	4-747
SN54ASC6013	SN74ASC6013	4-625	SN54ASC6122	SN74ASC6122	4-749
SN54ASC6014	SN74ASC6014	4-627	SN54ASC6125	SN74ASC6125	4-751
SN54ASC6017	SN74ASC6017	4-629	SN54ASC6130	SN74ASC6130	4-755
SN54ASC6018	SN74ASC6018	4-631	SN54ASC6131	SN74ASC6131	4-757
SN54ASC6019	SN74ASC6019	4-633	SN54ASC6132	SN74ASC6132	4-759

CELL NAME	DEVICE	PAGE
IOE44LH	ASC5207	4-571
IOFOOLH	ASC5220	4-579
IOF01LH	ASC5226	4-587
IOFO3LH	ASC5221	4-583
10F04LH	ASC5227	4-591
10F40LH	ASC5200	4-551
IOF41LH	ASC5206	4-567
IOF43LH	ASC5201	4-555
IOF44LH	ASC5207	4-571
IOF47LH	ASC5202	4-559
IOF48LH	ASC5203	4-563
IOF64LH	ASC5217	4-575
IOFB8LH	ASC5239	4-595
IOFDOLH	ASC5250	4-603
IOFD8LH	ASC5246	4-599
IPEOOLH	ASC5000	4-479
IPE01LH	ASC5006	4-491
IPEO3LH	ASC5001	4-481
IPEO4LH	ASC5007	4-493
IPEO5LH	ASC5005	4-489
IPEO6LH	ASC5002	4-483
IPEO8LH	ASC5003	4-485
IPE10LH	ASC5010	4-495
IPFOOLH	ASC5000	4-479
IPF01LH	ASC5006	4-491
IPFO2LH	ASC5004	4-487
IPFO3LH	ASC5001	4-481
IPFO4LH	ASC5007	4-493
IPFO5LH	ASC5005	4-489
IPFO6LH	ASC5002	4-483
IPFO8LH	ASC5003	4-485
IPF10LH	ASC5010	4-495
IPF12LH	ASC5007	4-493
IPF13LH	ASC5013	4-497
IV101LH	ASC04	4-11
IV110LH	ASCO4	4-11
IV120LH	ASC04	4-11
IV130LH	ASCO4	4-11
IV140LH	ASCO4	4-11
IV160LH	ASCO4	4-11
IV180LH	ASCO4	4-11
IV211LH	ASC2310	4-363
IV212LH	ASC2311	4-367
IV221LH	ASC2310	4-363
IV222LH	ASC2311	4-367
IV241LH	ASC2310	4-363
IV242LH	ASC2311	4-367
JKB2OLH	ASC109	4-67
JKB21LH	ASC2108	4-359
LAB10LH	ASC279	4-233
LAB20LH	ASC279	4-233
LAH10LH	ASC75	4-55
LAH2OLH	ASC75	4-55
LAL20LH	ASC6125	4-751
M01MPLH	ASC2901	4-435
MO2CGLH	ASC2902	4-437
M04SSLH	ASC2904	4-439
M10MCLH	ASC2910	4-441
M88MPLH	ASC888	4-343
M90MCLH	ASC890	4-347

CELL NAME	DEVICE	PAGE
MU110LH	ASC2340	4-387
MU210LH	ASC2341	4-389
MU310LH	ASC2342	4-391
MVFOOLH	ASC2322	4-377
NA210LH	ASCOO	4-3
NA220LH	ASCOO	4-3
NA230LH	ASCOO	4-3
NA24OLH	ASCOO	4-3
NA260LH	ASCOO	4-3
NA310LH	ASC10	4-19
NA320LH	ASC10	4-19
NA330LH	ASC10	4-19
NA340LH	ASC10	4-19
NA410LH	ASC20	4-27
NA420LH	ASC20	4-27
NA430LH	ASC20	4-27
NA510LH	ASC2022	4-349
NA520LH	ASC2022	4-349
NA810LH	ASC30	4-37
NA820LH	ASC30	4-37
NO210LH	ASCO2	4-7
NO220LH	ASCO2	4-7
NO230LH	ASCO2	4-7
NO240LH	ASCO2	4-7
NO310LH	ASC27	4-35
NO320LH	ASC27	4-35
NO330LH	ASC27	4-35
NO410LH	ASC4002	4-467
NO420LH	ASC4002	4-467
NO510LH	ASC260	4-225
NO520LH	ASC260	4-225
NO810LH	ASC4078	4-477
NO820LH	ASC4078	4-477
OPEOOLH	ASC5106	4-513
OPE01LH	ASC5108	4-521
OPEO3LH	ASC5107	4-517
OPE40LH	ASC5100	4-499
OPE41LH	ASC5109	4-523
OPE42LH	ASC5110	4-525
OPE43LH	ASC5111	4-529
OPE60LH	ASC5103	4-503
OPE61LH	ASC5105	4-511
OPE63LH	ASC5104	4-507
OPFOOLH	ASC5106	4-513
OPF01LH	ASC5108	4-521
OPFO3LH	ASC5107	4-517
OPF40LH	ASC5100	4-499
OPF41LH	ASC5109	4-523
OPF42LH	ASC5110	4-525
OPF43LH	ASC5111	4-529
OPF60LH	ASC5103	4-503
OPF61LH	ASC5105	4-511
OPF63LH	ASC5104	4-507
OPFBOLH	ASC5120	4-533
OPFB3LH	ASC5125	4-547
OPFD1LH	ASC5121	4-537
OPFD3LH	ASC5124	4-543
OPFE1LH	ASC5123	4-541
OR210LH	ASC32	4-39
OR220LH	ASC32	4-39

CROSS-REFERENCE INDEX

CELL NAME	DEVICE	PAGE	CELL NAME	DEVICE	PAGE
OR240LH	ASC32	4-39	S163ALH	ASC163A	4-113
OR260LH	ASC32	4-39	S164LH	ASC164	4-121
OR310LH	ASC4075	4-473	S165LH	ASC165	4-127
OR320LH	ASC4075	4-473	S166LH	ASC166	4-133
OR340LH	ASC4075	4-473	S173LH	ASC173	4-141
OR360LH	ASC4075	4-473	S174LH	ASC174	4-147
OR410LH	ASC4072	4-469	S175LH	ASC175	4-151
OR420LH	ASC4072	4-469	S177LH	ASC177	4-155
OR440LH	ASC4072	4-469	S181LH	ASC181	4-161
OR460LH	ASC4072	4-469	S191LH	ASC191	4-169
OR510LH	ASC6130	4-755	S193LH	ASC193	4-177
OR810LH	ASC6131	4-757	S194ALH	ASC194A	4-185
OSEOOLH	ASC2500	4-423	S195ALH	ASC195A	4-191
OSE03LH	ASC2502	4-425	S244LH	ASC244	4-197
OSE06LH	ASC2500	4-423	S245LH	ASC245	4-201
OSFO2LH	ASC2500	4-423	S251LH	ASC251	4-207
PD095LH	ASC2373	4-403	S257ALH	ASC257A	4-211
PR005LH	ASC2374	4-405	S258ALH	ASC258A	4-215
PR095LH	ASC2372	4-401	S259LH	ASC259	4-219
PR250LH	ASC2371	4-399	S273LH	ASC273	4-229
PR400LH	ASC2370	4-397	S280LH	ASC280	4-235
PUCOOLH	ASC2320	4-371	S283LH	ASC283	4-239
R2401LH	ASC2401	4-407	S298LH	ASC298	4-245
R2402LH	ASC2402	4-407	S299LH	ASC299	4-251
R2403LH	ASC2403	4-407	S299XLH	ASC299X	4-257
R2404LH	ASC2404	4-407	S373LH	ASC373	4-263
R2405LH	ASC2405	4-413	S374LH	ASC374	4-267
R2406LH	ASC2406	4-413	S375LH	ASC375	4-271
R2407LH	ASC2407	4-413	S393LH	ASC393	4-277
R2408LH	ASC2408	4-419	S398LH	ASC398	4-281
RA416LH	ASC3003	4-443	S399LH	ASC399	4-285
RA608LH	ASC3004	4-443	S590LH	ASC590	4-289
RA708LH	ASC3006	4-443	S593XLH	ASC593X	4-295
RA804LH	ASC3005	4-443	S595LH	ASC595	4-303
RF408LH	ASC3103	4-455	S598XLH	ASC598X	4-307
S085LH	ASC85	4-59	S651LH	ASC651	4-315
S137LH	ASC137	4-71	S652LH	ASC652	4-315
S138LH	ASC138	4-77	S669LH	ASC669	4-327
S139LH	ASC139	4-81	S686LH	ASC686	4-333
S151LH	ASC151	4-85	S688LH	ASC688	4-339
S153LH	ASC153	4-89	TAB20LH	ASC2102	4-353
S155LH	ASC155	4-93	TAC20LH	ASC2102	4-353
S157LH	ASC157	4-97	TAP20LH	ASC2102	4-353
S158LH	ASC158	4-101	T0010LH	ASC2325	4-381
S161ALH	ASC161A	4-105			

HDL or cell names that start with an S (i.e., SxxxLH) are SOFTWARE MACROS.
INVERTERS AND BUFFERS (Delay at 1-pF Load)

DESCRIPTION	TYPE	$\begin{aligned} & \text { TYPICAL } \\ & \text { DELAY } \\ & \text { (ns) } \end{aligned}$	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
Buffers	'ASC2321	3.0	BU110LH	1X	Noninverting
		4.0	BU111LH	1X	Inverting
		3.0	BU112LH	1X	Noninverting
Delay Control	'ASC2508		DLC10LH	2X	
Delay Element	'ASC2507	$\begin{gathered} 3.0 \text { to } \\ 12.0 \end{gathered}$	DLE10LH	1X	Noninverting
Inverters	'ASCO4	1.7	IV110LH	1X	
		1.1	IV120LH	2X	
		0.9	IV130LH	3 X	
		0.8	IV140LH	4X	
		0.7	IV160LH	6X	
		0.6	IV180LH	8X	
		2.3	IV101LH	10X	
Inverting 3-State Buffers	'ASC2310	2.6	IV211LH	1X	Active-Low Enable
		1.7	IV221LH	2X	
		1.3	IV241LH	4X	
	'ASC2311	2.6	IV212LH	1X	Active-High Enable
		1.8	IV222LH	2X	
		1.3	IV242LH	4X	
Noninverting Delay Buffers	'ASC6120	1.7	BU120LH	2X	Delay
		1.7	BU130LH	3 X	
	'ASC6121	2.3	BU221LH	2X	Active-Low Enable
		2.0	BU261LH	6X	
	'ASC6122	2.3	BU222LH	2X	Active-High Enable
		2.0	BU262LH	6X	

POSITIVE-NAND GATES (Delay at $1-\mathrm{pF}$ Load)

DESCRIPTION	TYPE	$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ \text { (ns) } \end{gathered}$	HDL OR CELL NAME	RELATIVE DRIVE FACTOR
2-Input NAND	'ASCOO	2.0	NA210LH	1X
		1.3	NA220LH	2X
		1.1	NA230LH	3 X
		1.0	NA240LH	4X
		0.8	NA260LH	6x
3-Input NAND	'ASC10	2.2	NA310LH	1X
		1.5	NA320LH	2X
		1.3	NA330LH	3 X
		1.1	NA340LH	4X
4-Input NAND	'ASC20	2.6	NA410LH	$1 \times$
		1.8	NA420LH	2 X
		1.5	NA430LH	3 X
5-Input NAND 8-Input NAND	'ASC2022	2.7	NA510LH	1X
		2.1	NA520LH	2 x
	'ASC30	4.5	NA810LH	1X
		3.3	NA820LH	2X

POSITIVE-NOR GATES (Delay at 1-pF Load)

DESCRIPTION	TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR
2-Input NOR	'ASCO2	2.4	NO210LH	1X
		1.5	NO220LH	2X
		1.3	NO230LH	3 X
		1.1	NO240LH	4X
3-Input NOR	'ASC27	3.2	NO310LH	1X
		2.1	NO320LH	2X
		1.8	NO330LH	3X
4-Input NOR	'ASC4002	4.1	NO410LH	1X
		2.6	NO420LH	2 x
5-Input NOR	'ASC260	5.0	NO510LH	1X
		3.2	NO520LH	2X
8-Input NOR	'ASC4078	3.4	NO810LH	1X
		4.9	NO820LH	2X

POSITIVE-AND GATES (Delay at 1-pF Load)

DESCRIPTION	TYPE	TYPICAL DELAY (ns)	$\begin{aligned} & \text { HDL OR } \\ & \text { CELL NAME } \end{aligned}$	RELATIVE DRIVE FACTOR
2-Input AND	'ASC08	2.1	AN210LH	1X
		1.9	AN220LH	2X
		2.1	AN240LH	4X
		1.7	AN260LH	6X
3-Input AND	'ASC11	2.4	AN310LH	1x
		2.2	AN320LH	2 x
		2.5	AN340LH	4X
		1.9	AN360LH	6X
4-Input AND	'ASC21	2.6	AN410LH	1X
		2.5	AN420LH	2x
		2.7	AN440LH	4X
		2.3	AN460LH	6X
5-Input AND	'ASC2024	2.9	AN510LH	1X
8-Input AND	'ASC6132	3.4	AN810LH	1X

POSITIVE-OR GATES (Delay at $1 \mathbf{- p F}$ Load)

DESCRIPTION	TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR
2-Input OR	'ASC32	2.3	OR210LH	1X
		2.1	OR220LH	2X
		1.8	OR240LH	4X
		1.7	OR260LH	6x
3-Input OR	'ASC4075	2.7	OR310LH	1X
		2.7	OR320LH	2X
		2.2	OR340LH	4X
		2.2	OR360LH	6X
4-Input OR	'ASC4072	3.1	OR410LH	1X
		3.1	OR420LH	2X
		2.7	OR440LH	4X
		2.7	OR460LH	6x
5-Input OR	'ASC6130	3.4	OR510LH	1X
8-Input OR	'ASC6131	3.3	OR810LH	1X

EXCLUSIVE-OR, -NOR, -AND-OR GATES (Delay at 1-pF Load)

DESCRIPTION	TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
Exclusive-OR	'ASC86	2.3	EX210LH	$1 \times$	
		2.0	EX220LH	$2 X$	
	'ASC266	2.0	EX240LH	$4 X$	
AND-NOR	'ASC2330	2.4	EN210LH	$1 \times$	
AND-OR	'ASC2331	2.6	AO221LH	$1 \times$	2-Wide, 2-Input

ANALOG FUNCTIONS

DESCRIPTION	TYPE	INPUT	CELL NAME
Crystai-Controlled Oscillator	'ASC2500	Crystal	OSEOOLH
		Crystal	OSFO2LH
	Crystal	OSEO6LH	
RC Oscillator	'ASC2502	RC	OSE03LH
Comparator	'ASC2503	P-Chan	CO212LH
	N-Chan	CO213LH	
Delay Element	'ASC2507	P-Chan	DLE10LH
		N-Chan	
Delay Control	'ASC2508	P-Chan	DLC10LH
		N-Chan	
Medium-Drive Operational Amplifier	'ASC2519	Op-Amp	AMC12NH

BOOLEAN FUNCTIONS (Delay at 1-pF Load)

DESCRIPTION	TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	EQUATION
AND-NOR	'ASC6002	2.7	BF002LH	$Y=\overline{A 1+(B 1 \cdot B 2 \cdot B 3)}$
	'ASC6003	2.6	BF003LH	$Y=\overline{(A 1 \cdot A} 2)+(\mathrm{B} 1 \cdot \mathrm{~B} 2)$
	'ASC6004	2.8	BF004LH	$Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2 \cdot B 3)}$
	'ASC6005	3.0	BF005LH	$Y=\overline{(A 1 \cdot A} 2 \cdot \mathrm{~A} 3)+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)$
	'ASC6006	3.2	BF006L.	$Y=\overline{A 1+A 2+(B 1 \cdot B 2)}$
	'ASC6007	3.7	BF007LH	$Y=\overline{A 1+A 2+(B 1 \cdot B 2 \cdot B 3)}$
	'ASC6008	3.4	BF008LH	$Y=\overline{A 1+(B 1 \cdot B 2)+(C 1 \cdot C 2)}$
	'ASC6009	3.7	BF009LH	$Y=\overline{A 1+(B 1 \cdot B 2)+(C 1 \cdot C 2 \cdot C 3)}$
	'ASC6012	3.7	BF012LH	$Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2)+(C 1 \cdot C 2 \cdot C 3)}$
	'ASC6013	4.1	BF013LH	$Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2 \cdot B 3)+(C 1 \cdot C 2 \cdot C 3)}$
	'ASC6014	4.3	BF014LH	$Y=\overline{(A 1 \cdot A 2 \cdot A 3)+(B 1 \cdot B 2 \cdot B 3)+(C 1 \cdot C 2 \cdot C 3)}$
	'ASC6017	2.5	BF001LH	$Y=\overline{A 1+(B 1 \cdot B 2)}$
	'ASC6018	3.9	BF010LH	$Y=\overline{A 1+(B 1 \cdot B 2 \cdot B 3)+(C 1 \cdot C 2 \cdot C 3)}$
	'ASC6019	3.5	BF011LH	$Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2)+(C 1 \cdot C 2)}$
OR-AND-NOR	'ASC6022	3.9	BFO22LH	$Y=\overline{A 1 \cdot A 2+[B 1 \cdot B 2 \cdot(C 1+C 2)]}$
	'ASC6023	3.2	BF015LH	$Y=\bar{A} 1+[B 1 \cdot(C 1+C 2)]$
	'ASC6024	3.4	BF016LH	$Y=\overline{A 1+[(B 1+B 2) \cdot(C 1+C 2)]}$
	'ASC6025	3.5	BFO25LH	$Y=\overline{A 1 \cdot A} 2 \cdot A 3+[B 1 \cdot(C 1+C 2)]$
	'ASC6026	3.7	BF017LH	$Y=\overline{A 1+[B 1 \cdot B 2 \cdot(C 1+C 2)]}$
	'ASC6027	3.6	BF027LH	$Y=\overline{A 1 \cdot A 2 \cdot A 3+[B 1 \cdot B 2 \cdot(C 1+C 2)]}$
	'ASC6028	3.6	BFO28LH	$Y=\overline{A 1} \cdot \mathrm{~A} 2 \cdot \mathrm{~A} 3+[B 1 \cdot(\mathrm{C} 1+\mathrm{C} 2) \cdot(\mathrm{D} 1+\mathrm{D} 2)]$
	'ASC6029	3.4	BF020LH	$\mathrm{Y}=\overline{\mathrm{A} 1 \cdot \mathrm{~A} 2+[\mathrm{B} 1 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}$
AND-OR-ANDNOR	'ASC6032	3.9	BF030LH	$Y=\overline{A 1+\{B 1 \cdot[C 1+(D 1 \cdot D 2)]\}}$
	'ASC6034	3.6	BF034LH	$Y=\overline{(A 1 \cdot A 2)+\{B 1 \cdot[C 1+(D 1 \cdot D 2)]\}}$
	'ASC6035	3.3	BF035LH	$Y=\overline{(A 1 \cdot A 2)+\{B 1 \cdot[(C 1 \cdot C 2)+(D 1 \cdot D 2)]\}}$
OR-NAND	'ASC6048	2.4	BF051LH	$Y=\overline{A 1 \cdot(B 1+B 2)}$
	'ASC6049	3.8	BF060LH	$Y=\overline{\mathrm{A} 1 \cdot(\mathrm{~B} 1+\mathrm{B} 2+\mathrm{B} 3) \cdot(\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3)}$
	'ASC6052	3.2	BF052LH	$Y=\overline{A 1 \cdot(B 1+B 2+B 3)}$
	'ASC6053	2.6	BF053LH	$Y=\overline{(A 1+A 2) \cdot(B 1+B 2)}$
	'ASC6054	3.0	BF054LH	$Y=\overline{(A 1+A}) \cdot(B 1+B 2+B 3)$
	'ASC6055	3.3	BF055LH	$Y=\overline{(A 1+A 2+A 3) \cdot(B 1+B 2+B 3)}$
	'ASC6056	2.9	BF056LH	$Y=\overline{A 1 \cdot A 2 \cdot(B 1+B 2)}$
	'ASC6057	3.7	BF057LH	$Y=\overline{A 1 \cdot A 2 \cdot(B 1+B 2+B 3)}$
	'ASC6058	3.0	BF058LH	$Y=\overline{A 1 \cdot(B 1+B 2) \cdot(C 1+C 2)}$
	'ASC6059	3.5	BF059LH	$Y=\overline{A 1} \cdot(B 1+B 2) \cdot(C 1+C 2+C 3)$
	'ASC6062	4.1	BF062LH	$Y=\overline{(A 1+A 2) \cdot(B 1+B 2) \cdot(C 1+C 2+C 3)}$
	'ASC6063	4.2	BF063LH	$Y=\overline{(A 1+A} 2) \cdot(B 1+B 2+B 3) \cdot(C 1+C 2+C 3)$
	'ASC6064	4.1	BF064LH	$Y=\overline{(A 1+A 2+A 3) \cdot(B 1+B 2+B 3) \cdot(C 1+C 2+C 3)}$

NOTE: All have $1 X$ drive factor.

BOOLEAN FUNCTIONS (Delay at 1-pF Load) (continued)

DESCRIPTION	TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	EQUATION
AND-OR-NAND	'ASC6065	2.8	BF065LH	$Y=\overline{A 1 \cdot[B 1+(C 1 \cdot C 2)]}$
	'ASC6066	2.9	BF066LH	$Y=\overline{A 1 \cdot[(B 1 \cdot B 2)+(C 1 \cdot C 2)]}$
	'ASC6067	3.7	BF067LH	$Y=\overline{A 1 \cdot[B 1+B 2+(C 1 \cdot C 2)]}$
	'ASC6068	4.0	BF068LH	$\mathrm{Y}=\overline{\mathrm{A} 1 \cdot[\mathrm{~B} 1+(\mathrm{C} 1 \cdot \mathrm{C} 2)+(\mathrm{D} 1 \cdot \mathrm{D} 2)]}$
	'ASC6069	4.2	BF069LH	$Y=\overline{A 1} \cdot[(B 1 \cdot B 2)+(C 1 \cdot C 2)+(D 1 \cdot D 2)]$
	'ASC6072	3.8	BF072LH	$Y=\overline{(A 1+A} 2) \cdot[\mathrm{B} 1+\mathrm{B} 2+(\mathrm{C} 1 \cdot \mathrm{C} 2)]$
	'ASC6073	2.9	BF070LH	$Y=\overline{(A 1+A)}$) $[B 1+(C 1 \cdot C 2)]$
	'ASC6074	3.1	BF071LH	$Y=\overline{(A 1+A 2) \cdot[(B 1 \cdot B 2)+(C 1 \cdot C 2)]}$
	'ASC6075	2.5	BF075LH	$Y=\overline{(A 1+A 2+A 3) \cdot[B 1+(C 1 \cdot C 2)]}$
OR-AND-ORNAND	'ASC6082	3.8	BF082LH	$Y=\overline{A 1 \cdot\{(B 1 \cdot B 2)+[C 1 \cdot(D 1+D 2)]\}}$
	'ASC6083	3.7	BF080LH	$Y=\bar{A} 1 \cdot[\mathrm{~B} 1+[\mathrm{C} 1 \cdot(\mathrm{D} 1+\mathrm{D} 2)]\}$
	'ASC6084	3.9	BF081LH	$Y=\overline{A 1 \cdot\{B 1+[(C 1+C 2) \cdot(D 1+D 2)]\}}$
	'ASC6088	4.1	BF088LH	$Y=\overline{(A 1+A 2+A 3) \cdot\{B 1+[C 1 \cdot(D 1+D 2)]\}}$

NOTE: All have 1 X drive factor.
SPECIAL FUNCTIONS

DESCRIPTION	TYPE	HDL OR CELL NAME	COMMENTS
Power-Up Clear	'ASC2320	PUCOOLH	4X Drive
Tie-Off Cell for Buffered Logical I/O	'ASC2325	TOO10LH	ESD-Protected

BUS TRANSCEIVERS

DESCRIPTION	MACRO	OUTPUT	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
Octal	'ASC245	3-State	5.0	S245LH	
Bidirectional and Universal	'ASC651	3-State	10.4	S651LH	Inverted Data
	'ASC652	3 -State	10.4	S652LH	True Data

DRIVERS

DESCRIPTION	MACRO	OUTPUT	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
Octal	ASC244	3-State	2.4	S244LH	True Data

INPUT BUFFER CELLS (Delay at 1-pF Load)
TTL THRESHOLD

DESCRIPTION	MACRO	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
Inverting	'ASC5001	2.1	IPE03LH	1X	
		2.1	IPF03LH	1X	
	'ASC5003	7.5	IPE08LH	1X	With Hysteresis
		8.1	IPF08LH	1X	With Hysteresis
	'ASC5005	2.1	IPE05LH	1X	With Pull-Up Tap
		2.1	IPFO5LH	1X	With Pull-Up Tap
	'ASC5010	7.5	IPE10LH	1X	With Hysteresis
		7.5	IPF1OLH	1 x	and Pull-Up Tap
Noninverting	'ASC5007	2.1	IPE04LH	1X	
		2.1	IPF04LH	1X	
		1.6	IPF12LH	1X	
	'ASC5013	2.1	IPF13LH	$1 \times$	With Pull-Up Tap

INPUT BUFFER CELLS (Delay at 1-pF Load)
CMOS THRESHOLD

DESCRIPTION	MACRO	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
Inverting	'ASC5000	1.1	IPEOOLH	1X	
		1.1	IPFOOLH	1X	
	'ASC5002	4.8	IPE06LH	1X	With Hysteresis
		4.8	IPF06LH	1X	With Hysteresis and Pull-Up Tap
	'ASC5004	1.0	IPFO2LH	1X	With Pull-Up Tap
Noninverting	'ASC5006	1.9	IPE01LH	1X	
		1.1	IPF01LH	1X	

NOTE: \quad IPE $=$ Minimum Height; \mid PF $=$ Minimum Width

NONINVERTING OUTPUT BUFFER CELLS (Delay at $\mathbf{1 5 - p F}$ Load)

DESCRIPTION	TYPE	$\begin{aligned} & \text { TYPICAL } \\ & \text { DELAY } \\ & \text { (ns) } \end{aligned}$	HDL OR CELL NAME	OUTPUT CURRENT			
				$\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$		${ }^{1} \mathrm{OH}^{(m A)}$	
				54	74	54	74
Push-Pull,	'ASC5100	2.7	OPE40LH	3.4	4.0	-3.4	-4.0
		2.7	OPF40LH	3.4	4.0	-3.4	-4.0
	'ASC5103	2.4	OPE6OLH	5.1	6.0	-5.1	-6.0
		2.4	OPF60LH	5.1	6.0	-5.1	-6.0
	'ASC5106	2.0	OPEOOLH	8.5	10.0	-8.5	-10.0
		2.0	OPFOOLH	8.5	10.0	-8.5	-10.0
	'ASC5110	3.4	OPE42LH	3.2	4.0	-3.2	-4.0
		3.4	OPF42LH	3.2	4.0	-3.2	-4.0
	'ASC5120	1.7	OPFBOLH	20.4	24.0	-10.2	-12.0
3-State	'ASC5104	2.7	OPE63LH	5.1	6.0	-5.1	-6.0
		2.7	OPF63LH	5.1	6.0	-5.1	-6.0
	'ASC5107	2.7	OPE03LH	8.5	10.0	-8.5	-10.0
		2.7	OPFO3LH	8.5	10.0	-8.5	-10.0
	'ASC5111	3.5	OPE43LH	3.4	4.0	-3.4	-4.0
		3.5	OPF43LH	3.4	4.0	-3.4	-4.0
	ASC5124	2.5	OPFD3LH	37.4	44.0	-10.2	-12.0
	'ASC5125	2.8	OPFB3LH	20.4	24.0	-10.2	-12.0
Open Drain	'ASC5105	2.0	OPE61L.H	5.1	6.0	-	-
		2.0	OPF61LH	5.1	6.0	-	-
	'ASC5108	1.7	OPE01LH	8.5	10.0	-	-
		1.7	OPFO1LH	8.5	10.0	-	-
	'ASC5109	2.7	OPE41LH	3.4	4.0	-	-
		2.7	OPF41LH	3.4	4.0	-	-
	'ASC5121	1.7	OPFD1LH	37.4	44.0	-	-
	'ASC5123	1.5	OPFE1LH	40.8	48.0	-	-

NOTE 1. OPE $=$ Minimum Height; OPF $=$ Minimum Width

CLOCK GENERATORS

DESCRIPTION	TYPE	CELL NAME	COMMENTS
2-Phase	'ASC3011	CK4XOLH	Complementary Outputs

D-TYPE FLIP-FLOPS (Delay at 1-pF Load)

DESCRIPTION	MACRO OR TYPE	$f_{\text {max }}$ (MHz)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
With Preset and Clear	'ASC74	55.8	DTB10LH	1 X	D Low
		46.3	DFB20LH	2X	
		59.2	DFZ2OLH	2X	
Preset Only	'ASC74	55.8	DTP10LH	1X	D Low
		55.8	DFP20LH	2X	
		69.2	DFY20LH	2X	
Clear Only	'ASC74	52.1	DTC10LH	1X	
		52.1	DFC2OLH	2X	
Neither Preset nor Clear	'ASC74	55.8	DTN1OLH	1X	
		64.2	DFN2OLH	2X	

D-TYPE FLIP-FLOPS

DESCRIPTION	MACRO OR TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
Quad with Q Only	'ASC173	8.0	S173LH	1 X	3-State Output
Hex	'ASC174	8.0	S174LH	1 X	With Clear
Quad with Q, QZ	'ASC175	5.5	S175LH	1 X	With Clear
Octal	'ASC273	5.0	S273LH	1 X	With Clear

TOGGLE FLIP-FLOPS, UNGATED (Delay at 1-pF Load)

DESCRIPTION	TYPE	$\mathbf{f}_{\text {max }}$ (MHz)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR
Preset and Clear	'ASC2102	54.2	TAB2OLH	$2 X$
Clear Only	'ASC2102	61.7	TAC2OLH	$2 X$
Preset Only	'ASC2102	65.8	TAP2OLH	$2 X$

J-K-TYPE FLIP-FLOPS (Delay at 1-pF Load)

DESCRIPTION	TYPE	$\mathbf{f}_{\text {max }}$ $(\mathbf{M H z})$	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
Preset and Clear	'ASC109	44.2	JKB20LH	$2 X$	Positive-Edge Trigger
	'ASC2108	44.2	JKB21LH	$2 X$	Negative-Edge Trigger

LATCHES

DESCRIPTION	MACRO OR TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
D-Type	'ASC75	2.4	LAH10LH	1 X	Active-High Enable
		2.0	LAH2OLH	2X	Active-High Enable
Set-Reset	'ASC6125	3.9	LAL2OLH	2X	Active-Low Enable
	'ASC279	2.8	LAB10LH	1X	
		2.7	LAB2OLH	2 X	
4-Bit Bistable	'ASC375	4.5	S375LH	1X	
8-Bit D-Type	'ASC373	5.0	S373LH	$1 \times$	3-State Output
	'ASC374	5.0	S374LH	1X	3-State Output
8-Bit Addressable	'ASC259	6.0	S259LH	1X	Active-Low. Clear

GATED S-R LATCHES (Delay at 1-pF Load)

DESCRIPTION	MACRO OR TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
4-Input	'ASC6100	2.8	GM010LH	$1 \times$	
5 -Input	'ASC6101	3.6	GM110LH	$1 \times$	Separate Reset
5 -Input	'ASC6102	3.6	GMS10LH	$1 \times$	Separate Set
6 -Input	'ASC6103	3.6	GM210LH	$1 \times$	Separate Set/Reset
6 -Input	'ASC6105	3.0	GM310LH	$1 \times$	
7 -Input	'ASC6106	4.0	GM410LH	$1 \times$	Separate Reset
8-Input	'ASC6108	4.0	GM510LH	$1 \times$	Separate Set/Reset

GATED $\overline{\mathbf{S}}-\overline{\mathrm{R}}$ LATCHES (Delay at 1-pF Load)

DESCRIPTION	MACRO OR TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
4-Input	'ASC6110	2.7	GSO10LH	1 X	
5-Input	'ASC6111	3.1	GS110LH	$1 X$	Separate Reset
5-Input	'ASC6112	3.1	GSS10LH	1 X	Separate Set
6-Input	'ASC6113	3.1	GS210LH	1 X	Separate Set/Reset
6-Input	'ASC6115	3.4	GS310LH	1 X	
7-Input	'ASC6116	3.8	GS410LH	1 X	Separate Reset
8-Input	'ASC6118	4.0	GS510LH	$1 X$	Separate Set/Reset

OSCILLATORS AND MULTIVIBRATORS

DESCRIPTION	TYPE	HDL OR CELL NAME	COMMENTS
Crystal-Controlled Oscillator	'ASC2500	OSEOOLH	5 MHz
		OSFO2LH	20 MHz
		800 kHz	
CMOS RC Oscillator	'ASC2502	OSEO3LH	1 MHz
Retriggerable One-Shot	'ASC2322	MVFOOLH	With Clear

4-BIT EXPANDABLE REGISTERS-POSITIVE-EDGE-TRIGGERED

DESCRIPTION	MACRO OR TYPE	OUTPUT	$\mathbf{f}_{\text {max }}$ $\left(\mathbf{M H z}^{\prime}\right.$	HDL OR CELL NAME	COMMENTS
Serial Input/ Parallel Output	'ASC2401	On	59.6	R2401LH	Async Clear
Serial Input	'ASC2402	Qn, QnZ	59.6	R2402LH	Async Clear
Parallel Input/ Parallel Output	'ASC2403	On	59.6	R2403LH	Async Clear
Parallel Input	'ASC2404	On, QnZ	59.6	R2404L.H	Async Clear

4-BIT EXPANDABLE REGISTERS - POSITIVE-EDGE-TRIGGERED

DESCRIPTION	MACRO OR TYPE	OUTPUT	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
Parallel Access	ASC195A	On	5.5	S195ALH	Async Clear J-K Input First Stage
Parallel Input/ Parallel Output	'ASC194A	On	5.0	S194ALH	Bidirectional Shift Async Clear

8-BIT EXPANDABLE REGISTERS - POSITIVE-EDGE-TRIGGERED

DESCRIPTION	MACRO OR TYPE	OUTPUT	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
Serial Input/ Parallel Output	'ASC164	Qn	5.0	S164LH	Async Clear
Parallel Input/ Parallel Output	'ASC595	3-State	5.5	S595LH	Registered Outputs
Parallel Input/ Serial Output	'ASC165	3-State QH, QHZ	9.8	S598XLH	Input Latches
Parallel or Serial Input/ Serial Output	'ASC166	QH	6.0	S165LH	Async Load
Universal and Bidirectional	'ASC299	3-State I/O	7.1	S299LH	Async Clear Sync Load Multiplexed $1 / 0$
	'ASC299X	Separate I/O	5.0	S299XLH	Async Clear Sync Load

REGISTER FILE

DESCRIPTION	TYPE	TYPICAL ACCESS TIME (ns)	CELL NAME	COMMENTS
16 -Word by 8-Bit	'ASC3103	8	RF408LH	Typicai Cycle Time $=11 \mathrm{~ns}$

4-BIT COUNTERS-POSITIVE-EDGE-TRIGGERED (RIPPLE COUNT)

DESCRIPTION	MACRO OR TYPE	OUTPUT	$\mathbf{f}_{\max }$ $(\mathbf{M H z})$	HDL OR CELL NAME	COMMENTS
	'ASC2405	Qn	64.2	R2405LH	Async Clear
	'ASC2406	Qn, QnZ	64.2	R2406LH	Async Clear
	'ASC2407	3-State	36.3	R2407LH	Async Clear
Ripple Up	'ASC2408	Qn	59.6	R2408LH	Async Clear

4-BIT COUNTERS - POSITIVE-EDGE-TRIGGERED (RIPPLE COUNT)

DESCRIPTION	MACRO OR TYPE	OUTPUT	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
Programmable Divide by 2/8	'ASC177	Qn	22	S177LH	Async Clear
Dual 4-Bit	'ASC393	Qn1, Qn2	21	S393LH	Async Clear

SYNCHRONOUS COUNTERS-POSITIVE-EDGE-TRIGGERED

DESCRIPTION	MACRO	PARALLEL LOAD	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
	'ASC161A	Sync	12.0	S161ALH	Async Clear
	'ASC163A	Sync	9.0	S163ALH	Sync Clear
4-Bit Up/Down	'ASC191	Async	11.5	S191LH	With Mode Control
	'ASC193	Async	11.5	S193LH	Dual Clock
	'ASC669	Sync	10.0	S669LH	Internal Look-Ahead/Carry
8-Bit Binary	'ASC590	None	10.4	S59OLH	Output Registers
	'ASC593X	Sync	10.0	S593XLH	Input Registers

DECODERS

DESCRIPTION	MACRO OR TYPE	TYPICAL DELAY (ns)	HDL OR CELL NAME	RELATIVE DRIVE FACTOR	COMMENTS
2- to 4-Line	'ASC2350	2.0	DE210LH	1 X	
	2.5	DE212LH	1 X	Active-Low Enable	
3- to 8-Line	'ASC137	12.0	S137LH	1 X	Latches
	'ASC138	7.0	S138LH	1 X	3 Enables
Dual 2- to 4-Line	'ASC139	4.0	S139LH	1 X	1 Enable

MULTIPLEXERS

DESCRIPTION	MACRO OR TYPE	OUTPUT	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
2- to 1-Line	'ASC2340	Y	3.7	MU110LH	Active-Low Enable
Dual 2- to 4-Line	'ASC155	Y1n, Y2n	5.0	S155LH	Active-Low Enable
Quad 2- to 1-Line	'ASC157	Yn	6.0	S157LH	
	'ASC158	Yn	6.2	S158LH	
	'ASC257A	Yn	5.0	S257ALH	3-State
	'ASC258A	Yn	5.0	S258ALH	3-State
	'ASC298	Qn	6.0	S298LH	Storage Latches
	'ASC398	On, QnZ	5.5	S398LH	Storage Latches
	'ASC399	Qn	5.0	S399LH	Storage Latches
4- to 1-Line	'ASC2341	Y	2.9	MU210LH	No Enable
Dual 4- to 1-Line	'ASC153	Yn	8.0	S153LH	Strobe
8- to 1-Line	'ASC151	Y, W	8.0	S151LH	Low Enable
	'ASC251	3-State	9.7	S251LH	Low Enable
	'ASC2342	Y	4.7	MU310LH	Active-Low Enable

NOTE: All have 1 X drive factor.
PROGRAMMABLE DELAY ELEMENTS

DESCRIPTION	TYPE	TYPICAL DELAY RANGE	CELL NAME
Delay Element	'ASC2507	3 to 12 ns	DLE1OLH
Control Element	'ASC2508		DLC1OLH

OSCILLATORS AND MULTIVIBRATORS

DESCRIPTION	TYPE	HDL OR CELL NAME	COMMENTS
Crystal-Controlled Oscillator	'ASC2500	OSEOOLH	5 MHz
		OSFO2LH	20 MHz
CMOS RC Oscillator	'ASC2502	OSEO6LH	800 kHz
Retriggerable One-Shot	OSEO3LH	1 MHz	

MAGNITUDE COMPARATORS AND ARITHMETIC CIRCUITS

DESCRIPTION	MACRO	BIT WIDTH	TYPICAL DELAY (ns)	HDL OR CELL NAME	COMMENTS
ALU	'ASC181	4	12.0	S181LH	
Binary Full Adder	'ASC283	4	8.5	S283LH	
Parity Generator	'ASC280	9	11.0	S 280 LH	
Comparator	'ASC85	4	12.0	S 85 LH	$\mathrm{P}=\mathrm{Q}, \mathrm{P}<\mathrm{Q}, \mathrm{P}>\mathrm{Q}$
	'ASC686	8	9.0	S 686 LH	$\mathrm{P}=\mathrm{Q}, \mathrm{P}>\mathrm{Q}$
Identity Comparator	'ASC688	8	7.5	S 688 LH	$\mathrm{P}=\mathrm{Q}$

BIT-SLICE PROCESSOR ELEMENTS

DESCRIPTION	TYPE
8-Bit Processor Slice	'ASC888
14-Bit Microsequencer	'ASC890
4-Bit Microprocessor Slice	'ASC2901
Look-Ahead Carry Generator	'ASC2902
Status and Shift Controller	'ASC2904
12-Bit Microprogram Controller (Microsequencer)	'ASC2910

STATIC RANDOM ACCESS MEMORIES

DESCRIPTION	ORGANIZATION	TYPE	HDL OR CELL NAME
256 -Bit	16×16	'ASC3003	RA416LH
512 -Bit	64×8	'ASC3004	RA608LH
1024 -Bit	256×4	'ASC3005	RA804LH
	128×8	'ASC3006	RA708LH

BIDIRECTIONAL 3-STATE NONINVERTING I/O CELLS (Delay at 15-pF Load)

INPUT	INV/TRUE	TYPE	$\begin{aligned} & \text { TYPICAL } \\ & \text { DELAY } \\ & \text { (ns) } \end{aligned}$	HDL OR CELL NAME	OUTPUT CURRENT			
					$\mathrm{I}_{\text {OL }}(\mathrm{mA})$		$1 \mathrm{OH}(\mathrm{mA})$	
					54	74	54	74
CMOS	Inverting	'ASC5200	3.3	IOE40LH	3.4	4.0	-3.4	-4.0
			3.3	1OF40LH	3.4	4.0	-3.4	-4.0
	Inverting	'ASC5202	3.6	IOF47LH	3.4	4.0	-3.4	-4.0
	True	'ASC5203	3.3	IOF48LH	3.4	4.0	-3.4	-4.0
	True	'ASC5206	3.3	IOE41LH	3.4	4.0	-3.4	-4.0
			3.3	10F41LH	3.4	4.0	-3.4	-4.0
	Inverting	'ASC5220	2.9	IOEOOLH	8.5	10.0	-8.5	-10.0
			2.9	1OFOOLH	8.5	10.0	-8.5	-10.0
	Inverting	'ASC5221	2.7	10F03LH	8.5	10.0	-8.5	-10.0
	True	'ASC5226	2.7	10F01LH	8.5	10.0	-8.5	-10.0
	Inverting	'ASC5250	1.7	IOFDOLH	37.4	-44.0	-	-
TTL	Inverting	'ASC5201	3.5	IOE43LH	3.4	4.0	-3.4	-4.0
			3.5	IOF43LH	3.4	4.0	-3.4	-4.0
	True	'ASC5207	3.5	10E44LH	3.4	4.0	-3.4	-4.0
			3.5	1OF44LH	3.4	4.0	-3.4	-4.0
	True	'ASC5217	2.7	IOF64LH	5.1	6.0	-5.1	-6.0
	True	'ASC5227	2.7	1OF04LH	8.5	10.0	-8.5	-10.0
	True	'ASC5239	2.7	IOFB8LH	20.4	24.0	-10.2	-12.0
	Inverting	'ASC5246	2.5	IOFD8LH	37.4	44.0	-10.2	-12.0

NOTE: $10 E=$ Minimum Height; $10 F=$ Minimum Width

INPUT/OUTPUT TERMINATING NETWORKS

DESCRIPTION	TYPE	SUPPLY CURRENT	HDL OR CELL NAME	COMMENTS
Active Pull-Up	'ASC2370	$400 \mu \mathrm{~A}$	PR400LH	Input or I/O with Tap
	'ASC2371	$200 \mu \mathrm{~A}$	PR250LH	
	'ASC2372	$95 \mu \mathrm{~A}$	PR095LH	
	'ASC2374	$5 \mu \mathrm{~A}$	PR005LH	
Active Pull-Down	'ASC2373	$95 \mu \mathrm{~A}$	PD095LH	

CompilerCell"w MEMORIES/REGISTERS

DESCRIPTION	TYPE	NUMBER OF WORDS	WORD LENGTH IN BITS	TOTAL NUMBER OF BITS
Static Random Access Memories	'ASC3010	4 to 1024	4 to 32	16 to 16384
Read-Only Memories - Single Array	'ASC3200	8 to 2048	4 to 32	512 to 16384
Read-Only Memories - Double Array	'ASC3200	8 to 4096	4 to 64	512 to 65536
Pipeline Test Register	'ASC3430	-	4 to 32	4 to $32-X-n$

CompilerCellm PROGRAMMABLE LOGIC ARRAYS

DESCRIPTION	TYPE	INPUTS	PRODUCT TERMS	OUTPUTS
Programmable Logic Arrays	'ASC3800	64	128	32

General Information

Definitions, Ratings, and Glossary

Product Guide

Data Sheets

4

Military

IEEE Symbols

Design Considerations

Mechanical Data

INTRODUCTION TO STANDARD CELLS

Leadership electronic solutions protect the unique value designed into your products. Using Texas Instruments SystemCell ${ }^{\text {TM }}$ standard cells, you implement simple custom semiconductor solutions for your specific market opportunities. These custom solutions, also called Application Specific Integrated Circuits (ASICs), lock in the powerful combination of personalized electronics and increased system efficiency. Some benefits are

SystemCell ${ }^{\text {TM }}$ FEATURES

Custom design
Automated design process

Selected density and package

Selected performance

SYSTEM BENEFITS
Improves your market value by

- Reducing cycle time
- Reducing product development costs

Improves your market execution by

- Reducing design resources
- Enhancing market entry point

Simplifies your system design by

- Providing optimal circuit size
- Reducing package count
- Controlling costs
- Improving reliability

Enhances your market appeal by

- Providing timely application solutions
- Using your specific functions
- Integrating TI's custom circuits.

Using $\mathrm{TI}^{\prime} \mathrm{s}$ standard cells greatly simplifies custom IC implementation. The SystemCell ${ }^{\mathrm{TM}}$ standard-cell family not only includes a number of the familiar TTL and HCMOS logic functions, but it also provides new and higher density standard-cell logic functions. When used in conjunction with computer-based workstations, the custom IC schematic is electronically captured for implementation in an automated chip-layout process. This combination is currently the most cost effective for achieving personalized, high-complexity semiconductor solutions.

Electronic workstations are the key to simplified, high-complexity IC design. Typically, the workstations incorporate high-level design tools to simplify component selection, schematic evaluation, and functional verification. Simulation tools, resident on most workstations, perform the equivalent of circuit breadboarding and debugging. Once the circuit design is complete, workstation utility software supplied by TI generates data base files containing both hardware and test descriptions. The data base is used as a source for generating the chip layout and testing the fabricated devices.

Custom ICs can be designed using one of many popular workstations or one of several personal computer systems. Once you decide on a workstation, you need only place one phone call to receive a copy of the TI documentation and software needed to begin a TI SystemCell ${ }^{\text {TM }}$ design. If you decide not to invest in or use your own workstation, you can begin your standard-cell design with a sketch, and TI can work with you to complete the rest. Using TI's SystemCell ${ }^{\text {TM }}$ family, you can decide how many, or how few, standard-cell design tasks you wish to perform.

TI has defined a variety of customer support and interface programs structured specifically for the most beneficial application of your resources. A description of these interface points is provided in the standard-cell design overview.

Customer Support

To assist you with a standard-cell IC design, TI has seven North American Regional Technology Centers (RTCs) staffed with experienced design personnel. The RTC staff can work with you to coordinate design specification development and implementation.

Total system design support is available at the RTC. A number of electronic workstations are available with a direct high-speed computer link to the Tl design automation center in Dallas, Texas.

The RTC also provides assistance in the use of the TI standard-cell library, including installation, training, and library updates.

Once you have decided on a standard-cell approach, the RTC designers are available to perform the engineering design and test development. You decide the amount of work the RTC will do and the amount you will do. The more tasks you perform, the fewer charges there will be for nonrecurring engineering (NRE) work associated with IC design. The RTC can perform pre-design support, such as assisting with system analysis and circuit partitioning, as well as schematic capture and test pattern generation. Charges for these services are primarily based on fixed-fee contracts, providing predictable and manageable design costs.

In addition to RTC assistance, technical sales representatives and ASIC product specialists, located in TI sales offices, can help determine the best standard-cell IC approach.

Getting A Head Start: TI Standard-Cell Workshop

The RTC offers comprehensive training in standard-cell design using state-of-the-art design tools and software. The RTC-210 ASIC workshop is a three-day course that uses numerous lab exercises and concise lectures to introduce all phases of a standard-cell IC design. A listing of the RTC-210 course work follows.

RTC-210 ASIC Course Work Outline

Characteristics and advantages of gate arrays
Characteristics and advantages of standard cells
Semicustom design technique
Schematic capture
Packaging and interface considerations
Circuit simulation and test-pattern design
Generating a design data base using a workstation
IC layout and post-layout simulation.
Another important objective of the course is to help identify interface points and communication channels that will satisfy your specific requirements for standard-cell IC design.

The workshop is available at the nearest RTC. Or, if you have a number of designers who will be designing with standard cells, the workshop can be conducted at your facility.

The course is open to anyone interested, and the registration fee is deductible from your first standard-cell IC order. Contact the nearest TI Regional Technology Center (see listing in Table 1) to register for the workshop.

Table 1. Texas Instruments North American Regional Technology Centers

REGION	RTC LOCATION	PHONE
West Coast - North	Santa Clara, CA	(408) $748-2220$
West Coast - South	Irvine, CA	(714) $660-8140$
Mid-West - North	Arlington Heights, IL	(312) $640-2909$
Mid-West - South	Dallas, TX	(214) $680-5066$
East Coast - North	Waltham, MA	(617) $895-9196$
East Coast - South	Norcross, GA	(404) $662-7945$
Canada	Nepean, Ontario	(613) $726-1970$

TI SystemCell ${ }^{\text {TM }}$ FAMILY

Since the IC was invented, manufacturers of electronic products have used each new advancement in integrated circuit technology to increase functionality, decrease size, enhance performance, and reduce system costs. This trend has led semiconductor producers from small-scale-integration (SSI), with only a few transistors per device, to today's very-large-scale-integration (VLSI), where a circuit consists of hundreds of thousands of transistors. These high levels of integration have required major improvements in the areas of process technology and production and fabrication techniques.

TI's SystemCell ${ }^{\text {TM }}$ standard-cell product family takes advantage of these technological advancements to bring you high performance and functionality of custom ICs at semi-custom prices. The standard cells also offer added benefits of short design cycle time and reduced product development costs.

The TI SystemCell ${ }^{\mathrm{TM}}$ standard-cell library includes basic gates, buffers, I/O drivers, and high-level functions called macros. These macros are supplied in two forms: a hard-wired form and a software form. Software macros of familiar TTL functions can be embedded in your design with a simple label, or they can be custom modified to enhance functionality and cost effectiveness. Hard-wired macros, providing a broad selection of predesigned and fully characterized functions, can also be included in your design with a single label.

New standard-cell functions are being added routinely to increase the effectiveness of automated design techniques. These new functions are described in the Advance Information and Product Preview sections of this book. A goal, maintained by TI , is to provide total semiconductor solutions to your needs. Requests for new cell designs will be carefully considered.

Other benefits available from the SystemCell ${ }^{\text {TM }}$ Family are:

- CMOS or TTL compatible inputs and outputs
- Operation over $V_{C C}$ range of 2 V to 6 V
- Specified parametrically over V_{CC} range of 4.5 V to 5.5 V
- Specified parametrically over industrial and military temperature ranges
- Internal gate propagation delays of less than 1 ns
- Flip-flop toggle frequencies up to 65.8 MHz
- Latch-up protection up to 400 mA
- Inputs and outputs designed to withstand up to 4 kV ESD, as tested using method 3015 of MIL-STD-883.
- Wide variety of package options: DIP, SOIC (D), PGA (GB) and Quad Flat-Pack.

SystemCell ${ }^{\text {TM }}$ Technology

SystemCell ${ }^{\text {TM }}$ products are fabricated using a twin-well polysilicon self-aligned CMOS process to produce $2-\mu \mathrm{m}$ gate-length versions of CMOS standard cells. In this process, polysilicon is deposited over the gate oxide prior to the source and drain implants. After patterning the polysilicon gates, the source and drain are then implanted,

Figure 1. Cross Section of Double-Level Metal, Twin-Well CMOS Process
using the gates as the mask. This self-aligning process, illustrated in Figure 1, permits reduced junction areas, which are coupled with shallow implants to achieve several performance enhancements.

ICs created using SystemCell ${ }^{\text {TM }}$ standard cells have speeds that meet or exceed HCMOS, Advanced HCMOS, and all but the most advanced bipolar logic characteristics. These improved speeds are due to reduced gate and junction capacitance.

Ring oscillator evaluations, shown in Figure 2, compare $2-\mu \mathrm{m}$ CMOS gate propagation delay with $3-\mu \mathrm{m}$ and $5-\mu \mathrm{m}$ CMOS delays. The figure shows the technological improvements associated with high-density CMOS processes. The data are obtained from equivalent ring oscillators in which the gates are adjacent and interconnect capacitance is minimal.

The reduced power requirements of CMOS place its speed-power efficiency two orders of magnitude ahead of conventional bipolar logic families. The lower power requirements are achieved because of reduced channel lengths, more shallow junctions, smaller feature size, and lower junction capacitance of the high-density $2-\mu \mathrm{m}$ CMOS technology.

Standard cell products from TI are characterized for performance over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Cell Size and Construction

Each SystemCell ${ }^{\text {TM }}$ is a custom-designed silicon implementation of a particular logic function.
The SystemCell ${ }^{\text {TM }}$ data sheets compare the size of each cell or macro relative to the NA210LH two-input NAND gate, shown in Figure 3. This allows you to estimate the equivalent complexity of your design.

Figure 2. CMOS Performance
Within a cell, aluminum $V_{C C}$ and ground lines run horizontally across the cell at the top and bottom as illustrated in Figure 3(A). The polysilicon gates run at right angles to the power buses, providing access to the inputs and outputs at both the top and bottom of the cell. The logic concept of the cell is shown in Figure $3(B)$.

Figure 3. 2-Input NAND
This cell structure lends itself to automated layout by providing the capability of laying cells end-to-end in a continuous row of cells having a continuous power bus. High-density routing is achieved through the use of a second level of metal interconnect.

THE SystemCell ${ }^{\text {TM }}$ LIBRARY

Computer-Aided Design with the Library

The SystemCell ${ }^{\mathrm{TM}}$ library provides full access to the latest technological advances in computer-aided design and state-of-the-art engineering workstations. A workstation employing the TI SystemCell ${ }^{\top M}$ library provides the familiar, simple entry for designing complex custom ICs.

The TI library can be installed on many popular workstations such as those available from Daisy ${ }^{\text {TM }}$, HewlettPackard, Mentor Graphics ${ }^{T M}$, and Valid Logic Systems Incorporated ${ }^{T M}$. The library can also be used on PCs that support FutureNet ${ }^{\circledR}$ and P-CAD ${ }^{\top M}$.

The engineering workstations provide generic capabilities for schematic capture, simulation, test-vector generation, and netlist/test-vector formatting. The TI library contains five additional software programs implementing graphic, logic, delay, and interconnect capacitance models, along with data base translators. These programs are used to generate the layout and test-pattern files for your design and are then used directly by the TI design-automation system to produce the custom IC.

SystemCell ${ }^{\text {TM }}$ Product Line

The SystemCell ${ }^{T M}$ product line contains a broad functional variety of predesigned cells providing full design flexibility. The product line, ranging from simple inverters to complex LSI structures, has five classes of cells and macro functions that are used to achieve custom designs. For cell and product specifications, refer to specific data sheets in this book. A general overview of the product line is given in items 1 through 5 below.

Small-Scale Integration (SSI) Cells

SSI cells implement basic gates, Boolean and inverter functions. The hard-wired cells are modeled after the popular SN54/74HC, LS, and F series of SSI devices. Most cells in this class have a number of physical implementations providing varying levels of output drive. This permits the designer to selectively structure his system implementation for the required performance (i.e., minimum delay times or minimum power dissipations). As an example, the SN54ASC00 and SN74ASC00 offer five different drive capabilities. The optional cells are compared in Table 2. Figure 4 illustrates comparable layouts for the NA210, NA230, and NA260 cells.

Table 2. SSI Comparisons for Optional Cells

CELL NAME	RELATIVE OUTPUT DRIVE	INPUT CAPACITANCE $\left(C_{i}\right)$	TYPICAL PROPAGATION DELAY (t_{pd}) $C_{L}=\mathrm{pF}$	INCREASE IN $t_{\text {pd }}$ WITH ADDED CAPACITANCE (t_{pd})
NA210LH	1X	0.12	2 ns	$1.1 \mathrm{~ns} / \mathrm{pF}$
NA220LH	2X	0.26	1.3 ns	$0.6 \mathrm{~ns} / \mathrm{pF}$
NA230LH	$3 x$	0.34	1.1 ns	$0.4 \mathrm{~ns} / \mathrm{pF}$
NA240LH	4X	0.54	1 ns	$0.3 \mathrm{~ns} / \mathrm{pF}$
NA260LH	6X	0.79	0.8 ns	$0.2 \mathrm{~ns} / \mathrm{pF}$

[^1]
GENERAL INFORMATION

NA210NF1

NA230NF1

NA260NF1

Figure 4. Three Different Drive Layouts for 2-Input NAND Gate

Hard-Wired Medium-Scale Integration (MSI) Macro Cells

Hard-wired macros (hard macros) are dedicated designs implementing MSI-level building blocks such as flipflops, latches, encoders, decoders, registers, 4-bit ALU, and other operator functions. They are optimized for a silicon-efficient layout.

Software Macro Functions

Predesigned pin-for-pin equivalents of 50 existing 54/74 LS,TTL and 54/74F SSI/MSI/LSI functions are implemented in the SystemCell ${ }^{\text {TM }}$ software library. These software macros (soft macros) are library-resident netlists composed of a combination of SSI and hard-wired MSI cells. Additional user-defined software macros can be created on your workstation and added to your library under unique netlist labels.

The software macros are designated either as SN54ASC' or as SN74ASC', corresponding to the similar TTL prefix-numbering method described in naming conventions. Thus, an SN74ASC166 is functionally identical to the TTL SN74LS166A or the CMOS SN74HC166.

Hard-Wired Static RAM Memory Functions

The library contains four hard-wired memory organizations (see Table 3) that can be used in custom designs.
Table 3. Hard-Wired Memory Organizations for Custom Designs

DESCRIPTION	ORGANIZATION		
		WORDS	BITS
256-Bit	RA416LH	16	16
512-Bit	RA608LH	64	8
1024-Bit	RA708LH	128	8
1024-Bit	RA804LH	256	4

Input, Output, and Bidirectional I/O Functions

The SystemCell ${ }^{\text {TM }}$ library includes ESD and latch-up protected cell designs implementing various combinations of input, output, or bidirectional I/O functions. By selecting the appropriate cell, you can interface to either TTL or CMOS voltage levels. The available buffer types and appropriate options are listed in Table 4.

Table 4. Available Buffer Types

BUFFER TYPES	OPTIONS
Input	TTL and CMOS switching thresholds Inverting or noninverting inputs with and without hysteresis and/or pullup resistors
Output	$2 \mathrm{~mA}, 4 \mathrm{~mA}, 6 \mathrm{~mA}$, and 10 mA current sink/source Push-Pull, 3-state, or open-drain
Bidirectional	3-state outputs; TTL or CMOS level inputs Inverting or noninverting inputs $2 \mathrm{~mA}, 4 \mathrm{~mA}, 6 \mathrm{~mA}$, and 10 mA current sink/source CMOS or TTL output

Library Development

The following classes of functions are currently under development and planned for addition to future releases of the SystemCell ${ }^{\text {TM }}$ library.

Compiler Functions

CompilerCell ${ }^{\text {TM }}$ functions permit the system designer to implement custom functions simply by specifying dimensional parameters. Procedures for generating the physical layout and simulation values pertaining to the designed function are software routines that implement the specific high-level function described by the designer.

The following CompilerCellTM functions are available:
Static Random Access Memory (RAM)
Static Read Only Memory (ROM)
Programmable Logic Array (PLA)
Pipeline Test Register (PTR).
See the Product Preview describing each of these functions.
The following CompilerCell ${ }^{\text {TM }}$ functions are planned:
Data Path Functions:
Arithmetic Logic Unit (ALU)
Adder
Multiplexer
Incrementer/Decrementer
Shifter
Clock Generator.

Linear Functions

Linear function cells, integrated into the system design, can further reduce the number of ICs required at the system level. The following linear functions are in development:

Operational Amplifier (see Product Preview)
Crystal and RC Oscillators (see Product Preview)
User-Programmable Delay Elements (see Product Preview).

Digital Functions

The extent of compatible digital cells and macros offered in the TI SystemCell ${ }^{\text {TM }}$ library will be expanded with the following planned functions:

- Multiple-Port Register File (see Product Preview)
- Hard-Wired TTL-Type MSI
- Timer Modules
- Universal Asynchronous Receiver/Transmitter (UART)
- Small Computer Systems Interface (SCSI)
- Serial Peripheral Interface (SPI)
- Interrupt Controller
- Direct Memory Access (DMA) Controller.
- PC/PC-AT Expansion Bus Interface
- Multiplier
- First-In/First Out (FIFO) Memories
- MegaModules ${ }^{\text {TM }}$:
'ASC888 8-Bit Slice
'ASC890 Microsequencer
'ASC2901 4-Bit Slice
'ASC2902 ALU Look Ahead
'ASC2904 Shift Controller
'ASC2910 Micro Controller.

STANDARD-CELL NAMING CONVENTIONS

Each standard cell has two designations. The first is similar to the $54 / 74$ series of numbers and is designated the function number. The second describes the implementation(s) of the cell and is therefore referred to as the cell name. This dual numbering/naming convention simplifies cross-reference to other digital logic families and aids in differentiating cells providing multiple drive levels.

Function Numbers

Generic functions (i.e., 2 -input positive AND gates) are designated with either an SN54ASCXXX or an SN74ASCXXX prefix corresponding to the operating temperature range designations used for the TTL families. SN54ASCXXX standard cells are rated for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and SN74ASCXXX standard cells are rated for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Function numbers are assigned as defined in Table 5.

Table 5. Sequence for Generic Function Assignment

FUNCTION NUMBERS 54/74ASCXXX	APPLICATION		FUNCTIONAL CATEGORY
	INTERNAL CELL	$\begin{gathered} \text { I/O } \\ \text { CELL } \end{gathered}$	
00-999	X		SSI/MSI macro cells (Equivalent to $74 \mathrm{LS}, 74 \mathrm{HC}$, or 74 F)
2000-2499	X		SSI/MSI macro cells
2500-2599	X		Analog cells
3000-3099	X		Memory and compiler cells
4000-4999	X		SSI macro cells (Equivalent to 74 HC)
5000-5025		x	Input buffers
5100-5125		x	Output buffers
5200-5250		X	Bidirectional I/O buffers
6002-6199	X		SSI/MSI macro cells

Cell Names

Most SSI gates and flip-flop functions are offered with multiple cell implementations to satisfy various performance levels. Each cell is named in accordance with the specification shown in Figure 5. An index to the logic function prefixes follows Figure 5.

Figure 5. Cell Name Example

Table 6. Index to Cell and Macro Prefixes

AN	AND Gates	LA	Latches, D-Type and S-R
AO	. AND-OR Gates	MU	. . Multiplexers
BF.	. . Boolean Functions	MV. Multivibrator (One-Shot)
BU.	. . Buffers	NA. NAND Gates
CO	. Comparators	NO	NOR Gates
D	. Flip-Flops, D-Type	OP. Output Cells
DE	Decoders	OR.	OR Gates
DL.	. . . Delay Elements	OS .	Oscillators
EN.	. EXCLUSIVE-NOR Gates	PD. Pull-Down, Active
EX.	. EXCLUSIVE-OR Gates	PR Pull-Up, Active
GM	. . Latches, Gated S-R	PUC	. . Power-Up Clear (One-Shot)
GS	Latches, Gated-NOR S-R	R Registers
10.	. . .Bidirectional I/O Cells	RA.	Hard-Wired RAM Macro Cells
IP Input Cells	RF Register Files
IV	. . Inverters	S Software Macros
JK .	. . Flip-Flops, J-K Type		. Flip-Flop, Toggle Type
		то.	Tie-Off

STANDARD-CELL DESIGN OVERVIEW

A standard-cell IC design execution can be broadly grouped into four basic phases:

- Phase 0 - Specifying the design
- Phase 1 - Creating the design database(s)
- Phase 2 - Generating the chip layout(s)
- Phase 3 - Fabricating and testing the device(s).

An overview of the four phases follows and is accompanied by a design flowchart, Figure 6. The flowchart specifies the milestones required to complete a design. The design flow has been developed in conjunction with

Figure 6. Standard-Cell Design Execution
successful completion of many standard, semicustom, and custom ICs at TI. Strict adherence to the milestone verifications, simulations, reviews, and tests has yielded the most cost-effective success rate for IC design.

When adapted to standard-cell IC design, the milestones are structured specifically to maximize design resource utilization. In order to accommodate the user's own design resources, the milestones comprise varying levels of user involvement in the design phases, from simply supplying a logic diagram to a Tl design center, to turning over a post-layout simulated data base for TI verification and production. In either case, the design flow is maintained to be equivalent. Key features of the design flow are:

- Applies design resources cost-effectively
- Structures development and verification of a design data base
- Updates design specifications routinely
- Utilizes a proven automated design system and production process.

Specifying the Design (Phase 0)

System requirements determine IC designs that satisfy the environmental, functional, logic, and performance requirements. Systems requiring more than a single IC will need to be partitioned. In all cases, complexity and use conditions will drive a hardware definition. Whether you intend to design the devices or ask Tl to design them, they must be completely described. The following items should be specified before starting your standardcell IC design.

Physical Design

End applications anticipated for the system design will determine physical properties utilized to manufacture the system. Likewise, the environment created within the system for the accommodation of custom semiconductor ICs will dictate the IC physical requirements.

Logic Design

A logic diagram is needed to define the boundary of the ICs, whether adapting an existing logic system or designing a new one.

Schematic Design

The schematic design reduces functions to their lowest functional-level components. An understanding of the standard-cell family and cell performance specifications will be beneficial to the designer. Reduction beyond cells, macros, and software macros is not needed if the IC design goals are achieved. Detailed guidelines and cell selection procedures are provided in TI design manuals issued for use with engineering workstations. Also, suggestions for evaluating, modifying, and using software macros are provided on the individual data sheets and in design guidelines provided in Section 7 of this data book. The resulting schematic diagram becomes the detailed reference document for cell conversion and schematic capture.

Interface (Input/Output) Buffers

The I/O buffers specify the inputs and outputs required to interface the custom IC into the system design.

Timing Test Vectors

These vectors specify the timing relationships needed between input pins and from inputs to outputs.

Functional Test Vectors

Functional test vectors specify the functional performance needed from the IC and include waveform diagrams and/or test patterns. Cost effectiveness is a direct function of testability. In some cases, I/O pins and additional logic are easily justified to achieve adequate test capability.

GENERAL INFORMATION

TI invites your request for new cells that are not available in the Tl library. Software macros to satisfy most design requirements, if not currently in TI's library, can be generated on your workstation.

A blank, generic design specification, which can be used as a working document, is available from Tl to guide you through the initial design steps.

Completion of Phase 0 will yield:
A schematic which includes the IC interfaces Test vectors for both functional and delay time parameters Packaging requirements for the IC.

Creating the Design Database (Phase I)

Phase 1 utilizes a workstation to capture the schematic diagram as a basis for simulating both functional behavior and timing relationships of the defined function. Phase 1 is accomplished as described in the following paragraphs.

Schematic Capture

Schematic capture consists of cell conversion and logic capture.

Cell Conversion

Each element of the given circuit is replaced with a standard-cell equivalent. This involves selecting the cells and macros that satisfy both functional and timing requirements, including dc sink/source current requirements of the I/O cells. Software macros can increase the efficiency of cell conversion, and simple modifications can make them custom for your current design. This is usually done on a workstation in conjunction with logic capture.

Logic Capture

This is the process of representing logic on the workstation by calling and naming each cell and macro to be used and by naming all input and output interconnections. A hierarchical design process permits the development of higher-level macros composed of cells and lower-order macros. These 'super' macros and their interconnections are also named. Within the limits of the particular workstation, this hierarchical design process is continued until the standard-cell IC is implemented. When completed, the workstation captures the defined logic in a hierarchical netlist database. This database is utilized by the SystemCell ${ }^{\text {TM }}$ library Hardware Description Language (HDL) translator to convert the code into a TI design automation system code, called HDL. At this time, the workstation can provide a hard-copy logic diagram of the standard cell IC.

AC and DC Test Vector Generation

Utilizing the test vectors developed in Phase 0, files are input to the design workstation, which will overlay both functional and delay time attribute specifications on the schematic.

Functional and Timing Simulations

The workstation utilizes the ac and dc test vector files to verify pre-layout functionality and timing performance. This simulation uses the standard cell's intrinsic characteristics.

Test Description Language (TDL)

The workstation test vectors used in the pre-layout simulation are translated into TDL automatically by the SystemCell ${ }^{\text {TM }}$ library TDL translator software. The extracted TDL patterns can be evaluated by programs that simulate faults at every node to see how effectively the test patterns are detecting faults. Test pattern grading is an optional procedure.

Design Specification

The blank, generic, standard-cell IC design specification forms, available from TI , can be used as a working guideline to achieve successful pre-layout simulations. If so, most of the design specification data are captured during Phase 0 and 1. A formalized version can then be completed for joint approval by you and TI. Upon approval, both the design specification and data files are given to TI for Phase 2.

Successful completion of Phase 0 and Phase 1 yields the following results:
A database for the circuit description in HDL
A database for a set of test patterns expressed in TDL
A design specification.

Generating the Chip Layout (Phase 2)

During this phase of your standard-cell IC design, the HDL/TDL database, developed in Phase 1, is converted into an actual device layout.

Placement and Routing

Cells and interconnections are arranged according to your I/O design requirements. Using your HDL, a computerautomated layout is completed. Cells are first placed by the layout software, and then cell interconnections are made using the hierarchical netlist data base.

Layout Capacitance Extraction

Values of the interconnect capacitance for each network are extracted and added to cell capacitance to derive the total capacitive loading on each circuit node.

Post-Layout Simulation

Similar to the pre-layout functional and timing simulation, post-layout simulation combines the effects of intrinsic and interconnect capacitance and resistance values to simulate the performance based on the cell placement and chip layout.

Review

Results of the post-layout simulation are evaluated for conformance to design specification. Beyond conformance, the database results are evaluated for compliance with predictable norms defined for the design-automationsystem process.

Design Specification

Based on results of the post-layout review, the design specification is confirmed and updated. Confirmation consists of a mutual agreement to proceed to Phase 3. An update is interactive and requires approval by both purchaser and TI. If necessary, options for the update are reviewed with the customer and specification changes, or database changes, that will meet the design requirements are proposed.

Design Verification

The layout database is checked by the design automation system to ensure that geometric design rules are met.

Schematic Verification

The schematic verification program uses the layout database and works backward to generate a new HDL, which is then compared to the pre-layout HDL description.

Merge Internal Cell Structure

The post-layout verified database is merged with a tooling-structure database, resident in the design automation system. This merge completes the tooling database.

Tooling Database

The tooling database is used to extract the test programs and pattern generator (PG) files. The files are needed to support wafer fabrication and chip testing.

Successful completion of Phase 3 yields the following results:
A test-program generation (TDL) database
A wafer-fabrication tooling database.
Chip Fabrication and Testing (Phase 3)
Prototypes of your standard-cell IC are fabricated and tested as described in the following paragraphs.

Photomask Tooling

The PG files are used to execute the photomask designs needed to produce the wafers containing the custom ICs.

Wafer Processing

CMOS standard-cell wafers are fabricated using a twin-well polysilicon self-aligned process (see Figure 1). Utilization of the $2-\mu \mathrm{m}$ process, defined to remain a mainstream technology at TI , is based on long-term product plan commitments for both custom and standard IC products.

Probe Test

Standard wafer-probe techniques are applied to implement cost-effective utilization of fabrication materials and resources. A probe test ensures the assembled ICs are most likely to yield parametrically good devices.

Prototype Assembly and Test

Chips passing the probe test are used in the prototype fabrication. Prototypes are packaged in ceramic packs or carriers as an expedient method for completing design evaluations. Class " A " prototypes are typically tested at room temperature for functionality while being exercised at 1 MHz . Electrical characteristics of the input cells, output cells, and static supply current are "go-no-go" tested to the design specification. These class " A " prototypes are expedited to you for use in performing system functional testing.

AC Characterization and Data Log

The remaining prototypes (class " B ") are tested/data logged by Tl in accordance with the design specification. Typically, class " B ' is tested for functionality at the rated performance range(s) over operating ranges of supply voltage and temperature. Standard data logging is limited to "go-no-go" conformance to the design specification. These prototypes permit the customer to perform system characterization and system prototype delivery prior to production start-up.

Volume Production

Acceptance of the characterized " B " prototypes as conforming to the design specification is required prior to the execution of production orders. Production quantities are packaged in accordance with the design specification.

SUMMARY

The Tl SystemCell ${ }^{\text {TM }}$ family provides simple electronic solutions for making your products uniquely innovative. The SystemCell ${ }^{\text {TM }}$ family data sheets (see Section 3) and IC design considerations (see Section 7) provide additional information. For assistance beyond the scope of this data book, call the following sources:

ASIC product specialist(s) at TI field sales office(s)
Design engineer(s) at the TI Regional Technology Center(s)
The TI ASIC center in Dallas.

General Information

Definitions, Ratings, and Glossary

Product Guide

Data Sheets

Military

IEEE Symbols

Design Considerations

Mechanical Data

2
Kıessoly pue ‘s6upry ‘suo!̣u!!əa

The following symbols are now being used in function tables on TI data sheets:
$H=$ high level (steady state)
$L=$ low level (steady state)
$\dagger=$ transition from low to high level
$\downarrow=$ transition from high to low level
$X=$ irrelevant (any input, including transitions)
$\mathbf{Z}=$ off (high-impedance) state of a 3-state output
a $. . h=$ the level of steady-state inputs at inputs A through H, respectively
$\alpha_{0}=$ level of Q before the indicated steady-state input conditions were established
$\overline{\mathrm{a}}_{0}=$ complement of Q_{0} or level of $\overline{\mathrm{Q}}$ before the indicated steady-state input conditions were established
$Q_{n}=$ level of Q before the most recent active transition indicated by \uparrow or \downarrow

$=$ one high-level pulse
one low-level pulse
TOGGLE $=$ each output changes to the complement of its previous level on each active transition indicated by \dagger or \downarrow.
If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.
If, in the input columns, a row contains, H, L, and/or X together with \dagger and/or \downarrow, this means the output is valid whenever the input configuration is achieved but the transition (s) must occur following the achievement of the steady-state levels. If the output is shown as a level (H, L, Q_{0}, or $\left.\bar{Z}_{0}\right)$, it persists so long as the steady-state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as a pulse, \qquad or \qquad , the pulse follows the indicated input transition and persists for an interval dependent on the circuit.)

Among the most complex function tables in this book are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. Below is the function table of a 4-bit bidirectional universal shift register, e.g., SN74ASC194A.

FUNCTION TABLE

INPUTS										OUTPUTS			
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	0_{C}	$\mathbf{O}_{\mathbf{D}}$
	S1	SO		LEFT	RIGHT	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	$\mathrm{O}_{\text {AO }}$	$\mathrm{O}_{\text {BO }}$	O_{CO}	$Q_{\text {DO }}$
H	H	H	\uparrow	X	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	x	H	X	X	X	X	H	$Q_{A n}$	O_{Bn}	Q_{Cn}
H	L	H	\uparrow	X	L	x	x	X	X	L	$Q_{\text {An }}$	O_{Bn}	O_{Cn}
H	H	L	\uparrow	H	X	x	X	X	X	O_{Bn}	$Q_{C n}$	$Q_{\text {Dn }}$	H
H	H	L	\uparrow	L	X	X	X	X	X	$Q_{B n}$	O_{C}	QDn	L
H	L	L	X	X	X	X	X	X	X	$Q_{A n}$	O_{Bn}	O_{Cn}	$Q_{D O}$

The first line of the table represents a synchronous clearing of the register and says that if clear is low, all four outputs will be reset low regardless of the other inputs. In the following lines, clear is inactive (high) and so has no effect.

The second line shows that so long as the clock input remains low (while clear is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of clear high and clock low was established. Since on other lines of the table only the rising transition of the clock is shown to be active, the second line implicitly shows that no further change in the outputs will occur while the clock remains high or on the high-to-low transition of the clock.

The third line of the table represents synchronous parallel loading of the register and says that if S1 and S0 are both high then, without regard to the serial input, the data entered at A will be at output Q_{A}, data entered at B will be at Q_{B}, and so forth, following a low-to-high clock transition.

The fourth and fifth lines represent the loading of high- and low-level data, respectively, from the shift-right serial input and the shifting of previously entered data one bit; data previously at Q_{A} is now at Q_{B}, the previous levels of Q_{B} and Q_{C} are now at Q_{C} and Q_{D} respectively, and the data previously at Q_{D} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S1 is low and SO is high and the levels at inputs A through D have no effect.

The sixth and seventh lines represent the loading of high- and low-level data, respectively, from the shift-left serial input and the shifting of previously entered data one bit; data previously at Q_{B} is now at Q_{A}, the previous levels of Q_{C} and Q_{D} are now at Q_{B} and Q_{C}, respectively, and the data previously at Q_{A} is no longer in the register. This entry of serial data and shift takes place on the low-to-high transition of the clock when S 1 is high and SO is low and the levels at inputs A through D have no effect.

The last line shows that as long as both mode inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady-state combination of clear high and both mode inputs low was established.

ABSOLUTE MAXIMUM RATINGS RECOMMENDED OPERATING CONDITIONS

Table 1. Specifications for Internal Boolean and Macro Cells

 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
recommended operating conditions

		SN54ASC ${ }^{\prime}$			SN74ASC'			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{T}_{\text {A }}$	Operating temperature range	-55		125	-40		85	${ }^{\circ} \mathrm{C}$

Table 2. Specifications for Input Standard Cells
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V_{CC}	. 5 V to 7 V
Input clamp current, $I_{\mathrm{K}}\left(\mathrm{V}_{1}<0\right.$ or $\left.\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}\right)$	$\pm 20 \mathrm{~mA}$
Input voltage range	-0.5 V to 7 V
Operating free-air temperature range: SN54ASC'	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74ASC'	. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

recommended operating conditions for TTL-compatible inputs

		SN54ASC'			SN74ASC ${ }^{\prime}$			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
V_{1}	Input voltage	0		V_{CC}	0		V_{CC}	V
t_{t}	Input transition (rise and fall) times	0		200	0		200	ns
$\mathrm{T}_{\text {A }}$	Operating temperature range	-55		125	-40		85	${ }^{\circ} \mathrm{C}$

recommended operating conditions for CMOS-compatible inputs

		SN54ASC ${ }^{\prime}$			SN74ASC ${ }^{\prime}$			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	3.15			3.15			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.9			0.9	V
V_{1}	Input voltage	0		V_{CC}	0		$\mathrm{V}_{\text {CC }}$	V
t_{t}	Input transition (rise and fall) times	0		300	0		300	ns
$\mathrm{T}_{\text {A }}$	Operating temperature range	-55		125	-40		85	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS RECOMMENDED OPERATING CONDITIONS

Table 3. Specifications for Output Standard Cells
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range; V_{CC}	$0.5 \vee$ to 7 V
Output clamp current, $\mathrm{l}_{\mathrm{K}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$.	$\pm-20 \mathrm{~mA}$
Continuous output current ($\mathrm{V}_{\mathrm{O}}=0$ to V_{CC})	$\pm 25 \mathrm{~mA}$
Operating free-air temperature range: SN54ASC'	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74ASC'	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

recommended operating conditions

		SN54ASC'			SN74ASC ${ }^{\prime}$			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{0}	Output voltage	0		V_{CC}	0		$\mathrm{V}_{\text {CC }}$	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current \dagger	As specified on individual data sheets						mA
$\mathrm{I}_{\text {OL }}$	Low-level output current							mA
T_{A}	Operating temperature range	-55		125	-40		85	${ }^{\circ} \mathrm{C}$

\dagger Applies for all except open-drain output cells.
Table 4. Specifications for Input/Output (I/O) Standard Cells absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

recommended operating conditions for TTL-compatible I/Os

		SN54ASC'			SN74ASC ${ }^{\prime}$			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{O}	Output voltage	0		VCC	0		VCC	V
${ }^{\text {I OH }}$	High-level output current \dagger	As specified on individual data sheets						mA
lOL	Low-level output current							mA
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
V_{1}	Input voltage	0		$\mathrm{V}_{\text {cc }}$	0		$\mathrm{V}_{\text {CC }}$	V
t_{t}	Input transition (rise and and fall) times	0		200	0		200	ns
T_{A}	Operating temperature range	-55		125	-40		85	${ }^{\circ} \mathrm{C}$

[^2]
ABSOLUTE MAXIMUM RATINGS RECOMMENDED OPERATING CONDITIONS

recommended operating conditions for CMOS-compatible I/Os

		N54AS			N74AS		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\mathrm{O}} \quad$ Output voltage	$0 \quad \mathrm{~V}_{\mathrm{CC}}$			0		V_{CC}	V
$\mathrm{I} \mathrm{OH} \quad$ High-level output current \dagger	As specified on individual data sheets						mA
${ }^{1} \mathrm{OL}$ Low-level output current							mA
$\mathrm{V}_{\text {IH }} \quad$ High-level input voltage	3.15			3.15			V
$\mathrm{V}_{\text {IL }} \quad$ Low-level input voltage			0.9			0.9	V
$\mathrm{V}_{1} \quad$ Input voltage	0		VCC	0		VCC	V
$\mathrm{t}_{\mathrm{t}} \quad$ Input transition (rise and and fall) times	0		300	0		300	ns
T_{A} Operating temperature range	-55		125	-40		85	${ }^{\circ} \mathrm{C}$

\dagger Applies for all except open-drain output cells.

FROM OUTPUT UNDER TEST

PARAMETER	CELLS	$\mathrm{C}_{\mathrm{L}}{ }^{\dagger}$
t_{pd}	INTERNAL and INPUT	0 pF and 1 pF
t_{pd}	OUTPUTS	15 pF and 50 pF

${ }^{\dagger} C_{L}$ includes probe and test fixture capacitance.

LOAD CIRCUIT
FIGURE 1. TOTEM-POLE OUTPUTS

FIGURE 2. OPEN-DRAIN OUTPUTS

LOAD CIRCUIT

PARAMETER		INTERNAL BUFFER		OUTPUT OR I/O		S1	S2
		R_{L}	$\mathrm{c}_{\mathrm{L}}{ }^{\dagger}$	R_{L}	$C_{L}{ }^{\text { }}$		
$\mathrm{t}_{\text {en }}$	tPZH	$40 \mathrm{k} \Omega$	1 pF	$1 \mathrm{k} \Omega$	15 pF and 50 pF	OPEN	CLOSED
	tPZL	$20 \mathrm{k} \Omega$				CLOSED	OPEN
${ }^{\text {d dis }}$	tphz	$40 \mathrm{k} \Omega$	1 pF	$1 \mathrm{k} \Omega$	50 pF	OPEN	CLOSED
	tPLZ	$20 \mathrm{k} \Omega$				CLOSED	OPEN
${ }^{\text {tpd }}$	tPLH	-	0 pF and	-	15 pF and	OPEN	OPEN
	${ }^{\text {tPHL }}$		1 pF		50 pF		

${ }^{\dagger} \mathrm{C}_{\mathrm{L}}$ includes probe and test fixture capacitance.
FIGURE 3. 3-STATE OUTPUTS

FIGURE 4. CMOS INPUT CELL AND CMOS 3-STATE BIDIRECTIONAL INPUT PROPAGATION DELAY TIME VOLTAGE WAVEFORMS

FIGURE 6. INTERNAL TOTEM-POLE OUTPUT PROPAGATION DELAY TIME VOLTAGE WAVEFORMS

FIGURE 5. TTL INPUT CELL AND TTL 3-STATE BIDIRECTIONAL INPUT PROPAGATION DELAY TIME VOLTAGE WAVEFORMS

FIGURE 7. INTERNAL 3-STATE-OUTPUT BUFFER DISABLE AND ENABLE VOLTAGE WAVEFORMS

FIGURE 8. CMOS/TTL OUTPUT AND 3-STATE BIDIRECTIONAL INPUT/OUTPUT PROPAGATION DELAY TIME VOLTAGE WAVEFORMS

FIGURE 9. CMOS/TTL 3-STATE BIDIRECTIONAL INPUT/OUTPUT DISABLE AND ENABLE VOLTAGE WAVEFORMS

INTRODUCTION

These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical Commission (IEC) for international use.

OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY LETTER SYMBOLS)

Cpd Power dissipation capacitance

Used to determine the no-load dynamic power dissipation per logic function (see individual circuit pages): $P_{D}=C_{p d} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.
$f_{\text {max }}$ Maximum clock frequency
The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.

ICC Supply current
The current into* the VCC supply terminal of an integrated circuit.
IIH High-level input current
The current into* an input when a high-level voltage is applied to that input.
IIL Low-level input current
The current into* an input when a low-level voltage is applied to that input.
IOH High-level output current
The current into* an output with input conditions applied that, according to the product specification, will establish a high level at the output.

IOL Low-level output current
The current into* an output with input conditions applied that, according to the product specification, will establish a low level at the output.

IOZ Off-state (high-impedance-state) output current (of a three-state output)
The current flowing into* an output having three-state capability with input conditions established that, according to the production specification, will establish the high-impedance state at the output.

$\mathrm{V}_{\mathrm{IH}} \quad$ High-level input voltage

An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables.
NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.

VIL Low-level input voltage
An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables.
NOTE: A minimum is specified that is the most-positive value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.
*Current out of a terminal is given as a negative value.

VOH High-level output voltage
The voltage at an output terminal with input conditions applied that, according to product specification, will establish a high level at the output.

VOL Low-level output voltage

The voltage at an output terminal with input conditions applied that, according to product specification, will establish a low level at the output.
$\mathbf{V}_{\mathbf{T}}+$ Positive-going threshoid level
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T}-.
$\mathbf{V}_{\mathbf{T}}$ - Negative-going threshold level
The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, $\mathrm{V}_{\mathrm{T}+}$.
ta Access time
The time interval between the application of a specified input pulse and the availability of valid signals at an output.
tdis Disable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from either of the defined active levels (high or low) to a highimpedance (off) state. ($\mathrm{t}_{\text {dis }}=\mathrm{tPHZ}$ or tPLZ).
ten Enable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms, with the three-state output changing from a high-impedance (off) state to either of the defined active levels (high or low). (ten $=$ tpZH or tPZL).
tf Fall time
The time interval between two reference points (90% and 10% unless otherwise specified) on a waveform that is changing from the defined high level to the defined low level.
th Hold time
The time interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.
NOTES: 1. The hold time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
2. The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of the signal and the active transition) for which correct operation of the digital circuit is guaranteed.

tpd Propagation delay time

The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level. ($t_{\text {pd }}=\mathrm{tPHL}$ or tPLH).

GLOSSARY SYMBOLS, TERMS, AND DEFINTIONS

tPHL Propagation delay time, high-to-low level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

tPHZ Disable time (of a three-state output) from high level

The time interval between the specified reference points on the input and the output voltage waveforms with the three-state output changing from the defined high level to a high-impedance (off) state.
tPLH Propagation delay time, low-to-high-level output
The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.

tPLZ Disable time (of a three-state output) from low level

The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined low level to a high-impedance (off) state.

tPZH Enable time (of a three-state output) to high level

The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high level.
tPZL Enable time (of a three-state output) to low level
The time interval between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level.
$t_{r} \quad$ Rise time
The time interval between two reference points (10% and 90% unless otherwise specified) on a waveform that is changing from the defined low level to the defined high level.
$\mathbf{t}_{\mathbf{s r}} \quad$ Sense recovery time
The time interval needed to switch a memory from a write mode to a read mode and to obtain valid data signals at the output.
$t_{\text {su }}$ Setup time
The time interval between the application of a signal at a specified input terminal and a subsequent active transition at another specified input terminal.
NOTES: 1. The setup time is the actual time interval between two signal events and is determined by the system in which the digital circuit operates. A minimum value is specified that is the shortest interval for which correct operation of the digital circuit is guaranteed.
2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the digital circuit is guaranteed.

$t_{t} \quad$ Transition time (general)

The time interval between two reference points (10\% and 90% unless otherwise specified) on a waveform that is changing from the defined low level to the defined high level (rise time) or from the defined high level to the defined low level (fall time).

$\mathbf{t}_{\mathbf{w}} \quad$ Pulse duration (width)

The time interval between specified reference points on the leading and trailing edges of the pulse waveform.

General Information

[^3]
Product Guide

3

Data Sheets

4

Military

IEEE Symbols

00

2-INPUT POSITIVE-NAND GATES
logic symbol

CELL NAME	t_{pd} (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
NA210LH	0.9	2.0	0.51
NA22OLH	0.8	1.3	1.00
NA230LH	0.7	1.1	1.51
NA240LH	0.6	1.0	2.06
NA260LH	0.6	0.8	2.98

02

logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
NO210LH	0.9	2.4	0.33
NO22OLH	0.8	1.5	0.52
NO23OLH	0.8	1.3	0.80
NO24OLH	0.7	1.1	0.98
Label: NO2nOLH A,B,Y;			

04

INVERTERS
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IV101LH	2.2	2.3	7.22
IV110LH	0.9	1.7	0.44
IV120LH	0.6	1.1	0.80
IV130LH	0.5	0.9	1.29
IV140LH	0.5	0.8	1.61
IV160LH	0.4	0.7	2.39
IV180LH	0.4	0.6	3.16
Label: IV1nOLH A,Y;			

PRODUCT GUIDE

08

2-INPUT POSITIVE-AND GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
AN210LH	1.3	2.1	0.90
AN220LH	1.5	1.9	1.20
AN240LH	1.9	2.1	2.32
AN260LH	1.5	1.7	3.08
Label: AN2nOLH A,B,Y;			

logic symbol

10
3-INPUT POSITIVE-NAND GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
NA310LH	0.8	2.2	0.50
NA320LH	0.9	1.5	0.94
NA330LH	0.8	1.3	1.41
NA340LH	0.8	1.1	1.86
Label: NA3nOLH A,B,C,Y;			

logic symbol

11
3-INPUT POSITIVE-AND GATES
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
AN310LH	1.6	2.4	1.06
AN320LH	1.7	2.2	1.56
AN340LH	2.2	2.5	2.59
AN360LH	1.7	1.9	4.08
Label: AN3nOLH A,B,C,Y;			

20

4-INPUT POSITIVE-NAND GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
NA410LH	0.8	2.6	0.50
NA420LH	1.0	1.8	0.96
NA430LH	1.0	1.5	1.46
Label: NA4nOLH A,B,C,D,Y;			

logic symbol

21

4-INPUT POSITIVE-AND GATES

logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
AN410LH	1.8	2.6	1.18
AN420LH	2.0	2.5	1.72
AN440LH	2.4	2.7	2.77
AN460LH	2.1	2.3	4.58
Label: AN4nOLH A,B,C,D,Y;			

27
3-INPUT POSITIVE-NOR GATES
logic symbol

30
8-INPUT POSITIVE-NAND GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
NA810LH	1.9	4.5	0.61
NA820LH	1.9	3.3	1.13

Label: NA8nOLH A,B,C,D,E,F,G,H,Y;

32

2-INPUT POSITIVE-OR GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{p F}$	
OR210LH	1.5	2.3	0.86
OR220LH	1.7	2.1	1.62
OR240LH	1.6	1.8	3.09
OR260LH	1.5	1.7	4.70

Label: OR2nOLH A,B,Y;
logic symbol

PRODUCT GUIDE

74

D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

CELL NAME	fmax (MHz)	$\mathbf{C}_{\text {pd }}(\mathbf{p F})$
DFB2OLH	46.3	3.76
DTB10LH	55.8	2.12
Label: D__BnOLH CLRZ,PREZ,D,CLK,Q,OZ;		

DFC2OLH	52.1	3.39
DTC10LH	52.1	2.10
Label: D__CnOLH CLRZ,D,CLK,Q,QZ;		

DFN2OLH	64.2	2.71
DTN1OLH	55.8	2.21
Label: D__NnOLH D,CLK,Q,QZ;		

DFP2OLH	55.8	3.49
DTP10LH	55.8	2.50
Label: D_PnOLH PREZ,D,CLK,Q,QZ;		

DFY20LH	69.2	4.63
Label: DFY2OLH PREZ,CLK,Q,QZ;		

 logic symbol

DFP20LH, DTP10LH

DFZ20LH

75

D-TYPE LATCHES WITH ACTIVE-HIGH ENABLE

logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
LAH10LH	1.6	2.4	2.00
LAH2OLH	1.6	2.0	2.81
Label: LAHnOLH D,C,Q,OZ;			

85

4-BIT MAGNITUDE COMPARATORS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{~}}{ }^{\dagger}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
S85LH	12.0	12.5	13.6
Labe:: S85LH P3,P2,P1,PO,Q3,Q2,Q1,Q0,PGTQ1,PLTQ1, PEQQ1,PGTQ0,PLTQ0,PEQOO;			

86

2-INPUT EXCLUSIVE-OR GATES

CELL NAME	$\left.\mathbf{t}_{\mathbf{p d}} \mathbf{(n s}\right)$		$\mathbf{C}_{\mathbf{p d}} \mathbf{(p F)}$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
EX210LH	1.8	2.3	1.00
EX22OLH	2.0	2.0	1.35
EX24OLH	2.4	2.0	2.55
Label: EX2nOLH A,B,Y;			

109

J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

logic symbol

CELL NAME	$\operatorname{fmax}(\mathbf{M H z})$	$\mathbf{C}_{\mathrm{pd}}(\mathrm{pF})$
JKB2OLH	44.2	4.81
Label: JKB2OLH CLRZ,PREZ,J,KZ,CLK, Q, QZ;		

[^4]137

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

CELL NAME	t_{pd} (ns)		$\mathrm{Cbd}^{+}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S137LH	12.0	12.7	17.59

3

138

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\left.\mathbf{C}_{\mathbf{p d}}{ }^{\text {t }} \mathbf{(p F}\right)$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
S 138 LH	7.0	7.7	13.77

Label: S138LH G1,G2AZ,G2BZ, A,B,C,YO,Y1, Y2, Y3, Y4,
Label: $\mathrm{S138LH}$ G
Y5, Y6, Y7;
logic symbol
-

logic symbol

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

DUAL 2-LINE TO 4-LINE DECODERS/ DEMULTIPLEXERS

CELL NAME	$\mathbf{t}_{\text {pd }}(\mathbf{n s}$)		$\mathrm{Cbd}^{\dagger}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S139LH	4.0	4.6	12.64
$\begin{aligned} & \text { Label: S139LH A1,B1,G1Z,A2,B2,G2Z,Y10,Y11,Y12, } \\ & \text { Y13,Y20,Y21,Y22,Y23; } \end{aligned}$			

151

8-LINE TO 1-LINE MULTIPLEXERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\left.{ }^{\boldsymbol{t}} \mathbf{(p F}\right)$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{p F}$	
S 151 LH	8.0	10.6	10.09

Label: S151LH G2,A,B,C,D0,D1,D2,D3,D4,D5,D6,D7, Y,W;
logic symbol
?

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

PRODUCT GUIDE

153

DUAL 4-LINE TO 1-LINE MULTIPLEXERS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{Cbd}^{\dagger}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S153LH	8.0	8.7	8.56
$\begin{aligned} & \text { Label: S153LH G1Z,G2Z,A,B,C10,C11,C12,C13,C20, } \\ & \text { C21,C22,C23,Y1,Y2; } \end{aligned}$			

155

dUAL 2-LINE TO 4-LINE DECODERS/ DEMULTIPLEXERS WITH DATA AND ENABLE LINES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S155LH	5.0	5.6	12.20
Label: S155LH C1,G12,C2Z,G2Z, A, B, Y10,Y11,Y12,Y13, Y20,Y21,Y22,Y23;			

logic, symbol

logic symbol

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

157

QUADRUPLE 2-LINE TO 1-LINE NONINVERTING MULTIPLEXERS

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\left.\mathrm{C}_{\mathrm{pd}}{ }^{\text {(}} \mathrm{pF}\right)$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S157LH	6.0	7.1	9.40
Label: S157LH A1,A2,A3,A4,B1,B2,B3,B4,AZ_B,GZ, Y1,Y2, Y3, Y4;			

logic symbol

†The equivalent power dissipation capacitance does not include interconnect capacitance.

PRODUCT GUIDE

161A

SYNCHRONOUS 4-BIT BINARY COUNTERS WITH DIRECT CLEAR

CELL NAME	$\mathrm{t}_{\text {pd }}$ (ns)		$\mathrm{C}_{\mathrm{pd}}{ }^{\dagger}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S161ALH	12.0	13.0	31.54
Label: S161ALH D,C,B,A,CLK,CLRZ,ENP,ENT,LOADZ, QD, QC, QB, QA,RCO;			

163A

SYNCHRONOUS 4-BIT BINARY COUNTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}{ }^{\boldsymbol{\dagger}} \mathbf{(p F)}$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
S163ALH	9.0	10.0	29.81
Label: S163ALH D,C,B,A,CLK,CLRZ,ENP,ENT,LOADZ, OD,OC,OB,QA,RCO;			

logic symbol
logic symbol

164

8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{Cbd}^{\text {d }}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S164LH	5.0	5.5	23.55
Label: S164LH A,B,CLK,CLRZ, QA, QB, QC, QD, QE, OF, QG, QH ;			

logic symbol

[^5]PARALLEL-LOAD 8-BIT SHIFT REGISTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S 165 LH	8.0	8.5	42.07

Label: S165LH A,B,C,D,E,F,G,H,CLK,CLKINH,SH__LDZ, SER, QH, QHZ;
logic symbol

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{Cpd}^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S166LH	7.5	8.4	33.15
Label: S166LH A,B,C,D,E,F,G,H,CLK,CLKINH,SER, SH__LDZ,CLRZ, QH;			

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.

PRODUCT GUIDE

173

4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{Cbd}_{\text {d }}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$C_{L}=1 \mathrm{pF}$	
S173LH	7.1	8.0	24.00
$\begin{aligned} & \text { Label: S173LH D1,D2,D3,D4,CLK,CLR,G1Z,G2Z,MZ,NZ, } \\ & \text { Q1, Q2, O3, Q4; } \end{aligned}$			

174

HEX D-TYPE FLIP-FLOPS

CELL NAME	$t_{\text {pd }}$ (ns)		$\mathrm{C}_{\text {pd }}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S174LH	8.0	8.5	24.44
$\begin{aligned} & \text { Label: S174LH D1,D2,D3,D4,D5,D6,CLK,CLRZ,Q1,02, } \\ & \text { Q3,Q4,Q5,Q6; } \end{aligned}$			

logic symbol

175

QUADRUPLE D-TYPE FLIP-FLOPS WITH COMPLEMENTARY OUTPUTS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns}$)		$\left.\mathrm{C}_{\mathrm{pd}}{ }^{\text {(}} \mathrm{pF}\right)$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S175LH	5.5	6.4	13.74
Label: S175LH D1,D2,D3,D4,CLK,CLRZ,Q1,Q12, Q2,Q2Z, Q3, Q3Z, Q4,Q4Z;			

[^6]
177

1-BIT AND 3-BIT BINARY RIPPLE COUNTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		${ }^{\boldsymbol{c}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
S 177 LH	22.0	22.5	23.56

Label: S177LH A,B,C,D,LOADZ,CLRZ,CLK1Z, CLK2Z,QA, QB,QC,QD;
logic symbol

logic symbol
ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}{ }^{\mathrm{t}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S181LH	13.0	14.6	46.68

Label: S181LH A3Z,A2Z,A1Z,A0Z,B3Z,B2Z,B1Z,B0Z, CN,M,S3,S2,S1,S0,F3Z,F2Z,F1Z,F0Z,AEQB, GZ,PZ,CNPL4;
${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

PRODUCT GUIDE

191

SYNCHRONOUS UP/DOWN BINARY COUNTERS WITH DOWN/UP MODE CONTROL

logic symbol

CELL NAME	$t_{\text {pd }}$ (ns)		$\mathrm{C}_{\text {pd }}{ }^{\text {(}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S191LH	11.5	12.6	37.26
Label: S191LH D,C,B,A,CLK,D__UZ,CTENZ,LOADZ, QD, QC, QB, QA,RCOZ,MAX_MIN;			

193

SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathbf{n s})$		$\mathrm{C}_{\mathrm{pd}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S193LH	11.0	11.5	34.84
Label: S193LH A,B,C,D,UP,DOWN,LOADZ,CLR,BOZ,COZ, $Q A, Q B, Q C, Q D ;$			

logic symbol QA, QB, OC, OD ;
${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

194A

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathrm{L}}=1 \mathbf{p F}$	
S194ALH	5.0	5.9	25.45
Label: S194ALH A,B,C,D,SRSER,SLSER,CLK,CLRZ,S1,S0, QA,QB,QC,QD;			

logic symbol

195A

4-BIT PARALLEL-ACCESS SHIFT REGISTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=1 \mathbf{p F}$	
S195ALH	5.5	6.4	21.95

Label: S195ALH CLRZ,CLK,SH__LDZ,J,KZ,A,B,C,D,QA, QB,QC,QD,QDZ;
logic symbol

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

PRODUCT GUIDE

244

OCTAL INTERNAL 3-STATE BUS BUFFERS

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{Cbd}_{\text {d }}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S244LH	2.6	4.3	8.82
Label: S244LH A11,A12,A13,A14,G12,A21,A22,A23, A24,G2Z,Y11, Y12,Y13, Y14, Y21,Y22,Y23,Y24;			

245

OCTAL INTERNAL 3-STATE BUS TRANSCEIVERS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\left.\mathrm{C}_{\mathrm{pd}}{ }^{\text {(}} \mathrm{pF}\right)$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S245LH	5.0	6.7	22.96
Label: S245LH A1,A2,A3,A4,A5,A6,A7,A8,B1,B2,B3, B4,B5,B6,B7,B8,GZ,DIR;			

logic symbol

251

8-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathrm{C}_{\mathbf{p d}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S251LH	9.7	11.4	12.85
Label: S251LH GZ,A,B,C,D0,D1,D2,D3,D4,D5,D6,D7, Y,WZ;			

logic symbol

[^7]
257A

QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS
logic symbol

CELL NAME	$t_{\text {pd }}$ (ns)		$\mathrm{C}_{\mathrm{pd}}{ }^{\text {(}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S257ALH	5.0	6.7	10.8
Label: S257ALH A1,A2,A3,A4,B1,B2,B3,B4,GZ,AZ__B, Y1, Y2, Y3, Y4;			

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.

PRODUCT GUIDE

259

8-BIT ADDRESSABLE LATCHES

CELL NAME	t_{pd} (ns)		$\mathrm{Cbd}^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S259LH	6.0	6.6	40.59
```Label: S259LH CLRZ,D,GZ,S0,S1,S2,00,01,02,03,04, 05,06,07;```			

logic symbol


## 260

## 5-INPUT POSITIVE-NOR GATES

logic symbol


Label: NO5nOLH A,B,C,D,E,Y;

## 266

2-INPUT EXCLUSIVE-NOR GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
EN210LH	1.4	2.4	1.09
Label: EN210LH A,B,Y;			

logic symbol

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

## 273

## OCTAL D-TYPE FLIP-FLOPS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{Cbd}^{\text {¢ }}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S273LH	5.0	5.8	22.45
Label: S273LH D1,D2,D3,D4,D5,D6,D7,D8,CLK,CLRZ, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8;			

logic symbol


279
S-R LATCHES
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathbf{L}}=\mathbf{1} \mathbf{p F}$	
LAB10LH	2.0	2.8	2.11
LAB2OLH	2.2	2.7	3.20

Label: LABnOLH SZ,RZ,Q,QZ;

280

## 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=0 \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
S280LH	11.0	11.5	25.80
Label: S280LH A,B,C,D,E,G,H,I,EVEN,ODD;			

logic symbol


[^8]
## 283

## 4-BIT BINARY FULL ADDERS WITH FAST CARRY logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathrm{Cbd}^{\text {¢ }}$ (pF)
	$C_{L}=0 \mathrm{pF}$	$C_{L}=1 \mathrm{pF}$	
S283LH	8.5	9.1	36.28
Label: S283LH A4,A3,A2,A1,B4,B3,B2,B1,C0,SUM4, SUM3,SUM2,SUM1,C4;			



## 298

QUADRUPLE 2-INPUT MULTIPLEXERS WITH NEGATIVE-EDGE-TRIGGERED REGISTER

CELL NAME	$\mathrm{t}_{\mathrm{pd}}$ ( ns )		$\mathrm{C}_{\mathrm{pd}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S298LH	6.0	6.8	18.72
Label: S298LH A1,A2,B1,B2,C1,C2,D1,D2, CLKZ,WS, QA, QB, QC, QD;			

logic symbol

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

## 299

## 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT/STORAGE REGISTERS

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S299LH	7.1	8.0	60.02
Label: S299LH S0,S1,G1Z,G2Z,SL,SR,CLK,CLRZ, QAP, $Q H P, A _Q A, B _Q B, C _Q C, D _Q D, E _Q E$, F__OF,G_OG,H__OH;			

299X

## logic symbol

## 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
$\mathrm{S} 299 \times \mathrm{LH}$	5.0	5.9	48.89

Label: S299XLH A,B,C,D,E,F,G,H,SO,S1,SL,SR,CLK, CLRZ, $\mathrm{QA}, \mathrm{QB}, \mathrm{QC}, \mathrm{QD}, \mathrm{QE}, \mathrm{QF}, \mathrm{QG}, \mathrm{QH}$;
logic symbol

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

## PRODUCT GUIDE

## 373

## 8-BIT D-TYPE LATCHES WITH 3-STATE OUTPUTS

CELL NAME	$\mathbf{t}_{\text {pd }}(\mathrm{ns})$		$\mathrm{Cbd}^{\dagger}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S373LH	5.0	6.7	17.07
Label: S373LH D1,D2,D3,D4,D5,D6,D7,D8,C,0CZ, Q1,Q2, Q3, Q4, Q5, Q6,Q7,Q8;			

## 374

## 8-BIT D-TYPE FLIP-FLOPS WITH

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{Cbd}_{\text {d }}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S374LH	5.0	6.7	22.80
Label: S374LH D1,D2,D3,D4,D5,D6,D7,D8,CLK,OCZ,Q1,02,Q3,Q4,Q5,Q6,Q7,Q8;			

## 375

## 3-STATE OUTPUTS

## 4-BIT BISTABLE LATCHES

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{Cbd}^{\dagger}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S375LH	4.5	6.0	7.32
$\begin{aligned} & \text { Label: S375LH D1,D2,D3,D4,C1C2,C3C4,Q1, Q1Z, Q2, } \\ & \text { O2Z, Q3, Q3Z, Q4, Q4Z; } \end{aligned}$			



logic symbol
logic symbol


[^9]
## 393

DUAL 4-BIT RIPPLE COUNTERS

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\left.\mathrm{Cbd}^{\dagger}{ }^{\text {( }} \mathrm{pF}\right)$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S393LH	21.0	21.5	16.92
Label: S393LH A1,CLR1,A2,CLR2,QA1,QB1, QC1,QD1, QA2, QB2, QC2, OD2;			

logic symbol

logic symbol
QUADRUPLE 2-INPUT MULTIPLEXERS WITH POSITIVE-EDGE-TRIGGERED COMPLEMENTARY OUTPUT REGISTER

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S398LH	5.5	6.4	19.42
Label: S398LH A1,A2,B1,B2,C1,C2,D1,D2,CLK,WS, QA,QAZ, QB, QBZ, QC, QCZ,QD,QDZ;			


${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

## PRODUCT GUIDE

## 399

## QUADRUPLE 2-INPUT MULTIPLEXERS WITH POSITIVE-EDGE-TRIGGERED REGISTER

CELL NAME	$t_{\text {pd }}(\mathrm{ns}$ )		$\mathrm{Cbd}^{\text {d }}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S399LH	5.0	5.8	17.92
Label: S399LH A1,A2,B1,B2,C1,C2,D1,D2,CLK,WS,QA, QB, QC, QD;			

## logic symbol



590
8-BIT BINARY COUNTERS WITH 3-STATE OUTPUT REGISTERS

CELL NAME	$t_{\text {pd }}$ ( ns )		$\mathrm{Cbd}_{\text {d }}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S590LH	10.4	12.1	58.24
Label: S590LH CCK,CCKENZ,RCK,CCLRZ,GZ,QA, QB, QC, QD, QE, QF, QG, QH,RCOZ;			

logic symbol

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

8-BIT BINARY COUNTERS WITH INPUT REGISTERS
logic symbol


RC

## 595

8-BIT SHIFT REGISTERS WITH OUTPUT REGISTERS

CELL NAME	$\mathbf{t}_{\text {pd }}$ ( ns )		$\left.\mathrm{C}_{\mathrm{pd}}{ }^{\text {( }} \mathrm{pF}\right)$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S595LH	5.5	7.2	44.64
Label: S595LH SER,SRCK,SRCLRZ,RCK,GZ, QA, QB, QC, QD, QE, QF,QG, QH, QHP;			

logic symbol


[^10]
## PRODUCT GUIDE

## 598X

## 8-BIT SHIFT REGISTERS WITH INPUT REGISTERS

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{Cbd}_{\text {d }}{ }^{\text {(pF) }}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S598XLH	9.8	11.5	82.63
Label: S598XLH A,B,C,D,E,F,G,H,RCK,SRCK,SRCKEZ, SRLOADZ,SRCLRZ,SERO,SER1,DS,GZ,QA,QB, QC, QD, QE, QF,QG,QH,QHP;			

logic symbol


651

8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S651LH	10.4	11.3	91.06

Label: S651LH GBAZ,GAB,SBA,SAB,CBA,CAB,A1,A2,A3,
$A 4, A 5, A 6, A 7, A 8, B 1, B 2, B 3, B 4, B 5, B 6, B 7, B 8 ;$
logic symbol


[^11]652

## 8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{~}}{ }^{\boldsymbol{\dagger}} \mathbf{( \mathbf { p F } )}$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{p F}$	
S 652 LH	10.4	11.3	104.10

Label: S652LH GBAZ,GAB,SBA,SAB,CBA,CAB,A1,A2,A3, $A 4, A 5, A 6, A 7, A 8, B 1, B 2, B 3, B 4, B 5, B 6, B 7, B 8 ;$
logic symbol


## 669

## SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS WITH LOOK-AHEAD

logic symbol

CELL NAME	${ }_{\text {tpd }}$ (ns)		$\mathrm{C}_{\mathrm{pd}}{ }^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S669LH	10.0	11.8	30.7
```Label: S669LH D,C,B,A,CLK,U__DZ,ENPZ,ENTZ,LOADZ, QD,QC,QB,QA,RCOZ;```			


[^12]
PRODUCT GUIDE

686

8-BIT MAGNITUDE COMPARATORS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{pd}^{\dagger}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S686LH	9.0	9.8	43.30
Label: S686LH P0,P1,P2,P3, P4, P5, P6, P7, O0, Q1, Q2, Q3,Q4, Q5,Q6,Q7,G1Z,G2Z,PEQQZ,PGTQZ;			

8-BIT IDENTITY COMPARATORS

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}+(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
S 688 LH	7.5	8.2	15.94

Label: S688LH P0,P1,P2,P3,P4, P5, P6, P7, Q0, Q1, O2, Q3, Q4, Q5,Q6, Q7,G1Z,PEQOZ;
, logic symbol

logic symbol

[^13]
888

8-BIT PROCESSOR SLICES

- Parallel 8-bit ALU with expansion nodes
- Signed magnitude to/from two's complement conversion
- Single- and double-length normalize
- Signed and unsigned divides with overflow detection; input does not need to be prescaled
- Signed, mixed, and unsigned multiples
- Sign, carry out, overflow and zero-detect status capabilities
- 3-Operand register files allow an operation and a move instruction to be combined
- 3 data input/output ports maximize data throughput
functional block diagram

890

MICROSEQUENCES

- 14 bits wide-addresses up to 16,384 words of microcode with one megacell
- Selects address from one of eight sources
- Independent read pointer for aid in microcode diagnostics
- Supports read-time interrupts
- Two independent loop counters
- Supports 64 powerful instructions

2022

5-INPUT POSITIVE-NAND GATES
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathbf{L}}=1 \mathbf{p F}$	
NA510LH	1.3	2.7	0.52
NA520LH	1.2	2.1	1.02
Label: NA5nOLH A,B,C,D,E,Y;			

2024
5-INPUT POSITIVE-AND GATES
logic symbol

CELL NAME	$\mathbf{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
AN510LH	2.1	2.9	1.12
Label: AN510LH A,B,C,D,E,Y;			

PRODUCT GUIDE

2108

J-K-TYPE NEGATIVE-EDGE-TRIGGERED

 FLIP-FLOPS| CELL NAME | $\mathbf{f m a x}(\mathbf{M H z})$ | $\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$ |
| :---: | :---: | :---: |
| JKB21LH | 44.2 | 4.97 |
| Label: JKB21LH CLRZ, PREZ, J,KZ, CLKZ, $\mathrm{Q}, \mathrm{QZ} ;$ | | |

logic symbol

2310

INVERTING 3-STATE BUFFERS WITH logic symbol ACTIVE-LOW ENABLE

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IV211LH	0.9	2.6	0.49
IV221LH	0.9	1.7	1.00
IV241LH	0.8	1.3	1.88
Label: IV2n1LH A,GZ,Y;			

2311

INVERTING 3-STATE BUFFERS WITH logic symbol
ACTIVE-HIGH ENABLE

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IV212LH	1.5	2.6	0.50
IV222LH	1.5	1.8	0.98
IV242LH	0.8	1.3	1.86
Label: IV2n2LH A,G,Y;			

2320

POWER-UP-CLEAR 1-SHOT
logic symbol

CELL NAME: PUCOOLH

- Automatically triggered by rising edge of power-up supply voltage
- Provides initialization pulse for clearing/presetting registers

Label: PUCOOLH Q;

2321

BUFFERS
 logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BU110LH	2.2	3.0	0.74
BU111LH	3.0	4.0	0.83
BU112LH	2.0	3.0	0.56

BU110LH, BU112LH

BU111LH

2322

RETRIGGERABLE MONOSTABLE MULTIVIBRATORS
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
MVFOOLH	8	9	20.5
Label: MVFOOLH A,B,CLRZ, $\mathrm{Q}, \mathrm{OZ} ;$			

2325
HIGH-LEVEL AND LOW-LEVEL TIE-OFF GATES

CELL NAME: TO010LH

- Provides dc termination for high- and low-level unused inputs

Label: TO010LH LO,HI;

2330

2-WIDE, 2-INPUT AND-NOR GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
AO221LH	1.2	2.6	0.59
Label: AO221LH A,B,C,D,Y;			

logic symbol

PRODUCT GUIDE

2331

2-WIDE, 2-INPUT AND-OR GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
AO220LH	1.7	2.6	0.90
Label: AO220LH A,B,C,D,Y;			

logic symbol

2340

2-LINE TO 1-LINE MULTIPLEXERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
MU110LH	2.3	3.7	0.92
Label: MU110LH A,B,S,GZ,Y;			

2341
4-LINE TO 1-LINE MULTIPLEXERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
MU210LH	2.1	2.9	1.28
Label: MU210LH $\mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{~A}, \mathrm{~B}, \mathrm{Y} ;$			

logic symbol

logic symbol

2342

8-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
MU310LH	3.2	4.7	1.68
Label: MU310LH A,B,C,D0,D1,D2,D3,D4,D5,D6,D7,GZ,Y;			

logic symbol

2350

2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{c}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{p F}$	
DE210LH	1.0	2.0	2.91
Label: DE210L.H A, $\mathrm{B}, \mathrm{YO}, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3 ;$			

人20.

DE212LH	1.0	2.5	2.81

Label: DE212LH A,B,G,Y0,Y1,Y2,Y3;
logic symbol
DE210LH

logic symbol
logic symbol

- Provides active termination for inputs or I/Os

Label: PR400LH TAP;

2371
200- $\mu \mathrm{A}$ PULL-UP ACTIVE TERMINATORS

CELL NAME: PR250LH

Label: PR250LH TAP;

2372

95- $\mu \mathrm{A}$ PULL-UP ACTIVE TERMINATORS
logic symbol

CELL NAME: PR095LH

- Provides active termination for inputs or $1 / O s$

Label: PR095LH TAP;

2373

95- μ A PULL-DOWN ACTIVE TERMINATORS
logic symbol

CELL NAME: PD095LH

- Provides active termination for inputs or I/Os

Label: PD095LH TAP;

PRODUCT GUIDE

2374

5- μ A PULL-UP ACTIVE TERMINATORS

logic symbol

CELL NAME: PROO5LH

- Provides active termination for inputs or I/Os

Label: PR005LH TAP;

2401

4-BIT SHIFT REGISTERS

CELL NAME	$\mathbf{f m a x}$ (MHz)	$\mathbf{C}_{\mathbf{p d}}$ (pF)
R2401LH	59.6	10.30
Label: R2401LH CLRZ,SERIN,CLK,QA, QB, QC, QD;		

2402

logic symbol

4-BIT SHIFT REGISTERS logic symbol

2403

4-BIT SHIFT REGISTERS

CELL NAME	$f_{\text {max }}(\mathrm{MHz}$)	$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
R2403LH	59.6	11.10
Label: R2403LH SERIN,LZ _S,CLK,A,B,C,D,QA, QB, QC, QD;		

logic symbol

2404

4-BIT SHIFT REGISTERS

logic symbol

CELL NAME	$\mathbf{f m a x}(\mathbf{M H z})$	$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
R2404LH	59.6	12.10

Label: R2404LH SERIN,LZ__S,CLK,A,B,C,D,QA,QAZ, $Q B, Q B Z, Q C, Q C Z, Q D, Q D Z ;$

2405

4-BIT FLIP-FLOPS/REGISTERS

CELL NAME	fmax (MHz)	$\mathbf{C}_{\text {pd }}$ (pF)
R2405LH	64.2	10.20
Label: R2405LH CLRZ,D1,D2,D3,D4,CLK,Q1,Q2,Q3,Q4;		

logic symbol

PRODUCT GUIDE

2406

4-BIT FLIP-FLOPS/REGISTERS

CELL NAME	$\mathbf{f m a x}(\mathbf{M H z})$	$\mathbf{C}_{\text {pd }}(\mathbf{p F})$
R2406LH	64.2	11.70
Label: R2406LH CLRZ,D1,D2,D3,D4,CLK,Q1,		
Q1Z,Q2,Q2Z,Q3,Q3Z,Q4,Q4Z;		

logic symbol

2407

4-BIT FLIP-FLOPS/REGISTERS

CELL NAME	$\boldsymbol{f m a x}(\mathbf{M H z}$)	$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
R2407LH	36.3	11.00
Label: R2407LH CLRZ,D1,D2,D3,D4,CLK,G,Q1,O2, Q3, Q4;		

logic symbol
'ASC2407

2408

4-BIT RIPPLE COUNTERS

CELL NAME	fmax (MHz)	$\mathbf{C}_{\text {pd }}$ (pF)
R2408LH	59.6	7.22
Label: R2408LH CLRZ,A,QA,QB,QC,QD;		

logic symbol

2500

CRYSTAL-CONTROLLED OSCILLATORS

CELL NAME	MAXIMUM FREQUENCY	C $_{\text {pd }}$ (pF)
OSEOOLH	5 MHz	8.13
OSFO2LH	20 MHz	15.30
OSEO6LH	800 MHz	6.82
Label: OSEO3LH RC, Y;		

logic symbol

2502

RC OSCILLATORS

CELL NAME	TYPICAL FREQUENCY RANGE	$\mathbf{C}_{\text {pd }}$ (pF)	
OSEO3LH	5 to 20 MHz	2.44	
Label: OSEO3LH RC, $\mathrm{Y} ;$			

2503
DIFFERENTIAL COMPARATORS

CELL NAMES: CO212LH, C0213LH

- Single 5 volt supply with $\pm 10 \%$ tolerance
- Inputs are ESD-protected
- Input offset voltage--50 mV max
- Common mode input voltage: $\mathrm{C} 0212 \mathrm{LH}-0 \mathrm{~V}$ to 3.5 V

$$
\mathrm{C} 0213 \mathrm{LH}-1.5 \mathrm{~V} \text { to VCC }
$$

P-CHANNEL Label: CO212LH IN,INZ,OUT;
N-CHANNEL Label: CO213LH IN,INZ,OUT;

2507

2508

CONTROL ELEMENT FOR DYNAMIC DELAY ELEMENT

CELL NAME: DLC10LH

Label: DLC10LH P,N,R,CAP,PV,NV;
logic symbol

logic symbol
logic symbol

DYNAMIC DELAY ELEMENT

CELL NAME: DLE10LH
Label: DLE1OLH A,PV,NV,Y;
logic symbol

PRODUCT GUIDE

2519

MEDIUM-DRIVE OPERATIONAL AMPLIFIER
logic symbol

CELL NAME: AMC12NH

- Single 5 -volt supply $\pm 10 \%$
- Internally frequency-compensated

- Inputs are ESD-protected
- Input offset voltage -50 mV typical
- Output voltage swing -1 V to 4.5 V

Label: AMC12NH, IN,INZ,OUT;

2901

4-BIT MICROPROCESSOR SLICE

CELL NAME: M01MPLH

- Reduces 2901 4-bit microprocessor to a single cell
- Offers full system implementation on a single chip, when used with other members of the 2900 family

Label: M01MPLH CLK, QEZ,CN,I8 . . . $10, \mathrm{~B} 3$. . . BO,A3 . . . AO, D3. . .DO, Q3, Q0,RAM3,RAMO,GZ,PZ,F3, FEOO,OVR, CNPL4,Y3. . .YO;
logic symbol

2902

LOOK-AHEAD CARRY GENERATOR

CELL NAME: M02CGLH

- Designed to accept up to four pairs of carry-propagate and carrygenerate signals, and a carry input
- Provides anticipated carries across four groups of binary ALUs

Label: M02CGLH CN,G3Z,P3Z,G2Z,P2Z,G1Z,P1Z,GOZ,POZ, CNPLX,CNPLY,CNPLZ,GZ,PZ;

logic symbol

PRODUCT GUIDE

2904

STATUS AND SHIFT CONTROLLER

CELL NAME: M04SSLH

- Generates the carry-in signal to the ALU and carry look-ahead
- Serves as interconnects for the data path, the auxiliary operations, and the ALU status flags testing
- Offers full system implementation on a single chip, when used with other members of the 2900 family

Label: M04SSLH CLK,CEMZ,CEUZ,EZZ,ECZ,ENZ,EOVRZ,OEYZ, OECTZ,SEZ,CX,IZ,IC,IN,IOVR,I12 . . . IO,YZ,YC,YN, YOVR,SIOO,SION,QIOO,QION,CO,CT;
logic symbol

2910

MICROPROGRAM CONTROLLER

CELL NAME: M10MCLH

- Supports the function of an address sequencer in controlling the execution of microinstructions stored in microprogram memory
- Last-in, first-out stack provides for nine levels of nesting microsubroutines

Label: M10MCLH CLK,CI,CCZ,CCENZ,RLDZ,OEZ,I3 . . . IO D11 . . .D0,FULLZ,PLZ,MAPZ,VECTZ,Y11 . . . YO;

logic symbol

PRODUCT GUIDE

3003

STATIC 16W X 16B READ/WRITE RAMs WITH 3-STATE OUTPUTS

CELL NAME	ORGANIZATION	
	WORDS	BITS
RA416LH	16	16

Label: RA416LH D0,D1,D2,D3,D4,D5,D6,D7,D8,D9, D10,D11,D12,D13,D14,D15,A0,A1,A2,A3, EZ,WZ, GZ, Q0, Q1, Q2, Q3,Q4, Q5, Q6, Q7, Q8, Q9,Q10,Q11,Q12,Q13,Q14,Q15,TIE;
logic symbol

STATIC 64W X 8B READ/WRITE RAMs WITH 3-STATE OUTPUTS

CELL NAME	ORGANIZATION	
	WORDS	BITS
RA608LH	64	8
Label: RA608LH DO,D1,D2,D3,D4,D5,D6,D7,A0,A1,		
A2,A3,A4,A5,EZ,WZ,GZ,Q0,Q1,Q2,Q3,Q4,		
Q5,Q6,Q7,TIE;		

3005

STATIC 256W X 4B READ/WRITE RAMs WITH 3-STATE OUTPUTS

CELL NAME	ORGANIZATION	
	WORDS	BITS
RA804ILH	256	4
Label: RA804LH DO,D1,D2,D3,A0,A1,A2,A3,A4,A5,		
A6,A7,EZ,WZ,GZ,Q0,Q1,Q2,O3,TIE;		

logic symbol
RA608LH

logic symbol
RA804LH

PRODUCT GUIDE

3006

STATIC 128W X 8B READ/WRITE RAMs WITH 3-STATE OUTPUTS

CELL NAME	ORGANIZATION	
	WORDS	BITS
RA708LH	128	8
Label: RA708LH D0,D1,D2,D3,D4,D5,D6,D7,A0,A1, A2,A3,A4,A5,A6,EZ,WZ,GZ, Q0, Q1, Q2, Q3, Q4,05, 06, 07, TIE;		

әp!̣ng lonpord
logic sym

3010

CompilerCell ${ }^{\text {TM }}$

STATIC RANDOM ACCESS MEMORIES (SRAM)
logic symbol

SRAM Array Limits

CELL NAME	PAR	N	MAX	CO
B	Number of words $\left(W \geq 2^{n}\right)$ Wordlength $(\mathrm{B}=\mathrm{i})$ Total number of bits ($\mathrm{W} \times \mathrm{B}$)	4 16	$\begin{array}{\|r\|} \hline 1024 \\ 32 \\ \\ \\ \\ 16384 \end{array}$	Any even number Number of data inputs = number of data outputs $=$ wordlength
Label † : AZRMLB DO,D1,D2 . . . Di-1,A0, . . . An,CLK1,CLK2, ENZ,R_WZ,QO, . . . Qi-1: $A Z$: Identifying symbol LB: Wordlength in bits. Topology dependent value. M: Number of columns multiplied into one output. $A=1: 1, B=2: 1, C=4: 1, D=8: 1$. Topology dependent value. R: Number of rows. Topology dependent value.				

3011

2-PHASE CLOCK GENERATOR WITH COMPLEMENTARY OUTPUTS

logic symbol

CELL NAME: CK4XOLH

- Generates 2-phase clock for compiler cell functions
- Embedded function - requires no external connection
- Can be operated from single-phase of system on-chip clock

Label: CK4XOLH,CLK,CLK1,CLK1Z,CLK2,CLK2Z;

PRODUCT GUIDE

3103

16-WORD BY 8-BIT EDGE-TRIGGERED 3-PORT REGISTER FILES

CELL NAME: RF408LH

- Full parallel access with one write and two read ports
- Typical access times:

Write-then-read cycle time - 11 ns
Address access time -- 8 ns

Label: RF408LH, CLK.WZ,W0,W1,W2,W3,RA0,RA1,RA2,RA3, RB0,RB1,RB2,RB3,D0,D1,D2,D3,D4,D5,D6,D7,QA0, QA1,QA2,QA3,QA4,QA5,QA6,QA7,QB0,QB1,QB2, QB3,QB4,QB5,QB6,QB7;
logic symbol

3200

CompilerCell ${ }^{\text {TM }}$
 READ-ONLY MEMORIES (ROM)

Single Array Parameter Limits

PARAMETERS	MIN	MAX	COMMENTS
Number of words (W $\geq 2^{\text {n }}$)	8	2048	Must be multiples of 4
Wordlength (B $=$ i) Total number of bits (W \times B)	4	32	Even or odd

Double Array Parameter Limits

PARAMETERS	MIN	MAX	COMMENTS
Number of words $\left(W \geq 2^{n}\right)$	8	4096	Must be multiples of 4
Wordlength $(B=i)$	4	64	Must be even
Total number of bits $(W \times B)$	512	65536	
Label: Label and cell name are developed as a function of cell design.			

3430

CompilerCellim

logic symbol

PIPELINE TEST REGISTERS (PTR)

Typical Modes of Operation:

- Pseudo-Random pattern generation
- Signature analysis
- Circular shift
- Local hold
- Serial or parallel load

Label: Label and cell name are developed as a function of cell design.

PRODUCT GUIDE

3800

CompilerCell ${ }^{\text {TM }}$
PROGRAMMABLE LOGIC ARRAYS (PLA)
logic symbol

Maximum Parameter Values

INPUTS	PRODUCT TERM	OUTPUTS
m	p	n
64	128	32

Label: Label and cell name are developed as a function of cell design.

logic symbol

4072

4-INPUT POSITIVE-OR GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
OR410LH	2.2	3.1	0.92
OR42OLH	2.6	3.1	1.83
OR440LH	2.4	2.7	3.46
OR46OLH	2.4	2.7	5.48
Label: OR4nOLH A,B,C,D,Y;			

logic symbol

PRODUCT GUIDE

4075

3-INPUT POSITIVE-OR GATES

CELL. NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
OR310LH	1.8	2.7	0.90
OR320LH	2.2	2.7	1.71
OR340LH	1.9	2.2	3.51
OR360LH	2.0	2.2	5.36
Label: OR3nOLH A,B,C,Y;			

logic symbol

4078

8-INPUT POSITIVE-NOR GATES
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathrm{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathbf{L}}=1 \mathbf{p F}$	
NO810LH	2.6	3.4	1.54
NO820LH	2.3	4.9	0.65
Label: NO8n0LH $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{Y} ;$			

5000
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IPEOOLH	0.7	1.1	2.00
IPFOOLH	0.7	1.1	2.00
Label: IPFOOLH $A, \mathrm{Y}_{;}$			

5001

TTL-COMPATIBLE INVERTING INPUT BUFFERS

logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathrm{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathbf{L}}=1 \mathbf{p F}$	
IPEO3LH	0.9	2.1	16.5
IPFO3LH	0.9	2.1	16.5
Label: IPFO3LH $\mathrm{A}, \mathrm{Y} ;$			

PRODUCT GUIDE

5002

CMOS-COMPATIBLE INVERTING SCHMITT-TRIGGER INPUT BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{~ N F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IPEO6LH	2.8	4.8	1.30
IPFO6LH	2.8	4.8	1.30
Label: IPFO6LH A,TAP,Y;			

logic symbol
-

5003

TTL-COMPATIBLE INVERTING SCHMITT-TRIGGER logic symbol INPUT BUFFERS WITH PULL-UP TAP

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IPEO8LH	3.7	7.5	19.00
IPFO8LH	4.3	8.1	19.00
Label: IPE08LH A,TAP,Y;			

5004

CMOS-COMPATIBLE INVERTING INPUT BUFFERS logic symbol WITH PULL-UP TAP

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{~ N F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IPFO2LH	0.7	1.0	2.00
Label: IPFO2LH A,TAP,Y;			

5005

TTL-COMPATIBLE INVERTING INPUT BUFFERS WITH PULL-UP TAP

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
IPEO5LH	0.9	2.1	16.00
IPFO5LH	0.9	2.1	16.00
Label: IPFO5LH A,TAP,Y;			

5006

CMOS-COMPATIBLE NONINVERTING INPUT BUFFERS
logic symbol

TTL-COMPATIBLE NONINVERTING INPUT BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
IPEO4LH	1.8	2.1	18.00
IPFO4LH	1.8	2.1	18.00
Label: IPFO4LH A,Y;			

IPF12LH	1.4	1.6	18.00
Label: IPF12LH A, Y;			

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
IPEO1LH	1.7	1.9	3.00
IPF01LH	0.7	1.1	3.00
Label: IPF01LH A,Y;			

5007

Label: IPF01LH A, Y;
logic symbol
-

5010

TTL-COMPATIBLE INVERTING SCHMITT-TRIGGER INPUT BUFFERS WITH PULL-UP TAP

CELL NAME	${ }_{\text {tpd }}$ (ns)		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
IPE10LH	3.7	7.5	20.00
IPF10LH	3.7	7.5	20.00
Label: IPF10LH A, TAP, Y;			

5013

TTL-COMPATIBLE NONINVERTING BUFFERS WITH PULL-UP TAP
logic symbol

CELL NAME	$\mathbf{t}_{\mathrm{pd}}(\mathbf{n s})$		$\mathbf{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
IPF13LH	1.8	2.1	18.00
Label: IPF13LH A,TAP,Y;			

Label: IPF13LH A,TAP,Y;

PRODUCT GUIDE

5100
TTL-/CMOS-COMPATIBLE OUTPUT BUFFERS
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPE4OLH	2.7	4.7	9.10
OPF4OLH	2.7	4.7	10.90
Label: OPF4OLH A,Y;			

5103
TTL-/CMOS-COMPATIBLE OUTPUT BUFFERS
logic symbol

CELL NAME	$\mathrm{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathbf{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPE60LH	2.4	3.5	15.50
OPF60LH	2.4	3.5	17.30
Label: OPF6OLH A,Y;			

5104

TTL-/CMOS-COMPATIBLE 3-STATE logic symbol

OUTPUT BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPE63LH	2.7	4.0	17.10
OPF63LH	2.7	4.0	19.40
Label: OPF63LH A,GZ,Y;			

5105

TTL-/CMOS-COMPATIBLE OPEN-DRAIN OUTPUT BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPE61LH	2.0	4.0	3.80
OPF61LH	2.0	4.0	4.00
Label: OPF61LH A,Y;			

logic symbol

5106

TTL-/CMOS-COMPATIBLE OUTPUT BUFFERS

logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPEOOLH	2.0	2.8	21.80
OPFOOLH	2.0	2.8	20.10
Label: OPFOOLH A,Y;			

5107

TTL-/CMOS-COMPATIBLE 3-STATE
logic symbol OUTPUT BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPEO3LH	2.7	3.7	19.90
OPFO3LH	2.7	3.7	23.20
Label: OPFO3LH A,GZ,Y;			

5108

TTL-/CMOS-COMPATIBLE OPEN-DRAIN OUTPUT logic symbol BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPEO1LH	1.7	3.0	5.60
OPFO1LH	1.7	3.0	5.80

5109

TTL-/CMOS-COMPATIBLE OPEN-DRAIN OUTPUT logic symbol BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{c}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPE41LH	2.7	6.0	2.40
OPF41LH	2.7	6.0	2.60
Label: OPF41LH A,Y;			

PRODUCT GUIDE

5110

TTL-/CMOS-COMPATIBLE NONINVERTING 3-STATE OUTPUT BUFFERS

logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPE42LH	3.4	6.2	8.6
OPF42LH	3.4	6.2	10.5
Label: OPF42LH A,G,Y;			

5111

TTL-/CMOS-COMPATIBLE 3-STATE OUTPUT logic symbol BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{c}_{\mathbf{p d}}$ (pF)
	$\mathbf{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPE43LH	3.5	5.7	10.30
OPF43LH	3.5	5.7	10.90
Label: OPF43LH A,GZ,Y;			

Label: OPF43LH A,GZ,Y;

5120

TTL-/CMOS-COMPATIBLE OUTPUT BUFFERS logic symbol

CELL NAME	$\mathbf{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPFBOLH	1.7	2.2	32.80
Label: OPFBOLH A,Y;			

5121

TTL-/CMOS-COMPATIBLE OPEN-DRAIN OUTPUT BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPFD1LH	1.7	2.2	10.40
Label: OPFD1LH A,Y;			

TTL-/CMOS-COMPATIBLE OPEN-DRAIN OUTPUT BUFFERS

CELL NAME	$\left.\mathbf{t}_{\mathbf{p d}} \mathbf{(n s}\right)$		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPFE1LH	1.5	1.9	16.20

5124
TTL-/CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		
	$\mathbf{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	
OPFD3LH	2.5	3.0	49.00
Label: OPFD3LH A,GZ,Y;			

5125
TTL-/CMOS-COMPATIBLE 3-STATE OUTPUT
logic symbol BUFFERS

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
OPFB3LH	2.8	3.7	29.00

Label: OPFB3LH A,GZ,Y;

5200

3-STATE I/O BUFFER WITH INVERTING CMOS logic symbol INPUT AND CMOS/TTL OUTPUT

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
IOE40LH	3.3	5.9	12.50
IOF40LH	3.3	5.9	12.70

Label: IOF40LH A,GZ,Y2,Y1;

PRODUCT GUIDE

5201

3-STATE I/O BUFFER WITH INVERTING TTL INPUT AND CMOS/TTL OUTPUT
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
IOE43LH	3.5	5.8	13.20
IOF43LH	3.5	5.8	13.40
Label: IOF43LH A,GZ,Y2,Y1;			

5202
3-STATE I/O BUFFERS WITH INVERTING CMOS INPUT AND CMOS/TTL OUTPUT

CELL NAME	$\mathbf{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5 ~ p F}$	$\mathrm{C}_{\mathbf{L}}=50 \mathrm{pF}$	
IOF47LH	3.6	6.8	13.10
Label: IOF47LH A,GZ,TAP,Y2,Y1;			

5203

3-STATE I/O BUFFERS WITH INVERTING TTL INPUT AND CMOS/TTL OUTPUT
logic symbol

CELL NAME	$\mathbf{t}_{\mathrm{pd}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	
IOF48LH	3.3	3.5	14.90
Label: IOF48LH A,GZ,Y2,Y1;			

5206

3-STATE I/O BUFFER WITH NONINVERTING CMOS INPUT AND CMOS/TTL OUTPUT

logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	
IOE41LH	3.3	5.5	16.70
IOF41LH	3.3	5.5	14.30

Label: IOF41LH A,GZ,Y2,Y1;
logic symbol -

5207

3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{p F}$	
IOE44LH	3.5	5.8	14.50
IOF44LH	3.5	5.8	14.30

Label: IOF44LH A, GZ, Y2, Y1;

logic symbol
3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	
IOF64LH	2.7	4.1	22.40

Label: IOF64LH A,GZ, Y2, Y1;

5220

3-STATE I/O BUFFER WITH INVERTING
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathbf{C}_{\mathbf{L}}=15 \mathrm{pF}$	$\mathbf{C}_{\mathbf{L}}=50 \mathrm{pF}$	
IOEOOLH	2.9	3.8	31.40
IOFOOLH	2.9	3.8	25.80

Label: IOFOOLH A, GZ, Y2, Y1;

5221

3-STATE I/O BUFFER WITH INVERTING TTL INPUT AND CMOS/TTL OUTPUT

CELL NAME	${ }_{\text {t }}^{\text {pd }}$ (ns)		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	
IOF03LH	2.7	3.8	24.40
Label: IOF03LH A,GZ,Y2,Y1;			

logic symbol

PRODUCT GUIDE

5226

3-STATE I/O BUFFER WITH NONINVERTING
CMOS INPUT AND CMOS/TTL OUTPUT

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{~ p F}$	
IOFO1LH	2.7	3.8	26.60
Label: IOFO1LH $\mathrm{A}, \mathrm{GZ}, \mathrm{Y} 2, \mathrm{Y} 1 ;$			

5227

3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathrm{pF}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{p F}$	
IOFO4LH	2.7	3.8	25.70
Label: IOFO4LH $\mathrm{A}, \mathrm{GZ}, \mathrm{Y} 2, \mathrm{Y} 1 ;$			

5239

3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

CELL NAME	$\mathbf{t}_{\text {pd }}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	
IOFB8LH	2.7	3.7	28.20
Label: IOFB8LH $\mathrm{A}, \mathrm{GZ}, \mathrm{Y} 2, \mathrm{Y} 1 ;$			

5246

3-STATE I/O BUFFER WITH INVERTING TTL INPUT AND TTL/CMOS OUTPUT

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{5 0} \mathbf{~ p F}$	
IOFD8LH	2.5	3.0	50.80
Label: IOFD8LH A,GZ, Y2,Y1;			

logic symbol

5250

OPEN-DRAIN I/O BUFFER WITH INVERTING CMOS INPUT AND CMOS/TTL OUTPUT
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathbf{p F}$	
IOFDOLH	1.7	2.3	11.60
Label: IOFDOLH A,Y2, $\mathrm{Y} 1 ;$			

6002

AND-NOR GATES, $Y=\overline{A 1+(B 1 \cdot B 2 \cdot B 3)}$

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF002LH	1.1	2.7	0.42
Label: BF002LH A1, B1, B2, B3, Y;			

logic symbol

6003

AND-NOR GATES, $Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2)}$

CELL NAME	$\mathbf{t}_{\text {pd }}(\mathbf{n s}$)		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF003LH	1.1	2.6	0.51
Label: BFOO3LH A1,A2, B1, B2, Y;			

6004

AND-NOR GATES, $Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2 \cdot B 3)}$
logic symbol

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF004LH	1.2	2.8	0.53
Label: BF004LH A1,A2, B1, B2, B3, Y;			

PRODUCT GUIDE

6005

AND-NOR GATES,

$Y=\overline{(A 1 \cdot A 2 \cdot A 3)+(B 1 \bullet B 2 \cdot B 3)} \quad$ logic symbol

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		C_{pd} (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF005LH	1.4	3.0	0.64
Label: BF005LH A1,A2,A3,B1,B2,B3, Y;			

6006

AND-NOR GATES, $Y=\overline{A 1+A 2+(B 1 \cdot B 2)}$
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF006LH	1.3	3.2	0.36
Label: BFO06LH A1,A2,B1,B2,Y;			

6007
AND-NOR GATES, $Y=\overline{\mathbf{A 1 + A 2 + (B 1 \cdot B 2 \cdot B 3})}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
BF007LH	1.5	3.7	0.36
Label: $\mathrm{BF} 007 \mathrm{LH} \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{Y} ;$			

logic symbol

6008

AND-NOR GATES, $\mathrm{Y}=\overline{\mathrm{A} 1+(\mathrm{B} 1 \cdot \mathrm{~B} 2)+(\mathrm{C} 1 \cdot \mathrm{C} 2)}$
logic symbol

CELL NAME	$\mathbf{t}_{\text {pd }}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF008LH	1.4	3.4	0.44
Label: BF008LH A1,B1,B2,C1,C2,Y;			

6009

AND-NOR GATES, $\mathbf{Y}=\overline{\mathbf{A} 1+(\mathrm{B} 1 \bullet \mathrm{~B} 2)+(\mathrm{C} 1 \bullet \mathrm{C} 2 \bullet \mathrm{C} 3)} \quad$ logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF009LH	1.6	3.7	0.45
Label: BF009LH A1,B1,B2,C1,C2,C3,Y;			

6012

AND-NOR GATES,
$\mathrm{Y}=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2)+(\mathrm{B} 1 \cdot \mathrm{~B} 2)+(\mathrm{C} 1 \cdot \mathrm{C} 2 \cdot \mathrm{C} 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF012LH	1.7	3.7	0.56
Label: BF012LH A1,A2,B1,B2,C1,C2,C3,Y;			

logic symbol

6013

AND-NOR GATES,

$$
Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2 \cdot B 3)+(C 1 \cdot C 2 \cdot C 3)}
$$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF013LH	1.9	4.1	0.57
Label: BF013LH A1,A2,B1,B2,B3,C1,C2,C3,Y;			

6014

AND-NOR GATES,
$Y=\overline{(A 1 \cdot A 2 \cdot A 3)+(B 1 \bullet B 2 \cdot B 3)+(C 1 \bullet C 2 \cdot C 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF014LH	2.1	4.3	0.71
Label: BF014LH A1, A2,A3,B1, B2,B3,C1,C2,C3,Y;			

logic symbol

6017
AND-NOR GATES, $Y=\overline{\mathrm{A} 1+(\mathrm{B} 1 \cdot \mathrm{~B} 2)}$

CELL. NAME	t $_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF001LH	1.0	2.5	0.38
Label: BF001LH A1,B1,B2,Y;			

Label: BF001LH A1,B1,B2,Y;
6018
logic symbol

AND-NOR GATES,
logic symbol
$\mathbf{Y}=\overline{\mathrm{A} 1+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)+(\mathrm{C} 1 \cdot \mathrm{C} 2 \cdot \mathrm{C} 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF010LH	1.7	3.9	0.45
Label: BF010LH A1,B1,B2,B3,C1,C2,C3,Y;			

6019

AND-NOR GATES,
$Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2)+(C 1 \cdot C 2)}$

CELL NAME	$t_{\text {pd }}$ (ns)		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF011LH	1.5	3.5	0.52
Label: BF011LH A1,A2,B1,B2,C1, C2, Y;			

logic symbol

OR-AND-NOR GATES,
$Y=\overline{A 1 \cdot A 2+[B 1 \bullet B 2 \bullet(C 1+C 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BFO22LH	1.7	3.9	0.54
Label: BFO22LH A1,A2,B1,B2,C1,C2,Y;			

6023

OR-AND-NOR GATES, $Y=\overline{A 1+[B 1 \cdot(C 1+C 2)]}$
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF015LH	1.3	3.2	0.36
Label: BF015LH A1,B1,C1,C2,Y;			

6024

OR-AND-NOR GATES,
$Y=\overline{A 1+[(B 1+B 2) \bullet(C 1+C 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF016LH	1.4	3.4	0.42
Label: BF016LH A1,B1,B2,C1 C2,Y.			

