The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

The Bipolar Microcomputer Components Data Book

for

Design Engineers

DECEMBER 1977

The Bipolar Microcomputer Components Data Book

for Design Engineers

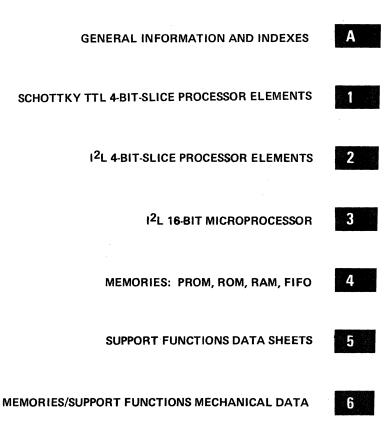
DECEMBER 1977

TEXAS INSTRUMENTS

LCC4270A 74170-127-HS

Printed in U.S.A.

IMPORTANT NOTICES


Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Second Printing, December 1977

Copyright © 1977 Texas Instruments Incorporated

THE BIPOLAR MICROCOMPUTER COMPONENTS DATA BOOK

FUNCTIONAL INDEX SELECTION GUIDE 7

TI worldwide sales offices

ALABAMA

4717 University Drive, Suite 101 Huntsville, Alabama 35805 205-837-7530

ARIZONA

P.O. Box 35160 8102 N 23rd Ave., Suite A Phoenix, Arizona 85069 602-249-1313

CALIFORNIA

3186J Airway Costa Mesa, California 92626 714-540-7311

831 S. Douglas St. El Segundo, California 90245 213-973-2571

7827 Convoy Ct., Suite 412 San Diego, California 92111 714-279-2622

P.O. Box 9064 776 Palomar Avenue Sunnyvale, California 94086 408-732-1840

COLORADO

9725 E. Hampden St., Suite 301 Denver, Colorado 80231 303-751-1780

CONNECTICUT

2405 Whitney Avenue Hamden, Connecticut 06518 203-281-0074

FLORIDA

4600 West Commercial Blvd. Fort Lauderdale, Florida 33319 305-733-3300

1850 Lee Road, Suite 115 Winter Park, Florida 32789 305-644-3535

ARGENTINA

Texas Instruments Argentina S.A.I.C.F.

Km. 25, 5 Ruta Panamericana Don Torcuato C.C. Box 2296 -- Correo Central Buenos Aires, Argentina 748-1141

ASIA

Texas Instruments Asia Ltd

Aoyama Tower Bldg, 4, 5, & 6F 24-15 Minami Aoyama 2-Chome, Minato-Ku, Tokyo, Japan 107 03-402-6171

> 902, Asian House 1, Hennessy Road Hong Kong 5/279041

Room 507, Chia Hsin Bldg. 96 Chung Shan North Road, Sec. 2 Taiper, Taiwan

P.O. Box 2093 990 Bendemeer Rd. Singapore 1, Republic of Singapore

AUSTRALIA

Texas Instruments Australia Ltd.

Unit 1A, 9 Byfield Street, P.O. Box 106 North Ryde, N.S.W. 2113 Sydney, Australia 887.1122

AUSTRIA

Texas Instruments Ges. M.B.H. Rennweg 17

Rennweg 17 1030 Wien, Austria 724-186

BELGIUM

Texas Instruments Belgium SA

Avenue Edouard Lacomble 21 B-1040 Brussels, Belgium 733-9623

11-29-77

ILLINOIS

515 W. Algonquin Arlington Heights, Illinois 60005 312-640-3000

INDIANA

2020 Inwood Drive Ft. Wayne, Indiana 46805 219-424-5174

2346 S. Lynhurst Dr., Suite 101 Indianapolis, Indiana 46241 317-248-8555

MARYLAND

6024 Jamina Downs Columbia, Maryland 21045 301-997-4755

MASSACHUSETTS 504 Totten Pond Road

Waltham, Mass. 02154 617-890-7400

MICHIGAN

Central Park Plaza 26211 Central Park Blvd., Suite 215 Southfield, Michigan 48076 313-353-0830

MINNESOTA

A.I.C. Bldg., Suite 202 7615 Metro Blvd. Edina, Minn. 55435 612-835-2900

MISSOURI

8080 Ward Parkway Kansas City, Missouri 64114 816-523-2500

NEW JERSEY

1245 Westfield Ave. Clark, New Jersey 07066 201-574-9800

BRAZIL

Texas Instrumentos Electronicos do Brasil Ltda.

Rua Padre Pereira Andrade, 591 05469 Sao Paulo, SP, Brasil 260-6347 & 260-5710

CANADA

Texas Instruments Incorporated

945 McCaffery Street St. Laurent H4T1N3 Quebec, Canada 514-341-3232

41 Shelley Road Richmond Hill (Toronto) LYC564 Ontario, Canada 416-884-9181

DENMARK

Texas Instruments A/S

Marielundvej 46 D DK-2730 Herlev, Denmark 917 400

FINLAND

Texas Instruments Finland OY Freesenkatu 6 P.O. Box 917 00101 Helsinki 10, Finland 40 83 00

FRANCE

Texas Instruments France La Boursidiere, Bloc A, R.N. 186 92350 Le Plessis Robinson, France (1) 630 23 43

> 31, Quai Rambaud 69002 Lyon, France (78) 37 35 85

9, Place de Bretange 35000 Rennes, France (99) 79 54 81

L'Autan 100, Alle de Barcelone 31500 Toulouse, France (61) 21 30 32

> 1, Av. de la Chartreuse 38240 Meylan, France (76) 90 45 74

NEW MEXICO

OREGON

10700 S.W. Beaverton Hwy. Suite 11 Beaverton, Oregon 97005 503-643-6759

PENNSYLVANIA

275 Commerce Drive, Suite 300 Fort Washington, Pa. 19034 215-643-6450

TEXAS

6000 Denton Drive P.O. Box 5012, M/S 366 Dallas, Texas 75222 214-238-6805

9000 S. W. Freeway, Suite 400 Houston, Texas 77036 713-776-6511

VIRGINIA

Crystal Square 4 1745 Jefferson Davis Hwy., Suite 600 Arlington, Virginia 22202 703-979-9650

> 3930 Beulah Rd. Richmond, Virginia 23234 804-275-8148

> > WASHINGTON

700 112th N.E., Suite 10

ue, Washington 206-455-3480

NETHERLANDS

Texas Instruments Holland B.V

Laan Van de Helende Meesters No. 421

Amstelveen, Holland 47 3391

NORWAY

Texas Instruments Norway A/S

Ryensvingen 15 Oslo 6, Norway (02) 68 94 85

PORTUGAL

Texas Instruments Equipamento

Electronico I DA

Rua Eng. Frederico Unich 2650 Morena Da Maia, Portugal 948/1003

SPAIN

Texas Instruments Espana S.A

Calle Mallorca 272-276

12 Barcelona 12, Spain 2 15 29 50

SWEDEN

Texas Instruments International Trade Corporation (Sverigefilialen)

Fack

s

Norra Hannvagen 3 · 100 54 Stockholm

08-23 54 80

UNITED KINGDOM

Texas Instruments Limited

Manton Lane Bedford, England 0234-67466

n 98004

Relley

5907 Alice N.E. Suite E Albuquerque, New Mexico 87110 505-265-8491

NEW YORK

6700 Old Collamer Rd. East Syracuse, New York 13057 315-463-9291

112 Nanticoke Ave., P.O. Box 618 Endicott, New York 13760 607-754-3900

201 South Avenue Poughkeepsie, New York 12601 914-473-2900

1210 Jefferson Rd. Rochester, New York 14623 716-461-1800

1 Huntington Quadrangle, Suite 1C01 Melville, New York 11746 516-293-2560

NORTH CAROLINA

1 Woodlawn Green, Woodlawn Road Charlofte, North Carolina 28210 704-527-0930

оню

Belmont Bldg., Suite 120 28790 Chagrin Blvd. Cleveland, Ohio 44122 216-464-2990

Hawley Bldg., Suite 101 4140 Linden Avenue Dayton, Ohio 45432 513-253-3121

GERMANY

Texas Instruments Deutschland GmbH.

Haggertystrasse 1 8050 Freising, Germany 08161/80-1

Frankfurter Ring 243 8000 Munich 40, Germany 089/32 50 11-15

Lazarettstrasse 19 4300 Essen, Germany 0201/23 35 51

Akazienstiasse 22-26 6230 Frankfurt-Griesheim, Germany 0611/39 90 61

> Riethorst 4 3000 Hannover 51, Germany 0511/64 80 21

Krefelderstrasse 11-15 7000 Stuttgart 50, Germany 0711/54 70 01

> Kurfuerstendamm 146 1000 Berlin, Germany 030/89 27 063

ITALY

Texas Instruments Italia SpA

Via Della Giustizia 9 20125 Milan, Italy 02-688 31 41

Via L. Mancinella 65 00199 Roma, Italy 06-83 77 45

Via Montebello 27 10124 Torino, Italy 011-83 22 76

MEXICO

Texas Instruments de Mexico S.A. Poniente 116 #489 Industrial Vallejo Mexico City, 15, D.F., Mexico 567:92:00

THE BIPOLAR MICROCOMPUTER COMPONENTS DATA BOOK

This data book describes a series of high complexity bipolar digital building blocks designed specifically for implementing high performance computer or controller systems. The series offers a system designer the maximum flexibility for achieving cost-effective hardware designs from dedicated, highly specialized unique systems with tailored instructions to general-purpose computers capable of emulating existing machine instructions, or programs, without loss of software investment.

In addition to a choice between the high-performance Schottky[†] TTL 4-bit slice processor element, the unique performance flexibility of an I²L 4-bit slice processor element, or a 16-bit computer central processing unit (CPU), the system designer can pick from a full family of Schottky TTL memories (RAMs, PROMs and ROMs), and state-of-the-art support functions needed to meet all control and interface requirements.

The SN74S481, with a typical clock cycle time of 90 ns, and the SN54LS481/SN74LS481 at 120 ns, are the industry's highest complexity Schottky TTL processor elements, and the only bipolar micro/macroprogrammable elements featuring automatically sequenced iterative multiply and divide and cyclical-redundancy algorithms.

The SBP0400A and the SBP0401A, integrated injection logic (I^2L) bit slices with complete TTL/MOS compatibility, can operate at a constant speed-power product over a wide range of supply current therein offering an unmatched level of performance flexibility.

The SBP 9900 microprocessor, a ruggedized monthlithic parallel 16-bit (I²L) central processing unit (CPU), combines an advanced memory-to-memory architecture, a powerful minicomputer instruction set, user-programmable speed/power performance with the simplicity of a single power supply and static logic with a single phase clock to thrust its capabilities beyond those of existing microprocessors.

The family of high-performance Schottky TTL memories offers a wide variety of organizations providing efficient solutions for virtually any size microcontrol or program memory.

System control is simplified to a very low package count with the expandable SN54S/74S482 4-bit slice controller performing next-address generation functions coupled with system status decoding performed by the industry's most versatile field-programmable logic arrays.

A number of advanced high-complexity I/O and interface circuits have been added to the series. Most of these I/O and interface functions as well as a number of the other processor support functions are offered in space saving 20-pin packages which reduce package count and enhance system density.

Although this volume offers design and specification data only for bipolar computer components, complete technical data for any TI semiconductor/component product are available from your nearest TI field sales office, local authorized TI distributor, or by writing direct to: Marketing and Information Services, Texas Instruments Incorporated, P. O. Box 5012, MS 308, Dallas, Texas 75222.

We sincerely hope you will find the Bipolar Microcomputer Components Data Book a meaningful addition to your technical library.

[†]Integrated Schottky-Barrier diode-1277 clamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.

TEXAS INSTRUMENTS

NOTICE

Some products described in this document are in the developmental stage, and Texas Instruments reserves the right to change these specifications in any manner, without notice.

v

. .

.

.

1276

NUMERICAL INDEX

TYPE NUMBERS	SECTION	PAGE	TYPE NUMBERS SECTION	PAGE
SBP 0400AM, SBP 0400AC	2	1	SN74S314	27
SBP 0401AM, SBP 0401AC	2	1	SN74LS315	27
SBP 8316M, SBP 8316C	4	16	SN74S330	13
SBP 9818M, SBP 9818C	4	16	SN74S331	13
SBP 9900M, SBP 9900E	3	1	SN54S370, SN74S370	9
SN5488A, SN7488A	4	9	SN54S371, SN74S371	9
SN54187, SN74187	4	9	SN54S373, SN74S373	26
SN54S188, SN74S188	4	1	SN54S374, SN74S374	26
SN54S189, SN74S189	4	20	SN54S387, SN74S387	1
SN74S201	4	24	SN54S412, SN74S412	30
SN74LS207	4	33	SN74S428	35
SN74S207	4	33	SN74S438	35
SN74LS208	4	33	SN54S450, SN74S450	7
SN74S208	4	33	SN54S451, SN74S451	7
SN74LS214	4	27	SN54S470, SN74S470	1
SN74S214	4	27	SN54S471, SN74S471	1
SN74LS215	4	27	SN54S472, SN74S472	1
SN74S225	4	39	SN54S473, SN74S473	1
SN54S226, SN74S226	5	1	SN54S474, SN74S474	1
SN54S240, SN74S240	5	5	SN54S475, SN74S475	1
SN54S241, SN74S241	5	5	SN54S476, SN74S476	7
SN54S270, SN74S270	4	9	SN54S477, SN74S477	7
SN54S271, SN74S271	4	9	SN54S478, SN74S478	7
SN54S287, SN74S287	4	1	SN54S479, SN74S479	7
SN54S288, SN74S288	4	1	SN54LS481, SN74LS481	1
SN54S289, SN74S289	4	20	SN74S481	1
SN54S299, SN74S299	5	9	SN54S482, SN74S482	41
SN74S301	4	24	SN54S2708, SN74S2708	7
SN74LS314	4	27	SN54S3708, SN74S3708	7
			1	

A

INTRODUCTION

This glossary consists of two parts: (1) general concepts for digital circuits including types of bipolar memories, and (2) operating conditions and characteristics (including letter symbols). The terms, symbols, abbreviations, and definitions used with memory integrated circuits have not, as yet, been standardized. All are currently under consideration by the EIA/JEDEC (Electronic Industries Association) and the IEC (International Electrotechnical Commission). The following are as consistent with the past and future work of these organizations as is possible to anticipate at this time.

PART I - GENERAL CONCEPTS INCLUDING TYPES OF BIPOLAR MEMORIES

Chip-Enable Input

A control input that when active permits operation of the integrated circuit for input, internal transfer, manipulation, refreshing, and/or output of data and when inactive causes the integrated circuit to be in a reduced-power standby mode.

NOTE: See "chip-select input".

Chip-Select Input

A gating input that when inactive prevents input or output of data to or from an integrated circuit. NOTE: See "chip-enable input".

Dynamic (Read/Write) Memory

A read/write memory in which the cells require the repetitive application of control signals in order to retain stored data.

NOTES: 1. The words "read/write" may be omitted from the term when no misunderstanding will result.

- 2. Such repetitive application of the control signals is normally called a refresh operation.
- 3. A dynamic memory may use static addressing or sensing circuits.
- 4. This definition applies whether the control signals are generated inside or outside the integrated circuit.

First-In First-Out (FIFO) Memory

A memory from which data bytes or words can be read in the same order, but not necessarily at the same rate, as that of the data entry.

Gate Equivalent Circuit

A basic unit-of-measure of relative digital-circuit complexity. The number of gate equivalent circuits is that number of individual logic gates that would have to be interconnected to perform the same function.

Large-Scale Integration, LSI

A concept whereby a complete major subsystem or system function is fabricated as a single microcircuit. In this context a major subsystem or system, whether digital or linear, is considered to be one that contains 100 or more equivalent gates or circuitry of similar complexity.

Mask-Programmed Read-Only Memory

A read-only memory in which the data content of each cell is determined during manufacture by the use of a mask, the data content thereafter being unalterable.

1276

Medium-Scale Integration, MSI

A concept whereby a complete subsystem or system function is fabricated as a single microcircuit. The subsystem or system is smaller than for LSI, but whether digital or linear, is considered to be one that contains 12 or more equivalent gates or circuitry of similar complexity.

Memory Cell

The smallest subdivision of a memory into which a unit of data has been or can be entered, in which it is or can be stored, and from which it can be retrieved.

Memory Integrated Circuit

An integrated circuit consisting of memory cells and usually including associated circuits such as those for address selection, amplifiers, etc.

Output-Enable Input

A gating input that when active permits the integrated circuit to output data and when inactive causes the integrated circuit output(s) to be at a high impedance (off).

Programmable Read-Only Memory (PROM)

A read-only memory that after being manufactured can have the data content of each memory cell altered once only.

Random-Access Memory (RAM)

A memory that permits access to any of its address locations in any desired sequence with similar access time for each location.

NOTE: The term RAM, as commonly used, denotes a read/write memory.

Read-Only Memory (ROM)

A memory in which the contents are not intended to be altered during normal operation. NOTE: Unless otherwise qualified, the term "read-only memory" implies that the content is unalterable and defined by construction.

Read/Write Memory

A memory in which each cell may be selected by applying appropriate electronic input signals and the stored data may be either (a) sensed at appropriate output terminals, or (b) changed in response to other similar electronic input signals.

Small-Scale Integration, SSI

Integrated circuits of less complexity than medium-scale integration (MSI).

Very-Large-Scale Integration, VLSI

A concept whereby a complete system function is fabricated as a single microcircuit. In this context, a system, whether digital or linear, is considered to be one that contains 1000 or more gates or circuitry of similar complexity.

Volatile Memory

A memory the data content of which is lost when power is removed.

ix

PART II - OPERATING CONDITIONS AND CHARACTERISTICS (INCLUDING LETTER SYMBOLS)

The symbols for quantities involving time use upper and lower case letters according to the following historically evolved principles:

- a. Time itself, is always represented by a lower case t.
- b. Subscripts are lower case when one or more letters represent single words, e.g., d for delay, su for setup, rd for read, wr for write.
- c. Multiple subscripts are upper case when each letter stands for a different word, e.g., SR for sense recovery and PLH for propagation delay from low to high.

Access Time (of a memory)

The time between the application of a specified input pulse during a read cycle and the availability of valid data signals at an output.

Example symbology:

^t a(ad)	Access time from address
t _a (E)	Access time from chip enable
t _{a(S)}	Access time from chip select

Clock Frequency

Maximum clock frequency, fmax

The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transistions of logic level at the output with input conditions established that should cause changes of output logic level in accordance with the specification.

Current

High-level input current, IIH

The current into* an input when a high-level voltage is applied to that input.

High-level output current, IOH

The current into^{*} an output with input conditions applied that according to the product specification will establish a high level at the output.

Low-level input current, IIL

The current into* an input when a low-level voltage is applied to that input.

Low-level output current, IOL

The current into^{*} an output with input conditions applied that according to the product specification will establish a low level at the output.

Off-state output current, IO(off)

The current flowing into^{*} an output with input conditions applied that according to the product specification will cause the output switching element to be in the off state.

Note: This parameter is usually specified for open-collector outputs intended to drive devices other than logic circuits.

*Current out of a terminal is given as a negative value.

Off-state (high-impedance-state) output current (of a three-state output), IOZ

The current into^{*} an output having three-state capability with input conditions applied that according to the product specification will establish the high-impedance state at the output.

Short-circuit output current, IOS

The current into^{*} an output when that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential).

Supply current, ICC

The current into* the VCC supply terminal of an integrated circuit.

Cycle Time

Read cycle time, tc(rd) (see note)

The time interval between the start and end of a read cycle.

Read-write cycle time, tc(rd,wr) (see note)

The time interval between the start of a cycle in which the memory is read and new data are entered, and the end of that cycle.

Write cycle time, t_{c(wr)} (see note)

The time interval between the start and end of a write cycle.

NOTE: The read, read-write, or write cycle time is the actual interval between two impulses and may be insufficient for the completion of operations within the memory. A minimum value is specified that is the shortest time in which the memory will perform its read and/or write function correctly.

Hold Time

Hold time, th

The interval during which a signal is retained at a specified input terminal after an active transition occurs at another specified input terminal.

- NOTES: 1. The hold time is the actual time between two events and may be insufficient to accomplish the intended result. A minimum value is specified that is the shortest interval for which correct operation of the logic element is guaranteed.
 - The hold time may have a negative value in which case the minimum limit defines the longest interval (between the release of data and the active transition) for which correct operation of the logic element is guaranteed.

Output Enable and Disable Time

Output enable time (of a three-state output) to high level, tPZH (or low level, tPZL)

The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined high (or low) level.

Output enable time (of a three-state output) to high or low level, tpzx

The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to either of the defined active levels (high or low).

Output disable time (of a three-state output) from high level, tpHZ (or low level, tpLZ)

The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from the defined high (or low) level to a high-impedance (off) state.

* Current out of a terminal is given as a negative value.

GLOSSARY TTL TERMS AND DEFINITIONS

Output disable time (of a three-state output) from high or low level, tpxz

The propagation delay time between the specified reference points on the input and output voltage waveforms with the three-state output changing from either of the defined active levels (high or low) to a high-impedance (off) state.

Propagation Time

Propagation delay time, tpD

The time between the specified reference points on the input and output voltage waveforms with the output changing from one defined level (high or low) to the other defined level.

Propagation delay time, low-to-high-level output, tpLH

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.

Propagation delay time, high-to-low-level output, tPHL

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

Pulse Width

Pulse width, tw

The time interval between specified reference points on the leading and trailing edges of the pulse waveform.

Example symbology:

^t w(cir)	Clear pulse width
tw(wr)	Write pulse width

Recovery Time

Sense Recovery time, tSR

The time interval needed to switch a memory from a write mode to a read mode and to obtain valid data signals at the output.

Release Time

Release time, trelease

The time interval between the release from a specified input terminal of data intended to be recognized and the occurrence of an active transition at another specified input terminal.

Note: When specified, the interval designated "release time" falls within the setup interval and constitutes, in effect, a negative hold time.

Setup Time

Setup time, t_{su}

The time interval between the application of a signal that is maintained at a specified input terminal and a consecutive active transition at another specified input terminal.

- NOTES: 1. The setup time is the actual time between two events and may be insufficient to accomplish the setup. A minimum value is specified that is the shortest interval for which correct operation of the logic element is guaranteed.
 - 2. The setup time may have a negative value in which case the minimum limit defines the longest interval (between the active transition and the application of the other signal) for which correct operation of the logic element is guaranteed.

Transition Time

Transition time, low-to-high-level, tTLH

The time between a specified low-level voltage and a specified high-level voltage on a waveform that is changing from the defined low level to the defined high level.

Transition time, high-to-low-level, tTHL

The time between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from the defined high level to the defined low level.

Voltage

High-level input voltage, VIH

An input voltage within the more positive (less negative) of the two ranges of values used to represent the binary variables.

NOTE: A minimum is specified that is the least positive value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.

High-level output voltage, VOH

The voltage at an output terminal with input conditions applied that according to the product specification will establish a high level at the output.

Input clamp voltage, VIK

An input voltage in a region of relatively low differential resistance that serves to limit the input voltage swing.

Low-level input voltage, VIL

An input voltage level within the less positive (more negative) of the two ranges of values used to represent the binary variables.

NOTE: A maximum is specified that is the most positive value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.

Low-level output voltage, VOL

The voltage at an output terminal with input conditions applied that according to the product specification will establish a low level at the output.

Negative-going threshold voltage, VT-

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, V_{T+} .

Off-state output voltage, VO(off)

The voltage at an output terminal with input conditions applied that according to the product specification will cause the output switching element to be in the off state.

Note: This characteristic is usually specified only for outputs not having internal pull-up elements.

On-state output voltage, VO(on)

The voltage at an output terminal with input conditions applied that according to the product specification will cause the output switching element to be in the on state.

Note: This characteristic is usually specified only for outputs not having internal pull-up elements.

Positive-going threshold voltage, VT+

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T-} .


The following symbols are used in function tables on TI data sheets:

н	=	high level (steady state)
L	=	low level (steady state)
↑	=	transition from low to high level
¥	=	transition from high to low level
\rightarrow	=	value/level or resulting value/level is routed to indicated destination
n	=	value/level is re-entered
х	=	irrelevant (any input, including transitions)
ah	=	the level of steady-state inputs at inputs A through H respectively
0 ₀	=	level of Q before the indicated steady-state input conditions were established
0 ⁰	=	complement of Ω_0 or level of $\overline{\Omega}$ before the indicated steady-state input conditions were established
Qn	=	level of Q before the most recent active transition indicated by \downarrow or \uparrow
\Box	=	one high-level pulse
IJ	=	one low-level pulse
TOGGLE	=	each output changes to the complement of its previous level on each active transition indicated by \downarrow or $\uparrow.$

TEXAS INSTRUMENTS

The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

NOVEMBER 1976 REVISED DECEMBER 1977

Information contained in this publication is believed to be accurate and reliable. However, responsibility is assumed neither for its use nor for any infringement of patents or rights of others that may result from its use. No license is granted by implication or otherwise under any patent or patent right of Texas Instruments or others.

> Copyright © 1977 Texas Instruments Incorporated

TABLE OF CONTENTS

1.	INT	RODUCTION															
	1.1	Architectural Features															1
	1.2	Operational Features															1
	1.3	Mechanical Features															1
2.	DET	AILED FUNCTIONAL DESCRIPTIONS															
	2.1	Micro-Decoding Logic Array															4
	2.2	Relative Position Control (POS)															4
	2.3	Clock															5
	2.4	Latched Data Input Ports															5
	2.5	A and B Operand Sources															6
	2.6	Arithmetic/Logic Unit (ALU)															8
	2.7	ALU Magnitude and Carry Functions															9
	2.1	2.7.1 Equal (EQ, See Figure 5)															9
		• • • •															
		2.7.2 Logically-Greater Than (LG, See Figure 6)															9
		2.7.3 Arithmetically-Greater-Than (AG, See Figure 7)															10
	2.8	Operand Overflow															11
	2.9	Sum' Bus Multiplexer															12
	2.10	B-Input/Output Control					•				•			•	·	•	13
	2.11	Working Register			•												14
	2.12	Working Register Multiplexer (WR MUX)															14
	2.13	Extended Working Register															15
		Extended Working Register Multiplexer (XWR MUX)															15
		2.14.1 Σ-Bus, WR, XWR MSB Shift Transfer Multiplexers															16
		2.14.2 WRLFT, XWRLFT Multiplexers															16
		2.14.3 WRLFT', XWRLFT' Multiplexers															16
		2.14.4 WR, XWR LSB Shift Transfer Multiplexers															16
		2.14.5 WRRT Multiplexer, XWRRT Buffer															17
		2.14.6 WRRT', XWRRT' Multiplexers															17
	2 1 5	Shift Functions															20
	2.15																20
		2.15.2 Arithmetic Shift Functions (Microprogrammable)															20
		2.15.3 Logical Shift Functions (Microprogrammable) .															22
		Data-Out Port Multiplexer (DO MUX)															22
		Memory and Program Counters															22
	2.18	Address-Out Port Multiplexer (AO MUX)															26
	2.19	Expanding the Word Length	•			•		•							•	•	27
3.		RATIONAL DESCRIPTIONS															
	3.1	Micro/Macro-Operations	•		•	•		•	•	 •	•	•			•	•	27
	3.2	Operation Form I – Add/Subtract → Register															30
	3.3	Operation Form II - Add/Subtract with Double-Precision S	Shif	t.													32
	3.4	Operation Form III – Add with Single-Precision Shift															32
	3.5	Operation Form IV – AI Shifted $\rightarrow \Sigma'$ Bus															33
	3.6	Operation Form V – Single-Length Shift															34
	3.7	Operation Form VI – Double-Precision Shifts															35
	3.8	Operation Form VII – Compare (A:B or B:A)															35
	3.9	Operation Form VIII – Logical Functions															
	0.9	3.9.1 NOR/AND Logical Operations															37
		5.5.1 HOT/AND EUgical Operations	•	• •	•	•	•	•	•	 •	•	•	•	•	•	•	57

TABLE OF CONTENTS (Continued)

		3.9.2	OR/NAND L	.ogical Oper	ations .																38
		3.9.3	Exclusive-OF																		
	3.10	Operatio	on Form IX .																		40
	3.11	Operatio	on Form X –	Cyclic Redu	indancy C	haract	er Ac	cum	nula	tior	ı.										40
	3.12	Operatio	on Form XI –	Signed Inte	eger Divid	e															41
	3.13	Operatio	on Form XII -	- Unsigned	Divide .																41
	3.14	Operatio	on Form XIII	- Unsigned	Multiply																41
	3.15	Operatio	on Form XIV	 Signed In 	teger Mul	tiply			•	•				•	•		•		•		46
4.	SPE	CIFICA	TIONS					•	•												48
	MEC	HANIC	AL DATA					•										5	Sect	ion	6

LIST OF ILLUSTRATIONS

Figure 1	Functional Block Diagram
Figure 2	Clock Cycle
Figure 3	Input Latches Setup/Hold Times
Figure 4	ALU Operand Sources
Figure 5	Equal Output
Figure 6	MSP Logically-Greater-Than (LG) Output
Figure 7	MSP Arithmetically-Greater-Than (AG) Output
Figure 8	Sum Bus Multiplexer
Figure 9	B-Input/Output Control
Figure 10	Working Register (WR) and WR Multiplexer
Figure 11	Extended Working Register (XWR) and XWR Multiplexer
Figure 12	Sum-Bus, WR, XWR MSB Shift Transfer Multiplexers
Figure 13	Sum-Bus, WR, XWR LSB Shift Transfer Multiplexers
Figure 14	Circulate Functions
Figure 15	Arithmetic Shift Functions
Figure 16	Logical Shift Functions
Figure 17	Data-Out Port Multiplexer (DO MUX)
Figure 18	Program and Memory Counter Functions
Figure 19	Address-Out Port Multiplexer (AO MUX)
Figure 20	Typical 16-Bit Processor .
Figure 21	Form I – Arithmetic Operations: A Plus B Plus ALUCIN $\rightarrow \begin{cases} \Sigma' \text{ Bus} \\ \text{Register} \end{cases}$
Figure 22	'S481 Operation with Single-Port Register File
Figure 23	Form II – Arithmetic with Double-Precision Shift
Figure 24	Form III – Arithmetic With Single-Precision Shift
Figure 25	Form IV – AI Shifted $\rightarrow \Sigma'$ Bus
Figure 26	Form V: $\begin{cases} WR \\ XWR \end{cases}$ Shifted $\rightarrow \begin{cases} WR \\ XWR \end{cases}$
Figure 27	

1277

LIST OF ILLUSTRATIONS (Continued)

Figure 28	Form VII – Compare: $\begin{cases} A : B \\ B : A \end{cases}$	36
Figure 29	Form VIII – Logical Operations: A $\begin{cases} NOR \\ OR \\ X \cdot OR \end{cases}$ B \rightarrow Register	36
Figure 30	Form VIIIA – NOR/AND Logical Operations	37
Figure 31	Form VIIIB – OR/NAND Logical Operations	38
Figure 32	Form VIIIC – EXCLUSIVE-OR/EXCLUSIVE-NOR Operations	39
Figure 33	Form IX – No Operation: Zero $\rightarrow \Sigma'$ Bus	10
Figure 3'4	Cyclic Redundancy Character Accumulation	10
Figure 35	Form XI – Signed Integer Divide	13
Figure 36	Form XII – Unsigned Divide	15
Figure 37	Form XIII – Unsigned Multiply	16
Figure 38	Form XIV Signed Integer Multiply	17
Figure 39	Pin Assignments	19
Figure 40	Switching Times - Voltage Waveforms	50

LIST OF TABLES

Table 1	Functional Descriptions
Table 2	MSP OP8 and OP9 Iterative Function Summary
Table 3	Position Control Functions
Table 4	Dual-Function Logic I/O Pins .
Table 5	'S481 ALU and Logic Functions
Table 6	Extended ALU Functions of 'S481
Table 7	MSP Logically-Greater-Than (LG) Output
Table 8	ALU Carry and MSP Arithmetically-Greater-Than (AG) Outputs
Table 9	MSP Overflow (OV) Output
Table 10	B-Input/Output Control
Table 11	Working Register Bit Transfers to WRLFT/WRRT .
Table 12	Sum-Bus Bit Transfers to WRLFT/WRRT
Table 13	Extended Working Register Bit Transfers to XWRLFT/XWRRT
Table 14	Sum-Bus Bit Transfers to WRLFT (MSP) .
Table 15	Microprogrammable Shift Functions .
Table 16	Data-Out Port Control .
Table 17	Address-Out Port Control
Table 18	Operation Form, Command Format, and Test Outputs
Table 19	Recommended Operating Conditions
Table 20	Electrical Characteristics
Table 21	Switching Characteristics

1. INTRODUCTION

These Schottky TTL 4-bit expandable parallel binary micro/macroprogrammable processor element building blocks are designed specifically for implementing high-performance digital computers/controllers. With the ability to efficiently emulate existing systems, they can be used to upgrade hardware performance with full compatibility to protect software investments.

Two performance ranges are available:

- a. The SN74S481, Schottky TTL performs typically at a clock cycle time of 90 nanoseconds at 345 milliamperes of supply current.
- b. The SN54LS/74LS481, low-power Schottky TTL performs typically at a clock cycle time of 120 nanoseconds at 220 milliamperes of supply current.

1.1 ARCHITECTURAL FEATURES

Designed with full parallel dual input/output ports, the memory-to-memory architecture provides a new dimension in interrupt processing or program context switching flexibilities. Static bipolar logic performs each microinstruction within a single clock cycle.

Primary among the architectural features are:

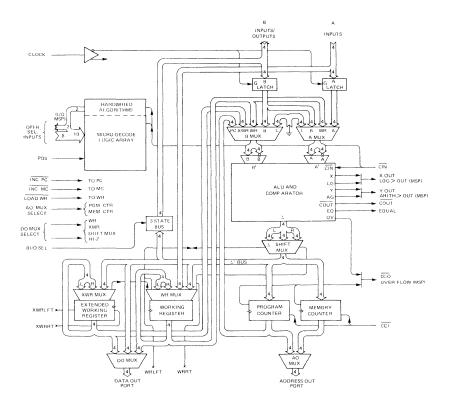
- Microprogrammable, bit-slice design is expandable in 4-bit multiples
- Full parallel dual input/output ports for use in advanced memory-to-memory architecture
- Full-function ALU with carry look-ahead, magnitude, and overflow decision capabilities
- Double-length accumulator with full shifting capability and sign-bit handling
- Dual memory address generators on-chip.

1.2 OPERATIONAL FEATURES

The functional capabilities, characterized by the 24,780 unique operations, coupled with the macroprogrammable multiply and divide algorithms, make these processor elements particularly attractive for implementing advanced high performance computers and controllers.

In addition to the full parallel data bus structure, the 'S481 architecture also features asynchronous access to data routing and counter updating controls which, when combined with the most versatile instruction set available (see operational description) maximizes flexibility, efficiency, and performance. Simultaneous compound operations in the form of an ALU function with shift, plus destination selection with address/iteration updating, plus address and present data to memory can be accomplished in a single microcyle. Some other operational features are:

- Simultaneous one-clock compound operations, with status, can reduce microcycles and improve throughput
- Pre-programmed CRG and double-precision multiply/divide algorithms
- Double length accumulator with full bidirectional single/double precision arithmetic/logical/circulate shift capabilities include sign protection
- Full micro-operational control is provided for programming: address updating, data and address source selection, and direct transfer of data to working register or working memory
- Relative position control defines bit-slice rank and sign handling in N-bit applications.


1.3 MECHANICAL FEATURES

These processor elements are supplied in either a high-density quad-in-line ceramic package or a plastic dual-in-line package. The high-density 48-pin ceramic package has quad pin rows formed on 600- and 800-mil centers. Within each of the four rows, the pin spacing is 100 mils, center-to-center. The plastic dual-in-line package has standard 100-mil spacing on 600-mil centers. Outline drawings are provided in Section 6 of this data book.

NOTE: Functional and operational descriptions through this data manual which reference the 'S481 are applicable to both the SN74S481 and the SN54LS/74LS481 processor elements.

TAE	BLE 1
FUNCTIONAL	DESCRIPTIONS

PIN NUMBER	PIN NAME	PIN FUNCTION	INPUT, OUTPUT, OR INPUT/OUTPUT
46, 47 1, 2	BI/O0, BI/O1 BI/O2, BI/O3	4-bit parallel data input port to the B latch, or 4-bit parallel data output for the Σ-bus when not being used as an input.	Inputs/Outputs
6, 5 4, 3	AI0, AI1 AI2, AI3	4-bit parallel data input port to the A latch and WR.	Inputs
7, 8 9, 10 17, 14 13, 11 15, 16	OP0, OP1 OP2, OP3 OP4, OP5 OP6, OP7 OP8, OP9	OP0 through OP9 serve as a 10-bit parallel operation-select input to the micro-decode logic array. In the most-significant position, OP8 and OP9 additionally serve as open-collector outputs during multi- ply and divide algorithms. In the least-significant position, OP9 serves as an open-collector output during the CRC algorithm.	Inputs
12	Vcc	Single 5-volt power-supply terminal.	Supply Voltage Pin
18	CIN	Receives low-active ripple carry input data.	Input
19	POS	Directs internal and input/output end-conditions required to define the relative position of each bit-slice when N-SN74S481's are cascaded to implement Nx4-bit word lengths. When biased at 2.4 volts, the package operates as the least-significant (LSP) slice; when grounded, it functions as an intermediate (IP) slice; and when high, 5 volts, it functions as the most-significant (MSP) slice.	Input
20	Y/AG	In least-significant and intermediate positions outputs arithmetic carry generate (Y) for use with look-ahead. In most-significant position outputs true arithmetically-greater-than signal.	Output
21	X/LG	In least-significant and intermediate positions outputs arithmetic carry propagate (X) for use with look-ahead. In most-significant position outputs true logically-greater-than signal.	Output
22	COUT	Outputs low-active ripple carry data.	Output
23	EQ	Outputs true (active-high) equality of Σ' bus equals zero for each 4-bit slice. The open-collector output permits wire-AND to achieve Nx4-bit equality output.	Open-Collector-Outpu
24	LDWR	When low, data applied at the AI port coincident with the ↑ clock transition is loaded into the WR.	Input
26 25	WRRT, WRLFT	Working register and Σ -bus shift interconnectivity pins. WRRT receives left-shift and outputs right-shift (true) data. WRLFT receives right-shift and outputs left-shift (true) data. Shift can be single-precision, double-precision, signed or unsigned.	Bidirectional I/O
28 27	XWRRT, XWRLFT	Extended working register shift interconnectivity pins. XWRRT receives left-shift and outputs right-shift (true) data. XWRLFT receives right-shift and outputs left-shift (true) data. Shift can be single-precision, double-precision, signed or unsigned.	Bidirectional I/O
29 30	D0 D1	Selects one of three DOP sources (WR, XWR, or Σ -bus) or places the DOP outputs in a high-impedance state.	Inputs
34 33 32 31	DOP0 DOP1 DOP2 DOP3	4-bit parallel, data-out port. DOP0 is LSB.	3-state outputs
35	INCMC	When low, enables the MC to increment as directed by $\overline{\text{CCI}}$ on the next \uparrow clock transition. When high, inhibits MC to hold mode. As $\overline{\text{CCO}}$ is common to MC and PC, the MC should be inhibited when PC is enabled.	Input
36	GND	Common or ground terminal for the supply voltage.	
37	<u>CCO</u> /OV	In least-significant and intermediate positions a low-level output indicates that either the PC or MC is at maximum count. As CCO is common for both PC and MC ambiguous carry can be avoided if one or both counters is/are disabled by the INCPC and/or INCMC inputs. In the most-significant position, a high-level output, depending on the operation selected, indicates that the WR, XWR, or ALU will overflow (OV) on the next clock.	Output

TADLE T (Continueu)	т	AB	LE	1	(Continued)
---------------------	---	----	----	---	-------------

PIN NUMBER	PIN NAME	PIN FUNCTION	INPUT, OUTPUT, OR INPUT/OUTPUT	
38, 39 40, 41	AOP0, AOP1 AOP2, AOP3	4-bit parallel address-out port.	Outputs	
42	A0	Selects one of two AOP sources (PC or MC).	Input	
43	INCPC	When low, enables the PC to increment as directed by $\overline{\text{CCI}}$ on the next \uparrow clock transition. When high, inhibits PC to hold mode. As $\overline{\text{CCO}}$ is common to PC and MC, the PC should be inhibited when MC is enabled.	Input	
44	CCI	In least-significant position, a low input directs enabled PC or enabled MC to increment by one on next 1 clock transition. In the LSP, a high directs enabled PC or enabled MC to increment by 2. In other positions, a low is a carry input and a high inhibits the counter.	Input	
45	СК	When high, enables the transparency of A and B input latches. When low, latches A and B input data. Clocks synchronous registers and counters on the positive transition.	Input	
48	BI/O SEL	When low, enables BI/O to output Σ -bus data. When high, the BI/O output drivers are placed in a high-impedance state permitting BI/O to be used as data inputs.	Input	

2. DETAILED FUNCTIONAL DESCRIPTIONS

2.1 MICRO-DECODING LOGIC ARRAY

The micro-decoding logic array is a dedicated 11 input PLA decoding 73 product terms to generate 24 control lines needed to implement the 14 operation forms. The eleven inputs consist of the ten operation select lines (OP0 through OP9) and the ALU carry input. The carry input, utilized as an additional operation select line during operation forms not performing arithmetic functions, maximizes system pin efficiency and functional density.

In an expanded word-length system (two or more 'S481's), operation select inputs 8 (OP8) and 9 (OP9) assume an input/output capability in the most-significant or least-significant package as a result of the position control and the type of operation being performed. During microprogrammable operation forms I through IX, OP8 and OP9 function simply as another input; but, during the macroprogrammable operations of forms X through XIV one or both become an output during iterations. Table 2 summarizes by operation form the control (output) package and the operation lines which are used as an output.

00.50044		CONTROL	OPERATION SELECT I/O		
OP. FORM	ALGORITHM	PACKAGE	OP8	OP9	
I thru IX	All	None	INPUT	INPUT	
х	CRC ACCUMULATION	LSP	INPUT	OUTPUT	
XI	SIGNED DIVIDE	MSP	OUTPUT	OUTPUT	
XII	UNSIGNED DIVIDE	MSP	INPUT	OUTPUT	
хш	UNSIGNED MULTIPLY	MSP	INPUT	OUTPUT	
xıv	SIGNED MULTIPLY	MSP	Ουτρυτ	OUTPUT	

TABLE 2 MSP OP8 and OP9 ITERATIVE FUNCTION SUMMARY

If the macroinstructions are to be used in an expanded word length, OP8 and OP9 select lines of the MSP and the OP9 line of the LSP should be driven from either a 3-state output (which can be placed in high-impedance state) or an open-collector output (which can be wire-OR'ed with the OP select I/O lines). During an iterative function for which the OP line is designated as an open-collector output, the OP line driver should be placed in a high-impedance or off state permitting the output function to drive similar OP lines in the remaining packages.

The output state of OP8 or OP9 is a function of on-chip status decoder as enumerated in the flow diagrams illustrating the five algorithms.

2.2 RELATIVE POSITION CONTROL (POS)

The single line position control, with the ability of decoding one of three input logic states, provides each 'S481 in an expanded word length system with the capability of identifying its relative position. The relative positions, with the corresponding input logic levels are enumerated in Table 3.

POS INPUT LOGIC LEVEL	RELATIVE POSITION
≥ 3.6 V	MOST-SIGNIFICANT POSITION (MSP)
1.8 V to 3 V	LEAST-SIGNIFICANT POSITION (LSP)
≤ 0.8 V	INTERMEDIATE POSITION (IP)

TABLE 3 POSITION CONTROL FUNCTIONS

This relative position identification dictates how each 'S481 in the system handles the multi-purpose I/O accommodations and ALU sign and magnitude functions. See Table 4. Shift/Circulate interconnectivity bit transfers are explained in detail under shift/circulate transfer multiplexers.

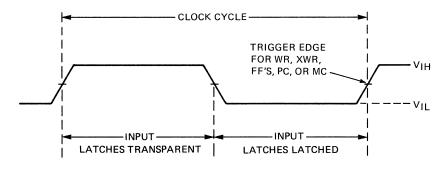

PIN	I MSP IP		LSP
X/LG	LG (OUT)	X	х
Y/LG	AG (OUT)	Y	Ү
CCO/OV	OVERFLOW (OUT)	<u>CCO</u> (OUT)	<u>ССО</u> (ОUT)

TABLE 4 DUAL-FUNCTION LOGIC I/O PINS

X AND Y ARE CARRY LOOK-AHEAD FUNCTIONS

2.3 CLOCK

The clock synchronizes the entry or change of data in the 'S481 registers and counters, and it controls the status of the A and B input latches. A typical clock cycle is illustrated in Figure 2. The low-to-high transition of the clock input is the clocking edge for any combination of either the working register, extended working register, flag flip-flops, and the program counter or the memory counter activated by the resident operation. During the low-level portion of the clock input, both input latches are latched ensuring data stability at the positive clock transition. After the clock has gone to a high level, the input latches are placed in a transparent mode to accept the next set of input data.