Label: BF016LH A1,B1,B2,C1,C2,Y;
logic symbol

6025
OR-AND-NOR GATES,

$$
Y=\overline{A 1 \bullet A 2 \bullet A 3+[B 1 \bullet(C 1+C 2)]}
$$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BFO25LH	1.5	3.5	0.64
Label: BF025LH A1,A2,A3,B1,C1,C2,Y;			

6026

OR-AND-NOR GATES,
$Y=\overline{A 1+[B 1 \bullet B 2 \bullet(C 1+C 2)]}$
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF017LH	1.5	3.7	0.40
Label: BF017LH A1,B1,B2,C1,C2,Y;			

6027

OR-AND-NOR GATES,
$\mathrm{Y}=\overline{\mathrm{A} 1 \cdot \mathrm{~A} 2 \cdot \mathrm{~A} 3+[\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF027LH	1.8	3.6	0.98
Label: BF027LH A1,A2,A3,B1,B2,C1,C2,Y;			

6028

OR-AND-NOR GATES,
logic symbol
$Y=\overline{A 1 \cdot A 2 \cdot A 3+[B 1 \bullet(C 1+C 2) \bullet(D 1+D 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
BF028LH	1.9	3.6	1.11
Label: BF028LH A1,A2,A3,B1,C1,C2,D1,D2,Y;			

6029

OR-AND-NOR GATES,
$Y=\overline{A 1 \bullet A 2+[B 1 \bullet(C 1+C 2)]}$

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF020LH	1.4	3.4	0.47
Label: BF020LH A1,A2,B1,C1,C2,Y;			

6032

AND-OR-AND-NOR GATES,
$Y=\overline{A 1+\{B 1 \bullet[C 1+(D 1 \cdot D 2)]\}}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
BF030LH	1.7	3.9	0.80
Label: BF030LH A1,B1,C1,D1,D2,Y;			

6034
AND-OR-AND-NOR GATES,
$Y=\overline{(A 1 \cdot A 2)+\{B 1 \bullet[C 1+(D 1 \cdot D 2)]\}}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF034LH	1.7	3.6	0.86
Label: BF034LH A1,A2,B1,C1,D1,D2,Y;			

6035

AND-OR-AND-NOR GATES,
logic symbol
$\mathbf{Y}=\overline{(A 1 \cdot A 2)+\{B 1 \cdot[(C 1 \cdot C 2)+(D 1 \cdot D 2)]\}}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
BF035LH	1.7	3.3	0.96
Label: BF035LH A1,A2,B1,C1,C2,D1,D2,Y;			

6048

OR-NAND GATES, $Y=\overline{A 1 \bullet(B 1+B 2)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
BF051LH	1.0	2.4	0.57
Label: BF051LH A1, B1, B2,Y;			

logic symbol

PRODUCT GUIDE

6049

OR-NAND GATES,
$Y=\overline{A 1 \cdot(B 1+B 2+B 3) \cdot(C 1+C 2+C 3)}$

CELL NAME	$\mathbf{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF060LH	1.7	3.8	0.65
Label: BF060LH $\mathrm{A} 1, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{Y} ;$			

logic symbol

6052

OR-NAND GATES, $\mathbf{Y}=\overline{\mathbf{A 1} \cdot(\mathbf{B 1}+\mathbf{B 2}+\mathrm{B} 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
BF052LH	1.2	3.2	0.57
Label: BF052LH A1, B1, $\mathrm{B} 2, \mathrm{~B} 3, \mathrm{Y} ;$			

logic symbol

6053
OR-NAND GATES, $\mathrm{Y}=\overline{(\mathrm{A} 1+\mathrm{A} 2) \bullet(\mathrm{B} 1+\mathrm{B} 2)} \quad$ logic symbol

CELL NAME	\mathbf{t}_{pd} (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF053LH	1.1	2.6	0.49
Label: BF053LH A1,A2, B1, $\mathrm{B} 2, \mathrm{Y} ;$			

6054

OR-NAND GATES, $Y=\overline{(A 1+A 2) \cdot(B 1+B 2+B 3)}$
logic symbol

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF054LH	1.2	3.0	0.47
Label: BF054LH A1,A2, B1, B2, B3, Y;			

6055

OR-NAND GATES, logic symbol
$Y=\overline{(A 1+A 2+A 3) \cdot(B 1+B 2+B 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF055LH	1.3	3.3	0.51
Label: BF055LH A1,A2,A3,B1,B2,B3,Y;			

6056

OR-NAND GATES, $Y=\overline{A 1 \cdot A 2 \cdot(B 1+B 2)}$
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF056LH	1.2	2.9	0.55
Label: BFO56LH A1,A2, $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{Y} ;$			

6057

OR-NAND GATES, $Y=\overline{A 1 \cdot A 2 \cdot(B 1+B 2+B 3)}$
logic symbol

CELL NAME	$t_{\text {pd }}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF057LH	1.5	3.7	0.58
Label: BF057LH A1,A2,B1,B2,B3,Y;			

6058

OR-NAND GATES, $Y=\overline{A 1 \cdot(B 1+B 2) \cdot(C 1+C 2)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF058LH	1.3	3.0	0.64
Label: BFO58LH A1, B1 $1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2, \mathrm{Y} ;$			

logic symbol

PRODUCT GUIDE

6059
OR-NAND GATES, $\mathrm{Y}=\overline{\mathrm{A} 1 \cdot(\mathrm{~B} 1+\mathrm{B} 2) \cdot(\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3)}$
logic symbol

6062

OR-NAND GATES,
$Y=\overline{(A 1+A 2) \cdot(B 1+B 2) \cdot(C 1+C 2+C 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
BF062LH	1.9	4.1	0.65
Label: BF062LH A1,A2,B1,B2,C1,C2,C3,Y;			

6063
logic symbol

OR-NAND GATES,
$Y=\overline{(A 1+A 2) \cdot(B 1+B 2+B 3) \cdot(C 1+C 2+C 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF063LH	2.0	4.2	0.64
Label: BF063LH A1,A2,B1,B2,B3,C1,C2,C3,Y;			

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
BF059LH	1.6	3.5	0.65
Label: BF059LH A1,B1,B2,C1,C2,C3,Y;			

logic symbol

6064

OR-NAND GATES,
$Y=\overline{(A 1+A 2+A 3) \bullet(B 1+B 2+B 3) \bullet(C 1+C 2+C 3)}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF064LH	1.9	4.1	0.70
Label: BF064LH A1,A2,A3,B1,B2,B3,C1,C2,C3,Y;			

logic symbol

6065

AND-OR-NAND GATES, $Y=\overline{A 1 \bullet[B 1+(C 1 \bullet C 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF065LH	1.2	2.8	0.58
Label: BF065LH A1,B1,C1,C2,Y;			

Label: BF065LH A1,B1,C1,C2,Y;

6066

AND-OR-NAND GATES,
$\mathbf{Y}=\overline{\mathbf{A} 1 \cdot[(B 1 \cdot B 2)+(C 1 \cdot C 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
BF066LH	1.3	2.9	0.64
Label: BF066LH A1,B1,B2,C1,C2,Y;			

Label: BF066LH A1,B1,B2,C1,C2,Y;

6067

AND-OR-NAND GATES,

logic symbol

$Y=\overline{A 1 \cdot[B 1+B 2+(C 1 \bullet C 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
BF067LH	1.5	3.7	0.57
Label: BF067LH A1,B1,B2,C1,C2,Y;			

6068

AND-OR-NAND GATES,
$Y=\overline{A 1 \cdot[B 1+(C 1 \bullet C 2)+(D 1 \bullet D 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{p F}$	
BF068LH	1.8	4.0	0.61
Label: BF068LH A1,B1,C1,C2	D1.D2 Y		

Label: BF068LH A1,B1,C1,C2,D1,D2,Y;
logic symbol
logic symbol

logic symbol

PRODUCT GUIDE

6069

AND-OR-NAND GATES,
$\mathbf{Y}=\overline{\mathrm{A} 1 \cdot[(\mathrm{~B} 1 \cdot \mathrm{~B} 2)+(\mathrm{C} 1 \cdot \mathrm{C} 2)+(\mathrm{D} 1 \cdot \mathrm{D} 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF069LH	1.9	4.2	0.66
Label: BF069LH A1,B1,B2,C1,C2,D1,D2,Y;			

logic symbol

6072

AND-OR-NAND GATES,
logic symbol
$Y=\overline{(A 1+A 2) \cdot[B 1+B 2+(C 1 \cdot C 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
BF072L.H	1.8	3.8	0.81
Label: BF072LH A1,A2,B1.,B2,C1,C2,Y;			

6073
AND-OR-NAND GATES,
logic symbol
$Y=\overline{(A 1+A 2) \cdot[B 1+(C 1 \cdot C 2)]}$

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$C_{L}=1 \mathrm{pF}$	
BF070LH	1.3	2.9	0.53
Label: BF070LH A1,A2,B1,C1,C2,Y;			

6074

AND-OR-NAND GATES,
$\mathbf{Y}=\overline{(\mathbf{A} 1+\mathbf{A} 2) \cdot[(\mathbf{B} 1 \bullet \mathbf{B} 2)+(\mathbf{C} 1 \cdot \mathbf{C} 2)]}$

CELL NAME	t_{pd} (ns)		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF071LH	1.5	3.1	0.64
Label: BF071LH A1,A2, B1, B2, C1, C2, Y;			

6075

AND-OR-NAND GATES,
$Y=\overline{(A 1+A 2+A 3) \cdot[B 1+(C 1 \bullet C 2)]}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}$ ($\mathbf{p F}$)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
BF075LH	1.1	2.5	0.77
Label: BF075LH A1,A2,A3,B1,C1,C2,Y;			

6082

OR-AND-OR-NAND GATES,
logic symbol
$\mathbf{Y}=\overline{\mathbf{A} 1 \cdot\{(\mathrm{~B} 1 \cdot \mathrm{~B} 2)+[\mathrm{C} 1 \bullet(\mathrm{D} 1+\mathrm{D} 2)]\}}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
BF082LH	1.9	3.8	0.87
Label: BF082LH A1,B1,B2,C1, D1, D2,Y;			

6083

OR-AND-OR-NAND GATES,
$\mathbf{Y}=\overline{\mathbf{A} 1 \cdot\{\mathbf{B} 1+[\mathbf{C} 1 \cdot(\mathbf{D} 1+\mathbf{D} 2)]\}}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
BF080LH	1.6	3.7	0.80
Label: BF080LH A1,B1,C1,D1,D2,Y;			

logic symbol

6084

OR-AND-OR-NAND GATES,
$\mathbf{Y}=\overline{\mathrm{A} 1 \bullet\{\mathrm{~B} 1+[(\mathrm{C} 1+\mathrm{C} 2) \bullet(\mathrm{D} 1+\mathrm{D} 2)]\}}$

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
BF081LH	1.9	3.9	0.90
Label: BF081LH A1,B1,C1,C2,D1,D2,Y;			

logic symbol

PRODUCT GUIDE

6088

OR-AND-OR-NAND GATES,
$Y=\overline{(A 1+A 2+A 3) \cdot\{B 1+[C 1 \bullet(D 1+D 2)]\}}$

CELL NAME	$\mathrm{t}_{\text {pd }}(\mathrm{ns}$)		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BF088LH	2.1	4.1	0.99
Label: BF088LH A1,A2,A3,B1,C1,D1,D2,Y;			

6100
4-INPUT GATED S-R LATCHES
logic symbol

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
GM010LH	1.3	2.8	0.75
Label: GM010LH RA,RB,SA,SB, Q, OZ;			

6101

5-INPUT GATED S-R LATCHES INCLUDING SEPARATE RESET
logic symbol

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
GM1 10LH	1.3	3.6	0.80
Label: GM110LH RA,RB,SA,SB,R,Q,QZ;			

6102

5-INPUT GATED S-R LATCHES
INCLUDING SEPARATE SET

logic symbol

6103
6-INPUT GATED S-R LATCHES logic symbol
INCLUDING SEPARATE SET AND RESET

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
GM210LH	1.6	3.6	0.81
Label: GM210LH RA,RB,SA,SB,R,S, $\mathrm{Q}, \mathrm{QZ} ;$			

6105

6-INPUT GATED S-R LATCHES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
GM310LH	1.4	3.0	0.80
Label: GM310LH RA,RB,RC,SA,SB,SC, $\mathrm{Q}, \mathrm{QZ} ;$			

logic symbol

PRODUCT GUIDE

6106

7-INPUT GATED S-R LATCHES INCLUDING SEPARATE RESET

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
GM410LH	1.8	4.0	0.85
Label: GM410LH RA, RB, RC, SA, SB, SC, R, Q, QZ;			

6108

8-INPUT GATED S-R LATCHES INCLUDING SEPARATE SET AND RESET

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ ($\mathbf{n s}$)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathbf{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
GM510LH	1.8	4.0	0.86
Label: GM510LH RA,RB,RC,SA,SB,SC, $\mathrm{R}, \mathrm{S}, \mathrm{Q}, \mathrm{QZ} ;$			

logic symboi

6110

4-INPUT GATED $\bar{S}-\bar{R}$ LATCHES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
GSO10LH	1.3	2.7	0.72
Label: GSO10L. $\mathrm{RAZ}, \mathrm{RBZ}, \mathrm{SAZ}, \mathrm{SBZ}, \mathrm{Q}, \mathrm{QZ} ;$			

logic symbol

6111

5-INPUT GATED $\bar{S}-\bar{R}$ LATCHES logic symbol INCLUDING SEPARATE RESET

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	
GS110LH	1.5	3.1	0.84
Label: GS110LH RAZ, RBZ,SAZ, SBZ,RZ, Q, QZ;			

6112
5-INPUT GATED $\bar{S}-\bar{R}$ LATCHES
logic symbol INCLUDING SEPARATE SET

CELL NAME	$\mathbf{t}_{\mathrm{pd}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
GSS10LH	1.4	3.1	0.84
Label: GSS10LH RAZ, RBZ,SAZ, SBZ,SZ, Q, QZ;			

6113

6-INPUT GATED $\bar{S}-\bar{R}$ LATCHES INCLUDING SEPARATE SET AND RESET

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathrm{C}_{\mathrm{L}}=1 \mathbf{p F}$	
GS210LH	1.5	3.1	0.84
Label: GS210LH RAZ,RBZ,SAZ,SBZ,RZ,SZ, $\mathrm{Q}, \mathrm{QZ} ;$			

logic symbol

PRODUCT GUIDE

6115

6-INPUT GATED $\bar{S}-\bar{R}$ LATCHES

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
GS310LH	1.5	3.4	0.75
Label: GS310LH RAZ,RBZ,RCZ, SAZ, SBZ, SCZ, Q, QZ;			

Label: GS310LH RAZ,RBZ,RCZ,SAZ,SBZ,SCZ,Q,QZ;
logic symbol

7-INPUT GATED $\overline{\mathbf{S}}-\overline{\mathrm{R}}$ LATCHES INCLUDING SEPARATE RESET

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathbf{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
GS410LH	1.7	3.8	0.85
Label: GS410LH RAZ, RBZ, RCZ $\mathrm{SAZ}, \mathrm{SBZ}, \mathrm{SCZ}, \mathrm{RZ}, \mathrm{Q}, \mathrm{OZ} ;$			

logic symbol

6118

8-INPUT GATED $\bar{S}-\bar{R}$ LATCHES INCLUDING SEPARATE SET AND RESET

CELL NAME	${ }_{\text {tpd }}$ (ns)		$\mathrm{C}_{\text {pd }}{ }^{(p F)}$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
GS510LH	1.9	4.0	0.89
Label: GS510LH RAZ,RBZ,RCZ, SAZ, SBZ, SCZ,RZ, SZ, Q, QZ;			

logic symbol

6120
NONINVERTING DELAY BUFFERS logic symbol

CELL NAME	$\mathrm{t}_{\mathrm{pd}}(\mathrm{ns})$		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BU120LH	1.1	1.7	1.29
BU130LH	1.4	1.7	1.73
Label: BU1nOLH A, Y;			

6121
NONINVERTING 3-STATE BUFFERS WITH logic symbol ACTIVE-LOW ENABLE

NONINVERTING 3-STATE BUFFERS WITH
logic symbol ACTIVE-HIGH ENABLE

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathrm{ns})$		
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
BU222LH	1.6	2.3	1.62
BU262LH	1.8	2.0	3.30
Label: BU2n2LH A,G,Y;			

6125
D-TYPE LATCHES WITH ACTIVE-LOW ENABLE
logic symbol

CELL NAME	t_{pd} (ns)		$\mathrm{C}_{\mathrm{pd}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	
LAL2OLH	3.2	3.9	4.68
Label: LALnOLH D, C, Q, QZ;			

PRODUCT GUIDE

6130

5-INPUT POSITIVE-OR GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathrm{C}_{\mathbf{p d}}(\mathrm{pF})$
	$\mathrm{C}_{\mathrm{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathbf{L}}=1 \mathbf{p F}$	
OR510LH	2.5	3.4	1.11
Label: OR510LH A,B,C,D,E,Y;			

logic symbol

6131

8-INPUT POSITIVE-OR GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}(\mathbf{n s})$		$\mathbf{C}_{\mathbf{p d}}(\mathbf{p F})$
	$\mathbf{C}_{\mathrm{L}}=\mathbf{0} \mathbf{p F}$	$\mathbf{C}_{\mathrm{L}}=\mathbf{1} \mathbf{p F}$	
OR810LH	2.3	3.3	1.16
Label: OR810LH $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{Y} ;$			

logic symbol

6132

8-INPUT POSITIVE-AND GATES

CELL NAME	$\mathbf{t}_{\mathbf{p d}}$ (ns)		$\mathbf{C}_{\mathbf{p d}}$ (pF)
	$\mathrm{C}_{\mathbf{L}}=\mathbf{0} \mathbf{~ p F}$	$\mathrm{C}_{\mathbf{L}}=\mathbf{1} \mathbf{~ p F}$	
AN810LH	2.1	3.4	1.22
Label: AN810LH A,B,C,D,E,F,G,H,Y;			

General Information

Definitions, Ratings, and Glossary
 2

Product Guide

Data Sheets

Military

IEEE Symbols

Design Considerations

SN54ASC00, SN74ASCOO 2-INPUT POSITIVE-NAND GATES

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Choice of Five Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{\mathrm{AB}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}
$$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
H	H	L
L	X	H
X	L	H

description

The SN54ASC00 and SN74ASC00 are 2-input positive-NAND gate CMOS standard-cell functions implementing the equivalent of one-fourth of an SN54LSOO or SN74LSOO. The standard-cell library contains five physical implementations providing the custom IC designer a choice between five performance levels for optimizing design. The five options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
		2 ns	1
		1.3 ns	1.5
NA22OLH		1.1 ns	2
NA230LH	Label: NA2nOLH A,B,Y;	1 ns	2.5
NA240LH		0.8 ns	3.5
NA260LH			

The SN54ASCOO is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASCOO is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASCOO, SN74ASCOO

2-INPUT POSITIVE-NAND GATES

electrical characteristics

PARAMETER			TEST CONDITIONS		NA210LH		NA220LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC00	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			131		196	nA		
		SN74ASCOO				7.84		11.7			
$\mathrm{C}_{\mathbf{i}}$ Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.2		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.51		1		pF		

PARAMETER			TEST CONDITIONS		NA230LH		NA240LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC00	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			254		316	nA		
		SN74ASC00				15.2		19			
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.39		0.54		pF		
C_{pd}	Equivalent pow dissipation cap	tance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.51		2.06		pF		

PARAMETER			TEST CONDITIONS		NA260LH		UNIT		
			TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\mathrm{CC}}=5 . \mathrm{V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current		SN54ASC00	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$			433	nA		
		SN74ASC00				26			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.79		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.98		pF		

SN54ASCOO, SN74ASCOO 2-INPUT POSITIVE-NAND GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NA210LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC00			SN74ASC00			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {tPLH }}$	A or B	Y	$C_{L}=0$	0.7	0.8	1.4	0.7	0.8	1.3	ns
tpHL				0.5	1	1.5	0.5	1	1.4	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1.2	2	4	1.2	2	3.7	ns
tPHL				1	2	4.2	1.1	2	3.7	
Δ tPLH	A or B	Y		0.5	1.2	2.7	0.5	1.2	2.5	ns/pF
$\triangle \mathrm{t}$ PHL				0.5	1	2.7	0.5	1	2.3	

NA220LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC00			SN74ASC00			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tplH	A or B	Y	$C_{L}=0$	0.5	0.8	1.3	0.6	0.8	1.2	ns
tPHL				0.3	0.7	1.4	0.4	0.7	1.3	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.3	2.4	0.9	1.3	2.2	ns
tPHL				0.6	1.3	2.7	0.7	1.3	2.4	
Δ tPLH	A or B	Y		0.3	0.5	1.1	0.3	0.5	1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$				0.3	0.6	1.3	0.3	0.6	1.1	

NA230LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC00			SN74ASC00			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.4	0.7	1.3	0.5	0.7	1.3	ns
tPHL				0.2	0.6	1.4	0.3	0.6	1.3	
${ }^{\text {tPLH }}$	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.1	2	0.7	1.1	1.9	ns
tPHL				0.5	1	2.3	0.5	1	2	
$\Delta \mathrm{tPLH}$	A or B	Y		0.2	0.4	0.8	0.2	0.4	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.4	0.9	0.2	0.4	0.8	

NA240LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC00			SN74ASC00			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.4	0.7	1.2	0.4	0.7	1.1	ns
tPHL.				0.1	0.5	1.2	0.2	0.5	1.1	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.6	1	1.8	0.6	1	1.7	ns
${ }^{\text {tPHL}}$				0.4	0.9	1.9	0.4	0.9	1.7	
Δ tPLH	A or B	Y		0.2	0.3	0.6	0.2	0.3	0.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.4	0.7	0.2	0.4	0.7	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
Δ TPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in t PHL with load capacitance
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASCOO, SN74ASCOO

2-INPUT POSITIVE-NAND GATES

NA260LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC00			SN74ASC00			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.4	0.6	1.2	0.5	0.6	1.1	ns
tPHL				0.1	0.5	1.2	0.3	0.5	1.1	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.5	0.8	1.6	0.6	0.8	1.5	ns
tPHL				0.3	0.7	1.7	0.4	0.7	1.5	
Δ tPLH	A or B	Y		0.1	0.2	0.5	0.1	0.2	0.4	ns/pF
$\Delta \mathrm{t}$ PHL				0.1	0.2	0.6	0.1	0.2	0.5	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC02, SN74ASC02 2-INPUT POSITIVE-NOR GATES

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Four Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

$$
Y=\overline{A+B}=\bar{A} \cdot \bar{B}
$$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
A	B	
H	X	L
X	H	L
L	L	H

description

The SN54ASC02 and SN74ASCO2 are 2 -input positive-NOR gate CMOS standard-cell functions implementing the equivalent of one-fourth of the SN54LSO2 or SN74LSO2. The standard-cell library contains four physical implementations providing the custom IC designer a choice between four performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	$\|c\|$	$\|c\|$ NETLIST HDL LABEL	TYPICAL DELAY $C_{L}=1 \mathrm{pF}$
	RELATIVE CELL AREA TO NA210LH		
		2.4 ns	1
NO230LH	Label: NO2nOLH A,B,Y;	1.5 ns	1.5
NO240LH		1.3 ns	2

The SN54ASC02 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASCO2 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

INSTRUMENTS

SN54ASC02, SN74ASCO2

2-INPUT POSITIVE-NOR GATES

electrical characteristics

PARAMETER			TEST CONDITIONS		NO210LH		NO220LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC02	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			128		185	nA		
		SN74ASCO2				7.71		11.1			
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.11		0.24		pF		
C_{pd}	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.33		0.52		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NO210LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASCO2			SN74ASCO2			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.6	0.8	1.6	0.6	0.8	1.5	ns
tPHL				0.5	1	1.7	0.6	1	1.7	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1.5	2.8	6.2	1.6	2.8	5.6	ns
tPHL				1.1	2	4.6	1.1	2	4.1	
Δ tPLH	A or B	Y		0.9	2	4.6	1	2	4.2	/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1	2.9	0.5	1	2.5	/pF

NO220LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC02			SN74ASC02			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {tPLH }}$	A or B	Y	$C_{L}=0$	0.6	0.8	1.3	0.6	0.8	1.2	ns
tPHL				0.3	0.8	1.5	0.3	0.8	1.5	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1	1.7	3.5	1.1	1.7	3.2	ns
tPHL				0.7	1.3	2.6	0.7	1.3	2.4	
\triangle tPLH	A or B	Y		0.4	0.9	2.3	0.5	0.9	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.3	0.6	1.1	0.4	0.6	1	

[^14]
SN54ASC02, SN74ASC02 2-INPUT POSITIVE-NOR GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

NO230LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC02			SN74ASC02			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A or B	Y	$C_{L}=0$	0.5	0.8	1.4	0.5	0.8	1.2	ns
tPHL				0.3	0.7	1.6	0.3	0.7	1.5	
${ }^{\text {tPLH }}$	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.9	1.4	2.9	0.9	1.4	2.6	ns
${ }_{\text {t }}$ PHL				0.6	1.2	2.4	0.6	1.2	2.2	
$\Delta \mathrm{t}$ PLH	A or B	Y		0.3	0.6	1.5	0.3	0.6	1.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.2	0.5	0.9	0.3	0.5	0.8	

NO240LH

.$^{\text {PARAMETER }}{ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC02			SN74ASCO2			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.5	0.7	1.3	0.5	0.7	1.2	ns
tPHL				0.2	0.6	1.4	0.2	0.6	1.3	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.2	2.4	0.8	1.2	2.2	ns
tPHL				0.5	1	2.1	0.5	1	1.9	
Δ tPLH	A or B	Y		0.2	0.5	1.2	0.3	0.5	1.1	ns/pF
$\Delta \mathrm{t}$ PHL				0.2	0.4	0.7	0.2	0.4	0.6	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tpLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Seven Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\bar{A}
$$

logic symbol

FUNCTION TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
H	L
L	H

description

The SN54ASC04 and SN74ASC04 are CMOS inverter standard cells implementing the equivalent of onesixth of a SN54LSO4 or SN74LSO4. The standard-cell library contains seven physical implementations providing the custom IC designer a choice of seven performance levels for optimizing designs. Each of the options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
		1.7 ns	0.75
IV120LH		1.1 ns	1
IV130LH		0.9 ns	1.25
IV140LH	Label: IV1n0LH A,Y;	0.8 ns	1.5
IV160LH		0.7 ns	2
IV180LH		0.6 ns	2.5
IV101LH	Label: IV101LH A,Y;	2.3 ns	4.5

The SN54ASC04 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC04 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC04, SN74ASC04
INVERTERS

electrical characteristics

PARAMETER			TEST CONDITIONS		IV110LH		IV120LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I C }}$ C Supply current		SN54ASC04	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			105		131	nA		
		SN74ASC04				6.32		7.85			
C_{i}	Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.24		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.44		0.8		pF		

PARAMETER			TEST CONDITIONS		IV130LH		IV140LH				
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC04	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$			163		190	nA		
		SN74ASC04				9.76		11.4			
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.4		0.49		pF		
C_{pd}	Equivalent pow dissipation cap		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.29		1.61		pF		

PARAMETER		TEST CONDITIONS		IV101LH	UNIT
			TYP	MAX	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

IV110LH

PARAMETER †	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASCO4			SN74ASC04			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	0.8	1.1	0.6	0.8	1.1	ns
tPHL				0.4	0.9	1.4	0.5	0.9	1.4	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.4	1.2	1.8	3.2	ns
tPHL				0.9	1.6	3.2	1	1.6	2.9	
$\Delta t_{\text {PLH }}$	A	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	0.8	1.8	0.5	0.8	1.6	

IV120LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC04			SN74ASC04			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.4	0.6	1.1	0.4	0.6	1	ns
${ }_{\text {tPHL }}$				0.2	0.6	1.2	0.2	0.6	1.1	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.2	2.1	0.8	1.2	2	ns
tPHL				0.5	1	2.1	0.6	1	2	
Δ tPLH	A	Y		0.3	0.5	1.1	0.3	0.5	1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$				0.3	0.5	0.9	0.3	0.5	0.9	

IV130LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC04			SN74ASC04			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.4	0.6	1.1	0.4	0.6	1	ns
tPHL				0.03	0.3	0.9	0.08	0.3	0.8	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.7	1	1.8	0.7	1	1.7	ns
tPHL				0.2	0.7	1.5	0.3	0.7	1.4	
Δ tPLH	A	Y		0.2	0.4	0.8	0.2	0.4	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.2	0.4	0.7	0.2	0.4	0.6	

IV140LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC04			SN74ASC04			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.4	0.5	0.9	0.4	0.5	0.9	ns
${ }_{\text {tPHL }}$				0.1	0.4	0.9	0.1	0.4	0.8	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.6	0.9	1.5	0.6	0.9	1.4	ns
tPHL				0.3	0.7	1.5	0.3	0.7	1.4	
$\Delta \mathrm{tPLH}^{\text {P }}$	A	Y		0.2	0.3	0.6	0.2	0.3	0.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.2	0.3	0.6	0.2	0.3	0.6	

[^15]
SN54ASCO4, SN74ASCO4 INVERTERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
IV160LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC04			SN74ASC04			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.3	0.5	0.8	0.3	0.5	0.8	ns
tPHL				0.09	0.3	0.8	0.1	0.3	0.8	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.5	0.7	1.3	0.5	0.7	1.2	ns
tPHL				0.2	0.6	1.3	0.3	0.6	1.2	
Δ tPLH	A	Y		0.1	0.2	0.5	0.1	0.2	0.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.1	0.2	0.5	0.1	0.2	0.5	

IV180LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC04			SN74ASC04			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.3	0.4	0.8	0.3	0.4	0.7	ns
tPHL				0.08	0.3	0.8	0.1	0.3	0.7	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.4	0.6	1.1	0.4	0.6	1.1	ns
tPHL				0.2	0.5	1.1	0.2	0.5	1	
Δ tPLH	A	Y		0.1	0.2	0.4	0.1	0.2	0.4	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL				0.1	0.2	0.4	0.1	0.2	0.4	

IV101LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC04			SN74ASC04			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	1.3	2.3	5	1.3	2.3	4.5	ns
tPHL.				1	2	4.6	1	2	4.1	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.4	5.2	1.4	2.4	4.7	ns
tPHL				1	2.1	4.9	1.1	2.1	4.4	
Δ tPLH	A	Y		60	120	230	60	120	200	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				30	110	290	50	110	280	

tPLH \equiv propagation delay time, low-to-high-level output
${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Four Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

$$
\mathrm{Y}=\mathrm{A} \cdot \mathrm{~B}=\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}}
$$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
H	H	H
L	X	L
X	L	L

description

The SN54ASC08 and SN74ASC08 are 2-input positive-AND gate CMOS standard cells each implementing the equivalent of one-fourth of an SN54LS08 or SN74LS08. The standard-cell library contains four physical implementations providing the custom IC designer a choice between four performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
		2.1 ns	1.5
		1.9 ns	1.75
AN220LH	Label: AN2nOLH A,B,Y;	2.1 ns	2.25
AN240LH		1.7 ns	3
AN260LH			

The SN54ASCO8 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
The SN74ASC08 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC08, SN74ASC08

2-INPUT POSITIVE-AND GATES

electrical characteristics

PARAMETER			TEST CONDITIONS		AN210LH		AN220LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC08	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			194		228	nA		
		SN74ASC08				11.6		13.6			
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF		
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	0.9		1.2		pF		

PARAMETER			TEST CONDITIONS		AN240LH		AN260LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
	Supply current	SN54ASC08	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			286		381	nA		
ICC		SN74ASC08				17.2		22.8			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.26		pF		
C_{pd}	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.32		3.08		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

AN210LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC08			SN74ASC08			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.6	1.2	2.8	0.6	1.2	2.5	ns
tPHL				0.8	1.3	2.8	0.8	1.3	2.6	
tPLH	A or B	Y	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	1.1	2.2	5	1.2	2.2	4.6	ns
tPHL				1.1	1.9	4.2	1.1	1.9	3.8	
Δ tpLH	A or B	Y		0.5	1	2.3	0.5	1	2.1	ns/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.2	0.6	1.5	0.3	0.6	1.3	

AN220LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC08			SN74ASC08			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.7	1.4	3.3	0.8	1.4	3	ns
tPHL				0.8	1.5	3.1	0.9	1.5	2.8	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1	2	4.4	1.1	2	4	ns
${ }_{\text {t PHL }}$				1	1.8	3.9	1.1	1.8	3.5	
Δ tPLH	A or B	Y		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$				0.1	0.3	0.9	0.2	0.3	0.8	

[^16]
SN54ASC08, SN74ASC08 2-INPUT POSITIVE-AND GATES

AN240LH

PARAMETER ${ }^{+}$	FROM	TO	TEST CONDITIONS	SN54ASC08			SN74ASC08			UNIT
PARAMETER	(INPUT)	(OUTPUT)		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.9	1.9	4.3	1	1.9	3.8	ns
tPHL				1	1.8	3.7	1.1	1.8	3.4	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.2	5	1.2	2.2	4.4	ns
tPHL				1.1	2	4.4	1.2	2	4	
Δ tPLH	A or B	Y		0.1	0.3	0.7	0.1	0.3	0.7	s/pF
$\Delta \mathrm{t}$ PHL				0.1	0.2	0.7	0.1	0.2	0.6	ns/pF

AN260LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \\ \hline \end{gathered}$	TEST CONDITIONS	SN54ASC08			SN74ASC08			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.7	1.5	3.5	0.8	1.5	3.1	ns
tPHL				0.9	1.5	3	1	1.5	2.9	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.7	3.9	0.9	1.7	3.5	ns
tPHL				1	1.7	3.4	1	1.7	3.2	
$\Delta \mathrm{tPLH}^{\text {L }}$	A or B	Y		0.1	0.2	0.5	0.1	0.2	0.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.03	0.16	0.5	0.04	0.16	0.4	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $t_{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in TPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Four Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{\mathrm{ABC}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$

logic symbol

FUNCTION TABLE

INPUTS			
A OUTPUT	B	C	\mathbf{Y}
H	H	H	L
L	X	X	H
X	L	X	H
X	X	L	H

description

The SN54ASC10 and SN74ASC10 are 3-input positive-NAND gate CMOS standard cell, each implementing the equivalent of one-third of an SN54LS10 or SN74LS10. The standard-cell library contains four physical implementations providing the custom IC designer a choice between four performance levels for optimizing design. The four options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	$\begin{array}{c}\text { NETLIST } \\ \text { HDL LABEL }\end{array}$	$\begin{array}{c}\|c\| \\$\end{array}	$\begin{array}{c}\text { TYPICAL } \\ \text { DELAY }\end{array}$

CELL AREA

TO NA210LH\end{array}\right]\)

The SN54ASC10 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC10 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC10, SN74ASC10

3-INPUT POSITIVE-NAND GATES

electrical characteristics

PARAMETER			TEST CONDITIONS		NA310LH.		NA320LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC10	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$			163		255	nA		
		SN74ASC10				9.78		15.3			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.26		pF		
C_{pd}	Equivalent pow dissipation capa		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	0.5	?	0.94		pF		

PARAMETER			TEST CONDITIONS		NA330LH		NA340LH		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current	SN54ASC10	$\mathrm{V}_{\text {CC }}=4.5$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {cc }}$ or 0 ,		344		435	nA		
${ }^{\text {CC }}$		SN74ASC10	$\mathrm{T}_{\mathrm{A}}=$ MIN to			20.6		26.1	nA		
C_{i}	Input capacitanc		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.39		0.52		pF		
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.41		1.86		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NA310LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC10			SN74ASC10			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A, B, C	Y	$C_{L}=0$	0.7	0.8	1.9	0.6	0.8	1.7	ns
tPHL				0.5	0.7	2.1	0.6	0.7	1.8	
tPLH	A,B,C	Y	$C_{L}=1 \mathrm{pF}$	1	2	4.8	1.1	2	4.4	ns
tPHL				1.1	2.4	5.8	1.3	2.4	5.1	
Δ tPLH	A, B, C	Y		0.5	1.2	3.1	0.5	1.2	2.9	ns/pF
Δ tPHL				0.6	1.4	3.8	0.7	1.4	3.2	

NA320LH

PARAMETER †	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC10			SN74ASC10			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C	Y	$C_{L}=0$	0.5	0.9	1.5	0.6	0.9	1.5	ns
tPHL				0.3	0.8	1.7	0.4	0.8	1.6	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.4	2.8	0.9	1.4	2.6	ns
tPHL				0.6	1.5	3.4	0.8	1.5	3.1	
$\Delta \mathrm{t}$ PLH	A, B, C	Y		0.3	0.5	1.3	0.3	0.5	1.1	ns/pF
$\Delta \mathrm{t}$ PHL				0.3	0.7	1.8	0.4	0.7	1.5	

[^17]
SN54ASC10, SN74ASC10 3-INPUT POSITIVE-NAND GATES

NA330LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC10			SN74ASC10			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C	Y	$C_{L}=0$	0.5	0.8	1.5	0.6	0.8	1.5	ns
tPHL				0.3	0.8	1.7	0.5	0.8	1.6	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.2	2.3	0.8	1.2	2.2	ns
tPHL				0.6	1.3	2.9	0.7	1.3	2.6	
$\Delta \mathrm{t}$ PLH	A, B, C	Y		0.2	0.4	0.8	0.2	0.4	0.8	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.2	0.5	1.2	0.2	0.5	1	

NA340LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC10			SN74ASC10			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C	Y	$C_{L}=0$	0.5	0.8	1.5	0.5	0.8	1.4	ns
tpHL				0.3	0.7	1.6	0.3	0.7	1.5	
${ }^{\text {tPLH }}$	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	0.6	1.1	2.1	0.7	1.1	2	ns
tPHL				0.4	1.1	2.5	0.5	1.1	2.2	
Δ tPLH	A,B,C	Y		0.2	0.3	0.7	0.2	0.3	0.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.2	0.4	0.9	0.2	0.4	0.8	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t}$ PLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design.
A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Choice of Four Performance Levels
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=A B C=\overline{\bar{A}+\bar{B}+\bar{C}}
$$

logic symbol

FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	
H	H	H	H
L	X	X	L
X	L	X	L
X	X	L	L

description

The SN54ASC11 and SN74ASC11 are 3-input positive-AND gate CMOS standard cells implementing the equivalent of one-third of an SN54LS11 or SN74LS11. The standard-cell library contains four physical implementations providing the custom IC designer a choice between four performance levels for optimizing designs. The four options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST hDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \hline \end{gathered}$	RELATIVE CELL AREA TO NA210LH
AN310LH	Label: AN3nOLH A,B,C,Y;	2.4 ns	1.75
AN320LH		2.2 ns	2
AN340LH		2.5 ns	2.5
AN360LH		1.9 ns	3.5

The SN54ASC11 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC11 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions See Table 1 in Section 2.

SN54ASC11, SN74ASC11 3-INPUT POSITIVE-AND GATES

electrical characteristics

PARAMETER			TEST CONDITIONS		AN310LH		AN320LH		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current	SN54ASC11	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			221		249	$n \mathrm{~A}$		
		SN74ASC11				13.3		15			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap	ance	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.06		1.56		pF		

PARAMETER			TEST CONDITIONS		AN340LH		AN360LH		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current	SN54ASC11	$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			311		438	nA		
		SN74ASC11				18.7		26.3			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.26		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap	ance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.59		4.08		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
AN310LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC11			SN74ASC11			UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tpl.H	A,B,C	Y	$C_{L}=0$	0.8	1.6	3.8	0.8	1.6	3.3	ns
${ }_{\text {t }}$ PHL				0.9	1.6	3.3	1	1.6	3	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.6	6	1.4	2.6	5.4	ns
${ }_{\text {tPHL }}$				1.2	2.2	4.7	1.3	2.2	4.3	
$\Delta \mathrm{tPLH}^{\text {P }}$	A, B, C	Y		0.5	1	2.3	0.5	1	2.1	
$\Delta \mathrm{t}$ PHL				0.2	0.6	1.5	0.3	0.6	1.4	ns/pF

AN320LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC11			SN74ASC11			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tplh	A,B,C	Y	$C_{L}=0$	0.8	1.8	4.2	0.9	1.8	3.8	ns
${ }_{\text {tPHL }}$				0.9	1.6	3.5	0.9	1.6	3.2	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.3	5.4	1.2	2.3	4.8	ns
tPHL				1.1	2	4.4	1.2	2	4	
Δ tPLH	A, B, C	Y		0.2	0.5	1.3	0.3	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.4	0.9	0.1	0.4	0.8	

[^18]
SN54ASC11, SN74ASC11 3-INPUT POSITIVE-AND GATES

AN340LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC11			SN74ASC11			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C	Y	$C_{L}=0$	1.1	2.3	5.6	1.1	2.3	4.9	ns
${ }^{\text {tPHL }}$				1.1	2.1	4.6	1.1	2.1	4.1	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1.2	2.6	6.3	1.3	2.6	5.6	ns
tPHL				1.2	2.3	5.2	1.3	2.3	4.7	
Δ tPLH	A, B, C	Y		0.1	0.3	0.8	0.1	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.2	0.7	0.1	0.2	0.6	

AN360LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC11			SN74ASC11			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A, B, C	Y	$C_{L}=0$	0.8	1.8	4.3	0.9	1.8	3.8	ns
tPHL				0.9	1.6	3.5	0.9	1.6	3.3	
tPLH	A,B,C	Y	$C_{L}=1 \mathrm{pF}$	1	2	4.8	1	2	4.3	ns
tPHL				1	1.8	3.9	1	1.8	3.6	
Δ tPLH	A,B,C	Y		0.1	0.2	0.5	0.1	0.2	0.5	
Δ tPHL				0.08	0.2	0.5	0.08	0.2	0.4	F

[^19]
DESIGN CONSIDERATIONS

Refer to Section 7
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC20, SN74ASC20 4-INPUT POSITIVE-NAND GATES

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Choice of Three Performance Levels
- Specified for Operation Over VCC Range of 5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$Y=\overline{A \cdot B \cdot C \cdot D}=\bar{A}+\bar{B}+\bar{C}+\bar{D}$

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	Y
H	H	H	H	L
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H

description

The SN54ASC20 and SN74ASC20 are four-input positive-NAND gate CMOS standard cells, each implementing the equivalent of one-half of an SN54LS20 or SN74LS20. The standard-cell library contains three physical implementations to provide the custom IC designer a choice from three performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	$\|c\|$	TYPICAL DELAY $C_{\mathrm{L}}=1 \mathrm{pF}$
		RELATIVE CELL AREA TO NA210LH	
		2.6 ns	1.5
NA42OLH	Label: NA4nOLH A,B,C,D,Y;	1.8 ns	2.5
NA430LH		1.5 ns	3.75

The SN54ASC20 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC20 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

SN54ASC20, SN74ASC20

4-INPUT POSITIVE-NAND GATES
electrical characteristics

PARAMETER			TEST CONDITIONS	NA410LH		NA420LH		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{O}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		187		312	nA	
		SN54ASC20			11.2		18.7		
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.27		pF	
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.5		0.96		pF	

PARAMETER			TEST CONDITIONS		NA430LH		UNIT		
			TYP	MAX					
V_{T}	Input threshold				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current		SN54ASC20	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			441	nA		
		SN74ASC20	$\mathrm{T}_{\mathrm{A}}=\text { MIN to MAX }$			26.4			
C_{i}	Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.4		pF		
C_{pd}	Equivalent pow dissipation cap		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.46		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NA410LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		54AS			74ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tpLH	A,B,C,D	Y	$C_{L}=0$	0.8	1.1	2	0.8	1.1	1.9	ns
tPHL				0.6	1.1	2.7	0.6	1.1	2.4	
tPLH	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.4	5.7	1.3	2.4	5.2	ns
tPHL				1.4	2.9	7.5	1.5	2.9	6.5	
$\Delta \mathrm{tPLH}$	A,B,C,D	Y		0.5	1.3	3.9	0.5	1.3	3.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.8	1.8	4.8	0.8	1.8	4.1	

NA420LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC20			SN74ASC20			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C,D	Y	$C_{L}=0$	0.6	1	1.8	0.7	1	1.7	ns
tPHL				0.5	1	2.4	0.5	1	2.1	
tPLH	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	0.9	1.6	3.3	1	1.6	3	ns
${ }_{\text {tPHL }}$				0.8	1.9	4.6	1	1.9	4	
Δ tPLH	A,B,C,D	Y		0.3	0.6	1.5	0.3	0.6	1.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.4	0.8	2.3	0.4	0.8	2	

SN54ASC20, SN74ASC20 4-INPUT POSITIVE-NAND GATES

NA430LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC20			SN74ASC20			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A, B, C, D	Y	$C_{L}=0$	0.6	1	1.9	0.6	1	1.8	ns
tPHL				0.4	1	2.3	0.5	1	2.1	
tPLH	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.4	2.9	0.9	1.4	2.7	ns
tPHL				0.7	1.6	3.9	0.8	1.6	3.4	
$\Delta \mathrm{t}_{\text {PLH }}$	A,B,C,D	Y		0.2	0.4	1.1	0.2	0.4	1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.3	0.6	1.6	0.3	0.6	1.3	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{t}$ PLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in t PHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design.
A tie-off cell is offered specifically for managing unused inputs.

4

SN54ASC21, SN74ASC21 4-INPUT POSITIVE-AND GATES

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Four Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

$Y=A \cdot B \cdot C \cdot D=\overline{\bar{A}+\bar{B}+\bar{C}+\bar{D}}$
logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	Y
H	H	H	H	H
L	X	X	X	L
X	L	X	X	L
X	X	L	X	L
X	X	X	L	L

description

The SN54ASC21 and SN74ASC21 are 4-input positive-AND gate CMOS standard-cells implementing the equivalent of one-half of an SN54LS21 or SN74LS21. The standard-cell library contains four physical implementations providing the custom IC designer a choice between four performance levels for optimizing designs. The four options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{aligned} & \text { TYPICAL } \\ & \text { DELAY } \\ & C_{L}=1 \mathrm{pF} \end{aligned}$	RELATIVE CELL AREA TO NA210LH
AN410LH	Label: AN4nOLH A,B,C,D,Y;	2.6 ns	2
AN420LH		2.5 ns	2.25
AN440LH		2.7 ns	2.75
AN460LH		2.3 ns	4

The SN54ASC21 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC21 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC21, SN74ASC21

4-INPUT POSITIVE-AND GATES

electrical characteristics

PARAMETER			TEST CONDITIONS		AN410LH		AN420LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	oltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
Supply current		SN54ASC21	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			256		286	nA		
		SN74ASC21				20.9		30			
C_{i}	input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
C_{pd}	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	1.18		1.72		pF		

PARAMETER			TEST CONDITIONS		AN440LH		AN460LH		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
	Supply current	SN54ASC21	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			348		500	nA		
		SN74ASC21				20.9		30			
C_{i}	Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.27		pF		
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.77		4.58		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

AN410LH

PARAMETER ${ }^{\dagger}$	FROM	T0	TEST CONDITIONS	SN54ASC21			SN74ASC21			UNIT
	(INPUT)	(OUTPUT)		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tpLH	A, B, C, D	Y	$C_{L}=0$	0.9	1.9	4.8	1	1.9	4.2	ns
tPHL				1	1.7	3.8	1	1.7	3.4	
tPLH	A,B,C, D	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.9	7.1	1.5	2.9	6.3	ns
tpHL				1.3	2.3	5.3	1.3	2.3	4.7	
Δ tpLH	A, B, C, D	Y		0.5	1	2.4	0.5	1	2.2	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$				0.2	0.6	1.5	0.3	0.6	1.4	ns/pF

AN420LH

PA	FROM	TO	TEST		54ASC			74ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	IT
tpLH	A, B, C, D	Y	$C_{L}=0$	1	2.1	5.5	1.1	2.1	4.8	ns
${ }^{\text {t PHL }}$				1	1.8	4.1	1	1.8	3.7	
tPLH	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.7	6.7	1.4	2.7	5.9	ns
tPHL				1.2	2.2	5	1.2	2.2	4.5	
$\triangle \mathrm{tPLH}$	A,B,C,D	Y		0.2	0.6	1.3	0.2	0.6	1.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.4	1	0.1	0.4	0.9	

[^20]
SN54ASC21, SN74ASC21 4-INPUT POSITIVE-AND GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

AN440LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		54ASC			74ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	UNT
tPLH	A,B,C,D	Y	$C_{L}=0$	1.2	2.7	7.2	1.3	2.7	6.2	ns
tPHL				1.1	2.1	5.1	1.2	2.1	4.6	
$t_{\text {PLH }}$	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	1.4	3	8	1.5	3	6.9	ns
tPHL				1.2	2.4	5.8	1.3	2.4	5.2	
Δ tPLH $^{\text {P }}$	A,B,C,D	Y		0.1	0.3	0.8	0.1	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.3	0.7	0.1	0.3	0.6	

AN460LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC21			SN74ASC21			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A,B,C, D	Y	$C_{L}=0$	1	2.3	5.7	1.1	2.3	5	ns
${ }_{\text {t }}$ PHL				0.9	1.8	4	1	1.8	3.6	
tPLH	A,B,C, D	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.5	6.3	1.2	2.5	5.5	ns
${ }_{\text {tPHL }}$				1.1	2	4.5	1.1	2	4.1	
Δ tPLH	A,B,C,D	Y		0.1	0.2	0.6	0.1	0.2	0.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.09	0.2	0.5	0.1	0.2	0.5	

[^21]
DESIGN CONSIDERATIONS

Refer to Section 7

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Choice of Three Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=\overline{A+B+C}=\bar{A} \bar{B} \bar{C}
$$

logic symbol

FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	\mathbf{Y}
H	X	X	L
X	H	X	L
X	X	H	L
L	L	L	H

description

The SN54ASC27 and SN74ASC27 are 3-input positive-NOR gate CMOS standard cells, each implementing the equivalent of one-third of an SN54LS27 or SN74LS27. The standard-cell library contains three physical implementations providing the custom IC designer a choice from three performance levels for optimizing designs. The three options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	$\|c\|$	TYPICAL DELAY $C_{L}=1 \mathrm{pF}$
		RELATIVE CELL AREA TO NA210LH	
		3.2 ns	1.25
NO32OLH	Label: NO3nOLH A,B,C,Y;	2.1 ns	2
NO330LH		1.8 ns	2.75

The SN54ASC27 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC27 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NO310LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC27			SN74ASC27			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A, B, C	Y	$C_{L}=0$	0.6	1	2.6	0.6	1	2.4	ns
tPHL				0.7	1.2	2.1	0.8	1.2	2	
tPLH	A,B,C	Y	$C_{L}=1 \mathrm{pF}$	2	4	9.5	2.2	4	8.6	ns
tPHL				1.3	2.4	5.9	1.4	2.4	5.2	
\triangle tPLH	A,B,C	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1.2	3.9	0.5	1.2	3.3	

NO320LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC27			SN74ASC27			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A,B,C	Y	$C_{L}=0$	0.6	1	2.1	0.7	1	1.9	ns
tPHL				0.5	1.1	2	0.6	1.1	1.9	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.4	5.4	1.4	2.4	4.9	ns
tPHL				1	1.7	3.5	1	1.7	3.2	
Δ tPLH	A,B,C	Y		0.6	1.4	3.4	0.7	1.4	3.1	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.4	0.6	1.6	0.4	0.6	1.4	

NO330LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC27			SN74ASC27			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C	Y	$C_{L}=0$	0.6	1	2	0.6	1	1.8	ns
tPHL				0.4	1	1.9	0.5	1	1.8	
tPLH	A,B,C	Y	$C_{L}=1 \mathrm{pF}$	1.1	2	4.3	1.2	2	3.9	ns
tPHL				0.8	1.5	2.9	0.8	1.5	2.7	
Δ tPLH	A, B, C	Y		0.4	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.3	0.5	1.1	0.3	0.5	0.9	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}{ }^{T}$ ypical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC30, SN74ASC30 8-INPUT POSITIVE-NAND GATES

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Two Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{\mathrm{ABCDEFGH}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}+\overline{\mathrm{D}}+\overline{\mathrm{E}}+\overline{\mathrm{F}}+\overline{\mathrm{G}}+\bar{H}$
logic symbol

FUNCTION TABLE

INPUTS							OUTPUT	
A	B	C	D	E	F	G	H	Y
H	H	H	H	H	H	H	H	L
L	X	X	X	X	X	X	X	H
X	L	X	X	X	X	X	X	H
X	X	L	X	X	X	X	X	H
X	X	X	L	X	X	X	X	H
X	X	X	X	L	X	X	X	H
X	X	X	X	X	L	X	X	H
X	X	X	X	X	X	L	X	H
X	X	X	X	X	X	X	L	H

description

The SN54ASC30 and SN74ASC30 are 8-input positive-NAND gate CMOS standard cells each implementing the equivalent of an SN54LS30 or SN74LS30. The standard-cell library contains two physical implementations providing the custom IC designer a choice between two performance levels for optimizing designs. The two options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST	FEATURES	
	HDL LABEL.	TYPICAL	RELATIVE
		DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
NA81OLH	Labei: NA8nOLH A,B,C,D,E,F,G,H,Y;	4.5 ns	2.5
NA82OLH	3.3 ns	4.75	

The SN54ASC30 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC30 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		NA810LH		NA820LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC30	$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{A}=\text { MIN to } \mathrm{MAX} \end{aligned}$			290		502	nA		
		SN74ASC30				17.4		30.1			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.22		pF		
C_{pd}	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.61		1.13		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NA810LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC30			SN74ASC30			UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {PPLH }}$	A thru H	Y	$C_{L}=0$	0.9	1.8	4.2	0.9	1.8	3.7	ns
${ }^{\text {tPHL }}$				0.8	2	6.5	0.9	2	5.6	
${ }^{\text {tPLH }}$	A thru H	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.6	8	1.7	3.6	7.3	ns
tPHL				2.3	5.3	5.2	2.5	5.3	13.1	
Δ tPLH	A thru H	Y		0.6	1.8	4.9	0.6	1.8	4.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				1.4	3.3	8.7	1.6	3.3	7.5	

NA820LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC30			SN74ASC30			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A thru H	Y	$C_{L}=0$	1	1.6	3.6	1	1.6	3.3	ns
tPHL				0.9	2.1	5.8	1	2.1	5	
tpLH	A thru H	Y	$C_{L}=1 \mathrm{pF}$	1.5	2.6	5.7	1.6	2.6	5.3	ns
${ }_{\text {tPHL }}$				1.8	4	10.8	2.1	4	9.3	
$\Delta \mathrm{tPLH}$	A thru H	Y		0.4	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.8	1.9	5.1	0.9	1.9	4.4	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t P L H \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC32, SN74ASC32 2-INPUT POSITIVE-OR GATES

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu \mathrm { m }}$ INTERNAL Standard Cell

- Choice of Four Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A+B=\overline{\bar{A} \bar{B}}$
logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	
H	X	H
X	H	H
L	L	L

description

The SN54ASC32 and SN74ASC32 are 2 -input positive-OR gate CMOS standard cells each implementing the equivalent of one-fourth of an SN54LS32 or SN74LS32. The standard- cell library contains four physical implementations providing the custom IC designer a choice between four performance levels for optimizing design. The four options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ C_{L}=1 \mathrm{pF} \end{gathered}$	RELATIVE CELL AREA TO NA210LH
OR210LH		2.3 ns	1.5
OR220LH		2.1 ns	1.75
OR240LH	Label: OR2nOLH A,B,Y;	1.8 ns	2.6
OR260LH		1.7 ns	3.75

The SN54ASC32 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC32 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS		OR210LH		OR220LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC32	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			185		217	nA		
		SN74ASC32				11.1		13			
C_{i}	Input capacitance		$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.11		0.11		pF		
C_{pd}	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.86		1.62		pF		

PARAMETER			TEST CONDITIONS		OR240LH		OR2	OLH	UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	Itage			$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
	Supply curr	SN54ASC32	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0 ,		305		461			
${ }^{\text {c }}$	pry current	SN74ASC32	$\mathrm{T}_{\mathrm{A}}=$ MIN to			18.3		27.7	nA		
	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.22		0.36				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	3.09		4.7		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
OR210LH

PARAMETER ${ }^{\dagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC32			SN74ASC32			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {tPLH }}$	A or B	Y	$C_{L}=0$	0.6	1.3	2.9	0.6	1.3	2.7	ns
${ }_{\text {tPHL }}$				0.9	1.7	3.6	1	1.7	3.3	
${ }_{\text {tPLH }}$	A or B	Y.	$C_{L}=1 \mathrm{pF}$	1.1	2.3	5.2	1.2	2.3	4.8	ns
tPHL				1.2	2.3	5.2	1.3	2.3	4.6	
Δ tpLH	A or B	Y		0.5	1	2.3	0.5	1	2.1	ns/pF
Δ tPHL				0.2	0.6	1.6	0.3	0.6	1.4	

OR220LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC32			SN74ASC32			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{+}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.7	1.5	3.4	0.8	1.5	3.2	ns
tPHL				1	1.8	4.2	1	1.8	3.8	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1	2	4.6	1	2	4.2	ns
tPHL				1.2	2.2	5.1	1.2	2.2	4.6	
Δ tPLH	A or B	Y		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.4	1	0.2	0.4	0.9	

[^22]> SN54ASC32, SN74ASC32 2-INPUT POSITIVE-OR GATES

OR240LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC32			SN74ASC32			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.6	1.4	3.1	0.7	1.4	2.8	ns
tPHL				0.9	1.7	3.6	0.9	1.7	3.4	
${ }^{\text {tPLH }}$	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.7	3.7	0.9	1.7	3.3	ns
tPHL				1	1.9	4.2	1.1	1.9	3.9	
Δ tPLH	A or B	Y		0.1	0.3	0.6	0.1	0.3	0.6	ns/pF
$\Delta t \mathrm{PHL}$				0.1	0.2	0.6	0.1	0.2	0.6	

OR260LH

PARAMETER †	FROM	TO	TEST		54ASC			74ASC		
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.6	1.4	3	0.7	1.4	2.8	ns
tPHL				0.9	1.6	3.7	0.9	1.6	3.4	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.6	3.4	0.8	1.6	3.1	ns
${ }_{\text {t }}$ PHL				1	1.8	4.1	1	1.8	3.7	
$\Delta \mathrm{tPLH}$	A or B	Y		0.1	0.2	0.5	0.1	0.2	0.4	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.07	0.2	0.5	0.09	0.2	0.4	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pLH}} \equiv$ propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{P}} \mathrm{HL} \equiv$ change in tPHL with load capacitance
$\ddagger_{\text {Typical values are at } V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {. } \text {. }{ }^{\circ} \mathrm{C}}$

Refer to Section 7

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC74, SN74ASC74
 D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED MACRO CELLS

- All Cells Provide Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Choice between Two Relative Output Drive Capabilities
- Choice of Asynchronous Inputs Provides Custom Cell for Most Applications
- Implements High-Speed Registers: Clock Frequencies . . . 46 to 69 MHz

FLIP-FLOP CELL CONFIGURATIONS OFFERED

CELL NAME	PRESET	CLEAR	DRIVE LEVEL
DFB2OLH	Yes	Yes	$2 X$
DFC2OLH	No	Yes	$2 X$
DFN20LH	No	No	$2 X$
DFP20LH	Yes	No	$2 X$
DFY2OLH	Yes	No	$2 X$
DF220LH	Yes	Yes	$2 X$
DTB1OLH	Yes	Yes	$1 X$
DTC1OLH	No	Yes	$1 X$
DTN1OLH	No	No	$1 X$
DTP1OLH	Yes	No	$1 X$

description

The SN54ASC74 and SN74ASC74 are dedicated, hardwired standard-cell macros implemoncire various D-type flip-flops. The 'ASC74 cell selection offers a broad choice of flip-flop configurations, providing the custom IC designer with specific storage elements to embed in ASICs in their most efficient form: as standalone bit-storage devices or as additions to larger synchronous functions such as registers or counters. The DFB2OLH and DTB10LH flip-flops are identical in function and sequential operation to one-half of the 'LS74, 'S74, or 'F74 packaged flip-flops.

The other nine cells provide the designer with flip-flop versions having either a preset or clear or no asynchronous input.
The DFY2OLH and DFZ2OLH cells feature grounded D inputs meaning that they can simplify implementation of flag registers that can be reset to zero with a system clock. The DFZ2OLH offers asynchronous clear and preset inputs providing an option to zero the register with either the system clock or system clear signal, or both.

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{aligned} & \text { MAXIMUM } \\ & \text { CLOCK } \\ & \text { FREQUENCY } \end{aligned}$	
DFB2OLH	Label: DFB20LH CLRZ, PREZ, D, CLK, Q, QZ;	46.3 MHz	7.7
DFC20LH	Label: DFC20LH CLRZ, D, CLK, Q, QZ;	52.1 MHz	7.2
DFN2OLH	Label: DFN20LH D, CLK, Q, QZ;	64.2 MHz	6.5
DFP20LH	Label: DFP20LH PREZ, D, CLK, Q, QZ;	55.8 MHz	7
DFY20LH	Label: DFY20LH PREZ, CLK, Q, QZ;	69.2 MHz	5.7
DFZ20LH	Label: DFZ20LH CLRZ, PREZ, CLK, Q, QZ;	59.2 MHz	6.5
DTB10LH	Label: DTB10LH CLRZ, PREZ, D, CLK, Q, QZ;	55.8 MHz	6.5
DTC10LH	Label: DTC10LH CLRZ, D, CLK, Q, QZ;	52.1 MHz	6
DTN1OLH	Label: DTN10LH D, CLK, Q, QZ;	55.8 MHz	5.2
DTP10LH	Label: DTP10LH PREZ, D, CLK, Q, QZ;	55.8 MHz	6

The SN54ASC74 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC74 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC74, SN74ASC74

D-TYPE POSITIVE-EDGE-TRIGGERED FLIP.FLOPS

logic symbols
DFB20LH, DTB10LH

DFC20LH, DTC10LH

DFP20LH, DTP10LH

DFY20LH

FUNCTION TABLES
DFB20LH, DTB10LH

INPUTS				OUTPUTS	
PREZ	CLRZ	CLK	D	Q	QZ
L	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	L* *	L^{*}
H	H	\uparrow	H	H	L
H	H	\uparrow	L	L	H
H	H	L	X	Q_{O}	\bar{Q}_{0}

DFC20LH, DTC10LH

INPUTS			OUTPUTS	
CLRZ	CLK	D	0	Q2
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

DFN20LH, DTN10LH

INPUTS		OUTPUTS	
CLK	\mathbf{D}	\mathbf{Q}	$\mathbf{Q Z}$
\uparrow	H	H	L
\uparrow	L	L	H
L	X	Q_{O}	$\overline{\mathrm{Q}}_{\mathrm{O}}$

DFP20LH, DTP10LH

INPUTS			OUTPUTS	
PREZ	CLK	D	\mathbf{Q}	QZ
L	X	X	H	L
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q_{O}	\bar{Q}_{O}

DFY20LH

INPUTS		OUTPUTS	
PREZ	CLK	\mathbf{Q}	$\mathbf{Q Z}$
L	X	H	L
H	\uparrow	L	H
H	L	Q_{0}	$\overline{\mathrm{Q}}_{\mathrm{O}}$

[^23]
function table
DFZ20LH

INPUTS			OUTPUTS	
PREZ	CLRZ	CLK	Q	QZ
L	H	X	H	L
H	L	X	L	H
L	L	X	L* *	L *
H	H	\uparrow	L	H
H	H	L	Q $_{0}$	$\overline{\text { Q }}_{0}$

*This configuration is nonstable; that is, it will not persist when PREZ or CLRZ returns to its inactive (high) level.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

SN54ASC74, SN74ASC74

D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

electrical characteristics

DFB20LH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74ASC74		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=M I N ~ t \end{aligned}$	$V_{1}=V_{C C} \text { or } 0$		934		56	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.36		0.36		pF		
		PREZ			0.38		0.38				
		D			0.11		0.11				
		CLK			0.25		0.25				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	3.76		3.76		pF		

DFC20LH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74ASC74		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=M I N t \end{aligned}$	$V_{I}=V_{C C} \text { or } 0$		881		52.9	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.36		0.36		pF		
		D			0.11		0.11				
		CLK			0.28		0.28				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	3.39		3.39		pF		

DFN2OLH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74ASC74		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold volt				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{l} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{\dot{C}} \text { or } 0$		799		47.9	nA		
C_{i}	Input capacitance	D	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.13		0.13		pF		
		CLK			0.27		0.27				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 V \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.71		2.71		pF		

SN54ASC74, SN74ASC74 D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

electrical characteristics

DFP20LH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74ASC74		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		845		50.7	O4		
C_{i}	Input capacitance	PREZ	$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.35		0.35		pF		
		D			0.13		0.13				
		CLK			0.26		0.26				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	3.49		3.49		pF		

DFY20LH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74ASC74		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=M I N t \end{aligned}$	$V_{I}=V_{C C} \text { or } 0,$		702		42.1	$n \mathrm{~A}$		
	Input capacitance	PREZ	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.35		0.35		pF		
C_{i}		CLK			0.25		0.25				
$C_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	4.63		4.63		pF		

DFZ20LH

	PARAMETER			IONS	SN5	SC74	SN74	ASC74	
	PARAMETER			IONS	TYP	MAX	TYP	MAX	UNIT
V_{T}	Input threshold vol		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I C C }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		777		46.6	nA
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.25		0.25		pF
		PREZ			0.23		0.23		
		CLK			0.36		0.36		
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	4.94		4.94		pF

D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

electrical characteristics
DTB10LH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74	ASC74	UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold volt				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=\operatorname{MIN~t} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0,$		699		41.9	nA		
C_{i}	Input capacitance	CLRZ	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
		PREZ			0.18		0.18				
		D			0.20		0.20				
		CLK			0.14		0.14				
$C_{p d}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.12		2.12		pF		

DTC10LH

PARAMETER			TEST CONDITIONS		SN54	SC74	SN74	SC74	UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {ICC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		641		38.5	nA		
	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}^{\prime}=25^{\circ} \mathrm{C}$	0.11		0.11		pF		
		D			0.19		0.19				
		CLK			0.08		0.08				
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.1		2.1		pF		

DTN10LH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74	SC74	UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vo				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V.
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		544		32.6	nA		
		D	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.10		0.10		pF		
c_{i}		CLK			0.11		0.11				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	2.21		2.21		pF		

SN54ASC74, SN74ASC74 D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

DTP10LH

PARAMETER			TEST CONDITIONS		SN54ASC74		SN74ASC74		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{I}=V_{C C} \text { or } 0,$		638		38.3	$n A$		
	Input capacitance	PREZ	$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.19		0.19		pF		
		D			0.14		0.14				
		CLK			0.11		0.11				
$\begin{array}{ll} \hline \mathrm{C}_{\text {pd }} & \begin{array}{l} \text { Equivalent power } \\ \text { dissipation capacitance } \end{array} \end{array}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.5		2.5		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

DFB20LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC74			SN74ASC74			UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q, QZ	$C_{L}=0$	2.1	4.9	12.7	2.3	4.9	11.1	ns
tPHL				1.4	3.2	8.2	1.6	3.2	7.2	
${ }_{\text {tPLH }}$	PREZ,CLRZ	Q, QZ		1.9	3.9	9.3	2	3.9	8.3	ns
tPHL				1.1	2	4.2	1.1	2	3.8	
tPLH	CLK	Q,QZ	$C_{L}=1 \mathrm{pF}$	2.4	5.4	13.9	2.6	5.4	12.2	ns
tPHL				1.6	3.6	9.2	1.8	3.6	8.1	
tPLH	PREZ,CLRZ	Q,OZ		2.2	4.4	10.6	2.3	4.4	9.4	ns
tPHL				1.3	2.4	5.2	1.3	2.4	4.7	
Δ tPLH $^{\text {d }}$	Any	Q,QZ		0.2	0.5	1.3	0.2	0.5	1.2	ns/pF
$\Delta \mathrm{t}$ PHL				0.1	0.4	1	0.1	0.4	0.9	

[^24]
SN54ASC74, SN74ASC74

D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
DFC20LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC74			SN74ASC74			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,QZ	$C_{L}=0$	1.9	4.5	12.2	2	4.5	10.7	ns
tPHL				1.4	3	7.9	1.5	3	5.7	ns
${ }^{\text {tPLH}}$	CLRZ	QZ		1.8	3.5	8.1	1.9	3.5	7.2	ns
tPHL		Q		1	1.8	3.9	1.1	1.8	3.6	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2.1	5	13.4	2.3	5	11.8	ns
tPHL				1.5	3.4	8.8	1.7	3.4	7.7	ns
${ }^{\text {tPLH }}$	CLRZ	Qz		2.1	4	9.3	2.2	4	8.3	ns
tPHL		Q		1.2	2.2	4.9	1.3	2.2	4.4	
\triangle tPLH	Any	Q,QZ		0.2	0.5	1.3	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.1	0.4	1	0.1	0.4	0.8	

DFN2OLH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC74			SN74ASC74			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,Qz	$C_{L}=0$	1.7	3.7	9.5	1.8	3.7	8.4	ns
${ }_{\text {t PHL }}$				1.2	2.6	6.6	1.3	2.6	5.9	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	1.9	4.2	10.7	2.1	4.2	9.4	ns
${ }^{\text {tPHL }}$				1.4	3	7.5	1.5	3	6.7	
Δ tPLH	CLK	Q,QZ		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$				0.1	0.4	0.9	0.1	0.4	0.8	

DFP20LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC74			SN74ASC74			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	CLK	Q, QZ	$C_{L}=0$	1.8	4.3	12	1.9	4.3	9.6	ns
${ }^{\text {tPHL}}$				1.3	3	7.8	1.4	3	6.9	
${ }^{\text {tPLH }}$	PREZ	Q		1.7	3.3	7.7	1.8	3.3	6.9	ns
tPHL		QZ		1.1	2	4.1	1.2	2	3.8	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2	4.8	13.2	2.2	4.8	11.6	ns
${ }^{\text {PPHL }}$				1.5	3.4	8.7	1.6	3.4	7.6	
tPLH	PREZ	Q		2	3.8	8.9	2.1	3.8	7.9	ns
${ }^{\text {tPHL }}$		QZ		1.3	2.4	5	1.3	2.4	4.5	
$\Delta \mathrm{tPLH}$	Any	Q,QZ		0.2	0.5	1.3	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.4	1	0.1	0.4	0.8	

[^25]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

DFY20LH and DFZ20LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC74			SN74ASC74			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,0Z	$C_{L}=0$	1.8	4.3	11.7	1.9	4.3	10.3	
tpHL				1.2	2.6	6.6	1.2	2.6	5.9	ns
tPLH	PREZ,CLRZ ${ }^{\text {§ }}$	Q,0Z		1.6	3.6	9.7	1.9	3.6	8.5	
tPHL				1.1	1.9	4.1	1.1	1.9	3.8	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2	4.8	12.8	2.2	4.8	11.3	
tPHL				1.3	3	7.6	1.4	3	6.8	ns
tPLH	PREZ,CLRZ ${ }^{\text {§ }}$	Q, QZ		1.8	4.1	10.8	1.9	4.1	9.6	
tPHL				1.2	2.3	5.1	1.3	2.3	4.6	
Δ tpLH	Any	Q,0Z		0.2	0.5	1.3	0.2	0.5	1.1	ns/pF
Δ tPHL				0.1	0.4	1	0.1	0.4	0.9	

DTB10LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC74				74ASC		UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,OZ	$C_{L}=0$	1.5	3.1	7.7	1.6	3.1	6.8	ns
${ }_{\text {tPHL }}$				1.6	3.5	8.9	1.8	3.5	7.9	
tPLH	PREZ	Q		2.1	4.2	10.1	2.2	4.2	9.1	ns
${ }_{\text {tPHL }}$		QZ		0.8	1.4	2.9	0.9	1.4	2.7	
tPHL	CLRZ	Q		2	4	9.3	2.1	4	8.3	ns
tPLH		QZ		1.9	3.8	8.9	2	3.8	7.9	
${ }_{\text {tPLH }}$	CLK	Q, QZ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	2	4.1	9.9	2.2	4.1	8.9	ns
tpHL				2.2	4.8	12	2.4	4.8	10.6	
tPLH	PREZ	Q		2.6	5.2	12.5	2.8	5.2	11.2	ns
tPHL		QZ		1.4	2.7	6.1	1.5	2.7	5.4	
tPHL	CLRZ	Q		2.6	5.3	12.7	2.8	5.3	11.3	ns
tPLH		QZ		2.4	4.8	11.1	2.6	4.8	9.9	
$\therefore \Delta$ tPLH	CLK	Q, QZ		0.4	1	2.5	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1.3	3.4	0.6	1.3	2.9	
Δ tPLH	PREZ	Q, QZ		0.5	1	2.4	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.5	1.3	3.2	0.6	1.3	2.8	
Δ tPLH	CLRZ	Q, QZ		0.5	1	2.2	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.6	1.3	3.5	0.7	1.3	3.1	

[^26]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
DTC10LH

	FROM	TO	TEST		54AS			74ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,QZ	$C_{L}=0$	1.5	3.2	8.4	1.6	3.2	7.5	ns
tPHL				1.5	3.3	8.4	1.7	3.3	7.5	
tPLH	CLRZ	QZ		2.4	4.9	12	2.6	4.9	10.6	ns
tPHL		0		2.2	4.5	10.6	2.4	4.5	9.4	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2	4.2	10.6	2.1	4.2	9.5	ns
${ }_{\text {tPHL }}$				2.1	4.6	11.5	2.3	4.6	10.2	
tPLH	CLRZ	QZ		2.9	5.9	14.1	3.1	5.9	12.6	ns
tPHL		Q		2.9	6	14.3	3.1	6	12.7	
$\Delta \mathrm{tPLH}$	CLK	Q,OZ		0.5	1	2.4	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1.3	3.3	0.6	1.3	2.9	
Δ tPLH	CLRZ	Q,QZ		0.4	1	2.2	0.5	1	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {PHL }}$				0.7	1.5	3.7	0.7	1.5	3.3	

DTN10L. H

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	.TO (OUTPUT)	TEST CONDITIONS	SN54ASC74			SN74ASC74			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,QZ	$C_{L}=0$	1.5	3.2	8.1	1.6	3.2	7.2	ns
tPHL				1.5	3.3	8.1	1.7	3.3	7.2	
tPLH	CLK	Q,QZ	$C_{L}=1 \mathrm{pF}$	2	4.2	10.3	2.1	4.2	9.2	ns
tPHL				2.1	4.6	11.1	2.3	4.6	9.8	
Δ tPLH	CLK	Q,QZ		0.4	1	2.4	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	1.3	3.3	0.6	1.3	2.9	

DTP10LH

PARAMETER ${ }^{\dagger}$	FROM	то	TEST	SN54ASC74			SN74ASC74			UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q, QZ	$C_{L}=0$	1.5	3.2	7.2	1.6	3.2	6.5	ns
tPHL				1.6	3.5	9.1	1.7	3.5	8.1	
tPLH	PREZ	Q		2.4	4.9	11.7	2.6	4.9	10.4	ns
tPHL		QZ		0.9	1.4	3	0.9	1.4	2.8	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2	4.2	9.5	2.2	4.2	8.5	ns
tPHL				2.2	4.8	12.3	2.3	4.8	10.8	
tPLH	PREZ	Q		2.9	5.9	14.1	3.1	5.9	12.6	ns
tPHL		QZ		1.5	2.7	6.2	1.6	2.7	5.5	
Δ tPLH	CLK	Q, QZ		0.5	1	2.5	0.5	1	2.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1.3	3.2	0.6	1.3	2.8	
$\Delta \mathrm{t}_{\text {PLH }}$	PREZ	Q,QZ		0.5	1	2.5	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1.3	3.2	0.6	1.3	2.8	

[^27]
SN54ASC74, SN74ASC74
 D.TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells when interfacing off-chip for the input data. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a threestate input/output TTL/CMOS buffer.

designing for testability

Designs employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously either preset or cleared may be connected to an SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Access to the clear or preset inputs from other system signals in conjunction with the power-up clear can be implemented with an AND gate.

SN54ASC75, SN74ASC75 D-TYPE LATCHES WITH ACTIVE-HIGH ENABLE

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Choice Between Two Relative Output Drive Capabilities
- Implements Control/Status Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC75 and SN74ASC75 are dedicated, hard-wired standard-cell macros implementing D-type latches. The 'ASC75 latches offer two choices of individual latch configurations providing the custom IC designer storage elements to embed in ASICs in their most efficient form. The LAH2OLH and LAH1OLH latches implement identical function and sequential operation to one-fourth of the 'LS75 packaged latches, except that the 'ASC75 enable (C) input is individually available for custom design. The LAH2OLH provides twice the drive capability as the LAH1OLH element.

Information present at the data input is transferred to the Q output when the enable input is high, and the Q output will follow the data input as long as enable remains high. When enable goes low, the data that was present at the data input at the time the transition occurred is retained at the Q output until enable is taken high. The cells are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
LAH1OLH	Label: LAHnOLH D,C,Q,QZ;	5
LAH2OLH	4.5	

The SN54ASC75 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC75 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC75, SN74ASC75
 D.TYPE LATCHES WITH ACTIVE-HIGH ENABLE

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			LAH10LH	LAH2OLH	
			MIN	MIN	UNIT
	Pulse duration	C high	6	6	
	Pulse duration	C low	4.8	4.8	ns
$\mathrm{t}_{\text {su }}$	Setup time, D	h or low	6	6	ns
	Hold time, D hi	or low	0	0	ns

electrical characteristics

LAH10LH

PARAMETER			TEST CONDITIONS		SN54ASC75		SN74ASC75		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vo				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
$I^{\prime} \mathrm{C}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		463		27.8	nA		
C_{i}	Input capacitance	C	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.21		0.21		pF		
		D			0.26		0.26				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns}$	2		2		pF		

LAH2OLH

PARAMETER			TEST CONDITIONS		SN54ASC75		SN7	SC75	UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		2.2		2.2	V
${ }^{\text {ICC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{to} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		528		31.7	nA		
C		C	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.22		0.22		pF		
c_{i}	Input capacitance	D			0.25		0.25				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2.81		2.81		pF		

SN54ASC75, SN74ASC75
 D-TYPE LATCHES WITH ACTIVE-HIGH ENABLE

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

LAH10LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC75			SN74ASC75			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {t PLH }}$	C	O	$C_{L}=0$	1	2.1	4.8	1.1	2.1	4.3	ns
tPHL				0.6	1.6	4	0.7	1.6	3.7	ns
tPLH	C	QZ		0.9	2.1	5.1	1	2.1	4.6	ns
tPHL				1.4	2.8	6.4	1.5	2.8	5.8	ns
${ }^{\text {tPLH }}$	D	Q		0.8	1.6	3.6	0.8	1.6	3.3	ns
tPHL				1	1.6	3.6	1	1.6	3.3	ns
${ }^{\text {t PLH }}$	D	QZ		1.2	2.1	4.7	1.2	2.1	4.2	s
tPHL				1.1	2.3	5.3	1.1	2.3	4.7	s
tPLH	C	Q	$C_{L}=1 \mathrm{pF}$	1.5	3.1	7	1.7	3.1	6.3	S
${ }^{\text {tPHL }}$				0.9	2.2	5.5	1	2.2	4.9	s
tPLH	C	QZ		1.4	3.1	7.4	1.5	3.1	6.7	ns
${ }^{\text {tPHL }}$				1.6	3.4	7.9	1.8	3.4	7	ns
tPLH	D	Q		1.3	2.6	5.9	1.4	2.6	5.3	ns
${ }^{\text {tPHL }}$				1.2	2.2	5	1.3	2.2	4.5	ns
tPLH	D	QZ		1.7	3.1	7	1.8	3.1	6.3	ns
tpHL				1.3	2.9	6.8	1.4	2.9	6	ns
$\Delta \mathrm{t}$ PLH	Any	Q, QZ		0.4	1	2.3	0.5	1	2.1	/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.2	0.6	1.5	0.2	0.6	1.3	S/pF

LAH2OLH

PARAMETER ${ }^{\dagger}$	$\begin{gathered} \hline \text { FROM } \\ \text { (INPUT) } \\ \hline \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC75			SN74ASC75			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	C	0	$C_{L}=0$	0.9	1.9	4.5	1	1.9	4	ns
tPHL				0.6	1.7	4.1	0.7	1.7	3.7	
tPLH	C	QZ		1	2.4	5.9	1.1	2.4	5.3	ns
${ }^{\text {t PHL }}$				1.3	2.8	6.6	1.4	2.8	5.9	
${ }^{\text {t PLH }}$	D	0		0.7	1.5	3.5	0.8	1.5	3.2	
tPHL				1	1.7	3.6	1.1	1.7	3.3	
${ }_{\text {tPLH }}$	D	QZ		1.3	2.4	5.4	1.4	2.4	4.9	
tPHL				1.1	2.4	5.6	1.2	2.4	5	s
tPLH	C	Q	$C_{L}=1 \mathrm{pF}$	1.2	2.4	5.6	1.3	2.4	5.1	ns
tPHL				0.8	2	5	0.9	2	4.5	s
tPLH	C	OZ		1.2	2.9	7	1.4	2.9	6.3	ns
tPHL				1.4	3.1	7.4	1.6	3.1	6.7	
tPLH	D	Q		1	2	4.6	1	2	4.2	ns
tPHL				1.2	2	4.5	1.2	2	4.1	
tpLH	D	QZ		1.6	2.9	6.5	1.7	2.9	5.9	ns
tPHL				1.3	2.7	6.4	1.4	2.7	5.8	
Δ tpLH	Any	Q,0Z		0.2	0.5	1.2	0.2	0.5	1.1	s/p
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.3	0.9	0.1	0.3	0.8	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t}$ PLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
\ddagger Typical values are $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC75, SN74ASC75 D-TYPE LATCHES WITH ACTIVE-HIGH ENABLE

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a three-state input/output TTL/CMOS buffer.

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Performs Magnitude Comparison of Binary, BCD, and Monotonic Codes
- Weighted Cascading Inputs Accommodate Both Serial and Parallel Expansion
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC85 and SN74ASC85 are standard-cell software macros implementing 4-bit expandable magnitude comparators. The 4-bit configuration provides the custom IC designer a magnitude comparator to embed in ASICs in its most efficient form. The 'ASC85 implements a comparison scheme identical with that performed by packaged 'HC85, 'LS85 and 'F85 comparators.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

These 4-bit magnitude comparators perform comparison of straight binary and straight BCD(8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (P, Q) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The PGTQO, PLTQO, and PEQQO outputs of a stage handling less significant bits are connected to the corresponding PGTQI, PLTQI, and PEQQI inputs of the next stage handling more significant bits. The stage handling the least significant bits must have a high-level voltage applied to the PEQOI input. The cascading path of the 'ASC85 is implemented with only a two-gate-level delay to reduce overall comparison times for long words. The 'ASC85 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ C_{p d^{\prime}} \\ (\mathrm{pF}) \\ \hline \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AO221LH	2.7	4	10.8	2.36	896	53.6
IV120LH	1	3	3	1.32	315	18.96
NA210LH	1	6	6	3.06	786	47.04
NA310LH	1.25	2	2.5	1	326	19.56
NA410LH	1.5	2	3	1	374	22.4
NA510LH	1.75	7	12.25	3.64	1491	89.6
NA810LH	2.5	2	5	1.22	580	34.8
TOTALS		26	42.55	13.6	4768	286
S85LH Label: S85LH P3,P2,P1,P0,Q3,Q2,Q1,Q0,PGTQI,PLTQ1,PEQQI,PGTQO,PLTQO,PEQQO;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

The SN54ASC85 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC85 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
P3, Q3	P2, $\mathbf{Q 2}$	P1, $\mathrm{Q1}$	PO, QO	PGTQI	PLTQ	PEQQI	PGTQO	PLTQO	PEQQO
P3 $>$ Q3	X	X	X	X	X	X -	H	L	L
$\mathrm{P} 3<\mathrm{Q} 3$	X	X	X	X	X	X	L	H	L
$\mathrm{P} 3=\mathrm{O} 3$	$\mathrm{P} 2>\mathrm{Q} 2$	x	X	X	X	X	H	L	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2<\mathrm{Q} 2$	X	X	x	X	X	L	H	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathrm{P} 1>\mathrm{Q} 1$	X	X	X	X	H	L	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathrm{P} 1<\mathrm{Q} 1$	x	X	X	X	L	H	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathbf{P 1}=\mathbf{Q 1}$	$\mathrm{PO}>\mathrm{QO}$	X	X	X	H	L	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathrm{P} 1=\mathrm{Q1}$	$\mathrm{PO}<\mathrm{QO}$	X	X	X	L	H	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathrm{P} 1=\mathrm{Q} 1$	$P O=00$	H	L	L	H	L	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathrm{P} 1=\mathrm{Q} 1$	$P O=00$	L	H	L	L	H	L
$\mathrm{P} 3=03$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathrm{P} 1=\mathrm{Q} 1$	$\mathrm{PO}=00$	X	X	H	L	L	H
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathbf{P 1}=\mathbf{Q 1}$	$\mathrm{PO}=\mathrm{QO}$	H	H	L	L	L	L
$\mathrm{P} 3=\mathrm{Q} 3$	$\mathrm{P} 2=\mathrm{Q} 2$	$\mathrm{P} 1=\mathrm{Q} 1$	$\mathrm{PO}=\mathrm{QO}$	L	L	L	H	H	L

logic diagram

SN54ASC85, SN74ASC85 4-BIT MAGNITUDE COMPARATORS

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC85		SN74ASC85		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { or MAX } \end{aligned}$		4768		286	nA	
C_{i}	Input capacitance	PEQQI	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.36		0.36			
		PQTQI, PLTQI		0.12		0.12		pF	
		All others		0.37		0.37			
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	13.6		13.6		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\text { }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC85			SN74ASC85			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }_{\text {t }}$ d	Pn, Qn	PGTQO, PLTOO	$C_{L}=0$		12	28		12	25.1	ns
t_{pd}	Pn, On	PEQOO			9	21.5		9	19.5	ns
${ }_{\text {t }}{ }_{\text {d }}$	PLTQI, PEQQI	PGTQO			6	15.9		6	14	ns
${ }_{\text {tpd }}$	PGTQI, PEQQI	PLTQO			5.5	13.2		5.5	11.7	ns
${ }_{\text {t }}{ }^{\text {d }}$	PEQOI	PEQQO			3	7.6		3	6.6	ns
$\Delta t_{\text {pd }}$	Any	Any		0.3	0.5	1.1	0.3	0.5	1	ns/pF

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with capacitance
${ }^{\S} T_{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S85LH;

P3 @INPUT;
P2
P1 @INPUT;
PO @INPUT;

Q3
@INPUT;

Q2 @INPUT;
Q1 @INPUT;
Q0 @INPUT;
PGTQI @INPUT;
PLTQI @INPUT;
PEQQI @INPUT;
PGTQO @OUTPUT;
PLTQO @OUTPUT;
PEQQO @OUTPUT;

STRUCTURE

A01
AO2
AO3
AO4
G01
GO2
G03
GO4
G17
G18
G19
G20
G21

G22

G23

G24
G25
G26
G27
G28
G29
G30
G31
G32
G33
G34
:AO221LH
:A0221LH
:A0221LH
:AO221LH :NA210LH :NA210LH :NA210LH :NA210LH :NA210LH :NA310LH :NA410LH :NA510LH :NA510LH :NA510LH :NA510LH :NA510LH :NA510LH :NA410LH :NA310LH :NA210LH :NA810LH :NA510LH :NA810LH :IV120LH :IV120LH :IV120LH

P3,G10,G10,Q3,A010; P2,G2O,G20,Q2,A020; P1,G30,G30,Q1,A030; PO,G40,G40,Q0,AO40; P3,Q3,G10; P2, Q2,G20; P1,Q1,G30; PO,Q0,G4O; Q3,G10,G170; Q2,G2O,AO10,G180; Q1,G30,A010,A020,G190; Q0,G4O,AO1O,AO2O,AO3O,G200; AO10,AO20,AO30,A040,PLTQI,G210; A010,AO2O,AO30,A040,PEQQI,G22O;
PEQQI,AO40,A030,AO2O,AO1O,G230;
AO40,A030,AO2O,A010,PGTQI,G24O;
A030,AO2O,A010,G40,PO,G25O;
AO2O,AO10,G30,P1,G260;
AO10,G2O,P2,G27O;
G10,P3,G280;
G170,G170,G180,G180,G190,G200,G210,G22O,G290;
A010,AO20,A030,AO40,PEQQI,G300;
G230,G24O,G25O,G26O,G27O,G27O,G28O,G28O,G31O;
G290,PGTQO;
G300,PEQQO; G310,PLTQO;

END S85LH;

SN54ASC85，SN74ASC85 4－BIT MAGNITUDE COMPARATORS

TYPICAL APPLICATION INFORMATION

[^28]
SN54ASC86, SN74ASC86 2-INPUT EXCLUSIVE-OR GATES

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Three Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

$$
Y=A \oplus B=\bar{A} B+A \bar{B}
$$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
A	B	
L	L	L
L	H	H
H	L	H
H	H	L

description

The SN54ASC86 and SN74ASC86 are 2 -input exclusive-OR gate CMOS standard cells each implementing the equivalent of one-fourth of an SN54LS86 or SN74LS86 device. The standard-cell library contains three physical implementations to provide the custom IC designer a choice between three performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	nETLIST hDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \hline \end{gathered}$	RELATIVE CELL AREA TO NA210LH
EX210LH		2.3 ns	2
EX220LH	Label: EX2nOLH A, B, Y;	2 ns	2.25
EX240LH		2 ns	2.5

The SN54ASC86 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC86 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		EX210LH		EX220LH		EX240LH		UNIT		
			TYP	MAX	TYP	MAX	TYP	MAX					
V_{T}	Input threshold	voltage			$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}$	2.2		2.2		2.2		V
${ }^{\text {I CC }}$ Supply current		SN54ASC86	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			218		252		287	nA		
		SN74ASC86				13.1		15.1		17.2			
C_{i}	Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}$	0.19		0.19		0.19		pF		
C_{pd}	Equivalent pow dissipation cap	acitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=$	1		1.35		2.55		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

EX210LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC86			SN74ASC86			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.8	1.3	2.5	0.8	1.3	2.3	ns
tPHL				0.5	1.3	3.2	0.5	1.3	2.9	
${ }_{\text {t }}$ LLH	A or B	Y	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	1.3	2.3	4.8	1.4	2.3	4.4	ns
tPHL				1	2.3	6	1.1	2.3	5.4	
Δ tpLH	A or B	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1	2.9	0.5	1	2.5	

EX220LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC86			SN74ASC86			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.7	1.4	2.7	0.8	1.4	2.5	ns
tPHL				0.5	1.4	3.2	0.5	1.4	2.9	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1	1.9	3.8	1.1	1.9	3.5	ns
tPHL				0.8	2.1	5	0.9	2.1	4.5	
$\Delta \mathrm{tPLH}$	A or B	Y		0.3	0.5	1.2	0.3	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.3	0.7	1.9	0.3	0.7	1.7	

EX240LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		54ASC			74AS		
PARA	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.8	1.6	3.2	0.9	1.6	2.9	ns
tPHL				0.5	1.6	3.8	0.6	1.6	3.5	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1	1.9	3.8	1.1	1.9	3.5	ns
tPHL				0.7	2	5	0.8	2	4.4	
\triangle tPLH	A or B	Y	- .	0.1	0.3	0.7	0.1	0.3	0.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.2	0.4	1.2	0.2	0.4	1.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SN54ASC109, SN74ASC109 J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary Q and QZ Outputs
- Positive-Edge Triggered with J and KZ Data Inputs
- CLRZ and PREZ Inputs Provide Asynchronous Initialization
- J and KZ Inputs Simplify Implementation of Toggle Flip-Flops

description

The SN54ASC109 and SN74ASC109 are dedicated, hardwired, standard-cell macros implementing positive-edge-triggered flip-flops. A low level at the PREZ or CLRZ input controls the state of the outputs regardless of the levels of the other inputs. When PREZ AND CLRZ are inactive (high), data at the J and $K Z$ inputs meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock transition. Following the hold time interval, data at the J and $K Z$ inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as D-type flip-flops if J and $K Z$ are tied together. The JK2OLH flip-flop implements the function and sequential operation identical to one-half of the 'LS109, 'S109, or 'F109 packaged flip-flops. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
	NETLIST HDL LABEL	MAXIMUM CLOCK FREQUENCY	RELATIVE CELL AREA TO NA210LH
	Label: JKB2OLL CLRZ,PREZ,J,KZ,CLK,O,OZ;	44.2 MHz	10

The SN54ASC109 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC109 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS					OUTPUTS	
PREZ	CLRZ	CLK	J	KZ	0	OZ
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	x	X	X	H^{\ddagger}	H^{\ddagger}
H	H	1	L	L	L	H
H	H	1	H	L	TOG	
H	H	1	L	H	O_{0}	$\overline{0_{0}}$
H	H	1	H	H		L
H	H	L	X	X	O_{0}	$\overline{0_{0}}$

\ddagger This configuration is nonstable; that is, it will not persist when PREZ or CLRZ return to their inactive (high) level.
${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		MIN	MAX	UNIT
Clock frequency		0	44.2	MHz
$\mathrm{t}_{\mathrm{w}} \quad$ Pulse duration	CLRZ low	9		ns
	PREZ low	9		
	CK High	11.4		
	CK low	11.4		
$\mathrm{t}_{\text {su }} \quad$ Setup time	CLRZ inactive	1.8		ns
	PREZ inactive	-0.4		
$t_{h} \quad$ Hold time	J or KZ low	9		ns
	CLRZ low	3		
	PREZ low	9.6		
	J or KZ high or low	0		

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54	C019	SN74	C019	UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vol			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		1181		70.9	nA	
C_{i}	Input capacitance	PREZ or CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.25		0.25		pF	
		J		0.12		0.12			
		KZ		0.13		0.13			
		CLK		0.13		0.13			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	4.81		4.81		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC109			SN74ASC109			UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,QZ	$C_{L}=0$	1.8	5	13.5	2	5	11.9	ns
tPHL				1.9	4.5	12.2	2.1	4.5	10.9	
tPLH	PREZ,CLRZ	Q, QZ		2	4.2	11	2.2	4.2	9.8	ns
tPHL				1.1	2.2	5.2	1.2	2.2	4.7	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2.1	5.5	14.6	2.3	5.5	13	ns
${ }_{\text {tPHL }}$				2.1	4.9	13.1	2.2	4.9	11.7	
${ }^{\text {tPLH }}$	PREZ,CLRZ	Q,QZ		2.3	4.7	12.2	2.5	4.7	10.9	ns
tPHL				1.3	2.6	6.4	1.4	2.6	5.8	
$\Delta \mathrm{tPLH}$	Any	Q, QZ		0.2	0.5	1.3	0.2	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$				0.1	0.4	1.2	0.1	0.4	1.1	

[^29]
SN54ASC109, SN74ASC109 J-K POSITIVE-EDGE-TRIGGERED FLIP-FLOPS

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

designing for testability

Designs employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC109 or SN74ASC109 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC137, SN74ASC137 3-LINE TO 8-LINE DECODERS|DEMULTIPLEXERS WITH ADDRESS LATCHES

D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Latched Address Lines Ensure Stable Bus Interfaces
- Expandable Select Width
- Parallel Decoders for Multiple-Bit Words

description

The SN54ASC137 and SN74ASC137 are standard-cell software macros implementing a 3 -line to 8 -line decoder/demultiplexer. The 'ASC137 incorporates a 3-bit latch on the three address inputs to simplify system design, as the data selected is stored and is available until replaced by another selection. The 'ASC137 implements the full function table identical with that performed by packaged ICs such as the 'LS137.

When the latch-enable input (GLZ) is low, the 'ASC137 acts as a decoder/demultiplexer. When GLZ goes from low to high, the address present
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. at the select inputs (A, B, and C) is stored in the latches. Further address changes are ignored as long as GLZ remains high. This latching capability makes the 'ASC137 ideally suited for implementing stable decoders for strobed (stored-address) applications in bus-oriented systems.

Also provided in the macro are output controls, G1 and G2Z, that enable and disable the outputs when G 1 is low or G2Z is high. When enabled (G 1 high and G2Z low), the selected output is low. These enables permit the 'ASC137 to be cascaded to accommodate wider multiplexers, as only the enabled 8-bit field will contain an active data bit. The 'ASC137 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathbf{C}_{\text {pd }}{ }^{\ddagger} \\ \text { (pF) } \\ \hline \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	5	3.75	2.2	525	31.6
AN210LH	1.5	6	9	5.4	1164	69.6
NO210LH	1	7	7	2.31	896	54
NA420LH	2.5	8	20	7.68	290	149.6
TOTALS		26	39.75	17.59	2875	305
Label: S137LH C,B,A,GLZ,G2Z,G1,Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y6;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC137 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC137 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC137, SN74ASC137
 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

FUNCTION TABLE

INPUTS						OUTPUTS							
ENABLE			SELECT										
GLZ	G1	G2Z	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	X	H	X	X	X	H	H	H	H	H	H	H	H
X	L	X	X	X	X	H	H	H	H	H	H	H	H
L	H	L	L	L	L	L	H	H	H	H	H	H	H
L	H	L	L	L	H	H	L	H	H	H	H	H	H
L	H	L	L	H	L	H	H	L	H	H	H	H	H
L	H	L	L	H	H	H	H	H	L	H	H	H	H
L	H	L	H	L	L	H	H	H	H	L	H	H	H
L	H	L	H	L	H	H	H	H	H	H	L	H	H
L	H	L	H	H	L	H	H	H	H	H	H	L	H
L	H	L	H	H	H	H	H	H	H	H	H	H	L'
H	H	L	X	X	X		put	rres	$\begin{aligned} & \text { Idin } \\ & \text { I ot } \end{aligned}$	$\begin{aligned} & \mathrm{ostc} \\ & \mathrm{~s}= \end{aligned}$	$d z$		

logic diagram

SN54ASC137, SN74ASC137 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC137		SN74ASC137		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=\mathrm{MIN} t \end{aligned}$	$V_{1}=V_{C C} \text { or } 0$		2875		305	nA		
C_{i}	Input capacitance	A,B,C	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.25		0.25		pF		
		GLZ,G1			0.12		0.12				
		G2Z			0.11		0.11				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$,	17.59		17.59		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\text { }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC137			SN74ASC137			UNIT
				MIN	TYP ${ }^{\text {§ }}$	MAX	MIN	TYP§	MAX	
t_{pd}	A,B,C,GLZ	Any	$C_{L}=0$		12	25.8		12	23.3	ns
${ }^{\text {p }}$ d	G1 or G2Z	Any			5	12.3		5	11.3	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Any		0.3	0.7	2.3	0.3	0.7	2	ns/pF

[^30]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for a reference.

BLOCK S137LH;

C	@INPUT;
B	@INPUT;
A	@INPUT;
GLZ	@INPUT;
G2Z	@INPUT;
G1	@INPUT;
Y0	@OUTPUT;
Y1	@OUTPUT;
Y2	@OUTPUT;
Y3	@OUTPUT;
Y4	@OUTPUT;
Y5	@OUTPUT;
Y6	@OUTPUT;
Y7	@OUTPUT;

STRUCTURE

AN1 :AN210LH
AN,GLP,LIAP;
A,GLP,LIAN;
BN,GLP,LIBP;
B,GLP,LIBN;
CN,GLP,LICP;
C,GLP,LICN;
A,AN;
B,BN;
C,CN;
GLZ,GLP;
G1,IV5O;
LOAD,LOBN,LOCN,OC,YO;
LOAP,LOBN,LOCN,OC,Y1;
LOAN,LOBP,LOCN,OC,Y2;
LOAP,LOBP,LOCN,OC,Y3;
LOAN,LOBN,LOCP,OC,Y4;
LOAP,LOBN,LOCP,OC,Y5;
LOAN,LOBP,LOCP,OC,Y6;
LOAP,LOBP,LOCP,OC,Y7;
LIAP,LOAN,LOAP;
LOAP,LIAN,LOAN;
LIBP,LOBN,LOBP;
LOBP,LIBN,LOBN;
LICP,LOCN,LOCP;
LOCP,LICN,LOCN;
G2Z,IV5O,OC;

Dedicated 2-line to 4 -line decoder cells ('ASC2350) are also available in the standard cell library for implementing small data-path decoders. Two predesigned cells, designated as the DE210LH and the DE212LH, are offered. The DE212LH cell incorporates an enable input that can be used for expanding the word width. Latch cells can be added at the select inputs to facilitate storage. These hardwired cells should be considered if the decoder is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.
The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

SN54ASC138, SN74ASC138 3-LINE TO 8-LINE DECODERS|DEMULTIPLEXERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Three Enable Inputs for Expandability
- Choice of an Active-High or Two ActiveLow Enables
- Parallel Decoders for Multiple-Bit Words

description

The SN54ASC138 and SN74ASC138 are standard-cell software macros implementing a 3 -line to 8 -line decoder/demultiplexer. The 'ASC138 implements the full function table identical with that performed by packaged ICs such as the 'LS138, 'S138, and 'F138.

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Also provided in the macro are strobe inputs G1, G2AZ, and G2BZ, which enable and disable the inputs. All of the outputs are high, disabled, unless G1 is high and unless G2AZ and G2BZ are low, enabling the outputs. When enabled the selected output assumes a low-logic level. These strobes also permit the 'ASC138 to be cascaded to accommodate wider multiplexers, as only the enabled 8-bit field will contain an active data bit. The 'ASC 138 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210L.H	NO. USED	TOTAL RELATIVE CELL AREA	TOTAL $\mathbf{C}_{\text {pd }}{ }^{\ddagger}$ (pF)	MAXIMUM ICC (nA)	

[^31]The SN54ASC138 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC138 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						OUTPUTS							
ENABLE			SELECT										
G1	G2AZ	G2BZ	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	X	H	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	L	H	H	H	H	H	L	H	H	H	H
H	L	L	H	L	L	H	H	H	H	L	H	H	H
H	L	L	H	L	H	H	H	H	H	H	L	H	H
H	L	L	H	H	L	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L

logic diagram (positive logic)

$L x=L H$ for $2-\mu m$ standard cells.

SN54ASC138, SN74ASC138
 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC138		SN74ASC138		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		3699		222	nA	
C_{i}	Input capacitance	A, B,C	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.24		0.24		pF	
		G1		0.12		0.12			
		G2AZ, G2BZ		0.35		0.35			
C_{pd}	Equivalent power dissipation capacit		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	13.8		13.8		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\text { }}$	$\begin{aligned} & \hline \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC138			SN74ASC138			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }_{\text {t }}^{\text {pd }}$	A,B,C	Any	$C_{L}=0$		4	8.1		4	7.5	ns
${ }^{\text {p }}$ pd	$\begin{gathered} \text { G1, G2AZ, } \\ \text { or G2BZ } \end{gathered}$	Any			7	13.2		7	12.2	ns
$\Delta t_{\text {pd }}$	Any	Any		0.3	0.7	2.3	0.3	0.7	2	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\mathrm{t}} \mathrm{pd} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actu-1 interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S138LH;

G1	@INPUT;
G2AZ	@INPUT;
G2BZ	@INPUT;
A	@INPUT;
B	@INPUT;
C	@INPUT;
Y0	@OUTPUT;
Y1	@OUTPUT;
Y2	@OUTPUT;
Y3	@OUTPUT;
Y4	@OUTPUT;
Y5	@OUTPUT;
Y6	@OUTPUT;
Y7	@OUTPUT;

STRUCTURE
G01 :NA420LH

G110,G130,G150,G100,Y0; G120,G130,G150,G100,Y1; G110,G140,G150,G100,Y2; G120,G140,G150,G100,Y3; G110,G130,G160,G100,Y4; G130,G160,G120,G100,Y5; G110,G160,G140,G100,Y6; G100,G120,G140,G160,Y7; G1,G090; G090,G2AZ,G2BZ,G100;
A,G110;
G110,G120;
B,G130;
G130,G140;
C, G150;
G150,G160;

Dedicated 2-line to 4-line decoder cells ('ASC2350) are also available in the standard cell library for implementing small, data-path decoders. Two predesigned cells, designated as the DE210LH and the DE212LH, are offered. The DE212LH cell incorporates an enable input that can be used for expanding the word width. Latch cells can be added at the select inputs to implement storage. These hardwired cells should be considered if the decoder is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Enable Input Permits Expansion of Each Decoder

- Parallel Decoders for Multiple Bit Words

description

The SN54ASC139 and SN74ASC139 are standard-cell software macros implementing dual 2 -line to 4 -line decoders/demultiplexers. The 'ASC139 implements the full function table identical with that performed by packaged ICs such as the 'LS139A, 'S139, and 'F139.

Also provided in the macro are two strobe inputs G1Z and G2Z that enable and disable the outputs. The four outputs of a decoder are high when its corresponding strobe is high. When the strobe is low, the selected output is low. These strobes, G1Z for decoder 1 and G2Z for decoder 2, permit the 'ASC139 decoders to be cascaded to accommodate wider multiplexers, as only the enabled 4-bit field will contain an active data bit. The 'ASC139 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL relative CELL AREA	$\begin{gathered} \text { TOTAL } \\ \text { C }_{\text {pd }}{ }^{\ddagger} \\ \text { (pF) } \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	8	6	3.52	840	50.56
IV120LH	1	2	2	1.6	262	15.7
NA320LH	2	8	16	7.52	2040	122.4
TOTALS		18	24	12.64	3142	189
Label: S139LH A1,B1,G1Z,A2,B2,G2Z,Y10,Y11,Y12,Y13,Y20,Y21,Y22,Y23;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC139 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC139 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS			OUTPUTS			
$\begin{gathered} \text { ENABLE } \\ \text { GnZ } \end{gathered}$	SELECT					
	Bn	An	Yn0	Yn1	Yn2	Yn3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC139		SN74ASC139		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		3142		189	$n A$	
C_{i}	Input capacitance	An, Bn	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF	
		GnZ		0.24		0.24			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$,	12.64		12.64		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{*}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC139			SN74ASC139			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
$t_{\text {pd }}$	An or Bn	Any	$C_{L}=0$		4	8.1		4	7.5	ns
$t_{\text {pd }}$	GnZ	Any			3	5.2		3	4.8	ns
$\Delta t_{p d}$	Any	Any		0.3	0.6	1.8	0.3	0.6	1.5	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$t_{\text {pd }} \equiv$ propagation delay time, low-to-high or high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance

NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design.
The HDL for this soft macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S139LH;

A1	@INPUT;
B1	@INPUT;
G1Z	@INPUT;
A2	@INPUT;
B2	@INPUT;
G2Z	@INPUT;
Y10	@OUTPUT;
Y11	@OUTPUT;
Y12	@OUTPUT;
Y13	@OUTPUT;
Y20	@OUTPUT;
Y21	@OUTPUT;
Y22	@OUTPUT;
Y23	@OUTPUT;

STRUCTURE

G11	:IV120LH	G1Z,G110;
G12	:IV110LH	A1,G120;
G13	:IV110LH	B1,G130;
G14	:IV110LH	G120,G140;
G15	:IV110LH	G130,G150;
G16	:NA320LH	G120,G130,G110,Y10;
G17	:NA320LH	G110,G130,G140,Y11;
G18	:NA320LH	G110,G120,G150,Y12;
G19	:NA320LH	G110,G140,G150,Y13;
G21	:IV120LH	G2Z,G210;
G22	:IV110LH	A2,G220;
G23	:IV110LH	B2,G230;
G24	:IV110LH	G22O,G24O;
G25	:IV110LH	G230,G250;
G26	:NA320LH	G220,G230,G210,Y20;
G27	:NA320LH	G210,G230,G240,Y21;
G28	:NA320LH	G210,G220,G250,Y22;
G29	:NA320LH	G210,G240,G250,Y23;
END		

Dedicated 2 -line to 4 -line decoder cells ('ASC2350) are also available in the standard cell library for implementing small, data-path decoders. Two predesigned cells, designated as the DE210LH and the DE212LH, are offered. The DE212LH cell incorporates an enable input that can be used for expanding the word width. Latch cells can be added at the select inputs to facilitate storage. These hard-wired cells should be considered if the decoder is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either noninverting or inverting input cells when interfacing off-chip for the input data words. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

SystemCell $^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Active-Low Strobe for Expandability
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC151 and SN74ASC151 are standard-cell software macros implementing 8 -line to 1 -line multiplexers. The 'ASC151 implements a function table identical with that performed by packaged 'HC151, 'LS151, 'S151, and 'F151 multiplexers.

The macro has a strobe input, GZ, that enables and disables the inputs. The Y output is low and the W output is high when GZ is high. When GZ is low, the Y output assumes the level of the selected input and the W output assumes the complement of that level. This strobe permits the macro to be employed for designing wider multiplexers, as only the enabled 8-bit field will output an active data bit. The 'ASC151 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathbf{c}_{\text {pd }}{ }^{\ddagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	3	2.25	1.32	310	19
IV120LH	1	5	5	4	655	39.3
NA510LH	1.75	8	14	4.16	1704	102.4
NA810LH	2.5	1	2.5	0.61	290	17.4
TOTALS		17	23.75	10.09	2964	179
Label: S151LH GZ,A,B,C,D0,D1, D2,D3,D4,D5,D6,D7,Y,W;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC151 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC151 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUTS	
SELECT			STROBE		
C	B	A	GZ	Y	W
X	X	X	H	L	H
L	L	L	L	D0	$\overline{\text { D0 }}$
L	L	H	L	D1	$\overline{\text { D1 }}$
L	H	L	L	D2	$\overline{\text { D2 }}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

See explanation of Function Tables in Section 1. D0, D1. . .D7 = the level of the respective D input.
logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC151		SN74ASC151		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$ Supply current			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { or MAX } \end{aligned}$		2964		179	nA	
	Input capacitance	GZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24			
		All other inputs		0.12		0.12		pF	
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}{ }^{\dagger}$			$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	10.09		10.09		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC151			SN74ASC151			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
t_{pd}	A, B, or C	Y	$C_{L}=0$		7	16.5		7	14.8	ns
${ }^{\text {p }}$ d		W			8	17.5		8	15.8	ns
${ }_{\text {t }}{ }^{\text {d }}$	Any D	Y			4	10.1		4	8.9	ns
${ }_{\text {pd }}$		W			4.5	11.1		4.5	9.9	
${ }_{\text {t }}^{\text {pd }}$	GZ	Y			5.5	12.7		5.5	11.3	ns
${ }^{\text {p }}$ d		W			6	13.7		6	12.3	
$\Delta t_{\text {pd }}$	Any Any	Y		0.6	2.6	8.7	0.6	2.6	7.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{p d}$		W		0.3	0.5	1.1	0.3	0.5	1	

\ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\text {pd }} \equiv$ propagation delay time, low-to-high or high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance

NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S151LH;	
GZ	@INPUT;
A	@INPUT;
B	@INPUT;
C	@INPUT;
D0	@INPUT;
D1	@INPUT;
D2	@INPUT;
D3	@INPUT;
D4	@INPUT;
D5	@INPUT;
D6	@INPUT
D7	@INPUT;
Y	@OUTPUT;
W	@OUTPUT;

STRUCTURE
G01 :NA510LH
GO2 :NA510L
G03
GO
GO
GO
GO7
G08
GO9
INV
INV2
INV3
INV4
INV5
NV6 :IV120LH
INV7 :IV120LH GZ,INV70;
CZ,BZ,AZ,DO,INV7O,UO;
CZ,BZ,AT,D1,INV70,U1;
4
:NA510LH
CZ,BT,AZ,D2,INV70,U2;
CZ,BT,AT,D3,INV70,U3;
CT,BZ,AZ,D4,INV7O,U4;
CT,BZ,AT,D5,INV70,U5;
CT,BT,AZ,D6,INV7O,U6;
CT,BT,AT,D7,INV70,U7;
U7,U6, U5, U4, U3, U2, U1, U0, Y;
A,AZ;
B,BZ;
C,CZ;
AZ,AT;
BZ,BT;
CZ,CT;
INV8 :IV120LH Y,W;
END S151LH;
Dedicated 8 -line to 1 -line multiplexers ('ASC2342) are also available in the standard cell library for implementing data-path multiplexers. The 'ASC2342 cell incorporates an enable input that can be used for expanding the word width. These hardwired cells should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3 -state input/output TTL/CMOS buffer.

If bus interface is needed, the 'ASC251 8 -line to 1 -line multiplexer incorporates 3 -state outputs capable of driving internal data buses.

SN54ASC153, SN74ASC153 DUAL 4-LINE TO 1-LINE MULTIPLEXERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Active-Low Strobe for Expandability
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC153 and SN74ASC153 are standard-cell software macros implementing dual 4 -line to 1 -line multiplexers. The 'ASC153 implements a function table identical with that performed by packaged 'HC153, 'LS153, 'S153, and 'F153 multiplexers.

Each 4-bit half of the macro has a strobe input that enables and disables its associated inputs. The Yn output is low when GnZ is high. When GnZ is low, the output assumes the level of the selected input. These strobes permit the macro to be employed for designing wider multiplexers, as only the enabled 4-bit field will output an active data bit. The 'ASC153 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The SN54ASC153 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC153 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						$\begin{gathered} \text { STROBE } \\ \text { GnZ } \end{gathered}$	OUTPUT Y
SELECT		DATA					
B	A	CO	C1	C2	C3		
X	X	X	X	X	X	H	L
L	L	L	X	x	X	L	L
L	L	H	X	x	X	L	H
L	H	X	L	x	X	L	L
L	H	x	H	X	X	L	H
H	L	x	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	x	X	X	L	L	L
H	H	X	X	X	H	L	H

logic diagram

SN54ASC153, SN74ASC153 DUAL 4-LINE TO 1-LINE MULTILPLEXERS
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER		TEST CONDITIONS		SN54ASC153		SN74ASC153		UNIT		
		TYP	MAX	TYP	MAX					
	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MINo} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0$		2750		165	nA		
C_{i}	Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	8.56		8.56		pF		

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (See Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO	TEST	SN54ASC153			SN74ASC153			UNIT
		(OUTPUT)	CONDITIONS	MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }^{\text {pd }}$	A or B	Y	$C_{L}=0$		8	13.7		8	12.4	ns
${ }_{\text {tpd }}$	Any C	Y			4	7.1		4	6.3	ns
${ }^{\text {p }}$ pd	G1Z or G2Z	Y			6.5	10.4		6.5	9.3	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Y		0.3	0.7	2.3	0.3	0.7	2	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $t_{p d} \equiv$ propagation delay time, low-to-high or high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this soft macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK	S153LH;
G1Z	@INPUT;
G2Z	@INPUT;
A	@INPUT;
B	@INPUT;
C10	@INPUT;
C11	@INPUT;
C12	@INPUT;
C13	@INPUT;
C20	@INPUT;
C21	@INPUT;
C22	@INPUT;
C23	@INPUT;
Y1	@OUTPUT;
Y2	@OUTPUT;

STRUCTURE

G01	:NA410LH	STB1Z,BZ,AZ,C10,U10;
G02	:NA410LH	STB1Z,BZ,AT,C11,U11;
G03	:NA410LH	STB1Z,BT,AZ,C12,U12;
G04	:NA410LH	STB1Z,BT,AT,C13,U13;
G05	:NA410LH	C20,BZ,AZ,STB2Z,U20;
G06	:NA410LH	C21,BZ,AT,STB2Z,U21;
G07	:NA410LH	C22,BT,AZ,STB2Z,U22;
G08	:NA410LH	C23,BT,ZT,STB2Z,U23;
G09	:NA420LH	U10,U11,U12,U13,Y1;
G10	:NA420LH	U20,U21,U22,U23,Y2;
INV1	:IV110LH	A,AZ;
INV2	:IV110LH	B,BZ;
INV4	:IV110LH	AZ,AT;
INV5	:IV110LH	BZ,BT;
INV7	IV110LH	G1Z,STB1Z;
INV8	:IV110LH	G2Z,STB2Z;
END S153LH;		

Dedicated 4-line to 1 -line multiplexers ('SC2341) are also available in the standard cell library for implementing data-path multiplexers. These hardwired cells should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3 -state input/output TTL/CMOS buffer.

SN54ASC155, SN74ASC155 DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS WITH DATA AND ENABLE LINES

- SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Enable Input Permits Expansion of Each Decoder
- Individual Data Inputs to Each 4-Line Decoder
- Parallel Decoders for Multiple Bit Words

description

The SN54ASC155 and SN74ASC155 are standard-cell software macros implementing 8 -line or dual 4 -line decoders/demultiplexers. The 'ASC155 implements the full function table identical with that performed by packaged ICs such as the 'LS155A.

The A and B inputs are common to the two sections of the macro and select one of the four outputs in each section. Each section has a C input ANDed with a G input and for 4 -line demultiplexer applications, a choice can be made in the use of these inputs as strobe and data inputs. In Section 1, when C1 is high the selected output assumes the level of G1Z, or to view this another way, when G1Z is low the selected output assumes the complement of the level of C1. In Section 2, C2Z and G 2 Z are interchangeable. When both are low, the selected output is low. When one of them is high, all outputs are high. Because the active levels of C 1 and C 2 Z are complementary, they can be connected together in 3 -line to 8 -line decoder or 1 -line to 8 -line demultiplexer applications to serve as the third (C) select line with A and B. G1Z and G2Z are connected together as the active-low strobe or data line.

The 'ASC155 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	TOTAL $\mathrm{C}_{\mathrm{pd}}{ }^{\ddagger}$ (pF)	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV120LH	1	4	4	3.2	524	31.4
NA320LH	2	8	16	7.52	2040	122.4
NO220LH	1.5	2	3	1.04	370	22.2
TOTALS		15	23.75	12.2	3039	183
Label: S155LH C1,G1Z,C2Z,G2Z, A, B, Y10,Y11,Y12,Y13,Y20,Y21,Y22,Y23;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC155 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC155 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS WITH DATA AND ENABLE LINES

$\dagger \mathrm{C}=$ inputs C 1 and $\mathrm{C} 2 Z$ connected together
$\ddagger \overline{\mathrm{G}}=$ inputs $\mathrm{G} 1 Z$ and $\mathrm{G} 2 Z$ connected together
logic diagram

SN54ASC155, SN74ASC155 DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS WITH DATA AND ENABLE LINES

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC155		SN74ASC155		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		3039		183	nA	
C_{i}	Input capacitance	A, B	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.24		0.24		pF	
		C1		0.12		0.12			
		C2Z, GnZ		0.24		0.24			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	12.2		12.2		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM	TO	TEST CONDITIONS	SN54ASC155			SN74ASC155			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text {§ }}$	MAX	
$t_{\text {pd }}$	A or B	Any	$C_{L}=0$		4	7.5		4	6.9	ns
${ }_{\text {t }}^{\text {pd }}$	GnZ or Cn	Any Yn			5	8.6		5	8.1	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Any		0.3	0.6	1.8	0.3	0.6	1.5	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $t_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance

NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for a reference.

HDL FILE

BLOCK S155LH;

C1	@INPUT;
G12	@INPUT;
C2Z	@IPUUT;
G2Z	@INPUT;
A	@INPUT;
B	@INPUT;
Y10	@OUTPUT;
Y11	@OUTPUT;
Y12	@OUTPUT;
Y13	@OUTPUT;
Y20	@OUTPUT;
Y21	@OUTPUT;
Y22	@OUTPUT;
Y23	@OUTPUT;

STRUCTURE

INV1	:IV110LH	C1,INV10;
INV2	:IV120LH	A,INV2O;
INV3	:IV120LH	INV20,INV3O;
INV4	:IV120LH	B,INV4O;
INV5	:IV120LH	INV4O,INV5O;
NA1	:NA320LH	NO10,INV2O,INV4O, Y10;
NA2	:NA320LH	NO10,INV30,INV4O,Y11;
NA3	:NA320LH	NO10,INV2O,INV50,Y12;
NA4	:NA32OLH	NO10,INV30,INV50,Y13;
NA5	:NA320LH	NO2O,INV20,INV4O, Y20;
NA6	:NA320LH	NO2O,INV30,INV4O, Y21;
NA7	:NA320LH	NO2O,INV2O,INV5O, Y22;
NA8	:NA320LH	NO2O, INV30,INV50, Y23;
NO1	:NO220LH	G1Z,INV10,NO10;
NO2	:NO220LH	G2Z,C2Z,NO2O;

Dedicated 2-line to 4-line decoder cells ('ASC2350) are also available in the standard cell library for implementing small, data-path decoders. Two predesigned cells, designated as the DE210LH and the DE212LH, are offered. The DE212LH cell incorporates an enable input that can be used for expanding the word width. Latch cells can be added at the select inputs to provide storage. These hardwired cells should be considered if the decoder is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

SN54ASC157, SN74ASC157 QUADRUPLE 2-LINE TO 1-LINE NONINVERTING MULTIPLEXERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Active-Low Strobe for Expandability
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC157 and SN74ASC157 are standard-cell software macros implementing four 2 -line to 1 -line multiplexers. The 'ASC157 implements a function table identical with that performed by packaged 'HC157, 'LS157, 'S157, and ' F 157 multiplexers.

The macro has a strobe input, GZ, that enables and disables the outputs. The Y output is forced low when GZ is high. When GZ is low, the outputs assume the level of the selected inputs.
This strobe permits the macro to be employed for designing wider multiplexers, only the enabled 2-bit field will output an active data bit. The 'ASC157 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathbf{C}_{\text {pd }}{ }^{\ddagger} \\ & \text { (pF) } \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	2	1.5	0.88	210	12.64
NA210LH	1	12	12	6.12	1572	94.08
AN220LH	1.75	2	3.5	2.4	456	27.2
TOTALS		16	17	9.4	2238	134
Label: S157LH A1,A2,A3,A4,B1,B2,B3,B4,AZ_B,GZ,Y1,Y2,Y3,Y4;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC157 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC157 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				
OUTPUT				
	SELECT	DATA		Y
GZ	AZ_B	A	B	
H	X	X	X	L
L	L	L	X	L
L	L	H	X	H
L	H	X	L	L
L	H	X	H	H

logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC157		SN74ASC157		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vol			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$		2238		134	nA	
C_{i}	Input capacitance	AZ_B	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.25		0.25		pF	
		All others		0.12		0.12			
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	9.4		9.4		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC157, SN74ASC157 QUADRUPLE 2-LINE TO 1-LINE NONINVERTING MULTIPLEXERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO	TEST	SN54ASC157			SN74ASC157			UNIT
		(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {p }}$ p	Any A or B	Y	$C_{L}=0$		2.2	4		2.2	3.7	ns
${ }_{\text {t }}$ d	GZ or $A Z$ _ B	Y			5.5	10.6		5.5	9.9	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Y		0.5	1.1	2.7	0.5	1.1	2.5	$\mathrm{ns} / \mathrm{pF}$

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$t_{p d} \equiv$ propagation delay time, low-to-high or high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
${ }{ }^{\text {Typical }}$ values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC157, SN74ASC157 QUADRUPLE 2-LINE TO 1-LINE NONINVERTING MULTIPLEXERS

HDL FILE

BLOCK S157LH;

A1	@INPUT;
A2	@INPUT;
A3	@INPUT;
A4	@INPUT;
B1	@INPUT;
B2	@INPUT;
B3	@INPUT;
B4	@INPUT;
AZ_B	@INPUT;
GZ	@INPUT
Y1	@OUTPUT;
Y2	@OUTPUT;
Y3	@OUTPUT;
Y4	@OUTPUT;

STRUCTURE

G01	:NA210LH	G05O,G06O,Y1;
G02	:NA210LH	G070,G08O,Y2;
G03	:NA210LH	G090,G100,Y3;
G04	:NA210LH	G110,G12O,Y4;
G05	:NA210LH	A1,G130,G05O;
G06	:NA210LH	B1,G140,G06O;
G07	:NA210LH	A2,G130,G070;
G08	:NA210LH	B2,G140,G08O;
G09	:NA210LH	A3,G130,G090;
G10	:NA210LH	B3,G140,G100;
G11	:NA210LH	A4,G130,G110;
G12	:NA210LH	B4,G140,G12O;
G13	:AN220LH	G15O,G16O,G13O;
G14	:AN220LH	AZ-B,G16O,G14O;
G15	:IV110LH	AZ-B,G15O;
G16	:IV110LH	GZ,G16O;
END S157LH;		

Dedicated 2-line to 1 -line multiplexers are also available in the standard cell library ('SC2340) for implementing data-path multiplexers. These hardwired cells should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either inverting or noninverting input cells when interfacing off-chip for the input data words. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

If bus interface is needed, the 'ASC257A 2-line to 1 -line multiplexer incorporates 3 -state outputs capable of driving internal data buses.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Active-Low Strobe for Expandability
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC158 and SN74ASC158 are standard-cell software macros implementing four 2 -line to 1 -line multiplexers. The 'ASC158 implements a function table identical with that performed by packaged 'HC158, 'LS158, 'S158, and 'F158 multiplexers.

The macro has a strobe input, GZ, that enables and disables the outputs. The Y output is forced high when GZ is high. When GZ is low, the output assumes the complement of the level of the selected input. This strobe permits the macro to be employed for designing wider multiplexers, as only the enabled 2-bit field will output an active data bit. The 'ASC158 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\mathrm{pd}^{\ddagger}} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	2	1.5	0.88	210	12.64
NA210LH	1	8	8	4.08	1048	62.72
AN220LH	1.75	6	10.5	7.2	1368	81.6
TOTALS		16	20	12.16	2626	157
Label: S158LH A1,A2,A3,A4,B1,B2,B3,B4,AZ_B,GZ,Y1,Y2,Y3,Y4;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC158 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC158 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUT
STROBE	SELECT	DATA		
GZ	AZ__B	A	B	
H	X	X	X	H
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

SN54ASC158, SN74ASC158
QUADRUPLE 2-LINE TO 1-LINE INVERTING MULTIPLEXERS

SN54ASC158, SN74ASC158
QUADRUPLE 2-LINE TO 1-LINE INVERTING MULTIPLEXERS
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC158		SN74ASC158		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0$		2626		157	nA		
C_{i}	Input capacitance	$A Z$ - B	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.25		0.25		pF		
		All others			0.12		0.12				
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	12.16		12.16		pF		

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC158			SN74ASC158			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }_{\text {tpd }}$	Any A or B	Y	$C_{L}=0$		2.8	5.7		2.8	5.2	ns
${ }_{\text {tpd }}$	GZ or AZ _B	Y			6.2	12.2		6.2	11.4	ns
$\Delta t_{\text {pd }}$	Any	Y		0.1	0.4	1.2	0.2	0.4	1.1	ns/pF

[^32]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC158, SN74ASC158
 QUADRUPLE 2-LINE TO 1-LINE INVERTING MULTIPLEXERS

HDL FILE
BLOCK S158LH;
A1 @INPUT;
A2 @INPUT;
A3 @INPUT;
A4 @INPUT;
B1 @INPUT;
B2 @INPUT;
B3 @INPUT;
B4 @INPUT;
AZ_B @INPUT;
GZ @INPUT
Y1 @OUTPUT;
Y2 @OUTPUT;
Y3 @OUTPUT;
Y4 @OUTPUT;

STRUCTURE

G01	:AN220LH	G05O,G06O,Y1;
G02	:AN220LH	G070,G080, Y2;
G03	:AN220LH	G090,G100,Y3;
G04	:AN220LH	G110,G120,Y4;
G05	:NA210LH	A1,G130,G050;
G06	:NA210LH	B1,G140,G060;
G07	:NA210LH	A2,G130,G070;
G08	:NA210LH	B2,G140,G080;
G09	:NA210LH	A3,G130,G090;
G10	:NA210LH	B3,G140,G100;
G11	:NA210LH	A4,G130,G110;
G12	:NA210LH	B4,G140,G120;
G13	:AN220LH	G150,G160,G130;
G14	:AN220LH	AZ_-B,G160,G140;
G15	:IV110LH	AZ_B,G150;
G16	:IV110LH	GZ,G16O;
END		

Dedicated 2 -line to 1 -line multiplexers ('ASC2340) are also available in the standard cell library for implementing data-path multiplexers. These hardwired cells should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven with inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3 -state input/output TTL/CMOS buffer.

If bus interface is needed, the 'ASC258A 2-line to 1 -line multiplexer incorporates 3-state outputs capable of driving internal data buses.

SN54ASC161A, SN74ASC161A SYNCHRONOUS 4-BIT BINARY COUNTERS WITH DIRECT CLEAR

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Internal Look-Ahead Enhances Performance of Cascaded Counters
- Asynchronous Clear Initializes Sequence Regardless of Mode
- Parallel Synchronously Presettable for FullCycle Modulo-N Sequences
- Gated Enables and RCO Implement Local and Global Carry Status

description

The SN54ASC161A and SN74ASC161A are standard-cell software macros implementing synchronous 4-bit binary counter elements. The 4-bit configuration provides the custom IC designer a synchronous counter to embed in ASICs in its most efficient form, and its 4-bit length means that testability is simplified when constructing large counters. The 'ASC161A implements a count sequence identical with that performed by packaged 'HC161A, 'LS161A, and 'F161A counters.

Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the count-enable inputs and other gating. This mode of operation eliminates output counting spikes associated with asynctronous (ripple) counters. The clear and load inputs are buffered to enhance performance, and clocking f the register occurs on the rising (positive-going) edge of the clock waveform. The 'ASC161A is impleme: ited with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME RELATIVE CELL AREA NO. USED RELATIVE TO NA210LH

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC161A, SN74ASC161A
 SYNCHRONOUS 4-BIT BINARY COUNTERS WITH DIRECT CLEAR

These counters are fully programmable; that is, they may be preset to any number between 0 and 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

Clearing is asynchronous. A low level at the clear input sets all outputs low regardless of the levels of the clock, load, or enable.

The carry look-ahead circuitry provides for cascading counters in n-bit synchronous applications without additional gating. Instrumental in achieving this are two count-enable inputs and a ripple carry output. Both count-enable inputs (ENP and ENT) must be high to count. ENP enables the local 4-bits and the ENT is fed forward to globally extend the enable/disable of previous/next 4-bit cascaded counters. The ripplecarry out (RCO), when locally and globally enabled, will output a high-level pulse at maximum count that is used to enable successive stages.

These counters feature a fully independent clock. Changes at control inputs other than the clear will have no effect on the counter until clocking occurs. The functions of the counter are dictated solely by conditions meeting setup, hold, and duration recommendations.

The SN54ASC161A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC161A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

'ASC161A output sequence

Illustrated below is the following sequence:

1. Asynchronously clear outputs to zero
2. Preset to binary twelve
3. Count to thirteen, fourteen, fifteen, zero, one, and two
4. Inhibit

logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

SN54ASC161A, SN74ASC161A SYNCHRONOUS 4-BIT BINARY COUNTERS WITH DIRECT CLEAR

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC161A		SN74ASC161A		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\prime} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{A}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		7720		464	nA		
C_{i}	Input capacitance	A,B,C,D	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}^{\prime} \mathrm{A}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
		CLK			0.24		0.24				
		CLRZ			0.12		0.12				
		ENP			0.12		0.12				
		ENT			0.25		0.25				
		LOADZ			0.36		0.36				
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	31.54		31.54		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC161A			SN74ASC161A			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text {§ }}$	MAX	
${ }^{\text {t }} \mathrm{p}$	CLK	RCO	$C_{L}=0$		12	22		12	19.8	ns
t_{pd}	CLK	Any 0			4.5	10.4		4.5	9.4	ns
t_{pd}	ENT	RCO			4	7.6		4	6.6	ns
tPHL	CLRZ	Any 0			5	8.3		5	7.7	ns
tpHL	CLRZ	RCO			12	19.5		12	17.9	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Any 0		0.3	1	2.4	0.3	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	RCO		0.3	0.5	1.1	0.3	0.5	1	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{p d} \equiv$ change in $\mathrm{t}_{\text {pd }}$ with load capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S161ALH;

D	@INPUT;
C	@INPUT;
B	@INPUT;
A	@INPUT;
CLK	@INPUT;
CLRZ	@INPUT;
ENP	@INPUT;
ENT	@INPUT;
LOADZ	@INPUT;
QD	@OUTPUT;
QC	@OUTPUT;
QB	@OUTPUT;
QA	@OUTPUT;
RCO	@OUTPUT;

LOADZ,ENP,ENT,AN1O;
INV2O,NA4O,NA7O,NA140,NA190,CLK,QA,FFA _QZ, QB,FFB_OZ,QC,FFC_QZ,QD,FFD_QZ;
CLRZ,INV10;
FFC_QZ,INV100;
FFD_OZ110;
NA210,RCO;
INV1O,INV2O;
INV60,INV5O;
LOADZ,INV6O;
AN10,INV70;
FFA_OZ,INV8O;
FFB_QZ,INV9O;
QA,INV7O,INV5O,NA1O;
QC,NA110,INV5O,NA100;
AN10,INV80,INV90,NA110;
INV80,INV90,AN10,FFC_OZ,NA12O;
INV6O,C,NA130;
NA100,NA130,NA120,NA14O;
INV60,D,NA150;
AN10,INV80,INV90,INV100,NA160;
QD,NA16O,INV5O,NA17O;
NA17O,NA150,NA200,NA19O;
AN10,FFA_OZ,NA2O;
AN10,INV80,INV90,INV100,FFD_QZ,NA200;
INV80,INV90,INV100,INV110,ENT,NA210;
QB,NA5O,INV5O,NA3O;
NA1O,NA8O,NA2O,NA4O;
AN10,INV8O,NA5O;
INV8O,AN1O,FFB_OZ,NA6O;
NA30,NA9O,NA6O,NA7O;
INV6O,A,NA8O;
INV60,B,NA9O;

SN54ASC161A, SN74ASC161A SYNCHRONOUS 4-BIT BINARY COUNTERS WITH DIRECT CLEAR

count definition

These counters are unidirectional with respect to count operation. Inverting the output levels will produce a down-count sequence. Bidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Internal Look-Ahead Enhances Performance of Cascaded Counters
- Synchronous Clear Initializes Sequence Regardless of Mode
- Parallel Synchronously Presettable for FullCycle Modulo-N Sequences
- Gated Enables and RCO Implement Local and Global Carry Status

description

The SN54ASC163A and SN74ASC163A are standard-cell software macros implementing synchronous 4-bit binary counter elements. The 4-bit configuration provides the custom IC designer a synchronous counter to embed in ASICs in its most efficient form, and its 4-bit length means that testability is simplified when constructing large counters. The 'ASC163A implements a count sequence identical with that performed by packaged 'HC163, 'LS163A, and 'F163A counters.

Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the count-enable inputs and other gating. This mode of operation eliminates output counting spikes associated with asynchronous (ripple) counters. The clear and load inputs are buffered to enhance performance, and clocking of the register occurs on the rising (positive-going) edge of the clock waveform.

The 'ASC163 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathbf{C}_{\text {pd }}{ }^{\ddagger} \\ \text { (pF) } \\ \hline \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AN410LH	2	1	2	1.18	256	15.3
IV110LH	0.75	3	2.25	1.32	315	18.96
IV120LH	1	3	3	2.4	393	23.55
IV140LH	1.5	1	1.5	1.61	190	11.4
NA210LH	1	6	6	3.06	786	47.04
NA310LH	1.25	10	12.5	5	1630	97.8
NA410LH	1.5	2	3	1	374	22.4
NA510LH	1.75	2	3.5	1.04	426	25.6
NO220LH	1.5	1	1.5	0.52	185	11.1
NO240LH	2.5	1	2.5	0.98	292	17.5
R2406LH	41	1	26.25	11.69	2931	176
TO010LH	2	1	2	-	177	10.6
TOTALS		32	66	29.8	7955	478
Label: S163ALH D,C,B,A,CLK,CLRZ,ENP,ENT,LOADZ,QD,QC,QB,QA,RCO;						

[^33]These counters are fully programmable; that is, they may be preset to any number between 0 and 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

Clearing is synchronous. A low level at the clear input will set all outputs low on the next positive transition of the clock.

The carry look-ahead circuitry provides for cascading counters in n-bit synchronous applications without additional gating. Instrumental in achieving this are two count-enable inputs and a ripple carry output. Both count-enable inputs (ENP and ENT) must be high to count. ENP enables the local 4-bits and the ENT is fed forward to globally extend the enable/disable of previous/next 4-bit cascaded counters. The ripplecarry out (RCO), when locally and globally enabled, will output a high-level pulse at maximum count that is used to enable successive stages.

These counters feature a fully independent clock. Changes at control inputs, including clear, will have no effect on the counter until clocking occurs. The functions of the counter are dictated solely by conditions meeting setup, hold, and duration recommendations.

The SN54ASC163A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC163A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

SN54ASC163A, SN74ASC163A SYNCHRONOUS 4-BIT BINARY COUNTERS

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC163A		SN74ASC163A		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		7955		478	nA	
C_{i}	Input capacitance	A,B,C,D	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.12		0.12		pF	
		CLK		0.24		0.24			
		CLRZ		0.24		0.24			
		ENP		0.12		0.12			
		ENT		0.24		0.24			
		LOADZ		0.59		0.59			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	29.8		29.8		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (See Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC163A			SN74ASC163A			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
$t_{\text {pd }}$	CLK	RCO	$C_{L}=0$		9	22.2		9	20.1	ns
${ }_{\text {t }}^{\text {pd }}$	CLK	Any Q			5	10.6		5	9.6	ns
${ }^{\text {p }}$ d	ENT	RCO			2	7.6		2	6.6	ns
$\Delta t_{\text {pd }}$	Any	Any 0		0.3	1	2.4	0.3	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{p d}$	Any	RCO		0.3	0.5	1.1	0.3	0.5	1	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $t_{p d} \equiv$ propagation delay time, low-to-high or high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
${ }^{\S} T_{y p i c a l}$ values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S163ALH;

D	@INPUT;
C	@INPUT;
B	@INPUT;
A	@INPUT;
CLK	@INPUT;
CLRZ	@INPUT;
ENP	@INPUT;
ENT	@INPUT;
LOADZ	@INPUT;
QD	@OUTPUT;
QC	@OUTPUT;
QB	@OUTPUT;
QA	@OUTPUT;
RCO	@OUTPUT;

STRUCTURE

AN1
FF14
INV1
INV
:IV110LH
INV5 :IV140LH
INV6 :IV120LH
INV7 :IV120LH
INV8 :IV110LH
INV9 :IV120LH
NA1 , :NA310LH
NA10 :NA210LH
NA11 :NA310LH
NA12 :NA310LH
NA13 :NA310LH
NA14 :NA410LH
NA15 :NA210LH
NA16 :NA210LH
NA17 :NA410LH
NA18 :NA310LH
NA2 :NA310LH

NA20 :NA310LH
NA21 :NA510LH
NA22 :NA510LH
NA3 :NA210LH
NA5 :NA210LH
NA6 :NA210LH
NA7 :NA310LH
NA8 :NA310LH
NA9 :NA310LH
NO1 :NO22OLH
NO2 :NO240LH
END S163ALH;

CLRZ,LOADZ,ENP,ENT,AN1O;
ICLRZ,NA2O,NA8O,NA130,NA200,CLK,QA,QAZ,QB,QBZ, QC,QCZ,QD,QDZ;
DUM,ICLRZ;
CLRZ,INV3O;
AN1O,INV4O;
QAZ,INV5O;
QBZ,INV6O;
QCZ,INV7O;
QDZ,INV8O;
NA220,RCO;
QA,NO1O,INV4O,NA1O;
NO2O,B,NA10O;
AN1O,INV6O,INV5O,NA110;
QC,NA110,NO1O,NA12O;
NA120,NA15O,NA14O,NA130;
AN10,INV5O,INV6O,QCZ,NA14O;
NO2O,C,NA15O;
NO2O,D,NA160;
AN10;INV70,INV50,INV60,NA170;
QD,NA170,NO1O,NA180;
NA10,NA5O,NA3O,NA2O;
NA180,NA16O,NA210,NA200;
AN10,INV50,INV6O,INV70,QDZ,NA210;
INV50,INV60,INV70,INV80,ENT,NA22O;
AN1O,QAZ,NA3O;
NO2O,A,NA5O;
AN10,INV50,NA6O;
QB,NA6O,NO1O,NA7O;
NA7O,NA100,NA9O,NA8O;
AN10,INV50,QBZ,NA90;
INV3O,NO2O,NO1O;
INV3O,LOADZ,NO2O;

count definition

These counters are unidirectional with respect to count operation. Inverting the output levels will produce a down-count sequence. Bidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and to read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC164, SN74ASC164 8-BIT PARALLEL-OUT SERIAL SHIFT REGISTERS

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ SOFTWARE MACRO CELL

- AND-Gated (Enable/Disable) Serial Inputs
- Buffered Clear and Serial Inputs
- Direct Clear
- Embedded Clock Drivers Provide Clock Buffering
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC164 and SN74ASC164 are standard-cell software macros implementing 8 -bit parallel-out shift registers. The 8 -bit configuration provides the custom IC designer a register to embed in ASICs in its most efficient form. Its 8-bit length simplifies construction of large counters. The 'ASC164 implements a shift sequence identical with that performed by packaged 'HC164, 'LS164, and 'F164 registers.

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

These 8-bit shift registers feature AND-gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data, as a low at either input inhibits entry of new data and resets the first flip-flop to a low level at the next clock pulse. A high-level input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, provided the minimum setup time requirements are met. Clocking occurs on the low-to-high-level transition of the clock pulse.

The 'ASC164 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ C_{p d} \ddagger \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC ($\mathrm{n} A$)	
					SN54ASC'	SN74ASC'
AN210L.H	1.5	1	1.5	0.9	194	11.6
IV110LH	0.75	1	0.75	0.44	105	6.32
IV140LH	1.5	1	1.5	1.61	190	11.4
R2401LH	39.4	2	50.5	20.6	6142	370
TOTALS		5	54.25	23.55	6631	400
Label: S164LH A,B,CLK,CLRZ,QA,QB, QC, QD, QE, QF,QG, QH;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC164 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC164 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUTS		
CLR	CLK	A	B	QA	OB	. OH
L	X	X	X	L	L	L
H	L	X	X	QAO	QBO_{0}	QH_{O}
H	\uparrow	H	H	H	$Q A_{n}$	QG_{n}
H	\uparrow	L	X	L	$Q A_{n}$	QG_{n}
H	\uparrow	X	L	L	$Q A_{n}$	QG ${ }_{n}$

logic diagram

typical clear, shift, and clear sequences

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC164		SN74ASC164		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold volt	age			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{C C}=4.5 \\ & T_{A}=M I N O \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0,$		6631		400	nA		
C_{i}	Input capacitance	A, B	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF		
		CLK			0.48		0.48				
		CLRZ			0.12		0.12				
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	23.55		23.55		pF		

[^34]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\boldsymbol{+}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC164			SN74ASC164			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
$t_{\text {pd }}$	CLK	Qn	$C_{L}=0$		5	11.2		5	10.2	ns
${ }_{\text {tPHL }}$	CLRZ	Qn			4	7.7		4	7.5	ns
$\Delta t_{\text {pd }}$	CLK or CLRZ	Qn		0.3	0.5	1.3	0.3	0.5	1.1	ns/pF

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{ρ} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high- or high-to-low-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this soft macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S164LH;

A	@INPUT;
B	@INPUT;
CLK	@INPUT;
CLRZ	@INPUT;
QA	@OUTPUT;
QB	@OUTPUT;
QC	@OUTPUT;
QD	@OUTPUT;
QE	@OUTPUT;
QF	@OUTPUT;
QG	@OUTPUT;
QH	@OUTPUT;

STRUCTURE

AN1	:AN210LH
INV1	:IV110LH
INV2	:IV140LH
FF14	:R2401LH
FF58	:R2401LH
END S164LH:	

```
A,B,AN1O; CLRZ,INV10; INV1O,INV2O; INV2O,AN1O,CLK,QA,QB,QC,QD; INV2O,QD,CLK,QE,QF,QG,QH;
```


shift definition

These registers are unidirectional with respect to shift operations. Bidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designers employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear, and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

4

0
0
0
0
0
0
0
$\stackrel{0}{0}$
0

SystemCell ${ }^{T M}$ 2- $\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Gated (Enable/Inhibit) Clock Inputs
- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Parallel-to-Serial Data Conversion
- Clock Driver Provides Clock Buffering
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC165 and SN74ASC165 are standard-cell software macros implementing 8 -bit parallel-in shift registers. The 8 -bit configuration provides the custom IC designer a register to embed in ASICs in its most efficient form. Its 8-bit length simplifies construction of large registers. The 'ASC165 implements a shift sequence identical with that performed by packaged 'HC165 and 'LS165 registers.

The 'ASC165 is an 8-bit serial shift register that, when clocked, shifts the data toward serial output QH. Parallel-in access to each stage is provided by eight individual direct data inputs that are enabled by a low level at the SH_LDZ input. The 'ASC165 also features a clock-inhibit function and a complementary serial output QHZ. The 'ASC165 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVECELL AREATO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
A0221LH	2.7	1	2.7	0.59	224	13.4
DFB20LH	7.7	8	61.6	30.08	7472	448
IV140LH	1.5	2	3	3.24	380	22.8
NA210LH	1	16	16	8.16	2096	125.44
TOTALS		27	83.3	42.07	10172	610
Label: S165LH A,B,C,D,E,F,G,H,CLK,CLKINH,SH_LDZ, SER, QH, QHZ;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC165, SN74ASC165 PARALLEL-LOAD 8-BIT SHIFT REGISTERS

Clocking is accomplished by a low-to-high transition of the CLK input while SH_LDZ is held high and CLKINH is held low. The functions of the CLK and CLKINH inputs are interchangeable. Since a low CLK input and a low-to-high transition of CLKINH will also accomplish clocking, CLKINH should be changed to the high level only while the CLK input is high. Parallel loading is inhibited when SH_LDZ is held high. The parallel inputs to the register are enabled while SH_LDZ is low independently of the levels of CLK, CLKINH, or SER inputs.

The SN54ASC165 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC165 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS			FUNCTION
SH_LDZ	CLK	CLKINH	
L	X	X	Parallel load A thru H
H	H	X	No change
H	X	H	No change
H	L	\uparrow	Shift
H	\uparrow	L	Shift

Shift $=$ Content of each internal register shifts toward serial output QH. Data at serial input is shifted into first register.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

SN54ASC165, SN74ASC165
PARALLEL-LOAD 8-BIT SHIFT REGISTERS
typical shift, load, and inhibit sequences

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC165		SN74ASC165		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		10172		610	nA	
C_{i}	Input capacitance	A thru H	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.12		0.12		pF	
		CLK,CLKINH		0.13		0.13			
		SER		0.11		0.11			
		SH_LDZ		0.75		0.75			
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	42.07		42.07		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC165			SN74ASC165			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
t_{pd}	SH_LDZ	$\mathrm{OH}, \mathrm{OHZ}$	$C_{L}=0$		7	15.5		7	14.1	ns
t_{pd}	CLK	QH,OHZ			8	19.5		8	17.4	ns
${ }_{\text {t }}$ d	H	QH,OHZ			4	7.8		4	7.2	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	On		0.1	0.5	1.3	0.1	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$

[^35]
DESIGN CONSIDERATIONS

All inputs to cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE
BLOCK S165LH;

A	@INPUT;
B	@INPUT;
C	@INPUT;
D	@INPUT;
E	@INPUT;
F	@INPUT;
G	@INPUT;
H	@INPUT;
CLK	@INPUT;
CLKINH	@INPUT
SH_LDZ	@INPUT;
SER	@INPUT;
OH	@OUTPUT;
OHZ	@OUTPUT;

SN54ASC165, SN74ASC165

PARALLEL-LOAD 8-BIT SHIFT REGISTERS

HDL FILE (Continued)

STRUCTURE

A01	:AO221LH
FFA	:DFB2OLH
FFB	:DFB2OLH
FFC	:DFB2OLH
FFD	:DFB2OLH
FFE	:DFB2OLH
FFF	:DFB2OLH
FFG	:DFB2OLH
FFH	:DFB2OLH
INV1	:IV140LH
INV3	:IV140LH
NA01	:NA210LH
NA02	:NA210LH
NA03	:NA210LH
NA04	:NA210LH
NA05	:NA210LH
NA06	:NA210LH
NA07	:NA210LH
NA08	:NA210LH
NA09	:NA210LH
NA10	:NA210LH
NA11	:NA210LH
NA12	:NA210LH
NA13	:NA210LH
NA14	:NA210LH
NA15	:NA210LH
NA16	:NA210LH
END S165LH;	

SH_LDZ,CLK,SH_LDZ,CLKINH,AO1O; NA02O,NA01O,SER,INV3O,FFAQ,DUM; NA040,NA030,FFAQ,INV3O,FFBQ,DUM; NA060,NA05O,FFBQ,INV3O,FFCQ,DUM; NA080,NA07O,FFCQ,INV3O,FFDQ,DUM; NA100,NA090,FFDQ,INV30,FFEQ,DUM; NA120,NA110,FFEQ,INV3O,FFFQ,DUM; NA140,NA130,FFFQ,INV30,FFGQ,DUM; NA160,NA150,FFGQ,INV3O,QH,QHZ; SH_LDZ,INV1O; A010,INV30; A,INV1O,NA01O; NA01O,INV1O,NA02O; B,INV1O,NA03O; NA03O,INV1O,NA04O; C,INV1O,NA05O; NA050,INV10,NA06O; D,INV10,NA07O; NA07O,INV1O,NA08O; E,INV1O,NA09O; NA09O,INV10,NA10O; F,INV1O,NA11O; NA110,INV1O,NA120; G,INV1O,NA130; NA130,INV10,NA140; H,INV10,NA15O; NA150,INV1O,NA16O;

shift definition

These registers are unidirectional with respect to shift operations and the relationship for shifting left or right is defined by the IC designer. Bidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designers employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Synchronous Load
- Direct Overriding Clear
- Parallel-to-Serial Conversion
- Direct Clear
- Embedded Clock Drivers Provide Clock Buffering
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC166 and SN74ASC166 are standard-cell software macros implementing 8 -bit parallel-in shift registers. The 8 -bit configuration provides the custom IC designer a register to embed in ASICs in its most efficient form. Its 8-bit length simplifies construction of large counters. The 'ASC166 implements a shift sequence identical with that performed by packaged 'HC166 and 'LS166 registers. The 'ASC166 is an 8-bit serial shift register that, when clocked, shifts the data toward serial output QH. Parallel-in access to each stage is provided by eight individual direct data inputs that are enabled by a low level at the SH_LDZ input. The 'ASC166 also features a clock inhibit function and a direct clear input. The 'ASC166 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AN221LH	2.7	8	21.6	4.72	1792	107.2
IV110LH	0.75	9	6.75	3.96	945	56.88
IV120LH	1	2	2	1.6	262	15.7
IV140LH	1.5	1	1.5	1.61	190	11.4
OR210LH	1.5	1	1.5	0.86	185	11.1
R2405LH	23.25	2	46.5	20.4	5294	318
TOTALS		23	79.85	33.15	8668	521

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

The parallel-in-or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When the shift load input is low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a two-input positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free-running and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only when the clock input is high. A direct clear input, when taken low, overrides all other inputs, including the clock, and resets all flip-flops to zero.
The SN54ASC166 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC166 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS						INTERNAL OUTPUTS		OUTPUT OH
CLRZ	SH_LDZ	CLKINH	CLK	SER	A. . .H	QA	QB	
L	X	X	X	X	X	L	L	L
H	X	L	L	x	X	QAO_{0}	QB_{0}	OH_{0}
H	L	L	\uparrow	X	a. . .h	a	b	h
H	H	L	\uparrow	H	X	H	$Q A_{n}$	QG ${ }_{\text {n }}$
H	H	L	\uparrow	L	X	L	$Q A_{n}$	QG_{n}
H	X	H	\uparrow	X	X	QA_{0}	QB_{0}	QH_{0}

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.
logic diagram

typical clear, shift, load, inhibit, and shift sequences

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC166		SN74ASC166		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshoid voltage			$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$		8668		521	nA	
C_{i}	Input capacitance	A thru H	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ}$	0.13		0.13		pF	
		CLK, CLKINH		0.11		0.11			
		SER		0.13		0.13			
		SH_LDZ		0.24		0.24			
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	33.03		33.03		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC166			SN74ASC166			UNIT
				MIN	TYP ${ }^{\text {§ }}$	MAX	MIN	TYP ${ }^{\text {¢ }}$	MAX	
t_{pd}	CLK	OH	$C_{L}=0$	12.5			11.3			ns
tpHL	CLRZ	OH				7.7			7.1	ns
$\Delta t_{\text {pd }}$	Any	OH		0.3	0.9	2.3	0.3	0.9	2.1	ns/pF
Δ tpHL	CLRZ	OH		0.3	0.7	1.9	0.3	0.7	1.6	ns/pF

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\mathrm{t}} \mathrm{pd} \equiv$ propagation delay time, low-to-high or high-to-low-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance

NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for and design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

SN54ASC166, SN74ASC166
 PARALLEL-LOAD 8-BIT SHIFT REGISTERS WITH DIRECT CLEAR

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S166LH;

A	@INPUT;
B	@INPUT;
C	@INPUT;
D	@INPUT;
E	@INPUT;
F	@INPUT;
G	@INPUT;
H	@INPUT;
CLK	@INPUT;
CLKINH	@INPUT;
SER	@INPUT;
SH_LDZ	@INPUT;
CLRZ	@INPUT;
OH	@OUTPUT;

STRUCTURE

A01	:AO221LH	SER,INV40,INV30,A,A010;
AO2	:A0221LH	QA, INV4O,INV30,B,AO2O;
AO3	:A0221LH	QB,INV4O,INV30,C,AO3O;
AO4	:A0221LH	QC,INV4O,INV3O,D,AO4O;
AO5	:A0221LH	QD,INV4O,INV3O,E,AO5O;
A06	:A0221LH	QE,INV4O,INV30,F,AO6O;
A07	:A0221LH	QF,INV40,INV30,G,A070;
A08	:A0221LH	QG,INV4O,INV3O,H,AO8O;
FF14	:R2405LH	INV2O,INV50,INV60,INV70,INV80,OR10,QA,QB, QC, QD;
FF58	:R2405LH	INV20,INV90,INV100,INV110,INV120,OR10,QE,QF,QG, OH;
INV1	:IV110LH	CLRZ,INV10;
INV10	:IV110LH	A060,INV100;
INV11	:IV110LH	A070,INV110;
INV12	:IV110LH	A080,INV120;
INV2	:IV140LH	INV10,INV2O;
INV3	:IV120LH	SH_LDZ,INV3O;
INV4	:IV120LH	INV30,INV4O;
INV5	:IV110LH	A010, INV50;
INV6	:IV110LH	A02O,INV60;
INV7	:IV110LH	A030,INV70;
INV8	:IV110LH	A040, INV80;
INV9	:IV110LH	A050,INV90;
OR1	:OR210LH	CLK,CLKINH,OR1O;
END S 1		

SN54ASC166, SN74ASC166
 PARALLEL-LOAD 8-BIT SHIFT REGISTERS WITH DIRECT CLEAR

shift definition

These registers are unidirectional with respect to shift operations. Bidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designers employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and to read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface Internal Data Buses Directly
- Direct Clear Input Simplifies Initialization or Pattern Length
- Embedded Clock Driver Provides Symmetrical Performance Across Long Registers
- Parallel Registers for 8-Bit, 16-Bit, 32-Bit Word Widths

description

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The SN54ASC173 and SN74ASC173 are standard-cell software macros implementing 4-bit D-type register elements designed specifically for interfacing internal bus lines. Their four-bit length means that testability is simplified when constructing large registers. The 'ASC173 implements a function table identical with that performed by packaged 'HC173 and 'LS173 registers.

Gated enable inputs are provided on these macros for controlling the entry of data into the register. When both data enable inputs, $G n Z$, are low, data at the D inputs are loaded on the next positive transition of the clock input. Buffer output enable inputs, MZ and NZ, are also provided. When both are low, the normal logic states (high or low levels) of the four outputs are impressed on the data bus. The outputs are disabled by a high logic level at either output control input. The outputs then present a high impedance to the internal bus. When the outputs are disabled, sequential operation of the flip-flops is not affected. The 'ASC173 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \text { C }_{\text {pd }}{ }^{\ddagger} \\ (\mathrm{pF}) \\ \hline \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV120LH	1	2	2	1.6	262	15.7
IV222LH	2	4	8	3.92	972	58.4
NA210LH	1	12	12	6.12	1572	94.08
NO210PH	1	2	- 2	0.66	256	15.42
R2406LH	26.25	1	26.25	11.7	2931	176
TOTALS		21	50.25	24	5993	360
Label: S173LH D1,D2,D3,D4,CLK,CLR,G1Z,G2Z,MZ,NZ, Q1,Q2,Q3,Q4;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

4-BIT D-TYPE REGISTERS WITH 3-STATE OUTPUTS

The SN54ASC173 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC173 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP) (see Note 1)

INPUTS					$\begin{gathered} \hline \text { OUTPUT } \\ \mathbf{Q} \end{gathered}$
CLR	CLK	G1Z	G2Z	D	
H	X	X	X	X	L
L	L	X	X	X	0_{0}
L	\uparrow	H	x	x	0_{0}
L	\uparrow	X	H	H	0_{0}
L	\uparrow	L	L	L	L
L	\uparrow	L	L	H	H

$\mathrm{O}_{0}=$ level of Q before the indicated steadystate input conditions were established. NOTE 1: When either MZ or NZ (or both) is (are) high, the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected.

logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements are made during pre-layout simulation that produce workstation output used to identify and resolve each specific timing need.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54	C173	SN74	C173	UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$	5993		360		$n A$	
C_{i}	Input capacitance	CLR	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24		pF	
		CLK		0.24		0.24			
		Dn		0.12		0.12			
		GnZ		0.11		0.11			
		MZ, NZ		0.11		0.11			
C_{0}	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.33		0.33		pF	
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	24		24		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 2 and 3)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC173			SN74ASC173			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
t_{pd}	CLK	Q	$C_{L}=0$		7.1	15.2		7.1	13.8	ns
${ }^{\text {tPHL}}$	CLR	Q			5.5	11.5		5.5	10.3	ns
ten	MZ, NZ	Q			3.9	8.2		3.9	7.4	ns
$\Delta t_{\text {pd }}$	Any	Q		0.3	0.9	2.3	0.4	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {en }}$	Any	Q		0.4	0.9	2.3	0.5	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{ρ} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\mathrm{t}} \mathrm{pd} \equiv$ propagation delay time, low-to-high or high-to-low output
$\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
tPHL \equiv propagation delay time, high-to-low output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\Delta t_{\text {en }} \equiv$ change in $t_{e n}$ with load capacitance
${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Actual performance can be evaluated at post-layout simulation.
3. Enable and delta-enable times are measured using the conditions specified for the 'ASC2311 (IV222LH).

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this soft macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S173LH;

D1	@INPUT;
D2	@INPUT;
D3	@INPUT;
D4	@INPUT;
CLK	@INPUT;
CLR	@INPUT;
G1Z	@INPUT;
G2Z	@INPUT;
MZ	@INUT;
NZ	@INPUT;
O1	@OUTPUT;
O2	@OUTPUT;
O3	@OUTPUT;
O4	@OUTPUT;

STRUCTURE

GO1	:IV222LH
GO2	:IV222LH
G03	:IV222LH
GO4	:IV222LH
INV2	:IV120LH
INV6	:I20LH
NA1	:NA210LH
NA10	:NA210LH
NA11	:NA210LH
NA12	:NA210LH
NA2	:NA210LH
NA3	:NA210LH
NA4	:NA210LH
NA5	:NA210LH
NA6	:NA210LH
NA7	:NA210LH
NA8	:NA210LH
NA9	:NA210LH
NO1	:NO210LH
NO2	:NO210LH
FF14	:R2406LH

END S173LH;

```
QAZ,NO2O,Q1;
QBZ,NO2O,02;
QCZ,NO2O,03;
QDZ,NO2O,O4;
CLR,INV2O;
NO1O,INV6O;
QA,INV6O,NA1O;
NA3O,NA4O,NA100;
NA50,NA6O,NA11O;
NA7O,NA8O,NA12O;
NO1O,D1,NA2O;
QB,INV6O,NA3O;
NO1O,D2,NA4O;
QC,INV6O,NA5O;
NO1O,D3,NA6O;
QD,INV6O,NA7O;
NO1O,D4,NA8O;
NA10,NA2O,NA9O;
G1Z,G2Z,NO1O;
MZ,NZ,NO2O;
INV2O,NA9O,NA100,NA110,NA12O,CLK,QA,QAZ,QB,QBZ,QC,
QCZ,QD,QDZ:
```


SN54ASC173, SN74ASC173 4-BIT D.TYPE REGISTERS WITH 3-STATE OUTPUTS

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected through an inverter to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an OR gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Six-Bit Register
- Direct Clear Input Simplifies Initialization or Pattern Length
- Clock Buffer Provides Symmetrical Performance Across Long Registers

description

The SN54ASC174 and SN74ASC174 are standard-cell software macros implementing a 6-bit D-type register element for embedding in ASICs in its most efficient form. Its 6-bit length simplifies construction of large counters. The 'ASC174 implements a function table identical with that performed by packaged 'HC174, 'LS174, and 'F174 registers. It may be customized to meet specific systems requirements.
This software macro reduces the input loading for implementation of larger registers, as standard library cells are used to buffer the clear and clock inputs to further enhance performance across long registers. The 'ASC174 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA	NO. USED	TOTAL RELATIVE CO NA210LH	TOTAL C $_{\text {pd }}$	MAXIMUM ICC (nA)	

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

The SN54ASC174 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC174 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUT
CLRZ	CLK	Dn	\mathbf{Q}
L	X	X	L
H	\uparrow	H	H
H	\uparrow	L	L
H	L	X	Q_{O}

SN54ASC174, SN74ASC174

HEX D-TYPE FLIP.FLOPS

logic diàgram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC174		SN74ASC174		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
' CC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		5876		353	nA	
C_{i}	Input capacitance	CLRZ	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF	
		Dn		0.11		0.11			
		CLK		0.12		0.12			
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	24.44		24.44		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC174			SN74ASC174			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }^{\text {p }}$ d	CLK	0	$C_{L}=0$		8	17.4		8	15.6	ns
${ }^{\text {t PHL }}$	CLRZ	Q			5.1	9.5		5.1	8.8	ns
$\Delta t_{p d}$	Any	0		0.1	0.5	1.1	0.1	0.5	1	ns/pF

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$t_{p d} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
$t_{p H L} \equiv$ propagation delay time, high-to-low output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\S T_{y p i c a l}$ values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array
design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC174, SN74ASC174

 HEX D-TYPE FLIP.FLOPS
BLOCK S174LH;

D1	@INPUT;
D2	@INPUT;
D3	@INPUT;
D4	@INPUT;
D5	@INPUT;
D6	@INPUT;
CLK	@INPUT;
CLRZ	@INPUT;
Q1	@OUTPUT;
Q2	@OUTPUT;
Q3	@OUTPUT;
O4	@OUTPUT;
Q5	@OUTPUT;
Q6	@OUTPUT;

STRUCTURE

FF1	:DFC2OLH	INV2O,D1,INV4O,Q1,DUM:
FF2	:DFC2OLH	INV2O,D2,INV4O,Q2,DUM;
FF3	:DFC2OLH	INV2O,D3,INV4O,Q3,DUM;
FF4	:DFC2OLH	INV2O,D4,INV4O,Q4,DUM;
FF5	:DFC2OLH	INV2O,D5,INV4O,Q5,DUM;
FF6	:DFC2OLH	INV2O,D6,INV4O,Q6,DUM;
INV1	:IV110LH	CLRZ,INV1O;
INV2	:IV140LH	INV10,INV2O;
INV3	:IV110LH	CLK,INV3O;
INV4	:IV140LH	INV3O,INV4O;
END S174LH:		

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC175, SN74ASC175 QUADRUPLE D-TYPE FLIP.FLOPS WITH COMPLEMENTARY OUTPUTS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Four-Bit Register with Complementary Outputs
- Direct Clear Input Simplifies Initialization or Pattern Length
- Embedded Clock Driver Provides Clock Buffering
- Parallel Latches for 8-Bit, 16-Bit, 32-Bit Word Widths

description

The SN54ASC175 and SN74ASC175 are standard-cell software macros implementing a 4-bit register element for embedding in ASICs. Its 4-bit length simplifies construction of large registers. The 'ASC175 implements a function table identical with that performed by packaged 'HC175, 'LS175, and 'F175 registers.

This macro reduces the input loading for implementation of larger registers, as standard library cells are used to buffer the clear input and the R2406LH register clock input is internally buffered. The 'ASC175 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \text { C }_{\text {pd }}{ }^{\ddagger} \\ & \text { (pF) } \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV140LH	1.5	1	1.5	1.61	190	11.4
R2406LH	26.5	1	26.5	11.69	2931	176
TOTALS		3	28.5	13.74	3226	194
Label: S175LH D1,D2,D3,D4,CLK,CLRZ,Q1,Q1Z,Q2,Q2Z,Q3,Q3Z, Q4, Q4Z;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC175 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC175 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS			OUTPUTS	
CLRZ	CLK	Dn	Q	QZ
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q $_{0}$	$\overline{\mathrm{Q}}_{0}$

SN54ASC175, SN74ASC175 QUADRUPLE D-TYPE FLIP.FLOPS WITH COMPLEMENTARY OUTPUTS

logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.
electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC175		SN74	C175	UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold volt				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{Cc}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		3226		194	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
		Dn			0.13		0.13				
		CLK			0.24		0.24				
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	13.74		13.74		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC175, SN74ASC175 QUADRUPLE D-TYPE FLIP.FLOPS WITH COMPLEMENTARY OUTPUTS

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC175			SN74ASC175			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
t_{pd}	CLK	Q	$C_{L}=0$		5	10.6		5	9.6	ns
t_{pd}	CLK	QZ			5.5	12.5		5.5	11.3	
tpLH	CLRZ	QZ			6	10.4		6	9.4	ns
tPHL	CLRZ	0			5.4	8.3		5.4	7.7	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	CLK	0		0.2	0.9	2.3	0.3	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$

[^36]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S175LH;

D1	@INPUT;
D2	@INPUT;
D3	@INPUT;
D4	@INPUT;
CLK	@INPUT;
CLRZ	@INPUT;
Q1	@OUTPUT;
Q12	@OUTPUT;
Q2	@OUTPUT;
Q2Z	@OUTPUT;
Q3	@OUTPUT;
Q3Z	@OUTPUT;
Q4	@OUTPUT;
Q4Z	@OUTPUT;

STRUCTURE

FF14	:R2406LH
INV1	:IV110LH
INV2	:IV140LH

END S175LH:
HDL FILE

SN54ASC175, SN74ASC175

QUADRUPLE D-TYPE FLIP.FLOPS WITH COMPLEMENTARY OUTPUTS

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC177, SN74ASC177 1-BIT AND 3-BIT BINARY RIPPLE COUNTERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Individual 1-Bit and 3-Bit Counters for Implementing Custom Count Sequences
- Asynchronous Clear Initializes Sequence Regardless of Mode
- Parallel Asynchronously Presettable for Modulo-N Sequences
- Performs Ripple-Count or Simple Latching Functions

description

The SN54ASC177 and SN74ASC177 are standard-cell software macros implementing 1 -bit and 3 -bit ripple counter elements. The overall 4-bit configuration provides the custom IC designer a multifunction counter/latch to embed in ASICs in its most efficient form, and its 4-bit length simplifies construction of large counters. The 'ASC177 implements a count sequence identical with that performed by packaged 'ASC177 counters.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathbf{C}_{p d^{\ddagger}} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AN220LH	1.75	1	1.75	1.2	228	13.6
DFB20LH	7.7	4	30.8	15.04	3736	224
IV110LH	0.75	3	2.25	1.32	315	18.96
IV140LH	1.5	1	1.5	1.61	190	11.4
NA210LH	1	4	4	2.04	524	31.36
NA310LH	1.25	4	5	2	652	39.12
NO410LH	1.5	1	1.5	0.35	177	10.6
TOTALS		18	46.8	23.56	5822	350
Label: S177LH A,B,C,D,LOADZ,CLRZ,CLK1Z,CLK2Z,QA,QB,QC,QD;						

[^37]These ripple counters consist of four D-type flip-flops that are interconnected to provide a divide-by-two and a divide-by-eight counter. A divide-by-16 sequence is obtained by connecting the QA output to the CLK2Z input. During the count operation, transfer of information to the outputs occurs on the negativegoing edge of the clock pulse. The 'ASC177 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

The counter is fully programmable; that is, it may be preset to any number between 0 and 15. As presetting is asynchronous, a low level at the load input disables the counter and causes the outputs to agree with the setup data independently of the level of the clock input.

These counters may be used as 4-bit latches by using the LOADZ input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs while LOADZ is low, but will remain unchanged while LOADZ is high and the clock inputs are inactive.

Clearing is asynchronous. A low level at the clear input sets all outputs low regardless of the levels of the clocks or LOADZ.

The SN54ASC177 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC177 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(See Note 1)

INPUTS							OUTPUTS			
CLRZ	LOADZ	D	C	B	A	CLK1Z	QD	QC	QB	QA
L	H	X	X	X	X	X	L	L	L	L
H	L	d	c	b	a	X	d	c	b	a
H	H	X	X	X	x	\uparrow	L	L	L	H
H	H	X	x	x	x	\uparrow	L	L	H	L
H	H	x	x	X	x	\uparrow	L	L	H	H
H	H	X	x	X	x	\uparrow	L	H	L	L
H	H	X	x	X	X	\uparrow	L	H	L	H
H	H	x	x	x	X	\uparrow	L	H	H	L
H	H	x	x	x	x	\uparrow	L	H	H	H
H	H	x	x	x	x	\uparrow	H	L	L	L
H	H	X	x	x	X	\uparrow	H	L	L	H
H	H	X	x	x	x	\uparrow	H	L	H	L
H	H	x	x	x	X	\uparrow	H	L	H	H
H	H	x	x	x	X	\uparrow	H	H	L	L
H	H	x	x	x	X	\uparrow	H	H	L	H
H	H	x	x	x	X	\uparrow	H	H	H	L
H	H	x	X	x	x	\uparrow	H	H	H	H
H	H	x	x	x	X	\uparrow	L	L	L	L
H	H	X	X	X	X	L	O_{0}	Q_{0}	O_{0}	a_{0}

See Explanation of Function Tables in Section 1.
NOTE 1: Table applies with output QA connectd to CLK2Z input.

SN54ASC177, SN74ASC177 1-BIT AND 3-BIT BINARY RIPPLE COUNTERS

logic diagram

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC177		SN74	C177	UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { tc } \end{aligned}$	$V_{I}=V_{C C} \text { or } 0$		5822		350	nA		
C_{i}	Input capacitance	LOADZ	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF		
		CLRZ			0.25		0.25				
		All others			0.12		0.12				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	23.56		23.56		pF		

[^38]
SN54ASC177, SN74ASC177

1-BIT AND 3-BIT BINARY RIPPLE COUNTERS
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC177			SN74ASC177			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {p }}$ pd	CLK1Z	QA	$C_{L}=0$		6	15		6	13.3	ns
${ }^{\text {p }}$ d	CLK2Z	QB			6	15		6	13.3	ns
${ }^{\text {p }}$ d		QC			10	28.1		10	24.9	ns
${ }_{\text {pd }}$		QD			16	41.2		16	36.5	ns
${ }_{\text {t }}$ d	A,B,C,D	Any			5	11.5		5	10.6	ns
${ }^{\text {p }}$ d	LOADZ	Any			7	13.9		7	12.4	ns
$t_{\text {pd }}$	CLRZ	RCO			5.4	21.3		5.4	19.4	ns
$\Delta t_{\text {pd }}$	Any	Any		0.1	0.5	1.3	0.1	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$

$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
$\Delta t_{\text {pd }} \equiv$ change in $t_{p d}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE
BLOCK S177LH;

A	@INPUT;
B	@INPUT;
C	@INPUT;
D	@INPUT;
LOADZ	@INPUT;
CLRZ	@INPUT;
CLK1Z	@INPUT;
CLK2Z	@INPUT;
QA	@OUTPUT;
QB	@OUTPUT;
QC	@OUTPUT;
QD	@OUTPUT;

SN54ASC177, SN74ASC177
 1-BIT AND 3-BIT BINARY RIPPLE COUNTERS

HDL (Continued)

STRUCTURE

AN1	:AN22OLH	LOADZ,CLRZ,AN1O;
FFA	:DFB2OLH	NA3O,NA1O,FFAQZ, INV1O,QA,FFAQZ;
FFB	:DFB2OLH	NA5O,NA4O,FFBQZ,INV4O,QB,FFBOZ;
FFC	:DFB2OLH	NA7O,NA6O,FFCQZ,FFBQZ,QC,FFCQZ;
FFD	:DFB2OLH	NA9O,NA8O,FFDQZ,FFCQZ,QD,FFDQZ;
INV1	:IV110LH	CLK1Z,INV1O;
INV2	:IV110LH	CLRZ,INV2O;
INV3	:IV140LH	AN1O,INV3O;
INV4	:IV110LH	CLK2Z,INV4O;
NA1	:NA310LH	A,NO1O,INV3O,NA1O;
NA3	:NA210LH	NA1O,INV3O,NA3O;
NA4	:NA310LH	NO1O,B,INV3O,NA4O;
NA5	:NA210LH	NA4O,INV3O,NA5O;
NA6	:NA310LH	C,NO1O,INV3O,NA6O;
NA7	:NA210LH	NA6O,INV3O,NA7O;
NA8	:NA310LH	D,NO1O,INV3O,NA8O;
NA9	:NA210LH	NA8O,INV3O,NA9O;
NO1	:NO410LH	INV2O,INV2O,INV2O,INV2O,NO1O;
END S177LH;		

count definition

These counters are unidirectional with respect to count operation. Inverting the output levels will produce a down-count sequence. Bidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with predesigned flip-flops offered in TI^{\prime} s standard cell family.

designing for testability

Designers employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC181, SN74ASC181
 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ SOFTWARE MACRO CELL

- Performs Full 16-Function Arithmetic or Boolean Combinations of Two Variables
- Arithmetic Operating Modes:

Addition
Subtraction
Shift Operand A One Position
Magnitude Comparison
Plus Twelve Other Arithmetic Operations

- Logic Function Modes:

Exclusive-OR
Comparator
AND, NAND, OR, NOR
Plus Ten Other Logic Operations

description

The SN54ASC181 and SN74ASC181 are standard-cell software macro 4-bit arithmetic logic units. The 'ASC181 implements a function table identical with that performed by packaged 'LS181, 'S181, and 'F181 arithmetic logic units/function generators.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The 'ASC181 performs 16 arithmetic or Boolean operations on two 4-bit binary words as shown in Tables 1 and 2. Choice between the two operating modes is established by the mode control, M, and selection of one-of-sixteen operations is accomplished at the select inputs S3, S2, S1, and SO. The 'ASC181 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ C_{p d} \ddagger \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (n A)	
					SN54ASC'	SN74ASC'
AN210LH	1.5	9	13.5	8.1	1746	104.4
AN310LH	1.75	9	15.75	9.54	1989	119.7
AN420LH	2.25	1	2.25	1.72	286	17.2
EX210LH	2	4	8	4.48	892	53.6
EX220LH	2.25	4	9	6	1032	62
IV110LH	0.75	8	6	3.52	840	50.56
IV120LH	1	1	1	0.8	131	7.85
NA210LH	1	4	5	2.55	655	39.2
NA220LH	1.5	1	1.5	1	196	11.7
NA310LH	1.25	4	5	2	652	39.12
NA410LH	1.5	6	9	3	1122	67.2
NA510LH	1.75	2	3.5	1.04	426	25.6
NO210LH	1	5	5	1.65	640	38.55
NO310LH	1.25	4	5	1.28	624	37.32
TOTALS		62	89.5	46.68	11231	675
Label: S181LH A3Z,A2Z,A1Z,A0Z,B3Z,B2Z,B1Z,B0Z,CN,M,S3,S2,S1,S0,F3Z,F2Z, F1Z,FOZ,AEQB,GZ,PZ,CNPL4;						

[^39]
SN54ASC181, SN74ASC181 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

When the mode control input is low, the 16 arithmetic operations are accessible via the four select inputs. The 4-bit full adder incorporates both ripple and look-ahead carry circuitry, providing the capability to extend either technique across expanded word widths when multiple 'ASC181s are used in parallel.

The 'ASC181 accommodates both active-high and active-low data simply by redefining the designations used to describe the data inputs and outputs. For use with active-low data, use Table 1 and the input/output designations provided for the label developed above. For use with active-high data, use Table 2.
Note that only the relationships of A, B, and F data with respect to the carry and look-ahead circuitry are affected.

Subtraction is accomplished by 1 's complement addition in which the 1 's complement of the subtrahend is generated internally. The resultant output is $A-B-1$, which requires an end-around or forced carry to provide A-B. Arithmetic operations with and without carry are shown in Tables 1 and 2.

The 'ASC181 also performs a comparison of the A and B operands. The AEOB output is decoded from the function outputs (F3, F2, F1, and F0) so that, when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality ($A=B$). The $A L U$ must be in the subtract mode with $\mathrm{CN}=\mathrm{H}$ when performing this comparison. The AEQB output can be AND- or NAND-gated to perform comparisons over expanded ALUs. The CNPL4 carry output can also be used to supply relative magnitude information. Again, the ALU must be in the subtract mode by having the select inputs S3, S2, S1, and SO at L, H, H, L, respectively.

INPUT CN	OUTPUT CNPL4	ACTIVE-LOW DATA (FIGURE 1)	ACTIVE-HIGH DATA (FIGURE 2)
H	H	$\mathrm{~A} \geq \mathrm{B}$	$\mathrm{A} \leq \mathrm{B}$
H	L	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$
L	H	$\mathrm{A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
L	L	$\mathrm{A} \leq \mathrm{B}$	$\mathrm{A} \geq \mathrm{B}$

The SN54ASC181 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC181 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic diagram

signal designations

The polarity indicators (open arrowheads) in both Figures 1 and 2 indicate that the associated input or output is active-low with respect to the function shown inside the symbol, and the symbols are the same in both figures. The signal designations in Figure 1 agree with the indicated internal functions based on active-low data and are for use with the logic functions and arithmetic operations shown in Table 1. The signal designations used in Figure 2 accommodate the logic functions and arithmetic operations for the active-high data given in Table 2.

FIGURE 1

FIGURE 2

TABLE 1

SELECTION				ACTIVE-LOW DATA		
				$\mathrm{M}=\mathrm{H}$	M = L; ARIT	ETIC OPERATIONS
S3	S2		S0	LOGIC FUNCTIONS	$C N=L$ (no carry)	$\begin{gathered} C N=H \\ \text { (with carry) } \end{gathered}$
L	L	L	L	$F=\bar{A}$	$F=A$ MINUS 1	$F=A$
L	L	L	H	$F=\overline{A B}$	$F=A B$ MINUS 1	$F=A B$
L	L	H	L	$F=\bar{A}+B$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
L	L	H	H	$F=1$	$F=$ MINUS 1 (2's COMP)	$F=Z E R O$
L	H	L	L	$F=\overline{A+B}$	$F=A \operatorname{PLUS}(\mathrm{~A}+\overline{\mathrm{B}})$	$F=A$ PLUS $(A+\bar{B})$ PLUS 1
L	H	L	H	$\mathrm{F}=\overline{\mathrm{B}}$	$F=A B P L U S ~(A+\bar{B})$	$F=A B$ PLUS $(A+\bar{B})$ PLUS 1
L	H	H	L	$F=\overline{A \oplus B}$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L	H	H	H	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
H	L	L	L	$F=\bar{A} B$	$F=A$ PLUS $(A+B)$	$F=A$ PLUS $(A+B)$ PLUS 1
H	L	L	H	$F=A \oplus B$	$F=A$ PLUS B	$F=A$ PLUS B PLUS 1
H	L	H	L	$F=B$	$F=A \bar{B}$ PLUS $(A+B)$	$F=A \bar{B}$ PLUS $(A+B)$ PLUS 1
H	L	H	H	$F=A+B$	$F=(A+B)$	$F=(A+B) P L U S 1$
H	H	L	L	$F=0$	$F=A$ PLUS A^{*}	$F=A$ PLUS A PLUS 1
H	H	L	H	$F=A \bar{B}$	$F=A B$ PLUS A	$F=A B$ PLUS A PLUS 1
H	H	H	L	$F=A B$	$F=A \bar{B}$ PLUS A	$F=A \bar{B}$ PLUS A PLUS 1
H	H	H	H	$F=A$	$F=A$	$F=A$ PLUS 1

[^40]
SN54ASC181, SN74ASC181 ARITHMETIC LOGIC UNITSIFUNCTION GENERATORS

TABLE 2

SELECTION				ACTIVE-HIGH DATA		
				$\mathrm{M}=\mathrm{H}$	$\mathbf{M}=\mathbf{L} ;$ ARIT	METIC OPERATIONS
S3	S2		S0	LOGIC FUNCTIONS	CNZ $=\mathrm{H}$ (no carry)	$C N Z=L$ (with carry)
L	L	L	L	$F=\bar{A}$	$F=A$	$F=A P L U S 1$
L	L	L	H	$F=\overline{A+B}$	$F=A+B$	$F=(A+B) P$ PLUS 1
L	L	H	L	$F=\bar{A} B$	$F=A+\bar{B}$	$F=(A+\bar{B})$ PLUS 1
L	L	H	H	$F=0$	$F=$ MINUS 1 (2's COMP)	$F=Z E R O$
L	H	L	L	$F=\overline{A B}$	$F=A$ PLUS $A \bar{B}$	$F=A$ PLUS $A \bar{B}$ PLUS 1
L	H	L	H	$F=\bar{B}$	$F=(A+B) P L U S A \bar{B}$	$F=(A+B)$ PLUS $A \bar{B}$ PLUS 1
L	H	H	L	$F=A \oplus B$	$F=A$ MINUS B MINUS 1	$F=A$ MINUS B
L	H	H	H	$F=A \bar{B}$	$F=A \bar{B}$ MINUS 1	$F=A \bar{B}$
H	L	L	L	$F=\bar{A}+B$	$F=A$ PLUS $A B$	$F=A$ PLUS AB PLUS 1
H	L	L	H	$F=\overline{A \oplus B}$	$F=A$ PLUS B	$F=A$ PLUS B PLUS 1
H	L	H	L	$F=B$	$F=(A+\bar{B})$ PLUS $A B$	$F=(A+\bar{B})$ PLUS AB PLUS 1
H	L	H	H	$F=A B$	$F=A B$ MINUS 1	$F=A B$
H	H	L	L	$\mathrm{F}=1$	$F=A$ PLUS A^{*}	$F=A$ PLUS A PLUS 1
H	H	L	H	$F=A+\bar{B}$	$F=(A+B) P$ PLUS A	$A=(A+B)$ PLUS A PLUS 1
H	H	H	L	$F=A+B$	$F=(A+\bar{B})$ PLUS A	$F=(A+\bar{B})$ PLUS A PLUS 1
H	H	H	H	$F=A$	$\mathrm{F}=\mathrm{A}$ MINUS 1	$F=A$

*Each bit is shifted to the next more significant position.
maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC181		SN74ASC181		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol	Itage			$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { or } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		11231		675	nA		
C_{i}	Input capacitance	An, Bn	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.36		0.36		pF		
		Sn			0.5		0.5				
		M			0.12		0.12				
		CN			0.6		0.6				
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	46.68		46.68		pF		

[^41]SN54ASC181, SN74ASC181
ARITHMETIC LOGIC UNITS|FUNCTION GENERATORS
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)		TEST CONDITIONS	SN54ASC181			SN74ASC181			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
t_{pd}	CN	CNPL4			3	8		3	7	ns
${ }_{\text {t }}^{\text {pd }}$	AnZ or BnZ	CNPL4	SUM mode		715			7	14	ns
${ }_{\text {tpd }}$			DIFF mode							
${ }_{\text {pd }}$	CN	Fn	SUM or DIFF		7	14.4		7	12.9	ns
${ }^{\text {pd }}$	AnZ or BnZ	GZ	SUM mode		6	13.8		6	12.8	ns
t_{pd}			DIFF mode							
${ }_{\text {tpd }}$	AnZ or BnZ	PZ	SUM mode		7	15.4		7	14.1	ns
${ }_{\text {pd }}$			DIFF mode							
${ }_{\text {tpd }}$	AiZ or BiZ	Fiz	SUM mode		12	28		12	25.6	ns
${ }_{\text {pd }}$			DIFF mode							
${ }_{\text {pd }}$	AnZ or BnZ	AEQB	DIFF mode		13	28.4		13	25.5	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	CNPL4		0.3	0.6	1.3	0.3	0.6	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {pd }}$	$A n Z$ or BnZ	GZ		0.3	0.5	1.1	0.3	0.5	1	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {pd }}$	AnZ or BnZ	PZ		0.5	1.6	4.8	0.5	1.6	4.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	FiZ		0.3	0.5	1.9	0.3	0.5	1.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	AEQB		0.1	0.5	1.3	0.1	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$

\dagger^{\dagger} Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this soft macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S181LH;

A3Z	@INPUT;
A2Z	@INPUT;
A1Z	@INPUT;
AOZ	@INPUT;
B3Z	@INPUT;
B2Z	@INPUT;
B1Z	@INPUT;
BOZ	@INPUT;
CN	@INPUT;
M	@INPUT;
S3	@INPUT;
S2	@INPUT;
S1	@INPUT;
SO	@INPUT;
F3Z	@OUTPUT;
F2Z	@OUTPUT;
F1Z	@OUTPUT;
FOZ	@OUTPUT;
AEOB	@OUTPUT;
GZ	@OUTPUT;
PZ	@OUTPUT;
CNPL4	@OUTPUT;

STRUCTURE
AN1 \quad :AN310LH

AN11 :AN210LH
AN12 :AN210LH
AN13 :AN310LH
AN14 :AN310LH
AN15 :AN210LH
AN16 :AN210LH
AN17 :AN310LH
AN18 :AN210LH
AN19 :AN420LH
AN2 :AN310LH
AN3 :AN210LH
AN4 :AN210LH
AN5 :AN310LH
AN6 :AN310LH
AN7 :AN210LH
AN8 :AN210LH
AN9 :AN310LH
EX1 :EX210LH
EX2 :EX220LH
EX3 :EX210LH
EX4 :EX220LH
EX5 :EX210LH
EX6 :EX220LH

B3Z,S3,A3Z,AN1O;
A1Z,S2,INV3O,AN100;
INV30,S1,AN110;
SO,B1Z,AN12O;
B0Z,S3,AOZ,AN130;
AOZ,S2,INV4O,AN14O;
INV4O,S1,AN15O;
SO,BOZ,AN16O;
CN,NO7O,INV5O,AN17O;
NO80,INV5O,AN180;
F3Z,F2Z,F1Z,FOZ,AEQB;
A3Z,S2,INV10,AN2O;
INV1O,S1,AN3O;
SO,B3Z,AN4O;
B2Z,S3,A2Z,AN5O;
A2Z,S2,INV2O,AN6O;
INV2O,S1,AN7O;
S0,B2Z,AN8O;
B1Z,S3,A1Z,AN9O;
NO1O,NO2O,EX1O;
EX10,INV70,F3Z;
NO3O,NO4O,EX3O;
EX3O,INV80,F2Z;
NO5O,N06O,EX5O;
EX5O,N09O,F1Z;

HDL FILE (Continued)

STRUCTURE (Continued)

EX7	:EX210LH
EX8	:EX220LH
INV1	:IV110LH
INV2	IV110LH
INV3	:IV110LH
INV4	:IV110LH
INV5	IV110LH
INV6	:IV120LH
INV7	:IV110LH
INV8	:IV110LH
INV9	:IV110LH
NA1	:NA210LH
NA10	:NA310LH
NA11	:NA210LH
NA12	:NA410LH
NA13	:NA410LH
NA14	:NA310LH
NA15	:NA210LH
NA16	:NA310LH
NA17	:NA210LH
NA2	:NA310LH
NA3	:NA410LH
NA4	:NA410LH
NA5	:NA510LH
NA6	:NA220LH
NA7	:NA410LH
NA8	:NA510LH
NA9	:NA410LH
NO1	:NO210LH
NO2	:NO310LH
NO3	:NO210LH
NO4	NO5

```
N08O,NO7O,EX7O;
EX7O,NA170,F0Z;
B3Z,INV1O;
B2Z,INV2O;
B1Z,INV3O;
BOZ,INV4O;
M,INV5O;
NA4O,GZ;
NA120,INV7O;
NA16O,INV8O;
NO2O,INV9O;
NO1O,NO4O,NA1O;
NO3O,NO6O,INV5O,NA10O;
NO4O,INV5O,NA11O;
NA8O,NA9O,NA10O,NA110,NA12O;
CN,NO7O,NO5O,INV5O,NA13O;
NO5O,NO8O,INV5O,NA14O;
NO6O,INV5O,NA15O;
NA13O,NA140,NA15O,NA16O;
CN,INV5O,NA17O;
NO1O,NO3O,NO6O,NA2O;
NO1O,NO3O,NO5O,NO8O,NA3O;
INV9O,NA1O,NA2O,NA3O,NA4O;
NO1O,NO3O,NO5O,NO7O,CN,NA5O;
GZ,NA5O,CNPL4;
NO1O,NO3O,NO5O,NO7O,PZ;
CN,NO7O,NO5O,NO3O,INV5O,NA8O;
NO5O,NO3O,NO8O,INV5O,NA9O;
AN1O,AN2O,NO1O;
AN3O,AN4O,A3Z,NO2O;
AN5O,AN6O,NO3O;
AN7O,AN8O,A2Z,NO4O;
AN9O,AN100,NO5O;
AN110,AN120,A1Z,NO6O;
AN130,AN140,NO7O;
AN15O,AN16O,AOZ,NO8O;
AN170,AN180,NO9O;
```


intefacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.
The inputs can be driven by either noninverting. or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

SystemCell ${ }^{\text {m }} 2-\mu \mathrm{m}$ Software MACro Cell

- Single Down/Up Control Line
- Look-Ahead Circuitry Enhances Performance of Cascaded Counters
- Fully Synchronous in Count Mode
- Parallel Asynchronous Load for Modulo-N Count Sequences
- Count Enable Input for Setting Sequence Start and Stop

description

The SN54ASC191 and SN74ASC191 are standard-cell software macros implementing 4-bit up-down counter elements. The 4-bit configuration provides the custom IC designer a fully designed bidirectional counter to embed in ASICs in its most efficient form, and its
4-bit length means that testability is simplified when constructing large counters. The 'ASC191 implements a count sequence identical with that performed by packaged 'HC191, 'LS191, and 'F191 synchronous counters.

The 'ASC191 is a synchronous, reversible up/down 4-bit binary counter. Synchronous counting operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates output counting spikes normally associated with asynchronous (ripple clock) counters. The 'ASC191 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
DFB20LH	7.7	4	30.8	15.04	3736	224
IV110LH	0.75	9	6.75	3.96	945	56.88
IV120LH	1	1	1	0.8	131	7.85
NA210LH	1	26	26	13.26	3406	203.84
NA310LH	1.25	3	3.75	1.5	489	29.34
NA410LH	1.5	2	3	1	374	22.4
NA510LH	1.75	2	3.5	1.04	426	25.6
NO210LH	1	2	2	0.66	256	15.42
TOTALS		49	76.8	37.26	9763	586
Label: S191LH D,C,B,A,CLK,D_UZ,CTENZ,LOADZ, QD, QC, QB, QA,RCOZ,MAX_MIN;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC191, SN74ASC191 SYNCHRONOUS UP/DOWN BINARY COUNTERS WITH DOWN/UP MODE CONTROL

The outputs of the four flip-flops are triggered on a low-to-high-level transition of the clock input if the enable input (CTENZ) is low. A high at CTENZ inhibits counting. The direction of the count is determined by the level of the down/up ($D_{-} \quad U Z$) input. When $D_{-} U Z$ is low, the counter counts up and when the D_UZ is high, it counts down.

These counters feature a fully-independent clock circuit. Changes at the control inputs (CTENZ and D__UZ) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter will be dictated solely by the conditions meeting the setup and hold times.

These counters are fully programmable, that is, they may be preset to any number between 0 and 15 by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

Two outputs have been made available to perform the cascading function: ripple and maximum/minimum count. The latter output (MAX_MIN) produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock while the count is zero (all outputs low) counting down or maximum (all outputs high) counting up. The ripple clock output (RCOZ) produces a low-level output pulse under those same conditions, but only while the clock input is low. The counters can be easily cascaded by feeding the ripple-clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

The SN54ASC191 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC191 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic diagram

typical load, count, and inhibit sequences
Illustrated below is the following sequence:

1. Load (preset) to binary thirteen.
2. Count up to fourteen, fifteen (maximum), zero, one, and two.
3. Inhibit.
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen.

SN54ASC191, SN74ASC191 SYNCHRONOUS UP/DOWN BINARY COUNTERS WITH DOWN/UP MODE CONTROL

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC191		SN74ASC191		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vo			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{C} C$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		9763		586	nA	
C_{i}	Input capacitance	CTENZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.34		0.34		pF	
		All others		0.12		0.12			
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	37.26		37.26		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC191			SN74ASC191			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {p }}$	LOADZ	Q	$C_{L}=0$		7.7	15		7.7	13.0	ns
${ }_{\text {tpd }}$	A, B, C, D	Q		.	5.9	11.6		5.9	10.4	ns
${ }^{\text {p }}$ pd	CLK	RCOZ			2.7	4.5		2.7	4.3	ns
${ }^{\text {p }}$ pd	CLK	Q			8	18		8	16	ns
$t_{\text {pd }}$	CLK	MAX_MIN			11.5	25.5		11.5	22.7	ns
${ }^{\text {p }}$ d	D_UZ	RCOZ			6.9	13.2		6.9	11.9	ns
${ }^{\text {p }}$ d	D_UZ	MAX_MIN			5.9	11.2		5.9	10.1	ns
${ }_{\text {tpd }}$	CTENZ	RCOZ			2.6	4.8		2.6	4.5	ns
$\Delta t_{\text {pd }}$	Any	Q		0.1	0.5	1.3	0.1	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {pd }}$	Any	RCOZ		0.5	1.3	3.8	0.5	1.3	3.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {pd }}$	Any	MAX_MIN		0.5	1.1	2.7	0.5	1.1	2.5	$\mathrm{ns} / \mathrm{pF}$

[^42]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S191LH;

D	@INPUT;
C	@INPUT;
B	@INPUT;
A	@INPUT;
CLK	@INPUT;
D_UZ	@INPUT;
CTENZ	@INPUT;
LOADZ	@INPUT;
QD	@OUTPUT;
QC	@OUTPUT;
QB	@OUTPUT;
QA	@OUTPUT;
RCOZ	@OUTPUT;
MAX_MIN	@OUTPUT;

STRUCTURE

FF1	:DFB20LH	G150,G090,G140,G440,QA,FF1QZ;
FF2	:DFB20LH	G240,G160,G230,G440,QB,FF2OZ;
FF3	:DFB20LH	G330,G250,G32O,G440,QC,FF3QZ;
FF4	:DFB20LH	G420,G340,G410,G440, QD,FF4OZ;
G01	:IV110LH	D_UZ,G010;
GO2	:IV110LH	G010,G020;
G03	:NO210LH	G020,CTENZ,G030;
G04	:NO210LH	G010,CTENZ,G040;
G05	:NA510LH	G010, QA, QB, QC, QD, G050;
G06	:NA510LH	G020,FF1QZ,FF2QZ,FF3OZ,FF4QZ,G06O;
G07	:NA210LH	G050,G060,MAX_MIN;
G08	:NA310LH	G430,MAX_-MIN,G100,RCOZ;
G09	:NA210LH	A,G450,G090;
G10	:IV110LH	CTENZ,G100;
G11	:IV110LH	G100,G110;
G12	:NA210LH	QA,G110,G120;
G13	:NA210LH	G100,FF1QZ,G130;
G14	:NA210LH	G120,G130,G140;
G15	:NA210LH	G090,G450,G150;
G16	:NA210LH	B,G450,G160;
G17	:NA210LH	G040,FF1QZ,G170;
G18	:NA210LH	QA,G030,G180;
G19	:NA210LH	G170,G180,G190;
G20	:IV110LH	G190,G200;
G21	:NA210LH	QB,G200,G210;
G22	:NA210LH	G190,FF2QZ,G220;
G23	:NA210LH	G210,G22O,G230;
G24	:NA210LH	G160,G450,G240;
G25	:NA210LH	C,G450,G250;
G26	:NA310LH	G040,FF1QZ,FF2OZ,G260;
G27	:NA310LH	QA,QB,G030,G270;
G28	:NA210LH	G260,G270,G280;
G29	:IV110LH	G280,G290;
G30	:NA210LH	QC,G290,G300;

HDL FILE (Continued)

STRUCTURE (Continued)

G31	:NA210LH	G280,FF30Z,G310;
G32	:NA210LH	G300,G310,G320;
G33	:NA210LH	G250,G450,G330;
G34	:NA210LH	D,G450,G340;
G35	:NA410LH	G040,FF1QZ,FF2QZ,FF3QZ,G350;
G36	:NA410LH	QA,QB,QC,G030,G360;
G37	:NA210LH	G350,G360,G370;
G38	:IV110LH	G370,G380;
G39	:NA210LH	QD,G380,G390;
G40	:NA210LH	G370,FF40Z,G400;
G41	:NA210LH	G390,G400,G410;
G42	:NA210LH	G340,G450,G420;
G43	:IV110LH	CLK,G430;
G44	:IV120LH	G430,G440;
G45	:IV110LH	LOADZ,G450;
END		

count definition
These counters are bidirectional with respect to count operations, and the relationship for counting up or down is defined by the D_UZ select input. Unidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with flip-flop cells offered in TI^{\prime} s standard cell family.

designing for testability

Designers employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

SN54ASC193, SN74ASC193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ SOFTWARE MACRO CELL

- Dual Clock Inputs for Sourcing Count Direction
- Fully Synchronous in Count Modes
- Parallel Asynchronous Load for Modulo-N Count Sequences
- Asynchronous Clear
- Look-Ahead Circuitry Enhances Performance of Cascaded Counters

description

The SN54ASC193 and SN74ASC193 are standard-cell software macros implementing 4-bit up-down binary counters. The 4-bit configuration provides the custom IC designer a bidirectional counter to embed in ASICs in its most efficient form. Its 4 -bit length means that testability is simplified when constructing large counters. The 'ASC193 implements a count sequence identical with that performed by packaged 'HC193, 'LS193, and 'F193 counters.

The 'ASC193 is a synchronous, reversible up/down counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters. The 'ASC193 is implemented with the standard cell functions indicated. This software macro is identified and called from the engineering workstation input using the cell name and netlist in conjunction with a label developed as shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathbf{C}_{\text {pd }}{ }^{\ddagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AN210LH	1.5	6	9	5.4	1164	69.6
AN310LH	1.75	2	3.5	2.12	442	26.6
AN410LH	2	2	4	2.36	512	30.6
IV120LH	1	4	4	1.76	420	25.28
NA210LH	1	4	4	2.04	524	31.36
NA310LH	1.25	4	5	2	652	39.12
NA520LH	1.75	2	3.5	1.04	426	25.6
NO210LH	1	4	4	1.32	512	30.84
TAB20LH	7.7	4	30.8	16.8	3756	224.8
TOTALS		32	67.8	34.84	8408	504
Label: S193LH A,B,C,D,UP,DOWN,LOADZ,CLR,BOZ,COZ,QA, QB, QC, QD;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC193, SN74ASC193
 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

The outputs of the four flip-flops are triggered by a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high. These counters are fully programmable; that is, they may be preset to any number between 0 and 15 by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.
A clear input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and the load inputs.
These counters are designed to be cascaded without the need for additional circuitry. The borrow output (BOZ) produces a low-level pulse while the count is zero (all outputs low) and the count-down is low. Similarly, the carry output (COZ) produces a low-level pulse while the count is maximum (all outputs high) and the count-up input is low. The counters are cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs, respectively, of the succeeding counter.
The SN54ASC193 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC193 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic diagram

SN54ASC193, SN74ASC193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

typical clear, load, and count sequences
lllustrated below is the following sequence:

1. Clear outputs to zero.
2. Load (preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one, and two.
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

NOTES: A. Clear overrides load, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high.

SN54ASC193, SN74ASC193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC193		SN74ASC193		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		8408		504	nA	
C_{i}	Input capacitance	A,B,C,D	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF	
		All others		0.24		0.24			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	34.84		34.84		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC193			SN74ASC193			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
$t_{\text {pd }}$	UP	COZ	$C_{L}=0$		3	5.1		3	4.7	ns
${ }^{\text {p }}$ d	DOWN	BOZ			3	5.2		3	4.7	ns
$t_{p d}$	DOWN, UP	Any Q			11	24.1		11	21.6	ns
${ }_{\text {tpd }}$	LOADZ	Any Q			7	14.5		7	13.5	ns
${ }_{\text {tPHL }}$	CLR	Any Q			5	10.5		5	9.6	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Any Q		0.1	0.5	1.4	0.1	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{p d}$	Any	BOZ, COZ		0.3	0.9	2.8	0.3	0.9	2.4	$\mathrm{ns} / \mathrm{pF}$

[^43]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC193, SN74ASC193
 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

HDL FILE

BLOCK S193LH;

A	@INPUT;
B	@INPUT;
C	@INPUT;
D	@INPUT;
UP	@INPUT;
DOWN	@INPUT;
LOADZ	@INPUT;
CLR	@INPUT;
BOZ	@OUTPUT;
COZ	@OUTPUT;
OA	@OUTPUT;
OB	@OUTPUT;
OC	@OUTPUT;
OD	@OUTPUT;

STRUCTURE

AN10 :AN210LH
AN2 :AN210LH
AN3 :AN310LH
AN4 :AN310LH
AN5 :AN410LH
AN6 :AN410LH
AN7 :AN210LH

AN8 :AN210LH
AN9 :AN210LH
FF1 :TAB20LH
FF2 :TAB2OLH
FF3 :TAB20LH
FF4 :TAB2OLH
INV1 :IV120LH
INV2 :IV120LH
INV3 :IV120LH
INV4 :IV120LH
NA1 :NA520LH
NA10 :NA210LH
NA2 :NA520LH
NA3 :NA310LH
NA4 :NA310LH
NA5 :NA310LH
NA6 :NA310LH
NA7 :NA210LH
NA8 : :NA210LH
NA9 :NA210LH
NO1 :NO210LH
NO2 :NO210LH
NO3 . :NO210LH
NO4 :NO210LH
AN5S,AN6S,NO4S;

count definition

These counters are bidirectional with respect to count operations, and the relationship for counting up or down is defined by the UP and DOWN inputs. Unidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with predesigned flip-flops offered in TI's standard cell family.

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and to read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an OR gate.

SN54ASC194A, SN74ASC194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

SystemCell ${ }^{T M} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Parallel Inputs and Outputs
- Four Operating Modes:

Synchronous Parallel Load
Right Shift
Left Shift
Do Nothing

- Positive Edge-Triggered Clocking
- Embedded Clock Drivers Provide Clock Buffering

description

The SN54ASC194A and SN74ASC194A are standard-cell software macros implementing 4-bit parallel-in/parallel-out bidirectional, universal shift registers. The 4-bit configuration
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. provides the custom IC designer a register to embed in ASICs in its most efficient form. Its 4-bit length simplifies construction of large registers. The 'ASC194A implements a shift register identical with that performed by packaged 'HC 194, 'LS 194A, and 'F194 registers.

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit features parallel inputs, parallel outputs, right-shift and left-shift inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Inhibit clocking (do nothing)
Shift right (in the direction QA toward QD)
Shift left (in the direction QD toward QA)
Parallel (broadside load)
The 'ASC194A is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{array}{c\|} \hline \text { TOTAL } \\ \mathrm{C}_{\text {pd }}{ }^{\ddagger} \\ \text { (pF) } \\ \hline \end{array}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV120LH	1	4	4	3.2	524	31.4
IV140LH	1.5	1	1.5	1.61	190	11.4
NA310LH	1.25	16	20	8	2608	156.48
NA410LH	1.5	4	6	2	748	44.8
R2405LH	23.25	1	23.25	10.2	2647	159
TOTALS		27	55.5	25.45	6822	410
S194ALH	abel: S194ALH	, C,D,SRS	SER,CLK,C	S1, S0,	,QB,QC,QD	

[^44]Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S1 is low. Serial data for this mode are entered at the shift-right data input. When SO is low and S1 is high, data shift left synchronously and new data are entered at the shift-left serial input. When both mode control inputs are low, a free-running clock will reload the present state of each flip-flop on each clock transition to implement the do-nothing mode.

The SN54ASC194A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC194A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic diagram

FUNCTION TABLE

INPUTS										OUTPUTS			
CLRZ	MODE		CLK	SERIAL		PARALLEL				QA	QB	QC	QD
	S1	SO		SLSER	SRSER	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	x	X	x	X	x	x	QAO	QB_{0}	QC_{0}	QD_{0}
H	H	H	\uparrow	x	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	x	H	x	x	x	x	H	$Q A_{n}$	QB_{n}	$Q C_{n}$
H	L	H	\uparrow	X	L	x	x	X	X	L	$Q A_{n}$	QB_{n}	$Q C_{n}$
H	H	L	\uparrow	H	X	x	X	x	x	QB_{n}	$Q C_{n}$	$Q D_{n}$	H
H	H	L	\uparrow	L	x	x	x	x	x	QB_{n}	$Q C_{n}$	$Q D_{n}$	L
H	L	L	X	X	X	X	X	X	X	QAO_{0}	QB_{0}	QC_{0}	QD_{0}

See Explanation of Function Tables in Section 1.
typical clear, load, right-shift, left-shift, inhibit, and clear sequences

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC194A, SN74ASC194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC194A		SN74	194A	UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vol			$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{A}=\text { MIN to } \mathrm{MAX} \end{aligned}$		6822		410	nA	
C_{i}	Input capacitance	CLK, SO, S1	$V_{C C}=5 \mathrm{~V}$,	0.24		0.24		pF	
		All others		0.12		0.12			
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	25.45		25.45		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC194A			SN74ASC194A			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
t_{pd}	CLK	Qn	$C_{L}=0$		5	10.5		5	9.4	ns
${ }^{\text {tPHL }}$	CLRZ	Qn			5	8.4		5	7.7	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	CLK	Qn		0.3	0.9	2.3	0.3	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$	CLRZ	Qn		0.3	0.7	1.9	0.3	0.7	1.6	$\mathrm{ns} / \mathrm{pF}$

[^45]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC194A, SN74ASC194A 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

HDL FILE

BLOCK S194ALH;

A	@INPUT;
B	@INPUT;
C	@INUT;
D	@INPUT;
SRSER	@INPUT;
SLSER	@INPUT;
CLK	@INPUT;
CLRZ	@INPUT;
S1	@INPUT;
SO	@INPUT;
OA	@OUTPUT;
OB	@OUTPUT;
OC	@OUTPUT;
OD	@OUTPUT;

STRUCTURE

FF14 :R2405LH
INV1 :IV110LH
INV2 :IV140LH
INV5 :IV120LH
INV6 :IV120LH
INV7 :IV120LH
INV8 :IV120LH
NA1 :NA310LH
NA10 :NA310LH
NA11 :NA310LH
NA12 :NA310LH
NA13 :NA310LH
NA14 :NA310LH
NA15 :NA31OLH
NA16 :NA310LH
NA17 :NA410LH
NA18 :NA410LH
NA19 :NA410LH
NA2 :NA310LH
NA20 :NA410LH
NA3 :NA310LH
NA4 :NA310LH
NA5 :NA310LH
NA6 :NA310LH
NA7 :NA310LH
NA8 :NA310LH
NA9 :NA310LH
END S194ALH;

INV20,NA170,NA180,NA190,NA200,CLK,OD,OC,QB,QA; CLRZ,INV1O;
INV10,INV20;
S1,INV50;
INV50,INV60;
S0,INV70;
INV70,INV80;
QD,INV50,INV7O,NA1O;
QC,INV60,INV70,NA100;
B,INV6O,INV8O,NA110;
INV80,INV5O,QA,NA120;
QA,INV5O,INV7O,NA130;
QB,INV6O,INV7O,NA14O;
A,INV60,INV8O,NA150;
INV80,INV50,SRSER,NA160;
NA1O,NA2O,NA3O,NA4O,NA170;
NA50,NA60,NA70,NA8O,NA180;
NA9O,NA10,NA110,NA120,NA190;
SLSER,INV60,INV70,NA2O;
NA130,NA140,NA150,NA160,NA200;
D,INV6O,INV8O,NA3O;
INV80,INV50,0C,NA4O;
QC,INV50,INV70,NA5O;
QD,INV6OINV70,NA60;
C,INV6O,INV8O,NA7O;
INV8O,INV5O,OB,NA8O;
QB,INV5O,INV7O,NA9O;

SN54ASC194A, SN74ASC194A
 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

shift definition

These registers are bidirectional with respect to shift operations and the relationship for shifting left or right is defined by the S0 and S1 inputs. Unidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with flip-flop cells offered in TI's standard cell family.

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC195A, SN74ASC195A 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Synchronous Parallel Load
- Positive-Edge-Triggered Clocking
- J and KZ Inputs to First Stage
- Complementary Outputs from Last Stage
- Embedded Clock Drivers Provide Clock Buffering
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC195A and SN74ASC195A are standard-cell software macros implementing 4-bit parallel-out shift registers. The 4-bit configuration provides the custom IC designer a register to embed in ASICs in its most efficient form. The 4-bit length simplifies construction of large counters. The 'ASC195A implements a shift sequence identical with that performed by packaged 'HC195, 'LS195A, and 'F195 registers.

These 4-bit shift registers feature parallel inputs, parallel outputs, J-KZ serial inputs, shift/load control input, and a direct overriding clear. The registers have two modes of operation: parallel (broadside) load, and shift (in the direction of QA toward QD).

The 'ASC195A is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ \text { (pF) } \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV120LH	1	2	2	1.6	262	15.7
IV140LH	1.5	1	1.5	1.61	190	11.4
NA210LH	1	10	10	5.1	1310	78.4
NA310LH	1.25	3	3.75	1.5	489	29.34
R2406LH	26.25	1	26.25	11.69	2931	176
TOTALS		18	44.25	21.94	5287	318
S195ALH	bel: S195ALH	RZ,CLK, SH	DZ, J,KZ, A, B,	, QA, QB	C,QD,QDZ;	

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
Parallel loading is accomplished by applying the four bits of data and taking the shift/load control (SH_LDZ) input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock (CLK) input. During loading, serial data flow is inhibited.

description (continued)

Shifting is accomplished synchronously when the shift/load control is high. Serial data for this mode is entered at the J-KZ inputs. These inputs permit the first stage to perform as a J-K, D-, or T-type flip-flop as shown in the function table.

The SN54ASC195A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC195A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic diagram

FUNCTION TABLE

INPUTS									OUTPUTS				
CLRZ	SH_LDZ	CLK	SERIAL		PARALLEL				QA	OB	OC	QD	QDZ
			J	KZ	A	B	C	D					
L	X	X	X	X	X	X	X	X	L	L	L	L	H
H	L	\uparrow	X	X	a	b	c	d	a	b	c	d	d̄z
H	H	L	X	\times	X	X	X	\times	QAO	QBO_{0}	aCo_{0}	ab_{0}	$\overline{\mathrm{o}} \mathrm{D}_{0}$
H	H	\uparrow	L	H	X	X	x	X	QA_{0}	Q_{0}	QB_{n}	OC_{n}	$\overline{\mathrm{a}} \mathrm{c}_{\mathrm{n}}$
H	H	\uparrow	L	L	X	X	X	X	L	$Q A_{n}$	QB_{n}	QC_{n}	$\overline{\mathrm{o}} \mathrm{c}_{\mathrm{n}}$
H	H	\uparrow	H	H	X	X	X	X	H	$Q A_{n}$	OB_{n}	$Q_{\text {Q }}^{n}$	$\overline{\mathrm{a}} \mathrm{C}_{n}$
H	H	\uparrow	H	L	X	X	X	X	$\overline{\mathrm{Q}} \mathrm{A}_{n}$	$Q A_{n}$	OB_{n}	$Q_{\text {O }}$	$\overline{\mathrm{a}}^{\text {c }}$

typical clear, shift and load sequences

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC195A		SN74ASC195A		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\prime} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MiN to MAX } \end{aligned}$		5287		318	nA	
C_{i}	Input capacitance	CLK,SH_LDZ	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24		pF	
		All others		0.12		0.12		pF	
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	21.95		21.95		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	$\begin{gathered} \text { FROM } \\ \text { (INPUT) } \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC195A			SN74ASC195A			UNIT
				MIN	TYP ${ }^{\text {§ }}$	MAX	MIN	TYP ${ }^{\text {S }}$	MAX	
${ }^{\text {p }}$ p	CLK	Qn	$C_{L}=0$		5	10.6		5	9.6	ns
${ }^{\text {tpd }}$	CLK	ODZ			5.5	12.5		5.5	11.3	ns
tPHL	CLRZ	On			5.4	8.3		5.4	7.7	ns
${ }^{\text {P PLH }}$	CLRZ	QDZ			6.1	10.4		6.1	9.4	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Qn, QDZ		0.2	0.9	2.4	0.3	0.9	2.1	ns/pF

\ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\mathrm{t}} \mathrm{pd} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change propagation delay time with capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S195ALH;	
CLRZ	@INPUT;
CLK	@INPUT;
SH_LDZ	@INPUT;
J	@INPUT;
KZ	@INPUT;
A	@INPUT;
B	@INPUT;
C	@INPUT;
D	@INPUT;
QA	@OUTPUT;
QB	@OUTPUT;
QC	@OUTPUT;
QD	@OUTPUT;
QDZ	@OUTPUT;

STRUCTURE	
INV1	:IV110LH
INV2	:IV140LH
INV3	:IV120LH
INV4	:IV120LH
NA1	:NA310LH
NA10	:NA210LH
NA11	:NA210LH
NA12	:NA210LH
NA13	:NA210LH
NA2	:NA310LH
NA3	:NA210LH
NA4	:NA310LH
NA5	:NA210LH
NA6	:NA210LH
NA7	:NA210LH
NA8	:NA210LH
NA9	:NA210LH
GO1	:R2406LH
END S195ALH;	

```
CLRZ,CLR;
CLR,CLRZ1;
SH_LDZ,SHLDZ;
SHLDZ,SHLD1;
QAZ,SHLD1,J,S1;
S8,S9,S10;
SHLDZ,D,S11;
SHLD1,QC,S12;
S11,S12,S13;
SHLD1,KZ,QA,S2;
SHLDZ,A,S3;
S1,S2,S3,S4;
QA,SHLD1,S5;
SHLDZ,B,S6;
S5,S6,S7;
SHLDZ,C,S8;
SHLD1,QB,S9;
CLRZ1,S4,S7,S10,S13,CLK,QA,QAZ,QB,DUM,QC,DUM,QD,QDZ;
```


SN54ASC195A, SN74ASC195A 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

shift definition

These registers are unidirectional with respect to shift operations. Bidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with flip-flop cells offered in TI's standard cell family.

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC244, SN74ASC244 OCTAL INTERNAL 3-STATE BUS BUFFERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface Internal Data Buses Directly
- Active-Low Enables for Expandability
- Use Parallel Bus Interfaces for Wide Words

description

The SN54ASC244 and SN74ASC244 are standard-cell software macros implementing octal internal 3-state bus buffers. The 'ASC244 executes a function table identical with that performed by packaged 'HC244, 'LS244, and 'S244 bus drivers.

The macro is organized as dual 4-bit drivers with individual enables, G1Z and G2Z, that enable and disable the 3 -state outputs to permit interfacing the internal bus directly in either a parallel or word mode. The Y outputs are in a highimpedance state when $G n Z$ is high. When GnZ is low, the outputs drive the bus lines. The 'ASC244 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \text { C }_{\text {pd }}{ }^{\ddagger} \\ & \text { (pF) } \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	8	6	3.52	840	50.56
IV120LH	1	2	2	1.6	262	15.7
IV212LH	1.5	8	12	4	1440	86.4
TOTALS		18	20	8.82	2542	153

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

The SN54ASC244 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC244 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC244, SN74ASC244
OCTAL INTERNAL 3-STATE BUS BUFFERS

logic diagram

SN54ASC244, SN74ASC244 OCTAL INTERNAL 3-STATE BUS BUFFERS

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC244		SN74ASC244		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{C} C$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & T_{A}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0$		2542		153	$n \mathrm{~A}$		
C_{i}	Input capacitance	A inputs	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
		G1Z, G2Z			0.24		0.24				
C_{0}	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.18		0.18		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	8.82		8.82		pF		

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC244			SN74ASC244			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }^{\text {p }}$ d	Any A	Any Y	$C_{L}=0$		2.4	4.4		2.4	4.1	ns
$\mathrm{t}_{\text {en }}$	GnZ	Any Y			2.6	5.1		2.6	4.7	
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Y		0.6	1.7	4.6	0.6	1.7	4.2	ns/pF
$\Delta \mathrm{t}_{\text {en }}$	Any	Y		0.7	1.7	4.8	0.7	1.7	4.4	ns/pF

[^46]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC244, SN74ASC244
 OCTAL INTERNAL 3-STATE BUS BUFFERS

HDL FILE

BLOCK S244LH;
A11 @INPUT;
A12 @INPUT;
A13 @INPUT;
A14 @INPUT;
G1Z @INPUT;
A21 @INPUT;
A22 @INPUT;
A23 @INPUT;
A24 @INPUT;
G2Z @INPUT;
Y11 @OUTPUT;
Y12 @OUTPUT;
Y13 @OUTPUT;
Y14 @OUTPUT;
Y21 @OUTPUT;
Y22 @OUTPUT;
Y23 @OUTPUT;
Y24 @OUTPUT;
STRUCTURE
INV10 :IV120LH
INV11 :IV212LH
INV12 :IV212LH
INV13 :IV212LH
INV14 :IV212LH
INV15 :IV212LH
:IV212LH
:IV212LH
INV18 :IV212LH
INV2 :IV11OLH
INV3 :IV110LH
INV4 :IV110LH
INV5 :IV120LH
INV6 :IV110LH
INV7 :IV110LH
INV8 :IV110LH
INV9 :IV110LH
A11,INV1O;

END S244LH;
Hardwired internal cells with 3-state outputs are also available in the standard cell library. These hardwired cells should be considered if the interface is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

SystemCell ${ }^{\text {m }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface Internal Data Buses Directly
- Active-Low Enables for Expandability
- Use Parallel Bus Interfaces for Wide Words

description

The SN54ASC245 and SN74ASC245 are standard-cell software macros implementing octal internal 3-state bidirectional I/O ports. The 'ASC245 executes a function table identical with that performed by packaged 'HC245, 'LS245, and 'F245 bus transceivers.

The macro is organized as an octal transceiver with direction control DIR and an output enable GZ. The GZ input enables and disables the

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. 3-state outputs to permit interfacing or isolating the internal bus directly in a parallel mode. The outputs are in a high-impedance state when GZ is high. When GZ is low, the outputs selected by the DIR control drive the bus lines. The 'ASC245 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \text { C }_{\text {pd }}{ }^{\ddagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AN220LH	1.75	1	1.75	1.2	228	13.6
IV110LH	0.75	17	12.75	7.48	1785	107.44
IV212LH	1.5	16	24	8	2880	172.8
NO220LH	1.5	1	1.5	0.52	185	11.1
TOTALS		35	44	22.96	5494	330
Label: S245LH A1,A2,A3,A4,A5,A6,A7,A8,B1,B2,B3,B4,B5,B6,B7,B8,G2,DIR;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

The SN54ASC245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

CONTROL INPUTS		OPERATION
GZ	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

SN54ASC245, SN74ASC245

OCTAL INTERNAL 3-STATE BUS TRANSCEIVERS

logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54	C245	SN74	C245	UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\text { MIN to MAX } \end{aligned}$	5494		330		nA	
C_{i}	Input capacitance	A or B	$V_{C C}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	0.30		0.30		pF	
		DIR		0.37		0.37			
		GZ		0.36		0.36			
C_{0}	Output capacitanc only, same as A or	(reference B)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.30		0.30		pF	
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacit	ance ${ }^{\dagger}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	22.96		22.96		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC245			SN74ASC245			UNIT
				MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN	TYP§	MAX	
${ }^{\text {p }}$ d	A or B	B or A	$C_{L}=0$		2.4	4.4		2.4	4.4	ns
${ }^{\text {pd }}$	DIR	B or A			5	11.3		5	10.3	ns
t_{en}	GZ	A or B			5	11.3		5	10.3	ns
$\Delta t_{\text {pd }}$	A or B	B or A		0.6	1.7	4.6	0.6	1.7	4.2	ns
$\Delta t_{\text {en }}$	A or B	B or A		0.7	1.7	4.8	0.7	1.7	4.4	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{f} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high- or high-to-low-level output
$\mathrm{t}_{\text {en }} \equiv$ enable time, high impedance state to low- or high-logic-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\Delta t_{\text {en }} \equiv$ change in $t_{e n}$ with load capacitance
${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.
2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2311 (IV212LH).

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S245LH;

GZ	@INPUT;
DIR	@INPUT;
A1	@INOUT;
A2	@INOUT;
A3	@INOUT;
A4	@INOUT;
A5	@INOUT;
A6	@INOUT;
A7	@INOUT;
A8	@INOUT;
B1	@INOUT;
B2	@INOUT;
B3	@INOUT;
B4	@INOUT;
B5	@INOUT;
B6	@INOUT;
B7	@INOUT;
B8	@INOUT;

STRUCTURE

AN1 :AN2201H

HDL FILE (Continued)

STRUCTURE		(Continued)
INV5	:IV212LH	
INV6	IV110LH	A3,INO,AN10,B2;
INV7	IV212LH	INV6O,AN1O,B3;
INV8	IV110LH	A4,INV8O;
INV8	IV212LH	INV8O,AN1O,B4;
INV9	IV212LH	
NO1	:NO22OLH	GZ,DIR,NO1O;
END S245LH;		

Hardwired internal cells with 3-state outputs are also available in the standard cell library. These hardwired cells should be considered if the interface is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.
słәәчS eqea \dagger

SN54ASC251, SN74ASC251 8-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

SystemCell ${ }^{T M}$ 2- $\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface Internal Data Buses Directly
- Active-Low Strobe for Expandability
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC251 and SN74ASC251 are standard-cell software macros implementing 8 -line to 1 -line multiplexers. The 'ASC251 implements a function table identical with that performed by packaged 'HC251, 'LS251, 'S251, and 'F251 multiplexers.

The macro has a strobe input GZ, that enables and disables the 3 -state outputs to facilitate interfacing the multiplexer directly with internal control or data buses. The Y output and the WZ output are in a high-impedance state when $G Z$ is high. When $G Z$ is low, the Y output assumes the level of the selected input and the WZ output assumes the complement of that level. This strobe permits the macro to also be employed for designing wider multiplexers, as only the enabled 8-bit field will output an active data bit. The 'ASC251 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\text {pd }}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	3	2.25	1.32	315	19
IV120LH	1	4	4	3.2	524	31.44
IV212LH	1.5	2	3	3.72	360	21.6
NA410LH	1.5	8	12	4	1496	89.6
NA810LH	2.5	1	2.5	0.61	290	17.4
TOTALS		18	23.75	12.85	2985	180
Label: S251LH GZ,A,B,C,D0,D1,D2,D3,D4,D5,D6,D7,Y,WZ;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC251 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC251 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC251, SN74ASC251

8-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

FUNCTION TABLE

INPUTS				OUTPUTS	
SELECT			STROBE		
C	B	A	GZ	γ	WZ
X	X	X	H	Z	Z
L	L	L	L	DO	$\overline{\text { DO }}$
L	L	H	L	D1	$\overline{\mathrm{D} 1}$
L	H	L	L	D2	$\overline{\mathrm{D} 2}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\mathrm{D} 4}$
H	L.	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\mathrm{D}}$

DO,D1 . . D7 $=$ the level of the respective D input.
logic diagram

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC251		SN74	SC251	UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vol	tage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { to } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		2985		180	nA	
C_{i}	Input capacitance	GZ	$V_{C C}=5 \mathrm{~V}$,	0.24		0.24		pF	
		All other inputs		0.12		0.12			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	12.85		12.85		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC251			SN74ASC251			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{5}$	MAX	
$t_{\text {pd }}$	A, B, or C	Y	$C_{L}=0$		9.7	22.2		9.7	19.8	ns
${ }^{\text {p }}$ d		WZ			8.7	20.3		8.7	18.1	ns
${ }^{\text {t }} \mathrm{pd}$	Any D	Y			7.7	18.5		7.7	16.4	ns
${ }^{\text {p }}$ pd		WZ			6.8	16.6		6.8	14.7	
${ }^{\text {en }}$	GZ	Y			3.1	5.6		3.1	5.2	ns
$\mathrm{t}_{\text {en }}$		WZ			2.1	4.2		2.1	3.9	
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Y,WZ	.	0.6	1.7	4.6	0.6	1.7	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {en }}$	Any	Y,WZ		0.7	1.7	4.8	0.7	1.7	4.4	

[^47]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S251LH;	
GZ	@INPUT;
A	@INPUT;
B	@INPUT;
C	@INPUT;
D0	@INPUT;
D1	@INPUT;
D2	@INPUT;
D3	@INPUT;
D4	@INPUT;
D5	@INPUT;
D6	@INPUT;
D7	@INPUT;
Y	@OUTPUT;
WZ	@OUTPUT;

STRUCTURE

Dedicated 8 -line to 1 -line multiplexers, 'SC2342, are also available in the standard cell library for implementing data-path multiplexers. The 'SC2342 cell incorporates an enable input that can be used for expanding the word width. These hard-wired cells should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library. The 3-state outputs can interface internal bidirectional buses.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer. If bus interface is not required, the 'ASC151 8-line to 1 -line multiplexer provides totem-pole outputs.

SN54ASC257A, SN74ASC257A QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface with Internal Data Buses Directly
- Active-Low Enable for Expandability
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC257A and SN74ASC257A are standard-cell software macros implementing 2 -line to 1 -line multiplexers. The 'ASC257A implements a function table identical with that performed by packaged 'HC257, 'LS257, 'S257, and 'F257 multiplexers.

The macro has an enable input, GZ, that enables and disables the 3 -state outputs to facilitate interfacing the multiplexer directly with internal control or data buses. The Y outputs are in a high-impedance state when GZ is high. When GZ is low, the outputs assume the levels of the selected inputs. This enable permits the macro to also be employed for designing wider multiplexers, as only the enabled 2 -bit field will output an active data bit. The 'ASC257A is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\text {pd }^{\ddagger}} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV-110LH	0.75	10	7.5	4.4	1050	63.2
IV212LH	1.5	8	12	4	1440	86.4
AN220LH	1.75	2	3.5	2.4	456	27.2
TOTALS		20	23	10.8	2946	177
Label: S257ALH A1,A2,A3,A4, B1, B2,B3,B4,GZ,AZ_B,Y1,Y2,Y3,Y4;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC257A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC257A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUT Y
$\begin{gathered} \text { ENABLE } \\ \text { GZ } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SELECT } \\ A Z_{_} B \end{gathered}$			
		A	B	
H	X	X	X	Z
L	L	L	X	L
L	L	H	X	H
L	H	x	1	L
L	H	X	H	H

SN54ASC257A, SN74ASC257A

QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXERS

WITH 3-STATE OUTPUTS

logic diagram

SN54ASC257A, SN74ASC257A QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC257A		SN74ASC257A		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		2946		177	$n \mathrm{~A}$	
C_{i}	Input capacitance	AZ_B	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.25		0.25			
		All other inputs		0.12		0.12		pr	
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	10.8		10.8		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	$\begin{aligned} & \hline \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	то (OUTPUT)	TEST CONDITIONS	SN54ASC257A			SN74ASC257A			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }^{\text {t }}$ pd	Any A or B	Y	$C_{L}=0$		2.7	5.2		2.7	4.8	ns
$t_{\text {pd }}$	AZ_B	Y			5	10.4		5	9.5	ns
$\mathrm{t}_{\text {en }}$	GZ	Y			5	10.7		5	9.8	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Y		0.6	1.7	4.6	0.6	1.7	4.2	ns
$\Delta \mathrm{t}_{\text {en }}$	Any	Y		0.7	1.7	4.8	0.7	1.7	4.4	ns/pF

[^48]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC257A, SN74ASC257A QUADRUPLE 2.LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

BLOCK S257ALH;	
A1	@INPUT;
A2	@INPUT;
A3	@INPUT;
A4	@INPUT;
B1	@INPUT;
B2	@INPUT;
B3	@INPUT;
B4	@INPUT;
GZ	@INPUT;
AZ_B	@INPUT;
Y1	@OUTPUT;
Y2	@OUTPUT;
Y3	@OUTPUT;
Y4	@OUTPUT;

STRUCTURE

G01	:IV212LH	G130,G090,Y1;
G02	:IV212LH	G140,G100,Y1;
G03	:IV212LH	G150,G090,Y2;
G04	:IV212LH	G160,G100,Y2;
G05	:IV212LH	G170,G090,Y3;
G06	:IV212LH	G180,G100,Y3;
G07	:IV212LH	G190,G090,Y4;
G08	:IV212LH	G200,G100,Y4;
G09	:AN220LH	G110,G120,G090;
G10	:AN220LH	AZ_B,G120,G100;
G11	:IV110LH	AZ_B,G110;
G12	:IV110LH	GZ,G12O;
G13	:IV110LH	A1,G130;
G14	:IV110LH	B1,G140;
G15	:IV110LH	A2,G150;
G16	:IV110LH	B2,G160;
G17	:IV110LH	A3,G170;
G18	:IV110LH	B3,G180;
G19	:IV110LH	A4,G190;
G20	:IV110LH	B4,G200;
END		

Dedicated 2 -line to 1 -line multiplexers, 'SC2340, are also available in the standard cell library for implementing data-path multiplexers. The 'SC2340 cell incorporates an enable input which can be used for expanding the word width. These hardwired cells should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library. The 3-state outputs can interface internal bidirectional buses.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer. If bus interface is not required, the 'ASC157 2-line to 1-line multiplexer provides totem-pole outputs.

SN54ASC258A, SN74ASC258A QUADRUPLE 2-LINE TO 1-LINE INVERTING MULTIPLEXERS WITH 3-STATE OUTPUTS

SystemCell ${ }^{T M}$ 2- $\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface with Internal Data Buses Directly
- Active-Low Enable for Expandability
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC258A and SN74ASC258A are standard-cell software macros implementing 2 -line to 1 -line multiplexers. The 'ASC258A implements a function table identical with that performed by packaged 'HC258, 'LS258, 'S258, and 'F258 multiplexers.

The macro has an enable input, GZ, that enables and disables the 3 -state outputs to facilitate interfacing the multiplexer directly with internal control or data buses. The Yn outputs are in a highimpedance state when GZ is high. When GZ is low, the output assumes the complement of the level of the selected input. This enable permits the macro to also be employed for designing wider multiplexers, as only the enabled 2-bit field will output an active data bit. The 'ASC258A is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC ($\mathrm{n} A$)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	2	1.5	0.88	210	12.64
IV212LH	1.5	8	12	4	1440	86.4
AN220LH	1.75	2	3.5	2.4	456	27.2
TOTALS		12	17	7.28	2106	127
Label: S258ALH A1,A2,A3,A4, B1, B2,B3,B4,GZ,AZ_B,Y1,Y2,Y3,Y4;						

The SN54ASC258A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC258A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUT Y
$\begin{gathered} \text { ENABLE } \\ \text { GZ } \end{gathered}$	$\begin{gathered} \text { SELECT } \\ \text { AZ_B } \end{gathered}$			
		A	B	
H	X	X	X	Z
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

SN54ASC258A, SN74ASC258A

QUADRUPLE 2-LINE TO 1-LINE INVERTING MULTIPLEXERS
WITH 3-STATE OUTPUTS
logic diagram

SN54ASC258A, SN74ASC258A QUADRUPLE 2-LINE TO 1-LINE INVERTING MULTIPLEXERS WITH 3-STATE OUTPUTS

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54	C258A	SN74	258A	UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=M I N t \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		2106		127	nA		
C_{i}	Input capacitance	AZ_-B	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.25		0.25		pF		
		All other inputs			0.12		0.12				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	7.28		7.28		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC258A			SN74ASC258A			UNIT
				MIN	TYP ${ }^{\text {§ }}$	MAX	MIN	TYP§	MAX	
${ }^{\text {p }}$ d	Any A or B	Y	$C_{L}=0$		1.4	2.8		1.4	2.5	ns
${ }^{\text {p }}$ pd	AZ_B	Y			5	10.4		5	9.5	ns
${ }_{\text {ten }}$	GZ	Y			5	10.7		5	9.8	ns
$\Delta t_{\text {pd }}$	Any	Y		0.6	1.7	4.6	0.6	1.7	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {en }}$	Any	Y		0.7	1.7	4.8	0.7	1.7	4.4	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
$t_{\mathrm{en}} \equiv$ enable time, high impedance state to low- or high-logic-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\Delta t_{e n} \equiv$ change in $t_{e n}$ with load capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.
2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2311 (IV212LH).

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S258ALH;

A1	@INPUT;
A2	@INPUT;
A3	@INPUT;
A4	@INPUT;
B1	@INPUT;
B2	@INPUT;
B3	@INPUT;
B4	@INPUT;
GZ	@INPUT;
AZ_B	@INPUT;
Y1	@OUTPUT;
Y2	@OUTPUT;
Y3	@OUTPUT;
Y4	@OUTPUT;

STRUCTURE

G01 :IV212LH
G02 :IV212LH
GO3 :IV212LH
:IV212LH
:IV212LH
:IV212LH
:IV212LH
:IV212LH
:AN220LH
:AN220LH
:IV110LH
:IV110LH
G12 :

A1,G090,Y1;
B1,G100,Y1;
A2,G090,Y2;
B2,G100,Y2;
A3,G090,Y3;
B3, G100, Y3;
A4,G090, Y4;
B4,G100,Y4;
G110,G120,G090;
AZ_B,G120,G100;
AZ_B,G110;
GZ,G12O;

Dedicated 2-line to 1 -line multiplexers are also available in the standard cell library ('SC2340) for implementing data-path multiplexers. The 'SC2340 cell incorporates an enable input which can be used for expanding the word width. These hard-wired cells should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library. The 3-state outputs can interface internal bidirectional buses.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3 -state I/O TTL/CMOS buffer. If bus interface is not required, the 'ASC158 2-line to 1 -line multiplexer provides totem-pole outputs.

SN54ASC259, SN74ASC259 8-BIT ADDRESSABLE LATCHES

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Parallel-Out Register Performs Serial-toParallel Conversion with Storage
- Expandable for N -Bit Applications
- Enable/Disable Input Simplifies Expansion
- Four Functional Modes:

Addressable Transparent Latch Parallel 8-Bit Storage Latch 1-of-8 Demultiplexer Asynchronous Parallel Clear

description

The SN54ASC259 and SN74ASC259 are standard-cell software macros implementing addressable 8 -bit parallel latches. The 8 -bit configuration provides the custom IC designer a fully designed addressable register/ demultiplexer to embed in ASICs in its most efficient form, and its 8 -bit length simplifies construction of large latches. The 'ASC259 implements an addressable latch function identical with that performed by packaged 'HC259, 'LS259, and 'F259 latches.

These 8-bit addressable latches are designed for general purpose storage applications where demultiplexing and/or addressable bit storage locations are useful co-functions. Some uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunction macros capable of storing single-line data in eight addressable latches or of implementing a 1 -of-N line decoder or demultiplexer with active-high outputs. The 'ASC259 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME		NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ & \text { (pF) } \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AN240LH	2.25	1	2.25	2.32	286	17.2
IV110LH	0.75	2	1.5	0.88	210	12.64
IV120LH	1	6	6	4.8	786	47.1
IV140LH	1.5	1	1.5	1.61	190	11.4
NA220LH	1.5	8	12	8	1568	93.6
NA310LH	1.25	8	10	4	1304	78.24
NA410LH	1.5	16	24	8	2992	179.2
NO240LH	2.5	1	2.5	0.98	292	17.5
TOTALS		43	59.75	40.59	7528	457
Label: S259LH CLRZ,D,GZ,S0,S1,S2,Q0,01,02,03,04, Q5, Q6, Q7;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

logic diagram

Four distinct modes of operation are selectable by controlling the clear (CLRZ) and enable (GZ) inputs as shown in the function table. In the addressable-latch mode, data at the data-in input D are written into the addressed latch. The addressed latch will follow the data input with remaining unaddressed latches retaining their previous states. In the memory mode, all latches remain in their previous states and are not affected by changes at the data or address inputs. To preclude entering erroneous data in the latches, enable GZ should be held high (inactive) while the address lines are changed. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level at the D input with the remaining outputs low. In the clear mode, all outputs are set low and are not affected by address and data changes.
The SN54ASC259 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC259 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OUTPUT OF ADDRESSED LATCH	EACHOTHER OUTPUT	FUNCTION
CLRZ	GZ			
H	L	D	Qio	Addressable Latch
H	H	Qio	Qio	Memory
L	L	D	L	8-Line Demultiplexer
L	H	L	L	Clear

$D=$ the level at the data input
$\mathrm{Qi}_{\mathrm{O}}=$ the level of $\mathrm{Qi}(\mathrm{i}=0,1, \ldots 7$, as appropriate) before
the indicated steady-input conditions were established.

LATCH SELECTION TABLE

SELECT INPUTS			LATCH
SO	S1	S2	ADDRESSED
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3
H	L	L	4
H	L	H	5
H	H	L	6
H	H	H	7

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC259			SN74ASC259			UNIT
Arameter				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
t_{pd}	'S0, S1, S2	Qn	$C_{L}=0$		6	12		6	11	ns
${ }_{\text {tpd }}$	D	On			5	12.2		5	11.2	ns
t_{pd}	GZ	On			6	13.4		6	12	ns
tpHL	CLR				5	9.9		5	9.3	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Any		0.3	0.6	1.3	0.3	0.6	1.1	ns/pF

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $\mathrm{t}_{\text {pd }} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S259LH;
CLRZ
D
@INPUT;
@INPUT;
GZ @INPUT;
S0 @INPUT;
S1 @INPUT;
S2 @INPUT;
Q0 @OUTPUT;
Q1 @OUTPUT;
Q2 @OUTPUT;
Q3 @OUTPUT;
Q4 @OUTPUT;
Q5 @OUTPUT;
Q6 @OUTPUT;
Q7 @OUTPUT;

STRUCTURE

AN1	:AN240LH	D,G,SET;
INV1	:IV120LH	SO,ADDR1Z;
INV2	:IV120LH	ADDR1Z,ADDR1;
INV3	:IV120LH	S1,ADDR2Z;
INV4	:IV120LH	ADDR2Z,ADDR2;
INV5	:IV120LH	S2,ADDR3Z;
INV6	IV120LH	ADDR3Z,ADDR3;

HDL FILE (Continued)

STRUCTURE (Continued)
INV7 :IV110LH
INV8 :IV140LH
INV9 :IV110LH
NA1 :NA410LH
NA2 :NA410LH
NA3 :NA410LH
NA4 :NA410LH
NA5 :NA410LH
NA6 :NA410LH
NA7 :NA410LH
NA8 :NA410LH
NA9 :NA410LH
NA10 :NA410LH
NA11 :NA410LH
NA12 :NA410LH
NA13 :NA410LH
NA14 :NA410LH
NA15 :NA410LH
NA16 :NA410LH
NA17 :NA220LH
NA18 :NA310LH
NA19 :NA220LH
NA2O :NA310LH
NA21 :NA220LH
NA22 :NA310LH
NA23 :NA220LH
NA24 :NA310LH
NA25 :NA220LH
NA26 :NA310LH
NA27 :NA220LH
NA28 :NA310LH
NA29 :NA220LH
NA30 :NA310LH
NA31 :NA22OLH
NA32 :NA310LH
NO1 :NO240LH
END S259LH;

CLRZ,CLEAR;

CLEAR,CLEARZ;
GZ,G;
SET,ADDR1Z,ADDR2Z,ADDR3Z,SETOZ; RESET,ADDR1Z,ADDR2Z,ADDR3Z,RESETOZ;
SET,ADDR1,ADDR2Z,ADDR3Z,SET1Z;
RESET,ADDR1,ADDR2Z,ADDR3Z,RESET1Z;
SET,ADDR1Z,ADDR2,ADDR3Z,SET2Z;
RESET,ADDR1Z,ADDR2,ADDR3Z,RESET2Z;
SET,ADDR1,ADDR2,ADDR3Z,SET3Z;
RESET,ADDR1,ADDR2,ADDR3Z,RESET3Z;
SET,ADDR1Z,ADDR2Z,ADDR3,SET4Z;
RESET,ADDR1Z,ADDR2Z,ADDR3,RESET4Z;
SET,ADDR1,ADDR2Z,ADDR3,SET5Z;
RESET,ADDR1,ADDR2Z,ADDR3,RESET5Z;
SET,ADDR1Z,ADDR2,ADDR3,SET6Z;
RESET,ADDR1Z,ADDR2,ADDR3,RESET6Z;
SET,ADDR1,ADDR2,ADDR3,SET7Z;
RESET,ADDR1,ADDR2,ADDR3,RESET7Z;
SETOZ,QOZ,QO;
QO,RESETOZ,CLEARZ,QOZ;
SET1Z,Q1Z,Q1;
Q1,RESET1Z,CLEARZ,Q1Z;
SET2Z, O2Z, Q2;
Q2,RESET2Z,CLEARZ,Q2Z;
SET3Z,Q3Z, Q3;
Q3,RESET3Z,CLEARZ,Q3Z;
SET4Z,Q4Z,Q4;
Q4,RESET4Z,CLEARZ,Q4Z;
SET5Z, Q5Z, Q5;
Q5,RESET5Z,CLEARZ,Q5Z;
SET6Z, Q6Z, Q6;
Q6,RESET6Z,CLEARZ,Q6Z;
SET7Z,07Z,Q7;
Q7,RESET7Z,CLEARZ,Q7Z;
D,GZ,RESET;

SN54ASC259, SN74ASC259
 8-BIT ADDRESSABLE LATCHES

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously either preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Access to the clear inputs from other system signals in conjunction with the power-up clear can be facilitated with an AND gate.

SN54ASC260, SN74ASC260 5-INPUT POSITIVE-NOR GATES

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Two Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over $V_{C C}$ Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

$$
Y=\overline{A+B+C+D+E}=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D} \cdot \bar{E}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A	B	C	D	E	\mathbf{Y}
H	X	X	X	X	L
X	H	X	X	X	L
X	X	H	X	X	L
X	X	X	H	X	L
X	X	X	X	H	L
L	L	L	L	L	H

description

The SN54ASC260 and SN74ASC260 are five-input positive-NOR gate CMOS standard cells implementing the equivalent of one-half of an SN54LS260 or SN74LS260. The standard-cell library contains two physical implementations providing the custom IC designer a choice between two performance levels for optimizing a design. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST	FEATURES	
	HDL LABEL	TYPICAL	RELATIVE
		DELAY CELL AREA	
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
NO510LH	Label: NO5nOLH A,B,C,D,E,Y;	5 ns	1.75
NO520LH	3.2 ns	3	

The SN54ASC260 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC260 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		NO510LH		NO520LH		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current	SN54ASC260	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			200		318	nA		
		SN74ASC260				12		19.1			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.11		0.23		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap	ance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.37		0.64		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
NO510LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC260			SN74ASC260			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A thru E	Y	$C_{L}=0$	0.7	1.8	5.7	0.7	1.8	5.2	ns
${ }^{\text {tPHL }}$				1	1.5	3	1	1.5	2.7	
${ }^{\text {tPLH }}$	A thru E	Y	$C_{L}=1 \mathrm{pF}$	3.1	6.8	17.3	3.3	6.8	15.6	ns
${ }^{\text {tPHL }}$				1.7	3.2	7.8	1.8	3.2	6.8	
Δ tPLH	A thru E	Y		2.4	5	11.6	2.6	5	10.5	ns/pF
$\Delta \mathrm{t}$ PHL				0.6	1.7	5.3	0.7	1.7	4.6	

NO520LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC260			SN74ASC260			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A thru E	Y	$C_{L}=0$	0.8	1.6	4.2	0.8	1.6	3.8	ns
${ }^{\text {tPHL }}$				0.8	1.5	2.9	0.9	1.5	2.6	
${ }^{\text {tPLH }}$	A thru E	Y	$C_{L}=1 \mathrm{pF}$	2	4.2	10.2	2.2	4.2	9.2	ns
${ }^{\text {tPHL }}$				1.4	2.4	5.3	1.4	2.4	4.6	
Δ tPLH	A thru E	Y	-	1.2	2.6	6	1.3	2.6	5.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.4	0.9	2.5	0.5	0.9	2.2	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}$ PHL \equiv change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC266, SN74ASC266 2-INPUT EXCLUSIVE-NOR GATES

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 2.4 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

$$
Y=\overline{A \oplus B}=A B+\overline{A B}
$$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	L
H	L	L
H	H	H

description

The SN54ASC266 and SN74ASC266 are 2 -input exclusive-NOR gate CMOS standard-cell functions implementing the equivalent of one-fourth of an 'LS266 or 'HC266. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FETLIST HDL LABEL	$\|c\|$ 	TYPICAL $C_{L}=1 \mathrm{pF}$
	RELATIVE CELL AREA TO NA210LH		

The SN54ASC266 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC266 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} input threshold voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		2.2		V
ICC Supply current	SN54ASC266				272	nA
	SN74ASC266				16.3	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.28		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.09		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC266			SN74ASC266			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {tPLH }}$	A or B	Y	$C_{L}=0$	0.5	1.3	2.9	0.6	1.3	2.6	ns
tPHL				0.9	1.5	3.3	0.9	1.5	3	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.3	5.2	1.1	2.3	4.7	ns
tPHL				1.3	2.4	5.7	1.4	2.4	5	
Δ tPLH	A or B	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.4	0.9	2.5	0.4	0.9	2.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta t_{P H L} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 8-Bit Software Register

- Direct Clear Input Simplifies Initialization or Pattern Length
- Buffered Clear Simplifies System Design
- Cascadable and Expandable for Full Customization

description

The SN54ASC273 and SN74ASC273 are standard-cell software macros implementing 8-bit register elements for embedding in ASICs in their most efficient form. The 8-bit length simplifies construction of large registers. The The 'ASC273 implements a function table identical with that performed by packaged 'HC273, 'LS273, and 'F273 registers.

The software macro reduces the input loading for implementation of larger registers, as standard library cells are used to buffer the clear input. The 'ASC273 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVECELL AREATO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathbf{c}_{\mathrm{pd}^{\ddagger}}(\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV140LH	1.5	1	1.5	1.61	190	11.4
R2405LH	23.25	2	46.5	20.4	5294	318
TOTALS		4	48.75	22.4	5589	336

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC273 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC273 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE (EACH FLIP-FLOP)		
\qquadINPUTS OUTPUT CLRZ CLK Dn Q L X X L H \uparrow H H H \uparrow L L H L X Q_{0}		

logic diagram

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements, made during pre-layout simulation, produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC273		SN74ASC273		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=M I N t \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { to } 0,$		5589		336	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF		
		Dn			0.13		0.13				
		CLK			0.48		0.48				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	22.45		22.45		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC273			SN74ASC273			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
t_{pd}	CLK	Q	$C_{L}=0$		5	10.5		5	9.4	ns
${ }^{\text {tPHL}}$	CLRZ	Q			5	9.3		5	8.6	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Q		0.3	0.8	2.3	0.3	0.8	2.1	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\mathrm{t}} \mathrm{pd} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE
BLOCK S273LH;
D1 @INPUT;
D2 @INPUT;
D3 @INPUT;
D4 @INPUT;
D5 @INPUT;
D6 @INPUT;
D7 @INPUT;
D8 @INPUT;
CLK @INPUT;
CLRZ @INPUT;
Q1 @OUTPUT;
02 @OUTPUT;
Q3 @OUTPUT;
04 @OUTPUT;
Q5 @OUTPUT;
06 @OUTPUT;
07 @OUTPUT;
Q8 @OUTPUT:

STRUCTURE

FF14 :R2405LH INV2O,D1,D2,D3,D4,CLK,Q1,Q2,Q3,Q4;
FF58 :R2405LH INV2O,D5,D6,D7,D8,CLK,Q5,Q6,Q7,Q8;
INV1 :IV110LH CLRZ,INV10; INV10,INV2O;
INV2
END S273LH;

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{T M} 2-\mu \mathrm{m}$ HARDWIRED MACRO CELLS

- Provides Complementary Q and OZ Outputs
- Choice Between Two Relative Output Drive Capabilities
- Implements Control/Status Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC279 and SN74ASC279 are dedicated, hardwired standard-cell macros implementing S-R latch elements. The 'ASC279 latches offer two choices of individual latch configurations providing the custom IC designer a storage element to embed in ASICs in its most efficient form: as stand-alone bit-storage devices or as additions to larger latched functions. The LAB10LH and LAB20LH latches implement identical function and sequential operation to one-fourth of the 'LS279A packaged latches except both Q and QZ outputs are available on these standard-cell latches. The LAB2OLH provides twice the drive capability as the LAB1OLH element.
The cells are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST	RELATIVE
	HDL LABEL	CELL AREA TO NA210LH
LAB1OLH	Label: LABnOLH SZ,RZ,Q,QZ;	2.5
LAB2OLH	3	

The SN54ASC279 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC279 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS	SN54ASC279		SN74ASC279		UNIT	
		TYP	MAX	TYP	MAX			
Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current	LAB10LH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		311		18.6	nA	
	LAB2OLH			373		22.4		
Input capacitance	RZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13		0.13		pF	
	SZ		0.12		0.12			
Equivalent power dissipation capacitance	LAB10LH	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	2.11		2.11		pF	
	LAB2OLH		3.2		3.2			

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
LAB10LH

PARAMETER ${ }^{\dagger}$	FROM(INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC279			SN74ASC279			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	RZ, SZ	OZ, Q	$C_{L}=0$	1.3	2.4	5.4	1.4	2.4	4.9	ns
tpHL				1	1.6	3.4	1	1.6	3.1	
tpLH	RZ, SZ	QZ, 0	$C_{L}=1 \mathrm{pF}$	1.8	3.4	7.6	1.9	3.4	6.9	ns
tPHL				1.3	2.2	4.9	1.3	2.2	4.4	
Δ tpLH	RZ, SZ	OZ, Q		0.4	1	2.4	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}_{\text {PHL }}$				0.2	0.6	1.5	0.2	0.6	1.3	

LAB20LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC279			SN74ASC279			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	RZ, SZ	QZ, Q	$C_{L}=0$	1.4	2.7	6.4	1.5	2.7	5.7	ns
tPHL				0.9	1.7	3.6	1	1.7	3.3	
tPLH	RZ, SZ	QZ, Q	$C_{L}=1 \mathrm{pF}$	1.6	3.2	7.5	1.7	3.2	6.8	ns
${ }^{\text {tPHL }}$				1.1	2.1	4.5	1.2	2.1	4.1	
$\Delta \mathrm{tPLH}$	RZ, SZ	QZ, Q		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.1	0.4	0.9	0.1	0.4	0.8	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

designing for testability

Designs employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Generates Either Odd or Even Parity for Nine Data Lines
- Cascadable for n-Bits
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC280 and SN74ASC280 are standard-cell software macros implementing parallel 9 -bit parity generators. The 9 -bit configuration provides the custom IC designer a fully designed parity generator to embed in ASICs in its most efficient form, and the 9-bit length simplifies construction of large parity generators. The 'ASC280 implements a parity tree identical with that performed by packaged 'H280, 'LS280, and 'F280 generators.

These universal 9-bit parity generators/checkers feature odd and even outputs to facilitate operation in either odd- or even-parity applications. The word-length capability is easily expanded by cascading. The 'ASC280 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

NUMBER OF INPUTS A	OUTPUTS	
	EVEN	ODD
$0,2,4,6,8$	H	L
$1,3,5,7,9$	L	H

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & C_{p d}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	18	13.5	7.92	1890	113.76
IV120LH	1	5	5	4	655	39.25
NA310LH	1.25	20	25	10	3260	195.6
NA410LH	1.5	2	3	1	374	22.4
NA420LH	2.5	3	7.5	2.88	936	56.1
TOTALS		48	54	25.8	7115	428
Label: S280LH A, B, C, D, E,F,G, H, I, EVEN,ODD;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC280 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC280 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC280		SN74ASC280		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		7115		428	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.12		0.12		pF
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	25.8		25.8		pF

[^49]
SN54ASC280, SN74ASC280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO	TEST CONDITIONS	SN54ASC280			SN74ASC280			UNIT
		(OUTPUT)		MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$t_{\text {pd }}$	Any	EVEN	$C_{L}=0$		11	23.4		11	21.6	ns
${ }^{\text {p }}$ d	Any	ODD			11	24.4		11	21.9	ns
$\Delta t_{\text {pd }}$	Any	Any		0.3	0.5	1.1	0.3	0.5	1	$\mathrm{ns} / \mathrm{pF}$

 ${ }^{t_{p d}} \equiv$ propagation delay time, low-to-high- or high-to-low-level output
$\Delta t_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE
BLOCK S280LH;

A	@INPUT;
B	@INPUT;
C	@INPUT;
D	@INPUT;
E	@INPUT;
F	@INPUT;
G	@INPUT;
H	@INPUT;
I	@INPUT;
EVEN	@OUTPUT;
ODD	@OUTPUT;

SN54ASC280, SN74ASC280

 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERSHDL FILE (Continued)

Structure	
INV1	:IV110LH
INV10	:IV110LH
INV11	:IV110LH
INV12	:IV110LH
INV13	:IV110LH
INV14	:IV110LH
INV15	:IV110LH
INV16	:IV110LH
INV17	:IV110LH
INV18	:IV110LH
INV19	:IV120LH
INV2	:IV110LH
INV20	:IV120LH
INV21	:IV120LH
INV22	:IV120LH
INV23	:IV120LH
INV3	:IV110LH
INV4	:IV110LH
INV5	:IV110LH
INV6	:IV110LH
INV7	:IV110LH
INV8	:IV110LH
INV9	:IV110LH
NA1	:NA310LH
NA10	:NA310LH
NA11	:NA310LH
NA12	:NA310LH
NA13	:NA420LH
NA14	:NA420LH
NA15	:NA420LH
NA16	:NA310LH
NA17	:NA310LH
NA18	:NA310LH
NA19	:NA310LH
NA2	:NA310LH
NA20	:NA310LH
NA21	:NA310LH
NA22	:NA310LH
NA23	:NA310LH
NA24	:NA410LH
NA25	:NA410LH
NA3	:NA310LH
NA4	:NA310LH
NA5	:NA310LH
NA6	:NA310LH
NA7	:NA310LH
NA8	:NA310LH
NA9	:NA310LH

```
A,INV1O;
INV90,INV100;
F,INV110;
INV110,INV12O;
G,INV130;
INV130,INV140;
H,INV15O;
INV150,INV16O;
I,INV17O;
INV170,INV180;
SNA13,SIV19;
INV1O,INV2O;
SNA14,SIV2O;
SNA15,SIV21;
SNA24,EVEN;
SNA25,ODD;
B,INV3O;
INV3O,INV4O;
C,INV5O;
INV5O,INV6O;
D,INV7O;
INV70,INV8O;
E,INV9O;
INV3O,INV5O,INV2O,SNA1;
INV130,INV17O,INV160,SNA10;
INV150,INV130,INV180,SNA11;
INV180,INV160,INV140,SNA12;
SNA1,SNA2,SNA3,SNA4,SNA13;
SNA5,SNA6,SNA7,SNA8,SNA14;
SNA9,SNA10,SNA11,SNA12,SNA15;
SNA13,SIV20,SIV21,SNA16;
SIV19,SNA14,SIV21,SNA17;
SIV19,SNA15,SIV20,SNA18;
SNA13,SNA14,SNA15,SNA19;
INV10,INV50,INV40,SNA2;
SNA15,SNA14,SIV19,SNA2O;
SIV20,SNA13,SNA15,SNA21;
SNA13,SNA14,SIV21,SNA22;
SIV19,SIV20,SIV21,SNA23;
SNA16,SNA17,SNA18,SNA19,SNA24;
SNA20,SNA21,SNA22,SNA23,SNA25;
INV3O,INV1O,INV6O,SNA3;
INV6O,INV4O,INV2O,SNA4;
INV90,INV110,INV8O,SNA5;
INV70,INV110,INV100,SNA6;
INV9O,INV7O,INV120,SNA7;
INV12O,INV100,INV8O,SNA8;
INV150,INV170,INV140,SNA9;
```


SN54ASC283, SN74ASC283 4-BIT BINARY FULL ADDERS WITH FAST CARRY

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Full-Carry Look-Ahead Across the Four Bits
- Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple Carry
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC283 and SN74ASC283 are standard-cell software macros implementing 4-bit binary full adders. The 4-bit configuration provides the custom IC designer a fully designed, fast-carry adder to embed in ASICs in its most efficient form, and the 4-bit length simplifies construction of large adders. The 'ASC283 implements an adder identical with that performed by packaged 'LS283, and 'F283 adders.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

These full adders perform the addition of two 4-bit binary words. The sum outputs are provided for each bit and the resultant carry (C4) is generated in parallel from the four bits. These adders feature full carry look-ahead across all four bits, providing the system designer with built-in partial look-ahead. The adder logic, including the carry, is implemented in its true form. End around carry can be accomplished without the need for logic or level inversion. The 'ASC283 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathbf{C}_{\text {pd }}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AN220LH	1.75	5	8.75	6	1140	68
EX220LH	2.25	4	9	6	1032	62
IV110LH	0.75	10	7.5	4.4	1050	63.2
IV120LH	1	2	2	1.6	262	15.7
NA220LH	1.5	7	10.5	7	1372	81.9
NA320LH	2	4	8	3.76	1020	61.2
NA420LH	2.5	3	7.5	2.88	936	56.1
NA520LH	3	2	6	2.04	720	43.8
NO220LH	1.5	5	7.5	2.6	925	55.5
TOTALS		42	66.75	36.28	8457	508
Label: S283LH A4,A3,A2,A1,B4,B3,B2,B1,C0,SUM4,SUM3,SUM2,SUM1,C4;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC283 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC283 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic diagram

FUNCTION TABLE

INPUT				OUTPUT					
				WHEN $\mathrm{CO}=\mathrm{L}$		WHEN c2.1.	WHEN $\mathrm{CO}=\mathrm{H}$		whent $\mathrm{c} 2 . \mathrm{H}$
A1 As	B1 in	A2 AI	B2		SUM2 sumit	C2 ca,			c2
L	L	L	L	L	L	L	H	L	L
H	L	L	L	H	L	L	L	H	L
L	H	L	L	H	L	L	L	H	L
H	H	L	L	L	H	L	H	H	L
L	L	H	L	L	H	L	H	H	L
H	L	H	L	H	H	L	L	L	H
L	H	H	L	H	H	L	L	L	H
H	H	H	L	L	L	H	H	L	H
L	L	L	H	L	H	L	H	H	L
H	L	L	H	H	H	L	L	L	H
L	H	L	H	H	H	L	L	L	H
H	H	L	H	L	L	H	H	L	H
L	L	H	H	L	L	H	H	L	H
H	L	H	H	H	L	H	L	H	H
L	H	H	H	H	L	H	L	H	H
H	H	H	H	L	H	H	H	H	H

NOTE: Input conditions at A1, B1, A2, B2, and CO are used to determine outputs SUM1 and SUM2 and the value of the internal carry $C 2$. The values at $C 2, A 3, B 3, A 4$, and $B 4$ are then used to determine outputs SUM3, SUM4, and C4.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC283		SN74ASC283		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{I}=V_{C C} \text { or } 0,$		8457		508	nA		
C_{i}	Input capacitance	An, Bn	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5		0.5		pF		
		CO			0.12		0.12				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	36.28		36.28		pF		

[^50]
SN54ASC283, SN74ASC283

 4-BIT BINARY FULL ADDERS WITH FAST CARRYswitching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO		SN54ASC283			SN74ASC283			UNIT
		(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
t_{pd}	CO	SUMn	$C_{L}=0$		8.5	16.5		8.5	15	ns
t_{pd}	An, Bn	SUMn			7.5	15.5		7.5	14.3	ns
t_{pd}	CO	C4			6	12.6		6	11.7	ns
t_{pd}	An, Bn	C4			6	12.8		6	11.6	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Any		0.3	0.6	1.9	0.3	0.6	1.7	$\mathrm{ns} / \mathrm{pF}$

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{I} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S283LH;	
A4	@INPUT;
A3	@INPUT;
A2	@INPUT;
A1	@INPUT;
B4	@INPUT;
B3	@INPUT;
B2	@INPUT;
B1	@INPUT;
C0	@INPUT;
SUM4	@OUTPUT;
SUM3	@OUTPUT;
SUM2	@OUTPUT;
SUM1	@OUTPUT;
C4	@OUTPUT;

HDL FILE (Continued)

STRUCTURE

EX1	:EX220LH	AN100,INV120,SUM4;
EX2	:EX220LH	AN150,INV130,SUM3;
EX3	:EX220LH	AN190,N050,SUM2;
EX4	:EX220LH	AN210,INV100,SUM1;
INV1	:IV110LH	CO,INV1O;
INV10	:IV110LH	INV10,INV100;
INV11	:IV120LH	NA90, C4;
INV12	:IV110LH	NA140, INV120;
INV13	:IV110LH	NA180, INV130;
INV2	:IV110LH	NO10,INV2O;
INV3	:IV110LH	NO2O, INV3O;
INV4	:IV110LH	N030, INV4O;
INV5	:IV110LH	NO4O, INV50;
INV6	:IV120LH	N010, INV60;
INV7	:IV110LH	NO2O,INV70;
INV8	:IV110LH	N030, INV80;
NA1	:NA220LH	B4,A4,NA1O;
AN10	:AN220LH	NA10,INV2O,AN100;
NA11	:NA220LH	NO3O,NA2O,NA110;
NA12	:NA320LH	NO4O,NA2O,NA3O,NA12O;
NA13	:NA420LH	NA2O,NA3O,NA4O,INV1O,NA130;
NA14	:NA420LH	INV7O,NA110,NA120,NA130,NA140;
AN15	:AN220LH	NA20, INV30,AN150;
NA16	:NA220LH	NO4O,NA3O,NA160;
NA17	:NA32OLH	NA30,NA4O, INV10,NA170;
NA18	:NA32OLH	INV80,NA160,NA170,NA180;
AN19	:AN220LH	NA3O,INV4O,AN190;
NA2	:NA220LH	B3,A3,NA2O;
NA20	:AN220LH	NA40, INV10,NA200;
AN21	:AN220LH	NA40, INV5O,AN210;
NA3	:NA220LH	B2,A2,NA3O;
NA4	:NA220LH	B1,A1,NA4O;
NA5	:NA220LH	NO20,NA10,NA50;
NA6	:NA320LH	NO30,NA10,NA2O,NA60;
NA7	:NA420LH	NO4O,NA10,NA2O,NA3O,NA7O;
NA8	:NA520LH	NA1O,NA2O,NA3O,NA4O,INV10,NA8O;
NA9	:NA520LH	INV60,NA5O,NA6O,NA7O,NA8O,NA9O;
NO1	:NO220LH	B4,A4, NO1O;
NO2	:NO22OLH	B3,A3,NO2O;
NO3	:NO220LH	B2,A2,NO3O;
NO4	:NO220LH	B1,A1,NO4O;
NO5	:NO220LH	NO4O,AN20O,NO5O;

SN54ASC298, SN74ASC298 QUADRUPLE 2-INPUT MULTIPLEXERS WITH NEGATIVE-EDGE-TRIGGERED REGISTER

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ SOFTWARE MACRO CELL

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Storage Register Loads New Data on Negative-Going Transition
- Implements Hexadecimal/BCD Shifter
- Parallel Multiplexers for Wider Words

description

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The SN54ASC298 and SN74ASC298 are standard-cell software macros implementing four 2-line to 1 -line multiplexers with storage. The 'ASC298 implements a function table identical with that performed by packaged 'HC298, 'LS298, and 'F298 multiplexers.

When the Word-Select (WS) input is low, word one (A1, B1, C1, D1) is applied to the flip-flops. A high WS input causes word two (A2, B2, C2, D2) to be selected. The selected word is clocked to the output terminals on the negative-going edge of the clock pulse. The 'ASC298 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVECELL AREATO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV120LH	1	3	3	2.4	393	23.55
NA210LH	1	12	12	6.12	1572	94.2
R2405LH	23.25	1	23.25	10.2	2647	159
T0010LH	1.5	1	1.5	-	177	10.6
TOTALS		17	39.75	18.72	4789	288
Label: S298LH A1,A2,B1,B2,C1,C2,D1,D2,CLKZ,WS, QA, QB, QC, QD;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

The SN54ASC298 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC298 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OUTPUTS			
WS	CLKZ	QA	QB	OC	QD
L	\downarrow	a1	b1	c1	d1
H	\downarrow	a2	b2	c2	d2
X	H	QA $_{0}$	QB $_{0}$	QC $_{0}$	QD $_{0}$

SN54ASC298, SN74ASC298
 QUADRUPLE 2-INPUT MULTIPLEXERS WITH NEGATIVE-EDGE-TRIGGERED REGISTER

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC298		SN74ASC298		UNIT		
			TYP	MAX	TYP	MAX					
V_{T} Input threshold voltage					$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$ Supply current			$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=M I N t \end{aligned}$	$V_{I}=V_{C C} \text { or } 0,$		4789		288	nA		
C_{i}	Input capacitance	CLKZ	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24		pF		
		WS			0.24		0.24				
		All others			0.12		0.12				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	18.72		18.72		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC298			SN74ASC298			UNIT
				MIN	TYP ${ }^{\text {8 }}$	MAX	MIN	TYP§	MAX	
${ }^{\text {tpd }}$	CLKZ	Qn	$C_{L}=0$		6	12		6	11	ns
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Qn		0.3	0.8	2.3	0.3	0.8	2.1	ns/pF

[^51]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC298, SN74ASC298
 QUADRUPLE 2-INPUT MULTIPLEXERS WITH NEGATIVE-EDGE-TRIGGERED REGISTER

HDL FILE

BLOCK S298LH;

A1	@INPUT;
A2	@INPUT;
B1	@INPUT;
B2	@INPUT;
C1	@INPUT;
C2	@INPUT;
D1	@INPUT;
D2	@INPUT;
CLKZ	@INPUT;
WS	@INPUT
QA	@OUTPUT;
QB	@OUTPUT;
QC	@OUTPUT;
QD	@OUTPUT;

STRUCTURE

FF14	$: R 2405 L H$	INV1O,NA3O,INV4O,NA6O,NA9O,NA12O,QA,QB,QC,QD;
INV1	:TOO1OLH	DUM,INV1O;
INV2	IV120LH	WS,INV2O;
INV3	:IV120LH	INV2O,INV3O;
INV4	:IV120LH	CLKZ,INV4O;
NA1	:NA210LH	A1,INV2O,NA1O;
NA10	:NA210LH	INV2O,D1,NA10O;
NA11	:NA210LH	INV3O,D2,NA11O;
NA12	:NA210LH	NA10O,NA110,NA12O;
NA2	:NA210LH	A2,INV3O,NA2O;
NA3	:NA210LH	NA1O,NA2O,NA3O;
NA4	:NA210LH	B1,INV2O,NA4O;
NA5	:NA210LH	INV3O,B2,NA5O;
NA6	:NA210LH	NA4O,NA5O,NA6O;
NA7	:NA210LH	C1,INV2O,NA7O;
NA8	:NA210LH	INV3O,C2,NA8O;
NA9	:NA210LH	NA7O,NA8O,NA9O;
END S298LH;		

Dedicated 2 -line to 1 -line multiplexers ('ASC2340) are also available in the standard cell library for implementing data-path multiplexers. These hard-wired multiplexers in conjunction with hard-wired registers should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

TYPICAL APPLICATION DATA

This versatile multiplexer/register can be connected to operate as a shift register that can shift N -places in a single clock pulse.
The following figure illustrates a $B C D$ shift register that will shift an entire 4-bit $B C D$ digit in one clock pulse.

When the word-select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2, etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered in the entire register with one clock puise. This arrangement can be modified to perform the shifting of binary data for any number of bit locations.

Another function that can be implemented with the 'ASC298 is a rgister that can be designed specifically for supporting multiplier or division operations. The example below is a one-place/two-place shift register.

When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALUs) are shifted one place. When word select is high and the registers are clocked, the data is shifted two places.

SN54ASC299, SN74ASC299
 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT/STORAGE REGISTERS

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ SOFTWARE MACRO CELLS

- Ported 3-State Inputs/Outputs Simplify Implementation of:

Single/Multiple Push/Pop Stack Multiple/Supplementary Accumulator Bus Storage/Shift Register

- Four Operating Modes:

Synchronous Parallel Load
Right Shift
Left Shift
Do Nothing

- Positive-Edge-Triggered Clocking
- Embedded Clock Drivers Provide Clock Buffering

description

The SN54ASC299 and SN74ASC299 are standard-cell software macros implementing 8-bit parallel$\mathrm{in} /$ parallel-out bidirectional, universal shift/storage registers. The 8 -bit configuration provides the custom IC designer a register to embed in ASICs in its most efficient form. The 8-bit length simplifies construction of large registers. The 'ASC299 implements an 8-bit shift sequence identical with that performed by packaged 'HC299, 'LS299, and 'F299 4-bit shift registers.

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit features parallel inputs, parallel outputs, right-shift and left-shift inputs, operating-mode-control inputs, and a direct overriding clear line. The 'ASC299 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	TOTAL C $_{\text {pd }}{ }^{\ddagger}$ (pF)	MAXIMUM ICC (nA)	
AN210LH	1.5	1	15	0.9	194	SN54ASC'
IV110LH	0.75	1	0.75	0.44	210	12.64
IV140LH	1.5	5	6	8.05	760	45.6
IV222LH	1.5	8	16	7.84	1944	116.8
NA310LH	1.25	32	40	16	5216	312.96
NA410LH	1.5	8	12	4	1496	89.6
NO310LH	1.25	1	1.25	.32	312	18.66
R2406LH	26.25	2	52.5	23.4	5862	352

Label: S299LH S0,S1,G1Z,G2Z,SL,SR,CLK,CLRZ, QAP, QHP, A_QA,B_QB,C_QC,
${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic symbol ${ }^{\dagger}$

$$
D _Q D, E _Q E, F _Q F, G _Q G, H _Q H ;
$$

The 'ASC299 register has four distinct modes of operation, namely:
Parallel (broadside load)
Shift right (in the direction QA toward QH)
Shift left (in the direction QH toward QA)
Inhibit clocking (do nothing).
Synchronous parallel loading is accomplished by taking either output control input, G1Z or G2Z, high and applying the eight bits of data while both mode control inputs, SO and S1, are high. The data are loaded into the associated flip-flops on the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S 1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input. When both mode control inputs are low, a free-running clock will reload the present state of each flip-flop on each clock transition to implement the do-nothing mode.
The SN54ASC299 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC299 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS								I/O PORTS								OUTPUTS	
CLRZ	MODE		OUTPUT CONTROLS		CLK	SERIAL											
	S1	so	G12 ${ }^{+}$	G22 ${ }^{+}$		SL	SR	A_OA	B_OB	C_OC	D_OD	E_OE	F_OF	G_OG	$\mathrm{H}_{-} \mathrm{OH}$	QAP	QHP
L	X	L	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
L	L	X	L	L	x	X	X	L	L	L	L	L	L	L	L	L	L
L	H	H	X	X	x	x	x	x	x	x	x	x	x	x	x	L	L
H	L	L	L	L	X	x	x	QAO	QB_{0}	QCO_{0}	QD_{0}	OE_{0}	QFo	QG_{0}	OH_{0}	QA_{0}	OH_{O}
H	X	X	L	L	L	x	X	QAO	QB_{0}	QCO_{0}	QD_{0}	QE_{0}	OFO_{0}	QG_{0}	QH_{0}	QAO	OH_{O}
H	L	H	L	L	1	x	H	H	$Q A_{n}$	QB_{n}	QC_{n}	OD_{n}	$Q E_{n}$	QF ${ }_{\text {n }}$	QG_{n}	H	QG_{n}
H	L	H	L	L	1	X	L	t	$Q A_{n}$	OB_{n}	QC_{n}	OD_{n}	$Q E_{n}$	OF_{n}	QG_{n}	L	OG_{n}
H	H	L	L	L	1	H	X	QB_{n}	QC_{n}	OD_{n}	$Q E_{n}$	OF_{n}	QG_{n}	OH_{n}	H	QB_{n}	H
H	H	L	L	L	1	L	x	OB_{n}	$Q_{\text {O }}$	$Q D_{n}$	$Q E_{n}$	QF n	$Q G_{n}$	OH_{n}	L	QB_{n}	L
H	H	H	X	X	1	X	x	a	b	c	d	e	f	g	h	a	h

[^52]
logic diagram

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC299		SN74ASC299		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		15915		956	$n A$	
C_{i}	Input capacitance	CLK	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.48		0.48		pF	
		G1Z, G2Z		0.24		0.24			
		S0, S1		0.62		0.62			
		A_OA...H_OH		0.45		0.45			
		All others		0.12		0.12			
C_{0}	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.33		0.33		pF	
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	60.02		60.02		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC299			SN74ASC299			UNIT
				MIIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tpd }}$	CLK	On	$C_{L}=0$		7.1	15.2		7.1	13.8	ns
tPHL	CLRZ	Qn			8.4	17		8.4	15.3	ns
${ }^{\text {t }} \mathrm{pd}$	CLK	QAP, QHP			5	10.3		5	9.4	ns
${ }_{\text {t }}$ PHL	CLRZ	QAP, QHP			6	11.4		6	10.4	ns
ten	GnZ	On			6.1	13.5		6.1	12.2	ns
$\Delta t_{\text {pd }}$	Any	Any		0.2	0.9	2.3	0.3	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {en }}$	GnZ	Qn		0.4	0.8	2.3	0.5	0.8	2.1	$\mathrm{ns} / \mathrm{pF}$

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\Delta t_{\text {en }} \equiv$ change in $t_{e n}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for a reference.

HDL FILE

BLOCK S299LH;

S0	@INPUT;
S1	@INPUT;
G1Z	@INPUT;
G2Z	@INPUT;
SL	@INPUT;
SR	@INPUT;
CLK	@INPUT;
CLRZ	@INPUT;
QAP	@OUTPUT;
QHP	@OUTPUT;
A_QA	@INOUT;
B_QB	@INOUT;
C_QC	@INOUT;
D_QD	@INOUT;
E_QE	@INOUT;
F_QF	@INOUT;
G_QG	@INOUT
H_QH	@INOUT;

STRUCTURE
AN1 :AN210LH
INV1 :IV140LH
INV10 :IV222LH
INV11 :IV222LH
INV12 :IV222LH
INV13 :IV222LH
INV14 :IV222LH
INV15 :IV222LH
INV2 :IV140LH
INV3 :IV140LH
INV4 :IV140LH
INV6 :IV110LH
INV7 :IV110LH
INV8 :IV222LH
INV9 :IV222LH
NA1 :NA310LH
NA10 :NA410LH
NA11 :NA310LH
NA12 :NA310LH
NA13 :NA310LH
NA14 :NA310LH
NA15 :NA410LH
NA16 :NA310LH
NA17 :NA310LH
NA18 :NA310LH
NA19 :NA310LH
NA2 :NA310LH
NA20 :NA410LH
NA21 :NA310LH
NA22 :NA310LH

SO,S1,AN1O;
S0,INV10;
CN,NO1O,C_QC;
DN,NO1O,D_QD;
EN,NO1O,E_QE;
FN,NO1O,F_QF;
GN,NO1O,G_QG;
HN,N01O,H_-QH;
INV1O,INV2O;
S1,INV3O;
INV30,INV4O;
INV70,INV60;
CLRZ,INV7O;
AN,NO1O,A_QA;
BN,NO1O,B_QB;
OHP,INV10,INV30,NA10;
NA6O,NA7O,NA8O,NA9O,NA100;
FP,INV1O,INV3O,NA110;
F_QF,INV2O,INV4O,NA12O;
GP,INV10;INV4O,NA130;
INV30,INV2O,EP,NA140;
NA110,NA120,NA130,NA140,NA15O;
EP,INV10,INV30,NA160;
E_OE,INV2O,INV4O,NA17O;
FP,INV10,INV4O,NA180;
INV30,INV2O,DP,NA190;
H_OH,INV2O,INV4O,NA2O;
NA16O,NA17O,NA180,NA190,NA200;
DP,INV1O,INV3O,NA21O;
D_QD,INV2O,INV4O,NA22O;

STRUCTURE (Continued)
NA23 :NA310LH

NA24 :NA310LH
NA25 :NA410LH
NA26 :NA310LH
NA27 :NA310LH
NA28 :NA310LH
NA29 :NA310LH
NA3 :NA310LH
NA30 :NA410LH
NA31 :NA310LH
NA32 :NA310LH
NA33 :NA310LH
NA34 :NA310LH
NA35 :NA410LH
NA36 :NA310LH
NA37 :NA310LH
NA38 :NA310LH
NA39 :NA310LH
NA4 :NA310LH
NA40 :NA410LH
NA5 :NA410LH
NA6 :NA310LH
NA7 :NA310LH
NA8 :NA310LH
NA9 :NA310LH
NO1 :NO310LH
FF14 :R2406LH
FF58 :R2406LH
END S299LH;

shift definition

These registers are bidirectional with respect to shift operations, and the relationship for shifting left or right is defined by the S0 and S1 inputs. Unidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 8-bit predesigned registers. Additional single bits can be achieved with flip-flop cells offered in TI's standard cell family.

designing for testability

Designers employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC299X, SN74ASC299X 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

SystemCell ${ }^{T M} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Parallel Inputs and Outputs
- Four Operating Modes:

Synchronous Parallel Load
Right Shift
Left Shift
Do Nothing

- Positive Edge-Triggered Clocking
- Embedded Clock Drivers Provide Clock Buffering

description

The SN54ASC299X and SN74ASC299X are standard-cell software macros implementing 8-bit parallel-in/parallel-out bidirectional, universal shift registers. The 8-bit configuration provides the custom IC designer a register to embed in ASICs in their most efficient form. The 8 -bit length simplifies construction of large registers. The 'ASC299X implements an 8-bit shift sequence identical with that performed by packaged 'HC194A, 'LS194A, and 'F194 4-bit shift registers.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Parailel (broadside load)
Shift right (in the direction QA toward QH)
Shift left (in the direction OH toward OA)
Inhibit clocking (do nothing)
The 'ASC299X is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\text {pd }}{ }^{\ddagger} \\ & \text { (pF) } \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV140LH	1.5	5	7.5	8.05	950	57
NA310LH	1.25	32	40	16	52.16	312.96
NA410LH	1.5	8	12	4	1496	89.6
R2405LH	23.25	2	46.5	20.4	5294	318
TOTALS		48	106.75	48.89	13061	784
Label: S299XLH A,B,C,D,E,F,G,H,SO,S1,SL,SR,CLK,CLRZ,QA, QB, QC, QD, QE, QF, QG, QH;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC299X, SN74ASC299X 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

description (continued)

Synchronous parallel loading is accomplished by applying the eight bits of data and taking both mode control inputs, SO and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S 1 is low. Serial data for this mode is entered at the shift-right data input. When SO is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input. When both mode control inputs are low, a free-running clock will reload the present state of each flip-flop on each clock transition to implement the do-nothing mode.
The SN54ASC299X is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC299X is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

INPUTS														OUTPUTS							
CLRZ	MODE		CLK	SERIAL		PARALLEL															
	S1	So		SL	SR	A	B	C	D	E	F	G	H	QA	OB	OC	OD	OE	OF	QG	OH
L	X	X	X	X	X	X	X	X	X	X	X	X	X	L	L.	L	L	L	L	L	L
H	X	X	L	X	X	X	X	X	X	X	X	X	X	QAO_{0}	QB_{0}	OC_{0}	QD_{0}	QE_{0}	QFO_{0}	OG_{0}	OH_{O}
H	H	H	\uparrow	X	X	a	b	c	d	e	f	g	h	a	b	c	d	e	f	g	h
H	L	H	\uparrow	x	H	x	X	x	x	x	x	x	x	H	QAn	QBn	aCn	QDn	OEn	OFn	QGn
H	L	H	\uparrow	X	L	X	x	X	X	X	x	x	x	L	QAn	QBn	QCn	QDn	QEn	QFn	QGn
H	H	L	\uparrow	H	x	X	X	X	X	X	x	X	X	QBn	QCn	QDn	QEn	QFn	QGn	OH	H
H	H	L	\uparrow	L	X	X	X	X	X	X	X	X	X	QBn	QCn	QDn	QEn	QFn	QGn	OH	L
H	L	L	x	X	X	X	X	X	X	X	x	X	X	QA_{0}	QB_{0}	QC_{0}	OD_{0}	QE_{0}	QFo	QG_{0}	OH_{O}

typical clear, load, right-shift, left-shift, inhibit, and clear sequences
The 4 -bit sequences illustrated on the 'ASC194 data sheet are applicable for similar 8-bit functions performed by the 'ASC299X.

SN54ASC299X, SN74ASC299X 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS
logic diagram

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC299X		SN74ASC299X		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{tc} \end{aligned}$	$V_{I}=V_{C C} \text { or } 0,$	13061			784	nA		
C_{i}	Input capacitance	CLK	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.48		0.48		pF		
		S0,S1			0.49		0.49				
		All others			0.12		0.12				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	48.89		48.89		pF		

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\text { }}$	$\begin{gathered} \text { FROM } \\ \text { (INPUT) } \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC299X			SN74ASC299x			UNIT
				MIN	TYP§	MAX	MiN	TYP ${ }^{\text {¢ }}$	MAX	
t_{pd}	CLK	Qn	$C_{L}=0$		5	10.5		5	9.4	ns
tPHL	CLRZ	Qn			5	9.3		6.1	8.6	ns
$\Delta t_{\text {pd }}$	CLK	On		0.3	0.9	2.3	0.3	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$	CLRZ	On		0.3	0.7	1.9	0.3	0.7	1.6	$\mathrm{ns} / \mathrm{pF}$

\ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$t_{p d} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S299XLH;
A @INPUT;
B @INPUT;
C @INPUT;
D @INPUT;
E @INPUT;
F @INPUT;
G @INPUT;
H @INPUT;
SO @INPUT;
S1 @INPUT;
SL @INPUT;
SR @INPUT;
CLK @INPUT;
CLRZ @INPUT;
QA @OUTPUT;
QB @OUTPUT;
QC @OUTPUT;
QD @OUTPUT;
QE @OUTPUT;
QF @OUTPUT;
QG @OUTPUT;
OH @OUTPUT;

STRUCTURE

INV1 :IV140LH
INV2 :IV140LH
INV3 :IV140LH
INV4 :IV140LH
INV5 :IV110LH
INV6 :IV140LH
NA1 :NA310LH
NA10 :NA410LH
NA11 :NA310LH
NA12 :NA310LH
NA13 :NA310LH
NA14 :NA310LH
NA15 :NA410LH
NA16 :NA310LH
NA17 :NA310Lh
NA18 :NA310LH
NA19 :NA310LH
NA2 :NA310LH
NA20 :NA410LH
NA21 :NA310LH
NA22 :NA310LH
NA23 :NA310LH
NA24 :NA310LH
NA25 :NA410LH
NA26 :NA310LH
NA27 :NA310LH

SO,INV1O;
INV10,INV2O;
S1,INV3O;
INV30,INV4O;
CLRZ,INV5O;
INV5O,INV6O;
QH,INV1O,INV3O,NA1O;
NA6O,NA7O,NA8O,NA9O,NA100;
QF,INV1O,INV3O,NA11O;
F,INV2O,INV4O,NA12O;
QG,INV10,INV4O,NA130;
INV3O,INV2O,QE,NA14O;
NA110,NA120,NA130,NA140,NA15O;
QE,INV1O,INV3O,NA16O;
E,INV2O,INV4O,NA170;
QF,INV1O,INV4O,NA18O;
INV3O,INV2O,QD,NA190;
H,INV2O,INV4O,NA2O;
NA16O,NA17O,NA18O,NA19O,NA20O;
QD,INV1O,INV3O,NA210;
D,INV2O,INV4O,NA22O;
QE,INV1O,INV4O,NA23O;
INV30,INV2O,QC,NA24O;
NA210,NA22O,NA230,NA24O,NA25O;
QC,INV1O,INV3O,NA26O;
C,INV2O,INV4O,NA27O;

HDL FILE (continued)

STRUCTURE (continued)

NA28	:NA310LH
NA29	:NA310LH
NA3	:NA310LH
NA30	:NA410LH
NA31	:NA310LH
NA32	:NA310LH
NA33	:NA310LH
NA34	:NA310LH
NA35	:NA410LH
NA36	:NA310LH
NA37	:NA31OLH
NA38	:NA310LH
NA39	:NA31OLH
NA4	:NA310LH
NA4O	:NA410LH
NA5	:NA41OLH
NA6	:NA310LH
NA7	:NA310LH
NA8	:NA31OLH
NA9	:NA310LH
FF14	:R2405LH
FF58	:R2405LH

END S299XLH;

```
QD,INV1O,INV4O,NA28O; INV3O,INV2O,QB,NA290; SL,INV1O,INV4O,NA3O; NA26O,NA27O,NA28O,NA290,NA30O; QB,INV1O,INV3O,NA31O; B,INV2O,INV4O,NA32O;
QC,INV1O,INV4O,NA330;
INV3O,INV2O,QA,NA34O;
NA31O,NA32O,NA33O,NA34O,NA35O;
QA,INV1O,INV3O,NA36O;
A,INV2O,INV4O,NA37O;
QB,INV10,INV4O,NA38O;
INV3O,INV2O,SR,NA39O;
INV30,INV2O,QG,NA4O;
NA36O,NA37O,NA38O,NA39O,NA40O;
NA1O,NA2O,NA3O,NA4O,NA5O;
QG,INV1O,INV3O,NA6O; G,INV2O,INV4O,NA7O; QH,INV1O,INV4O,NA8O;
INV30,INV2O,QF,NA9O;
INV6O,NA25O,NA30O,NA35O,NA40O,CLK,QD,QC,QB,QA; INV6O,NA5O,NA100,NA150,NA200,CLK,QH,QG,QF,QE;
```


shift definition

These registers are bidirectional with respect to shift operations and the relationship for shifting left or right is defined by the S0 and S1 inputs. Unidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 8-bit predesigned registers. Additional single bits can be achieved with flip-flop cells offered in TI's standard cell family.