2.4 LATCHED DATA INPUT PORTS

The SN54S/74S481 features dual input ports combined with data flow paths which are designed specifically to reduce the number of system clock cycles needed to enter operands and/or data. Both the A and B input ports are latched, eliminating the need for external registers, to simplify interfacing directly with system data bus paths.

The A input port data is made available to both the input latch and the working register which allows A data to be loaded into the working register directly.

The B port is configured to serve as an input/output data path providing the capability to:

- a. Input data to the B latch
- b. Output sum-bus data.

This I/O port is designed specifically to simplify implementation of data transfers to the external working memory.

Both the A and B latches are transparent when the 'S481 clock input is high. Data applied at the A and B inputs should be stable anytime prior to or at least coincident with the falling edge of the clock input (see Figure 3). After the clock falling edge, the data inputs should be held steady for $t_{hold}(data)$ or longer to facilitate the on-chip clock buffers to latch the data.

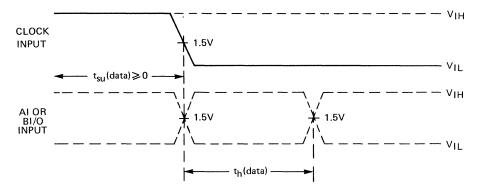


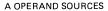
FIGURE 3 - INPUT LATCHES SETUP/HOLD TIMES

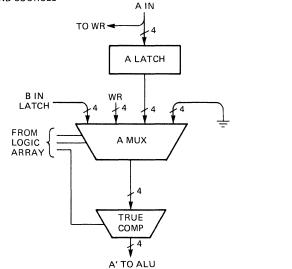
The A input port latch data is routed to the A input multiplexers, and the B input port latch data is sourced to both the A and B input multiplexers.

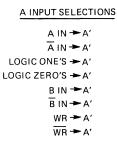
2.5 A AND B OPERAND SOURCES

The A and B input multiplexers source the ALU A' and B' ports through true/complement conditional inverter circuits. Data routing for each, illustrated and listed in Figure 4, provides the ALU with access to the true or complement of:

ALU A' PORT


- 1. A input latch
- 2. B input latch
- 3. Working Register
- 4. Low logic level inputs
 - (force zeros)


ALU B' PORT


- 1. B input latch
- 2. Sum bus
- 3. Working register
- 4. Extended working register
- 5. Program counter
- Low logic level inputs (force zeros)

The A and B multiplexers and true complement circuits, under control of the resident operation code, are selectable at the microprogram level. The number of A or B multiplexer sources available depend upon the specific operation being performed by the 'S481. Operation form descriptions contain detailed microprogramming.

The A and B input multiplexers, with selectable true and complement operand sources, maximizes the processing power of the 'S481 by minimizing the active components needed to achieve both the simple but highly flexible data routing tasks and full ALU capabilities.

B IN 🍝 B' B IN → B' LOGIC ONE'S -B' LOGIC ZERO'S - B' (B IN) • (WR) - B' (B IN) · (WR) → B' WR 🍝 B' WR 🗲 B' (B IN) • (XWR) - B' (B IN) • (XWR) → B' XWR - B' XWR - B' (B IN) • (PC) → B' (B IN) • (PC) → B' PC →B' PC → B'

B INPUT/OUTPUT SELECTIONS

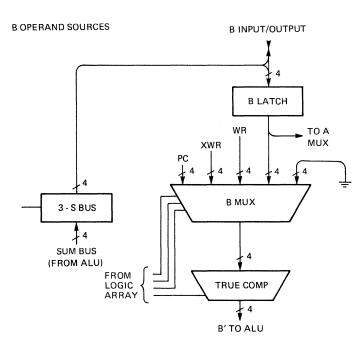


FIGURE 4 - ALU OPERAND SOURCES

1

2.6 ARITHMETIC/LOGIC UNIT (ALU)

The 4-bit, parallel, binary arithmetic/logic unit provides the arithmetic/Boolean operand combination/modification mechanism including magnitude and overflow status. The ALU performs, as directed by the resident operation form, one of four basic functions which, when combined with the operand selections at the A and B multiplexers, extends the arithmetic/logic capabilities to that of a full 16-function ALU.

When compared to other bit-slice processor elements, unique to the 'S481 arithmetic architecture are the parallel input ports and fully microprogrammable symmetry for all ALU functions within the selections of the A and B input multiplexers.

Logical and arithmetic operation forms for the 'S481 are shown in Table 5. The full functional power of the 'S481 can be visualized only if it is understood that although both ALU's have parallel A and B input ports, the 'S481 architecture not only provides access to multiple sources but has the capability to route true or complement of any source to the A and B ALU port. This means that for a subtract operation, the subtrahend may be either an A or B input. In addition to maximizing data routing capabilities of the 'S481 at minimum logic/gate levels, this architecture permits fully symmetrical operations to be performed on the A or B sources within the selections offered by these 'S481 arithmetic/logical operation forms.

DATA	INPUT	TWO'S COMPLEMENT IN	LOGICAL OP'S (FORM VIII) CIN = H OR L			
A PORT	B PORT	CIN = L	CIN = H	OR	NOR	EX-NOR
ZEROS ZEROS	ZEROS ONES	1	0 MINUS 1	ZEROS ONES	ONES ZEROS	ONES ZEROS
ONES	ZEROS	0 MINUS 1	MINUS 1 MINUS 2	ONES	ZEROS	ZEROS
A	ZEROS	A PLUS 1	А	А	Ā	Ā
Ā	ONES ZEROS	A MINUS A	A MINUS 1 MINUS A MINUS 1	ONES Ā	ZEROS A	A A
⊼ ZEROS	ONES B	MINUS A MINUS 1 B PLUS 1	MINUS A MINUS 2 B	ONES B	ZEROS B	Ā B
ONES ZEROS	B B	B MINUS B	B MINUS 1 MINUS B MINUS 1	ONES B	ZEROS B	B B
ONES A	В В	MINUS B MINUS 1 A PLUS B PLUS 1	MINUS B MINUS 2 A PLUS B	ONES A + B	ZEROS Ā · Ē	B A ⊕ B
A Ā	B	A MINUS B B MINUS A	A MINUS B MINUS 1 B MINUS A MINUS 1	A + B Ā + B	Ā · в A · В	A
Ā	B	MINUS A MINUS B MINUS 1	MINUS A MINUS B MINUS 2	Ā + B	A·B	A O B

TABLE 5 'S481 ALU AND LOGIC FUNCTIONS

Some unique one-clock arithmetic/iterative capabilities of the 'S481 are listed in Table 6.

TABLE 6 EXTENDED ALU FUNCTIONS OF 'S481

FORM NO.	FUNCTION
1	A (ALU) B · WR
	A (ALU) B · XWR
	A (ALU) B · PC
11	A (ALU) B DOUBLE-PRECISION SHIFTED LOGICAL LEFT OR RIGHT
111	A (ALU) B SINGLE-PRECISION SHIFTED LOGICAL OR ARITHMETIC
	LEFT OR RIGHT

Table 5 also indicates the 16 logical combinations of two Boolean variables which are selectable for the OR, NOR, and exclusive-NOR functions. Full symmetry of the ALU and the ability to select the complement of input data extends the logic functions for performance of:

- a. NAND
- b. AND
- c. Exclusive-OR
- d. Mixed combinations of each
- e. Transfer functions for true or inverted data
- f. All ones or all zeros.

2.7 ALU MAGNITUDE AND CARRY FUNCTIONS

The 'S481 ALU is fully decoded on chip to generate three magnitude outputs (status lines) and both ripple and look-ahead carry functions. The magnitude outputs and their status indications are as follows:

2.7.1 Equal (EQ, See Figure 5)

The results of the resident ALU operation are compared at the sum-bus for all bits high during subtract and left-shift arithmetic operations, or for all bits low during other operations.

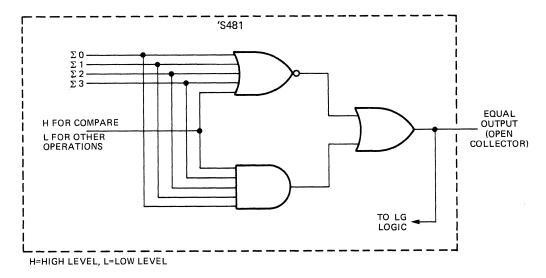
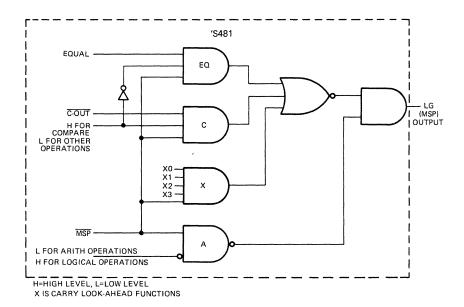
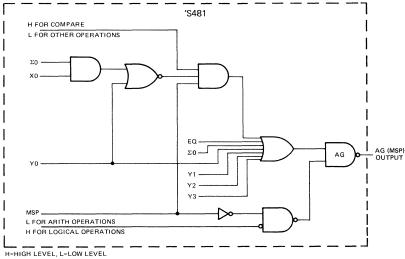



FIGURE 5 - EQUAL OUTPUT

2.7.2 Logically-Greater Than (LG, See Figure 6)

In the most-significant package (MSP) the X look-ahead function from the ALU is inhibited and the logically-greater-than (LG) output is enabled. See Figure 6. The MSP LG output is active during arithmetic and shift operation forms to provide a status indication that can be used when it is desirable to compare two unsigned integer numbers. The specific status for each operation form is listed in Table 7.

FIGURE 6 - MSP LOGICALLY-GREATER-THAN (LG) OUTPUT


 TABLE 7

 MSP LOGICALLY-GREATER-THAN (LG) OUTPUT

OP FORM	TYPE OF OP	LG = H INDICATES
I or II (ARITH)	ALL	Σ-BUS ≠ ZERO (EQ ≈ L)
III (ARITH WITH SHIFT)	LSL, RSL	Σ -BUS \neq ZERO (EQ \approx L)
	LSA or RSA	ADDER C-OUT
IV, V, or VI (SHIFTS)	ALL	AI ≠ ZERO (EQ = L)
VII (COMPARE)	A : B	A IS LG THAN B
	B : A	B IS LG THAN A
VIII (LOGICAL)	ALL	Σ -BUS \neq ZERO (EQ = L)
IX (NO OP) ZERO Σ-BUS		LG = L (EQ = H)
X THRU XIV	HARDWIRED ALGORITHMS	SEE OPERATION FORM DESCRIPTION

2.7.3 Arithmetically-Greater Than (AG, See Figure 7)

In the most-significant package (MSP) the Y look-ahead function from the ALU is inhibited and the arithmetically-greater-than (AG) output is enabled. The MSP AG output is active during arithmetic and shift operation forms to provide a status indication that can be used when it is desirable to compare two signed integer numbers. The specific status for each operation form is listed in Table 8.

X AND Y ARE CARRY LOOK-AHEAD FUNCTIONS

FIGURE 7 - MSP ARITHMETICALLY-GREATER-THAN (AG) OUTPUT

TABLE 8 ALU CARRY AND MSP ARITHMETICALLY-GREATER-THAN (AG) OUTPUTS

	LSP AND IP			MSP				
OPERATION FORM	x	Y	EQ	C-OUT	LG	AG	EQ	C-OUT
LOGICAL OPERATIONS	L	H _.	Σ-BUS = 0	C-IN	Σ -BUS $\neq 0$	Σ -BUS > 0	Σ-BUS = 0	C-IN
ARITHMETIC OPERATIONS:					A LG B	A LG B		
COMPARE	x	Y	A=B	C-OUT	or B LG A	or B LG A	A = B	C-OUT
ALL OTHER ARITHMETIC	×	Y	Σ -BUS = 0	C-OUT	Σ -BUS $\neq 0$	$\Sigma\text{-}BUS>0$	Σ -BUS AG 0	C-OUT

X and Y are carry look-ahead functions.

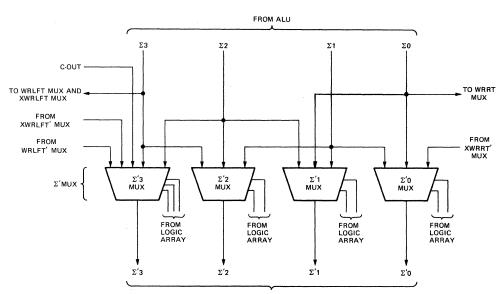
2.8 OPERAND OVERFLOW

In the most-significant package (MSP) the counter-carry output (\overline{CCO}) function from the program/memory counter is inhibited and the overflow (OV) output is enabled. The MSP OV output is active during arithmetic and shift operation forms to provide a status indication that the result of the operation cannot be correctly represented with the number of bit positions available. When the OV output goes high, it indicates that the next clock will:

- a. During arithmetic operations, cause the ALU to overflow.
- b. During left-shift arithmetic operations, cause the shifted register to overflow.

Table 9 enumerates the specific indicators generated.

TABLE 9 MSP OVERFLOW (OV) OUTPUT


OP FORM	TYPE OF OP	OV = H INDICATES
i or II (ARITH)	ADD or SUB	ALU OVERFLOW
III (ARITH WITH SHIFT)	LSL, RSL	ALU OVERFLOW
	RSA	OV = L
	LSA	NEXT CLOCK WILL CAUSE
		SHIFT OVERFLOW
IV, V, or VI (SHIFTS)	LSA	NEXT CLOCK WILL CAUSE
		SHIFT OVERFLOW
	ALL OTHERS	OV ≡ L
VII (COMPARE)	A : B	UNDEFINED
	B : A	UNDEFINED
VIII (LOGICAL)	ALL	OV ≡ L
IX (NO OP)	ZERO Ľ-BUS	OV ≕ L
X THRU XIV	HARDWIRED ALGORITHMS	SEE OPERATION FORM
		DESCRIPTIONS

H = high level, L = low level

2.9 SUM' BUS MULTIPLEXER

The sum'-bus multiplexer, sourced by the ALU, provides a means for accomplishing a shift operation on the ALU operand without affecting the contents of WR, XWR, PC or MC (See Figure 8). Functionally, this multiplexer can be used to:

- a. Shift the operand left or right (one bit position) arithmetic, logical, or circulate
- b. Pass the operand without shift to the Σ' bus.

TO: DO MUX, PC, MC, WR MUX, XWR MUX, 3-STATE BUS

FIGURE 8 - SUM BUS MULTIPLEXER

Full sign protection and fill-in is provided in the MSP and LSP under control of the relative position inputs.

Information on the Σ' bus can be accessed during some operations through the 3-state Σ' bus control buffer at the B input/output port.

The parallel data input ports and the I/O capability of the B port, combined with the Σ -bus access, provides considerable flexibility for performing simple shifts or combinations of **operation-and-shift** on data or operands resident in the external working memory locations.

2.10 B-INPUT/OUTPUT CONTROL

The B-input/output port is isolated from the sum' bus by a 3-state control buffer when the buffer outputs are at a high-impedance. Enabling the buffer routes the sum' bus data to the B-port. The low-current inputs of the B port latch minimizes loading effects, and the buffers can source 6.5 mA or sink 10 mA of drive current in the output mode. During the output mode, the 'bus data can be latched in the B input latch. Enabling or disabling is accomplished by the I/O control input. See Table 10 and Figure 9.

I/O CONTROL	I/O BUFFER OUTPUT
L	SUM' BUS DATA
н	HIGH-IMPEDANCE

TABLE 10 B-INPUT/OUTPUT CONTROL

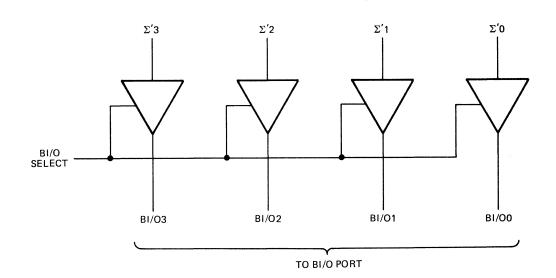
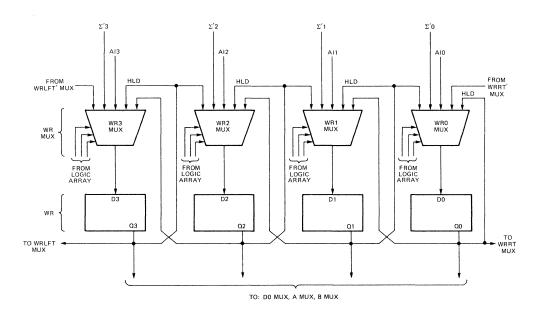



FIGURE 9 - B-INPUT/OUTPUT CONTROL

2.11 WORKING REGISTER

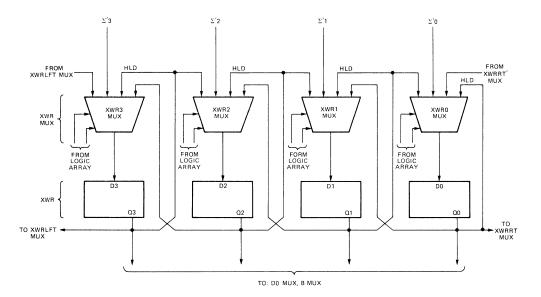
The working register (WR) is a 4-bit D-type register which functions as an accumulator during iterative arithmetic operations or as a temporary holding register for intermediate operands (see Figure 10). It is sourced by the WR multiplexer. Storage of setup data, under control of the resident operation forms which permit the WR to be a destination, occurs on the positive transition of the clock. WR shifting capabilities are implemented in the WR multiplexer. The working register can be selected to source the data-out port multiplexer (DO MUX), A-input multiplexer (A MUX), or B-input multiplexer (B MUX). The MSB of the WR is sourced to the WRLFT MUX, and the LSB of the WR is sourced to the WRRT MUX to facilitate expansion.

FIGURE 10 - WORKING REGISTER (WR) AND WR MULTIPLEXER

An asynchronous control line, LDWR, is available to facilitate loading the working register directly from the A input port in combination with the resident micro-operation.

2.12 WORKING REGISTER MULTIPLEXER (WR MUX)

The working register multiplexer provides source selection, including the bidirectional shifting capability, for the working register. See Figure 10. Under direction of the resident operation, the WR MUX asynchronously selects either:


- a. A input port for direct loading
- b. Σ' bus for ALU operand results

- c. Hold mode for no change
- d. Shift left
- e. Shift right

End conditions for both shift left and shift right operations are routed to or from WR MSB (WR3) or WRLSB (WR0) to the WRLFT/WRLFT' multiplexers or to the WRRT/WRRT' multiplexers respectively.

2.13 EXTENDED WORKING REGISTER

The extended working register (XWR) is a 4-bit D-type register which functions primarily as an extension of the working register to provide the double-precision operation capabilities needed for iterative multiply and divide routines (see Figure 11). Additionally, the storage capabilities of the XWR are available for use as another temporary holding register for intermediate operands during a number of the single-precision operation forms. It is sourced by the XWR multiplexer. Storage of setup data, under control of resident operation forms which permit the XWR to be a destination, occurs on the positive transition of the clock. XWR shifting capabilities are implemented in the XWR multiplexer. The XWR can be selected to source the data-out port multiplexer (DO MUX), B-input multiplexer (B MUX), or the XWR multiplexer (XWR MUX). The MSB of the XWR is sourced to the XWRLFT' MUX, and the LSB of the XWR is sourced to the XWRRT' MUX to facilitate expansion.

2.14 EXTENDED WORKING REGISTER MULTIPLEXER (XWR MUX)

The extended working register multiplexer provides source selection, including the bidirectional shifting capability, for the extended working register (see Figure 11). Under direction of the resident operation, the XWR MUX asynchronously selects either:

- a. Σ' bus for ALU operand results
- b. Hold mode for no change

- c. Shift left
- d. Shift right.

End conditions for both shift left and shift right operations are routed to or from XWR MSB (XWR3) or XWR LSB (XWR0) to the XWRLFT/XWRLFT' multiplexers or to the XWRRT/XWRRT' multiplexers respectively.

2.14.1 Σ-Bus, WR, XWR MSB Shift Transfer Multiplexers

The MSB shift transfers are accomplished by the WRLFT, XWRLFT input/output multiplexers and the WRLFT', XWRLFT' sum-bus/register MSB input multiplexers. All four multiplexers, and the impedance of the 3-state I/O lines of the WRLFT and XWRLFT multiplexer outputs are under control of the resident operation code and the relative position control (POS). Data paths of the multiplexers are illustrated in Figure 12, and bit transfers with respect to each of the shift operations are enumerated in Tables 11 through 14.

2.14.2 WRLFT, XWRLFT Multiplexers

The WRLFT, XWRLFT input/output multiplexers facilitate routing of the working register, extended working register, or sum bus MSB out the WRLFT, XWRLFT I/O's during output modes. In an input mode, the three-state output is at a high impedance permitting the WRLFT and/or the XWRLFT pins to be used as inputs.

2.14.3 WRLFT', XWRLFT' Multiplexers

The WRLFT' multiplexer selects the source for either the sum bus or working register MSB. Sign bit protection and right-shift bit-fill functions are all handled on-chip by these multiplexers under control of the operation code and relative position. The WRLFT' sources are:

- a. WRLFT (input)
- b. ALU carry out (for sign-fill)
- c. Low level (for zero-fill)
- d. XWRLFT input
- e. XWR MSB
- f. WR MSB (sign-fill in for RSA)
- g. Sign fill in for RSA (see Figure 12)

The XWRLFT multiplexer selects the source for XWR MSB and provides sign-bit protection and right-shift-fill functions for the XWR. The XWRLFT sources are:

- a. XWRLFT (input)
- b. WRLFT
- c. XWR MSB (sign-fill in for RSA)

2.14.4 WR, XWR LSB Shift Transfer Multiplexers

The LSB shift transfers are accomplished by the WRRT, XWRRT input/output multiplexers and the WRRT', XWRRT' sum-bus/register LSB input multiplexers. All four multiplexers, and the impedance of the 3-state I/O lines of the WRRT and XWRRT multiplexer outputs, are under control of the resident operation code and the relative position control (POS). Data paths of the multiplexers are illustrated in Figure 13.

2.14.5 WRRT Multiplexer, XWRRT Buffer

The WRRT input/output multiplexer facilitates routing of sum-bus or working register LSB out the WRRT I/O during output modes. The XWRRT I/O buffer can access and source the XWR LSB. In an input mode, the three-state output is at a high impedance permitting the WRRT and/or XWRRT pins to be used as inputs.

2.14.6 WRRT', XWRRT' Multiplexers

The WRRT' multiplexer selects either the WRRT input or a low logic level (fill) input as the LSB source for either the working register or the sum-bus. The XWRRT' multiplexer selects between the XWRRT input and low logic level (fill) input as the XWR LSB source.

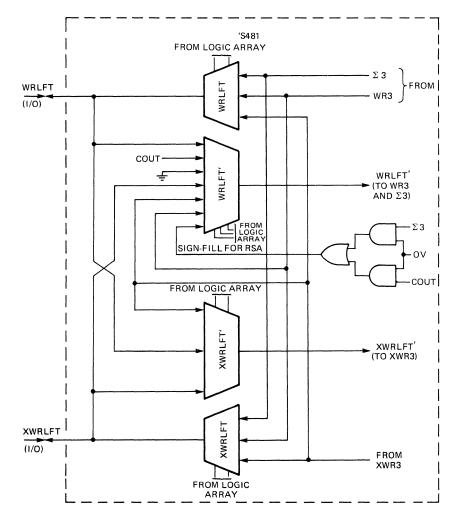


FIGURE 12 - SUM-BUS, WR, XWR MSB SHIFT TRANSFER MULTIPLEXERS

SHIFT	MOS	IN	ITERMEDIAT	E POSITIO	N	LEAST-SIGNIFICANT POSITION						
MODE	WRLFT	WRLFT'	WRRT'	WRRT	WRLFT	WRLFT'	WRRT	WRRT	WRLFT	WRLFT'	WRRT'	WRRT
LSL (SP)	z	x	WRRT	z	WR3	x	WRRT	z	WR3	x	WRRT	z
LSL (DP)	XWR3	х	WRRT	z	WR3	×	WRRT	Z	WR3	x	WRRT	z
LSA (SP)	WR3	х	WRRT	Z	WR3	x	WRRT	Z	WR3	X	L	Z
LSA (DP)	XWR3	х	WRRT	z	WR3	×	WRRT	z	WR3	X	WRRT	Z
LCIR (SP)	WR3	x	WRRT	z	WR3	x	WRRT	Z	WR3	X	WRRT	Z
LCIR (DP)	XWR3	х	WRRT	z	WR3	×	WRRT	z	WR3	×	WRRT	Z
RSL (SP)	Z	WRLFT	х	WR0	Z	WRLFT	x	WR0	Z	WRLFT	х	Z
RSL (DP)	Z	L	х	WR0	z	WRLFT	х	WR0	z	WRLFT	х	WR0
RSA (SP)	Z	WR3	x	WR0	Z	WRLFT	x	WR0	Z	WRLFT	х	WR0
RSA (DP)	z	WR3	х	WR0	z	WRLFT	х	WR0	Z	WRLFT	х	WR0
RCIR (SP)	Z	WRLFT	x	WR0	Z	WRLFT	х	WR0	Z	WRLFT	х	WR0
RCIR (DP)	z	WRLFT	х	WR0	z	WRLFT	х	WR0	z	WRLFT	х	WRO

TABLE 11 WORKING REGISTER BIT TRANSFERS TO WRLFT/WRRT

 TABLE 12

 SUM-BUS BIT TRANSFERS TO WRLFT/WRRT

SHIFT	MOS	T-SIGNIFICA	ANT POSIT	ION	IN	TERMEDIAT	E POSITIO	N	LEAST-SIGNIFICANT POSITION				
MODE	WRLFT	WRLFT'	WRRT'	WRRT	WRLFT	WRLFT'	WRRT	WRRT	WRLFT	WRLFT'	WRRT'	WRRT	
LSL (SP)	z	x	WRRT	z	Σ3	x	WRRT	Z	Σ3	x	WRRT	z	
LSL (DP)	XWR3	х	WRRT	z	Σ3	x	WRRT	z	Σ3	×	WRRT	Z	
LSA (SP)	ະນ3	х	WRRT	z	Σ3	×	WRRT	Z	Σ3	×	L	Z	
LSA (DP)	XWR3	х	WRRT	z	Σ3	х	WRRT	z	Σ3	×	WRRT	Ż	
LCIR (SP)	Σ3	x	WRRT	Z	Σ3	x	WRRT	Z	Σ3	x	WRRT	Z	
LCIR (DP)	XWR3	х	WRRT	z	Σ3	x	WRRT	z	Σ3	×	WRRT	Z	
RSL (SP)	Z	WRLFT	х	Σ0	Z	WRLFT	х	<u>۲</u> 0	Z	WRLFT	х	Σ0	
RSL (DP)	z	C-OUT	х	Σ0	z	WRLFT	х	ΣO	z	WRLFT	х	20	
RSA (SP)	Z	*	х	Σ0	Z	WRLFT	х	Σ0	Z	WRLFT	х	Σ0	
RSA (DP)	z	*	х	Σ0	z	WRLFT	х	Σ0	z	WRLFT	х	$\Sigma 0$	
RCIR (SP)	Z	WRLFT	х	Σ0	Z	WRLFT	х	Σ0	Z	WRLFT	х	Σ0	
RCIR (DP)	z	XWRLFT	х	Σ0	z	WRLFT	х	Σ0	z	WRLFT	х	Σ 0	

*VARIABLE = (Σ 3 · ALU OVERFLOW) + (C-OUT · ALU OVERFLOW)

TABLE 13

EXTENDED WORKING REGISTER BIT TRANSFERS TO XWRLFT/XWRRT

SHIFT	SHIFT MOST-SIGNIFICANT POSITION					NTERMEDIA	TE POSITIO	N	LEAST-SIGNIFICANT POSITION				
MODE	XWRLFT	XWRLFT'	XWRRT'	XWRRT	XWRLFT	XWRLFT'	XWRRT'	XWRRT	XWRLFT	XWRLFT'	XWRRT'	XWRRT	
LSL (SP)	z	x	XWRRT	z	XWR3	×	XWRRT	z	XWR3	x	XWRRT	z	
LSL (DP)	z	×	XWRRT	z	XWR3	×	XWRRT	z	XWR3	х	XWRRT	z	
LSA (SP)	XWR3	×	XWRRT	Z	XWR3	×	XWRRT	Z	XWR3	х	L	z	
LSA (DP)	WR3	×	XWRRT	z	XWR3	×	XWRRT	z	XWR3	х	L	z	
LCIR (SP)	XWR3	×	XWRRT	Z	XWR3	×	XWRRT	Z	XWR3	x	XWRRT	Z	
LCIR (DP)	WR3	×	XWRRT	z	XWR3	×	XWRRT	Z	XWR3	х	XWRRT	Z	
RSL (SP)	Z	XWRLFT	x	XWR0	Z	XWRLFT	x	XWR0	z	XWRLFT	x	Z	
RSL (DP)	z	WRLFT	х	XWR0	z	XWRLFT	х	XWR0	z	XWRLFT	х	XWR0	
RSA (SP)	Z	XWR3	x	XWR0	z	XWRLFT	х	XWR0	z	XWRLFT	x	XWR0	
RSA (DP)	z	WRLFT	х	XWR0	z	XWRLFT	x	XWR0	z	XWRLFT	x	XWR0	
RCIR (SP)	Z	XWRLFT	х	XWR0	z	XWRLFT	x	XWR0	z	XWRLFT	х	XWR0	
RCIR (DP)	z	WRLFT	×	XWR0	z	XWRLFT	×	XWR0	z	XWRLFT	×	XWR0	

SHIFT		MOST-SIGNIFIC	CANT POSITION	
MODE	XWRLFT	XWRLFT'	XWRRT'	XWRRT
LSL (SP)	Z	x	XWRRT	Z
LSL (DP)	Z	x	XWRRT	z
LSA (SP)	XWR3	x	XWRRT	z
LSA (DP)	Σ3	x	XWRRT	z
LCIR (SP)	XWR3	x	XWRRT	Z
LCIR (DP)	Σ3	х	XWRRT	Z
RSL (SP)	Z	XWRLFT	x	XWR0
RSL (DP)	z	WRLFT	х	XWR0
RSA (SP)	Z	XWR3	x	XWR0
RSA (DP)	Z	WRLFT	х	XWR0
RCIR (SP)	Z	XWRLFT	x	XWR0
RCIR (DP)	Z	WRLFT	x	XWR0

TABLE 14 SUM-BUS BIT TRANSFERS TO XWRLFT (MSP)

NOTE: Intermediate and Least-Significant Positions are the same as shown in Table 13.

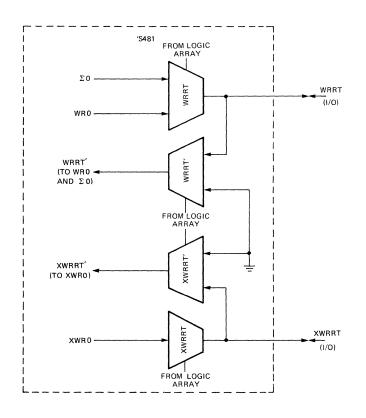


FIGURE 13 - SUM-BUS, WR, XWR LSB SHIFT TRANSFER MULTIPLEXERS

2.15 SHIFT FUNCTIONS

The 'S481 contains the necessary controls and data paths to perform single or double length logical, arithmetic, or circulate bidirectional shift functions in a single clock cycle. Each of the six shift functions implemented are selectable by a single microinstruction; and, additionally two single clock operation forms are included which provide the capability of performing an add/subtract in conjunction with a shift. The six shift functions and the basic operation forms offering them are enumerated in Table 15.

OPERATION FORMS										
SIMPL	E SHIFT	ADD/SUBTRACT WITH SHIFT								
SINGLE LENGTH	DOUBLE LENGTH	SINGLE LENGTH	DOUBLE LENGTH							
IV, V	VI									
IV, V	VI									
IV, V	VI	111	н							
IV, V	VI									
IV, V	VI	III								
IV, V	VI	111	н							
	SINGLE LENGTH IV, V IV, V IV, V IV, V IV, V IV, V	SIMPLE SHIFT SINGLE DOUBLE LENGTH LENGTH IV, V VI IV, V VI	SIMPLE SHIFT ADD/SU WITH SINGLE DOUBLE SINGLE LENGTH LENGTH LENGTH IV, V VI III IV, V VI III							

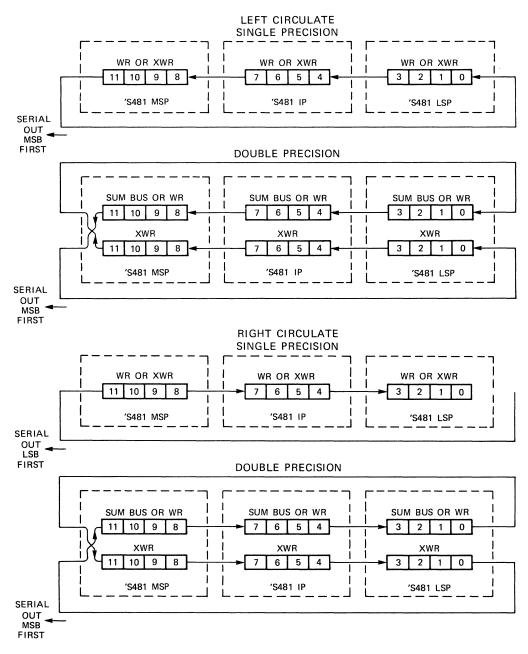
TABLE 15 MICROPROGRAMMABLE SHIFT FUNCTIONS

2.15.1 CIRCULATE (SHIFT) FUNCTIONS (MICROPROGRAMMABLE)

Operation forms IV and V provide the system designer with the capability of programming a single precision circulate (or rotate) of the Σ' bus, working register, or extended working register and operation form VI provides the capability of circulating or rotating a double-length word resident in the WR/XWR. A single-bit-position left or right circulate is accomplished on each clock without the loss of any bits as the shift transfer multiplexers, under control of the resident operation and position input, interconnect the bus or register as illustrated in Figure 14.

The remaining end conditions are handled on chip by the shift transfer multiplexers to interconnect the bit transfer mechanisms for MSB \rightarrow LSB for single precision circulates and for transfers to or from the Σ' bus or working register and the extended working register during double-precision circulates. Data flow between packages in an expanded word-length system is via the interconnected WRRT/WRLFT and XWRRT/XWRLFT terminals.

2.15.2 ARITHMETIC SHIFT FUNCTIONS (MICROPROGRAMMABLE)


Operation forms III, IV, V and VI provide the system designer with the capability of programming the following arithmetic shifts.

Form III - A single-precision arithmetic left or sign-protected right shift of the sum or difference of the A and B operands destined for either the WR or XWR.

Form IV – A single-precision arithmetic left or sign-protected right shift of the A operand destined for the Σ' bus.

Form V - A single-precision arithmetic left or sign-protected right shift of the WR or XWR contents.

Form VI – A double-precision arithmetic left or sign-protected right shift of the WR and XWR contents.

SN74S481 4-BIT-SLICE SCHOTTKY PROCESSOR ELEMENT

FIGURE 14 - CIRCULATE FUNCTIONS

A single-bit-position shift is accomplished on each clock with right-shift sign-protection and left shift LSB zero-fill operations controlled by the shift transfer multiplexers under direction of the resident operation and the position input. See Figure 15.

The remaining end conditions are handled on chip by the shift transfer multiplexers to interconnect the bit transfer mechanisms for transfers to or from the Σ' bus or working register and the extended working register during double-precision arithmetic shifts. Data flow between packages in an expanded word-length system is via the interconnected WRRT/WRLFT and XWRRT/XWRLFT terminals.

2.15.3 LOGICAL SHIFT FUNCTIONS (MICROPROGRAMMABLE)

Operation Forms II, III, IV, V and VI provide the system designer with the capability of programming the following logical shifts:

Form II - A double-precision left or right shift of the sum or difference of the A and B operands destined for the WR in conjunction with the XWR.

Form III - A single-precision left or right logical shift of the sum or difference of the A and B operands destined for the WR or the XWR.

Form IV – A single-precision left or right logical shift of the A operand destined for the Σ' bus.

Form V – A single-precision left or right logical shift of the WR or XWR contents.

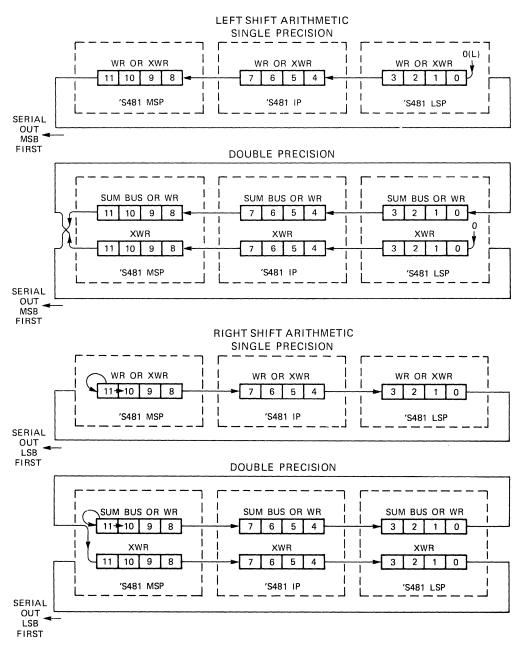
Form VI – A double-precision left or right logical shift of the WR and XWR contents.

A single-bit-position shift is accomplished on each clock with MSB and LSB fill operations controlled by the shift transfer multiplexers under direction of the resident operation and the position input. See Figure 16.

The remaining end conditions are handled on chip by the shift transfer multiplexers to interconnect the bit transfer mechanisms for transfers to and from the Σ' bus or working register and the extended working register during double-precision logical shifts. Data flow between packages in an expanded word length system is via the interconnected WRRT/WRLFT and XWRRT/XWRLFT terminals.

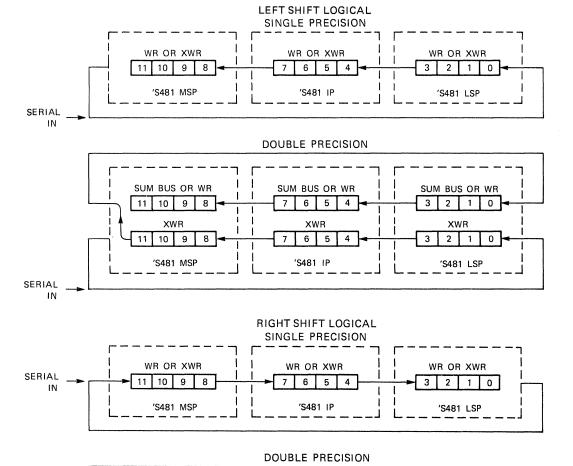
2.16 DATA-OUT PORT MULTIPLEXER (DO MUX)

The data-out port multiplexer, Figure 17, provides selection for routing the contents of either the sum'-bus, working register, or extended working register to the parallel output port. Additionally, the multiplexer is equipped with 3-state outputs providing the capability to isolate the 'S481 from the system data bus. Source selections and high-impedance controls are detailed in Table 16.


Each data output is capable of sourcing 6.5 and sinking 10 milliamperes of drive current.

2.17 MEMORY AND PROGRAM COUNTERS

Dual counters provide the system designer with a processor element containing both an iteration counter and the capability of generating and/or storing locations of operands/data.


Either counter can be loaded or preset to any value or result from the sum bus in operations forms as follows:

	SELECTABLE AS DESTINATION				
OP FORM	PC	MC			
1	Yes	Yes			
111	No	Yes			
VIII	Yes	No			

SN74S481 4-BIT-SLICE SCHOTTKY PROCESSOR ELEMENT

FIGURE 15 - ARITHMETIC SHIFT FUNCTIONS

SN74S481 4-BIT-SLICE SCHOTTKY PROCESSOR ELEMENT

FIGURE 16 - LOGICAL SHIFT FUNCTIONS

7

7

SUM BUS OR WR

6 5

XWR

'S481 IP

6 5 4

4

SUM BUS OR WR

XWR

'S481 LSP

2 1 0

2 1 0

3

3

IC OUT

OR O

XWR

11 10 9 8

'S481 MSP

11 10 9 8

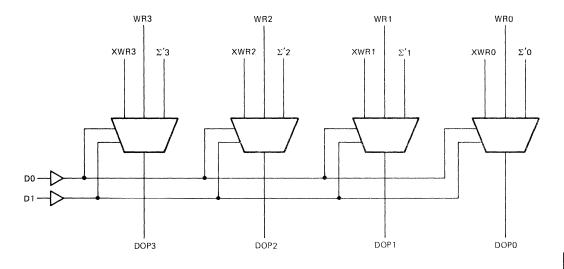


FIGURE 17 - DATA-OUT PORT MULTIPLEXER (DO MUX)

Under control of the position (POS) input and the resident operation code, the \overline{CCO}/OV output facilitates cascading the program and memory counters. In the least-significant and intermediate positions, the \overline{CCO} pins of lesser significant packages are connected to the \overline{CCI} pins of more significant packages to complete the counter interconnections to the bit-size of the processor element.

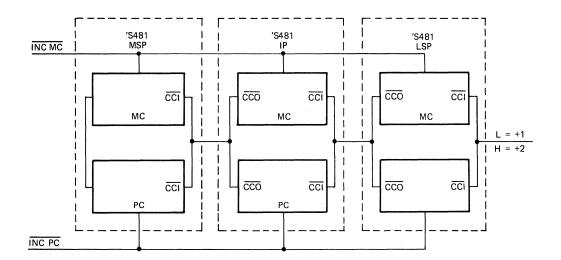

The functionally identical program and memory counters, sharing a

	TABLE 16 DATA-OUT PORT CONTROL										
	TROL	SOURCE OR FUNCTION									
D1	D0										
L	L	Σ'-BUS									
L	н	EXTENDED WORKING REGISTER									
н	L	WORKING REGISTER									
н	н	HIGH-IMPEDANCE									

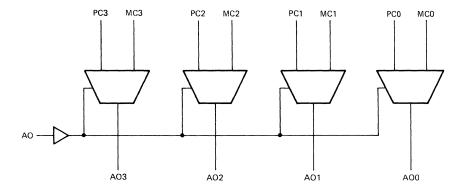
common counter carry input (\overline{CCI}) control pin and a common counter carry output (\overline{CCO}) pin, feature individual control lines ($\overline{INC PC}$, $\overline{INC MC}$) which can be used to instruct either (but normally not both) or neither counter to increment on the next clock transition in any of the 14 operation forms. Additionally, the counter in the LSP, under command of the POS input, has the capability of incrementing its value by one or by two to facilitate the generation of even or odd address locations in a single clock cycle. Contents of the counters can be read out from the address out port asynchronously under control of the address output multiplexer (AO MUX) select input.

Typical counter functions with respect to package relative positions are shown in Figure 18.

In the MSP, the CCO/OV output, as a result of the position (POS) control, becomes the ALU/shift overflow (OV) status output.

	INPUTS		ск		CO	UNTER VALUE	
INC PC	INC MC	CCI	UK	LSP MC	LSP PC	MSP, IP MC	MSP, IP PC
н	Н	х	A	NO CHG	NO CHG	NO CHG	NO CHG
L	н	L	A	NO CHG	+1	NO CHG	+1
L	н	н	4	NO CHG	+2	NO CHG	NO CHG
н	L	L	A	+1	NO CHG	+1	NO CHG
н	L	н	A	+2	NO CHG	NO CHG	NO CHG
x	х	x	L	NO CHG	NO CHG	NO CHG	NO CHG
×	х	x	н	NO CHG	NO CHG	NO CHG	NO CHG

H=HIGH LEVEL, L=LOW LEVEL, X=IRRELEVANT , ↓ =LOW-TO-HIGH TRANSITION


FIGURE 18 - PROGRAM AND MEMORY COUNTER FUNCTIONS

2.18 ADDRESS-OUT PORT MULTIPLEXER (AO MUX)

The address-out port multiplexer, Figure 19, provides for direct parallel access to the contents of either the program or memory counter contents. A single line controls selection as shown in Table 17.

TABLE 17	
ADDRESS-OUT PORT CONTROL	1

CONTROL INPUT A0	COUNTER SELECTED
L	MEMORY
H	PROGRAM

FIGURE 19 - ADDRESS-OUT PORT MULTIPLEXER (AO MUX)

2.19 EXPANDING THE WORD LENGTH

The 'S481 processor element contains on-chip personality circuitry designed specifically to minimize the external discrete components required to cascade 4-bit slices to form larger word lengths. At the processor-element level, three external resistors are all that is required: one to pull-up the open-collector outputs and two to establish the position control input voltage at the LSP. Figure 20 shows a typical 16-bit processor element and illustrates the parallel bus arrangements for I/O and control with an SN74S182 performing ALU look-ahead across the 16-bit word. Interconnectivity for the shift, arithmetic, and counter functions is accomplished by hardwiring the functions as shown.

At the system level, standard techniques commonly employed for power-supply bypass, termination of unused pins, and system grounding of high-performance Schottky TTL systems are recommended.