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asychronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC373, SN74ASC373 8-BIT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SystemCell ${ }^{T M} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface with Internal Data Buses Directly
- Buffered Output Enable Simplifies System Design
- Full Parallel Access for Loading
- Parallel Latches for 16-Bit, 32-Bit, 64-Bit Word Widths
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC373 and SN74ASC373 are standard-cell software macros implementing 8 -bit D-type latch elements designed specifically for interfacing internal bus lines. The 8-bit length means that testability is simplified when constructing large latches. The 'ASC373 implements a function table identical with that performed by packaged 'HC373, 'LS373, and 'F373 latches.
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The eight latches of the 'HC373 are transparent D-type latches. While the enable (C) is high, the Q outputs will follow the data (D) inputs. When the enable is taken low, the Q outputs will be latched at the levels that were set up at the D inputs. The output-control input $O C Z$ can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. When the outputs are enabled with OCZ low, the logic level at each of the eight outputs is impressed on the data bus. The outputs are disabled by a high logic level at OCZ. The outputs then present a high impedance to the internal bus. The output control does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off. The 'ASC373 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	8	6	3.52	840	50.56
IV140LH	1.5	3	4.5	4.83	570	34.2
IV212LH	1.5	8	12	4	1440	86.4
AO221LH	2.7	8	21.6	4.72	1792	107.2
TOTALS		27	44.1	17.07	4642	279
Label: S373LH D1,D2,D3,D4,D5,D6,D7,D8,C,OCZ,Q1, $22,03, Q 4,05, Q 6, Q 7,08 ;$						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC373 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

INPUTS			OUTPUT
OCZ	C	D	
L	H	H	H
L	H	L	L
L	L	X	Q_{O}
H	X	X	Z

logic diagram

SN54ASC373, SN74ASC373 8-BIT D-TYPE LATCHES WITH 3-STATE OUTPUTS

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETE!			TEST CONDITIONS		SN54ASC373		SN74ASC373		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\prime} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MINt} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$	4642			279	nA		
C_{i}	Input capacitance	C	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.49		0.49		pF		
		Dn			0.13		0.13				
		OCZ			0.49		0.49				
C_{0}	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.18		0.18		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacit	nce ${ }^{\dagger}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	17.07		17.07		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC373			SN74ASC373			UNIT
				MIN	TYP ${ }^{\text {§ }}$	MAX	MIN	TYP§	MAX	
${ }^{\text {tpd }}$	D	Q	$C_{L}=0$		3	7.5		3	6.7	ns
t_{en}	OCZ	Q			5	10.2		5	9.2	ns
$\Delta t_{p d}$	D	Q		0.6	1.7	4.6	0.6	1.7	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {en }}$	Any	0		0.7	1.7	4.8	0.7	1.7	4.4	$\mathrm{ns} / \mathrm{pF}$

[^53]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S373LH;

D1 @INPUT;
D2 @INPUT:

D3 @INPUT;
D4 @INPUT;
D5 @INPUT;
D6 @INPUT;
D7 @INPUT;
D8 @INPUT;
C @INPUT;
OCZ @INPUT;
01 @OUTPUT;
Q2 @OUTPUT;
Q3 @OUTPUT;
Q4 @OUTPUT;
Q5 @OUTPUT;
Q6 @OUTPUT;
07 @OUTPUT;
O8 @OUTPUT;
structure

AO1	:AO221LH	D1,INV90,INV100,INV110,AO10;
AO2	:A0221LH	D2,INV90,INV100,INV120,AO20;
AO3	:AO221LH	D3,INV90,INV100,INV130,AO30;
A04	:A0221LH	D4,INV90,INV100,INV140,AO4O;
AO5	:AO221LH	D5,INV90,INV100,INV150,A050;
A06	:AO221LH	D6,INV90,INV100,INV160,A060;
A07	:A0221LH	D7,INV90,INV100,INV170,A070;
A08	:AO221LH	D8,INV90,INV100,INV180,A080;
INV10	:IV140LH	C,INV100;
INV11	:IV110LH	A010,INV110;
INV12	:IV110LH	AO20,INV120;
INV13	:IV110LH	A030,INV130;
INV14	:IV110LH	A040,INV140;
INV15	:IV110LH	A050,INV150;
INV16	:IV110LH	A060,INV160;
INV17	:IV110LH	A070,INV170;
INV18	:IV110LH	A080,INV180;
INV20	:IV140LH	OCZ,INV200;
INV21	:IV212LH	A010,INV200,01;
INV22	:IV212LH	AO2O,INV200,02;
INV23	:IV212LH	A030,INV200,03;
INV24	:IV212LH	A040,INV200,04;
INV25	:IV212LH	A050,INV200,05;
INV26	:IV212LH	A060,INV200,06;
INV27	:IV212LH	A070,INV200,07;
INV28	:IV212LH	A080,INV200,08;
INV9	:IV140LH	INV100,INV90;
END S3		

SN54ASC374, SN74ASC374 8-BIT D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 3-State Outputs Interface with Internal Data Buses Directly
- Buffered Output Control Simplifies System Design
- Embedded Clock Drivers Provide Symmetrical Performance Across Long Registers
- Parallel Latches for 16-Bit, 32-Bit, 64-Bit Word Widths

description

The SN54ASC374 and SN74ASC374 are standard-cell software macros implementing 8 -bit D-type register elements designed specifically for interfacing internal bus lines. The 8 -bit length simplifies construction of large registers. The 'ASC374 implements a function table identical with that performed by packaged 'HC374, 'LS374, and 'F374 latches.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The Output-Control input OCZ can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. When the outputs are enabled with OCZ low, the logic level at each of the eight outputs is impressed on the data bus. The outputs are disabled by a high logic level at OCZ. The outputs then present a high impedance to the internal bus. When the outputs are disabled, sequential operation of the flip-flops is not affected. The 'ASC374 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathbf{C}_{\mathrm{pd}}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV120LH	1	1	1	0.8	131	7.85
R2407LH	26.25	2	52.5	22	6062	384
T0010LH	1.5	1	1.5	-	177	10.6
TOTALS		4	55	22.80	6370	403
Label: S374LH D1,D2,D3,D4,D5,D6,D7,D8,CLK,OC2, Q1, Q2, Q3, Q4, Q5, Q6, Q7,08;						

\#The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

8-BIT D-TYPE FLIP.FLOPS WITH 3-STATE OUTPUTS

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS		OUTPUT	
OCZ	CLK	Dn	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{O}
H	X	X	Z

logic diagram

SN54ASC374, SN74ASC374 8-BIT D-TYPE FLIP.FLOPS WITH 3-STATE OUTPUTS

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC374		SN74ASC374		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0$	6370		403		$n A$		
	Input capacitance	CLK	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.48		0.48		pF		
		Dn			0.25		0.25				
		OCZ			0.24		0.24				
C_{0}	Output capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24		pF		
C_{pd}	Equivalent powerdissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	22.8		22.8		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC374			SN74ASC374			UNIT
				MIN	TYP ${ }^{\text {8 }}$	MAX	MIN	TYP ${ }^{\text {§ }}$	MAX	
${ }^{\text {p }}$ d	CLK	Q	$C_{L}=0$		5	11.4		5	10.4	ns
$t_{\text {en }}$	OCZ	Q			4	7.1		4	6.6	ns
$\Delta \mathrm{t}_{\mathrm{p}} \mathrm{d}$	CLK	0		0.6	1.7	4.6	0.6	1.7	4.2	ns
$\Delta \mathrm{t}_{\text {en }}$	Any	Q		0.8	1.7	4.8	0.8	1.7	4.3	ns/pF

[^54]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S374LH;
D1 @INPUT;
D2 @INPUT;
D3 @INPUT;
D4 @INPUT;
D5 @INPUT;
D6 @INPUT;
D7 @INPUT;
D8 @INPUT;
CLK @INPUT;
OCZ @INPUT;
Q1 @OUTPUT;
Q2 @OUTPUT;
Q3 @OUTPUT;
Q4 @OUTPUT;
Q5 @OUTPUT;
Q6 @OUTPUT;
Q7 @OUTPUT;
Q8 @OUTPUT;

STRUCTURE

INV1	:TO010LH	DUM,ICLRZ;
INV5	IV120LH	OCZ,INV5O;
FF14	:R2407LH	ICLRZ,D1,D2,D3,D4,CLK,INV5O,Q1,Q2,Q3,Q4;
FF58	:R2407LH	ICLRZ,D5,D6,D7,D8,CLK,INV5O,Q5,Q6,Q7,Q8;
END S374LH;		

designing for testability

Designers employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Four-Bit Software Latches with Complementary Outputs
- Eliminates Skew and Mismatch of Long versus Short Data Paths
- Parallel Latches for 8-Bit, 16-Bit, 32-Bit Word Widths

description

The SN54ASC375 and SN74ASC375 are standard-cell software macros implementing 4-bit bistable latch elements for embedding in ASICs. The 4-bit length simplifies construction of large registers. The 'ASC375 implements a function table identical with that performed by packaged 'HC375 and 'LS375 registers.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSIIIEEE Std 91-1984 and IEC Publication 617-12.

Information present at a Dn input is transferred to the On output when the Cn input is high, and the On output will follow the data input as long as Cn remains high. When Cn goes low, the data (that was present at the Dn input at the time the transition occurred) is retained at the On output until CnCn is taken high. The 'ASC375 is implemented with the standard cell functions indicated. The HDL netlist label for this software is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
AO221LH	2.7	4	10.8	2.36	896	53.6
IV110LH	0.75	4	3	1.76	420	25.28
IV120LH	1	4	4	3.2	524	31.4
TOTALS		12	17.8	7.32	1840	111
Label: S375LH D1,D2,D3,D4,C1C2,C3C4,Q1,Q1Z,Q2,Q2Z,Q3,Q3Z,Q4,Q4Z;						

${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC375 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC375 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(EACH FLIP-FLOP)

INPUTS		OUTPUTS	
Dn	Cn	On	QnZ
L	H	L	H
H	H	H	L
X	L	Ono	$\frac{\text { QnO }}{}$

SN54ASC375, SN74ASC375

4-BIT BISTABLE LATCHES

logic diagram

SN54ASC375, SN74ASC375
 4-BIT BISTABLE LATCHES

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation, produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC375		SN74ASC375		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\prime} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{1}=V_{C C} \text { to } 0$		1840		111	nA		
C_{i}	Input capacitance	Dn	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.13		0.13		pF		
		CnCm			0.12		0.12				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	7.32		7.32		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC375			SN74ASC375			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text {§ }}$	MAX	
${ }_{\text {t }}$ d	Dn	Qn	$C_{L}=0$		3	6.4		3	5.8	ns
$t_{\text {pd }}$	Dn	QnZ			2	4.8		2	4.8	
${ }_{\text {t }}$ d	Cn	On			5	10.2		5	9.5	ns
t_{pd}	Cn	QnZ			4.5	8.7		4.5	8	
$\Delta \mathrm{t}_{\text {pd }}$	Any	On		0.3	0.5	1.1	0.3	0.5	1	ns/pF
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Qnz		0.5	1.5	4.6	0.5	1.5	4.1	

[^55]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL. for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S375LH;
D1 @INPUT;
D2 @INPUT;
D3 @INPUT;
D4 @INPUT;
C1C2 @INPUT;
C3C4 @INPUT;
01 @OUTPUT;
Q1Z @OUTPUT;
02 @OUTPUT;
Q2Z @OUTPUT;
03 @OUTPUT;
Q3Z @OUTPUT;
04 @OUTPUT;
O4Z @OUTPUT;
STRUCTURE

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Software Dual Four-Bit Counter for Custom IC Applications
- Direct Clear Input Simplifies Initialization or Cycle Length
- Embedded Clock Drivers Provide Symmetrical Performance Across Long Counters
- Cascadable and Expandable for Full Customization

description

The SN54ASC393 and SN74ASC393 are standard-cell software macros implementing dual 4-bit binary counter elements. The dual 4-bit configuration provides the custom IC designer a fully designed counter element to embed in ASICs in its most efficient form, and the 4-bit length simplifies construction of large counters. The 'ASC393 implements a count sequence identical with that performed by packaged 'HC393 and 'LS393 counters.
This software macro reduces the input loading for implementation of larger counters, as standard library buffer cells are used to buffer each clock and clear input to further enhance the performance across long counters. The 'ASC393 is implemented with standard cell functions indicated. The HDL netlist label for this software is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathrm{C}_{\text {pd }}{ }^{\ddagger} \\ & (\mathrm{pF}) \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	2	1.5	0.88	210	12.64
IV120LH	1	2	2	1.6	262	15.7
R2408LH	28.25	2	56.5	14.44	6926	416
TOTALS		6	60	16.92	7398	445
Label: S393LH A1,CLR1,A2,CLR2,QA1,QB1,QC1,QD1,QA2,QB2,QC2,QD2;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

The SN54ASC393 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC393 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS		SN5	C393	SN74	C393	UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vo	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		7398		445	nA		
	Input capacitance	CLRn	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.24		0.24		pF		
		An			0.12		0.12				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	16.92		16.92		pF		

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC393			SN74ASC393			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
t_{pd}	Any	QA	$C_{L}=0$		7	14.9		7	13.6	ns
${ }^{\text {tpd }}$		QD			14	31.5		14	28.5	ns
tPHL	CLRn	0			4.5	8.7		4.5	8.1	ns
$\Delta t_{\text {pd }}$	Any	Any Q		0.3	0.5	1.3	0.3	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$

[^56]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S393LH;

A1	@INPUT;
CLR1	@INPUT;
A2	@INPUT;
CLR2	@INPUT;
QA1	@OUTPUT;
QB1	@OUTPUT;
QC1	@OUTPUT;
QD1	@OUTPUT;
QA2	@OUTPUT;
QB2	@OUTPUT;
QC2	@OUTPUT;
QD2	@OUTPUT;

STRUCTURE

INV1	$:$ IV110LH	A1,INV1O;
INV2	IV110LH	CLR1,INV2O;
INV3	$:$ IV110LH	A2,INV3O;
INV4	IV110LH	CLR2,INV4O;
FF14	:R2408LH	INV10,INV2O,QA1,QB1,QC1,QD1;
FF58	:R2408LH	INV30,INV4O,QA2,QB2,QC2,QD2;
END S393LH;		

count definition
These counters are unidirectional with respect to count operations. Inverting the output levels will produce a down-count sequence. Bidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits, with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up-clear/preset

Standard cell storage elements containing the capability to be asynchronously either preset or cleared may be connected through an inverter to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Access to the clear inputs from other system signals in conjunction with power-up clear can be implemented with an OR gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Storage Register Loads New Data on Positive-Going Transition
- Implements Hexadecimal/BCD Shifter
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC398 and SN74ASC398 are standard-cell software macros implementing four 2 -line to 1 -line multiplexers with storage. The 'ASC398 implements a function table identical with that performed by packaged 'LS398 and 'F398 multiplexers.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

When the word-select (WS) input is low, word 1 ($A 1, B 1, C 1, D 1$) is applied to the flip-flops. A high WS input causes word 2 (A2, B2, C2, D2) to be selected. The selected word is clocked to the output terminals on the positive-going edge of the clock pulse. The 'ASC398 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC ${ }^{\prime}$
IV120LH	1	2	2	1.6	262	15.7
NA210LH	1	12	12	6.12	1572	94.2
R2405LH	26.25	1	26.25	11.7	2931	176
TO010LH	1.5	1	1.5	--	177	10.6
TOTALS		16	41.75	19.42	4942	297
Label: S398LH A1,A2,B1,B2,C1,C2,D1,D2,CLK,WS,QA,QAZ, QB, QBZ,QC, QCZ,QD,QDZ;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC398 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC398 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OUTPUTS §			
WORD SELECT	CLK				
		OB	OC	OD	
L	\uparrow	a 1	b 1	c 1	d 1
X	\uparrow	a 2	b 2	c 2	d 2
X	L	QA_{0}	QB_{0}	QC_{0}	QD_{0}

${ }^{\S}$ Corresponding QnZ output is the complement of Q_{n} (shown).

SN54ASC398, SN74ASC398
 QUADRUPLE 2-INPUT MULTIPLEXERS WITH POSITIVE-EDGETRIGGERED COMPLEMENTARY OUTPUT REGISTER

logic diagram

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements are made during pre-layout simulation that produce workstation output used to identify and resolve each specific timing need.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC398		SN74ASC398		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		4942		297	nA		
C_{i}	Input capacitance	CLK	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24		pF		
		WS			0.24		0.24				
		All others			0.12		0.12				
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	19.42		19.42		pF		

[^57]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC398			SN74ASC398			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{5}$	MAX	
${ }^{\text {p }}$ d	CLK	On	$C_{L}=0$		5	10.6		5	9.6	ns
${ }^{\text {p }}$ d	CLK	Qnz			5.5	12.5		5.5	11.3	ns
$\Delta t_{p d}$	Any	On		0.2	0.9	2.4	0.3	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$

[^58]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE
BLOCK S398LH;

A1	@INPUT;
A2	@INPUT;
B1	@INPUT;
B2	@INPUT;
C1	@INPUT;
C2	@INPUT;
D1	@INPUT;
D2	@INPUT;
CLK	@INPUT;
WS	@INPUT
OA	@OUTPUT;
OAZ	@OUTPUT;
OB	@OUTPUT;
OBZ	@OUTPUT;
OC	@OUTPUT;
OCZ	@OUTPUT;
OD	@OUTPUT;
ODZ	@OUTPUT;

HDL FILE (Continued)

STRUCTURE

```
FF14 :R2406LH INV10,NA30,NA60,NA90,NA120,CLK,QA,QAZ,QB,OBZ,
QC,QCZ,QD,ODZ;
DUM,INV1O;
WS,INV2O;
INV2 :IV12OLH
INV3 :IV12OLH
NA1 :NA210LH
NA10 :NA210LH
NA11 :NA210LH
NA12 :NA2.10LH
NA2 :NA210LH
NA3 :NA210LH
NA4 :NA210LH
NA5 :NA210LH INV3O,B2,NA5O;
INV2O,INV3O;
A1,INV2O,NA1O;
INV2O,D1,NA100;
INV3O,D2,NA110;
NA100,NA11O,NA12O;
A3,INV3O,NA2O;
NA1O,NA2O,NA3O;
B1,INV2O,NA4O;
NA6 :NA210LH NA4O,NA5O,NA6O;
NA7 :NA210LH C1,INV2O,NA7O;
NA8 :NA210LH INV3O,C2,NA8O;
NA9 :NA210LH NA7O,NA8O,NA9O;
END S398LH;
```

Dedicated 2-line to 1 -line multiplexers ('ASC2340) are also available in the standard cell library for implementing data-path multiplexers. These hardwired multiplexers in conjunction with hardwired registers should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the Tl standard cell library.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

implementing 4-bit (digit) shifter

Implementation of a digit shifter is illustrated on the 'ASC298 data sheet.

SN54ASC399, SN74ASC399 OUADRUPLE 2-INPUT MULTIPLEXERS WITH POSITIVE-EDGE-TRIGGERED REGISTER

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock
- Storage Register Loads New Data on Positive-Going Transition
- Implements Hexadecimal/BCD Shifter
- Use Parallel Multiplexers for Multiple-Bit Words

description

The SN54ASC399 and SN74ASC399 are standard-cell software macros implementing four 2 -line to 1 -line multiplexers with storage. The 'ASC399 implements a function table identical with that performed by packaged 'LS399 and 'F399 multiplexers.

When the word-select (WS) input is low, word one (A1, B1, C1, D1) is applied to the flip-flops. A high WS input causes word two (A2, B2, C2, D2) to be selected. The selected word is clocked to the output terminals on the positive-going edge of the clock pulse. The 'ASC399 is implemented with standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	$\begin{aligned} & \text { RELATIVE } \\ & \text { CELL AREA } \\ & \text { TO NA210LH } \end{aligned}$	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathrm{C}_{\text {pd }}{ }^{\ddagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV120LF1	1	2	2	1.6	262	15.7
NA210LF1	1	12	12	6.12	1572	94.2
R2405LF1	23.25	1	23.25	10.2	2647	159
TO010LF1	1.5	1	1.5	-	177	10.6
TOTALS		16	38.75	17.92	4658	280
Label: S399LH A1,A2,B1,B2,C1,C2,D1,D2,CLK,WS,QA, QB, QC, QD;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC399 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC399 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS		OUTPUTS			
WORD SELECT	CLK				
		Q.A	QB	QC	QD
L	\uparrow	a1	b1	c1	d1
H	\uparrow	a2	b2	c2	d2
X	L	QA_{0}	QB_{0}	QC_{0}	QD_{0}

SN54ASC399, SN74ASC399

QUADRUPLE 2.INPUT MULTIPLEXERS

WITH POSITIVE-EDGE-TRIGGERED REGISTER

logic diagram

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation that produce workstation output are used to identify and resolve each specific timing need.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC399		SN74ASC399		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		4658		280	nA		
C_{i}	Input capacitance	CLK	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}^{\text {A }}=25^{\circ} \mathrm{C}$	0.24		0.24		pF		
		WS			0.24		0.24				
		All others			0.12		0.12				
C_{pd}	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	17.92		17.92		pF		

[^59]
SN54ASC399, SN74ASC399
 QUADRUPLE 2-INPUT MULTIPLEXERS
 WITH POSITIVE-EDGE-TRIGGERED REGISTER

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC399			SN74ASC399			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
t_{pd}	CLK	On	$C_{L}=0$		5	10.7		5	9.6	ns
$\Delta t_{p d}$	CLK	On		0.3	0.8	2.3	0.3	0.8	2.1	ns/pF

[^60]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

HDL FILE (Continued)

STRUCTURE

```
FF14 :R2405LH INV1O,NA3O,NA6O,NA9O,NA12O,CLK,QA,QB,QC,QD;
INV1 :TO01OLH
INV2 :IV120LH
INV3 :IV12OLH
NA1 :NA210LH
NA10 :NA210LH
NA11 :NA21OLH
NA12 :NA210LH
NA2 :NA210LH
NA3 :NA210LH
NA4 :NA210LH
NA5 :NA210LH
NA6 :NA210LH
NA7 :NA210LH
NA8 :NA210LH
NA9 :NA210LH
END S399LH;
```

Dedicated 2 -line to 1 -line multiplexers ('ASC2340) are also available in the standard cell library for implementing data-path multiplexers. These hardwired multiplexers in conjunction with hardwired registers should be considered if the multiplexer is in a critical path, as their performance is predetermined as specified in their switching characteristics.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library.

The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

implementing 4-bit (digit) shifter

Implementation of a digit shifter is illustrated on the 'ASC298 data sheet.

SN54ASC590, SN74ASC590 8-BIT BINARY COUNTERS WITH 3-STATE OUTPUT REGISTERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 8-Bit Counter with Register
- Individual Positive-Edge-Triggered Clocks for Counter and Register
- 3-State Output Register Provides Parallel Bus Interface
- Counter Has Direct Clear and Clock Enable
- Ripple-Carry Output Simplifies Expansion

description

The SN54ASC590 and SN74ASC590 are standard-cell software macros implementing synchronous 8 -bit binary counter elements. The 8 -bit configuration provides the custom IC designer a counter to embed in ASICs in its most efficient form, and the 8 -bit length simplifies construction of large counters. The 'ASC590 implements a function table identical with that performed by packaged 'HC590 and 'LS590 counters.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The 'ASC590 implements an 8-bit binary counter that feeds an 8-bit storage register. The storage register has paralle! 3 -state outputs. Separate clocks are provided for both the binary counter and storage register. The binary counter features a direct clear input CCLRZ and a count enable input CCKENZ. For cascading, a ripple-carry output RCOZ is provided. Expansion is easily accomplished by tying RCOZ of the lower stage to CCKENZ of the higher stage, etc. The 'ASC590 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL relative CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathrm{C}_{\mathrm{pd}}{ }^{\ddagger} \\ (\mathrm{pF}) \\ \hline \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
DFC20LH	7.2	8	57.6	27.12	7048	423.2
IV110LH	0.75	2	1.5	0.88	210	12.64
IV120LH	1	2	2	1.6	262	15.7
NA210LH	1	2	2	1.02	262	15.68
NA220LH	1.5	1	1.5	1	196	11.7
NA310LH	1.25	2	2.5	1	326	19.56
NA410LH	1.5	3	4.5	1.5	561	33.6
NA420LH	2.5	1	2.5	0.96	312	18.7
NA510LH	1.75	1	1.75	0.52	213	12.8
NO310LH	1.25	2	2.5	0.64	312	18.66
R2407LH	26.25	2	52.5	22	6062	384
T0010LH	1.5	1	1.5	-	177	10.6
TOTALS		27	132.35	58.24	15941	977

[^61]
SN54ASC590, SN74ASC590

 8-BIT BINARY COUNTERS WITH 3-STATE OUTPUT REGISTERSBoth the counter and register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the counter state will always be one count ahead of the register. Internal circuitry prevents clocking from the clock enable.

The SN54ASC590 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC590 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic diagram

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements are made during pre-layout simulation that produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC590		SN74ASC590		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$		15941		977	nA	
C_{i}	Input capacitance	CCK	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.26		0.26		pF	
		CCKENZ, CCLRZ		0.12		0.12			
		GZ		0.24		0.24			
		RCK		0.48		0.48			
$C_{\text {pd }}$	Equivalent power dissipation capacitance ${ }^{\dagger}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, & \end{array}$	58.24		58.24		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC590			SN74ASC590			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }_{\text {tpd }}$	CCK \uparrow	RCOZ	$C_{L}=0$		10.4	22.8		10.4	20.4	ns
t_{pd}	CCLRZ \downarrow	RCOZ			7.4	13.5		7.4	12.3	ns
t_{pd}	RCK \uparrow	Qn			5.7	11.6		5.7	10.6	ns
$\mathrm{t}_{\text {en }}$	GZ \downarrow	On			3.1	6		3.1	5.6	ns
$\Delta t_{p d}$	Any	On		0.6	1.6	4.6	0.6	1.6	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	RCOZ		0.3	0.7	2.3	0.3	0.7	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {en }}$	Any	Qn		0.8	1.7	4.8	0.8	1.7	4.3	$\mathrm{ns} / \mathrm{pF}$

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{f} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
$\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\Delta \mathrm{t}_{\mathrm{en}} \equiv$ change in t_{en} with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Actual performance can be evaluated at post-layout simulation.
2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2407.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S590LH;

CCK @INPUT;
CCKENZ @INPUT;
RCK @INPUT;
CCLRZ @INPUT;
GZ @INPUT;
QA @OUTPUT;
QB @OUTPUT;
QC @OUTPUT;
QD @OUTPUT;
QE @OUTPUT
QF
QG
OH

RCOZ

STRUCTURE

FF1
:DFC20LH
FF2 :DFC2OLH
FF3 :DFC20LH
FF4 :DFC20LH
FF5 :DFC20LH
FF6 :DFC20LH
FF7 :DFC20LH
FF8 :DFC20LH
INV1 :IV120LH
INV2 :TOO10LH
INV5 :IV110LH
INV6 :IV120LH
INV7 :IV110LH

SN54ASC590, SN74ASC590 8-BIT BINARY COUNTERS WITH 3-STATE OUTPUT REGISTERS

HDL FILE (Continued)

STRUCTURE (Continued)

NA1	:NA220LH
NA10	:NA210LH
NA2	:NA420LH
NA3	:NA210LH
NA4	:NA310LH
NA5	:NA410LH
NA6	:NA310LH
NA7	:NA410LH
NA8	:NA510LH
NA9	:NA410LH
NO2	:NO310LH
NO3	:NO310LH
FFAD	:R2407LH
FFEH	:R2407LH

END S590LH;

```
NA100,CCK,NA1O;
NA10,CCKENZ,NA10O;
FF8Q,NO3O,NO2O,FF1Q,RCOZ;
NA1O,FF1Q,NA3O;
NA1O,FF1Q,FF2Q,NA4O;
NA10,FF1Q,FF2Q,FF3Q,NA5O;
NA1O,NO2O,FF1Q,NA6O;
NA1O,FF1Q,NO2O,FF5Q,NA7O;
NA1O,FF1Q,NO2O,FF5Q,FF6Q,NA8O;
NA1O,FF1Q,NO2O,NO3O,NA9O;
FF2QZ,FF3OZ,FF4OZ,NO2O;
FF5QZ,FF6QZ,FF7QZ,NO3O;
INV2O,FF1Q,FF2Q,FF3Q,FF4Q,RCK,INV1O,QA,QB,QC,QD;
INV2O,FF5Q,FF6Q,FF7Q,FF8Q,RCK,INV10,QE,QF,QG,QH;
```


count defintion

These counters are unidirectional with respect to count operation. Inverting the output levels will produce a down-count sequence. Bidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with predesigned flip-flops offered in TI^{\prime} s standard cell family.

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits, with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up-clear/preset

Standard cell storage elements containing the capability to be asynchronously either preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Access to the clear inputs from other system signals in conjunction with the power-up clear can be accomplished with an AND gate.

SN54ASC593X, SN74ASC593X 8-BIT BINARY COUNTERS WITH INPUT REGISTERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 8-Bit Counter with Input Registers
- Individual Positive-Edge-Triggered Clocks for Counter and Register
- 3-State Counter Outputs Provide Parallel Bus Interface
- Counter Has Direct Clear and Clock Enable
- Ripple-Carry Output Simplifies Expansion

description

The SN54ASC593X and SN74ASC593X are standard-cell software macros implementing synchronous 8 -bit binary counter elements. The 8 -bit configuration provides the custom IC designer a counter to embed in ASICs in its most efficient form, and the 8-bit length simplifies construction of large counters. The 'ASC593X implements a count sequence identical with that performed by packaged 'HC593 and 'LS593 counters, but the common data input/output terminals have been separated to provide individual data inputs to the register and 3-state outputs from the counter.

The 'ASC593X implements an 8-bit storage register that feeds an 8-bit binary counter.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

The counter has parallel 3-state outputs. Separate clocks are provided for both the binary counter and storage register. The 'ASC593X is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the table on the following page.

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ \mathrm{C}_{\mathrm{pd}}{ }^{\dagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC ${ }^{\prime}$	SN74ASC'
AN210LH	1.5	8	12	7.2	1552	92.8
DFB2OLH	7.7	8	61.6	30.08	7472	448
IV110LH	0.75	4	3	1.76	420	25.28
IV120LH	1	2	2	1.6	262	15.7
IV140LH	1.5	1	1.5	1.61	190	11.4
IV212LH	1.5	8	12	4	720	86.4
NA210LH	1	19	19	9.69	2489	148.96
NA220LH	1.5	1	1.5	1	131	7.84
NA310LH	1.25	3	3.75	1.5	489	29.34
NA410LH	1.5	3	4.5	1.5	561	33.6
NA420LH	2.5	1	2.5	0.96	312	18.7
NA510LH	1.75	1	1.75	0.52	213	12.8
NO310LH	1.25	2	2.5	0.64	312	18.66
OR210LH	1.5	1	1.5	0,86	185	11.1
R2406LH	26.25	2	52.5	23.4	5862	352
T0010LH	1.5	1	1.5	-	177	10.6
TOTALS		65	183.1	86.32	21347	1324
Label: S593XLH A,B,C,D,E,F,G,H,CCK,CCKEN,CCKENZ,RCK,RCKENZ,CCLRZ,CLOADZ,G1,GZ, QA, OB, QC,QD,QE,QF,QG,QH,RCOZ;						

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

The binary counter features a direct clear input CCLRZ and a count enable input CCKENZ. For cascading, a ripple-carry output RCOZ is provided. Expansion is easily accomplished by tying RCOZ of the lower stage to CCKENZ of the higher stage, etc. Both the counter and register clocks are positive-edge-triggered. If the user wishes to connect both clocks together, the counter state will equal the previous register contents plus one. Internal circuitry prevents clocking from the clock enable.

The SN54ASC593X is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC593X is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC593X, SN74ASC593X 8-BIT BINARY COUNTERS WITH INPUT REGISTERS

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements, made during pre-layout simulation, produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC593X		SN74ASC593X		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vol			$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\operatorname{MIN} \text { to MAX } \end{aligned}$		21347		1324	nA	
		A thru H		0.13		0.13			
		CCK		0.26		0.26			
	Input capacitance	CLOADZ	$V_{C C}=5 \mathrm{~V} \quad \mathrm{TA}=25^{\circ} \mathrm{C}$	0.49		0.49			
c_{i}	Inp	G1	$25^{\circ} \mathrm{C}$	0.11		0.11			
		GZ		0.24		0.24			
		All others		0.12		0.12			
C_{pd}	Equivalent power dissipation capacit		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	86.32		86.32		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC593X			SN74ASC593X			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
${ }^{\text {p }}$ d	CCK \uparrow	RCOZ	$C_{L}=0$		9	23.2		9	20.7	ns
${ }^{\text {p }}$ d	CCLRZ \downarrow	RCOZ			8	15		8	13.8	ns
${ }^{\text {p }}$ pd	CCLRZ \downarrow	Qn			10	21.1		10	19	ns
${ }^{\text {p }}$ d	CCK \uparrow	Qn			9	23.1		9	20.7	ns
t_{pd}	CLOADZ	Qn			9	21.6		9	19.4	ns
${ }^{\text {t }}$ pd	CLOADZ	RCOZ			10	24.4		10	22.1	ns
t_{en}	G1 or GZ \uparrow	Qn			4	8.8		4	8.1	ns
$\Delta t_{\text {pd }}$	Any	Qn		0.6	1.6	4.6	0.6	1.6	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{p d}$	Any	RCOZ		0.3	0.7	2.3	0.3	0.7	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{en}}$	Any	Qn		0.8	1.7	4.8	0.8	1.7	4.4	$\mathrm{ns} / \mathrm{pF}$

[^62]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE
BLOCK S593XLH;

A	@INPUT;
B	@INPUT;
C	@INPUT;
D	@INPUT;
E	@INPUT;
F	@INPUT;
G	@INPUT;
H	@INPUT;
CCK	@INPUT;
CCKEN	@INPUT;
CCKENZ	@INPUT;
RCK	@INPUT;
RCKENZ	@INPUT;
CCLRZ	@INPUT;
CLOADZ	@INPUT;
G1	@INPUT;
GZ	@INPUT;
QA	@OUTPUT;
QB	@OUTPUT;
QC	@OUTPUT;
QD	@OUTPUT;
QE	@OUTPUT
QF	@OUTPUT;
QG	@OUTPUT;
QH	@OUTPUT;
RCOZ	@OUTPUT;

STRUCTURE

AN2	:AN210LH	INV60,NA3O,AN2O;
AN3	:AN210LH	INV60,NA5O,AN3O;
AN4	:AN210LH	INV60,NA7O,AN4O;
AN5	:AN210LH	INV60,NA90,AN5O;
AN6	:AN210LH	INV60,NA110,AN6O;
AN7	:AN210LH	INV60,NA130,AN7O;
AN8	:AN210LH	INV60,NA150,AN8O;
AN9	:AN210LH	INV60,NA170,AN90;
FFA	:DFB20LH	AN2O,NA2O,FFAQZ,INV100,FFAQ,FFAQZ;
FFB	:DFB2OLH	AN3O,NA40,FFBQZ,NA190,FFBQ,FFBQZ;
FFC	:DFB2OLH	AN4O,NA6O,FFCOZ,NA200,FFCQ,FFCOZ;
FFD	:DFB2OLH	AN50,NA80,FFDQZ,NA210,DUM,FFDQZ;
FFE	:DFB20LH	AN60,NA100,FFEQZ,NA220,FFEQ,FFEQZ;

HDL FILE (Continued)

STRUCTURE (Continued)		
FFF	:DFB20LH	AN70,NA120,FFFQZ,NA230,FFFQ,FFFOZ;
FFG	:DFB2OLH	AN8O,NA140,FFGQZ,NA240,DUM,FFGQZ;
FFH	:DFB2OLH	AN90,NA160,FFHOZ,NA250,FFHQ,FFHOZ;
INV1	:IV120LH	GZ,INV1O;
INV1O	:IV110LH	NA10,INV100;
INV11	:IV212LH	FFAQZ,N010,QA;
INV12	:IV212LH	FFBOZ,N010,QB;
INV13	:IV212LH	FFCOZ,NO1O,QC;
INV14	:IV212LH	FFDOZ,N010,QD;
INV15	:IV212LH	FFEQZ,N010,QE;
INV16	:IV212LH	FFFQZ,NO10,QF;
INV17	:IV212LH	FFGQZ,N010,QG;
INV18	:IV212LH	FFHQZ,NO1O,QH;
INV2	:IV110LH	CCKEN, INV2O;
INV5	:IV110LH	CCLRZ, INV5O;
INV6	:IV120LH	INV50,INV60;
INV7	:IV140LH	CLOADZ, INV70;
INV8	:IV110LH	NA270,RCFQZ;
INV9	:T0010LH	DUM,CLR;
NA1	:NA220LH	NA260,CCK,NA1O;
NA10	:NA210LH	INV70,F5Q,NA 100;
NA11	:NA210LH	INV70,F5QZ,NA110;
NA12	:NA210LH	INV70,F6Q,NA120;
NA13	:NA210LH	INV70,F6QZ,NA130;
NA14	:NA210LH	INV70,F7Q,NA140;
NA15	:NA210LH	INV70,F7QZ,NA150;
NA 16	:NA210LH	F8Q,INV7O,NA160;
NA17	:NA210LH	INV70,F80Z,NA170;
NA18	:NA420LH	FFHQ,NO4O,NO3O,FFQA,RCOZ;
NA19	:NA210LH	NA10,FFAQ,NA190;
NA2	:NA210LH	INV70,F1Q,NA2O;
NA20	:NA310LH	NA10,FFQA,FFBQ,NA200;
NA21	:NA410LH	NA10,FFAQ,FFBQ,FFCQ,NA2.10;
NA22	:NA310LH	NA10,FFAQ,NO3O,NA22O;
NA23	:NA410LH	NA1O,FFAQ,NO3O,FFEQ,NA230;
NA24	:NA510LH	NA10,FFAQ,NO3O,FFEQ,FFFQ,NA240;
NA25	:NA410LH	NA1O,FFAQ,NO3O,NO4O,NA250;
NA26	:NA310LH	NA1O,INV2O,CCKENZ,NA26O;
NA27	:NA210LH	RCK,NA280,NA270;
NA28	:NA210LH	RCKENZ,NA270,NA280;
NA3	:NA210LH	INV70,F1QZ,NA3O;
NA4	:NA210LH	INV70,F2Q,NA4O;
NA5	:NA210LH	INV70,F2QZ,NA50;
NA6	:NA210LH	INV70,F3Q,NA6O;
NA7	:NA210LH	INV70,F3QZ,NA70;
NA8	:NA210LH	F4Q,INV70,NA80;
NA9	:NA210LH	INV70,F4QZ,NA90;
NO1	:OR210LH	INV10,G1,N01O;
NO3	:NO310LH	FFBQZ,FFCQZ,FFDQZ,NO3O;
NO4	:NO310LH	FFEQZ,FFFOZ,FFGOZ,NO4O;

HDL FILE (Continued)

```
STRUCTURE (Continued)
END S593XLH;
```

FF14 :R2406LH CLR,A,B,C,D,RCFQZ,F1Q,F1QZ,F2Q,F2QZ,F3Q,F3OZ,F4Q,F4QZ;
FF58 :R2406LH CLR,E,F,G,H,RCFQZ,F5Q,F5OZ,F6Q,F6QZ,F7Q,F7QZ,F8Q,F8QZ;

count definition

These counters are unidirectional with respect to count operation. Inverting the output levels will produce a down-count sequence. Bidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits, with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up-clear/preset

Standard cell storage elements containing the capability to be asynchronously either preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Access to the clear inputs from other system signals in conjunction with the power-up clear can be accomplished with an AND gate.

SystemCell ${ }^{\text {m }}$ 2- $\mu \mathrm{m}$ SOFTWARE MACRO CELL

- 8-Bit Serial-In, Parallel-Out Shift Registers with Output Storage
- Buffered Clear and Output-Enable Inputs
- Shift Register has Direct Clear
- Embedded Clock Drivers Provide Clock Buffering
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC595 and SN74ASC595 are standard-cell software macros implementing synchronous 8 -bit parallel-out shift registers with output storage registers. The 8 -bit configuration provides the custom IC designer a multifunction register to embed in ASICs in its most efficient form. The 8 -bit length simplifies construction of large registers. The 'ASC595 implements a shift sequence identical with that performed by packaged 'HC595 and 'LS595 registers.

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

These macros each contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3 -state outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output pins for cascading. Both the shift register and storage register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift-register state will always be one clock pulse ahead of the storage register. The 'ASC595 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \text { C }_{\text {pd }}{ }^{\ddagger} \\ & \text { (pF) } \end{aligned}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV120LH	1	2	2	1.6	262	15.70
R2401LH	25.25	2	50.5	20.6	6142	370
R2407LH	26.25	2	52.5	22	6062	384
TO010LH		1		-	177	10.6
TOTALS		8	105.75	44.64	12748	787
Label: S595LH SER,SRCK,SRCLRZ,RCK,GZ,QA,QB,QC,QD,QE,QF,QG,QH,QHP;						

\ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The SN54ASC595 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC595 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

SHIFT REGISTER							OUTPUT REGISTER				
INPUTS			OUTPUTS				INPUTS		OUTPUTS		
SRCLRZ	SRCK	SER	sQA	sQB .	SQH	sQHP	RCK	GZ	QA	QB	OH
X	X	X	X	X	X	X	X	H	Z	Z	Z
X	X	X	X	X	X	X	L	L	QAO	QB_{0}	QH_{0}
L	X	X	L	L	L	L	\uparrow	L	L	L	L
H	\uparrow	H	H	$s Q A_{n}$	$s \mathrm{sGG}_{n}$	$s \mathrm{sGG}_{n}$	L	L	rQAo	rQB_{0}	rOH_{0}
H	\uparrow	L	L	$s Q A_{n}$	$s Q^{\prime}{ }_{n}$	$s Q G_{n}$	1	L	rQAO	rQB_{0}	rOH_{0}
H	\uparrow	H	H	$s Q A_{n}$	$s \mathrm{sG}_{n}$	$s \mathrm{sG}_{n}$	\uparrow	L	sQA	sQB	sQH
H	\uparrow	L	L	$s Q A_{n}$	$s \mathrm{sG}_{n}$	$s Q G_{n}$	\uparrow	L	sQA	sQB	sQH
H	L	X	$s Q_{0}$	sQB_{0}	$s \mathrm{SOH}_{0}$	sQH_{0}	\uparrow	L	sQA	sQB	sQH

$H=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
sQ = shift register output,
$x=$ irrelevant (any input, including transitions)
$\uparrow=$ transition from low to high level.
$\mathrm{QA}_{\mathrm{O}}, \mathrm{QB}_{\mathrm{O}}, \mathrm{QH}_{\mathrm{O}}=$ the level of QA, QB, or QH , respectively, before the indicated steady-state input conditions were established.
$Q A_{n}, Q G_{n}=$ the level of $Q A$ or $Q G$ before the most-recent \uparrow transition of the clock; indicates a one-bit shift.
logic diagram

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements, made during pre-layout simulation, produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC595		SN74ASC595		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		12748		787	nA	
C_{i}	Input capacitance	GZ	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.24		0.24		pF	
		RCK, SRCK		0.48		0.48			
		SRCLRZ		0.12		0.12			
		SER		0.13		0.13			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	44.64		44.64		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC595			SN74ASC595			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MiN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tpd }}$	SRCK \dagger	QHP	$C_{L}=0$		5.5	11.3		5.5	10.4	ns
t_{pd}	RCK \uparrow	Qn			5.5	11.6		5.5	10.6	ns
tPHL	SRCLRZ	QHP			3.6	7		3.6	6.6	ns
ten	GZ \downarrow	On			3.1	5.6		3.1	4.8	ns
$\Delta \mathrm{t}_{\text {pd }}$	Any	On		0.6	1.7	4.6	0.6	1.7	4.2	$\mathrm{ns} / \mathrm{pF}$
${ }^{\Delta t} \mathrm{t}_{\text {en }}$	GZ \downarrow	Qn		0.8	1.7	4.8	0.8	1.7	4.3	$\mathrm{ns} / \mathrm{pF}$

[^63]
DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

SN54ASC595, SN74ASC595
8 -BIT SHIFT REGISTERS WITH 3-STATE OUTPUT REGISTERS

HDL FILE

BLOCK S595LH;

SER	@INPUT;
SRCK	@INPUT;
SRCLRZ	@INPUT;
RCK	@INPUT;
GZ	@INPUT;
QA	@OUTPUT;
QB	@OUTPUT;
QC	@OUTPUT;
QD	@OUTPUT;
QE	@OUTPUT
QF	@OUTPUT;
QG	@OUTPUT;
QH	@OUTPUT;
OHP	@OUTPUT;

STRUCTURE

INV1	:TO010LH	DUM,INV1O;
INV2	:IV120LH	GZ,INV2O;
INV3	:IV110LH	SRCLRZ,INV3O;
INV4	:IV120LH	INV3O,INV4O;
FF14	:R2407LH	INV1O,FFAQ,FFBQ,FFCQ,FFDQ,RCK,INV2O,QA,QB,QC,QD;
FF58	:R2407LH	INV10,FFEQ,FFFQ,FFGQ,QHP,RCK,INV2O,QE,QF,QG,QH;
FFAD	$:$ R2401LH	INV4O,SER,SRCK,FFAQ,FFBQ,FFCQ,FFDQ;
FFEH	:R2401LH	INV4O,FFDQ,SRCK,FFEQ,FFFQ,FFGQ,QHP;

shift defintion

These registers are unidirectional with respect to shift operations and the relationship for shifting left or right is defined by the IC designer. Bidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers.

designing for testability

Designs employing storage or bistable elements, especially long registers (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and to read intermediate stages of these elements should be assessed throughout the development of custom logic circuits, with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up-clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from other system signal in conjunction with the power-up clear can be accomplished with an AND gate.

SN54ASC598X, SN74ASC598X 8-BIT SHIFT REGISTERS WITH INPUT REGISTERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CeLL

- 8-Bit Serial-In, Parallel-Out Shift Registers with Input Storage
- Buffered Clear and Output-Enable Inputs
- Shift Register Has Direct Clear
- Embedded Clock Drivers Provide Clock Buffering
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC598X and SN74ASC598X are standard-cell software macros implementing 8 -bit parallel-out shift registers with input storage registers. The 8 -bit configuration provides the custom IC designer a multifunction register to embed in ASICs in its most efficient form. The 8-bit length simplifies construction of large registers. The 'ASC598X implements a count sequence identical with that performed by packaged 'HC598 and 'LS598 registers.

These macros each contain an 8-bit serial-in, parallel-out shift register fed by an 8-bit D-type input register. The shift register has parallel 3-state outputs. Separate clocks are provided for the shift register and the input register. The 'ASC598X is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	TOTAL $C_{\text {pd }}{ }^{\ddagger}$ (pF)	MAXIMUM ICC (nA)	
	1.5	10	15	9	1940	116.0
DFB2OLH	7.7	8	61.6	30.08	7472	448
IV110LH	0.75	3	2.25	1.32	315	18.96
IV120LH	1	4	4	3.2	524	31.4
IV140LH	1.5	1	1.5	1.61	190	11.4
IV212LH	1.5	8	12	4	1440	86.4
NA210LH	1	18	18	9.18	2358	141.12
OR210LH	1.5	1	1.5	0.86	185	11.1
R2406LH	41	2	50.5	23.38	5862	352
TO010LH	-	-	-	177	10.6	

[^64][^65]
SN54ASC598X, SN74ASC598X
 8-BIT SHIFT REGISTERS WITH INPUT REGISTERS

The shift register has a direct overriding clear, multiplexed dual serial inputs, and dual serial outputs to simplify cascading. Both the shift register and input register clocks are positive-edge triggered. If the user wishes to connect both clocks together, the shift-register output will be half or double the previous value of the storage register. The shift register has a clock enable associated with internal circuitry that prevents it from triggering the clock.

The SN54ASC598X is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC598X is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUT REGISTER			SHIFT REGISTER											
RCK	INPUTS	OUTPUTS	INPUTS								OUTPUTS			
			SCLRZ	GZ	CLOCK		$\begin{array}{\|l\|} \hline \text { LOAD } \\ \hline \text { SLDZ } \\ \hline \end{array}$	SERIAL						
	DA... DH	RA . . RH			SCKENZ	sck		DS	SERO	SER1	QA	QB.	. OH	OHP
X	X X	X X	X	H	X	X	X	X	X	X	Z	Z	Z	OH
X	$\mathrm{x} \quad \mathrm{x}$	$\mathrm{x} \quad \mathrm{x}$	L	L	X	x	x	x	x	x	L	L	L	L
\uparrow	a \quad h	a $\quad \mathrm{h}$	H	L	H	x	X	x	X	x	QAO	OB_{0}	OH_{O}	OH_{0}
L	X X	$\mathrm{RAO}_{0} \mathrm{RH}_{0}$	H	L	L	\uparrow	L	X	X	X	RA	RB	RH	RH
\uparrow	a \quad h	h	H	L	L	\uparrow	H	L	H	x	H	$Q A_{n}$	QG ${ }_{n}$	QG_{n}
x	$x \quad \mathrm{x}$	$x \quad x$	H	L	L	\uparrow	H	L	H	x	H	$Q A_{n}$	QG ${ }_{n}$	QG_{n}
x	$x \quad x$	$x \quad x$	H	L	L	\uparrow	H	L	L	\times	L	$Q A_{n}$	QG_{n}	QG_{n}
X	$\mathrm{X} \quad \mathrm{X}$	$x \quad \mathrm{x}$	H	L	L	\uparrow	H	H	X	H	H	$Q A_{n}$	QG ${ }_{n}$	QG ${ }_{n}$
X	$x \quad x$	$\mathrm{x} \quad \mathrm{x}$	H	L	L	\uparrow	H	H	x	L	L	$Q A_{n}$	QG_{n}	QG_{n}
X	X X	$\mathrm{X} \quad \mathrm{X}$	H	L	X	L	X	X	X	X	QAO	QB_{0}	QH_{0}	OH_{0}

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

SN54ASC598X, SN74ASC598X 8-BIT SHIFT REGISTERS WITH INPUT REGISTERS

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC598X		SN74ASC598X		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\text { MIN to } \mathrm{MAX} \end{aligned}$		20463		1227	$n \mathrm{~A}$	
C_{i}	Input capacitance	Dn, SERn	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13		0.13		pF	
		GZ		0.24		0.24			
		RCK, SLDZ		0.49		0.49			
		Any other		0.12		0.12			
$C_{p d}$	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns} \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	82.63		82.63		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC598X			SN74ASC598X			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tpd }}$	SCK \uparrow	QHP	$C_{L}=0$		9.8	21.9		9.8	19.7	ns
tPHL	SCLRZ	QHP			8	15.5		8	14.2	ns
tPHL	SCLRZ	Qn			9.9	20.8		9.9	18.7	ns
${ }^{\text {p }}$ d	SCK \uparrow	Qn			9.9	22.2		9.9	20	ns
$t_{\text {pd }}$	SLDZ	QHP			8.1	15.8		8.1	14.5	ns
t_{pd}	SLDZ	Qn			10	21.1		10	19	ns
$t_{\text {en }}$	GZ \uparrow	Qn			3.5	6.7		3.5	6.2	ns
$\Delta t_{\text {pd }}$	Any	Qn		0.6	1.7	4.6	0.6	1.7	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {en }}$	GZ \uparrow	Qn		0.7	1.7	4.8	0.7	1.7	- 4.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {pd }}$	Any	QHP		0.3	0.5	1.1	0.3	0.5	1	$\mathrm{ns} / \mathrm{pF}$

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{t_{p d}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\mathrm{t}_{\mathrm{en}} \equiv$ enable time, low-to-high-level or high-to-low-level output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
$\Delta t_{\text {en }} \equiv$ change in t_{en} with load capacitance
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Actual performance can be evaluated at post-layout simulation.
2. Enable and delta enable times given apply for the conditions specified for the 'ASC2406 and 'ASC2311 (IV212LH).

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

BLOCK S598XLH;
DA @INPUT;
DB @INPUT;

DC @INPUT;
DD @INPUT;
DE @INPUT;
DF @INPUT;
DG @INPUT;
DH @INPUT;
RCK @INPUT;
SCK @INPUT;
SCKENZ @INPUT;
SLDZ @INPUT;
SCLRZ @INPUT;
SERO @INPUT;
SER1 @INPUT;
DS @INPUT;
GZ @ @INPUT;
QA @OUTPUT;
QB @OUTPUT;
QC @OUTPUT;
QD @OUTPUT;
QE @OUTPUT
QF @OUTPUT;
QG @OUTPUT;
QH @OUTPUT;
QHP @OUTPUT;
STRUCTURE
AN1 :AN210LH
AN10 :AN210LH
AN2 :AN210LH
AN3 :AN210LH
AN4 :AN210LH
AN5 :AN210LH
AN6 :AN210LH
AN7 :AN210LH
AN8 :AN210LH
AN9 :AN210LH
FFA :DFB2OLH
FFB :DFB2OLH
FFC :DFB2OLH
FFD :DFB2OLH
FFE :DFB2OLH
FFF :DFB2OLH
FFG :DFB2OLH
FFH :DFB2OLH

SERO,INV2O,AN1O;
NA180,INV4O,AN100;
INV3O,SER1,AN2O;
NA4O, INV4O,AN4O;
NA6O,INV4O,AN4O;
NA8O,INV4O,AN5O;
NA100,INV4O,AN6O;
NA120,INV4O,AN7O;
NA140,INV4O,AN8O;
NA160,INV4O,AN9O;
AN3O,NA3O,OR1O,INV8O,FFAQ,FFAQZ;
AN4O,NA5O,FFAQ,INV8O,FFBQ,FFBOZ;
AN5O,NA7O,FFBQ,INV8O,FFCQ,FFCOZ;
AN60,NA90,FFCQ,INV80,FFDQ,FFDQZ;
AN7O,NA100,FFDQ,INV80,FFEQ,FFEQZ;
AN80,NA130,FFEQ,INV80,FFFQ,FFFQZ;
AN90,NA150,FFFQ,INV80,FFGQ,FFGQZ;
AN100,NA170,FFGQ,INV80,DUM,FFHQZ;

HDL FILE (Continued)

STRUCTURE	(Continued)
INV1	IV120LH
INV10	:IV212LH
INV11	:IV212LH
INV12	:IV212LH
INV13	:IV212LH
INV14	:IV212LH
INV15	:IV212LH
INV16	:IV212LH
INV17	:IV210LH
INV18	:IV110LH
INV2	:IV110LH
INV3	:IV110LH
INV4	:IV120LH
INV5	:IV140LH
INV6	:TO010LH
INV8	:IV120LH
INV9	:IV212LH
NA1	:NA210LH
NA10	:NA210LH
NA11	:NA210LH
NA12	:NA210LH
NA13	:NA210LH
NA14	:NA210LH
NA15	:NA210LH
NA16	:NA210LH
NA17	:NA210LH
NA18	:NA210LH
NA2	:NA210LH
NA3	:NA210LH
NA4	:NA210LH
NA5	:NA210LH
NA6	NA7

END S598XLH;

GZ,INV1O;
FFBQZ,INV10,QB;
FFCQZ,INV10,QC;
FFDQZ,INV10,QD;
FFEQZ,INV10,QE;
FFFQZ,INV10,QF;
FFGQZ,INV10,QG;
FFHQZ,INV10,QH;
FFHOZ, QHP;
SCLRZ,INV180;
DS,INV20;
INV20,INV30;
INV180,INV40;
SLDZ,INV50;
DUM,INV60;
NA20,INV80;
FFAQZ,INV1O,QA;
NA2O,SCKENZ,NA1O;
INV5O,FF4OZ,NA100; FF5Q,INV50,NA110; INV5O,FF5OZ,NA120; FF6Q,INV5O,NA130; INV50,FF6QZ,NA14O; FF7Q,INV50,NA150; INV5O,FF7QZ,NA16O; FF8Q,INV5O,NA17O; INV50,FF8OZ,NA18O; NA10,SCK,NA2O; FF1Q,INV50,NA3O; INV5O,FF1OZ,NA4O; FF2Q,INV5O,NA5O; INV50,FF2QZ,NA6O; FF3Q,INV50,NA70; INV5O,FF3QZ,NA8O; FF4Q,INV5O,NA9O; AN10,AN2O,OR1O; INV6O,DA,DB,DC,DD,RCK,FF1Q,FF1QZ,FF2Q,FF2OZ,FF3Q, FF3OZ,FF4Q,FF4OZ;
INV60,DE,DF,DG,DH,RCK,FF5Q,FF5QZ,FF6Q,FF6QZ,FF7Q, FF7QZ,FF8Q,FF8QZ;

SN54ASC598X, SN74ASC598X 8-BIT SHIFT REGISTERS WITH INPUT REGISTERS

shift definition

These registers are unidirectional with respect to shift operations and the relationship for shifting left or right is defined by the IC designer. Bidirectional registers are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with flip-flops offered in TI's standard cell family.

designing for testability

Designs employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear and read intermediate stages of these elements should be assessed throughout the development of custom logic circuits, with these considerations extended to the end-equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up-clear/preset

Standard cell storage elements containing the capability to be asynchronously either preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC651, SN54ASC652, SN74ASC651, SN74ASC652 8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Choice of Data Paths:
'ASC651 is Inverting
'ASC652 is Noninverting
- Positive Edge-Triggered Clocking
- Embedded Clock Drivers Provide Clock Buffering

description

The SN54ASC651, SN54ASC652, SN74ASC651, and SN74ASC652 are standardcell software macros that implement 8-bit parallel-in/parallel-out bidirectional, universal transceiver registers. The 8 -bit configuration provides the custom IC designer a register to embed in ASICs in its most efficient form. The 8-bit length simplifies construction of large registers. The 'ASC651 and 'ASC652 implement an 8 -bit port control sequence identical with that performed by packaged 'HC651, 'HC652, and 'LS651, 'LS652 8-bit transceivers.
logic symbols ${ }^{\dagger}$
'ASC651

'ASC652

[^66]
SN54ASC651, SN54ASC652, SN74ASC651, SN74ASC652 8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

These bidirectional transceivers are designed to incorporate virtually all of the features a system designer may want in a transceiver. The circuit features parallel inputs, parallel outputs, direction control, and sourcecontrol inputs. The 'ASC651 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{gathered} \text { TOTAL } \\ C_{p d}{ }^{\dagger} \\ (\mathrm{pF}) \end{gathered}$	MAXIMUM ICC (nA)	
					SN54ASC'	SN74ASC'
IV110LH	0.75	1	0.75	0.44	105	6.32
IV140LH	1.5	6	9	9.66	1140	68.4
IV222LH	2	16	32	15.68	3888	233.6
NA210LH	1	48	48	24.48	6288	376.32
R2405LH	23.25	4	93	40.8	10588	636
TO010LH	1.5	1	1.5	-	177	10.6
TOTALS 'ASC651		76	184.25	91.06	22186	1332
IV110LH	0.75	17	12.75	7.48	1785	107.44
IV140LH	1.5	6	9	9.66	1140	68.4
IV222LH	2	16	32	15.68	3888	233.6
NA210LH	1	48	48	24.48	6288	376.32
R2406LH	26.25	4	105	46.8	11724	704
TO010LH	1.5	1	1.5	-	177	10.6
TOTALS 'ASC652		92	208.25	104.1	25002	1501

Label: S651LH or S652LH GBAZ,GAB,SBA,SAB,CBA,CAB,A1,A2,A3,A4,A5,A6,A7,A8,B1,B2,B3, B4,B5,B6,B7,B8;
\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
The 'ASC651 and 'ASC652 consist of bus interface circuits, D-type registers, and control circuitry arranged for multiplexed transmission of data directly to or from an internal data bus or from the embedded storage registers. Enable GAB and GBAZ are provided to control the transceiver functions. SAB and SBA control inputs are provided to select whether real-time or stored data are transferred. A low input level selects real time data, and a high selects stored data. The examples on the following page demonstrates the four fundamental bus-management functions that can be performed with the 'ASC651 and ASC652.

Data on the A or B data bus, or both, can be stored in the internal D registers by low-to-high transitions at the appropriate clock inputs (CAB and CBA) regardless of the select or enable control inputs. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type registers by simultaneously enabling GAB and GBAZ. In this configuration each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain as its last state.

The SN54ASC651 and SN54ASC652 are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC651 and SN74ASC652 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS					DATA I/O ${ }^{\dagger}$		OPERATION OR FUNCTION	
GAB	GBAZ	CAB CBA	SAB	SBA	A1 THRU A8	B1 THRU B8	'ASC651	'ASC652
L	H H	$\begin{array}{ccc}H \text { or } L & H \text { or } L \\ \uparrow & \uparrow\end{array}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Input	Input	Isolation Store A and B Data	Isolation Store A and B Data
X H	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow H or L \uparrow \uparrow	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	Input Input	Not specified Output	Store A, Hold B Store A in both registers	Store A, Hold B Store A in both registers
L	X L	H or L \uparrow \uparrow 	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & X \\ & x \end{aligned}$	Not specified Output	input Input	Hold A, Store B Store B in both registers	Hold A, Store B Store B in both registers
L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{array}{cc}X & X \\ X & H \text { or } L\end{array}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real-Time \bar{B} Data to A Bus Stored \bar{B} Data to A Bus	Real-Time B Data to A Bus Stored B Data to A Bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	X X H or L X	L	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Output	Real-Time \bar{A} Data to B Bus Stored \bar{A} Data to B Bus	Real-Time A Data to B Bus Stored A Data to B Bus
H	L	Hor L H or L	H	H	Output	Output	Stored \bar{A} Data to B Bus and Stored \bar{B} Data to A Bus	Stored A Data to B Bus and Stored B Data to A Bus

\dagger The data output functions may be enabled or disabled by various signals at the GAB and GBAZ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

typical bus management functions

GAB GBAZ CAB CBA SAB SBA

REAL-TIME TRANSFER BUS B TO BUS A

STORAGE FROM
A AND/OR B

REAL-TIME TRANSFER BUS A TO BUS B

GAB GBAZ CAB CBA SAB SBA
H L HorL HorL H H
TRANSFER
STORED DATA
TO A AND/OR B

8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

logic diagram 'ASC651

logic diagram 'ASC652

SN54ASC651, SN54ASC652, SN74ASC651, SN74ASC652 8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked cells embedded in the software macros. Evaluations of timing requirements made during pre-layout simulation produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER		TEST CONDITIONS	SN54ASC651 SN54ASC652		SN74ASC651 SN74ASC652		UNIT
		$\frac{\mathrm{TYP}}{2.2}$	MAX	TYP	MAX		
Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2		V
ICC Supply current	S651LH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$	$\frac{22186}{25002}$		1332		nA
	S652LH					1501	
C_{i} Input capacitance	An or Bn	$V_{C C}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	0.58		0.58		pF
	CAB, CBA		0.48		0.48		
	GAB		0.12		0.12		
	$\begin{array}{\|l\|} \hline \text { GBAZ, SAB, } \\ \text { SBA } \\ \hline \end{array}$		0.49		0.49		
Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.58		0.58		pF
Equivalent power dissipation capacitance ${ }^{\dagger}$	S651LH	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	91.06		91.06		FF
	S652LH		104.1		104.1		

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Notes 1 and 2)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC651 SN54ASC652			SN74ASC651 SN74ASC652			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {t }}$ pd	CAB, CBA	A, B	$C_{L}=0$		10.4	20.9		10.4	19.1	ns
${ }^{\text {p }}$ pd	A, B	B, A			5.4	10.1		5.4	9.4	
${ }_{\text {t }}$ d	SAB, SBA	A, B			6.6	12.3		6.6	11.8	ns
$\mathrm{t}_{\text {en }}$	GAB, GBAZ	A, B			4.7	8.7		4.7	8.3	
$\Delta t_{\text {pd }}$	Any	Any		0.3	0.9	2.3	0.4	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {en }}$	GAB, GBAZ	Any		0.4	0.9	2.3	0.5	0.9	2.1	

[^67]
SN54ASC651, SN54ASC652, SN74ASC651, SN74ASC652 8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S651LH;
GBAZ @INPUT;
GAB @INPUT;
SBA @INPUT;
SAB @INPUT;
CBA @INPUT;
CAB @INPUT;
A1 @INOUT;
A2 @INOUT;
A3 @INOUT;
A4 @INOUT
A5 @INOUT;
A6 @INOUT;
A7 @INOUT;
A8 @INOUT;
B1 @INOUT;
B2 @INOUT;
B3 @INOUT;
B4 @INOUT;
B5 @INOUT;
B6 @INOUT;
B7 @INOUT;
B8 @INOUT;

STRUCTURE

INV1	:IV140LH	SBA,SBAZ;
INV10	:IV222LH	SNA9,GBA,A3;
INV11	:IV222LH	SNA12,GBA,A4;
INV2	:IV140LH	SBAZ,SBA1;
INV20	:IV222LH	SNA15,GAB1,B1;
INV21	:IV222LH	SNA18,GAB1,B2;
INV22	:IV222LH	SNA21,GAB1,B3;
INV23	:IV222LH	SNA24,GAB1,B4;
INV24	IV222LH	SNA27,GBA,A5;
INV25	:IV222LH	SNA30,GBA,A6;
INV26	:IV222LH	SNA33,GBA,A7;
INV27	:IV222LH	SNA36,GBA,A8;
INV3	:IV140LH	SAB,SABZ;
INV36	:IV222LH	SNA39,GAB1,B5;
INV37	:IV222LH	SNA42,GAB1,B6;
INV38	IV222LH	SNA45,GAB1,B7;
INV39	:IV222LH	SNA48,GAB1,B8;

HDL FILE (Continued)

STRUCTURE (Continued)		
INV4	:IV140LH	SABZ, SAB1;
INV5	:IV110LH	GAB, GABZ;
INV6	:IV140LH	GABZ,GAB1;
INV7	:IV140LH	GBAZ,GBA;
inv8	:IV222LH	SNA3,GBA,A1;
INV9	:IV222LH	SNA6,GBA,A2;
NA1	:NA210LH	SBA1,FF1A, SNA1;
NA10	:NA210LH	SBA1,FF1D, SNA10;
NA11	:NA210LH	SBAZ,B4,SNA11;
NA12	:NA210LH	SNA10,SNA11,SNA12;
NA13	:NA210LH	SAB1,FF2A,SNA13;
NA14	:NA210LH	SABZ,A1,SNA14;
NA15	:NA210LH	SNA13,SNA14,SNA15;
NA16	:NA210LH	SAB1,FF2B,SNA16;
NA17	:NA210LH	SABZ,A2,SNA17;
NA18	:NA210LH	SNA16,SNA17,SNA18;
NA19	:NA210LH	SAB1,FF2C,SNA19;
NA2	:NA210LH	SBAZ,B1,SNA2;
NA20	:NA210LH	SABZ,A3,SNA20;
NA21	:NA210LH	SNA19,SNA20,SNA21;
NA22	:NA210LH	SAB1,FF2D,SNA22;
NA23	:NA210LH	SABZ,A4,SNA23;
NA24	:NA210LH	SNA22,SNA23,SNA24;
NA25	:NA210LH	SBA1,FF3A, SNA25;
NA26	:NA210LH	SBAZ,B5,SNA26;
NA27	:NA210LH	SNA25,SNA26,SNA27;
NA28	:NA210LH	SBA1,FF3B,SNA28;
NA29	:NA210LH	SBAZ,B6,SNA29;
NA3	:NA210LH	SNA1,SNA2,SNA3;
NA30	:NA210LH	SNA28,SNA29, SNA30;
NA31	:NA210LH	SBA1,FF3C, SNA31;
NA32	:NA210LH	SBAZ,B7,SNA32;
NA33	:NA210LH	SNA31,SNA32,SNA33;
NA34	:NA210LH	SBA1,FF3D,SNA34;
NA35	:NA210LH	SBAZ,B8,SNA35;
NA36	:NA210LH	SNA34,SNA35,SNA36;
NA37	:NA210L.H	SAB1,FF4A, SNA37;
NA38	:NA210LH	SABZ,A5,SNA38;
NA39	:NA210LH	SNA37,SNA38,SNA39;
NA4	:NA210LH	SBA1,FF1B,SNA4;

HDL FILE (Continued)

STRUCTURE (Continued)	
NA40	:NA210LH
NA41	:NA210LH
NA42	:NA210LH
NA43	:NA210LH
NA44	:NA210LH
NA45	:NA210LH
NA46	:NA210LH
NA47	:NA210LH
NA48	:NA210LH
NA5	:NA210LH
NA6	:NA210LH
NA7	:NA210LH
NA8	:NA210LH
NA9	:NA210LH
TO1	:TO010LH
FF1	:R2405LH
FF2	:R2405LH
FF3	:R2405LH
FF4	:R2405LH
END S651LH	

```
SAB1,FF4B,SNA40;
SABZ,A6,SNA41;
SNA40,SNA41,SNA42;
SAB1,FF4C,SNA43;
SABZ,A7,SNA44;
SNA43,SNA44,SNA45;
SAB1,FF4D,SNA46;
SABZ,A8,SNA47;
SNA46,SNA47,SNA48;
SBAZ,B2,SNA5;
SNA4,SNA5,SNA6;
SBA1,FF1C,SNA7;
SBAZ,B3,SNA8;
SNA7,SNA8,SNA9;
DUM,STO1:
STO1,B1,B2,B3,B4,CBA,FF1A,FF1B,FF1C,FF1D;
STO1,A1,A2,A3,A4,CAB,FF2A,FF2B,FF2C,FF2D;
STO1,B5,B6,B7,B8,CBA,FF3A,FF3B,FF3C,FF3D;
STO1,A5,A6,A7,A8,CAB,FF4A,FF4B,FF4C,FF4D;
```

BLOCK S652LH;
GBAZ @INPUT;
GAB @INPUT;
SBA @INPUT;
SAB @INPUT;
CBA @INPUT;
CAB @INPUT;
A1 @INOUT;
A2 @INOUT;
A3 @INOUT;
A4 @INOUT
A5 @INOUT;
A6 @INOUT;
A7 @INOUT:
A8 @INOUT;
B1 @INOUT;
B2 @INOUT;
B3 @INOUT;
B4 @INOUT;
B5 @INOUT;
B6 @INOUT;
B7 @INOUT;
B8 @INOUT;

HDL FILE (Continued)

STRUCTURE (Continued)	
INV1	:IV140LH
INV10	:IV222LH
INV11	:IV222LH
INV12	:IV110LH
INV13	:IV110LH
INV14	:IV110LH
INV15	:IV110LH
INV16	:IV110LH
INV17	:IV110LH
INV18	:IV110LH
INV19	:IV110LH
INV2	:IV140LH
INV20	:IV222LH
INV21	:IV222LH
INV22	:IV222LH
INV23	:IV222LH
INV24	:IV222LH
INV25	:IV222LH
INV26	:IV222LH
INV27	:IV222LH
INV28	:IV110LH
INV29	:IV110LH
INV3	:IV140LH
INV30	:IV110LH
INV31	:IV110LH
INV32	:IV110LH
INV33	:IV110LH
INV34	:IV110LH
INV35	:IV110LH
INV36	:IV222LH
INV37	:IV222LH
INV38	:IV222LH
INV39	:IV222LH
INV4	:IV140LH
INV5	:IV110LH
INV6	:IV140LH
INV7	:IV140LH
INV8	:IV222LH
INV9	:IV222LH
NA1	:NA210LH
NA10	:NA210LH
NA11	:NA210LH
NA12	:NA210LH
NA13	:NA210LH
NA14	:NA210LH
NA15	:NA210LH
NA16	:NA210LH
NA17	:NA210LH
NA18	:NA210LH
NA19	:NA210LH

```
SBA,SBAZ;
SNA9,GBA,A3;
SNA12,GBA,A4;
B1,SIV12;
B2,SIV13;
B3,SIV14;
B4,SIV15;
A1,SIV16;
A2,SIV17;
A3,SIV18;
A4,SIV19;
SBAZ,SBA1;
SNA15,GAB1,B1;
SNA18,GAB1,B2;
SNA21,GAB1,B3;
SNA24,GAB1,B4;
SNA27,GBA,A5;
SNA30,GBA,A6;
SNA33,GBA,A7;
SNA36,GBA,A8;
B5,SIV28;
B6,SIV29;
SAB,SABZ;
B7,SIV30;
B8,SIV31;
A5,SIV32;
A6,SIV33;
A7,SIV34;
A8,SIV35;
SNA39,GAB1,B5;
SNA42,GAB1,B6;
SNA45,GAB1,B7;
SNA48,GAB1,B8;
SABZ,SAB1;
GAB,GABZ;
GABZ,GAB1;
GBAZ,GBA;
SNA3,GBA,A1;
SNA6,GBA,A2;
SBA1,FF1AZ,SNA1;
SBA1,FF1DZ,SNA10;
SBAZ,SIV15,SNA11;
SNA10,SNA11,SNA12;
SAB1,FF2AZ,SNA13;
SABZ,SIV16,SNA14;
SNA13,SNA14,SNA15;
SAB1,FF2BZ,SNA16;
SABZ,SIV17,SNA17;
SNA16,SNA17,SNA18;
SAB1,FF2CZ,SNA19;
```

SN54ASC651, SN54ASC652, SN74ASC651, SN74ASC652 8-BIT BIDIRECTIONAL UNIVERSAL TRANSCEIVER REGISTERS

HDL FILE (Continued)

STRUCTURE (Continued)
NA2 :NA210LH
NA20 :NA210LH
NA21 :NA210LH
NA22 :NA210LH
NA23 :NA210LH
NA24 :NA210LH
NA25 :NA210LH
NA26 :NA210LH
NA27 :NA210LH
NA28 :NA210LH
NA29 :NA210LH
NA3 :NA210LH
NA30 :NA210LH
NA31 :NA210LH
NA32 :NA210LH
NA33 :NA210LH
NA34 :NA210LH
NA35 :NA210LH
NA36 :NA210LH
NA37 :NA210LH
NA38 :NA210LH
NA39 :NA210LH
NA4 :NA210LH
NA40 :NA210LH
NA41 :NA210LH
NA43 :NA210LH
NA44 :NA210LH
NA45 :NA210LH
NA46 :NA210LH
NA47 :NA210LH
NA48 :NA210LH
NA5 :NA210LH
NA6 :NA210LH
NA7 :NA210LH
NA8 :NA210LH
NA9 :NA210LH
TO1 :TO010LH
FF1 :R2406LH
FF2 :R2406LH
FF3 :R2406LH
FF4 :R2406LH
END S652LH

SBAZ,SIV12,SNA2;
SABZ, SIV18,SNA20;
SNA19,SNA20,SNA21;
SAB1,FF2DZ,SNA22;
SABZ,SIV19,SNA23; SNA22,SNA23,SNA24;
SBA1,FF3AZ,SNA25;
SBAZ,SIV28,SNA26;
SNA25,SNA26,SNA27;
SBA1,FF3BZ,SNA28;
SBAZ,SIV29,SNA29;
SNA1,SNA2,SNA3;
SNA28,SNA29,SNA30;
SBA1,FF3CZ,SNA31;
SBAZ,SIV30,SNA32;
SNA31,SNA32,SNA33;
SBA1,FF3DZ,SNA34;
SBAZ,SIV31,SNA35;
SNA34,SNA35,SNA36;
SAB1,FF4AZ,SNA37; SABZ,SIV32,SNA38; SNA37,SNA38,SNA39; SBA1,FF1BZ,SNA4; SAB1,FF4BZ,SNA40; SABZ,SIV33,SNA41; SNA40,SNA41,SNA42; SAB1,FF4CZ,SNA43; SABZ,SIV34,SNA44; SNA43,SNA44,SNA45; SAB1,FF4DZ,SNA46; SABZ,SIV35,SNA47; SNA46,SNA47,SNA48; SBAZ,SIV13,SNA5; SNA4,SNA5,SNA6; SBA1,FF1CZ,SNA7; SBAZ,SIV14,SNA8; SNA7,SNA8,SNA9; DUM,STO1:
STO1,B1,B2,B3,B4,CBA,DUM,FF1AZ,DUM,FF1BZ,DUM,FF1CZ, DUM,FF1DZ;
STO1,A1,A2,A3,A4,CAB,DUM,FF2AZ,DUM,FF2BZ,DUM,FF2CZ, DUM;FF2DZ;
STO1,B5,B6,B7,B8,CBA,DUM,FF3AZ,DUM,FF3BZ,DUM,FF3CZ, DUM,FF3DZ;
STO1,A5,A6,A7,A8,CAB,DUM,FF4AZ,DUM,FF4BZ,DUM,FF4CZ, DUM,FF4DZ;

SN54ASC669, SN74ASC669 SYNCHRONOUS 4-BIT UPIDOWN BINARY COUNTERS WITH LOOK-AHEAD

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit
- Buffered Outputs

description

The SN54ASC669 and SN74ASC669 are standard-cell software macros implementing synchronous 4-bit up-down binary counter elements. The four-bit configuration provides the custom IC designer a fully designed bidirectional counter to embed in ASICs in its most efficient form, and the 4-bit length simplifies construction of large counters. The 'ASC669 implements a count sequence identical with that performed by packaged 'LS669 counters.
logic symbol \dagger

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

These synchronous presettable counters feature an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform. The 'ASC669 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	TOTAL $C_{\text {pd }}{ }^{\dagger}$ (pF)	MAXIMUM ICC	
					$\begin{gathered} \text { SN54ASC' }^{\prime} \\ \text { (nA) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { SN74ASC' } \\ & (\mathrm{nA}) \end{aligned}$
AN320LH	2	1	2	1.06	221	13.3
AO221LH	2.7	4	10.8	2.36	896	53.6
IV110LH	0.75	7	5.25	3.08	735	44.24
IV120LH	1	3	3	2.4	393	23.55
NA210LH	1	6	6	3.06	786	47.04
NA310LH	1.25	10	12.5	5	1630	97.8
NA410LH	1.5	2	3	1	374	11.4
NA510LH	1.75	2	3.5	1.04	426	25.6
R2406LH	26.25	1	26.25	11.7	2931	176
TO010LH	1.5	1	1.5	-	177	10.6
TOTALS		37	73.75	30.7	8569	504
Label: S669LH D,C,B,A,CLK, U_DZ,ENPZ,ENTZ,LOADZ, QD, QC, QB, QA, RCOZ;						

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC669, SN74ASC669

SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS WITH LOOK-AHEAD

description (continued)

These counters are fully programmable; that is, they may be preset to any number between 0 and 15. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the output to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters in n-bit synchronous applications without additional gating. Instrumental in achieving this are two count-enable inputs and a ripple carry output. Both count-enable inputs (ENPZ and ENTZ) must be low to count. ENPZ enables the local 4-bits and the ENTZ is fed forward to globally extend the enable/disable of previous/next 4-bit cascaded counters. The ripplecarry out RCOZ, when locally and globally enabled, will output a low-level pulse that is used to enable successive stages. Transitions at the ENPZ and ENTZ inputs are allowed regardless of the level of the clock input.

These counters feature a fully independent clock circuit. Changes at control inputs (ENPZ, ENTZ, LOADZ, U_DZ) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enable, disable, load, or count) will be dictated solely by the conditions meeting the setup and hold times.

The SN54ASC669 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC669 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
typical load, count, and inhibit sequences

Note 1: This sequence shows the following characteristics:
Load (preset) to binary thirteen
Count up to fourteen, fifteen (maximum), zero, one, and two
Inhibit
Count down to one, zero, (minimum), fifteen, fourteen, and thirteen

Data Sheets

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

timing requirements

Specific timing data regarding pulse duration, setup time, and hold time models are incorporated in most engineering workstation libraries. These models are for the clocked ceils embedded in the software macros. Evaluations of the timing requirements, are made during pre-layout simulation, produce workstation output used to identify and resolve each specific timing need.

electrical characteristics

PARAMETER		TEST CONDITIONS	SN5	C669	SN74	C669	UNIT	
		TYP	MAX	TYP	MAX			
V_{T} Input threshold vol			$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		8569		504	nA	
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	CLK,LOADZ, and U_DZ	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24		pF	
	All others		0.12		0.12			
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}{ }^{\dagger}$		$\begin{array}{lr} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	30.7		30.7		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\dagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	то (OUTPUT)	TEST CONDITIONS	SN54ASC669			SN74ASC669			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIIN	TYP ${ }^{\ddagger}$	MAX	
t_{pd}	CLK	RCOZ	$C_{L}=0$		10	24.2		10	22	ns
${ }^{\text {tpd }}$	CLK	Qn			5	10.4		5	9.4	
$t_{\text {pd }}$	ENTZ	RCOZ			3	5.9		3	5.3	ns
t_{pd}	U_DZ	RCOZ			6	14.2		6	13	
$\Delta \mathrm{t}_{\text {pd }}$	Any	On		0.2	0.9	2.4	0.3	0.9	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	RCOZ		0.5	1.8	5.8	0.5	1.8	5	

$t_{\text {pd }} \equiv$ propagation delay time, low-to-high or high-to-low output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

SN54ASC669, SN74ASC669 SYNCHRONOUS 4-BIT UPIDOWN BINARY COUNTERS WITH LOOK-AHEAD

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S669LH;

D	@INPUT;
C	@INPUT;
B	@INPUT;
A	@INPUT;
CLK	@INPUT;
U_DZ	@INPUT;
ENPZ	@INPUT;
ENTZ	@INPUT;
LOADZ	@INPUT;
QD	@OUTPUT;
QC	@OUTPUT;
QB	@OUTPUT;
QA	@OUTPUT;
RCOZ	@OUTPUT;

STRUCTURE

AN1	:AN320LH	LOADZ,INV2O,INV10,AN10;
AO12	:AO221LH	QA,INV120,INV80,FFAQZ,A010;
AO2	:AO221LH	QB,INV120,INV90,FFBQZ,AO20;
AO3	:A0221LH	QC,INV2O,INV100,FFCOZ,A030;
AO4	:AO221LH	QD,INV120,INV110,FFDOZ,AO40;
INV1	:IV110LH	ENTZ,INV10;
INV10	:IN110LH	INV120,INV100;
INV11	:IV110LH	INV120,INV110;
INV12	:INV120LH	U_DZ,INV12O;
INV13	:T0010LH	DUM,CLRZ;
INV2	:IV110LH	ENPZ,INV2O;
INV5	:IV120LH	LOADZ,INV50;
INV6	:IV120LH	INV50,INV60;
INV7	:IV110LH	AN10,INV70;
INV8	:IV110LH	INV120,INV80;
INV9	:IV110LH	INV120,INV90;
NA1	:NA310LH	QA,INV70,INV60,NA10;
NA10	:NA310LH	QC,NA110,INV6O,NA100;
NA11	:NA310LH	AN10,A020,AO10,NA110;
NA12	:NA410LH	AO10,AO2O,AN10,FFCOZ,NA120;
NA13	:NA210LH	INV50,C,NA130;
NA14	:NA310LH	NA100,NA130,NA120,NA140;
NA15	:NA210LH	INV50,D,NA150;
NA16	:NA410LH	AN10,AO10,A020,A030,NA160;
NA17	:NA31OLH	QD,NA160,INV60,NA170;

QA,INV120,INV80,FFAQZ,AO1O;
QB,INV120,INV90,FFBOZ,AO2O;
QC,INV2O,INV100,FFCQZ,AO3O;
QD,INV120,INV110,FFDQZ,AO4O;
ENTZ,INV10;
INV120,INV100;
INV120,INV110;
U_DZ,INV12O;
DUM,CLRZ;
ENPZ,INV2O
ADZ,INV5O;

AN10,INV70;
INV120,INV8O;
INV120,INV9O;
QA,INV7O,INV60,NA1O;
QC,NA110,INV6O,NA100;
AN1O,AO2O,AO1O,NA11O;
AO10,AO2O,AN1O,FFCQZ,NA12O
, C,NA130

INV50,D,NA15O;
AN10,AO10,A020,A030,NA160;
QD,NA160,INV6O,NA17O;

SN54ASC669, SN74ASC669
 SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS WITH LOOK-AHEAD

HDL FILE (Continued)

STRUCTURE (Continued)

NA19	:NA310LH
NA2	:NA210LH
NA20	:NA510LH
NA21	:NA510LH
NA3	:NA310LH
NA4	:NA310LH
NA5	:NA210LH
NA6	:NA310LH
NA7	:NA310LH
NA8	:NA210LH
NA9	:NA21OLH
FF14	:R2406ZLH

END S669LH

```
NA17O,NA15O,NA200,NA19O;
AN1O,FFAQZ,NA2O;
AN1O,AO1O,AO2O,AO30,FFDOZ,NA200;
A010,AO2O,A03O,AO40,INV1O,RCOZ;
QB,NA5O,INV6O,NA3O;
NA1O,NA8O,NA2O,NA4O;
AN10,AO1O,NA50;
AN10,A010,FFBOZ,NA6O;
NA3O,NA9O,NA6O,NA7O;
INV5O,A,NA8O;
INV5O,B,NA9O;
CLRZ,NA4O,NA7O,NA140,NA190,CLK,QA,FFAQZ,QB,FFBQZ,
QC,FFCOZ,QD,FFDOZ;
```


count definition

These counters are bidirectional with respect to count operations and the relationship for counting up or down is defined by the $U_{-} D Z$ input. Unidirectional counters are available in software macros or can be contructed using the 'ASC2405 through 'ASC2407 4-bit predesigned registers. Additional single bits can be achieved with predesigned flip-flops offered in TI's standard cell family.

designing for testability

Designers employing storage or bistable elements, especially long counters (ripple or synchronous), should consider testability of the design in its final form. The need to preset or clear, and read intermediate stages of these elements, should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable costs savings as the expense of IC testing, system testing, and system maintenance can be reduced significantly.

power-up-clear/preset

Standard cell storage elements containing the capability to be asynchronously either preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Access to the clear inputs from other system signals in conjunction with the power-up clear can be facilitated with an AND gate.

SN54ASC686, SN74ASC686 8-BIT MAGNITUDE COMPARATORS

D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Performs Magnitude Comparison of Binary, BCD, and Monotonic Codes
- Weighted Cascaded Inputs Accomodate Both Serial and Paraliel Expansion
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC686 and SN74ASC686 are standard-cell software macros implementing 8 -bit expandable magnitude comparators. The 8 -bit configuration provides the custom IC designer a magnitude comparator to embed in ASICs in its most efficient form, and the 8 bit width simplifies construction of wider comparators. The 'ASC686 implements a comparison scheme identical with that performed by packaged 'HC686 and 'LS686 comparators.

These 8-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1), codes. Two fully decoded decisions, $\mathrm{P}>\mathrm{Q}$ or $\mathrm{P}=\mathrm{Q}$, about two eight-bit words (P, Q) are made and are externally available at two outputs that can be decoded with a NAND gate to provide the $\mathrm{P}<\mathrm{Q}$ decision. These devices are fully expandable to any number of bits. Words of greater length may be compared by connecting comparators in cascade. The PEQQZ and PGTQZ outputs of a stage handling less-significant bits are connected to the corresponding G1Z and G2Z inputs of the next stage handling more-significant bits. The 'ASC686 is implemented with the standard cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	TOTAL $\mathrm{C}_{\mathrm{pd}}{ }^{\ddagger}$ (pF)	MAXIMUM ICC	
					SN54ASC' (nA)	$\begin{gathered} \hline \text { SN74ASC' } \\ \text { (nA) } \\ \hline \end{gathered}$
AN210LH	1.5	4	6	3.6	776	46.4
AN310LH	1.75	7	12.25	7.42	1547	93.1
AN410LH	2	6	12	7.08	1536	91.8
EX210LH	2	8	16	8.96	1784	107.2
IV110LH	0.75	13	9.75	5.72	1365	82.16
IV120LH	1	5	5	4	655	39.25
NA210LH	1	4	4	2.04	524	31.36
NA310LH	1.25	3	3.75	1.5	489	29.34
NA410LH	1.5	3	4.5	1.5	561	33.6
NA420LH	2.5	1	2.5	0.96	312	18.7
NO220LH	1.5	1	1.5	0.52	185	11.1
TOTALS		55	77.25	43.3	9734	585

\ddagger Does not include interconnect capacitance.

The SN54ASC688 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC688 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

InPUTS			OUTPUTS ${ }^{\ddagger}$	
DATA	ENABLES ${ }^{\dagger}$		PE007	PGTOZ
P,Q	G1Z	G2Z	PLagz	PGTaz
$\mathrm{P}=0$	L	X	L	H
$P>0$	X	L	H	L
$\mathrm{P}<\mathrm{Q}$	X	X	H	H
$\mathrm{P}=0$	H	x	H	H
$P>0$	X	H	H	H
\times	H	H	H	H

${ }^{\dagger} \mathrm{G} 1 \mathrm{Z}$ enables PEQQZ, and G2Z enables PGTQZ.
\ddagger The $\overline{\mathrm{P}<\mathrm{Q}}$ function can be generated by applying the PEQOZ and PGTQZ outputs to a 2-input NAND gate.

SN54ASC686, SN74ASC686 8-BIT MAGNITUDE COMPARATORS

logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC686		SN74ASC686		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$		9734		585	nA	
C_{i} Input capacitance		G1Z	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF	
		G2Z		0.24		0.24			
		Any P or Q		0.34		0.34			
$\mathrm{C}_{\mathrm{pd}} \underset{\text { dissipation capacitance }}{ }{ }^{\dagger}$			$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	43.3		43.3		pF	

${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 1)

PARAMETER ${ }^{\ddagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC686			SN74ASC686			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
t_{pd}	Pn, Qn	Any	$C_{L}=0$		9	20.6		9	19.1	ns
${ }_{\text {t }}$ d	G1Z,G2Z	Any			7	15.4		7	14.1	
$\Delta \mathrm{t}_{\mathrm{pd}}$	Any	Any		0.3	0.8	2.3	0.3	0.8	2	ns/pF

[^68]
SN54ASC686, SN74ASC686 8-BIT MAGNITUDE COMPARATORS

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S686LH;

P0	@INPUT;
P1	@INPUT;
P2	@INPUT;
P3	@INPUT;
P4	@INPUT;
P5	@INPUT;
P6	@INPUT;
P7	@INPUT;
Q0	@INPUT;
Q1	@INPUT;
Q2	@INPUT;
Q3	@INPUT;
Q4	@INPUT;
Q5	@INPUT;
Q6	@INPUT;
Q7	@INPUT;
G1Z	@INPUT;
G2Z	@INPUT;
PEQQZ	@OUTPUT;
PGTQZ	@OUTPUT;

STRUCTURE

AN1	:AN310LH	INV10,INV2O,INV30,AN1O;
AN10	:AN210LH	P1,INV110,INV100;
AN12	:AN410LH	INV5O,INV4O,INV30,INV2O,AN120;
AN13	:AN410LH	INV10,INV130,P2,INV110,AN130;
AN15	:AN410LH	INV4O, INV30,INV2O,INV10,AN150;
AN16	:AN310LH	INV140,P3,INV110,AN160;
AN18	:AN310LH	INV30,INV20,INV10,AN180;
AN19	:AN310LH	INV150,P4,INV110,AN190;
AN2	:AN310LH	INV4O,INV5O,INV60,AN2O;
AN21	:AN310LH	INV20,INV10,INV160,AN210;
AN22	:AN210LH	P5,INV110,AN22O;
AN3	:AN210LH	INV70,INV80,AN30;
AN4	:AN410LH	INV70,INV60,INV5O,INV4O,AN4O;
AN5	:AN410LH	INV3O;INV2O,INV10,INV100,AN5O;
AN6	:AN210LH	PO,INV110,AN6O;
AN8	:AN410LH	INV6O,INV50,INV4O,INV30,AN8O;
AN9	:AN310LH	INV20,INV10,INV120,AN9O;

HDL (Continued)

	STRUCTURE (Continued)		
	EX1	:EX210LH	P7,Q7,EX10;
	EX2	:EX210LH	P6,06,EX20;
	EX3	:EX210LH	P5,05,EX30;
	EX4	:EX210LH	P4,04,EX40;
	EX5	:EX210LH	P3,03,EX50;
	EX6	:EX210LH	P2,02,EX60;
	EX7	:EX210LH	P1,01,EX70;
	EX8	:EX210LH	PO,Q0,EX8O;
	INV1	:IV120LH	EX10,INV10;
	INV10	:INV110LH	Q0,INV100;
	INV11	:INV120LH	G2Z,INV110;
	iNV12	:IV110LH	Q1,INV120;
	INV13	:IV110LH	Q2,INV130;
	INV14	:IV110LH	Q3,INV140;
	INV15	:IV110LH	Q4,INV150;
	INV16	:IV110LH	Q5,INV160;
	INV17	:IV110LH	06,INV170;
	INV18	:IV110LH	Q7,INV180;
4	INV2	:IV120LH	EX20,INV2O;
	INV3	:IV120LH	EX30,INV30;
$\begin{aligned} & \square \\ & 0 \\ & 0 \end{aligned}$	INV4	:IV120LH	EX40,INV40;
	INV5	:IV110LH	EX50,INV50;
	INV6	:IV110LH	EX60,INV60;
	INV7	:IV110LH	EX70, iNV70;
$\begin{aligned} & \mathscr{\infty} \\ & \underset{\sim}{\otimes} \\ & \underset{\sim}{\oplus} \\ & \underset{\sim}{0} \end{aligned}$	INV8	:IV110LH	EX80,INV80;
	INV9	:IV110LH	G1Z,INV90;
	NA1	:NA420LH	AN10,AN2O,AN30,INV9O,PEQQZ;
	NA10	:NA410LH	NA2O,NA30,NA4O,NA5O,NA100;
	NA11	:NA410LH	NA60,NA70,NA80,NA90,NA110;
	NA2	:NA310LH	AN4O,AN5O,AN6O,NA2O;
	NA3	:NA310LH	AN80,AN9O,AN100,NA3O;
	NA4	:NA210LH	AN120,NA130,NA4O;
	NA5	:NA210LH	AN150,AN160,NA50;
	NA6	:NA210LH	AN180,AN190,NA6O;
	NA7	:NA210LH	AN210,AN220,NA7O;
	NA8	:NA410LH	INV10,INV170,P6,INV110,NA80;
	NA9	:NA310LH	INV180,P7,INV110,NA9O;
	NO1	:NO220LH	NA100,NA110,PGTOZ;
	END S686LH;		

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ SOFTWARE MACRO CELL

- Performs Identity Comparison of Binary, BCD, and Monotonic Codes
- Cascading Input Accomodates Expansion
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC688 and SN74ASC688 are standard-cell software macros that implement 8 -bit expandable identity comparators. The 8 -bit configuration provides the custom IC designer an identity comparator to embed in ASICs in its most efficient form, and the 8 -bit width simplifies construction of wider comparators. The 'ASC688 implements a comparison scheme identical with that performed by packaged 'HC688 and 'LS688 comparators.

These 8-bit identity comparators perform bit-bybit comparison of binary, straight BCD (8-4-2-1), or random codes. The fully decoded equality decision ($\mathrm{P}=\mathrm{Q}$?) on 8 -bit words (P, Q) is made. These devices are expandable to any number of bits. Words of greater length may be compared by connecting comparators in cascade. The PEQQZ output of a stage handling lesssignificant bits is connected to the corresponding G1Z input of the next stage handling moresignificant bits. The 'ASC688 is implemented with the standard-cell functions indicated. The HDL netlist label for this software macro is shown on the last line of the following table:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUT
DATA	ENABLE	
P,Q	G1Z	
$\mathrm{P}=\mathrm{Q}$	L	L
$\mathrm{P}>\mathrm{Q}$	X	H
$\mathrm{P}<\mathrm{Q}$	X	H
X	H	H

CELL NAME	RELATIVE CELL AREA TO NA210LH	NO. USED	TOTAL RELATIVE CELL AREA	$\begin{aligned} & \text { TOTAL } \\ & \mathbf{C}_{\text {pd }}{ }^{\ddagger} \\ & \text { (pF) } \end{aligned}$	MAXIMUM ICC	
					$\begin{aligned} & \text { SN54ASC' } \\ & (\mathrm{nA}) \end{aligned}$	$\begin{gathered} \text { SN74ASC' } \\ (\mathrm{nA}) \end{gathered}$
AN210LH	1.5	1	1.5	0.9	194	11.6
AN310LH	1.75	2	3.5	2.12	442	26.6
EX210LH	2.0	8	16	8.0	1784	107.2
IV110LH	0.75	9	6.75	3.96	945	56.88
NA420LH	2.5	1	2.5	0.96	312	18.7
TOTALS		21	30.25	15.94	3677	221

[^69]The SN54ASC688 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC688 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic diagram

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54A	C688	SN74A	C688	UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vo			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		3677		221	$n A$	
	Input capacitance	G1Z	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.12		pF	
		Any P or Q		0.22		0.22			
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}{ }^{\dagger}$			$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	15.94		15.94		pF	

\dagger The equivalent power dissipation capacitance does not include interconnect capacitance.

SN54ASC688, SN74ASC688 8-BIT IDENTITY COMPARATORS

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (see Note 1)

PARAMETER †	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC688			SN74ASC688			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$t_{\text {pd }}$	Pn, Qn	PEQQZ	$C_{L}=0$		7.5	13.6		7.5	12.3	ns
${ }^{\text {p }}$ d	G1Z	PEQQZ			3	4.7		3	4.4	ns
$\Delta t_{\text {pd }}$	Any	PEQQZ		0.3	0.7	2.3	0.3	0.7	2	$\mathrm{ns} / \mathrm{pF}$

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low output
$\Delta t_{p d} \equiv$ change in $t_{p d}$ with capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

DESIGN CONSIDERATIONS

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

The HDL for this software macro is included as a part of the library supplied for supported engineering workstations so that a single label can be developed to apply the macro as needed. The following printout of the HDL block definition is furnished for reference.

HDL FILE

BLOCK S688LH;
PO @INPUT;
P1 @INPUT;
P2 @INPUT;
P3 @INPUT;
P4 @INPUT;
P5 @INPUT;
P6 @INPUT;
P7 @INPUT;
00 @INPUT;
Q1 @INPUT;
02 @INPUT;
Q3 @INPUT;
Q4 @INPUT;
05 @INPUT;
Q6 @INPUT;
07 @INPUT;
G1Z @INPUT;
PEQQZ @OUTPUT;

STRUCTURE
AN1 :AN310LH
AN2 :AN310LH
AN3 :AN210LH
EX1 :EX210LH
EX2 :EX210LH
EX3 :EX210LH
EX4 :EX210LH
EX5 :EX210LH
EX6 :EX210LH
EX7 :EX210LH
EX8 :EX210LH
INV1 :IV110LH
INV2 :IV110LH
INV3 :IV110LH
INV4 :IV110LH
INV5 :IV110LH
INV6
INV7
INV8
INV9
NA1
:IV110LH :IV110LH
:IV110LH :IV110LH :NA420LH

INV10,INV2O,INV30,AN1O;
INV4O,INV5O,INV6O,AN2O;
INV70,INV80,AN3O;
P7,Q7,EX10;
P6,06,EX2O;
P5,Q5,EX30;
P4,Q4,EX4O;
P3,Q3,EX50;
P2,Q2,EX60;
P1, Q1,EX70;
PO,Q0,EX80;
EX10,INV10;
EX2O,INV2O;
EX30,INV3O;
EX4O,INV4O;
EX50,INV5O;
EX6O,INV60;
EX70,INV70;
EX80,INV80;
G1Z,INV90;
AN10,AN2O,AN3O,INV90,PEQOZ;

SystemCell ${ }^{T M}$ COMPATIBLE MegaModule ${ }^{T M}$.

- Parallel 8-Bit ALU with Expansion Nodes
- 13 Arithmetic and Logic Functions
- 8 Conditional Shifts (Single and Double Length)
- 9 Instructions that Manipulate Bytes
- 4 Instructions that Manipulate Bits
- Add and Subtract Immediate Instructions
- Absolute Value Instruction
- Signed Magnitude to/from Two's Complement Conversion
- Single- and Double-Length Normalize
- Select Functions
- Signed and Unsigned Divides with Overflow Detection; Input Does Not Need to be Prescaled
- Signed, Mixed, and Unsigned Multiplies
- Three-Operand, 16-Word Register File

description

These 8-bit Advanced CMOS SystemCell ${ }^{\text {TM }}$ compatible standard cells implement high-performance digital computer or controller data-paths. An architecture and instruction set has been chosen that supports a fast system clock, a narrow micro-code word width, and a high system throughput. The powerful instruction set allows high-speed system architecture to be implemented and also allows an existing system's performance to be upgraded while protecting software investments. These processors are designed to be cascadable, in increments of eight bits, to any word width of 16 bits or greater.
The SN54ASC888 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC888 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC888, SN74ASC888
8-BIT PROCESSOR SLICES
node descriptions

NODE NAME	I/O	DESCRIPTION
AO	1	
A1	1	
A2	1	Reg
A3	1	
B0	1	
B1	1	
B2	1	Register file B port read address select (LSB $=0$)
B3	1	
CO	1	
C1	1	
C2	1	Register file address select
C3	1	
CLK	1	Clocks all synchronous registers on positive edge
C_{n}	1	ALU carry input
CNPL8	0	ALU ripple carry output
DAO	1/0	
DA1	1/O	
DA2	1/0	
DA3	1/0	
DA4	1/0	A port data bus. Outputs register data if EAZ is low, or inputs data if EAZ is high.
DA5	1/0	
DA6	1/O	
DA7	1/0	
DBO	1/0	
DB1	1/0	
DB2	1/0	
DB3	1/O	
DB4	1/0	B port data bus. Outputs register data if OEBZ is low, or input data if OECBZ is high.
DB5	1/0	
DB6	1/O	
DB7	1/0	
EAZ	1	ALU input operand select. High state selects DA bus, and low state selects register file.
$\begin{aligned} & \text { EBO } \\ & \text { EB1 } \end{aligned}$		ALU input operand select. EBO and EB1 select the source of data that the S multiplexer provides for the S bus. Independent control of the DB bus and data-path selection allows the user to isolate the DB bus while the ALU continues to process data.
GZ_N	0	ALU generate/negative result for most significant 8 -bit slice, active low
10	1	
11	1	
12	1	
13	1	Instruction input ${ }^{\text {a }}$
14	1	Instruction input
15	1	
16	1	,
17	1	
LSC MSC	1	Package position inputs
OEAZ	1	DA bus enable, active low
OEBZ	1	DB bus enable, active low
OEYZ	1	Y bus output enable, active low

node descriptions (continued)

NODE NAME	I/O	DESCRIPTION
PZ_OVR	O	ALU propagate/instruction overflow for most significant 8-bit slice, active low
SIO7Z	I/O	
QIO7Z	I/O	Bidirectional shift pin, active low
QIOOZ	I/O	
SIOOZ	I/O	
SELY	I	Y bus select, active high
SSF	I/O	Expandable shift function. Used to transfer information between 8-bit slices during special instruction execution in expanded (16-bit, 32-bit) systems
WEZ	1	Register file (RF) write enable. Data is written into RF when WEZ is low and a low-to-high clock transition occurs. RF write is inhibited when WEZ is high. YO Y1 I/O
Y2	I/O	
Y3	I/O	
Y4	I/O	Y port data bus. Outputs instruction results if OEYZ is low or input data register file if OEYZ is high.
Y5	I/O	
Y6	I/O	
Y7	I/O	
ZERO	I/O	ALU shifter zero detection, open drain. Input during certain special instructions

SN54ASC888, SN74ASC888 8-BIT PROCESSOR SLICES

functional block diagram

For additional detailed information refer to the SN54AS888 and the SN74AS888 data sheet, SDBS001B, and the Bit-Slice Processor User's Guide, SDBU001A.

SystemCell ${ }^{T M}$ COMPATIBLE MegaModule ${ }^{T M}$

- 14 Bits Wide - Addresses Up to 16,384 Words of Microcode with One Megacell
- Selects Address from One of Eight Sources
- Independent Read Pointer for Aid in Microcode Diagnostics
- Supports Real-Time Interrupts
- Two Independent Loop Counters
- Supports 64 Powerful Instructions
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC890 and SN74ASC890 are Advanced CMOS standard cell microseqencers supporting traditional bit-slice data-path implementations.

The microsequencers select a 14-bit microaddress from one of eight sources to provide the proper microinstruction sequence for bit-slice processor megacells or other microcodebased data paths. These high-performance megacells are capable of addressing 16,384 control store memory locations either sequentially or via conditional branching algorithms. This multiway branching capability, coupled with a nine-word-deep FILO (first in, last out) stack, allows the microprogrammer to arrange his code in blocks so that microprograms may be structured in the same fashion as such high-level languages as ALGOL, Pascal, or Ada.

Both polled and real-time interrupt routines are supported by the 'ASC890 to enhance system throughput capability. Vectored interrupts may occur during any instruction, including PUSHes and POPs.

The SN54ASC890 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC890 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

functional block diagram

For additional detailed information refer to the SN54AS890 and SN74AS890 data sheet, SDBS002, and the Bit-Slice Processor User's Guide, SDBU001A.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Two Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=\overline{A \cdot B \cdot C \cdot D \cdot E}=\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A	B	C	D	E	Y
H	H	H	H	H	L
L	X	X	X	X	H
X	L	X	X	X	H
X	X	L	X	X	H
X	X	X	L	X	H
X	X	X	X	L	H

description

The SN54ASC2022 and SN74ASC2022 are 5 -input positive-NAND gate CMOS standard cells. The standard-cell library contains two physical implementations providing the custom IC designer a choice between two performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	FEATURES		
		$\begin{array}{c}\text { TYPICAL } \\ \text { DELAY }\end{array}$	$\begin{array}{c}\text { RELATIVE } \\ \text { CELL AREA }\end{array}$
		$C_{L}=1 \mathrm{pF}$	
TO NA210LH			

The SN54ASC2022 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2022 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		NA510LH		NA520LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC2022	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			213		365	nA		
		SN74ASC2022				12.8		21.9			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.12		0.25		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}^{\prime}=3 \mathrm{~ns},$	0.52		1.02		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NA510LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2022			SN74ASC2022			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A thru E	Y	$C_{L}=0$	0.8	1.2	2.4	0.8	1.2	2.2	ns
${ }^{\text {t PHL }}$				0.6	1.3	3.5	0.7	1.3	3	
tPLH	A thru E	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.6	6.3	1.4	2.6	5.8	ns
tPHL				1.6	2.7	9.2	1.7	2.7	8	
$\Delta \mathrm{tPLH}$	A thru E	Y		0.5	1.4	4.3	0.5	1.4	3.9	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.9	2.2	5.8	1	2.2	5	

NA520LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC2	22		4ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	UNIT
tPLH	A thru E	Y	$C_{L}=0$	0.7	1.2	2.4	0.7	1.2	2.2	ns
${ }^{\text {tPHL }}$				0.6	1.2	2.9	0.6	1.2	2.6	
tpLH	A thru E	Y	$C_{L}=1 \mathrm{pF}$	1	1.9	3.9	1.1	1.9	3.5	ns
${ }^{\text {tPHL}}$				1.1	2.2	5.7	1.2	2.2	5	
Δ tPLH	A thru E	Y		0.3	0.7	1.6	0.3	0.7	1.4	ns/pF
Δ tpHL				0.4	1	2.8	0.5	1	2.4	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{ρ} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tpLH with load capacitance
$\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 2.9 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over V_{Cc} Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=A B C D E=\overline{\bar{A}}+\bar{B}+\bar{C}+\bar{D}+\bar{E}
$$

logic symbol

FUNCTION TABLE

OUTPUT					INPUTS
A	B	C	D	E	Y
H	H	H	H	H	H
L	X	X	X	X	L
X	L	X	X	X	L
X	X	L	X	X	L
X	X	X	L	X	L
X	X	X	X	L	L

description

The SN54ASC2024 and SN74ASC2024 are 5 -input positive-AND gate CMOS standard cells. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
AN510LH	Label: AN510LH A,B,C,D,E,Y;	2.9 ns	2.25

The SN54ASC2O24 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2024 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
	Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current		SN54ASC2024	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			286	nA
		SN74ASC2024				17.2	
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \quad \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.12		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2024			SN74ASC2024			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A thru E	Y	$C_{L}=0$	1	2.4	6.1	1.1	2.4	5.3	ns
tPHL				0.7	1.7	3.9	0.8	1.7	3.5	
tPLH	A thru E	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.4	8.6	1.7	3.4	7.5	ns
${ }^{\text {t PHL }}$				1.1	2.3	5.5	1.1	2.3	4.9	
Δ tPLH	A thru E	Y		0.5	1	2.5	0.5	1	2.2	ns/pF
Δ tPHL				0.2	0.6	1.6	0.3	0.6	1.4	

[^70]
DESIGN CONSIDERATIONS

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Choice Between Three Clocked Toggle Flip-Flop Configurations
- Cascadable for Implementing Ripple Counters
latch cells offered

CELL NAME	PRESET	CLEAR
TAB2OLH	yes	yes
TAC20LH	no	yes
TAP20LH	yes	no

- Implements High-Speed Counters: Clock Frequencies . . . 54 to 65 MHz

description

The SN54ASC2102 and SN74ASC2102 are dedicated, hardwired standard-cell macros implementing toggle flip-flops with clear and/or preset. The 'ASC2102 latches offer three choices of individual flip-flop configurations providing the custom IC designer a clocked storage element to embed in ASICs in its most efficient form: as stand-alone bit-control devices or as additions to larger latched function.

A low level at the preset or clear input controls the state of the outputs regardless of the levels at other inputs. When preset and clear inputs are inactive (high) and the clock input makes a low-to-high transition, each of the complementary outputs will toggle to its opposite state. While the clock remains high or transitions to the low level and remains low, the outputs will remain stable. The cells are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

		FEATURES				
CELL NAME	METLIST HDL LABEL				MAXIMUM CLOCK	RELATIVE CELL AREA TO NA210LH
TAB2OLH	Label: TAB2OLH CLRZ,PREZ,CLK, $\mathrm{Q}, \mathrm{QZ;}$	54.2 MHz	7.7			
TAC2OLH	Label: TAC2OLH CLRZ,CLK,Q,QZ;	61.7 MHz	7.2			
TAP2OLH	Label: TAP2OLH PREZ,CLK,Q,QZ;	65.8 MHz	7			

The SN54ASC2102 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2102 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbol ${ }^{\dagger}$

FUNCTION TABLE

TAB20LH

, This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

TAB20LH

INPUTS			OUTPUTS	
PREZ	CLRZ	CLK	\mathbf{Q}	$\mathbf{Q Z}$
L	H	X	H	L
H	L	X	L	H
L	L	X	L^{\ddagger}	L^{\ddagger}
H	H	\uparrow	\bar{Q}_{O}	Q_{O}
H	H	L	Q_{O}	\bar{Q}_{O}

\ddagger This configuration is nonstable; that is, it will not persist when the PREZ and CLRZ inputs return to their inactive (H) level.

SN54ASC2102, SN74ASC2102

TOGGLE FLIP-FLOPS WITH PRESET/CLEAR

logic symbols ${ }^{\dagger}$

FUNCTION TABLES
TAC20LH

INPUTS		OUTPUT	
CLRZ	CLK	\mathbf{Q}	$\mathbf{Q Z}$
L	X	L	H
H	\uparrow	$\overline{\mathrm{O}}_{0}$	Q_{0}
H	L	Q_{0}	$\overline{\mathrm{Q}}_{0}$

TAP20LH

INPUTS		OUTPUT	
PREZ	CLK	\mathbf{Q}	QZ
L	X	H	L
H	\uparrow	$\overline{\mathrm{O}}_{0}$	Q_{0}
H	L	Q_{0}	$\overline{\mathrm{O}}_{0}$

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

SN54ASC2102, SN74ASC2102 TOGGLE FLIP.FLOPS WITH PRESET/CLEAR

electrical characteristics

TAB20LH

PARAMETER			TEST CONDITIONS		SN54ASC2102		SN74ASC2102		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{A}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		939		56.2	nA		
c_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.25		0.25		pF		
		PREZ			0.36		0.36				
		CLK			0.29		0.29				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	4.2		4.2		pF		

TAC20LH

PARAMETER			TEST CONDITIONS		SN54	C2102	SN74	C2102	UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol				$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & V_{C C}=4.5 \\ & T_{A}=M I N \mathrm{tc} \end{aligned}$	$V_{I}=V_{C C} \text { or } 0,$		884		53	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.36		0.36		pF		
		CLK			0.25		0.25				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	3.79		3.79		pF		

TAP20LH

PARAMETER			TEST CONDITIONS		SN54ASC2102		SN74ASC2102		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vo				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I C C }}$	Supply current		$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{I}=V_{C C} \text { or } 0,$		846		50.8	nA		
	Input capacitance	PREZ	5 V ,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.35		0.35		pF		
C_{i}		CLK			0.26		0.26				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	3.59		3.59		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TAB20LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2102			SN74ASC2102			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q,QZ	$\mathrm{C}_{\mathrm{L}}=0$	2.2	5.1	13.4	2.4	5.1	11.8	ns
tPHL				1.5	3.3	8.4	1.6	3.3	7.4	
tPLH	PREZ	Q		2	4	9.7	2.1	4	8.6	ns
	CLRZ	QZ		2	4	9.7	2.1	4	8.6	
tPHL	PREZ	QZ		1.1	2	4.4	1.2	2	4	
	CLRZ	Q		1.1	2	4.4	1.2	2	4	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2.4	5.6	14.7	2.6	5.6	12.9	ns
tPHL				1.7	3.7	9.4	1.8	3.7	8.3	
${ }^{\text {tPLH }}$	PREZ	Q		2.3	4.5	11	2.4	4.5	9.8	
	CLRZ	QZ		2.3	4.5	11	2.4	4.5	9.8	
tPHL	PREZ	QZ		1.3	2.4	5.4	1.4	2.4	4.9	
	CLRZ	Q		1.3	2.4	5.4	1.4	2.4	4.9	
Δ tPLH	Any	Q,QŻ		0.2	0.5	1.4	0.2	Q. 5	1.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.4	1.1	0.1	0.4	0.9	

TAC20LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	то	TEST	SN54ASC2102			SN74ASC2102			UNIT
		(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	CLK	Q,QZ	$C_{L}=0$	1.9	4.6	13	2.1	4.6	11.3	ns
tPHL				1.4	3.1	7.9	1.6	3.1	7	
tPLH	CLRZ	QZ		1.8	3.5	8.3	2	3.5	7.4	
${ }^{\text {t PHL }}$	CLRZ	Q		1.1	2	4.3	1.2	2	3.9	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2.2	5.1	14.2	2.3	5.1	12.5	ns
tPHL				1.6	3.5	8.8	1.7	3.5	7.7	
${ }^{\text {tPLH}}$	CLRZ	QZ		2.1	4	9.4	2.2	4	8.4	
tPHL	CLRZ	Q		1.3	2.4	5.3	1.4	2.4	4.8	
$\Delta \mathrm{tPLH}$	Any	Q,QZ		0.2	0.5	1.3	0.2	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.1	0.4	1	0.1	0.4	0.9	ns/pF

TAP20LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2102			SN74ASC2102			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	CLK	Q,QZ	$C_{L}=0$	1.9	4.5	12.5	2	4.5	10.9	ns
tPHL				1.3	3	8.2	1.4	3	7.2	
tPLH	PREZ	Q		1.8	3.4	8	1.9	3.4	7.1	
tPHL	PREZ	QZ		1.1	2	4.1	1.2	2	3.8	
tPLH	CLK	Q, QZ	$C_{L}=1 \mathrm{pF}$	2.1	5	13.7	2.3	5	12	ns
${ }^{\text {PPHL }}$				1.5	3.4	9.1	1.6	3.4	8	
tPLH	PREZ	Q		2	3.9	9.2	2.2	3.9	8.2	
tPHL	PREZ	QZ		1.3	2.4	5	1.3	2.4	4.6	
$\triangle \mathrm{tPLH}$	Any	Q, QZ		0.2	0.5	1.3	0.2	0.5	1.1	n / $/ \mathrm{pF}$
Δ tPHL				0.1	0.4	1	0.1	0.4	0.9	

[^71]
DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard-cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered for managing unused inputs.

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard-cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up/clear cells to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC2108, SN74ASC2108 J-K̄-TYPE NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Negative-Edge Triggered with J and KZ Data Inputs
- CLRZ and PREZ Inputs Provide Asynchronous Initialization
- J and KZ Inputs Simplify Implementation of Toggle Flip-Flops
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

description

The SN54ASC2108 and SN74ASC2108 are dedicated, hardwired standard-cell macros implementing negative-edge-triggered flip-flops. A low level at the Preset or Clear input controls the state of the outputs regardless of the levels of the other inputs. When Preset and Clear are inactive (high), data at the J and $K Z$ inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the clock transition. Following the hold time interval, data at the J and KZ inputs may be changed wihout affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J high and KZ low. They also can perform as D-type flip-flops if J and KZ are tied together. The JKB21LH flip-flop implements the identical function and sequential operation to one-half of the 'LS109, 'S109, or 'F109 packaged flip-flops except the JKB21LH is negative-edge triggered rather than positive-edge triggered. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

\left.| CELL NAME | | FEATURES | |
| :---: | :---: | :---: | :---: |
| | NETLLIST | MAXIMUM | RELATIVE |
| | HDL LABEL | CLOCK | CELL AREA |
| TO NA210LH | | | |$\right]$

The SN54ASC2108 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2108 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		MIN	MAX	UNIT
Clock frequency			44.2	MHz
Pulse duration	PREZ or CLRZ low	9		ns
	CLKZ high or low	11.4		
$\mathrm{t}_{\text {su }} \quad$ Setup time	CLRZ inactive	1.8		ns
	PREZ inactive	-0.4		
	J or KZ high or low	9		
th Hold time	CLRZ low	3		ns
	PREZ low	9.6		
	J or KZ high or low	0		

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC2108		SN74ASC2108		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		1194		71.6	$n A$	
C_{i}	Input capacitance	PREZ or CLRZ	$V_{C C}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	0.25		0.25		pF	
		J		0.12		0.12			
		KZ or CLKZ		0.13		0.13			
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	4.97		4.97		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC2108			SN74ASC2108			UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLKZ	Q, QZ	$C_{L}=0$	1.8	5	12.9	2.2	5	11.4	ns
tPHL				1.9	4.5	13.4	2	4.5	11.1	
tPLH	PREZ,CLRZ	Q,QZ		2	4.3	11.1	2.2	4.3	9.8	ns
tPHL				1.1	2.1	5.2	1.2	2.1	4.8	
tPLH	CLKZ	Q, QZ	$C_{L}=1 \mathrm{pF}$	2.3	5.5	14	2.5	5.5	12.5	ns
tPHL				2.1	4.9	12.5	2.3	4.9	11.9	
tPLH	PREZ, CLRZ	Q, QZ		2.3	4.8	12.2	2.5	4.8	10.9	ns
tPHL				1.3	2.5	6.4	1.4	2.5	5.8	
$\Delta \mathrm{t}_{\text {PLH }}$	Any	Q, QZ		0.2	0.5	1.3	0.2	0.5	1.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.4	1.2	0.1	0.4	1.1	

[^72]
SN54ASC2108, SN74ASC2108 J-K-TYPE NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

designing for testability

Designs employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SN54ASC2310, SN74ASC2310 INVERTING 3-STATE BUFFERS WITH ACTIVE-LOW ENABLE

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Three Performance Levels
- Active-Low Enable
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\bar{A}$ when $G Z$ is L
logic symbol

function table

INPUTS		OUTPUT
GZ	A	Y
L	H	L
L	L	H
H	X	Z

description

The SN54ASC2310 and SN74ASC2310 are inverting 3-state internal buffer standard cells that interface internal cells with internal buses. The standard-cell library contains three physical implementations providing the custom IC designer a choice between three performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST	FEATURES	
	HDL LABEL	TYPICAL	RELATIVE
		DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
IV211LH	Label: IV2n1LH A,GZ,Y;	2.6 ns	1.5
IV221LH	1.7 ns	2	
IV241LH		1.3 ns	3

The SN54ASC2310 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2310 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC2310, SN74ASC2310

INVERTING 3-STATE BUFFERS WITH ACTIVE-LOW ENABLE

electrical characteristics

PARAMETER			TEST CONDITIONS		IV211LH		IV221LH		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current	SN54ASC2310	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$			180		244			
		SN74ASC2310				10.8		14.6	nA		
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.22		0.47		pF		
		GZ			0.4		0.55				
C_{0}	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.22		0.39		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.49		1		pF		

PARAMETER			TEST CONDITIONS		IV241LH		UNIT		
			TYP	MAX					
V_{T} Input threshold voltage	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2		V
ICC Supply current		SN54ASC2310	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		359		nA		
		SN74ASC2310				21.5			
$\mathrm{C}_{\mathbf{i}} \quad$ Input capacitance		A	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		1		pF		
		GZ			0.85				
C_{o} Output capacitance	Output capacitance		$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.59		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$		1.88		pF		

SN54ASC2310, SN74ASC2310 INVERTING 3-STATE BUFFERS WITH ACTIVE-LOW ENABLE

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

IV211LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2310			SN74ASC2310			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	0.9	2	0.6	0.9	1.8	ns
tPHL				0.5	0.9	2.3	0.6	0.9	2	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	1.6	2.9	6.5	1.7	2.9	5.9	ns
tPHL				1.1	2.2	5.3	1.2	2.2	4.6	
tPZH	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to GND } \end{gathered}$	1.4	2.7	5.9	1.5	2.7	5.3	ns
tPZL	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	1.3	2.5	5.9	1.4	2.5	5.1	ns
tPHZ	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		7.5			7.5		ns
tPLZ	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		4			4		ns
Δ tPLH	A	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3	0.6	1.3	2.7	
$\Delta \mathrm{tPZH}$	GZ	Y		1	2.1	4.8	1	2.1	4.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta t^{\text {P }}$ LL				0.5	1.3	3.6	0.6	1.3	3.1	

IV221LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2310			SN74ASC2310			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	0.9	1.9	0.6	0.9	1.7	ns
tPHL				0.4	0.9	1.9	0.4	0.9	1.7	
tPLH	A	Y	. $\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	1.1	1.9	4.1	1.1	1.9	3.8	ns
tPHL				0.8	1.5	3.5	0.8	1.5	3.1	
${ }^{\text {tPZH }}$	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to GND } \end{gathered}$	0.7	1.5	3.2	0.8	1.5	3	ns
tPZL	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$	1	1.8	4	1.1	1.8	3.5	ns
${ }^{\text {tPHZ }}$	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		8.9			8.9		ns
tplZ	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		4.5			4.5		ns
$\Delta \mathrm{t}_{\text {PLH }}$	A	Y		0.4	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.3	0.7	1.7	0.4	0.7	1.5	
$\Delta \mathrm{t}$ PZH	GZ	Y		0.6	1	2.3	0.6	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta t^{\text {PZ }}$ L				0.2	0.7	1.8	0.3	0.7	1.5	

[^73]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
IV241LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2310			SN74ASC2310			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	0.9	1.7	0.6	0.9	1.6	ns
tPHL				0.3	0.7	1.8	0.3	0.7	1.6	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.4	2.9	0.8	1.4	2.6	ns
tPHL				0.5	1.1	2.6	0.5	1.1	2.3	
${ }^{\text {tPZH }}$	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	0.2	0.9	2.1	0.3	0.9	1.9	ns
tPZL	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$	0.9	1.5	3.3	0.9	1.5	2.9	ns
tPHZ	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		9.8			9.8		ns
tPLZ	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		4.9			4.9		ns
Δ tPLH $^{\text {d }}$	A	Y		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.2	0.4	0.9	0.2	0.4	0.8	
Δ tPZH	GZ	Y		0.4	0.6	1.1	0.4	0.6	1	$\mathrm{ns} / \mathrm{pF}$
\triangle tPZL				0.1	0.4	1	0.1	0.4	0.8	

\dagger^{\dagger} Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. ${ }^{\mathrm{t} P L H} \equiv$ propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
${ }^{t} P Z H \equiv$ output enable time to high level
tPZL \equiv output enable time to low level
${ }^{\mathrm{t} P \mathrm{PHZ} \equiv \text { output disable time from high level }}$
tPLZ \equiv output disable time from low level
Δ tPLH \equiv change in tPLH with load capacitance
Δ tPHL \equiv change in $\mathrm{t} P \mathrm{HL}$ with load capacitance
Δ tPZH \equiv change in tPZH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PZL}} \equiv$ change in $\mathrm{t}_{\mathrm{P}} \mathrm{FL}$ with load capacitance
${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Three Performance Levels
- Active-High Enable
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\bar{A}
$$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
\mathbf{G}	A	
H	H	L
H	L	H
L	X	Z

description

The SN54ASC2311 and SN74ASC2311 are inverting 3-state internal buffer standard cells that interface internal cells with internal buses. The standard-cell library contains three physical implementations to provide the custom IC designer a choice between three performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
IV212LH	Label: IV2n2LH A,G,Y;	2.6 ns	1.5
IV222LH		2	
IV242LH		1.3 ns	3

The SN54ASC2311 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2311 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC2311, SN74ASC2311
 INVERTING 3-STATE BUFFERS WITH ACTIVE-HIGH ENABLE

electrical characteristics

PARAMETER			TEST CONDITIONS		IV212LH		IV222LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I C C }}$ Supply current		SN54ASC2311	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			180		243	nA		
		SN54ASC2311				10.8		14.6			
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.24		0.47		pF		
		G			0.31		0.42		pF		
C_{0}	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.18		0.33		pF		
C_{pd}	Equivalent power dissipation capaci		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.5		0.98		pF		

PARAMETER			TEST CONDITIONS		IV242LH		UNIT		
			TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current		SN54ASC2311	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			358	$n A$		
		SN74ASC2311				21.5			
C_{i}	Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1		pF		
		G			0.58				
C_{0}	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.48		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.86		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

IV212LH

PARAMETER ${ }^{\boldsymbol{+}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2311			SN74ASC2311			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	1	2	0.6	1	1.8	ns
${ }_{\text {tPHL }}$				0.5	0.9	1.9	0.6	0.9	1.7	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=1 \mathrm{pF}$	1.6	3	6.6	1.7	3	6	ns
tPHL				1.1	2.2	5.2	1.2	2.2	4.6	
${ }^{\text {tPZH }}$	G	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	1.4	3	6.9	1.5	3	6.2	ns
${ }^{\text {tPZL }}$	G	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$	1.2	2.3	5.1	1.3	2.3	4.5	ns
tPHZ	G	Y	$\begin{gathered} C_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		8.2			8.2		ns
tPLZ	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$		3.5			3.5		ns
$\Delta \mathrm{t}_{\text {PLH }}$	A	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.3	0.6	1.3	2.9	
$\Delta \mathrm{t}$ PZH	G	Y		1	2.1	4.8	1	2.1	4.4	ns/pF
$\Delta t_{\text {PZL }}$				0.7	1.3	3.6	0.7	1.3	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
${ }^{\text {tPZL }} \equiv$ output enable time to low level
tPHZ \equiv output disable time from high level
$t_{P L Z} \equiv$ output disable time from low level
\ddagger Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SN54ASC2311, SN74ASC2311 INVERTING 3-STATE BUFFERS WITH ACTIVE-HIGH ENABLE

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

IV222LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2311			SN74ASC2311			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {t PLH }}$	A	Y	$C_{L}=0$	0.6	1	2	0.6	1	1.8	ns
${ }^{\text {tPHL }}$				0.4	0.9	1.8	0.4	0.9	1.7	
${ }^{\text {tPLH}}$	A	Y	$C_{L}=1 \mathrm{pF}$	1.1	2	4.2	1.1	2	3.8	ns
tPHL				0.8	1.5	3.5	0.8	1.5	3.1	
${ }^{\text {tPZH }}$	G	Y	$\begin{gathered} C_{\mathrm{L}}=1 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to GND } \end{gathered}$	0.9	2	4.4	1	2	4	ns
tPZL	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	0.6	1.4	3.1	0.7	1.4	2.8	ns
tPHZ	G	Y	$\begin{gathered} C_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		10			10		ns
${ }^{\text {t PLZ }}$	G	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		3.8			3.8		ns
Δ tPLH	A	Y		0.4	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.7	1.7	0.4	0.7	1.4	
$\Delta \mathrm{t}$ PZH	G	Y		0.4	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta t^{\text {P }}$ LL				0.5	0.7	1.7	0.5	0.7	1.5	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level tPZL \equiv output enable time to low level tPHZ \equiv output disable time from high level tpLZ \equiv output disable time from low level $\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in tPLH with load capacitance $\triangle \mathrm{tPHL} \equiv$ change in tPHL with load capacitance Δ tPZH \equiv change in tPZH with load capacitance $\Delta t_{P Z L} \equiv$ change in tPZL with load capacitance
${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

IV242LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2311			SN74ASC2311			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	0.9	1.8	0.6	0.9	1.7	ns
tPHL				0.2	0.7	1.7	0.3	0.7	1.5	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.4	3	0.8	1.4	2.7	ns
tPHL				0.5	1.1	2.5	0.5	1.1	2.2	
tPZH	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	0.7	1.6	3.4	0.8	1.6	3.1	ns
tPZL	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF}, \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	0.2	0.8	2	0.2	0.8	1.8	ns
tPHZ	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		12			12		ns
${ }^{\text {tPL }}$	G	Y	$\begin{gathered} C_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$		3.7			3.7		ns
$\Delta \mathrm{t}_{\text {PLH }}$	A	Y		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.2	0.4	0.9	0.2	0.4	0.8	
$\triangle \mathrm{tPZH}^{\text {P }}$	G	Y		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle t^{\text {PZ }}$				0.3	0.5	0.9	0.3	0.5	0.8	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
${ }^{\text {tPZH }} \equiv$ output enable time to high level
${ }^{\mathrm{t}} \mathrm{PZL} \equiv$ output enable time to low level
tpHZ \equiv output disable time from high level
tPLZ \equiv output disable time from low level
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
Δ tPZH \equiv change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance
$\Delta t P Z L \equiv$ change in $t_{P Z L}$ with load capacitance
${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED STANDARD CELL

- Provides Initialization Pulse for Clearing/Presetting Registers
- Embedded Function - Requires No External Package Connection
- Automatically Triggered by Rising Edge of the 5-V Power-Up Supply Voltage

description

The SN54ASC2320 and SN74ASC2320 are dedicated, hardwired standard-cell macros implementing a positive-edge-triggered one-shot.
When the 'ASC2320 is embedded in a standard-cell design, its output rises with $V_{C C}$, then falls to a low level when $V_{C C}$ reaches the trigger level V_{1}. As $V_{C C}$ continues to rise, the pulse terminates and the output goes high when $V_{C C}$ reaches V_{2}. Another pulse will be initiated only if $V_{C C}$ falls below V_{1}. The duration of the low-level pulse is dependent on the rise time of the supply voltage. The output of the 'ASC2320 is used to initialize storage elements that can be preset or cleared asynchronously. For most applications, a single 'ASC2320 is adequate to execute the power-up initialization. The cell is designated and called from the engineering workstation using the following cell name and netlist label:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
PUCOOLH	Label: PUCOOLH Q;	13.3

The SN54ASC2320 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2320 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ASC2320	SN74ASC2320	UNIT
		MIN MAX	MIN MAX	
V_{1} Level of V_{CC} to initiate pulse	V_{CC} rising from 0 V to 4.5 V	2	2	V
V_{2} Level of V_{CC} to terminate pulse	V_{CC} rising from 0 V to 4.5 V	4	4	V
ICC Supply current	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	756	45.4	nA

output pulse characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARA	FROM	TO	TEST CONDITIONS ${ }^{\dagger}$	SN	4ASC2	320		ASC2		UNIT
AR	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	
${ }^{t} w \mathrm{O}$	V_{CC}	Q	$\mathrm{t}_{\mathrm{r}}=1 \mu \mathrm{~s}$	0.5			0.5			$\mu \mathrm{S}$
			$\mathrm{t}_{\mathrm{r}}=1 \mathrm{~ms}$	0.28			0.28			ms
			$\mathrm{t}_{\mathrm{r}}=100 \mathrm{~ms}$	26			26			ms

${ }^{\dagger}$ Rise times are measured between the $0.5-\mathrm{V}$ and $4.5-\mathrm{V}$ points of V_{CC}.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Symmetrical Delay Buffers (tPLH $\approx \mathrm{tPHL}$)
- Choice of Inverting or Noninverting Delay Lines
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

$$
\begin{array}{cc}
\text { BU110LH, BU112LH } & \text { BU111LH } \\
Y=A & Y=\bar{A}
\end{array}
$$

logic symbols

> BU110LH, BU112LH

description

The SN54ASC2321 and SN74ASC2321 are three internal delay buffer standard cells that provide the ASIC designer with symmetrical delay elements. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST	FEATURES	
	HDL LABEL	TYPICAL	RELATIVE
		DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
BU110LH	Labei: BU11nLH A,Y;	3 ns	2
BU111LH	4 ns	2	
BU112LH		3 ns	2

The SN54ASC2321 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2321 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	BU110LH		BU111LH		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold	Itage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC2321	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$		150		212	nA	
		SN74ASC2321			9		12.7		
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.05		0.05		pF	
C_{pd}	Equivalent pow dissipation capa		$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.74		0.83		pF	

PARAMETER			TEST CONDITIONS		BU112LH		UNIT		
			TYP	MAX					
	Input threshold voltage				$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		V
ICC	Supply current	SN54ASC2321	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			151	nA		
CC	Supply current	SN74ASC2321				9.1			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.06		pF		
C_{pd}	Equivalent pow dissipation capa	itance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	0.56		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
BU110LH

PARAMETER ${ }^{\dagger}$	FROM(INPUT)	T0 (OUTPUT)	TEST CONDITIONS	SN54ASC2321			SN74ASC2321			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	1	2	4.1	1.1	2	3.7	ns
tPHL				1.4	2.4	5.1	1.4	2.4	4.6	
tPLH	A	Y	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	1.5	3	6.4	1.7	3	5.8	ns
tPHL				1.7	3.1	6.8	1.8	3.1	6.2	
Δ tPLH $^{\text {d }}$	A	Y		0.5	1	2.4	0.5	1	2.1	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$				0.3	0.7	1.8	0.3	0.7	1.6	

BU111LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2321			SN74ASC2321			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
tPLH	A	Y	$C_{L}=0$	1.5	2.8	6.1	1.6	2.8	5.5	ns
tPHL				1.5	3.1	7.2	1.6	3.1	6.5	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	2	3.8	8.4	2.2	3.8	7.6	ns
tPHL				2	4.2	9.8	2.1	4.2	8.7	
Δ tPLH	A	Y		0.5	1	2.4	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {PHL }}$				0.4	1	2.6	0.5	1	2.3	

[^74]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

BU112LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2321			SN74ASC2321			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	1	1.9	3.8	1.1	1.9	3.5	ns
tPHL				1.1	2	4	1.1	2	3.7	
${ }_{\text {tPLH }}$	A	Y	$C_{L}=1 \mathrm{pF}$	1.5	2.9	6.2	1.7	2.9	5.6	ns
tPHL				1.6	3	6.7	1.7	3	6	
$\Delta \mathrm{t}$ PLH	A	Y		0.5	1	2.4	0.5	1	2.1	ns/pF
$\Delta \mathrm{t}$ PHL				0.5	1	2.7	0.5	1	2.3	

[^75]Refer to Section 7.

SN54ASC2322, SN74ASC2322 RETRIGGERABLE MONOSTABLE MULTIVIBRATORS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED STANDARD CELL

- DC-Triggered from Active-High or ActiveLow Lagic Inputs
- Retriggerable for Very Long Output Pulses, Up to 100\% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Compensated for VCC and Temperature Variations
- Incorporates Circuitry with $\mathbf{C e x t} / \mathbf{R e x t ~}_{\text {Pad to }}$ Protect against ESD and Latch-Up

description

The SN54ASC2322 and SN74ASC2322 are hardwired standard cells implementing retriggerable monostable multivibrators similar to one-half of the 'LS123. The dc-triggered multivibrator features output pulse-duration control by any of the three following methods.

1. Pulse duration can be determined by external RC values following a trigger pulse at either A or B input.
2. Pulse duration can be extended by retriggering the A or B input.
3. Pulse duration can be determined (shortened) by triggering the clear input.
logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	B	CLRZ	Q	QZ
X	X	L	L	H
H	X	X	L	H
X	L	X	L	H
L	\uparrow	H	L	U
\downarrow	H	H	L	H
L	H	\uparrow	L	L

The $\mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {ext }}$ input pad incorporates circuit elements designed specifically to actively bypass and dissipate electrostatic discharges of potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to large currents up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist.

CELL NAME	FEATURES		
	NETLIST	TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
MVFOOLH	Label: MVFOOLH A,B,CLRZ,Q,QZ;	9 ns	100

$\mathrm{C}_{\text {ext }} / \mathrm{Rext}_{\text {ext }}$ is a dedicated bonding pad for connection to an external package pin and is not available for netlist use.

The SN54ASC2322 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2322 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC2322, SN74ASC2322
retriggerable monostable multivibrators
absolute maximum ratings and recommended operating conditions

Also see Table 1 in Section 2
electrical characteristics

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
V_{T}	Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC	Supply current	SN54ASC2322	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & V_{1}=V_{C C} \text { or } 0, \end{aligned}$			4419	nA
		SN74ASC2322		$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to MAX		265	
C_{i}	Input capacitance	A or B	$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.16		pF
		CLRZ			0.2		
		$\mathrm{C}_{\text {ext }} / \mathrm{R}_{\text {ext }}$			5		
C_{pd}	Equivalent power dissapation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	20.5		pF

switching characteristics over recommended ranges of operating free-air temperature and supply voltage, $C_{\text {ext }}=0$, and $R_{\text {ext }}=20 \mathrm{k} \Omega$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2322			SN74ASC2322			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A	Q	$C_{L}=0$	3.9	8.3	20.8	4.2	8.3	18.3	
tPHL		QZ		3.8	8	20.1	4	8	17.7	ns
${ }^{\text {tPLH }}$	B	Q		3.6	7.7	19.3	3.9	7.7	17	ns
tPHL		QZ		3.5	7.5	18.7	3.7	7.5	16.5	
tPHL	CLRZ	Q		2.3	4.7	11.2	2.5	4.7	9.9	ns
${ }^{\text {tPLH }}$		QZ		2.1	4.2	10	2.2	4.2	8.9	
tPLH	CLRZ	Q		4.2	9.5	24.2	4.6	9.5	21.3	ns
${ }^{\text {tPHL }}$		QZ		4.1	9.3	23.6	4.5	9.3	20.8	
${ }^{\text {w }}$ w	A, B, or CLRZ	$\begin{aligned} & \mathrm{Q}(\mathrm{H}), \\ & \mathrm{QZ}(\mathrm{~L}) \end{aligned}$	$C_{L}=1 \mathrm{pF}$	58	70	120	62	70	107	ns
tPLH	A	0		4.4	9.3	23.1	4.7	9.3	20.4	ns
tPHL		QZ		4.1	8.7	22	4.4	8.7	19.4	
tPLH	B	Q		4.1	8.7	21.6	4.4	8.7	19.1	ns
tPHL		OZ		3.8	8.2	20.5	4.1	8.2	18.1	ns
tPHL	CLRZ	Q		2.6	5.4	13	2.8	5.4	11.5	ns
tPLH		QZ		2.6	5.2	12.3	2.8	5.2	11	
${ }^{\text {tPLH }}$	CLRZ	Q		4.7	10.5	26.5	5.2	10.5	23.4	ns
tPHL		Qz		4.4	10	26.5	4.9	10	22.4	
Δ tPLH	Any	Q or		0.5	1	2.4	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL		QZ		0.3	0.7	2	0.3	0.7	1.7	

[^76]

TYPICAL OUTPUT PULSE DURATION
vs
EXTERNAL TIMING CAPACITANCE

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Provides dc Termination for Highand Low-Level Unused Inputs
- Specified for Operation Over V_{CC} Range of 4.5 V to 5.5 V

logic symbol

- Provides Termination Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC2325 and SN74ASC2325 CMOS standard cell tie-off gates are offered specifically for managing unused inputs. The 'ASC2325 tie-off cells feature both high-logic-level HI and low-logic-level LO outputs each capable of handling all unused inputs encountered in virtually any ASIC design. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
TOO1OLH	Label: TOO10LH LO,HI;	1.5

The SN54ASC2325 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2325 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

SN54ASC2330, SN74ASC2330 2-WIDE, 2-INPUT AND-NOR GATES

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay:
2.6 ns with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A \cdot B)+(C \cdot D)}
$$

logic symbol

FUNCTION TABLE

INPUTS				
A	OUTPUT	C	D	Y
H	H	X	X	L
X	X	H	H	L
Any	other combination	H		

description

The SN54ASC2330 and SN74ASC2330 are 2-wide, 2-input AND-NOR gate CMOS standard cells. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
AO221LH	Label: AO221LH A,B,C,D,Y;	2.6 ns	2.7

The SN54ASC2330 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2330 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
V_{T}	Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current		SN54ASC2330	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			224	nA
		SN74ASC2330				13.4	nA
0_{i}	:-rpui vurucituriou		$\because \mathrm{vCL}-\overline{\mathrm{j}} \mathrm{v}$,	$T^{\prime} A=20=0$	0.15		pr
$C_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.59		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

[^77]
DESIGN CONSIDERATIONS

Refer to Section 7.

All inputs to this cell, as well as all cells, must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
This Boolean function is a member of a series of multifunction cells designed specifically to simplify the implementation of a broad class of higher-level logic equations such as:

- Sum of products
- Exclusive-OR and exclusive-NOR functions
- Majority decoders
- Modulo adders
- Carry-save adders
- Function generators
- Random logic

Other members of this class of standard-cell functions are grouped in the 'ASC6000 series of type numbers. The selection consists of four primary architectures with expandable versions offered in each:

- Dedicated and expandable AND-NOR gates
- Dedicated and expandable OR-AND-NOR gates
- Expandable AND-OR-NOR gates
- Expandable OR-NAND gates
- Expandable AND-OR-NAND gates
- Expandable OR-AND-OR-NAND gates

Options are offered in each architecture from basic 2 -wide functions up to expandable 3-wide functions providing single-macro solution to most design requirements. The expandable functions can be combined with basic gating cells and/or other Boolean cells offered in Texas Instruments SystemCell ${ }^{\mathrm{mm}}$ family to implement application-specific solutions.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay:
2.6 ns with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=(A \cdot B)+(C \cdot D)
$$

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A	B	C	D	Y
H	H	X	X	H
X	X	H	H	H
Any other combination	L			

description

The SN54ASC2331 and SN74ASC2331 are 2-wide, 2-input AND-OR gate CMOS standard cells. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
AO220LH	Label: AO22OLH A,B,C,D,Y;	2.6 ns	3.1

The SN54ASC2331 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2331 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current		SN54ASC2331	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			255	nA
		SN74ASC2331				15.3	
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.13		pF
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.9		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC2331			SN74ASC2331			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {tPLH }}$	Any	Y	$C_{L}=0$	0.4	1.3	3.2	0.5	1.3	2.9	ns
tpHL				1	2	4.9	1	2	4.4	
tpLH	Any	Y	$C_{L}=1 \mathrm{pF}$	1	2.3	5.6	1.1	2.3	5	ns
${ }_{\text {tPHL }}$				1.4	2.8	6.9	1.4	2.8	6.2	
$\Delta \mathrm{tPLH}$	Any	Y		0.5	1	2.4	0.5	1	2.1	s/pF
Δ tpHL				0.3	0.8	2	0.4	0.8	1.8	

${ }^{\dagger}$ Propagation delay times are measured from 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level ortput
$\Delta \mathrm{tPLH} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATION

Refer to Section 7 and the ASC 2330 data sheet.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- 3.7 ns Typical Propagation Delay with 1-pF Load
- Active-Low Enable for Expandability
- Use Parallel Decoders for Multiple-Bit Words
- High Density for Use in Cost-Efficient VLSI ASICs

description

The SN54ASC2340 and SN74ASC2340 are standard-cell dedicated macros that are implemented as 2 -line to 1 -line multiplexers. The 'ASC2340 implements a function table similar to packaged ICs such as one-fourth of the 'LS157, 'S157, and 'F157.

The macro has an enable input, GZ, that enables and disables the output. The output is at a high impedance when GZ is high. When GZ is low, the output assumes the level of the selected input. This enable permits the macro to be employed for designing wider multiplexers as only the enabled 2-bit field will output an active data bit. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
MU110LH	Label: MU110LH A,B,S,GZ,Y;	3.7

The SN54ASC2340 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2340 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC2340		SN74ASC2340		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {ICC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\text { MIN to MAX } \end{aligned}$	435		26.1		$n A$	
C_{i}	Input capacitance	A, B	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.24		0.24		pF	
		S		$\frac{0.21}{0.21}$		0.21			
		GZ				0.21			
C_{pd}	Equivalent power dissipation capacit		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.92		0.92		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2340				4ASC2		UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Y	$C_{L}=0$	0.7	1.7	4.1	0.8	1.7	3.8	ns
${ }_{\text {tPHL }}$				0.8	1.5	3.6	0.9	1.5	3.2	
tPLH	A or B	Y	$C_{L}=1 \mathrm{pF}$	1.7	3.6	8.5	1.8	3.6	7.7	ns
tPHL				1.2	2.4	5.7	1.3	2.4	5.1	
tPLH	S	Y	$C_{L}=0$	1.1	2.4	5.3	1.2	2.4	4.8	ns
tPHL				1.1	2,1	5	1.2	2.1	4.4	
tPLH	S	Y	$C_{L}=1 \mathrm{pF}$	2	4.3	9.7	2.2	4.3	8.8	ns
tPHL				1.5	3	7.1	1.7	3	6.4	
${ }^{\text {tPZH }}$	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	1.3	2.5	5.5	1.4	2.5	5	ns
tPZL	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF}, \\ R_{L}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	1	2	4.6	1.1	2	4.3	ns
${ }^{\text {tPHZ }}$	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		7.6			7.6		ns -
tPLZ	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		4.5			4.5		ns
Δ tPLH	A or B	Y		0.9	1.9	4.4	1	1.9	4	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.3	0.9	2.2	0.4	0.9	2	
$\Delta \mathrm{t}$ PLH	S	Y		0.9	1.9	4.4	1	1.9	4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.5	0.9	2.2	0.5	0.9	2	
$\Delta \mathrm{tPZH}$	GZ	Y		0.9	2	4.6	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPZL				0.3	0.9	2.8	0.3	0.9	2.4	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{Q} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
${ }^{\mathrm{t} P Z H} \equiv$ output enable time to high level
tPZL \equiv output enable time to low level
${ }^{\mathrm{t}} \mathrm{PHZ} \equiv$ output disable time from high level
tPLZ \equiv output disable time from low level
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
$\Delta t P Z H \equiv$ change in $T_{P Z H}$ with load capacitance
$\Delta \mathrm{t}_{\mathrm{PZL}} \equiv$ change in tPZL with load capacitance
$\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard-cell library. The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS standard-cell buffer.

SN54ASC2341, SN74ASC2341 4-LINE TO 1-LINE MULTIPLEXERS

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Typical Propagation Delay:
2.9 ns with 1-pF Load
- Use Parallel Decoders for Multiple-Bit Words
- High Density for Use In Cost-Efficient VLSI ASIC's
logic symbol \dagger

\dagger This symbol is in accordance with IEEE ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUT
\mathbf{B}	A	
L	L	CO
L	H	C1
H	L	C2
H	H	C3

description

The SN54ASC2341 and SN74ASC2341 are standard-cell dedicated macros implementing 4-line to 1 -line multiplexers. The 'ASC2341 implements a function table similar to that performed by packaged ICs such as one-half of the 'LS153, 'S153, and 'F153. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
MU 210 LH	Label: MU210LH A,B,CO,C1,C2,C3,Y;	5

The SN54ASC2341 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2341 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC2341		SN74ASC2341		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC.	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$		586		35.2	nA	
c_{i}	Input capacitance	A or B	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ}$	0.28		0.28			
		C0,C1,C2,C3		0.22		0.22		pF	
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	1.28		1.28		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2341			SN74ASC2341			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	C0, C1, C2, C3	Y	$C_{L}=0$	1	2	4.4	1	2	3.9	ns
tPHL				1.1	2.1	4.6	1.2	2.1	4.2	
tPLH	C0, C1, C2, C 3	Y	$C_{L}=1 \mathrm{pF}$	1.5	3	6.7	1.6	3	6	ns
tPHL				1.5	2.8	6.3	1.6	2.8	5.6	
tPLH	A, B	Y	$C_{L}=0$	0.5	1.8	5.6	0.5	1.8	5.1	ns
tPHL				1	2.1	6.3	1	2.1	5.6	
${ }^{\text {tPLH }}$	A, B	Y	$C_{L}=1 \mathrm{pF}$	1	2.8	7.9	1.1	2.8	7.1	ns
tPHL				1.3	2.8	7.9	1.3	2.8	7.1	
Δ tPLH	CO,C1,C2,C3	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.7	1.7	0.3	0.7	1.5	
Δ tPLH	A, B	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.3	0.7	1.7	0.3	0.7	1.5	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δt PLH \equiv change in t PLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
\ddagger Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard-cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS standard cell buffer.

SN54ASC2342, SN74ASC2342 8-LINE TO 1-LINE MULTIPLEXERS WITH 3-STATE OUTPUTS

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- 4.7 ns Typical Propagation Delay with 1-pF Load
- Active-Low Enable for Expandability
- Uses Parallel Decoders for Multiple-Bit Words
- High Density for Use in Cost-Efficient VLSI ASICs

description

The SN54ASC2342 and SN74ASC2342 are standard-cell dedicated macros that are implemented as 8 -line to 1 -line multiplexers. The ASC2342 implements a function table similar to packaged ICs such as the 'LS151, 'S151, and 'F151.

The macro has an enable input, GZ, that enables and disables the output. The output is at a high impedance when GZ is high. When GZ is low, the output assumes the level of the selected bit. This enable permits the macro to be employed for designing wider multiplexers, as only the enabled 8-bit field will output an active data bit. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS				OUTPUT
C	B	A	GZ	Y
X	X	X	H	Z
L	L	L	L	D0
L	L	H	L	D1
L	H	L	L	D2
L	H	H	L	D3
H	L	L	L	D4
H	L	H	L	D5
H	H	L	L	D6
H	H	H	L	D7

The SN54ASC2342 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2342 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC2342		SN74ASC2342		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$		1748		105	nA	
C_{i}	Input capacitance	DO thru D7	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.2		0.2		pF	
		A or C		0.25		0.25			
		B		0.12		0.12			
		GZ		0.21		0.21			
$C_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	1.68		1.68		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2342			SN74ASC2342			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	D0 thru D7	Y	$C_{L}=0$	1.5	3	7.5	1.6	3	6.7	ns
tPHL				1.6	3.2	8	1.7	3.2	7.1	
tPLH	DO thru D7	Y	$C_{L}=1 \mathrm{pF}$	2.5	5	12	2.7	5	10.7	ns
${ }_{\text {t }}$ PHL				2.2	4.4	10.7	2.3	4.4	9.5	
${ }^{\text {tPLH }}$	A, B, or C	Y	$C_{L}=0$	0.7	3	9.8	0.8	3	8.7	ns
tPHL				1.1	3.3	10.2	1.1	3.3	9.1	
tPLH	A, B, or C	Y	$C_{L}=1 \mathrm{pF}$	1.7	5	14.3	1.8	5	12.8	ns
tPHL				1.6	4.4	12.9	1.7	4.4	11.5	
tPZH	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=1 \mathrm{k} \Omega \text { to } G N D \end{gathered}$	1.2	2.6	6.1	1.3	2.6	5.5	ns
${ }^{\text {tPZL }}$	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$	1	2	5	1.1	2	4.4	ns
${ }^{\text {tPHZ }}$	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		8.3			8.3		ns
tPLZ	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$		4.6			4.6		ns
Δ tPLH	DO thru D7	Y		0.9	2	4.5	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1.2	2.8	0.5	1.2	2.5	
Δ tpLH	A, B, or C	Y		0.9	2	4.5	1	2	4.1	ns/pF
$\Delta \mathrm{tPHL}$				0.5	1.1	2.7	0.5	1.1	2.4	
$\Delta \mathrm{t}$ PZH	GZ	Y		0.9	2	4.7	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPZL}$				0.3	1	2.9	0.3	1	2.6	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output $\quad \Delta t$ L LH \equiv change in tpLH with load capacitance
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output $\quad \Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
$\mathrm{t}_{\mathrm{P} Z \mathrm{H}} \equiv$ output enable time to high level $\quad \Delta \mathrm{t}_{\mathrm{P}} \mathrm{ZH} \equiv$ change in $\mathrm{t} P Z H$ with load capacitance
${ }^{\text {tPZL }} \equiv$ output enable time to low level
$\mathrm{t}_{\mathrm{PH}} \mathrm{Z} \equiv$ output disable time from high level
${ }^{\text {t PLZ }} \equiv$ output disable time from low level
$\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard-cell library. The inputs can be driven by either inverting or noninverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3 -state input/output TTL/CMOS standard-cell buffer.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC2350, SN74ASC2350 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Macro DE212LH Features Active-Low Enable for Expandability
- Use Parallel Decoders for Multiple-Bit Words
- High Density for Use in Cost-Efficient VLSI ASICs

description

The SN54ASC2350 and SN74ASC2350 are standard-cell dedicated macros implementing 2 -line to 4 -line decoders/demultiplexers. The DE212LH implements a function table similiar to that performed by packaged ICs such as the 'LS139A, 'S139, and 'F139.

The DE212LH macro has an output control, G, that enables and disables the outputs. All of the outputs are high when G is low. When G is high, the selected output assumes a low-logic level. This enable permits the DE212LH macro to be employed for designing wider multiplexers, as only the enabled 4-bit field will contain an active data bit. Each macro is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbols ${ }^{\dagger}$

\dagger These symbols are accordance with ANSI/IEEE Std 91-1984 and IEC Publication 17-12.

The SN54ASC2350 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2350 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLES

INPUTS		OUTPUTS			
A	B	Y0	Y1	Y2	Y3
L	L	L	H	H	H
H	L	H	L	H	H
L	H	H	H	L	H
H	H	H	H	H	L

2....n...:

INPUTS		OUTPUTS				
A	B	G	Y0	Y1	Y2	Y3
X	X	L	H	H	H	H
L	L	H	L	H	H	H
H	L	H	H	L	H	H
L	H	H	H	H	L	H
H	H	H	H	H	H	L

SN54ASC2350, SN74ASC2350
 2-LINE TO 4-LINE DECODERS|DEMULTIPLEXERS

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics
DE210LH

PARAMETER	TEST CONDITIONS	SN54ASC2350	SN74ASC2350	UNIT
		TYP MAX	TYP MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2	2.2	V
ICC Supply current	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \\ \hline \end{array}$	464	27.9	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.37	0.37	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	2.91	2.91	pF

DE212LH

PARAMETER			TEST CONDITIONS		SN54ASC2350		SN74	2350	UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol	age			$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\prime} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \\ & \hline \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		582		34.9	nA		
		A, B	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.37		0.37		pF		
	Input capacitance	G			0.5		0.5				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	2.81		2.81		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
DE210LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2350			SN74ASC2350			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Yn	$C_{L}=0$	0.6	1	3.2	0.7	1	2.9	ns
tPHL				0.5	1	3.3	0.5	1	3	
tPLH	A or B	Yn	$C_{L}=1 \mathrm{pF}$	1.1	2	5.4	1.2	2	5	ns
tPHL				1	2	6	1.1	2	5.3	
Δ tPLH	A or B	Yn		0.4	1	2.7	0.5	1	2.4	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.4	1	2.7	0.4	1	2.4	

DE212LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2350			SN74ASC2350			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A or B	Yn	$C_{L}=0$	0.7	1.3	3.3	0.7	1.3	3	ns
tPHL				0.6	1.1	4.1	0.7	1.1	3.6	ns
tPLH	G	Yn		0.7	1	1.9	0.8	1	1.8	ns
${ }_{\text {tPHL }}$				0.5	1	2.2	0.6	1	2	n
tPLH	A or B	Yn	$C_{L}=1 \mathrm{pF}$	1.2	2.4	5.6	1.3	2.4	5.1	ns
tPHL				1.3	2.5	7.8	1.4	2.5	6.8	ns
tPLH	G	Yn		1.2	2	4.1	1.3	2	3.8	ns
tPHL				1.2	2.4	6	1.3	2.4	5.2	ns
$\Delta \mathrm{tPLH}$	A or B	Yn		0.5	1.1	3	0.5	1.1	2.8	pF
$\Delta \mathrm{t}$ PHL				0.6	1.4	3.8	0.7	1.4	3.3	pF
Δ tPLH	G	Yn		0.4	1	2.2	0.5	1	2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.6	1.4	3.8	0.7	1.4	3.3	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of the predesigned macro are compatible for interfacing directly with cells and macros available in the TI standard cell library. For the input data words, the inputs can be driven by either inverting or noninverting input cells.

The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design.

SystemCell ${ }^{\text {TM }}$ 2- $-\mu \mathrm{m}$ INTERNAL MACRO CELL

- Provides Active Termination for Inputs or I/Os
- Embedded Function - Requires No External Connection
- Prevents Inputs or I/Os from "Floating"
- ESD and Latch-Up Protected by Input or I/O Cell

description

The SN54ASC2370 and SN74ASC2370 are dedicated, hardwired, standard-cell pull-up terminators that can be incorporated into an ASIC design on input or I/O cells having a pull-up tap. The input or I/O tap enables connection of this active pull-up terminator. When the terminator is used, it ensures the input or I/O will be driven to a high logic level, thereby avoiding exposure to a high-impedance or floating condition. Each cell is designated and called from the engineering workstation input using the following cell name to develop a label for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
PR400LH	Label: PR400LH TAP;	4.7

The SN54ASC2370 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2370 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54ASC2370		SN74ASC2370		UNIT	
		MIN	TYP ${ }^{\dagger}$ MAX	MIN	TYP ${ }^{\dagger}$ MAX			
${ }^{1} 0$	Output current		$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$	-75	-272-730	-84	-272-675	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-225	$-515-1114$	-250	-515-1032		
		$\mathrm{V}_{\mathrm{O}}=0$	-283	$-612-1289$	-313	-612-1194		
${ }^{1} \mathrm{CC}$	Supply current	$V_{1}=V_{C C}$ or 0		147		8.85	nA	

${ }^{\dagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INTERNAL MACRO CELL

- Provides Active Termination for Inputs or I/Os
- Embedded Function - Requires No External Connection
logic symbol

- Prevents Inputs or I/Os from "Floating"
- ESD and Latch-Up Protected by Input or I/O Cell

description

The SN54ASC2371 and SN74ASC2371 are dedicated, hardwired, standard-cell pull-up terminators that can be incorporated into an ASIC design on input or I/O cells having a pull-up tap. The input or I/O tap enables connection of this active pull-up terminator. When the terminator is used, it ensures the input or I/O will be driven to a high-logic level, thereby avoiding exposure to a high-impedance or floating condition. Each cell is designated and called from the engineering workstation input using the following cell name to develop a label for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
PR25OLH	Label: PR250LH TAP;	5

The SN54ASC2371 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC75 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54ASC2371			SN74ASC2371			UNIT	
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
${ }^{1} 0$	Output current		$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$	-36	-125	-322	-40	-125	-297	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=2.5 \mathrm{~V}$	-107	-235	-489	-118	-235	-452		
		$\mathrm{V}_{\mathrm{O}}=0$	-134	-279	-565	-148	-279	-523		
${ }^{\text {I CC }}$	Supply current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			158			9.48	nA	

$\dagger_{\text {Typical values are }}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INTERNAL MACRO CELL

- Provides Active Termination for Inputs or I/Os
- Embedded Function - Requires No External Connection
- Prevents Inputs or I/Os from "Floating"
- ESD and Latch-Up Protected by Input or I/O Cell

description

The SN54ASC2372 and SN74ASC2372 are dedicated, hardwired, standard-cell pull-up terminators that can be incorporated into an ASIC design on input or I/O cells having a pull-up tap. The input or I/O tap enables connection of this active pull-up terminator. When the terminator is used, it ensures the input or I/O will be driven to a high logic level, thereby avoiding exposure to a high-impedance or floating condition. Each cell is designated and called from the engineering workstation input using the following cell name to develop a label for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
PRO95LH	Label: PR095LH TAP;	5.5

The SN54ASC2372 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2372 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54ASC2372			SN74ASC2372			UNIT	
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
10	Output current		$\mathrm{V}_{0}=4 \mathrm{~V}$	-17	-60	-152	-19	-60	-140	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	- 52	-113	-230	-58	-113	-213		
		$\mathrm{V}_{\mathrm{O}}=0$	-65	-134	-266	-72	-134	-246		
${ }^{1} \mathrm{CC}$	Supply current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or 0			183			11	nA	

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INTERNAL MACRO CELL

- Provides Active Termination for Inputs or I/Os
- Embedded Function - Requires No External Connection
- Prevents Inputs or I/Os from "Floating"
- ESD and Latch-Up Protected by Input or I/O Cell

description

The SN54ASC 2373 and SN74ASC2373 are dedicated, hardwired, standard-cell pull-down terminators that can be incorporated into an ASIC design on input or I/O cells having a tap. The input or I/O tap enables connection of this active pull-down terminator. When the terminator is used, it ensures the input or I/O will be driven to a low-logic level, thereby avoiding exposure to a high-impedance or floating condition. Each cell is designated and called from the engineering workstation input using the following cell name to develop a label for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
PD095LH	Label: PD095LH TAP;	4.7

The SN54ASC2373 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2373 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54ASC2373			SN74ASC2373			UNIT	
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
10	Output current		$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	37	79	163	43	79	147	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=2.5 \mathrm{~V}$	57	126	275	66	126	247		
		$\mathrm{V}_{\mathrm{O}}=4.5$	61	137	297	71	137	267		
ICC	Supply current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or O			194			11.7	nA	

[^78]4
0
0
0
0
0
0
$\stackrel{0}{0}$
0
0
0

SN54ASC2374, SN74ASC2374 $5-\mu \mathrm{A}$ PULL-UP ACTIVE TERMINATORS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL MACRO CELL

- Provides Active Termination for Inputs or I/Os
- Embedded Function - Requires No External Connection
- Prevents Inputs or I/Os from "Floating"
- ESD and Latch-Up Protected by Input or I/O Cell

description

The SN54ASC2374 and SN74ASC2374 are dedicated, hardwired, standard-cell pull-up terminators that can be incorporated into an ASIC design on input or I/O cells having a pull-up tap. The input or I/O tap enables connection of this active pull-up terminator. When the terminator is used, it ensures the input or I/O will be driven to a high-logic level, thereby avoiding exposure to a high-impedance or floating condition. Each cell is designated and called from the engineering workstation input using the following cell name to develop a label for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
PRO05LH	Label: PRO05LH TAP;	6.2

The SN54ASC2374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2374 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54ASC2374			SN74ASC2374			UNIT	
		MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
10	Output current		$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}$	-0.4	-1.5	-4.1	-0.4	-1.5	-3.8	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-1.1	-2.8	-6.4	-1.3	-2.8	-5.9		
		$\mathrm{V}_{\mathrm{O}}=0$	-1.4	-3.2	-7.1	-1.5	-3.2	-6.6		
${ }^{1} \mathrm{CC}$	Supply current	$V_{1}=V_{C C}$ or 0			208			12.5	nA	

$\dagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

4
$\underset{0}{0}$
0
0
0
0
0
0
0
0

SystemCell ${ }^{\text {™ }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Designed for Implementing Serial/Parallel Registers
- Choice of Four Versions to Achieve Best Design Density
- Embedded Clock Drivers Provide Clock Buffering

SHIFT REGISTER CONFIGURATIONS

CELL TYPE	INPUTS		COMPLEMENTARY	ASYNCHRONOUS
	SERIAL	PARALLEL	OUTPUTS	CLEAR
'ASC2401	yes	no	no	yes
'ASC2402	yes	no	yes	yes
'ASC2403	yes	yes	no	no
'ASC2404	yes	yes	yes	no

description

The 'ASC2401 thru 'ASC2404 are dedicated, hardwired standard-cell macros implementing four 4-bit shift register cells. The four register configurations provide the custom IC designer register elements to embed in ASICs in their most efficient form. Their 4-bit length means that larger blocks of custom logic can be handled efficiently to construct large registers.
The macros each contain an embedded clock driver that buffers the clock input to a single 2-line input. This further simplifies implementaion of longer registers, as standard library buffer cells can be used to drive multiple clock inputs, which are used in the longer registers. The macro cells are identified and called from the engineering workstation input using the cell names and netlists in conjunction with labels developed as shown in the following table:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{aligned} & \text { MAXIMUM } \\ & \text { CLOCK } \\ & \text { FREQUENCY } \end{aligned}$	RELATIVE CELL AREA TO NA210LH
R2401LH	Label: R2401LH CLRZ,SERIN,CLK,QA, QB, QC, QD;	59.6 MHz	25.25
R2402LH	Label: R2402LH CLRZ,SERIN,CLK,QA,QAZ, QB, QBZ,QC, QCZ, QD, QDZ;	59.6 MHz	28.25
R2403LH	Label: R2403LH SERIN,LZ_S,CLK,A,B,C,D,QA, QB, QC, QD;	59.6 MHz	31.25
R2404LH	Label: R2404LH SERIN,LZ_S,CLK,A,B,C,D,QA, QAZ, QB, QBZ, QC, QCZ, QD, QDZ;	59.6 MHz	34.25

The SN54ASC' cells are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC' cells are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbols ${ }^{\dagger}$

\dagger These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLES
'ASC2401, 'ASC2402

INPUTS			OUTPUTS			
CLRZ	CLK	SERIN	QA ${ }^{\text { }}$	$\mathbf{Q B}^{\ddagger}$	QC ${ }^{\ddagger}$	QD ${ }^{\ddagger}$
L	X	X	L	L	L	L
H	\uparrow	H	H	QA_{n}	QB_{n}	QC_{n}
H	\uparrow	L	L	$Q A_{n}$	QB_{n}	OC_{n}
H	L	X	Q_{0}	Q_{0}	O_{0}	Q_{0}

'ASC2403,'ASC2404

INPUTS							OUTPUTS			
LZ__S	CLK	SERIN	DATA				QA ${ }^{\ddagger}$	$\mathbf{Q B}{ }^{\ddagger}$	QC ${ }^{\ddagger}$	QD ${ }^{\ddagger}$
			A	B	C	D				
L	\uparrow	X		b	c	d	a	b	c	d
H	\uparrow	H		X	X	X	H	$Q A_{n}$	QB_{n}	$Q C_{n}$
H	\uparrow	L	X	X	X	x	L	$Q A_{n}$	QB_{n}	QC_{n}
X	L	X	X	X	X	X	O_{0}	Q_{0}	Q_{0}	Q_{0}

${ }^{\ddagger}$ The 'ASC2402 and 'ASC2404 QxZ output is the complement of Qx .
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

SN54ASC2401 THRU SN54ASC2404
SN74ASC2401 THRU SN74ASC2404
4-BIT SHIFT REGISTERS
electrical characteristics

R2401LH

PARAMETER			TEST CONDITIONS		SN54ASC2401		SN74ASC2401		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol	tage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0$		3071		184	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.04		1.04		pF		
		SERIN			0.13		0.13				
		CLK			0.24		0.24				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	10.3		10.3		pF		

R2402LH

PARAMETER			TEST CONDITIONS		SN54ASC2402		SN74ASC2402		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & T_{A}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0$	3355		202		nA		
C_{i}	Input capacitance	CLRZ	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.04		1.04		pF		
		SERIN			0.13		0.13				
		CLK			0.24		0.24				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	12.1		12.1		pF		

R2403LH

PARAMETER			TEST CONDITIONS	SN54ASC2403		SN74ASC2403		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold voltage			$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$		3711		223	nA	
C_{i}	Input capacitance	SERIN	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.19		0.19		pF	
		LZ_S		0.8		0.8			
		CLK		0.24		0.24			
		Dn		0.19		0.19			
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	11.1		11.1		pF	

R2404LH

SN54ASC2401 THRU SN54ASC2404 SN74ASC2401 THRU SN74ASC2404 4-BIT SHIFT REGISTERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

R2401LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2401			SN74ASC2401			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q	$C_{L}=0$	3.6	5.7	11.1	4.1	5.7	10.1	ns
${ }^{\text {tPHL }}$				2.4	4.7	10.2	2.8	4.7	9.3	
tPHL	CLRZ	Q		1.2	1.9	3.9	1.5	1.9	3.6	ns
tPLH	CLK	Q	$C_{L}=1 \mathrm{pF}$	3.9	6.2	12.3	4.4	6.2	11.2	ns
tPHL				2.7	5.2	11.1	3.1	5.2	10	
tPHL	CLRZ	Q		1.5	2.4	4.7	1.8	2.4	4.4	ns
$\triangle \mathrm{tPLH}$	CLK	Q		0.3	0.5	1.3	0.3	0.5	1.1	ns/pF
\triangle tPHL				0.3	0.5	0.9	0.3	0.5	0.8	
$\Delta \mathrm{t} \mathrm{PHL}$	CLRZ	Q		0.3	0.5	0.9	0.3	0.5	0.8	ns/pF

R2402LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2402			SN74ASC2402			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q	$C_{L}=0$	3.7	5.9	11.6	3.9	5.9	10.5	ns
tPHL				2.5	4.9	10.5	2.6	4.9	9.5	ns
tPLH	CLK	QZ		2.7	5.3	11.1	2.9	5.3	10.1	ns
tPHL				3.8	6.1	12.2	4.1	6.1	11.1	
tPLH	CLRZ	QZ		1.5	2.5	4.7	1.6	2.5	4.5	ns
tPHL	CLRZ	Q		1.3	2.1	4.1	1.3	2.1	3.9	ns
tPLH	CLK	Q	$C_{L}=1 \mathrm{pF}$	4	6.4	12.8	4.2	6.4	11.6	ns
tPHL				2.7	5.3	11.3	2.9	5.3	10.2	ns
tPLH	CLK	QZ		3.3	6.3	13.5	3.5	6.3	12.1	ns
tPHL				4.3	7.2	14.8	4.7	7.2	13.4	
tPLH	CLRZ	QZ		2.1	3.5	6.9	2.2	3.5	6.5	ns
${ }^{\text {tPHL }}$	CLRZ	0		1.5	2.5	4.9	1.6	2.5	4.6	ns
$\Delta \mathrm{tPLH}$	CLK	Q		0.3	0.5	1.2	0.3	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.2	0.4	0.8	0.3	0.4	0.8	
Δ tPLH	CLK	QZ		0.6	1	2.3	0.6	1	2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$				0.5	1.1	2.7	0.6	1.1	2.4	
Δ tPLH	CLRZ	QZ		0.6	1	2.3	0.6	1	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$	CLRZ	Q		0.2	0.4	0.8	0.3	0.4	0.8	$\mathrm{ns} / \mathrm{pF}$

[^79]
SN54ASC2401 THRU SN54ASC2404 SN74ASC2401 THRU SN74ASC2404 4-BIT SHIFT REGISTERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

R2403LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2403			SN74ASC2403			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q	$C_{L}=0$	3.5	5.4	10.2	3.6	5.4	9.4	ns
tPHL				2.3	4.6	10	2.5	4.6	9	
tPLH	CLK	Q	$C_{L}=1 \mathrm{pF}$	3.8	6	11.5	3.9	6	10.5	ns
tPHL				2.6	5	10.8	2.8	5	9.8	
Δ tpLH	CLK	Q		0.3	0.5	1.3	0.3	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.5	0.9	0.3	0.5	0.8	

R2404LH

PARAMETER ${ }^{+}$	FROM	TO	TEST	SN54ASC2404			SN74ASC2404			UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$t_{\text {PLH }}$	CLK	Q	$C_{L}=0$	3.6	5.6	10.7	3.7	5.6	9.8	ns
tPHL				2.4	4.8	10.2	2.6	4.8	9.3	
tPLH	CL.K	OZ		2.6	5.2	10.8	2.7	5.2	9.9	ns
tPHL				3.7	5.8	11.3	3.9	5.8	10.4	
tPLH	CLK	Q	$C_{L}=1 \mathrm{pF}$	3.9	6.1	11.9	4	6.1	10.8	ns
tPHL				2.6	5.2	11	2.9	5.2	10	
tPLH	CLK	QZ		3.2	6.2	13.1	3.4	6.2	11.9	ns
${ }^{\text {tPHL }}$				4.2	6.9	13.9	4.5	6.9	12.7	
$\Delta \mathrm{tPLH}$	CLK	0		0.3	0.5	1.2	0.3	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.2	0.4	0.8	0.3	0.4	0.8	
Δ tPLH	CLK	QZ		0.6	1	2.3	0.7	1	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1.1	2.7	0.6	1.1	2.4	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple action on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {™ }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Designed for Implementing Synchronous Registers
- Choice of Three Versions to Achieve Best Design Density
- Embedded Clock Drivers Provide Symmetrical Performance Across Long Registers
- Cascable and Expandable for Full Customization

description

The 'ASC2405 thru 'ASC2407 are dedicated, hard-wired standard-cell macros implementing a three 4-bit flip-flop register elements. The three register configurations provide the custom IC designer with 4-bit registers to embed in ASICs in their most efficient form. Their 4-bit length means that larger blocks of custom logic can be handled efficiently to construct large registers.

The macros each contain an embedded clock driver that buffers the clock input to a single 2-line input. This further simplifies implementaion of longer registers, as standard library buffer cells can be used to drive multiple clock inputs, which are used in the longer registers. The macro cells are identified and called from the engineering workstation input using the cell names and netlist in conjunction with labels developed as shown in the following table:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		MAXIMUM CLOCK FREQUENCY (SN74ASC')	RELATIVE CELL AREA TO NA210LH
R2405LH	Label: R2405LH CLRZ,D1,D2,D3,D4,CLK, Q1, Q2, Q3, Q4;	64.2 MHz	23.25
R2406LH	Label: R2406LH CLRZ,D1,D2,D3,D4,CLK, Q1, Q1Z, $22, \mathrm{Q} 2 \mathrm{Z}, \mathrm{Q3}, \mathrm{Q} 3 \mathrm{Z}, \mathrm{Q4,Q4Z;}$	64.2 MHz	26.25
R2407LH	Label: R2407LH CLRZ,D1,D2,D3,D4,CLK,G, 1 1, Q2, Q3, Q4;	36.3 MHz	26.25

The R2407LH incorporates 3-state outputs for interfacing internal buses directly. When enable G is high, the normal logic states (high or low levels) of the four outputs are impressed on the data bus. The outputs are disabled by a low logic level at enable G. The outputs then present a high impedance to the internal bus. While the outputs are disabled, sequential operation of the flip-flops is not affected.

The SN54ASC' cells are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC' cells are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

logic symbols ${ }^{\dagger}$

'ASC2405
'ASC2406

'ASC2407

${ }^{\dagger}$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE
'ASC2405, 'ASC2406
(EACH FLIP-FLOP)

INPUTS		OUTPUTS		
CLRZ	CLK	\mathbf{D}	\mathbf{Q}	$\mathbf{Q Z}^{\ddagger}$
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q_{O}	$\overline{\mathrm{Q}_{\mathrm{O}}}$

\ddagger 'ASC2406 only

FUNCTION TABLE
'ASC2407
(EACH FLIP-FLOP)

INPUTS				OUTPUT
G	CLRZ	CLK	D	\mathbf{Q}
H	L	X	X	L
H	H	\uparrow	H	H
H	H	\uparrow	L	L
H	H	L	X	Q $_{\text {O }}$
L	X	X	X	Z

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			R24				R24	6LH		
		SN5	ASC'	SN	ASC'	SN	ASC'	SN7	ASC'	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$ Clock frequency			64.2		64.2		64.2		64.2	MHz
Pulse	CLRZ low	6		6		7.8		7.8		
w Pulse duration	CLK high or low	7.8		7.8		7.8		7.8		ns
S	Dn (high or low)	5.8		5.7		5.8		5.7		ns
tsu Setup time before clock	CLRZ inactive	-3		-3		-3		-3		ns
th Hold time after clock	Dn (high or low)	0.2		0.3		-0.4		-0.3		
th Hold time after	CLRZ active	5.4		5.4		5.4		5.4		ns

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		R2407LH				UNIT
		SN54ASC'		SN74ASC'		
		MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$ Clock frequency			36.3		36.3	MHz
$t w$ Pulse duration	CLRZ low	6.6		6.6		ns
tw Pulse duration	CLK high or low	13.8		13.8		ns
tsu Setup time before clock	Dn (high or low)	7.6		7.5		ns
$\mathrm{t}_{\text {su }}$ Setup time before clock	CLRZ inactive	-3.6		-3.6		ns
	Dn (high or low)	-0.4		-0.3		
th Hold time after clock	CLRZ active	6.6		6.6		ns

electrical characteristics
R2405LH

PARAMETER			TEST CONDITIONS		SN54ASC'		SN74ASC'		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		2647		159	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.08		1.08		pF		
		Dn			0.13		0.13				
		CLK			0.24		0.24				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	10.2		10.2		pF		

R2406LH

R2407LH

PARAMETER			TEST CONDITIONS		SNIEA^SS'		S.I?	^ニこ'	UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol	age			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \mathrm{t} \end{aligned}$	$V_{1}=V_{C C} \text { or } 0,$		3031		192	nA		
C_{i}	Input capacitance	CLRZ	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.08		2.08		pF		
		Dn			0.25		0.25				
		CLK			0.24		0.24				
		G			1.4		1.4				
C_{0}	Output capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.24		0.24		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacit		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	11		11		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

R2405LH

PARAMETER ${ }^{\dagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2405			SN74ASC2405			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	Q	$C_{L}=0$	3.1	5.1	10.5	3.3	5.1	9.4	ns
tPHL				2.3	4.4	10	2.5	4.4	8.9	
tpHL	CLRZ	0		1	1.7	3.5	1.1	1.7	3.2	ns
tpLH	CLK	Q	$C_{L}=1 \mathrm{pF}$	3.5	6.1	12.8	3.8	6.1	11.5	ns
${ }_{\text {t }}{ }^{\text {PHL }}$				2.6	5.1	11.8	2.8	5.1	10.5	
tPHL	CLRZ	0		1.3	2.4	5.3	1.4	2.4	4.7	ns
$\Delta \mathrm{tPLH}^{\text {L }}$	CLK	Q		0.4	1	2.3	0.5	1	2.1	ns/pF
Δ tPHL				0.3	0.7	1.8	0.3	0.7	1.6	
$\Delta \mathrm{t}_{\text {PHL }}$	CLRZ	0		0.3	0.7	1.9	0.3	0.7	1.6	ns/pF

R2406LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2406			SN74ASC2406			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	CLK	0	$C_{L}=0$	3.1	5.1	10.5	3.3	5.1	9.4	ns
tpHL				2.3	4.5	9.9	2.5	4.5	8.9	
tPLH	CLK	QZ		2.4	4.8	11	2.6	4.8	9.9	ns
tPHL				3.4	5.8	12.3	3.6	5.8	11.1	
tPLH	CLRZ	QZ		1.4	2.4	5.4	1.5	2.4	4.8	
tPHL		0		1	1.7	3.4	1.1	1.7	3.2	
tPLH	CLK	Q	$C_{L}=1 \mathrm{pF}$	3.6	6.1	12.8	3.8	6.1	11.5	
tpHL				2.6	5.2	11.8	2.8	5.2	10.5	
tPLH	CLK	QZ		2.9	5.8	13.2	3.1	5.8	11.9	ns
${ }_{\text {tPHL }}$				3.6	6.4	13.8	3.9	6.4	12.3	
tPLH	CLRZ	QZ		1.8	3.4	7.7	2	3.4	6.9	ns
tPHL		Q		1.3	2.4	5.3	1.4	2.4	4.8	ns
Δ tpLH	CLK	0		0.5	1	2.4	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.3	0.7	1.9	0.3	0.7	1.7	ns/pr
$\Delta t_{\text {PLL }}$	CLK	QZ		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.2	0.6	1.5	0.3	0.6	1.3	
Δ tPLH	CLRZ	QZ		0.4	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}_{\text {PHL }}$		Q		0.3	0.7	1.9	0.3	0.7	1.6	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta t_{P L H} \equiv$ change in tPLH with load capacitance
$\Delta t_{P H L} \equiv$ change in tPHL with load capacitance
$\ddagger_{\text {Typical values are }}$ at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

R2407LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2407			SN74ASC2407			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tpLH	CLK	Q	$C_{L}=0$	3.3	5.5	11.6	3.5	5.5	10.5	ns
tPHL				2.4	4.8	11.1	2.6	4.8	9.8	
tPHL	CLRZ	Q		1.1	2	4.4	1.2	2	4	ns
tPLH	CLK	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	4.3	7.5	16.1	4.5	7.5	14.6	ns
tPHL				3	6.2	14.4	3.2	6.2	12.7	
tPHL	CLRZ	Q		1.7	3.4	7.9	1.9	3.4	7	ns
tPZH	G	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	9.4	10.5	14.7	9.4	10.5	14.4	ns
tPZL	G	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	4.3	5	8.1	4.4	4	7.7	ns
tPHZ	G	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		9.8			9.8		ns
tplZ	G	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		5.6			5.6		ns
Δ tPLH	CLK	Q		1	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.4	3.4	0.6	1.4	3	
$\Delta \mathrm{t} \mathrm{PHL}$	CLRZ	Q		0.6	1.4	3.5	0.7	1.4	3.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPZH}$	G	Q		0.9	2	4.8	1	2	4.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPZL}$				0.8	1.4	3.9	0.8	1.4	3.3	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
${ }^{t} P Z L \equiv$ output enable time to low level
${ }^{\mathrm{t} P H Z} \equiv$ output disable time from high level
${ }^{t} P L Z \equiv$ output disable time from low level
$\Delta \mathrm{t}$ LH \equiv change in tPLH with load capacitance $\Delta \mathrm{t}$ PHL \equiv change in t PHL with load capacitance
$\Delta \mathrm{t}_{\mathrm{P}} \mathrm{H} H \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance $\Delta t_{P Z L} \equiv$ change in tPZL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{T M}$ 2- $\mu \mathrm{m}$ HARDWIRED MACro CELL

- Predesigned for Implementing Custom Counters
- Direct Clear Input Simplifies Initialization or Cycle Length

- Embedded Clock Drivers Provide Clock Buffering

description

The SN54ASC2408 and SN74ASC2408 are dedicated, hardwired standard-cell macros implementing a 4-bit binary counter element. The 4-bit configuration provides the custom IC designer a counter element to embed in ASICs in its most efficient form. Its 4-bit length means that larger blocks of custom logic can be handled efficiently to construct large counters. The 'ASC2408 implements a count sequence identical with that performed by one-half of packaged 'HC393 and 'LS393 counters with the exceptions that the 'AS2408 clock, A, triggers on the positive-going edge, and the clear is active low.

The macros each contain an embedded clock driver that buffers the clock input to a single 2-line input. This further simplifies implementaion of longer counters, as standard library buffer cells can be used to drive multiple clock inputs that are used in the longer counters. The macro cell is identified and called from the engineering workstation input using the cell name and netlist in conjunction with a label developed as shown in the following table:

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUTS			
CLRZ	A	QD	QC	QB	QA
L	X	L	L	L	L
H	\uparrow	L	L	L	H
H	\uparrow	L	L	H	L
H	\uparrow	L	L	H	H
H	\uparrow	L	H	L	L
H	\uparrow	L	H	L	H
H	\uparrow	L	H	H	L
H	\uparrow	L	H	H	H
H	\uparrow	H	L	L	L
H	\uparrow	H	L	L	H
H	\uparrow	H	L	H	L
H	\uparrow	H	L	H	H
H	\uparrow	H	H	L	L
H	\uparrow	H	H	L	H
H	\uparrow	H	H	H	L
H	\uparrow	H	H	H	H
H	\uparrow	L	L	L	L

| CELL NAME | $\begin{array}{c}\text { FEATURES } \\$\end{array} | $\begin{array}{c}\text { METLIST } \\ \text { HDL LABEL }\end{array}$ | $\begin{array}{c}\text { MAXIMUM } \\ \text { CLOCK } \\ \text { FREQUENCY } \\ \text { ISN74ASC }\end{array}$ |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}RELATIVE

CELL AREA

TO NA210LH\end{array}\right\}\)

The SN54ASC2408 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2408 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			SN54A	2408	SN74	2408	
			MIN	MAX	MIN	MAX	UNIT
$f_{\text {clock }}$	Clock frequency		0	59.6	0	59.6	MHz
	Pulse duration	CLRZ low	7.8		7.8		
${ }^{\text {w }}$ w	隹se duration	A high or low	8.4		8.4		ns
$\mathrm{t}_{\text {su }}$	Setup time	CLRZ inactive	-1.2		-1.2		ns
th	Hold time	CLRZ active	4.2		4.2		ns

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC2408		SN74ASC2408		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\prime} \mathrm{CC}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN}^{\prime} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0$		3463		208	nA		
C_{i}	Input capacitance	CLRZ	$V_{C C}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.04		1.04		pF		
		A			0.24		0.24				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	7.22		7.22		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2408			SN74ASC2408			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{t} \mathrm{pd}$	A	QA	$C_{L}=0$	2.6	5.5	12.3	2.8	5.5	11.1	ns
		QB		3.7	8	17.7	4	8	15.9	
		QC		4.8	10.2	23.1	5.2	10.2	20.7	
		QD		5.9	12.5	28.5	6.4	12.5	25.5	
tPHL	CLRZ	Q		1.3	2.2	4.6	1.4	2.2	4.2	ns
${ }^{\text {tpd }}$	A	QA	$C_{L}=1 \mathrm{pF}$	2.9	6	13.5	3.1	6	12.2	ns
		QB		4	8.5	18.9	4.3	8.5	17	
		QC		5.1	10.7	24.3	5.5	10.7	21.8	
		QD		6.2	13	29.7	6.7	13	26.6	
tPHL	CLRZ	0		1.6	2.7	5.4	1.7	2.7	5	ns
Δ tpLH	A	Any 0		0.3	0.5	1.3	0.3	0.5	1.1	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$	Any	Any		0.3	0.5	0.9	0.3	0.5	0.8	

[^80]
DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

count definition

Bidirectional counters are available in software macros or can be constructed using the 'ASC2405 through 'ASC2407 4-bit registers.

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintainence to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED STANDARD CELL

- Crystal-Controlled Oscillator for Generating On-Chip Clock Signals Up to $20 \mathbf{M H z}$
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over $\mathrm{V}_{\mathbf{C c}}$ Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
logic symbol

description

The SN54ASC2500 and SN74ASC2500 are crystal-controlled CMOS oscillators for use in SystemCell ${ }^{\text {TM }}$ designs. The input XI and the feedback output XO provide the connections for use with an external series resonant fundamental crystal. The 'ASC2500 provides three cells supporting frequencies up to 20 MHz . Driving on-chip binary frequency dividers, a single oscillator can generate multiple system clocks and/or control functions. Each option is designated and called from the engineering workstation input using the following cell name and netlist label.

CELL NAME	$\|c\|$	FEATURES NDLLIST	MAXIMUM FREQUENCY
	RELATIVE CELL AREA TO NA210LH		
	Label: OSXOnLH XI,Y,XO;	5 MHz	129
OSEO6LH	20 MHz	150	
		800 kHz	128

The SN54ASC2500 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC 2500 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED STANDARD CELL

- Single-Pin RC-Controlled Oscillator for Generating On-Chip Clock Signals
- Input Hysteresis Improves Response to Analog Input Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Dependable Texas Instruments Quality and Reliability

logic symbol

description

The SN54ASC2502 and SN74ASC2502 are single-input RC-controllable CMOS oscillators for use in SystemCell ${ }^{T M}$ IC designs. Input RC serves as the external connection point for the RC frequency-determining network. The ASC2502 has a bandwidth of 10 kHz to 1 MHz with the actual frequency dependent on the RC time constant. The oscillator incorporates hysteresis in the RC input threshold to sharpen the oscillator response. The cell is designated and called from the engineering workstation input using the following cell name and netlist label.

| CELL NAME | $\begin{array}{c}\|c\| \\ \\$\end{array} | $\begin{array}{c}\text { FEATURES } \\ \text { NETLIST } \\ \text { HDL LABEL }\end{array}$ | $\begin{array}{c}\text { MAX OUTPUT } \\ \text { FREQUENCY } \\ \text { RANGE }\end{array}$ |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}RELATIVE

CELL AREA

TO NA210LH\end{array}\right]\)

The SN54ASC2502 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2502 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operated conditions

		SN54ASC2502		SN74ASC2502	
	UNIT				
$\mathrm{C}_{\text {ext }}$	External RC capacitor	MIN	MAX	MIN	MAX
$\mathrm{R}_{\text {ext }}$	External RC resistor	10	10		pF
$\mathrm{f}_{\text {out }}$	Output frequency	10	100	10	100

Also, see Table 1 in Section 2.

electrical characteristics

PARAMFTER	tret rominitimac	SN54ASC2502		SN74ASC2502		\%
		TYP	MAX	TYP	MAX	
$\mathrm{V}_{\mathrm{t}}+$ Positive-going threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.6		3.6		V
V_{t} - Negative-going threshold voltage	$\mathrm{V}_{C C}=5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.3		1.3		V
$\mathrm{V}_{\text {hys }}$ Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.3		2.3		V
${ }^{\text {I C C }}$ Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \end{aligned}$		1026		61.5	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.34		2.34		pF
$C_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	2.44		2.44		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC2502			SN74ASC2502			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	RC	Y	$C_{L}=0$	3.9	6.8	14.7	4.2	6.8	13.6	ns
tPHL				3.3	5.8	12.9	3.5	5.8	11.5	
tPLH	RC	Y	$C_{L}=1 \mathrm{pF}$	4.3	7.6	16.7	4.6	7.6	14.9	ns
tPHL				3.9	7.2	16.3	4.2	7.2	14.4	
Δ tPLH	RC	Y		0.4	0.8	2	0.4	0.8	1.8	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.6	1.4	3.4	0.7	1.4	2.9	

[^81]
DESIGN CONSIDERATIONS

An RC network is used to drive the oscillator input. Oscillator output stability is primarily a function of the temperature coefficients of the components in the RC network.

TYPICAL OUTPUT FREQUENCIES		
$\mathbf{R}_{\text {ext }}(\mathbf{k} \Omega)$	$\mathbf{C}_{\text {ext }}$	$\boldsymbol{f}_{\text {out }}$
100	$0.1 \mu \mathrm{~F}$	100 Hz
100	$0.001 \mu \mathrm{~F}$	10 kHz
100	10 pF	700 kHz

[^82]
SystemCell ${ }^{\text {TM }}$ COMPATIBLE ANALOG CELL

- Single 5-V Supply with $\pm 10 \%$ Tolerance
- Very Low Power Consumption . . . $60 \mu \mathbf{W}$ Typical
- Wide Range of Common-Mode Input Voltage Includes Ground on P-Channel Inputs and $V_{C C}$ on \mathbf{N}-Channel Inputs
- External Voltage Reference

description

The CO212LH and CO213LH standard cells are medium-speed comparators and operate from a single 5 -volt supply. The CO212LH standard cell is a P-channel comparator, and the CO213LH is an N -channel comparator. The inputs are connected to ESD-protected bond pads, which are connected to an external voltage reference and the analog input. The comparators can be configured as either inverting or noninverting functions and are designed to drive the inputs of logic cells or buffers. The CO212LH P-channel comparator can be used with input voltages between (ground) and 3.5 volts. The CO213LH N-channel comparator can operate with input voltages between 1.5 volts and $V_{C C}$. Each cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	DESCRIPTION	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
CO212LH	P-CKannel Comparator	CO212LH INZ,IN,OUT;	5
CO213LH	N-Channel Comparator	CO213LH INZ,IN,OUT;	5

The SN54ASC2503 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2503 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_{L}=1 \mathrm{pF}$

PARAMETER	CO213LH			CO212LH			UNIT
	MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{1 \mathrm{O}}$ Input offset voltage			50			50	mV
$V_{\text {ICR }}$ Common-mode input voltage	1.5		V_{CC}	0		3.5	V
AVD Large-signal differential voltage amplification		116			116		dB
CMRR Common-mode rejection ratio at $f=1 \mathrm{kHz}$		94			97		dB
kSVR Supply voltage rejection ratio at $f=1 \mathrm{kHz}$		100			104		dB
ICC Supply current		11			11.7		$\mu \mathrm{A}$

SN54ASC2503, SN74ASC2503 DIFFERENTIAL COMPARATORS
switching characteristics at $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITION	CO213LH			CO212LH			UNIT
PAR		MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	$100-\mathrm{mV}$ input step with 5 mV of overdrive,$v_{\text {ref }}=V_{C C} / 2$		1.9			1.71		ns
${ }^{\text {t PHL }}$			1.5			2.14		
Δ tPLH			8			6		$\mathrm{ns} / \mathrm{pF}$
Δ tPHL			6			7		
tPLH	TTL-level input step 0.2 to 3 V ,$V_{\text {ref }}=1.6 \mathrm{~V}$					1.71		$\mu \mathrm{S}$
tPHL						2.06		
Δ tPLH						3		$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$						7		

SystemCell ${ }^{\text {TM }}$ COMPATIble macro cell

- Provides Dynamic Delay for Custom Delay Lines
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC2507 and SN74ASC2507 are hardwired standard cells implementing an inverting delay buffer preceded by a transmission gate and driven by an SN54ASC2508/SN74ASC2508 control element. This provides a custom delay line with a typical delay tolerance range of $\pm 5 \%$.

The 'ASC2508 control element uses a reference clock signal as a time-base for generating the complimentary reference voltages, NV and PV, for controlling the data path delay output of the 'ASC2507. The reference clock signal can be supplied from either an on-chip oscillator or an external source.

CELL NAME	NETLIST HDL LABEL	TYPICAL DELAY $\mathbf{C}_{\mathrm{L}}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
DLE1OLH	Label: DLE10LH A,PV,NV,Y;	3 to 12 ns	7.41

The SN54ASC2507 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2507 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

design considerations

Data path delays are dependent on the accuracy of the time-base reference and the control block. The custom delay line can be broken into two sections: 1) the control section and 2) the delay section. The control section provides the NV and PV voltages for controlling the delay time through the data delay paths (see Figure 1).

design considerations (continued)

FIGURE 1. BLOCK DIAGRAM OF CUSTOM DELAY LINE
The delay section offers two methods to program line delays, either by the number of delay elements in the data path or, by the voltage to the PV and NV lines. In Figure 2, the delay ratio between the delay 1, delay 2, and delay 3 data paths is set with the number of delay elements in each data line. Actual delay times through the delay elements can be determined and changed with the PV and NV voltages that are governed by the control block and the 'ASC2508.
Figure 2 shows the basic method of providing three different delay times using six 'ASC2507s controlled by a single 'ASC2708.

FIGURE 2. THREE DELAY PATHS CONTROLLED BY A SINGLE CONTROL ELEMENT

SystemCell ${ }^{\text {TM }}$ COMPATIBLE MACRO CELL

- Provides Dynamic Control for Custom Delay Lines
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Dependable Texas Instruments Quality and Reliability

description

The SN54ASC2508 and SN74ASC2508 are hardwired standard cell analog voltage control blocks for the 'ASC2507 dynamic delay elements, providing control voltages for the PV and NV inputs of the delay element.

logic symbol

The 'ASC2508 control element uses a reference clock signal as a time-base for generating the complimentary reference voltages, NV and PV, to control the 'ASC2507 element data path delays. The reference clock signal can be supplied from either an on-chip oscillator or an external oscillator. A single control element can control several delay paths and each path can have a different delay time. Typical time-base reference frequency range is from 5 MHz to 25 MHz .

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
DLC10LH	Label: DLC10LH P,N,R,CAP,PV,NV;	7.41

The SN54ASC2508 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2508 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

The timing reference, shown in Figure 1, is implemented with SystemCell ${ }^{\text {TM }}$ components to provide temperature and voltage-compensated digital reference inputs that activate the 'ASC2508, which generates the NV and PV control voltages for the 'ASC2507 delay element. The timing reference is unique for each application. Specific timing design information is made available in conjunction with the completion of a customer's ASIC specification.

FIGURE 1. BLOCK DIAGRAM OF TIMING REFERENCE AND CONTROL ELEMENT FOR GENERATING ANALOG VOLTAGES, PV AND NV

SystemCell ${ }^{\text {M }}$ COMPATIble ANALOG CELL

- Single 5-Volt Supply
- Internally Frequency Compensated
- Inputs are ESD and Latch-Up Protected
- Medium Output Drive Capability: $10 \mathrm{k} \Omega$ and 50-pF External Load

description

The SN54ASC2519 and SN74ASC2519 standard cells are medium-speed operational amplifiers that operate from a single $5-\mathrm{V}$ supply. Their inputs and outputs are connected to ESD-protected bond pads for connection to external circuitry. The operational amplifiers can be configured as either inverting or noninverting amplifiers. For precision applications, a separate V_{CC} and ground should be included in the design specification. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL
AMC12NH	AMC12NH IN,INZ,OUT;

The SN54ASC2519 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2519 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions

		MIN	MAX
C_{L}	External load capacitance	UNIT	
R_{L}	External load resistance	50	pF

Also, see Table 1 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$

PARAMETER	MIN TYP	MAX	UNIT
$\mathrm{V}_{1 \mathrm{O}} \quad$ Input offset voltage	± 10		mV
$V_{\text {ICR }}$ Common-mode input voltage	1	$\mathrm{V}_{\mathrm{CC}}-1$	V
$\mathrm{V}_{\text {OM }}$ Maximum peak output voltage swing	-	4.5	V
AVD Large-signal differential amplification	15		V / mV
$\mathrm{B}_{1} \quad$ Unity-gain bandwidth	2		MHz
$\phi_{\mathrm{m}} \quad$ Phase margin	90°		
$r_{0} \quad$ Output resistance	5		Ω
CMRR Common-mode rejection ratio at 1 kHz	80		dB
$\mathrm{k}_{\text {Svr }} \quad$ Supply voltage rejection ratio at 1 KHz	100		dB
ICC Supply current	1		mA

operating characteristics at $\mathrm{V}_{\mathrm{C}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	MIN	TYP	MAX
UR \quad Slew rate	2		

SystemCell ${ }^{\text {TM }}$ COMPATIBLE MegaModule ${ }^{T M}$

description

The SN54ASC2901 and SN74ASC2901 standard cells are compatible with TI 's SystemCell ${ }^{m}$ library and have been developed to achieve maximum design efficiency on silicon. This library function allows for complete system implementation on chip by reducing the industry standard AM2901 4-bit microprocessor slice function to a single cell, thus allowing space for additional logic functions.

The cell consists of a 16 -word by 4-bit two-port RAM, a high-performance ALU, and the associated circuitry to achieve the necessary decoding, shifting, and multiplexing. The microprocessor cell can be cascaded for greater design flexibility, and is a valuable tool when used in conjunction with other members of the 'ASC2900 family of standard cells, including the 'ASC2902 look-ahead carry generator, the 'ASC2904 status and shift control unit, and the 'ASC2910 microprogram controller.

The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol

CELL NAME	NETLIST HDL LABEL
MO1MPLH	Label: MO1MPLH CLK, QEZ,CN,I8 . . IO,B3 . . B0,A3 . . AO,D3 . . DO,Q3,Q0,
	RAM3,RAMO,GZ,PZ,F3,FEQO,OVR,CNPL4,Y3 . . YO;

The SN54ASC2901 will be characterized for operation over the full militarv temnerature range of - 55 or to $125^{\circ} \mathrm{C}$. The SN74ASC2901 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

signal description

NODE NAME	FUNCTION
AO . . A3	Address inputs to A port of register stacks
BO . . B3	Address inputs to B port
$10 \ldots 18$	Instruction control lines
Q3/RAM3	Shift line at MSB of the Q register
QO/RAMO	Shift line at LSB of the Q register
DO ... D3	Direct data inputs
YO ...Y3	Data outputs
OEZ	Output enable. When high, the Y outputs are off.
GZ,PZ	Carry generate and propagate outputs of the ALU
OVR	Overflow
FEQO	Open-collector output. A high indicates ALU outputs are low
F3	Most significant ALU output bit
CN	Carry-in to internal ALU
CNPL4	Carry-out of internal ALU
CLK	Clock input

SystemCell ${ }^{\text {TM }}$ COMPATIBLE MegaModule ${ }^{\text {TM }}$

logic symbol

description

The SN54ASC2902 and SN74ASC2902 standard cells are compatible with the TI SystemCell ${ }^{\text {TM }}$ library and are functionally equivalent to the standard AM2902. The cell is a high-speed, look-ahead carry generator designed to accept up to four pairs of carry propagate and carry generate signals, and a carry input. Anticipated carries are provided across four groups of binary ALUs. Along with these features, the carry propagate and carry generate outputs can be used with further levels of lookahead.

The 'ASC2902 offers extensive design value when used in conjunction with TI's 'ASC2901 and related family members. The 'ASC2902 cell can be used to create full system functionality on a custom or a standard cell chip.

The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL
MO2CGLH	Label: MO2CGLH CN,G3Z,P3Z,G2Z,P2Z,G1Z,P1Z,GOZ,POZ,CNPLX,CNPLY,CNPLZ,GZ,PZ;

The SN54ASC2902 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2902 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

signal description

NODE NAME	FUNCTION
CN	Carry-in inputs
CNPL	Carry-out outputs $(\mathrm{j}=\mathrm{X}, \mathrm{Y}, \mathrm{Z})$
$\mathrm{GOZ} \ldots \mathrm{G} 3 Z$	Carry generate inputs
POZ $\ldots \mathrm{P} 3 Z$	Carry propagate inputs
GZ	Gerrerate output
PZ	Propagate output

SystemCell ${ }^{\text {TM }}$ COMPATIBLE MegaModule ${ }^{\text {TM }}$

logic symbol

CELL NAME	NETLIST HDL LABEL
MO4SSLH	Label: MO4SSLH CLK,CEMZ,CEUZ,EZZ,ECZ,ENZ,EOVRZ,OEYZ,OECTZ,SEZ,CX,IZ,IC,IN,
	IOVR,I12 . . $10, \mathrm{YZ}, \mathrm{YC}, \mathrm{YN}, \mathrm{YOVVR,SIOO,SIOn,QIO0,OIOn,CO,CT;}$

The SN54ASC2904 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2904 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

signal description

NODE NAME	
IZ	Zero status input
IC	Carry status input
IN	Sign status input
IOVR	Overflow status input
IO ...I12	Instruction select inputs
CEMZ	Overall enable for machine status register. When high, MSR bits retain their present state.
EZZ/ECZ/ENZ/EOVRZ	Enable for corresponding bits in machine status register
CEUZ	When low, enables all four bits in micro status register (USR)
YZ/YC/YN/YOVR	Form a bidirectional bus over which MSR and USR status can be read or the MSR bits can be
	loaded in parallel.
OEYZ	When low, enables Y signals as outputs
CT	Conditional test output
OECTZ	When low, activates CT
SIOO/SIOn/QIOO/QIOn	Linking for various shift and rotate conditions
SEZ	Controls the state of shift outputs
CO	Carry-in control MUX output
CX	Carry-in control MUX input
CLK	Clock input

SystemCell ${ }^{\text {TM }}$ COMPATIBLE MegaModule ${ }^{T M}$

logic symbol

CELL NAME	NETLIST HDL LABEL
M1OMCLH	Label: M10MCLH CLK,CI,CCZ,CCENZ,RLDZ,OEZ,13 \ldots IO,D11 \ldots DO, FULLZ,PLZ,MAPZ,VECTZ,Y11 \ldots YO;

The SN54ASC2910 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC2910 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
signal description

NODE NAME	
DO . . D11	Input to register/counter and MUX
IO . . I3	Instruction select
CCZ	Test criterion. Low level indicates test passed.
CCENZ	When high, CCZ is ignored.
C1	Carry input to incrementer
RLDZ	When low, forces loading of register/counter.
OEZ	Output enable for Y outputs
CLK	Trigger for internal state changes
YO . . Y11	Address to microprogram memory
FULLZ	Indicates that nine items are on stack
PLZ	When low, selects \#1 source as direct input (usually pipeline register).
MAPZ	When low, selects \#2 source as direct input (usually mapping PROM or PLA).
VECTZ	When low, selects \#3 source as direct input (for example, interrupt starting address).

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ COMPATIBLE MACRO CELLS

- Typical Access Time . . . 41 ns at $C_{L}=1 \mathrm{pF}$
- Full Parallel Access with Separate Input and Output Ports
- Low Standby Power in Power-Down Mode
- Data Retention at Vcc Down to 2 V

RAM SUMMARY

TYPE	ORGANIZATION	
	WORDS	BITS
'ASC3003	16	16
'ASC3004	64	8
'ASC3005	256	4
'ASC3006	128	8

description

The 'ASC3003 through 'ASC3006 are dedicated, hardwired standard-cell macros implementing four static RAM organization configurations that provide the custom IC designer with small and medium-complexity memory macros to embed in ASICs in their most efficient form. Their structured architecture permits the use of multiple memory macros to implement custom on-chip local storage memories.

The memory macros contain embedded buffers to reduce input loading. This further simplifies implementation of larger memories as standard library cells can be used to interface the memory control inputs. The macro cells are identified and called from the engineering workstation input using the cell name and netlist in conjunction with a label developed as shown in the following:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
RA416LH	Label: RA416LH D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13, D14,D15,A0,A1,A2,A3,EZ,WZ,GZ, Q0,Q1,Q2, Q3,Q4,O5,Q6,Q7, Q8,Q9,Q10,Q11,Q12,Q13,Q14,Q15,TIE;	473
RA608LH	```Label: RA608LH D0,D1,D2,D3,D4,D5,D6,D7,A0,A1,A2,A3,A4,A5,EZ,WZ GZ,Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,TIE;```	712
RA804LH	Label: RA804LH D0,D1,D2,D3,A0,A1,A2,A3,A4,A5,A6,A7,EZ,WZ,GZ, Q0, Q1, Q2, Q3,TIE;	1243
RA708LH	Label: RA708LH D0,D1,D2,D3,D4,D5,D6,D7,A0,A1,A2,A3,A4,A5,A6, EZ,WZ,GZ, Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,TIE;	1214

Separate inputs and outputs not only simplify control circuitry design but also enhance memory access for both read and write. The read and write modes are independent and can occur in the same machine cycle, if desired.

TABLE 1. FUNCTION TABLE (ALL RAM TYPES)

ENABLE INPUTS		DATA INPUTS		OUTPUTS		MEMORY MODE
WZ	EZ	GZ †	DO THRU Dn	QO THRU Qn	TIE †	
L	L	L	Data in	Data out	H	Write, outputs enabled
L	L	H	Data in	Hi-Z	H	Write, outputs disabled
X	H	L	Inhibited	L	X	Power-down
X	H	H	Inhibited	Hi-Z	X	Power-down
H	L	L	Inhibited	Data out	L	Read, outputs enabled
H	L	H	Inhibited	Hi-Z	L	Outputs disabled
L	L	TIE	Data in	Hi-Z	H	Write, outputs disabled
L	H	TIE	Not active	Hi-Z	H	Power-down
H	L	TIE	Inhibited	Data out	L	Read, outputs enabled
H	H	TIE	Not active	Hi-Z	H	Power-down

${ }^{\dagger}$ The TIE output can be connected directly to the output enable, GZ, to implement a common input/output, I/O, memory. If common I/O is not used, the TIE output is not connected in the netlist.

An independent output enable, $G Z$, is provided for the three-state output to facilitate interfacing the memory with internal data-buses. Also, a separate input, EZ, is provided for enabling or disabling the entire memory macro. When disabled, the memory assumes a powered-down state. The active levels for these two enables are compatible for utilizing a single control mode to effect both output disable and simultaneous powerdown. An individual input controlling the write mode, WZ, enters new data into the addressed word location when WZ is low.

The TIE output, provided as a design option, offers the designer a simple method for implementing a common input/output (I/O) memory. The TIE output can be connected directly to the 3-state output-control input, GZ, to implement a common I/O RAM. If common I/O is not desired, the TIE output can be omitted from connections in the design netlist.

SN54ASC' RAMs are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. SN74ASC' RAMs are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SIGNAL DESCRIPTIONS

NODE		FUNCTION
NAME(S)	TITLE	
AO-An	Address	Address inputs
DO-Dn	Data	' Data inputs
EZ	Memory Enable	When low, the memory is enabled. When high, the memory is placed in a power-down mode and disabled.
GZ	Output Enable	When low, data appears at the memory output. If EZ is high when GZ is low, output will be low. When high, the outputs assume a high-impedance state, $\mathrm{Hi}-\mathrm{Z}$.
QO-On	Output	Data outputs
TIE	Output	When WZ is high and EZ is low, the TIE output goes low. For any other write/chip enable combination, the TIE output remains high. TIE implements a common I/O RAM by connecting it directly to the output enable, GZ.
WZ	Write	When low, data is written into the addressed locations. When high, writing is inhibited.

logic symbols ${ }^{\dagger}$

${ }^{\dagger}$ These symbols are in accordance with ANSIIIEEE Std 91-1984 and IEC Publication 617-12.

SN54ASC3003, SN54ASC3004, SN54ASC3005, SN54ASC3006 SN74ASC3003, SN74ASC3004, SN74ASC3005, SN74ASC3006 STATIC READ/WRITE RAMs WITH 3-STATE OUTPUTS

absolute maximum ratings and recommended operating conditions

See Table 1, Section 2. Data stored in the memory will be retained if the supply voltage is above the 2 -volt minimum. Functional characteristics other than data retention are not specified when $V_{C C}$ is between 2 volts and 4.5 volts.
timing requirements over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

		$\begin{aligned} & 16 \mathrm{LH} \\ & \hline 4 \mathrm{LH} \end{aligned}$	RA6	8LH	RA7	8LH	
	SN54'	SN74'	SN54'	SN74 ${ }^{\prime}$	SN54'	SN74 ${ }^{\prime}$	IT
	MIN	MIN	MIN	MIN	MIN	MIN	
$\mathrm{t}_{\text {su }}(\mathrm{A})$ Address setup time	0	0	0	0	0	0	ns
$t_{h(A)}$ Address hold time	0	0	0	0	0	0	ns
$\mathrm{t}_{\text {su }}(\mathrm{D})$ Data setup time	30	28	22	20	30	28	ns
th(D) Data hold time	0	0	0	0	0	0	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{W})$ Write pulse duration	22	20	22	20	24	22	ns
$\mathrm{t}_{\mathrm{c}}(\mathrm{W})$ Write cycle time	80	77	80	77	80	77	ns

electrical characteristics over recommended ranges of supply voltage and temperature (unless otherwise noted)

RA416LH

PARAMETER			TEST CONDITIONS	SN54ASC3003		SN74ASC3003		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold	D0-D15		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.1		2.1		V
	voltage	All others	2			2			
ICC Supply current		$E Z=H$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { or } \mathrm{MAX} \end{aligned}$		19.8		1.2	$\mu \mathrm{A}$	
		$E Z=L$			31.8		29.5	mA	
$\mathrm{C}_{\mathbf{i}}$	Input capacitance	AO	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.6		0.6		pF	
		A1 to A3		0.18		0.18			
		Dn		0.13		0.13			
		EZ		0.15		0.15			
		GZ		0.26		0.26			
		WZ		0.29		0.29			
$C_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	110		110		pF	

RA608LH

PARAMETER			TEST CONDITIONS	SN54ASC3004		SN74ASC3004		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshoid	D0-D7		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.1		2.1		V
	voltage	All others	2			2			
ICC Supply current		$E Z=H$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { or } \mathrm{MAX} \end{aligned}$		24.9		1.5	$\mu \mathrm{A}$	
		$E Z=L$			29.7		27.6	mA	
C_{i}	Input capacitance	AO	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6		0.6		pF	
		A1 to A5		0.18		0.18			
		Dn		0.13		0.13			
		EZ		0.15		0.15			
		GZ		0.26		0.26			
		WZ		0.29		0.29			
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	110		110		pF	

electrical characteristics over recommended ranges of supply voltage and temperature (unless otherwise noted) (continued)
RA804LH

PARAMETER			TEST CONDITIONS		SN54ASC3005		SN74ASC3005		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage	DO-D3			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.1		2.1		V
		All others	2				2				
ICC Supply current		$E Z=H$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { or } \mathrm{MAX} \end{aligned}$			51.9		3.1	$\mu \mathrm{A}$		
		$E Z=L$				31.8		29.5	mA		
C_{i}	Input capacitance	A0 to A2	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.6		0.6		pF		
		A3 to A7			0.18		0.18				
		Dn			0.13		0.13				
		EZ			0.15		0.15				
		GZ			0.26		0.26				
		WZ			0.29		0.29				
$C_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{\mathbf{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	110		110		pF		

RA708LH

SN54ASC3003, SN54ASC3004, SN54ASC3005, SN54ASC3006 SN74ASC3003, SN74ASC3004, SN74ASC3005, SN74ASC3006 STATIC READ/WRITE RAMs WITH 3-STATE OUTPUTS
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

RA416LH, RA608LH, RA804LH, and RA708LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54'			SN74'			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$t_{a}(\mathrm{~A})$	An	Qn	$C_{L}=1 \mathrm{pF}$		41	80		41	77	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{E})$	EZ	Qn			41	80		41	77	
${ }^{\text {tPZH }}$	GZ	Qn	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{aligned}$	1.7	4.5	12.4	2.1	4.5	11.1	ns
tPZL	GZ	Qn	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \text { to } \mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.5	3.4	8.7	1.7	3.4	7.7	ns
${ }^{\text {tP }}$ [GZ	On	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \text { to } \mathrm{GND}, \\ & \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{aligned}$	7.6	9.2	15.4	7.6	9.2	14.4	ns
tpLZ	GZ	Qn	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \text { to } \mathrm{GND}, \\ & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.9	4.6	9.4	3.9	4.6	8.6	ns
$\Delta \mathrm{tPLH}$	Any	Qn		0.2	0.7	1.7	0.3	0.7	1.5	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.3	0.7	1.7	0.3	0.7	1.6	
$\Delta \mathrm{tPZH}^{\text {a }}$	GZ	Qn		0.3	0.7	1.8	0.3	0.7	1.7	$\mathrm{ns} / \mathrm{pF}$
\triangle tPZL				0.3	0.7	1.8	0.3	0.7	1.6	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{a}}(\mathrm{A}) \equiv$ access time from address, low-to-high-level or high-to-low-level output
$\mathrm{t}_{\mathrm{a}(\mathrm{E})} \equiv$ access time from enable (power up), low-to-high-level or low-to-low-level output
tPZH \equiv output enable time to high level
tPZL $=$ output enable time to low level
$\mathrm{tPHZ} \equiv$ output disable time from high level
tplZ \equiv output disable time from low level
Δ tPLH \equiv change in t_{a} with load capacitance, low-to-high-level output
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t_{a} with load capacitance, high-to-low-level output
$\Delta \mathrm{tPZH} \equiv$ change in $\triangle \mathrm{tPZH}$ with laod capacitance
$\Delta t_{P Z L} \equiv$ change in Δ tPZL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC3003, SN54ASC3004, SN54ASC3005, SN54ASC3006 SN74ASC3003, SN74ASC3004, SN74ASC3005, SN74ASC3006 STATIC READ/WRITE RAMs WITH 3-STATE OUTPUTS

PARAMETER MEASUREMENT INFORMATION

write cycle 1 (see Notes 1 and 2)

NOTES: 1. Write cycle 1 is used when the RAM has separate DATA IN and DATA OUT buses.
2. $\mathrm{EZ}=\mathrm{GZ}=\mathrm{LOW}$
read cycle 1 (see Notes 3 and 4)

NOTES: 3. This read cycle is used when the RAM has separate DATA IN and DATA OUT buses.
4. $G Z=L O W$

SN54ASC3003, SN54ASC3004, SN54ASC3005, SN54ASC3006 SN74ASC3003, SN74ASC3004, SN74ASC3005, SN74ASC3006 STATIC READ/WRITE RAMs WITH 3-STATE OUTPUTS

NOTE 5: This read cycle is used when the RAM is interfaced with a bidirectional data bus.

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the Tl standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3 -state input/output TTL/CMOS buffer.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

designing for testability

Testability of the design in its final form should be considered when memory elements are used in the design. Testing at the device level and troubleshooting under field maintenance conditions can be enhanced by providing either direct or multiplexed input pins for controlling the memory. Simple actions on the part of the ASIC designer can result in considerable costs savings and the expense of IC testing, system testing, and system maintenance can be reduced significantly.

SystemCell ${ }^{\text {TM }}$ COMPATIBLE $2-\mu \mathrm{m}$ CompilerCell ${ }^{\text {TM }}$ SRAMs

logic symbol

description

The SN54ASC3010 and SN74ASC3010 CompilerCell ${ }^{\text {m }}$ SRAMs are compatible with the TI SystemCell ${ }^{\text {TM }}$ library and are structured to simplify the design of logic systems. The static storage element is a conventional 6-transistor cell. Operation using two clock signals permits the use of internal timing strobes, which results in optimum use of silicon, reduced power consumption, and speeds up both read and write cycles.

A comprehensive software package is used by the factory to generate a schematic, HDL description, and a simulation model. The timing performance of the RAM is a function of the number of bits and the geometrical configuration used. The user specifies the number of words and the word length for use by the factory RAM compiler software. Table 1 shows the range of RAM configurations that can be generated using the 'ASC3010.

TABLE 1. SRAM ARRAY LIMITS

PARAMETERS	MIN	MAX	COMMENTS
Number of words $\left(W \leq 2^{n}\right)$	4	1024	Any even number
Word length in bits $\langle\mathrm{B}=\mathrm{i}\rangle$	4	32	Number of data inputs = number of data outputs
Total number of bits $(\mathrm{W} \times \mathrm{E}$	16	16384	

The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

Lell ivaivie	NEILISI HUL LABEL
AZRMLB ${ }^{\dagger}$	LABEL: AZRMLB DO,D1, D2,...Di-1, AO...An, CLK $1, C L K 2, E N Z, R \ldots W Z, Q 0 . . \mathrm{Qi}-1$

Cell names and labels are developed as a function of cell design.
${ }^{\dagger} A Z$: Identifying symbol
LB: Wordlength in bits. Topology dependent value
M : Number of columns multiplexed onto one output. $A=1: 1, B=2: 1, C=4: 1$, and $D=8: 1$. Topology dependent value
R: Number of rows. Topology dependent value
The SN54ASC3010 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC3010 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

4
0
0
0
0
0
0
$\stackrel{0}{0}$
$\stackrel{0}{\omega}$

SystemCelli ${ }^{\text {M }}$ 2- $\mu \mathrm{m}$ COMPATIBLE MACRO CELL

- Generates 2-Phase Clock for Compiler Cell Functions
- Embedded Function - Requires No External Connection
- Can Be Operated from Single-Phase of System On-Chip Clock

description

The SN54ASC3011 and SN74ASC3011 are dedicated, hardwired standard-cell 2-phase clock generators that provide complementary outputs for driving the clock inputs of compiler cells used in a SystemCell ${ }^{\text {TM }}$ design. The compiler cells employ clocked circuitry to reduce power requirements, and a synchronous clock ensures that state changes occur on the trailing edge of the clock, thus ensuring that state conditions are stable during the next clock period. The clock generator cell is designated and called from the engineering workstation input using the following cell name to develop a label for the design netlist:
logic symbol

CELL NAME	NETLIST HDL LABEL
CK4X0LH	Label: CK4X0LH
CLK,CLK1,CLK12,CLK2,CLK2Z;	

The SN54ASC3011 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC3011 will be characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 2 in Section 2.

SN54ASC3103, SN74ASC3103 16-WORD BY 8-BIT EDGE-TRIGGERED 3-PORT REGISTER FILES

SystemCell ${ }^{\text {TM }}$ compatible MegaModule

- Full Parallel Access with One Write and Two Read Ports
- Typical Access Times:

Write-then-Read Cycle Time . . . 11 ns
Address Access Time. . . 8 ns

- Data Retention at $\mathrm{V}_{\mathrm{CC}}>\mathbf{2} \mathrm{V}$

description

The SN54ASC3103 and SN74ASC3103 are dedicated, hard-wired standard-cell macros implementing a 3 -port, high-speed register file organized as 16 words of 8 bits each. These devices provide cost-effective, closely coupled working registers to support high-performance, bus-structured processors embedded in ASICs. Multiple 8 -bit-wide register files can be used to implement wide-word, scratch-pad memories.

The register macros contain embedded buffers to reduce input loading. This further simplifies implementation of larger registers as standard library cells can be used to interface the register control inputs. The macro cells are designated and called from the engineering workstation input using the cell name and netlist in conjuction with a label developed as shown in the following table:

logic symbol

The 16 -word-by-8-bit register organization is provided with a data-input port and two read ports that incorporate dedicated address inputs. As the read mode is asynchronous at both output ports, data entry and retrieval can occur simultaneously at all three ports. The dedicated address inputs permit full access to any of the 16 -word locations from each port.
An independent write enable, WZ, is provided to simplify implementation of the write cycle. When high, Lie write enabie innibits new aata entry. When low, the write function is enabled, and a positive transition at the clock input will store data applied at the data inputs in the register word addressed by the writeaddress inputs, WO thru W3.

The SN54ASC3103 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC3103 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

WRITE FUNCTION TABLE

CLK	WZ	WRITE ADDRESS				DATA INPUTS	OUTPUTS OF REGISTER ADDRESSED	FUNCTION
		W0	W1	W2	W3	D0 . . D7		
X	H	X	X	X	X	X . . X	$\mathrm{QO}_{0} \cdot . \mathrm{OFO}_{0}$	No change
\uparrow	L	L	L	L	L	a .. h	a . . h	Write word 0
\uparrow	L	H	L	L	L	a .. h	a .. h	Write word 1
\uparrow	L	L	H	L	L	a .. h	a .. h	Write word 2
\uparrow	L	H	H	L	L	a .. h	a .. h	Write word 3
.	.					.		
.	-					.	.	\cdots
-	-					\cdots	$\cdots \cdot$	
\uparrow	L	H	H	H	H	a .. h	a . . h	Write word 15
L	X	X	X	X	X	X . X	$\mathrm{QO}_{0} \cdot . \mathrm{Q7}_{0}$	No change

READ FUNCTION TABLE

SIGNAL DESCRIPTIONS

NODE		FUNCTION
NAME(S)	TITLE	
CLK	Clock input	Data present at the data inputs are stored in the addressed locations during a positive transition at the clock input. During steady-state (high or low) the clock is inactive. QAO,QAn
QBO,QBn	Data input	Data output
RAO,RAn output	Read address input	Data outputs for A port
Data outputs for B port		
RBO,RBn	Read address input	Read address inputs for A port inputs for B port
WO,Wn	Write address	Write address inputs
WZ	Write input	When low, data can be clocked into the addressed locations. When high, writing is inhibited.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2. Data stored in the register are retained if the supply voltage is not permitted to go below 2 volts minimum. Functional characteristics other than data retention are not specified when $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ to 4.5 V .

SN54ASC3103, SN74ASC3103 16-WORD BY 8-BIT EDGE TRIGGERED 3-PORT REGISTER FILES

electrical characteristics

PARAMETER			TEST CONDITIONS	SN54ASC3103		SN74ASC3103		UNIT	
			TYP	MAX	TYP	MAX			
V_{T}	Input threshold vo			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		69.6		4.2	$\mu \mathrm{A}$	
C_{i}	Input capacitance	CLK	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.1		0.1		pF	
		Dn		0.16		0.16			
		RAn		0.14		0.14			
		RBn		0.14		0.14			
		Wn		0.14		0.14			
		WZ		0.23		0.23			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 V, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	289		289		pF	

timing requirements over recommended ranges of supply voltage and operating free-air temperature

switching characteristics over recommended ranges of supply voltge and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC3103			SN74ASC3103			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	RAn, RBn	Any	$C_{L}=0$	3.3	6.3	13.4	3.6	6.3	11.8	
tPHL				3.7	6.2	13.6	3.9	6.2	12.1	
${ }^{\text {tPLH }}$	CLK	Any		4.7	10.3	22.4	5.1	10.3	19.9	ns
tPHL				4.2	10.2	2.0 .6	4.6	10.2	18.3	ns
tPLH	RAn, RBn	Any	$C_{L}=1 \mathrm{pF}$	3.6	7	14.7	3.9	7	13	ns
tPHL.				4	7	15.1	4.2	7	13.5	ns
${ }^{\text {PPLH }}$	CLK	Any		5.1	11	23.7	5.5	11	21.1	ns
tPHL				4.6	11	22.1	5	11	19.7	ns
Δ tpl H	miy	mily		0.3	0.7	1.4	0.3	0.7	1.3	
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.8	1.6	0.3	0.8	1.5	nis/pr

[^83]

FIGURE 1. SETUP AND HOLD TIMES

Addresses for write and both reads are the same.
FIGURE 2. CLOCK PULSE DURATION, PROPAGATION DELAY TIMES FROM CLOCK

PARAMETER MEASUREMENT INFORMATION

FIGURE 3. PROPAGATION DELAY TIMES FROM READ ADDRESS

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

designing for testability

Designers employing register elements should consider testability of the design in its final form. The need to provide either direct or multiplexed input pins for controlling the register will enhance both testing at the device level and troubleshooting under field maintenance conditions. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

SystemCell ${ }^{\text {TM }}$ COMPATIBLE $2-\mu \mathrm{m}$ CompilerCell ${ }^{\text {TM }}$ ROMs

description

The SN54ASC3200 and SN74ASC3200 are read-only memory (ROM) CompilerCell ${ }^{\text {TM }}$. They are compatible with TI's SystemCell ${ }^{T m}$ library and can be a powerful aid to the solution of cell design problems. They can be selected with bit capacities between 512 and 65,536.

These ROMs are clock controlled, which permits pre-charging of some circuit regions resulting in speed advantages, lower power dissipation, and optimum use of silicon. The 'ASC3200 is a nonvolatile memory whose bit contents are determined by the presence or absence of transistors in the rows and columns of the ROM matrix. The transistors are formed during the custom patterning process defined by the user.

For bit capacities up to 16 K , a single array is used. For greater capacities, a double array offers 64 K -bit capacity for only 70% more silicon area. A choice of multiplexing ratios is offered between the array columns and the output word, which allows greater flexibility in the layout of the cell.
logic symbol

HDL CALL
LABEL: ROM ADO . . ADn,PHI1B,PHI2,PHI2B,POWD, OUTO . . . OUTn;

TI Compiler Software permits rapid programmation and verification of the chosen pattern, as well as rapid generation of the desired ROM bit organization. The possible combination of ROM organizations are shown in Tables 1 and 2.
table 1. Single array parameter limits

PARAMETERS	MIN	MAX
Number of Words $\left(\mathrm{W} \geq 2^{\mathrm{n}}\right)$	8	2048
COMMENTS		
Word Length $(\mathrm{B}=\mathrm{i})$	4	32
Total Number of Bits $(\mathrm{W} \times \mathrm{B})$	512	16384

TABLE 2. DOUBLE ARRAY PARAMETER LIMITS

PARAMETERS	MIN	MAX

SystemCell ${ }^{\text {TM }}$ COMPATIBLE $2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

logic symbol

description

The SN54ASC3430 and SN74ASC3430 CompilerCell ${ }^{\text {TM }}$ Pipeline Test Registers assist the designer in solving the problem of testing VLSI cell designs. The large gate counts and circuit complexities permitted by $2-\mu \mathrm{m}$ technologies result in functional blocks so embedded within the circuit that their inputs/outputs can neither be monitored or initialized without the use of very large test pattern sets of I/O cells assigned specifically for test purpose.

The PTR is an n-bit register whose size is determined by the user in the design phase ($\mathrm{n}=4$ to 32). The principal modes of operation are as a parallel master-slave latch for holding and latching data buses or as a serially-loaded unidirectional register that allows test stimuli and results to be shifted around the circuit.

Sections of a logic circuit may be self tested using a pair of PTRs. The first PTR is configured as a pseudo-random pattern generator that delivers random values at a number of outputs over a time period. The second PTR, arranged as a signature analyzer, takes the outputs from the circuit under the test over a number of clock cycles and condenses them into a test signature whose value depends totally on the tested outputs over the specified time period. At the end of the period, the signature is serially down-loaded from the PTR and compared with a known "fault free" value in order to arrive at a pass/fail decision. The modes of operation are listed in Table 1 and described in the following paragraphs.

TABLE 1. MODES OF OPERATION

MAIN MODE			SUB-MODE			
	S1	SO		PLD	B1	B0
HOLD	L	L	NONE			
USER FUNCTIONAL	L	H	LOCAL HOLD PARALLEL LOAD	L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$
CHILT	: $!$	i	ivioive			
TEST	H	H	PATTERN GENERATE CIRCULAR SHIFT SIGNATURE ANALYZE LOCAL HOLD	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$

Hold

Shift Data may be serially loaded into the register via pin DO. The data passes through a two-bit control register whose ouputs B0 and B1 determine the sub-mode.
User Functional Data is parallel loaded into the register or held according to the setting of input PLD. In this mode, each element of the register is isolated from its neighbor and acts as an independent data latch. In sub-mode "Local Hold", data may be held in just a single register while the remaining PTRs may be performing other tasks.

Test In this mode, there are four available sub-modes.

Sub-mode 0. Pseudo-Random Pattern Generation

The outputs from the register are fed back to the input via a selected number of ExclusiveOR gates. This is a well-documented method of producing a sequence of pseudo-random signals from a register for use as test signals for a logic circuit. A four-bit example is shown in Figure 1.

Sub-mode 1. Circular Shift

Connection in the circular shift mode causes the last output of the PTR to be connected to the first.

Sub-mode 2. Signature Analysis

As with Pattern Generation, the Signal Analyzer has data fed back to its first input as indicated in Figure 2. The input of each section of the register is determined by both the preceding output and the output from the circuit under test. A characteristic data signature is built up on the register outputs. This signature is dependent on all of the previous output states of the circuit under test. After a number of clock cycles, the signature of a faulty circuit will be different from that of a good one.

Sub-mode 3. Local Hold
This sub-mode permits a user to command one or more PTRs in a system to hold its data.

FIGURE 1. PTR AS A PSEUDO-RANDOM PATTERN GENERATOR

FIGURE 2. 4-BIT PTR AS A SIGNATURE ANALYZER

SystemCell ${ }^{\text {TM }}$ COMPATIBLE $2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

description

The SN54ASC3800 and SN74ASC3800 CompilerCell ${ }^{\text {M }}$ logic arrays are semicustom PLAs having many of the features of the current packaged PLAs. The cells operate dynamically from a system-derived clock and offer significant power savings compared to the packaged devices. Cell complexity is decided at the design stage and can be tailored for the application resulting in economical use of silicon. Texas Instruments software generates the PLA automatically from a library of primitive cells according to the user's function tables or Boolean equations. The software will also produce an HDL description, a simulation model, timing diagrams, and an individual data sheet.

functional block diagram

$m=$ number of inputs
$\mathrm{n}=$ number of outputs
$p=$ number of product terms $=q 0+q 1+\ldots q n-1+q n$
$q x=$ number of inputs to OR gate $x(x=0 \ldots n)$

The cells are specified by number of inputs, m, number of product terms, p, and number of outputs, n. The internal matrix follows the usual arrangement of an AND matrix and an OR matrix. Each product term ANDs together a specified number of inputs, and each output comes from a specified number of product terms via an OR gate. Maximum values for the parameters are shown below:

INPUTS	PRODUCT TERMS	OUTPUTS
m	p	n
64	128	32

Circuit design is optimized around a 32-input $\times 64$-product term $\times 32$-output design that will run at a speed of 20 MHz .

The SN54ASC3800 will be characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC3800 will be characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Two Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{A+B+C+D}=\bar{A} \bar{B} \bar{C} \bar{D}$
logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
\mathbf{A}	B	C	D	\mathbf{Y}
H	X	X	X	L
X	H	X	X	L
X	X	H	X	L
X	X	X	H	L
L	L	L	L	H

description

The SN54ASC4002 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC4002 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		NO410LH			OLH	UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold	oltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$	Supply current	SN54ASC4002	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$			177		277	nA		
		SN74ASC4002				10.6		16.6			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.11		0.22		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap	ance	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.35		0.55		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
NO410LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4002			SN74ASC4002			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C,D	Y	$C_{L}=0$	0.7	1.4	4.1	0.7	1.4	3.7	ns
tPHL				0.8	1.3	2.6	0.9	1.3	2.3	
tPLH	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	2.6	5.4	13.3	2.8	5.4	12	ns
${ }_{\text {tPHL }}$				1.4	2.8	7	1.5	2.8	6.2	
$\Delta \mathrm{tPLH}^{\text {P }}$	A,B,C,D	Y		1.9	4	9.2	2	4	8.4	s/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1.5	4.7	0.6	1.5	4.1	pF

NO420LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4002			SN74ASC4002			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C,D	Y	$C_{L}=0$	0.7	1.1	2.8	0.7	1.1	2.5	ns
tPHL				0.6	1.2	2.3	0.7	1.2	2.2	
${ }^{\text {tPLH }}$	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.1	7.4	1.7	3.1	6.7	ns
tPHL				1.1	2	4.3	1.2	2	3.8	
Δ tPLH	A,B,C,D	Y		0.9	2	4.6	1	2	4.2	ns/pF
Δ tpHL				0.4	0.8	2.1	0.4	0.8	1.8	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
$\Delta t P L H \equiv$ change in $t_{P L H}$ with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
$\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Four Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over V_{CC} Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A+B+C+D=\overline{\bar{A} \bar{B} \bar{C} \bar{D}}$
logic symbol

function table

INPUTS				OUTPUT
A	B	C	D	Y
H	X	X	X	H
X	H	X	X	H
X	X	H	X	H
X	X	X	H	H
L	L	L	L	L

description

The SN54ASC4072 and SN74ASC4072 are four-input positive-OR gate CMOS standard cells that implement the equivalent of one-half of the SN54HC4072/SN74HC4072. The standard-cell library contains four physical implementations to provide the custom IC designer a choice between four performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
		3.1 ns	2
OR42OLH	Label: OR4nOLH A,B,C,D,Y;	3.1 ns	2.25
OR440LH	2.7 ns	3.55	
OR46OLH		2.7 ns	5.25

The SN54ASC4072 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC4072 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
I

INSTRUMENTS

SN54ASC4072, SN74ASC4072 4-INPUT POSITIVE-OR GATES

electrical characteristics

PARAMETER			TEST CONDITIONS	OR410LH		OR420LH		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold	oltage		$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC4072	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		225		270	nA	
		SN74ASC4072			13.5		16.2		
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.11		0.11		pF	
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.92		1.83		pF	

PARAMETER			TEST CONDITIONS		OR440LH		OR460LH		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC4072	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{O}, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			404		597	nA		
		SN74ASC4072				24.2		35.8			
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.22		0.33		pF		
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns},$	3.46		5.48		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
OR410LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4072			SN74ASC4072			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A,B,C,D	Y	$C_{L}=0$	0.9	1.9	4.1	0.9	1.9	3.7	ns
${ }^{\text {tPHL }}$				1.2	2.5	7	1.3	2.5	6.2	
${ }^{\text {tPLH }}$	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.9	6.4	1.5	2.9	5.8	ns
tPHL				1.6	3.3	8.9	1.7	3.3	7.9	
$\Delta \mathrm{tPLH}$	A,B,C,D	Y		0.5	1	2.4	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.8	2	0.4	0.8	1.8	

OR420LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4072			SN74ASC4072			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C,D	Y	$C_{L}=0$	1.1	2.2	5.3	1.2	2.2	4.7	ns
${ }^{\text {tPHL }}$				1.4	3	8.3	1.5	3	7.4	
${ }^{\text {tPLH }}$	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.7	6.5	1.5	2.7	5.8	ns
${ }^{\text {tPHL }}$				1.6	3.5	9.6	1.7	3.5	8.5	
Δ tPLH	A,B,C,D	Y		0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.2	0.5	1.4	0.2	0.5	1.2	

[^84]
SN54ASC4072, SN74ASC4072 4-INPUT POSITIVE-OR GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

OR440LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4072			SN74ASC4072			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C,D	Y	$C_{L}=0$	1.1	2	4.4	1.2	2	4	ns
${ }^{\text {tPHL }}$				1.3	2.8	6.9	1.4	2.8	6.1	
${ }_{\text {tPLH }}$	A, B, C, D	Y	$C_{L}=1 \mathrm{pF}$	1.2	2.3	5	1.3	2.3	4.5	ns
tPHL				1.4	3.1	7.7	1.5	3.1	6.8	
$\Delta \mathrm{tPLH}$	A, B, C, D	Y		0.1	0.3	0.7	0.1	0.3	0.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.3	0.8	0.1	0.3	0.8	

OR460LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4072			SN74ASC4072			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A, B,C,D	Y	$C_{L}=0$	1	2	4.4	1.1	2	3.9	ns
tPHL				1.3	2.8	7.1	1.4	2.8	6.4	
${ }^{\text {tPLH }}$	A,B,C,D	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.2	4.8	1.2	2.2	4.3	ns
${ }^{\text {tPHL }}$				1.4	3	7.7	1.5	3	6.9	
Δ tPLH	A, B, C, D	Y		0.1	0.2	0.5	0.1	0.2	0.5	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.1	0.2	0.7	0.1	0.2	0.6	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{tPHL}^{\text {w }}$ with load capacitance
${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Four Performance Levels
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A+B+C=\overline{\bar{A}} \bar{B} \bar{C}$
logic symbol

FUNCTION TABLE

INPUTS			OUTPUT
A	B	C	Y
H	X	X	H
X	H	X	H
X	X	H	H
L	L	L	L

description

The SN54ASC4075 and SN74ASC4075 are 3-input positive-OR gate CMOS standard cells that implement the equivalent of one-third of the SN54HC4075 or SN74HC4075. The standard-cell library contains four physical implementations to provide the custom IC designer a choice between four performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ C_{L}=1 \mathrm{pF} \end{gathered}$	RELATIVE CELL AREA TO NA210LH
OR310LH		2.7 ns	2
OR320LH		2.7 ns	2.25
OR340LH	Label: OR3nOLH A,B,C,Y;	2.2 ns	3.5
OR360LH		2.2 ns	5.25

The SN54ASC4075 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC4075 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS	OR310LH		OR320LH		UNIT	
			TYP	MAX	TYP	MAX			
	Input threshold voltage			$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC4075	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		201		234	nA	
		SN74ASC4075			12.1		14		
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.11		0.11		pF	
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	Equivalent power dissipation capacitance		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.9		1.71		pF	

PARAMETER			TEST CONDITIONS	OR340LH		OR360LH		UNIT	
			TYP	MAX	TYP	MAX			
V_{T} Input threshold voltage				$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC4075	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$		362		526	nA	
		SN74ASC4075			21.7		31.6		
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.21		0.33		pF	
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \cdot \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	3.51		5.36		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
OR310LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM	TO	TEST CONDITIONS	SN54ASC4075			SN74ASC4075			UNIT
	(INPUT)	(OUTPUT)		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A,B,C	Y	$C_{L}=0$	0.8	1.6	3.5	0.8	1.6	3.2	ns
tPHL				1	2	5	1.1	2	4.5	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.6	5.8	1.4	2.6	5.2	ns
tPHL				1.4	2.7	6.8	1.5	2.7	6.1	
Δ tPLH	A,B,C	Y		0.5	1	2.3	0.5	1	2.1	/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.7	1.8	0.3	0.7	1.6	F

OR320LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4075			SN74ASC4075			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A, B, C	Y	$C_{L}=0$	0.8	1.9	4.2	0.9	1.9	3.8	ns
tPHL				1.2	2.4	6	1.2	2.4	5.4	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.4	5.3	1.2	2.4	4.8	ns
${ }_{\text {tPHL }}$				1.4	2.9	7.2	1.5	2.9	6.4	
Δ tPLH	A, B, C	Y	-	0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL				0.2	0.5	1.2	0.2	0.5	1.1	

[^85]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
OR340LH

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST CONDITIONS	SN54ASC4075			SN74ASC4075			UNIT
	(INPUT)	(OUTPUT)		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {t PLH }}$	A, B, C	Y	$C_{L}=0$	0.9	1.7	3.7	1	1.7	3.4	ns
tPHL				1.1	2.1	5.3	1.2	2.1	4.7	
tPLH	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1	2	4.3	1.1	2	3.9	ns
tPHL				1.2	2.4	6	1.3	2.4	5.2	
$\Delta \mathrm{tPLH}$	A, B, C	Y		0.1	0.3	0.7	0.1	0.3	0.6	s/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.3	0.7	0.1	0.3	0.7	/pF

OR360LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC4075			SN74ASC4075			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A, B, C	Y	$C_{L}=0$	0.9	1.7	3.5	1	1.7	3.2	ns
${ }^{\text {tPHL}}$				1.1	2.2	5	1.2	2.2	4.5	
${ }_{\text {t PLH }}$	A, B, C	Y	$C_{L}=1 \mathrm{pF}$	1	1.9	4	1.1	1.9	3.6	ns
tPHL				1.2	2.4	5.6	1.3	2.4	5	
$\triangle \mathrm{tPLH}^{\text {P }}$	A,B,C	Y		0.08	0.2	0.5	0.09	0.2	0.5	s/pF
$\triangle \mathrm{t}$ PHL				0.06	0.2	0.6	0.08	0.2	0.5	pr

[^86]
DESIGN CONSIDERATIONS

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Choice of Two Performance Levels
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{A+B+C+D+E+F+G+H}$
$=\bar{A} \bar{B} \bar{C} \bar{D} \bar{E} \bar{F} \bar{G} \bar{H}$
logic symbol

FUNCTION TABLE

INPUTS								$\begin{gathered} \text { OUTPUT } \\ \mathbf{Y} \end{gathered}$
A	B	C	D	E	F	G	H	
H	X	X	X	X	X	X	X	L
X	H	X	x	x	X	x	X	L
X	X	H	X	x	X	x	x	L
X	x	X	H	X	X	X	x	L
X	x	X	X	H	X	x	x	L
X	X	X	X	X	H	X	X	L
x	X	X	X	x	X	H	X	L
X	X	X	X	X	X	X	H	L
L	L	L	L	L	L	L	L	H

description

The SN54ASC4078 and SN74ASC4078 are eight-input positive-NOR gate CMOS standard cells that implement the equivalent of one HC 4078 . The standard-cell library contains two physical implementations to provide the custom IC designer a choice between two performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST hDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ C_{L}=1 \mathrm{pF} \\ \hline \end{gathered}$	RELATIVE CELL AREA TO NA210LH
NO810LH		3.4 ns	3.5
NO820LH	NO8nOLH A,B,C,D,E,F,	4.9 ns	4.5

The SN54ASC4078 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC4078 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		N0810LH		NO820LH		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current		SN54ASC4078	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			409		465	nA		
		SN74ASC4078				24.5		27.9			
C_{i}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.11		0.2		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent pow dissipation cap	tance	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	1.54		0.65		pF		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
NO810LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4078			SN74ASC4078			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A thru H	Y	$C_{L}=0$	1.4	3	8.3	1.5	3	7.4	ns
${ }^{\text {tPHL }}$				1	2.1	5	1.1	2.1	4.5	
tPLH	A thru H	Y	$C_{L}=1 \mathrm{pF}$	1.9	4	10.5	2.1	4	9.3	ns
tPHL				1.2	2.7	6.3	1.4	2.7	5.6	
Δ tPLH	A thru H	Y		0.4	1	2.2	0.5	1	2	s/pF
Δ tPHL				0.2	0.6	1.4	0.2	0.6	1.2	S/pF

NO820LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC4078			SN74ASC4078			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A thru H	Y	$C_{L}=0$	1.1	2.7	7.8	1.1	2.7	7	ns
tPHL				1.1	1.8	4.1	1.2	1.8	3.6	
tPLH	A thru H .	Y	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	3	6.7	17.2	3.2	6.7	15.5	ns
tPHL				1.8	3.1	7.4	1.9	3.1	6.5	
Δ tPLH	A thru H	Y		1.9	4	9.4	2	4	8.6	s/pF
Δ tPHL				0.5	1.3	3.7	0.6	1.3	3.1	ns/pF

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{P L H} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SN54ASC5000, SN74ASC5000 CMOS-COMPATIBLE INVERTING INPUT BUFFERS

SystemCell ${ }^{m}$ 2- $\mu \mathrm{m}$ INPUT STANDARD CELL

- 1.1 ns Typical Propagation Delay with 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

logic symbol

FUNCTION TABLE

INPUT	OUTPUT
A	\mathbf{Y}
H	L
L	H

positive logic equation

$$
Y=\overline{\mathrm{A}}
$$

description

The SN54ASC5000 and SN74ASC5000 are inverting input buffer CMOS standard-cell functions that interface external inputs with CMOS internal cells. This cell function exists in two versions (" $E^{\prime \prime}$ and " $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IPFOOLH A,Y;	minimum height IPFOOLH	29.4

Each cell incorporates circuit elements designed specifically to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

The SN54ASC5000 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5000 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions

```
See Table 1 in Section 2.
```

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5000		SN74ASC5000		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.5		2.5		V
1 IH	High-level input current		$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}$			± 1		± 1	$\mu \mathrm{A}$		
IIL	Low-level input current		$\mathrm{V}_{\mathrm{IL}}=0$			± 1		± 1	$\mu \mathrm{A}$		
${ }^{1} \mathrm{CC}$	Supply current	IPA06LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1000		60	nA		
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			4.4		4.2	mA		
		IPCOOLH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1253		75.2	nA		
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			4.4		4.2	mA		
C_{i}	Intrinsic input capacitance ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.3		2.3		pF		
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	2		2		pF		

\dagger Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5000			SN74ASC5000			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text {8 }}$	MAX	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=0$	0.5	0.7	1.3	0.5	0.7	1.2	ns
tPHL				0.2	0.7	1.6	0.3	0.7	1.4	
${ }^{\text {tPL.H }}$	A	Y	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	0.7	1.1	1.9	0.7	1.1	1.8	ns
tPHL				0.5	1.1	2.4	0.6	1.1	2.1	
Δ tPLH	A	Y		0.2	0.4	0.7	0.2	0.4	0.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.2	0.4	0.9	0.2	0.4	0.8	

[^87]Refer to Section 7.

SN54ASC5001, SN74ASC5001 TTL-COMPATIBLE INVERTING INPUT BUFFERS

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INPUT STANDARD CELL

- 2.1 ns Typical Propagation Delay with 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=\bar{A}
$$

description

The SN54ASC5001 and SN74ASC5001 are inverting input buffer CMOS standard cells that translate TTL input voltage levels to CMOS internal-cell voltage levels. This cell function exists in two versions ('E' E^{\prime} and " F ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the "F" cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	$\begin{array}{c}\text { FEATURES } \\$\end{array}	$\begin{array}{c}\text { NETLIST } \\ \text { HDL LABEL }\end{array}$	$\begin{array}{c}\text { CELL LAYOUT } \\ \text { ASPECT RATIO }\end{array}$
IPFO3LH			

minimum width\end{array}\right]\)| 28.6 |
| :--- |

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
The SN54ASC5001 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5001 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 2 in Section 2.

SN54ASC5001, SN74ASC5001
TTL-COMPATIBLE INVERTING INPUT BUFFERS
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5001		SN74ASC5001		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voitage				$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.3		1.3		V
11	Input current		$V_{1}=0$ to $V_{C C}$			± 1		± 1	$\mu \mathrm{A}$		
${ }^{1} \mathrm{CC}$	Supply current	IPE03LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ or 0			910		54.6	$n \mathrm{~A}$		
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.21		1.13	mA		
		IPF03LH	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or 0			1223		73.4	$n \mathrm{~A}$		
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.21		1.13	mA		
C_{i}	Intrinsic input capacitance ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.1		2.1		pF		
C_{pd}	Equivalent power dissípation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	16.5		16.5		pF		

\dagger Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5001			SN74ASC5001			UNIT
				MIN	TYP ${ }^{\text {S }}$	MAX	MIN	TYP ${ }^{\text {§ }}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	1	2.2	0.7	1	2	ns
tPHL				0.5	0.8	1.4	0.5	0.8	1.3	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	1.6	2.9	6.3	1.8	2.9	5.7	ns
tPHL				0.8	1.3	2.2	0.8	1.3	2.1	
\triangle tplH	A	Y		1	1.9	4.2	1	1.9	3.8	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.3	0.5	0.9	0.3	0.5	0.8	

\ddagger Propagation delay times are measured from the 1.3 V point of $\mathrm{V}_{1}(0$ to 3 V$)$ to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
Δt PLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\S T_{\text {ypical }}$ values are at $V_{C C}=V, T_{A}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SN54ASC5002, SN74ASC5002 CMOS-COMPATIBLE INVERTING SCHMITT-TRIGGER INPUT BUFFERS

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ Input StANDARD CELL

- 4.8 ns Typical Propagation Delay with 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=\bar{A}
$$

description

The SN54ASC5002 and SN74ASC5002 are inverting Schmitt-trigger input buffer CMOS standard cells that interface CMOS inputs with CMOS internal cells. This cell function exists in two versions ("E" and " F ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " $F^{\prime \prime}$ cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		CELL LAYOUT	RELATIVE CELL AREA
	HDL LABEL	ASPECT RATIO TO NA210LH	
IPEO6LH	Label: IPFO6LH A,TAP,Y;	minimum height IPFO6L.H	29.4
			33

The cell incorporates a pull-up tap to simplify termination of the input. This tap may be used in conjunction with an active pull-up/pull-down terminator in the SNASC237x group or the pull-up tap may be left unconnected. When the terminator is used it ensures that the input will be driven to a high- or low-logic level thereby avoiding exposure to a high-impedance or floating condition. Refer to Section 7 for implementation of the pull-up.

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are emproyed that proviae curremt management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

The SN54ASC5002 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5002 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 2 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5002			SN74ASC5002			UNIT	
			MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX			
$\mathrm{V}_{\mathrm{T}+}$ Positive-going threshold level					2.9	3.2	3.5	2.9	3.2	3.5	V
$\mathrm{V}_{\mathrm{T}}-\begin{aligned} & \text { Negative-going } \\ & \text { threshold level } \end{aligned}$				1.5	1.7	1.9	1.5	1.7	1.9	V	
$\mathrm{V}_{\text {hys }}$ Hysteresis ($\left.\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}\right)^{\ddagger}$					1.5			1.5		V	
II I	Input current		$\mathrm{V}_{1}=0$ to V_{CC}			± 1			± 1	$\mu \mathrm{A}$	
ICC S	Supply current	IPE06LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1022			61.3	$n \mathrm{~A}$	
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V			2.44			1.21	mA	
		IPF06LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1351			81	$n \mathrm{~A}$	
			$\mathrm{V}_{\mathrm{l}}=3.15 \mathrm{~V}$ or 0.9 V			1.23			1.17	mA	
C_{i}	Intrinsic input capacitance ${ }^{\S}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.1			2.1		pF	
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$		1.3			1.3		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {d }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5002			SN74ASC5002			UNIT
				MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	2.1	2.7	4.7	2.1	2.7	4.4	ns
tPHL				2.1	2.9	5.9	2.1	2.9	5.3	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	3	4.5	8.8	3.1	4.5	8.1	ns
tPHL				3.1	5	11.3	3.2	5	10	
\triangle tPLH	A	Y		0.9	1.8	4.1	0.9	1.8	3.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				1	2.1	5.5	1.1	2.1	4.7	

$\dagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Hysteresis is the difference between the positive-going input threshold voltage, $\mathrm{V}_{\mathrm{T}+}$, and the negative-going input threshold voltage, V_{T}-.
\S Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
The value shown includes the pull-up tap.
§Propagation delay times times are measured from the 50% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
$\Delta t_{P L H} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in $\mathrm{t} P \mathrm{HL}$ with load capacitance

Refer to Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INPUT Standard cell

- 8 ns Typical Propagation Delay with 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

logic symbol

FUNCTION TABLE

INPUT	OUTPUT
A	\mathbf{Y}
H	L
L	H

positive logic equation
$Y=\bar{A}$

description

The SN54ASC5003 and SN74ASC5003 are inverting Schmitt-trigger input buffer CMOS standard cells that translate TTL input voltage levels to CMOS internal cell voltage levels. This cell function exists in two versions (" E " and " F ") with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F^{\prime} " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IPE08LH A,TAP,Y;	minimum height minimum width	29.4
IPF08LH	37.5		

The cell incorporates a pull-up tap to simplify termination of the input. This tap may be used in conjunction with an active pull-up/pull-down terminator in the SNASC237x group or the pull-up tap may be left unconnected. When the terminator is used it ensures that the input will be driven to a high- or low-logic level thereby avoiding exposure to a high-impedance or floating condition.

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with notentials ranging un to 4 kilovolts. Guard-rina structures are emploved that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
The SN54ASC5003 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5003 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 2 in Section 2.

SN54ASC5003, SN74ASC5003
TTL-COMPATIBLE INVERTING SCHMITT-TRIGGER
INPUT BUFFERS WITH PULL-UP TAP
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
IPEO8LH

PARAMETER§	FROM (INPUT)	TO(OUTPUT)	TEST CONDITIONS	SN54ASC5003			SN74ASC5003			UNIT
				MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	3	6	19	3.1	6	17	ns
tPHL				1.1	1.4	2.3	1.1	1.4	2.2	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	6.3	13	35	6.8	13	32	ns
${ }^{\text {tPHL}}$				1.3	2	3.8	1.4	2	3.5	
$\Delta \mathrm{t}$ PLH	A	Y		3.4	7	17	3.7	7	15	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.2	0.6	1.5	0.2	0.6	1.3	

IPF08LH

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5003			SN74ASC5003			UNIT
				MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	3.5	7	18	3.7	7	17	ns
tPHL				1.1	1.5	2.3	1.1	1.5	2.2	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	7	14	35	7.5	14	32	ns
${ }^{\text {t PHL }}$				1.3	2.1	3.8	1.4	2.1	3.5	
Δ tPLH	A	Y		3.5	7	17	3.8	7	15	ns/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.2	0.6	1.5	0.2	0.6	1.3	

$\dagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
The value shown includes the pull-up tap.
\S Propagation delay times times are measured from the 1.3 V point of $V_{1}(0$ to 3 V$)$ to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance

SN54ASC5004, SN74ASC5004
 CMOS-COMPATIBLE INVERTING INPUT BUFFERS WITH PULL-UP TAP

SystemCell ${ }^{\text {Im }} 2-\mu \mathrm{m}$ INPUT STANDARD CELL

- 1 ns Typical Propagation Delay with 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

logic symbol

FUNCTION TABLE

INPUT	OUTPUT
A	Y
H	L
L	H

positive logic equation

$$
Y=\bar{A}
$$

description

The SN54ASC5004 and SN74ASC5004 are inverting input buffer CMOS standard cells that interface external CMOS inputs with CMOS internal cells. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FEATURES		
		CELL LAYOUT	RELATIVE
	HDL LABEL	CELL AREA	
ASPECT RATIO	TO NA210LH		
IPFO2LH	Label: IPFO2LH A,TAP,Y;	minimum width	35

The cell incorporates a pull-up tap to simplify termination of the input. This tap may be used in conjunction with an active pull-up/pull-down terminator in the 'ASC237x group or the pull-up tap may be left unconnected. When the terminator is used it ensures that the input will be driven to a high or low logic level, thereby avoiding exposure to a high-impedance or floating condition. Refer to Section 7 for implementation of the pull-up.

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

The SN54ASC5004 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to

absolute maximum ratings and recommended operating conditions
See Table 2 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ASC5004	SN74ASC5004	UNIT
		TYP MAX	TYP MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.5	2.5	V
II \quad Input current	$\mathrm{V}_{1}=0$ to V_{CC}	± 1	± 1	$\mu \mathrm{A}$
ICC Supply current	$V_{1}=V_{C C}$ or 0	999	60	nA
ICC Supply current	$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V	4.37	4.14	mA
C_{i} Intrinsic input capacitance ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.3	2.3	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	2	2	pF

\dagger Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance. The value shown includes the pull-up tap.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5004			SN74ASC5004			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
tPLH	A	Y	$C_{L}=0$	0.4	0.7	1.2	0.5	0.7	1.2	ns
tPHL				0.3	0.6	1.5	0.3	0.6	1.3	
${ }_{\text {tPLH }}$	A	Y	$C_{L}=1 \mathrm{pF}$	0.7	1	1.8	0.7	1	1.8	ns
${ }^{\text {tPHL}}$				0.5	1	2.3	0.6	1	2.1	
$\triangle \mathrm{t}$ PLH	A	Y		0.2	0.3	0.7	0.2	0.3	0.6	ns/pF
$\Delta \mathrm{t}_{\mathrm{PHL}}$				0.2	0.4	0.9	0.2	0.4	0.8	

\ddagger Propagation delay times are measured from the 50% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SN54ASC5005, SN74ASC5005 TTL-COMPATIBLE INVERTING INPUT BUFFERS WITH PULL-UP TAP

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INPUT STANDARD CELL

- 2.1 ns Typical Propagation Delay with 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
logic symbol

FUNCTION TABLE

| INPUT |
| :---: | :---: |
| A | | OUTPUT |
| :---: |
| \mathbf{Y} |
| H |
| L |

positive logic equation

$$
Y=\bar{A}
$$

description

The SN54ASC5005 and SN74ASC5005 are inverting input buffer CMOS standard cells that translate TTL input voltage levels to CMOS internal-cell voltage levels. This cell function exists in two versions ("E" and " $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IPFO5LH A,TAP,Y;	minimum height	28.6
IPFO5LH		minimum width	31.5

These input cells incorporate a pull-up tap to simplify termination of the input. This tap may be used in conjunction with an active pull-up/pull-down terminator from the 'ASC2370 through 'ASC2374 group, otherwise the pull-up tap may be left unconnected. When the terminator is used it ensures that the input will be driven to a high or low logic level thereby avoiding exposure to a high-impedance or floating condition.

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management tecnniques tor the cell to recover trom exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
The SN54ASC5005 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5005 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5005		SN74ASC5005		UNIT		
			TYP	MAX	TYP	MAX					
	Input threshold voltage				$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.3		1.3		V
1	Input current		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or			± 1		± 1	$\mu \mathrm{A}$		
ICC Supply current		IPEO5LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or			905		54.3	nA		
		$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0			1.21		1.13	mA			
		IPF05LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or			758		45.5	nA		
		$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0			1.21		1.13	mA			
C_{i}	Intrinsic input capacitance ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.1		2.1		pF		
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	16		16		pF		

${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance. The value shown includes the pull-up tap.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5005			SN74ASC5005			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	0.9	2	0.6	0.9	2	ns
tPHL				0.4	0.9	1.3	0.5	0.9	1.3	
tPL.H	A	Y	$C_{L}=1 \mathrm{pF}$	1.6	2.8	6.2	1.7	2.8	5.5	ns
${ }_{\text {tPHL }}$				0.8	1.3	2.2	0.8	1.3	2	
Δ tPLH	A	Y		1	1.9	4.2	1	1.9	3.8	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}^{\text {L }}$				0.3	0.4	0.9	0.3	0.4	0.8	

\ddagger Propagation delay times are measured from the 1.3 V point of $V_{1}(0$ to 3 V$)$ to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
$\S_{\text {Typical values are at }} V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SN54ASC5006, SN74ASC5006 CMOS-COMPATIBLE NONINVERTING INPUT BUFFERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INPUT STANDARD CELL

- Typical Propagation Delay with 1-pF Load 1.9 ns for the IPE01LH
1.1 ns for the IPF01LH
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
logic symbol

FUNCTION TABLE

INPUT	
A	OUTPUT
\mathbf{Y}	
H	H
L	L

positive logic equation

$$
Y=A
$$

description

The SN54ASC5006 and SN74ASC5006 are noninverting input buffer CMOS standard cells that buffer CMOS input voltage levels to CMOS internal-cell voltage levels. This cell function eixsts in two versions (" E " and " F ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " $F^{\prime \prime}$ cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	FEATURES		
	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IPFO1LH A,Y;	minimum height minimum width	31.5

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

The SN54ASC5006 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5006 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 2 in Section 2.

SN54ASC5006, SN74ASC5006
 CMOS-COMPATIBLE NONINVERTING INPUT BUFFERS

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5006		SN74ASC5006		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.5		2.5		V
II	Input current		$V_{1}=V_{\text {CC }}$ or 0			± 1		± 1	$\mu \mathrm{A}$		
${ }^{\text {I C }}$	Supply current	IPE01LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$ or 0			1218		73.1	nA		
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V			2.93		2.62	mA		
		IPF01LH	$V_{1}=V_{C C}$ or 0			1353		81.2	nA		
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V			2.95		2.62	mA		
C_{i}	Intrinsic input capacitance ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$T_{A}=25^{\circ} \mathrm{C}$	2		2		pF		
$C_{p d}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$	3		3		pF		

\dagger Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
IPE01LH

PARAMETER ${ }^{\ddagger}$.	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5006			SN74ASC5006			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=0$	0.9	1.7	3.7	1	1.7	3.4	ns
${ }_{\text {tPHL }}$				1	1.7	3.3	1	1.7	3.1	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=1 \mathrm{pF}$	1	1.9	4.1	1.1	1.9	3.8	ns
${ }^{\text {t PHL }}$				1.1	1.9	3.7	1.1	1.9	3.4	
$\Delta \mathrm{tPLH}$	A	Y		0.07	0.2	0.5	0.09	0.2	0.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.2	0.5	0.1	0.2	0.4	

IPF01LH

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5006			SN74ASC5006			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
tPLH	A	Y	$C_{L}=0$	0.5	0.7	1.2	0.5	0.7	1.2	ns
${ }^{\text {tPHL }}$				0.2	0.7	1.5	0.3	0.7	1.4	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.1	1.9	0.7	1.1	1.8	ns
${ }^{\text {tPHL}}$				0.5	1.1	2.3	0.6	1.1	2.1	
Δ tPLH	A	Y		0.2	0.4	0.7	0.2	0.4	0.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.2	0.4	0.9	0.2	0.4	0.8	

[^88]Refer to Section 7.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INPUT STANDARD CELL

- Typical Propagation Delay with 1-pF Load 2.1 ns for the IPE04LH and IPF04LH 1.6 ns for the IPF12LH
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=A
$$

description

The SN54ASC5007 and SN74ASC5007 are noninverting input buffer CMOS standard cells that translate TTL input voltage levels to CMOS internal-cell voltage levels. This cell function exists in two versions ("E'" and " F ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F ' cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The options are designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	FEATURES		
	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IPFO4LH A,Y;	minimum height IPF04LH	minimum width
IPF12LH	Label: IPF12LH A,Y;	minimum width	31.5

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

The SN54ASC5007 is characterized for oderation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5007 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 2 in Section 2.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5007		SN74ASC5007		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	1.3		1.3		V
I	Input current		$V_{1}=V_{C C}$ or 0			± 1		± 1	$\mu \mathrm{A}$		
ICC Supply current		IPEO4LH	$V_{1}=V_{C C}$ or 0			1040		62.4	nA		
		$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.21		1.13	mA			
		IPFO4LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1307		78.4	nA		
		$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.2		1.13	mA			
		IPF12LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1303		78.2	nA		
		$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			3		2.81	mA			
	Intrinsic input capacitance ${ }^{\dagger}$		IPEO4LH	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.9		1.9		pF	
		IPFO4LH	2.2				2.2				
		IPF12LH	2.8				2.8				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	18		18		pF		

\dagger Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
IPEO4LH and IPFO4LH

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5007			SN74ASC5007			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text {§ }}$	MAX	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=0$	0.8	1.3	2.5	0.8	1.3	2.3	ns
tPHL				1.2	2.3	5.4	1.3	2.3	4.8	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=1 \mathrm{pF}$	1	1.6	3.2	1	1.6	3	ns
${ }_{\text {tPHL }}$				1.4	2.6	6.2	1.5	2.6	5.5	
Δ tPLH	A	Y		0.1	0.3	0.8	0.1	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.3	0.8	0.1	0.3	0.8	

IPF12LH

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5007			SN74ASC5007			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
tPLH	A	Y	$C_{L}=0$	0.5	1.1	2	0.6	1.1	1.9	ns
${ }^{\text {tPHL }}$				0.8	1.6	3.5	0.9	1.6	3.1	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.4	2.7	0.7	1.4	2.5	ns
tPHL				1	1.8	4.2	1	1.8	3.7	
Δ tPLH	A	Y		0.1	0.3	0.7	0.1	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.1	0.2	0.7	0.1	0.2	0.6	

[^89]Refer to Section 7.

SN54ASC5010, SN74ASC5010 TTL-COMPATIBLE INVERTING SCHMITT-TRIGGER INPUT BUFFERS WITH PULL-UP TAP

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INPUT STANDARD CELL

- 7.5 ns Typical Propagation Delay with 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\bar{A}$

logic symbol

FUNCTION TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
H	L
L	H

description

The SN54ASC5010 and SN74ASC5010 are inverting Schmitt-trigger input buffer CMOS standard cells that translate TTL input voltage levels to CMOS internal-cell voltage levels. This cell function exists in two versions (' E " and " F ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " $F^{\prime \prime}$ cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
IPE10LH IPF10LH	Label: IPF10LH A,TAP, Y;	minimum height minimum width	$\begin{aligned} & 29.4 \\ & 37.5 \end{aligned}$

These input cells incorporate a pull-up tap to simplify termination of the input. This tap may be used in conjunction with an active pull-up/pull-down terminator from the 'ASC2370 through 'ASC2374 group, otherwise the pull-up tap may be left unconnected. When the terminator is used it ensures that the input will be driven to a high or low logic level thereby avoiding exposure to a high-impedance or floating condition.

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current
 thereby negating most common sources that can produce a latch-up condition.
The SN54ASC5010 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5010 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

SN54ASC5010, SN74ASC5010

TTL-COMPATIBLE INVERTING SCHMITT-TRIGGER INPUT BUFFERS WITH PULL-UP TAP

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5010			SN74ASC5010			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
$\mathrm{V}_{\mathrm{T}}+$ Positive-going threshold level					1.5	1.8	2	1.5	1.8	2	V
V_{T} - Negative-going threshold level				0.6	0.9	1.1	0.6	0.9	1.1	V	
$\mathrm{V}_{\text {hys }}$ Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}_{-}}$)					900	-		900		mV	
II Input current			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			± 1			± 1	$\mu \mathrm{A}$	
${ }^{1} \mathrm{CC}$ S	Supply current	IPE10LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1125			67.5	nA	
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.47			1.37	mA	
		IPF10LH	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			1548			92.9	$n \mathrm{~A}$	
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.45			1.37	mA	
C_{i}	Intrinsic input capacitance ${ }^{\dagger}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.1			2.1		pF	
$\mathrm{C}_{\text {pd }} \mathrm{E}$	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		20			20		pF	

${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance. The value shown includes the pull-up tap.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\ddagger}$	$\begin{gathered} \hline \text { FROM } \\ \text { (INPUT) } \end{gathered}$	то (OUTPUT)	TEST CONDITIONS	SN54ASC5010			SN74ASC5010			UNIT
				MIN	TYP§	MAX	MIN	TYP ${ }^{\text {§ }}$	MAX	
tPLH	A	Y	$C_{L}=0$	2.9	6	16	3.1	6	14	ns
tpHL				1.1	1.4	2.2	1.1	1.4	2	
tPLH	A	Y	$\mathrm{C}_{\mathrm{L}^{\prime}}=1 \mathrm{pF}$	6.3	13	33	6.8	13	29	ns
tPHL				1.3	2	3.6	1.4	2	3.3	
Δ tPLH $^{\text {d }}$	A	Y		3.4	7	18	3.7	7	16	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {PHL }}$				0.2	0.6	1.5	0.2	0.6	1.3	

\ddagger Propagation delay times are measured from the 1.3 V point of $V_{1}(0$ to 3 V$)$ to the 44% point of V_{O} with $t_{r}=t_{f}=2$ ns $(10 \%$ and $90 \%)$. ${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{TPHL}^{2} \equiv$ change in TPHL with load capacitance
${ }^{\S}{ }_{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SN54ASC5013, SN74ASC5013
 TTL-COMPATIBLE NONINVERTING INPUT BUFFERS WITH PULL.UP TAP

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INPUT STANDARD CELL

- 2.1 ns Typical Propagation Delay With 1-pF Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
logic symbol

function table

INPUT \mathbf{A}	OUTPUT \mathbf{Y}
H	H
L	L

positive logic equation

$Y=A$

description

The SN54ASC5013 and SN74ASC5013 are noninverting input buffer CMOS standard cells that translate TTL input voltage levels to CMOS internal-cell voltage levels. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	$\|c\|$ FEATURES \quadNETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IPF13LH A,TAP,Y;	minimum height	29.4

This input cell incorporates a pull-up tap to simplify termination of the input. This tap may be used in conjunction with either an active pull-up/pull-down terminator from the 'ASC2370 through 'ASC2374 group, otherwise the pull-up tap may be left unconnected. When the terminator is used it ensures that the input will be driven to a high or low logic level thereby avoiding exposure to a high-impedance or floating condition.

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC5013, SN74ASC5013 TTL-COMPATIBLE NONINVERTING INPUT BUFFERS WITH PULL-UP TAP

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ASC5013	SN74ASC5013	UNIT
		TYP MAX	TYP MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.3	1.3	V
$I_{\text {I }} \quad$ Input current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0	± 1	± 1	$\mu \mathrm{A}$
	$V_{1}=V_{C C}$ or 0	1037	62.2	nA
ICC Supply current	$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V	1.21	1.13	mA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance ${ }^{\dagger}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2	2.2	pF
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad t_{r}=t_{f}=3 \mathrm{~ns}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	18	18	pF

${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5013			SN74ASC5013			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
tPLH	A	Y	$C_{L}=0$	0.8	1.3	2.4	0.8	1.3	2.3	ns
tPHL				1.3	2.3	5.3	1.3	2.3	4.7	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	1	1.6	3.2	1	1.6	2.9	ns
tPHL				1.4	2.6	6.1	1.5	2.6	5.4	
Δ tpLH	A	Y		0.1	0.3	0.8	0.1	0.3	0.7	ns/pF
Δ tpHL				0.1	0.3	0.8	0.1	0.3	0.8	

\ddagger Propagation delay times are measured from $V_{I}=1.3 V$ to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}(10 \%$ and $90 \%)$.
$t_{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\mathrm{tPHL}} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{PL}} \mathrm{F} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance

Refer to Section 7.

SN54ASC5100, SN74ASC5100 TTL-|CMOS-COMPATIBLE OUTPUT BUFFERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.7 ns with $15-\mathrm{pF}$ Load
4.7 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

SN54ASC5100 IOL $=3.4 \mathrm{~mA}$
$\mathrm{IOH}=-3.4 \mathrm{~mA}$
SN74ASC5100 $\mathrm{IOL}=4 \mathrm{~mA}$
$1 \mathrm{OH}=-4 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over V_{CC} Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A$

description

The SN54ASC5100 and SN74ASC5100 are noninverting output buffer standard ceils that interface internal cells with TTL or CMOS external loads. This cell function exists in two versions (" E " and " F ") with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
	NETLIST	CELL LAYOUT	RELATIVE CELL AREA
	ASPECT RATIO	minimum height TO NA210LH	
OPE4OLH	Label: OPF4OLH A,Y;	31.8 OPF4OLH	minimum width

[^90]
SN54ASC5100, SN74ASC5100 TTL-|CMOS-COMPATIBLE OUTPUT BUFFERS

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta delay times provide a means for making direct comparisons of the various output responses with changes in capacitive loading.

The SN54ASC5100 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5100 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2. The maximum high-level or low-level output current is 3.4 milliamperes for the SN54ASC5100 and 4 milliamperes for the SN74ASC5100.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54ASC5100			SN74ASC5100			UNIT	
		MIN	TYP	MAX	MiN	TYP	MAX			
Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
V_{OH} High-level output voltage		$\mathrm{I} \mathrm{OH}=-4 \mathrm{~mA}$				3.7			V	
		$\mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA}$	3.7							
		${ }^{\mathrm{I}} \mathrm{OH}=-20 \mu \mathrm{~A}$, See Note 1	$\mathrm{V}_{\mathrm{CC}}-0.1$			$\mathrm{V}_{\mathrm{CC}}-0.1$				
		$\mathrm{IOL}^{\mathrm{OL}}=4 \mathrm{~mA}$						0.5		
$\mathrm{V}_{\text {OL }}$ Low-level output voltag		$\mathrm{I}^{\mathrm{OL}}=3.4 \mathrm{~mA}$			0.5				V	
		$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1		
	OPE40LH	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,			1563			93.8	nA	
Supply current	OPF4OLH	$V_{1}=V_{C C}$ or $0, T_{A}=$ Min to Max			1988			119	nA	
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance		$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7			0.7		pF	
C Equivalent power	OPE40LH	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$,		9.1			9.1		F	
$\mathrm{C}_{\text {pd }}$ dissipation capacitance	OPF40LH	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$		10.9			10.9		pF	

NOTE 1: These limits apply when all other outputs are open.

SN54ASC5100, SN74ASC5100 TTL-|CMOS.COMPATIBLE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5100			SN74ASC5100			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tplH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1	1.9	4.1	1.1	1.9	3.7	ns
tPHL				1.8	3.7	8.7	1.9	3.7	7.8	
tpLH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1.5	2.9	6.6	1.7	2.9	5.9	ns
tPHL				3.3	6.9	16.2	3.7	6.9	14.3	
Δ tPLH	A	Y		10	30	80	10	30	70	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				40	90	210	50	90	190	

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM INPUT	TO OUTPUT	TEST CONDITIONS	SN54ASC5100			SN74ASC5100			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1.2	2.4	5.3	1.3	2.4	4.8	ns
tPHL				1.6	3	7.1	1.7	3	6.3	
tPLH	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	2.2	4.4	9.9	2.4	4.4	9	ns
tPHL				2.5	5.1	12.2	2.7	5.1	10.7	
$\Delta \mathrm{tPLH}$	A	Y		30	60	130	30	60	120	ps/pF
$\triangle \mathrm{t}$ PHL				30	60	150	30	60	130	

\dagger Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{t_{P H L}} \equiv$ propagation delay time, high-to-low-level output
$\Delta t P L H \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SN54ASC5103, SN74ASC5103 TTL-|CMOS-COMPATIBLE OUTPUT BUFFERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delay
2.4 ns with 15-pF Load
3.5 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

SN54ASC5103 $\mathrm{IOL}=5.1 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{OH}}=-5.1 \mathrm{~mA}$
SN74ASC5103 $\mathrm{IOL}=6 \mathrm{~mA}$
$\mathrm{IOH}=-6 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=A
$$

description

The SN54ASC5103 and SN74ASC5103 are noninverting output buffer standard cells that interface CMOS internal cells with TTL or CMOS external loads. This cell function exists in two versions ("E' and ' $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F ' cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
OPE60LH OPF60LH	Label: OPF60LH A,Y;	minimum height minimum width	$\begin{array}{r} 43 \\ 40.5 \end{array}$

Ine ceils incorporate circuit eiements aesigned to activeiy oypass and dissipate eiectrostatic discilarges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{CC} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5103 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5103 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2, and the IO test conditions shown in the electrical characteristics. The maximum low-level or high-level output current is 5.1 milliamperes for the SN54ASC5103 and 6 milliamperes for the SN74ASC5103.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5103			SN74ASC5103			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\begin{gathered} C_{L}=15 \mathrm{pF} \\ R_{\mathrm{L}}=\infty \end{gathered}$	0.9	1.6	3.5	1	1.6	3.2	ns
tPHL				1.6	3.2	7.3	1.7	3.2	6.5	
tPLH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1.2	2.3	4.9	1.3	2.3	4.4	ns
tPHL				2.5	5	11.9	2.7	5	10.5	
$\Delta \mathrm{t}$ PLH	A	Y		10	20	40	10	20	30	$\mathrm{ps} / \mathrm{pF}$
Δ tPHL				20	51	140	30	51	120	

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5103			SN74ASC5103			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\begin{gathered} C_{L}=15 \mathrm{pF} \\ R_{L}=\infty \end{gathered}$	1	2	4.4	1.1	2	4	ns
${ }^{\text {tPHL }}$				1.5	2.7	6.1	1.6	2.7	5.5	
tPLH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1.6	3	6.7	1.7	3	6	ns
tPHL				2.1	4	9.2	2.2	4	8.2	
$\Delta \mathrm{t}_{\text {PLH }}$	A	Y		10	29	60	20	29	60	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				20	37	90	20	37	80	

\dagger Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high level output
tPHL \equiv propagation delay time, high-to-low level output
$\Delta t P L H \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance

Refer to Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.7 ns with 15-pF Load

4 ns with $50-\mathrm{pF}$ Load
Output Current Ratings

$$
\begin{aligned}
\text { SN54ASC5104 IOL } & =5.1 \mathrm{~mA} \\
\mathrm{IOH} & =-5.1 \mathrm{~mA} \\
\text { SN74ASC5104 } \mathrm{IOL} & =6 \mathrm{~mA} \\
\mathrm{IOH} & =-6 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\mathrm{A}(\text { when } \mathrm{GZ} \text { is } \mathrm{L})
$$

logic symbol

FUNCTION TABLE

INPUTS	OUTPUT	
GZ	A	Y
L	H	H
L	L	L
H	X	Z

description

The SN54ASC5104 and SN74ASC5104 are noninverting 3-state output buffer standard-cells that interface internal cells with TTL or CMOS external buses. This cell function exists in two versions (" E " and " $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

| CELL NAME | $\begin{array}{c}\text { NETLIST } \\ \text { HDL LABEL }\end{array}$ | $\begin{array}{c}\text { FEATURES } \\$ |
| :---: | :---: | :---: | :---: |
| | | | \(\left.\begin{array}{c}RELATIVE

CELL AREA

TO NA210LH\end{array}\right]\)

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states; therefore, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

SN54ASC5104, SN74ASC5104

TTL-ICMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter that is included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5104 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5104 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2 and the IO test conditions shown in the electrical characteristics. The maximum low-level or high-level output current is 5.1 milliamperes for the SN54ASC5104 and 6 milliamperes for the SN74ASC5104.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SN54ASC5104			SN74ASC5104			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
V_{T} Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
V_{OH} High-level output voltage		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$				3.7			V	
		$\mathrm{I}^{\mathrm{OH}}=-5.1 \mathrm{~mA}$	3.7							
		$\mathrm{l}^{\mathrm{OH}}=-20 \mu \mathrm{~A}$, See Note 1	$\mathrm{V}_{\text {CC }}-0.1$			$\mathrm{V}_{\text {CC }}-0.1$				
$\mathrm{V}_{\text {OL }}$ Low-level output voltage		$\mathrm{IOL}^{\prime}=6 \mathrm{~mA}$						0.5	V	
		${ }^{1} \mathrm{OL}=5.1 \mathrm{~mA}$	0.5							
		$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}, \quad$ See Note 1	0.1			0.1				
IOZ Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0	± 10			± 5			$\mu \mathrm{A}$	
ICC Supply current	OPE63LH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$	3145			189			nA	
	OPF63L.H		3039			182				
Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1			1			pF	
	GZ			0.7			0.7			
Equivalent power dissipation capacitance	OPE63LH	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$		17.1			17.1		pF	
	OPF63LH			19.4			19.4			

NOTE 1: These limits apply when all other outputs are open.

SN54ASC5104, SN74ASC5104 TTL-|CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5104			SN74ASC5104			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$R_{L}=\infty$	1	2	4.5	1.1	2	4	ns
${ }_{\text {tPHL }}$				1.6	3.3	7.8	1.7	3.3	6.9	
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.2	2.8	6.6	1.3	2.8	6	
${ }^{\text {t P Z }}$			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	1.5	3	7.1	1.6	3	6.4	

TTL loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5104			SN74ASC5104			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	1.4	2.7	6.3	1.5	2.7	5.6	ns
tPHL				2.4	5.2	12.7	2.6	5.2	11.1	
${ }_{\text {tPZH }}$	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.5	8.4	1.7	3.5	7.6	ns
${ }_{\text {t P Z }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.4	5.2	12.6	2.6	5.2	11	
${ }_{\text {t }}$ PHZ	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		10			10		ns
${ }^{\text {t PLZ }}$			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	9			9			

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5104			SN74ASC5104			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
Δ tPLH	A	Y		10	23	50	10	23	50	ps/pF
Δ tPHL				20	54	140	30	54	120	
Δ tPZH	GZ	Y		10	20	50	10	20	50	F
$\Delta \mathrm{t}_{\mathrm{P} Z \mathrm{~L}}$				30	63	160	30	63	130	S/pF

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
${ }^{t} P Z H \equiv$ output enable time to high level
tpZL \equiv output enable time to low level
$\mathrm{t}_{\mathrm{PHZ}} \equiv$ output disable time from high level
${ }^{t} P L Z \equiv$ output disable time from low level
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Δ tPLH \equiv change in tPLH with load capacitance $\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in $\mathrm{t} P \mathrm{HL}$. with load capacitance $\Delta \mathrm{t} P Z \mathrm{H} \equiv$ change in tPZH with load capacitance $\Delta t P Z L \equiv$ change in tPZL with load capacitance
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5104			SN74ASC5104			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	1.2	2.4	5.6	1.3	2.4	5	ns
tPHL				1.5	2.8	6.6	1.6	2.8	5.8	
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.7	3.2	7.3	1.8	3.2	6.6	ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.3	2.5	5.7	1.4	2.5	5.2	ns

CMOS loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST CONDITIONS	SN54ASC5104			SN74ASC5104			UNIT
	(INPUT)	(OUTPUT)		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	1.7	3.6	8.4	1.9	3.6	7.5	ns
tPHL				2	4	9.9	2.2	4	8.7	
tpZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.2	4.4	10.3	2.4	4.4	9.2	
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	4	9.5	2.2	4	8.4	ns

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5104			SN74ASC5104			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y		20	34	80	20	34	70	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				20	34	100	20	34	80	
$\Delta \mathrm{t}_{\text {PZH }}$	GZ	Y		20	34	80	20	34	70	$\mathrm{ps} / \mathrm{pF}$
$\Delta t^{\text {PZ }}$				20	43	110	20	43	90	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. CMOS times are specified at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time; high-to-low-level output
tPZH \equiv output enable time to high level
Δ tPLH \equiv change in TPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in t PHL with load capacitance
Δ tPZH \equiv change in tPZH with load capacitance
$\Delta \mathrm{t} Z \mathrm{LL} \equiv$ change in tPZL with load capacitance

Refer to Section 7.

SN54ASC5105, SN74ASC5105 TTL-ICMOS-COMPATIBLE OPEN-DRAIN OUTPUT BUFFERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays

2 ns with 15-pF Load
4 ns with 50-pF Load

- Output Current Ratings SN54ASC5105 $\mathrm{IOL}=5.1 \mathrm{~mA}$ SN74ASC5105 $\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$Y=A$

logic symbol

function table

INPUT \mathbf{A}	OUTPUT \mathbf{Y}
H	H
L	L

description

The SN54ASC5105 and SN74ASC5105 are noninverting output buffer standard cells that interface CMOS internal cells with a passive pull-up external load. This cell function exists in two versions (" $E^{\prime \prime}$ and ' $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the ' F ' cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
OPE61LH OPF61LH	Label: OPF61LH. A,Y;	minimum height minimum width	$\begin{aligned} & 31 \\ & 40 \end{aligned}$

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
These output cells have been designed to provide low-impedance drive levels for low-logic-level outputs interfacing a bus having a terminated high-level drive source. As a result, passive resistance has been omitted in series with the output transistor. Shorting the low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to V_{CC}.
The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta delay times provide a means for making direct comparisons of the various output responses to increased capacitive loading.