3. OPERATIONAL DESCRIPTIONS

3.1 MICRO/MACRO-OPERATIONS

The micro/macro-operations resident in the micro-decode logic array can be accessed with an eleven-bit operation-select word. Operational flexibility is maximized by the fact that the op-select word format has been defined individually for each of the 14 different operation forms.

Operation Forms I, II, and III are primarily ALU functions. Forms II and III combine logical or arithmetic shifting functions with the ALU result. Form II can be used for double-precision shifting. Sources, specific ALU function, shift format, and destinations are detailed for each op-select word format.

Forms IV, V, and VI perform either logical or arithmetic, bidirectional shifting of the single- and doubleprecision buses and registers.

Form VII can be used to compare the magnitude of A source to B source, or B source to A source.

Form VIII provides the capability to logically combine the values of the A and B sources.

Form IX zeros the Σ' bus with the effect of providing no operation.

Forms X through XIV are macroprogrammable operations which provide:

- a. CRC partial sum update (normally $\frac{N}{2}$ clocks)
- b. Signed Divide (N + 3 clocks)
- c. Unsigned Divide (N + 1 clocks)
- d. N-bit-by-N-bit double-precision unsigned multiply (N clocks)
- e. N-bit-by-N-bit double-precision signed multiply (N clocks)

The 14 operation forms, symbols, and number of unique operations are detailed in Table 18.

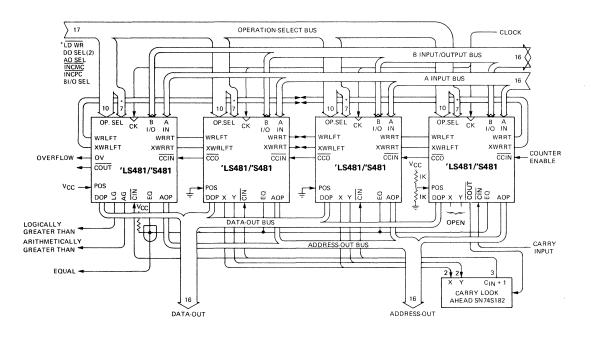


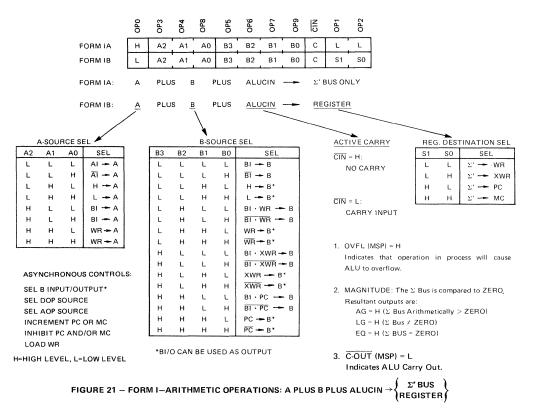
FIGURE 20 - TYPICAL 16-BIT PROCESSOR

~

	OPERATION FORM					COMMANE	FORMAT									TEST O	UTPUTS			
				1				1		Γ	1	LSP	M	SP	A	LL	M	SP	MSP	MSP
NO.	OPERATION	OP0 (7) ¹	OP1 (8)	OP2 (9)	OP3 (10)	OP4 (17)	OP5 (14)	OP6 (13)	OP7 (11)	OP8 (15)	OP9 (16)	CIN (18)	LG (21)	AG (20)	EQ (23)	C-OUT (22)	X (21)	Y (20)	OVFL (37)	CCO (37)
IA	$(\pm A \pm B + \overline{CIN}) \rightarrow \Sigma' BUS ONLY^2$	н	L	L	A SOL	JRCE		B SOURCE	-	A' FNCT	B' FNCT	L=CARRY	Σ'≠ZERO	Σ'>ZERO	Σ'=ZERO	COUT	X4	¥4	OVFL	CCO
IΒ	(±A ±B + CIN) → REGISTER	L	LL = 2 LH = 2 HL = 2	$\begin{array}{l} \text{ISTER} \\ \Sigma' \rightarrow \text{WR} \\ \Sigma' \rightarrow \text{XWR} \\ \Sigma' \rightarrow \text{PC} \\ \Sigma' \rightarrow \text{MC} \end{array}$	LL = Al - LH = H'S HL = Bl - HH = WR	→ A → A	LLI LH HL HL HL	$L = BI \rightarrow B$ $H = H'S \rightarrow B$ $L = BI \cdot WR$ $H = WR \rightarrow B$ $L = BI \cdot XW$ $H = XWR \rightarrow$ $L = BI \cdot PC$ $H = PC \rightarrow B$	→B R→B B	L = A → A' H = Â → A'	H = B → B'	H=NO CARRY								
	(A + B + CIN) > WR, XWR ²	н	н	н	L	н	L	$\frac{FUNCT}{L = A \rightarrow A'}$	L=BI→B'	L = AI → A		L = SUB	S≠ZERO	Σ'>ZE RO	Σ'=ZERO	COUT	×	Y	OVFL	cco
НВ	(B – A – 1) & WR, XWR	н	н	н	L	н	L	H = Ā → A'	H≖WR→B'	H ≈ BI → A	H = RT	H = ADD								
ш	(A + B + CIN) S REGISTER	н	н	L	н	A' SRC	REGISTER	-		SHIFT	TYPE	L = CARRY		Σ">ZERO	1	COUT	×	Y	OVFL	cco
						$L = AI \rightarrow A'$ $H = BI \rightarrow A'$	$L = \Sigma' \rightarrow MC$ $H = \Sigma' \rightarrow$	LL = BI LH = WI		L = LOG H = ARITH	L = LFT	H = NO CARRY	DURIN	IG ARITHN	IETIC SHIF	TS A' + C IS I	COMPARE	D TO -1	SHIFT	
							XWR	HL = XV HH* = L	'S → B'				Σ′≠1	$\Sigma' > -1$	Σ'= -1	<u>cout</u>	×	Y	OVFL	600
١v	Al ԳΣ' BUS	н	н	н	L	н	н	LL = AI		LL = LOG		L = LFT	AI≠ZERO	AI>ZERO	AI=ZERO	CIN	x	Y	L (FOR	000
	WR SH WR	н	н	н	L	н	н	LH = WR		LH = ARIT		H = RT							LSA	
VB VI	XWR SXWR WR, XWR SYWR, XWR	н	н н	н		н	н	HL = XW		HH (NOT C									OVFL)	
-							1	B' SOURCE		A' SRC	OPER	н	N1>N2	N1>N2	N1=N2	-LG	x	Y	_	cco
	A:B (N1:N2)	н	н	н	L	L	(SAME /	AS FORM I	ABOVE)	L = AI → A'	L=A:B									
	B:A (N1:N2) NOR/AND LOGICAL OPERATIONS OR/NAND LOGICAL OPERATIONS EX OR/EX NOR LOGICAL OPERATIONS	н н н	LH	H FUNCTION HL = NOR HH = OR LL = XOR	L	L L≖AI→A H≖WR→A	$\frac{REG^{\dagger}}{LL = WR}$ $LH = XWR$ $HL = PC$ $HH = \Sigma'$	B SO LL = BI LH = WI HL = XV HH = PC	→B R→B VR→B	H = WR →A' A' FNCT L = A → A' H = Ā → A'	B'FNCT L=B→B'	REGT (SEE UNDER OP5 COLUMN)	∑≠ZERO	Σ'>ZERO	Σ'=ZERO	-CIN	×	Y	L	033
IX	NO OPERATION (ZERO $\rightarrow \Sigma'$ BUS)	н	н	н	н	н	HorL	H or L	HorL	HorL	HorL	HorL	L	L	н	=CIN	×	Y	L	CCO
х	CRC ACCUMULATION	н	н	н	н	L	L	L	L	L	O/I5	н	-	-	-	-	×	Y	L	cco
xı	A. START SIGNED B. ITERATE (N-1 CLKS)	тт	н	Н	н	L	L H	H	L H	H 0/16	H 0/16	н	-	-	DIV=ZERO	_	-	-	-	-
<u>^'</u>	INTEGER C. ITERATE FINISH	н	н	н	H	i i	H	H H	L	0/16	0/16	н	_	-	_	_	-	-	_	
	DIVIDE D. FIX REMAINDER	н	н	н	н	L	н	L	L	0/16	0/16	, н		-	-	-	-		-	-
	E. ADJUST QUOTIENT	н	н	н	н	L	L	н	н	0/16	0/16	н	-	- DIV OVFL	-		~			
XII	UNSIGNED A. START DIVIDE B. ITERATE (N-1 CLKS)	H	н	н	H H		L.	L	L H	<u>н</u>	н 0/16	L .	-	-	_	-	-	-	_	
	C. FINISH	н	н	н	н	L L	L	L .	н	L	0/16	L	~	-	-	-	-	-	-	-
XIII	UNSIGNED MULTIPLY	н	н	н	н	L	L	н	L	L	0/16	н	~	-	-	-	-	-		-
XIV	SIGNED INTEGER MULTIPLY	н	н	н	н	L	н	н	н	0/16	O/16	н		-	-		-		<u> </u>	-
	DO1 SEL (29) SEL (42) DO2 SEL (30)	BI/O SEL (201	041	inic	MC (35)	5) INC PC (43) CCI (44)					000 (10							PIN ASSIGNMENTS	
				LD WR (24)			-					POS (19	-		DATA PORTS		BIT (2 ⁿ)	_		
		L OUTPL H INPUT		L AI→W H NOLO		INC HOLD	н	INC HOLD	LSP MID L	L: x 1 H: x 2 OR MSP CARRY NO CARR		0 V = MID 2.4 V = LSP 5 V = MSP		(6) (4 (5) (4 (4)	I/O DOP 46) (34) 47) (33) (1) (32) (2) (31)	(38) (39) (40) (41)	0 (LSB) 1 2 3 (MSB)	WRL XWR	FT (25)	CK (45) V _{CC} (12) GND (36)

TABLE 18 - OPERATION FORM, COMMAND FORMAT, AND TEST OUTPUTS

 NOTES:
 1. NUMERALS IN PARENTHESIS ARE PIN NUMBERS
 5. O IS OUTPUT ON LSP, I IS INPUT ON LSP


 2. → DESTINED FOR ← SHIFTED AND DESTINED FOR
 6. O IS OUTPUT ON MSP, I IS INPUT ON MSP

 3. H → HIGH VOLTAGE LEVEL, L = LOW VOLTAGE LEVEL
 7. VOLTAGE VALUES ARE NOMINAL

 4. X AND Y ARE CARRY LOOK-AHEAD FUNCTIONS
 5. O IS OUTPUT ON LSP, I IS INPUT ON MSP

3.2 OPERATION FORM I – ADD/SUBTRACT → REGISTER

Operation Form I is designed specifically to perform the addition or symmetrial subtraction of two operands. The operation form shown in Figure 21, is composed of two distinct capabilities:

a. Form IA provides the capability of adding or subtracting two operands and routing the results to the Σ' bus. Symbolically, this operation can be expressed as:

$$\mathsf{A} \quad \left\{ \begin{matrix} \mathsf{PLUS} \\ \mathsf{MINUS} \end{matrix} \right\} \quad \mathsf{B} \; \mathsf{PLUS} \; \mathsf{ALUCIN} \to \Sigma' \; \mathsf{BUS}$$

This form provides the capability of choosing from any one of the A and any one of the B sources listed in Figure 21 as the operands to accomplish the add/subtract. The example illustrated in Figure 22 utilizes the I/O capability of the B input/output port. Input data at the AI or B I/O is setup and then latched into the 'S481 A or B input latch on the negative transition of the 'S481 clock.

During Form IA operations, the contents of the extended working register are not changed and the working register may be saved or loaded directly. The program or memory counters under control of the asynchronous increment, inhibit, and LSP CCI can be saved or either may be incremented by one or two. Sources for the DOP and AOP are also selectable.

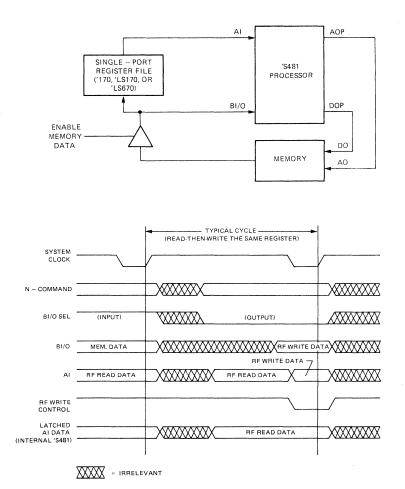
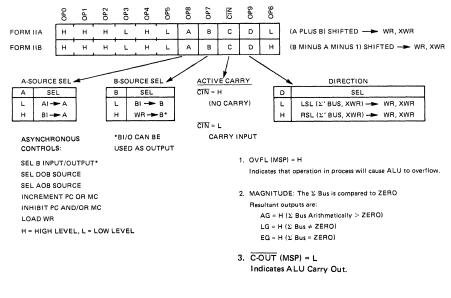


FIGURE 22 – 'S481 OPERATION WITH SINGLE-PORT REGISTER FILE

The overflow and magnitude status lines are active as enumerated in Figure 21.

b. Form IB provides the capability of adding or subtracting two operands and routing the results to one of the four 'S481 storage destinations: the working register (WR), the extended working register (XWR), the program counter (PC), or the memory counter (MC). Symbolically, this operation can be expressed as:

$$A \left\{ \begin{array}{c} \mathsf{PLUS} \\ \mathsf{MINUS} \end{array} \right\} \quad \mathsf{B} \ \mathsf{PLUS} \ \mathsf{ALUCIN} \rightarrow \mathsf{REGISTER}$$


This form provides the capability of choosing from any one of the A and any one of the B sources listed in Figure 21 as the operands to accomplish the add/subtract.

3.3 OPERATION FORM II – ADD/SUBTRACT WITH DOUBLE-PRECISION SHIFT

Operation Form II is designed specifically to perform one of two classical iterations used frequently to implement microprogrammed multiply and divide algorithms. This form provides the system designer with the capability of selecting a single microinstruction which will complete both the add-and-shift or subtract-and-shift functions in a single clock cycle. Available microinstructions are illustrated in Figure 23. Symbolically, Form II operations can be represented as:

(A PLUS B PLUS ALUCIN)	SHIFTED \rightarrow WR, XWR
(B MINUS A MINUS 1)	SHIFTED \rightarrow WR, XWR

Hardwired algorithms for double-precision multiply and divide routines can be selected in operation forms XI, XII, XIII, or XIV.

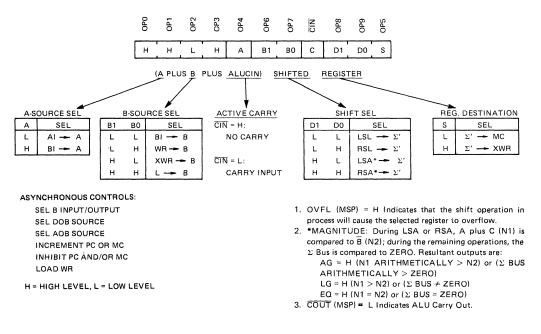
During Form II operations the status, overflow, and asynchronous controls are the same as described for Form I.

FIGURE 23 - FORM II-ARITHMETIC WITH DOUBLE-PRECISION SHIFT

 $\left\{ \begin{array}{c} \mathsf{A} \\ \mathsf{B} \end{array} \right\} \mathsf{PLUS} \left\{ \begin{array}{c} \mathsf{B} \\ \mathsf{A} \end{array} \right\} \mathsf{PLUS} \mathsf{CARRY} \mathsf{SHIFTED} \rightarrow \mathsf{WR}, \mathsf{XWR}$

(MULTIPLY AND DIVIDE SHIFT OPERATIONS WITHOUT AUTOMATIC CONTROL)

3.4 OPERATION FORM III – ADD WITH SINGLE-PRECISION SHIFT


Operation Form III is a universal microinstruction providing the designers with the capability of performing an add-and-shift function in a single clock cycle. Sources and destinations are shown in Figure 24. Also enumerated are the shift functions which are selectable as part of the microinstruction.

Magnitude and overflow status indicators are active as enumerated in Figure 24. Form III can be represented symbolically as:

(A PLUS B PLUS ALUCIN)

SHIFTED → XWR, OR MC

During Form III operation the contents of the working register are not changed unless an asynchronous load is selected. If not selected as the destination, the extended working register will be saved. The memory counter can be the operand destination, or it and the program counter can be saved, or one can be incremented by one or two on selection. Sources for the DOP and AOP are also selectable.

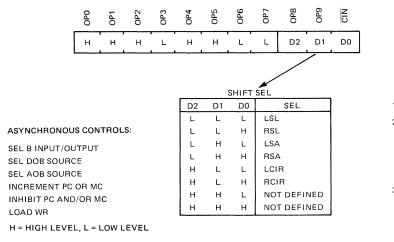


FIGURE 24 – FORM III-ARITHMETIC WITH SINGLE-PRECISION SHIFT (A PLUS B PLUS ALUCIN) SHIFTED → XWR OR MC

3.5 OPERATION FORM IV – AI SHIFTED $\rightarrow \Sigma'$ BUS

Operation Form IV is designed specifically for performing a single bit-position logical, arithmetic, or circular shift of the data applied at the A input port. This single clock operation can be used to shift information residing in any of the external working memory register locations simply by enabling the output capability of the BI/O port and writing the shifted word back into the same (or any other selected) memory location.

Asynchronous controls are the same as described for Operation Form IA, and the magnitude status lines are active and overflow is active during left-shift arithmetic (LSA) operation as enumerated in Figure 25.

1. COUT = CIN

- OVFL (MSP = H) Indicates that LSA operation in process will cause shift overflow. For all other operations, OVFL = L.
- 3. MAGNITUDE: All is compared to ZERO. Resultant outputs are:
 - AG = H (AI > ZERO) $LG = H (AI \neq ZERO)$ EQ = H (AI = ZERO)

FIGURE 25 – FORM IV–AI SHIFTED $\rightarrow \Sigma'$ BUS

3.6 OPERATION FORM V - SINGLE-LENGTH SHIFT

Operation Form V performs a single-bit position, logical, arithmetic, or circular shift of either the working register or extended working register. Magnitude status indicators are active and overflow is active during left-shift arithmetic (LSA) operations as enumerated in Figure 26. Asynchronous controls are the same as described for Operation Form IA.

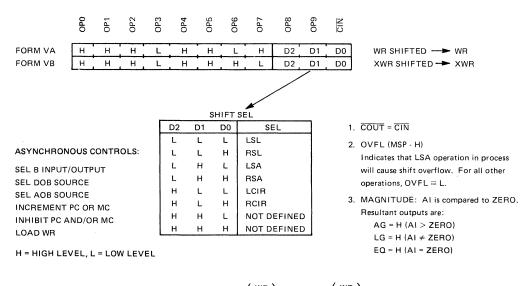
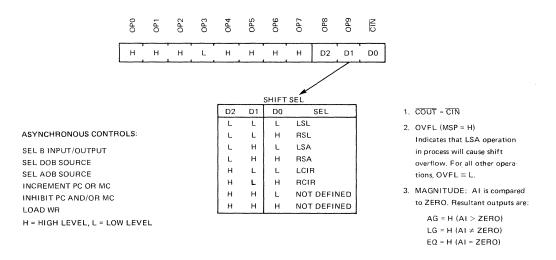
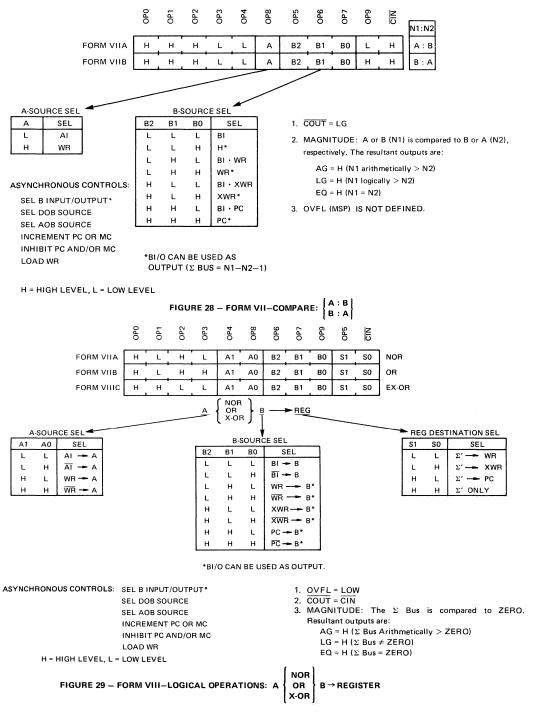



FIGURE 26 – FORM V: $\begin{cases} WR \\ XWR \end{cases}$ SHIFTED $\rightarrow \begin{cases} WR \\ XWR \end{cases}$

3.7 OPERATION FORM VI - DOUBLE-PRECISION SHIFTS

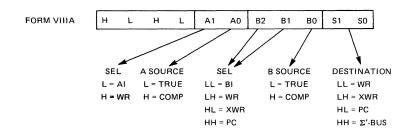
Operation Form VI performs a double-precision logical, arithmetic, or circular shift of a double-length word residing in the working register and extended working register. Magnitude status indicators are active and overflow is active during left-shift arithmetic (LSA) operations as enumerated in Figure 27. Asynchronous controls are the same as described for operation form IA.

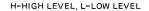
FIGURE 27 – FORM VI–DOUBLE-PRECISION SHIFTS: (WR, XWR)SHIFTED →(WR, XWR)


3.8 OPERATION FORM VII - COMPARE (A:B OR B:A)

Operation Form VII is designed specifically to provide the system designer with the capability of symmetrically comparing either operands A-to-B or operands B-to-A. The operands selectable are enumerated in Figure 28 as the A source select or B source select. The carry output, overflow, and magnitude status lines decode and indicate the logical and arithmetic relationship of the operands being compared as shown in Figure 28. Asynchronous controls are the same as described for Operation Form IA.

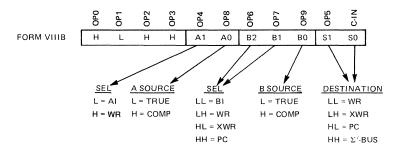
3.9 OPERATION FORM VIII – LOGICAL FUNCTIONS


The ALU with its carry circuit functionally inactivated in Form VIII operations can be microprogrammed in conjunction with the source operands to perform any of the possible combinatorial Boolean functions on two binary variables. See Figure 29. Simple transfer functions are performed with the arithmetic operations in Form I, and combinatorial transfer and shift operations are available in Form III.


As with the arithmetic operations, a highly flexible source selection extends performance of single clock combinatorial logical operations between two (external) operands applied at the A and B input ports, or combinations of resident data in 'S481 registers or counters can be combined logically with another register or external source. The specific combinations selectable are enumerated in the following paragraphs.

3.9.1 NOR/AND Logical Operations

Operation Form VIIIA can be used to perform the NOR or AND logical combination of two selectable operands and route the results to one of four destinations. The operation microcode is:


As shown above, the A and B sources are selectable by the A1, B1, and B2 bits in their true or complementary form (bits A0, B0) to facilitate performing the NOR, mixed NOR/AND, and the AND functions. As implemented, see Figure 30, the NOR function is performed when the sources are both true, mixed NOR/AND functions are performed with one source complemented, and the AND function is performed when both sources are selected in their complement form. Both implementation and other/equal logic symbols are shown in Figure 30. Also provided are the function tables and Boolean equations.

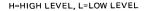
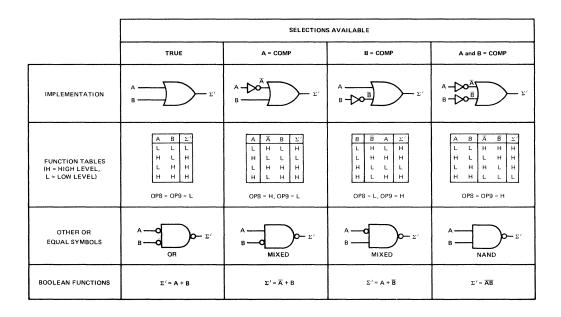
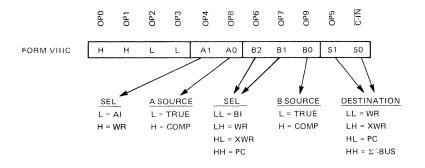

		SELECTIONS AVAILABLE									
	TRUE	A = COMP	B = COMP	A and B = COMP							
IMPLEMENTATION	Α	B									
FUNCTION TABLES (H = HIGH LEVEL, L = LOW LEVEL)	A B Σ' L L H H L L L H L H L L H L L H H L OP8 = OP9 = L OP9 = L	A Ā B Σ' L H L L H L L H L H L H L H L H L H L H L H L H L H L H H L H L OP8 = H, OP9 = L	B B A 2' L H L L L H L L H L H L H L L H H L H L OP8 = L, OP9 = H L L	A B Ā B ½'' L L H H L H L L H L H H L L H H H L L H H H L L H OP8 = OP9 = H OP8 = OP9 = H OP8 = OP9 = H OP8 = OP9 = H							
OTHER OR EQUAL SYMBOLS		$B \longrightarrow D $ MIXED	$\begin{array}{c} A \longrightarrow \mathbf{C} \\ B \longrightarrow \mathbf{D} \\ MIXED \end{array} \Sigma'$	$\begin{array}{c} A & & \\ B & & \\ \end{array} \\ AND \\ \end{array} \\ \begin{array}{c} \Sigma' \\ \end{array}$							
BOOLEAN FUNCTIONS	$\Sigma' = \overline{A + B}$	Σ′ = AB	Σ' = ĀB	Σ' = AB							

FIGURE 30 - FORM VIIIA NOR/AND LOGICAL OPERATIONS


3.9.2 OR/NAND Logical Operations

Operation Form VIIIB can be used to perform the OR or NAND logical combination of two selectable operands and route the results to one of four destinations. The operation microcode is:


As shown above, the A and B sources are selectable by the A1, B1, and B2 bits in their true or complementary form (bits A0, B0) to facilitate performing the OR, mixed OR/NAND, and the NAND functions. As implemented, see Figure 31, the OR function is performed when the sources are both true, mixed OR/NAND functions are performed with one source' complemented, and the NAND function is performed when both sources are selected in their complement form. Both implementation and other/equal logic symbols are shown in Figure 31. Also provided are the function tables and Boolean equations.

3.9.3 Exclusive-OR/Exclusive-NOR Logical Operations

Operation Form VIIIC can be used to perform the exclusive-OR/exclusive-NOR logical combination of two selectable operands and route the results to one of four destinations. The operation microcode is:

H = HIGH LEVEL, L = LOW LEVEL

As shown above, the A and B sources are selectable by the A1, B1, and B2 bits in their true or complementary form (bits A0, B0) to facilitate both exclusive-OR and exclusive-NOR operations. As implemented, see Figure 32, the exclusive-NOR function is performed when the sources are both true or both complemented. When either the A or the B source (not both) are complemented, the exclusive-OR function is performed. Both implementation and other/equal logic symbols are shown in Figure 32. Also provided are the function tables and Boolean equations.

	ALL TRUE OR ALL COMPLEMENT SOURCES	ONE SOURCE COMPLEMENTED						
IMPLEMENTATION	Α Σ'							
FUNCTION TABLES (H = HIGH LEVEL, L = LOW LEVEL)	$\begin{array}{c ccc} A & B & \Sigma' \\ L & L & H \\ H & L & L \\ L & H & L \\ H & H & H \end{array}$ $OP8 = OP9 = L$	A A B ∑' L H L L H L L H L H H H H L H L OP8 - H, OP9 = L	B B A 2' L H L L L H H H L L H L H H L H H L H H L H H L H H L H H L H H H H					
OTHER OR EQUAL SYMBOLS		$\begin{array}{c} A \\ B \\ \hline \\ EX-OR \end{array} \Sigma'$						
BOOLEAN FUNCTIONS	$\Sigma' = A \Theta B$ $\Sigma' = \overline{A \Theta B}$	$\Sigma' = A \Theta B$	Σ′=Α ⊕ Β					

FIGURE 32 - FORM VIIIC EXCLUSIVE-OR/EXCLUSIVE-NOR OPERATIONS

3.10 OPERATION FORM IX - NO OP

Operation Form IX is designed specifically to clear the Σ' bus force AG and LG low, and force EQ high; and, during this operation form data in the 'S481 registers, counters and latches remain unchanged unless directed to do otherwise by the asynchronous control inputs as shown in Figure 33.

The memory or program counter can be incremented (by one or two) on each clock transition, or the working register can be loaded on each clock. Additionally, the B input/output can be specified, as well as sources for the address or data out ports. States of the carry and overflow outputs are not interrupted.

0P0	0P1	0P2	0P3	0P4	OP5	940	0P7	0P8	640	CIN	
н	н	н	н	н	×	×	х	×	×	×	
H = HI	GH LE	EVEL,	L = LO	WLE	/EL, X	= IRR	ELEV	ANT	•		
ASYNCHRONOUS CONTROLS:											
SEL B INPUT/OUTPUT											

SEL DOB SOURCE	AG = ZERO
SEL AOB SOURCE	LG = ZERO
INCREMENT PC OR MC	
INHIBIT PC AND/OR MC	EQ = HIGH
LOAD WR	

FIGURE 33 – FORM IX–NO OPERATION: ZERO $\rightarrow \Sigma'$ BUS

3.11 OPERATION FORM X - CYCLIC REDUNDANCY CHARACTER ACCUMULATION

Operation Form X is a macroinstruction which can be used to update a 16-bit cyclic redundancy character (CRC) partial sum in eight clock cycles, assuming 8-bit data characters. The updated CRC partial sum resides in the working register. The flow diagram of this algorithm is illustrated in Figure 34.

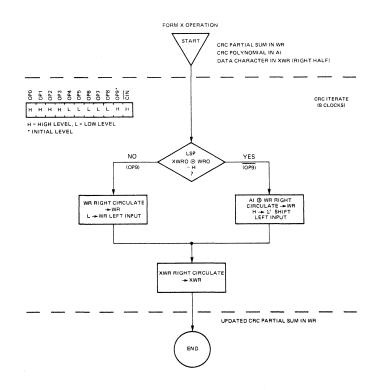


FIGURE 34 - CYCLIC REDUNDANCY CHARACTER ACCUMULATION

Setup conditions include the existence or placement of the previous CRC partial sum in the working register, the CRC polynomial at the A input port, and the data character in the eight least significant bits of the extended working register. All decisions after setup are decoded on chip for each of the eight iterations. Microcontrol open-collector output OP9 of the LSP assumes control during the iterations to generate one of two microinstructions requires to accomplish the CRC update.

3.12 OPERATION FORM XI - SIGNED INTEGER DIVIDE

Operation Form XI consists of the micro/macroinstructions needed to perform the signed division of a double length dividend by an N-bit divisor in N + 3 clock times. After the division routine the quotient will reside in the extended working register (XWR) and the remainder will be in the working register (WR). Negative results are in two's complement. The flow diagram of this algorithm is illustrated in Figure 35.

Setup conditions include the existence or placement of the double length dividend in the WR, XWR and application of the divisor at the A input port. To obtain a legitimate result, the divisor must not be arithmetically zero as indicated during the start command by the EQ output being low. The dividend must be of a nature that it could be generated by a signed multiply and add operation on the divisor. Status outputs LG, AG, C-OUT and OV are undefined, as is EQ after the start command.

After setup, all decisions are decoded on chip for start, iterate, iteration finish, fix remainder, and adjust quotient. The iterate macroinstruction (Form XIB) internally decodes the status of the stored signs, carry out, and working register and the OP8 and OP9 microcontrol open-collector outputs of the MSP assume control generating one of four microinstructions required to accomplish the signed divide.

3.13 OPERATION FORM XII - UNSIGNED DIVIDE

Operation Form XII consists of micro/macroinstructions needed to perform the unsigned division of a double length dividend by an N-bit divisor in N + 1 clock times. After the division routine the binary magnitude quotient will reside in the extended working register (XWR) and the binary magnitude remainder will be in the working register (WR). The flow diagram of this algorithm is illustrated in Figure 36.

Setup conditions include the existence or placement of the double length dividend in the WR, XWR; application of the divisor at the A input port and that the last operation was not a divide command. To obtain a legitimate result, the N-bit divisor must be logically greater than the most-significant N-bits resident in the working register. A direct status on the arithmetically-greater-than (AG) output indicates that a valid (start) [AG = H], or invalid (abort) [AG = L] setup condition exists.

After setup, all decisions are decoded on chip for start, iterate and finish. The iterate macroinstruction (Form XIIB) internally decodes the status of C-OUT or FORCE LOAD FLAG and the OP9 microcontrol open-collector output of the MSP assumes control generating one of two microinstructions required to accomplish the unsigned divide.

3.14 OPERATION FORM XIII - UNSIGNED MULTIPLY

Operation Form XIII consists of a macroinstruction which performs the unsigned multiplication of two N-bit words in N clock times. After the multiply routine the double length product is residing in the working register (most-significant N-bits) and the extended working register (least-significant N-bits). The flow diagram of this algorithm is illustrated in Figure 37.

Setup conditions include clearing the working register to all zeros, loading (not shifting) the multiplier into the extended working register, and applying the multiplicand at the A input port. Arithmetic shift commands must not occur between multiplier load and the first iteration. Status outputs (EQ, AG, LG, C-OUT and OV) are undefined during this algorithm.

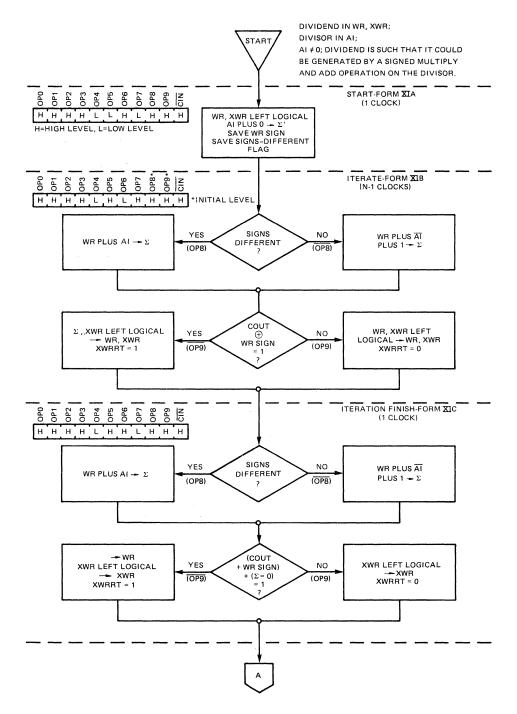


FIGURE 35 - FORM XI-SIGNED INTEGER DIVIDE (SHEET 1 OF 2)

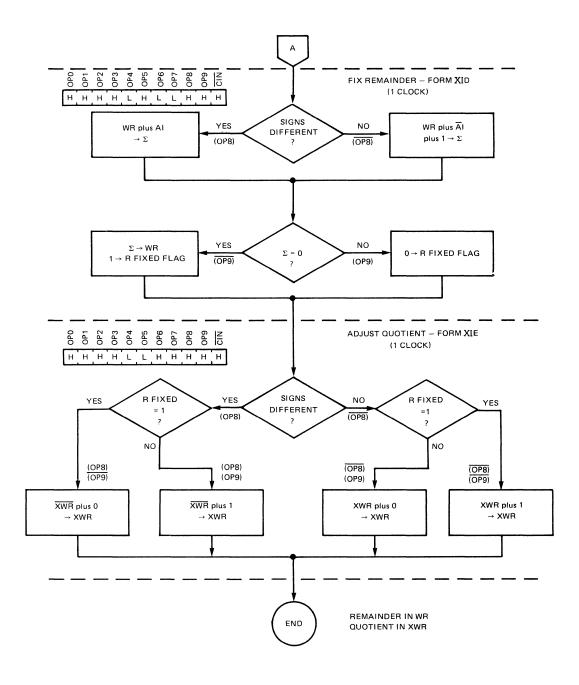
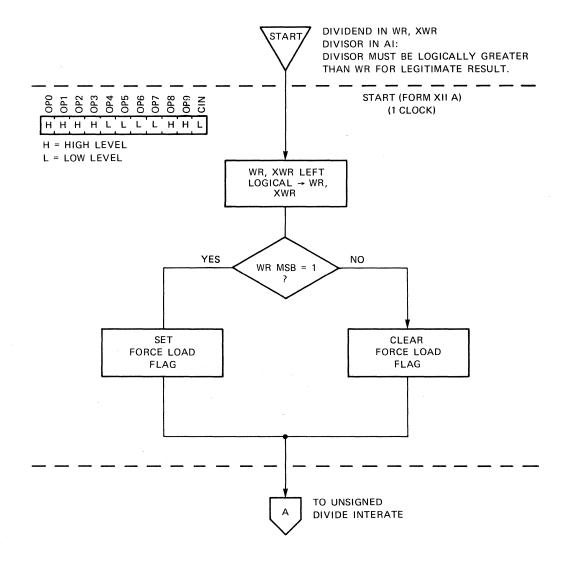



FIGURE 35 - FORM XI-SIGNED INTEGER DIVIDE (SHEET 2 OF 2)

FIGURE 36 - FORM XII-UNSIGNED DIVIDE (SHEET 1 OF 2)

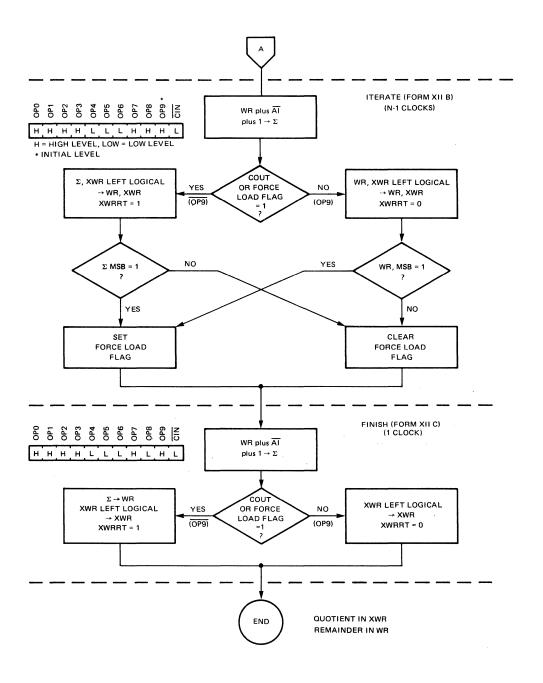


FIGURE 36 - FORM XII-UNSIGNED DIVIDE (SHEET 2 OF 2)

í.

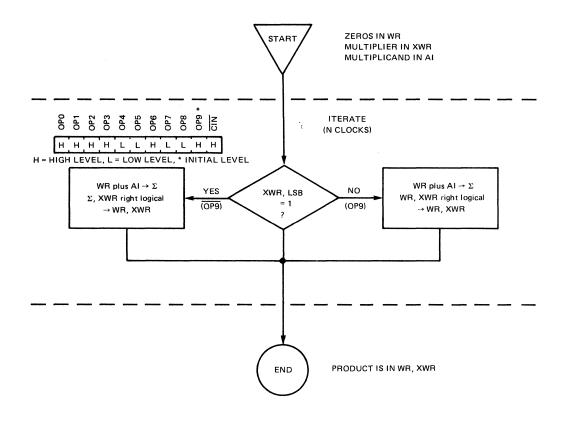


FIGURE 37 - FORM XIII-UNSIGNED MULTIPLY

The iterate macroinstruction internally decodes the status of the XWR LSB and the OP9 microcontrol open-collector output of the MSP assumes control generating one of two microinstructions required to accomplish the unsigned multiply.

3.15 OPERATION FORM XIV - SIGNED INTEGER MULTIPLY

Operation Form XIV consists of a macroinstruction which performs the signed multiplication of two N-bit signed integers in N clock times. After the multiply routine, the double precision signed product resides in the working register (most-significant N-bits) and the extended working register (least-significant N-bits). Negative products are in two's complement. The flow diagram of this algorithm is illustrated in Figure 38.

Setup conditions include clearing the working register to all zeros, loading (not shifting) the multiplier into the extended working register, and applying the multiplicand at the A input port. Arithmetic shifts must not occur between multiplier load and the first iteration. Status outputs (EO, AG, LG, C-OUT, and OV) are undefined during this algorithm.

The iterate macroinstruction internally decodes the status of the multiplier (XWR) sign-bit flag, the multiplier LSB, and the multiplier LSB flag and the OP8 and OP9 microcontrol open-collector outputs of the MSP assume control generating one of four microinstructions required to accomplish the signed multiply.

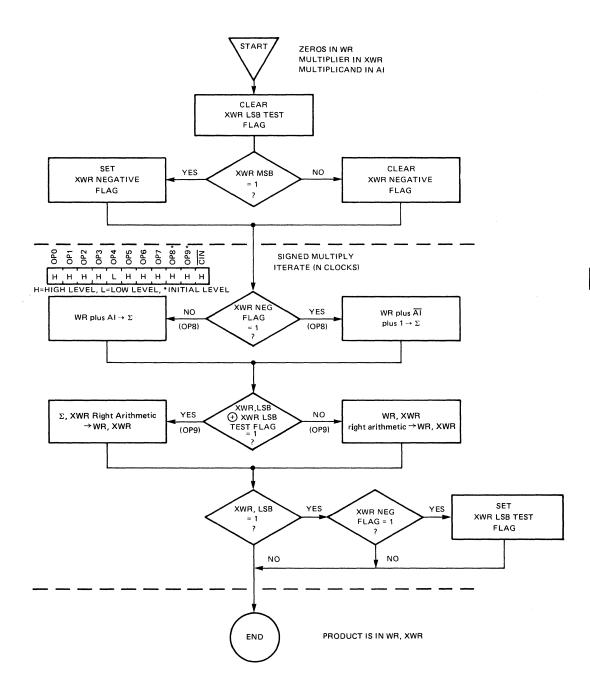


FIGURE 38 - FORM XIV-SIGNED INTEGER MULTIPLY

4. SPECIFICATIONS

Recommended operating conditions, electrical characteristics, and switching characteristics are provided in Tables 19 through 21.

		SM	SN54LS481		S	N74LS	481	SN74S481			
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VC	C	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
High-level output v	oltage at EQ, OP8, OP9; VO			5.5			5.5			5.5	V
Low-level output current, IOL	AOP, BI/O, DOP, CCO/OV, COUT			10			10			10	
	EQ, OP8, OP9			8			8			8	mA
	WRLFT, WRRT, XWRLFT, XWRRT			4			4			4	- mA
	X/LG, Y/AG			16			16			16	
High-level output	BI/O, DOP			2			6.5			6.5	mA
current, IOH	All other outputs or I/O except EQ, OP8, OP9			1			1			1	IIIA
Width of clock	High logic level	35			35			35			ns
puise, t _w	Low logic level	25			25			25			115
Clock frequency	· · · · · · · · · · · · · · · · · · ·			7			8			10	MHz
	AI, BI/O Latch	25↓			20↓			15↓			
	AI→WR	25↑			251			15↑			
	AI, $BI/O \rightarrow ALU \rightarrow MC, PC, WR, XWR$	901			801			651			
Setup time, t _{su}	CCI, INCMC, INCPC, LDWR	501			401			301			ns
	OP0 thru OP9	1401	90		1201	90		901	60		1
	CIN	601			501			401			
	WRLFT, WRRT, XWRLFT, XWRRT	401			401			301			
	AI, $BI/O \rightarrow Latch$	5↓			5↓			10↓			
	AI→WR	101			101			101			
	AI, $BI/O \rightarrow ALU \rightarrow MC, PC, WR, XWR$			-201			-201			-201	
Hold time, th	CCI, INCMC, INCPC, LDWR	10			01			101			ns
	OP0 thru OP9			-101			-101	0Ť			
	CIN			-5↑	01			01			
	WRLFT, WRRT, XWRLFT, XWRRT	01			0Ť			51			
Operating free-air t	emperature range, TA	55	25	125	0	25	70	0	25	70	°C

TABLE 19 RECOMMENDED OPERATING CONDITIONS

14The arrow indicates the transition of the clock input used for reference; 1 for the low-to-high transition, 4 for the high-to-low transition.

TABLE 20

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (UNLESS OTHERWISE NOTED)

		TEST CONDITIONS+		'LS481		'S481			UNIT	
	PARAME	ICK	TEST CONDITIONS†	MIN	TYP‡	МАХ	MIN 1	ГҮР‡	ΜΑΧ	UNIT
ViH	VIH High-level input voltage (any input except POS)			2			2			V
VIL	VIL Low-level input voltage (any input except POS)					0.8			0.8	V
VIK	Input clamp voltage		V _{CC} =MIN, I _I =-18 mA			-1.2			-1.2	V
Vон	High-level output	Any I/O or output	V _{CC} =MIN, V _{IH} =2V, 54S'	2.5	3.4					v
•0H	voltage	except EQ, OP8, OP9	VIL=0.8V, 10H=MAX 74S'	2.7	3.4		2.7	3.4		1
VOL	VOL Low-level output voltage		V _{CC} =MIN, V _{IH} =2V, V _{IL} =0.8V, I _{OH} =MAX			0.5			0.5	v
юн	High-level output current	EQ, OP8, OP9	V _{CC} =MAX, V _O =5.5V			100			100	μA
4	Input current at maximum	POS	V _{CC} =MAX, V _I =V _{CC}			1			1	mA
'1	input voltage	Any Other	VCC=MAX, VI=5.5V			1			1	
Чн	High-level input current	OP0, OP1, OP2, OP3, CIN	V _{CC} =MAX, V _I =2.7V			200			200	μA
.161		Any other except POS				100			100	μA
		OP0, OP1, OP2, OP3, CIN				4			8	
hΕ	Low-level input current	WRRT, WRLFT, XWRRT, XWRLFT, CCI, CLOCK	V _{CC} =MAX, V₁=0.5V			-2			-4	mA
		Any Other				-1			-2	1
los	Short-circuit output current§	Any output or 1/O except EQ, OP8, OP9	V _{CC} =MAX	-30		-100	-30		-100	mA
1cc	Supply current		V _{CC} =MAX		220	325		345	425	mA

¹ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_A =25°C.

\$ Not more than one output should be shorted at a time.

DESIGN GOAL

This document provides tentative information on a product in the development stage. Texas Instruments reserves the right to change or 48 discontinue this product without notice.

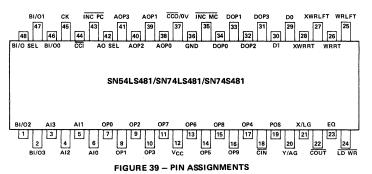
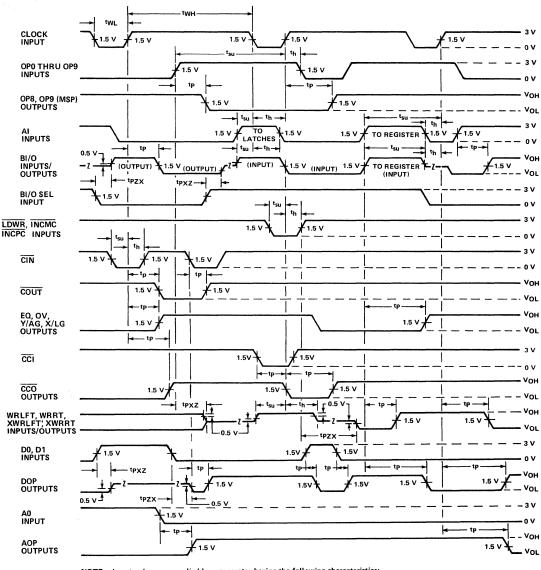

			OPERATION	SN54	LS481	SN74	LS481	SN7	45481	
PARAMETER	FROM (INPUT)	TO (OUTPUT)	ROUTING	ТҮР	мах	ТҮР	МАХ	ТҮР	МАХ	UNIT
	АІ, ВІ/О	DOP	LATCH → ALU DOP	56	100	56	80	42	65	ns
		Х, Ү	LATCH → ALU	40	65	40	55	32	45	ns
tPD		COUT	LATCH→ALU	35	65	35	55	30	40	ns
		EQ	LATCH → ALU	55	100	55	85	45	65	ns
		ov	LATCH → ALU	45	75	45	65	35	45	ns
		AG, LG	LATCH→ALU	73	125	73	105	60	80	ns
		WRLFT,WRRT,XWRLFT,XWRRT	LATCH → ALU	60	105	60	85	45	65	ns
		WRLFT,WRRT,XWRLFT,XWRRT		100	160	100	140	75	105	ns
		X,Y,COUT, EQ		75	130	75	115	55	80	ns
tPD	OP0 thru OP9	ov		75	135	75	120	60	90	ns
		AG, LG		100	165	100	135	75	105	ns
		DOP		90	150	90	130	70	100	ns
^t PD	AI,BI/O	BI/O	LATCH→ALU	75	120	75	100	50	70	ns
^t PD	CIN	COUT		35	60	35	50	30	40	ns
^t PD	CCI	cco		55	90	55	70	37	50	ns
^t PD	A0	AOP		20	45	20	40	15	30	ns
^t PD	D0, D1	DOP ,		20	45	20	40	15	30	ns
^t PXZ	BI/O SEL or D0,D1	BI/O or DOP		20	35	20	30	15	30	ns
^t PXZ	OP0 thru OP9	WRLFT,WRRT,XWRLFT,XWRRT		60	120	60	100	45	80	ns
^t PZX	BI/O SEL or D0,D1	BI/O or DOP		20	35	20	30	15	30	ns
^t PZX	OP0 thru OP9	WRLFT,WRRT,XWRLFT,XWRRT		55	120	55	100	45	80	ns
		AOP, DOP	NO SHIFT	32	70	32	60	26	40	ns
		WRLFT,WRRT,XWRLFT,XWRRT	[WR, XWR, ΣBUS]	50	90	50	85	40	65	ns
		AOP, DOP	→SHIFTED	40	60	40	55	35	45	ns
^t PD	CLOCK	DOP, BI/O	[WR,XWR,PC]→ ALU→SHIFTED	50	90	50	85	40	65	ns
		ov		75	125	75	100	50	70	ns
		cco		35	65	35	55	25	45	ns
		COUT		60	105	60	85	47	65	ns
		OP8, OP9		85	140	85	120	75	90	ns
^t PD	CIN	DOP		56	100	56	75	42	60	ns

TABLE 21 SWITCHING CHARACTERISTICS (OVER OPERATING RANGE OF V_{CC} AND T_A)

 $t_{PD} \equiv Propogation delay$

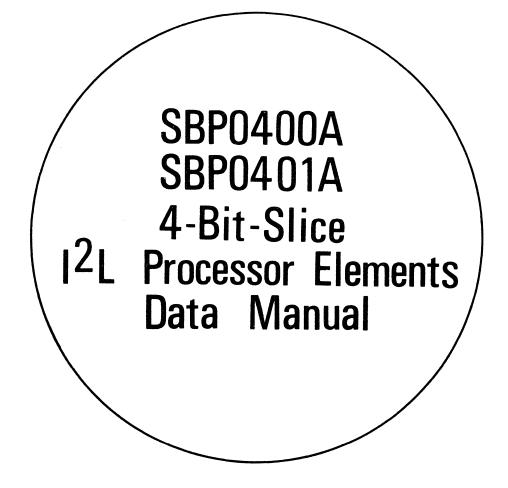
^tPXZ[≡]Disable time to Hi-Z


 $t_{PZX} \equiv E_{nable time (Hi-Z-To-Enable)}$

1.74

DESIGN GOAL

This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice. 49


A0001385

NOTE: Input pulses are supplied by a generator having the following characteristics: tr \leqslant 5 ns, tp \leqslant 5 ns, PRR \geqslant 1 MHz, ZOUT \approx 50 Ω

FIGURE 40. - SWITCHING TIMES - VOLTAGE WAVEFORMS

The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

OCTOBER 1976

TEXAS INSTRUMENTS

INCORPORATED

Information contained in this publication is believed to be accurate and reliable. However, responsibility is assumed neither for its use nor for any infringement of patents or rights of others that may result from its use. No license is granted by implication or otherwise under any patent or patent right of Texas Instruments or others.

> Copyright © 1977 Texas Instruments Incorporated

TABLE OF CONTENTS

1.	INT	RODUCTION															
	1.1	Architectural Features															1
	1.2	Operational Features															1
	1.3	Additional Features															1
	1.4	Technological Features															2
2.	FUN	ICTIONAL PIN DESCRIPTIONS	• • •	 ·		·	•	•	•		•	• •	•	•	•		3
3.	DET	AILED FUNCTIONAL DESCRIPTION															
	3.1	Programmable Logic Array															4
		3.1.1 PLA Description															4
		3.1.2 PLA Factory Programming															4
	3.2	SBP0400A Operation Register (OR)															4
	3.3	Status Outputs													·	·	5
	3.4	Arithmetic/Logic Unit (ALU) Description												•	•	·	5
	3.4	3.4.1 ALU Function Selection												•	·	·	5
		3.4.2 ALU Arithmetic Mode													·	•	5
															·	·	
		3.4.3 ALU Logical (Boolean) Mode												·	·	·	6
		3.4.4 ALU Carry and Look-Ahead Generato												·	·	•	6
	3.5	Relative Position Control (POS1, POS0)														·	7
	3.6	Register File (RF0 \rightarrow RF7)												·	·	·	8
		3.6.1 RF General Description												·	·	·	8
		3.6.2 RF Source/Destination Operands .															8
	3.7	Program Counter (PC) – Register File Seven (F															10
		3.7.1 General Description															10
		3.7.2 PC Configurations		 •				•	•	•	•			•			10
		3.7.3 PC Count Sequences															12
	3.8	Address-Out Multiplexer (ADR MUX)															12
	3.9	A Bus															12
	3.10	B Bus															12
	3.11	Working Register (WR)															12
		3.11.1 General Description															12
		3.11.2 WR Source/Destination Operands .															12
		3.11.3 WR Sourcing of ADR MUX															14
	3.12	Extended Working Register (XWR)															14
		3.12.1 XWR General Description															14
		3.12.2 XWR Source/Destination Operands .															15
		3.12.3 XWR Sourcing of ADR MUX															16
	3 13	Data-Out Multiplexer (DO MUX)															16
	0.10	3.13.1 DO MUX General Description															16
		3.13.2 DO MUX Shift Accommodations															17
	214	Data-Out I-Multiplexer (DO IMUX)															17
		Data-Out J-Multiplexer (DO JMUX)															18
		• • •															18
	3.10	Extended Working Register Multiplexer (XWR															
		3.16.1 XWR MUX General Description															18
	o 4-	3.16.2 XWR MUX Shift Accommodations .															18
		Extended Working Register K-Multiplexer (XW															19
		Extended Working Register L-Multiplexer (XW															20
	3.19	Working Register Multiplexer (WR MUX)	• • •	 ·	· ·	·	• •	•	•	·	·	• •	•	·	•	·	20

TABLE OF CONTENTS (Continued)

4.	SHI	T/CIRCULATE OPERATIONS
	4.1	WR Single-Precision Shifts/Circulates
		4.1.1 (WR Plus ALUCIN) $RSL \rightarrow WR$
		4.1.2 (WR Plus ALUCIN) LSL \rightarrow WR
		4.1.3 (WR Plus ALUCIN) $RSA \rightarrow WR$
		4.1.4 (WR Plus ALUCIN) LSA \rightarrow WR
		4.1.5 (WR Plus ALUCIN) RCIR \rightarrow WR
		4.1.6 (WR Plus ALUCIN) LCIR \rightarrow WR
	4.2	WR,XWR Double-Precision Shifts/Circulates
		4.2.1 (WR Plus ALUCIN, XWR) RSL → WR,XWR
		4.2.2 (WR Plus ALUCIN, XWR) LSL \rightarrow WR, XWR
		4.2.3 (WR Plus ALUCIN, XWR) RSA → WR, XWR
		4.2.3.1 Single Signed Double-Precision RSA (MSP POS0=H)
		4.2.3.2 Double-Signed Double-Precision RSA (MSP POS0=L)
		4.2.4 (WR Plus ALUCIN, XWR) LSA \rightarrow WR, XWR
		4.2.4.1 Single-Signed Double-Precision LSA (MSP POS0=H)
		4.2.4.2 Double-Signed Double-Precision (LSA (MSP POS0=L)
		4.2.5 (WR Plus ALUCIN, XWR) RCIR → WR,XWR
		4.2.6 (WR plus ALUCIN, XWR) LCIR → WR, XWR
	4.3	Compound-Function WR,XWR Double-Precision Shifts/Circulates
5.	OPE	RATION SET (MICROINSTRUCTION SET)
	5.1	SBP0400A Microinstruction Overlap
	5.2	Operation-Select Word
		5.2.1 D-Field, Operation-Select Word
		5.2.1.1 D-Field = LL
		5.2.1.2 D-Field = LH
		5.2.1.3 D-Field = HL
		5.2.1.4 D-Field = HH
		5.2.2 OP-Field, Operation-Select Word
		5.2.2.1 OP-Field ALU Function (Micro-Operation) Selection
		5.2.2.2 OP-Field Operand-Source/ALU Function/Operation-Result-
		Destination Selection
		5.2.3 S-Field, Operation-Select Word
	5.3	Index To Microinstructions By Operation Form
		5.3.1 Operation – Form I
		5.3.2 Operation – Form II
		5.3.3 Operation – Form III
		5.3.4 Operation – Form IV
		5.3.5 Operation – Form V
		5.3.6 Operation – Form VI
	5.4	Index To Microinstructions By Source Operands
6.	INT	ERFACING
	6.1	Input Circuit
		6.1.1 Sourcing Inputs
		6.1.2 Terminating Unused Inputs
	6.2	Output Circuit
		6.2.1 RL(max) Calculation for Output Source Current
		6.2.2 RL(min) Calculation for Output Source Current
	6.3	Bidirectional Input/Output Circuit

TABLE OF CONTENTS (Continued)

7.	POW	IER SOURCE	·		•								44
8.	ELE	CTRICAL AND MECHANICAL SPECIFICATIO	NS	5									
	8.1	Recommended Operating Conditions											46
	8.2	Electrical Characteristics											46
	8.3	SBP0400A and SBP0401A Switching Characteristics .											47
	8.4	SBP0401A Operation Select Switching Characteristics											47
	8.5	Ordering Information											51

LIST OF ILLUSTRATIONS

Figure 1	Functional Block Diagram	2
Figure 2	Single-Level ALU Carry Look-Ahead and Bit-Slice Relative Positions	6
Figure 3	64-Bit System With ALU Full-Carry Look-Ahead	7
Figure 4	Execution of Typical ALU Operation	7
Figure 5	Typical Operation Executions	9
Figure 6	16-Bit Program Counter	11
Figure 7	12-Bit Program Counter	11
Figure 8	Right-Shift Logical – Single Precision (RSL – SP)	21
Figure 9	Left Shift Logical – Single Precision (LSL – SP)	21
Figure 10	Right Shift Arithmetic – Single Precision (RSA – SP)	22
Figure 11	Left Shift Arithmetic – Single Precision (LSA – SP)	22
Figure 12	Right Circulate – Single Precision (RCIR – SP)	22
Figure 13	Left Circulate — Single Precision (LCIR — SP)	23
Figure 14	Right Shift Logical – Double Precision (RSL – DP)	24
Figure 15	Left Shift Logical – Double Precision (LSL – DP)	24
Figure 16	Right Shift Arithmetic – Single Sign/Double Precision (RSA – SS/DP)	25
Figure 17	Right Shift Arithmetic – Double Sign/Double Precision (RSA – DS/DP)	25
Figure 18	Left Shift Arithmetic – Single Sign/Double Precision (LSA – SS/DP)	26
Figure 19	Left Shift Arithmetic – Double Sign/Double Precision (LSA – DS/DP)	26
Figure 20	Right Circulate – Double Precision (RCIR – DP)	27
Figure 21	Left Circulate – Double Precision (LCIR – DP)	27
Figure 22	Typical 16-Bit Machine	40
Figure 23	Schematics of Equivalent Inputs, Outputs, Inputs/Outputs	41
Figure 24	Typical Input Characteristics	41
Figure 25	Typical Output Characteristics	42
Figure 26	Output Load Resistor Calculations	43
Figure 27	Injector Current Calculations	45
Figure 28	Injector-Node Voltage Vs. Free-Air Temperature	45
Figure 29	Injector-Node Voltage Vs. Injector Current	45
Figure 30	Propagation Delay Times – SBP0400A Synchronous Operations	48
Figure 31	Propagation Delay Times – Asynchronous Operations	49
Figure 32	Propagation Delay Times – Asynchronous Operations	49
Figure 33	Switching Times Load Circuits	50
Figure 34	Typical Switching Characteristics	50
Figure 35	Plastic Dual-In-Line Package	51
Figure 36	Ceramic Dual-In-Line Package	51

LIST OF TABLES

Table 1	ALU Function-Select Table				•						6
Table 2	Typical Add Times (DIB Plus WR) From [↑] Clock To DOB										7
Table 3	Position Control Functions										8
Table 4	RF Source Operands				•						8
Table 5	RF Destination Operands										9
Table 6	Program Counter Incrementation										10
Table 7	Working Register Source Operands										13
Table 8	Working Register Destination Operands										14
Table 9	Extended Working Register Source Operands										15
Table 10	Working Register Destination Operands										15
Table 11	DO MUX Transfers										16
Table 12	DO IMUX Transfers To WRLFT										17
Table 13	DO JMUX Transfers to WRRT										18
Table 14	XWR MUX Transfers										19
Table 15	XWR KMUX Transfers To XWRLFT										19
Table 16	XWR LMUX Transfers To XWRRT										20
Table 17	WR Single-Precision Shifts/Circulates										21
Table 18	WR, XWR Double-Precision Shifts/Circulates										23
Table 19	Compound-Function WR, XWR Double-Precision Shifts/Ci	rcul	ates								28
Table 20	D-Field = HL										30
Table 21	D-Field = HH										31
Table 22	ALU Function (Micro-Operation Select)										32
Table 23	16 Function ALU Operations										32
Table 24	Register Transfer Operations										33
Table 25	Register Clear and Preset Operations										34
Table 26	RF Selection										34
Table 27	Operation Form I										35
Table 28	Operation Form II										35
Table 29	Operation Form III										35
Table 30	Operation Form IV										36
Table 31	Operation Form V										36
Table 32	Operation Form VI										37
Table 33	DIP Source Operands										37
Table 34	RF Source Operands										38
Table 35	XWR Source Operands										38
Table 36	WR Source Operands										39
Table 37	Sourcing SBP0400 Inputs										42
Table 38	Terminating Unused Inputs										42
Table 39	Output Load Resistor Values (RL)										44
Table 40	Injector Current Limiting Resistor Values										45

1. INTRODUCTION

The SBP0400A and SBP0401A are 4-bit expandable parallel binary processor elements, each monolithically integrating 1660 functional gates. These controller/processor building blocks combine the unique properties of Integrated Injection Logic (I^2L) with a microprogrammable bit-slice architecture to offer a high degree of performance and design flexibility. Each can provide the basis for efficient, low-cost solutions to a wide range of applications, from basic sequential controllers to advanced multiprocessor systems for either industrial or military environments.

1.1 ARCHITECTURAL FEATURES

Primary among the SBP0400A and SBP0401A architectural features are:

- Microprogrammable, bit-slice design expandable in 4-bit multiples
- Separate data-in, data-out, address-out and control ports provide flexible parallel device access
- 16-function arithmetic/logic unit (ALU) with symmetrical subtraction and fully carry look-ahead capability
- 8-word general register file including program counter with independent incrementor
- Two 4-bit working registers for both single- and double-length operations
- Dual scaled-shifters with on-chip handling of end conditions
- Versatile factory programmable logic array (PLA) generates on-chip control transformation
- The SBP0400A features an on-chip pipelining operation register
- The SBP0401A, with asynchronous microinstruction decode, is designed for use in externally pipelined systems

1.2 OPERATIONAL FEATURES

The functional power of the SBP0400A or SBP0401A is characterized by their ability to perform, within a single clock cycle, any one of a repertoire of 512 standard operations:

- Operand modifications or combinations via eight arithmetic or eight Boolean functions of the ALU
- Double length accumulator with full bidirectional single/double precision arithmetic/logical/circulate shift capabilities, including sign protection
- Single clock ALU/shift combinations simplify implementation of iterative multiple and non-restore divide algorithms
- Special select operations and transfers

1.3 ADDITIONAL FEATURES

When provided with external control for sequencing of its operation set, either an SBP0400A or SBP0401A based system design can efficiently emulate a large number of existing systems with full software compatibility and no loss of software investment. Or complete application-tailoring of custom instructions may be accomplished for any design. Additional features are:

- Independent program counter with independent access controls (and the internal operation register of the SBP0400A) provide instruction look-ahead capability (pipelining)
- Relative position control defines bit-slice rank in N-bit applications

TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

1

- Serial and parallel access to or from working registers
- Word or byte incrementation of program counter
- ALU bypass for direct register-file access

1.4 TECHNOLOGICAL FEATURES

These processor elements, fabricated with Integrated Injection Logic (I²L), feature an extremely wide performance range.

- Constant speed-times-power performance over an injector current range covering three orders of magnitude (10³)
- Operates from a single dc power source capable of 1.1 volt minimum at desired injector current
- ALU/shift operation time . . . 240 nanoseconds typical at 200 mW nominal power
- Fully TTL compatible at nominal injector current
- Static operation with positive (1) edge-triggered storage
- SBP0400AC and SBP0401AC operate over 0°C to 70°C industrial temperature range
- SBP0400AM and SBP0401AM operate over full --55°C to 125°C military temperature range

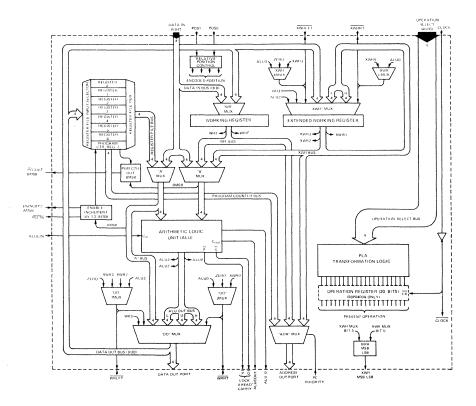
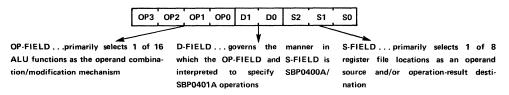


FIGURE 1 - FUNCTIONAL BLOCK DIAGRAM

2


2. FUNCTIONAL PIN DESCRIPTIONS

PIN NUMBER	PIN NAME	PIN FUNCTION	INPUT, OUTPUT, OR INPUT/OUTPUT
1 2	D1 D0	2-bit, "D" field of the Operation-Select Word.	Input Input
3	S2	3-bit, "S" field of the Operation-Select Word designates, in general,	Input
4	S1	a particular RF as an operand source/destination.	Input
5	S0		Input
6	XWRLFT	Bidirectional I/O, low active, shift accommodation for the XWR. Receives double-precision right-shift data; outputs double-precision left-shift data. Becomes XWRLFT (high active) internally.	Bidirectional Input/output
7	XWRRT	Bidirectional I/O, low active, shift accommodation. Receives double-precision left-shift data; outputs double-precision right-shift data. Becomes XWRRT (high active) internally.	Bidirectional Input/output
8	XWR MSB/LSB	MSB of the input to the XWR if in the most-significant 4 bit slice position (MSP) and LSB input to the XWR if in the least-significant 4-bit slice position (LSP).	Output
9 WRRT Bidirectional I/O, low-active, shift accommodation for ALU o data. Receives left-shift data. Outputs right-shift data. Be WRRT (high active) internally.			Bidrectional Input/output
10	WRLFT	Bidirectional I/O, Iow-active, shift accommodation for ALU output data. Receives right-shift data; outputs left-shift data. Becomes WRLFT (high active) internally.	Bidirectional Input/output
11	ALUCIN	Receives, high-active, ALU ripple carry-in data.	Input
12	DOP0	4-bit, parallel, high active, data-out port.	Output
13	DOP1	$(DOP3 \rightarrow DOP0)$	Output
14	DOP2		Output
15	DOP3		Output
16	DIP3	4-bit, parallel, high active, data-in port	Input
17	DIP2	$(DIP3 \rightarrow DIP0)$	Input
24	DIP1		Input
25	DIPO		Input
18	PCCIN	In all positions, directs the program counter to increment by 1 or 2, depending on the level applied to ENINCBY2, on the next low-to-high clock transition.	Input
19	PCCOUT/ BMSB	In any position but MSP, PCCOUT is the program counter output applied to the next more significant package PCCIN. In the MSP, outputs the MSB of the "B" bus.	Output
20	GND	Common or ground terminal.	Supply Common
21	POS0	Directs internal and input/output end-conditions required to define	Input
22	POS1	the relative position of each SBP0400A/SBP0401A when a number is cascaded to implement $>$ 4-bit word lengths. See double-precision shift data flow.	Input
23	ENINCBY2/ AMSB	In the least-significant 4-bit slice position (LSP), ENINCBY2 = H in conjunction with PCCIN = L directs the PROGRAM COUNTER to increment by a displacement of 2 on the next clock. In the most-significant 4-bit slice position (MSP), outputs the MSB of the "A" bus.	Bidirectional Input/output (LSP) (MSP)
26	CLOCK	Clocks all synchronous registers on positive transition.	Input (Edge-triggered)
27	ALU=0	Active high open-collector output indicates that the four ALU outputs are low (equal zero).	Output
28	AOP3	4-bit, parallel, high-active, address-out port.	Output
29	AOP2	$(AOP3 \rightarrow AOP0)$	Output
31	AOP1		Output
32	AOP0		Output
30	PC PRIORITY	Selects program counter to the address-out port (high active). Overrides internal direction of address-out port.	Input
33	P	ALU Carry-propagate	Output
34	Ğ	ALU Carry-generate	Output
35	ALUCOUT	Outputs, high active, ALU ripple carry-out data.	Output
36	OP3	This 4-bit "OP" field of the Operation-Select Word designates in	Input
37	OP2	general, 1 of 16 ALU functions.	Input
38	OP1		Input
39	OP0		Input
40	INJECTOR	Supply current source.	Supply input

3. DETAILED FUNCTIONAL DESCRIPTION

The SBP0400A and SBP0401A architectures are formed by the various functional blocks and interconnecting data/control paths shown in Figure 1. Parallel data/control flow to/from the processor element is accomplished through 1) the data-in port (DIP) via the 4-bit data-in bus (DIB), 2) the data-out port (DOP) via the 4-bit data-out bus (DOB), 3) the address-out port (AOP) via the 4-bit address-out bus (AOB), and 4) the operation-select port (OSP) via the nine operation-select inputs. The format of the op-select word is:

9-BIT OPERATION-SELECT WORD

NOTE

A complete discussion of the operation-select word is provided in section 5.

The SBP0400A contains a 20-bit operation register which stores, on the clock positive transition, the present (resident) operation decoded by the transformation PLA. The SBP0401A, containing the identical operation decode 20-output PLA, derives the present (resident) operation from the steady-state input at the nine op-select inputs. The '0401A is designed specifically for use in systems utilizing the SN54S/74S482 control element which, in addition to generating next control-memory addresses and storing interrupt/subroutine addresses, contains an on-chip control memory address register to assist with the system pipelining functions. Thus, the need for an operation register in the SBP0401A processor element is eliminated.

3.1 PROGRAMMABLE LOGIC ARRAY (PLA)

3.1.1 PLA Description

The programmable logic array (PLA) is a factory-programmable block of combinational logic which forms the control operation transformation center. Nine bits of encoded microinstruction data are presented to the PLA via the 9-bit operation-select word input lines. The PLA decodes/translates this encoded data to generate a 20-bit internal microinstruction. The various micro-operation fields of this microinstruction condition the appropriate functional blocks and buses for microinstruction execution.

On the positive going (\uparrow) transition at the clock input, this 20-bit microinstruction is stored in the operation register (OR) of the SBP0400A.

3.1.2 PLA Factory Programming

The standard factory PLA program provides a flexible, universal, repertoire of 459 unique operations. However, the PLA can be factory programmed to provide, within the constraint of 62 AND terms and 20 OR terms, a personality tailored to meet custom requirements.

3.2 SBP0400A OPERATION REGISTER (OR)

The 20-bit operation register (OR) of the SBP0400A is a D-type edge-triggered register which, on each positive transition at the clock input, loads the present PLA output. The OR, as loaded, continuously enables the various

'0400A functional blocks for execution of the "present" microinstruction while the PLA may be simultaneously decoding/translating the "next" microinstruction.

3.3 STATUS OUTPUTS

Status outputs for the operation in process are designed specifically to simplify system implementation by providing direct access to those status bits used with the classical and highly efficient multiply and divide algorithms. The status outputs consist of:

- a. AMSB and BMSB In the MSP these outputs provide direct access to the sign bits of data/operands entering the ALU.
- b. XWR MUX MSB In the MSP this output provides direct access to the data bit which can become the XWR sign bit during left-shift operations. It is useful for determining overflow (impending change of the XWR sign bit) in double-signed arithmetic operations, shifting operations, or fix-up routines in iterative sign-magnitude divide algorithms.
- c. XWR MUX LSB In the LSP this output provides direct access to the data bit which can become the XWR LSB during right-shift operations. It is useful for looking ahead during iterative multiply and divide routines to setup the next micro-operation.
- d. ALU = 0 In the LSP, IP, and MSP this output provides a direct indication that all four of the ALU outputs are low. In an expanded word length system all of the ALU = 0 outputs can be dot-AND connected to provide, on a single-line, an indication that all of the ALU outputs are low (equal zero).
- e. ALUCOUT In the LSP, IP, and MSP this output provides a direct carry out from each of the 4-bit slices. In the MSP the ALUCOUT can be used for determining ALU overflow.

3.4 ARITHMETIC/LOGIC UNIT (ALU) DESCRIPTION

The 4-bit parallel, binary, arithmetic/logic unit (ALU) is the operand combination/modification mechanism. Under direction of the present micro-operation, the ALU performs 1 of 16 arithmetic/Boolean operations on either or both of two operands present at it's A and B input ports. Operand sources which may access the A input port of the ALU via the A multiplexer are the register file (RF) and data-in port (DIP); operand sources which may access the B input port of the ALU via the B multiplexer are the data-in port (DIP), working register (WR), and extended working register (XWR).

3.4.1 ALU Function Selection

In general, an ALU function is specified via the 4-bit OP-field (OP3 \rightarrow OP0) of the operation-select word as shown in Table 1. This field is presented to the PLA via the operation-select word input lines. The PLA translates OP3, OP2, OP1, OP0 into a 4-bit micro-operation field which ultimately selects the ALU mode. The OP3 bit functions similarly to an ALU mode control in that 1) a low-logic level places the ALU in an arithmetic mode, and 2) a high-logic level places the ALU in a logic mode. OP2 \rightarrow OP0 selects a particular function within the specified ALU mode.

3.4.2 ALU Arithmetic Mode

Functionally similar to the popular TTL ALU's, such as the SN54S/74S181 and SN54S/74S281, the arithmetic functions (see Table 1) include symmetrical subtraction whereby either A minus B or B minus A may be employed to simplify data flow. Other arithmetic-type functions include simple A plus B, A plus B plus carry-in, preset all high, clear all low, and direct symmetrical generation of complements (1's or 2's) for either A or B.

TABLE 1 ALU FUNCTION-SELECT TABLE

		Д	LU		ACTIVE-H	IGH DATA					
		OP-I	IELD		ALUCIN = H	ALUCIN = L					
	OP3	P3 OP2 OP1 OP0 (WITH CARRY, NO BO			(WITH CARRY, NO BORROW)	(WITH CARRY, NO BORROW)					
	L	L	L	L	Fn = L	Fn = H					
<u>i</u>	L	L	L	н	Fn = B minus A	Fn = B minus A minus 1					
Arithmetic	L	L	н	L	Fn = A minus B	Fn = A minus B minus 1					
ith	L	L	н	н	Fn = A plus B plus 1	Fn = A plus B					
Ā	L	н	L	L	Fn = B plus 1	Fn = B					
	L	н	L	н	Fn = B plus 1	$Fn = \overline{B}$					
	L	н	н	L	Fn = A plus 1	Fn = A					
	L	н	н	н	Fn = Ā plus 1	$Fn = \overline{A}$					
	н	L	L	L	Fn = A	nBn					
	н	L	L	н	Fn = A	n⊕Bn					
	н	L	н	L	Fn = Ā	n⊕Bn					
υ	н	L	н	H	$Fn = \overline{A}$	nBn					
Logic	н	н	L	L	Fn = A	nBn					
-	н	н	L	н	Fn = A	n + Bn					
	н	н	н	L	Fn = Ā	n + Bn					
	н	н	н	н	Fn = An + Bn						

3.4.3 ALU Logical (Boolean) Mode

Functionally similar to the popular ALUs such as the SN54S/74S181 and SN54S/74S281, the ALU logical functions (see Table 1) include AND, OR, exclusive OR, exclusive NOR, and four symmetrical mixed combinational functions of the ALU's A and B operands.

3.4.4 ALU Carry and Look-Ahead Generator Functions

These processor elements have accommodations for ALU ripple carry-in (ALUCIN) and ALU ripple carry-out (ALUCOUT); and in order to facilitate look-ahead carry generation across expanded word sizes, each has output accommodations for ALU carry-generate data (\overline{G}) and ALU carry-propagate data (P). When these accommodations are utilized in conjunction with SN54/74182 look-ahead carry generators, ALU add/subtract times may be significantly improved over those times where only ripple-carry techniques are employed. Only one SN54/74182 (Figure 2) is required to provide look-ahead carry generation across an expanded system of from two to four 4-bit slice processor elements. A second level of look-ahead carry generation may be employed (Figure 3) for systems expanded up to 64 bits. Typical ALU add times are shown in Table 2, and are illustrated in Figure 4.

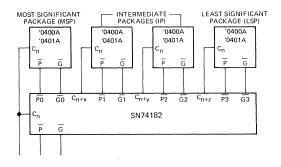
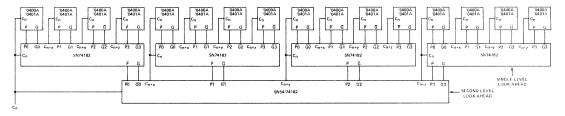



FIGURE 2 – SINGLE-LEVEL ALU CARRY LOOK-AHEAD AND BIT-SLICE RELATIVE POSITIONS

FIGURE 3 - 64-BIT SYSTEM WITH ALU FULL-CARRY LOOK-AHEAD

TABLE 2 TYPICAL SBP0400A ADD TIMES (DIP PLUS WR) FROM † CLOCK TO DOB

TYPE OF CARRY	TWO 4-BIT WORDS	TWO 8-BIT WORDS	TWO 16-BIT WORDS	TWO 32-BIT WORDS	TWO 64-BIT WORDS
RIPPLE	240 ns	285 ns	405 ns	645 ns	1.1 μs
SINGLE-LEVEL LOOK-AHEAD*	NA	300 ns	300 ns	405 ns	525 ns
SECOND-LEVEL LOOK-AHEAD*	NA	NA	NA	315 ns	315 ns

*LOOK-AHEAD IS SN54/74182, AND INJECTOR CURRENT IS 200 mA.

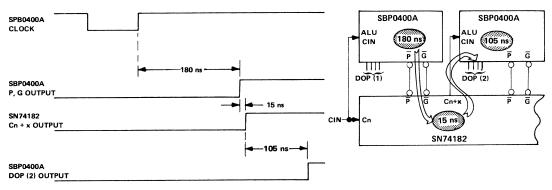


FIGURE 4 - EXECUTION OF TYPICAL ALU MICRO-OPERATION

3.5 RELATIVE POSITION CONTROL (POS1, POS0)

The 2-bit relative position control (POS1, POS0) encodes the relative positional rank of each individual processor element in an expanded word length system. As shown in Figure 2, the three positional rank possibilities are: 1) most significant position/ package (MSP), 2) intermediate position/package (IP), and 3) least significant position/package (LSP). Consequent to encoded positional rank, the relative position control (POS1, POS0), as shown in Table 3 dictates for each individual 4-bit slice in an expanded word length system: 1) the manner in which data shifts/circulates are to be accomplished, and 2) a particular assignment for each individual multifunction I/O accommodation.

2

TABLE 3 POSITION CONTROL FUNCTIONS

ĺ,

IN	PUTS			MULTIFUNCTION	I/O
POS1	POS0	RELATIVE POSITION	PCCOUT/ BMSB	ENINCBY2/ AMSB	XWR MUX MSB/LSB
L	н	LEAST SIGNIFICANT POSITION (LSP)	PCCOUT	ENINCBY2	XWR LSB
L	L	INTERMEDIATE POSITION (IP)	PCCOUT	Hi-Z	ZERO
Н	L	MOST SIGNIFICANT POSITION (MSP); DOUBLE-SIGNED/DOUBLE-PRECISION (DS/DP) ARITHMETIC SHIFTS	BMSB	AMSB	XWR MSB
н	H	MOST SIGNIFICANT POSITION (MSP); SINGLE-SIGNED/DOUBLE-PRECISION (SS/DP) ARITHMETIC SHIFTS	BMSB	AMSB	XWR MSB

3.6 REGISTER FILE (RF0 → RF7)

3.6.1 RF General Description

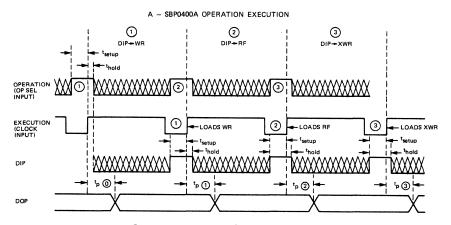
The register file (RF) is an 8-word by 4-bit set of D-type edge-triggered registers. Any one of the eight registers may be selected as an operand source and/or operation-result destination. Register selection is accomplished via the 3-bit, S-field ($S2 \rightarrow S0$) of the operation-select word. This field is presented to the PLA via the operation-select word input lines. The PLA translates S2, S1, S0 into a 3-bit micro-operation field which ultimately selects a particular register within the file.

3.6.2 RF Source/Destination Operands

Register file source and destination operands are listed in Tables 4 and 5 respectively. When the register file is used as a destination, the source data is recognized only when a low-level condition exists at the clock input. As shown in Figure 5, source data can change during the low-level clock condition as long as the setup time prior to the low-to-high transition of the clock input is satisfied.

OPERATION	OP FORM	OP-FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
RF → DOP	Шь	LLLL	HL	LLL → HHH
$RF \rightarrow XWR$	IIIc	LLLH	HL	$LLL \rightarrow HHH$
RF ALU WR → RF	la	LLLL → HHHH	LL	$LLL \rightarrow HHH$
RF ALU WR → WR	lb	LLLL → HHHH	LH	$LLL \rightarrow HHH$
RF plus DIP plus ALUCIN → RF	lld	LHHH	HL	$LLL \rightarrow HHH$
RF plus DIP plus ALUCIN → WR	ПЬ	LHLL	HL	LLL → HHH
RF plus DIP plus ALUCIN → XWR	llc	LHLH	HL	LLL → HHH
(RF plus WR plus ALUCIN,XWR) LCIR → WR,XWR	IVd	HLLH	HL	LLL → HHH
(RF plus WR plus ALUCIN,XWR) RSA → WR,XWR	IVi	нінн	HL	$LLL \rightarrow HHH$
RF plus WR plus ALUCIN → XWR	lla	LLHH	HL	LLL → HHH
RF plus XWR plus ALUCIN → WR	lle	HHLL	HL	LLL → HHH
RF plus XWR plus ALUCIN → XWR	111	HHLH	HL	LLL → HHH

TABLE 4 RF SOURCE OPERANDS


NOTE: When PC priority is low WR \rightarrow AOP

r -

TABLE 5 RF DESTINATION OPERANDS

OPERATION	OP FORM	OP-FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
DIP → RF	IIIa	нннн	HL	LLL → HHH
XWR plus ALUCIN → RF	llg	нннг	HL	LLL → HHH
$RFALUWR \rightarrow RF$	la	LLLL → HHHH	LL	LLL → HHH
RF plus DIP plus ALUCIN \rightarrow RF	lld	LHHH	HL	LLL → HHH

NOTE: When PC priority is low WR \rightarrow AOP

NOTE: THE SAME CLOCK () THAT EXECUTES OPERATION () LOADS OPERATION () INTO THE '0400A OR.

B - SBP0401A OPERATION EXECUTION

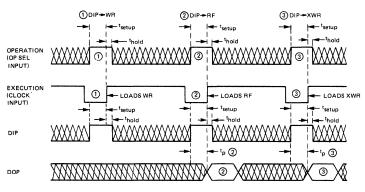


FIGURE 5-TYPICAL OPERATION EXECUTIONS

3.7 PROGRAM COUNTER (PC) - REGISTER FILE SEVEN (RF7)

3.7.1 General Description

RF7 of the register file features the added flexibility of performing as a program counter (PC). Independent of the "present" microinstruction, RF7 may be incremented by a displacement of 1 or 2. Incrementation is accomplished synchronously with the clock and selected, as shown in Table 6, via the multifunction PCCIN and ENINCBY2 inputs as defined by the relative-position control (see Table 3). For cascading purposes, RF7 overflow is provided via the PCCOUT output. Furthermore, RF7 features an independent output bus which allows direct access at the AOP via the ADR multiplexer. When the PC PRIORITY input is taken to a high-logic level, operation select control of the ADR multiplexer is overridden allowing the PC to source the AOP.

RE	LATIVE POSI	TION		INPUT	PC IS INCREMENTED
LSP	IP	MSP	PCCIN	ENINCBY2	ON NEXT CLOCK BY
YES	NO	NO	H L L	X L H	0 1 2
NO	YES	NO	H L	x x	0 1
NO	NO	YES	H L	x x	0

TABLE 6 PROGRAM COUNTER INCREMENTATION

Instruction look-ahead techniques may be employed to boost the system-level efficiency. While the internal operation register of the SBP0400A is directing execution of the "present" microinstruction, the PC may be independently updated to address/fetch data for the "next" microinstruction. In this manner, when the "next" microinstruction becomes the "present" microinstruction as evidenced by its residence in the 0400A OR, steps will have already been taken to fetch an associated data operand.

The SBP0401A, designed for use with the SN54S/74S482 control element, can employ the control memory address register of the 'S482 and other system registers to implement instruction look-ahead or overlap.

3.7.2 PC Configurations

Typical configurations for use of the program counter in an expanded wordlength system are illustrated in Figures 6 and 7. The BMSB/ \overline{PCCOUT} multifunction output may be time multiplexed (see Figure 6) to provide both BMSB and PC overflow (maximum count) status. Under direction of the relative position control (POS1, POS0), the BMSB is available (see Table 3) when POS1 is high, but if POS1 is taken low, \overline{PCCOUT} is available. After time t₀ the PC contents of the most significant (MSP) will persist until the next L-to-H clock transition. Thus, the BMSB, then \overline{PCCOUT} data may both be obtained within a single microcycle (1 clock period).

The PC technique shown in Figure 7 may be employed if the required PC wordlength is 4-bits shorter than the processor wordlength. In this situation, the PC's maximum count status is available from the PCCOUT output of the next-to-MSP (IP) package.

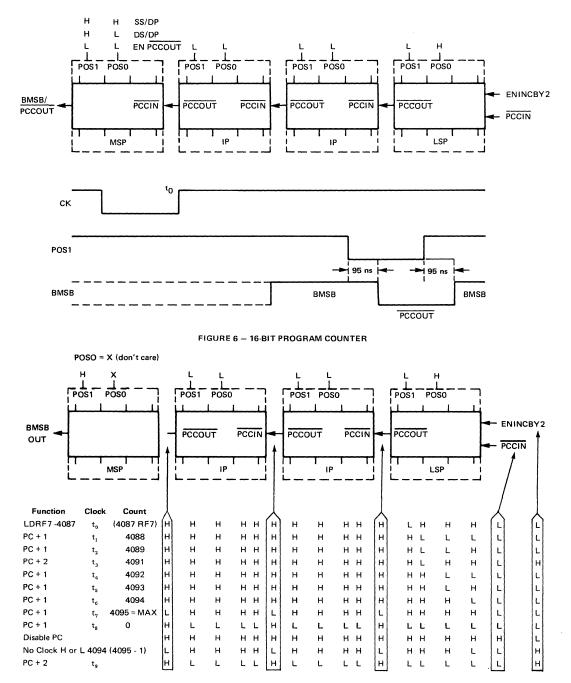


FIGURE 7 - 12-BIT PROGRAM COUNTER

3.7.3 PC Count Sequences

PC count sequences initiated at the \overrightarrow{PCCIN} and $\overrightarrow{ENINCBY2}$ inputs of the LSP of an expanded wordlength system are shown in Figure 7. An increment-by-1 command ($\overrightarrow{PCCIN} = L$, $\overrightarrow{ENINCBY2} = L$) advances the PC from 4088 to 4089 synchronously with the t_2 clock; an increment-by-2 command ($\overrightarrow{PCCIN} = L$, $\overrightarrow{ENINCBY2} = H$) advances the PC from 4089 to 4091 synchronously with the t_3 clock; a PC disable-increment command ($\overrightarrow{PCCIN} = L$, $\overrightarrow{ENINCBY2} = H$) retains the PC at its present count status. When the PC is at maximum count, an increment-by-1 command ($\overrightarrow{PCCIN} = L$, $\overrightarrow{ENINCBY2} = H$) conditions the $\overrightarrow{PCCOUT}/\overrightarrow{PCCIN}$ interpackage carry accommodations such that the PC will increment to zero synchronously with the t_8 clock; when the PC is at maximum-count-minus-1 (N-1), an increment-by-2 command ($\overrightarrow{PCCIN} = L$, $\overrightarrow{ENINCBY2} = H$) conditions the $\overrightarrow{PCCOUT}/\overrightarrow{PCCIN}$ interpackage carry accommodations such that the PC will increment to zero synchronously with the t_9 clock. A maximum count output will be generated at N-1 if the PC is instructed to count by two. This is shown in the supplementary state table of Figure 7.

3.8 ADDRESS-OUT MULTIPLEXER (ADR MUX)

The address-out multiplexer (ADR MUX) is a multiport multiplexer which selects either the WR, XWR, or program counter (PC) for transfer to the address-out port (AOP) via the address-out bus (AOB). When the PC PRIORITY input is logic-level low, ADR MUX transfer of the WR or XWR is selected by the resident operation; when the PC PRIORITY input is logic-level high, resident operation direction of the ADR MUX is overridden allowing the PC to source the AOP.