Copyright (c) 1986, Texas Instruments Incorporated

SN54ASC5105, SN74ASC5105 TTL-ICMOS-COMPATIBLE OPEN-DRAIN OUTPUT BUFFERS

description (continued)

The SN54ASC5105 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5105 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings. and recommended operating conditions

See Table 3 in Section 2. Maximum low-level output current is 5.1 milliamperes for the SN54ASC5105 and 6 milliamperes for the SN74ASC5105.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	то (OUTPUT)	TEST CONDITIONS	SN54ASC5105			SN74ASC5105			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	1	2	4.7	1.1	2	4.2	ns
tPZL	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF}, \\ R_{L}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	1.9	4	9.8	2.1	4	8.6	ns
tplZ	A	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		8			8		ns
Δ tPZL	A	Y		30	60	150	30	60	130	ps/pF

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5105			SN74ASC5105			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	0.9	1.6	3.5	1	1.6	3.2	ns
${ }^{\text {t P }}$ LL	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	1.5	2.9	7	1.6	2.9	6.1	ns
$\Delta t^{\text {P }}$ LL	A	Y		20	37	100	20	37	80	$\mathrm{ps} / \mathrm{pF}$

[^91]
SN54ASC5106, SN74ASC5106 TTL-|CMOS-COMPATIBLE OUTPUT BUFFERS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays

2 ns with $15-\mathrm{pF}$ Load
2.8 ns with 50-pF Load

- Output Current Ratings

SN54ASC5106 $\mathrm{IOL}=8.5 \mathrm{~mA}$
$1 \mathrm{OH}=-8.5 \mathrm{~mA}$
SN74ASC5106 $\mathrm{IOL}^{\circ}=10 \mathrm{~mA}$ $\mathrm{IOH}=-10 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

logic symbol

FUNCTION TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
H	H
L	L

$Y=A$

description

The SN54ASC5106 and SN74ASC5106 are noninverting output buffer standard-cells that interface CMOS internal cells with TTL or CMOS external loads. This cell function exists in two versions (" $E^{\prime \prime}$ and " $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

| CELL NAME | $\begin{array}{c}\|c\| \\ \\$\end{array} | $\begin{array}{c}\text { FEATURES } \\ \text { NETLIST }\end{array}$ | $\begin{array}{c}\text { CELL LAYOUT } \\ \text { HSL LABEL }\end{array}$ |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}RELATIVE

CELL AREA

TO NA210LH\end{array}\right\}\)

The cells incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{C} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.
The SN54ASC5106 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5106 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2 and the Io test conditions shown in the electrical characteristics. The maximum low-level or high-level output current is 8.5 milliamperes for the SN54ASC5106 and 10 milliamperes for the SN74ASC5106.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5106			SN74ASC5106			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tplH	A	Y	$\begin{gathered} C_{L}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	0.8	1.5	3.2	0.9	1.5	2.9	ns
tPHL				1.2	2.6	5.7	1.3	2.6	5.1	
tPLH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \rho F \\ R_{L}=\infty \end{gathered}$	1.1	2	4.4	1.2	2	4	ns
tPHL				1.8	3.7	8.5	1.9	3.7	7.6	
Δ tPLH	A	Y		10	14	40	10	14	30	$\mathrm{ps} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				20	31	80	20	31	70	

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5106			SN74ASC5106			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {t PLH }}$	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	0.9	1.9	4	1	1.9	3.6	ns
${ }_{\text {t }}$ PHL				1.2	2.2	4.8	1.3	2.2	4.4	
tPLH	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF}, \\ R_{\mathrm{L}}=\infty \end{gathered}$	1.4	2.7	6.2	1.5	2.7	5.6	ns
${ }^{\text {t }} \mathrm{PHL}$				1.6	3	6.8	1.7	3	6.1	
Δ tPLH	A	Y		10	23	60	10	23	60	ps/pF
Δ tPHL				10	23	60	10	23	50	

\dagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at 50% point of V_{O}.
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{pHL}} \equiv$ propagation delay time, high-to-low-level output
$\Delta t_{P L H} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.7 ns with $15-\mathrm{pF}$ Load
3.7 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

SN54ASC5107 IOL $=8.5 \mathrm{~mA}$
$\mathrm{IOH}=-8.5 \mathrm{~mA}$
SN74ASC5107 $\mathrm{IOL}=10 \mathrm{~mA}$
$\mathrm{IOH}=-10 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$Y=A($ when $G Z$ is L)

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT	
GZ	A	\mathbf{Y}	
L	H	H	
L	L	L	
H	X	Z	

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to VCC will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

SN54ASC5107, SN74ASC5107
 TTL-ICMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5107 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5107 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2. The maximum low-level or high-level output current is 8.5 milliamperes for the SN54ASC5107 and 10 milliamperes for the SN74ASC5107.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5107			SN74ASC5107			UNIT		
			MIN	TYP	MAX	MIN	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2			2.2		V
VOH High-level output voltage			$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$					3.7			V		
			$\mathrm{I}^{\mathrm{OH}}=-8.5 \mathrm{~mA}$		3.7								
			$1 \mathrm{OH}=-20 \mu \mathrm{~A}$,	See Note 1	$\mathrm{V}_{\text {CC }}-0.1$			$\mathrm{V}_{\mathrm{CC}}-0.1$					
V OL Low-level output voltage			$1 \mathrm{OL}=10 \mathrm{~mA}$							0.5	V		
			$\mathrm{I}^{\mathrm{OL}}=8.5 \mathrm{~mA}$				0.5						
			$\mathrm{I}^{\mathrm{OL}}=20 \mu \mathrm{~A}$,	See Note 1			0.1			0.1			
Ioz	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0				± 10			± 5	${ }_{\mu \mathrm{A}}$		
ICC Supply current		OPEO3LH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$				3483			209			
		OPF03LH					3318			199			
C_{i}	Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.1			1.1			pF		
		GZ				0.7			0.7				
Equivalent power $\mathrm{C}_{\text {pd }}$ dissipation capacitance		OPEO3LH	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array} \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},\right.$			19.9			19.9		pF		
		OPFO3LH			23.2			23.2					

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5107			SN74ASC5107			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$R_{L}=\infty$	1.1	2.1	4.8	1.2	2.1	4.3	ns
tPHL				1.5	3.3	8.2	1.6	3.3	7.3	
tpZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.2	2.8	6.8	1.3	2.8	6.2	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.4	3.1	7.3	1.5	3.1	6.5	

[^92]
SN54ASC5107, SN74ASC5107 TTL-|CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

TTL loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5107			SN74ASC5107			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	1.4	2.7	6.5	1.5	2.7	5.7	ns
tPHL				2.2	4.7	11.6	2.4	4.7	10.3	
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.5	8.5	1.7	3.5	7.6	ns
${ }_{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.2	4.7	11.2	2.4	4.7	10	
${ }^{\text {tPHZ }}$	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		10			10		ns
tPLZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	8			8			

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5107			SN74ASC5107			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{t}$ PLH	A	Y		10	17	50	10	17	40	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				20	40	100	20	40	90	
$\Delta \mathrm{t}_{\text {PZ }}$	GZ	Y		10	20	50	10	20	40	ps/pF
$\Delta \mathrm{t}_{\text {PZL }}$				20	46	110	20	46	100	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5107			SN74ASC5107			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$R_{L}=\infty$	1.2	2.5	5.9	1.3	2.5	5.3	ns
tPHL				1.5	2.9	7.1	1.5	2.9	6.3	
${ }^{\text {tPZH }}$	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.7	3.3	7.6	1.8	3.3	6.8	ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.3	2.6	6.1	1.4	2.6	5.5	,

CMOS loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5107			SN74ASC5107			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	1.7	3.5	8.3	1.9	3.5	7.4	ns
${ }^{\text {tPHL}}$				1.9	3.9	9.6	2	3.9	8.5	
${ }_{\text {tPZH }}$	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.2	4.3	10.1	2.3	4.3	9.1	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.9	3.8	9	2	, 3.8	8	ns

[^93]change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5107			SN74ASC5107			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y		10	29	70	10	29	70	ps/pF
$\Delta \mathrm{t}$ PHL				10	29	70	10	29	60	
$\Delta \mathrm{t}$ PZH	GZ	Y		10	29	70	10	29	70	ps/pF
$\Delta \mathrm{tPZL}$				20	34	80	20	34	70	

 at the 50% point of V_{O}.
Δ tPLH \equiv change in tPLH with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
$\Delta \mathrm{t}_{\mathrm{P}} \mathrm{ZH} \equiv$ change in tPZH with load capacitance
$\Delta t_{P Z L} \equiv$ change in $t_{P Z L}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays 1.7 ns with $15-\mathrm{pF}$ Load 3 ns with 50-pF Load
- Output Current Ratings SN54ASC5108 IOL $=8.5 \mathrm{~mA}$ SN74ASC5108 $\mathrm{IOL}=10 \mathrm{~mA}$
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas instruments Quality and Reliability

positive logic equation

$$
Y=A
$$

description

The SN54ASC5108 and SN74ASC5108 are noninverting output buffer standard-cells that interface CMOS internal cells with a passive pull-up external load. This cell function exists in two versions (" E ' and ' $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the ' F^{\prime} ' cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
	NETLIST	CELL LAYOUT	RELATIVE
HDL LABEL	ASPECT RATIO	TO NA210LH	
OPE01LH	Label: OPFO1LH A,Y;	minimum height OPFO1LH	31.8
			42

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges
 management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for low-logic-level outputs interfacing a bus having a terminated high-level drive source. As a result, passive resistance has been omitted in series with the output transistor. Shorting the low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to V_{C}.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

Copyright © 1986, Texas Instruments Incorporated

The SN54ASC5108 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5108 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2 and the lo test conditions shown in the electrical characteristics. Maximum lowlevel output current is 8.5 milliamperes for the SN54ASC5108 and 10 milliamperes for the SN74ASC5108.
electrical characteristics over recommended ranges of suply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ASC5108			SN74ASC5108			UNIT		
		MIN	TYP	MAX	MIN	TYP	MiAX					
V_{T} Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
$\mathrm{V}_{\text {OL }}$ Low-level output voltage		$\mathrm{I}^{\mathrm{OL}}=10 \mathrm{~mA}$					0.5			V		
		$\mathrm{I}^{\mathrm{OL}}=8.5 \mathrm{~mA}$		0.5			0.1					
		$\mathrm{I}^{\mathrm{OL}}=20 \mu \mathrm{~A}$,	See Note 1			0.1						
Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0				± 10			± 5	$\mu \mathrm{A}$		
ICC Supply current	OPE01LH	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$				1302	$\frac{78.1}{71.6}$			$n \mathrm{~A}$		
	OPF01LH			1193								
Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.4			1.4			pF		
Equivalent power	OPE01LH	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array}$		5.6			5.6			pF		
capacitance	OPFO1LH			5.8			5.8					

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5108			SN74ASC5108			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {tPZL }}$	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	0.9	1.7	3.7	0.9	1.7	3.3	ns
${ }^{\text {tPZ }}$	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	1.4	3	6.8	1.5	3	6	ns
${ }^{\text {t PLZ }}$	A	Y	$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}		7.2			7.2		ns
$\Delta t^{\text {P }} \mathrm{LL}$	A	Y		10	37	90	20	37	80	ps/pF

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5108			SN74ASC5108			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	0.8	1.4	2.9	0.8	1.4	2.6	ns
tPZL	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF} \\ R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	1.2	2.2	5	1.3	2.2	4.5	ns
$\Delta t^{\text {P }}$ LL	A	Y		10	23	60.	10	23	50	$\mathrm{ps} / \mathrm{pF}$.

[^94]
SystemCell $^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delay
2.7 ns with $15-\mathrm{pF}$ Load 6 ns with 50-pF Load
- Output Current Ratings SN54ASC5109 IOL $=3.4 \mathrm{~mA}$ SN74ASC5109 IOL $=4 \mathrm{~mA}$
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=A
$$

logic symbol

FUNCTION TABLE

INPUT	
A	OUTPUT
\mathbf{Y}	
H	H
L	L

description

The SN54ASC5109 and SN74ASC5109 are noninverting output buffer standard cells that interface CMOS internal cells with a passive pull-up external load. This cell function exists in two versions (" $E^{\prime \prime}$ and ' $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the ' $F^{\prime \prime}$ cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		CELL LAYOUT	RELATIVE
OPL LABEL	ASPECT RATIO		
OP NA210LH			
OPF41LH	Label: OPF41LH A,Y;	minimum height	27.8

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management tecnniques ior the cell to recover trom exposure to nign currents ot up to $40 U$ millamperes, thereby negating most common sources that can produce a latch-up condition.
These output cells have been designed to provide low-impedance drive levels for low-logic-level outputs interfacing a bus having a terminated high-level drive source. As a result, passive resistance has been omitted in series with the output transistor. Shorting the low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to $V_{C C}$.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

description (continued)

The SN54ASC5109 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5109 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2. Maximum low-level output current is 3.4 milliamperes for the SN54ASC5109 and 4 milliamperes for the SN74ASC5109.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC5	09		4ASC5		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	1.3	2.7	6.5	1.4	2.7	5.7	ns,
${ }^{\text {tPZL }}$	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF} \\ R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	2.8	6	14.5	3.1	6	12.5	ns
tPLZ				9.6			9.6			
$\Delta \mathrm{tPZL}$	A	Y		40	90	230	50	90	200	$\mathrm{ps} / \mathrm{pF}$

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5109			SN74ASC5109			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	1.1	2	4.8	1.2	2	4.3	ns
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	2.1	4	10	2.2	4	8.7	ns
$\Delta t_{\text {PZL }}$	A	Y		30	57	150	30	57	130	ps/pF

[^95]
SystemCell ${ }^{T M} 2-\mu m$ OUTPUT STANDARD CELL

- Typical Propagation Delay 3.4 ns with $15-\mathrm{pF}$ Load 6.2 ns with $50-\mathrm{pF}$ Load
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$Y=A($ when G is H)
Y is at a high impedance when G is low.

description

The SN54ASC51 10 and SN74ASC5110 are noninverting 3-state output buffer standard cells that interface internal cells with TTL or CMOS external loads. This cell function exists in two versions (" E ' and " F ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES \quadNETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: OPF42LH A,G,Y;	minimum height minimum width	38.1 45

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

SN54ASC5110, SN74ASC5110
 TTL-ICMOS-COMPATIBLE NONINVERTING 3-STATE OUTPUT BUFFERS

These output cells have been designed specifically to provide low-impedance drive levels for both the highand low-logic-level states. Therefore, passive resistance has been omitted in series with the output transistors. Shorting of a high-level output to ground or a low-level output to VCC will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{C}.
The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5110 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5110 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 3 in Section 2 and the lo test conditions shown in the electrical characteristics. The maximum high-level or low-level output current is 3.2 milliamperes for the SN54ASC5110 and 4 milliamperes for the SN74ASC5110.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5110			SN74ASC5110			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$R_{L}=\infty$	1.3	2.3	4.4	1.4	2.3	4	ns
tPHL				2.2	4.5	8.8	2.4	4.5	7.8	
tpZH	G	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.3	2.4	4.5	1.4	2.4	4.1	S
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.7	5.2	10.4	2.9	5.2	9	

TTL loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5110			SN74ASC5110			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$R_{L}=\infty$	1.9	3.7	7.2	2	3.7	6.5	ns
tPHL				4.3	8.8	17.2	4.7	8.8	15	
tPZH	G	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.9	3.8	7.4	2	3.8	6.6	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	4.8	9.8	20	5.3	9.8	17.2	
tpHZ	G	Y	$R_{L}=1 \mathrm{k} \Omega$ to GND	10			10			ns
${ }_{\text {tPLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}					10		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5110			SN74ASC5110			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y		20	40	80	20	40	70	ps/pF
$\Delta \mathrm{t}_{\mathrm{PHL}}$				60	123	240	70	123	212	
Δ tPZH	G	Y		20	40	80	20	40	70	ps/pF
$\triangle \mathrm{t} P \mathrm{ZL}$				60	131	270	70	131	230	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
${ }^{t} P Z H \equiv$ output enable time to high level
tPZL \equiv output enable time to low level
${ }^{\mathrm{t} P \mathrm{PLZ}} \equiv$ output disable time from high level
tpLZ \equiv output disable time from low level
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\Delta t_{\text {PLH }} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}$ PHL \equiv change in t PHL with load capacitance $\Delta \mathrm{t}_{\mathrm{P} Z \mathrm{H}} \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance $\Delta t_{P Z L} \equiv$ change in tPZL with load capacitance

SN54ASC5110, SN74ASC5110
 TTL-|CMOS-COMPATIBLE NONINVERTING 3-STATE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5110			SN74ASC5110			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	1.5	3	5.8	1.6	3	5.2	ns
tPHL				1.9	3.8	7.9	2	3.8	7	
tPZH	G	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.6	3.2	6	1.7	3.2	5.4	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	4.4	9.3	2.1	4.4	8.2	s

CMOS loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5110			SN74ASC5110			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	2.5	5.3	10.5	3	5.3	9.4	ns
tPHL				3.2	6.5	13.4	3.5	6.5	11.7	
${ }^{\text {tPZH }}$	G	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.6	5.5	11	2.8	5.5	9.9	ns
${ }_{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	3.3	7.2	15.2	3.6	7.2	13.3	

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5110			SN74ASC5110			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{tPLH}$	A	Y		30	66	130	30	66	120	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				30	77	160	40	77	140	
$\Delta \mathrm{tPZH}$	G	Y		30	66	140	30	66	130	ps/pF
$\Delta t^{\prime} \mathrm{PL}$				40	80	180	40	80	150	

\dagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at 50% point of V_{0}.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
$t_{P Z L} \equiv$ output enable time to low level
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t} P \mathrm{HL}$ with load capacitance
$\Delta t_{P Z H} \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance
$\Delta \mathrm{T}_{\mathrm{PZL}} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance

Refer to Section 7.

SystemCell ${ }^{\text {mi }}$ 2- $-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delay 3.5 ns with $15-\mathrm{pF}$ Load 5.7 ns with 50-pF Load
- Output Current Ratings

$$
\begin{aligned}
\text { SN54ASC5111 } \mathrm{IOL} & =3.4 \mathrm{~mA} \\
\mathrm{IOH} & =-3.4 \mathrm{~mA} \\
\text { SN74ASC5111 } \mathrm{IOL} & =4 \mathrm{~mA} \\
\mathrm{IOH} & =-4 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\mathrm{A}(\text { when } \mathrm{GZ} \text { is } \mathrm{L})
$$

description

The SN54ASC5111 and SN74ASC5111 are noninverting 3-state output buffer standard cells that interface CMOS internal cells with TTL or CMOS external buses. This cell function exists in two versions ("E'' and " $F^{\prime \prime}$ ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during layout stage. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES 	CELL LAYOUT ASPECT RATIO		
				Label: OPF43LH A, GZ, Y;	minimum height
:---:					
minimum width	\quad	38			
:---:					
45					

I ne cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states; therefore, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{C} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5111 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5111 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2 and the 10 test conditions shown in the electrical characteristics. The maximum low-level or high-level output current is 3.4 milliamperes for the SN54ASC5111 and 4 milliamperes for the SN74ASC5111.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.

SN54ASC5111, SN74ASC5111 TTL-|CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5111			SN74ASC5111			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$R_{L}=\infty$	1.3	2.4	5.6	1.4	2.4	5	ns
tPHL				2.1	4.5	11.3	2.2	4.5	10	
${ }^{\text {tPZH }}$	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.3	8	1.6	3.3	7.2	ns
$\mathrm{t}_{\mathrm{P} Z \mathrm{~L}}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	4.5	11.6	2.2	4.5	10.2	ns

TTL loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5111			SN74ASC5111			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$R_{L}=\infty$	1.8	3.5	8.5	1.9	3.5	7.6	ns
tPHL				3.8	8	19.7	4.2	8	17.3	
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2	4.4	10.9	2.1	4.4	9.8	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	3.9	8.3	21	4.2	8.3	18.2	
tpHz	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	11			11			ns
${ }^{\text {P PLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	10			10			

change in propagation delay times with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC5111			SN74ASC5111			UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{tPLH}^{\text {P }}$	A	Y		10	31	80	20	31	70	$\mathrm{ps} / \mathrm{pF}$
Δ tPHL				50	100	240	50	100	210	
$\triangle \mathrm{tPZH}$	GZ	Y		10	31	80	20	31	70	/pF
$\triangle \mathrm{t} P \mathrm{ZL}$				50	109	280	60	109	230	S/p

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 n s(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
tPLH \equiv propagation delay time, low-to-high-level output
Δ tPLH \equiv change in tpLH with load capacitance
tPHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
tPZL \equiv output enable time to low level
tPHZ \equiv output disable time from high level
tpLZ \equiv output disable time from low level
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Δ TPHL \equiv change in tPHL with load capacitance
$\Delta t P Z H \equiv$ change in $\mathrm{t} P \mathrm{ZH}$ with load capacitance
$\Delta \mathrm{tPZL} \equiv$ change in tPZL with load capacitance

SN54ASC5111, SN74ASC5111
 TTL./CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5111			SN74ASC5111			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MİN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$R_{L}=\infty$	1.5	3	7.1	1.6	3	6.3	ns
tPHL				1.8	3.7	9.3	1.9	3.7	8.3	
${ }^{\text {P P }}$ PH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2	4	9.3	2.2	4	8.3	ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.7	3.6	9.2	1.9	3.6	8.2	

CMOS loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5111			SN74ASC5111			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$R_{L}=\infty$	2.5	5	11.9	2.7	5	10.6	ns
${ }_{\text {tPHL }}$				2.9	6	15.3	3.1	6	13.4	
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3	6	14.2	3.2	6	12.7	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.9	6	15.6	3.1	6	13.7	ns

change in propagation delay times with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	FROM	TO	TEST		4ASC	11		4ASC5	11	UNIT
ARAN	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	T
Δ tpLH	A	Y	-	30	57	130	30	57	120	$\mathrm{ps} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$				30	66	170	30	66	150	
$\triangle \mathrm{tPZH}$	GZ	Y		30	57	130	30	57	130	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t} P \mathrm{LL}$				30	69	180	40	69	160	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at 50% point of V_{O}.
$\mathrm{t}_{\mathrm{PLH}} \equiv$ propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
${ }^{\text {tPZH }} \equiv$ output enable time to high level
tPZL \equiv output enable time to low level
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in t PHL with load capacitance
$\Delta t_{P Z H} \equiv$ change in $t_{P Z H}$ with load capacitance
$\Delta \mathrm{tPZL} \equiv$ change in tPZL with load capacitance

Refer to Section 7.

SystemCell ${ }^{\text {T" }} \mathbf{2 - \mu m}$ OUTPUT STANDARD CELL

- Typical Propagation Delay
1.7 ns with 15-pF Load
2.2 ns with 50-pF Load
- Output Current Ratings

SN54ASC5120 IOL $=20.4 \mathrm{~mA}$
$\mathrm{IOH}_{\mathrm{OH}}=-10.2 \mathrm{~mA}$
SN74ASC5120 IOL $=24 \mathrm{~mA}$
$\mathrm{IOH}=-12 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A$

description

The SN54ASC5120 and SN74ASC5120 are noninverting output buffer standard cells that interface CMOS internal cells with TTL or CMOS external loads. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: OPFBOLH A,Y;	minimum width	63

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

Tirse vuiput ceiis ilave veen designed to proviae ow-impeaance arive levels tor both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to VCC will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

SN54ASC5120, SN74ASC5120 TTL-|CMOS-COMPATIBLE OUTPUT BUFFERS

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5120 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5120 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2. The maximum high-level output current is -10.2 milliamperes for the SN54ASC5120 and -12 milliamperes for the SN74ASC5120. The maximum low-level output current is 20.4 milliamperes for the SN54ASC5120 and 24 milliamperes for the SN74ASC5120.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ASC5120		SN74ASC5120			UNIT
		MIN TYP	MAX	MIN	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2		V
V_{OH} High-level output voltage	$\mathrm{IOH}^{\prime}=-12 \mathrm{~mA}$			3.7			V
	$\mathrm{I}^{\mathrm{OH}}=-10.2 \mathrm{~mA}$	3.7					
	$\mathrm{I}_{\mathrm{OH}}=-20 \cdot \mu \mathrm{~A}, \quad$ See Note 1	$\mathrm{V}_{\text {CC }}-0.1$		V_{CC} -			
V OL Low-level output voltage	$\mathrm{IOL}^{\mathrm{OL}}=24 \mathrm{~mA}$					0.5	V
	$\mathrm{I}_{\mathrm{OL}}=20.4 \mathrm{~mA}$		0.5				
	$\mathrm{I}_{\text {OL }}=20 \mu \mathrm{~A}, \quad$ See Note 1		0.1			0.1	
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		4207			252	nA
C_{i} Input capacitance	$\mathrm{V}_{C C}=5 \mathrm{~V}$, $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.7			2.7		pF
Equivalent power C_{pd} dissipation capacitance	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} \end{array}$	32.8			32.8		pF

NOTE 1: These limits apply when all other outputs are open.

SN54ASC5120, SN74ASC5120 TTL-|CMOS-COMPATIBLE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5120			SN74ASC5120			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$		1.3			1.3		ns
tPHL					2			2		
tPLH	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$		1.7			1.7		ns
tPHL					2.6			2.6		
$\Delta \mathrm{tPLH}$	A	Y			11			11		$\mathrm{ps} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$					17			17		

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO	TEST CONDITIONS	SN54ASC5120			SN74ASC5120			UNIT
		(OUTPUT)		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$\begin{gathered} C_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1.6				1.6		ns
${ }_{\text {tPHL }}$					1.8			1.8		
tPLH	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF}, \\ R_{L}=\infty \end{gathered}$		2.1			2.1		ns
tPHL					2.2			2.2		
$\Delta \mathrm{tPLH}$	A	Y			14			14		$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL					11			11		

\dagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high level output
tPHL \equiv propagation delay time, high-to-low level output
Δ tPLH \equiv change in tPL.H with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in $\mathrm{t} P \mathrm{HL}^{\text {w }}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SystemCell ${ }^{T M}$ 2- $\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
1.7 ns with $15-\mathrm{pF}$ Load
2.2 ns with 50-pF Load
- Output Current Ratings SN54ASC5121 $\mathrm{IOL}=37.4 \mathrm{~mA}$
SN74ASC5121 $\mathrm{I} \mathrm{OL}=44 \mathrm{~mA}$
- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=A
$$

'ngic symbol

FUNCTION TABLE

INPUT	OUTPUT
A	Y
H	H
L	L

description

The SN54ASC5121 and SN74ASC5121 are noninverting output buffer standard cells that interface CMOS internal cells with a passive pull-up external load. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

\left.| CELL NAME | FEATURES | | |
| :---: | :---: | :---: | :---: |
| | NETLIST | CELL LAYOUT | RELATIVE |
| | HDL LABEL | ASPECT RATIO | CELL AREA |
| TO NA210LH | | | |$\right]$

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for low-logic-level outputs interfacing a bus having a terminated high-level drive source. As a result, passive resistance has been omitted in series with the output transistor. Shortina the low-level outnut to Vre will cause current flow in exrese of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to V_{CC}.

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5121 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5121 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2. The maximum low-level output current is 37.4 milliamperes for the SN54ASC5121 and 44 milliamperes for the SN74ASC5121.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ASC5121			SN74ASC5121			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2			2.2		V
VOL Low-level output voltage	$\mathrm{IOL}=44 \mathrm{~mA}$						0.5	V
	$\mathrm{I}_{\mathrm{OL}}=37.4 \mathrm{~mA}$			0.5				
	$\mathrm{I}_{\text {OL }}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1	
Ioz Off-state output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0			± 10			± 5	$\mu \mathrm{A}$
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			2203			132	nA
C_{i} Input capacitance	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		1.2			1.2		pF
Equivalent power $\mathrm{C}_{\text {pd }}$ dissipation capacitance	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} \end{array}$		10.4			10.4		pF

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5121			SN74ASC5121			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPZL	A	Y	$\begin{gathered} C_{L}=15 \mathrm{pF} \\ R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		1.7			1.7		ns
tPZL	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF} \\ R_{L}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$		2.2			2.2		ns
tPLZ	A	Y	$R_{L}=1 \mathrm{k} \Omega$ to $V_{C C}$		8.3			8.3		ns
$\Delta t_{\text {PZL }}$	A	Y			14			14		$\mathrm{ps} / \mathrm{pF}$

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5121			SN74ASC5121			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {tPZ }}$	A	Y	$\begin{gathered} C_{L}=15 \mathrm{pF} \\ R_{L}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$		1.5			1.5		ns
${ }^{\text {tPZL }}$	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		2			2		ns
$\Delta \mathrm{tPZL}$	A	Y			14			14		ps/pF

[^96]Refer to Section 7.

SystemCell ${ }^{T M}$ 2- $\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
1.5 ns with $15-$ pF Load
1.9 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

SN54ASC5123 $\mathrm{IOL}=40.8 \mathrm{~mA}$
SN74ASC5123 $\mathrm{IOL}=48 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=A
$$

description

logic symbol

FUNCTION TABLE

| INPUT |
| :---: | :---: |
| A | | OUTPUT |
| :---: |
| \mathbf{Y} |
| H |

The SN54ASC5123 and SN74ASC5123 are noninverting output buffer standard-cells that interface CMOS internal cells with a passive pull-up external load. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

		FEATURES	
CELL NAME	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
OPFE1LH	Label: OPFE1LH A,Y;	minimum width	69

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for the low-logic-level outputs interfacing a bus having a terminated high-level drive source. As a result, passive resistance has been omitted in series with the output transistor. Shorting the low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to V_{CC}.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5123 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5123 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2. The maximum low-level output current is 40.8 milliamperes for the SN54ASC5123 and 48 milliamperes for the SN74ASC5123.

SN54ASC5123, SN74ASC5123
 TTL-|CMOS-COMPATIBLE OPEN-DRAIN OUTPUT BUFFERS

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ASC5123			SN74ASC5123			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
V_{T} input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2			2.2		V
VOL Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$,						0.5	V
	$\mathrm{I}^{\mathrm{OL}}=40.8 \mu \mathrm{~A}$,			0.5				
	$\mathrm{I}_{\text {OL }}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1	
IOZ Off-state output current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0			± 10			± 5	$\mu \mathrm{A}$
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & T_{A}=\text { MIN to MAX } \end{aligned}$			3171			190	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8			1.8		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$		16.2			16.2		pF

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5123			SN74ASC5123			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		1.5			1.5		ns
tPZL	A	Y	$\begin{gathered} C_{L}=50 \mathrm{pF} \\ R_{L}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$		1.9			1.9		ns
${ }_{\text {t }}^{\text {PLZ }}$	A	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		9			9		ns
$\triangle \mathrm{t} P \mathrm{ZL}$	A	Y			11			11		ps/pF

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5123			SN74ASC5123			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPZL	A	Y	$\begin{gathered} C_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		1.3			1.3		ns
tPZL	A	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		1.7			1.7		ns
$\Delta \mathrm{t} \mathrm{P} Z \mathrm{~L}$	A	Y			11			11		ps/pF

[^97]Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.5 ns with $15-\mathrm{pF}$ Load

3 ns with 50-pF Load

- Output Current Ratings

SN54ASC5124 $\mathrm{IOL}_{\mathrm{O}}$	$=37.4 \mathrm{~mA}$
IOH	$=-10.2 \mathrm{~mA}$
SN74ASC5124 IOL	$=44 \mathrm{~mA}$
IOH	$=-12 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
$\mathbf{G Z}$	\mathbf{A}	
L	H	H
L	L	L
H	X	Z

$$
\mathrm{Y}=\mathrm{A}(\text { when } \mathrm{GZ} \text { is } \mathrm{L})
$$

description

The SN54ASC5124 and SN74ASC5124 are noninverting 3-state output buffer standard cells that interface CMOS internal cells with TTL or CMOS external buses. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

| CELL NAME | FEATURES | |
| :---: | :---: | :---: | :---: |
| | NETLIST | |
| | | |\(\left.\quad \begin{array}{c}CELL LAYOUT

ASPECT RATIO\end{array} $$
\begin{array}{c}\text { RELATIVE } \\
\text { CELL AREA } \\
\text { TO NA210LH }\end{array}
$$\right]\)

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

[^98]
SN54ASC5124, SN74ASC5124

TTL-ICMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

absolute maximum ratings and recommended operating conditions

See Table 3 in Section 2. The maximum high-level output current is 10.2 milliamperes for the SN54ASC5124 and 12 milliamperes for the SN74ASC5124. The maximum low-level output current is 37.4 milliamperes for the SN54ASC5124 and 44 milliamperes for the SN74ASC5124.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5124			SN74ASC5124			UNIT		
			MIN	TYP	MAX	MIN	TYP	MAX					
V_{T}	Input threshold voltage				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
V_{OH} High-level output voltage			$\mathrm{I}^{\mathrm{OH}}=-12 \mathrm{~mA}$					3.7			V		
			$\mathrm{OH}=-10.2 \mathrm{~m}$		3.7								
			$\mathrm{I}^{\mathrm{OH}}=-20 \mu \mathrm{~A}$,	See Note 1	$\mathrm{V}_{\mathrm{CC}}-0.1$			$\mathrm{V}_{\mathrm{CC}}-0.1$					
V OL Low-level output voltage			$\mathrm{IOL}=44 \mathrm{~mA}$							0.5	V		
			$\mathrm{IOL}=37.4 \mathrm{~mA}$				0.5						
			$\mathrm{I}^{\mathrm{OL}}=20 \mu \mathrm{~A}$,	See Note 1			0.1			0.1			
102	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0				± 10			± 5	$\mu \mathrm{A}$		
${ }^{1} \mathrm{CC}$	Supply, current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		6320			379			nA		
C_{i}	Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8				1.8		pF		
		GZ			1.4			1.4					
$C_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	49			49			pF		

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5124			SN74ASC5124			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$		2.2			2.2		ns
tPHL					2.5			2.5		
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		3			3		ns
tPZL			$R_{L}=1 . k \Omega$ to $V_{C C}$		2.1			2.1		

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{i} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
${ }^{\text {t }} \mathrm{PZH} \mathrm{H} \equiv$ output enable time to high level
${ }^{\text {tPZL }} \equiv$ output disable time from low level
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5124, SN74ASC5124 TTL-|CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

TTL loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5124		SN74ASC5124			UNIT
				MIN TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y		2.8			2.8		ns
${ }_{\text {t PHL }}$	A	γ	-	3			3		ns
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3.6			3.6		ns
${ }^{\text {tPZL }}$	Gz	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.8			2.8		,
${ }^{\text {tPHZ }}$	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	10			10		ns
tplZ		γ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	9			9		ns

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL. loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5124			SN74ASC5124			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{tPLH}^{\text {P }}$	A	Y		17				17		$\mathrm{ps} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$					14			14		
$\Delta \mathrm{tPZH}$	GZ	Y			17			17		$\mathrm{ps} / \mathrm{pF}$
$\triangle t^{\text {P }}$ LL					20			20		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5124			SN74ASC5124			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$		2.7			2.7		ns
${ }^{\text {tPHL }}$					2.2			2.2		
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		3.4			3.4		ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		1.8			1.8		

CMOS loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5124			SN74ASC5124			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$R_{L}=\infty$		3.6			3.6		ns
${ }^{\text {t PHL }}$					2.6			2.6		
tp7	u	Y	$R_{1}=1 \mathrm{k} \Omega$ to GNO		$\triangle 4$			11		ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		2.4			2.4		

 $V_{O}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
$t_{P L H} \equiv$ propagation delay time, low-to-high-level output $\quad \Delta t_{P L H} \equiv$ change in tpLH with load capacitance
tpHL \equiv propagation delay time, high-to-low-level output $\quad \Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
$\mathrm{t}_{\mathrm{P} Z H} \equiv$ output enable time to high level $\quad \Delta \mathrm{t} Z \mathrm{ZH} \equiv$ change in $\mathrm{t} P Z H$ with load capacitance
tPZL \equiv output enable time to low level
tPHZ \equiv output disable time from high level
tPLZ \equiv output disable time from low level
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5124, SN74ASC5124

TTL-|CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS
change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5124			SN74ASC5124			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH $^{\text {d }}$	A	Y		26				26		ps/pF
$\triangle \mathrm{t}$ PHL					11			11		
\triangle tPZH	GZ	Y			29			29		ps/pF
$\Delta t_{\text {PZL }}$					17			17		

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
Δ tPLH \equiv change in tPLH with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
$\Delta t_{P Z H} \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance
$\Delta t P Z L \equiv$ change in tPZL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.8 ns with $15-\mathrm{pF}$ Load
3.7 ns with 50-pF Load
- Output Current Ratings

SN54ASC5125 $\mathrm{IOL}=20.4 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{OH}}=-10.2 \mathrm{~mA}$
SN74ASC5125 IOL $=24 \mathrm{~mA}$
$\mathrm{IOH}=-12 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\mathrm{A}(\text { when } \mathrm{GZ} \text { is } \mathrm{L})
$$

description

The SN54ASC5125 and SN74ASC5125 are noninverting 3-state output buffer standard cells that interface CMOS internal cells with TTL or CMOS external buses. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

| CELL NAME | FEATURES |
| :---: | :---: | :---: | :---: |
| | |
| | |\(\left.\quad \begin{array}{c}CELL LAYOUT

ASPECT RATIO\end{array} $$
\begin{array}{c}\text { RELATIVE } \\
\text { CELL AREA } \\
\text { TO NA210LH }\end{array}
$$\right]\)

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{CC} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5125 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5125 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
GZ	\mathbf{A}	\mathbf{Y}
\mathbf{L}	H	H
L	L	L
H	X	Z

absolute maximum ratings and recommended operating conditions
See Table 3 in Section. 2. The maximum high-level output current is 10.2 milliamperes for the SN54ASC5125 and 12 milliamperes for the SN74ASC5125. The maximum low-level output current is 20.4 milliamperes for the SN54ASC5125 and 24 milliamperes for the SN74ASC5125.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ASC5125		SN74ASC5125		UNIT
		MIN TYP	MAX	MIN TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
VOH High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$			3.7		V
	$\mathrm{l}^{\mathrm{OH}}=-10.2 \mathrm{~mA}$	3.7				
	$\mathrm{I}^{\mathrm{OH}}=-20 \mu \mathrm{~A}, \quad$ See Note 1	$\mathrm{V}_{\mathrm{CC}}-0.1$		$\mathrm{V}_{\mathrm{CC}}-0.1$		
VOL Low-level output voltage	$\mathrm{I}^{\mathrm{OL}}=24 \mathrm{~mA}$				0.5	V
	$\mathrm{I}^{\mathrm{OL}}=20.4 \mathrm{~mA}$		0.5			
	$\mathrm{IOL}=20 \mu \mathrm{~A}, \quad$ See Note 1		0.1		0.1	
IOZ Off-state output current	$V_{O}=V_{C C}$ or 0		± 10		± 5	$\mu \mathrm{A}$
${ }^{\text {I CC }}$ Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		4009		241	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.1		1.1		pF
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	29		29		pF

NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5125			SN74ASC5125			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$	2.3			2.3			ns
tPHL					3.2	\checkmark		3.2		
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		2.7			2.7		
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		3			3		

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
tPLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
${ }^{\text {tPZL }} \equiv$ output disable time from low level
${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5125, SN74ASC5125 TTL-|CMOS-COMPATIBLE 3-STATE OUTPUT BUFFERS

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

TTL loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5125			SN74ASC5125			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$		2.9			2.9		ns
${ }^{\text {tPHL }}$					4.3			4.3		
${ }_{\text {tPZH }}$	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		3.4			3.4		ns
tPZL			$R_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		4.2			4.2		
${ }^{\text {tPHZ }}$	GZ	Y	$R_{L}=1 \mathrm{k} \Omega$ to GND		8.5			8.5		ns
${ }_{\text {t PLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		8.2			8.2		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC			4ASC5		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
\triangle tPLH	A	Y		17				17		$\mathrm{ps} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				31			31			
$\Delta \mathrm{tPZH}$	GZ	Y		20			20			$\mathrm{ps} / \mathrm{pF}$
$\Delta t^{\text {PR }}$ L				34			34			

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC5			4ASC5		UNIT
AR	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	T
tPLH	A	Y	$R_{L}=\infty$	2.7			2.7			ns
${ }^{\text {t PHL }}$				2.9			2.9			
${ }^{\text {tPZH }}$	GZ	Y	$R_{L}=1 \mathrm{k} \Omega$ to GND	3.2			3.2			ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.6			2.6			

CMOS loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5125			SN74ASC5125			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$\mathrm{R}_{\mathrm{L}}=\infty$		3.7			3.7		ns
tPHL					3.7			3.7		
tPZH	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		4.2			4.2		ns
${ }^{+} \mathrm{O} \mathrm{I}$			$\mathrm{R}_{1}=1 \mathrm{k} \Omega$ to V_{-}		3.5			3.5		

[^99]change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC5	25		4ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y		29			29			$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				23			23			
$\Delta \mathrm{tPZH}$	GZ	Y		29			29			ps/pF
$\Delta \mathrm{tPZL}$				26			26			

\dagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at the 50% point of V_{O}.
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\Delta \mathrm{tPZH}^{2} \equiv$ change in TPZH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PZL}} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SystemCell ${ }^{T M} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
3.3 ns with $15-\mathrm{pF}$ Load
5.9 ns with 50 -pF Load
- Output Current Ratings:

$$
\begin{aligned}
\text { SN54ASC5200 } \mathrm{IOL} & =3.4 \mathrm{~mA} \\
\mathrm{IOH} & =-3.4 \mathrm{~mA} \\
\text { SN74ASC5200 } \mathrm{IOL} & =4 \mathrm{~mA} \\
\mathrm{IOH} & =-4 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

$$
Y 1=A \quad Y 2=\overline{Y 1}
$$

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	H
H	L	H	H	L
X	H	L	Z	H
X	H	H	Z	L

description

The SN54ASC5200 and SN74ASC5200 are three-state input/output buffer standard cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to CMOS threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. This cell function exists in two versions (" E " and " F ") with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F ' cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FEATURES		
		CELL LAYOUT	RELATIVE CELL AREA
	HDL LABEL	ASPECT RATIO	TO NA210LH
IOE4OLH	Label: IOF40LH A,GZ,Y2,Y1;	minimum height IOF40LH	44.5
		minimum width	49.5

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, shorting a high-level output to ground or a low-level output to VCC will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

SN54ASC5200, SN74ASC5200

3-STATE I/O BUFFER WITH

INVERTING CMOS INPUT AND CMOS/TTL OUTPUT

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various outputs response with change in capacitive loading.
The SN54ASC5200 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5200 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 3.4 milliamperes for the SN54ASC5200 and 4 milliamperes for the SN74ASC5200.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.
IOE40LH

PARAMETER			TEST CONDITIONS		SN54	C5200	SN74	C5200	UNIT		
			TYP	MAX	TYP	MAX					
ICC Supply current	Supply current				$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or			2373		142	nA
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$	0.9 V		4.33		4.1	mA		
C_{i}	Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}^{\text {A }}=25^{\circ} \mathrm{C}$	0.61		0.61		pF		
		GZ			0.4		0.4				
		Y1 ${ }^{+}$			3.84		3.84				
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	12.5		12.5		pF		

10F40LH

PARAMETER			TEST CONDITIONS	SN54A	C5200	SN74A	C5200	UNIT	
			TYP	MAX	TYP	MAX			
${ }^{\prime} \mathrm{CC}$	Supply current			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		2592		155	nA
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V		4.29		4.06	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.59		0.59		pF	
		GZ		0.47		0.47			
		Y1 ${ }^{\text { }}$		4.38		4.38			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	12.7		12.7		pF	

[^100]
SN54ASC5200, SN74ASC5200
 3-STATE I/O BUFFER WITH INVERTING CMOS INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5200			SN74ASC5200			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.3	2.5	5.9	1.4	2.5	5.3	ns
tPHL				2.1	4.5	11.6	2.3	4.5	10.4	
${ }_{\text {t }}$ PRH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.4	8.4	1.6	3.4	7.6	ns
${ }^{\text {t P Z }}$			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	2.1	4.6	11.8	2.2	4.6	10.5	

TTL loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5200			SN74ASC5200			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tpLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.8	3.6	8.8	2	3.6	7.8	ns
tPHL				3.9	8.2	19.8	4.3	8.2	17.4	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2	4.5	11.3	2.1	4.5	10.2	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	4	8.5	20.8	4.3	8.5	18.1	
tPHZ	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	11			11			ns
${ }^{\text {tPLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	10			10			

change in propagation delay times with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5200			SN74ASC5200			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
$\Delta \mathrm{tPLH}^{\text {a }}$	A	Y1		10	31	80	20	31	80	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{tpHL}$				50	106	230	50	106	210	
$\Delta \mathrm{tPZH}$	GZ	Y 1		10	31	80	20	31	60	s/pF
$\Delta t^{\text {PZ }}$				50	111	260	60	111	240	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5200			SN74ASC5200			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.5	3.1	7.5	1.7	3.1	6.7	ns
${ }^{\text {tPHL }}$				1.8	3.7	9.7	2	3.7	8.6	
tpZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2	4	9.8	2.2	4	8.8	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.8	3.7	9.4	1.9	3.7	8.4	ns

[^101]SN54ASC5200, SN74ASC5200
3-STATE I/O BUFFER WITH
INVERTING CMOS INPUT AND CMOS/TTL OUTPUTT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5200			SN74ASC5200			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	2.6	5.2	12.1	2.8	5.2	10.8	ns
tPHL				2.9	6.2	15.5	3.2	6.2	13.7	
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3.1	6.2	14.6	3.3	6.2	13	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.9	6.2	15.7	3.2	6.2	13.8	

change in propagation delay times with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5200			SN74ASC52000			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		30	60	140	30	60	120	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$				30	69	170	30	69	150	
Δ tpZH	GZ	Y1		30	63	140	30	63	130	$\mathrm{ps} / \mathrm{pF}$
$\Delta t^{\text {P }}$ LL				30	71	190	40	71	160	

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER§	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5200			SN74ASC52000			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.4	0.7	1.2	0.4	0.7	1.2	ns
tPHL				0.2	0.7	1.5	0.3	0.7	1.3	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	0.7	1	1.8	0.7	1	1.8	ns
tPHL				0.5	1.1	2.3	0.6	1.1	2.1	
$\Delta \mathrm{t}_{\text {PLH }}$	Y1	Y2		0.2	0.3	0.7	0.2	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.2	0.4	0.9	0.2	0.4	0.8	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
$\mathrm{t}_{\mathrm{PL}} \mathrm{H} \equiv$ propagation delay time, low-to-high-level output $\quad \Delta \mathrm{tPLH}^{2} \equiv$ change in tPLH with load capacitance
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPHL \equiv change in tPHL with load capacitance
$\Delta \mathrm{t} P Z \mathrm{H} \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance
$\mathrm{tPZH} \equiv$ output enable time to high level
$\triangle \mathrm{tPZL} \equiv$ change in TPZL with load capacitance
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SN54ASC5201, SN74ASC5201
 3-STATE I/O BUFFER WITH
 INVERTING TTL INPUT AND CMOS|TTL OUTPUT
 D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
3.5 ns with $15-\mathrm{pF}$ Load
5.8 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

SN54ASC5201 IOL	$=3.4 \mathrm{~mA}$
IOH	$=-3.4 \mathrm{~mA}$
SN74ASC5201 IOL	$=4 \mathrm{~mA}$
IOH	$=-4 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations
logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	H
H	L	H	H	L
X	H	L	Z	H
X	H	H	Z	L

$$
Y 1=A \quad Y 2=\overline{Y 1}
$$

description

The SN54ASC5201 and SN74ASC5201 are 3-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to TTL threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. This cell function exists in two versions (" E " and " F ') with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
IOE43LH IOF43LH	Label: IOF43LH A,GZ,Y2,Y1;	minimum height minimum width	$\begin{aligned} & 47.7 \\ & 50.9 \end{aligned}$

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

SN54ASC5201, SN74ASC5201
3-STATE I/O BUFFER WITH
inverting til input and cmos/ttl output

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses to change in capacitive loading.

The SN54ASC5201 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5201 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 3.4 milliamperes for the SN54ASC5201 and 4 milliamperes for the SN74ASC5201.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5201			SN74ASC5201			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{T} Input threshold voltage		A,GZ		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2			2.2		V
		Y1			1.3			1.3			
V_{OH} High-level output voltage			$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$				3.7			V	
			$\mathrm{I}^{\mathrm{OH}}=-3.4 \mathrm{~mA}$	3.7							
			$\mathrm{I}^{\mathrm{OH}}=-20 \mu \mathrm{~A}$, See Note 1	$\mathrm{V}_{\mathrm{CC}}-$			V_{CC}				
VOL Low-level output voltage			$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$						0.5		
			$\mathrm{I}_{\mathrm{OL}}=3.4 \mathrm{~mA}$			0.5				V	
			$\mathrm{I}^{\mathrm{OL}}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1		
IOZ	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0			± 10			± 5	$\mu \mathrm{A}$	

NOTE 1: These limits apply when all other outputs are open.

IOE43LH

PARAMETER			TEST CONDITIONS	SN54ASC5201		SN74ASC5201		UNIT	
			TYP	MAX	TYP	MAX			
ICC Supply current				$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		2500		150	nA
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V		1.2		1.12	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.62		0.62		pF	
		GZ		0.41		0.41			
		Y1 ${ }^{\text {+ }}$		4.34		4.34			
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	13.2		13.2		pF	

IOF43LH

PARAMETER			TEST CONDITIONS		SN54ASC5201		SN74ASC5201		UNIT		
			TYP	MAX	TYP	MAX					
ICC Supply current					$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or			2588		155	nA
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or			1.21		1.13	mA		
C_{i}	Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.59		0.59		pF		
		GZ			0.47		0.47				
		$\mathrm{Y} 1^{\dagger}$			4.26		4.26				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	13.4		13.4		pF		

[^102]
SN54ASC5201, SN74ASC5201
 3-STATE I/O BUFFER WITH
 INVERTING TTL INPUT AND CMOS|TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5201			SN74ASC5201			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {t PLH }}$	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.3	2.5	6	1.4	2.5	5.4	ns
tPHL				2.1	4.5	11.2	2.2	4.5	9.9	
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.5	8.5	1.6	3.5	7.8	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	4.4	11.2	2.2	4.4	9.8	

TTL loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5201			SN74ASC5201			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.8	3.6	9	2	3.6	8	ns
tPHL				3.7	8	20.2	4	8	17.7	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2	4.6	11.4	2.2	4.6	10.4	ns
${ }_{\text {tPZL }}$			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	3.7	8	21.7	4	8	18.7	
${ }^{\text {tPHZ }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	11				11		ns
${ }_{\text {t PLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		10			10		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (uniess otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC5201			SN74ASC5201			UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{t}$ PLH	A	Y1		10	31	80	20	31	70	ps/pF
$\triangle \mathrm{t} \mathrm{PHL}$				50	100	260	50	100	220	
Δ tPZH	GZ	Y1		10	31	90	20	31	80	F
$\Delta \mathrm{t} P Z \mathrm{~L}$				50	103	300	50	103	250	ps/pr

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
${ }^{\text {tPZH }} \equiv$ output enable time to high level
$\Delta t_{\text {PLH }} \equiv$ change in tPLH with load capacitance $\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance Δ tPZH \equiv change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance $\Delta \mathrm{t}_{\mathrm{PL}} \equiv$ change in tPZL with load capacitance
tPZL \equiv output enable time to low level
tPHZ \equiv output disable time from high level
${ }^{t} P L Z \equiv$ output disable time from low level
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5201, SN74ASC5201
 3-STATE I/O BUFFER WITH
 inverting trl input and cmos/ttl output

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5201			SN74ASC5201			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.5	3.1	7.7	1.7	3.1	6.8	ns
$\mathrm{t}_{\mathrm{PHL}}$				1.8	3.5	9.2	1.9	3.5	8.1	
${ }^{\text {tPZH}}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.1	4	10	2.2	4	8.9	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.7	3.3	8.7	1.8	3.3	7.7	

CMOS loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5201			SN74ASC5201			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.5	5.2	12.3	2.7	5.2	11	ns
tPHL				2.8	5.6	15.4	3	5.6	13.4	
tpZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3.1	6.1	14.8	3.3	6.1	13.2	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.8	5.6	15.6	3	5.6	13.6	,

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5201			SN74ASC5201			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{t}$ PLH	A	Y1		30	60	130	30	60	120	ps/pF
$\Delta \mathrm{t}$ PHL				30	60	180	30	60	150	
$\Delta \mathrm{tPZH}$	GZ	Y1		30	60	140	30	60	120	p / pF
$\Delta \mathrm{t} P \mathrm{ZL}$				30	66	200	30	66	170	

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER§	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5201			SN74ASC5201			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	Y1	Y2	$C_{L}=0$	0.6	1	2.2	0.6	1	1.9	ns
${ }^{\text {tPHL }}$				0.5	0.9	1.4	0.5	0.9	1.4	
${ }^{\text {tPLH }}$	Y1	Y2	$C_{L}=1 \mathrm{pF}$	1.6	2.9	6.2	1.7	2.9	5.6	ns
tPHL				0.8	1.3	2.2	0.8	1.3	2.1	
Δ tpLH	Y1	Y2		0.9	1.9	4.1	1	1.9	3.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.3	0.4	0.9	0.3	0.4	0.8	

[^103]
SN54ASC5202, SN74ASC5202
 3-STATE I/O BUFFER WITH
 INVERTING CMOS INPUT AND CMOS/TTL OUTPUT

D2939, AUGUST 1986

SystemCell ${ }^{[4]} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
3.6 ns with $15-\mathrm{pF}$ Load
6.8 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

$$
\begin{aligned}
\text { SN54ASC5202 } \mathrm{OL} & =3.4 \mathrm{~mA} \\
\mathrm{OH} & =-3.4 \mathrm{~mA} \\
\text { SN74ASC5202 } \mathrm{lOL} & =4 \mathrm{~mA} \\
\mathrm{IOH} & =-4 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over V_{Cc} Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

$$
Y=A \quad Y 2=\overline{Y 1}
$$

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	H
H	L	H	H	L
X	H	L	Z	H
X	H	H	Z	L

description

The SN54ASC5202 and SN74ASC5202 are 3-state input/output buffer standard cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The Schmitt-trigger input buffer, providing additional noise-rejection with its hysteresis loop, responds to CMOS threshold levels imposed on the I/O bus regardless of the state of the internal 3 -state control GZ. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	$\|c\|$ FEATURES	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO
	Label: IOF47LH A,GZ,TAP,Y2,Y1;	minimum width	55.4

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes,

The IOF47LH incorporates a pull-up tap to simplify termination of the I/O. This tap may be used in conjunction with an active pull-up/pull-down terminator in the 'ASC237x group or the pull-up tap may be left unconnected. When the terminator is used it ensures that the input will be driven to a high or low logic level thereby avoiding exposure to a high-impedance or floating condition. Refer to Section 7 for implementation of the pull-up.

description (continued)

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{CC} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.
The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propogation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

The SN54ASC5202 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5202 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 3.4 milliamperes for the SN54ASC5202 and 4 milliamperes for the SN74ASC5202.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{T}	Input threshold voltage at $A, G Z$			$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold level (Y1)			2.9	3.2	3.5	2.9	3.2	3.5	V	
$\mathrm{V}_{\mathrm{T} \text { - }}$	Negative-going threshold level (Y1)			1.5	1.7	1.9	1.5	1.7	1.9	V	
$V_{\text {hys }}$	$\begin{aligned} & \text { Hysteresis }\left(\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-1}\right) \\ & \text { at } \mathrm{Y} 1 \end{aligned}$			1.5			1.5			V	
$\mathrm{VOH}_{\mathrm{OH}}$	High-level output voltage		$\mathrm{IOH}=-4 \mathrm{~mA}$				3.7			V	
			$\mathrm{I}_{\mathrm{OH}}=-3.4 \mathrm{~mA}$	3.7							
			$V_{\text {CC }}-0.1$	$V_{\text {cC }}-0.1$							
VOL	Low-level output voltage			$\mathrm{IOL}=4 \mathrm{~mA}$				0.5			V
			$1 \mathrm{OL}=3.4 \mathrm{~mA}$	0.5							
			$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}, \quad$ See Note 1	0.1			0.1				
Ioz	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0	± 10			± 5			$\mu \mathrm{A}$	
ICC	Supply current		$V_{1}=V_{C C}$ or 0	3005			180			nA	
			$\mathrm{V}_{1}=3.5 \mathrm{~V}$ or 0.9 V	2.44			1.23			mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.55			0.55			pF	
		GZ		$\begin{array}{r} 0.44 \\ 4.5 \end{array}$			0.44				
		TAP or $\mathrm{Y} 1^{\dagger}$						4.5			
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	13.1			13.1			pF	

${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
NOTE 1: These limits apply when all other outputs are open.

SN54ASC5202, SN74ASC5202 3-STATE I/O BUFFER WITH INVERTING CMOS INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.3	2.5	5.7	1.4	2.5	5	ns
tPHL				2.3	4.8	11.3	2.5	4.8	10	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.4	8.2	1.6	3.4	7.4	ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.3	4.8	11.4	2.5	4.8	10.1	

TTL loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A	Y1	$R_{L}=\infty$	1.8	3.6	8.5	1.9	3.6	7.5	ns
${ }^{\text {tPHL }}$				3.9	8.1	19.1	4.2	8.1	16.8	
tpZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2	4.5	11	2.2	4.5	9.9	
tPZL			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	4	8.3	20.1	4.3	8.3	17.5	ns
tPHZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		11			11		
tplZ			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}		10			10		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
Δ tpLH	A	Y1		10	31	80	10	31	70	ps/pF
$\Delta \mathrm{t} \mathrm{PHL}$				50	94	230	50	94	200	
$\Delta \mathrm{tPZH}$	GZ	Y1		10	31	80	20	31	70	ps/pF
$\Delta \mathrm{t} \mathrm{PZL}$				50	100	250	50	100	210	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.6	3.1	7.2	1.7	3.1	6.4	ns
${ }^{\text {tPHL }}$				2	4	9.4	2.2	4	8.4	
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.1	4	9.5	2.2	4	8.5	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	3.9	9.2	2.2	3.9	8.2	

[^104]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
CMOS loads, $C_{L}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.5	5.1	11.7	2.7	5.1	10.4	ns
tPHL				3.1	6.3	15	3.3	6.3	13.3	
${ }^{\text {tPZH }}$	GZ	Y1	$R_{L}=1 \mathrm{k} \Omega$ to GND	3	6.1	14.1	3.3	6.1	12.6	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	3.1	6.3	15.2	3.4	6.3	13.4	ns

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta t_{\text {PLH }}$	A	Y1		30	57	130	30	57	110	$\mathrm{ps} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$				30	66	160	30	66	140	
$\triangle \mathrm{tPZH}$	GZ	Y1		30	60	130	30	60	120	ps/pF
$\Delta \mathrm{t}_{\mathrm{P} Z \mathrm{~L}}$				30	69	170	30	69	150	

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETERS§	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5202			SN74ASC5202			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	2.1	2.6	4.3	2.1	2.6	4.1	ns
tPHL				2.1	2.9	5.4	2.1	2.9	4.9	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	3	4.4	8.4	3.1	4.4	7.8	ns
${ }^{\text {tPHL }}$				3.1	5	10.9	3.2	5	9.6	
Δ tPLH	Y1	Y2		0.9	1.8	4.1	0.9	1.8	3.7	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.9	2.1	5.5	1.1	2.1	4.7	

\dagger^{\dagger} Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
tpLH \equiv propagation delay time, low-to-high-level output
Δ tPLH \equiv change in TPLH with load capacitance
tpHL \equiv propagation delay time, high-to-low-level output $\Delta \mathrm{tPHL} \equiv$ change in TPHL with load capacitance $\Delta t_{P Z H} \equiv$ change in tPZ H with load capacitance
PZH \equiv output enable time to high level $\Delta t P Z L \equiv$ change in $t P Z L$ with load capacitance
${ }^{\text {tPZL }} \equiv$ output enable time to low level
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 50% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}$.

DESIGN CONSIDERATIONS

Refer to Section 7 :

SN54ASC5203, SN74ASC5203
 3-STATE I/O BUFFER WITH
 INVERTING TTL INPUT AND CMOS/TTL OUTPUT

D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
3.3 ns with $15-\mathrm{pF}$ Load
5.5 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

$$
\begin{aligned}
\text { SN54ASC5203 } \mathrm{IOL} & =3.4 \mathrm{~mA} \\
\mathrm{IOH} & =-3.4 \mathrm{~mA} \\
\text { SN74ASC5203 } \mathrm{IOL} & =4 \mathrm{~mA} \\
\mathrm{IOH} & =-4 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	H
H	L	H	H	L
X	H	L	Z	H
X	H	H	Z	L

$$
\mathrm{Y} 1=\mathrm{A} \quad \mathrm{Y} 2=\overline{\mathrm{Y} 1}
$$

description

The SN54ASC5203 and SN74ASC5203 are three-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to TTL threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
IOF48LH	Label: IOF48LH A,GZ, Y2, Y1;	minimum width	45.2

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been purposely omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

The dynamic drive capability of each output is specified by the delta delay propagation time parameter included with the switching characteristics. The delta delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.

The SN54ASC5203 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5203 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC5203, SN74ASC5203
3-STATE I/O BUFFER WITH
INVERTING TTL INPUT AND CMOS/TTL OUTPUT

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. Maximum high-level or maximum low-level output current is 3.4 milliamperes for the SN54ASC5203 and 4 milliamperes for the SN74ASC5203.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.

IOF48LH

PARAMETER			TEST CONDITIONS	SN54	C5203	SN74	C5203	UNIT	
			TYP	MAX	TYP	MAX			
${ }^{\prime} \mathrm{CC}$	Supply current			$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or 0 V		2795		168	nA
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V		1.43		1.32	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.63		0.63		pF	
		GZ		0.41		0.41			
		Y1 ${ }^{\dagger}$		4.5		4.5			
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	14.9		14.9		pF	

${ }^{\dagger}$ Total input capacitance for Y 1 is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5203			SN74ASC5203			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.3	2.4	5.7	1.4	2.4	5.1	ns
tPHL				2.1	4.2	10	2.2	4.2	8.9	
${ }_{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.3	8.1	1.6	3.3	7.3	
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	4.2	9.9	2.2	4.2	8.7	ns

TTL loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5203			SN74ASC5203			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.8	3.6	8.5	1.9	3.6	7.6	ns
tPHL				3.7	7.5	18	4	7.5	16	
tpZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2	4.5	11	2.2	4.5	9.9	ns
tPZL			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	3.7	7.7	19	4	7.7	16.3	
tPHZ	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		11			11		ns
${ }^{\text {tPLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		10			10		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER $^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5203			SN74ASC5203			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		10	34	80	20	34	70	ps/pF
$\Delta \mathrm{t}$ PHL				50	94	220	50	94	190	
$\Delta \mathrm{t}$ PZH	GZ	Y1		10	54	80	20	54	70	
$\Delta \mathrm{t}_{\mathrm{P} Z \mathrm{~L}}$				50	100	250	50	100	210	F

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
tPLH \equiv propagation delay time, low-to-high-level output
$\Delta \mathrm{tPLH} \equiv$ change in tPLH with load capacitance
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPHL \equiv change in tPHL with load capacitance
$\Delta t_{P Z H} \equiv$ change in $\mathrm{t}_{\mathrm{PZ}} \mathrm{H}$ with load capacitance
PZH \equiv output enable time to high level
tPZL \equiv output enable time to low level
tPHZ \equiv output disable time from high level
tpLZ \equiv output disable time from low level
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5203, SN74ASC5203
3-STATE I/O BUFFER WITH
INVERTING TTL INPUT AND CMOS/TTL OUTPUT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5203			SN74ASC5203			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.5	3.1	7.3	1.6	3.1	6.5	ns
tphL				1.8	3.5	8.2	1.9	3.5	7.3	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.1	4	9.5	2.2	4	8.4	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.7	3.3	7.8	1.8	3.3	6.9	

CMOS loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5203			SN74ASC5203			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.5	5.1	11.8	2.7	5.1	10.6	ns
tPHL				2.8	5.6	13.6	3	5.6	12	
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3	6.1	14.2	3.3	6.1	12.7	
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.8	5.6	13.7	3	5.6	12	ns

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM(INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5203			SN74ASC5203			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		30	57	130	30	57	120	os/pF
$\triangle \mathrm{tPHL}$				30	60	150	30	60	130	
$\Delta \mathrm{tPZH}$	GZ	Y1		30	60	130	30	60	120	$\mathrm{ps} / \mathrm{pF}$
$\triangle t^{\text {P }}$ LL				30	65	170	30	65	150	

input switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5203			SN74ASC5203			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
- tPLH	Y1	Y2	$C_{L}=0$	3	6	14.6	3.2	6	13.6	ns
tPHL				1.1	1.4	2.2	1.1	1.4	2.1	
${ }^{\text {tPLH}}$	Y1	Y2	$C_{L}=1 \mathrm{pF}$	6.5	13	32	7	13	29	ns
tPHL				1.3	2	3.7	1.4	2	3.4	
Δ tPLH	Y1	Y2		3.4	7	17.3	3.7	7	15.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$				0.2	0.6	1.5	0.2	0.6	1.4	

 at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high-level output $\quad \Delta t$ PLH \equiv change in t PLH with load capacitance
${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
$\Delta t_{P Z H} \equiv$ change in $\mathrm{t}_{\mathrm{P}} \mathrm{ZH}$ with load capacitance
$\Delta t_{P Z L} \equiv$ change in tPZL with load capacitance
${ }^{\text {tPZL }} \equiv$ output enable time to low level
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 1.3 V point of V_{I} and the times end at the 44% point of V_{O} with $t_{r}=t_{f}=2 n s$.

DESIGN CONSIDERATIONS

Refer to Section 7.

All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design.
A tie-off cell is offered specifically for managing unused inputs.

SN54ASC5206, SN74ASC5206 3-STATE I/O BUFFER WITH
 NONINVERTING CMOS INPUT AND CMOS/TTL OUTPUT

SystemCell ${ }^{\text {TM }}$ 2- -m OUTPUT StANDARD CELL

- Typical Propagation Delays
3.3 ns with $15-\mathrm{pF}$ Load
5.5 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

$$
\begin{aligned}
\text { SN54ASC5206 } \mathrm{IOL} & =3.4 \mathrm{~mA} \\
\mathrm{IOH} & =-3.4 \mathrm{~mA} \\
\text { SN74ASC5206 } & =4 \mathrm{~mA} \\
\mathrm{IOL} & =-4 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	L
H	L	H	H	H
X	H	L	Z	L
X	H	H	Z	H

$$
Y 1=A \quad Y 2=Y 1
$$

description

The SN54ASC5206 and SN74ASC5206 are three-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to CMOS threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. This cell function exists in two versions (" E " and " $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " $F^{\prime \prime}$ cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	$\|c\|$ \quadNETLIST HDL LABEL	CEATURES ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IOF41L.H A,GZ,Y2,Y1;	minimum height minimum width	49.2
	49.4		

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

SN54ASC5206, SN74ASC5206
 3-STATE I/O BUFFER WITH
 NONINVERTING CMOS INPUT AND CMOS/TTL OUTPUT

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.
The SN54ASC5206 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5206 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 3.4 milliamperes for the SN54ASC5206 and 4 milliamperes for the SN74ASC5206.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.
10E41LH

PARAMETER			TEST CONDITIONS	SN54ASC5206		SN74ASC5206		UNIT	
			TYP	MAX	TYP	MAX			
	Supply current			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		2755		165	nA
			$\mathrm{V}_{1}=3.5 \mathrm{~V}$ or 0.9 V		3.26		2.86	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6		0.6		pF	
		GZ		0.42		0.42			
		$\mathrm{Y} 1^{\dagger}$		4.09		4.09			
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	16.7		16.7		pF	

IOF41LH

PARAMETER			TEST CONDITIONS	SN54	C5206	SN74	C5206	UNIT	
			TYP	MAX	TYP	MAX			
ICC	Supply current			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		2579		155	nA
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V		2.96		2.58	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.62		0.62		pF	
		GZ		0.44		0.44			
		Y1 ${ }^{+}$		3.83		3.86			
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	14.3		14.3		pF	

[^105]
SN54ASC5206, SN74ASC5206
 3-STATE I/O BUFFER WITH noninverting cmos input and cmos/ttl output

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5206			SN74ASC5206			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.3	2.5	6	1.4	2.5	5.3	ns
tPHL				2.1	4.3	10.2	2.3	4.3	9.1	
tpZH.	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.5	8.4	1.6	3.5	7.6	ns
${ }^{\text {tPZL }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	4.2	10.4	2.2	4.2	9.2	

TTL loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5206			SN74ASC5206			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.9	3.7	8.9	2	3.7	7.9	ns
tPHL				3.7	7.6	18.4	4	7.6	16.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.1	4.6	11.4	2.2	4.6	10.3	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	3.7	7.8	19.6	4	7.8	17	
tPHZ	GZ	Y 1	$R_{L}=1 \mathrm{k} \Omega$ to GND	11				11		ns
tPLZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		10			10		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5206			SN74ASC5206			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tpLH	A	Y1		20	33	90	20	33	80	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				50	98	230	50	98	200	
Δ tPZH	GZ	Y1		10	31	90	20	31	80	$\mathrm{ps} / \mathrm{pF}$
$\Delta t^{\text {PZL }}$				50	105	260	50	105	220	$\mathrm{ps} / \mathrm{pF}$

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5206			SN74ASC5206			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.6	3.3	7.6	1.7	3.3	6.8	ns
tPHL				1.8	3.5	8.4	1.9	3.5	7.4	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.1	4.2	9.8	2.3	4.2	8.8	s
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.7	3.4	8.2	1.8	3.4	7.3	s

[^106]tPHZ \equiv output disable time from high level
$t_{P L Z} \equiv$ output disable time from low level
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5206, SN74ASC5206
3-STATE I/O BUFFER WITH
noninverting Cmos input and cmosjttl output
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5206			SN74ASC5206			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.6	5.3	12.5	2.8	5.3	11.2	ns
tPHL				2.8	5.8	14.1	3	5.8	12.4	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3.1	6.3	15.1	3.3	6.3	13.5	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.8	5.8	14.3	3	5.8	12.5	ns

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC5206			SN74ASC5206			UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		30	57	150	30	57	130	ps/pF
$\triangle \mathrm{t}$ PHL				30	66	160	30	66	140	
$\Delta \mathrm{t}$ Z H	GZ	Y1		30	60	160	30	60	140	p
$\triangle t^{\text {P }}$ LL				30	69	180	30	69	150	/pF

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5206			SN74ASC5206			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.9	1.8	4.1	1	1.8	3.7	ns
${ }_{\text {tPHL }}$				1	1.8	3.4	1.1	1.8	3.2	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	1	2	4.5	1.1	2	4	ns
${ }_{\text {tPHL }}$				1.1	2	3.8	1.2	2	3.6	
Δ tPLH	Y1	Y2		0.1	0.2	0.5	0.1	0.2	0.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.2	0.5	0.1	0.2	0.4	

 at the 50% point of V_{O}.
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output $\quad \Delta t_{\text {PLH }} \equiv$ change in t PLH with load capacitance
tPHL \equiv propagation delay time, high-to-low-level output
${ }^{\text {tPZH }} \equiv$ output enable time to high level
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in t PHL with load capacitance
Δ tPZH \equiv change in $\mathrm{t} P \mathrm{ZH}$ with load capacitance
$\Delta \mathrm{T} Z \mathrm{ZL} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 50% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
3.5 ns with $15-\mathrm{pF}$ Load
5.8 ns with 50-pF Load
- Output Current Ratings

SN54ASC5207 IOL $=3.4 \mathrm{~mA}$
$\mathrm{IOH}=-3.4 \mathrm{~mA}$
SN74ASC5207 $\mathrm{IOL}_{\mathrm{OL}}=4 \mathrm{~mA}$
$\mathrm{IOH}=-4 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

$$
Y 1=A \quad Y 2=Y 1
$$

description

The SN54ASC5207 and SN74ASC5207 are three-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to TTL threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. This cell function exists in two versions (" E " and " $F^{\prime \prime}$) with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " F " cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FETLIST HDL LABEL	FEATURES 	CELL LAYOUT ASPECT RATIO
	Label: IOF44LH A,GZ,Y2,Y1;	minimum height minimum width	49.2 IOF44LH

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{C} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.

The SN54ASC5207 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5207 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 3.4 milliamperes for the SN54ASC5207 and 4 milliamperes for the SN74ASC5207.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 1: These limits apply when all other outputs are open.

IOE44LH

PARAMETER			TEST CONDITIONS	SN54ASC5207		SN74ASC5207		UNIT	
			TYP	MAX	TYP	MAX			
'CC Supply current				$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		2611		157	nA
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V		1.17		1.1	mA	
	Input capacitance	A	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6		0.6		pF	
		GZ		0.42		0.42			
		Y1 ${ }^{\dagger}$		4.17		4.17			
c_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	14.5		14.5		pF	

IOF44LH

PARAMETER			TEST CONDITIONS	SN54A	C5207	SN74	C5207	UNIT	
			TYP	MAX	TYP	MAX			
${ }^{1} \mathrm{CC}$	Supply current			$V_{1}=V_{\text {CC }}$ or 0		2725		163	nA
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V		1.2		1.12	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6		0.6		pF	
		GZ		0.48		0.48			
		Y1 ${ }^{\dagger}$		4.23		4.23			
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 V, \quad t_{r}=t_{f}=3 \mathrm{~ns}, \\ & T_{A}=25^{\circ} C \end{aligned}$	14.3		14.3	.	pF	

[^107]
SN54ASC5207, SN74ASC5207
 3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5207			SN74ASC5207			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.3	2.5	5.9	1.4	2.5	5.2	ns
tPHL				2.1	4.5	11.1	2.2	4.5	9.9	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.4	8.4	1.7	3.4	7.6	ns
${ }^{\text {t P Z }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	4.4	11.3	2.2	4.4	9.9	

TTL loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5207			SN74ASC5207			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {PPLH }}$	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.9	3.7	8.9	2	3.7	7.9	ns
${ }^{\text {tPHL }}$				3.7	8	20.3	4	8	17.7	
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.1	4.6	11.4	2.2	4.6	10.2	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	3.7	8	21.8	4.1	8	18.8	
tPHZ	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	11			11			ns
tPLZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	10			10			

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM		TEST	SN54ASC5207			SN74ASC5207			UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{t}_{\text {PLH }}$	A	Y1		10	34	80	20	34	70	ps/pF
$\Delta \mathrm{t}$ PHL				50	100	260	60	100	220	
$\Delta \mathrm{t}$ PZH	GZ	Y1		10	34	80	20	34	80	s/pF
$\Delta \mathrm{t} P Z \mathrm{~L}$				50	103	300	50	103	250	/pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5207			SN74ASC5207			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.6	3.2	7.5	1.7	3.2	6.7	ns
${ }^{\text {tPHL }}$				1.8	3.6	9.1	1.9	3.6	8.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.1	4.2	9.8	2.3	4.2	8.7	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.7	3.5	8.8	1.8	3.5	7.8	

[^108]SN54ASC5207, SN74ASC5207

3-STATE I/O BUFFER WITH

NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $C_{L}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5207			SN74ASC5207			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.6	5.3	12.3	2.6	5.3	11	ns
tPHL				2.8	6	15.4	3	6	13.5	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3.1	6.2	14.5	3.4	6.2	13.2	-s
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.8	6.1	15.7	3	6.1	13.7	

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER †	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5207			SN74ASC5207			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		30	60	140	30	60	120	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				30	57	180	30	57	150	
$\Delta \mathrm{t}_{\mathrm{P} Z \mathrm{H}}$	GZ	Y1		30	57	140	30	57	120	s/pF
$\Delta t_{\text {PZL }}$				30	74	200	30	74	170	ps/pF

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5207			SN74ASC5207			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.8	1.4	2.5	0.8	1.4	2.4	ns
tPHL				1.2	2.4	5.5	1.2	2.4	4.9	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	0.9	1.7	3.3	1	1.7	3	ns
tPHL				1.3	2.7	6.3	1.4	2.7	5.6	
Δ tpLH	Y1	Y2		0.1	0.3	0.8	0.1	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.1	0.3	0.9	0.1	0.3	0.8	

\dagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
$t_{P Z L} \equiv$ output enable time to low level
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 1.3 V point of $V_{\text {I }}$ to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}$.

Refer to Section 7.

- Typical Propagation Delays
2.7 ns with $15-\mathrm{pF}$ Load
4.1 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

$$
\begin{aligned}
\text { SN54ASC5217 } \mathrm{IOL} & =5.1 \mathrm{~mA} \\
\mathrm{IOH} & =-5.1 \mathrm{~mA} \\
\text { SN74ASC5217 } \mathrm{IOL} & =6 \mathrm{~mA} \\
\mathrm{IOH} & =-6 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	L
H	L	H	H	H
X	H	L	Z	L
X	H	H	Z	H

$$
Y 1=A \quad Y 2=Y 1
$$

description

The SN54ASC5217 and SN74ASC5217 are 3-state input/output buffer standard cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to TTL threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FEATURES		
	NETLIST	CELL LAYOUT	RELATIVE
	HDL LABEL	CELL AREA	
ASPECT RATIO	TO NA210LH		
IOF64LH	Label: IOF64LH A,GZ,Y2,Y1;	minimum width	58.4

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes,

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{CC} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.
The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.

SN54ASC5217, SN74ASC5217

3-STATE I/O BUFFER WITH

NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

description (continued)

The SN54ASC5217 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5217 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 5.1 milliamperes for the SN54ASC5217 and 6 milliamperes for the SN74ASC5217.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{T}	Input threshold voltage	A, GZ		$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
		Y1	1.3			1.3					
V_{OH}	High-level output voltage		$1 \mathrm{OH}=-6 \mathrm{~mA}$					3.7			V
			$\mathrm{I}^{\mathrm{OH}}=-5.1 \mathrm{~mA}$	3.7							
			$\mathrm{I}^{\mathrm{OH}}=-20 \mu \mathrm{~A}, \quad$ See Note 1	$\mathrm{V}_{\text {cc }}-0.1$			$\mathrm{V}_{\mathrm{CC}}-0.1$				
VOL	Low-level output voltage		$\mathrm{I}^{\mathrm{OL}}=6 \mathrm{~mA}$						0.5	V	
			$\mathrm{I}^{\mathrm{OLL}}=5.1 \mathrm{~mA}$			0.5					
			$\mathrm{IOL}^{\text {O }}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1		
loz	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0			± 10			± 5	$\mu \mathrm{A}$	
ICC	Supply current		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			3466			208	nA	
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.21			1.13	mA	
C_{i}	Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.03			$\begin{aligned} & 1.03 \\ & \hline 0.72 \\ & \hline \end{aligned}$			pF	
		GZ									
		Y1 ${ }^{\dagger}$					5.94				
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	22.4			22.4			pF	

[^109]
SN54ASC5217, SN74ASC5217 3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{+}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tplh	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.1	2	4.5	1.1	2	4	ns
${ }_{\text {tPHL }}$				1.7	3.5	8.3	1.9	3.5	7.3	
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.2	2.8	6.6	1.3	2.8	6	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.6	3.3	7.7	1.8	3.3	6.9	

TTL loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.4	2.7	6.3	1.5	2.7	5.6	ns
tPHL				2.7	5.6	13.2	2.9	5.6	11.6	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.5	3.5	8.4	1.7	3.5	7.6	ns
${ }^{\text {t PRZ }}$			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	2.7	5.5	13.1	2.9	5.5	11.5	
${ }^{\text {tPHZ }}$	GZ	Y1	$R_{L}=1 \mathrm{k} \Omega$ to GND		11			11		ns
${ }_{\text {t PLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	9			9			

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta t_{\text {PLH }}$	A	Y1		10	20	50	10	20	40	ps/pF
$\Delta \mathrm{tPHL}$				30	60	140	30	60	120	
$\Delta \mathrm{tPZH}$	GZ	Y1		10	20	50	10	20	50	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{tPZL}$				30	63	160	30	63	130	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPL.H	A	Y1	$R_{L}=\infty$	1.2	2.5	5.6	1.3	2.5	5.1	ns
tPHL				1.6	3	5.9	1.7	3	6.2	
${ }_{\text {t }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.7	3.3	7.4	1.8	3.3	6.7	
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.5	2.7	6.2	1.5	2.7	5.5	

\therefore rropagation aelay umes are measurea trom the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
${ }^{t} P L H \equiv$ propagation delay time, low-to-high-level output $\quad \Delta t$ PLH \equiv change in $t_{P L H}$ with load capacitance
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output $\quad \Delta \mathrm{t}_{\mathrm{PH}} \equiv$ change in $\mathrm{t} P \mathrm{HL}$ with load capacitance
${ }^{t} P Z H \equiv$ output enable time to high level $\quad \Delta t_{P Z H} \equiv$ change in $t_{P Z H}$ with load capacitance
${ }^{\mathrm{t} P Z L} \equiv$ output enable time to low level $\quad \Delta \mathrm{t}_{\mathrm{P}} \mathrm{ZL} \equiv$ change in $\mathrm{t}_{\mathrm{P}} \equiv$ with load capacitance
${ }^{\mathrm{t} P H Z} \equiv$ output disable time from high level
$t_{P L Z} \equiv$ output disable time from low level
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5217, SN74ASC5217
 3-STATE I/O BUFFER WITH
 NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.8	3.6	8.3	1.9	3.6	7.4	ns
${ }_{\text {tPHL }}$				2.2	4.4	10.4	2.4	4.4	9.1	
${ }_{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.2	4.4	10.2	2.4	4.4	9.1	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.2	4.2	10	2.3	4.2	8.8	

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP	MAX	
Δ PPLH	A	Y1		20	30	80	20	30	70	ps/pF
$\Delta \mathrm{t}$ PHL				20	40	100	20	40	80	
$\Delta \mathrm{t}$ PZH	GZ	Y1		20	30	80	20	30	70	ps/pF
$\Delta \mathrm{t} P \mathrm{ZL}$				20	40	110	20	40	90	

input buffer switching characteristics over recommended ranges of supply voltage and free-air temperature (unless otherwise noted)

PARAMETER§	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5217			SN74ASC5217			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.8	1.4	2.4	0.8	1.4	2.4	ns
tPHL				1.3	2.4	5.5	1.3	2.4	4.9	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	1	1.7	3.3	1	1.7	3	ns
tPHL				1.4	2.7	6.4	1.5	2.7	5.6	
$\Delta \mathrm{t}_{\text {PLH }}$	Y1	Y2		0.1	0.3	0.8	0.1	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.1	0.3	0.9	0.1	0.3	0.8	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in tPLH with load capacitance
${ }{ }^{P} Z H \mathcal{H} \equiv$ output enable time to high level $\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance Δ tPZH \equiv change in $\mathrm{t} P Z H$ with load capacitance $\Delta \mathrm{tPZL} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ input propagation delay times are measured from the 1.3 V point of V_{l} and the times end at the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}$.

Refer to Section 7.

D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.9 ns with $15-\mathrm{pF}$ Load
3.8 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

SN54ASC5220 IOL $=8.5 \mathrm{~mA}$
$1 \mathrm{OH}=-8.5 \mathrm{~mA}$
SN74ASC5220 IOL $=10 \mathrm{~mA}$

$$
\mathrm{IOH}=-10 \mathrm{~mA}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	H
H	L	H	H	L
X	H	L	Z	H
X	H	H	Z	L

$$
Y 1=A \quad Y 2=\overline{Y 1}
$$

description

The SN54ASC5220 and SN74ASC5220 are 3-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to CMOS threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. This cell function exists in two versions (" E " and " F ") with different physical implementations to allow the final IC area to be optimized. Since the electrical performance of each version is identical, for simplicity only one version (the " $F^{\prime \prime}$ cell) will be contained in the engineering workstation cell libraries. Determination of the most appropriate cell version will be made during the layout stage. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FEATURES		
		CELL LAYOUT	RELATIVE CELL AREA
	HDL LABEL	ASPECT RATIO	TO NA210LH
IOEOOLH	Label: IOFOOLH A,GZ,Y2,Y1;	minimum height minimum width	69
			62.9

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to VCC will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

description (continued)

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.

The SN54ASC5220 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5220 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 8.5 milliamperes for the SN54ASC5220 and 10 milliamperes for the SN74ASC5220.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
	Input threshold voltage	A,GZ		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
		Y1	2.5			2.5					
V_{OH} High-level output voltage			$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$					3.7			V
			$\mathrm{I}_{\mathrm{OH}}=-8.5 \mathrm{~mA}$	3.7							
			$\mathrm{IOH}=-20 \mu \mathrm{~A}$, See Note 1	$\mathrm{V}_{\mathrm{CC}}-0.1$			$\mathrm{V}_{\mathrm{CC}}-0.1$				
VOL Low-level output voltage			$\mathrm{IOL}^{\prime}=10 \mathrm{~mA}$						0.5	V	
			$\mathrm{I}^{\mathrm{OL}}=8.5 \mathrm{~mA}$			0.5					
			${ }^{1} \mathrm{OL}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1		
IOZ Off-state output current			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}$ or 0			± 10			± 5	$\mu \mathrm{A}$	

NOTE 1: These limits apply when all other outputs are open.

1OEOOLH

PARAMETER			TEST CONDITIONS		SN54ASC5220		SN74ASC5220		UNIT		
			TYP	MAX	TYP	MAX					
ICC Supply current					$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or			4660		280	nA
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$	0.9 V	4.33		4.09		mA		
C_{i}	Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.24		1.24		pF		
		GZ			0.73		0.73				
		Y1 ${ }^{\dagger}$			7.53		7.53				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	31.4		31.4		pF		

IOFOOLH

PARAMETER			TEST CONDITIONS	SN54ASC5220		SN74ASC5220		UNIT	
			TYP	MAX	TYP	MAX			
	Supply current			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		3724		233	nA
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V	4.37		4.14		mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.03		1.03		pF	
		GZ		0.77		0.77			
		Y1 ${ }^{\dagger}$		7.11		7.11			
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	25.8		25.8		pF	

[^110]
SN54ASC5220, SN74ASC5220 3-STATE I/O BUFFER WITH INVERTING CMOS INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.2	2.2	5.1	1.2	2.2	4.6	ns
tPHL				1.7	3.6	8.5	1.8	3.6	7.6	
${ }^{\text {P P }}$ PH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.3	3	7.3	1.4	3	6.6	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{C}	1.6	3.3	7.4	1.7	3.3	6.8	ns

TTL loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {P PLH }}$	A	Y1		1.5	2.8	6.7	1.6	2.8	6	ns
tPHL		Y		2.3	4.8	11.3	2.5	4.8	10.1	ns
tPZH	G7	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.6	3.7	8.9	1.7	3.7	8	ns
tPZL	GZ	Y	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.2	4.6	11.1	2.4	4.6	9.8	ns
${ }^{\text {tPHZ }}$		Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		10			10		
${ }^{\text {tPLZ }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		9			9		ns

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta t_{\text {PLH }}$	A	Y1		10	20	50	10	20	40	ps/pF
Δ tPHL				10	35	90	20	35	80	
$\Delta \mathrm{tPZH}$	GZ	Y1		10	20	50	10	20	40	
$\Delta t^{\text {P }}$ LL				20	40	100	20	40	90	$\mathrm{ps} / \mathrm{pF}$

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.3	2.6	6.2	1.4	2.6	5.6	ns
${ }^{\text {P PHL }}$				1.5	3.1	7.4	1.6	3.1	6.6	
${ }^{\text {t }} \mathrm{PZH}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.7	3.4	8.1	1.8	3.4	7.3	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.5	2.8	6.2	1.5	2.8	5.6	

' Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
${ }^{t} P Z L \equiv$ output enable time to low level
${ }^{\mathrm{t} P H Z} \equiv$ output disable time from high level
${ }^{t}$ PLZ \equiv output disable time from low level
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \Delta t_{P L H} \equiv \text { change in } t_{P L H} \text { with load capacitance } \\
& \Delta t_{P H L} \equiv \text { change in tPHL with load capacitance } \\
& \Delta t_{P Z H} \equiv \text { change in } t_{P Z H} \text { with load capacitance } \\
& \Delta t_{P Z L} \equiv \text { change in tPZL with load capacitance }
\end{aligned}
$$

Typical valus ae $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{A}}=2 \mathrm{~T}^{\circ} \mathrm{C}$

SN54ASC5220, SN74ASC5220
 3-STATE I/O BUFFER WITH INVERTING CMOS INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.8	3.6	8.5	1.9	3.6	7.6	ns
tPHL				2	4	9.5	2.1	4	8.4	
${ }_{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.2	4.5	10.4	2.4	4.5	9.3	ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	3.8	8.9	2.1	3.8	7.9	ns

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	ТО (OUTPUT)	TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		10	30	70	10	30	60	ps/pF
$\Delta \mathrm{tPHL}$				10	25	70	10	25	60	
Δ tPZH	GZ	Y1		10	30	70	10	30	70	/pF
$\Delta \mathrm{tPZL}$				10	30	80	20	30	70	pF

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC5220			SN74ASC5220			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.5	0.8	1.3	0.5	0.8	1.3	ns
tPHL				0.2	0.7	1.6	0.3	0.7	1.5	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	0.7	1.1	2	0.7	1.1	1.9	ns
tPHL				0.5	1.1	2.4	0.6	1.1	2.8	
Δ tpLH $^{\text {d }}$	Y1	Y2		0.2	0.3	0.7	0.2	0.3	0.6	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL $^{\text {L }}$				0.2	0.4	0.8	0.2	0.4	0.8	

\dagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high-level output $\quad \Delta$ tPLH \equiv change in tpLH with load capacitance
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output $\quad \Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
tPZH \equiv output enable time to high level $\Delta \mathrm{t}_{\mathrm{P} Z \mathrm{H}} \equiv$ change in tPZH with load capacitance
${ }^{\text {t PZL }} \equiv$ output enable time to low level
$\Delta \mathrm{t}_{\mathrm{PZL}} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance

\S Input propagation delay times are measured from the 50% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}$.

Refer to Section 7.

SN54ASC5221, SN74ASC5221 3-STATE I/O BUFFER WITH
 INVERTING TTL INPUT AND CMOS/TTL OUTPUT

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.7 ns with $15-\mathrm{pF}$ Load
3.8 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

$$
\begin{aligned}
\text { SN54ASC5221 } \mathrm{IOL} & =8.5 \mathrm{~mA} \\
\mathrm{IOH} & =-8.5 \mathrm{~mA} \\
\text { SN74ASC5221 } \mathrm{IOL} & =10 \mathrm{~mA} \\
\mathrm{IOH} & =-10 \mathrm{~mA}
\end{aligned}
$$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	H
H	L	H	H	L
X	H	L	Z	H
X	H	H	Z	L

$$
Y 1=A \quad Y 2=\overline{Y 1}
$$

description

The SN54ASC5221 and SN74ASC5221 are 3-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to CMOS threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FEATURES		
	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IOF03LH A,GZ,Y2,Y1;	minimum width	62.9

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been purposely omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to VCC will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.
The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the outputs response to change in capacitive loading.

The SN54ASC5221 is characterized for operation over the full military temperature rangé of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5221 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2 and the Io test conditions shown in the electrical characteristics. Maximum highlevel or maximum low-level output current is 8.5 milliamperes for the SN54ASC5221 and 10 milliamperes for the SN74ASC5221.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{T} Input threshold voltage		A,GZ		$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2			2.2		V
		Y1			2.5			2.5			
V_{OH} High-level output voltage			$\mathrm{I}^{\mathrm{OH}}=-10 \mathrm{~mA}$				3.7			V	
			$\mathrm{I}^{\mathrm{OH}}=-8.5 \mathrm{~mA}$	3.7							
			$\mathrm{I}^{\mathrm{OH}}=-20 \mu \mathrm{~A}$, See Note 1	$\mathrm{V}_{\mathrm{CC}}{ }^{-0 .}$			$\mathrm{V}_{\mathrm{CC}}{ }^{-}$				
VOL Low-level output voltage			$\mathrm{IOL}^{\prime}=10 \mathrm{~mA}$						0.5	V	
			$\mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}$			0.5					
			$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$, See Note 1			0.1			0.1		
IOZ	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0			± 10			± 5	$\mu \mathrm{A}$	
ICC Supply current	Supply current		$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			3658			219	$n \mathrm{~A}$.	
			$V_{1}=V_{\text {CC }}$ or 0			1.21			1.13	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1		,	1		pF	
		GZ			0.77			0.77			
		Y1 ${ }^{\dagger}$			6.46			6.46			
Equivalent power $C_{\text {pd }}$ dissipation capacitance			$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \quad \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		24.4			24.4		pF	

${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance. NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\ddagger}$	FROM	TO	TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT
	(INPUT)	(OUTPUT)		MIN	TYP§	MAX	MIN	TYP§	MAX	
$t_{\text {PLH }}$	A	Y1	$R_{L}=\infty$	1.1	2.1	4.8	1.2	2.1	4.3	ns
tPHL				1.7	3.4	8	1.8	3.4	7.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.3	2.8	6.8	1.4	2.8	6.2	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.6	3.2	7.4	1.7	3.2	6.7	ns

[^111]
SN54ASC5221, SN74ASC5221
 3-STATE I/O BUFFER WITH
 INVERTING TTL INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of suply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {t PLH }}$	A	Y1	$R_{L}=\infty$	1.5	2.7	6.4	1.6	2.7	5.7	ns
${ }^{\text {tPHL }}$				2.3	4.8	11.4	2.5	4.8	10.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.6	3.5	8.6	1.7	3.5	7.7	ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.3	4.8	11.1	2.5	4.8	9.9	
${ }_{\text {t }}$ PHZ	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		10			10		ns
tPLZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	9			9			

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tpl_H	A	Y1		10	20	50	10	20	40	ps/pF
$\triangle \mathrm{t}$ PHL				20	40	100	20	40	80	
Δ tPZH	GZ	Y1		10	20	50	10	20	40	ps/pF
$\triangle \mathrm{t} \mathrm{PZL}$				20	46	110	20	46	90	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.3	2.5	5.9	1.4	2.5	5.3	ns
tPHL				1.5	3	6.9	1.6	3	6.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.7	3.3	7.6	1.8	3.3	6.8	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.5	2.7	6.1	1.5	2.7	5.5	

CMOS loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.8	3.6	8.4	1.9	3.6	7.5	ns
tPHL				2	4	9.4	2.1	4	8.3	
${ }_{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.2	4.4	10.2	2.4	4.4	9.2	ns
${ }^{\text {t P Z }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	3.9	9	2.1	3.9	8	n

[^112]change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		10	31	70	20	31	60	ps/pF
$\Delta \mathrm{t}$ PHL				10	29	70	10	29	60	
$\Delta \mathrm{t}$ PZH	GZ	Y1		10	31	70	20	31	70	ps/pF
$\Delta t^{\text {P }}$ LL				20	34	80	20	34	70	

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{5}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5221			SN74ASC5221			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.7	1	2.3	0.7	1	2	ns
tPHL				0.5	0.9	1.4	0.5	0.9	1.4	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	1.7	2.9	6.4	1.8	2.9	5.7	ns
tPHL				0.8	1.3	2.2	0.8	1.3	2.1	
Δ tPLH	Y1	Y2		1	1.9	4.1	1	1.9	3.8	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.3	0.4	0.9	0.3	0.4	0.8	

[^113]Refer to Section 7.

SN54ASC5226, SN74ASC5226 3.STATE I/O BUFFER WITH
 NONINVERTING CMOS INPUT AND CMOS/TTL OUTPUT

SystemCell $^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.7 ns with $15-\mathrm{pF}$ Load
3.8 ns with 50-pF Load
- Output Current Ratings

SN54ASC5226 $\mathrm{IOL}=8.5 \mathrm{~mA}$
$\mathrm{IOH}=-8.5 \mathrm{~mA}$
SN74ASC5226 ${ }^{\circ} \mathrm{OL}=10 \mathrm{~mA}$
$\mathrm{IOH}=-10 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC

Range of 4.5 V to 5.5 V

- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	L
H	L	H	H	H
X	H	L	Z	L
X	H	H	Z	H

$$
Y 1=A \quad Y 2=Y 1
$$

description

The SN54ASC5226 and SN74ASC5226 are three-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to CMOS threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. This cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	$\|c\|$	NEATIST HDL LABEL	CELL LAYOUT ASPECT RATIO
	RELATIVE CELL AREA TO NA210LH		

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{CC} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.

The SN54ASC5226 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5226 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 8.5 milliamperes for the SN54ASC5226 and 10 milliamperes for the SN74ASC5226.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5226			SN74ASC5226			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{T} Input threshold voltage		A,GZ		$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2			2.2		V
		Y1			2.5			2.5			
V_{OH} High-level output voltage			$1 \mathrm{OH}=-10 \mathrm{~mA}$				3.7			V	
			$\mathrm{I}^{\mathrm{OH}}=-8.5 \mathrm{~mA}$	3.7							
			${ }^{1} \mathrm{OH}=-20 \mu \mathrm{~A}, \quad$ See Note 1	$\mathrm{V}_{\mathrm{CC}}-0$.			V_{CC}				
VOL Low-level output voltage			$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$						0.5	V	
			$\mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}$			0.5					
			$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$, See Note 1			0.1			0.1		
${ }^{\text {IOZ }}$	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0			± 10			± 5	$\mu \mathrm{A}$	
${ }^{\text {I CC }}$ Supply current	Supply current		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			3843			231	nA	
			$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0.9 V			2.92			2.51	mA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.04			1.04		pF	
		GZ			0.76			0.76			
		Y1 ${ }^{\dagger}$			6.07			6.07			
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$		26.6			26.6		pF	

${ }^{\dagger}$ Total input capaciatance for the Y 1 input is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5226			SN74ASC5226			UNIT
				MIN	TYP ${ }^{\text {S }}$	MAX	MIN	TYP§	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.1	2.1	4.7	1.2	2.1	4.2	ns
${ }^{\text {tPHL}}$				1.7	3.4	7.9	1.8	3.4	7.1	
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.3	2.8	6.8	1.4	2.8	6.1	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.6	3.2	7.3	1.7	- 3.2	6.6	

[^114]
SN54ASC5226, SN74ASC5226 3-STATE I/O BUFFER WITH NONINVERTING CMOS INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROMI (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5226			SN74ASC5226			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {tPLH }}$	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.4	2.7	6.4	1.5	2.7	5.7	ns
${ }^{\text {tPHL }}$				2.3	4.8	11.3	2.5	4.8	10.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.6	3.5	8.5	1.7	3.5	7.7	ns
$\mathrm{t}_{\mathrm{P} Z \mathrm{~L}}$			$R_{L}=1 \mathrm{k} \Omega$ to V_{CC}	2.3	4.8	11.1	2.5	4.8	9.9	
tpHz	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		10			10		ns
tPLZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	9			9			

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5226			SN74ASC5226			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{t}_{\text {PLH }}$	A	Y1		10	17	50	10	17	40	$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				20	40	100	20	40	80	
$\triangle \mathrm{tPZH}$	GZ	Y1		10	20	50	10	20	40	ps/pF
$\Delta \mathrm{tPZL}$				20	46	110	20	46	90	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5226			SN74ASC5226			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$	1.3	2.5	5.8	1.4	2.5	5.2	ns
tPHL				1.5	3	6.8	1.6	3	6.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.7	3.3	7.5	1.8	3.3	6.8	ns
${ }_{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.4	2.7	6.1	1.5	2.7	5.5	

[^115]switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{CL}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC5	226		4ASC5		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.8	3.6	8.3	1.9	3.6	7.5	ns
tPHL				2	4	9.3	2.1	4	8.3	
${ }^{\text {tPZH }}$	GZ	Y1	$R_{L}=1 \mathrm{k} \Omega$ to GND	2.2	4.4	10.1	2.4	4.4	9.1	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	3.9	8.9	2.1	3.9	8	

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5226			SN74ASC5226			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		10	31	70	20	31	60	F
$\Delta \mathrm{t} \mathrm{PHL}$				10	29	70	10	29	60	/pF
$\Delta \mathrm{t}_{\text {PZH }}$	GZ	Y1		10	31	80	20	31	70	ps/pF
$\Delta \mathrm{t} P \mathrm{ZL}$				20	34	80	20	34	70	

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER§	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5226			SN74ASC5226			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.9	1.8	3.8	1	1.8	3.5	ns
${ }^{\text {tPHL }}$				1.1	1.8	3.5	1.1	1.8	3.2	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	1	2	4.2	1.1	2	3.8	ns
tPHL				1.2	2	3.8	1.2	2	3.6	
Δ tPLH	Y1	Y2		0.1	0.2	0.5	0.1	0.2	0.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.1	0.2	0.5	0.1	0.2	0.4	

 at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high-level output $\quad \Delta$ tPLH \equiv change in tPLH with load capacitance
tPHL \equiv propagation delay time, high-to-low-level output $\quad \Delta \mathrm{t} H \mathrm{HL} \equiv$ change in tPHL with load capacitance
${ }^{\mathrm{t}} \mathrm{PZH} \equiv$ output enable time to high level $\Delta \mathrm{tPZH} \equiv$ change in tPZH with load capacitance
tPZL \equiv output enable time to low level
$\Delta t P Z L \equiv$ change in $t P Z L$ with load capacitance
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 50% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.7 ns with $15-\mathrm{pF}$ Load
3.8 ns with $50-\mathrm{pF}$ Load
- Output Current Ratings

SN54ASC5227 $\mathrm{IOL}=8.5 \mathrm{~mA}$
$\mathrm{IOH}=-8.5 \mathrm{~mA}$
SN74ASC5227 $\mathrm{lOL}=10 \mathrm{~mA}$
$\mathrm{IOH}=-10 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

$$
Y 1=A \quad Y 2=Y 1
$$

description

The SN54ASC5227 and SN74ASC5227 are three-state input/output buffer standard-cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The input buffer responds to TTL threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. This cell is designated and called from the engineering workstation input using the following cell name and netlist label.

CELL NAME	NETLIST HDL LABEL	FEATURES \quadCELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IOFO4LH A, GZ,Y2,Y1;	minimum width	62.9

The cells incorporate circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
 logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{C} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.
The SN54ASC5227 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5227 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54ASC5227, SN74ASC5227
3-STATE I/O BUFFER WITH
NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level or maximum low-level output current is 8.5 milliamperes for the SN54ASC5227 and 10 milliamperes for the SN74ASC5227.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		SN54ASC5227			SN74ASC5227			UNIT		
			MIN	TYP	MAX	MIN	TYP	MAX					
	Input threshold voltage	A,GZ			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
		Y1	1.3				1.3						
V_{OH} High-level output voltage			$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$						3.7			V	
			$\mathrm{I}_{\mathrm{OH}}=-8.5 \mathrm{~mA}$		3.7								
			$\mathrm{IOH}=-20 \mu \mathrm{~A}$	See Note 1	$\mathrm{V}_{\mathrm{CC}}{ }^{-0.1}$			$\mathrm{V}_{\mathrm{CC}}-0.1$					
$\mathrm{V}_{\text {OL }}$ Low-level output voltage			$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$							0.5	V		
			$\mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}$				0.5						
			$\mathrm{I}_{\text {OL }}=20 \mu \mathrm{~A}$,	See Note 1			0.1			0.1			
Ioz Off-state output current			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or 0				± 10			± 5	$\mu \mathrm{A}$		
ICC Supply current			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0				3794			228	nA		
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V				1.19			1.11	mA		
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1				1		pF		
		GZ			0.76			0.76					
		Y1 ${ }^{\text {t }}$				6.44			6.44				
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$		25.7			25.7			pF		

${ }^{\dagger}$ Total input capaciatance for the $Y 1$ input is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $C_{L}=15 \mathrm{pF}$

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5227			SN74ASC5227			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.1	2.1	4.8	1.2	2.1	4.2	ns
${ }_{\text {tPHL }}$				1.7	3.4	7.9	1.8	3.4	7.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.3	2.8	6.8	1.4	2.8	6.1	ns
${ }_{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.6	3.2	7.3	1.7	3.2	6.6	

\ddagger Propagation delay times are measured from the 44% point of V_{ρ} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
${ }^{\text {t }}$ PLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
${ }^{\text {t }} \mathrm{PZL} \equiv$ output enable time to low level

SN54ASC5227, SN74ASC5227 3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltge and operating free-air temperature (unless otherwise noted)

TTL loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5227			SN74ASC5227			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.5	2.7	6.4	1.5	2.7	5.7	ns
tPHL				2.3	4.8	11.3	2.5	4.8	10.1	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.6	3.5	8.5	1.7	3.5	7.7	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.3	4.7	11.1	2.5	4.7	9.8	
tPHZ	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		10			10		ns
tplZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		9			9		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5227			SN74ASC5227			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1	.	10	17	50	10	17	40	ps/pF
Δ tPHL				20	40	100	20	40	80	
$\Delta \mathrm{t}_{\text {PZH }}$	GZ	Y1		10	20	50	10	20	40	ps/pF
$\triangle \mathrm{tPZL}$				20	43	110	20	43	90	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5227			SN74ASC5227			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.3	2.5	5.9	1.4	2.5	5.2	ns
tPHL				1.5	3	6.8	1.6	3	6.1	
${ }_{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	1.7	3.3	7.6	1.8	3.3	6.8	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	1.4	2.7	6.1	1.5	2.7	5.5	

CMOS loads, $\mathrm{CL}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5227			SN74ASC5227			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	1.8	3.6	8.3	1.9	3.6	7.5	ns
${ }_{\text {tPHL }}$				2	4	9.3	2.1	4	8.3	
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	2.2	4.4	10.2	2.4	4.4	9.1	ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2	3.8	8.9	2.1	3.8	8	

[^116]
NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5227			SN74ASC5227			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\Delta \mathrm{t}_{\text {PLH }}$	A	Y1		10	31	70	20	31	60	ps/pF
$\Delta \mathrm{t}$ PHL				10	29	70	10	29	60	
$\Delta \mathrm{tPZH}$	GZ	Y1		10	31	70	20	31	70	$\mathrm{ps} / \mathrm{pF}$
Δ tPZL				20	31	80	20	31	70	

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	TO(OUTPUT)	TEST CONDITIONS	SN54ASC5227			SN74ASC5227			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Y1	Y2	$C_{L}=0$	0.8	1.4	2.6	0.9	1.4	2.4	ns
tPHL				1.3	2.6	5.9	1.4	2.6	5.3	
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$	1	1.7	3.3	1	1.7	3.1	ns
tPHL				1.5	2.9	6.8	1.6	2.9	6	
Δ tpLH	Y1	Y2		0.1	0.3	0.8	0.1	0.3	0.7	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.2	0.3	0.9	0.2	0.3	0.8	

\dagger Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
${ }^{\mathrm{t} P L H} \equiv$ propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in $\mathrm{t}_{\mathrm{PLH}}$ with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
$\Delta t_{P Z H} \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance
$\Delta \mathrm{t} P Z \mathrm{~L} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 1.3 V point of V_{f} to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.7 ns with $15-\mathrm{pF}$ Load
3.7 ns with 50-pF Load
- Output Current Ratings

SN54ASC5239 $\mathrm{IOL}=20.4 \mathrm{~mA}$

$$
\mathrm{IOH}=-10.2 \mathrm{~mA}
$$

SN74ASC5239 $\mathrm{IOL}=24 \mathrm{~mA}$
$\mathrm{IOH}=-12 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equations

logic symbol

FUNCTION TABLE

INPUTS			OUTPUTS	
A	GZ	Y1	Y1	Y2
L	L	L	L	L
H	L	H	H	H
X	H	L	Z	L
X	H	H	Z	H

CELL NAME	FEATURES		
	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IOFB8LH A,GZ,Y2,Y1;	minimum width	73.4

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, therebv negating most common snurnoc that nan nrodune a lateh-un enndition.

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or VCC.

The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

description (continued)

The SN54ASC5239 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5239 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level output current is 10.2 milliamperes for the SN54ASC5239 and 12 milliamperes for the SN74ASC5239. The maximum low-level output current is 20.4 milliamperes for the SN54ASC5239 and 24 milliamperes for the SN74ASC5239.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5239			SN74ASC5239			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
	Input threshold voltage	A, GZ		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
V_{T}		Y1			1.3			1.3			
V_{OH}	High-level output voltage		$1 \mathrm{OH}=-12 \mathrm{~mA}$				3.7			V	
			$\mathrm{I}_{\mathrm{OH}}=-10.2 \mathrm{~mA}$	3.7							
			$\mathrm{IOH}=-20 \mu \mathrm{~A}$, See Note 1	$\mathrm{V}_{\mathrm{CC}}-0.1$			V_{CC}				
	Low-level output voltage		$1 \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$						0.5	V	
V_{OL}			$1 \mathrm{OL}=20.4 \mathrm{~mA}$			0.5					
			$\mathrm{I}^{\text {OL }}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1		
Ioz	Off-state output cu	rrent	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0			± 10			± 5	$\mu \mathrm{A}$	
	Supply current		$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			4538			272	nA	
			$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.8 V			1.2			1.12	mA	
	Input capacitance	A	$\mathrm{V}_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.18			1.18		pF	
		GZ			0.89			0.89			
		Y1 ${ }^{\dagger}$			7.39			7.39			
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$		28.2			28.2		pF	

${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance. NOTE 1: These limits apply when all other outputs are open.

SN54ASC5239, SN74ASC5239
 3-STATE I/O BUFFER WITH NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5239			SN74ASC5239			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$R_{L}=\infty$		2.3			2.3		ns
tPHL					3.2			3.2		
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		2.7			2.7		ns
${ }^{\text {t P Z }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		3			3		

TTL loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5239			SN74ASC5239			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$		2.9			2.9		ns
tPHL					4.2			4.2		
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		3.4			3.4		ns
${ }_{\text {t P Z }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		4.2			4.2		
tPHZ	GZ	Y1	$R_{L}=1 \mathrm{k} \Omega$ to GND		10			10		ns
${ }^{\text {t PLZ }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		9			9		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5239			SN74ASC5239			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		17			17			$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$					29			29		
$\Delta \mathrm{t}$ PZH	GZ	Y1			20			20		ps/pF
$\Delta \mathrm{tPZL}^{\text {L }}$					34			34		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC			4ASC5		UNIT
P	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.7			2.7			ns
tPHL				2.8			2.8			
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3.2			3.2			ns
${ }_{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.6			2.6			

[^117]at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high-level output $\quad \Delta \mathrm{tPLH} \equiv$ change in tpLH with load capacitance
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output $\quad \Delta$ tPHL \equiv change in tPHL with load capacitance
${ }^{\text {tPZH }} \equiv$ output enable time to high level $\quad \Delta$ tPZH \equiv change in tPZH with load capacitance
tPZL \equiv output enable time to low level
$\Delta t P Z L \equiv$ change in tPZL with load capacitance
TPHZ \equiv output disable time from high level
tpLZ \equiv output disable time from low level
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC5239, SN74ASC5239
3-STATE I/O BUFFER WITH
NONINVERTING TTL INPUT AND CMOS/TTL OUTPUT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)
CMOS loads, $C_{L}=\mathbf{5 0} \mathbf{~ p F}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5239			SN74ASC5239			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$		3.7			3.7		ns
tPHL					3.6			3.6		
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		4.2			4.2		ns
${ }^{\text {tPZL }}$			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		3.5			3.5		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5239			SN74ASC5239			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		29				29		$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL					23			23		
$\Delta \mathrm{t}$ PZH	GZ	Y1			29			29		ps/pF
$\triangle t^{\text {PZL }}$					26			26		

input buffer switching characteristics over recommended ranges of supply voltage and free-air temperature (unless otherwise noted)

PARAMETER§	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5239			SN74ASC5239			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH}}$	Y1	Y2	$C_{L}=0$		1.3			1.3		ns
tPHL					2.4			2.4		
${ }^{\text {PPLH }}$ *	Y1	Y2	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$		1.6			1.6		ns
${ }_{\text {tPHL }}$					2.7			2.7		
$\triangle \mathrm{tPLH}$	Y1	Y2			0.3			0.3		$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$					0.3			0.3		

[^118]Refer to Section 7.

SystemCell ${ }^{\text {™ }} 2-\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
2.5 ns with $15-\mathrm{pF}$ Load

3 ns with $50-\mathrm{pF}$ Load

- Output Current Ratings

SN54ASC5246 IOL $=37.4 \mathrm{~mA}$
$\mathrm{IOH}_{\mathrm{OH}}=-10.2 \mathrm{~mA}$
SN74ASC5246 $\mathrm{IOL}=44 \mathrm{~mA}$
$\mathrm{IOH}_{\mathrm{OH}}=-12 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations
logic symbol

FUNCTION TABLE

INPUTS		OUTPUTS		
A	GZ	Y1	Y1	Y2
L	L	L	L	H
H	L	H	H	L
X	H	L	Z	H
X	H	H	Z	L

$$
Y=A \quad Y 2=\overline{Y 1}
$$

description

The SN54ASC5246 and SN74ASC5246 are 3-state input/output buffer standard cells that interface CMOS internal cells with TTL or CMOS bidirectional bus lines. The Schmitt-trigger input buffer, providing additional noise-rejection with its hysteresis loop, responds to TTL threshold levels imposed on the I/O bus regardless of the state of the internal 3-state control GZ. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FEATURES		
	NETLIST HDL LABEL	CELL LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IOFD8LH A,GZ,Y2,Y1;	minimum width	54

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes,

These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{CC} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.
The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta delay times provide a means for making direct comparisons of the various output responses to change in capacitive loading.

SN54ASC5246, SN74ASC5246
3-STATE I/O BUFFER WITH
INVERTING TTL INPUT AND TTL/CMOS OUTPUT

description (continued)

The SN54ASC5246 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5246 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 4 in Section 2. The maximum high-level output current is 10.2 milliamperes for the SN54ASC5246 and 12 milliamperes for the SN74ASC5246. The maximum low-level output current is 37.4 milliamperes for the SN54ASC5246 and 44 milliamperes for the SN74ASC5246.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	SN54ASC5246			SN74ASC5246			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{T}	Input threshold voltage at A, GZ			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2			2.2			V
$\mathrm{V}_{\mathrm{T}+}$	Positive-going threshold level (Y1)		-	1.5	1.7	2	1.5	1.7	2	V	
$\mathrm{V}_{\mathrm{T} \text { - }}$	Negative-going threshold level (Y1)			0.6	0.9	1.1	0.6	0.9	1.1	V	
$V_{\text {hys }}$	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)				0.8			0.8		V	
VOH	High-level output voltage		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$				3.7			V	
			$\mathrm{I}^{\mathrm{OH}}=-10.2 \mathrm{~mA}$	3.7							
			$\mathrm{I}^{\mathrm{OH}}=-20 \mu \mathrm{~A}$, See Note 1	$\mathrm{V}_{\mathrm{CC}}-0.1$			$\mathrm{V}_{\mathrm{CC}}-0.1$				
V_{OL}	Low-level output voltage		$\mathrm{I}^{\mathrm{OL}}=44 \mathrm{~mA}$						0.5	V	
			$\mathrm{I}^{\mathrm{OL}}=37.4 \mathrm{~mA}$			0.5					
			${ }^{1} \mathrm{OL}=20 \mu \mathrm{~A}, \quad$ See Note 1			0.1			0.1		
1 OZ	Off-state output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or 0			± 10			± 5	$\mu \mathrm{A}$	
${ }^{\prime} \mathrm{CC}$	Supply current		$\mathrm{V}_{1}=2 \mathrm{~V}$ or 0.6 V			1.45			1.35	mA	
			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0			6300			378	nA	
C_{i}	Input capacitance	A	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.84			1.84		pF	
		GZ			1.51			1.51			
		Y1 ${ }^{\dagger}$			8.79			8.79			
C_{pd}	Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{array}$	50.8			50.8			pF	

${ }^{\dagger}$ Total input capacitance for Y 1 is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
NOTE 1: These limits apply when all other outputs are open.

SN54ASC5246, SN74ASC5246 3-STATE I/O BUFFER WITH INVERTING TTL INPUT AND TTL/CMOS OUTPUT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

TTL loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5246			SN74ASC5246			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$		2.3			2.3		ns
tPHL					2.5			2.5		
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		3			3		ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		2.2			2.2		

TTL loads, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5246			SN74ASC5246			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$		2.8			2.8		ns
${ }_{\text {tPHL }}$					3			3		
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		3.6			3.6		
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		2.8			2.8		ns
tPHZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		10			10		ns
tplZ			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}		9			9		

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5246			SN74ASC5246			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1			15			15		$\mathrm{ps} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL					15			15		
$\Delta \mathrm{t}_{\mathrm{PZH}}$	GZ	Y1			9			9		$\mathrm{ps} / \mathrm{pF}$
$\triangle t^{\text {PRL }}$					17			17		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC			4ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	NIT
tplH	A	Y1	$\mathrm{R}_{\mathrm{L}}=\infty$	2.7			2.7			ns
tPHL				2.2			2.2			
${ }^{\text {tPZH }}$	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	3.5			3.5			ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2			2			

 at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
${ }^{\mathrm{t} P L H} \equiv$ propagation delay time, low-to-high-level output $\quad \Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in t PLH with load capacitance
tpHL \equiv propagation delay time, high-to-low-level output $\quad \Delta t_{\text {PHL }} \equiv$ change in tPHL with load capacitance
${ }^{\text {tPZH }} \equiv$ output enable time to high level
${ }^{\text {tPZL }} \equiv$ output enable time to low level
${ }^{t} \mathrm{PHZ} \equiv$ output disable time from high level
${ }^{t} P L Z \equiv$ output disable time from low level
$\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\Delta T_{P Z H} \equiv$ change in tPZH with load capacitance $\Delta \mathrm{t}_{\mathrm{P}} \mathrm{ZL} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

CMOS loads, $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$

PARAMETER ${ }^{+}$	FROM	TO	TEST		4ASC	46		4ASC5	46	NIT
PARA	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	UNIT
tPLH	A	Y1	$R_{L}=\infty$	3.7				3.7		ns
tPHL				2.6			2.6			
tPZH	GZ	Y1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	4.5			4.5			ns
tPZL			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CC}	2.4			2.4			

change in propagation delay time with load capacitance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5246			SN74ASC5246			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
Δ tPLH	A	Y1		29			29			ps/pF
$\Delta \mathrm{t} \mathrm{PHL}$				11			11			
Δ tPZH	GZ	Y1		29			29			ps/pF
$\Delta \mathrm{tPZL}$				11			11			

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5246			SN74ASC5246			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Y1	Y2	$C_{L}=0$	7				7		ns
${ }^{\text {tPHL }}$					1.4			1.4		
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$		14			14		ns
tPHL					2			2		
$\Delta \mathrm{t}$ PLH	Y1	Y2			7			7		$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL					0.6			0.6		

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
tPLH \equiv propagation delay time, low-to-high-level output
Δ tPLH \equiv change in tPLH with load capacitance
tpHL \equiv propagation delay time, high-to-low-level output
Δ tPHL \equiv change in tPHL with load capacitance
${ }^{\mathrm{t} P Z H} \equiv$ output enable time to high level
$\Delta t_{P Z H} \equiv$ change in $t_{P Z H}$ with load capacitance
${ }^{\text {tPZL }} \equiv$ output enable time to low level
$\Delta \mathrm{tPZL} \equiv$ change in tPZL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 1.3 V point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ OUTPUT STANDARD CELL

- Typical Propagation Delays
1.7 ns with 15-pF Load
2.3 ns with 50-pF Load
- Output Current Ratings

SN54ASC5250 IOL $=37.4 \mathrm{~mA}$
SN74ASC5250 IOL $=-44 \mathrm{~mA}$

- Incorporates Circuitry to Protect Against ESD and Latch-Up
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations

$$
Y 1=A \quad Y 2=\overline{Y 1}
$$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUTS	
A	Y1	Y1	Y2
L	L	L	H
H	H	Z	L
H	L	Z	H

description

The SN54ASC5250 and SN74ASC5250 are three-state input/output buffer standard-cells that interface CMOS internal cells with terminated TTL or CMOS bidirectional bus lines. The input buffer responds to CMOS threshold levels imposed on the I/O bus when the internal input A is at a high logic level. The cell is designated and called from the engineering workstation input using the following cell name and netlist label:

CELL NAME	FETLIST	FEATURES	
	NETLI HDL LABEL	CELL. LAYOUT ASPECT RATIO	RELATIVE CELL AREA TO NA210LH
	Label: IOFDOLH A,Y2,Y1;	minimum width	54

The cell incorporates circuit elements designed to actively bypass and dissipate electrostatic discharges with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.

These nutnut cells have heen designed to nrovide Inw-imnedance drive levels for Inw-lngic-level nutnuts interfacing a bus having a terminated high-level drive source. As a result, passive resistance has been omitted in series with the output transistor. Shorting the low-level output to $V_{C C}$ will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to V_{CC}.
The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta delay times provide a means for making direct comparisons of the various outputs response to change in capacitive loading.

The SN54ASC5250 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5250 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 4 in Section 2. The maximum low-level output current is 37.4 milliamperes for SN54ASC5250 and 44 milliamperes for SN74ASC5250.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

${ }^{\dagger}$ Total input capacitance for Y 1 is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
NOTE 1: These limits apply when all other outputs are open.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TTL loads

PARAMETER ${ }^{\ddagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5250			SN74ASC5250			UNIT
				MIN	TYP§	MAX	MIN	TYP§	MAX	
${ }^{\text {tPHL }}$	A	Y1	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		1.7			1.7		ns
tPLH	A	Y1	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$		8.5			8.5		ns
tPHL					2.3			2.3		
$\Delta \mathrm{t} \mathrm{PHL}$	A	Y1	,		17			17		ps/pF

\ddagger Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
$\mathrm{t}_{\mathrm{PLH}} \equiv$ propagation delay time, low-to-high-level output
$t_{\text {PHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in t PHL with load capacitance
\S Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

> SN54ASC5250, SN74ASC5250
> OPEN-DRAIN I/O BUFFER WITH INVERTING CMOS INPUT AND CMOS/TTL OUTPUT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

CMOS loads

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC5250			SN74ASC5250			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPHL }}$	A	Y1	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		1.5			1.5		ns
${ }^{\text {tPHL }}$	A	Y1	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		2			2		ns
$\Delta \mathrm{t}$ PHL	A	Y1			14			14		$\mathrm{ps} / \mathrm{pF}$

input buffer switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {§ }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC5250			SN74ASC5250			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	Y1	Y2	$C_{L}=0$	0.6			0.6			ns
tPHL					0.5			0.5		
tPLH	Y1	Y2	$C_{L}=1 \mathrm{pF}$		1			1		ns
tPHL					1			1		
$\Delta \mathrm{tPLH}$	Y1	Y2			0.4			0.4		$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$					0.5			0.5		

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in tPLH with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S Input propagation delay times are measured from the 50% point of V_{f} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 2.7 ns Typical Propagation Delay with 1-pF logic symbol Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=\overline{A 1+(B 1 \cdot B 2 \cdot B 3)}
$$

description

FUNCTION TABLE

INPUTS				OUTPUT
A1	B1	B2	B3	Y
H	X	X	X	L
X	H	H	H	L
L	L	X	X	H
L	X	L	X	H
L	X	X	L	H

The SN54ASC6002 and SN74ASC6002 are expandable 1-3-input AND-NOR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
	NETLIST	TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$\mathrm{C}_{\mathrm{L}}=\mathbf{1} \mathbf{~ p F}$	TO NA210LH
BF002LH	Label: BF002LH A1,B1,B2,B3,Y;	2.7 ns	1.5

absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6002	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$		$\begin{array}{r} \hline 204 \\ \hline 12.3 \end{array}$		nA
	SN74ASC6002					
Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { cquivarerli powver } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & v_{C C}=5 \mathrm{v}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\iota_{r}=\iota_{f}=s \mathrm{~ns},$	0.42		pF

SN54ASC6002, SN74ASC6002
AND-NOR GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC6002			SN74ASC6002			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {tPLH }}$	Any	Y	$C_{L}=0$	0.6	1.2	2.9	0.6	1.2	2.6	ns
tpHL				0.3	1	2.3	0.3	1	2	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	1.5	3.2	7.4	1.6	3.2	6.8	ns
tPHL				0.7	2.2	5.7	0.8	2.2	5	
Δ tpLH	Any	Y		0.9	2	4.6	1	2	4.1	ns/pF
Δ tpHL				0.4	1.2	3.5	0.4	1.2	3	

[^119]
DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 2.6 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2)+(\mathrm{B} 1 \cdot \mathrm{~B} 2)}
$$

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A1	A2	B1	B2	Y
H	H	X	X	L
X	X	H	H	L
Any other combination				H

description

The SN54ASC6003 and SN74ASC6003 are 2-wide, 2 -input AND-OR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY CELL AREA	
BF003LH	Label: BF003LH A1,A2,B1,B2,Y;	2.6 ns	1.75

The SN54ASC6003 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6003 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6003	$V_{C C}=4.5$	$V_{\text {I }}=V_{\text {CC }}$ or 0 ,		220	nA
	SN74ASC6003	$\mathrm{T}_{\mathrm{A}}=$ MIN to			13.2	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.51		pF

SN54ASC6003, SN74ASC6003
AND-NOR GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6003			SN74ASC6003			UNIT
				Min	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.7	1.2	2.7	0.7	1.2	2.5	ns
${ }_{\text {tPHL }}$				0.3	1	2	0.4	1	1.9	
${ }_{\text {tPLH }}$	Any	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.2	7.2	1.7	3.2	6.6	ns
tPHL				0.9	2	4.5	0.9	2	4	
Δ tPLH	Any	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	0.9	2.5	0.5	0.9	2.2	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {t PHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- 2.8 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2)+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)}
$$

description

FUNCTION TABLE

INPUTS				OUTPUT	
A1	A2	B1	B2	B3	Y
H	H	X	X	X	L
X	X	H	H	H	L
Any				other combination	H

The SN54ASC6004 and SN74ASC6004 are 2-wide, 2-3-input AND-NOR gate CMOS standard cells. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	TO NA210LH
BF004LH	Label: BF004LH A1,A2,B1,B2,B3,Y;	2.8 ns	1.75

The SN54ASC6004 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6004 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6004	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{C C} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$			237	nA
	SN74ASC6004				14.2	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Eyuivatari purvi } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \because \text { Cこ - } \because \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\because-{ }_{i}-2 n \mathrm{nc} .$	0.53		pr

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6004			SN74ASC6004			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.6	1.3	2.7	0:7	1.3	2.5	ns
tPHL				0.4	1	2.1	0.4	1	1.9	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.3	6.4	1.7	3.3	5.9	ns
${ }_{\text {tPHL }}$				0.9	2.2	5	1	2.2	4.4	
Δ tPLH	Any	Y		0.9	2	3.8	1	2	3.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1.2	3	0.5	1.2	2.6	

[^120]
SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 3 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2 \cdot \mathrm{~A} 3)+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT	
A1	A2	A3	B1	B2	B3	Y
H	H	H	X	X	X	L
X	X	X	H	H	H	L
Any other combination					H	

description

The SN54ASC6005 and SN74ASC6005 are 2 -wide, 3 -input AND-NOR gate CMOS standard cells. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH

The SN54ASC6005 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6005 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6005	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & \mathrm{~T}_{\wedge}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			266	nA
	SN74ASC6005				15.9	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }}$ Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.64		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6005			SN74ASC6005			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.7	1.5	3.3	0.7	1.5	3.1	ns
tPHL				0.5	1.2	2.4	0.5	1.2	2.1	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.5	7.1	1.7	3.5	6.5	ns
tPHL				1.1	2.5	5.2	1.2	2.5	4.5	
Δ tPLH	Any	Y		0.9	2	3.8	1	2	3.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3	0.6	1.3	2.5	

[^121]
DESIGN CONSIDERATIONS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 3 ns from Any A
3.2 ns from Any B
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{A 1+A 2+(B 1 \cdot B 2)}$
logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A1	A2	B1	B2	Y
H	X	X	X	L
X	H	X	X	L
X	X	H	H	L
L	L	L	X	H
L	L	X	L	H

description

The SN54ASC6006 and SN74ASC6006 are expandable 1-1-2-input AND-NOR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF006LH	Label: BF006LH A1,A2,B1,B2,Y;	1.75

The SN54ASC6006 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6006 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6006	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			222	nA
	SN74ASC6006				13.3	
S_{1} innui vanaviaune		\because ここ,	T~ $-20^{\circ} \mathrm{O}$	ก1?		n5
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.36		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6006			SN74ASC6006			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Any	Y		0.8	1.5	4.1	0.8	1.5	3.7	
tPHL	Any A	Y	$C_{L}=0$	0.2	0.8	1.6	0.3	0.8	1.6	ns
tPHL	Any B	Y		0.4	1	2	0.5	1	1.9	
${ }_{\text {tPL }}$	Any	Y		2.2	4.5	11	2.3	4.5	9.9	
tPHL	Any A	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.4	3	0.8	1.4	2.8	ns
${ }^{\text {tPHL }}$	Any B	Y		0.9	1.9	4.6	1	1.9	4	
$\Delta \mathrm{t}_{\text {PLH }}$	Any	Y		1.4	3	7	1.5	3	6.3	
$\Delta \mathrm{t}$ PHL	Any A	Y		0.4	0.6	1.4	0.4	0.6	1.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$	Any B	Y		0.5	0.9	2.6	0.5	0.9	2.2	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {PPHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}$ PHL \equiv change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD Cell

- Typical Propagation Delay with 1-pF Load 3.2 ns from Any A
3.7 ns from Any B
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{\mathrm{A} 1+\mathrm{A} 2+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)}$
logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	A2	B1	B2	B3	
H	X	X	X	X	L
X	H	X	X	X	L
X	X	H	H	H	L
L	L	L	X	X	H
L	L	X	L	X	H
L	L	X	X	L	H

description

The SN54ASC6007 and SN74ASC6007 are expandable 1-1-3-input AND-NOR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF007LH	Label: BF007LH A1,A2,B1,B2,B3,Y;	1.75

The SN54ASC6007 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6007 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6007			SN74ASC6007			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.7	1.8	5	0.7	1.8	4.5	ns
tPHL	Any A	Y		0.3	0.9	1.6	0.3	0.9	1.6	
${ }^{\text {tPHL }}$	Any B	Y		0.4	1.2	2.7	0.5	1.2	2.4	
tplH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.2	4.8	11.8	2.3	4.8	10.7	ns
tpHL	Any A	Y		0.7	1.5	3.1	0.8	1.5	2.8	
tpHL	Any B	Y		1.1	2.5	6.2	1.2	2.5	5.4	
$\Delta t_{\text {PLH }}$	Any	Y		1.4	3	6.9	1.5	3	6.3	ns/pF
$\Delta \mathrm{t}$ PHL	Any A	Y		0.4	0.6	1.5	0.4	0.6	1.2	
Δ tPHL	Any B	Y		0.6	1.3	3.6	0.7	1.3	3.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- 3.4 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1+(B 1 \cdot B 2)+(C 1 \cdot C 2)}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	B1	B2	C1	C2	Y
H	X	X	X	X	L
X	H	H	X	X	L
X	X	X	H	H	L
Any other combination				H	

description

The SN54ASC6008 and SN74ASC6008 are expandable 1-2-2 input AND-NOR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY $C_{L}=1 ~ p F ~$	CELL AREA TO NA210LH
BF008LH	Label: BF008LH A1,B1,B2,C1,C2,Y;	3.4 ns	2

The SN54ASC6008 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6008 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{TA}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	V
		$\frac{210}{14.9}$	nA
C_{i} Input capacitance	$V_{C C}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.44	pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6008			SN74ASC6008			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.9	1.8	5.3	0.9	1.8	4.7	ns
tpHL	A1			0.4	1	1.7	0.4	1	1.7	
tPHL	Any B, C			0.3	1	2.3	0.4	1	2.1	
tpLH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.3	4.8	12.1	2.5	4.8	10.9	ns
tPHL	A1			0.8	1.6	3.2	0.9	1.6	2.9	
tpHL	Any B, C			0.8	2	4.8	0.9	2	4.2	
$\Delta \mathrm{tPLH}^{\text {d }}$	Any	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$	A1			0.4	0.6	1.5	0.4	0.6	1.3	
$\Delta \mathrm{t}_{\text {PHL }}$	Any B, C			0.5	1	2.6	0.5	1	2.2	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 3.7 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1+(B 1 \cdot B 2)+(C 1 \cdot C 2 \cdot C 3)}
$$

logic symbol

FUNCTION TABLE

INPUTS						OUTPUT
A1	B1	B2	C1	C2	C3	Y
H	X	X	X	X	X	L
X	H	H	X	X	X	L
X	X	X	H	H	H	L
Any other combination						H

description

The SN54ASC6009 and SN74ASC6009 are expandable 1-2-3-input AND-NOR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY	CELL AREA
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
BF009LH	Label: BF009LH A1,B1,B2,C1,C2,C3,Y;	3.7 ns	2

The SN54ASC6009 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6009 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} & \\ \hline \end{array}$		2.2		V
ICC Supply current	SN54ASC6009				266	nA
	SN74ASC6009				15.9	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
Equivalent power $\mathrm{C}_{\text {pd }}$ dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.45		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6009			SN74ASC6009			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	Any	Y	$C_{L}=0$	0.9	2	6.1	0.9	2	5.5	ns
tPHL	A1	Y		0.4	1	1.8	0.5	1	1.7	
${ }^{\text {tPHL}}$	Any B, C	Y		0.3	1.2	3	0.4	1.2	2.7	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.3	5	12.9	2.5	5	11.7	ns
tPHL	A1	Y		0.8	1.6	3.2	0.9	1.6	2.9	
${ }_{\text {t }}$ PHL	Any B, C	Y		0.9	2.4	6.6	1	2.4	5.7	
$\Delta \mathrm{t}_{\text {PLH }}$	Any	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$	A1	Y		0.4	0.6	1.5	0.4	0.6	1.3	
$\Delta \mathrm{t}$ PHL	Any B, C	Y		0.5	1.2	3.6	0.5	1.2	3.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in $\mathrm{t}_{\mathrm{PLH}}$ with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}{ }^{T}$ ypical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 3.7 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2)+(C 1 \cdot C 2 \cdot C 3)}
$$

logic symbol

FUNCTION TABLE

INPUTS						OUTPUT	
A1	A2	B1	B2	C1	C2	C3	Y
H	H	X	X	X	X	X	L
X	X	H	H	X	X	X	L
X	X	X	X	H	H	H	L
Any						other combination	
H							

description

The SN54ASC6012 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6012 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
		${ }^{\wedge} \mathrm{CC}=0 \mathrm{v}$,	${ }^{1} \mathrm{~A}=20^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6012	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			312	nA
	SN74ASC6012				18.7	
Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.56		pF

SN54ASC6012, SN74ASC6012 AND-NOR GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6012			SN74ASC6012			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.9	2.1	7	0.9	2.1	6.3	ns
tPHL				0.3	1.2	3.2	0.4	1.2	2.8	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.3	5.1	13.8	2.5	5.1	12.5	ns
tPHL				0.9	2.3	6.7	0.9	2.3	5.8	
Δ tPLH	Any	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	1.1	3.5	0.5	1.1	3.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. ${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\ddagger{ }_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 4.1 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2)+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)+(\mathrm{C} 1 \cdot \mathrm{C} 2 \cdot \mathrm{C} 3)}
$$

description

The SN54ASC6013 and SN74ASC6013 are 3 -wide, 2-3-3-input AND-NOR gate CMOS standard cells. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol

FUNCTION TABLE

INPUTS								OUTPUT
A1	A2	B1	B2	B3	C1	C2	C3	Y
H	H	X	X	X	X	X	X	L
X	X	H	H	H	X	X	X	L
X	X	X	X	X	H	H	H	L
Any other combination								
H								

CELL NAME	NETLIST	FEATURES	
	HDL LABEL	TYPICAL	RELATIVE
		DELAY $C_{L}=1 \mathrm{pF}$	CELL AREA TO NA210LH
BFO13LH	Label: BF013LH A1,A2,B1,B2,B3,C1,C2,C3,Y;	4.1 ns	2.5

The SN54ASC6013 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6013 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	V
ICC Supply current SN54ASC6013 SN74ASC6013	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\wedge}=\mathrm{MIN} \text { to MAX } \end{aligned}$	$\frac{330}{19.8}$	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} \hline V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.57	pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6013			SN74ASC6013			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {t PLH }}$	Any	Y	$C_{L}=0$	1	2.5	7.9	1.1	2.5	7.1	ns
tPHL				0.4	1.3	3.4	0.4	1.3	3	
${ }_{\text {tPLH }}$	Any	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.5	14.6	2.6	5.5	13.2	ns
${ }_{\text {tPHL }}$				0.9	2.6	7	1	2.6	6	
$\Delta \mathrm{tPLH}$	Any	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1.3	3.7	0.5	1.3	3.2	

tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output $\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in t PLH with load capacitance
Δ tPHL \equiv change in t PHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

SN54ASC6014, SN74ASC6014
 AND-NOR GATES
 $\mathbf{Y}=\overline{(A 1 \cdot A 2 \cdot A 3)+(B 1 \cdot B 2 \cdot B 3)+(C 1 \cdot C 2 \cdot C 3)}$

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 4.3 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2 \cdot \mathrm{~A} 3)+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)+(\mathrm{C} 1 \cdot \mathrm{C} 2 \cdot \mathrm{C} 3)}
$$

logic symbol

FUNCTION TABLE

							OUTPUT		
A1	A2	A3	B1	B2	B3	C1	C2	C3	Y
H	H	H	X	X	X	X	X	X	L
X	X	X	H	H	H	X	X	X	L
X	X	X	X	X	X	H	H	H	L
Any						other combination		H	

description

The SN54ASC6014 and SN74ASC6014 are 3 -wide, 3 -input AND-NOR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
		TYPICAL	RELATIVE
	HDL LABEL	DELAY CELL AREA CO	
		1 pF	TO NA210LH
BF014LH	Label: BFO14LH A1,A2,A3,B1,B2,B3,C1,C2,C3, $\mathrm{Y} ;$	4.3 ns	2.75

The SN54ASC6014 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6014 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
vif input mresnoia vortage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6014	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			363	nA
	SN74ASC6014				21.8	
C_{i} Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.71		pF

SN54ASC6014, SN74ASC6014 AND-NOR GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6014			SN74ASC6014			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tpLH	Any	Y	$C_{L}=0$	1.1	2.8	9.4	1.1	2.8	8.4	ns
tPHL				0.4	1.4	3.9	0.5	1.4	3.4	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.8	16	2.6	5.8	14.5	ns
tphi				1.1	2.8	7.5	1.2	2.8	6.5	
Δ tpLH	Any	Y	,	1.4	3	6.8	1.5	3	6.2	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$				0.6	1.4	3.7	0.6	1.4	3.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in tpLH with load capacitance
Δ tPHL \equiv charige in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

－ 2.5 ns Typical Propagation Delay with 1－pF Load
－Specified for Operation Over Vcc Range of 4．5 V to 5.5 V
－Functional Operation Over VCC Range of 2 V to 6 V
－Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{\mathrm{A} 1+(\mathrm{B} 1 \cdot \mathrm{~B} 2)}$
logic symbol

FUNCTION TABLE

INPUTS			OUTPUT
A1	B2	B1	
H	X	X	L
X	H	H	L
L	L	X	H
L	X	L	H

description

The SN54ASC6017 and SN74ASC6017 are expandable 1－2－input AND－NOR gate CMOS standard cells． The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist：

CELL NAME	NETLIST HDL LABEL	TYPICAL DELAY $\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
	BFO01LH	Label：BF001LH A1，B1，B2，Y；	2.5 ns

The SN54ASC6017 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The SN74ASC6017 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ，	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6017	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			187	nA
	SN74ASC6017				11.2	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.13		pF
Enuivalent nower dissipation capacitance		$\begin{aligned} & \text { T/ロニ - } 5 \mathrm{~V} \text {. } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.38		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6017			SN74ASC6017			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.6	1.1	2.4	0.6	1.1	2.2	ns
tPHL				0.2	0.9	1.9	0.3	0.9	1.7	
${ }^{\text {tPLH }}$	Any	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.1	6.9	1.7	3.1	6.3	ns
tPHL				0.7	1.8	4.3	0.8	1.8	3.8	
Δ tPLH	Any	Y		0.9	2	4.6	1	2	4.2	ns/pF
$\Delta \mathrm{tPHL}$				0.4	0.9	2.5	0.4	0.9	2.1	

[^122]
DESIGN CONSIDERATIONS

Refer to Section 7.

All inputs to this cell, as well as all cells, must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.
This Boolean function is a member of a series of multifunction cells designed to simplify the implementation of a broad class of higher-level logic equations such as:

- Sum of products
- Exclusive-OR and exclusive-NOR functions
- Majority decoders
- Modulo adders
- Carry-save adders
- Function generators
- Random logic

The members of this class of standard-cell functions are grouped in the 'ASC6000 series of type numbers. The selection consists of four primary architectures with expandable versions offered in each:

- Dedicated and expandable AND-NOR gates
- Dedicated and expandable OR-AND-NOR gates
- Expandable AND-OR-NOR gates
- Expandable OR-NAND gates
- Expandable AND-OR-NAND gates
- Expandable OR-AND-OR-NAND gates

Options are offered in each architecture from basic 2-wide functions up to expandable 3-wide functions providing single-macro solutions to most design requirements. The expandable functions can be combined with basic gating cells and/or other Boolean cells offered in Texas Instruments standard-cell family to implement the application-specific solutions.

$$
\mathbf{Y}=\frac{\begin{array}{c}
\text { SN54ASC6018, SN74ASC6018 } \\
\text { AND NOR GATES }
\end{array}}{\frac{\mathbf{A} 1+(\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot \mathrm{~B} 3)+(\mathrm{C} 1 \cdot \mathrm{C} 2 \cdot \mathrm{C} 3)}{\text { D2939, AuGust } 1986}}
$$

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

－ 3.9 ns Typical Propagation Delay with 1－pF Load
－Specified for Operation Over VCC Range of 4．5 V to 5.5 V
－Functional Operation Over VCC Range of 2 V to 6 V
－Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=\overline{A 1+(B 1 \cdot B 2 \cdot B 3)+(C 1 \cdot C 2 \cdot C 3)}$
logic symbol

FUNCTION TABLE

INPUTS						OUTPUT	
A1	B1	B2	B3	C1	C2	C3	Y
H	X	X	X	X	X	X	L
X	H	H	H	X	X	X	L
X	X	X	X	H	H	H	L
Any					other combination		H

description

The SN54ASC6018 and SN74ASC6018 are expandable 1－3－3－input AND－NOR gate CMOS standard cells．

The SN54ASC6018 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The SN74ASC6018 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
VT Innuit throchnid unltago			$\begin{array}{ll} \because \text { ここ - 巨 } \because & \text { TA } \\ \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, & \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{array}$		2.2		\because
${ }^{\text {I CC }}$ Supply current		SN54ASC6018				301	nA
		SN74ASC6018				18.1	
C_{i} Input capacitance	Input capacitance		$\mathrm{V}_{C C}=5 \mathrm{~V}$ ，	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.45		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC6018			SN74ASC6018			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	Any	Y	$C_{L}=0$	0.8	2.1	6.6	0.9	2.1	6	ns
${ }_{\text {tPHL }}$	A1			0.3	0.8	1.5	0.3	0.8	1.5	
tpHL	Any B, C			0.5	1.3	3	0.5	1.3	2.6	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.3	5.1	13.4	2.4	5.1	12.2	ns
tpHL	A1			0.7	1.4	2.9	0.8	1.4	2.7	
tPHL	Any B, C			1.1	2.6	6.6	1.3	2.6	5.7	
Δ tpLH	Any	Y		1.4	3	6.7	1.5	3	6.3	ns/pF
$\Delta \mathrm{tPHL}$	A1			0.4	0.6	1.4	0.4	0.6	1.2	
$\Delta \mathrm{t}_{\mathrm{PHL}}$	Any B, C			0.6	1.3	3.7	0.6	1.3	3.2	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tpLH \equiv change in tpLH with load capacitance
$\Delta \mathrm{TPHL}^{2} \equiv$ change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {m }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 3.5 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A 1 \cdot A 2)+(B 1 \cdot B 2)+(C 1 \cdot C 2)}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT	
A1	A2	B1	B2	C1	C2	\mathbf{Y}
H	H	X	X	X	X	L
X	X	H	H	X	X	L
X	X	X	X	H	H	L
Any other combination					H	

description

The SN54ASC6019 and SN74ASC6019 are 3 -wide, 2 -input AND-NOR gate CMOS standard cells. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	FEATURES		
	HDL LABEL	TYPICAL	RELATIVE
		DELAY $C_{L}=1 \mathrm{pF}$	CELL AREA TO NA210LH
BF011LH	Label: BF011LH A1,A2,B1,B2,C1,C2,Y;	3.5 ns	2.75

The SN54ASC6019 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6019 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

rAKAIVIEIEK		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6019	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$			319	nA
	SN74ASC6019				19.1	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.52		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC6019			SN74ASC6019			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.9	2	6	1	2	5.4	ns
tPHL				0.3	1	2.4	0.4	1	2.2	
${ }_{\text {tPLH }}$	Any	Y	$C_{L}=1 \mathrm{pF}$	2.4	5	12.8	2.5	5	11.6	ns
tPHL				0.9	2	5	0.9	2	4.4	
Δ tPLH	Any	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1	2.6	0.5	1	2.3	

[^123]
DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCellim ${ }^{2-\mu m}$ internal standard cell

- Typical Propagation Delay with 1-pF Load 3.3 ns from Any A

3 ns from Any B
3.9 ns from Any C

- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot \mathrm{~A} 2+[\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT	
A1	A2	B1	B2	C1	C2	Y
H	H	X	X	X	X	L
X	X	H	H	H	X	L
X	X	H	H	X	H	L
Any other combination				H		

H

description

The SN54ASC6022 and SN74ASC6022 CMOS standard-cell Boolean macros are 2-wide 2-3-input sum-of-products AND-NOR gates with a dedicated 2 -input OR, 3 -input AND product term. Two available inputs to the 3 -input AND gate and two to the other 2 -input AND gate provide expandability for implementing customized product terms. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BFO22LH	Label: BFO22LH A1,A2,B1,B2,C1,C2,Y;	2.25

The SN54ASC6022 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6022 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6022	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\text { MIN to MAX } \end{aligned}$			282	nA
	SN74ASC6022				16.9	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.54		pF

SN54ASC6022, SN74ASC6022 OR-AND-NOR GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text { }}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6022			SN74ASC6022			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	1.1	1.9	4.4	1.1	1.9	4	ns
tPHL				0.4	0.9	1.7	0.4	0.9	1.7	
${ }^{\text {tPLH }}$	Any A	Y	$C_{L}=1 \mathrm{pF}$	2.5	4.9	11.2	2.7	4.9	10.2	ns
tPHL				0.9	1.8	4.2	1	1.8	3.8	
${ }_{\text {tPL }}$	Any B	Y	$C_{L}=0$	0.7	1.3	3.2	0.7	1.3	2.9	ns
tPHL				0.7	1.3	2.8	0.8	1.3	2.5	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	1.7	3.3	7.7	1.8	3.3	7	ns
${ }_{\text {t }}$ PHL				1.3	2.7	6.5	1.4	2.7	5.6	
tPLH	Any C	Y	$C_{L}=0$	1.1	2.2	5.4	1.1	2.2	4.9	ns
${ }_{\text {tPHL }}$				0.5	1.2	2.9	0.5	1.2	2.5	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.2	12.2	2.7	5.2	11	ns
${ }^{\text {tPHL }}$				1.1	2.5	6.5	1.2	2.5	5.6	
Δ tPLH	Any A	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.5	0.9	2.5	0.5	0.9	2.2	
Δ tPLH	Any B	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\cdots \mathrm{tPHL}$				0.6	1.4	3.6	0.6	1.4	3.1	
\cdots - ${ }^{\text {P PLH }}$	Any C	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.6	1.3	3.6	0.6	1.3	3.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{T M} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.9 ns from A1
2.5 ns from B1
3.2 ns from Any C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{\mathrm{A} 1+[\mathrm{B} 1 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}
$$

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A1	B1	C1	C2	Y
H	X	X	X	L
X	H	H	X	L
X	H	X	H	L
L	L	X	X	H
L	X	L	L	H

description

The SN54ASC6023 and SN74ASC6023 CMOS standard-cell Boolean macros are 2-input sum-of-products NOR gates with a dedicated 2 -input OR, 2 -input AND product term. One available input to the 2 -input AND gate and the 2 -input NOR gate provides expandability for implementing customized product terms. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF015LH	Label: BF015LH A1,B1,C1,C2,Y;	1.75

The SN54ASC6023 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6023 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6023			SN74ASC6023			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A1	Y	$C_{L}=0$	1	1.4	2.7	1.1	1.4	2.5	ns
tPHL				0.2	0.8	1.4	0.3	0.8	1.4	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=1 \mathrm{pF}$	2.4	4.4	9.5	2.6	4.4	8.7	ns
tPHL				- 0.7	1.4	2.8	0.8	1.4	2.6	
tPLH	B1	Y	$C_{L}=0$	0.6	0.9	1.9	0.6	0.9	1.7	ns
tPHL				0.5	1	1.8	0.6	1	1.7	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.6	2.9	6.4	1.7	2.9	5.8	ns
tPHL				1.1	2	4.3	1.2	2	3.8	
tPLH	Any C	Y	$C_{L}=0$	0.9	1.7	4.1	0.9	1.7	3.7	ns
${ }^{\text {tPHL }}$				0.4	0.9	1.9	0.4	0.9	1.7	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.3	4.7	10.9	2.5	4.7	9.9	ns
tPHL				0.9	1.9	4.4	1	1.9	3.9	
Δ tPLH	A1	Y		1.4	3	6.4	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.4	0.6	1.4	0.4	0.6	1.2	
Δ tPLH	B1	Y		0.9	2	4.6	1	2	2.4	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	1	2.5	0.5	1	2.1	
Δ tPLH	Any	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	1	2.6	0.5	1	2.2	

 tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in $\mathrm{t}_{\mathrm{PLH}}$ with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
3.2 ns from A1
3.6 ns from Any B
3.4 ns from Any C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1+[(B 1+B 2) \cdot(C 1+C 2)]}
$$

description

The SN54ASC6024 and SN74ASC6024 CMOS standard-cell Boolean macros are 2-input sum-of-products NOR gates with a dedicated 2 -wide, 2 -input OR-AND product term. The available NOR input can be used to combine other custom product terms with the 2 -wide, 2 -input OR-AND term. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	B1	B2	C1	C2	Y
H	X	X	X	X	L
X	H	X	H	X	L
X	X	H	H	X	L
X	H	X	X	H	L
X	X	H	X	H	L
L	L	L	X	X	H
L	X	X	L	L	H

The SN54ASC6024 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6024 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6024	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			289	$n A$
	SN74ASC6024				17.4	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.42		pF

SN54ASC6024, SN74ASC6024
 OR-AND-NOR GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)

PARAMETER $^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6024			SN74ASC6024			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tpLH	A1	Y	$C_{L}=0$	1.2	1.9	4	1.3	1.9	3.6	ns
tPHL				0.3	0.9	1.6	0.4	0.9	1.5	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	2.6	4.9	10.8	2.8	4.9	9.8	ns
tPHL				0.8	1.5	3	0.8	1.5	2.7	
tPLH	Any B	Y	$C_{L}=0$	1.1	2.2	5.3	1.1	2.2	4.8	ns
${ }^{\text {tPHL }}$				0.5	1	2.2	0.5	1	2	
${ }^{\text {tPLH }}$	Any B	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.2	12.2	2.7	5.2	11	ns
${ }_{\text {tPHL }}$				1	2	4.8	1.1	2	4.2	
${ }_{\text {tPLH }}$	Any C	Y	$C_{L}=0$	0.8	1.6	3.9	0.9	1.6	3.5	ns
${ }_{\text {tPHL }}$				0.6	1.2	2.2	0.7	1.2	2	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.3	4.6	10.8	2.4	4.6	9.8	ns
tPHL				1.1	2.2	4.8	1.2	2.2	4.2	
Δ tPLH	A1	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL				0.4	0.6	1.4	0.4	0.6	1.2	
$\Delta \mathrm{t}_{\text {PLH }}$	Any B	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.5	1	2.6	0.5	1	2.2	
Δ tPLH	Any C	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {PHL }}$				0.5	1	2.6	0.5	1	2.2	

tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t P L H \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
3.6 ns from Any A
2.7 ns from B1
3.5 ns from Any C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot \mathrm{~A} 2 \cdot \mathrm{~A} 3+[\mathrm{B} 1 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT	
A1	A2	A3	B1	C1	C2	Y
H	H	H	X	X	X	L
X	X	X	H	H	X	L
X	X	X	H	X	H	L
Any other combination				H		

description

The SN54ASC6025 and SN74ASC6025 CMOS standard-cell Boolean macros are 2-wide 3-2-input sum-of-products AND-NOR gates with a dedicated 2 -input OR, 2 -input AND product term. One available input to the 2 -input AND gate and three to the 3 -input AND gate provide expandability for implementing customized product terms. The ceil is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF025LH	Label: BFO25LH A1,A2,A3,B1,C1,C2,Y;	2.25

The SN54ASC6025 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6025 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS		IYr	NIAX	UIVI I
V_{T} Input threshold voltage			$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current		SN54ASC6025	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			281	nA
		SN74ASC6025				16.9	nA
C_{i}	Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.64		pF

TEXAS

SN54ASC6025, SN74ASC6025
 OR-AND-NOR GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6025			SN74ASC6025			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	1	1.9	4.8	1	1.9	4.3	ns
${ }^{\text {tPHL }}$				0.4	1.1	2.4	0.5	1.1	2.1	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	2.4	4.9	11.5	2.6	- 4.9	10.5	ns
tPHL				1.1	2.4	5.8	1.2	2.4	5.1	
tPLH	B1	Y	$C_{L}=0$	0.7	1.1	2.5	0.8	1.1	2.3	ns
tPHL				0.7	1.2	2.2	0.7	1.2	2	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.7	3.1	7	1.8	3.1	6.4	ns
tPHL				1.2	2.2	4.7	1.3	2.2	4.2	
tPLH	Any C	Y	$C_{L}=0$	1	2	4.9	1.1	2	4.4	ns
${ }^{\text {PPHL }}$				0.5	1	2.3	0.5	1	2	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.5	5	11.7	2.6	5	10.6	ns
tPHL				1	2	4.8	1.1	2	4.2	
\triangle tPLH	Any A	Y		1.4	3	6.8	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {PHL }}$				0.6	1.3	3.5	0.6	1.3	3	
$\Delta \mathrm{tPLH}$	B1	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1	2.5	0.5	1	2.2	
$\Delta \mathrm{tPLH}^{\text {P }}$	Any C	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.5	1	2.6	0.5	1	2.2	

\dagger Propagation delay times are measured from the 44% point of V_{I} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t P L H \equiv$ change in tPL.H with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SN54ASC6026, SN74ASC6026
OR-AND-NOR GATES
$\mathbf{Y}=\overline{\mathbf{A} 1+[\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}$
D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 3 ns from A1
2.9 ns from Any B
3.7 ns from Any C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1+[\mathrm{B} 1 \cdot \mathrm{~B} 2 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}
$$

description

The SN54ASC6026 and SN74ASC6026 CMOS standard-cell Boolean macros are 2-input sum-of-products NOR gates with a dedicated 2-input OR, 3 -input AND product term. Two available inputs to the 3 -input AND gate and one to the other 2 -input NOR gate provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL. LABEL	RELATIVE CELL AREA TO NA210LH
BF017LH	Label: BF017LH A1,B1,B2,C1,C2,Y;	2

The SN54ASC6026 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6026 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
$\mathrm{V}_{\text {T }}$ Input threshold voltage		$V_{C C}=5 \mathrm{~V}$,	$T_{A}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6026	$\mathrm{V}_{\mathrm{CC}}=4.5$	$V_{1}=V_{C C}$ or 0 ,		248	nA
	SN74ASC6026	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to			14.9	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{\mathbf{r}}=t_{f}=3 \mathrm{~ns},$	0.4		pF

SN54ASC6026, SN74ASC6026
OR-AND-NOR GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\text {t }}$	FROM (INPUT)	TO (OUTPUT)	TEST. CONDITIONS	SN54ASC6026			SN74ASC6026			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=0$	1.2	1.7	3	1.2	1.7	2.8	ns
tPHL				0.3	0.8	1.2	0.3	0.8	1.2	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	2.6	4.7	8.7	2.7	4.7	7.9	ns
${ }_{\text {tPHL }}$				0.7	1.4	2.4	0.8	1.4	2.2	
tPLH	Any B	Y	$C_{L}=0$	0.7	1.2	2.5	0.7	1.2	2.2	ns
tPHL				0.7	1.2	2.2	0.7	1.2	1.9	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.2	6.2	1.7	3.2	5.6	ns
tPHL				1.3	2.5	5.1	1.4	2.5	4.5	
tPLH	Any C	Y	$C_{L}=0$	1	2	4.1	1	2	3.7	ns
tPHL				0.4	1	2.2	0.5	1	1.9	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.4	5	9.8	2.6	5	8.9	ns
tPHL				1.1	2.3	5.1	1.2	2.3	4.5	
$\Delta \mathrm{tPLH}$	A1	Y		1.4	3	5.7	1.5	3	5.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}^{\text {L }}$				0.4	0.6	1.2	0.4	0.6	1	
Δ tPLH	Any B	Y		0.9	2	3.8	1	2	3.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$				0.6	1.3	3	0.7	1.3	2.6	
$\Delta \mathrm{t}_{\text {PLH }}$	Any C	Y		1.4	3	5.7	1.5	3	5.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.3	3	0.7	1.3	2.6	

† Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ TPLH \equiv change in TPLH with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

－Typical Propagation Delay with 1－pF Load 2.4 ns from Any A
2.6 ns from Any B
3.6 ns from Any C
－Specified for Operation Over VCC Range of 4．5 V to 5.5 V
－Functional Operation Over VCC Range of 2 V to 6 V
－Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1 \cdot A 2 \cdot A 3+[B 1 \cdot B 2 \cdot(C 1+C 2)]}
$$

description

The SN54ASC6027 and SN74ASC6027 CMOS
logic symbol

FUNCTION TABLE

INPUTS						OUTPUT	
A1	A2	A3	B1	B2	C1	C2	Y
H	H	H	X	X	X	X	L
X	X	X	H	H	H	X	L
X	X	X	H	H	X	H	L
Any other combination					H		

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF027LH	Label：BF027LH A1，A2，A3，B1，B2，C1，C2，Y；	2.5

The SN54ASC6027 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The SN74ASC6027 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	V
	$\begin{aligned} & \because \text { ここ }-1 \text { E } \because \pm \text { E.E } \because, ~ \because \because ~ \\ & \text { TA }=\text { MIN to MAX } \end{aligned}$	$\frac{201}{18.3}$	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.98	pF

SN54ASC6027, SN74ASC6027
OR-AND-NOR GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6027				4ASC		UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	Any A	Y	$C_{L}=0$	0.7	1.1	2.2	0.7	1.1	2	ns
tPHL				0.4	1	2	0.4	1	1.8	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.4	5.2	1.4	2.4	4.8	ns
tPHL				1	2.3	5.4	1.1	2.3	4.7	
${ }_{\text {tPLH }}$	Any B	Y	$C_{L}=0$	0.7	1.2	2.6	0.8	1.2	2.4	ns
tPHL				0.7	1.5	3.1	0.8	1.5	2.8	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.5	5.6	1.4	2.5	5.1	ns
${ }_{\text {t PHL }}$				1.2	2.6	6	1.3	2.6	5.2	
tPLH	Any C	Y	$C_{L}=0$	1	2.1	5	1.1	2.1	4.5	ns
tPHL				0.6	1.5	4	0.7	1.5	3.5	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.1	4.4	10.1	2.2	4.4	9.2	ns
tPHL				1.2	2.8	7.4	1.3	2.8	6.4	
Δ tPLH	Any A	Y		0.6	1.3	3.1	0.6	1.3	2.8	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.3	3.4	0.6	1.3	2.9	
Δ tPLH	Any B	Y		0.6	1.3	3	0.6	1.3	2.8	ns/pF
Δ tpHL				0.5	1.1	2.9	0.5	1.1	2.5	
Δ tPLH	Any C	Y		1	2.3	5.2	1.1	2.3	4.8	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	1.3	3.4	0.6	1.3	3	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay With 1-pF Load 5.7 ns from Any A or B1
3.6 ns from Any C or D
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1 \cdot A 2 \cdot A 3+[B 1 \cdot(C 1+C 2) \cdot(D 1+D 2)]}
$$

description

The SN54ASC6028 and SN74ASC6028 CMOS standard-cell Boolean macros are 2 -wide ANDNOR gates with OR gates comprising 2 inputs to the second AND gate. The first AND gate has 3 available inputs. The second AND gate has 1 available input plus the 4 ORed inputs. This combination provides expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol

function table

INPUTS							OUTPUT	
A1	A2	A3	B1	C1	C2	D1	D2	Y
H	H	H	X	X	X	X	X	L
X	X	X	H	H	X	H	X	L
X	X	X	H	H	X	X	H	L
X	X	X	H	X	H	H	X	L
X	X	X	H	X	H	X	H	L
	Any other combination							H

The SN54ASC6028 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6028 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electricai cnaracteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6028	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			341	nA
	SN74ASC6028				20.5	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.11		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC6028			SN74ASC6028			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Any A, B	Y	$C_{L}=0$	0.8	1.2	2.5	0.8	1.2	2.2	ns
tPHL				0.4	1.1	2.8	0.4	1.1	2.5	
tPLH	Any A, B	Y	$C_{L}=1 \mathrm{pF}$	1.5	2.6	5.8	1.5	2.6	5.3	ns
tPHL				1	2.4	5.6	1.1	2.4	4.9	
tPLH	Any C,D	Y	$C_{L}=0$	1	2.2	6	1	2.2	5.4	ns
tPHL				0.7	1.5	3.9	0.8	1.5	3.4	
tPLH	Any C,D	Y	$C_{L}=1 \mathrm{pF}$	2.1	4.5	11.3	2.2	4.5	10.2	ns
tPHL				1.2	2.6	6.9	1.3	2.6	6.1	
Δ tPLH	Any A, B	Y		0.6	1.4	3.4	0.7	1.4	3.1	ns/pF
$\Delta \mathrm{t}$ PHL				0.4	1.3	3.5	0.5	1.3	3	
Δ tPLH	Any C, D	Y		1.1	2.3	5.4	1.2	2.3	4.9	ns/pF
Δ tPHL				0.4	1.1	3.2	0.4	1.1	2.8	

[^124]
DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 3.2 ns from Any A
2.5 ns from B1
3.4 ns from Any C
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot \mathrm{~A} 2+[\mathrm{B} 1 \cdot(\mathrm{C} 1+\mathrm{C} 2)]}
$$

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT	
A1	A2	B1	C1	C2	Y
H	H	X	X	X	L
X	X	H	H	X	L
X	X	H	X	H	L
Any other combination	H				

description

The SN54ASC6029 and SN74ASC6029 CMOS standard-cell Boolean macros are 2-wide 2-input sum-ofproducts OR-AND-NOR gates with a dedicated 2 -input OR, 2 -input AND product term. One available input to one 2 -input-AND gate and two to the other 2 -input-AND gate provide expandability for implementing customized product terms. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF02OLH	Label: BF02OLH A1,A2,B1,C1,C2,Y;	2

The SN54ASC6029 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6029 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
$\mathrm{V}_{\text {T }}$ Input threshold voltage		$\begin{array}{ll} \mathrm{V} r r=5 \mathrm{~V} & \mathrm{~T}_{\wedge}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } & \\ \hline \end{array}$? 0		V
ICC Supply current	SN54ASC6029				247	$n A$
	SN74ASC6029				14.8	
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance		$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.13		pF
Equivalent power dissipation capacitance		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$		0.47		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO(OUTPUT)	TEST CONDITIONS	SN54ASC6029			SN74ASC6029			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Any A	Y	$C_{L}=0$	1	1.5	3.3	1	1.5	3.1	ns
tPHL				0.3	0.9	1.7	0.4	0.9	1.6	
${ }_{\text {tPLH }}$	Any A	Y	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	2.4	4.5	10.1	2,5	4.5	9.2	ns
${ }_{\text {tPHL }}$				0.8	1.8	4.1	0.9	1.8	3.6	
tPLH	B1	Y	$C_{L}=0$	0.7	1	2.1	0.7	1	1.9	ns
tPHL				0.6	1.1	1.9	0.6	1.1	1.8	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.6	3	6.6	1.7	3	6	ns
${ }_{\text {tPHL }}$				1.1	2	4.4	1.2	2	3.9	
tplh	Any C	Y	$C_{L}=0$	0.9	1.8	4.3	1	1.8	3.9	ns
${ }_{\text {tPHL }}$				0.4	0.9	2	0.5	0.9	1.8	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.3	4.8	11.2	2.5	4.8	10.1	ns
tPHL				0.9	1.9	4.5	1	1.9	4	
Δ tPLH	Any A	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	0.9	2.5	0.5	0.9	2.1	
Δ tPLH	B1	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.5	0.9	2.5	0.5	0.9	2.2	
$\Delta \mathrm{tPLH}$	Any C	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.5	1	2.6	0.5	1	2.2	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in t LH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in TPHL with load capacitance
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load

2 ns from A1
2.5 ns from B1

3 ns from C1
3.9 ns from Any D

- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1+\{B 1 \cdot[C 1+(D 1 \cdot D 2)]\}}
$$

description

The SN54ASC6032 and SN74ASC6032 CMOS standard-cell Boolean macros are 2 -wide 1-2-input sum-of-products AND-NOR gates with 2-input AND and one available input each to the 2 -input AND and OR gates to provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT	
A1	B1	C1	D1	D2	Y
H	X	X	X	X	L
X	H	H	X	X	L
X	H	X	H	H	L
Any other combination	H				

The SN54ASC6032 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6032 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operațing conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} input threshold voltage		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6032	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			254	nA
	SN74ASC6032				15.2	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\mathrm{pd}} \begin{gathered}\text { Equivalent power } \\ \text { dissipation capacitance }\end{gathered}$		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$		0.8		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6032			SN74ASC6032			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A1	Y	$C_{L}=0$	0.8	1	1.6	0.8	1	1.5	ns
tPHL				0.3	0.8	1.4	0.3	0.8	1.4	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.6	2.6	5.2	1.6	2.6	4.8	ns
${ }^{\text {tPHL }}$				0.7	1.4	2.8	0.8	1.4	2.6	
${ }^{\text {tPLH }}$	B1	Y	$C_{L}=0$	0.7	1	2.2	0.7	1	2	ns
tPHL				0.5	1.1	1.8	0.6	1.1	1.8	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.7	3	6.8	1.8	3	6.2	ns
${ }_{\text {t }}$ PHL				1	1.9	3.9	1.1	1.9	3.5	
${ }^{\text {tPLH }}$	C1	Y	$C_{L}=0$	0.9	1.5	3.6	1	1.5	3.3	ns
tPHL				0.4	0.9	2	0.5	0.9	1.8	
${ }^{\text {tPLH }}$	C1	Y	$C_{L}=1 \mathrm{pF}$	2.1	4	9.3	2.3	4	8.4	ns
tPHL				0.9	1.9	4.4	1	1.9	3.9	
tPLH	Any D	Y	$C_{L}=0$	1	2.2	5.6	1	2.2	5	ns
${ }^{\text {tPHL}}$				0.5	1.2	2.9	0.5	1.2	2.6	
tPLH	Any D	Y	$C_{L}=1 \mathrm{pF}$	2.4	5.2	12.4	2.6	5.2	11.2	ns
${ }_{\text {tPHL }}$				1.1	2.6	6.5	1.2	2.6	5.6	
Δ tPLH	A1	Y		0.7	1.6	3.7	0.8	1.6	3.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {PHL }}$				0.4	0.6	1.4	0.4	0.6	1.2	
Δ tPLH	B1	Y		0.9	2	4.7	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	0.8	2.1	0.5	0.8	1.8	
Δ tPLH	C1	Y	-	1.1	2.5	5.8	1.2	2.5	5.2	$\mathrm{ns} / \mathrm{pF}$
Δ tpHL				0.5	1	2.5	0.5	1	2.2	
Δ tPLH	Any D	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.4	3.6	0.7	1.4	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SN54ASC6034, SN74ASC6034
 AND-OR-AND-NOR GATES
 $\mathbf{Y}=\overline{(\mathbf{A} 1 \cdot \mathbf{A} 2)+\{\mathbf{B} 1 \cdot[\mathbf{C} 1+(\mathbf{D} 1 \cdot \mathbf{D} 2)]}$
 D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.3 ns from Any A or B1 3 ns from C1
3.6 ns from Any D
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2)+\{\mathrm{B} 1 \cdot[\mathrm{C} 1+(\mathrm{D} 1 \cdot \mathrm{D} 2)]\}}
$$

description

The SN54ASC6034 and SN74ASC6034 CMOS standard-cell Boolean macros are 2 -wide 2-2-input sum-of-products AND-NOR gates with 2-input AND and one available input each to the 2 -input AND and OR gates to provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT	
A1	A2	B1	C1	D1	D2	Y
H	H	X	X	X	X	L
X	X	H	H	X	X	L
X	X	H	X	H	H	L
Any other combination					H	

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF034LH	Label: BF034LH A1,A2,B1,C1,D1,D2,Y;	2.25

The SN54ASC6034 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6034 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6034	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			280	nA
	SN74ASC6034				16.8	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.86		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC6	34		4ASC6		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.8	0.9	1.7	0.8	0.9	1.6	ns
tPHL				0.3	0.9	1.5	0.3	0.9	1.5	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.5	2.5	5.3	1.6	2.5	4.9	ns
tPHL				0.8	1.8	3.9	0.9	1.8	3.5	
${ }^{\text {tPLH }}$	B1	Y	$C_{L}=0$	0.7	1	2	0.7	1	1.8	n's
tPHL				0.6	1.2	2.1	0.7 .	1.2	2	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.5	5.5	1.5	2.5	5	ns
${ }^{\text {tPHL }}$				1.1	2	4.2	1.2	2	3.8	
tPLH	C1	Y	$C_{L}=0$	0.9	1.7	3.8	0.9	1.7	3.5	ns
tPHL				0.6	1.2	2.6	0.6 .	1.2	2.3	
tPLH	C1	Y	$C_{L}=1 \mathrm{pF}$	1.9	3.7	8.4	2	3.7	7.7	ns
tPHL				1.1	2.2	5.2	1.2	2.2	4.5	
tPLH	Any D	Y	$C_{L}=0$	1	1.9	4.4	1	1.9	4	ns
tPHL				0.5	1.4	3.1	0.6	1.4	2.7	
${ }_{\text {tPLH }}$	Any D	Y	$C_{L}=1 \mathrm{pF}$	2.2	4.4	10.1	2.3	4.4	9.2	ns
tPHL				1.2	2.7	6.7	1.3	2.7	5.8	
Δ tPLH	Any A	Y		0.7	1.6	3.7	0.8	1.6	3.3	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	0.9	2.4	0.5	0.9	2	
Δ tPLH	B1	Y		0.7	1.5	3.5	0.7	1.5	3.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	0.8	2.2	0.5	0.8	1.9	
Δ tPLH	C1	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1	2.6	0.5	1	2.3	
$\Delta \mathrm{t}_{\text {PLH }}$	Any D	Y		1.2	2.5	5.8	1.3	2.5	5.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.6	1.3	3.6	0.6	1.3	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.1 ns from Any A
2.3 ns from B1
3.3 ns from Any C or D
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{(\mathrm{A} 1 \cdot \mathrm{~A} 2)+\{\mathrm{B} 1 \cdot[(\mathrm{C} 1 \cdot \mathrm{C} 2)+(\mathrm{D} 1 \cdot \mathrm{D} 2)]\}}
$$

description

The SN54ASC6035 and SN74ASC6035 CMOS standard-cell Boolean macros are expandable sum-of-products AND-OR-AND-NOR gates for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol

FUNCTION TABLE

INPUTS						OUTPUT	
A1	A2	B1	C1	C2	D1	D2	Y
H	H	X	X	X	X	X	L
X	X	H	H	H	X	X	L
X	X	H	X	X	H	H	L
Any						other combination	
H							

The SN54ASC6035 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6035 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V/T Innut thrachnold unltago				2.2		\because
ICC Supply current	SN54ASC6035	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$			282	nA
	SN74ASC6035				16.9	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$C_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.96		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{+}}$	FROM (INPUT)	TO	TEST CONDITIONS	SN54ASC6035			SN74ASC6035			UNIT
		(OUTPUT)		MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.7	1	1.7	0.7	1	1.6	ns
tPHL				0.3	0.8	1.6	0.3	0.8	1.5	
tpLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.4	5	1.5	2.4	4.6	ns
tPHL				0.8	1.8	3.9	0.9	1.8	3.5	
tPLH	B1	Y	$C_{L}=0$	0.7	1	2	0.7	1	1.8	ns
${ }^{\text {tPHL }}$				0.7	1.2	2.3	0.7	1.2	2.1	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.4	5.3	1.4	2.4	4.8	ns
${ }^{\text {tPHL }}$				1.2	2.1	4.6	1.3	2.1	4.1	
${ }^{\text {tPLH }}$	Any C or D	Y	$C_{L}=0$	0.9	1.8	4.5	0.9	1.8	4.1	ns
tPHL				0.5	1.5	3.8	0.6	1.5	3.3	
tPLH	Any C or D	Y	$C_{L}=1 \mathrm{pF}$	1.8	3.8	9.1	2	3.8	8.3	ns
tPHL				1.2	2.8	7.3	1.3	2.8	6.3	
$\Delta \mathrm{tPLH}$	Any A	Y		0.6	1.4	3.4	0.7	1.4	3	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	1	2.4	0.5	1	2	
Δ tPLH	B1	Y		0.6	1.4	3.3	0.7	1.4	3	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	0.9	2.4	0.5	0.9	2.1	
$\Delta \mathrm{tPLH}$	Any C or D	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL				0.6	1.3	3.6	0.6	1.3	3.1	

tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in $\mathrm{t} P \mathrm{HL}$ with load capacitance
${ }^{\ddagger}{ }_{T y p i c a l}$ values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
1.9 ns from A1
2.4 ns from Either B
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{\mathrm{A} 1 \cdot(\mathrm{~B} 1+\mathrm{B} 2)}
$$

logic symbol

FUNCTION TABLE

INPUTS			
A1	B1	B2	Y
H	H	X	L
H	X	H	L
L	X	X	H
X	L	L	H

description

The SN54ASC6048 and SN74ASC6048 are 2-wide, 1-2-input OR-NAND gate CMOS standard-cell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF051LH	Label: BF051LH A1,B1,B2,Y;	1.5

The SN54ASC6048 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6048 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6048	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			187	nA
	SN74ASC6048				11.2	
Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { discinatinn rananitanmo }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{\mu}-25{ }^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.57		pF

SN54ASC6048, SN74ASC6048
OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6048			SN74ASC6048			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=0$	0.6	0.8	1.2	0.7	0.8	1.2	ns
tPHL				0.6	1.1	1.8	0.6	1.1	1.7	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.5	1.2	1.8	3.2	ns
tPHL				1.1	2	4.2	1.2	2	3.8	
tpl ${ }^{\text {ch }}$	Any B	Y	$C_{L}=0$	0.7	1.1	2.4	0.8	1.1	2.2	ns
tPHL				0.3	0.8	1.7	0.3	0.8	1.5	
${ }_{\text {tPLH }}$	Any B	Y	$C_{L}=1 \mathrm{pF}$	1.7	3.1	6.9	1.8	3.1	6.3	ns
${ }^{\text {t PHL }}$				0.8	1.7	4.1	0.9	1.7	3.6	
Δ tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	ns/pF
$\Delta \mathrm{t}$ PHL				0.5	0.9	3.5	0.5	0.9	2.1	
$\Delta \mathrm{t}_{\text {PLH }}$	Any B	Y		0.9	2	4.6	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}^{\text {L }}$				0.5	0.9	2.5	0.5	0.9	2.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{t}$ PLH \equiv change in tPLH with load capacitance
Δ TPHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SN54ASC6049, SN74ASC6049
OR-NAND GATES
$\mathbf{Y}=\overline{\mathrm{A} 1 \cdot(\mathrm{~B} 1+\mathrm{B} 2+\mathrm{B} 3) \cdot(\mathbf{C} 1+\mathrm{C} 2+\mathrm{C} 3)}$

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 2.3 ns from A1
3.8 ns from Any B or C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1 \cdot(B 1+B 2+B 3) \cdot(C 1+C 2+C 3)}
$$

logic symbol

FUNCTION TABLE

INPUTS							OUTPUT
A1	B1	B2	B3	C1	C2	C3	Y
H	H	X	X	H	X	X	L
H	X	H	X	X	H	X	L
H	X	X	H	X	X	H	L
H	(Any						H)
Any other combination	(Any)	L					

description

The SN54ASC6049 and SN74ASC6049 are 3 -wide 1-3-3-input OR-NAND gate CMOS standard-cell functions. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF060LH	Label: BF060LH A1,B1,B2,B3,C1,C2,C3,Y;	2.25

The SN54ASC6049 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6049 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
$\mathrm{V}_{\text {T }}$ Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{1} \mathrm{CC}$ supply current	Tsnmataranag	V CO $=4.5$	$V_{1}=V_{\text {¢ }}$ のrn		301	nA
	SN74ASC604!	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to			18	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathbf{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.65		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6049			SN74ASC6049			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=0$	0.6	0.8	1.4	0.6	0.8	1.3	ns
tPHL				0.9	1.4	2.7	0.9	1.4	2.4	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.6	1.2	1.8	3.3	ns
${ }^{\text {tPHL }}$				1.5	2.7	6.2	1.6	2.7	5.4	
tPLH	Any B or C	Y	$C_{L}=0$	1	2	5.8	1	2	5.2	ns
${ }^{\text {tPHL}}$				0.4	1.3	3.8	0.5	1.3	3.3	
tPL H	Any B or C	Y	$C_{L}=1 \mathrm{pF}$	2.4	5	12.6	2.6	5	11.4	ns
tPHL				1	2.6	7.3	1.1	2.6	6.4	
\triangle tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.6	1.3	3.5	0.6	1.3	3.1	
$\Delta \mathrm{t}$ PLH	Any B or C	Y		1.4	3	6.9	1.5	3	6.2	ns/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.6	1.3	3.6	0.6	1.3	3.1	

 $\mathrm{t}_{\mathrm{PLH}} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in TPHL with load capacitance
$\ddagger{ }^{T}$ ypical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 1.9 ns from A1
3.2 ns from Any B
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A \cdot(B 1+B 2+B 3)}
$$

description

The SN54ASC6052 and SN74ASC6052 are 2 -wide, 1-3-input OR-NAND gate CMOS standard-cell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF052LH	Label: BF052LH A1, B1, B2, B3,Y;	1.5

The SN54ASC6052 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6052 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6052	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			204	nA
	SN74ASC6052				12.3	
Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {nd }} \begin{aligned} & \text { Equivalent pow } \\ & \text { uissipativi sap }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.57		$n \overline{-}$

SN54ASC6052, SN74ASC6052

OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	$\begin{gathered} \hline \text { FROM } \\ \text { (INPUT) } \end{gathered}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6052			SN74ASC6052			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A1	Y	$C_{L}=0$	0.6	0.8	1.2	0.7	0.8	1.2	ns
tPHL				0.6	1.1	2	0.7	1.1	1.8	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.5	1.2	1.8	3.2	ns
tPHL				1.2	2	4.4	1.2	2	4	
tPLH	Any B	Y	$C_{L}=0$	0.9	1.6	3.8	0.9	1.6	3.4	ns
tPHL				0.3	0.8	1.8	0.3	0.8	1.7	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	2.3	4.6	10.6	2.4	4.6	9.6	ns
tPHL				0.8	1.8	4.3	0.9	1.8	3.8	
Δ tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	ns/pF
$\Delta \mathrm{tPHL}$				0.5	0.9	2.5	0.5	0.9	2.2	
$\Delta \mathrm{tPLH}$	Any B	Y		1.4	3	6.9	1.5	3	6.2	ns/pF
\triangle tPHL				0.5	1	2.5	0.5	1	2.2	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{t} L \mathrm{LH} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 2.6 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=\overline{(A 1+A 2) \cdot(B 1+B 2)}
$$

description

The SN54ASC6053 and SN74ASC6053 are 2-wide, 2-input OR-NAND gate CMOS standardcell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A1	A2	B1	B2	Y
H	X	H	X	L
H	X	X	H	L
X	H	H	X	L
X	H	X	H	L
L	L	X	X	H
X	X	L	L	H

CELL NAME	FEATURES		
		TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
	Label: BFO53LH A1,A2, B1,B2,Y;	2.6 ns	1.75

The SN54ASC6053 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6053 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6053			SN74ASC6053			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.7	1.1	2.7	0.7	1.1	2.4	ns
tPHL				0.5	1	2.1	0.5	1	2	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.1	7.2	1.7	3.1	6.5	ns
${ }^{\text {tPHL }}$				0.8	2	4.6	0.9	2	4.1	
$\Delta \mathrm{t}_{\text {PLH }}$	Any	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	1	2.5	0.5	1	2.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output tPHL \equiv propagation delay time, high-to-low-level output Δ TPLH \equiv change in tPLH with load capacitance $\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 3 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A 1+A 2) \cdot(B 1+B 2+B 3)}
$$

description

The SN54ASC6054 and SN74ASC6054 are 2-wide, 2-3-input OR-NAND gate CMOS standard-cell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	A2	B1	B2	B3	
H	X	H	X	X	L
H	X	X	H	X	L
H	X	X	X	H	L
X	H	H	X	X	L
X	H	X	H	X	L
X	H	X	X	H	L
Any other combination	H				

The SN54ASC6054 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6054 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	V
	$\begin{aligned} & \because U_{c}-\hat{+} . \bar{v} \because \text { iv } \overline{J . J} \dddot{v}, \quad v_{1}=v_{C C} \text { or } u, \\ & T_{A}=\operatorname{MIN} \text { to MAX } \end{aligned}$	231	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.47	pF

SN54ASC6054, SN74ASC6054
 OR-NAND GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6054			SN74ASC6054			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tpLH	Any	Y	$C_{L}=0$	0.7	1.4	4.2	0.7	1.4	3.8	ns
${ }_{\text {tPHL }}$				0.3	1	2.4	0.3	1	2.1	
${ }^{\text {tPLH }}$	Any	Y	$C_{L}=1 \mathrm{pF}$	1.6	4	11	1.7	4	10	ns
${ }^{\text {P PHL }}$				0.8	2	4.8	0.9	2	4.3	
Δ tplH	Any	Y		0.9	2.6	6.9	1	2.6	6.2	ns/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1	2.5	0.5	1	2.2	

[^125]Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 3.3 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A 1+A 2+A 3) \cdot(B 1+B 2+B 3)}
$$

description

The SN54ASC6055 and SN74ASC6055 are 2-wide, 3-input OR-NAND gate CMOS standardcell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol

FUNCTION TABLE

INPUTS						OUTPUT
A1	A2	A3	B1	B2	B3	Y
H	X	X	H	X	X	L
H	X	X	X	H	X	L
H	X	X	X	X	H	L
X	H	X	H	X	X	L
X	H	X	X	H	X	L
X	H	X	X	X	H	L
X	X	H	H	X	X	L
X	X	H	X	H	X	L
X	X	H	X	X	H	L
Any other	combination	H				

The SN54ASC6055 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6055 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
$\because 1$ i, inui iniroinvin vultaye		$\mathrm{v}_{\mathrm{CC}}=5 \mathrm{v}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I C }}$ S Supply current	SN54ASC6055	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to MAX } \end{aligned}$			266	nA
	SN74ASC6055				15.9	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$C_{\text {pd }}$ Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.51		pF

SN54ASC6055, SN74ASC6055

OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6055			SN74ASC6055			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Any	Y	$C_{L}=0$	0.8	1.6	4.5	0.8	1.6	4.1	ns
tPHL				0.3	1	2.6	0.4	1	2.4	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.2	4.6	11.3	2.4	4.6	10.3	ns
tPHL				0.8	2	5.1	0.9	2	4.5	
\triangle tPLH	Any	Y		1.4	3	7	1.5	3	6.3	ns/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	1	2.6	0.5	1	2.2	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output tpHL \equiv propagation delay time, high-to-low-level output $\Delta \mathrm{T}_{\mathrm{PLH}} \equiv$ change in tPLH with load capacitance $\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
${ }^{\ddagger} T_{y p i c a l}$ values are at $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.2 ns from Any A
2.9 ns from Any B
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot \mathrm{~A} 2 \cdot(\mathrm{~B} 1+\mathrm{B} 2)}
$$

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT
A1	A2	B1	B2	Y
H	H	H	X	L
H	H	X	H	L
L	X	X	X	H
X	L	X	X	H
X	X	L	L	H

description

The SN54ASC6056 and SN74ASC6056 are 3-wide, 1-1-2-input OR-NAND gate CMOS standard-cell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL.	RELATIVE CELL AREA TO NA210LH
BF056LH	Label: BF056LH A1,A2,B1,B2,Y;	1.75

The SN54ASC6056 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6056 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
$\mathrm{V}_{\text {T }}$ Input threshold voltage		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6056	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			220	n
	SN74ASC6056				13.2	nA
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.55		pF

SN54ASC6056, SN74ASC6056
 OR-NAND GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6056			SN74ASC6056			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.6	0.9	1.6	0.6	0.9	1.5	ns
tPHL				0.7	1.2	2.4	0.7	1.2	2.2	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.9	3.8	1.2	1.9	3.5	ns
tPHL				1.3	2.5	5.9	1.4	2.5	5.1	
tplH	Any B	Y	$C_{L}=0$	0.8	1.4	3.2	0.9	1.4	2.9	ns
tPHL				0.4	1	2.4	0.4	1	2.2	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	1.8	3.4	7.7	1.9	3.4	7	ns
tPHL				1	2.3	5.9	1.1	2.3	5.1	
Δ tPLH	Any A	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.3	3.5	0.6	1.3	3	
$\Delta \mathrm{t}$ PLH	Any B	Y		0.9	2	4.6	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3	

[^126]
DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.8 ns from Any A
3.7 ns from Any B
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot \mathrm{~A} 2 \cdot(\mathrm{~B} 1+\mathrm{B} 2+\mathrm{B} 3)}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	A2	B1	B2	B3	Y
H	H	H	X	X	L
H	H	X	H	X	L
H	H	X	X	H	L
L	X	X	X	X	H
X	L	X	X	X	H
X	X	L	L	L	H

description

The SN54ASC6057 and SN74ASC6057 are 3 -wide, 1-1-3-input OR-NAND gate CMOS standard-cell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF057LH	Label: BF057LH A1,A2,B1,B2,B3,Y;	1.75

The SN54ASC6057 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6057 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
	SN54ASC6057	$V_{C C}=4.5$	$\mathrm{V}_{\mathbf{l}}=\mathrm{V}_{\text {cre }}$ or 0 ,		237	nA
	SN74ASC6057	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to			14.2	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	0.58		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6057			SN74ASC6057			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.6	0.9	1.6	0.6	0.9	1.5	ns
tPHL				0.7	1.3	2.8	0.8	1.3	2.5	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.9	3.8	1.2	1.9	3.5	ns
tPHL				1.3	2.6	6.3	1.4	2.6	5.5	
tPLH	Any B	Y	$C_{L}=0$	1	2	5	1.1	2	4.5	ns
tPHL				0.4	1	2.8	0.4	1	2.4	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	2.4	5	11.9	2.6	5	10.7	ns
${ }_{\text {tPHL }}$				1	2.3	6.3	1.1	2.3	5.4	
$\Delta \mathrm{tPLH}$	Any A	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.6	1.3	3.6	0.6	1.3	3.1	
Δ tPLH	Any B	Y		1.4	3	6.9	1.5	3	6.2	ns/pF
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 2.3 ns from A1

3 ns from Any B or C

- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{A 1 \cdot(B 1+B 2) \cdot(C 1+C 2)}
$$

description

The SN54ASC6058 and SN74ASC6058 are 3-wide, 1-2-2-input OR-NAND gate CMOS standard-cell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	B1	B2	C1	C2	Y
H	H	X	H	X	L
H	H	X	X	H	L
H	X	H	H	X	L
H	X	H	X	H	L
L	X	X	X	X	H
X	L	L	X	X	H
X	X	X	L	L	H

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF058LH	Label: BFO58LH A1, B1, B2, C1, C $2, \mathrm{Y} ;$	2

The SN54ASC6058 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6058 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
$\dddot{v i}_{1}$ innui curnesiniu voitaye			$\mathrm{T}^{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6058	$V_{C C}=4.5$	$V_{1}=V_{\text {CC }}$ or 0,		250	nA
	SN74ASC6058	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$			15	
C_{i} Inplit capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{p \mathrm{~d}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.64		pF

SN54ASC6058, SN74ASC6058
OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6058			SN74ASC6058			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A1	Y	$C_{L}=0$	0.8	1	1.8	0.8	1	1.7	ns
tPHL				0.8	1.3	3.1	0.8	1.3	2.7	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.3	2	4	1.3	2	3.7	ns
tPHL				1.4	2.6	6.5	1.5	2.6	5.7	
tPLH	Any B or C	Y	$C_{L}=0$	0.7	1.3	3.5	0.7	1.3	3.2	ns
tpHL				0.5	1.3	2.8	0.5	1.3	2.7	
tPLH	Any B or C	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.3	8	1.7	3.3	7.3	ns
tPHL				1.1	2.6	6.3	1.2	2.6	5.7	
$\Delta \mathrm{t}_{\text {PLH }}$	A1	Y		0.4	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3	
Δ tPLH	Any B or C	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.3	3.5	0.6	1.3	3	

[^127]
DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 2.3 ns from A1
3.5 ns from Any B or C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{\mathrm{A} 1 \cdot(\mathrm{~B} 1+\mathrm{B} 2) \cdot(\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3)}
$$

description

The SN54ASC6059 and SN74ASC6059 are 3 -wide, 1-2-3-input OR-NAND gate CMOS standard-cell functions. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol

FUNCTION TABLE

| INPUTS | | | | | OUTPUT | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | B1 | B2 | C1 | C2 | C3 | Y |
| H | H | X | H | X | X | L |
| H | H | X | X | H | X | L |
| H | H | X | X | X | H | L |
| H | X | H | H | X | X | L |
| H | X | H | X | H | X | L |
| H | X | H | X | X | H | L |
| L | X | X | X | X | X | H |
| X | L | L | X | X | X | H |
| X | X | X | L | L | L | H |

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF059LH	Label: BF059LH A1,B1,B2,C1,C2,C3,Y;	2.25

The SN54ASC6059 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6059 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6059	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			284	nA
	SN74ASC6059				17	
C_{i} Input capacitance		$\mathrm{V}_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	0.65		pF

SN54ASC6059, SN74ASC6059 OR-NAND GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6059			SN74ASC6059			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=0$	0.6	0.8	1.4	0.6	0.8	1.3	ns
${ }_{\text {t }}$ PHL				0.8	1.3	2.3	0.8	1.3	2.1	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.6	1.2	1.8	3.3	ns
${ }^{\text {t PHL }}$				1.4	2.6	5.8	1.5	2.6	5.1	
${ }^{\text {tPLH }}$	$\begin{gathered} \text { Any } \\ \text { B or C } \end{gathered}$	Y	$C_{L}=0$	0.9	1.8	4.8	1	1.8	4.3	ns
tPHL				0.4	1.3	3.4	0.5	1.3	3	
tPLH	Any B or C	Y	$C_{L}=1 \mathrm{pF}$	1.9	4.4	11.6	2	4.4	10.5	ns
tPHL				1.1	2.6	6.9	1.2	2.6	6	
Δ tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.6	1.3	3.5	0.6	1.3	3	
$\Delta \mathrm{t}$ PLH	Any B or C	Y		0.9	2.6	6.9	1	2.6	6.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.3	3.6	0.6	1.3	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δt PLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SN54ASC6062, SN74ASC6062
OR-NAND GATES
$\mathbf{Y}=\overline{(\mathbf{A} 1+\mathbf{A} 2) \cdot(B 1+B 2) \cdot(C 1+C 2+C 3)}$

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ Internal standdard cell

- 4.1 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A 1+A 2) \cdot(B 1+B 2) \cdot(C 1+C 2+C 3)}
$$

logic symbol

FUNCTION TABLE

INPUTS						OUTPUT	
A1	A2	B1	B2	C1	C2	C3	Y
H	X	H	X	H	X	X	L
X	H	X	H	X	H	X	L
H	X	H	X	X	X	H	L
(Any H)	(Any H)	(Any H)	L				
Any other combination						H	

description

The SN54ASC6062 and SN74ASC6062 are 3-wide, 2-2-3-input OR-NAND gate CMOS standard cell functions. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LK
	Label: BF062LH A1,A2,B1,B2,C1,C2,C3,Y;	4.1 ns	2.5

The SN54ASC6062 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6062 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

SN54ASC6062, SN74ASC6062

OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6062			SN74ASC6062			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A or B	Y	$C_{L}=0$	0.6	1.4	4	0.7	1.4	3.6	ns
tPHL				0.5	1.3	3.3	0.6	1.3	2.9	
tPLH	Any A or B	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.3	8.5	1.7	3.3	7.7	ns
tPHL				1.1	2.6	6.7	1.3	2.6	5.8	
tPLH	Any C	Y	- $C_{L}=0$	1.1	2.1	5.3	1.1	2.1	4.7	ns
tPHL				0.7	1.6	4	0.8	1.6	3.5	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.1	12.2	2.7	5.1	11	ns
tPHL				1.4	3	7.6	1.5	3	6.5	
Δ tPLH	Any A or B	Y		0.9	2	4.6	1	2	4.2	ns/pF
$\triangle \mathrm{t} \mathrm{PHL}$				0.6	1.3	3.5	0.6	1.3	3	
$\Delta \mathrm{tPLH}$	Any C	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.6	1.4	3.6	0.6	1.4	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$\mathrm{t}_{\mathrm{pLH}} \equiv$ propagation delay time, low-to-high-level output
$\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- 4.2 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A 1+A 2) \cdot(B 1+B 2+B 3) \cdot(C 1+C 2+C 3)}
$$

logic symbol

FUNCTION TABLE

INPUTS							OUTPUT	
A1	A2	B1	B2	B3	C1	C2	C3	Y
H	X	H	X	X	H	X	X	L
X	H	X	H	X	X	H	X	L
H	X	X	X	H	X	X	H	L
(Any	H)	(Any H)	(Any H)	L				
Any other combination						H		

description

The SN54ASC6063 and SN74ASC6063 are 3 -wide, $2-3-3$-input OR-NAND gate CMOS standard cell functions. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{aligned} & \text { TYPICAL } \\ & \text { DELAY } \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \end{aligned}$	RELATIVE CELL AREA TO NA210LH
BF063LH	Label: BF063LH A1,A2,B1, B2, B3, C1, C2, C3, Y;	4.2 ns	2.5

The SN54ASC6063 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6063 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6063	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{\mathrm{A}}=\text { MIN to } \mathrm{MAX} \end{aligned}$			330	$n \mathrm{~A}$
	SN74ASC6063				19.8	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.64		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6063			SN74ASC6063			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.6	1	2.2	0.7	1	2	ns
tPHL				0.8	1.4	3.1	0.9	1.4	2.8	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.6	3	6.7	1.7	3	6.1	ns
tPHL				1.5	2.7	6.6	1.6	2.7	5.8	
tPLH	Any B or C	Y	$C_{L}=0$	1.1	2.4	6.3	1.1	2.4	5.7	ns
tPHL				0.6	1.6	4.4	0.6	1.6	3.8	
${ }^{\text {tPLH }}$	Any B or C	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.4	13.1	2.7	5.4	11.9	ns
${ }_{\text {t }}$ PHL				1.1	3	8	1.2	3	6.9	
$\Delta \mathrm{t}_{\text {PLH }}$	Any A	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.6	0.6	1.3	3.1	
Δ tPLH	Any B or C	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.4	3.6	0.6	1.4	3.1	

[^128]
DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

$$
Y=\frac{\text { SN54ASC6064, SN74ASC6064 }}{\text { OR-NAND GATES }}
$$

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

－ 4.1 ns Typical Propagation Delay with 1－pF Load
－Specified for Operation Over VCC Range of 4．5 V to 5.5 V
－Functional Operation Over VCC Range of 2 V to 6 V
－Dependable Texas Instruments Quality and Reliability
logic symbol

positive logic equation

$$
Y=\overline{(\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3) \cdot(\mathrm{B} 1+\mathrm{B} 2+\mathrm{B} 3) \cdot(\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3)}
$$

description

The SN54ASC6064 and SN74ASC6064 are 3 －wide，3－input OR－NAND gate CMOS standard－ cell functions．The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist：

FUNCTION TABLE

INPUTS									$\begin{gathered} \text { OUTPUT } \\ Y \\ \hline \end{gathered}$
A1	A2	A3	B1	B2	B3	C1	C2	C3	
H	X	X	H	X	X	H	X	x	L
X	H	X	X	H	X	X	H	X	L
x	X	H	X	X	H	X	x		L
（Any H）				ny			（Any		L
Any other combination									H

CELL NAME	NETLIST	FEATURES	
	HDL LABEL	TYPICAL	RELATIVE
		$C_{L}=1 \mathrm{pF}$	TO NA210LH
BF064LH	Label：BF064LH A1，A2，A3，B1，B2，B3，C1，C2，C3，Y；	4.1 ns	2.75

The SN54ASC6064 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ ．The SN74ASC6064 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ．
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TFET ROMIDITİAC		TV	：	ごッ：
V_{T} Input threshold voltage		$V_{C C}=5 \mathrm{~V}$ ，	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6064	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			363	nA
	SN74ASC6064				21.8	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.7		pF

SN54ASC6064, SN74ASC6064 OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6064			SN74ASC6064			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any	Y	$C_{L}=0$	0.8	2.2	6.8	0.8	2.2	6.1	ns
${ }_{\text {tPHL }}$				0.6	1.6	5	0.7	1.6	4.4	
tPLH	Any	Y	$C_{L}=1 \mathrm{pF}$	2.2	5.2	13.6	2.4	5.2	12.3	ns
tPHL				1.2	3	8.6	1.3	3	7.4	
Δ tPLH	Any	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.6	1.4	3.6	0.6	1.4	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.2 ns from A1
2.4 ns from B1
2.8 ns from Any C
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot[\mathrm{~B} 1+(\mathrm{C} 1 \cdot \mathrm{C} 2)]}
$$

description

The SN54ASC6065 and SN74ASC6065 CMOS standard-cell Boolean macros are 2-input sum-of-products NAND gates with a dedicated 2 -input OR, 2 -input AND product term. One available input to the 2 -input OR gate and the available input to the 2 -input NAND gate provides expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF065LH	Label: BF065LH A1,B1,C1,C2,Y;	1.75

The SN54ASC6065 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6065 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		V
icl Supriy currer		SN54ASC6065	$\mathrm{V}_{\text {r }}=4.5$			210	nA
		SN74ASC6065	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to			13.1	
C_{i} Input capacitance			$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$			$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.58		pF

SN54ASC6065, SN74ASC6065
 AND-OR-NAND GATES

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6065			SN74ASC6065			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A1	Y	$C_{L}=0$	0.6	0.8	1.2	0.6	0.8	1.2	ns
${ }_{\text {tPHL }}$				0.8	1.2	2.3	0.8	1.2	2.1	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.5	1.2	1.8	3.2	ns
tPHL				1.4	2.5	5.7	1.5	2.5	5	
tPLH	B1	Y	$C_{L}=0$	0.9	1.2	2.1	0.9	1.2	2	ns
tPHL				0.3	0.7	1.4	0.3	0.7	1.3	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.8	3.1	6.6	1.9	3.1	6.1	ns
${ }_{\text {tPHL }}$				0.8	1.7	3.8	0.9	1.7	3.4	
tPLH	Any C	Y	$C_{L}=0$	0.7	1.3	3.1	0.8	1.3	2.8	ns
tPHL.				0.4	1	2.4	0.5	1	2.1	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	1.7	3.3	7.7	1.8	3.3	6.9	ns
${ }_{\text {tPHL }}$				1.1	2.3	5.9	1.2	2.3	5.1	
\triangle tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.6	1.3	3.5	0.6	1.3	3	
$\Delta \mathrm{tPLH}$	B1	Y		0.9	1.9	4.5	1	1.9	4.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$				0.5	1	2.5	0.5	1	2.1	
Δ tPLH	Any C	Y		0.9	2	4.6	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.6	1.3	3.5	0.6	1.3	3	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 2.3 ns from A1
3.2 ns from Any B
2.9 ns from Any C
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot[(\mathrm{~B} 1 \cdot \mathrm{~B} 2)+(\mathrm{C} 1 \cdot \mathrm{C} 2)]}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	B1	B2	C1	C2	Y
H	H	H	X	X	L
H	X	X	H	H	L
Any	other combination	H			

description

The SN54ASC6066 and SN74ASC6066 CMOS standard-cell Boolean macros are 2-input sum-of-products NAND gates with a dedicated 2 -wide, 2 -input AND-OR product term. The available NAND input can be used to combine other custom product terms with the 2 -wide, 2 -input AND-OR term. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF066LH	Label: BF066LH A1,B1,B2,C1,C2,Y;	2.5

The SN54ASC6066 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6066 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2	V
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \bar{T}_{A} \text { - iviiii iv ivimin } \end{aligned}$	$\begin{array}{r} 291 \\ \hline 17.4 \end{array}$	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.64	pF

SN54ASC6066, SN74ASC6066
AND-OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6066			SN74ASC6066			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A1	Y	$C_{L}=0$	0.7	0.9	1.4	0.7	0.9	1.4	ns
tPHL				0.9	1.5	3.1	1	1.5	2.8	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.2	1.9	3.7	1.2	1.9	3.4	ns
tPHL				1.6	2.8	6.6	1.7	2.8	5.8	
tPLH	Any B	Y	$C_{L}=0$	0.9	1.7	4.2	0.9	1.7	3.8	ns
${ }_{\text {t }}$ PHL				0.6	0.3	3.8	0.6	1.3	3.1	
${ }^{\text {tPLH }}$	Any B	Y	$C_{L}=1 \mathrm{pF}$	1.9	3.7	8.8	2	3.7	8	ns
tPHL				1.2	2.6	6.6	1.3	2.6	5.8	
tPLH	Any C	Y	$C_{L}=0$	1	1.5	3.4	1	1.5	3.1	ns
tPHL				0.4	1	2.8	0.5	1	2.4	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	1.9	3.5	7.9	2	3.5	7.2	ns
tPHL				1.1	2.3	5.8	1.2	2.3	5	
$\Delta \mathrm{t}$ PLH	A1	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3	
$\Delta t_{\text {PLH }}$	Any B	Y		0.9	2	4.6	0.9	2	4.2	ns/pF
$\Delta \mathrm{tPHL}$				0.6	1.3	2.9	0.6	1.3	2.7	
$\Delta \mathrm{t}$ PLH	Any C	Y		0.9	2	4.6	1	2	4.1	ns/pF
Δ tPHL				0.6	1.3	3	0.6	1.3	2.7	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL Standard CeLL

- Typical Propagation Delay with 1-pF Load 2.2 ns from A1
3.3 ns from Any B
3.7 ns from Any C
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{\mathrm{A} 1 \cdot[\mathrm{~B} 1+\mathrm{B} 2+(\mathrm{C} 1 \cdot \mathrm{C} 2)]}
$$

logic symbol

FUNCTION TABLE

INPUTS					OUTPUT
A1	B1	B2	C1	C2	Y
H	H	X	X	X	L
H	X	H	X	X	L
H	X	X	H	H	L
L	X	X	X	X	H
X	L	L	L	X	H
X	L	L	X	L	H

description

The SN54ASC6067 and SN74ASC6067 CMOS standard-cell Boolean macros are 2-input sum-of-products NAND gates with a dedicated 2 -input AND, 3 -input OR product term. Two available inputs to the 3 -input OR gate and one to the 2 -input NAND gate provide expandability for implementing customized product terms. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
$\mathrm{BF067LH}$	Label: BF067LH A1,B1,B2,C1,C2,Y;	2

The SN54ASC6067 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6067 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAEAETED				1 Yr	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6067	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			248	nA
	SN74ASC6067				14.9	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.57		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6067			SN74ASC6067			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=0$	0.6	0.8	1.2	0.6	0.8	1.2	ns
tPHL				0.9	1.3	2.5	0.9	1.3	2.3	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.5	1.2	1.8	3.2	ns
${ }^{\text {tPHL}}$				1.5	2.6	6.1	1.6	2.6	5.3	
tPLH	Any B	Y	$C_{L}=0$	1.1	1.8	4.4	1.1	1.8	4	ns
${ }_{\text {t }}$ PHL				0.3	0.9	2	0.4	0.9	1.8	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	2.5	4.8	11.2	2.7	4.8	10.2	ns
tPHL				0.9	1.8	4.4	0.9	1.8	3.8	
tPLH	Any C	Y	$C_{L}=0$	0.8	1.9	5	0.9	1.9	4.5	ns
${ }_{\text {t }}$ PHL				0.4	1.1	2.6	0.5	1.1	2.3	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.3	4.9	11.8	2.4	4.9	10.7	ns
${ }^{\text {P PHL }}$				1.1	2.4	6.2	1.2	2.4	5.4	
Δ tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.6	1.3	3.6	0.6	1.3	3.1	
Δ tpLH	Any B	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	0.9	2.5	0.5	0.9	2.1	
$\Delta \mathrm{t}$ LLH	Any C	Y		1.4	3	6.9	1.5	3	6.2	ns/pF
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.6	0.7	1.3	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in TPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay With (1-pF Load)
2.8 ns from A1
3.2 ns from B1
4.0 ns from Any C or D
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot[\mathrm{~B} 1+(\mathrm{C} 1 \cdot \mathrm{C} 2)+(\mathrm{D} 1 \cdot \mathrm{D} 2)]}
$$

description

The SN54ASC6068 and SN74ASC6068 CMOS standard-cell Boolean macros are 2-input sum-of-products NAND gates with dedicated 2-wideAND and 3-input-OR product term. The available NAND and OR inputs can be used to combine other custom product terms with the 2 -wide, 2 -input ANDOR term. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF068LH	Label: BF068LH A1,B1,C1,C2,D1,D2,Y;	2.75

The SN54ASC6068 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6068 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
\because_{1} i.,.pui iinesiivia voitage		$\mathrm{v}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6068	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$			317	nA
	SN74ASC6068				19	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$t_{r}=t_{f}=3 \mathrm{~ns},$	0.61		pF

SN54ASC6068, SN74ASC6068
AND-OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6068			SN74ASC6068			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX	
${ }_{\text {t }}$ LH	A1	Y	$C_{L}=0$	0.6	0.8	1.2	0.6	0.8	1.2	ns
tPHL				0.9	1.4	2.9	1	1.4	2.6	
tpLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.5	1.2	1.8	3.2	ns
tpHL				1.6	2.8	6.5	1.7	2.8	5.7	
tpLH	B1	Y	$C_{L}=0$	1.1	1.7	3.3	1.1	1.7	3.1	ns
tPHL				0.3	0.8	1.6	0.4	0.8	1.5	
${ }_{\text {tPLH }}$	B1	Y	$C_{L}=1 \mathrm{pF}$	2.5	4.6	10.1	2.7	4.6	9.2	ns
${ }_{\text {t }}$				0.9	1.8	4	0.9	1.8	3.6	
${ }^{\text {tPLH }}$	Any C or D	Y	$C_{L}=0$	0.9	2.3	5.5	1	2.3	5	ns
tPHL				0.4	1.3	2.9	0.5	1.3	2.5	
${ }^{\text {tPLH }}$	Any C or D	Y	$C_{L}=1 \mathrm{pF}$	2.4	5.3	12.4	2.6	5.3	11.2	ns
tPHL				1.1	2.6	6.5	1.2	2.6	5.6	
Δ tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	ns/pF
Δ tPHL				0.6	1.4	3.7	0.6	1.4	3.2	
Δ tpLH	B1	Y		1.4	2.9	6.9	1.5	2.9	6.2	ns/pF
Δ tpHL				0.5	1	2.5	0.5	1	2.1	
Δ tpLH	Any C or D	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
Δ t $_{\text {PHL }}$				0.6	1.3	3.7	0.6	1.3	3.2	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{P L H} \equiv$ change in tPLH with load capacitance
Δ tPHL \equiv change in $\mathrm{tPHL}^{\text {w }}$ with load capacitance
${ }^{\ddagger} \mathrm{T}_{\text {ypical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 2.5 ns from A1
4.2 ns from Any B, C, or D
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot[(\mathrm{~B} 1 \cdot \mathrm{~B} 2)+(\mathrm{C} 1 \cdot \mathrm{C} 2)+(\mathrm{D} 1 \cdot \mathrm{D} 2)]}
$$

description

The SN54ASC6069 and SN74ASC6069 CMOS standard-cell Boolean macros are 2 -input sum-of-products NAND gates with a dedicated 3-wide-AND-OR product term. The available NAND input can be used to combine other custom product terms with the 3 -wide, 2 -input AND-OR term. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL. AREA TO NA210LH
BF069LH	Label: BF069LH A1,B1,B2,C1,C2,D1,D2,Y;	3

The SN54ASC6069 is characterized for operation over the fult military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6069 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.

electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6069	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\text { MIN to MAX } \end{aligned}$			350	nA
	SN74ASC6069				31	
$\stackrel{L}{i}$ input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.66		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6069			SN74ASC6069			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {tPLH }}$	A1	Y	$C_{L}=0$	0.6	0.9	1.4	0.7	0.9	1.4	ns
tpHL				1.1	1.7	3.8	1.1	1.7	3.4	
${ }_{\text {tPLH }}$	A1	Y	$C_{L}=1 \mathrm{pF}$	1.2	1.9	3.7	1.2	1.9	3.4	ns
tPHL				1.7	3.1	7.4	1.8	3.1	6.4	
tPLH	Any B, C, or D	Y	$C_{L}=0$	1.1	2.4	6.9	1.2	2.4	6.2	ns
tPHL				0.4	1.4	4	0.5	1.4	3.3	
${ }^{\text {tPLH }}$	Any B, C, or D	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.7	13.8	2.7	5.7	12.5	ns
tPHL				1.1	2.7	7.1	1.2	2.7	6.2	
Δ tpLH	A1	Y		0.5	1	2.3	0.5	1	2.1	ns/pF
\triangle TPHL				0.6	1.4	3.6	0.6	1.4	3.1	
Δ tPLH	Any B, C, or D	Y		1.4	3	6.9	1.5	3	6.3	ns/pF
Δ tPHL				0.6	1.3	3.1	0.6	1.3	2.9	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\mathrm{tPHL}} \equiv$ propagation delay time, high-to-low-level output
Δ TPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in TPHL with load capacitance
$\ddagger{ }_{T y p i c a l}$ values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SN54ASC6072, SN74ASC6072
 AND-OR-NAND GATES
 $\mathbf{Y}=\overline{(\mathbf{A} 1+\mathrm{A} 2) \cdot[\mathbf{B 1}+\mathrm{B} 2+(\mathbf{C} 1 \cdot \mathbf{C} 2)]}$
 D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.3 ns from Any A

3 ns from Any B
3.8 ns from Any C

- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
\mathrm{Y}=\overline{(\mathrm{A} 1+\mathrm{A} 2) \cdot[\mathrm{B} 1+\mathrm{B} 2+(\mathrm{C} 1 \cdot \mathrm{C} 2)]}
$$

description

The SN54ASC6072 and SN74ASC6072 CMOS standard-cell Boolean macros are 2-wide 2-3-input sum-of-products OR-NAND gates with a dedicated 2 -input AND, 2 -input OR product term. Two available inputs to the 3 -input OR gate and two to the 2 -input OR gate provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF072LH	Label: BF072LH A1,A2,B1,B2,C1,C2,Y;	2

The SN54ASC6072 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6072 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER				1rr	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6072	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad V_{I}=V_{C C} \text { or } 0, \\ & T_{A}=\text { MIN to MAX } \end{aligned}$		$\frac{252}{15.1}$		nA
	SN74ASC6072					
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.81		pF

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC6	72		4ASC		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.7	1	1.8	0.7	1	1.6	ns
tPHL				0.3	0.9	1.6	0.4	0.9	1.6	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.6	2.9	6.2	1.6	2.9	5.6	ns
tPHL				0.9	1.6	3.4	0.9	1.6	3.1	
${ }^{\text {tPLH }}$	Any B	Y	$C_{L}=0$	1	1.7	3.9	1.1	1.7	3.5	ns
tPHL				0.3	1	1.8	0.4	1	1.7	
tPLH	Any B	Y	$C_{L}=1 \mathrm{pF}$	2.2	4.2	9.6	2.3	4.2	8.7	ns
${ }^{\text {tPHL }}$				0.8	1.7	3.6	0.9	1.7	3.2	
tPLH	Any C	Y	$C_{L}=0$	1.1	2.3	6	1.1	2.3	5.4	ns
tPHL				0.5	1.2	2.6	0.5	1.2	2.3	
tPLH	Any C	Y	$C_{L}=1 \mathrm{pF}$	2.5	5.3	12.9	2.7	5.3	11.6	ns
${ }^{\text {tPHL}}$				1	2.3	5.5	1.1	2.3	4.8	
$\Delta \mathrm{tPLH}$	Any A	Y		0.9	1.9	4.5	0.9	1.9	4	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.4	0.7	1.8	0.5	0.7	1.6	
$\Delta \mathrm{tPLH}$	Any B	Y		1.1	2.5	5.8	1.2	2.5	5.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL				0.4	0.7	1.9	0.4	0.7	1.6	
$\Delta \mathrm{tPLH}$	Any C	Y		1.4	3	7	1.5	3	6.3	ns/pF
$\Delta \mathrm{tPHL}$				0.5	1.1	3	0.5	1.1	2.6	

tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS
Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.3 ns from Any A
2.2 ns from B1
2.9 ns from Any C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(A 1+A 2) \cdot[B 1+(C 1 \cdot C 2)]}
$$

description

The SN54ASC6073 and SN74ASC6073 CMOS standard-cell Boolean macros are 2-wide 2-input sum-of-products OR-NAND gates with a dedicated 2 -input AND, 2-input OR product term. One available input to one 2-input OR gate and two to the other provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF070LH	Label: BF070LH A1,A2,B1,C1,C2,Y;	2

The SN54ASC6073 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6073 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS	TYP MAX	UNIT
V_{T} Innut thrachnid unltago			$\angle .2$	V
${ }^{\text {I CC }}$ Supply current	SN54ASC6073	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$	249	nA
	SN74ASC6073		14.9	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.53	pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6073			SN74ASC6073			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.6	1	2	0.6	1	1.8	ns
${ }^{\text {tPHL }}$				0.8	1.3	2.8	0.8	1.3	2.5	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.6	3	6.5	1.7	3	5.9	ns
tPHL				1.4	2.6	6.2	1.5	2.6	5.5	
tPLH	B1	Y	$C_{L}=0$	0.9	1.1	2.1	0.9	1.1	1.9	ns
tPHL				0.3	0.8	1.5	0.4	0.8	1.4	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.6	2.6	5.4	1.6	2.6	5	ns
${ }_{\text {tPHL }}$				0.9	1.7	4	0.9	1.7	3.5	
${ }^{\text {tPLH }}$	Any C	Y	$C_{L}=0$	0.8	1.4	3.4	0.8	1.4	3.1	ns
${ }_{\text {tPHL }}$				0.5	1.1	2.5	0.5	1.1	2.3	
${ }^{\text {P PLH }}$	Any C	Y	$C_{L}=1 \mathrm{pF}$	1.7	3.4	7.9	1.8	3.4	7.2	ns
${ }^{\text {tPHL }}$				1.1	2.4	6	1.2	2.4	5.3	
Δ tPLH	Any A	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3	
Δ tPLH	B1	Y		0.6	1.5	3.4	0.7	1.5	3.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	0.9	2.5	0.5	0.9	2.1	
$\Delta \mathrm{tPLH}$	Any C	Y		0.9	2	4.6	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
$\Delta t_{P L H} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in $\mathrm{T} P \mathrm{HL}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load 2.9 ns from Any A

3.1 ns from Any B or C

- Specified for Operation Over VcC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{(\mathrm{A} 1+\mathrm{A} 2) \cdot[(\mathrm{B} 1 \cdot \mathrm{~B} 2)+(\mathrm{C} 1 \cdot \mathrm{C} 2)]}
$$

description

The SN54ASC6074 and SN74ASC6074 CMOS standard-cell Boolean macros are 2-wide 2-input sum-of-products OR-NAND gates with a dedicated 2 -wide, 2 -input, AND-OR product term. The available 2 -input OR gate provides expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF071LH	Label: BF071LH A1,A2,B1,B2,C1,C2,Y;	2.5

The SN54ASC6074 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6074 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	V
	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad V_{1}=V_{C C} \text { or } 0, \\ & T_{A}-\text { inin iv ivin: } \end{aligned}$	$\frac{304}{18.2}$	$n \Delta$
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.64	pF

SN54ASC6074, SN74ASC6074 AND-OR-NAND GATES
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6074			SN74ASC6074			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	0.7	1.1	2.3	0.7	1.1	2.1	ns
${ }_{\text {tPHL }}$				0.9	1.5	3.9	0.9	1.5	3.3	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	1.6	3.1	6.9	1.7	3.1	6.2	ns
tPHL				1.5	2.8	6.7	1.6	2.8	5.9	
tPLH	Any B or C	Y	$C_{L}=0$	0.9	1.7	4.2	0.9	1.7	3.8	ns
tPHL				0.5	1.2	3.9	0.5	1.2	3.3	
tPLH	Any B or C	Y	$C_{L}=1 \mathrm{pF}$	1.9	3.7	8.7	2	3.7	7.9	ns
${ }^{\text {t PHL }}$				1.1	2.5	6.7	1.2	2.5	5.9	
Δ tpLH	Any A	Y		0.9	2	4.6	1	2	4.2	ns/pF
$\Delta \mathrm{tPHL}$				0.6	1.3	2.8	. 0.6	1.3	2.6	
Δ tPLH	Any B or C	Y		0.9	2	4.6	1	2	4.2	ns/pF
$\Delta \mathrm{tPHL}$				0.6	1.3	3	0.6	1.3	2.7	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
$t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in $\mathrm{t} P \mathrm{HL}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SN54ASC6075, SN74ASC6075 AND-OR-NAND GATES
$\mathbf{Y}=\overline{(A 1+A 2+A 3) \cdot[B 1+(C 1 \cdot C 2)]}$
D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
3.6 ns from Any A
1.9 ns from B1
2.5 ns from Any C
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=\overline{(\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3) \cdot[\mathrm{B} 1+(\mathrm{C} 1 \cdot \mathrm{C} 2)]}
$$

description

The SN54ASC6075 and SN74ASC6075 CMOS standard-cell Boolean macros are 2-wide 2-3-input sum-of-products OR-NAND gates with a dedicated 2 -input AND, 2-input OR product term. One available input to the 2 -input OR gate and three to the 3 -input OR gate provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF075LH	Label: BF075LH A1,A2,A3,B1,C1,C2,Y;	2

The SN54ASC6075 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6075 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current	SN54ASC6075	$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			252	$n \mathrm{~A}$
	SN74ASC6075				15.1	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\begin{aligned} & \text { Equivalent power } \\ & \mathrm{C}_{\mathrm{pd}} \\ & \text { dissipation capacitance } \end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.77		pF

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6075			SN74ASC6075			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A	Y	$C_{L}=0$	1.2	2.3	5.7	1.2	2.3	5.2	ns
tPHL				0.3	1.1	2.8	0.4	1.1	2.6	
tPLH	Any A	Y	$C_{L}=1 \mathrm{pF}$	2.6	5.3	12.6	2.8	5.3	11.4	ns
tPHL				0.8	1.8	4.4	0.9	1.8	3.9	
tPLH	B1	Y	$C_{L}=0$	0.8	0.8	1.3	0.7	0.8	1.3	ns
tPHL				0.4	0.9	1.4	0.4	0.9	1.4	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.2	4.5	1.4	2.2	4.1	ns
${ }^{\text {t PHL }}$				0.9	1.6	3.2	0.9	1.6	2.9	
tPLH	Any C	Y	$C_{L}=0$	0.7	1	2.4	0.7	1	2.2	ns
tPHL				0.5	1.1	2	0.5	1.1	1.9	
${ }_{\text {t PLH }}$	Any C	Y	$C_{L}=1 \mathrm{pF}$	1.5	2.9	6.6	1.6	2.9	6	ns
tPHL				1	2.1	4.7	1.1	2.1	4.2	
Δ tPLH	Any A	Y		1.4	3	6.9	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.4	0.7	2	0.5	0.7	1.7	
$\Delta \mathrm{tPLH}^{\text {L }}$	B1	Y		0.6	1.4	3.2	0.7	1.4	2.9	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.4	0.7	1.8	0.5	0.7	1.5	
Δ tPLH	Any C	Y		0.8	1.9	4.4	0.9	1.9	4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\mathrm{PHL}}$				0.5	1	2.7	0.5	1	2.3	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

$$
\mathbf{Y}=\frac{\begin{array}{c}
\text { SN54ASC6082, SN74ASC6082 } \\
\text { OR-AND }
\end{array} \text { OR-NAND GATES }}{\text { A1•\{(B1•B2) }+\left[\begin{array}{l}
[\mathbf{C} 1 \cdot(\mathrm{D} 1+\mathbf{D} 2)]\} \\
\text { D2939, AUGUST 1986 }
\end{array}\right.}
$$

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
2.1 ns from A1
2.8 ns from Any B or C
3.8 ns from Any D
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over V_{CC} Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
\mathrm{Y}=\overline{\mathrm{A} 1 \cdot\{(\mathrm{~B} 1 \cdot \mathrm{~B} 2)+[\mathrm{C} 1 \cdot(\mathrm{D} 1+\mathrm{D} 2)]\}}
$$

description

The SN54ASC6082 and SN74ASC6082 CMOS standard-cell Boolean macros are 2 -wide 1-2-input sum-of-products OR-NAND gates with 2 -input OR, 2 -input AND, and one available input to the 2 -input AND gate to provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF082LH	Label: BF082LH A1, B1, B2, C1, D1, D2,Y;	2.25

The SN54ASC6082 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6082 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	V
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0 ,	283	
CC Supply current	$T_{A}=$ MIN to MAX	17	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.87	pF

SN54ASC6082, SN74ASC6082
 OR-AND-OR-NAND GATES

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		4ASC6			4ASC		UNIT
P	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A1	Y	$C_{L}=0$	0.7	1.1	1.5	0.8	1.1	1.5	ns
tPHL				0.6	1.2	2	0.7	1.2	2	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.3	2	3.6	1.3	2	3.4	ns
tPHL				1.2	2.1	4.2	1.3	2.1	3.8	
tPLH	Any B, C	Y	$C_{L}=0$	1	1.5	2.8	1	1.5	2.7	ns
tPHL				0.4	1.2	2.9	0.4	1.2	2.6	
tPLH	Any B, C	Y	$C_{L}=1 \mathrm{pF}$	1.7	3.1	6.6	1.8	3.1	6.1	ns
${ }^{\text {tPHL }}$				1	2.5	5.9	1.1	2.5	5.2	
tPLH	Any D	Y	$C_{L}=0$	1.2	2.2	5.1	1.2	2.2	4.6	ns
${ }^{\text {tPHL }}$				0.5	1.5	3.5	0.6	1.5	3.1	
tPLH	Any D	Y	$C_{L}=1 \mathrm{pF}$	2.4	4.7	10.8	2.5	4.7	9.8	ns
${ }^{\text {tPHL }}$				1.2	2.8	7.1	1.3	2.8	6.2	
$\Delta t_{\text {PLH }}$	A1	Y		0.5	0.9	2.2	0.5	0.9	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.5	0.9	2.3	0.6	0.9	1.9	
$\triangle \mathrm{tPLH}$	Any B, C	Y		0.7	1.6	3.8	0.7	1.6	3.4	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3	
$\Delta \mathrm{tPLH}$	Any D	Y		1.1	2.5	5.8	1.2	2.5	5.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.6	1.3	3.6	0.7	1.3	3.1	

\dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
1.8 ns from A1
2.3 ns from B1

3 ns from C1
3.7 ns from Any D

- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{\mathrm{A} 1 \cdot\{\mathrm{~B} 1+[\mathrm{C} 1 \cdot(\mathrm{D} 1+\mathrm{D} 2)]\}}
$$

logic symbol

FUNCTION TABLE

INPUTS				OUTPUT	
A1	B1	C1	D1	D2	Y
H	H	X	X	X	L
H	X	H	H	X	L
H	X	H	X	H	L
Any				other combination	H

description

The SN54ASC6083 and SN74ASC6083 CMOS standard-cell Boolean macros are 2-wide 1-2-input sum-of-products OR-NAND gates with 2 -input OR, and one available input each to the 2 -input AND and OR gates to provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BFO80LH	Label: BF080LH A1,B1,C1,D1,D2,Y;	2

The SN54ASC6083 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6083 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } & \\ \hline \end{array}$		2.2		V
ICC Supply current	SN54ASC6083				252	nA
	SN74ASC6083				15.1	
C_{i} Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{p d} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$		$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.8		pF

switching characteristics over recommended ranges of operating free-air temperature and supply voltage
(unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO(OUTPUT)	TEST CONDITIONS	SN54ASC6083			SN74ASC6083			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }_{\text {t PLH }}$	A1	Y	$C_{L}=0$	0.6	0.9	1.2	0.6	0.9	1.2	ns
tPHL				0.4	0.9	1.5	0.5	0.9	1.4	
${ }^{\text {tPLH }}$	A1	Y	$C_{L}=1 \mathrm{pF}$	1.1	1.8	3.4	1.2	1.8	3.1	ns
tPHL				0.9	1.7	3.4	1	1.7	3	
tPLH	B1	Y	$C_{L}=0$	0.9	1.2	2.1	0.9	1.2	2	ns
tPHL				0.3	0.8	1.5	0.4	0.8	1.4	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.7	2.8	5.9	1.7	2.8	5.4	ns
tPHL				0.8	1.7	3.8	0.9	1.7	3.4	
${ }_{\text {t PLH }}$	C1	Y	$C_{L}=0$	1	1.7	3.9	1	1.7	3.5	ns
tPHL				0.5	1.1	2.5	0.6	1.1	2.2	
tPLH	C1	Y	$C_{L}=1 \mathrm{pF}$	1.9	3.7	8.4	2	3.7	7.7	ns
tPHL				1	2.2	5.4	1.1	2.2	4.7	
${ }^{\text {P PLH }}$	Any D	Y	$C_{L}=0$	0.9	1.9	4.6	1	1.9	4.1	ns
tPHL				0.6	1.2	2.8	0.7	1.2	2.4	
tPLH	Any D	Y	$C_{L}=1 \mathrm{pF}$	2.4	4.9	11.5	2.5	4.9	10.4	ns
tPHL				1.3	2.5	6.3	1.3	2.5	5.5	
$\Delta \mathrm{t}_{\text {PLLH }}$	A1	Y		0.5	0.9	2.2	0.5	0.9	2	ns/pF
Δ tPHL				0.5	0.8	1.9	0.5	0.8	1.7	
Δ tPLH	B1	Y		0.7	1.6	3.8	0.8	1.6	3.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.5	0.9	2.4	0.5	0.9	2	
Δ tPLH	C1	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.5	1.1	2.9	0.5	1.1	2.5	
Δ tpLH	Any D	Y		1.4	3	7	1.5	3	6.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL				0.6	1.3	3.5	0.6	1.3	3.1	

tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.
SN54ASC6084, SN74ASC6084
OR-AND-OR-NAND GATES
$\mathbf{Y}=\overline{\mathbf{A} 1 \cdot\{\mathbf{B 1}+[(\mathbf{C} 1+\mathbf{C} 2) \cdot(\mathbf{D} 1+\mathbf{D} 2)]\}}$
D2939, AUGUST 1986

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
1.7 ns from A1
2.5 ns from B1
3.9 ns from Any C or D
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=\overline{\mathrm{A} 1 \cdot\{\mathrm{~B} 1+[(\mathrm{C} 1+\mathrm{C} 2) \cdot(\mathrm{D} 1+\mathrm{D} 2)]\}}
$$

description

The SN54ASC6084 and SN74ASC6084 CMOS standard-cell Boolean macros are 2 -wide 1-2-input sum-of-products OR-NAND gates with 2 -input OR, dual 2 -input OR, and one available input to the 2 -input OR gate to provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF081LH	Label: BF081LH A1,B1,C1,C2,D1,D2,Y;	2.5

INPUTS						
A1	B1	C1	C2	D1	D2	Y
H	H	X	X	X	X	L
H	X	H	X	H	X	L
H	X	H	X	X	H	L
H	X	X	H	H	X	L
H	X	X	H	X	H	L
Any other combination					H	

The SN54ASC6084 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6084 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
V_{T} Input threshold voltage		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{~T}_{\wedge}=25^{\circ} \mathrm{C} \\ \hline \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} & \\ \hline \end{array}$? $?$		\because
${ }^{\text {I CC }}$ Supply current	SN54ASC6084				314	nA
	SN74ASC6084				18.9	
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.9		pF

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{array}{\|c\|} \hline \text { TO } \\ \text { (OUTPUT) } \\ \hline \end{array}$	TEST CONDITIONS	SN54ASC6084			SN74ASC6084			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A1	Y	$C_{L}=0$	0.7	0.8	1.3	0.7	0.8	1.2	ns
tPHL				0.4	0.8	1.5	0.5	0.8	1.4	
tPLH	A1	Y	$C_{L}=1 \mathrm{pF}$	1.2	1.8	3.5	1.2	1.8	3.3	ns
tPHL				0.9	1.6	3.3	1	1.6	3	
tPLH	B1	Y	$C_{L}=0$	1	1.3	2.4	1	1.3	2.3	ns
tPHL				0.3	0.8	1.6	0.4	0.8	1.5	
${ }_{\text {tPLH }}$	B1	Y	$C_{L}=1 \mathrm{pF}$	1.9	3.2	6.9	2	3.2	6.3	ns
${ }_{\text {tPHL }}$				0.8	1.7	4	0.9	1.7	3.5	
${ }^{\text {t PLH }}$	Any C, D	Y	$C_{L}=0$	1	2.5	6.7	1.1	2.5	6	ns
${ }_{\text {tPHL }}$				0.5	1.2	2.9	0.6	1.2	2.6	
tPLH	Any C, D	Y	$C_{L}=1 \mathrm{pF}$	2.6	5.5	13.4	2.7	5.5	12.1	ns
tPHL				1.1	2.3	5.9	1.2	2.3	5.1	
Δ tPLH	A1	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.4	0.8	1.9	0.6	0.8	1.6	
Δ tPLH	B1	Y		0.9	1.9	4.5	0.9	1.9	4.1	ns/pF
$\Delta \mathrm{t} \mathrm{PHL}$				0.5	0.9	2.4	0.5	0.9	2.1	
$\Delta t_{\text {PLH }}$	Any C, D	Y		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.5	1.1	3.1	0.6	1.1	2.6	

†Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
$\ddagger{ }_{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Typical Propagation Delay with 1-pF Load
3.1 ns from Any A or C1
2.3 ns from B1
4.1 ns from Any D
- Specified for Operation Over Vcc Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas instruments Quality and Reliability

positive logic equation

$$
Y=\overline{(A 1+A 2+A 3) \cdot\{B 1+[C 1 \cdot(D 1+D 2)]\}}
$$

description

The SN54ASC6088 and SN74ASC6088 CMOS standard-cell Boolean macros are 2 -wide 2-3-input sum-of-products OR-NAND gates with 2 -input OR and one availabie input each to the 2 -input AND and OR gate to provide expandability for implementing customized product terms. The cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
BF088LH	Label: BF088LH A1,A2,A3,B1,C1,D1,D2,Y;	2.5

The SN54ASC6088 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6088 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMAETED				IYr	IIAX	UNIT
V_{T} Input threshold voltage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
${ }^{\text {I CC }}$ Supply current	SN54ASC6088	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			318	nA
	SN74ASC6088				19.1	
C_{i} Input capacitance		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	0.99		pF

SN54ASC6088, SN74ASC6088
OR-AND-OR-NAND GATES
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6088			SN74ASC6088			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Any A, C1	Y	$C_{L}=0$	0.8	1.4	3.9	0.8	1.4	3.6	ns
tPHL				0.4	1	2.2	0.4	1	2.1	
tPLH	Any A, C1	Y	$C_{L}=1 \mathrm{pF}$	1.8	4.4	10.3	1.9	4.4	9.3	ns
tPHL				0.9	1.8	4.3	1	1.8	3.8	
tPLH	B1	Y	$C_{L}=0$	1	1.5	2.9	1	1.5	2.7	ns
tPHL				0.4	0.9	1.7	0.4	0.9	1.7	
tPLH	B1	Y	$C_{L}=1 \mathrm{pF}$	1.7	3	6.5	1.8	3	5.9	ns
tPHL				0.8	1.6	3.3	0.9	1.6	3	
tPLH	Any D	Y	$C_{L}=0$	1.4	3	7.3	1.5	3	6.6	ns
tPHL				0.6	1.2	2.7	0.6	1.2	2.4	
tpLH	Any D	Y	$C_{L}=1 \mathrm{pF}$	2.8	5.9	14	3	5.9	12.6	ns
tPHL				1	2.2	5.5	1.1	2.2	4.8	
Δ tPLH	Any A, C1	Y		0.8	3	7	0.9	3	6.4	ns/pF
Δ tpHL				0.4	0.8	2.1	0.4	0.8	1.8	
Δ tPLH	B1	Y		0.7	1.5	3.6	0.7	1.5	3.2	ns/pF
$\Delta \mathrm{t}$ PHL				0.4	0.7	1.6	0.4	0.7	1.4	
Δ tPLH	Any D	Y		1.4	2.9	6.7	1.5	2.9	6.1	ns/pF
Δ tpHL				0.4	1	2.9	0.4	1	2.5	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{I} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n s(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in TPLH with load capacitance
Δ tPHL \equiv change in TPHL with load capacitance
${ }^{\ddagger}{ }_{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to the 'ASC6017 data sheet and Section 7.

SystemCell ${ }^{\text {m }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 2-Input Gated Set and Reset Lines
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6100 and SN74ASC6100 are dedicated, hardwired standard-cell macros implementing 4-input S-R latches. Setting is accomplished by taking $S A$ and $S B$ high; resetting is accomplished by taking RA and RB high. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6100 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUTS	
SA,SB	RA,RB	\mathbf{Q}	$\mathbf{Q Z}$
Any L	Any L	Q_{0}	$\mathbf{Q Z}_{\mathrm{O}}$
Both H	Any L	H	L
Any L	Both H	L	H
Both H	Both H	L^{\ddagger}	L^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (L) levels.

CELL NAME	NETLIST HDL LABEL.	RELATIVE CELL AREA TO NA210LH
GM010LH	Label: GM010LH RA,RB,SA,SB,Q,OZ;	3

The SN54ASC6100 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6100 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC6100, SN74ASC6100 4-INPUT GATED S-R LATCHES
timing requirements over recommended ranges of supply voltage and operating free-air temperature

t_{w} Pulse duration			MIN

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6100		SN74ASC6100		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I C }}$ C Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		354		21.3	nA
C_{i} Input capacitance	$V_{C C}=5 \mathrm{~V}, \quad T_{\text {A }}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.75		0.75		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6100			SN74ASC6100			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Rn	QZ	$C_{L}=0$	1.1	2.4	5.5	1.2	2.4	5	ns
tPHL		Q		0.5	1.2	2.4	0.6	1.2	2.2	ns
tPLH	Sn	Q		1.1	2.4	5.5	1.2	2.4	5	ns
${ }^{\text {tPHL }}$		QZ		0.5	1.2	2.4	0.6	1.2	2.2	
tPLH	Rn	QZ§	$C_{L}=1 \mathrm{pF}$	2.7	5.8	13.5	2.9	5.8	12.1	ns
tPHL		Q		1	2.2	4.9	1.1	2.2	4.4	ns
tPLH	Sn	Q		2.7	5.8	13.5	2.9	5.8	12.1	ns
tPHL		QZ		1	2.2	4.9	1.1	2.2	4.4	
$\Delta \mathrm{t}$ PLH	Rn	QZ§		1.1	2.4	5.5	1.2	2.4	5	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		Q		0.5	1	2.5	0.5	1	2.2	
$\Delta \mathrm{t}_{\text {PLH }}$	Sn	Q 1		1.1	2.4	5.5	1.2	2.4	5	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		QZ		0.5	1	2.5	0.5	1	2.2	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in tPLH with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the Q output must be added to the Δt for the QZ output when calculating delays from the reset inputs to QZ .
IThe internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the QZ output must be added to the Δt for the Q output when calculating delays from the set inputs to Q .

DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

SN54ASC6101, SN74ASC6101 5-INPUT GATED S-R LATCHES INCLUDING SEPARATE RESET

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 2-Input Gated Set and Reset Lines Plus Separate Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6101 and SN74ASC6101 are dedicated, hardwired standard-cell macros implementing 5 -input S-R latches. Setting is accomplished by taking $S A$ and $S B$ high; resetting is accomplished by taking RA and RB high or R high by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6101 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

InPUTS			OUTPUTS	
SA,SB	RA,RB	R	0	OZ
Any L	Any L	L	Q_{0}	$0 z_{0}$
Both H	Any L	X	H	L
Any L	Both H	X	L	H
Any L	Both X	H	L	H
Both H	Both H	X	L^{\ddagger}	L^{\ddagger}
Both H	Both X	H	L^{\ddagger}	L^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (L) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GM110LH	Label: GM110LH RA,RB,SA,SB,R,Q,QZ;	3

The SN54ASC6101 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6101 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
Soo Tahlo 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
	R low	15		
	R high	4.8		
Pulse duratio	RA or RB low	18.6		
t_{w} Pulse duration	RA or RB high	6.6		ns
	SA or SB low	12.6		
	SA or SB high	6		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6101	SN74ASC6101	UNIT
		TYP MAX	TYP MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2	2.2	V
${ }^{\text {I C }}$ (Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$	359	21.6	nA
C_{i} Input capacitance	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.8	0.8	pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6101			SN74ASC6101			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
tPLH	R	OZ	$C_{L}=0$	1	2.2	4.8	1.1	2.2	4.4	ns
tPHL		Q		0.4	1	1.8	0.5	1	1.8	
${ }^{\text {tPLH }}$	Rn	QZ		0.9	2.3	5.2	1	2.3	4.7	ns
${ }^{\text {tPHL }}$		Q		0.5	1.2	2.6	0.5	1.2	2.5	
tPLH	Sn	Q		1.2	2.5	5.7	1.2	2.5	5.1	ns
tPHL		QZ		0.5	1.2	2.6	0.6	1.2	2.2	
tPLH	R	QZ§	$C_{L}=1 \mathrm{pF}$	2.4	5	11.2	2.7	5	10.1	ns
${ }_{\text {tPHL }}$		Q		0.8	1.6	3.2	0.9	1.6	2.9	ns
${ }^{\text {tPLH }}$	Rn	QZ§		2.6	5.5	13.1	2.9	5.6	11.7	ns
tPHL		Q		1	2.2	5.1	1.1	2.2	4.5	
${ }^{\text {P PLH }}$	Sn	Q1		3	6.4	14.8	3.1	6.4	13.2	ns
${ }_{\text {t PHL }}$		QZ		1	2.2	4.9	1.1	2.2	4.3	
$\Delta t_{\text {PLH }}$	R	QZ§		1	2.2	5.1	1.1	2.2	4.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL		Q		0.4	0.6	1.5	0.4	0.6	1.2	
$\Delta \mathrm{t}$ PLH	Rn	QZ§		1	2.2	5.1	1.1	2.2	4.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$		Q		0.5	1	2.6	0.5	1	2.2	
Δ PLH $^{\text {PL }}$	Sn	Q1		1.4	2.9	6.7	1.5	2.9	6	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$		QZ		0.4	1	2.5	0.5	1	2.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta t_{\text {PLH }} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in TPHL with load capacitance
${ }^{\ddagger}{ }^{T} y$ pical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\S The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the Q output must be added to the $\Delta \mathrm{t}$ for the QZ output when calculating delays from the reset inputs to OZ .
\$The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the QZ output must be added to the Δt for the Q output when calculating delays from the set inputs to Q .

SN54ASC6102, SN74ASC6102 5-INPUT GATED S-R LATCHES INCLUDING SEPARATE SET

SystemCell ${ }^{\text {TM }}$ 2- $-\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 2-Input Gated Set and Reset Lines Plus Separate Set
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6102 and SN74ASC6102 are dedicated, hardwired standard-cell macros implementing 5 -input S-R latches. Setting is accomplished by taking SA and SB high or S high by itself; resetting is accomplished by taking RA and RB high. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6102 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS			OUTPUTS	
SA,SB	RA,RB	S	\mathbf{Q}	QZ
Any L	Any L	L	Q_{O}	QZ_{O}
Both H	Any L	X	H	L
Any L	Both H	X	L	H
Both X	Any L	H	H	L
Both H	Both H	X	L^{\ddagger}	L^{\ddagger}
Both X	Both H	H	L^{\ddagger}	L^{\ddagger}

\ddagger This cosfiguration is nonstable; that is, it will not persist when the set and reset imputs return to their inactive (L) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GMS10LH	Label: GMS1OLH RA,RB,SA,SB,S,Q,QZ;	3

The SN54ASC6102 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6102 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Tavie i in Section $<$.
timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
$t_{w} \quad$ Pulse duration	RA or RB low	13.2		ns
	RA or RB high	6		
	S low	15		
	S high	4.8		
	SA or SB low	19.8		
	SA or SB high	6.6		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6102		SN74ASC6102		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$V_{C C}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I C }}$ (Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\text { MIN to MAX } \end{aligned}$		355		21.3	nA
C_{i} Input capacitance	$V_{C C}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.79		0.79		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6102			SN74ASC6102			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Rn	QZ	$C_{L}=0$	1.4	2.5	5.5	1.4	2.5	5	ns
${ }^{\text {tPHL }}$		Q		0.5	1.2	2.4	0.6	1.2	2.2	
tPLH	S	Q		1	2.2	4.6	1.2	2.2	4.3	ns
tPHL		QZ		0.4	1	1.7	0.5	1	1.7	
tPLH	Sn	Q		1.1	2.5	5.3	1.2	2.5	4.8	ns
tpHL		Q2		0.5	1.3	2.4	0.6	1.3	2.2	
${ }_{\text {tPLH }}$	Rn	QZ§	$C_{L}=1 \mathrm{pF}$	3.2	6.4	14.7	3.4	6.4	13.1	ns
tPHL		Q		1	2.2	4.9	1.1	2.2	4.3	ns
${ }^{\text {tPLH }}$	S	Q		2.4	5	11.2	2.7	5	10.1	ns
tPHL		Q2		0.8	1.6	3.2	0.9	1.6	2.9	
tPLH	Sn	Q1		2.6	5.6	12.9	2.9	5.6	11.5	ns
tPHL		QZ		1	2.2	4.9	1.1	2.2	4.3	
Δ tPLH	Rn	QZ§		1.3	2.9	6.7	1.5	2.9	6	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		Q		0.5	1	2.5	0.5	1	2.1	
Δ tPLH	S	Q1		1	2.2	5.1	1.1	2.2	4.6	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		Q2		0.4	0.6	1.5	0.4	0.6	1.2	
Δ tPLH	Sn	Q4		1	2.2	5.1	1.1	2.2	4.6	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		QZ		0.5	0.9	2.5	0.5	0.9	2.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
Δ tpLH \equiv change in tpLH with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
\S The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the $\Delta \mathrm{t}$ for the Q output must be added to the Δt for the QZ output when calculating delays from the reset inputs to QZ .
IThe internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the $Q Z$ output must be added to the Δt for the Q output when calculating delays from the set inputs to Q .

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary Q and OZ Outputs
- Contains 2-Input Gated Set and Reset Lines Plus Separate Set and Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6103 and SN74ASC6103 are dedicated, hardwired standard-cell macros implementing 6-input S-R latches. Setting is accomplished by taking SA and SB high or S high by itself; resetting is accomplished by taking RA and RB high or R high by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6103 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS				OUTPUTS	
SA, SB	RA,RB	S	R	0	QZ
Any L	Any L	L	L	O_{0}	QZ_{0}
Both H	Any L	X	X	H	L
Any L	Both H	X	X	L	H
Both X	Any L	H	L	H	L
Any L	Both X	L	H	L	H
Both H	Both H	X	X	L^{\ddagger}	L^{\ddagger}
Both X	Both X	H	H	L^{\ddagger}	L^{\ddagger}
Both H	Both X	X	H	L ${ }^{\text {+ }}$	L^{\ddagger}
Both X	Both H	H	X	L^{\ddagger}	L \ddagger

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (L) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GM210LH	Label: GM210LH RA,RB, SA, SB,R,S, $\mathrm{Q}, \mathrm{QZ} ;$	3.25

The SN54ASC6103 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6103 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

```
Sue Tavie ; in Section 2.
```

timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	UNIT
$\mathrm{t}_{w} \quad$ Pulse duration	R or S low	19.8	ns
	R or S high	7.2	
	RA or SA low	15	
	RA or SA high	4.8	
	RB or SB low	19.8	
	RB or SB high	7.2	

SN54ASC6103, SN74ASC6103
6-INPUT GATED S-R LATCHES INCLUDING SEPARATE SET AND RESET

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6103		SN74ASC6103		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		387		23.2	nA
C_{i} Input capacitance	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\mathrm{pd}} \quad \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.81		0.81		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6103			SN74ASC6103			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	R	QZ	$C_{L}=0$	1	2.2	4.9	1.1	2.2	4.4	ns
tPHL		Q		0.4	1	1.8	0.4	1	1.7	ns
tPLH	Rn	QZ		1.1	2.4	5.6	1.2	2.4	5	ns
tPHL		Q		0.5	1.2	2.5	0.5	1.2	2.2	
${ }^{\text {t PLH }}$	S	Q		1	2.2	4.7	1.1	2.2	4.3	ns
tPHL		QZ		0.4	1	1.8	0.5	1	1.7	
tPLH	Sn	Q		1.1	2.4	5.5	1.2	2.4	4.9	ns
tPHL		QZ		0.5	1.2	2.6	0.6	1.2	2.3	
${ }^{\text {tPLH }}$	R	QZ§	$C_{L}=1 \mathrm{pF}$	2.7	5.5	12.4	2.9	5.5	11.1	ns
tPHL		0		0.8	1.6	3.2	0.9	1.6	2.8	
tPLH	Rn	QZ§		2.9	6.1	14.2	3.1	6.1	12.6	
tPHL		Q		1	2.2	4.9	1.1	2.2	4.3	
tPLH	S	Q1		2.7	5.5	12.4	2.9	5.5	11.1	ns
tPHL		QZ		0.8	1.6	3.2	0.9	1.6	2.8	
tPLH	Sn	Q1		2.9	6.1	14.2	3.1	6.1	12.6	ns
tPHL		QZ		1	2.2	4.9	1.1	2.2	4.3	
$\Delta \mathrm{t}$ PLH	R	QZ§		1.3	2.7	6.2	1.3	2.7	5.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL		0		0.4	0.6	1.4	0.4	0.6	1.2	
$\Delta \mathrm{t}$ PLH	Rn	QZ§		1.3	2.7	6.2	1.3	2.7	5.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$		Q		0.5	1	2.5	0.5	1	2.1	
$\Delta \mathrm{t}$ PLH	S	Q1		1.3	2.7	6.2	1.3	2.7	5.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$		QZ		0.4	0.6	1.4	0.4	0.6	1.2	
$\Delta \mathrm{t}$ PLH	Sn	Q ${ }^{\text {d }}$		1.3	2.7	6.2	1.3	2.7	5.6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$		QZ		0.5	1	2.5	0.5	1	2.1	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the Q output must be added to the Δt for the $Q Z$ output when calculating delays from the reset inputs to $Q Z$.
IThe internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the $Q Z$ output must be added to the Δt for the Q output when calculating delays from the set inputs to Q.

SystemCell ${ }^{T M}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $Q Z$ Outputs
- Contains 3-Input Gated Set and Reset Lines
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6105 and SN74ASC6105 are dedicated, hardwired standard-cell macros implementing 6 -input S-R latches. Setting is accomplished by taking SA, SB, and SC high; resetting is accomplished by taking RA, RB, and RC high. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.
The 'ASC6105 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

$\dagger_{\text {This symbol is in accordance } \text { with ANSI/IEEE Std 91-1984 and }}$ IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUTS	
SA,SB,SC	RA,RB,RC	\mathbf{O}	QZ
Any L	Any L	Q_{0}	QZ_{O}
All H	Any L	H	L
Any L	All H	L	H
All H	All H	L^{\ddagger}	L^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (L) level.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GM310LH	Label: GM310LH RA,RB,RC,SA,SB,SC,Q,QZ;	2.75

The SN54ASC6105 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6105 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Sertinn?
timing requirements over recommended ranges of supply voltage and operating free-air temperature

t_{w} Pulse duration		Any Rn or Sn low	MIN

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6105		SN74ASC6105		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$ Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		334		20	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.8		0.8		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC6105			SN74ASC6105			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	Rn	QZ	$C_{L}=0$	1	2.3	5.5	1.1	2.3	4.8	ns
${ }_{\text {tPHL }}$		Q		0.5	1.3	3	0.6	1.3	2.6	ns
tPLH	Sn	Q		1	2.3	5.5	1.1	2.3	4.8	ns
tPHL		QZ		0.5	1.3	2.9	0.6	1.3	2.6	
tPLH	Rn	QZ§	$C_{L}=1 \mathrm{pF}$	2.8	6.2	14.9	3	6.2	13.2	ns
tPHL		Q		1.1	2.6	6.4	1.2	2.6	5.6	ns
tPLH	Sn	Q 1		2.8	6.2	14.9	3	6.2	13.2	ns
tPHL		QZ		1.1	2.6	6.4	1.2	2.6	5.6	
Δ tPLH	Rn	QZ§		1.2	2.6	5.9	1.3	2.6	5.3	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$		Q		0.6	1.3	3.4	0.6	1.3	2.9	
$\Delta \mathrm{t}$ PLH	Sn	Q1		1.2	2.6	5.9	1.3	2.6	5.3	ns/pF
$\Delta \mathrm{tPHL}$		QZ		0.6	1.3	3.4	0.6	1.3	2.9	

[^129]
DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form.
The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

SN54ASC6106, SN74ASC6106
 7-INPUT GATED S-R LATCHES INCLUDING SEPARATE RESET

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 3-Input Gated Set and Reset Lines Plus Separate Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6106 and SN74ASC6106 are dedicated, hardwired standard-cell macros implementing 7 -input S-R latches. Setting is accomplished by taking SA, SB, and SC high; resetting is accomplished by taking RA, RB, and RC high or R high by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6106 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS			OUTPUTS	
SA,SB,SC	RA,RB,RC	R	0	02
Any L	Any L	L	O_{0}	QZO
All H	Any L	x	H	L
Any L	All H	\times	L	H
Any L	All X	H	L	H
All H	All H	X	L^{\ddagger}	L^{\ddagger}
All H	All X	H	L^{\ddagger}	L^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (L) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GM410LH	Label: GM410LH RA,RB,RC,SA,SB,SC,R,Q,QZ;	3

The SN54ASC6106 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6106 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
ávoviuie maxirnum ratings and recommended operating conditions
See Table 1 in Section 2.

7-INPUT GATED S-R LATCHES INCLUDING SEPARATE RESET

timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
t_{w} Pulse duration	R low	13.2		ns
	R high	4.8		
	RA, RB, or RC low	21		
	RA, RB, or RC high	7.8		
	SA, SB, or SC.low	12.6		
	SA, SB, or SC high	6.6		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6106	SN74ASC6106	UNIT
		TYP MAX	TYP MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2	2.2	V
${ }^{\text {I C }}$ (Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$	359	21.5	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13	0.13	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.85	0.85	pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC6106			SN74ASC6106			UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	R	QZ	$C_{L}=0$	0.9	1.8	4	0.9	1.8	3.6	ns
tPHL		Q		0.4	1	1.8	0.4	1	1.7	
tPLH	Rn	QZ		1	2.3	5.7	1.1	2.3	4.8	ns
tPHL		Q		0.5	1.4	3.5	0.6	1.4	3	
PLH	Sn	Q		1.1	2.5	5.9	1.2	2.5	5.2	ns
tPHL		QZ		0.5	1.3	2.9	0.6	1.3	2.5	
tPLH	R	QZ§	$C_{L}=1 \mathrm{pF}$	2.3	4.6	10.2	2.5	4.6	9.3	ns
${ }_{\text {tPHL }}$		Q		0.8	1.6	3.1	0.9	1.6	2.9	
tPLH	Rn	QZ§		2.7	5.8	13.9	2.9	5.8	11.8	ns
tPHL		Q		1.2	2.8	6.8	1.3	2.8	5.9	
tPLH	Sn	Q 1		3	6.6	16	3.3	6.6	14.1	ns
tPHL		Q2		1.1	2.6	6.3	1.2	2.6	5.5	
\triangle tPLH	R	QZ§		1	2.2	5	1.1	2.2	4.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}_{\text {PHL }}$		Q		0.4	0.6	1.4	0.4	0.6	1.2	
Δ tPLH	Rn	QZ§		1	2.1	5	1.1	2.1	4.5	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$		Q		0.6	1.4	3.6	0.6	1.4	3.1	
Δ tpLH	Sn	Q4		1.3	2.8	6.6	1.4	2.8	5.9	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$		QZ		0.6	1.3	3.5	0.6	1.3	3	

[^130]
SN54ASC6108, SN74ASC6108 8-INPUT GATED S-R LATCHES INCLUDING SEPARATE SET AND RESET

D2939, AUGUST 1986

SystemCell ${ }^{\text {m }}{ }^{2}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and QZ Outputs
- Contains 3-Input Gated Set and Reset Lines Plus Separate Set and Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6108 and SN74ASC6108 are dedicated, hardwired standard-cell macros implementing 8 -input S-R latches. Setting is accomplished by taking SA, SB, and SC high or S high by itself; resetting is accomplished by taking RA, RB, and RC high or R high by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.
The 'ASC6108 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS				OUTPUTS	
SA,SB,SC	RA,RB, RC	S	R	0	OZ
Any L	Any L	L	L	O_{0}	OZ_{0}
All H	Any L	X	X	H	L
Any L	All H	X	X	L	H
All X	Any L	H	L	H	L
Any L	All X	L	H	L	H
All H	All H	X	X	L^{\ddagger}	L^{\ddagger}
All X	All X	H	H	L^{\ddagger}	L^{\ddagger}
All H	All X	X	H	L^{\ddagger}	L^{\ddagger}
All X	All H	H	X	L^{\ddagger}	L^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (L) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GM510LH	Label: GM510LH RA,RB,RC,SA,SB,SC,R,S,Q,QZ;	3.25

The SN54ASC6108 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6108 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC6108, SN74ASC6108

 8-INPUT GATED S-R LATCHES INCLUDING SEPARATE SET AND RESETtiming requirements over recommended ranges of supply voltage and operating free-air temperature

			MIN
t_{w} Pulse duration	R or S low	13.8	
	R or S high	4.8	
	Any Rn or Sn low	21	8.4

eiectrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6108		SN74ASC6108		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2 .		V
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{A}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		395		23.7	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	0.86		0.86		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6108			SN74ASC6108			UNIT
				MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX	
${ }^{\text {PPLH }}$	R	Q2	$C_{L}=0$	1	2.1	4.5	1.1	2.1	4.1	ns
tPHL		Q		0.4	1	1.7	0.4	1	1.7	ns
${ }^{\text {tPLH }}$	Rn	Q2		1.1	2.5	6	1.2	2.5	5.3	ns
${ }^{\text {tPHL }}$		Q		0.5	1.4	3.3	0.6	1.4	2.9	
tPLH	S	Q		1	2.1	4.5	1.1	2.1	4.1	ns
${ }^{\text {t }}$ PHL		Q2		0.4	1	1.7	0.4	1	1.7	
tPLH	Sn	Q		1.1	2.5	6	1.2	2.5	5.3	ns
tPHL		Q2		0.5	1.4	3.3	0.6	1.4	2.9	
${ }^{\text {tPLH }}$	R	QZ ${ }^{\text {§ }}$	$C_{L}=1 \mathrm{pF}$	2.6	5.2	11.6	2.8	5.2	10.6	s
tPHL		Q		0.8	1.6	3.1	0.9	1.6	2.9	ns
tplh	Rn	QZ ${ }^{\text {§ }}$		3	6.4	15.3	3.2	6.4	13.6	ns
tPHL		Q		1.2	2.8	6.8	1.3	2.8	5.9	
${ }^{\text {tPLH }}$	S	Q ${ }^{\text {¢ }}$		2.6	5.2	11.6	2.8	5.2	10.6	ns
tPHL		Q2		0.8	1.6	3.1	0.9	1.6	2.9	
${ }^{\text {tPLH }}$	Sn	Q ${ }^{1}$		3	6.4	15.3	3.2	6.4	13.6	ns
${ }_{\text {t PHL }}$		QZ		1.2	2.8	6.8	1.3	2.8	5.9	
Δ tPLH $^{\text {d }}$	R	QZ§		1.2	2.5	5.8	1.3	2.5	5.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t} \mathrm{PHL}$		Q		0.4	0.6	1.4	0.4	0.6	1.2	
Δ tPLH	Rn	QZ ${ }^{\text {§ }}$		1.2	2.5	5.8	1.3	2.5	5.2	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL		Q		0.6	1.4	3.6	0.6	1.4	3.1	
$\Delta t_{\text {PLH }}$	S	Q ${ }^{1}$		1.2	2.5	5.8	1.3	2.5	5.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL		Q2		0.4	0.6	1.4	0.4	0.6	1.2	
Δ tPLH	Sn	Q 4		1.2	2.5	5.8	1.3	2.5	5.2	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$		QZ		0.6	1.4	3.6	0.6	1.4	3.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
Δ tpLH \equiv change in tpLH with load capacitance
Δ tPHL \equiv change in tPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the Q output must be added to the Δt for the QZ output when calculating delays from the reset inputs to QZ .
I The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the $Q Z$ output must be added to the Δt for the Q output when calculating delays from the set inputs to Q.

DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

These standard cell latch elements can be asynchronously set or reset. They can be connected through an inverter to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the set or reset inputs from another system signal in conjunction with the power-up clear can be achieved with an OR gate.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary Q and QZ Outputs
- Contains 2-Input Gated Set and Reset Lines
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6110 and SN74ASC6110 are dedicated, hardwired standard-cell macros implementing 4 -input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latches. Setting is accomplished by taking SAZ and SBZ low; resetting is accomplished by taking RAZ and RBZ low. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.
The 'ASC6110 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUTS	
SAZ,SBZ	RAZ,RBZ	\mathbf{Q}	$\mathbf{Q Z}$
Any H	Any H	Q_{0}	QZ_{0}
Both L	Any H	H	L
Any H	Both L	L	H
Both L	Both L	H^{\ddagger}	H^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (H) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GSO1OLH	Label: GSO1OLH RAZ,RBZ,SAZ,SBZ,Q,OZ;	2.75

The SN54ASC6110 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6110 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature

Any RnZ or SnZ low		MIN	MAX
t_{w} Pulse duration	UnIT		
	Any RnZ or SnZ high	11.4	

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6110		SN74ASC6110		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		323		19.4	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.72		0.72		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM(INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6110			SN74ASC6110			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	RnZ	OZ	$C_{L}=0$	0.9	1.5	3.1	0.9	1.5	2.8	ns
${ }_{\text {tPHL }}$		Q		1.2	2.3	5.2	1.3	2.3	4.7	
tPLH	SnZ	0		0.9	1.5	3.2	0.9	1.5	2.9	ns
tPHL		OZ		1.2	2.3	5.3	1.3	2.3	4.7	
tPLH	RnZ	QZ	$C_{L}=1 \mathrm{pF}$	1.8	3.5	7.7	1.9	3.5	7	ns
tPHL		Q^{\S}		2.9	6.2	14.5	3.1	6.2	13	
tPLH	SnZ	0		1.8	3.5	7.7	1.9	3.5	7	ns
tPHL		QZ ${ }^{\text {a }}$		2.9	6.2	14.5	3.1	6.2	13	
$\Delta \mathrm{tPLH}$	RnZ	QZ		0.9	2	4.6	1	2	4.2	
Δ tpHL		$\mathrm{Q}^{\text {§ }}$		0.8	1.9	4.7	0.9	1.9	4.1	ns/pF
$\Delta t_{\text {PLH }}$	SnZ	0		0.9	2	4.6	1	2	4.2	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$		QZ		0.8	1.9	4.7	0.9	1.9	4.1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{tPHL}^{\text {w }}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
${ }^{\S}$ The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the $Q Z$ output must be added to the $\Delta \mathrm{t}$ for the Q output when calculating delays from the reset inputs to Q .
\mathbb{T} The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the Q output must be added to the Δt for the $Q Z$ output when calculating delays from the set inputs to OZ .

DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

SystemCell ${ }^{\text {M }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 2-Input Gated Set and Reset Lines Plus Separate Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6111 and SN74ASC6111 are dedicated, hardwired standard-cell macros implementing 5 -input $\overline{\mathrm{S}}$ - $\overline{\mathrm{R}}$ latches. Setting is accomplished by taking SAZ and SBZ low; resetting is accomplished by taking RAZ and RBZ low or RZ low by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.
The 'ASC6111 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS			OUTPUTS	
SAZ,SBZ	RAZ,RBZ	RZ	\mathbf{Q}	QZ
Any H	Any H	H	O_{O}	OZ_{O}
Both L	Any H	H	H	L
Any H	Both L	X	L	H
Any H	Both X	L	L	H
Both L	Both L	X	H^{\ddagger}	H^{\ddagger}
Both L	Both X	L	H^{\ddagger}	H^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (L) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GS110LH	Label: GS110LH RAZ,RBZ,SAZ,SBZ,RZ, $\mathrm{Q}, \mathrm{OZ;}$	3

The SN54ASC6111 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6111 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

SN54ASC6111, SN74ASC6111

5-INPUT GATED $\overline{\mathbf{S}} \cdot \overline{\mathrm{R}}$ LATCHES INCLUDING SEPARATE RESET

timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
t_{w} Pulse duration	RZ low	7.2		ns
	RZ high	6.6		
	Any RnZ low	13.8		
	Any RnZ high	8.4		
	Any SnZ low	13.8		
	Any SnZ high	6		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6111		SN74ASC6111		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$ Supply current	$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \quad \mathrm{~V}_{I}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\text { MIN to } \mathrm{MAX} \end{aligned}$		355		21.3	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }} \quad \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.84		0.84		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6111			SN74ASC6111			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	RZ	Q2	$C_{L}=0$	0.8	1.1	1.9	0.8	1.1	1.8	ns
tPHL		Q		1.1	1.9	4	1.2	1.9	3.6	ns
${ }^{\text {tPLH }}$	RnZ	Q2		0.9	1.7	3.9	1	1.7	3.5	ns
${ }_{\text {tPHL }}$		Q		1.2	2.5	5.9	1.3	2.5	5.3	
${ }_{\text {tPLH }}$	SnZ	Q		0.9	1.6	3.5	1	1.6	3.2	ns
tPHL		QZ		1.4	2.7	6.4	1.4	2.7	5.7	
tPLH	RZ	Q2	$C_{L}=1 \mathrm{pF}$	1.3	2.1	4.2	1.3	2.1	3.9	ns
tPHL		$\mathrm{Q}^{\text {§ }}$		2.3	4.4	10.1	2.4	4.4	9	
tPLH	RnZ	Q2		1.9	3.7	8.3	2	3.7	7.6	ns
${ }^{\text {tPHL }}$		$\mathrm{Q}^{\text {§ }}$		2.9	6	14.2	3.1	6	12.7	
tPLH	SnZ	0		1.9	3.6	8	2	3.6	7.3	ns
tPHL		QZ ${ }^{\text {d }}$		3.3	6.8	16.3	3.5	6.8	14.5	
$\Delta \mathrm{tPLH}$	RZ	Q2		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		Q§		0.7	1.5	3.8	0.7	1.5	3.4	
Δ tPLH	RnZ	QZ		0.9	2	4.5	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL		$\mathrm{Q}^{\text {§ }}$		0.7	1.5	3.8	0.7	1.5	3.4	
$\Delta \mathrm{t}$ PLH	Sn 2	Q		0.9	2	4.5	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
Δ tpHL		QZ §		0.9	2.1	5.3	1	2.1	4.7	

[^131]
DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

These standard cell latch elements can be asynchronously reset. They can be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the reset input from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and QZ Outputs
- Contains 2-Input Gated Set and Reset Lines Plus Separate Set
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6112 and SN74ASC6112 are dedicated, hardwired standard-cell macros implementing 5 -input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latches. Setting is accomplished by taking SAZ and SBZ low or SZ low by itself; resetting is accomplished by taking RAZ and RBZ low. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6112 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GSS10LH	Label: GSS10LH RAZ,RBZ,SAZ,SBZ,SZ,O,OZ;	3

The SN54ASC6112 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6112 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

```
Sap Tahla 1 in Sartinn ?
```

timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
	RAZ or RBZ low	13.2		
	RAZ or RBZ high	6		
Pulse duration	SZ low	7.8		
t_{w} Pulse duration	SZ high	6.6		
	SAZ or SBZ low	13.8		
	SAZ or SBZ high	8.4		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6112		SN74ASC6112		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I C }}$ (Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0 \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		355		21.3	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & t_{r}=t_{f}=3 \mathrm{~ns} \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.84		0.84		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6112			SN74ASC6112			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	RnZ	QZ	$C_{L}=0$	0.9	1.6	3.5	1	1.6	3.2	
tPHL		Q		1.4	2.7	6.4	1.4	2.7	5.7	ns
${ }^{\text {tPLH }}$	SZ	Q		0.8	1.1	1.9	0.8	1.1	1.8	ns
${ }_{\text {tPHL }}$		QZ		1.1	1.9	4	1.2	1.9	3.6	
tPLH	SnZ	Q		0.9	1.7	3.9	1	1.7	3.5	ns
${ }^{\text {tPHL }}$		OZ		1.2	2.5	5.9	1.3	2.5	5.3	
${ }^{\text {tPLH }}$	RnZ	OZ	$C_{L}=1 \mathrm{pF}$	1.9	3.6	8	2	3.6	7.3	ns
tPHL		$\mathrm{Q}^{\text {§ }}$		3.3	6.8	16.3	3.5	6.8	14.5	
tPLH	SZ	Q		1.3	2.1	4.2	1.3	2.1	3.9	ns
tPHL		Q2I		2.3	4.4	10.1	2.4	4.4	9	
tPLH	SnZ	0		1.9	3.7	8.3	2	3.7	7.6	ns
tPHL		Qz ${ }^{\text {d }}$		2.9	6	14.2	3.1	6	12.7	
Δ tPLH	RnZ	QZ		0.9	2	4.5	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		$\mathrm{Q}^{\text {§ }}$		0.9	2.1	5.3	1	2.1	4.7	
Δ tPLH	SZ	Q		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		Q2 1		0.7	1.5	3.8	0.7	1.5	3.4	
Δ tPLH	SnZ	Q		0.9	2	4.5	1	2	4.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		QZ ${ }^{\text {d }}$		0.7	1.5	3.8	0.7	1.5	3.4	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}}=$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\S The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the $Q Z$ output must be added to the Δt for the Q output when calculating delays from the reset inputs to Q.
IThe internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the Q output must be added to the Δt for the $Q Z$ output when calculating delays from the set inputs to $Q Z$.

SN54ASC6113, SN74ASC6113 6-INPUT GATED $\bar{s} \cdot \bar{R}$ Latches including SEPARATE SET AND RESET

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 2-Input Gated Set and Reset Lines Plus Separate Set and Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6113 and SN74ASC6113 are dedicated, hardwired standard-cell macros implementing 6 -input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latches. Setting is accomplished by taking SAZ and SBZ low or SZ low by itself; resetting is accomplished by taking RAZ and RBZ low or RZ low by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6113 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS				OUTPUTS	
SAZ,SBZ	RAZ,RBZ	SZ	RZ	\mathbf{Q}	QZ
Any H	Any H	H	H	Q_{O}	QZ_{O}
Both L	Any H	X	H	H	L
Any H	Both L	H	X	L	H
Both X	Any H	L	H	H	L
Any H	Both X	H	L	L	H
Both L	Both L	X	X	H^{\ddagger}	H^{\ddagger}
Both X	Both X	L	L	H^{\ddagger}	H^{\ddagger}
Both L	Both X	X	L	H^{\ddagger}	H^{\ddagger}
Both X	Both L	L	X	H^{\ddagger}	H^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (H) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GS 210 LH	Label: GS210LH RAZ, RBZ, SAZ, SBZ, RZ, SZ, Q, QZ;	3

The SN54ASC6113 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6113 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
	RZ or SZ low	7.2		
	RZ or SZ high	6.6		
Pulse duration	RAZ or RBZ low	12.6		
t_{w} Pulse duration	RAZ or RBZ high	7.8		ns
	SAZ or SBZ low	13.8		
	SAZ or SBZ high	7.8		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6113		SN74ASC6113		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		359		21.5	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\mathrm{pd}} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance } \end{aligned}$	$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.84		0.84		pF

SN54ASC6113, SN74ASC6113 6-INPUT GATED $\bar{S} \cdot \bar{R}$ LATCHES INCLUDING SEPARATE SET AND RESET
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6113			SN74ASC6113			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	RZ	QZ	$C_{L}=0$	0.8	1.1	1.9	0.8	1.1	1.8	ns
tPHL		Q		1.2	1.9	4.2	1.2	1.9	3.8	ns
${ }^{\text {tPLH }}$	RnZ	Q2		0.9	1.7	3.6	0.9	1.7	3.3	ns
tPHL		Q		1.3	2.5	6	1.3	2.5	5.3	
tpLH	SZ	Q		0.8	1.1	1.9	0.8	1.1	1.8	ns
${ }^{\text {tPHL }}$		QZ		1.2	1.9	4.2	1.2	1.9	3.8	
tPLH	Sn Z	Q		0.9	1.7	3.9	1	1.7	3.5	ns
tPHL		QZ		1.3	2.5	6.2	1.4	2.5	5.5	
tPLH	RZ	OZ	$C_{L}=1 \mathrm{pF}$	1.3	2.1	4.1	1.3	2.1	3.8	ns
tPHL		Q^{\S}		2.4	4.7	10.9	2.5	4.7	9.7	
tPLH	RnZ	QZ		1.8	3.5	7.8	1.9	3.5	7.1	ns
tPHL		$\mathrm{Q}^{\text {§ }}$		2.9	6.1	14.6	3.1	6.1	13	
tPLH	SZ	Q		1.3	2.1	4.1	1.3	2.1	3.8	ns
tPHL		Qz 1		2.4	4.7	10.9	2.5	4.7	9.7	
tPLH	SnZ	Q		1.8	3.5	7.8	1.9	3.5	7.1	ns
tPHL		QZ 1		2.9	6.1	14.6	3.1	6.1	13	
Δ tPLH	RZ	QZ		0.4	1	2.3	0.5	1	2.1	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$		Q§		0.7	1.8	4.4	0.8	1.8	3.8	
$\Delta \mathrm{tPLH}$	RnZ	QZ		0.8	1.8	4.3	0.9	1.8	3.8	ns/pF
$\Delta \mathrm{t}$ PHL		Q§		0.7	1.8	4.4	0.8	1.8	3.8	
Δ tPLH	SZ	Q		0.4	1	2.3	0.5	1	2.1	ns/pF
$\Delta \mathrm{tPHL}$		Q2 ${ }^{\text {d }}$		0.7	1.8	4.4	0.8	1.8	3.8	
$\Delta \mathrm{tPLH}$	SnZ	Q		0.8	1.8	4.3	0.9	1.8	3.8	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t}$ PHL		QZ 1		0.7	1.8	4.4	0.8	1.8	3.8	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in TPHL with load capacitance

\S The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the $Q Z$ output must be added to the $\Delta \mathrm{t}$ for the Q output when calculating delays from the reset inputs to Q .
I The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the Q output must be added to the Δt for the $Q Z$ output when calculating delays from the set inputs to $Q Z$.

DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

These standard cell latch elements can be asynchronously set or reset. They can be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the set or reset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }}$ 2- $\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 3-Input Gated Set and Reset Lines
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6115 and SN74ASC6115 are dedicated, hardwired standard-cell macros implementing 6-input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latches. Setting is accomplished by taking SAZ, SBZ, and SCZ low; resetting is accomplished by taking RAZ, RBZ, and RCZ low. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6115 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUTS	
SAZ,SBZ,SCZ	RAZ,RBZ,RCZ	\mathbf{Q}	OZ
Any H	Any H	Q_{0}	QZ $_{\mathrm{O}}$
Both L	Any H	H	L
Any H	Both L	L	H
Both L	Both L	H^{\ddagger}	H^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (H) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL. AREA TO NA210LH
GS310LH	Label: GS310LH RAZ,RBZ,RCZ,SAZ,SBZ,SCZ, Q,OZ;	2.75

The SN54ASC6115 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6115 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
Soo Tahle 1 in Sentisn 2.
timing requirements over recommended ranges of operating free-air temperature and supply voltage

			MIN
t_{w} Pulse duration	Any RnZ or SnZ low	UNIT	
	Any RnZ or SnZ high	17.4	ns

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6115		SN74ASC6115		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{\text {I CC }}$ Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		332		19.9	nA
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} V_{C C}=5 \mathrm{~V} & t_{r}=t_{f}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	0.75		0.75		pF

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST	SN54ASC6115			SN74ASC6115			UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {P PLH }}$	RnZ	QZ	$C_{L}=0$	1	2	4.9	1.1	2	4.4	ns
${ }_{\text {tPHL }}$		Q		1.4	2.9	7.3	1.4	2.9	6.5	
tPLH	SnZ	Q		1	1.9	4.9	1.1	1.9	4.4	ns
${ }^{\text {tPHL }}$		QZ		1.3	2.8	7.3	1.4	2.8	6.5	
${ }^{\text {PPLH }}$	RnZ	QZ	$C_{L}=1 \mathrm{pF}$	2.4	4.8	11.5	2.5	4.8	10.4	ns
${ }^{\text {tPHL }}$		$\mathrm{Q}^{\text {§ }}$		3.6	7.8	19.2	3.9	7.8	17.2	
${ }^{\text {tPLH }}$	SnZ	Q		2.4	4.8	11.5	2.5	4.8	10.4	ns
${ }^{\text {t PHL }}$		QZ 1		3.6	7.8	19.2	3.9	7.8	17.2	
Δ tPLH	RnZ	QZ		1.3	2.8	6.6	1.4	2.8	6	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		$\mathrm{Q}^{\text {§ }}$		0.9	2.1	5.3	1	2.1	4.7	
$\Delta \mathrm{tPLH}$	SnZ	Q		1.3	2.9	6.6	1.4	2.9	6	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$		QZ 1		0.9	2.1	5.3	1	2.1	4.7	

[^132]
SN54ASC6116, SN74ASC6116 7.INPUT GATED $\bar{S} \cdot \bar{R}$ LATCHES INCLUDING SEPARATE RESET

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 3-Input Gated Set and Reset Lines Plus Separate Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6116 and SN74ASC6116 are dedicated, hardwired standard-cell macros implementing 7 -input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latches. Setting is accomplished by taking SAZ, SBZ, and SCZ low; resetting is accomplished by taking RAZ, RBZ, and RCZ low or RZ low by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.

The 'ASC6116 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

FUNCTION TABLE

INPUTS			OUTPUTS	
SAZ, SBZ, SCZ	RAZ, RBZ,RCZ	RZ	Q	QZ
Any H	Any H	H	Q_{0}	QZ $_{0}$
All L	Any H	H	H	L
Any H	All L	X	L	H
Any H	All X	L	L	H
All L	All L	X	H^{\ddagger}	H^{\ddagger}
All L	All X	L	H^{\ddagger}	H^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (H) levels.

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GS410LH	Label: GS410LH RAZ, RBZ, RCZ, SAZ, SBZ, $S C Z, R Z, Q, Q Z ;$	3.25

The SN54ASC6116 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6116 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature

		MIN	MAX	UNIT
${ }^{\text {w }}$ w Pulse duration	RZ low	7.2		ns
	RZ high	6.6		
	Any RnZ low	22.2		
	Any ${ }^{\text {RnZ }}$ high	9		
	Any SnZ low	21		
	Any SnZ high	6.6		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6116		SN74ASC6116		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2		2.2		V
${ }^{1} \mathrm{CC}$ Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & T_{A}=\text { MIN to } \mathrm{MAX} \end{aligned}$		384		23.1	nA
$\mathrm{C}_{\mathrm{i}} \quad$ Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }}$Equivalent power dissipation capacitance	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.85		0.85		pF

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER †	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6116			SN74ASC6116			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	RZ	QZ	$C_{L}=0$	0.8	1.1	1.8	0.8	1.1	1.7	
- tPHL		Q		1.1	1.7	3.7	1.1	1.7	3.3	
tPLH	RnZ	Q2		1.2	2.4	6	1.2	2.4	5.4	ns
tPHL		Q		1.5	3.1	7.9	1.5	3.1	7	
tPLH	SnZ	Q		1.1	2.1	5.2	1.1	2.1	4.7	ns
tPHL		OZ		1.5	3.2	8.3	1.6	3.2	7.3	
${ }^{\text {tPLH }}$	RZ	QZ	$C_{L}=1 \mathrm{pF}$	1.3	2	4	1.3	2	3.8	ns
tPHL		$\mathrm{Q}^{\text {§ }}$		2.3	4.2	9.7	2.4	4.2	8.8	
${ }^{\text {tPLH }}$	RnZ	Q2		2.6	5.4	12.9	2.8	5.4	11.6	ns
tPHL		$\mathrm{Q}^{\text {§ }}$		3.6	7.6	18.6	3.9	7.6	16.6	
tPLH	SnZ	Q		2.5	5.1	12.1	2.7	5.1	10.9	ns
tPHL		QZ ${ }^{1}$		3.9	8.5	21	4.3	8.5	18.7	
Δ tPLH	RZ	QZ		0.4	1	2.3	0.5	1	2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		$\mathrm{Q}^{\text {§ }}$		0.6	1.5	3.8	0.7	1.5	3.4	
Δ tPLH	RnZ	QZ		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		Q^{\S}		0.6	1.5	3.8	0.7	1.5	3.4	
$\Delta \mathrm{tPLH}$	SnZ	Q		1.4	3	6.9	1.5	3	6.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL		QZ 1		1	2.3	5.9	1.1	2.3	5.1	

[^133]
SystemCell ${ }^{\text {m }} 2-\mu \mathrm{m}$ HARDWIRED MACRO CELL

- Provides Complementary \mathbf{Q} and $\mathbf{Q Z}$ Outputs
- Contains 3-Input Gated Set and Reset Lines Plus Separate Set and Reset
- Implements Summing/Decoding Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6118 and SN74ASC6118 are dedicated, hardwired standard-cell macros implementing 8 -input $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latches. Setting is accomplished by taking SAZ, SBZ, and SCZ low or SZ low by itself; resetting is accomplished by taking RAZ, RBZ, and RCZ low or RZ low by itself. A full range of gated latches is offered in the 'ASC6100 and 'ASC6110 series of standard cells to provide the custom IC designer a latch element to embed in ASICs in its most efficient form. These gated latches are designed to simplify implementing summing, decoding, and other decision-making registers.
The 'ASC6118 gated latch is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
GS510LH	Label: GS510LH RAZ,RBZ,RCZ,SAZ,SBZ,SCZ,RZ,SZ, Q, QZ;	3.25

The SN54ASC6118 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6118 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS				OUTPUTS	
SAZ, SBZ,SCZ	RAZ,RBZ,RCZ	SZ	RZ	Q	QZ
Any H	Any H	H	H	Q_{0}	QZ $_{0}$
All L	Any H	X	H	H	L
Any H	All L	H	X	L	H
All X	Any H	I	H	H	I
Any H	All X	H	L	L	H
All L	All L	X	X	H^{\ddagger}	H^{\ddagger}
All X	All X	L	L	H^{\ddagger}	H^{\ddagger}
All L	All X	X	L	H^{\ddagger}	H^{\ddagger}
All X	All L	L	X	H^{\ddagger}	H^{\ddagger}

\ddagger This configuration is nonstable; that is, it will not persist when the set and reset inputs return to their inactive (H) levels.

Texas
INSTRUMENTS
timing requirements over recommended ranges of operating free-air temperature and supply voltage

		MIN	MAX	UNIT
$t_{w} \quad$ Pulse duration	RZ or SZ low	7.8		ns
	RZ or SZ high	6		
	Any RnZ or SnZ low	22.2		
	Any RnZ or SnZ high	9		

electrical characteristics

PARAMETER	TEST CONDITIONS	SN54ASC6118		SN74ASC6118		UNIT
		TYP	MAX	TYP	MAX	
V_{T} Input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		395		23.7	nA
$\mathrm{C}_{\mathbf{i}} \quad$ Input capacitance	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.13		0.13		pF
$\mathrm{C}_{\text {pd }} \quad \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	0.89		0.89		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	SN54ASC6118			SN74ASC6118			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	RZ	QZ	$C_{L}=0$	0.8	1.1	1.9	0.8	1.1	1.8	
tPHL		Q		1.1	1.9	4.1	1.2	1.9	3.7	ns
tPLH	RnZ	QZ		1.2	2.4	6.1	1.2	2.4	5.5	ns
tPHL		Q		1.5	3.2	8.4	1.6	3.2	7.5	
tPLH	SZ	Q		0.8	1.1	1.9	0.8	1.1	1.8	ns
tPHL		QZ		1.2	1.9	4.2	1.2	1.9	3.7	
${ }_{\text {t PLH }}$	SnZ	Q		1.2	2.5	6.3	1.3	2.5	5.7	ns
tPHL		OZ		1.6	3.3	8.3	1.7	3.3	7.7	
tPLH	RZ	Qz	$C_{L}=1 \mathrm{pF}$	1.3	2.1	4.1	1.3	2.1	3.8	
${ }_{\text {tPHL }}$		Q ${ }^{\text {¢ }}$		2.4	4.6	10.6	2.5	4.6	9.4	
tPLH	RnZ	OZ		2.6	5.4	12.9	2.8	5.4	11.7	ns
tPHL		$\mathrm{Q}^{\text {§ }}$		3.7	7.9	19.3	4	7.9	17.3	
tPLH	SZ	0		1.3	2.1	4.1	1.3	2.1	3.8	ns
tPHL		Q2 1		2.4	4.6	10.6	2.5	4.6	9.5	
${ }_{\text {tPLH }}$	SnZ	0		2.7	5.5	13.2	2.8	5.5	11.9	ns
tPHL		Qz ${ }^{\text {¢ }}$		3.7	8	19.7	4	8	17.5	
Δ tpLH	RZ	QZ		0.4	1	2.3	0.5	1	2	ns/pF
$\Delta \mathrm{t}_{\mathrm{PHL}}$		$\mathrm{Q}^{\text {§ }}$		0.7	1.7	4.2	0.8	1.7	3.7	
Δ tPLH	RnZ	QZ		1.4	3	6.9	1.5	3	6.2	ns/pF
$\Delta \mathrm{t}$ PHL		Q ${ }^{\text {® }}$		0.7	1.7	4.2	0.8	1.7	3.7	
Δ tPLH	SZ	Q		0.4	1	2.3	0.5	1	2	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$		Qz1		0.7	1.7	4.2	0.8	1.7	3.7	
Δ tPLH	Snz	0		1.4	3	6.9	1.5	3	6.2	ns/pF
Δ tPHL $^{\text {L }}$		Q2¢		0.7	1.7	4.2	0.8	1.7	3.7	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tpLH \equiv change in tpLH with load capacitance
$\Delta \mathrm{t} H \mathrm{HL} \equiv$ change in tpHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\S}$ The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the $Q Z$ output must be added to the $\Delta \mathrm{t}$ for the Q output when calculating delays from the reset inputs to Q .
IThe internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the Q output must be added to the $\Delta \mathrm{t}$ for the OZ output when calculating delays from the set inputs to QZ .

DESIGN CONSIDERATIONS

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

These standard cell latch elements can be asynchronously set or reset. They can be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the set or reset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- Symmetrical Delay Buffers

$$
(t P L H \approx t P H L)
$$

- Choice of Two Performance Levels of Delay Lines
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation

$$
Y=A
$$

logic symbol

description

The SN54ASC6120 and SN74ASC6120 are two internal delay buffer standard cells that provide the ASIC designer with symmetrical delay elements that can be used to implement signal path delay-line management techniques needed to ensure timing integrity. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ C_{L}=1 \mathrm{pF} \end{gathered}$	$\begin{aligned} & \text { REL ATIVE } \\ & \text { CELL. AREA } \\ & \text { TO PA210LH } \end{aligned}$
BU120LH	Label: BU1n0LH A,Y;	1.7 ns	1.5
BU130LH		1.7 ns	?.75

The SN54ASC6120 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6120 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS	BU120LH	BU130LH	UNIT	
		? \% \#nns	ッソ niñ			
V_{T} Input threshold voltage			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	2.2	V
${ }^{\text {I C }}$ C Supply current	SN54ASC6120	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$	187	214	nA	
	SN74ASC6120		11.2	12.9		
C_{i} Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.13	0.13	pF	
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \\ \hline \end{array}$	1.29	1.73	pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

BU120LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6120			SN74ASC6120			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.4	0.9	2.3	0.5	0.9	2.1	ns
tPHL				0.8	1.2	2.8	0.9	1.2	2.6	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.7	1.6	3.4	0.8	1.6	3.1	ns
tPHL				1	1.7	3.6	1.1	1.7	3.3	
Δ tPLH	A	Y	"	0.2	0.5	1.2	0.2	0.5	1.1	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{tPHL}$				0.1	0.3	0.8	0.1	0.3	0.7	

BU130LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	SN54ASC6120			SN74ASC6120			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	1.3	2.6	0.6	1.3	2.4	ns
tPHL				0.9	1.5	3.2	0.9	1.5	2.9	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.6	3.4	0.8	1.6	3.1	ns
tPHL				1	1.8	3.8	1.1	1.8	3.5	
$\Delta \mathrm{t}$ PLH	A	Y		0.1	0.3	0.8	0.2	0.3	0.8	ns/pF
$\triangle \mathrm{t} \mathrm{PHL}$				0.1	0.3	0.7	0.1	0.3	0.6	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
$\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Refer to Section 7.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- Choice of Two Performance Levels
- Active Low Enable
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over Vcc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A$

logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
GZ	A	
L	H	H
L	L	L
H	X	Z

description

The SN54ASC6121 and SN74ASC6121 are noninverting 3-state internal buffer standard cells that interface internal cells with internal buses. The standard-cell library contains two physical implementations providing the custom IC designer a choice from two performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ C_{L}=1 \mathrm{pF} \end{gathered}$	RELATIVE CELL AREA TO NA210LH
BU221LH	Label: BU2n1LH A,GZ, Y;	2.3 ns	2.75
BU261LH		2 ns	4.75

The SN54ASC6121 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6121 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS	BU221LH	BU261LH	UNIT	
		TYP MAX	TYP MAX			
V_{T} Input threshold voltage			$V_{C C}=5 \mathrm{~V}, \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	2.2	2.2	V
${ }^{1} \mathrm{CC}$ Supply current	SN54ASC6121	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$	328	562	nA	
	SN74ASC6121		19.7	33.7		
C_{i} Input capacitance	A	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.14	0.28	pF	
	GZ		0.32	0.28		
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$		$\begin{array}{ll} V_{C C}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ T_{A}=25^{\circ} \mathrm{C} & \end{array}$	1.62	3.29	pF	

SN54ASC6121, SN74ASC6121
NONINVERTING 3-STATE BUFFERS
WITH ACTIVE-LOW ENABLE
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
BU221LH

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6121			SN74ASC6121			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	1.5	3.6	0.7	1.5	3.2	ns
tPHL				1	1.6	3.4	1	1.6	3.1	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.5	5.8	1.2	2.5	5.3	ns
tPHL				1.2	2.1	4.6	1.2	2.1	4.2	
tPZH	GZ	Y	$\begin{gathered} C_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	0.7	1.4	2.9	0.7	1.4	2.7	ns
tPZL	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$	1	1.6	3.4	1	1.6	3.1	ns
tPHZ	GZ	Y	$\begin{gathered} C_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		10			10		ns
tPLZ	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$		5.3			5.3		ns
Δ tPLH	A	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.2	0.5	1.3	0.2	0.5	1.1	
Δ tPZH	GZ	Y		0.5	0.9	2.2	0.5	0.9	2	$\mathrm{ns} / \mathrm{pF}$
$\Delta t^{\text {P }}$ LL				0.2	0.5	1.3	0.2	0.5	1.2	

BU261LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6121			SN74ASC6121			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A	Y	$C_{L}=0$	0.7	1.5	3.3	0.8	1.5	2.9	ns
tPHL				1.2	2	4.1	1.2	2	3.8	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.7	3.8	0.9	1.7	3.4	ns
tPHL				1.3	2.2	4.6	1.3	2.2	4.2	
tPZH	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to GND } \end{gathered}$	1.2	2.2	4.8	1.2	2.2	4.3	ns
tPZL	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	1.1	2	4.4	1.1	2	4	ns
tPHZ	GZ	Y	$\begin{gathered} C_{L}=1 \mathrm{pF}, \\ R_{L}=40 \mathrm{k} \Omega \text { to GND } \end{gathered}$		16			16		ns
${ }^{\text {tPLZ }}$	GZ	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		7.4			7.4		ns
Δ tPLH	A	Y		0.1	0.2	0.5	0.1	0.2	0.5	$\mathrm{ns} / \mathrm{pF}$
$\triangle \mathrm{t}$ PHL				0.1	0.2	0.6	0.1	0.2	0.5	
$\Delta \mathrm{tPZH}^{\text {P }}$	GZ	Y		0.1	0.2	0.5	0.1	0.2	0.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta t_{\text {PZL }}$				0.1	0.2	0.7	0.1	0.2	0.6	

[^134]Refer to Section 7.