3.9 A BUS

In addition to 4-bit parallel data transfers, the most significant bit (MSB) of the A bus is available at the multifunction AMSB output if the SBP0400A or SBP0401A is in the most significant position (MSP) as defined by the relative-position control. The AMSB output may be used to monitor the sign-bit of A bus data, or in conjunction with the BMSB and DOP3 (MSP) outputs, to detect an impending ALU overflow condition.

3.10 B BUS

In addition to 4-bit parallel data transfers, the most significant bit (MSB) of the B bus is available at the multifunction BMSB output in the most significant-position (MSP) as defined by the relative-position control. When used with shifts or circulates, this output may be used to extract B-bus data serially from the selected source. The BMSB output may be used to monitor the sign-bit of B bus data, or in conjunction with the AMSB and DOP3 (MSP) outputs, to detect an impending ALU overflow condition.

3.11 WORKING REGISTER (WR)

3.11.1 General Description

The 4-bit working register (WR) is a D-type edge-triggered register which functions as an accumulator for intermediate operands. The WR sources the ALU via the B multiplexer and the address-out-port (AOP) via the ADR multiplexer; the WR is a destination, via the WR multiplexer, for either the data-out bus (DOB) or data-in port (DIP).

3.11.2 WR Source/Destination Operands

Working register source and destination operands are listed in Tables 7 and 8 respectively. When the WR is used as a destination, the source data is recognized only when a low-level condition exists at the clock input. As shown in Figure 5, the source data may change during the low-level clock condition as long as the setup time prior to the low-to-high transition of the clock input is satisfied.

OPERATION	OP FORM (See 5.3)	OP FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
*WR ALU DIP→ DOP	lc	LLLL → HHHH	нн	LLL
*WR ALU DIP → WR	Id	LLLL → HHHH	нн	LLH
WR ALU DIP → XWR	If	LLLL → HHHH	нн	HLL
WR ALU RF → RF	la	LLLL → HHHH	LL	LLL → HHH
WR ALU RF → WR	lb	LLLL → HHHH	LH	$LLL \rightarrow HHH$
(WR minus DIP minus 1 plus ALUCIN,XWR) LCIR → WR,XWR	IVa	HLLL	нн	LHL
(WR minus DIP minus 1 plus ALUCIN,XWR) RSA → WR,XWR	IVf	LLHL	нн	LHL
(WR minus RF minus 1 plus ALUCIN,XWR) LCIR → WR,XWR	IVc	HLLL	HL	LLL → HHH
(WR minus RF minus 1 plus ALUCIN,XWR) RSA → WR,XWR	IVh	LLHL	HL	$LLL \rightarrow HHH$
(WR plus ALUCIN) RSA → WR,XWR	IVe	HLHL	HL	xxx
(WR plus ALUCIN) RSA → WR,XWR	IVe	HLHL	нн	LHL
(WR plus ALUCIN) LCIR → WR	Vd	LLHH	нн	нгн
(WR plus ALUCIN) LCIR → WR	Vd	нінн	нн	HLH
(WR plus ALUCIN) LSA → WR	Vc	LLHL	нн	HLH
(WR plus ALUCIN) LSL → WR	Vf	HLHL	нн	нгн
(WR plus ALUCIN) RCIR → WR	∨ь	LLLH	нн	HLH
(WR plus ALUCIN) RCIR → WR	Vb	HLLH	нн	HLH
(WR plus ALUCIN) RSA → WR	Va	LLLL	нн	HLH
(WR plus ALUCIN) RSL → WR	Ve	HLLL	нн	нгн
(WR plus ALUCIN, XWR) LCIR \rightarrow (WR, XWR)	Vid	нннн	нн	HLH
(WR plus ALUCIN, HWR) LCIR → (WR, XWR)	VId	LHHH	нн	нін
(WR plus ALUCIN,XWR) LSA → (WR,XWR)	Vic	LHHL	нн	HLH
(WR plus ALUCIN,XWR) LSL → (WR,XWR)	VIf	ннн∟	нн	HLH
(WR plus ALUCIN,XWR) RCIR → (WR,XWR)	νір	HHLH	нн	HLH
(WR plus ALUCIN,XWR) RCIR → (WR,XWR)	VIb	LHLH	нн	HLH
(WR plus ALUCIN,XWR) RSA → (WR,XWR)	Vla	LHLL	нн	нін
(WR plus ALUCIN,XWR) RSL → (WR,XWR)	Vle	HHLL	нн	HLH
WR plus DIP plus ALUCIN → DOP	Hi	LHHH	нн	LHL
WR plus DIP plus ALUCIN → XWR	llh	LLHH	нн	LHL
(WR plus DIP plus ALUCIN) LCIR → WR,XWR	і∨ь	HLLH	нн	LHL
(WR plus DIP plus ALUCIN) RSA → WR,XWR	IVg	нінн	нн	LHL
WR plus RF plus ALUCIN → XWR	lla	LLHH	HL	$LLL \rightarrow HHH$
(WR plus RF plus ALUCIN) LCIR \rightarrow WR,XWR	IVd	HLLH	HL	$LLL \rightarrow HHH$
(WR plus RF plus ALUCIN) RSA → WR,XWR	IVi	нінн	HL	LLL → HHH

TABLE 7 WORKING REGISTER SOURCE OPERANDS

NOTE: When PC priority is low WR \rightarrow AOP

* XWR → AOP

2

OPERATION	OP FORM (See 5.3)	OP-FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
WR ALU RF → WR	lb	LLLL → HHHH	LH	$LLL \rightarrow HHH$
(WR minus DIP minus 1 plus ALUCIN,XWR) LCIR → WR,XWR	IVa	HLLL	нн	LHL
(WR minus DIP minus 1 plus ALUCIN,XWR) RSA → WR,XWR	IVd	LLHL	нн	LHL
(WR minus RF minus 1 plus ALUCIN,XWR) LCIR → WR,XWR	IVc	HLLL	HL	$LLL \rightarrow HHH$
(WR minus RF minus 1 plus ALUCIN,XWR) RSA → WR,XWR	IVh	LLHL	HL	$LLL \rightarrow HHH$
(WR plus ALUCIN) RSA → WR,XWR	IVe	HLHL	HL	XXX
(WR plus ALUCIN) RSA → WR,XWR	IVe	HLHL	нн	LHL
(WR plus ALUCIN) LCIR → WR	Vd	LLHH	нн	HLH
(WR plus ALUCIN) LCIR → WR	Vđ	нінн	нн	HLH
(WR plus ALUCIN) LSA → WR	Vc	LLHL	нн	HLH
(WR plus ALUCIN) LSL \rightarrow WR	Vf	HLHL	нн	HLH
(WR plus ALUCIN) RCIR → WR	Vb	LLLH	нн	HLH
(WR plus ALUCIN) RCIR → WR	Vb	HLLH	нн	нгн
(WR plus ALUCIN) RSA → WR	Va	LLLL	нн	HLH
(WR plus ALUCIN) RSL → WR	Ve	HLLL	нн	HLH
(WR plus ALUCIN, XWR) LCIR \rightarrow (WR, XWR)	VId	нннн	нн	HLH
(WR plus ALUCIN, XWR) LCIR \rightarrow (WR, XWR)	VId	LHHH	нн	HLH
(WR plus ALUCIN, XWR) LSA → (WR, XWR)	VIc	LHHL	нн	HLH
(WR plus ALUCIN, XWR) LSL \rightarrow (WR, XWR)	VIf	НННС	нн	HLH
(WR plus ALUCIN, XWR) $RCIR \rightarrow (WR, XWR)$	VIb	ннін	нн	HLH
(WR plus ALUCIN, XWR) RCIR → (WR, XWR)	VIb	LHLH	нн	HLH
(WR plus ALUCIN, XWR) RSA → (WR,XWR)	VIa	LHLL	нн	HLH
(WR plus ALUCIN, XWR) RSL \rightarrow (WR, XWR)	Vle	HHLL	нн	HLH
(WR plus DIP plus ALUCIN) LCIR → WR, XWR	IVb	HLLH	нн	LHL
(WR plus DIP plus ALUCIN) RSA \rightarrow WR, XWR	IVg	нгнн	нн	LHL
(WR plus RF plus ALUCIN) LCIR → WR, XWR	IVd	HLLH	HL	LLL → HHH
(WR plus RF plus ALUCIN) RSA → WR, XWR	IVi	нгнн	HL	$LLL \rightarrow HHH$

TABLE 8 WORKING REGISTER DESTINATION OPERANDS

NOTE: When PC PRIORITY is low WR \rightarrow AOP

* XWR \rightarrow AOP

3.11.3 WR Sourcing of ADR MUX

The resident operation directs the WR to source the AOP via the ADR multiplexer during 427 of the 459 possible unique operations. In the cases of operation form-type Ic and Id (see Table 27) which represent the remaining 32 of the 459 possible unique operations, the resident operation directs the XWR to source the AOP via the ADR. When the PC PRIORITY input is at a high-logic level, resident operation direction of the ADR multiplexer is overridden allowing the PC to source the AOP.

3.12 EXTENDED WORKING REGISTER (XWR)

3.12.1 XWR General Description

The 4-bit extended working register (XWR) is a D-type edge-triggered register which functions as 1) an accumulator during address derivations and 2) a WR extension during operations where double-length operands are present/

accumulated (iterative non-restoring divide, double-precision shifts/circulates, iterative multiply, etc.). The XWR sources 1) the ALU via the B multiplexer, 2) the AOP via the ADR multiplexer, or 3) itself shifted right or left via the XWR multiplexer. The XWR is a destination via the XWR multiplexer for either the DOB or the XWR, itself, shifted right or left.

3.12.2 XWR Source/Destination Operands

Extended working register source and destination operands are listed in Tables 9 and 10 respectively.

TABLE 9 EXTENDED WORKING REGISTER SOURCE OPERANDS

OPERATION	OP FORM (See 5.3)	OP-FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
XWB ALU DIP → DOP	lh	LLLL → HHHH	нн	ннн
XWR ALU DIP → WR	le	LLLL → HHHH	нн	LHH
XWR ALU DIP \rightarrow XWR	lg	LLLL → HHHH	нн	ннс
XWR plus ALUCIN \rightarrow DOP	HI	нннг	нн	LHL
XWR plus ALUCIN → RF	Hj	HHHL	HL	$LLL \rightarrow HHH$
XWR plus DIP plus ALUCIN \rightarrow WR	lik	HHLL	нн	LHL
XWR plus DIP plus ALUCIN → XWR	llf	ннін	нн	LHL
XWR plus RF plus ALUCIN \rightarrow WR	lle	HHLL	HL	LLL → HHH

NOTE: When PC PRIORITY is low WR \rightarrow AOP

TABLE 10 WORKING REGISTER DESTINATION OPERANDS

OPERATION	OP FORM (See 5.3)	OP FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD [←] S2 → S0
DIP ALU XWR → XWR	lg	LLLL HHHH	нн	HHL
WR ALU DIP → XWR	lf	LLLL → HHHH	нн	HLL
(WR minus DIP minus 1 plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	IVa	HLLL	нн	LHL
(WR minus DIP minus 1 plus ALUCIN, XWR) RSA → WR, XWR	IVf	LLHL	нн	LHL
(WR minus RF minus 1 plus ALUCIN, XWR) LCIR → WR, XWR	1Vc	HLLL	HL	LLL → HHH
(WR minus RF minus 1 plus ALUCIN, XWR) RSA WR, XWR	l Vh	LLHL	HL	$LLL \rightarrow HHH$
(WR plus ALUCIN) RSA → WR, XWR	IVe	HLHL	HL	XXX
(WR plus ALUCIN) RSA → WR, XWR	IVe	HLHL	нн	LHL
(WR plus ALUCIN, XWR) LCIR → (WR, XWR)	VId	нннн	нн	HLH
(WR plus ALUCIN, XWR) LCIR → (WR, XWR)	Vld	Сннн	нн	HLH
(WR plus ALUCIN, XWR) LSA → (WR, XWR)	VIc	LHHL	нн	HLH
(WR plus ALUCIN, XWR) LSL → (WR, XWR)	VIf	HHHL	нн	HLH
(WR plus ALUCIN, XWR) RCIR \rightarrow (WR, XWR)	VIb	ннін	нн	HLH
(WR plus ALUCIN, XWR) RCIR → (WR, XWR)	VIb	LHLH	нн	HLH
(WR plus ALUCIN, XWR) RSA \rightarrow (WR, XWR)	VIa	LHLL	нн	HLH
(WR plus ALUCIN, XWR) RSL → (WR, XWR)	Vle	HHLL	нн	HLH
WR plus DIP plus ALUCIN → XWR	llh	LLHH	нн	LHL
(WR plus DIP plus ALUCIN) LCIR → WR, XWR	IVb	HLLH	нн	LHL
(WR plus DIP plus ALUCIN) RSA → WR, XWR	IVg	нінн	нн	LHL
WR plus RF plus ALUCIN → XWR	Ha	LLHH	HL	$LLL\toHHH$
(WR plus RF plus ALUCIN) LCIR → WR, XWR	IVd	HLLH	HL	LLL → HHH
(WR plus RF plus ALUCIN) RSA → WR, XWR	1Vi	HLHH	HL	$LLL\toHHH$
DIP plus XWR plus ALUCIN → XWR	llk	ннгн	нн	LHL
$DIP \to XWR$	Ille	LLLH	нн	LHL

NOTE: When PC PRIORITY is low WR \rightarrow AOP

When the XWR is used as a destination, the source data is recognized only when a low-level condition exists at the clock input. As shown in Figure 5, the source data can change during the low-level clock condition as long as the setup time prior to the low-to-high transition of the clock input is satisfied.

3.12.3 XWR Sourcing of ADR MUX

Operation form-type Ic and Id (see Table 27) represent 32 of the 459 possible unique operations. During these operations the resident operation directs the XWR to source the AOP via the ADR multiplexer. During the remaining 427 of the 459 possible operations, the resident operation directs the WR to source the AOP via the ADR multiplexer. When the PC PRIORITY input is at a high-logic level, resident operation direction of the ADR multiplexer is overridden allowing the PC to source the AOP.

3.13 DATA-OUT MULTIPLEXER (DO MUX)

3.13.1 DO MUX General Description

The data-out multiplexer (DO MUX) is a multi-port, special purpose multiplexer which provides scaled shifting of the ALU output, and direct transfer of the A bus to the data-out bus, bypassing the ALU. The output port of the DO MUX provides, in accordance with Table 11, ALU output data not shifted, ALU output data shifted right one bit position, ALU output data shifted left one bit position, and A bus data not shifted. Control for the DO MUX is provided by the resident operation in conjunction with the relative position control.

		DO MUX OUTPUT			
	OPERATION TYPE	3	2	1	0
INTERMEDIATE AND LEAST SIGNIFICANT POSITIONS	RIGHT SHIFT ARITHMETIC RIGHT SHIFT LOGICAL RIGHT CIRCULATE ALU OUT BUS → DATA-OUT BUS A BUS → DATA-OUT BUS LEFT SHIFT ARITHMETIC LEFT SHIFT LOGICAL LEFT CIRCULATE	WRLFT WRLFT ALU3 ABUS3 ALU2 ALU2 ALU2 ALU2	ALU3 ALU3 ALU2 ABUS2 ALU1 ALU1 ALU1	ALU2 ALU2 ALU1 ABUS1 ALU0 ALU0 ALU0	ALU1 ALU1 ALU0 ABUS0 WRRT WRRT WRRT
MOST SIGNIFICANT POSITION (MSP)	RIGHT SHIFT ARITHMETIC RIGHT SHIFT LOGICAL RIGHT CIRCULATE ALU OUT BUS → DATA-OUT BUS A BUS → DATA-OUT BUS LEFT SHIFT ARITHMETIC LEFT SHIFT LOGICAL LEFT CIRCULATE	WR3 WRLFT ALU3 ABUS3 ALU2 ALU2 ALU2 ALU2	ALU3 ALU3 ALU2 ABUS2 ALU1 ALU1 ALU1	ALU2 ALU2 ALU1 ABUS1 ALU0 ALU0 ALU0	ALU1 ALU1 ALU0 ABUS0 WRRT WRRT WRRT

TABLE 11 DO MUX TRANSFERS

3.13.2 DO MUX Shift Accommodations

.

Special bidirectional shift accommodations are provided to or from each end of the DO MUX to facilitate interpackage data shifts in expanded word length systems. The direction of these shift accommodations is selected by the resident operation. Bit 3 (MSB) of the DO MUX for each processor element receives interpackage right shift data and transmits interpackage left shift data via the bidirectional shift accommodation WRLFT; bit 0 (LSB) receives interpackage left shift data and transmits interpackage right shift data via the bidirectional shift accommodation WRLFT; bit 0 (LSB) receives interpackage left shift data and transmits interpackage right shift data via the bidirectional shift accommodation WRRT. Both WRLFT and WRRT, low-active signals at the package terminals, become WRLFT and WRRT, respectively, high-active signals within the processor element.

3.14 DATA-OUT I-MULTIPLEXER (DO IMUX)

The data-out I-multiplexer (DO IMUX) is a special purpose multiplexer which outputs, in accordance with Table 12, appropriate left-shift data via the bidirectional shift accommodation WRLFT. Control for the DO IMUX is provided by the resident operation in conjunction with the relative position control.

	OPERATION TYPE	DO IMUX OUTPUT TO WRLFT
INTERMEDIATE (IP) AND LEAST SIGNIFICANT POSITIONS (LSP)	LEFT SHIFT ARITHMETIC LEFT SHIFT LOGICAL LEFT CIRCULATE	ALU3 ALU3 ALU3
MOST SIGNIFICANT POSITION (MSP) SINGLE- PRECISION (SP) SHIFTS/ CIRCULATES	LEFT SHIFT ARITHMETIC LEFT SHIFT LOGICAL LEFT CIRCULATE	HIGH HIGH ALU3
MOST SIGNIFICANT POSITION (MSP) (MSP) (MSP) (MSP) SINGLE- SIGNED/ DOUBLE- PRECISION (SS/DP) SHIFTS/ CIRCULATES	LEFT SHIFT ARITHMETIC LEFT SHIFT LOGICAL LEFT CIRCULATE	XWR3 XWR3 XWR3
MOST SIGNIFICANT POSITION (MSP) (MSP) (MSP) DOUBLE- SIGNED/ DOUBLE- PRECISION (DS/DP) SHIFTS/ CIRCULATES	LEFT SHIFT ARITHMETIC LEFT SHIFT LOGICAL LEFT CIRCULATE	XWR2 XWR3 XWR3

TABLE 12 DO IMUX TRANSFERS TO WRLFT

3.15 DATA-OUT J-MULTIPLEXER (DO JMUX)

The data-out J-multiplexer (DO JMUX) is a special purpose multiplexer which outputs, as per Table 13, appropriate right shift data via the bidirectional shift accommodation \overline{WRRT} . Control for the DO JMUX is provided by the resident operation in conjunction with the relative position control.

TABLE 13 DO JMUX TRANSFERS TO WRRT

	OPERATION TYPE	DO JMUX OUTPUT TO WRRT
MOST- SIGNIFICANT (MSP) OR INTER- MEDIATE (IP) POSITIONS	RIGHT SHIFT ARITHMETIC RIGHT SHIFT LOGICAL RIGHT CIRCULATE	ALU0 ALU0 ALU0
LEAST. SIGNIFICANT POSITION (LSP) SINGLE- PRECISION (SP) SHIFTS/ CIRCULATES	RIGHT SHIFT ARITHMETIC RIGHT SHIFT LOGICAL RIGHT CIRCULATE	HIGH HIGH ALUO
LEAST- SIGNIFICANT POSITION (LSP) DOUBLE- PRECISION (DP) SHIFTS/ CIRCULATES	RIGHT SHIFT ARITHMETIC RIGHT SHIFT LOGICAL RIGHT CIRCULATE	HIGH HIGH XWRO

3.16 EXTENDED WORKING REGISTER MULTIPLEXER (XWR MUX)

3.16.1 XWR MUX General Description

The extended working register multiplexer (XWR MUX) is a multi-port, special purpose multiplexer which provides scaled shifting of the XWR outputs and direct transfer of the data-out bus to the XWR input. The output port of the XWR MUX provides, in accordance with Table 14, XWR output data shifted left one bit position, XWR output data shifted right one bit position, and data-out bus data not shifted. The XWR MUX also sources the XWR MSB/LSB output. Under control of the relative position inputs, in the MSP the XWR MUX MSB (Bit 3) is available at the XWR MSB output and in the LSP the XWR MUX LSB (Bit 0) is available at the XWR LSB output. Control for the XWR MUX is provided by the resident operation in conjunction with the relative position control.

3.16.2 XWR MUX Shift Accommodations

Special bidirectional shift accommodations are provided to or from each end of the XWR MUX to facilitate interpackage data shifts when the processor element is used in expanded word length systems. Bit 3 (MSB) or bit 2 of the XWR MUX is selected by the resident operation in conjunction with the relative position control to receive double-precision interpackage right shift data or transmit double-precision interpackage left shift data via the bidirectional shift accommodation XWRLFT; bit 0 (LSB) receives double-precision interpackage left shift data and

TABLE 14 XWR MUX TRANSFERS

	OPERATION TYPE	XWR MUX OUTPUT			
	(DOUBLE-PRECISION)		2	1	0
MOST-SIGNIFICANT POSITION (MSP)	RIGHT SHIFT ARITHMETIC SINGLE-SIGNED RIGHT SHIFT ARITHMETIC DOUBLE-SIGNED RIGHT SHIFT LOGICAL RIGHT CIRCULATE DATA-OUT-BUS → XWR LEFT SHIFT ARITHMETIC SINGLE-SIGNED LEFT SHIFT ARITHMETIC DOUBLE-SIGNED LEFT SHIFT LOGICAL LEFT CIRCULATE	XWRLFT XWR3 XWRLFT DOB3 XWR2 ALU2 XWR2 XWR2 XWR2	XWR3 XWRLFT XWR3 DOB2 XWR1 XWR1 XWR1 XWR1	XWR2 XWR2 XWR2 DOB1 XWR0 XWR0 XWR0 XWR0	XWR1 XWR1 XWR1 DOB0 XWRRT XWRRT XWRRT XWRRT
LEAST-SIGNIFICANT OR INTERMEDIATE POSITION (IP)	RIGHT SHIFT ARITHMETIC SINGLE-SIGNED RIGHT SHIFT ARITHMETIC DOUBLE-SIGNED RIGHT SHIFT LOGICAL RIGHT CIRCULATE DATA-OUT-BUS → XWR LEFT SHIFT ARITHMETIC SINGLE-SIGNED LEFT SHIFT ARITHMETIC DOUBLE-SIGNED LEFT SHIFT LOGICAL LEFT CIRCULATE	XWRLFT XWRLFT XWRLFT DOB3 XWR2 XWR2 XWR2 XWR2 XWR2 XWR2	XWR3 XWR3 XWR3 DOB2 XWR1 XWR1 XWR1 XWR1	XWR2 XWR2 XWR2 DOB1 XWR0 XWR0 XWR0 XWR0	XWR1 XWR1 XWR1 DOB0 XWRRT XWRRT XWRRT XWRRT

transmits interpackage right shift data via the bidirectional shift accommodation \overline{XWRRT} . Both \overline{XWRLFT} and \overline{XWRRT} , low-active signals at the package terminals, become XWRLFT and XWRRT, respectively, high-active signals within the processor element.

3.17 EXTENDED WORKING REGISTER K-MULTIPLEXER (XWR KMUX)

The extended working register K-multiplexer (XWR KMUX) is a special purpose multiplexer which outputs, in accordance with Table 15, appropriate double-precision left-shift data via the bidirectional shift accommodation XWRLFT. Control for the XWR KMUX is provided by the resident operation in conjunction with the relative position control.

	OPERATION TYPE (DOUBLE-PRECISION)	XWR KMUX OUTPUT TO XWRLFT
LEAST- SIGNIFICANT OR INTER- MEDIATE POSITIONS (IP)	LEFT SHIFT ARITHMETIC SINGLE-SIGNED LEFT SHIFT ARITHMETIC DOUBLE-SIGNED LEFT SHIFT LOGICAL LEFT CIRCULATE	XWR3 XWR3 XWR3 XWR3
MOST- SIGNIFICANT POSITION	LEFT SHIFT ARITHMETIC SINGLE-SIGNED LEFT SHIFT ARITHMETIC DOUBLE-SIGNED LEFT SHIFT LOGICAL LEFT CIRCULATE	HIGH HIGH HIGH ALU3

TABLE 15	
XWR KMUX TRANSFERS TO	XWRLFT

3.18 EXTENDED WORKING REGISTER L MULTIPLEXER (XWR LMUX)

The extended working register L multiplexer (XWR LMUX) is a special purpose multiplexer which outputs, in accordance with Table 16, appropriate double-precision right shift data via the bidirectional shift accommodation XWRRT. Control for the XWR LMUX is provided by the resident operation in conjunction with the relative position control.

	TABLE 16	
XWR LMUX	TRANSFERS TO	XWRRT

	OPERATION TYPE (DOUBLE-PRECISION)	XWR LMUX OUTPUT TO XWRRT
MOST - SIGNIFICANT (MSP) OR INTER- MEDIATE POSITIONS (IP)	RIGHT SHIFT ARITHMETIC SINGLE-SIGNED RIGHT SHIFT ARITHMETIC DOUBLE-SIGNED RIGHT SHIFT LOGICAL RIGHT CIRCULATE	XWRO XWRO XWRO XWRO
LEAST- SIGNIFICANT POSITION (LSP)	RIGHT SHIFT ARITHMETIC SINGLE-SIGNED RIGHT SHIFT ARITHMETIC DOUBLE-SIGNED RIGHT SHIFT LOGICAL RIGHT CIRCULATE	ALUO ALUO ALUO ALUO

3.19 WORKING REGISTER MULTIPLEXER (WR MUX)

The working register multiplexer (WR MUX) is a multi-port multiplexer which, under control of the resident operation, selects either data-in port data or data-out bus data for direct transfer to the WR.

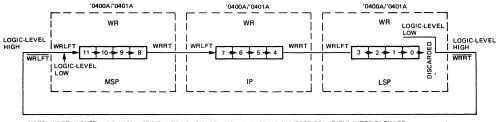
4. SHIFT/CIRCULATE OPERATIONS

The SBP0400A and the SBP0401A uses the DO MUX in conjunction with the DO IMUX and DO JMUX to accomplish single-bit WR shift/circulate operations; the XWR MUX in conjunction with the XWR KMUX and XWR LMUX to accomplish single-bit XWR shift/circulate operations. While single-precision shift/circulate operations involve the WR only, double-precision shift/circulate operations involve the WR in conjunction with the XWR. The standard operation set does not include single-precision XWR shift/circulate operations.

4.1 WR SINGLE-PRECISION SHIFTS/CIRCULATES

WR single-precision shift/circulate operations are directed by the resident operation with expanded wordlength "end" conditions handled by the relative position controls. These single-precision operations may best be represented by the generalized symbol:

(WR plus ALUCIN) SHIFTED/CIRCULATED → WR

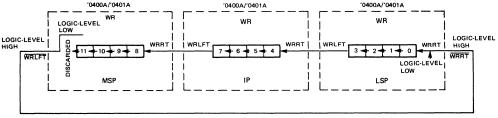

Within a single microcycle (1 clock period), each of six possible WR single-precision shift/circulate operations is capable of 1) asynchronously summing the WR with the ALUCIN input, then 2) asynchronously shifting/circulating the sum one bit position to the right/left, and finally 3) synchronously storing the shifted/circulated result back into the WR. The six WR single-precision shift/circulate possibilities, with data flow paths for expanded wordlengths, are listed in Table 17.

SHIFT/CIRCULATE OPERATION	SHIFT/CIRCULATE FUNCTION	EXPANDED WORDLENGTH DATA FLOW PATHS	OP- FORM (See 5.3)	OP-FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
(WR plus ALUCIN) RSL → WR	RIGHT-SHIFT-LOGICAL (RSL)	Figure 8	Ve	HLLL	нн	нгн
(WR plus ALUCIN) LSL → WR	LEFT-SHIFT-LOGICAL (LCL)	Figure 9	Vf	HLHL	нн	нгн
(WR plus ALUCIN) RSA → WR	RIGHT-SHIFT-ARITHMETIC (RSA)	Figure 10	Va	LLLL	нн	нен
(WR plus ALUCIN) LSA → WR	LEFT-SHIFT-ARITHMETIC (LSA)	Figure 11	Vc	LLHL	нн	нен
(WR plus ALUCIN) RCIR → WR	RIGHT-CIRCULATE (RCIR)	Figure 12	νь	LLLH	нн	нен
(WR plus ALUCIN) LCIR → WR	LEFT-CIRCULATE (LCIR)	Figure 13	Vd	LLHH	нн	HLH

TABLE 17 WR SINGLE-PRECISION SHIFTS/CIRCULATES

4.1.1 (WR Plus ALUCIN) RSL \rightarrow WR

The WR single-precision logical right-shift operation, shown in Figure 8, displaces the entire contents of the WR one bit position to the right. In an expanded wordlength system, a logic-level low is automatically right-shifted into the WR's most-significant-bit (MSB) of the most-significant-package (MSP) as the WR's contents are displaced to the right. This logic-level low, sourced by the least-significant-package (LSP), exits the LSP via the bidirectional shift accommodation WRRT and enters the MSP via the bidirectional shift accommodation WRRT. During each WR RSL operation, the WR's displaced LSB of the LSP is discarded.

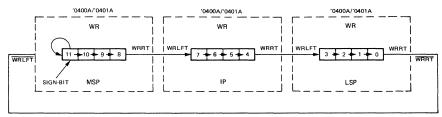


NOTE: WRRT, WRLFT, ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 8 - RIGHT SHIFT LOGICAL - SINGLE PRECISION (RSL - SP)

4.1.2 (WR Plus ALUCIN) LSL → WR

The WR single-precision logical left-shift operation, shown in Figure 9, displaces the entire contents of the WR one bit position to the left. In an expanded wordlength system, a logic-level low is automatically left-shifted into the WR's LSB of the LSP as the WR's contents are displaced to the left. This logic-level low, sourced by the MSP, exits the MSP via the bidirectional shift accommodation WRLFT and enters the LSP via the bidirectional shift accommodation WRRT. During each WR LSL operation, the WR's displaced MSB of the MSP is discarded.

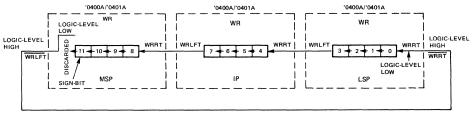


NOTE: WRRT, WRLFT, ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 9 - LEFT SHIFT LOGICAL - SINGLE PRECISION (LSL - SP)

4.1.3 (WR Plus ALUCIN) RSA → WR

The WR single-precision arithmetic right-shift operation, shown in Figure 10, displaces the entire contents of the WR one bit position to the right. The MSB of the MSP is designated as a sign-bit. As the entire contents of the WR is displaced to the right, the sign-bit does *not* change. Rather the sign-bit is duplicated to the right. The displaced LSB of the LSP exits the LSP via the bidirectional shift accommodation \overline{WRRT} .

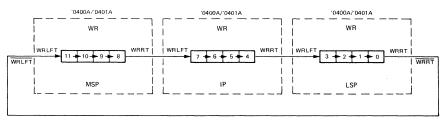


NOTE: WRRT, WRLFT, ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 10 - RIGHT SHIFT ARITHMETIC - SINGLE PRECISION (RSA - SP)

4.1.4 (WR Plus ALUCIN) LSA \rightarrow WR

The WR single-precision arithmetic left-shift operation, shown in Figure 11, is functionally identical to the WR single-precision logical left-shift operation. The WR's MSB of the MSP, although designated as a sign-bit, is discarded as the entire contents of the WR is displaced one bit position to the left. As each WR LSA operation is performed, the BMSB output (WR sign bit) may be compared to the MSB of the MSP's DOP (data displacing into WR sign bit) to detect an impending change in WR sign-bit polarity.

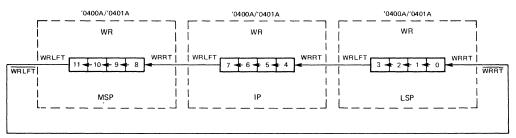


NOTE: WRRT, WRLFT, ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE

FIGURE 11 - LEFT SHIFT ARITHMETIC - SINGLE PRECISION (LSA - SP)

4.1.5 (WR Plus ALUCIN) RCIR → WR

The WR single-precision right-circulate operation, shown in Figure 12, displaces the entire contents of the WR one bit position to the right. The displaced LSB of the LSP replaces the displaced MSB of the MSP. The displaced LSB of the LSP exits the LSP via the bidirectional shift accommodation \overline{WRT} and enters the MSP via the bidirectional shift accommodation \overline{WRT} .



NOTE: WRRT, WRLFT, ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE

FIGURE 12 - RIGHT CIRCULATE - SINGLE PRECISION (RCIR - SP)

4.1.6 (WR Plus ALUCIN) LCIR \rightarrow WR

The WR single-precision left-circulate operation, shown in Figure 13, displaces the entire contents of the WR one bit position to the left. The displaced MSB of the MSP replaces the displaced LSB of the LSP. The displaced MSB of the MSP exits the MSP via the bidirectional shift accommodation \overline{WRLFT} and enters the LSP via its bidirectional shift accommodation \overline{WRTT} .

NOTE: WRRT, WRLFT, ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 13 - LEFT CIRCULATE - SINGLE PRECISION (LCIR - SP)

4.2 WR,XWR DOUBLE-PRECISION SHIFTS/CIRCULATES

WR,XWR double-precision shift/circulate operations are directed by the resident operation with expanded wordlength "end" conditions handled by the relative position controls. The double-precision shift/circulate operations may best be represented by the generalized symbol:

(WR plus ALUCIN, XWR) SHIFTED/CIRCULATED \rightarrow WR, XWR

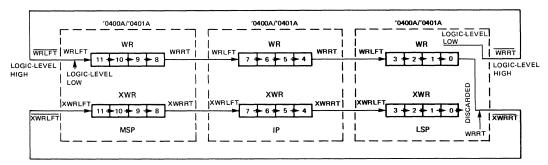
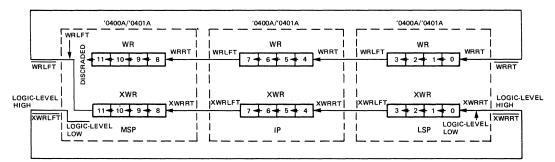

Within a single microcycle, each of eight possible WR,XWR double-precision shift/circulate operations is capable of 1) asynchronously summing the WR with the ALUCIN input, then 2) asynchronously double-precision shifting/ circulating the sum with the WR and XWR considered as one double-length register, and finally 3) synchronously storing the shifted/circulated result into the double-length register formed by WR in conjunction with the XWR. The eight WR,XWR double-precision shift/circulate possibilities, with data flow paths for expanded wordlengths, are listed in Table 18.

TABLE 18 WR, XWR DOUBLE-PRECISION SHIFTS/CIRCULATES

SHIFT/CIRCULATE OPERATION			OP- FORM (See 5.3)	OP-FIELD OP3 → OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
(WR plus ALUCIN, XWR) RSL → WR, XWR	RIGHT-SHIFT-LOGICAL (RSL)	Figure 14	Vle	HHLL	нн	HLH
(WR plus ALUCIN, XWR) LSL → WR, XWR	LEFT-SHIFT-LOGICAL (LSL)	Figure 15	Vlf	HHHL	нн	HLH
(WR plus ALUCIN, XWR) RSA → WR, XWR	RIGHT-SHIFT-ARITHMETIC (RSA)	Figure 16, 17	VIa	LHLL	нн	HLH
(WR plus ALUCIN, XWR) LSA → WR, XWR	LEFT-SHIFT-ARITHMETIC (LSA)	Figure 18, 19	VIc	LHHL	нн	HLH
(WR plus ALUCIN, XWR) RCIR → WR, XWR	RIGHT-CIRCULATE (RCIR)	Figure 20	VIb	LНLН	нн	HLH
(WR plus ALUCIN, XWR) LCIR → WR, XWR	LEFT-CIRCULATE (LCIR)	Figure 21	VI3	LННН	нн	HLH

4.2.1 (WR Plus ALUCIN, XWR) RSL → WR,XWR

The WR,XWR double-precision logical right-shift operation, shown in Figure 14, displaces the entire contents of the double-length register, formed by the WR in conjunction with the XWR, one bit position to the right. In an expanded wordlength system, the WR's displaced LSB of the LSP exits the LSP via the bidirectional shift accommodation XWRRT and enters the XWR's MSB of the MSP via the bidirectional shift accommodation XWRLFT. A logic-level low is automatically right-shifted into the WR's MSB of the MSP. This logic-level low, sourced by the LSP, exits the LSP via the bidirectional shift accommodation WRRT and enters the MSP via the bidirectional shift accommodation WRRT. During each WR,XWR RSL operation, the XWR's displaced LSB of the LSP is discarded.



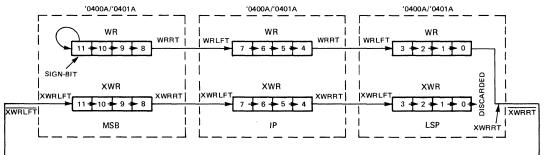
NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 14 - RIGHT SHIFT LOGICAL - DOUBLE PRECISION (RSL - DP)

4.2.2 (WR Plus ALUCIN, XWR) LSL \rightarrow WR, XWR

The WR,XWR double-precision logical left-shift operation, shown in Figure 15, displaces the entire contents of the double length register, formed by the WR in conjunction with the XWR, one bit position to the left. In an expanded wordlength system, the XWR's displaced MSB of the MSP exits the MSP via the bidirectional shift accommodation WRLFT and enters WR's LSB of the LSP via the bidirectional shift accommodation WRRT. A logic-level low is automatically left-shifted into the XWR's LSB of the LSP. This logic-level low, sourced by the MSP, exits the MSP via the bidirectional shift accommodation XWRLFT and enters the LSP via the bidirectional shift accommodation XWRTT. During each WR, XWR LSL operation, the WR's displaced MSB is discarded.

NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

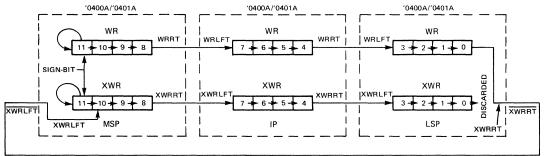

FIGURE 15 - LEFT SHIFT LOGICAL - DOUBLE PRECISION (LSL - DP)

4.2.3 (WR Plus ALUCIN, XWR) RSA → WR, XWR

The WR,XWR double-precision arithmetic right-shift operations, shown in Figures 16 and 17, displace the entire contents of the double-length register, formed by the WR in conjunction with the XWR, one bit position to the right. In an expanded wordlength system, the WR's displaced LSB of the LSP exits the LSP via the bidirectional shift accommodation XWRRT and enters either the XWR's MSB or MSB-minus-1 of the MSP (see 4.2.3.1 and 4.2.3.2). The polarity of the MSP's relative position control input POSO selects between single-signed and double-signed double-precision arithmetic right-shift operations.

4.2.3.1 Single-Signed Double-Precision RSA (MSP POSO=H)

For the single-signed WR,XWR double-precision right-shift operation, shown in Figure 16, the WR's MSB of the MSP only is designated as a sign-bit. As the entire contents of the WR,XWR is displaced one bit position to the right, the sign-bit does *not* change. Rather, the sign-bit is duplicated to the right. The WR's displaced LSB of the LSP exits the LSP via the bidirectional shift accommodation XWRRT and enters the XWR's MSB of the MSP via the bidirectional shift accommodation XWRLFT. The XWR's displaced LSB of the LSP is discarded.



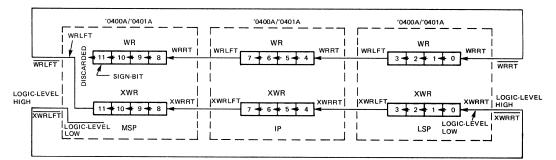
NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 16 – RIGHT SHIFT ARITHMETIC – SINGLE SIGN/DOUBLE PRECISION (RSA – SS/DP)

4.2.3.2 Double-Signed Double-Precision RSA (MSP POSO=L)

For the double-signed WR,XWR double-precision right-shift operation, shown in Figure 17, both the WR's and XWR's MSB of the MSP are designated as a sign-bit. As the entire contents of the WR,XWR is displaced one bit position to the right, the sign-bits do not change. Rather, the WR's sign-bit is duplicated to the right while the XWR's sign-bit is held stationary. The WR's displaced LSB of the LSP exits the LSP via the bidirectional shift accommodation XWRRT and enters the XWR's MSB-minus-1 of the MSP via the bidirectional shift accommodation XWRLFT. The XWR's displaced LSB of the LSP is discarded.

NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

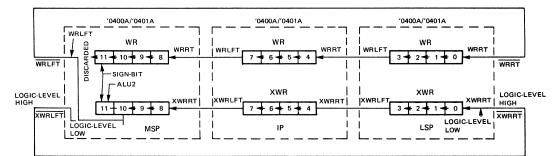

FIGURE 17 - RIGHT SHIFT ARITHMETIC - DOUBLE SIGN/DOUBLE PRECISION (RSA - DS/DP)

4.2.4 (WR Plus ALUCIN, XWR) LSA → WR, XWR

The WR,XWR double-precision arithmetic left-shift operations, shown in Figures 18 and 19, displace the entire contents of the double-length register, formed by the WR in conjunction with the XWR, one bit position to the left. In an expanded wordlength system, either the XWR's displaced MSB or MSB-minus-1 of the MSP exits the MSP via the bidirectional shift accommodation WRLFT and enters the WR's LSB of the LSP via the bidirectional shift accommodation WRLFT and enters the WR's loss of the LSP via the bidirectional shift accommodation and double-precision arithmetic left-shift operations.

4.2.4.1 Single-Signed Double-Precision LSA (MSP POSO=H)

The single-signed WR,XWR double-precision arithmetic left-shift operation, shown in Figure 18, is functionally identical to the WR,XWR double-precision logical left-shift operation. The WR's MSB of the MSP, although designated as a sign-bit, is discarded as the entire contents of the double-length WR,XWR register is displaced one bit position to the left. As each WR,XWR LSA operation is performed, the BMSB output (WR sign bit) may be compared to the MSB of the MSP's DOP (data displacing into WR sign bit) to detect an impending change in WR sign bit polarity.

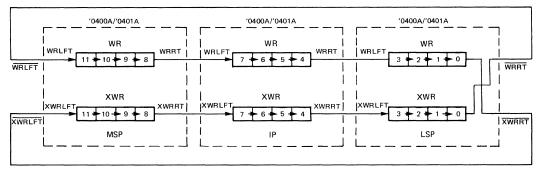


NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 18 – LEFT SHIFT ARITHMETIC – SINGLE SIGN/DOUBLE PRECISION (LSA – SS/DP)

4.2.4.2 Double-Signed Double-Precision LSA (MSP POSO=L)

The double-signed WR,XWR double-precision arithmetic left-shift operation shown in Figure 19 is, with one exception, functionally identical to the WR,XWR double-precision left-shift operation. The exception is, the XWR's sign-bit is automatically forced to the polarity of the MSP's ALU2 output. As each double-signed double-precision LSA operation is performed, the WR's sign-bit is discarded. Consequently the BMSB output (WR sign bit) may be compared to the MSP's DOP (ALU2 data displacing into WR sign bit) to detect an impending change in WR sign bit polarity.

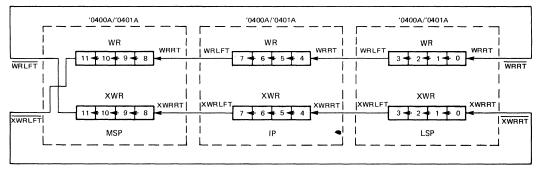


NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 19 - LEFT SHIFT ARITHMETIC - DOUBLE SIGN/DOUBLE PRECISION (LSA - DS/DP)

4.2.5 (WR Plus ALUCIN, XWR) RCIR → WR, XWR

The WR,XWR double-precision right-circulate operation, shown in Figure 20, displaces the entire contents of the double-length register, formed by the WR in conjunction with the XWR, one bit position to the right. In an expanded wordlength system, the WR's displaced LSB of the LSP exits the LSP via the bidirectional shift accommodation *WRRT and enters the XWR's MSB of the MSP via the bidirectional shift accommodation XWRLFT. The XWR's LSB of the LSP exits the LSP exits the LSP via the bidirectional shift accommodation with the SWR and enters the WR's MSB of the MSP via the bidirectional shift accommodation WRRT and enters the WR's MSB of the MSP via the bidirectional shift accommodation WRRT.



NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 20 - RIGHT CIRCULATE - DOUBLE PRECISION (RCIR - DP)

4.2.6 (WR Plus ALUCIN, XWR) LCIR → WR,XWR

The WR,XWR double-precision left-circulate operation, shown in Figure 21, displaces the entire contents of the double-length register, formed by the WR in conjunction with the XWR, one bit position to the left. In an expanded wordlength system, the WR's displaced MSB of the MSP exits the MSP via the bidirectional shift accommodation \overline{XWRLFT} and enters the XWR's LSB of the LSP via the bidirectional shift accommodation \overline{XWRLFT} and enters the MSP via the bidirectional shift accommodation \overline{WRLFT} and enters the WR's LSB of the LSP via the bidirectional shift accommodation \overline{WRLFT} and enters the WR's LSB of the LSP via the bidirectional shift accommodation \overline{WRLFT} and enters the WR's LSB of the LSP via the bidirectional shift accommodation \overline{WRLFT} and enters the WR's LSB of the LSP via the bidirectional shift accommodation \overline{WRTT} .

NOTE: WRRT, WRLFT, XWRRT, XWRLFT ARE HIGH-ACTIVE INTRA-PACKAGE AND LOW-ACTIVE (INVERSE POLARITY) INTER-PACKAGE.

FIGURE 21 - LEFT CIRCULATE - DOUBLE PRECISION (LCIR - DP)

4.3 COMPOUND-FUNCTION WR, XWR DOUBLE-PRECISION SHIFTS/CIRCULATES

Compound-function WR,XWR double-precision shift/circulate operations extend the processing power of the basic double-precision RSA and LCIR operations to boost systems-level efficiency in the assembly of iterative macro-instructions such as multiply and non-restoring divide. These compound-function shift/circulate operations, directed by the resident operation with expanded wordlength "end" conditions handled by the relative position controls, may best be represented by the generalized symbol:

(WR plus/minus A plus ALUCIN, XWR) RSA/LCIR \rightarrow WR,XWR where A is either the DIP or RF

Within a single microcycle, each of eight possible compound-function WR,XWR double-precision shift/circulate operations is capable of 1) asynchronously summing/subtracting either the RF or DIP with/from the WR, then 2) asynchronously adding the result to the ALUCIN input, then 3) asynchronously double-precision shifting/circulating (RSA/LCIR) the result with the WR and XWR considered as one double-length register, and finally 4) synchronously storing the shifted/circulated result into the double-length register formed by the WR in conjunction with the XWR. The eight compound-function WR,XWR double-precision shift/circulate possibilities, with data flow paths for expanded wordlengths, are listed in Table 19.

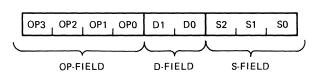
TABLE 19 COMPOUND-FUNCTION WR, XWR DOUBLE-PRECISION SHIFTS/CIRCULATES

SHIFT/CIRCULATE OPERATION	SHIFT/CIRCULATE FUNCTION	EXPANDED WORDLENGTH DATA FLOW PATHS	OP- FORM (See 5.3)	OP-FIELD OP3→OP0	D-FIELD D1 → D0	S-FIELD S2 → S0
(WR minus DIP minus 1 plus ALUCIN, XWR) LCIR → WR, XWR	LEFT-CIRCULATE (LCIR)	Figure 21	IVa	HLLL	нн	LHL
(WR minus RF(n) minus 1 plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	LEFT-CIRCULATE (LCIR)	Figure 21	IVc	HLLL	HL	LLL → HHH
(WR plus DIP plus ALUCIN, XWR) LCIR → WR, XWR	LEFT-CIRCULATE (LCIR)	Figure 21	ινь	HLLH	нн	LHL
(WR plus RF(n) plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	LEFT-CIRCULATE (LCIR)	Figure 21	IVd	HLLH	HL	LLL → HHH
(WR minus DIP minus 1 plus ALUCIN, XWR) RSA → WR, XWR	RIGHT-SHIFT-ARITHMETIC (RSA)	Figure 16	IVf	LLHL	нн	LHL
(WR minus RF(n) minus 1 plus ALUCIN, XWR) RSA → WR, XWR	RIGHT-SHIFT-ARITHMETIC (RSA)	Figure 16	IVh	LLHL	HL	LLL → HHH
(WR plus DIP plus ALUCIN, XWR) RSA → WR, XWR	RIGHT-SHIFT-ARITHMETIC (RSA)	Figure 16	IVg	нснн	нн	LHL
(WR plus $RF(n)$ plus ALUCIN, XWR) $RSA \rightarrow WR$, XWR	RIGHT-SHIFT-ARITHMETIC (RSA)	Figure 16	IVi	нснн	HL	$LLL \to HHH$

5. OPERATION SET (MICROINSTRUCTION SET)

The SBP0400A and SBP0401A are supplied with an identical set of 459 non-redundant standard factory-defined operations (microinstructions). The only difference between the SBP0400A and the SBP0401A is the presence and absence of the operation register (OR):

- a. The SBP0400A contains a 20-bit operation register. After the 9-bit operation code is applied (and setup), the positive-going clock transition causes the resident operation to be stored in the OR. See Figure 5 and microinstruction overlap, paragraph 5.1.
- b. The SBP0401A, without the OR, derives its resident operation from a steady-state 9-bit code applied at the operation select inputs. See Figure 5.

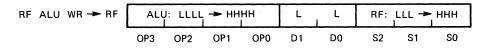

5.1 SBP0400A MICROINSTRUCTION OVERLAP

Within a single microcycle (1 clock period), any one of the '0400A's 459 unique operations may be both selected and executed. While the "present" microinstruction is directing the '0400A's functional blocks and data paths from the OR, the "next" microinstruction may be setup for entry into the OR. As the results of the "present" microinstruction are synchronously stored at their appointed destination, the "next" microinstruction simultaneously enters the OR where it becomes the "present" microinstruction. This technique of overlapping microinstruction setup with microinstruction (Figure 5) allows a string of successive microinstructions to be executed, one each, during successive microcycles.

5.2 OPERATION-SELECT WORD

Each of the 459 operations is selected by presenting 9-bits of encoded microinstruction data to the operation-select input lines which is then asynchronously decoded/translated by the PLA. In the SBP0400A this decoded/translated microinstruction enters the OR synchronous with the completion of the previous microinstruction (positive transition of the clock) to become the resident operation. In the SBP0401A this decoded/translated microinstruction is distributed directly from the 20 outputs of the PLA as the resident operation.

The 9-bit operation-select word is partitioned, as shown below, into three interacting fields: 1) the 2-bit D-field, 2) the 4-bit OP-field, and 3) the 3-bit S-field.


OPERATION-SELECT WORD

5.2.1 D-Field, Operation-Select Word

This 2-bit D-field (D1 \rightarrow D0) of the operation-select word governs the manner in which the OP-field and S-field are interpreted to specify the operations. Four D-field possibilities exist. They are: LL, LH, HL, and HH.

5.2.1.1 D-Field = LL

When the D-field is "LL", the RF and WR, as shown below, are designated as operand sources with the RF also designated as the operation-result destination.

The 3-bit S-field is interpreted to select 1 of 8 RF locations both as an operand source and an operation-result destination; the 4-bit OP-field is interpreted to select one of 16 ALU functions (micro-operations) as the operand combination/modification mechanism.

5.2.1.2D-Field = LH

When the D-field is "LH", the RF and WR, as shown below, are designated as operand sources with the WR also designated as the operation-result destination.

RF ALU WR> WR	ALU	: LLLL	-> HH	нн	L	Н	RF:	RF: LLL -> HI		
	OP3	OP2	OP1	OP0	D1	D0	S2	S1	S0	

The 3-bit S-field is interpreted to select 1 of 8 RF locations as an operand source; the 4-bit OP-field is interpreted to select one of 16 ALU functions (micro-operations) as the operand combination/modification mechanism.

5.2.1.3 D-Field = HL

When the D-field is "HL", the ALU functions (micro-operations) available for the combination/modification of operands are limited to 1) plus, 2) minus, or 3) unconditional ALU-bypass (no ALU function).

As shown in Table 20, the 3-bit S-field is primarily interpreted to select one of eight RF locations as an operand source and/or operation-result destination; the 4-bit OP-field is interpreted to select a limited ALU function in conjunction with an operand source and/or operand-result destination.

٦	٢A	B	LE	2	0
D-I	FI	ΕL	.D	=	HL

	OP3	OP2	OP1	OP0	D1	D0	S2	S1	S 0
$RF \to DOP$	L	L	L	L	н	L	RF: L	_LL →	ннн
$RF \to XWR$	L	L	L	н	н	L	RF: L	LL →	ннн
(WR minus RF minus 1 plus ALUCIN, XWR) RSA \rightarrow WR, XWR	L	L	н	L	н	L	RF: L	LL →	ннн
RF plus WR plus ALUCIN \rightarrow XWR	L	L	н	Н	н	L	RF: L	LL →	ннн
RF plus DIP plus ALUCIN \rightarrow WR	L	н	L	L	н	L	RF: L	LL →	ннн
RF plus DIP plus ALUCIN \rightarrow XWR	L	Н	L	Н	н	L	RF: L	LL →	ннн
DIP → WR	L	н	н	L	н	L	Don't X	Care X	x
RF plus DIP plus ALUCIN \rightarrow RF	L	н	н	Н	н	L	RF: L	LL →	ннн
(WR minus RF minus 1 plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	н	L	L	L	н	L	RF: L	LL →	ннн
(WR plus RF plus ALUCIN, XWR) LCIR → WR, XWR	н	L	L	H.	н	L	RF: L	LL →	ннн
(WR plus ALUCIN, XWR) RSA \rightarrow WR, XWR	н	L	н	L	н	L	Don't X	Care X	x
(WR plus RF plus ALUCIN) RSA → WR, XWR	н	L	н	н	н	L	RF: L	LL →	ннн
RF plus XWR plus ALUCIN \rightarrow WR	н	н	L	L	Н	L	RF: L	_LL →	ннн
RF plus XWR plus ALUCIN → XWR	н	н	L	н	н	L	RF: L	LL →	ннн
XWR plus ALUCIN \rightarrow RF	н	Н	н	L	н	L	RF: L	LL→	ннн
$DIP \to RF$	Н	н	Н	н	н	L	RF: L	LL →	ннн
	OP3	OP2	OP1	OP0	D1	D0	S 2	S1	S0

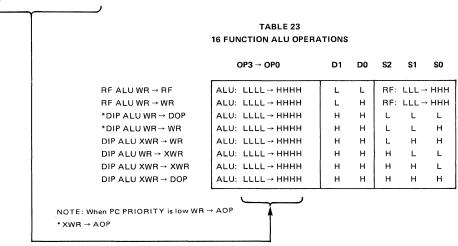
5.2.1.4 D-Field = HH

When the D-field is "HH", the RF is neither used as an operand source nor an operation-result destination. Rather, two S-field possibilities (LHL, HLH) are, as shown in Table 21, interpreted to extend the 4-bit OP-field to select one of 32 non-RF operations. The extended OP-field is interpreted to select a limited ALU function in conjunction with an operand source(s) and an operation-result destination.

TABLE 21 D-FIELD = HH

	OP3	OP2	OP1	OP0	D1	D0	S2	S1	S0
$DIP \to DOP$	L	L	L	L	н	н	L	н	L
$DIP \to XWR$	L	L	L	н	н	н	L	н	L
(WR minus DIP minus 1 plus ALUCIN, XWR) RSA → WR, XWR	L	L	н	L	н	н	L	н	L
DIP plus WR plus ALUCIN → XWR	L	L	н	н	н	н	L	н	L
$F_{1.6}$ plus ALUCIN \rightarrow DOP	L	н	L	L	н	н	L	н	L
DIP plus WR plus ALUCIN → DOP	L	н	L	н	н	н	L	н	L
$DIP \to WR$	L	н	н	L	н	н	L	н	L
DIP plus WR plus ALUCIN → DOP	L	н	н	н	н	н	L	н	L
(WR minus DIP minus 1 plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	н	L	L	L	н	н	L	н	L
(WR plus DIP plus ALUCIN, XWR) LCIR → WR, XWR	н	L	L	н	н	н	L	н	L
(WR plus ALUCIN, XWR) RSA → WR, XWR	н	L	н	L	н	н	L	н	L
(WR plus DIP plus ALUCIN, XWR) RSA \rightarrow WR, XWR	н	L	н	н	н	н	L	н	L
DIP plus XWR plus ALUCIN \rightarrow WR	н	н	L	L	н	н	L	н	L
DIP plus XWR plus ALUCIN \rightarrow XWR	н	н	L	н	н	н	L	н	L
XWR plus ALUCIN → DOP	н	н	н	L	н	н	L	н	L
$DIP \to DOP$	н	н	н	н	н	н	L	н	L
	OP3	OP2	OP1	OP0	D1	D0	S2	S1	S0
(WR plus ALUCIN) RSA → WR	L	L	L	L	н	н	н	L	н
(WR plus ALUCIN) RCIR → WR	L	L	L	н	н	н	н	L	н
(WR plus ALUCIN) LSA \rightarrow WR	L	L	н	L	н	н	н	L	н [
(WR plus ALUCIN) LCIR → WR	L	L	н	н	н	н	н	L	н
(WR plus ALUCIN, XWR) RSA → WR, XWR	L	н	L	L	н	н	н	L	н
(WR plus ALUCIN, XWR) RCIR → WR, XWR	L	н	L	н	н	н	н	L	н
(WR plus ALUCIN, XWR) LSA \rightarrow WR, XWR	L	н	н	L	н	н	н	L	н
(WR plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	L	н	н	н	н	н	н	L	н
(WR plus ALUCIN)RSL \rightarrow WR	н	L	L	L	н	н	н	L	н
(WR plus ALUCIN) RCIR $ ightarrow$ WR	н	L	L	н	н	н	н	L	н
(WR plus ALUCIN) LSL → WR	н	L	н	L	н	н	н	L	н
(WR plus ALUCIN) LCIR → WR	н	L	н	н	н	н	н	L	н
(WR plus ALUCIN, XWR) RSL → WR, XWR	н	н	L	L	н	н	н	L	н
(WR plus ALUCIN, XWR) RCIR \rightarrow WR, XWR	н	н	L	н	н	н	н	L	н
(WR plus ALUCIN, XWR) LSL → WR, XWR	н	н	н	L	н	н	н	L	н
(WR plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	н	н	н	H	н	н	н	L	н
	OP3	OP2	OP1	OP0	D1	D0	S2	S 1	S0

5.2.2 OP-Field, Operation-Select Word


The 4-bit OP-field (OP3 \rightarrow OP0) of the operation-select word interacts with the D-field and S-field to specify an ALU function as the operand combination/modification mechanism for operations (microinstructions).

5.2.2.1 OP-Field ALU Function (Micro-Operation) Selection

The most consistent utilization of the OP-field is realized when specifying one of 16 ALU functions, listed in Table 22, as the operand combination/modification mechanism for those particular operations listed in Table 23. For those

	А	LU		ACTIVE-HIGH DATA				
1	OP-F	IELD		ALUCIN = H	ALUCIN = L			
OP3	OP2	OP1	OP0	(WITH CARRY)	(NO CARRY)			
L	L	L	L	Fn = L	Fn ≃ H			
L	L	L	н	Fn = B minus A	Fn = B minus A minus 1			
L	L	н	L	Fn = A minus B	Fn = A minus B minus 1			
L	L	н	н	Fn = A plus B plus 1	Fn = A plus B			
L	н	L	L	Fn = B plus 1	Fn≃B			
L	н	L	н	Fn = B plus 1	$Fn = \overline{B}$			
L	н	н	L	Fn ≈ A plus 1	Fn = A			
L	н	н	н	Fn = A plus 1	$Fn = \overline{A}$			
н	L	L	L	Fn = 4	\nBn			
н	L	L	н	Fn = 4	An 🕀 Bn			
н	L	н	L	Fn = 7	An 🕀 Bn			
н	L	н	н	Fn = Ā	ĀnBn			
н	н	L	L	Fn = <i>F</i>	AnBn			
н	н	L	н	Fn = An + Bn				
н	н	н	L	Fn = Ā	Ān + Bn			
н	н	н	н	Fn = 4	An + Bn			

TABLE 22 ALU FUNCTION (MICRO-OPERATION SELECT)

operations, the D-field interacts with the S-field to specify two operand sources in combination with an operation-result destination. Either the DIP or RF is available as an operand source to the "A" input port of the ALU; either the DIP, WR or XWR is available as an operand source to the "B" input port of the ALU. Ultimate destinations for ALU output results include either the DOP, RF, WR or XWR.

An ALU function from Table 22 may be selected as the operand combination/modification mechanism for each operation in Table 23 by simply choosing the appropriate OP-field code. For example, a D-field code of "HH" interacts with an S-field code of "LLH" to specify the operation DIP ALU WR \rightarrow WR. If the WR is to be subtracted from the DIP, an OP-field code of "LLHL" ($F_n = A$ minus B, ALUCIN = H) must be selected from Table 22 along with an ALUCIN = H forced into the LSP. The resulting operation-select word will then specify the operation DIP minus WR \rightarrow DOP.

OP	D	S
LLHL	нн	LLL

An OP-field choice of "LLLH" would automatically interchange the operands and specify the operation WR minus $DIP \rightarrow DOP$. In fact, any of eight arithmetic or eight Boolean ALU functions may be selected from Table 22 and impressed upon any operation in Table 23.

Although the ALU generally accepts two operand sources simultaneously as inputs, certain ALU functions may be selected from Table 22 which only consider one operand source. These ALU functions, when impressed upon the operations of Table 23, specify the register transfer operations of Table 24. These register transfer operations allow: 1) unconditioned transfers, $X \rightarrow Y$ with the LSP's ALUCIN = L, 2) incrementing transfers, X plus $1 \rightarrow Y$ with the LSP's ALUCIN = H, 3) one's-complement transfers, $\overline{X} \rightarrow Y$ with the LSP's ALUCIN = L, and 4) two's-complement transfers, \overline{X} plus $1 \rightarrow Y$ with the LSP's ALUCIN = H.

	OP3	OP2	OP1	OPO	D1	D0	S2 S1 S0
WR plus ALUCIN 🕂 RF	L	н	L	Ļ	L	L	RF: LLL → HHH
RF plus ALUCIN \rightarrow WR	L	н	н	L	L	н	RF: LLL → HHH
WR plus ALUCIN → XWR	L	н	L	L	н	н	ньь
XWR plus ALUCIN \rightarrow WR	L	н	L	L	н	н	ГНН
DIP plus ALUCIN \rightarrow WR	L	н	н	L	н	н	ГНН
DIP plus ALUCIN \rightarrow XWR	L	н	н	L	н	н	ньь
DIP plus ALUCIN \rightarrow DOP	L	н	н	L	н	н	ннн
XWR plus ALUCIN \rightarrow DOP	L	н	L	L	н	н	ннн
*DIP plus ALUCIN → DOP	L	н	н	L	н	н	L L L
*WR plus ALUCIN \rightarrow DOP	L	н	L	L	н	н	LLL
DIP plus ALUCIN \rightarrow WR	L	н	н	L	н	н	ГГН
	OP3	OP2	OP1	OP0	D1	D0	S2 S1 S0
\overline{WR} plus ALUCIN $\rightarrow RF$	L	н	L	н	L	L	RF: LLL → HHH
RF plus ALUCIN → WR	L	н	н	н	L	н	RF: LLL → HHH
\overline{WR} plus ALUCIN $\rightarrow XWR$	L	н	L	н	н	н	нсь
\overline{XWR} plus ALUCIN $\rightarrow WR$	L	н	L	н	н	н	ГНН
$\overline{\text{DIP}}$ plus ALUCIN \rightarrow WR	L	н	н	н	н	н	СНН
$\overline{\text{DIP}}$ plus ALUCIN \rightarrow XWR	L	н	н	н	н	н	ніі
$\overline{\text{DIP}}$ plus ALUCIN \rightarrow DOP	L	н	н	н	н	н	ннн
\overline{XWR} plus ALUCIN \rightarrow DOP	L	н	L	н	н	н	ннн
* DIP plus ALUCIN → DOP	L	н	н	н	н	н	LLL
*₩R plus ALUCIN → DOP	L	н	L	н	н	н	LLL
*DIP plus ALUCIN → WR	L	н	н	н	н	н	ГГН
	OP3	OP2	OP1	OPO	D1	D0	S2 S1 S0
* XWB \rightarrow AOP, otherwise WB \rightarrow A	OP. PC PRIC	BITY ove	rrides.				

TABLE 24 REGISTER TRANSFER OPERATIONS

* XWR \rightarrow AOP, otherwise WR \rightarrow AOP. PC PRIORITY overrides.

Certain ALU functions may be selected from Table 22 to facilitate register "clear" (all logic-level LOWs) and register "preset" (all logic-level HIGHs) operations. These ALU functions, when impressed upon the operations of Table 23, specify the register "clear" and "preset" operations of Table 25.

	OP3	OP2	OP1	OP0	D1	D0	S2 S1 S0
$LOW \rightarrow RF$, ALUCIN = HIGH	L	L	L	L	L	L	RF: LLL→ HHH
$LOW \rightarrow WR$, ALUCIN = HIGH	L	L	L	L	н	н	LНН
*LOW → WR, ALUCIN = HIGH	L	L	L	L	н	н	LLH
LOW \rightarrow XWR, ALUCIN = HIGH	L	L	L	L	н	н	ннс
LOW \rightarrow DOP, ALUCIN = HIGH	L	L	L	L	н	н	ннн
*LOW \rightarrow DOP, ALUCIN = HIGH	L	L	L	L	н	н	L L L
	OP3	OP2	OP1	OP0	D1	D0	S2 S1 S0
$HIGH \rightarrow RF$, ALUCIN = LOW	L	L	L	L	L	L	RF: LLL→ HHH
HIGH \rightarrow WR, ALUCIN = LOW	L	L	L	L	н	н	ГНН
*HIGH → WR, ALUCIN = LOW	L	L	L	L	н	н	LLH
$HIGH \rightarrow XWR$, ALUCIN = LOW	L	L	L	L	н	н	ннг
HIGH \rightarrow DOP, ALUCIN = LOW	L	L	L	L	н	н	ннн
*HIGH \rightarrow DOP, ALUCIN = LOW	L	L	L	L	н	н	LLL
	OP3	OP2	OP1	OP0	D1	D0	S2 S1 S0

TABLE 25 REGISTER CLEAR AND PRESET OPERATIONS

* XWR \rightarrow AOP, otherwise WR \rightarrow AOP. PC PRIORITY = HIGH overrides

5.2.2.2 OP-Field Operand-Source/ALU Function/Operation-Result-Destination Selection

The 4-bit OP-field also interacts with the D-field and S-field to specify the operations of Tables 22 and 23. For these operations, the ALU functions available for operand combination/modification are limited to: 1) plus, 2) minus, and 3) unconditioned ALU-bypass (no ALU functions).
TABLE 26

5.2.3 S-Field, Operation-Select Word

The 3-bit S-field $(S2 \rightarrow S0)$ of the operation-select word either: 1) specifies one of eight RF locations, shown in Table 26, as an operand source and/or operation-result destination, or 2) extends the 4-bit OP-field to select one of 32 non-RF operations as listed in Table 23.

5.3 INDEX TO MICROINSTRUCTIONS BY OPERATION FORM

The operation (microinstruction) set may be sectioned into six operation-forms as described in Tables 27 through 32. Each operation-form may, in turn, be

RF LOCATION	S2	S1	S0
RFO	L	L	L
RF1	Γ. L	L	н
RF2	L	н	L
RF3	L	н	н
RF4	н	L	L
RF5	н	L	н
RF6	н	н	L
RF7 (PC)	н	н	н

RF SELECTION

NOTE: D-FIELD is LL, LH, or HL

subsequently sectioned into a group of operation-types. In general, for each operation type, the WR is automatically selected by the OR to source the AOP via the ADR MUX. The exception to this statement is realized in operation-form I, operation-types a and b where the XWR is automatically selected by the OR to source the AOP via the ADR MUX. Of course, when the PC PRIORITY input is taken to a logic-level high, OR selection of the ADR MUX is overridden. In this situation, the PC is prioritized to source the AOP via the ADR MUX.

In general, the execution results of most operations may be monitored at the DOP whether the result destination is the RF, WR, XWR or DOP itself. The only exceptions are realized when the DOB is not involved in operation execution. These exceptions include the DIP \rightarrow WR transfer of operation-form III operation-type d, and the XWR portion of the double-precision shift/circulates involved throughout operation-forms IV and VI.

5.3.1 Operation - Form I

Operation form I may be utilized to perform one of 16 ALU functions, selected by the Operation-Select Word OP-field, on two of four operand sources, (RF, WR, XWR, DIP). The result is transferred to one of four operation-result destinations (RF, WR, XWR, DOP).

TABLE 27 OPERATION FORM I

I	OPERATION TYPE	OP3	\rightarrow	OP0	D1	D0	S2	S1	S0
a.	RF ALU WR → RF	ALU:	LLLL →	ннн	L	L	RF:	LLL -	→ ННН
b.	RF ALU WR → WR	ALU:	LLLL -	ннн	L	н	RF:	LLL -	→ ННН
c.	*DIP ALU WR → DOP	ALU:	LLLL →	ннн	н	н	L	L	L
d.	*DIP ALU WR → WR	ALU:	LLLL →	ннн	н	н	L	L	н
e.	DIP ALU XWR → WR	ALU:	$LLLL \rightarrow$	ннн	н	н	L	н	н
f.	DIP ALU WR → XWR	ALU:	LLLL →	ннн	н	н	н	L	L
g.	DIP ALU XWR → XWR	ALU:	LLLL ->	ннн	н	н	н	н	L
h.	DIP ALU XWR \rightarrow DOP	ALU:	LLLL →	ннн	н	н	н	н	н

* XWR \rightarrow AOP, otherwise WR \rightarrow AOP. PC PRIORITY = HIGH overrides

5.3.2 Operation -- Form II

Operation form II may be utilized to arithmetically sum one or two operand sources (RF, WR, XWR, DIP) and a ripple-carry-in (ALUCIN). The operationresult is transferred to one of four destinations (RF. WR, XWR, DOP).

TABLE	28
OPERATION	FORM II

п	OPERATION TYPE	OP3 → OP0	D1	D0	S2	S1	S0
a.	RF plus WR plus ALUCIN → XWR	ггнн	н	L	RF:	LLL -	ннн
b.	RF plus DIP plus ALUCIN → WR	LHLL	н	L	RF:	LLL -	ннн
с.	RF plus DIP plus ALUCIN → XWR	LHLH	н	L	RF:	LLL -	ннн
d.	RF plus DIP plus ALUCIN \rightarrow RF	гннн	н	L	RF:	LLL -	ннн
е.	RF plus XWR plus ALUCIN → WR	ннгг	н	Ł	RF:	LLL -	ннн
f.	RF plus XWR plus ALUCIN → XWR	ннсн	н	L	RF:	LLL -	ннн
g.	XWR plus ALUCIN → RF	нннг	н	L	RF:	LLL -	ннн
h.	DIP plus WR plus ALUCIN \rightarrow XWR	LLНН	н	н	L	н	L
i.	DIP plus WR plus ALUCIN \rightarrow DOP	LННН	н	н	L	н	L
j.	DIP plus XWR plus ALUCIN → WR	ннсс	н	н	L	н	L
k.	DIP plus XWR plus ALUCIN → XWR	ннсн	н	н	L	н	L
1.	XWR plus ALUCIN \rightarrow DOP	нннг	н	н	L	н	L

NOTE: When PC PRIORITY is LOW, WR → AOP

5.3.3 Operation - Form III

Operation form III may be utilized to transfer one or two operand sources (RF, DIP) to one of four destinations (RF, WR, XWR, DOP).

ш	OPERATION TYPE	OP3 → OP0	D1	DO	S2	S1	SO
a.	DIP → RF	нннн	н	L	RF:	LLL -	→ ннн
b.	$RF \rightarrow DOP$	LLLL	н	L	RF:	LLL -	≁ннн
с.	RF → XWR	LLLH	н	L	RF:	LLL -	→ннн
d.	DIP → WR	гннг	н	L	х	х	х
u.		гннг	н	н	L	н	L
e.	$DIP \to XWR$	LLLH	н	н	L	н	L
f.	DIP → DOP	нннн	н	н	L	н	L
'.		LLLL	н	н	L	н	L

TABLE 29 **OPERATION FORM III**

NOTE: When PC PRIORITY is LOW, WR → AOP

5.3.4 Operation - Form IV

Operation form IV may be utilized to either:

- arithmetically sum the WR and the ripple carry-in (ALUCIN) with one of two operand sources (RF, DIP), arithmetically double-precision shift the result to the right, and transfer the shifted result to the WR and XWR;
- arithmetically sum the WR and the ripple carry-in (ALUCIN) with one of two operand sources (RF, DIP), double-precision circulate the result to the left, and transfer the circulated result to the WR and XWR;
- arithmetically subtract one of two operand sources (RF, DIP) and -1 from the WR, arithmetically add the ripple carry-in (ALUCIN), double-precision circulate the result to the left, and transfer the circulated result to the WR and XWR;
- arithmetically subtract one of two operand sources (RF, DIP) and -1 from the WR, arithmetically add the ripple carry-in (ALUCIN), arithmetically double-precision shift the result to the right and transfer the shifted result to the WR and XWR.

IV	OPERATION TYPE	OP3	-	,	OP0	D1	D0	S2	S1	S0
a.	(WR minus DIP minus 1 plus ALUCIN, XWR) LCIR → WR, XWR	н	L	L	L	н	н	L	н	L
b.	(WR plus DIP plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	н	L	L	н	н	н	L	н	L
с.	(WR minus RF minus 1 plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	н	L	L	L	н	L	RF:	LLL -	+ ннн
d.	(WR plus RF plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	н	L	L	н	н	L	RF:	LLL -	→ ННН
		н	L	н	L	н	L	х	х	х
e.	(WR plus ALALUCIN, XWR) RSA → XWR	н	L	н	L	н	н	L	н	L
f.	(WR minus DIP minus 1 plus ALUCIN, XWR) RSA \rightarrow WR, XWR	L	L	н	L	н	н	L	н	L
g.	(WR plus DIP plus ALUCIN, XWR) RSA → WR, XWR	н	L	н	н	н	н	L	н	L
h.	(WR minus RF minus 1 plus ALUCIN, XWR) RSA → WR, XWR	L	L	н	L	н	L	RF:	LLL -	→ ннн
i.	(WR plus RF plus ALUCIN, XWR) RSA → WR, XWR	н	L	н	н	н	L	RF:	LLL -	+ ннн

TABLE 30 OPERATION FORM IV

NOTE: When PC PRIORITY is LOW, WR \rightarrow AOP

5.3.5 Operation - Form V

Operation form V may be utilized to perform singleprecision shifts on the contents of the WR, placing the result in the WR. The WR may be logically shifted left or right (LSL, RSL), arithmetically shifted left or right (LSA, RSA), or circulated left or right (LCIR, RCIR).

As the WR is passed through the ALU during form V and VI, the ALUCIN is active and should be held at a low logic level for true shifts.

TABLE	31	
OPERATION	FORM	v

Σ	OPERATION TYPE	OP3 → OP0	D1	D0	S2	S1	SO
a.	(WR plus ALUCIN) RSA → WR	LLLL	н	н	н	L	н
	b. (WR plus ALUCIN) RCIR → WR	LLLH	н	н	н	L	н
D.		нссн	н	н	н	L	н
c.	(WR plus ALUCIN) LSA → WR	LLHL	н	н	н	L	н
d.	(WR plus ALUCIN) LCIR → WR	LLHH	н	н	н	L	н
u.	(WR plus ALOCIN) LCIR \rightarrow WR	нснн	н	н	н	L	н
e.	(WR plus ALUCIN) RSL → WR	ньсь	н	н	н	L	н
f.	(WR plus ALUCIN) LSL → WR	нгнг	н	н	н	L	н

NOTE: When PC PRIORITY is LOW, WR → AOP

5.3.6 Operation - Form VI

Operation form VI may be utilized to perform doubleprecision shifts on the contents of WR in conjunction with XWR. The WR in conjunction with the XWR may be:

- logically shifted left or right (LSL, RSL);
- arithmetically shifted left or right (LSA, RSA) single- or doublesigned;
- circulated left or right (LCIR, RCIR).

TABLE 32	
OPERATION FORM	v

V	OPERATION TYPE	OP3 → OP0	D1	D0	R2	R1	R0
a.	(WR plus ALUCIN, XWR) RSA → (WR, XWR)	ГНГГ	н	н	н	L	н
b.	(WR plus ALUCIN, XWR) RCIR →	гнгн	н	н	н	L	н
	(WR, XWR)	ннсн	н	н	н	L	н
c.	(WR plus ALUCIN, XWR) LSA → (WR, XWR)	LННL	н	н	н	L	н
d.	(WR plus ALUCIN, XWR) LCIR →	гннн	н	н	н	L	н
	(WR, XWR)	нннн	н	н	н	L	н
e.	(WR plus ALUCIN, XWR) RSL → (WR, XWR)	ннсс	н	н	н	L	н
f.	(WR plus ALUCIN, XWR) LSL → (WR, XWR)	нннг	н	н	н	L	н

NOTE: When PC PRIORITY is LOW, WR → DOP

5.4 INDEX TO MICROINSTRUCTIONS BY SOURCE OPERANDS

When the source operand is known, tables 33 through 36 can be used to obtain the form/type and microcode of the possible operations for that source operand.

OPERATION	OP FORM/TYPE	OP3 → OP0 OP FIELD	D1 D0 D-FIELD	S2 → S0 S-FIELD
DIP → DOP	1114	нннн	НН	LHL
DIP → DOP	111f	LLLL	нн	LHL
DIP → RF	Illa	нннн	HL	LLL →HHH
DIP → WR	IIId	LHHL	HL	xxx
DIP → WR	IIId	LHHL	НН	LHL
DIP → XWR	llle	LLLH	нн	LHL
*DIP ALU WR → DOP	lc	LLLL → HHHH	нн	LLL
*DIP ALU WR → WR	ld	$LLLL \rightarrow HHHH$	нн	LLH
DIP ALU WR → XWR	lf	LLLL → HHHH	нн	HLL
DIP ALU XWR → DOP	lh	LLLL → HHHH	нн	ннн
DIP ALU XWR → WR	le	LLLL → HHHH	нн	LHH
DIP ALU XWR → XWR	lg	LLLL → HHHH	нн	HHL
(DIP plus WR plus ALUCIN) LCIR → WR, XWR	IVb	HLLH	нн	LHL
(DIP plus WR plus ALUCIN) RSA → WR, XWR	IVq	HLHH	нн	LHL
DIP plus RF plus ALUCIN → RF	lid	ЦННН	HL	LLL → HHH
DIP plus RF plus ALUCIN → WR	lib	LHLL	HL	LLL → HHH
DIP plus RF plus ALUCIN → XWR	lic	LHLH	HL	LLL → HHH
DIP plus WR plus ALUCIN → DOP	lli,llh	LHHH	нн	LHL
DIP plus WR plus ALUCIN → XWR	llh	LLHH	нн	LHL
DIP plus XWR plus ALUCIN → WR	Hj	HHLL	нн	LHL
DIP plus XWR plus ALUCIN → XWR	lik	HHLH	нн	LHL

TABLE 33 DIP SOURCE OPERANDS

* XWR \rightarrow AOP, otherwise WR \rightarrow AOP. PC PRIORITY = HIGH overrides.

OPERATION	OP FORM/TYPE	OP3 → OP0 OP FIELD	D1 D0 D-FIELD	S2 → S0 S-FIELD
$RF \rightarrow DOP$	IIIb	LLLL	HL	$LLL \rightarrow HHH$
$RF \rightarrow XWR$	IIIc	LLLH	HL	LLL → HHH
RF ALU WR → RF	la	LLLL → HHHH	LL	LLL → HHH
RFALUWR → WR	lb	LLLL → HHHH	LH	LLL → HHH
RF plus DIP plus ALUCIN \rightarrow RF	lld	LННН	HL	LLL → HHH
RF plus DIP plus ALUCIN → WR	Пр	LHLL	HL	LLL → HHH
RF plus DIP plus ALUCIN → XWR	llc	LHLH	HL	LLL → HHH
(RF plus WR plus ALUCIN, XWR) LCIR → WR, XWR	IVd	HLLH	HL	LLL → HHH
(RF plus WR plus ALUCIN, XWR) RSA → WR, XWR	IVi	нінн	HL	$LLL \rightarrow HHH$
RF plus WR plus ALUCIN → XWR	lla	LLHH	HL	LLL → HHH
RF plus XWR plus ALUCIN → WR	lle	HHLL	HL	$LLL \rightarrow HHH$
RF plus XWR plus ALUCIN → XWR	llf	ннін	HL	$LLL \rightarrow HHH$

TABLE 34 RF SOURCE OPERANDS

NOTE: When PC PRLORITY is LOW, WR \rightarrow AOP.

TABLE 35 XWR SOURCE OPERANDS

OPERATION	OP FORM/TYPE	OP3 → OP0 OP FIELD	D1 D0 D-FIELD	S2 → S0 S-FIELD
XWR ALU DIP → DOP				
	lh	LLLL → HHHH	нн	ннн
XWR ALU DIP → WR	le	LLLL → HHHH	нн	LHH
XWR ALU DIP → XWR	lg	LLLL → HHHH	нн	HHL
XWR plus ALUCIN → DOP	111	HHHL	нн	LHL
XWR plus ALUCIN → RF	llj	HHHL	HL	$LLL \rightarrow HHH$
XWR plus DIP plus ALUCIN → WR	llk	HHLL	нн	LHL
XWR plus DIP plus ALUCIN → XWR	lle	HHLH	нн	LHL
XWR plus RF plus ALUCIN → WR	11f	HHLL	HL	LLL → HHH
XWR plus RF plus ALUCIN → XWR		ннгн	HL	LLL → HHH

NOTE: When PC PRIORITY is LOW, WR -> AOP.

OPERATION	OP FORM/TYPE	OP3 → OP0 OP-FIELD	D1 D0 D-FIELD	S2 → S0 S-FIELD
*WR ALU DIP \rightarrow DOP	lc	LLLL → HHHH	нн	LLL
*WR ALU DIP → WR	ld	LLLL → HHHH	нн	LLH
WR ALU DIP \rightarrow XWR	If	LLLL → HHHH	нн	HLL
WR ALU RF → RF	la	LLLL → HHHH	LL	LLL → HHH
WR ALU RF → WR	lb	$LLLL\toHHHH$	LH	$LLL \rightarrow HHH$
(WR minus BIP minus 1 plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	IVa	HLLL	нн	LHL
(WR minus DIP minus 1 plus ALUCIN, XWR) RSA \rightarrow WR, XWR	IVf	LLHL	нн	LHL
(WR minus RF minus 1 plus ALUCIN, XWR) LCIR \rightarrow WR, XWR	IVc	HLLL	HL	$LLL \rightarrow HHH$
(WR minus RF minus 1 plus ALUCIN, XWR) RSA → WR, XWR	IVh	LLHL	HL	$LLL \rightarrow HHH$
(WR plus ALUCIN) RSA \rightarrow WR, XWR	IVe	HLHL	HL	xxx
(WR plus ALUCIN) RSA → WR, XWR	IVe	HLHL	нн	LHL
(WR plus ALUCIN) LCIR → WR	Vd	LLHH	нн	HLH
(WR plus ALUCIN) LCIR → WR	Vd	HLHH	нн	HLH
(WR plus ALUCIN) LSA → WR	Vc	LLHL	нн	HLH
(WR plus ALUCIN) LSL → WR	Vf	HLHL	нн	HLH
(WR plus ALUCIN) RCIR → WR	Vb	LLLH	нн	HLH
(WR plus ALUCIN) RCIR \rightarrow WR	Vb	HLLH	нн	HLH
(WR plus ALUCIN) RSA → WR	Va	LLLL	нн	HLH
(WR plus ALUCIN) RSL → WR	Ve	HLLL	нн	HLH
(WR plus ALUCIN, XWR) LCIR → (WR, XWR)	VId	нннн	нн	HLH
(WR plus ALUCIN, XWR) LCIR → (WR, XWR)	VId	LHHH	нн	HLH
(WR plus ALUCIN, XWR) LSA → (WR,XWR)	VIc	LHHL	нн	HLH
(WR plus ALUCIN, XWR) LSL \rightarrow (WR, XWR)	VIf	нннг	нн	HLH
(WR plus ALUCIN, XWR) RCIR → (WR, XWR)	VIb	HHLH	нн	HLH
(WR plus ALUCIN, XWR) RCIR → (WR, XWR)	VIb	LHLH	нн	нгн
(WR plus ALUCIN, XWR) RSA → (WR, XWR)	VIa	LHLL	нн	HLH
(WR plus ALUCIN, XWR) RSL → (WR,XWR)	Vle	HHLL	нн	HLH
WR plus DIP plus ALUCIN → DOP	Hi	LННН	нн	LHL
WR plus DIP plus ALUCIN → XWR	Ilh	LLHH	нн	LHL
(WR plus DIP plus ALUCIN) LCIR → WR, XWR	IVb	HLLH	нн	LHL
(WR plus DIP plus ALUCIN) RSA → WR, XWR	IVc	нінн	нн	LHL
WR plus RF plus ALUCIN → XWR	lla	LLHH	HL	LLL HHH
(WR plus RF plus ALUCIN) LCIR → WR, XWR	IVd	HLLH	HL	LLL HHH
(WR plus RF plus ALUCIN) RSA → WR, XWR	IVi	нінн	HL	LLL HHH

TABLE 36 WR SOURCE OPERANDS

* XWR \rightarrow AOP, otherwise WR \rightarrow AOP. PC PRIORITY = HIGH overrides.

6. INTERFACING

The input/output (I/O) accommodations of these processor elements have been designed for TTL and/or MOS compatibility. Direct interfacing, supportable by the entire families of catalog devices, is shown in Figure 22. Typical data/address flow and microcontrol are illustrated for an expanded wordlength system.

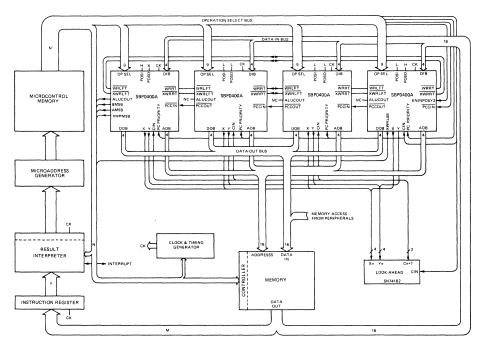


FIGURE 22 - TYPICAL 16-BIT MACHINE

6.1 INPUT CIRCUIT

The input circuit used on the '0400A/'0401A is basically an RTL configuration which has been modified for TTL/MOS compatibility as shown in Figure 23A. An input-clamping diode is incorporated to limit negative excursions (ringing) when the '0400A/'0401A is on the receiving end of a transmission line; an input switching threshold of nominally +1.5 volts has been specified for improved noise immunity. This threshold is achieved via two 10K ohm resistors which function as a voltage divider to increase the one VBE threshold of the I^2L input transistor to +1.5 volts. Since this input circuit is independent of injector current, input threshold compatibility is maintained over the entire speed X power performance spectrum.

The input circuit characteristics for input current versus input voltage are shown in Figure 24. The 10K and 20K ohm load lines and threshold knee at +1.5 volts provide a high-impedance characteristic to reduce input loading and improve the low-logic level input noise immunity over some standard TTL inputs. Full compatibility is maintained with virtually all 5 volt logic families even when the '0400A/'0401A is powered down (injector current reduced).

FIGURE 23 - SCHEMATICS OF EQUIVALENT INPUTS, OUTPUTS, INPUTS/OUTPUTS

6.1.1 Sourcing Inputs

The inputs may be sourced directly by most 5 volt logic families. Five volt functions which feature internal pull-up resistors at their outputs require no external interface components; five volt functions which feature open-collector outputs generally require external pull-up resistors which may be specified as shown in Table 37.

6.1.2 Terminating Unused Inputs

Inputs which are selected to be hardwired to a logic-level low may be connected directly to ground. Inputs which are selected to be hardwired to a logic-level high must be tied, via a current limiting (pull-up) resistor, to a logic-level-high low-impedance voltage source such as V_{CC} . A single transient protecting resistor, specified as shown in Table 38, may be utilized common to (N) inputs.

The output circuit selected for the '0400A/ '0401A is an injected open-collector transistor

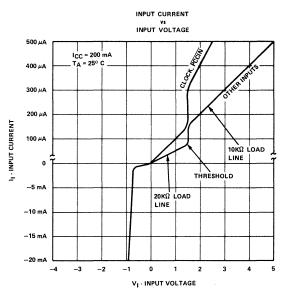


FIGURE 24 - TYPICAL INPUT CHARACTERISTICS

shown in Figure 23B. Since this transistor is injected, output sourcing capability is directly related to injector current. In other words, the number of loads which may be sourced by an '0400A/'0401A output is directly reduced as injector current is reduced.

The output circuit characteristic for logic-level low output voltage (VOL) versus logic-level low output current (IOL) is shown in Figure 25. At rated injector current; the '0400A/'0401A output circuit offers a low-level output voltage of typically 65mV.