SystemCellim ${ }^{\text {2- }}$ m Internal standard cell

- Choice of Two Performance Levels
- Active-High Enable
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A$
logic symbol

FUNCTION TABLE

INPUTS		OUTPUT
\mathbf{y}	A	
H	H	H
H	L	L
L	X	Z

description

The SN54ASC6122 and SN74ASC6122 are noninverting 3-state internal buffer standard cells that interface internal cells with internal buses. The standard-cell library contains two physical implementations providing the custom IC designer a choice from two performance levels for optimizing designs. Each option is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	FEATURES	
		$\begin{gathered} \text { TYPICAL } \\ \text { DELAY } \\ \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF} \end{gathered}$	RELATIVE CELL AREA TO NA210LH
BU222LH	Label: BU2n2LH A,G,Y;	2.3 ns	2.75
BU262LH		2 ns	4.75

The SN54ASC6122 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6122 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER		TEST CONDITIONS	BU222LH		BU262LH		UNIT	
		TYP	MAX	TYP	MAX			
\dddot{v}_{1} inpui ïlncoinili voliay				2.2		2.2		'
ICC Supply current	SN54ASC6122	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$		328		562	nA	
	SN74ASC6122			19.7		33.7		
Input capacitance		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.14		0.28		pF	
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent pow } \\ & \text { dissipation cap }\end{aligned}$		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	1.62		3.3		pF	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

BU222LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6122			SN74ASC6122			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP \ddagger	MAX	
tPLH	A	Y	$C_{L}=0$	0.6	1.6	3.6	0.7	1.6	3.3	ns
tPHL				1	1.5	3.3	1	1.5	3	
tPLH	A	Y	$C_{L}=1 \mathrm{pF}$	1.1	2.6	5.9	1.2	2.6	5.3	ns
$\mathrm{t}_{\mathrm{PHL}}$				1.2	2	4.5	1.2	2	4.1	
${ }^{\text {tPZH }}$	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	0.8	1.8	4.2	0.9	1.8	3.8	ns
tPZL	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF}, \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$	0.4	1.1	2.5	0.4	1.1	2.3	ns
tPHZ	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		11			11		ns
${ }^{\text {tPL }}$	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{\mathrm{L}}=20 \mathrm{k} \Omega \text { to } V_{\mathrm{CC}} \end{gathered}$		4.5			4.5		ns
$\Delta \mathrm{tPLH}^{\text {P }}$	A	Y		0.5	1	2.3	0.5	1	2.1	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{t} \mathrm{PHL}$				0.2	0.5	1.3	0.2	0.5	1.1	
$\Delta \mathrm{tPZH}^{\text {P }}$	G	Y		0.4	1.1	2.4	0.5	1.1	2.2	$\mathrm{ns} / \mathrm{pF}$
- $\Delta t^{\text {P }}$ PL				0.4	0.6	1.3	0.4	0.6	1.1	

BU262LH

PARAMETER ${ }^{\boldsymbol{\dagger}}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6122			SN74ASC6122			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=0$	0.7	1.5	3.3	0.8	1.5	3	ns
tPHL				1.2	2	4.1	1.2	2	3.8	
${ }^{\text {tPLH }}$	A	Y	$C_{L}=1 \mathrm{pF}$	0.8	1.7	3.8	0.9	1.7	3.4	ns
tPHL				1.3	2.2	4.6	1.3	2.2	4.2	
tPZH	G	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}^{\prime}}=1 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$	0.6	1.5	3.4	0.7	1.5	3	ns
${ }^{\text {tPZL }}$	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \\ \hline \end{gathered}$	0.9	2.3	5.6	1	2.3	5	ns
tPHZ	G	Y	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega \text { to } \mathrm{GND} \end{gathered}$		16			16		ns
tPLZ	G	Y	$\begin{gathered} C_{L}=1 \mathrm{pF} \\ R_{L}=20 \mathrm{k} \Omega \text { to } V_{C C} \end{gathered}$		8			8		ns
$\Delta \mathrm{tPLH}$	A	Y	-	0.1	0.2	0.5	0.1	0.2	0.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta \mathrm{tPHL}$				0.1	0.2	0.6	0.1	0.2	0.5	
$\Delta \mathrm{tPZH}$	G	Y		0.1	0.2	0.6	0.1	0.2	0.5	$\mathrm{ns} / \mathrm{pF}$
$\Delta t^{\text {P }}$ LL				0.1	0.2	0.7	0.1	0.2	0.6	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
${ }^{\text {t }} \mathrm{PHL} \equiv$ propagation delay time, high-to-low-level output
tPZH \equiv output enable time to high level
$t^{\prime} P Z L \equiv$ output enable time to low level
tPHZ \equiv output disable time from high level
$t_{P L Z} \equiv$ output disable time from low level
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\Delta t_{\text {PLH }} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
$\Delta t_{P Z H} \equiv$ change in $\Delta t_{P Z H}$ with load capacitance
$\Delta t_{P Z L} \equiv$ change in $\Delta t_{P Z L}$ with load capacitance

SN54ASC6125, SN74ASC6125 D-TYPE LATCHES WITH ACTIVE-LOW ENABLE

SystemCellim ${ }^{\text {2- }} \boldsymbol{\mu m}$ HARDWIRED MACro Cell

- Provides Complementary Q and QZ Outputs
- Transparent When Enable Is Low
- Implements Control/Status Registers
- Parallel Latches to Implement Wide Word Widths

description

The SN54ASC6125 and SN74ASC6125 are dedicated, hardwired standard-cell macros implementing bistable latches. The 'ASC6125 latches provide an active-low enable, C , with a transparent storage element to embed in ASICs in its most efficient form. The 'ASC6125 latches implement identical function and sequential operation to one-fourth of the 'LS75 packaged latches except the 'ASC125 enable is active-low and available on each individual latch.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS		OUTPUT	
D	C	\mathbf{Q}	QZ
L	L	L	H
H	L	H	L
X	H	Q $_{\mathbf{O}}$	OZ $_{\text {O }}$

Information present at the data (D) input is transferred to the Q output when the enable input is low, and the Q output will follow the data input as long as enable remains low. When enable goes high, the data (that was present at the data input at the time the transition occurred) are retained at the Q output until the enable is again taken low. The cells are designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:

CELL NAME	NETLIST HDL LABEL	RELATIVE CELL AREA TO NA210LH
LAL2OLH	Label: LALnOLH D,C,Q,OZ;	4.25

The SN54ASC6125 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6125 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

absolute maximum ratings and recommended operating conditions

See Table 1 in Section 2.
timing requirements over recommended ranges of supply voltage and operating free-air temperature iuniess víier vise nvieü;

		MIN	MAX
	UNIT		
t_{w} Pulse duration	C low	9	
$t_{s u}$ Setup time	D high or low	10.8	
t_{h} Hold time	D high or low	0	

electrical characteristics

PARAMETER			TEST CONDITIONS		SN54ASC6125		SN74ASC6125		UNIT		
			TYP	MAX	TYP	MAX					
V_{T}	Input threshold vol				$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		2.2		V
ICC	Supply current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			505		30.3	nA		
		D	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{TA}=25^{\circ} \mathrm{C}$	0.27		0.27		pF		
	Input Capacitance	C			0.28		0.28				
C_{pd}	Equivalent power dissipation capacitance		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	4.68		4.68		pF		

switching characteristics over recommended ranges of supply volatge and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6125			SN74ASC6125			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	D	Q	$C_{L}=0$	1.8	4.2	10.7	1.9	4.2	9.5	ns
tPHL				1.3	2.5	5.9	1.4	2.5	5.3	ns
tPLH	D	QZ		2	4	10	2.1	4	8.9	ns
tPHL				1.1	2.8	6.9	1.2	2.8	6.2	ns
tPLH	C	Q		2.1	4	9.4	2.2	4	8.4	ns
tPHL				1.5	2.6	5.7	1.6	2.6	5.2	
tPLH	C	QZ		2.1	4.1	9.7	2.3	4.1	8.7	ns
tPHL				1.5	2.5	5.8	1.6	2.5	5.2	
tPLH	D	0	$C_{L}=1 \mathrm{pF}$	2	4.7	11.8	2.2	4.7	10.5	ns
tPHL				1.5	3	7	1.6	3	6.3	ns
tPLH	D	QZ		2.2	4.5	11.1	2.4	4.5	9.9	ns
${ }_{\text {tPHL }}$				1.3	3.2	8	1.5	3.2	7.2	
tPLH	C	Q		2.3	4.5	10.5	2.4	4.5	9.4	ns
tPHL				1.7	3	6.8	1.8	3	6.2	
tPLH	C	QZ		2.4	4.6	10.8	2.5	4.6	9.6	ns
tPHL				1.7	3	6.9	1.8	3	6.2	
Δ tPLH	Any	Q,QZ		0.2	0.5	1.1	0.2	0.5	1	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.1	0.5	1.1	0.2	0.5	1	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n s(10 \%$ and $90 \%)$.
tpLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{tPLH} \equiv$ change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

SN54ASC6125, SN74ASC6125 D-TYPE LATCHES WITH ACTIVE-LOW ENABLE

DESIGN CONSIDERATIONS

interfacing the macro

Inputs and outputs of these dedicated macros are compatible for interfacing directly with cells and macros available in the TI standard cell library. The inputs can be driven by either noninverting or inverting input cells. The outputs can be interfaced to drive off-chip loads with any of the noninverting output buffers or interfaced to external bidirectional buses through a 3-state input/output TTL/CMOS buffer.

designing for testability

Designers employing storage or bistable elements should consider testability of the design in its final form. The need to preset or clear these elements should be assessed throughout the development of custom logic circuits with these considerations extended to the end equipment application with respect to maintainability. Simple actions on the part of the ASIC designer can result in considerable cost savings, allowing the expense of IC testing, system testing, and system maintenance to be reduced significantly.

power-up clear/preset

Standard cell storage elements containing the capability to be asynchronously preset or cleared may be connected to the SN54ASC2320 or SN74ASC2320 power-up clear cell to achieve system initialization. Control of the clear or preset inputs from another system signal in conjunction with the power-up clear can be achieved with an AND gate.

SystemCell ${ }^{\text {TM }} \mathbf{2 - \mu m}$ INTERNAL STANDARD CELL

- 3.4 ns Typical Propagation Delay With 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability

positive logic equation

$$
Y=A+B+C+D+E=\overline{\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D} \cdot \bar{E}}
$$

description

The SN54ASC6130 and SN74ASC6130 are 5 -input positive-OR gate CMOS standard cells. Each cell is designated and called from the engineering workstation input using the following cell names to develop labels for the design netlist:
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE

INPUTS				OUTPUT	
A	B	C	D	E	Y
H	X	X	X	X	H
X	H	X	X	X	H
X	X	H	X	X	H
X	X	X	H	X	H
X	X	X	X	H	H
L	L	L	L	L	L

CELL NAME	FEATURES		
		TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
	Label: OR510LH A,B,C,D,E,Y;	3.4 ns	2.25

The SN54ASC6130 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6130 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

PARAMETER	TEST CONDITIONS	TYP MAX	UNIT
V_{T} Input threshold voltage	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	2.2	V
ICC Supply current$*$ SNEA^S¢613? SN74ASC6130		<00	$n A$
C_{i} Input capacitance	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	0.11	pF
$\mathrm{C}_{\text {pd }} \begin{aligned} & \text { Equivalent power } \\ & \text { dissipation capacitance }\end{aligned}$	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & \end{array}$	1.11	pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM	TO	TEST		54ASC	130		4ASC6		UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	UNIT
tPLH	A thru E	Y	$C_{L}=0$	0.9	1.8	4	1	1.8	3.6	ns
${ }_{\text {tPHL }}$				1.4	3.1	9.1	1.4	3.1	8.2	
tPLH	A thru E	Y	$C_{L}=1 \mathrm{pF}$	1.4	2.8	6.3	1.5	2.8	5.7	ns
tPHL				1.7	4	11.3	1.9	4	10	
Δ tPLH	A thru E	Y		0.4	1	2.4	0.5	1	2.2	$\mathrm{ns} / \mathrm{pF}$
Δ tPHL				0.3	0.9	2.2	0.4	0.9	1.9	

\dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in TPHL with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD Cell

- 3.3 ns Typical Propagation Delay with 1-pF Load
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCC Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equation
$Y=A+B+C+D+E+F+G+H=\overline{\bar{A} \bar{B} \bar{C} \bar{D} \bar{E} \bar{F} \bar{G} \bar{H}}$

description

The SN54ASC6131 and SN74ASC6131 are 8 -input positive-OR gate CMOS standard cells. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol

FUNCTION TABLE

| INPUTS | | | | | | OUTPUTS | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E | F | G | H | Y |
| H | X | X | X | X | X | X | X | H |
| X | H | X | X | X | X | X | X | H |
| X | X | H | X | X | X | X | X | H |
| X | X | X | H | X | X | X | X | H |
| X | X | X | X | H | X | X | X | H |
| X | X | X | X | X | H | X | X | H |
| X | X | X | X | X | X | H | X | H |
| X | X | X | X | X | X | X | H | H |
| L | L | L | L | L | L | L | L | L |

CELL NAME	FEATURES		
	NETLIST HDL LABEL	TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210L.
	Label: OR810LH A,B,C,D,E,F,G,H,Y;	3.3 ns	3.25

The SN54ASC6131 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6131 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.
electrical characteristics

SN54ASC6131, SN74ASC6131

8-INPUT POSITIVE-OR GATES
switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6131			SN74ASC6131			UNIT
				MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A thru H	Y	$C_{L}=0$	0.8	1.7	3.9	0.8	1.7	3.5	ns
tPHL				1.3	2.9	7.4	1.4	2.9	6.6	
tPLH	A thru H	Y	$C_{L}=1 \mathrm{pF}$	1.3	2.7	6.1	1.4	2.7	5.5	ns
tpHL				1.8	3.9	10.2	1.9	3.9	9	
Δ tPLH $^{\text {d }}$	A thru H	Y		0.4	1	2.3	0.5	1	2.1	ns/pF
$\Delta \mathrm{t}_{\text {PHL }}$				0.4	1	2.8	0.5	1	2.4	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n s(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
tpHL \equiv propagation delay time, high-to-low-level output
$\Delta \mathrm{t} L \mathrm{LH} \equiv$ change in tpLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

SystemCell ${ }^{\text {TM }} 2-\mu \mathrm{m}$ INTERNAL STANDARD CELL

- 3.4 ns Typical Propagation Delay
- Specified for Operation Over VCC Range of 4.5 V to 5.5 V
- Functional Operation Over VCc Range of 2 V to 6 V
- Dependable Texas Instruments Quality and Reliability
positive logic equations
$Y=A B C D E F G H=\overline{\bar{A}+\bar{B}+\bar{C}+\bar{D}+\bar{E}+\bar{F}+\bar{G}+\bar{H}}$

description

The SN54ASC6132 and SN74ASC6132 are 8 -input positive-AND gate CMOS standard cells. Each cell is designated and called from the engineering workstation input using the following cell name to develop labels for the design netlist:
logic symbol

FUNCTION TABLE

INPUTS							
AUTPUT							
A	B	C	D	E	F	G	H
H	H	H	H	H	H	H	H
Any	other combination	H					

CELL NAME	NETLIST	FEATURES	
	HDL LABEL	TYPICAL DELAY $C_{L}=1 \mathrm{pF}$	RELATIVE CELL AREA TO NA210LH
AN810LH	Label: AN810LH A,B,C,D,E,F,G,H,Y;	3.4 ns	3.25

The SN54ASC6132 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC6132 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
absolute maximum ratings and recommended operating conditions
See Table 1 in Section 2.

electrical characteristics

PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
	Input threshold voltage		$V_{C C}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.2		V
ICC Supply current		SN54ASC6132	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } 0, \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { to } \mathrm{MAX} \end{aligned}$			403	nA
		SN74ASC6132				24.2	nA
C_{i}	Input capacitance		V	$\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}$	012		n5
$\mathrm{C}_{\text {pd }}$	Equivalent power dissipation capacitance		$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns},$	1.22		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER ${ }^{\dagger}$	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54ASC6132			SN74ASC6132			UNIT
				MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
tPLH	A thru H	Y	$C_{L}=0$	0.9	2.2	5.3	1	2.2	4.7	ns
tPHL				0.8	1.9	3.9	0.8	1.9	3.6	
tPLH	A thru H	Y	$C_{L}=1 \mathrm{pF}$	1.9	4.2	9.8	2	4.2	8.8	ns
tPHL				1.1	2.5	5.4	1.1	2.5	4.9	
Δ tPLH	A thru H	Y		0.9	2	4.6	1	2	4.2	$\mathrm{ns} / \mathrm{pF}$
\triangle tPHL				0.2	0.6	1.6	0.3	0.6	1.4	

${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $t_{\text {PLH }} \equiv$ propagation delay time, low-to-high-level output
tPHL \equiv propagation delay time, high-to-low-level output
Δ tPLH \equiv change in tPLH with load capacitance
$\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
\ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DESIGN CONSIDERATIONS

Refer to Section 7.
All inputs to this cell must be accounted for in the netlist used to generate the next level of an ASIC design. A tie-off cell is offered specifically for managing unused inputs.

General Information

Definitions, Ratings, and Glossary

2

Product Guide

Military

IEEE Symbols

6

Desian Consideratinns

Mechanical Data

TEXAS INSTRUMENTS MILITARY-QUALIFIED STANDARD CELL PRODUCTS

The SystemCell ${ }^{\text {TM }}$ product family offered by Texas Instruments has been designed to operate over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. All cells have been characterized for this extended temperature range performance and the military TI software library contains this information, allowing for engineering workstation simulation at both temperature extremes. For military and other high-reliability applications, these standard cells are manufactured in compliance with the requirements of JEDEC Publication 111 (JEDEC's rewrite of Method 5010 of MIL-STD-883). When required, full qualification processing is available in accordance with the standards set forth in MIL-STD-883.

The extensive Texas Instruments military semiconductor experience and resources are utilized to supply high-reliability military-qualified standard cell devices. All wafers are processed in facilities that have DESCcertified product flows. Prototypes are available in JEDEC-Standard ceramic packages and may be supplied after testing over the full military temperature range. When production devices are required, TI offers complete capabilities to fabricate, assemble, and test standard cell devices within the continental United States, allowing for compliance with complete-domestic program requirements. TI's offshore production facilities are also available to provide cost-effective military-processed devices.

MILITARY HIGH-RELIABILITY STANDARD CELL INTEGRATED CIRCUITS

The Texas Instruments military standard cell program offers several production options designed to meet system cost, reliability, leadtime, and contract requirements. The following are the key features of the options available for MIL-M-38510 and MIL-STD-883 Class B applications and can be produced either onor offshore.

MIL-STD-883, Level B Screening

- Produced under MIL-STD-883 guidelines with all chips manufactured in facilities with DESC-certified product flows
- All production devices assembled and tested in a certified facility
- Fully tested as per MIL-STD-883 Method 5004/5005
- Electrical specification limits to be jointly agreed upon by the customer and TI
- Each lot shipment includes a Certificate of Conformance and Group A summary report

883/JEDEC Custom/Semicustom Screening

- Produced under MIL-STD-883 guidelines with all chips manufactured in facilities with DESC-certified product flows
- All production devices assembled and tested in a certified facility
- Fully tested as per MIL-STD-883 Method 5010 or JEDEC Publication 111
- Electrical specification limits to be jointly agreed upon by the customer and TI
- Each lot shipment includes a Certificate of Conformance and Group A summary report

MILITARY SCREENING AND LOT CONFORMANCE-CLASS B

SCREEN	METHOD	REQUIREMENT	
		$\begin{aligned} & \text { METHOD } \\ & 5004 / 5005 \end{aligned}$	METHOD 5010 or JEDEC 111
Internal Visual (Precap)	2010, Note 1	100\%	100\%
Backside Symbol	Diffusion lot identified by code year and week of seal	100\%	100\%
Stabilization Bake	1008, $24 \mathrm{Hr} \mathrm{Min}, 150^{\circ} \mathrm{C}$ Max, Condition C	100\%	100\%
Temperature Cycle	1010, Condition C, Note 1	100\%	100\%
Constant Acceleration	2001, Y1 Oniy, Condition E, Note 2	100\%	100\%
Overvoltage Test	As per device specification at manufacturer's option, may be performed at Probe, Note 1	100\%	100\%
Pre-Burn-In Test	As per device specification, $25^{\circ} \mathrm{C}$	100\%	100\%
Burn-In	$1015,160 \mathrm{Hr}$ at $125^{\circ} \mathrm{C}$ (Min), Condition A, Note 5	100\%	100\%
Post-Burn-In Test	As per device specification, $25^{\circ} \mathrm{C}, \mathrm{DC}$	100\%	100\%
Final Electrical Test	As per device specification, $-55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $25^{\circ} \mathrm{C}$ switching	100\%	100\%
Seal (A) Fine (B) Gross	1014, Note 2 Condition B Limit $=5 \times 10^{-8}$ Condition C	100\%	100\%
Quality Conformance Inspection Group A (Note 4) (A) Static (1) $25^{\circ} \mathrm{C}$ (2) Temp (B) Switching $25^{\circ} \mathrm{C}$ (C) Functional $25^{\circ} \mathrm{C}$ Groups B, C, D, and E	5005, Class B (Subgroup 1) (Subgroups 2 and 3) (Subgroup 9) (Subgroup 7) (Note 3)	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$ Customer Option	(Note 6) 5 7 5 5 Customer Option (Note 7)
External Visual Inspection	2009	100\%	100\%

NOTES: 1. Overvoltage test conditions, limits, and application will be identified by Texas Instruments upon completion of design characterization and will apply when the alternate screening procedure of Method 5004, Paragraph 3.3, is performed.
2. For device packages with 84 pins or less. For larger packages, test condition may require modification.
3. Available options depend on package type and size. Details of Groups B, C, D, and E testing and sampling plan to be negotiated.
4. If lot size is too small to meet LTPD requirements, 100% testing is acceptable.
5. TA may need to be reduced to prevent maximum junction temperature from being exceeded.
6. Group A may be performed on QA in-line monitor program.
7. Extensive use of process control and test circuits for reduced cost.

General Information

Product Guide

Data Sheets

Military

Eesign Considerations

Explanation of Logic Symbols

F. A. Mann

Contents

Title

Page
1.0 INTRODUCTION 6-5
2.0 SYMBOL COMPOSITION 6-5
3.0 QUALIFYING SYMBOLS 6-7
3.1 General Qualifying Symbols 6-7
3.2 Qualifying Symbols for Inputs and Outputs 6-7
3.3 Symbols Inside the Outline 6-11
4.0 DEPENDENCY NOTATION 6-11
4.1 General Explanation 6-11
4.2 G, AND 6-12
4.3 Conventions for the Application of Dependency Notation in General 6-13
4.4 V, OR 6-14
4.5 N, Negate (Exclusive-OR) 6-14
4.6 Z, Interconnection 6-15
4.7 X, Transmission 6-16
4.8 C, Control 6-17
4.9 S, Set and R, Reset 6-18
4.10 EN, Enable 6-18
4.11 M, Mode 6-19
4.12 A, Address 6-21
5.0 BISTABLE ELEMENTS 6-23
6.0 CODERS 6-24
7.0 USE OF A CODER TO PRODUCE AFFECTING INPUTS 6-26
8.0 USE OF BINARY GROUPING TO PRODUCE AFFECTING INPUTS 6-26
9.0 SEQUENCE OF INPUT LABELS 6-27
10.0 SEQUENCE OF OUTPUT LABELS 6-28

If you have questions on this Explanation of Logic Symbols, please contact:

Texas Instruments Incorporated
F.A. Mann, MS 49
P.O. Box 655012

Dallas, Texas 75265
Telephone (214) 995-2659

IEEE Standards may be purchased from:
Institute of Electrical and Electronics Engineers, Inc. IEEE Standards Office 345 East 47th Street New York, N.Y. 10017
 publications may be purchased from:

American National Standards Institute, Inc. 1430 Broadway New York, N.Y. 10018

List of Tables

Table Title Page
I General Qualifying Symbols 6-8
II Qualifying Symbols for Inputs and Outputs 6-9
III Symbols Inside the Outline 6-10
IV Summary of Dependency Notation 6-23
List of Illustrations
Figure

Title

 6-61 Symbol Composition2 Common-Control Block 6-6
3 Common-Output Element 6-7
4 G Dependency Between Inputs 6-12
5 G Dependency Between Outputs and Inputs 6-13
6 G Dependency with a Dynamic Input 6-13
7 ORed Affecting Inputs 6-13
8 Substitution for Numbers 6-14
9 V (OR) Dependency 6-14
10 N (Negate/Exclusive-OR) Dependency 6-15

11 Z (Interconnection) Dependency 6-15
12 X (Transmission) Dependency 6-16
13 CMOS Transmission Gate Symbol and Schematic 6-16
14 Analog Data Selector (Multiplexer/Demultiplexer) 6-16
15 C (Control) Dependency 6-17
16 S (Set) and R (Reset) Dependencies 6-18
17 EN (Enable) Dependency 6-19
18 M (Mode) Dependency Affecting Inputs 6-20
19 Type of Output Determined by Mode 6-20
20 An Output of the Common-Control Block 6-21
21 Determining an Output's Function 6-21
22 Dependent Relationships Affected by Mode 6-21
23 A (Address) Dependency 6-22
24 Array of 16 Sections of Four Transparent Latches with 3-State Outputs Comprising a 16 -Word $\times 4$-Bit Random-Access Memory 6-23
25 Four Types of Bistable Circuits 6-24
26 Coder General Symbol 6-24
27 An X/Y Code Converter 6-25
28 An X/Octal Code Converter 6-26
29 Producing Various Types of Dependencies 6-26
30 Producing One Type of Dependency 6-26
31 Use of Binary Grouping Symbol 6-27
32 Input Labels 6-27
33 Factoring Input Labels 6-28
34 Placement of 3-State Symbols 6-28
35 Output Labels 6-28
36 Factoring Output Labels 6-29

1.0 INTRODUCTION

The International Electrotechnical Commission (IEC) has been developing a very powerful symbolic language that can show the relationship of each input of a digital logic circuit to each output without showing explicitly the internal logic. At the heart of the system is dependency notation, which will be explained in Section 4.

The system was introduced in the USA in a rudimentary form in IEEE/ANSI Standard Y32.14-1973. Lacking at that time a complete development of dependency notation, it offered little more than a substitution of rectangular shapes for the familiar distinctive shapes for representing the basic functions of AND, OR, negation, etc. This is no longer the case.

Internationally, Working Group 2 of IEC Technical Committee TC-3 has prepared a new document (Publication 617-12) that consolidates the original work started in the mid 1960's and published in 1972 (Publication 117-15) and the amendments and supplements that have followed. Similarly for the USA, IEEE Committee SCC 11.9 has revised the publication IEEE Std 91/ANSI Y32.14. Now numbered simply IEEE Std 91-1984, the IEEE standard contains all of the IEC work that has been approved, and also a small amount of material still under international consideration. Texas lnstruments is participating in the work of both organizations and this document introduces new logic symbols in accordance with the new standards. When changes are made as the standards develop, future editions will take those changes into account.

The following explanation of the new symbolic language is necessarily brief and greatly condensed from what the standards publications now contain. This is not intended to be sufficient for those people who will be developing symbols for new devices. It is primarily intended to make possible the understanding of the symbols used in various data books and the comparison of the symbols with logic diagrams, functional block diagrams, and/or function tables to further help that understanding.

2.0 SYMBOL COMPOSITION

A symbol comprises an outline or a combination of outlines together with one or more qualifying symbols. The shape of the symbol is not significant. As shown in Figure 1, general qualifying symbols are used to tell exactly what logical operation is performed by the elements. Table I shows general qualifying symbols defined in the new standards. Input lines are placed on the ieit ario outpur iines are piaced on the right. vvnen an exception is made to that convention, the direction of signal flow is indicated by an arrow as shown in Figure 11.

All outputs of a single, unsubdivided element always have identical internal logic states determined by the function of the element except when otherwise indicated by an associated qualifying symbol or label inside the element.

＊Possible positions for qualifying symbols relating to inputs and outputs
Figure 1．Symbol Composition
The outlines of elements may be abutted or embedded in which case the following conventions apply．There is no logic connection between the elements when the line common to their outlines is in the direction of signal flow．There is at least one logic connection between the elements when the line common to their outlines is perpendicular to the direction of signal flow．The number of logic connections between elements will be clarified by the use of qualifying symbols and this is discussed further under that topic．If no indications are shown on either side of the common line，it is assumed there is only one connection．

When a circuit has one or more inputs that are common to more than one element of the circuit， the common－control block may be used．This is the only distinctively shaped outline used in the IEC system．Figure 2 shows that unless otherwise qualified by dependency notation，an input to the common－control block is an input to each of the elements below the common－ control block．

Figure 2．Common－Control Block

A common output depending on all elements of the array can be shown as the output of a common-output element. Its distinctive visual feature is the double line at its top. In addition the common-output element may have other inputs as shown in Figure 3. The function of the common-output element must be shown by use of a general qualifying symbol.

Figure 3. Common-Output Element

3.0 QUALIFYING SYMBOLS

3.1 General Qualifying Symbols

Table I shows general qualifying symbols defined by IEEE Standard 91. These characters are placed near the top center or the geometric center of a symbol or symbol element to define the basic function of the device represented by the symbol or of the element.

3.2 General Qualifying Symbols for Inputs and Outputs

Qualifying symbols for inputs and outputs are shown in Table II and many will be familiar to most users, with the possible exception of the logic polarity and analog signal indicators. The older logic negation indicator means that the external 0 state produces the internal 1 state. The internal 1 state means the active state. Logic negation may be used in pure logic diagrams; in order to tie the external 1 and 0 logic states to the levels H (high) and L (low), a statement of whether positive logic ($1=H, O=L$) or negative logic ($1=L, 0=H$) is being used, is required or must be assumed. Logic polarity indicators eliminate the need for calling out the logic convention and are used in various data books in the symbology for actual devices. The presence of the triangular polarity indicator indicates that the L logic level will produce the
 produce the external L level. Note how the active direction of transition for a dynamic input is indicated in positive logic, negative logic, and with polarity indication.

The internal connections between logic elements abutted together in a symbol may be indicated by the symbols shown in Table II. Each logic connection may be shown by the presence of qualifying symbols at one or both sides of the common line and if confusion can arise about the number of connections, use can be made of one of the internal connection symbols.

Table I. General Qualifying Symbols

	SYMBOL	DESCRIPTION	cMOS EXAMPLE	TTL EXAMPLE
	\&	AND gate or function.	'HCOO	SN7400
	≥ 1	OR gate $\neg r$ function. The symbol was chosen to indicate that at least one active input is needed to activate the output.	'HCO2	SN7402
	$=1$	Exclusive OR. One and only one input must be active to activate the output.	'HC86	SN7486
	=	Logic identity. All inputs must stand at the same state.	'HC86	SN74180
	2k	An even number of inputs must be active.	'HC280	SN74180
	$2 k+1$	An odd number of inputs must be active.	'HC86	SN74ALS86
	1	The one input must be active.	'HC04	SN7404
	\triangleright or \triangle	A buffer or element with more than usual output capability (symbol is oriented in the direction of signal flow).	'HC240	SN74S436
	J	Schmitt trigger; element with hysteresis.	' HC 132	SN74LS18
	X/Y	Coder, code converter (DEC/BCD, BIN/OCT, BIN/7-SEG, etc.).	'HC42	SN74LS347
	MUX	Multiplexer/data selector.	' HC 151	SN74150
	DMUX or DX	Demultiplexer.	'HC138	SN74138
	Σ	Adder.	'HC283	SN74LS385
	$\mathrm{P}-\mathrm{Q}$	Subtracter.	*	SN74LS385
T17	CPG	Look-ahead carry generator.	'HC182	SN74182
IT	π	Multiplier.	*	SN74LS384
TIT	COMP	Magnitude comparator.	'HC85	SN74LS682
0	ALU	Arithmetic logic unit.	'HC181	SN74LS381
3	Ω	Retriggerable monostable.	'HC123	SN74LS422
$\overline{0}$	1Ω	Nonretriggerable monostable (one-shot).	'HC221	SN74121
$\stackrel{0}{6}$	Gــــــ	Astable element. Showing waveform is optional.	*	SN74LS320
	$\stackrel{!G}{\Omega}$	Synchronously starting astable.	*	SN74LS624
6	G!	Astable element that stops with a completed pulse.	*	* .
	SRGm	Shift register. $m=$ number of bits.	'HC164	SN74LS595
	CTRm	Counter. $\mathrm{m}=$ number of bits; cycle length $=2 \mathrm{~m}$.	'HC590	SN54LS590
	CTR DIVm	Counter with cycle length $=\mathrm{m}$.	'HC160	SN74LS668
	RCTRm	Asynchronous (ripple-carry) counter; cycle length $=2 \mathrm{~m}$.	'HC4020	*
	ROM	Read-only memory.	*	SN74187
	RAM	Random-access read/write memory.	'HC189	SN74170
	FIFO	First-in, first-out memory.	*	SN74LS22
	$\mathrm{I}=0$	Element powers up cleared to 0 state.	*	SN74AS877
	$\mathrm{l}=1$	Element powers up set to 1 state.	'HC7022	SN74AS877
	Ф	Highly complex function; "gray box" symbol with limited detail shown under special rules.	, *	SN74LS608

[^135]
Table II. Qualifying Symbols for Inputs and Outputs

Logic negation at input. External 0 produces internal 1.
Logic negation at output. Internal 1 produces external 0.
Active-low input. Equivalent to -d in positive logic.
Active-low output. Equivalent to N^{-}in positive logic.
Active-low input in the case of right-to-left signal flow.
Active-low output in the case of right-to-left signal flow.
Signal flow from right to left. If not otherwise indicated, signal flow is from left to right.
Bidirectional signal flow.
POSITIVE

LOGIC

Dynamic
inputs
active
on indicated
transition

LOGATIVE

Nonlogic connection. A label inside the symbol will usually define the nature of this pin.
Input for analog signals (on a digital symbol) (see Figure 14).
Input for digital signals (on an analog symbol) (see Figure 14).
Internal connection. 1 state on left produces 1 state on right.
Negated internal connection. 1 state on left produces 0 state on right.
Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right.
Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship.

Internal outnut (virtual outbut). Its effect on an internal inout to which it is connected is indicated bv dependency notation.

The internal (virtual) input is an input originating somewhere else in the circuit and is not connected directly to a terminal. The internal (virtuai) output is likewise not connected directly to a terminal. The application of internal inputs and outputs requires an understanding of dependency notation, which is explained in Section 4.

Table III. Symbols Inside the Outline

Postponed output (of a pulse-triggered flip-flop). The output changes when input initiating change (e.g., a C input) returns to its initial external state or level. See $\S 5$.

Bi-threshold input (input with hysteresis)
N-P-N open-collector or similar output that can supply a relatively low-impedance L level when not turned off. Requires external pull-up. Capable of positive-logic wired-AND connection.

Passive-pull-up output is similar to N-P-N open-collector output but is supplemented with a built-in passive pull-up.

N-P-N open-emitter or similar output that can supply a relatively low-impedance H level when not turned off. Requires external pulldown. Capable of positive-logic wired-OR connection.

Passive-pull-down output is similar to N-P-N open-emitter output but is supplemented with a built-in passive pull-down.

3 -state output.
Output with more than usual output capability (symbol is oriented in the direction of signal flow).
Enable input
When at its internal 1-state, all outputs are enabled.
When at its internal 0 -state, open-collector and open-emitter outputs are off, three-state outputs are in the high-impedance state, and all other outputs (i.e., totem-poles) are at the internal 0 -state.

J, K, R, S

$" 1 "$

Usual meanings associated with flip-flops (e.g., $R=$ reset to $0, S=$ set to 1).
Toggle input causes internal state of output to change to its complement.
Data input to a storage element equivalent to:

Shift right (left) inputs, $m=1,2,3$, etc. If $m=1$, it is usually not shown.
Counting up (down) inputs, $m=1,2,3$, etc. If $m=1$, it is usually not shown.

Binary grouping. m is highest power of 2.
The contents-setting input, when active, causes the content of a register to take on the indicated value.

The content output is active if the content of the register is as indicated.
Input line grouping . . . indicates two or more terminals used to implement a single logic input. e.g., The paired expander inputs of SN7450. $\quad \begin{aligned} & X-\uparrow] E\end{aligned}$

Fixed-state output always stands at its internal 1 state. For example, see SN74185.

In an array of elements, if the same general qualifying symbol and the same qualifying symbols associated with inputs and outputs would appear inside each of the elements of the array, then these qualifying symbols are usually shown only in the first element. This is done to reduce clutter and to save time in recognition. Similarly, large identical elements that are subdivided into smaller elements may each be represented by an unsubdivided outline. The SN54HC242 or SN54LS440 symbol illustrates this principle.

3.3 Symbols Inside the Outline

Table III shows some symbols used inside the outline. Note particularly that open-collector (open-drain), open-emitter (open-source), and 3-state outputs have distinctive symbols. An EN input affects all the external outputs of the element in which it is placed, plus the external outputs of any elements shown to be influenced by that element. It has no effect on inputs. When an enable input affects only certain outputs, affects outputs located outside the indicated influence of the element in which the enable input is placed, and/or affects one or more inputs, a form of dependency notation will indicate this (see 4.10). The effects of the EN input on the various types of outputs are shown.

It is particularly important to note that a D input is always the data input of a storage element. At its internal 1 state, the D input sets the storage element to its 1 state, and at its internal 0 state it resets the storage element to its 0 state.

The binary grouping symbol will be explained more fully in Section 8 . Binary-weighted inputs are arranged in order and the binary weights of the least-significant and the most-significant lines are indicated by numbers. In this document weights of input and output lines will be represented by powers of two usually only when the binary grouping symbol is used, otherwise decimal numbers will be used. The grouped inputs generate an internal number on which a mathematical function can be performed or that can be an identifying number for dependency notation (Figure 28). A frequent use is in addresses for memories.

Reversed in direction, the binary grouping symbol can be used with outputs. The concept is analogous to that for the inputs and the weighted outputs will indicate the internal number assumed to be developed within the circuit.

Other symbols are used inside the outlines in accordance with the IEC/IEEE standards but are not shown here. Generally these are associated with arithmetic operations and are selfexplanatory.

When nonetandardizod informatinn ic chnumn incide an nutline it is usually enclosed in square brackets [like these]. The square brackets are omitted when associated with a nonlogic input, which is indicated by an X superimposed on the connection line outside the symbol.

4.0 DEPENDENCY NOTATION

4.1 General Explanation

Dependency notation is the powerful tool that sets the IEC symbols apart from previous systems and makes compact, meaningful, symbols possible. It provides the means of denoting the relationship between inputs, outputs, or inputs and outputs without actually showing all the
elements and interconnections involved. The information provided by dependency notation supplements that provided by the qualifying symbols for an element's function.

In the convention for the dependency notation, use will be made of the terms "affecting" and "affected." In cases where it is not evident which inputs must be considered as being the affecting or the affected ones (e.g., if they stand in an AND relationship), the choice may be made in any convenient way.

So far, eleven types of dependency have been defined and all of these are used in various TI data books. X dependency is used mainly with CMOS circuits. They are listed below in the order in which they are presented and are summarized in Table IV following 4.12.

Section	Dependency Type or Other Subject
4.2	G, AND
4.3	General Rules for Dependency Notation
4.4	V, OR
4.5	N, Negate (Exclusive-OR)
4.6	Z, Interconnection
4.7	X, Transmission
4.8	C, Control
4.9	S, Set and R, Reset
4.10	EN, Enable
4.11	M, Mode
4.12	A, Address

4.2 G (AND) Dependency

A common relationship between two signals is to have them ANDed together. This has traditionally been shown by explicitly drawing an AND gate with the signals connected to the inputs of the gate. The 1972 IEC publication and the 1973 IEEE/ANSI standard showed several ways to show this AND relationship using dependency notation. While ten other forms of dependency have since been defined, the ways to invoke AND dependency are now reduced to one.

In Figure 4 input \mathbf{b} is ANDed with input \mathbf{a} and the complement of \mathbf{b} is ANDed with \mathbf{c}. The letter G has been chosen to indicate AND relationships and is placed at input \mathbf{b}, inside the symbol. A number considered appropriate by the symbol designer (1 has been used here) is placed after the letter G and also at each affected input. Note the bar over the 1 at input \mathbf{c}.

Figure 4. G Dependency Between Inputs
In Figure 5, output \mathbf{b} affects input \mathbf{a} with an AND relationship. The lower example shows that it is the internal logic state of \mathbf{b}, unaffected by the negation sign, that is ANDed. Figure 6 shows input \mathbf{a} to be ANDed with a dynamic input \mathbf{b}.

Figure 5. G Dependency Between Outputs and Inputs

Figure 6. G Dependency with a Dynamic Input
The rules for G dependency can be summarized thus:
When a $\mathrm{G} m$ input or output (m is a number) stands at its internal 1 state, all inputs and outputs affected by $\mathrm{G} m$ stand at their normally defined internal logic states. When the $\mathrm{G} m$ input or output stands at its 0 state, all inputs and outputs affected by $\mathrm{G} m$ stand at their internal 0 states.

4.3 Conventions for the Application of Dependency Notation in eneral

The rules for applying dependency relationships in general llow the same pattern as was illustrated for G dependency.

Application of dependency notation is accomplished by:

1) labeling the input (or output) affecting other inputs outputs with the letter symbol indicating the relationship involved (e.g., G for AND) rollowed by an identifying number, appropriately chosen, and
2) labeling each input or output affected by that affecting input (or output) with that same number.

If it is the complement of the internal logic state of the affechg input or output that does
 (Figure 4).

If two affecting inputs or outputs have the same letter and the same identifying number, they stand in an OR relationship to each other (Figure 7).

Figure 7. ORed Affecting Inputs

If the affected input or output requires a label to denote its function（e．g．，＂D＂），this label will be prefixed by the identifying number of the affecting input（Figure 15）．

If an input or output is affected by more than one affecting input，the identifying numbers of each of the affecting inputs will appear in the label of the affected one，separated by commas． The normal reading order of these numbers is the same as the sequence of the affecting relationships（Figure 15）．

If the labels denoting the functions of affected inputs or outputs must be numbers（e．g．，outputs of a coder），the identifying numbers to be associated with both affecting inputs and affected inputs or outputs will be replaced by another character selected to avoid ambiguity，e．g．，Greek letters（Figure 8）．

Figure 8．Substitution for Numbers

4．4 V（OR）Dependency

The symbol denoting OR dependency is the letter V（Figure 9）．

Figure 9．V（OR）Dependency
When a Vm input or output stands at its internal 1 state，all inputs and outputs affected by Vm stand at their internal 1 states．When the Vm input or output stands at its internal 0 state， all inputs and outputs affected by Vm stand at their normally defined internal logic states．

4．5 N（Negate）（Exclusive－OR）Dependency

The symbol denoting negate dependency is the letter N（Figure 10）．Each input or output affected by an Nm input or output stands in an Exclusive－OR relationship with the Nm input or output．

$$
\begin{aligned}
& \text { If } a=0 \text {, then } c=b \\
& \text { If } a=1 \text {, then } c=\bar{b}
\end{aligned}
$$

Figure 10. N (Negate) (Exclusive-OR) Dependency
When an $\mathrm{N} m$ input or output stands at its internal 1 state, the internal logic state of each input and each output affected by Nm is the complement of what it would otherwise be. When an $\mathrm{N} m$ input or output stands at its internal O state, all inputs and outputs affected by Nm stand at their normally defined internal logic states.

4.6 Z (Interconnection) Dependency

The symbol denoting interconnection dependency is the letter Z.
Interconnection dependency is used to indicate the existence of internal logic connections between inputs, outputs, internal inputs, and/or internal outputs.

The internal logic state of an input or output affected by a Zm input or output will be the same as the internal logic state of the Zm input or output, unless modified by additional dependency notation (Figure 11).

Figure 11. Z (Interconnection) Dependency

4.7 X (Transmission) Dependency

The symbol denoting transmission dependency is the letter X .
Transmission dependency is used to indicate controlled bidirectional connections between affected input/output ports (Figure 12).

If $a=1$, there is a bidirectional
connection between b and c.

If $a=0$, there is a bidirectional
connection between c and d.

Figure 12. X (Transmission) Dependency
When an Xm input or output stands at its internal 1 state, all input-output ports affected by this Xm input or output are bidirectionally connected together and stand at the same internal logic state or analog signal level. When an Xm input or output stands at its internal 0 state, the connection associated with this set of dependency notation does not exist.

Figure 13. CMOS Transmission Gate Symbol and Schematic

Figure 14: Analog Data Selector (Multiplexer/Demultiplexer)
Although the transmission paths represented by X dependency are inherently bidirectional, use is not always made of this property. This is analogous to a piece of wire, which may be constrained to carry current in only one direction. If this is the case in a particular application, then the directional arrows shown in Figures 12, 13, and 14 are omitted.

4.8 C (Control) Dependency

The symbol denoting control dependency is the letter C.
Control inputs are usually used to enable or disable the data (D, J, K, R, or S) inputs of storage elements. They may take on their internal 1 states (be active) either statically or dynamically. In the latter case the dynamic input symbol is used as shown in the third example of Figure 15.

Note AND relationship of \mathbf{a} and \mathbf{b}

Input \mathbf{c} selects which of \mathbf{a} or \mathbf{b} is stored when d goes low.
Figure 15. C (Control) Dependency
When a Cm input or output stands at its internal 1 state, the inputs affected by $\mathrm{C} m$ have their normally defined effect on the function of the element, i.e., these inputs are enabled. When a Cm input or output stands at its internal O state, the inputs affected by Cm are disabled and have no effect on the function of the element.

4.9 S (Set) and R (Reset) Dependencies

The symbol denoting set dependency is the letter S. The symbol denoting reset dependency is the letter R.

Set and reset dependencies are used if it is necessary to specify the effect of the combination $R=S=1$ on a bistable element. Case 1 in Figure 16 does not use S or R dependency.

When an $\mathrm{S} m$ input is at its internal 1 state, outputs affected by the $\mathrm{S} m$ input will react, regardless of the state of an R input, as they normally would react to the combination $S=1, R=0$. See cases 2,4 , and 5 in Figure 16.

When an $\mathrm{R} m$ input is at its internal 1 state, outputs affected by the Rm input will react, regardless of the state of an S input, as they normally would react to the combination $S=0, R=1$. See cases 3,4 , and 5 in Figure 16.

When an $\mathrm{S} m$ or Rm input is at its internal 0 state, it has no effect.

Note that the noncomplementary output patterns in cases 4 and 5 are only pseudo stable. The simultaneous return of the inputs to $S=R=0$ produces an unforeseeable stable and complementary output pattern.

CASE 1

Figure 16. S (Set) and R (Reset) Dependencies

4.10 EN (Enable) Dependency

The symbol denoting enable dependency is the combination of letters EN.
An ENm input has the same effect on outputs as an EN input, see 3.3, but it affects only those outputs labeled with the identifying number m. It also affects those inputs labeled with the identifying number m. By contrast, an EN input affects all outputs and no inputs. The effect of an $\mathrm{EN} m$ input on an affected input is identical to that of a Cm input (Figure 17).

When an ENm input stands at its internal 1 state, the inputs affected by ENm have their normally defined effect on the function of the element and the outputs affected by this input stand at their normally defined internal logic states, i.e., these inputs and outputs are enabled.

If $\mathbf{a}=\mathbf{0 , b}$ is disabled and $\mathbf{d}=\mathbf{c}$
If $a=1, c$ is disabled and $d=b$

Figure 17. EN (Enable) Dependency
When an EN m input stands at its internal 0 state, the inputs affected by EN m are disabled and have no effect on the function of the element, and the outputs affected by ENm are also disabled. Open-collector outputs are turned off, three-state outputs stand at their normally defined internal logic states by externally exhibit high impedance, and all other outputs (e.g., totem-pole outputs) stand at their internal 0 states.

4.11 M (MODE) Dependency

The symbol denoting mode dependency is the letter M.
Mode dependency is used to indicate that the effects of particular inputs and outputs of an element depend on the mode in which the element is operating.

If an input or output has the same effect in different modes of operation, the identifying numbers of the relevant affecting Mm inputs will appear in the label of that affected input or output between parentheses and separated by solidi (Figure 22).

4.11.1 M Dependency Affecting Inputs

M dependency affects inputs the same as C dependency. When an Mm input or Mm output stands at its internal 1 state, the inputs affected by this Mm input or Mm output have their normally defined effect on the function of the element, i.e., the inputs are enabled.

When an Mm input or Mm output stands at its internal O state, the inputs affected by this
 input has several sets of labels separated by solidi (e.g., C4/2 $\rightarrow / 3+$), any set in which the identifying number of the Mm input or $\mathrm{M} m$ output appears has no effect and is to be ignored. This represents disabling of some of the functions of a multifunction input.

The circuit in Figure 18 has two inputs， \mathbf{b} and \mathbf{c} ，that control which one of four modes（0，1，2， or 3 ）will exist at any time．Inputs d, e and f are D inputs subject to dynamic control（clocking） by the a input．The numbers 1 and 2 are in the series chosen to indicate the modes so inputs \mathbf{e} and f are only enabled in mode 1 （for parallel loading）and input \mathbf{d} is only enabled in mode 2 （for serial loading）．Note that input a has three functions．It is the clock for entering data． In mode 2，it causes right shifting of data，which means a shift away from the control block． In mode 3，it causes the contents of the register to be incremented by one count．

Note that all operations are synchronous．

In MODE $0(b=0, c=0)$ ，the outputs remain at their existing states as none of the inputs has an effect．
In MODE 1 （ $b=1, c=0$ ），parallel loading takes place thru inputs e and f ．
In MODE 2 （ $b=0, c=1$ ），shifting down and serial loading thru input d take place．
In MODE 3 （ $b=c=1$ ），counting up by increment of 1 per clock pulse takes place．

Figure 18．M（Mode）Dependency Affecting Inputs

4．11．2 M Dependency Affecting Outputs

When an Mm input or Mm output stands at its internal 1 state，the affected outputs stand at their normally defined internal logic states，i．e．，the outputs are enabled．

When an Mm input or Mm output stands at its internal 0 state，at each affected output any set of labels containing the identifying number of that Mm input or Mm output has no effect and is to be ignored．When an output has several different sets of labels separated by solidi （e．g．， $2,4 / 3,5$ ），only those sets in which the identifying number of this Mm input or Mm output appears are to be ignored．

Figure 19 shows a symbol for a device whose output can behave as either a 3 －state output or an open－collector output depending on the signal applied to input a．Mode 1 exists when input a stands at its internal 1 state and，in that case，the three－state symbol applies and the open－element symbol has no effect．When $\mathbf{a}=0$ ，mode 1 does not exist so the three－state symbol has no effect and the open－element symbol applies．

Figure 19．Type of Output Determined by Mode

In Figure 20, if input a stands at its internal 1 state establishing mode 1 , output \mathbf{b} will stand at its internal 1 state only when the content of the register equals 9 . Since output \mathbf{b} is located in the common-control block with no defined function outside of mode 1, the state of this output outside of mode 1 is not defined by the symbol.

In Figure 21, if input a stands at its internal 1 state establishing mode 1 , output \mathbf{b} will stand at its internal 1 state only when the content of the register equals 15 . If input a stands at its internal 0 state, output \mathbf{b} will stand at its internal 1 state only when the content of the register equals 0 .

In Figure 22 inputs a and bare binary weighted to generate the numbers 0,1 , 2 , or 3 . This determines which one of the four modes exists.

At output \mathbf{e} the label set causing negation (if $c=1$) is effective only in modes 2 and 3. In modes 0 and 1 this output stands at its normally defined state as if it had no labels. At output f the label set has effect when the mode is not 0 so output \mathbf{e} is negated (if $\mathbf{c}=1$) in modes 1,2 , and 3. In mode 0 the label set has no effect so the output stands at its normally defined state. In this example $\overline{0}, 4$ is equivalent to $(1 / 2 / 3) 4$. At output g there are two label sets. The first set, causing negation (if $\mathbf{c}=1$), is effective only in mode 2 . The second set, subjecting \mathbf{g} to

Note that in mode 0 none of the dependency relationships has any effect on the outputs, so e, f, and g will all stand at the same state.

A.:2 A inüüress; Eteperuiency

The symbol denoting address dependency is the letter A.
Address dependency provides a clear representation of those elements, particularly memories, that use address control inputs to select specified sections of a multildimensional array. Such a section of a memory array is usually called a word. The purpose of address dependency is to allow a symbolic presentation of the entire array. An input of the array shown at a particular
element of this general section is common to the corresponding elements of all selected sections of the array. An output of the array shown at a particular element of this general section is the result of the OR function of the outputs of the corresponding elements of selected sections.

Inputs that are not affected by any affecting address input have their normally defined effect on all sections of the array, whereas inputs affected by an address input have their normally defined effect only on the section selected by that address input.

An affecting address input is labeled with the letter A followed by an identifying number that corresponds with the address of the particular section of the array selected by this input. Within the general section presented by the symbol, inputs and outputs affected by an Am input are labeled with the letter A, which stands for the identifying numbers, i.e., the addresses, of the particular sections.

Figure 23. A (Address) Dependency
Figure 23 shows a 3 -word by 2-bit memory having a separate address line for each word and uses EN dependency to explain the operation. To select word 1 , input a is taken to its 1 state, which establishes mode 1. Data can now be clocked into the inputs marked "1,4D." Unless words 2 and 3 are also selected, data cannot be clocked in at the inputs marked " $2,4 \mathrm{D}$ " and " $3,4 \mathrm{D}$." The outputs will be the OR functions of the selected outputs, i.e., only those enabled by the active EN functions.

The identifying numbers of affecting address inputs correspond with the addresses of the sections selected by these inputs. They need not necessarily differ from those of other affecting dependency-inputs (e.g., G, V, N, . .), because in the general section presented by the symbol they are replaced by the letter A.

If there are several sets of affecting Am inputs for the purpose of independent and possibly simultaneous access to sections of the array, then the letter A is modified to 1A, 2A, Since they have access to the same sections of the array, these sets of A inputs may have the same identifying numbers. The symbols for 'HC170 or SN74LS170 make use of this.

Figure 24 is another illustration of the concept.

Figure 24. Array of 16 Sections of Four Transparent Latches with 3-State Outputs Comprising a $\mathbf{1 6 - W o r d} \times 4$-Bit Random-Access Memory

Table IV. Summary of Dependency Notation

TYPE OF DEPENDENCY	LETTER SYMBOL*	AFFECTING INPUT AT ITS 1-STATE	AFFECTING INPUT AT ITS O-STATE
Address	A	Permits action (address selected)	Prevents action (address not selected)
Control	C	Permits action	Prevents action
Enable	EN	Permits action	Prevents action of inputs outputs off outputs at external high impedance, no change in internal logic state Other outputs at internal 0 state
AND	G	Permits action	Imposes 0 state
Mode	M	Permits action (mode selected)	Prevents action (mode not selected)
Negate (Ex-OR)	N	Complements state	No effect
Reset	R	Affected output reacts as it would to $S=0, R=1$	No effect.
Set	S	Affected output reacts as it would to $S=1, R=0$	No effect
OR	V	Imposes 1 state	Permits action
Transmission	X	Bidirectional connection exists	Bidirectional connection does not exist
Interconnection	Z	Imposes 1 state	Imposes 0 state

* These letter symbols appear at the AFFECTING input (or output) and are followed by a number. Each input (or output) AFFECTED by that input is labeled with that same number. When the labels EN, R, and S appear at inputs without the following numbers, the descriptions above do not apply. The action of these inputs is described under "Symbols Inside the Outline," see 3.3 .

5.0 BISTABLE ELEMENTS

The dynamic innut cymhnl, the netnonod notnut gymhn!, and derondenoy notaticn provide the tools to differentiate four main types of bistable elements and make synchronous and asynchronous inputs easily recognizable (Figure 25). The first column shows the essential distinguishing features; the other columns show examples.

Transparent latches have a level-operated control input. The D input is active as long as the C input is at its internal 1 state. The outputs respond immediately. Edge-triggered elements accept data from D, J, K, R, or S inputs on the active transition of C. Pulse-triggered elements
require the setup of data before the start of the control pulse; the C input is considered static since the data must be maintained as long as C is at its 1 state. The output is postponed until C returns to its 0 state. The data-lock-out element is similar to the pulse-triggered version except that the C input is considered dynamic in that shortly after C goes through its active transition, the data inputs are disabled and data does not have to be held. However, the output is still postponed until the C input returns to its initial external level.

Notice that synchronous inputs can be readily recognized by their dependency labels (1D, 1 J , $1 \mathrm{~K}, 1 \mathrm{~S}, 1 \mathrm{R}$) compared to the asynchronous inputs (S, R), which are not dependent on the C inputs.

Figure 25. Four Types of Bistable Circuits

6.0 CODERS

The general symbol for a coder or code converter is shown in Figure 26. X and Y may be replaced by appropriate indications of the code used to represent the information at the inputs and at the outputs, respectively.

Indication of code conversion is based on the following rule:
Depending on the input code, the internal logic states of the inputs determine an internal value. This value is reproduced by the internal logic states of the outputs, depending on the output code.

The indication of the relationships between the internal logic states of the inputs and the internal value is accomplished by:

1) labeling the inputs with numbers. In this case the internal value equals the sum of the weights associated with those inputs that stand at their internal 1 -state, or by
2) replacing X by an appropriate indication of the input code and labeling the inputs with characters that refer to this code.

The relationships between the internal value and the internal logic states of the outputs are indicated by:

1) labeling each output with a list of numbers representing those internal values that lead to the internal 1 -state of that output. These numbers shall be separated by solidi as in Figure 27. This labeling may also be applied when Y is replaced by a letter denoting a type of dependency (see Section 7). If a continuous range of internal values produces the internal 1 state of an output, this can be indicated by two numbers that are inclusively the beginning and the end of the range, with these two numbers separated by three dots (e.g., $4 \ldots 9=4 / 5 / 6 / 7 / 8 / 9$) or by
2) replacing Y by an appropriate indiction of the output code and labeling the outputs with characters that refer to this code as in Figure 28.

Alternatively, the general symbol may be used together with an appropriate reference to a table in which the relationship between the inputs and outputs is indicated. This is a recommended way to symbolize a PROM after it has been programmed.
TRUTH TABLE

INPUTS		OUTPUTS				
c	b	a	g	1	0	d
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	0	0	0
1	1	u	0	0	0	0
1	1	1	1	0	0	0

Figure 27. An X/Y Code Converter

TRUTH TABLE

INPUTS			OUTPUTS						
\mathbf{c}	\mathbf{b}	\mathbf{a}	\mathbf{j}	\mathbf{i}	\mathbf{h}	\mathbf{g}	\mathbf{f}	\mathbf{e}	\mathbf{d}
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	1	0
0	1	1	0	0	0	0	1	0	0
1	0	0	0	0	0	1	0	0	0
1	0	1	0	0	1	0	0	0	0
1	1	0	0	1	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0

Figure 28. An X/Octal Code Converter

7.0 USE OF A CODER TO PRODUCE AFFECTING INPUTS

It often occurs that a set of affecting inputs for dependency notation is produced by decoding the signals on certain inputs to an element. In such a case use can be made of the symbol for a coder as an embedded symbol (Figure 29).

If all affecting inputs produced by a coder are of the same type as their identifying numbers shown at the outputs of the coder, Y (in the qualifying symbol X / Y) may be replaced by the letter denoting the type of dependency. The indications of the affecting inputs should then be omitted (Figure 30).

Figure 29. Producing Various Types of Dependencies

Figure 30. Producing One Type of Dependency

8.0 USE OF BINARY GROUPING TO PRODUCE AFFECTING INPUTS

If all affecting inputs produced by a coder are of the same type and have consecutive identifying numbers not necessarily corresponding with the numbers that would have been shown at the outputs of the coder, use can be made of the binary grouping symbol. k external lines effectively generate 2^{k} internal inputs. The bracket is followed by the letter denoting the type of dependency followed by $\mathrm{m} 1 / \mathrm{m} 2$. The m 1 is to be replaced by the smallest identifying number and the m 2 by the largest one, as shown in Figure 31.

Figure 31. Use of the Binary Grouping Symbol

9.0 SEQUENCE OF INPUT LABELS

If an input having a single functional effect is affected by other inputs, the qualifying symbol (if there is any) for that functional effect is preceded by the labels corresponding to the affecting inputs. The left-to-right order of these preceding labels is the order in which the effects or modifications must be applied. The affected input has no functional effect on the element if the logic state of any one of the affecting inputs, considered separately, would cause the affected input to have no effect, regardless of the logic states of other affecting inputs.

If an input has several different functional effects or has several different sets of affecting inputs, depending on the mode of action, the input may be shown as often as required. However, there are cases in which this method of presentation is not advantageous. In those cases the input may be shown once with the different sets of labels separated by solidi (Figure 32). No meaning is attached to the order of these sets of labels. If one of the functional effects of an input is that of an unlabeled input to the element, a solidus will precede the first set of labels shown.

If all inputs of a combinational element are disabled (caused to have no effect on the function of the element), the internal logic states of the outputs of the element are not specified by the symbol. If all inputs
 content of this element is not changed and the outputs remain at their existing internal logic states.

Labels may be factored using algebraic techniques (Figure 33).

Figure 32. Input Labels

Figure 33．Factoring Input Labels

10．0 SEQUENCE OF OUTPUT LABELS

If an output has a number of different labels，regardless of whether they are identifying numbers of affecting inputs or outputs or not，these labels are shown in the following order：

1）If the postponed output symbol has to be shown，this comes first，if necessary preceded by the indications of the inputs to which it must be applied
2）Followed by the labels indicating modifications of the internal logic state of the output， such that the left－to－right order of these labels corresponds with the order in which their effects must be applied
3）Followed by the label indicating the effect of the output on inputs and other outputs of the element．

Symbols for open－circuit or 3－state outputs，where applicable，are placed just inside the outside boundary of the symbol adjacent to the output line（Figure 34）．

If an output needs several different sets

Figure 34．Placement of 3－State Symbols of labels that represent alternative functions（e．g．，depending on the mode of action），these sets may be shown on different output lines that must be connected outside the outline．However，there are cases in which this method of presentation is not advantageous．In those cases the output may be shown once with the different sets of labels separated by solidi（Figure 35）．

Two adjacent identifying numbers of affecting inputs in a set of labels that are not already separated by a nonnumeric character should be separated by a comma．

If a set of labels of an output not containing a solidus contains the identifying number of an affecting Mm input standing at its internal 0 state，this set of labels has no effect on that output．

Labels may be factored using algebraic techniques（Figure 36）．

Figure 35．Output Labels

Figure 36. Factoring Output Labels

If you have questions on this Explanation of Logic Symbols, please contact:

Texas Instruments Incorporated
F.A. Mann, MS 49
P.O. Box 655012

Dallas, Texas 75265
Telephone (214) 995-2659

IEEE Standards may be purchased from:
Institute of Electrical and Electronics Engineers, Inc.
IEEE Standards Office
345 East 47th Street
New York, N.Y. 10017

International Electrotechnical Commission (IEC) publications may be purchased from:

American National Standards Institute, Inc.
1430 Broadway
New York, N.Y. 10018

General Information

Definitions, Ratings, and Glossary

Product Guide

Data Sheets

4

Military

IEEE Symbols

nesign Conciderations

Mechanical Data

DESIGN CONSIDERATIONS

Logic Evaluation

To begin your standard cell IC design, you should prepare a functional description, a timing diagram, and a logic design. A complete definition of the circuit performance must be specified. Waveform diagrams or test vectors may be adequate; however, precise and detailed specifications simplify the implementation. Once you have these items, you are ready to examine the circuit and choose those portions to be included in the standard cell design.

Logic Partitioning

Logic partitioning is the act of examining a logic design and deciding which components will be in your standard cell implementation. Sometimes the choice is obvious; other times it involves compromises. Here are some factors to consider:

Complexity of the Circuit

Although a semicustom IC may contain thousands of gates, there is a practical limit to its size. If the circuit is too large, it must be partitioned into several smaller blocks. These may then be implemented as separate standard cell designs.

As part of the initial evaluation and specification of your present schematic, you must define boundaries as to what will be integrated. This step must be done whether adapting an existing logic system or designing a new one. As you evaluate your design, you may find some functions for which no standard cells exist. TI invites your requests for new cell development and will work with you to implement special cells for your design.

Type of Package to be Used

You have a choice of more than 40 different IC packages, including plastic dual-in-lines, plastic-leaded-chip carriers, and pin-grid arrays. A circuit should be partitioned so as to include the greatest number of gates, while minimizing the number of connections to external circuitry.

Examine the Logic to be Partitioned

If the circuit is separated into functional blocks, this may make things easier. Cross out any elements which cannot be included in the !C. Look at the logic, and draw a border around as much of the circuitry as possible while crossing as few conductors (which will become input, output, or I/O pins) as necessary. This is the first pass.

Schematic Evaluation

You may wish to partition your schematic several different ways in order to choose the best standard cell implementation. In each case, examine the tradeoffs between pin count, the number of ICs replaced, and the number of gates integrated.

You can use the following table to simplify evaluation. It should list the system's current parts and functions as well as those that are ottered in the cell library.

Table 1. Component Identification

1	$\mathbf{2}$					
UNIT NUMBER	DEVICE NUMBER	FUNCTION	$\mathbf{4}$ STANDARD CELL	$\mathbf{5}$ CAN COUNT	$\mathbf{6}$ EQUIV GATES	COMMENTS

Column 1 lists the component designator on your schematic.
Column 2 is the component's normal TTL or equivalent part number.

DESIGN CONSIDERATIONS

Column 3 lists the function of the IC.
Column 4 usually has a yes/no entry. Use the standard cell library functional index in Section 1. Some standard cell candidates may be dependent on the final decision based on pin count or package size.

Column 5 has the number of pins on the device crossing the borders drawn on the logic diagram (do not count V_{CC} and ground pins). These will be the package signal pins required for the standard cell design (inputs, outputs, and bidirectionals). Remember, some devices might not be fully utilized. The unused circuitry can be excluded from the standard cell IC. Evaluate the possible combinations of components and IC package pin counts to determine cost and functionality.

Column 6 lists the number of equivalent 2 -input NAND gates of the standard cell function. This allows the total number of gates required for each partitioning option to be examined.

Use Column 7 to indicate functional features you are considering for standard cell implementation. Tl will consider developing special cells specifically for your design. Contact a TI ASIC product specialist for details.

Critical Path Considerations

As a rule, SystemCell ${ }^{T M}$ standard cells meet or exceed the corresponding HC, AHC, and most bipolar logic switching speeds. However, as with any CMOS semiconductor process, standard cells are sensitive to loading. Critical path requirements should be evaluated for propagation delay specifications and output loading. An example of this is in the propagation delay analysis in this section.

Standard cell implementations also offer a significant advantage over conventional discrete logic designs. Because all the cells are on the same chip, the delays of similar cells are well matched. It is not necessary to calculate performance based on combinations of $\mathrm{min} / \mathrm{max}$ or best/worst assumptions; one calculation assuming minimum speed and another calculation assuming maximum speed will encompass all the possibilities.

Standard Cell Selection

Cell Selection Guidelines

The standard cell library contains over 300 cells, 50 of which are functional equivalents to familiar TTL and CMOS devices. Most SSI cell types are available in several sizes. The different sizes represent variations in physical size, drive capability, power dissipation, and propagation delay. For example, the SN54ASC00 and SN74ASC00 2 -input NAND gate is offered with five options. These are listed in Table 2.

Table 2. Options Available for 2-Input NAND Gate

CELL VERSION	RELATIVE DRIVE CAPABILITY	TYPICAL DELAY ${ }^{\dagger}$ (ns)	TYPICAL PWR DISP ${ }^{\ddagger}$ $C_{\text {pd }}(\mathrm{pF})$	RELATIVE CELL SIZE
NA210LH	1 X	2.0	0.51	1
NA220LH	2 X	1.3	1	1.5
NA230LH	3 X	1.1	1.51	2.0
NA240LH	4 X	1.0	2.06	2.5
NA260LH	6X	0.8	2.98	3.5

[^136]As a first-pass rule of thumb, select the cell according to the "Minimum Cell Rule":
"Use the smallest cell size that provides the required circuit performance."

For the initial layout you should select all 1X cells. Simulations will show where the critical timing paths are located. When timing problems occur during simulation, you can improve your design by using faster and higher fan-out cells in critical locations.

Once you have identified a path failing to meet timing requirements, replace smaller cells with larger cells beginning at the output and working backwards. Additional simulation runs will show when you have solved the problem.

The "Second-Pass Rule of Thumb":
"Replace gates in a critical path with larger ones, starting from the last element in the critical path and working backward."

There are two additional guidelines that may be applied to cell selection: The "One-Third X Rule" and the "TwoNanosecond Rule."

One-Third X Rule

Drive a larger cell (say 6X) with a cell one-third as large (say 2 X). This simple rule yields optimum speed for a string of gates of the same logical function type. It may not be valid for other configurations.

Two-Nanosecond Rule

Pick the smallest cell such that the product of its $\Delta_{\text {tpd }}$ (change in propagation delay time with capacitance) and the driven node capacitance is less than 2 ns , where $\Delta_{\text {tpd }}$ is defined as the average of the typical values shown for $\Delta \mathrm{t} P \mathrm{LH}$ and $\Delta \mathrm{t} P \mathrm{HL}$.

Influence of Capacitive Loading on Cell Choice

When your design includes cells with high drive capabilities, the additional capacitive load represented by these cells and its effect on critical path timing must be accounted for. Although dc fan-out is practically unlimited, CMOS is sensitive to capacitive loading. Evaluate timing requirements carefully and select the best cell option.

Temptations to use large cells throughout your design can result in unnecessarily large input capacitance that imposes unnecessary loading on the driving cell. Use the "First-Pass Rule" explained above.

Propagation Delay Example

In order to estimate the node loading resulting from the metal interconnect capacitance, $\mathrm{C}_{\mathrm{int}}$, use the following formula:

$$
\mathrm{C}_{\mathrm{int}}(\mathrm{pF})=(0.088+0.104 \mathrm{~K})(0.83+0.136 \mathrm{~F})
$$

$K=$ Circuit total gate count (in thousands of equivalent 2 -input NAND gates).
$F=$ Fan-out (number of cell inputs connected to the node).
Tine cnange in propagation delay, $\Delta t_{p d}$, due to interconnect resistance, IR, can be estimated using the following formula:

$$
\Delta t_{p d}[I R](\mathrm{ns})=0.002+(0.1065+0.0018 K) C_{\text {node }}
$$

$\mathrm{C}_{\text {node }}=$ total node capacitance in $\mathrm{pF}=\mathrm{C}_{\text {int }}+\mathrm{C}_{\text {in }}$
$\mathrm{C}_{\text {in }}=$ combined input capacitance of driven cells.

These are estimations. Actual values will depend on chip layout. Additional examples are given in the appropriate workstation "Standard Cell Design Manual."

DESIGN CONSIDERATIONS

Choosing I/O Cells

As part of the evaluation and selection process, input and output buffers are normally selected based on the type of external circuitry that surrounds your standard cell IC. The TI library contains a family of 39 input, output, and bidirectional buffers.

Evaluation of $1 / O$ s for a design begins with an identification of the three main interface parameters common to any design. These parameters are:

Input and output logic levels
Output current requirements
Load characteristics, i.e., capacitance, resistive, inductive.
Take into account the added propagation delay imposed by I/O buffers when evaluating timing requirements for a standard cell implementation. You can make this analysis when the output buffer is selected.

The following paragraphs discuss the different types of buffers available from the cell library. Refer to the cell data sheets for more details.

Input Buffers

There are both TTL-compatible and CMOS-compatible input buffers. "Compatible" means no additional interface circuits are required to provide voltage level translation from standard TTL and CMOS (SN54HC and SN74HC) devices. The threshold voltages for the devices are:

CMOS typical threshold $=2.5 \mathrm{~V}$
TTL typical threshold $=1.3 \mathrm{~V}$
Table 3 lists the variety of input cells available for your design.
Table 3. TTL/CMOS Input Celis Available

CELL NUMBER	THRESHOLD	$\begin{aligned} & \text { INPUT } \\ & \text { LOGIC } \end{aligned}$	FEATURES
'ASC5001	TTL	INVERTING	
'ASC5003	TTL	INVERTING	W/HYSTERESIS
'ASC5005	TTL	INVERTING	W/PULL-UP TAP
'ASC5007	TTL	NONINVERTING	
'ASC5010	TTL	NONINVERTING	W/HYSTERESIS AND PULL-UP TAP
'ASC5013	TTL	NONINVERTING	W/PULL-UP TAP
'ASC5006	CMOS	NONINVERTING	
'ASC5002	CMOS	INVERTING	W/HYSTERESIS
'ASC5000	CMOS	- NONINVERTING	
'ASC5004	CMOS	INVERTING	W/PULL-UP TAP

Bidirectional Cells and Output Buffers

All output buffers, including the output sections of bidirectional buffer cells are compatible with either TTL or CMOS. Open drain outputs can sink from 4 mA to as much as 48 mA . All output cells and output sections of bidirectional cells are noninverting. Tables 4,5, and 6 list the variety of cells available.

Table 4. Output Buffer Availability

LOGIC	OUTPUT BUFFERS	(54/74ASC xxxx) SINK CURRENT CAPACITY					
		4 mA	6 mA	10 mA	24 mA	44 mA	48 mA
NONINVERTING	OPEN DRAIN	'ASC5109	'ASC5105	'ASC5108	-	'ASC5121	'ASC5123
NONINVERTING	PUSH-PULL	'ASC5100	'ASC5103	'ASC5106	'ASC5120	-	-
NONINVERTING	3-STATE ACTIVE	'ASC5110	'ASC5104	'ASC5107	'ASC5125	'ASC5124	-
	LOW-ENABLE	'ASC5111		-			

Table 5. TTL I/O Buffer Availability (Input)

LOGIC		TTL-INPUT I/O BUFFERS	$(54 / 74 S C \times x x x)$ SINK CURRENT CAPACITY				
INPUT	OUTPUT		4 mA	6 mA	10 mA	24 mA	44 mA
NONINVERTING	NONINVERTING	3-STATE OUTPUT	'ASC5207	'ASC5217	'ASC522 ${ }^{\prime}$	'ASC5239	-
INVERTING	NONINVERTING	3-STATE OUTPUT	'ASC5201	-	'ASC5221	-	-
INVERTING	NONINVERTING	W/HYSTERESIS	'ASC5203	-	-	-	'ASC5246

Table 6. CMOS I/O Buffer Availability (Input)

LOGIC		CMOS-INPUT I/O BUFFERS	(54/74ASC xxxx) SINK CURRENT CAPACITY			
INPUT	OUTPUT		4 mA	10 mA	24 mA	44 mA
NONINVERTING	NONINVERTING	3-STATE OUTPUT	'ASC5206	'ASC5226	-	-
INVERTING	NONINVERTING	3-STATE OUTPUT	'ASC5200	'ASC5220	-	-
INVERTING	NONINVERTING	W/HYSTERESIS	'ASC5202	-	-	-
INVERTING	NONINVERTING	W/OPEN DRAIN			-	'ASC5250

Setup and Hold Times (Timing Requirements)

TI supplied standard cell libraries contain specific information regarding the setup and hold time requirements for hardware macro synchronous elements such as registers and flip-flops. Logic simulators, resident on most workstations, perform pre-layout and post-layout evaluations on the integrity of the design for meeting setup and hold times. Any failure to meet the timing requirements specified in the library is flagged on the workstation, permitting you to evaluate solution alternatives. Additional information is provided in the appropriate workstation Standard Cell Design Manual.

Designs submitted to Texas Instruments are evaluated by the design automation system at post-layout prior to device fabrication.

Designing for Testability

Importance of Chip Testability

After functional integrity, the most important design element to incorporate into an integrated circuit is "testability." A common mistake is failing to provide a means for adequate testing of the circuit. Replacing a board with an integrated circuit does not remove the need for control or test points within the IC circuitry. The replacement only compresses the circuitry into a smaller area.

Device testing, field service, and on-board diagnosis are issues that should be considered as you design the IC. Test provisions must be built into the design. The following guidelines will make the design tests more efficient.

DESIGN CONSIDERATIONS

Test Design Guidelines

Avoid circuits that require a large number of clock cycles to initialize. In this case, initialization is the "total" absence of unknown or "don't care" conditions.

Signal paths controlling critical sequential state machines or memory elements should be brought out to external pins whenever possible so they can be monitored and controlled externally. Break up long chains of counters into smaller modules with connecting signal paths brought to external pins.

Avoid asynchronous logic whenever possible. Asynchronous logic can be more difficult to test than synchronous logic.

Provide a way to inhibit and examine free-running oscillators. When an oscillator is used on a chip, provision should be made within the design to disable it so an external signal generator can be used. This will allow verification of oscillator performance and the substitution of clocks to simplify testing the remainder of the chip design.

Support Cells and Their Use

The Tie-Off Cell
All internal inputs to each cell must be accounted for in the netlist used to generate the next level of an ASIC design. The common technique of tying unused inputs to a used input is acceptable; however, the associated capacitance is added to the path being developed. Also, terminating internal cell inputs directly to VCC and ground will potentially expose the internal cell input to electrostatic discharge (ESD) and unbuffered noise impulses. The tie-off cell, 'ASC2325, provides ESD-protected high level and low level logic termination for unused inputs. As the termination is static, the cell can provide reference high and low voltages for a large number of inputs.

The internal schematic of the tie-off cell is shown in Figure 1. In operation, output HI will always be high and output LO will be low. Rules governing use of the tie-off cell are

1. Use only one tie-off cell per schematic-capture block. The netlist signal names, replacing HI and LO, should be unique for each tie-off cell used.
2. Designs using the power-up clear cell should have no more than 100 inputs terminated to each tie-off cell output.

Figure 1. ESD-Protected Tie-Off Cell, 'ASC2325

Power-Up-Clear Cell

The 'ASC2320 power-up-clear cell is used to initialize, preset, or clear bistable elements. As VCC increases upon power-up shown in Figure 2, the power-up-clear output is driven to a low logic level when the "clear initiate" or V1 threshold is reached. As the supply voltage increases further, the "clear release" or CR threshold is reached,

Figure 2. Power-Up-Clear Timing Sequence
and the output returns to a high logic level. This output can be tied to preset or clear lines of counters, registers, flip-flops, latches, or other cells containing bistable functions and serves to initialize them to a known state.

The relationship between $V_{C C}$ rise time and the output pulse width of the power-up-clear signal follows.

VCC RAMPING TIME
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ TO $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

90 ns	45 ns	
1	$\mu \mathrm{~s}$	
1000	$\mu \mathrm{~s}$	500 ns
100 ms	$280 \mu \mathrm{~s}$	
26 ms		

The maximum voltage thresholds are as follows:
Clear Initiate (V1) 2 V
Clear Terminate (V2) 4 V .
If voltage spikes occur on the $V_{C C}$ pin, the power-up-clear cell is guaranteed not to be reactivated unless the

INTERFACING WITH OTHER TECHNOLOGIES

StandardCell ${ }^{\text {TM }}$ Packaging and Pin-Out Guidelines

Package Availability

Select the package that has the minimum number of pins required to implement your design. Fewer signal pins typically mean a lower component cost for the standard cell IC and a higher ratio of integration. Table 7 illustrates

DESIGN CONSIDERATIONS

some of the packaging options now available and planned. Contact your nearest TI office for the latest availability information.

Table 7. Package Options

PACKAGE DESCRIPTION	DESIGNATOR	PINS																	
		8	16	20	24	28	40	44	48	64	68	84	100	108	132	144	164	180	208
Dual-in-line (DIP)	N or (P)	(*)	*	*	*	*	*		*										
	J or (JG)	(*)	*	*	*														
	JD			*	*	*	*		*	*									
Ceramic pin-grid array (PGA)	GB										*	*	*	*	P	*		P	P
Small-outline (SOIC)	D	*	*																
	DW			*	*	*													
Plastic leaded chip carrier (PLCC)	FN			*		*		*			*	*							
Ceramic leadless chip carrier (LCC)	FK			*		*		*			*	*							
Quad plastic flatpack	PQ											P	P		P		P		
Quad ceramic flatpack	HO											P	P		P		P		

* $=$ Available, $\mathrm{P}=$ Planned

NOTE: For packaging needs beyond that shown above, and for applications (military versus commercial) information, contact your local TI field sales representative.

Pin Assignment Techniques

In some cases, the assignment of each package pin to an I/O signal, power, or ground is predetermined by the user. An example would be an application where a standard cell design replaces an existing logic array device. If the pin-out selection is not fixed in advance, certain guidelines are recommended during the selection process.

Select Power and Ground Pins for Minimum Inductance

This will reduce transient voltages. For most chip-carrier-style packages, there is little difference in inductance between package pins. However, for dual-in-line and pin-grid-array packages, there is a significant difference in inductance between some pins. The corner pins of DIP packages may have as much as four times the inductance of center pins.

Do Not Position Power Pins Opposite Each Other

Incorrect insertion of the IC should not reverse power and ground voltages. Proper placement can preclude possible damage to the IC.

Position I/O Clocks and Strobes Near the Ground Pin

All I/O signals that control a path leading to a clock, preset, or clear of a flip-flop, or the enable input of a latch, should be located as near a ground pin as possible. This will minimize the possibility of having a storage element disturbed by ground noise.

Position High Current Pins Near the Appropriate Power Pin

Position outputs with high sink current requirements close to the ground pin(s). Position outputs with high source current requirements near the $V_{C C}$ pin(s). These placements will minimize voltage drops due to chip metalization. Placement of outputs with high sink current requirements take precedence over placement of outputs with high current source requirements, since the noise level tolerated by high level signals is greater.

INTRODUCTION TO TI HARDWARE DESCRIPTION LANGUAGE (HDL)

The Hardware Description Language (HDL) is a hierarchical listing describing each cell and all cell connections that comprise a standard cell design. HDL is used for simulation, test programs, and final chip layout. Understanding HDL and how it is derived can help you find common errors during schematic capture. The standard cell design shown in Figure 3 will be used as an example. The design has been given the name COUNT.SYM. Figure 4 shows the complete HDL listing for the design.

HDL Hierarchy

An HDL listing is divided into blocks, and each block is divided into sections. The first part of an HDL listing is called the Design Block. There is only one Design Block for a given hierarchy of a design. The Design Block contains the name of the overall circuit, in this case COUNT, and lists all input and output connections you have assigned during the schematic capture phase. Global variables are also defined within this block, such as $V_{C C}, V_{D D}$, and GND (ground).

The second section is called the Environment. It is very short and appears only in the Design Block. It names the CMOS technology and the global signals for the circuit.

The second major block within HDL is the Structure Block. It describes the circuit's cells and their interconnections using individual HDL statements for each cell.

Individual HDL Statements

Each HDL statement within a Structure Block consists of three parts: the label, the cell name, and the input/output default net names. As each cell is called and placed into a design, assign a unique component identifier to each cell. This name becomes the "label"' portion of the cell's HDL statement. As the input and output connections are made, the cell's HDL I/O default names are replaced by the net names you have assigned. Labels and net names are limited to 15 characters. Try to keep them short to improve schematic readability.

Refer to Figures 3 and 4 for the following discussion. The DFB2OLH flip-flop, used in the COUNT circuit, is shown in Figure 3 as it appears in the datasheet. The HDL statement for the example circuit's HDL listing is generated by schematic capture and is shown in Figure 4.

Every input and output must be connected to preserve the correct order. The example in Figures 3 and 4 shows that the CLRZ input of the flip-flop FF1 is connected to a net with the name S3; the PREZ input is connected to net PREZ; the D input is connected to net FOZ; the CLK input is connected to net S1; the Q output is connected to net FO; and the QZ output is connected to net FOZ.

Additional HDL statements describe the remaining cells in the same manner. If soft macros are used, additional structure blocks will appear in the HDL listing describing the macro's internal cells and interconnections.

ItSI PATTERN GENERATION AND TDL

Correctness of the logic diagram is verified through the use of the workstation's test simulator. Although each simulator may operate differently, the results are similar. Initial conditions are described, the inputs are stimulated, and after a specified period of time the outputs are measured for expected conditions. If the measured test conditions match expected conditions, the design has passed, and the next set of conditions is applied. This combination-initial conditions, input stimulus, and expected outputs-is called a test pattern.

Test patterns can be made up of many smaller patterns, each describing a different input stimulus. A test pattern may use the previous pattern's internal states and output conditions as its initial conditions before new input

DESIGN CONSIDERATIONS

Figure 3. Circuit Schematic for HDL Example
conditions are applied. This cycle, continuing until all logic states are tested, accommodates testing of counters, registers, and other sequential-type circuitry.

A Test Description Language (TDL) pattern set is created from the workstation's simulation patterns by the TDL extraction program. Your simulation patterns may need to be modified in order to obtain a complete test routine. TI uses the TDL database to program integrated circuit test equipment.

Figure 4. HDL Listing

Some TDL Guidelines

TDL applies input changes at fixed intervals to conditioning test vectors by selectively sequencing inputs to meet setup and hold time requirements. It is not possible to test for asynchronous conditions.

Clock signals should occur after the beginning of a test cycle. The test cycle should be a multiple of the clock rate.
Only inputs, outputs, and nodes brought out to package pins are testable.
Logic levels at internal nodes must be preset by providing specific input conditions.
For more information on test pattern generation, refer to the appropriate workstation design manual, as well as to the workstation operating manuals.

Power Dissipation in Standard Cells

Quiescent Power (P_{q})
Under dc conditions, when an ideal CMOS device is not switching, supply current should not flow. In reality, CMOS devices do have small leakage currents flowing across the reverse-biased junction diodes. This leakage,

DESIGN CONSIDERATIONS

or quiescent current, is due to thermally generated charge carriers near the junction, and it characteristically increases with increasing temperature. For standard cells, the total current is dependent on the total active area of gates and elements used in a design.

Table 8 shows the maximum quiescent current for designs of up to 20,000 gates.
Table 8. Maximum Quiescent Current for CMOS Devices

NO. GATES	iCCQ (nA)	NO. GATES	ICCQ (nA)
500	100	10500	1100
1000	150	11000	1150
2000	250	12000	1250
3000	350	13000	1350
4000	450	14000	1450
5000	550	15000	1550
6000	650	16000	1650
7000	750	17000	1750
8000	850	18000	1850
10000	950	19000	1950

Intracell Transient Power ($\mathbf{P}_{\mathbf{t}}$)

Transient power dissipation occurs due to current flowing when the CMOS transistor is switching logic levels. The magnitude of intracell transient power is a function of cell capacitance (intrinsic and parasitic), as well as transient energy required to change states.

Intercell Transient Power ($\mathbf{P}_{\mathbf{c}}$)

Intercell transient power dissipation is a function of frequency and the cell interconnect scheme. Independent of the frequency of operation it consists of two major elements: the external load capacitance and external parasitic capacitance.

Typically, CMOS draws two orders of magnitude less quiescent power than equivalent LS functions. When the CMOS function is switching, the transient power dissipation is efficiently consumed to achieve only the performance level desired, as dynamic dissipation is directly proportional to the operating frequency. Consider the components above ($\mathrm{P}_{\mathrm{q}}, \mathrm{P}_{\mathrm{t}}$, and P_{C}) when determining total power dissipation for CMOS standard cells.

Latch-Up Protection

There are two parasitic bipolar (NPN and PNP) transistors within all standard CMOS structures. These parasitic transistors begin to conduct when one or more of the PN junctions becomes forward-biased. If the current gain of the parasitic transistors is large a Silicon Controlled Rectifier (SCR) action can be achieved. This produces latchup, which can be destructive if steps are not taken to limit latchup currents to safe values.

The TI CMOS designs, including standard cell inputs and outputs, incorporate guard rings designed to protect against latch-up resulting from exposure to currents with magnitudes up to 400 mA .

Electrostatic Discharge Protection

Electrostatic discharge (ESD) occurs when a build-up of electrostatic charge on a surface "jumps" or "arcs" through a dielectric to another surface. Electrostatic charge is generated and stored on the surfaces of ordinary materials such as common textile garments and plastics. The passage of this charge through an electrostaticsensitive part may result in catastrophic damage or performance degradation of the device.

TI has developed unique circuitry that can identify and control the safe discharge of relatively large electrostatic charges. This circuitry is designed to protect inputs and outputs from the effects of ESD.

The primary protection element for an input is a large lateral NPN transistor, shown in Figure 5, placed at the input pad. It shunts ESD current directly to the ground bus. It is also effective in clamping both negative- and positive-going transient voltage. Diodes to both $V_{C C}$ and ground offer additional output protection as shown in Figure 6.

Observe appropriate precautions when handling CMOS devices.

Figure 5. Schematic of Input Protection

Figure 6. Schematic of Output Protection

General Information

Definitions, Ratings, and Glossary

2

Product Guide

Data Sheets

4

Military

IEEE Symbols

6

Desian Considerations

Electrical characteristics presented in this data book, unless otherwise noted, apply to standard cells prior to interconnect routing and packaging. Characteristics and effects of routing, cell layout, and interconnection of a completed ASIC design are covered in the post-layout simulation software. The capacitive loading effects of the package bond wire(s) and terminals(s) are assumed to be a portion of the 15 pF or 50 pF switching-characteristics load shown for the output and I/O cells. Typically, the packaging bond-wire and terminal capacitance values range from 1 to 2 pF . Consult TI's design-center personnel for further assistance in choosing and specifying ASIC packaging options.

package selection

Outline drawings presented in this section are for both conventional through-hole and surface-mount packages. The following classes of packages are covered.

Dual-in-line (DIP), plastic and ceramic
Pin-grid-array (PGA), ceramic
Small-outline (SO), plastic
Ceramic leadless chip carriers (LCC)
Plastic leaded chip carriers (PLCC)
Ceramic quad flatpacks
These packages are recommended as a representative selection which satisfies a wide range of ASIC applications. TI will review and consider supplying package requirements other than those shown.

ordering instructions

Implementation of semiconductor solutions using SystemCell ${ }^{\text {TM }}$ components normally results in an applicationspecific integrated circuit. Total specifications, including packaging and ordering instructions, are developed as a part of this Design Specification described in Section 1. Contact your TI representative for further information on getting started with an ASIC design.

D plastic "small outline" packages

Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Body dimensions do not include mold flash or protrusion.
B. Mold flash or protrusion shall not exceed $0,15(0.006)$.
C. Leads are within $0,25(0.010)$ radius of true position at maximum material dimension.
D. Lead tips to be planar within $\pm 0,051(0.002)$ exclusive of solder.

D plastic 'small outline" packages

Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Body dimensions do not include mold flash or protrusion.
B. Mold flash or protrusion shall not exceed $0.15(0.006)$.
C. Leads are within 0,25 (0.010) radius of true position at maximum material dimension.
D. Lead tips to be planar within $\pm 0,051(0.002)$ exclusive of solder.

DW plastic "small outline" packages

Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Body dimensions do not include mold flash or protrusion.
B. Mold flash or protrusion shall not exceed 0,15 (0.006).
C. Leads are within $0,25(0.010)$ radius of true position at maximum material dimension.
D. Lead tips to be planar within $\pm 0,051(0.002)$ exclusive of solder.

MECHANICAL DATA

DW plastic "small outline" packages

Each of these "small outline" packages consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Body dimensions do not include mold flash or protrusion.
B. Mold flash or protrusion shall not exceed $0,15(0.006)$.
C. Leads are within $0,25(0.010)$ radius of true position at maximum material dimension.
D. Lead tips to be planar within $\pm 0,051(0.002)$ exclusive of solder.

FK ceramic chip carrier packages

Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid and braze seal. The packages are intended for surface mounting on solder lands on 1,27 (0.050-inch) centers. Terminals require no additional cleaning or processing when used in soldered assembly.

FK package terminal assignments conform to JEDEC Standards 1, 2, and 11.

MECHANICAL DATA

FN plastic chip carrier package

Each of these chip carrier packages consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound withstands soldering temperatures with no deformation, and circuit performance characteristics remain stable when the devices are operated in high-humidity conditions. The packages are intended for surface mounting on solder lands on 1,27 (0.050) centers. Leads require no additional cleaning or processing when used in soldered assembly.

FN PLASTIC CHIP CARRIER
 (28-terminal package used for illustration)

JEDEC OUTLINE	NO. OF TERMINALS	A		B		C	
		MIN	MAX	MIN	MAX	MIN	MAX
MO-047AA	20	9,78	10.03	8,89	9,04	7.87	8,38
		(0.385)	(0.395)	(0.350)	(0.356)	(0.310)	(0.330)
MO-047AB	28	12,32	12,57	11,43	11.58	10.41	10.92
		(0.485)	(0.495)	(0.450)	(0.456)	(0.410)	(0.430)
MO-047AC	44	17.40	17,65	16,51	16,66	15,49	16,00
		(0.685)	(0.695)	(0.650)	(0.656)	(0.610)	(0.630)
MO-047AE	68	25.02	25,27	24,13	24,33	23.11	23.62
		(0.985)	(0.995)	(0.950)	(0.956)	(0.910)	(0.930)
MO-047AF	84	30,10	30,35	29.21	29.41	27.69	28,70
		(1.185)	(1.195)	(1.150)	(1.158)	(1.090)	(1.130)

All dimensions and notes for the specified JEDEC outline apply.
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. Centerline of center pin each side is within $0,10(0.004)$ of package centerline as determined by dimension B.
B. Location of each pin is within $0,127(0.005)$ of true position with respect to center pin on each side.
C. The lead contact points are planar within 0,10 (0.004).

GB pin-grid-array ceramic package

This is a hermetically sealed package with metal cap and gold-plated pins.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

[^137]
MECHANICAL DATA

GB pin-grid-array ceramic package (Form 1)

This is a hermetically sealed package with metal cap and gold-plated pins.

84-PIN GB (FORM 1)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0,25(0.010)$ radius relative to the center of the ceramic

GB pin-grid-array ceramic package (Form 2)

This is a hermetically sealed package with metal cap and gold-plated pins.

84-PIN GB (FORM 2)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0.25(0.010)$ radius relative to the center of the ceramic.

MECHANICAL DATA

GB pin-grid-array ceramic package

This is a hermetically sealed package with metal cap and gold-plated pins.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0,25(0.010)$ radius relative to the center of the ceramic.

GB pin-grid-array ceramic package

This is a hermetically sealed package with metal cap and gold-plated pins.

108-PIN GB

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0,25(0.010)$ radius relative to the center of the ceramic.

MECHANICAL DATA

GB pin-grid-array ceramic package
This is a hermetically sealed package with metal cap and gold-plated pins.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0,25(0.010)$ radius relative to the center of the ceramic.

GB pin-grid-array ceramic package

This is a hermetically sealed package with metal cap and gold-plated pins.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

[^138] $0,25(0.010)$ radius relative to the center of the ceramic.

MECHANICAL DATA

GB pin-grid-array ceramic package

This is a hermetically sealed package with metal cap and gold-plated pins.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0,25(0.010)$ radius relative to the center of the ceramic.

GB pin-grid-array ceramic package

This is a hermetically sealed package with metal cap and gold-plated pins.

208-PIN GB

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0,25(0.010)$ radius relative to the center of the ceramic.

HQ quad flat packages

The members of this family of hermetically sealed quad flat packs have 0.025 -inch-lead spacing and have gull-wing bent leads suitable for surface-mounting. A plastic version is proposed for introduction at a future date.

HQ QUAD FLAT

(84-terminal package shown)

NUMBER OF	A		B	
	MIN	MAX	MIN	MAX
84	22,81	23,42	14,48	18,54
	(0.898)	(0.922)	(0.570)	(0.730)
100	25,35	25,96	18,80	19,30
	(0.998)	(1.022)	(0.740)	(0.760)
132	28,45	29,06	21,90	22,40
	(1.120)	(1.144)	(0.862)	(0.882)
164	35,51	36,12	28,96	29,45
	$(1,398)$	(1.422)	(1.140)	(1.160)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

JD ceramic dual-in-line packages

This is a hermetically sealed ceramic package with a metal cap and side-brazed tin-plated leads.
NOTE: For the 24 -pin packages, the letters JDT must be specified for $7,62(0.300)$ row spacing or JDW for 15,24 (0.600) row spacing.
JD CERAMIC - SIDE BRAZE

300-mil PACKAGES

PIM	20	24
A $+0.51(+0.020)$	7.62	7.62
$-0,25(-0.010)$	(0.300)	(0.300)
B (MAX)	25,65	30.86
	(1.010)	(1.215)
C (NOM)	7.37	7.37
	(0.290)	(0.290)

600-mil PACKAGES

PIM	24	28	40	48	64
A $+0.51(+0.020)$	15,24	15,24	15,24	15,24	22,86
$-0.25(-0.010)$	$(0,600)$	(0.600)	(0.600)	(0.600)	(0.900)
B (MAX)	31,8	36,8	52.1	62.2	82.6
	(1.250)	$(1,450)$	(2.050)	(2.450)	(3.250)
C (NOM)	15.0	15,0	15,0	15.0	22,6
	(0.590)	(0.590)	(0.590)	(0.590)	(0.890)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTE A: Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

MECHANICAL DATA

JG ceramic dual-in-line package

This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and 8-lead frame. Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows on $7,62(0.300)$ centers (see Note A). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Non-shiny tin-plated leads require no additional cleaning or processing when used in soldered assembly.

NOTE A: Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

J ceramic packages

Each of these hermetically sealed dual-in-line packages consists of a ceramic base, ceramic cap, and a lead frame. Hermetic sealing is accomplished with glass. The packages are intended for insertion in mounting-hole rows on $7,62(0.300)$ or $15,24(0.600)$ centers. Once the leads are compressed and inserted sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("brightdipped') leads require no additional cleaning or processing when used in soldered assembly.

NOTE: For the 16-, and 20-pin packages, the letter J is used by itself since these packages are available only in the 7,62 (0.300) row spacing. For the 24-pin packages, if no second letter or row spacing is specified, the package is assumed to have $15,24(0.600)$ row spacing.

NOTE A: Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

MECHANICAL DATA

NOTE A: Each pin centerline is located with $0,25(0.010)$ of its true lungitudinal position.

NOTE A: Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

NOTE A: Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

N plastic packages (including NT and NW dual-in-line packages)

Each of these dual-in-line packages consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remaining stable when operated in high-humidity conditions. The packages are intended for insertion in mounting-hole rows on 7,62(0.300) centers for the N and NT packages and on $15,24(0.600)$ centers for the NW packages. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

NOTE: For the 16- and 20-pin packages, the letter N is used by itself since these packages are available in only one row-spacing width $-7,63(0.300)$. For 24 -pin packages, the letters NT must be specified for $7,62(0.300)$ row spacing or NW for 15,24 (0.600) row spacing. For the 28 -pin thru 48 -pin (NW) packages, if no second letter is specified, the package is assumed to have $15,24(0.600)$ row spacing.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane.

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least $0,51(0.020)$ above seating plane.

24-PIN NT PLASTIC, $0.300-$ INCH ROW SPACING

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.
B. This dimension does not apply for solder-dipped leads.
C. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0,51 (0.020) above seating plane.

MECHANICAL DATA

NOTE A: Each pin centerline is located within $0.25(0.010)$ of its true longitudinal position.

P plastic dual-in-line package

This dual-in-line package consists of a circuit mounted on an 8-lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The package is intended for insertion in mounting-hole rows on $7,62-\mathrm{mm}(0.300)$ centers (see Note A). Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Solder-plated leads require no additional cleaning or processing when used in soldered assembly.

[^139]
TI Sales Offices

ALABAMA: Huntsville (205) 837-7530.
ARIZONA: Phoenix (602) 995-1007; Tucson (602) 624-3276.
CALIFORNIA: Irvine (714) 660-8187;
Sacramento (916) 929-1521; San Dlego (619) 278-9601; Santa Clara (408) 980-9000; Torrance (213) 217-7010;
Woodland Hills (818) 704-7759.
COLORADO: Aurora (303) 368-8000.
CONNECTICUT: Wallingford (203) 269-0074.
FLORIDA: Ft. Lauderdale (305) 973-8502; Maltland (305) 660-4600; Tampa (813) 870-6420.
GEORGIA: Norcross (404) 662-7900.
ILLINOIS: Arlington Heights (312) 640-2925.
INDIANA: Ft. Wayne (219) 424-5174;
Indianapolis (317) 248-8555.
IOWA: Cedar Rapids (319) 395-9550.
MARYLAND: Baltimore (301) 944-8600.
MASSACHUSETTS: Waltham (617) 895-9100
MICHIGAN: Farmington Hills (313) 553-1500
Grand Rapids (616) 957-4200.
MINNESOTA: Eden Prairie (612) 828-9300
MISSOURI: Kansas City (816) 523-2500; St. Louls (314) 569-7600.
NEW JERSEY: Iselin (201) 750-1050.
NEW MEXICO: Albuquerque (505) 345-2555.
NEW YORK: East Syracuse (315) 463-9291;
Endicott (607) 754-3900; Melville (516) 454-6600;
Pittsford (716) 385-6770;
Poughkeepsie (914) 473-2900.
NORTH CAROLINA: Charlotte (704) 527-0930; Raieigh (919) 876-2725.
OHIO: Beachwood (216) 464-6100;
Dayton (513) 258-3877.
OREGON: Beaverton (503) 643-6758.
PENNSYLVANIA: Ft. Washington (215) 643-6450 Coraopolis (412) 771-8550.
PUERTO RICO: Hato Rey (809) 753-8700
TEXAS: Austin (512) 250-7655;
Houston (713) 778-6592; Richardson (214) 680-5082; San Antonlo (512) 496-1779.
UTAH: Murray (801) 266-8972.
VIRGINIA: Fairfax (703) 849-1400.
WASHINGTON: Redmond (206) 881-3080.
WISCONSIN: Brookfield (414) 785-7140.
CANADA: Nepean, Ontario (613) 726-1970;
Richmond Hili, Ontario (416) 884-9181;
St. Laurent, Quebec (514) 335-8392.

TI Regional Technology Centers

CALIFORNIA: Irvine (714) 660-8140, Santa Clara (408) 748-2220.
GEORGIA: Norcross (404) 662-7945.
ILLINOIS: Arlington Heights (312) 640-2909.
MASSACHUSETTS: Waltham (617) 895-9197.
TEXAS: Richardson (214) 680-5066.
CANADA: Nepean, Ontario (613) 726-1970
ENGLAND: Bedford 4423467466
FRANCE: Paris 3339469712
HONG KONG: Hong Kong 85237221223
ITALY: Milan 392253 2451; Rieti 397466941 JAPAN: Tokyo 8134982111
WEST GERMANY: Hannover 49511648021

Customer Response Center

TOLL FREE: (800) 232-3200
OUTSIDE USA: (214) 995-6611
(8:00 a.m.-5:00 p.m. CST)

Texas InsTRUMENTS

TI ASIC Distributors

TI AUTHORIZED ASIC DISTRIBUTORS

 IN USAArrow Electronics
Wyle Laboratories
TI AUTHORIZED ASIC DISTRIBUTORS
IN CANADA
Arrow Electronics Canada

ALABAMA: Huntsville: Arrow (205) 837-6955.
ARIZONA: Tempe: Arrow (602) 968-4800; Phoenix: Wyle (602) 866-2888.

CALIFORNIA: Los Angeles /
Orange County: Arrow (818) 701-7500; (714) 838-5422; Wyle (213) 322-8100; San Fernando Valley: (818) 880-9001,* Irvine: (714) 863-9953*; Sacramento: Arrow (916) 925-7456;
Wyle (916) 638-5282; San Diego: Arrow (619) 565-4800; Wyle (619) 565-9171; San Francisco Bay Area: Arrow (408) 745-6600,* (415) 487-4600; Santa Clara: Wyle (408) 727-2500.*
COLORADO: Aurora: Arrow (303) 696-1111; Thornton: Wyle (303) 457-9953.*
CONNECTICUT: Wallingford: Arrow (203) 265-7741.
FLORIDA: Ft. Lauderdale: Arrow (305) 429-8200; Orlando: Arrow (305) 725-1480;
Tampa: Arrow (813) 576-8995.
GEORGIA: Norcross: Arrow (404) 449-8252.
ILLINOIS: Schaumburg: Arrow (312) 397-3440. INDIANA: Indianapolis: Arrow (317) 243-9353. IOWA: Cedar Rapids: Arrow (319) 395-7230. KANSAS: Kansas City: Arrow (913) 541-9542. MARYLAND: Columbia: Arrow (301) 995-0003. MASSACHUSETTS: Woburn: Arrow (617) 933-8130. MICHIGAN: Detroit: Arrow (313) 971-8220; Grand Rapids: Arrow (616) 243-0912.
MINNESOTA: Edina: Arrow (612) 830-1800. MISSOURI: St. Louis: Arrow (314) 567-6888.
NEW HAMPSHIRE: Manchester: Arrow (603) 668-6968.

NEW JERSEY: Fairfield: Arrow (201) 575-5300; Marlton: (609) 596-8000
NEW MEXICO: Albuquerque: Arrow (505) 243-4566.
NEW YORK: Hauppauge: Arrow (516) 231-1000; Rochester: Arrow (716) 427-0300
Syracuse: Arrow (315) 652-1000; Melville: Arrow (516) 694-6800.*

NORTH CAROLINA: Raleigh: Arrow (919) 876-3132; Winston Salem: (919) 725-8711.

OHIO: Cleveland: Arrow (216) 248-3990;
Columbus: Arrow (614) 885-8362
Dayton: Arrow (513) 435-5563.
OKLAHOMA: Tulsa: Arrow (918) 665-7700.
OREGON: Tigard: Arrow (503) 684-1690;
Wyle (503) 640-6000.
PENNSYLVANIA: Monroeville: Arrow (412) 856-7000; Marlton: (215) 928-1800.

RHODE ISLAND: E. Providence: Arrow (401) 431-0980.

TEXAS: Austin: Arrow (512) 835-4180;
Wyle (512) 834-9957; Dallas: Arrow (214) 380-6464 Wyle (214) 235-9953*; Houston: Arrow (713) 530-4700; Wyle (713) 879-9953
UTAH: Salt Lake City: Arrow (801) 972-0404; Wyle (801) 974-9953.
WASHINGTON: Bellevue: Arrow (206) 643-4800; Wyle (206) 453-8300.
WISCONSIN: Brookfield: Arrow (414) 792-0150.
CANADA: Montreal: Arrow Canada (514) 735-5511; Ottawa: Arrow Canada (613) 226-6903 Quebec Clty: Arrow Canada (418) 687-4231 Toronto: Arrow Canada (416) 661-0220.

TI Worldwide Sales Offices

ALABAMA: Huntsville: 500 Wynn Drive, Suite 514, Huntsville, AL 35805, (205) 837-7530.

ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix, AZ 85021, (602) 995-1007.
CALIFORNIA: Irvine: 17891 Cartwright Rd., Irvine CA 92714, (714) 660-8187; Sacramento: 1900 Poin West Way, Suite 171, Sacramento, CA 95815 (916) 929.1521 ; San Diego: 4333 View Ridge Ave.
Suite B., San Diego, CA 92123, (619) 278-9601; Suite B., San Diego, CA 92123, (619) 278 -900, Santa clara: 5353 Belsy Ross Torrance, CA 90502, (213) 217-7010;
Woodiand Hills: 21220 Erwin St., Woodland Hills CA 91367, (818) 704.7759.
COLORADO: Aurora: 1400 S. Potomac Ave., Suite 101, Aurora, CO 80012, (303) 368-8000,
CONNECTICUT: Wallingford: 9 Barnes Industrial Park Rd., Barnes Industrial Park, Wallingtord, CT 06492, (203) 269-0074.
FLORIDA: Ft. Lauderdale: 2765 N.W. 62nd St., Ft. Lauderdale, FL 33309, (305) 973-8502 Maitland: 2601 Maitland Center Par
Maitland, FL 32751, (305) 660-4600;
Tampa: 5010 W . Kennedy Blvd., Suite 101,
Tampa: FL 33609, (813) 870-6420.
GEORGIA: Norcross: 5515 Spalding Drive, Norcross, GA 30092, (404) 662.7900
ILLINOIS: Arlington Heights: 515 W . Algonquin, Arlington Heights, IL 60005, (312) 640-2925.

INDIANA: Ft. Wayne: 2020 Inwood Dr., Ft. Wayne, IN 46815, (219) 424-5174;
Indianapolis: 2346 S . Lynhurst, Suite J-400
Indianapolis, IN 46241, (317) 248-8555.
IOWA: Cedar Rapids: 373 Collins Rd. NE, Suite 200, Cedar Rapids, IA 52402, (319) 395-9550.
MARYLAND: Baltimore: 1 Rutherford PI.,
7133 Rutherford Rd., Baltimore, MD 21207, (301) 944-8600.

MASSACHUSETTS: Waltham: 504 Totten Pond Rd. Waltham, MA 02154, (617) 895-9100.
MICHIGAN: Farmington Hills: 33737 W. 12 Mile Rd. Farmington Hills, Mi 48018, (313) 553-1500.
MINNESOTA: Eden Prairie: 11000 W. 78th St. Eden Prairie, MN 55344 (612) 828-9300.
MISSOURI: Kansas City: 8080 Ward Pkwy., Kansas City, MO 64114, (816) 523-2500;
St. Louls: 11816 Borman Drive, St. Louis,
MO 63146, (314) 569-7600.
NEW JERSEY: Iselin: $485 E$ U.S. Route 1 South,
NEW MEXICO: Albuquerque: 2820-D Broadbent Pkwy NE, Albuquerque, NM 87107, (505) 345-2555.
NEW YORK: East Syracuse: 6365 Collamer Dr., East Syracuse, NY 13057, (315) 463-9291;
Endicott:' 112 Nanticoke Ave., P.O. Box 618, Endicott, NY 13760, (607) 754-3900; Melville: 1 Huntington Quadrangle, Suite 3C10, P.O. Box 2936, Melville,
NY 11747, (516) 454-6600; Pittsford: 2851 Clover'St Pittsford, NY 14534, (716) 385-6770;
Poughkeepsie: 385 South Rd., Poughkeepsie, NY 12601, (914) 473-2900.
NORTH CAROLINA: Charlotte: 8 Woodlawn Green, Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; Raleigh: 2809 Highwoods Blvd., Suite 100, Raleigh, Raleigh: 2809 Highwoods
NC 27625, (919) 876-2725.
OHIO: Beachwood: 23408 Commerce Park Rd Beachwood, OH 44122, (216) 464-6100; Dayton: Kingsley BIdg., 4124 Linden Ave., Dayton,
OH 45432 , (513) $258-3877$.

OREGON: Beaverton: 6700 SW 105th St., Suite 110 , Beaverton, OR 97005, (503) 643-6758.

PENNSYLVANIA: Ft. Washington: 260 New York Dr. Ft. Washington, PA 19034, (215) 643-6450 Coraopolis: 420 Rouser Rd., 3 Airport Office Park Coraopolis, PA 15108, (412) 771-8550

PUERTO RICO: Hato Rey: Mercantil Plaza Bidg. Suite 505, Hato Rey, PR 00919, (809) 753-8700.
TEXAS: Austin: P.O. Box 2909, Austin, TX 78769 , (512) 250-7655; Richardson: 1001 E. Campbell Rd., Richardson, TX 75080
214) 680-5082; Houston: 9100 Southwest Frwy.
Suite 237, Houston TX $77036,(713) 778-6592$ Suite 237, Houston, TX 77036, (713) 778-6592; San Antonio, TX 78232, (512) 496-1779.

UTAH: Murray: 5201 South Green SE, Suite 200, Murray, UT 84107, (801) 266-8972.
VIRGINIA: Fairfax: 2750 Prosperity, Fairfax, VA 22031, (703) 849.1400.

WASHINGTON: Redmond: 5010 148th NE, BIdg B Suite 107, Redmond, WA 98052, (206) 881-3080.
WISCONSIN: Brookfield: 450 N. Sunny Slope, Suite 150, Brookfield, WI 53005, (414) 785-7140.

CANADA: Nepean: 301 Moodie Drive, Mallorn Center, Nepean, Ontario, Canada, K2H9C4, (613) 726-1970. Richmond Hill: 280 Centre St. E., Richmond Hill L4C1B1, Ontario, Canada (416) 884-9181; St. Laurent: Ville St. Laurent Quebec, 9460 Trans Canada Hwy., St. Laurent, Quebec, Canada H4S1R7, (514) 335-8392.

ARGENTINA: Texas Instruments Argentina S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos Aires, Argentina, $1+394$-3008.
AUSTRALIA (\& NEW ZEALAND): Texas instruments Australia Ltd.: 6-10 Talavera Rd., North Ryde (Sydney), New South Wales, Australia 2113, Melbourne, Victoria, Australia 3004, $3+267-4677$; 171 Philip Highway, Elizabeth, South Australia 5112, $8+255 \cdot 2066$.

AUSTRIA: Texas Instruments Ges.m.b.H.: Industriestrabe B/16, A-2345 Brunn/Gebirge 2236-846210.
BELGIUM: Texas Instruments N.V. Belgium S.A.: Mercure Centre, Raketstraat 100, Rue de la Fusee, 1130 Brussels, Belgium, 2/720.80.00.
BRAZIL: Texas Instruments Electronicos do Brasil Ltda.: Rua Paes Leme, 524.7 Andar Pinheiros, 05424 Sao Paulo, Brazil, 0815-6166

DENMARK: Texas Instruments A/S, Mairelundvej 46E, DK-2730 Herlev, Denmark, 2-91 7400.
FINLAND: Texas instruments Finland OY: Teollisuuskatu 19D 00511 Helsinki 51, Finland, (90) 701-3133.
FRANCE: Texas Instruments France: Headquarters and Prod. Plant, BP 05, 06270 Villeneuve-Loubet, 93) 20-01-01; Paris Office, BP 678 -10 Avenue Morane-Saulnier, 78141 Velizy-Villacoublay (3) $946-97-12$; Lyon Sales Office, L'Oree D'Écully, Batiment B, Chemin de la Forestiere, 69130 Eculiy, (7) 833-04-40; Strasbourg Sales Office, Le Sebastopol 3, Quai Kleber, 67055 Strasbourg Cedex, (88) 22-12-66; Rennes, 23-25 Rue du Puits Mauger, 35100 Rennes, (99) 31-54-86; Toulouse Sales Office, Le Peripole-2, Chemin du Pigeonnier de la Cepiere, Noilly Paradis-146 Rue Paradis, 13006 Marseille, Noilly Paradi
(91) 37-25-30.

GERMANY (Fed. Republic of Germany): Texas Instruments Deutschiand GmbH: Haggertystrasse 1 D-8050 Freising, $8161+80-4591$; Kurfuerstendamm 195/196, D-1000 Berlin 15, $30+882-7365$; Ill, Hage 43/Kibbelstrasse, . 19, D-4300 Essen, 201-24250 Frank 190 . Hemb, 11 D- 2000 $06196+8070$; Hamburgerstrasse 11, D-2000 Hamburg 76, $040+220-154$, Kirchio. Merstrasse 2, $\mathbf{D - 3 0 0}$ Hannover $51,511+648021$; Maybachstrabe 11
D-7302 Ostfildern 2 -Nelingen, $711+547001$: Mixikoring 19, D-2000 Hamburg 60, $40+637+0061$; Postfach 1309, Roonstrasse 16, D-5400 Koblenz, $261+35044$.
HONG KONG (+ PEOPLES REPUBLIC OF CHINA): Texas Instruments Asia Ltd., 8th Floor, World Shipping Ctr., Harbour City, 7 Canton Rd., Kowioon, Hong Kóng, $3+722 \cdot 1223$.
IRELAND: Texas Instruments (Ireland) Limited Brewery Rd., Stitiorgan, County Dublin, Eire, 1831311.

ITALY: Texas Instruments Semiconduttori Italia Spa: Viale Delle Scienze, 1, 02015 Cittaducale (Rieti), italy, 746 694.1; Via Salaria KM 24 (Palazzo Cosma), Monterotondo Scalo (Rome), Italy, $6+9003241$; Via
Europa, 38-44, 20093 Cologno Monzese (Milano), 2 Europa, 38-44, 20093 Cologno Monzese (Milano), 11774545 ; Via J. Barozzi 6, 40100 Bologna, Italy, 5 355851.

JAPAN: Texas Instruments Asia Ltd.: 4F Aoyama Fuji Bldg., 6-12, Kita Aoyama 3-Chome, Minato-ku, Tokyo, Japan 107, 3-498-2111; Osaka Branch, 5F Nissho lwai Bldg., 30 Imabashi 3-Chome,
Branch 7F Daini Toyota West Bidg 10-27, Nagoya Branch, 7F Daini Toyota West Bldg., 10-27, Meieki 450, 52-583-8691.
KOREA: Texas Instruments Supply Co.: 3rd Floor, Samon Bldg., Yuksam-Dong, Gangnam-ku, 135 Seoul, Korea, 2+462-8001.
MEXICO: Texas Instruments de Mexico S.A.: Mexico City, AV Reforma No. 450 - 10th Floor, Mexico, City, AV Reforma No. 450
D.F., $06600,5+514-3003$.
MIDDLE EAST: Texas Instruments: No. 13, 1st Floor Mannai Bldg., Diplomatic Area, P.O. Box 26335, Manama Bahrain, Arabian Gulf, $973+274681$.
NETHERLANDS: Texas instruments Holland B.V., P.O. Box 12995, (Bullewijk) 1100 CB Amsterdam, Zuid-Oost, Holland $20+5602911$.
NORWAY: Texas instruments Norway A/S: PB106, Refstad 131, Osio 1, Norway, (2) 155090.
PHILIPPINES: Texas Instruments Asia Ltd.: 14th Floor, Ba- Lepanto Bidg., 8747 Paseo de Roxas, Makati, Metro Manila, Philippines, $2+8188987$.
PORTUGAL: Texas Instruments Equipamento Electronico (Portugal), Lda.: Rua Eng. Frederico Ulich, 2650 Moreira Da Maia, 4470 Maia, Portugal, 2-948-1003.

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, THAILAND): Texas Instruments Asia Ltd.: 12 Lorong Bakar Batu, Unit 01-02, Kolam Ayer Industrial Estate, Republic of Singapore, 747-2255.
SPAIN: Texas Instruments Espana, S.A.: C/Jose Lazaro Galdiano No. 6, Madrid 16, 1/458.14.58.

SWEDEN: Texas Instruments International Trade Corporation (Sverigefilialen): Box 39103, 10054 Stockholm, Sweden, 8-235480.
SWITZERLAND: Texas Instruments, Inc., Reidstrasse 6, $\mathrm{CH}-8953$ Dietikon (Zuerich) Switzerland 1-740 2220.
TAIWAN: Texas Instruments Supply Co.: Room 903, 205 Tun Hwan Rd., 71 Sung-Kiang Road, Taipei, Taiwan, Republic of China, $2+521-9321$
UNITED KINGDOM: Texas instruments Limited: Manton Lane, Bedford, MK41 7PA, England, 0234 67466; St. James House, Wellington Road North Stockport, SK4 2RT, England, 61 +442-7162.

[^0]: \dagger Integrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975

[^1]: Daisy is a trademark of Daisy Systems Corporation.
 Mentor Graphics is a trademark of Mentor Graphics Corporation.
 FutureNet ${ }^{\oplus}$ is a registered trademark of FutureNet.
 P-Cad is trademark of Personal CAD Systems.

[^2]: \dagger Applies for all except open-drain output cells.

[^3]: Definitions, Ratings, and Glossary
 2

[^4]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^5]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^6]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^7]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^8]: †The equivalent power dissipation capacitance does not include interconnect capacitance.

[^9]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^10]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^11]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^12]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^13]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^14]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^15]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta t_{\text {PLH }} \equiv$ change in tpLH with load capacitance
 Δ tPHL \equiv change in TPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^16]: \dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance
 Δ tPHL \equiv change in tPHL with load capacitance
 $\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^17]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{f} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 ${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
 ${ }^{\text {tpHL }} \equiv$ propagation delay time, high-to-low-level output
 $\Delta t_{P L H} \equiv$ change in t_{PL}. with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
 $\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^18]: \dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{tPLH} \equiv$ change in t PLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
 $\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^19]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
 tPLH \equiv propagation delay time, low-to-high-level output
 $\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
 $\Delta \mathrm{tPLH} \equiv$ change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in T PHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^20]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{t} L \mathrm{LH} \equiv$ change in tPLH with load capacitance
 $\Delta \mathrm{tPHL} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger} \mathrm{T}_{\text {ypical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^21]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^22]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{T}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^23]: * This configuration is nonstable; that is, it will not persist when PREZ or CLRZ returns to its inactive (high) level.

[^24]: tPLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta t_{\text {PLH }} \equiv$ change in $\mathrm{t}_{\mathrm{PLH}}$ with load capacitance
 $\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^25]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^26]: \dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output tpHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance $\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 § CLRZ does not apply for the DFY20LH.

[^27]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tpLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}$ PHL \equiv change in TPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^28]: $H=$ To high output of tie－off cell，$L=$ To low output of tie－off cell，$N C=$ no connection．

[^29]: \dagger^{\dagger} Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tPLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta t_{P L H} \equiv$ change in $\mathrm{t}_{\mathrm{TLH}}$ with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^30]: \ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\S^{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^31]: ${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^32]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $t_{p d} \equiv$ propagation delay time, low-to-high or high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^33]: ${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^34]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^35]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high- or high-to-low-level output
 $\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^36]: † Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^37]: \ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

[^38]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^39]: ${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^40]: *Each bit is shifted to the next more significant position.

[^41]: \dagger The equivalent power dissipation capacitance does not include interconnect capacitance.

[^42]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\Delta t_{p d} \equiv$ change in t_{pd} with load capacitance
 ${ }^{\ddagger}{ }^{\text {Yypical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^43]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^44]: \ddagger The equivalent power dissipation capacitance does not include interconnect capacitance.

[^45]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high- or high-to-low-level output
 ${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
 § Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^46]: \ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\text {pd }} \equiv$ propagation delay time, low-to-high- or high-to-low-level output
 $\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\Delta t_{\text {en }} \equiv$ change in $t_{\text {en }}$ with load capacitance
 $\S^{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTES 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.
 2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2311 (IV212LH).

[^47]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
 $\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
 $\Delta \mathrm{t}_{\mathrm{en}} \equiv$ change in t_{en} with load capacitance
 ${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.
 2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2311 (IV212LH).

[^48]: \ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $t_{p d} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\Delta t_{e n} \equiv$ change in $t_{\text {en }}$ with load capacitance

 NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.
 2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2311.

[^49]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^50]: \dagger The equivalent power dissipation capacitance does not include interconnect capacitance.

[^51]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high or high-to-low-level output
 $\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
 $\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^52]: ${ }^{\dagger}$ When one or both output controls are high, the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected. a. . . $\mathrm{h}=$ the level of the steady-state input at inputs A through H , respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.
 See explanation of Function Tables in Section 1.

[^53]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
 $\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
 $\Delta \mathrm{t}_{\mathrm{en}} \equiv$ change in t_{en} with load capacitance
 ${ }^{\S}{ }_{T y p i c a l}$ values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.
 2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2407.

[^54]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
 $\Delta t_{p d} \equiv$ change in t_{pd} with load capacitance
 $\Delta t_{e n} \equiv$ change in $t_{e n}$ with load capacitance
 ${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Actual performance can be evaluated at post-layout simulation.
 2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2407.

[^55]: ${ }^{\ddagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
 ${ }^{\S} \mathrm{T}_{\text {ypical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^56]: ${ }^{\ddagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $t_{\text {pd }} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 tPHL \equiv propagation delay time, high-to-low level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Actual performance can be evaluated at post-layout simulation.

[^57]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^58]: \ddagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\S^{\$}$ ypical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^59]: ${ }^{\dagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^60]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{I} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 ${ }^{\ddagger}{ }^{T}$ ypical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^61]: ${ }^{\ddagger}$ The equivalent power dissipation capacitance does not include interconnect capacitance.

[^62]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\text {pd }} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\mathrm{t}_{\mathrm{en}} \equiv$ enable time, low-to-high-level or high-to-low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\Delta \mathrm{t}_{\text {en }} \equiv$ change in $\mathrm{t}_{\text {en }}$ with load capacitance
 § Typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Actual performance can be evaluated at post-layout simulation.
 2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2407.

[^63]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\text {pd }} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 tpHL \equiv propagation delay time, high-to-low level output
 $t_{\text {en }} \equiv$ enable time, high-impedance state to high- or low-level output
 $\Delta t_{p d} \equiv$ change in $t_{p d}$ with load capacitance
 $\Delta \mathrm{t}_{\mathrm{en}} \equiv$ change in t_{en} with load capacitance
 ${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Actual performance can be evaluated at post-layout simulation.
 2. Enable and delta-enable times are measured using the conditions specified for the 'ASC2407.

[^64]: Label: S598XLH DA,DB,DC,DD,DE,DF,DG,DH,RCK,SCK,SCKENZ,SLDZ,SCLRZ,SERO,SER1,DS,GZ,QA, QB, QC, QD, QE, QF,QG,QH,QHP;

[^65]: ${ }^{\ddagger}$ The equivalent power disssipation capacitance does not include interconnect capacitance.

[^66]: These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^67]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high-level or high-to-low-level output
 $\mathrm{t}_{\mathrm{en}} \equiv$ enable time, high-impedance state to low- or high-logic-level output
 $\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
 $\Delta \mathrm{t}_{\text {en }} \equiv$ change in t_{e} with load capacitance
 ${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 NOTES: 1. These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.
 2. Enable and delta-enable times are measured using the conditions specified for the SN54ASC2311 and SN74ASC2311 (IV222LH).

[^68]: \ddagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\text {pd }} \equiv$ propagation delay time, low-to-high or high-to-low output
 $\Delta \mathrm{t}_{\mathrm{pd}} \equiv$ change in t_{pd} with load capacitance
 ${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 NOTE 1: These switching characteristics are simulations of the software macro cell using interconnect capacitance values for an array design having 2,000 gates. Post-layout simulation uses actual interconnect capacitance values.

[^69]: \ddagger Does not include interconnect capacitance.

[^70]:
 ${ }^{\text {tPLH }}{ }^{\prime} \equiv$ propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{tPLH} \equiv$ change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
 $\ddagger{ }^{\text {Typical values are }} V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^71]: \dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLi with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^72]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$
 tPLH \equiv propagation delay time, low-to-high-level output
 ${ }^{\mathrm{t}} \mathrm{PHL} \equiv$ propagation delay time, high-to-low-level output
 $\Delta t_{P L H} \equiv$ change in $\mathrm{t}_{\mathrm{PL}} \mathrm{H}$ with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PH}} \mathrm{E} \equiv$ change in $\mathrm{t} P H \mathrm{~L}$ with load capacitance
 \ddagger Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^73]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tPZL \equiv output enable time to low level
 tPHZ \equiv output disable time from high level
 tpLZ \equiv output disable time from low level
 $\Delta \mathrm{t}$ LH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
 $\Delta \mathrm{tPZH} \equiv$ change in tPZH with load capacitance
 $\Delta \mathrm{tPZL} \equiv$ change in tPZL with load capacitance
 ${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^74]: \dagger Propagation delay times are measured from the 44% point of V_{i} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tPLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta t_{\text {PLH }} \equiv$ change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
 ${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^75]: \dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. ${ }^{\mathrm{t}} \mathrm{PLH} \equiv$ propagation delay time, low-to-high-level output tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 \ddagger Typical values are $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^76]: \dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 ${ }^{\mathrm{t}} \mathrm{PLH} \equiv$ propagation delay time, low-to-high-level output
 $\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
 $\mathrm{t}_{\mathrm{WQ}} \equiv$ output pulse duration
 $\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^77]: ${ }^{\dagger}$ Propagation delay times are measured from 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 ${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
 $\Delta \mathrm{t}$ LLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 \ddagger Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^78]: ${ }^{\dagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^79]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tpLH \equiv change in tpLH with load capacitance
 Δ tphi \equiv chanae in toul with Inad ranaritanne
 ${ }^{\ddagger}{ }^{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^80]: \dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 $\mathrm{t}_{\mathrm{pd}} \equiv$ propagation delay time, low-to-high- or high-to-low-level output
 ${ }^{\mathrm{t} P H L} \equiv$ propagation delay time, high-to-low-level output
 Δt PLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^81]: ${ }^{\dagger}$ Propagation delay times are measured from the 50% point of V_{1} to the 50% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{tPLH} \equiv$ change in tPLH with capacitance
 $\Delta \mathrm{tPHL}^{2} \equiv$ change in $\mathrm{TPHL}^{\text {w }}$ with capacitance
 ${ }^{\ddagger}{ }^{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^82]: *On resistance $\approx 150 \Omega$

[^83]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^84]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{t}$ PLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^85]: ${ }^{\dagger}$ Propagation delay times are measured from 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance
 $\mathrm{AtPHL}^{\mathrm{t}} \equiv$ change in t PHL with load capacitance
 ${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^86]: ${ }^{\dagger}$ Propagation delay times are measured from 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 $\Delta t_{\text {PLH }} \equiv$ change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in TPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^87]: \ddagger Propagation delay times are measured from the 50% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in t PHL with load capacitance
 $\S_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^88]: ${ }^{\ddagger}$ Propagation delay times are measured from the 50% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t} H \mathrm{HL} \equiv$ change in t PHL with load capacitance
 $\S_{\text {Typical values are at }} \mathrm{V}_{\mathrm{C}} \mathrm{C}=\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^89]: \ddagger Propagation delay times are measured from the 1.3 V point of $\mathrm{V}_{\mathrm{l}}(0$ to 3 V$)$ to the 44% point of V_{O} with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output tpHL \equiv propagation delay time, high-to-low-level output Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
 ${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^90]: with potentials ranging up to 4 kilovolts. Guard-ring structures are employed that provide current management techniques for the cell to recover from exposure to high currents of up to 400 milliamperes, thereby negating most common sources that can produce a latch-up condition.
 These output cells have been designed to provide low-impedance drive levels for both the high- and low-logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to VCC will cause current flow above that recommended for normal opeation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.

[^91]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $V_{O}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPZL \equiv output enable time to low level
 tpLZ \equiv output disable time from low level
 Δ tPZL \equiv change in tPZL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^92]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 n s(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tpLZ \equiv output disable time from low level
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^93]: ${ }^{T}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.

 $$
 \begin{array}{ll}
 \mathrm{tPLH} \equiv \text { propagation delay time, low-to-high-level output } & \Delta \mathrm{tPLH} \equiv \text { change in } \mathrm{tPLH} \text { with load capacitance } \\
 \mathrm{t}_{\mathrm{PHL}} \equiv \text { propagation delay time, high-to-low-level output } & \Delta \mathrm{tPHL} \equiv \text { change in } \mathrm{tPHL} \text { with load capacitance } \\
 \mathrm{tPZH} \equiv \text { output enable time to high level } & \Delta \mathrm{tPZH} \equiv \text { change in tPZH with load capacitance } \\
 \mathrm{t}_{\mathrm{P}} \equiv \text { output enable time to low level } & \Delta \mathrm{tPZL} \equiv \text { change in } \mathrm{t} P Z \mathrm{w} \text { with load capacitance }
 \end{array}
 $$

 ${ }^{\text {tPHZ }} \equiv$ output disable time from high level
 tPLZ \equiv output disable time from low level
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^94]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 n s(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPZL \equiv output enable time to low level
 tPLZ \equiv output disable time from low level
 Δt PZL \equiv change in tPZL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^95]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $V_{O}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPZL \equiv output enable time to low level
 ${ }^{t} P L Z \equiv$ output disable time from low level
 $\Delta t_{P Z L} \equiv$ change in $\mathrm{tPZL}^{\text {with }}$ load capacitance
 $\ddagger_{\text {Typical values are }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^96]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $V_{O}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPZL \equiv output enable time to low level
 tPLZ \equiv output disable time from low level
 Δ tPZL \equiv change in tPZL with load capacitance
 ${ }^{\ddagger} \mathrm{T}_{\text {ypical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^97]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at 50% point of V_{O}.
 tPZL \equiv output enable time to low level
 ${ }^{t} P L Z \equiv$ output disable time from low level
 $\Delta t P Z L \equiv$ change in tPZL with load capacitance
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^98]: logic-level states. As a result, passive resistance has been omitted in series with the output transistors. Shorting a high-level output to ground or a low-level output to V_{CC} will cause current flow in excess of that recommended for normal operation. Therefore, it is recommended that outputs not be shorted directly to ground or V_{CC}.
 The dynamic drive capability of each output is specified by the delta propagation delay time parameter included with the switching characteristics. The delta propagation delay times provide a means for making direct comparisons of the various output responses with change in capacitive loading.

 The SN54ASC5124 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ASC5124 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

[^99]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tpZL \equiv output enable time to low level
 tPHZ \equiv output disable time from high level
 tpLZ \equiv output disable time from low level
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in t PHL with load capacitance
 $\Delta t_{P Z H} \equiv$ change in $\mathrm{t}_{\mathrm{P}} \mathrm{ZH}$ with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PZL}} \equiv$ change in tPZL with load capacitance

[^100]: ${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.

[^101]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{ρ} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tPZL \equiv output enable time to low level
 tPHZ \equiv output disable time from high level
 tpLZ \equiv output disable time from low level
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta t \mathrm{PHL} \equiv$ change in tPHL with load capacitance
 $\Delta t P Z H \equiv$ change in $\mathrm{T} P Z \mathrm{H}$ with load capacitance
 $\Delta \mathrm{tPZL} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance

[^102]: ${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.

[^103]: \dagger Propagation delay times are measured from the 44% point of V_{ρ} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPLH \equiv propagation delay time, low-to-high-level output $\quad \Delta t$ PLH \equiv change in tPLH with load capacitance
 tpHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
 tPZH \equiv output enable time to high level $\Delta t_{P Z H} \equiv$ change in $\mathrm{t}_{\mathrm{P} Z \mathrm{H}}$ with load capacitance $\Delta \mathrm{tPZL} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance
 tPZL \equiv output enable time to low level
 \ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \S Input propagation delay times are measured from the 1.3 V point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}$.

[^104]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{ρ} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. for CMOS loads, the times end at the 50% point of V_{O}.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tPZL \equiv output enable time to low level
 tPHZ \equiv output disable time from high level
 tPLZ \equiv output disable time from low level
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 $\Delta t_{P L H} \equiv$ change in TPLH with load capacitance
 $\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance $\Delta \mathrm{t}_{\mathrm{P} Z \mathrm{H}} \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PZL}} \equiv$ change in $\mathrm{t} P Z \mathrm{~L}$ with load capacitance

[^105]: ${ }^{\dagger}$ Total input capacitance for Y 1 is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.

[^106]: ${ }^{T}$ Propagation delay times are measured frorn the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end AT $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 ${ }^{\mathrm{t} P Z H} \equiv$ output enable time to high level
 ${ }^{\text {t P PLL }} \equiv$ output enable time to low level

 $$
 \begin{aligned}
 & \Delta t_{P L H} \equiv \text { change in } t_{P L H} \text { with load capacitance } \\
 & \Delta t_{P H L} \equiv \text { change in } t_{P H L} \text { with load capacitance } \\
 & \Delta t_{P Z H} \equiv \text { change in } t_{P Z H} \text { with load capacitance } \\
 & \Delta t_{P Z L} \equiv \text { change in } t_{P Z L} \text { with load capacitance }
 \end{aligned}
 $$

[^107]: ${ }^{\dagger}$ Total input capaciatance for the $Y 1$ input is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.

[^108]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tPZL \equiv output enable time to low level
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

 $$
 \begin{aligned}
 & \Delta \mathrm{tPLH} \equiv \text { change in tpLH with load capacitance } \\
 & \Delta \mathrm{t}_{\mathrm{PHL}} \equiv \text { change in } \mathrm{t} \mathrm{PHL} \text { with load capacitance } \\
 & \Delta t_{P Z H} \equiv \text { change in } t_{P Z H} \text { with load capacitance } \\
 & \Delta \mathrm{t} P Z \mathrm{~L} \equiv \text { change in } \mathrm{t} P Z \mathrm{~L} \text { with load capacitance }
 \end{aligned}
 $$

[^109]: ${ }^{\dagger}$ Total input capacitance is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.
 NOTE 1: These limits apply when all other outputs are open.

[^110]: ${ }^{\dagger}$ Total input capacitance for Y 1 is dependent on the package type and is equal to the sum of package capacitance and intrinsic input capacitance.

[^111]: \ddagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
 tpLH \equiv propagation delay time, low-to-high-level output
 ${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 $t_{P Z L} \equiv$ output enable time to low level
 ${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^112]: ' Propagation delay times are measured trom the 44% point of V_{1} with $t_{r}=t_{f}=3 n s(10 \%$ and $y 0 \%)$. ror 11 L ioads, the umes ena at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at 50% point of V_{O}.
 tpLH \equiv propagation delay time, low-to-high-level output
 ${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance
 tPZH \equiv output enable time to high level
 $\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
 Δ tPZH \equiv change in tPZH with load capacitance
 tPZL \equiv output enable time to low level
 $\Delta \mathrm{t} P \mathrm{LL} \equiv$ change in TPZL with load capacitance
 tPHZ \equiv output disable time from high level
 tpLZ \equiv output disable time from low level
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^113]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
 $t_{P L H} \equiv$ propagation delay time, low-to-high-level output
 $\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in t PHL with load capacitance
 $\Delta t P Z H \equiv$ change in tPZH with load capacitance
 $\Delta t_{P Z L} \equiv$ change in $\mathrm{t}_{\mathrm{P}} \mathrm{PL}$ with load capacitance
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \S Input propagation delay times are measured from the 50% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=4 \mathrm{~ns}$.

[^114]: \ddagger Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$.
 ${ }^{\text {tpLH }} \equiv$ propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tPZL \equiv output enable time to low level
 ${ }^{\S}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^115]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tPLH \equiv propagation delay time, low-to-high-level output $\quad \Delta \mathrm{tPLH} \equiv$ change in tpLH with load capacitance
 tPHL \equiv propagation delay time, high-to-low-level output
 tPZH \equiv output enable time to high level
 tPZL \equiv output enable time to low level
 tPHZ \equiv output disable time from high level
 tPLZ \equiv output disable time from low level
 ${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 $\Delta \mathrm{t}$ PHL \equiv change in tPHL with load capacitance
 $\Delta \mathrm{t} P \mathrm{H} H \equiv$ change in $\mathrm{t} P Z \mathrm{H}$ with load capacitance
 $\Delta \mathrm{tPZL} \equiv$ change in tPZL with load capacitance

[^116]: ' Propagation delay times are measured from the 44% point of V_{ρ} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For TTL loads, the times end at $\mathrm{V}_{\mathrm{O}}=1.3 \mathrm{~V}$. For CMOS loads, the times end at the 50% point of V_{O}.
 tpLH \equiv propagation delay time, low-to-high-level output
 ${ }^{\text {tPHL }} \equiv$ propagation delay time, high-to-low-level output
 ${ }^{\mathrm{t} P Z H} \equiv$ output enable time to high level
 ${ }^{\text {tPZL }} \equiv$ output enable time to low level
 $\mathrm{t} \mathrm{PHZ} \equiv$ output disable time from high level
 ${ }^{\text {t }}$ PLZ \equiv output disable time from low level
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 $\Delta t_{P L H} \equiv$ change in tPLH with load capacitance
 $\Delta \mathrm{t}$ PHL \equiv change in t PHL with load capacitance
 $\Delta t_{P Z H} \equiv$ change in $\mathrm{t}_{\mathrm{P}} \mathrm{ZH}$ with load capacitance
 $\Delta t_{P Z L} \equiv$ change in tPZL with load capacitance

[^117]: \dagger Pronacation delay times are meacired from the $\Delta \Delta \%$ noint nf V : with +

[^118]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. For CMOS loads, the times end at the 50% point of V_{O}.
 ${ }^{\text {t PLH }} \equiv$ propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 ${ }^{\text {t P Z }}$ H \equiv output enable time to high level
 tPZL \equiv output enable time to low level
 Δ tPLH \equiv change in tPLH with load capacitance $\Delta \mathrm{t}$ PHL \equiv change in t PHL with load capacitance $\Delta \mathrm{t} Z \mathrm{H}=\mathrm{change}$ in $\mathrm{t} P \mathrm{H} H$ with load capacitance $\Delta t_{P Z L} \equiv$ change in $\mathrm{t}_{\mathrm{P}} \mathrm{ZL}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \S Input propagation delay times are measured from the 1.3 V point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=2 \mathrm{~ns}$.

[^119]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output Δ tPLH \equiv change in tpLH with load capacitance $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in TPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^120]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tpLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{TPHL}^{\text {w }}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^121]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in tpLH with load capacitance
 $\Delta \mathrm{tPHL}^{2} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^122]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output tPHL \equiv propagation delay time, high-to-low-level output $\Delta \mathrm{t} L \mathrm{LH} \equiv$ change in tpLH with load capacitance
 Δ tPHL \equiv change in $\mathrm{t}_{\text {PHL }}$ with load capacitance
 ${ }^{\ddagger}{ }^{T}$ ypical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^123]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n s(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in TPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^124]:
 ${ }^{\text {tPLH }} \equiv$ propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{t}_{\mathrm{PLH}} \equiv$ change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger}{ }_{\text {Typical }}$ values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^125]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{I} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output
 ${ }^{\mathrm{tPHL}} \equiv$ propagation delay time, high-to-low-level output
 $\Delta \mathrm{t}$ LLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{T}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^126]: \dagger Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output tPHL \equiv propagation delay time, high-to-low-level output Δ tPLH \equiv change in tPLH with load capacitance $\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^127]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output Δ tPLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t} P \mathrm{HL} \equiv$ change in tPHL with load capacitance
 \ddagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^128]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tpLH \equiv propagation delay time, low-to-high-level output tPHL \equiv propagation delay time, high-to-low-level output Δ tPLH \equiv change in tpLH with load capacitance
 \triangle tPHL \equiv change in tPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

[^129]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{tPHL} \equiv$ change in tPHL with load capacitance
 $\ddagger_{\text {Typical values are at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \S The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the Q output must be added to the Δt for the $Q Z$ output when calculating delays from the reset inputs to $Q Z$.
 IThe internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the $Q Z$ output must be added to the Δt for the Q output when calculating delays from the set inputs to Q.

[^130]: ${ }^{\dagger}$ Propagation delay times are measured from the 44% point of V_{1} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 $\Delta \mathrm{t}$ PLH \equiv change in tpLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 \S The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the Q output must be added to the $\Delta \mathrm{t}$ for the QZ output when calculating delays from the reset inputs to QZ .
 IThe internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the $Q Z$ output must be added to the Δt for the Q output when calculating delays from the set inputs to Q .

[^131]: \dagger^{+}Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tPHL \equiv propagation delay time, high-to-low-level output
 Δt PLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in $\mathrm{t}_{\mathrm{PHL}}$ with load capacitance
 \ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
 \S The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the QZ output must be added to the Δt for the Q output when calculating delays from the reset inputs to Q .
 \llbracket The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the Q output must be added to the Δt for the $Q Z$ output when caclulating delays from the set inputs to $Q Z$.

[^132]: \dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tPLH \equiv propagation delay time, low-to-high-level output
 $\mathrm{t}_{\mathrm{PHL}} \equiv$ propagation delay time, high-to-low-level output
 Δ tPLH \equiv change in tPLH with load capacitance
 $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance

 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \S The internal cross coupling of gates that make up the latch is not buffered from the Q and $Q Z$ outputs. Therefore, the Δt for the $Q Z$ output must be added to the Δt for the Q output when calculating delays from the reset inputs to Q .
 T The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the Q output must be added to the Δt for the $Q Z$ output when calculating delays from the set inputs to $Q Z$.

[^133]: \dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 n(10 \%$ and $90 \%)$. tPLH \equiv propagation delay time, low-to-high-level output tPHL \equiv propagation delay time, high-to-low-level output $\Delta t_{P L H} \equiv$ change in tPLH with load capacitance $\Delta \mathrm{t}_{\mathrm{PHL}} \equiv$ change in tPHL with load capacitance
 ${ }^{\ddagger}$ Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 output must be added to the Δt for the Q output when calculating delays from the reset inputs to Q .
 \mathbb{T} The internal cross coupling of gates that make up the latch is not buffered from the Q and QZ outputs. Therefore, the Δt for the Q output must be added to the $\Delta \mathrm{t}$ for the OZ output when calculating delays from the set inputs to QZ .

[^134]: \dagger Propagation delay times are measured from the 44% point of V_{l} to the 44% point of V_{O} with $t_{r}=t_{f}=3 \mathrm{~ns}(10 \%$ and $90 \%)$.
 tpLH \equiv propagation delay time, low-to-high-level output
 tpHL \equiv propagation delay time, high-to-low-level output
 ${ }^{t} P Z H \equiv$ output enable time to high level
 ${ }^{\text {tPZL }} \equiv$ output enable time to low level
 $\mathrm{t}_{\mathrm{PHZ}} \equiv$ output disable time from high level
 tPLZ \equiv output disable time from low level
 \ddagger Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Δ tPLH \equiv change in TPLH with load capacitance
 $\Delta \mathrm{t} \mathrm{PHL} \equiv$ change in tPHL with load capacitance
 $\Delta \mathrm{tPZH} \equiv$ change in $\Delta \mathrm{t} P Z \mathrm{H}$ with load capacitance
 $\Delta t P Z L \equiv$ change in $\triangle t P Z L$ with load capacitance

[^135]: *Not all of the general qualifying symbols have been used in TI's CMOS and TTL data books, but they are included here for the sake of completeness.

[^136]: ${ }^{\dagger}\left(t_{\text {PLH }}+\right.$ tpHL $) / 2, C_{L}=1 \mathrm{pF}$
 ${ }^{\ddagger}$ Equivalent power dissipation capacitance

[^137]: ${ }^{\dagger}$ Index mark may appear on top or bottom depending on package vendor.
 \ddagger Not featured on single level ceramic packages.
 NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within $0,25(0.010)$ radius relative to the center of the ceramic.

[^138]: NOTE A: Pins are located within $0,13(0.005)$ radius of true position relative to each other at maximum material condition and within

[^139]: NOTE A: Each pin centerline is located within $0,25(0.010)$ of its true longitudinal position.