TABLE 37 SOURCING SBP0400 INPUTS

	CLOCK OR PCCIN	ALL OTHER INPUTS				
SOURCED BY OPEN-COLLECTOR TTL, CMOS	$R_p = \frac{V_{CC} - 3.3}{.0005 (N)}$	$R_{P} = \frac{V_{CC} - 3.3}{.00025 (N)}$				
SOURCED BY MOS, CMOS: LOW-THRESHOLD	$R_B = \frac{V_{CC} - 2.4}{I_{OH}0005 (N)}$	$R_B = \frac{V_{CC} - 2.4}{I_{OH}00025 (N)}$				
HIGH-THRESHOLD	NOT RECOMMENDED					
SOURCED BY TTL WITH 5 V ACTIVE PULL-UP	DRIVE DIRECTLY					

TABLE 38 TERMINATING UNUSED INPUTS

	PCCIN INPUT	ALL OTHER INPUTS
HARDWIRE TO V _{IH}	$R_p = \frac{V_{CC} - 3.3}{.0005 (N)}$	$R_p = \frac{V_{CC} - 3.3}{.00025 (N)}$

The output circuit characteristics for 1) logic-level high output voltage (V_{OH}) and current (I_{OH}), 2) rise times, and 3) next stage input noise immunity, are a function of the load circuit being sourced. The load circuit may be either:

 A) the direct input, if no source current is required, of a five-volt logic family function,

or, for greater noise immunity and improved rise times,

B) the direct input of a five-volt logic family function in conjunction with a discrete pull-up resistor.

When a discrete pull-up resistor (RL) is utilized, the fanout requirements placed on a particular '0400A/ '0401A output restrict both the maximum and minimum value of RL. Techniques for calculating RL(max) and RL(min) respectively are explained in Figure 26. Table 39 provides RL(max) and RL(min) values for one, five, nine, or ten loads for the more popular five-volt logic families.

OUTPUT VOLTAGE vs OUTPUT CURRENT

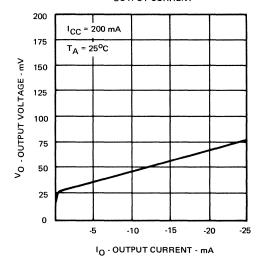


FIGURE 25 - TYPICAL OUTPUT CHARACTERISTICS

6.2.1 RL(max) Calculation for Output Source Current

The maximum load register $R_{L(max)}$ value insures: 1) that sufficient current is available to satisfy both the fanout and logic-level-high output current requirements, and 2) that the voltage drop across R_{L} itself is insufficient to reduce the logic-level-high output voltage below 2.4 volts. $R_{L(max)}$ can be calculated as shown in Figure 26A.

HIGH-LEVEL (OFF-STATE) CIRCUIT CALCULATIONS

The allowable voltage drop across the load resistor (V_RL) is the difference between the pull-up source and the V_OH level required at the load:

V_{RL} = V_{source} - V_{OH} min

The total current through the load resistor (I_RL) is the sum of the load current and the high-level output current (I_OH):

 I_{RL} = Load Current (into the load inputs + I_{OH} where: I_{OH} = 375 μ A max

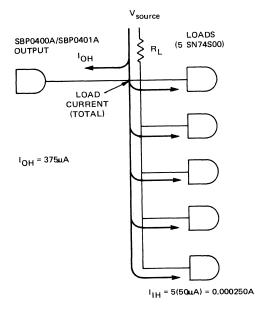
Therefore, calculations for the maximum value of RL would be:

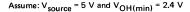
$$R_{L(max)}$$
 in ohms = $\frac{V_{source} - V_{OH min}}{Amperes of Load Current + .000375}$

LOW-LEVEL (ON-STATE) CIRCUIT CALCULATIONS

The maximum current through the load resistor when the output is on, plus the amount of current from the low-level input load, must be limited to the I_{OL} capability of the output. Therefore, the equation is:

V_{source}

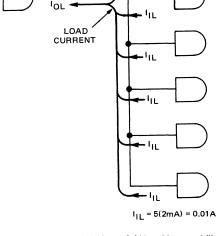

IRI


LOADS

(5 SN74S00)

SBP0400A/SBP0401A

OUTPUT



$$R_{L(max)} = \frac{V_{source} - V_{OH}}{I_{load} + 0.000375}$$

$$\mathsf{R}_{\mathsf{L}(\mathsf{max})} = \frac{5 - 2.4}{0.00025 + 0.000375} \ \Omega = \frac{2.6}{0.000625} \ \Omega = 4160$$

A. RL MAXIMUM CALCULATIONS

Assume: $V_{source} = 5 V$, $V_{OL} = 0.4 V$, and I_{OL} capability = 20 mA

$$R_{L(min)} = \frac{V_{source} - V_{OL}}{I_{OL} capability - I_{IL}}$$

$$\mathsf{R}_{\mathsf{L}(\mathsf{min})} = \frac{5 - .4}{0.02 - 0.01} \ \Omega = \frac{4.6}{0.01} \ \Omega = 460 \ \Omega$$

B. RL MINIMUM CALMCLATIONS

FIGURE 26 – OUTPUT LOAD RESISTOR CALCULATIONS

4

SBP0400 OUTPUT	DRIVING 1 Load		DRIVING 5 Loads		DRI 10 I	TYPE OF LOGIC	
TYPE	RL(MIN)	RL(MAX)	RL(MIN)	RL(MAX)	RL(MIN)	RL(MAX)	
	234 Ω	6190 Ω	252 Ω	5200 Ω	280 Ω	4333 Ω	54LS/74LS
20 mA	250 Ω	5909 Ω	383 Ω	4333 Ω	1150 Ω	3250 Ω	54/74
SINK	256 Ω	5777 Ω	46 0 Ω	4160 Ω	2300 Ω	2888 Ω	54S/74S
OUTPUTS	230 Ω	634 1 Ω	230 \	5777 Ω	231 Ω	5200 Ω	MOS
	230 Ω	6500 Ω	230 Ω	6500 Ω	231 Ω	6498 Ω	C-MOS
					TYPE OF LOGI	c	
	477 Ω	6190 Ω	560 Ω	5200 Ω	54LS/74LS		
10 mA	547 Ω	5909 Ω	2300 Ω	4333 Ω	54/74		
SINK	575 Ω	5777 Ω	4000 Ω	4000 Ω	54S/74S		
OUTPUTS	464 Ω	6341 Ω	462 Ω	5777 Ω	MOS		
	46 0 Ω	6500 Ω	460 \2	6 500 Ω	C-MOS		

TABLE 39 OUTPUT LOAD RESISTOR VALUES (RL)

Specific designs can be tailored for minimum power or maximum performance by making the individual calculations as described in Figure 26.

CONDITIONS:

V_{source} = 5 V VOH = 2.4 V (Satisfies most 5 V logic) VOL = 0.4 V (Based on max noise margin provided by SBP0400A/SBP0401A $I_{OH} = 375 \,\mu A$ (Maximum leakage of SBP0400A/SBP0401A) IOL as specified (20 mA, 10 mA) And unit loads of: **ηΓ** = ЧН = 54LS/74LS 0.36 mA 10 µA 54/74 1.6 mA 40 µA 54S/74S 2 mA 50 µA N-MOS 10 µA 10 µA C-MOS 10 pA 10 pA

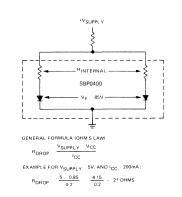
6.2.2 RL(min) Calculation for Output Source Current

The minimum load resistor $R_{L(min)}$ value insures that the arithmetic sum of the current through R_{L} itself plus the sink currents from the various loads will not exceed the low-level current rating (IOL) of the particular output being utilized. $R_{L(min)}$ may be calculated as shown in Figure 26B.

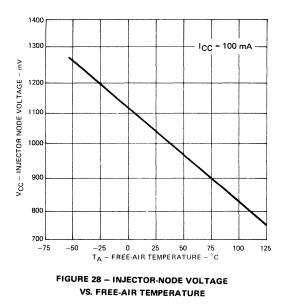
6.3 BIDIRECTIONAL INPUT/OUTPUT CIRCUIT

The bidirectional input/output circuit, shown in Figure 23C, is simply a "marriage" of the separate input and output circuits, with the respective electrical characteristics described above.

7. POWER SOURCE


1²L is a current-injected logic. When placed across a curve tracer, the processor element will resemble a silicon switching diode. Any voltage or current source capable of supplying the desired current at the injector node voltage

required will suffice (see Table 40). A dry-cell battery, a 5-volt TTL power supply, a programmable current supply (for power-up/power-down operation) – literally whatever power source is convenient can be used for most cases. For example, if a 5-volt TTL power supply is to be used, a series dropping resistor would be connected between the 5-volt supply and the injector pins of the I^2L device, as illustrated in Figure 27, to select the desired operating current. In expanded systems using multiple 4 bit slices, an individual dropping resistor is required for each SBP0400A/ SBP0401A.


Figures 28 and 29 show the typical injector node voltages which occur across the temperature and injector current ranges. Table 40 provides the approximate resistor values for various combinations of supply voltages and operating injector currents.

0.01 mA 0.1 mA 10 mA 100 mA 200 mA										
	0.01 mA	0.1 mA	1 mA	10 mA	100 mA	200 mA	Supply Voltage			
(SM	1,1M	114K	11K	1.1K	110	56	12V			
Ð	840K	84K	8.4K	830	82	41	9V			
	540K	54K	5.4K	530	52	26	6∨			
VALUE	440K	44K	4.4K	430	42	21	5V			
	390K	39K	3.9K	380	37	18	4.5V			
RDROP	240K	24K	2.4K	230	22	11	3V			
² DF	90K	9K	960	82	7	3.25	1.5V			
1	63K	6K	550	50	4	1.75	1.2V			

TABLE 40

FIGURE 27 – INJECTOR CURRENT CALCULATIONS

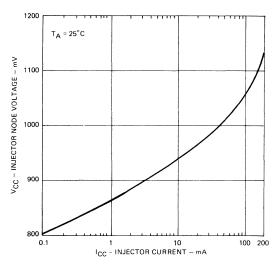


FIGURE 29 – INJECTOR-NODE VOLTAGE VS. INJECTOR CURRENT

8. ELECTRICAL AND MECHANICAL SPECIFICATIONS

8.1 RECOMMENDED OPERATING CONDITIONS, UNLESS OTHERWISE NOTED ICC = 200 mA

		SE	3P0400/	٨M	SI	3P0400/	AC	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply current, ICC			200	300		200	300	mA
High-level output voltage, VOH				5.5			5.5	V
	Any AOP, X, Y, ALUCOUT, DOP,			20			20	
	or XWR MSB/LSB			20			20	mA
Low-level output current, IOL	XWRLFT, XWRRT, WRRT, WRLFT,			10			10	mA
	PCCOUT/BMSB, ENINCBY 2/AMSB			10			10	
	High		255			230		
Width of clock pulse, tw	Low		50			45		ns
	OPERATION SELECT (0400A ONLY)		78			70		
	PCCIN		28			25]
Setup time, t _{su}	$DIP \rightarrow RF, WR, XWR$		110			100		ns
(See Figure 30)	DIP THRU ALU	1	200			180		1
	ALUCIN		132			120		1
Hold time, the (any input)			0†			10		ns
Operating free-air temperature, T_A		-55		125	0		70	°C

1 Rising edge of clock pulse is reference.

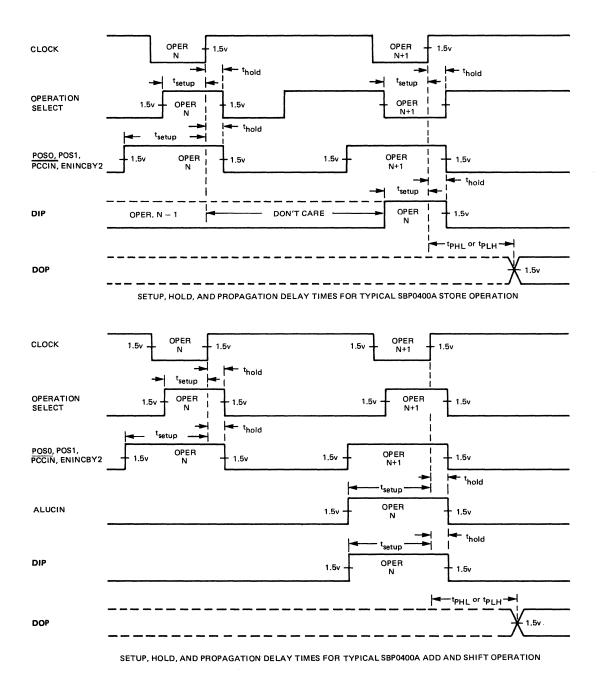
8.2 ELECTRICAL CHARACTERISTICS (OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE, UNLESS OTHERWISE NOTED)

PARAMETER		PARAMETER TEST CONDITIONS [†]		SBP0400AM			SI				
	FARAMETER		IEST CON	HEST CONDITIONS'		TYP‡	MAX	MIN	TYP‡	MAX	UNIT
⊻ін	High-level inpu	it voltage			2			2			V
VIL Low-level input voltage						0.8			0.8	V	
VIK	Input clamp voltage		I _{CC} = 200 mA,	l∣ ≈ −12 mA			-1.5	1		-1.5	V
lau			I _{CC} ≈ 200 mA,	VIH = 2 V			400	<u> </u>			<u> </u>
юн	High-level outp	High-level output current		V _{OH} ≈ 5.5 V	400					250	μA
Vai	Low-level output voltage		I _{CC} = 200 mA,	VIH = 2 V							
VOL			V _{IL} = 0.8 V,	IOL = MAX		0.4		0.4			
4	Input current	Clock, PCCIN	la 200 A	N		500			500		
·'	All other inputs		$I_{CC} = 200 \text{ mA},$	c = 200 mA, VI = 2.5 V		250			250		μA

[†]For conditions shown as MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at I_{CC} = 200 mA, T_A = 25°C.

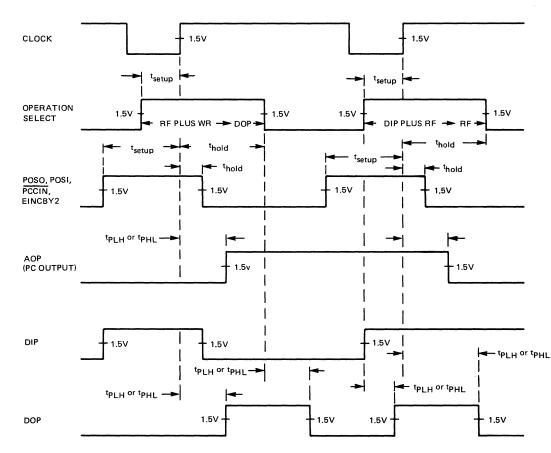
PARAMETER	FROM	то	TEST CONDITIONS	TYP MAX	UNIT
tPLH or tPHL	DIP	DOP	VIA A BUS, BYPASS ALU	85	ns
TPLH OF TPHL	DIP	DOP	VIA A BUS, THRU ALU	155	ns
TPLH OF TPHL	DIP	DOP	VIA B BUS, THRU ALU	155	ns
TPLH OF TPHL	PC PRIORITY	AOP		70	ns
tPLH or tPHL	ALUCIN	ALUCOUT		60	ns
tPLH or tPHL	DIP	ENINCBY2/AMSB	POS0 = X, POS1 = H	80	ns
tPLH or tPHL	DIP	PCCOUT/BMSB	POS0 = X, POS1 = H	80	ns
tPLH or tPHL	POS0, or POS1	ENINCBY2/AMSB or PCCOUT/BMSB		95	ns
TPLH OF TPHL	PCCIN	PCCOUT		35	ns
TPLH OF TPHL	ALUCIN	DOP		105	ns
TPLH or TPHL	CLOCK	PCCOUT/BMSB	POS0 = X, POS1 = H	140	ns
tPLH or tPHL	CLOCK	DOP	VIA A BUS, BYPASS ALU	155	ns
tPLH or tPHL	CLOCK	DOP	VIA A BUS, THRU ALU	240	ns
tPLH or tPHL	CLOCK	ENINCBY2/AMSB	POS0 = X, POS1 = H	155	ns
TPLH OF TPHL	CLOCK	DOP	VIA B BUS, THRU ALU	225	ns
tPLH or tPHL	CLOCK	P.G, or ALUCOUT	VIA A OR B BUS, THRU ALU	180	ns
TPLH OF TPHL	CLOCK	AOP		105	ns
tPLH or tPHL	CLOCK	WRLFT, WRRT, XWRLFT, or XWRRT		240	ns
tPLH Or tPHL	CLOCK	XWR MUX MSB	POS0 = H, POS1 = H	130	ns
TPLH OF TPHL	CLOCK	XWR MUX LSB	POS0 = H, POS1 = L	130	ns
tPLH or tPHL	CLOCK	ALU = 0		215	ns

8.3 SBP0400A AND SBP0401A SWITCHING CHARACTERISTICS (I_{CC} = 200 mA, T_A = 25°C) SEE FIGURES 30 THROUGH 34

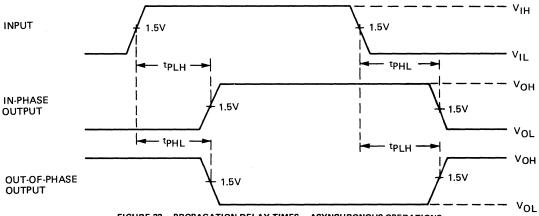

8.4 SBP0401A OPERATION SELECT SWITCHING CHARACTERISTICS (I_{CC} = 200 mA, T_A = 25 °C) SEE FIGURES 31 THROUGH 34

.

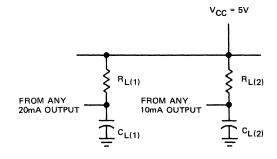
PARAMETER	FROM	то	TEST CONDITIONS	ΤΥΡ ΜΑΧ	UNIT
tPLH or tPHL	OP SEL	XWR MUX MSB	POS0 = H, POS1 = H	175	ns
tPLH or tPHL	OP SEL	XWR MUX LSB	POS0 = H, POS1 = L	175	ns
tPLH or tPHL	OP SEL	AOP		130	ns
tPLH or tPHL	OP SEL	ALU = 0		215	ns
tPLH or tPHL	OP SEL	P, G, or ALUCOUT	Via A or B bus, thru ALU	180	ns
tPLH or tPHL	OP SEL	DOP	Via A or B bus, thru ALU	235	ns
tPLH or tPHL	OP SEL	AMSB	POS0 = X, POS1 = H	140	ns
tPLH or tPHL	OP SEL	BMSB	POS0 = X, POS1 = H	175	ns


TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.


FIGURE 30 - PROPAGATION DELAY TIMES - SBP0400A SYNCHRONOUS OPERATIONS

48



PC PRIORITY IS HIGH

FIGURE 31 - PROPAGATION DELAY TIMES - ASYNCHRONOUS OPERATIONS

REF.	OUTPUTS	MAXIMUM CURRENT RATING	R _L VALUE	C _L VALUE
1	ANY AOB, DOB, P, G, ALUCOUT OR XWR MSB/LSB	20 mA	280 Ω	50 PF
2	XWRLFT, XWRRT, WRRT, WRLFT, PCCOUT/BMSB, ENINCBY2/AMSB	10 mA	560 Ω	25 PF

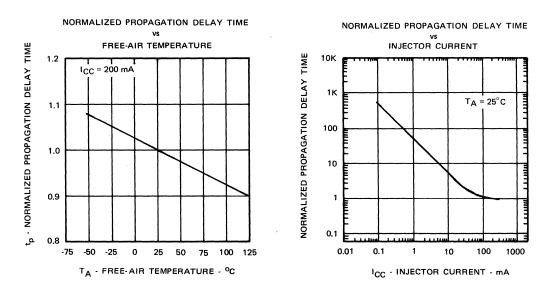
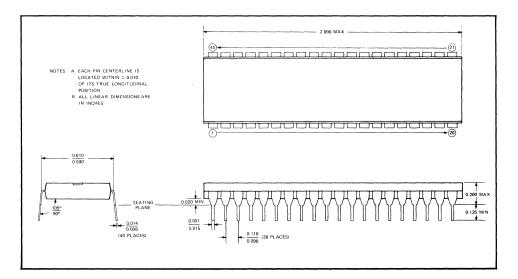
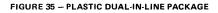




FIGURE 34 - TYPICAL SWITCHING CHARACTERISTICS

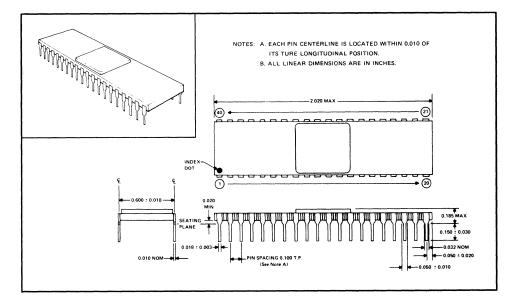
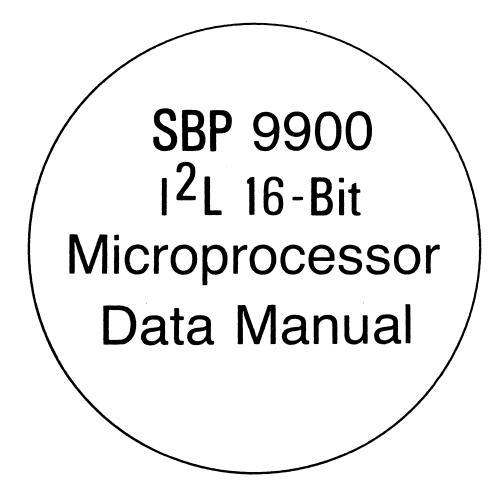


FIGURE 36 -- CERAMIC DUAL-IN-LINE PACKAGE

8.5 ORDERING INFORMATION


PACKAGE	OPERATING TEMPERATURE	PART NUMBERS
PLASTIC DIP	0°C to 70°C	SBP0400ACN or SBP0401ACN
	0°C to 70°C	SBP0400ACJ or SBP0401ACJ
CERAMIC DIP	-55°C to 125°C	SBP0400AMJ or SBP0401AMJ

. .

·

The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

OCTOBER 1976

TEXAS INSTRUMENTS

Information contained in this publication is believed to be accurate and reliable. However, responsibility is assumed neither for its use nor for any infringement of patents or rights of others that may result from its use. No license is granted by implication or otherwise under any patent or patent right of Texas Instruments or others.

TABLE OF CONTENTS

1.	INT	RODUC	CTION		
	1.1	Descrip	otion		 1
	1.2	Key Fe	patures	•	 1
2.		CHITEC	TUBE		
۷.	2.1		ers and Memory		3
	2.1	•	pts		
	2.2		erface Communications-Register-Unit (CRU)		
	2.3 2.4		.		
			Bit CRU Operations		
	2.5	•	le-Bit CRU Operations		
	2.6		al Instructions		
	2.7		unction		
	2.8		900 Pin Description		
	2.9		100 Timing		
		2.9.1	SBP 9900 Memory		
		2.9.2	SBP 9900 Hold		
		2.9.3	SBP 9900 CRU	•	 14
~	000		DUOTION OFT		
3.					
	3.1		ion		
	3.2		sing Modes		
		3.2.1	Workspace Register Addressing R		
		3.2.2	Workspace Register Indirect Addressing *R		
		3.2.3	Workspace Register Indirect Auto Increment Addressing *R+		
		3.2.4	Sýmbolic (Direct) Addressing @ Label	•	 17
		3.2.5	Indexed Addressing @ Table (R)	•	 17
		3.2.6	Immediate Addressing		
		3.2.7	Program Counter Relative Addressing	•	
		3.2.8	CRU Relative Addressing		
	3.3	Terms a	and Definitions	•	 18
	3.4	Status F	Register	•	 18
	3.5	Instruct	tions		 19
		3.5.1	Dual Operand Instructions with Multiple Addressing Modes for		
			Source and Destination Operand		 19
		3.5.2	Dual Operand Instructions with Multiple Addressing Modes for		
			the Source Operand and Workspace Register Addressing for the Destination		 20
		3.5.3	Extended Operation (XOP) Instruction	•	 21
		3.5.4	Single Operand Instructions		 21
		3.5.5	CRU Multiple-Bit Instructions	•	 22
		3.5.6	CRU Single-Bit Instructions		 23
		3.5.7	Jump Instructions		 23
		3.5.8	Shift Instructions		 24
		3.5.9	Immediate Register Instructions		 24
		3.5.10	Internal Register Load Immediate Instructions		
		3.5.11	Internal Register Store Instructions		
		3.5.12	Return Workspace Pointer (RTWP) Instruction		
		3.5.13	External Instructions		
	3.6		nstruction Cycle		
	3.7		00 Instruction Execution Times		26

TABLE OF CONTENTS (Continued)

4.	INTERFACING
	4.1 Input Circuit
	4.1.1 Sourcing Inputs
	4.1.2 Terminating Unused Inputs
	4.2 Output Circuit
5.	POWER SOURCE
6.	ELECTRICAL AND MECHANICAL SPECIFICATIONS
	6.1 SBP 9900 Recommended Operating Conditions
	6.2 SBP 9900 Electrical Characteristics
	6.3 SBP 9900 Switching Characteristics
	6.4 Clock Frequency Vs. Temperature
7.	MECHANICAL DATA
8.	SBP 9900 PROTOTYPING SYSTEM
	8.1 Hardware
	8.2 System Console
	8.3 Software

LIST OF ILLUSTRATIONS

Figure 1	Architecture	. vi
Figure 2	9900 CPU Flow Chart	. 2
Figure 3	Word and Byte Formats	. 3
Figure 4	Memory Map	. 4
Figure 5	Memory-to-Memory Workspace Concept	. 5
Figure 6	9900 Interrupt Interface	. 7
Figure 7	9900 Single-Bit CRU Address Development	. 8
Figure 8	9900 LDCR/STCR Data Transfers	. 8
Figure 9	9900 16-Bit Input/Output Interface	. 9
Figure 10	External Instruction Decode Logic	. 10
Figure 11	SBP 9900 Pin Assignments	. 11
Figure 12	SBP 9900 Memory Bus Timing	. 13
Figure 13	SBP 9900 Hold Timing	. 15
Figure 14	SBP 9900 CRU Interface Timing	. 15
Figure 15	Minimum SBP 9900 System	. 28
Figure 16	Schematics of Equivalent Inputs, Outputs, Inputs/Outputs	. 29
Figure 17	Typical Input Characteristics	. 29
Figure 18	Typical Output Characteristics	. 30
Figure 19	Injector Current Calculations	. 31
Figure 20	Switching-Regulator Injector Source	. 31
Figure 21	Clock Period Vs. Injector Current	. 31
Figure 22	Injector-Node Voltage Vs. Free-Air Temperature	. 32
Figure 23	Injector-Node Voltage Vs. Injector Current	. 32

LIST OF ILLUSTRATIONS (Continued)

Figure 24	Switching Times-Voltage Waveforms													34
Figure 25	Switching Times Load Circuits													34
Figure 26	A-C Performance Vs. Temperature .													35

LIST OF TABLES

Table 1	Interrupt Level Data												6
Table 2	External Instructions												10
Table 3	9900 Pin Assignments and Functions												11
Table 4	Term Definitions												18
Table 5	Status Register Bit Definitions												19
Table 6	Instruction Execution Times												27

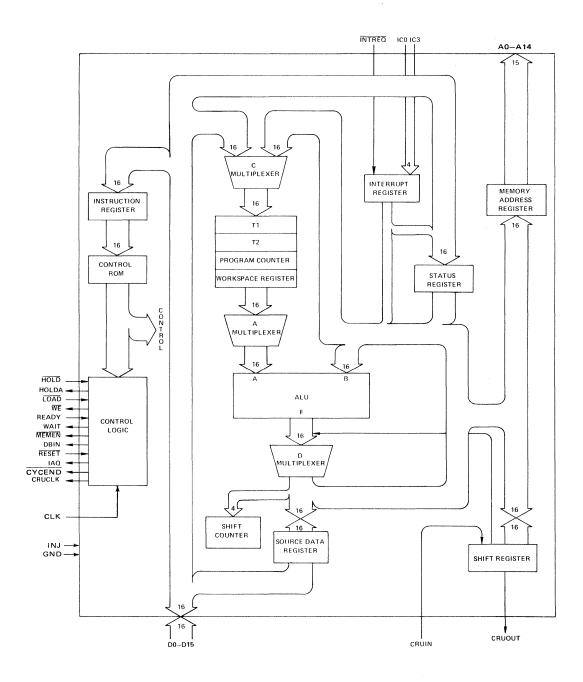


FIGURE 1 - SBP 9900 ARCHITECTURE

TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

1. INTRODUCTION

1.1 DESCRIPTION

The SBP 9900 microprocessor is a ruggedized monolithic parallel 16-bit Central Processing Unit (CPU) fabricated with Integrated Injection Logic (I²L) technology. The SBP 9900 combines the properties of I²L technology with a 16-bit word length, an advanced memory to memory architecture, and a full minicomputer instruction set to extend the end application reach of Texas Instruments 9900 microprocessor family into those applications requiring efficient, stable, reliable performance in severe operating environments. I²L technology enables the SBP9900 to operate over a very wide ambient temperature range from a d-c power source with user selectable speed/power performance. Static Logic is used throughout with directly TTL compatible I/O permitting use with standard logic and memory devices and thereby eliminating the need for special clock and interface functions. The SBP 9900 is software compatible with other 9900 microprocessor family members and shares a common body of hardware/software with Texas Instruments 990 minicomputer family.

1.2 KEY FEATURES

- Parallel 16-Bit Word Length
- Full Minicomputer Instruction Set Includes Multiply and Divide
- Directly Addresses Up to 65,536 Bytes/32,768 Words of Memory
- Advanced Memory-To-Memory Architecture
- Multiple 16-Word Register Files (Work Spaces) Reside in Memory
- Separate I/O, Memory and Interrupt Bus Structures
- 16 Prioritized Hardware Interrupts
- 16 Software Interrupts (XOPS)
- Programmed and DMA I/O Capability
- Serial I/O Via Communications-Register-Unit (CRU)
- 64-Pin Package
- Software Compatible with TI 9900 Microprocessor/990 Minicomputer Family
- I²L Technology:
 - User Selectable Speed/Power Operation
 - 2.6 MHz Nominal Clock at 500 mW
 - Single d-c Power Supply
 - Fully Static Operation
 - Single Phase Clock
 - Directly TTL Compatible I/O (Including Clock)
 - Operates Over Wide Temperature Range:
 - - -55°C to 125°C for SBP 9900M, SBP 9900N (883 B)
 - -40°C to 85°C for SBP 9900E

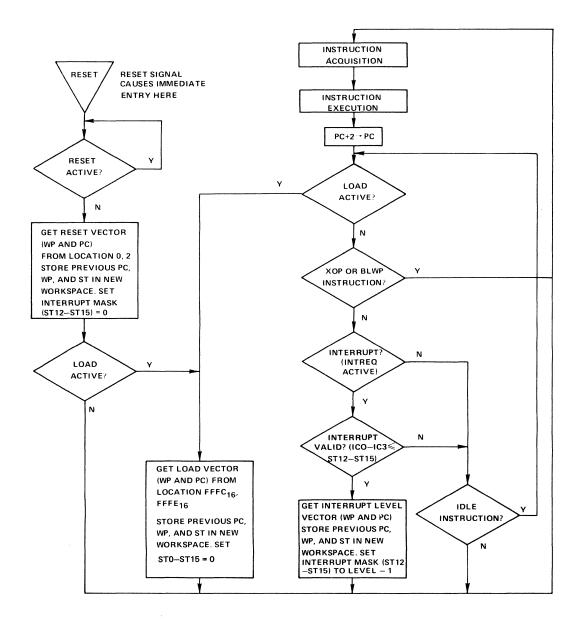
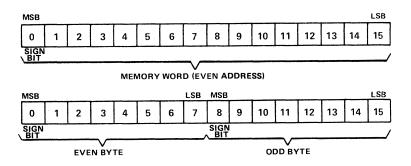
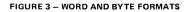




FIGURE 2 - 9900 CPU FLOW CHART

2. ARCHITECTURE

The memory word of the 9900 is 16 bits long. Each word is also defined as 2 bytes of 8 bits. The instruction set of the 9900 allows both word and byte operands. Thus, all memory locations are on even address boundaries and byte instructions can address either the even or odd byte. The memory space is 65,536 bytes or 32,768 words. The word and byte formats are shown in Figure 3.

2.1 REGISTERS AND MEMORY

The 9900 employs an advanced memory-to-memory architecture. Blocks of memory designated as workspace replace internal-hardware registers with program-data registers. The 9900 memory map is shown in Figure 4. The first 32 words are used for interrupt trap vectors. The next contiguous block of 32 memory words is used by the extended operation (XOP) instruction for trap vectors. The last two memory words, FFFC16 and FFFE16, are used for the trap vector of the LOAD signal. The remaining memory is then available for programs, data, and workspace registers. If desired, any of the special areas may also be used as general memory.

Three internal registers are accessible to the user. The program counter (PC) contains the address of the instruction following the current instruction being executed. This address is referenced by the processor to fetch the next instruction from memory and is then automatically incremented. The status register (ST) contains the present state of the processor and will be further defined in Section 3.4. The workspace pointer (WP) contains the address of the first word in the currently active set of workspace registers.

A workspace-register file occupies 16 contiguous memory words in the general memory area (see Figure 4). Each workspace register may hold data or addresses and function as operand registers, accumulators, address registers, or index registers. During instruction execution, the processor addresses any register in the workspace by adding the register number to the contents of the workspace pointer and initiating a memory request for the word. The relationship between the workspace pointer and its corresponding workspace is shown in Figure 5.

The workspace concept is particularly valuable during operations that require a context switch which is a change from one program environment to another (as in the case of an interrupt) or to a subroutine. Such an operation, using a conventional multi-register arrangement, requires that at least part of the contents of the register file be stored and reloaded. A memory cycle is required to store or fetch each word. By exchanging the program counter, status register, and workspace pointer in the 9900 concept accomplishes a complete context switch withonly three store cycles and three fetch cycles. See Figure 5. After the switch the workspace pointer contains the starting address of a new 16-word workspace in memory for use in the new routine. A corresponding time saving occurs when the original context is restored. Instructions in the 9900 that result in a context switch include:

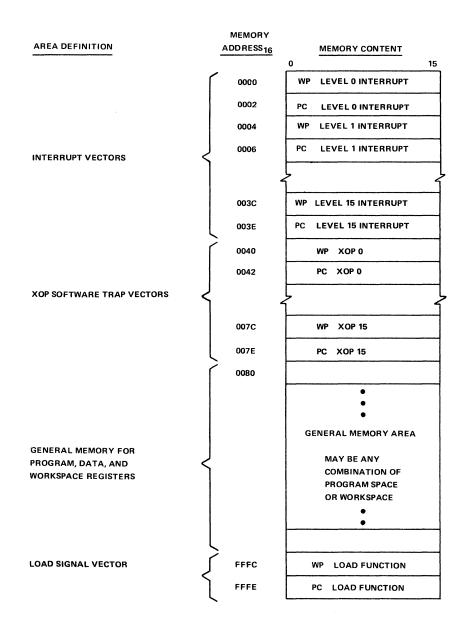
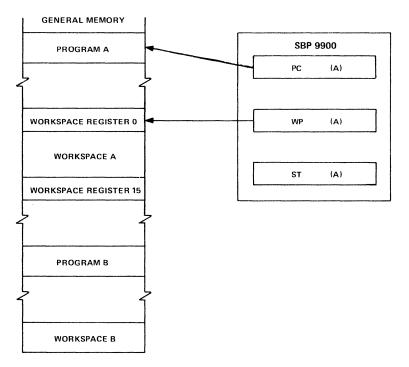



FIGURE 4 - MEMORY MAP

FIGURE 5 - MEMORY-TO-MEMORY WORKSPACE CONCEPT

- 1. Branch and Load Workspace Pointer (BLWP)
- 2. Return from Subroutine (RTWP)
- 3. Extended Operation (XOP).

Device interrupts, RESET, and LOAD also cause a context switch by forcing the processor to trap to a service subroutine.

2.2 INTERRUPTS

The 9900 employs 16 interrupt levels with the highest priority level 0 and lowest level 15. Level 0 is reserved for the RESET function and all other levels may be used for external devices. The external levels may also be shared by several device interrupts, depending upon system requirements.

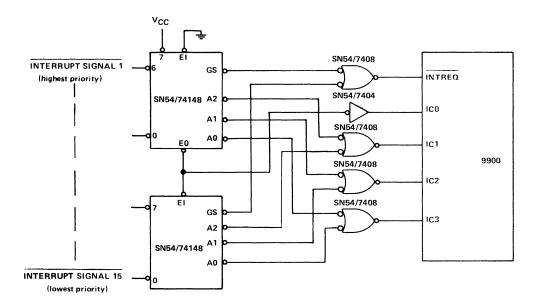
The 9900 continuously compares the interrupt code (IC0 through IC3) with the interrupt mask contained in status-register bits 12 through 15. When the level of the pending interrupt is less than or equal to the enabling mask level (higher or equal priority interrupt), the processor recognizes the interrupt and initiates a context switch following completion of the currently executing instruction. The processor fetches the new context WP and PC from the interrupt vector locations. Then, the previous context WP, PC, and ST are stored in workspace registers 13, 14, and 15, respectively, of the new workspace. The 9900 then forces the interrupt mask to a value that is one less than

the level of the interrupt being serviced. This allows only interrupts of higher priority to interrupt a service routine. The processor also inhibits interrupts until the first instruction of the service routine has been executed. All interrupt requests should remain active until recognized by the processor in the device-service routine. The individual service routines must reset the interrupt requests before the routine is complete.

If a higher priority interrupt occurs, a second context switch occurs to service the higher priority interrupt. When that routine is complete, a return instruction (RTWP) restores the first service routine parameters to the processor to complete processing of the lower-priority interrupt. All interrupt subroutines should terminate with the return instruction to restore original program parameters. The interrupt-vector locations, device assignment, enabling-mask value, and the interrupt code are shown in Table 1.

	Vector Location		Interrupt Mask Values To	Interrupt
Interrupt Level	(Memory Address	Device Assignment	Enable Respective Interrupts	Codes
	In Hex)		(ST12 thru ST15)	IC0 thru IC3
(Highest priority) 0	00	Reset	0 through F*	0000
1	04	External device	1 through F	0001
2	08	r.	2 through F	0010
3	0C		3 through F	0011
4	10		4 through F	0100
5	14		5 through F	0101
6	18		6 through F	0110
7	1C		7 through F	0111
8	20		8 through F	1000
9	24		9 through F	1001
10	28		A through F	1010
11	2C		B through F	1011
12	30		C through F	1100
13	34		D through F	1101
14	38	★	E and F	1110
(Lowest priority) 15	3C	External device	Fonly	1111

TABLE 1 INTERRUPT LEVEL DATA


* Level 0 can not be disabled.

The 9900 interrupt interface utilizes standard TTL components as shown in Figure 6. Note that for eight or less external interrupts a single SN54/74148 is required and for one external interrupt INTREQ is used as the interrupt signal with a hard-wired code IC0 through IC3.

2.3 I/O INTERFACE COMMUNICATIONS-REGISTER-UNIT (CRU)

The SBP 9900 communications-register-unit (CRU) is a versatile, direct command-driven serial I/O interface. The CRU may directly address, in bit-fields of one to sixteen, up to 4096 peripheral input bits and up to 4096 peripheral output bits. The SBP 9900 executes three single-bit and two multiple-bit CRU instructions. The single-bit instructions include TEST BIT (TB), SET BIT TO ONE (SBO), and SET BIT TO ZERO (SBZ); the multiple-bit instructions include LOAD CRU (LDCR) and STORE CRU (STCR).

The SBP 9900 employs three dedicated I/O signals CRUIN, CRUOUT, CRUCLK, and the least significant twelve bits of the address bus to support the CRU interface. CRU interface timing is shown in Section 2.9.

FIGURE 6 - 9900 INTERRUPT INTERFACE

2.4 SINGLE-BIT CRU OPERATIONS

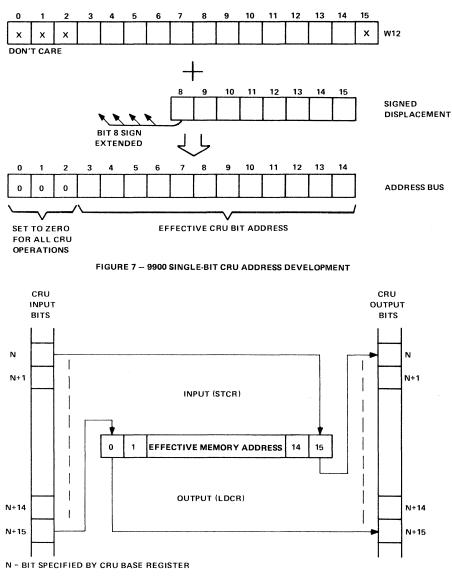
The 9900 performs three single-bit CRU functions: test bit (TB), set bit to one (SBO), and set bit to zero (SBZ). To identify the bit to be operated upon, the 9900 develops a CRU-bit address and places it on the address bus, A3 to A14.

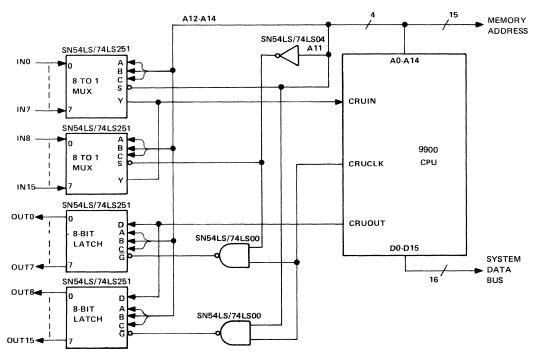
For the two output operations (SBO and SBZ), the processor also generates a CRUCLK pulse, indicating an output operation to the CRU device, and places bit 7 of the instruction word on the CRUOUT line to accomplish the specified operation (bit 7 is a one for SBO and a zero for SBZ). A test-bit instruction transfers the addressed CRU bit from the CRUIN input line to bit 2 of the status register (EQUAL).

The 9900 develops a CRU-bit address for the single-bit operations from the CRU-base address contained in workspace register 12 and the signed displacement count contained in bits 8 through 15 of the instruction. The displacement allows two's complement addressing from base minus 128 bits through base plus 127 bits. The base address from W12 is added to the signed displacement specified in the instruction and the result is loaded onto the address bus. Figure 7 illustrates the development of a single-bit CRU address.

2.5 MULTIPLE-BIT CRU OPERATIONS

The 9900 performs two multiple-bit CRU operations: store communications register (STCR) and load communications register (LDCR). Both operations perform a data transfer from the CRU-to-memory or from memory-to-CRU as illustrated in Figure 8. Although the figure illustrates a full 16-bit transfer operation, any number of bits from 1 through 16 may be involved. The LDCR instruction fetches a word from memory and right-shifts it to serially transfer it to CRU output bits. If the LDCR involves eight or fewer bits, those bits come from the right-justified field within the addressed byte of the memory word. If the LDCR involves nine or more bits, those bits come from the right-justified field within the whole memory word. When transferred to the CRU interface, each successive bit receives an address that is sequentially greater than the address for the previous bit. This addressing mechanism results



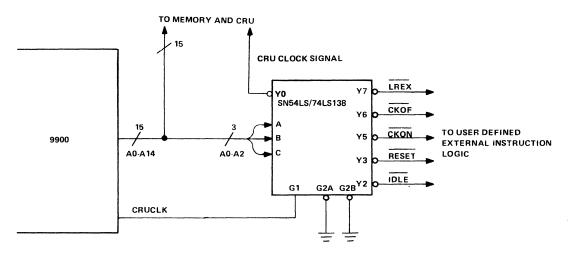

FIGURE 8 - 9900 LDCR/STCR DATA TRANSFERS

in an order reversal of the bits; that is, bit 15 of the memory word (or bit 7) becomes the lowest addressed bit in the CRU and bit 0 becomes the highest addressed bit in the CRU field.

An STCR instruction transfers data from the CRU to memory. If the operation involves a byte or less transfer, the transferred data will be stored right-justified in the memory byte with leading bits set to zero. If the operation involves from nine to 16 bits, the transferred data is stored right-justified in the memory word with leading bits set to

zero. When the input from the CRU device is complete, the first bit from the CRU is the least-significant-bit position in the memory word or byte.

Figure 9 illustrates how to implement a 16-bit input and a 16-bit output register in the CRU interface. CRU addresses are decoded as needed to implement up to 256 such 16-bit interface registers. In system application, however, only the exact number of interface bits needed to interface specific peripheral devices are implemented. It is not necessary to have a 16-bit interface register to interface an 8-bit device.


2.6 EXTERNAL INSTRUCTIONS

The 9900 has five external instructions that allow user-defined external functions to be initiated under program control. These instructions are CKON, CKOF, RSET, IDLE, and LREX. These mnemonics, except for IDLE, relate to functions implemented in the 990 minicomputer and do not restrict use of the instructions to initiate various user-defined functions. IDLE also causes the 9900 to enter the idle state and remain until an interrupt, RESET, or IOAD occurs. When any of these five instructions are executed by the 9900, a unique 3-bit code appears on the most-significant 3 bits of the address bus (A0 through A2) along with a CRUCLK pulse. When the 9900 is in an idle state, the 3-bit code and CRUCLK pulses occur repeatedly until the idle state is terminated. The codes are shown in Table 2.

Figure 10 illustrates typical external decode logic to implement these instructions. Note that a signal is generated to inhibit CRU decodes during external instructions.

TABLE 2 EXTERNAL INSTRUCTIONS

EXTERNAL INSTRUCTION	A0	A1	A2
LREX	н	н	н
СКОГ	н	н	L
CKON	н	L	н
RSET	L	н	н
IDLE	L	н	L

2.7 LOAD FUNCTION

The LOAD signal allows cold-start ROM loaders and front panels to be implemented for the 9900. When active, LOAD causes the 9900 to initiate an interrupt sequence immediately following the instruction being executed. Memory location FFFC is used to obtain the vector (WP and PC). The old PC, WP and ST are loaded into the new workspace and the interrupt mask is set to 0000. Then, program execution resumes using the new PC and WP.

2.8 **SBP 9900 PIN DESCRIPTION**

Table 3 describes the function of each SBP 9900 pin, and Figure 11 illustrates their assigned locations.

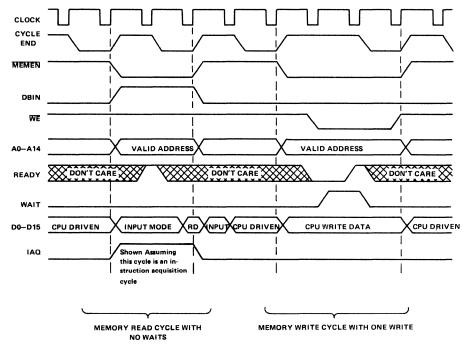
SIGNATURE	PIN	1/0	DESCRIPTION	FIGURE 11 – SBP 99	900 PIN ASSIGNMENTS
			ADDRESS BUS		
A0 (MSB)	24	OUT	A0 (MSB) through A14 (LSB) comprise the		
			address bus. This open-collector bus pro-		C 83 MEMEN
			vides the memory-address vector to the	WAIT 3 💭	📥 62 READY
			external-memory system when MEMEN is		1 61 WE
			active, and I/O-bit addresses to the I/O		G CRUCLK
	1		system when MEMEN is inactive. When	BESET 6	
		1	HOLDA is active, the address bus is pulled		T CICEND
		1	to the logic level HIGH state by the individ-		58 NC
			ual pull-up resistors tied to each respective		[☐1]57 INJ
A14 (LSB)	10	OUT	open-collector output.	INJ 9 🛱	□ □ ¹ ,56 D15
				A14 10 🕅	□C \$\$ 55 D14
D0 (MSB)	41	1/0	DATA BUS	A13 11 💭	□C \$\$ 54 D13
DU (WISB)	41	10	D0 (MSB) through D15 (LSB) comprise the bidirectional open-collector data bus. This	A12 12 🔛	□ 53 D12
			bus transfers memory data to (when writ-	A11 13 📩	52 D11
	i		ing) and from (when reading) the external-	A10 14 5	1 51 D10
			memory system when MEMEN is active.	A9 15 5	50 D9
			When HOLDA is active, the data bus is	A8 16	
			pulled to the logic level HIGH state by the		149 D8
	1		individual pull-up resistors tied to each	A7 17 8	148 D7
D15 (LSB)	56	1/0	respective open-collector output.	A6 18 🚰	□ □ [‡] 47 D6
				A5 19 🖾	C ¹ 46 D5
			POWER SUPPLY	A4 20 💭	[□] 45 D4
INJ	9		Injector-Supply-Current	A3 21 📩	□ 44 D3
INJ	26		Injector-Supply-Current	A2 22 5	43 D2
INJ INJ	40		Injector-Supply-Current	A1 23 5	C 42 D1
IINJ	5/		Injector-Supply-Current	A0 24 5	
GND	1	1	Ground Reference		
GND	2		Ground Reference		140 INJ
GND	27		Ground Reference	INJ 26	1 39 NC
GND	28		Ground Reference	GND 27 🛱	138 NC
				GND 28 💭	137 NC
			CLOCK	DBIN 29	1 36 ICO
CLOCK	8	IN	CLOCK	CRUOUT 30 🖾	I 35 IC1
				CRUIN 31	34 IC2
			BUS CONTROL	INTREQ 32	
DBIN	29	OUT			33 103
		1	level HIGH), DBIN indicates that the SBP		
			9900 has disabled its output buffers to		
	1		allow the memory to place memory-read	NC-No internal connection	
	1		data on the data bus during MEMEN. DBIN	NC-No internal connection	
		ł	remains at logic level LOW in all other cases except when HOLDA is active (pulled to		
			logic level HIGH).		
MEMEN	63	OUT	MEMORY ENABLE. When active (logic level	LOW), MEMEN indicates that the	ne address bus contains a memory
			address.		
	1	1			

TABLE 3 9900 PIN ASSIGNMENTS AND FUNCTIONS

61 OUT WRITE ENABLE. When active (logic level LOW), WE indicates that the SBP 9900 data bus is outputting data to be written into memory. WE

TABLE 3 (CONTINUED)

SIGNATURE	PIN	1/0	DESCRIPTION
CRUCLK	60	Ουτ	COMMUNICATIONS-REGISTER-UNIT (CRU) CLOCK. When active (pulled to logic level HIGH), CRUCLK indicates to the external interface logic the presence of output data on CRUOUT, or the presence of an encoded external instruction on A0 through A2.
CRUIN	31	IN	CRU DATA IN. CRUIN, normally driven by 3-state or open-collector devices, receives input data from the external interface logic. When the SBP 9900 executes a STCR or TB instruction, it samples CRUIN for the level of the CRU input bit specified by the address bus (A3 through A14).
CRUOUT	30	Ουτ	CRU DATA OUT. CRUOUT outputs serial data when the SBP 9900 executes a LDCR, SBZ, SBO instruction. The data on CRUOUT should be sampled by the external interface logic when CRUCLK goes active (pulled to logic level HIGH).
INTREQ	32	IN	INTERRUPT CONTROL INTERRUPT REQUEST. When active (logic level LOW), INTREQ indicates that an external interrupt is requesting service. If INTREQ is active, the SBP 9900 loads the data on the interrupt-code input-lines IC0 through IC3 into the interrupt interrupt-code storage register. The code is then compared to the interrupt mask bits of the status register. If equal or higher priority than the enabled interrupt level (interrupt code equal or less than status register bits 12 through 15), the SBP 9900 initiates the interrupt sequence. If the comparison fails, the SBP 9900 ignores the interrupt request. In that case, INTREQ should be held active. The SBP 9900 will continue to sample IC0 through IC3 until the program enables a sufficiently low interrupt-level to accept the requesting interrupt.
ICO (MSB)	36	IN	INTERRUPT CODES. IC0 (MSB) through IC3 (LSB), receiving an interrupt identity code, are sampled by the SBP 9900 when INTREO is active (logic level LOW). When IC0 through IC3 are LLLH, the highest priority external interrupt is requesting service; when HHHH, the lowest priority external interrupt is
IC3 (LSB)	33	IN	requesting service.
HOLD	64	IN	MEMORY CONTROL When active (logic level LOW), HOLD indicates to the SBP 9900 that an external controller (e.g., DMA device) desires to use both the address bus and data bus to transfer data to or from memory. In response, the SBP 9900 enters the hold state after completion of its present memory cycle. The SBP 9900 then allows its address bus, data bus, WE, MEMEN, DBIN, and HOLDA facilities to be pulled to the logic level HIGH state. When HOLD is deactivated, the SBP 9900 returns to normal operation from the point at which it was stopped.
HOLDA	5	Ουτ	HOLD ACKNOWLEDGE. When active (pulled to logic level HIGH), HOLDA indicates that the SBP 9900 is in the hold state and that its address bus, data bus, WE, MEMEN, and DBIN facilities are pulled to the logic level HIGH state.
READY	62	IN	When active (logic level HIGH), READY indicates that the memory will be ready to read or write during the next clock cycle. When not-ready is indicated during a memory operation, the SBP 9900 enters a wait state and suspends internal operation until the memory systems activate READY.
WAIT	3	ουτ	When active (pulled to logic level HIGH), WAIT indicates that the SBP 9900 has entered a wait state in response to a not-ready condition from memory.
ΙΑΟ	7	ουτ	TIMING AND CONTROL INSTRUCTION ACQUISITION. IAQ is active (pulled to logic level HIGH) during any SBP 9900 initiated instruction acquisition memory cycle. Consequently, IAQ may be used to facilitate detection of illegal op codes.
CYCEND	59	Ουτ	CYCLE END. When active (logic level LOW), CYCEND indicates that the SBP 9900 will initiate a new machine cycle on the low-to-high transition of the next CLOCK.
LOAD	4	IN	When active (logic level LOW), LOAD causes the SBP 9900 to execute a nonmaskable interrupt with memory addresses FFFC16 and FFFE16 containing the associated trap vectors (WP and PC). The load sequence is initiated after the instruction being executed is completed. LOAD will also terminate an idle state. If LOAD is active during the time RESET is active, the LOAD trap will occur after the RESET function is completed. LOAD should remain active for one instruction execution period (IAQ may be


TABLE 3 (CONCLUDED)

SIGNATURE	PIN	1/0	DESCRIPTION
LOAD (Cont.)			used to monitor instruction boundaries). LOAD may be used to implement cold-start ROM loaders. Additionally, front-panel routines may be implemented using CRU bits as front-panel-interface signals, and software-control routines to direct the panel operations.
RESET	6	IN	When active (logic level LOW), $\overrightarrow{\text{RESET}}$ causes the SBP 9900 to reset itself and inhibit $\overrightarrow{\text{WE}}$ and CRUCLK. When $\overrightarrow{\text{RESET}}$ is released, the SBP 9900 initiates a level-zero interrupt sequence acquiring the WP and PC trap vectors from memory locations 0000 ₁₆ and 0002 ₁₆ , sets all status register bits to logic level LOW, and then fetches the first instruction of the reset program environment. $\overrightarrow{\text{RESET}}$ must be held active for a minimum of three CLOCK cycles.

2.9 SBP 9900 TIMING

2.9.1 SBP 9900 MEMORY

The SBP 9900 basic memory timing for a memory-read cycle with no wait states, and a memory-write cycle with one wait state, is as shown in Figure 12. During each memory-read or memory-write cycle, MEMEN becomes active (logic level LOW) along with valid memory-address data appearing on the address bus (A0 through A14).

RD = READ DATA

FIGURE 12 - SBP 9900 MEMORY BUS TIMING

In the case of a memory-read cycle, DBIN becomes active (pulled to logic level HIGH) at the same time memory-address data becomes valid; the memory write strobe WE remains inactive (pulled to logic level HIGH). If the memory-read cycle is initiated for acquisition of an instruction, IAQ becomes active (pulled to logic level HIGH) at the same time MEMEN becomes active. At the end of a memory-read cycle, MEMEN and DBIN together become inactive. At that time, though the address may change, the data bus remains in the input mode until terminated by the next high-to-low transition of the clock.

In the case of a memory-write cycle, \overline{WE} becomes active (logic level LOW) with the first high-to-low transition of the clock after \overline{MEMEN} becomes active; DBIN remains inactive. At the end of a memory-write cycle, \overline{WE} and \overline{MEMEN} together become inactive.

During either a memory-read or a memory-write operation, READY may be used to extend the duration of the associated memory cycle such that the speed of the memory system may be coordinated with the speed of the SBP 9900. If READY is inactive (logic level LOW) during the first low-to-high transition of the clock after MEMEN becomes active, the SBP 9900 will enter a wait state suspending further progress of the memory cycle. The first low-to-high transition of the clock after READY becomes active terminates the wait state and allows normal completion of the memory cycle.

2.9.2 SBP 9900 HOLD

The SBP 9900 hold facilities allow both the '9900 and external devices to share a common memory. To gain memory-bus control, an external device requiring direct memory access (DMA) sends a hold request (HOLD) to the SBP 9900. When the next available non-memory cycle occurs, the SBP 9900 enters a hold state and signals its surrender of the memory-bus to the external device via a hold acknowledge (HOLDA). Receiving the hold acknowledgement, the external device proceeds to utilize the common memory. After its memory requirements have been satisfied, the external device returns memory-bus control to the SBP 9900 by releasing HOLD.

When HOLD becomes active (logic level LOW), the SBP 9900 enters a hold state at the beginning of the next available non-memory cycle as shown below. Upon entering a hold state, HOLDA becomes active (pulled to logic level HIGH) with the following signals pulled to a HIGH logic level by the individual pull-up resistors tied to each respective open-collector output: DBIN, MEMEN, WE, A0 through A14, and D0 through D15. When HOLD becomes inactive, the SBP 9900 exits the hold state and regains memory-bus control. If HOLD becomes active during a CRU operation, the SBP 9900 uses an extra clock cycle after the deactivation of HOLD to reassert the CRU address thereby providing the normal setup time for the CRU-bit transfer.

2.9.3 SBP 9900 CRU

The transfer of two data-bits from memory to a peripheral CRU device, and the transfer of one data-bit from a peripheral CRU device to memory, is shown in Figure 14. To transfer a data-bit to a peripheral CRU device, the SBP 9900 outputs the corresponding CRU-bit-address on address bus bits A3 through A14 and the respective data-bit on CRUOUT. During the second clock cycle of the operation, the SBP 9900 outputs a pulse, on CRUCLK, indicating to the peripheral CRU device the presence of a data-bit. This process is repeated until transfer of the entire field of data-bits specified by the CRU instruction has been accomplished. To transfer a data-bit from a peripheral CRU device, the SBP 9900 outputs the corresponding CRU-bit-Address on address bus bits A3 through A14 and receives the respective data-bit on CRUCLK pulses occur during a CRU input operation.

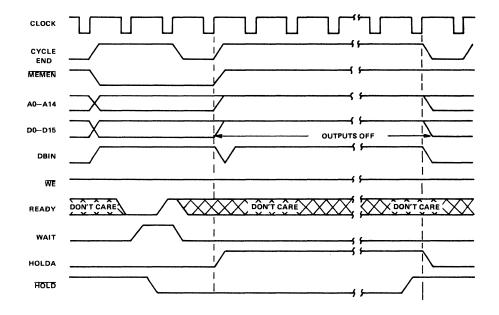
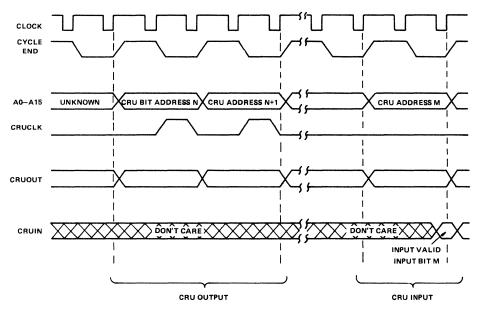



FIGURE 13 - SBP 9900 HOLD TIMING

3. 9900 INSTRUCTION SET

3.1 DEFINITION

Each 9900 instruction performs one of the following operations:

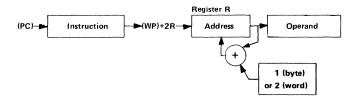
- Arithmetic, logical, comparison, or manipulation operations on data
- Loading or storage of internal registers (program counter, workspace pointer, or status)
- Data transfer between memory and external devices via the CRU
- Control functions.

3.2 ADDRESSING MODES

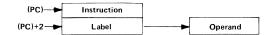
The 9900 instructions contain a variety of available modes for addressing random-memory data (e.g., program parameters and flags), or formatted memory data (character strings, data lists, etc.). The following figures graphically describe the derivation of the effective address for each addressing mode. The applicability of addressing modes to particular instructions is described in Section 3.5 along with the description of the operations performed by the instruction. The symbols following the names of the addressing modes [R, *R, *R+, @ LABEL, or @ TABLE (R)] are the general forms used by 9900 assemblers to select the addressing mode for register R.

3.2.1 WORKSPACE REGISTER ADDRESSING R

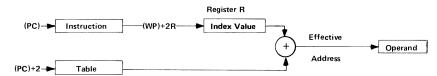
Workspace Register R contains the operand.


3.2.2 WORKSPACE REGISTER INDIRECT ADDRESSING *R

Workspace Register R contains the address of the operand.


3.2.3 WORKSPACE REGISTER INDIRECT AUTO INCREMENT ADDRESSING *R+

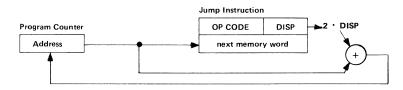
Workspace Register R contains the address of the operand. After acquiring the operand, the contents of workspace register R are incremented.


3.2.4 SYMBOLIC (DIRECT) ADDRESSING @ LABEL

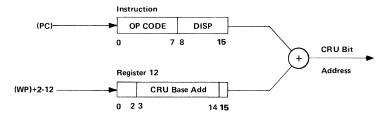
The word following the instruction contains the address of the operand.

3.2.5 INDEXED ADDRESSING @ TABLE (R)

The word following the instruction contains the base address. Workspace register R contains the index value. The sum of the base address and the index value results in the effective address of the operand.


3.2.6 IMMEDIATE ADDRESSING

The word following the instruction contains the operand.


3.2.7 PROGRAM COUNTER RELATIVE ADDRESSING

The 8-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and added to the updated contents of the program counter. The result is placed in the PC.

3.2.8 CRU RELATIVE ADDRESSING

The 8-bit signed displacement in the right byte of the instruction is added to the CRU base address (bits 3 through 14 of the workspace register 12). The result is the CRU address of the selected CRU bit.

3.3 TERMS AND DEFINITIONS

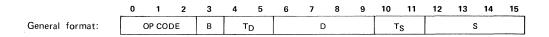
The terms used in describing the instructions of the 9900 are defined in Table 4.

TERM	DEFINITION
В	Byte indicator (1=byte, 0 = word)
с	Bit count
D	Destination address register
DA	Destination address
IOP	Immediate operand
LSB(n)	Least significant (right most) bit of (n)
MSB(n)	Most significant (left most) bit of (n)
N	Don't care
PC	Program counter
Result	Result of operation performed by instruction
s	Source address register
SA	Source address
ST	Status register
STn	Bit n of status register
т _D	Destination address modifier
Τ _S	Source address modifier
W	Workspace register
WRn	Workspace register n
(n)	Contents of n
a→b	a is transferred to b
Ini	Absolute value of n
+	Arithmetic addition
-	Arithmetic subtraction
AND	Logical AND
OR	Logical OR
Ð	Logical exclusive OR
n	Logical complement of n

TABLE 4 TERM DEFINITIONS

3.4 STATUS REGISTER

The status register contains the interrupt mask level and information pertaining to the instruction operation. Table 5 explains the bit indications.


	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
s	то	ST1	ST2	ST3	ST4	ST5	ST6		not	used	(=0)		ST 12	ST 13	ST14	ST 15
	L>	A >	=	С	0	Р	x						I	nterrup	ot Mask	c l

BIT	NAME	INSTRUCTION	CONDITION TO SET BIT TO 1
ST0	LOGICAL	C,CB	If MSB(SA) = 1 and MSB(DA) = 0, or if MSB(SA) = MSB(DA)
	GREATER		and MSB of $[(DA)-(SA)] = 1$
	THAN	CI	If MSB(W) = 1 and MSB of IOP = 0, or if MSB(W) = MSB of
			IOP and MSB of $[IOP-(W)] = 1$
		ABS	If (SA) ≠ 0
		All Others	If result ≠ 0
ST1	ARITHMETIC	С,СВ	If MSB(SA) = 0 and MSB(DA) = 1, or if MSB(SA) = MSB(DA)
	GREATER		and MSB of $[(DA)-(SA)] = 1$
	THAN	СІ	If MSB(W) = 0 and MSB of IOP = 1, or if MSB(W) = MSB of
			IOP and MSB of $[IOP-(W)] = 1$
		ABS	If MSB(SA) = 0 and (SA) \neq 0
		All Others	If MSB of result = 0 and result \neq 0
ST2	EQUAL	C, CB	If (SA) = (DA)
		C1	If (W) = IOP
		coc	If (SA) and $(\overline{DA}) = 0$
		czc	If (SA) and $(DA) = 0$
		тв	If CRUIN = 1
		ABS	If (SA) = 0
		All Others	If result = 0
ST3	CARRY	A, AB, ABS, AI, DEC,	
		DECT, INC, INCT,	If CARRY OUT = 1
		NEG, S, SB	
		SLA, SRA, SRC, SRL	If last bit shifted out = 1
ST4	OVERFLOW	A, AB	If MSB(SA) = MSB(DA) and MSB of result \neq MSB(DA)
		AI	If MSB(W) = MSB of IOP and MSB of result \neq MSB(W)
		S, SB	If MSB(SA) \neq MSB(DA) and MSB of result \neq MSB(DA)
		DEC, DECT	If MSB(SA) = 1 and MSB of result = 0
		INC, INCT	If $MSB(SA) = 0$ and MSB of result = 1
		SLA	If MSB changes during shift
		DIV	If MSB(SA) = 0 and MSB(DA) = 1, or if MSB(SA) = MSB(DA)
			and MSB of $[(DA)-(SA)] = 0$
		ABS, NEG	If (SA) = 800016
ST5	PARITY	CB, MOVB	If (SA) has odd number of 1's
-		LDCR, STCR	If $1 \leq C \leq 8$ and (SA) has odd number of 1's
		AB, SB, SOCB, SZCB	If result has odd number of 1's
ST6	XOP	XOP	If XOP instruction is executed
ST12-ST15	INTERRUPT	LIMI	If corresponding bit of IOP is 1
	MASK	RTWP	If corresponding bit of WR15 is 1

TABLE 5 STATUS REGISTER BIT DEFINITIONS

3.5 INSTRUCTIONS

3.5.1 Dual Operand Instructions with Multiple Addressing Modes for Source and Destination Operand

If B = 1 the operands are bytes and the operand addresses are byte addresses. If B = 0 the operands are words and the operand addresses are word addresses.

T _S OR T _D	S OR D	ADDRESSING MODE	NOTES
00	0, 1, 15	Workspace register	1
01	0, 1, 15	Workspace register indirect	
10	0	Symbolic	4
10	1, 2, 15	Indexed	2,4
11	0, 1, 15	Workspace register indirect auto-increment	3

The addressing mode for each operand is determined by the T field of that operand.

NOTES: 1. When a workspace register is the operand of a byte instruction (bit 3 = 1), the left byte (bits 0 through 7) is the operand and the right byte (bits 8 through 15) is unchanged.

2. Workspace register 0 may not be used for indexing.

3. The workspace register is incremented by 1 for byte instructions (bit 3 = 1) and is incremented by 2 for word instructions (bit 3 = 0). 4. When $T_S = T_D = 10$, two words are required in addition to the instruction word. The first word is the source operand base address and the second word is the destination operand base address.

MIELONIO	OP	сс	DE	в	MEANING	RESULT	STATUS	
MNEMONIC	0	1	2	3	MEANING	COMPARED TO 0	BITS	DESCRIPTION
A	1	0	1	0	Add	Yes	0-4	$(SA)+(DA) \rightarrow (DA)$
AB	1	0	1	1	Add bytes	Yes	0-5	(SA)+(DA) → (DA)
С	1	0	0	0	Compare	No	0-2	Compare (SA) to (DA) and set appropriate status bits
СВ	1	0	0	1	Compare bytes	No	0-2,5	Compare (SA) to (DA) and set appropriate status bits
S	0	1	1	0	Subtract	Yes	0-4	(DA) (SA) -> (DA)
SB	0	1	1	1	Subtract bytes	Yes	0-5	(DA) – (SA) → (DA)
SOC	1	1	1	0	Set ones corresponding	Yes	0-2	(DA) OR (SA) → (DA)
SOCB	1	1	1	1	Set ones corresponding bytes	Yes	0-2,5	(DA) OR (SA) → (DA)
SZC	0	1	0	0	Set zeroes corresponding	Yes	0-2	(DA) AND (SA) → (DA)
SZCB	0	1	0	1	Set zeroes corresponding bytes	Yes	0-2,5	(DA) AND (SA) → (DA)
MOV	1	1	0	0	Move	Yes	0-2	$(SA) \rightarrow (DA)$
MOVB	1	1	0	1	Move bytes	Yes	0-2,5	$(SA) \rightarrow (DA)$

3.5.2 Dual Operand Instructions with Multiple Addressing Modes for the Source Operand and Workspace Register Addressing for the Destination

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:			ор со	DE				D			т	s		s	5	

The addressing mode for the source operand is determined by the T_{S} field.

т _s	S	ADDRESSING MODE	NOTES
00	0, 1, 15	Workspace register	
01	0, 1, 15	Workspace register indirect	
10	0	Symbolic	
10	1, 2, 15	Indexed	• 1
11	0, 1, 15	Workspace register indirect auto increment	2

NOTES: 1, Workspace register 0 may not be used for indexing.

2. The workspace register is incremented by 2.

MNEMONIC	OP CODE 0 1 2 3 4 5	MEANING	RESULT COMPARED TO 0	STATUS BITS AFFECTED	DESCRIPTION
COC	001000	Compare ones	No	2	Test (D) to determine if 1's are in each bit
czc	001001	corresponding Compare zeros corresponding	No	2	position where 1's are in (SA). If so, set ST2. Test (D) to determine if 0's are in each bit position where 1's are in (SA). If so, set ST2.
XOR	001010	Exclusive OR	Yes	0-2	$(D) \bigoplus (SA) \to (D)$
MPY .	001110	Multiply	No		Multiply unsigned (D) by unsigned (SA) and place unsigned 32-bit product in D (most significant) and D+1 (least significant). If WR15 is D, the next word in memory after WR15 will be used for the least significant half of the product.
DIV	001111	Divide	No	4	If unsigned (SA) is less than or equal to unsigned (D), perform no operation and set ST4. Otherwise, divide unsigned (D) and (D+1) by unsigned (SA). Quotient \rightarrow (D), remainder \rightarrow (D+1). If D = 15, the next word in memory after WR 15 will be used for the remainder.

3.5.3 Extended Operation (XOP) Instruction

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:	0	0	1	0	1	1		D			т	s		S	3	

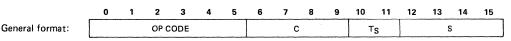
The T_S and S fields provide multiple mode addressing capability for the source operand. When the XOP is executed, ST6 is set and the following transfers occur: $(40_{16} + 4D) \rightarrow (WP)$

$(4016 \pm 40) \rightarrow (WP)$
$(42_{16} + 4D) \rightarrow (PC)$
SA \rightarrow (new WR11)
(old WP) → (new WR13)
(old PC) → (new WR14)
(old ST) \rightarrow (new WR15)

The 9900 does not test interrupt requests (INTREQ) upon completion of the XOP instruction.

3.5.4 Single Operand Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:					OP C	ODE					т	s		5	5	


The T_S and S fields provide multiple mode addressing capability for the source operand.

MNEMONIC	OP CODE 0 1 2 3 4 5 6 7 8 9	MEANING	RESULT COMPARED TO 0	STATUS BITS AFFECTED	DESCRIPTION
В	0000010001	Branch	No	-	$SA \rightarrow (PC)$
BL	0000011010	Branch and link	No		$(PC) \rightarrow (WR11); SA \rightarrow (PC)$
BLWP	0 0 0 0 0 1 0 0 0 0	Branch and load	No	-	$(SA) \rightarrow (WP); (SA+2) \rightarrow (PC);$
		workspace pointer			(old WP) \rightarrow (new WR 13);
					(old PC) \rightarrow (new WR14);
					(old ST) \rightarrow (new WR15);
]					the interrupt input (INTREQ) is not
					tested upon completion of the
					BLWP instruction.
CLR	0000010011	Clear operand	No	_	0→(SA)
SETO	0000011100	Set to ones	No	-	FFFF16→(SA)
INV	0000010101	Invert	Yes	0-2	$(\overline{SA}) \rightarrow (SA)$
NEG	0000010100	Negate	Yes	0-4	–(SA) → (SA)
ABS	0000011101	Absolute value*	No	0-4	(SA) → (SA)
SWPB	0000011011	Swap bytes	No	-	(SA), bits 0 thru 7 → (SA), bits
					8 thru 15; (SA), bits 8 thru 15 \rightarrow
					(SA), bits 0 thru 7.
INC	0000010110	Increment	Yes	0-4	$(SA) + 1 \rightarrow (SA)$
INCT	0000010111	Increment by two	Yes	0-4	(SA) + 2→(SA)
DEC	0000011000	Decrement	Yes	0-4	$(SA) - 1 \rightarrow (SA)$
DECT	0000011001	Decrement by two	Yes	0-4	(SA) - 2→(SA)
X†	0000010010	Execute	No	-	Execute the instruction at SA.

* Operand is compared to zero for status bit.

[†] If additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these words will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (IAQ) will not be true when the 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

3.5.5 CRU Multiple-Bit Instructions

The C field specifies the number of bits to be transferred. If C = 0, 16 bits will be transferred. The CRU base register (WR12, bits 3 through 14) defines the starting CRU bit address. The bits are transferred serially and the CRU address is incremented with each bit transfer, although the contents of WR12 is not affected. T_S and S provide multiple mode addressing capability for the source operand. If 8 or fewer bits are transferred (C = 1 through 8), the source address is a byte address. If 9 or more bits are transferred (C = 0, 9 through 15), the source address is a word address. If the source is addressed in the workspace register indirect auto increment mode, the workspace register is incremented by 1 if C = 1 through 8, and is incremented by 2 otherwise.

MNEMONIC	OP CODE	MEANING	RESULT COMPARED	STATUS	DESODIPTION
MINEMONIC	012345	MEANING	TO 0	BITS	DESCRIPTION
LDCR	001100	Load communcation register	Yes	0-2,5 [†]	Beginning with LSB of (SA), transfer the specified number of bits from (SA) to the CRU.
STCR	001101	Store communcation register	Yes	0-2,5 [†]	Beginning with LSB of (SA), transfer the specified number of bits from the CRU to (SA). Load unfilled bit positions with 0.

 $^{\dagger}\text{ST5}$ is affected only if 1 \leq C \leq 8.

3.5.6 CRU Single-Bit Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:				OP CC	DDE						SIGNE	DDIS	PLACE	MENT		

CRU relative addressing is used to address the selected CRU bit.

MNEMONIC	OP CODE 0 1 2 3 4 5 6 7	MEANING	STATUS BITS AFFECTED	DESCRIPTION
SBO	00011101	Set bit to one		Set the selected CRU output bit to 1.
SBZ	00011110	Set bit to zero	-	Set the selected CRU output bit to 0.
ТВ	00011111	Test bit	2	If the selected CRU input bit = 1, set ST2.

3.5.7 Jump Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:				OP CC	DE						D	SPLA	CEMEN	т		

Jump instructions cause the PC to be loaded with the value selected by PC relative addressing if the bits of ST are at specified values. Otherwise, no operation occurs and the next instruction is executed since PC points to the next instruction. The displacement field is a word count to be added to PC. Thus, the jump instruction has a range of -128 to 127 words from memory-word address following the jump instruction. No ST bits are affected by jump instruction.

MNEMONIC	OP CODE	MEANING	ST CONDITION TO LOAD PC
MINEMONIC	0 1 2 3 4 5 6 7	MEANING	ST CONDITION TO LOAD FC
JEQ	0 0 0 1 0 0 1 1	Jump equat	ST2 = 1
JGT	0 0 0 1 0 1 0 1	Jump greater than	ST1 = 1
JH	0 0 0 1 1 0 1 1	Jump high	ST0 = 1 and ST2 = 0
JHE	0 0 0 1 0 1 0 0	Jump high or equal	ST0 = 1 or ST2 = 1
JL	0 0 0 1 1 0 1 0	Jump low	ST0 = 0 and $ST2 = 0$
JLE	0 0 0 1 0 0 1 0	Jump low or equal	ST0 = 0 or ST2 = 1
JLT	0 0 0 1 0 0 0 1	Jump less than	ST1 = 0 and $ST2 = 0$
JMP	0 0 0 1 0 0 0 0	Jump unconditional	unconditional
JNC	0 0 0 1 0 1 1 1	Jump no carry	ST3 = 0
JNE	0 0 0 1 0 1 1 0	Jump not equal	ST2 = 0
JNO	0 0 0 1 1 0 0 1	Jump no overflow	ST4 = 0
JOC	0 0 0 1 1 0 0 0	Jump on carry	ST3 = 1
JOP	0 0 0 1 1 1 0 0	Jump odd parity	ST5 = 1

3.5.8 Shift Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:				OP CC						C	;			v	v	

If C = 0, bits 12 through 15 of WR0 contain the shift count. If C = 0 and bits 12 through 15 of WR0 = 0, the shift count is 16.

			0	PC	:00	DE				RESULT COMPARED	STATUS BITS	DESCRIPTION
MNEMONIC	0	1	2	3	4	5	6	7	MEANING	TO 0	AFFECTED	DESCRIPTION
SLA	0	0	0	0	1	0	1	0	Shift left arithmetic	Yes	0-4	Shift (W) left. Fill vacated bit positions with 0.
SRA	0	0	0	0	1	0	0	0	Shift right arithmetic	Yes	0-3	Shift (W) right. Fill vacated bit positions with original MSB of (W).
SRC	0	0	0	0	1	0	1	1	Shift right circular	Yes	0-3	Shift (W) right. Shift previous LSB into MSB.
SRL	0	0	0	0	1	0	0	1	Shift right logical	Yes	0-3	Shift (W) right. Fill vacated bit positions with O's.

3.5.9 Immediate Register Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:					о	P COD	E					N		١	v	
									IOP							

MNEMONIC	OP CODE 0 1 2 3 4 5 6 7 8 9 10	MEANING	RESULT COMPARED TO 0	STATUS BITS AFFECTED	DESCRIPTION
AI	00000010001	Add immediate	Yes	0-4	$(W) + IOP \rightarrow (W)$
ANDI	00000010010	AND immediate	Yes	0-2	(W) AND IOP → (W)
CI	00000010100	Compare	Yes	0-2	Compare (W) to IOP and set
		immediate			appropriate status bits
LI	00000010000	Load immediate	Yes	0-2	$IOP \rightarrow (W)$
ORI	00000010011	OR immediate	Yes	0-2	(W) OR IOP → (W)

3.5.10 Internal Register Load Immediate Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:						OP CC	DDE							N		
								IOP								

				(OP (200	DE					MEANING	DESOBUTION
MNEMONIC	0	1	2	3	4	5	6	7	8	9	10	MEANING	DESCRIPTION
LWPI	0	0	0	0	0	0	1	0	1	1	1	Load workspace pointer immediate	IOP \rightarrow (WP), no ST bits affected
LIMI	0	0	0	0	0	0	1	1	0	0	0	Load interrupt mask	IOP, bits 12 thru 15 → ST12
													thru ST15

3.5.11 Internal Register Store Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:						OP CO	DDE					N		V	v	

No ST bits are affected.

MNEMONIC				C)P C	00	θE					MEANING	DESCRIPTION
MINEWONIC	0	1	2	3	4	5	6	7	8	9	10	MEANING	DESCRIPTION
STST	0	0	0	0	0	0	1	0	1	1	0	Store status register	$(ST) \rightarrow (W)$
STWP	0	0	0	0	0	0	1	0	1	0	1	Store workspace pointer	$(WP) \rightarrow (W)$

3.5.12 Return Workspace Pointer (RTWP) Instruction

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:	0	0	0	0	0	0	1	1	1	0	0			N		

The RTWP instruction causes the following transfers to occur:

 $(WR15) \rightarrow (ST)$ $(WR14) \rightarrow (PC)$ $(WR13) \rightarrow (WP)$

3.5.13 External Instructions

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:						OP CC	DDE							N		

External instructions cause the three most-significant address lines (A0 through A2) to be set to the below-described levels and the CRUCLK line to be pulsed, allowing external control functions to be initiated.

	OP CODE		STATUS			DRE	SS
MNEMONIC	0 1 2 3 4 5 6 7 8 9 10	MEANING	BITS	DESCRIPTION		BUS	
	0123430,0310		AFFECTED		A0	A1	A2
IDLE	0 0 0 0 0 0 1 1 0 1 0	Idle	-	Suspend TMS 9900	L	н	L
				instruction execution until			
				an interrupt, LOAD, or			
				RESET occurs			
RSET	0000001101 1	Reset	12-15	$0 \rightarrow ST12$ thru ST15	L	н	н
CKOF	00000011110	User defined			н	н	L
CKON	00000011101	User defined			н	L	н
LREX	0000011111	User defined			н	н	н

3.6 MICROINSTRUCTION CYCLE

The SBP 9900 includes circuitry which will indicate the completion of a microinstruction cycle. Designated as the CYCEND function, it provides CPU status that can simplify system design. The CYCEND output will go to a low logic level as a result of the low-to-high transition of each clock pulse which initiates the last clock of a microinstruction.

3.7 SBP 9900 INSTRUCTION EXECUTION TIMES

Instruction execution times for the SBP 9900 are a function of:

- 1) Clock cycle time, t_c
- 2) Addressing mode used where operands have multiple addressing mode capability
- 3) Number of wait states required per memory access.

The following Table 6 lists the number of clock cycles and memory accesses required to execute each SBP 9900 instruction. For instructions with multiple addressing modes for either or both operands, the table lists the number of clock cycles and memory accesses with all operands addressed in the workspace-register mode. To determine the additional number of clock cycles and memory accesses required for modified addressing, add the appropriate values from the referenced tables. The total instruction-execution time for an instruction is:

$T = t_c (C + W \cdot M)$

where:

T = total instruction execution time;

- t_c = clock cycle time;
- C = number of clock cycles for instruction execution plus address modification;
- W = number of required wait states per memory access for instruction execution plus address modification;
- M = number of memory accesses.

Т	ABLE 6
INSTRUCTION	EXECUTION TIMES

INSTRUCTION	CLOCK CYCLES	MEMORY	ADDRI MODIFIC		INS	TRUCTION	CLOCK CYCLES	MEMORY		
	С	м	SOURCE				С	м	SOURCE	
A	14	4	А	A	LW	PI	10	2	-	
AB	14	4	в	в	MO	v	14	4	A	A
ABS (MSB = 0)	12	2	A	-	МО	VB	14	4	в	в
(MSB ≕ 1)	14	3	A	-	MP	Y	52	5	A	-
AI	14	4	-	-	NE	G	12	3	A	- 1
ANDI	14	4		-	OR	1	14	4	-	-
в	8	2	A		RS	ΞT	12	1		-
BL	12	3	A	-	RT	WP	14	4	- 1	
BLWP	26	6	A	-	s		14	4	A	A
с	14	3	A	A	SB		14	4	в	в
СВ	14	3	в	в	SBO)	12	2	_	12
CI	14	3	_		SB2	2	12	2	-	-
СКОЕ	12	1	-	-	SE	ю	10	3	A	- 1
CKON	12	1	_	_	Shi	ft (C≠0)	12+2C	. 3	-	-
CLR	10	3	A	_		0, Bits 12-15		-		
COC	14	3	A	_		of WRO=0)	52	4	-	-
czc	14	3	A	_		0, Bits 12-15	02		ļ	1
DEC	10	3	A	-		of WRP=N≠0)	20+2N	4	_	-
DECT	10	3	A	_	so		14	4	А	A
DIV (ST4 is set)	16	3	A	_	so		14	4	в	в
VV (ST4 is reset)	92-124	6	A			CR (C=0)	60	4	A	
DLE	12	1	_	_		(1≤C≤7)	42	4	В	
INC	10	3	А	-		(C=8)	44	4	В	-
INCT	10	3	A	-	1	(9≤C≤15)	58	4	A	-
INV	10	3	A	-	STS		8	2	1 2	-
Jump (PC is		-			STV		8	2	-	
changed)	10	1	_		sw		10	3	A	_
PC is not					SZC		14	4	A	A
changed)	8	1		_	SZC		14	4	в	В
LDCR (C = 0)	52	3	A		ТВ	-	12	2	_	-
(1≤C≤8)	20+2C	3	В	-	x.	•	8	2	A	-
(9 ≤ C ≤ 15)	20+2C	3	A		xo		36	8	A	
LI	12	3	_	-	xo		14	4	A	-
LIMI	14	2							1	1
LREX	12	1	-	-						
RESET function	26	5		-	Unc	lefined op codes:				
OAD function	22	5		-	00	00-01 F F ,0320-	6	1	1	
Interrupt context					0	33F,0C00-0FFF,	0	'	-	-
switch	22	5		-	0	780-07FF				Į –

*Execution time is dependent upon the partial quotient after each clock cycle during execution.

** Execution time is added to the execution time of the instruction located at the source address minus 4 clock cycles and 1 memory access time. [†]The letters A and B refer to the respective tables that follow.

ADDRESS MODIFICATION - TABLE A

ADDRESSING MODE	CLOCK CYCLES	MEMORY ACCESSES
	<u> </u>	М
WR (T _S or T _D = 00)	0	0
WR indirect (T _S or T _D = 01)	4	1
WR indirect auto-		
increment (T _S or T _D = 11)	8	2
Symbolic (T _S or T _D = 10,		
S or D = 0)	8	1
Indexed (T _S or T _D = 10,		
S or D ≠ 0)	8	2

ADDRESS MODIFICATION - TABLE B

ADDRESSING MODE	CLOCK CYCLES C	MEMORY ACCESSES M
WR (T _S or T _D = 00)	0	0
WR indirect (T _S or T _D = 01)	4	1
WR indirect auto- increment (T _S or T _D = 11)	6	2
Symbolic ($T_S \text{ or } T_D = 10$,		
S or D = 0)	8	1
Indexed (T _S or T _D = 10, S or D ≠ 0)	8	2

As an example, the instruction MOVB is used in a system with $t_c = 0.5 \ \mu s$ and no wait states are required to access memory. Both operands are addressed in the workspace register mode:

 $T = t_c (C + W \cdot M) = 0.5 (14 + 0 \cdot 4) \mu s = 7 \mu s.$

If two wait states per memory access were required, the execution time is:

T = 0.5 (14 + 2.4) μ s = 11 μ s.

If the source operand was addressed in the symbolic mode and two wait states were required:

 $T = t_{C} (C + W \cdot M)$ C = 14 + 8 = 22M = 4 + 1 = 5 $T = 0.5 (22 + 2 \cdot 5) <math>\mu$ s = 16 μ s.

4. INTERFACING

The input/output (I/O) accommodations have been designed for TTL compatibility. Direct interfacing, supportable by the entire families of catalog devices, is shown in Figure 15.

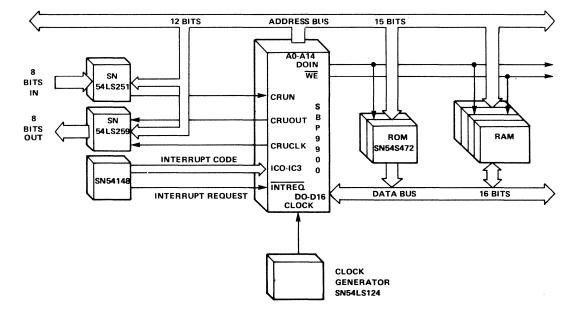
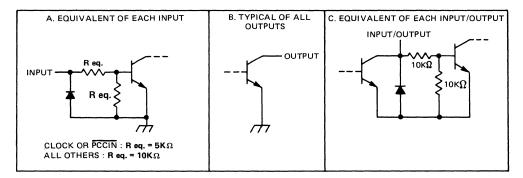



FIGURE 15 - MINIMUM SBP 9900 SYSTEM

4.1 INPUT CIRCUIT

The input circuit used on the SBP 9900 is basically an RTL configuration which has been modified for TTL compatibility as shown in Figure 16A. An input-clamping diode is incorporated to limit negative excursions (ringing) when the SBP 9900 is on the receiving end of a transmission line; an input switching threshold of nominally +1.5 volts has been specified for improved noise immunity. This threshold is achieved via two resistors which function as a voltage divider to increase the one VBE threshold of the I^2L input transistor to +1.5 volts. Since this input circuit is independent of injector current, input threshold compatibility is maintained over the entire speed/power performance range.

The input circuit characteristics for input current versus input voltage are shown in Figure 17. The 10K and 20K ohm load lines and threshold knee at +1.5 volts provide a high-impedance characteristic to reduce input loading and improve the low-logic level input noise immunity over some standard TTL inputs. Full compatibility is maintained with virtually all 5 volt logic families even when the SBP 9900 is powered down (injector current reduced).

4.1.1 Sourcing Inputs

The inputs may be sourced directly by most 5 volt logic families. Five volt functions which feature internal pull-up resistors at their outputs require no external interface components; five volt functions which feature open-collector outputs generally require external pull-up resistors.

4.1.2 Terminating Unused Inputs

Inputs which are selected to be hardwired to a logic-level low may be connected directly to

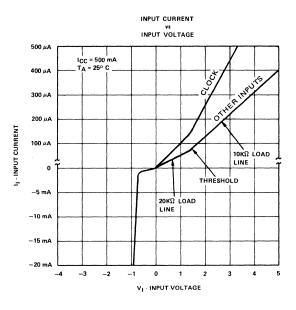


FIGURE 17 - TYPICAL INPUT CHARACTERISTICS

ground. Inputs which are selected to be hardwired to a logic-level high must be tied, via a current limiting (pull-up) resistor, to a logic-level-high low-impedance voltage source such as V_{CC}. A single transient protecting resistor may be utilized common to (N) inputs.

4.2 OUTPUT CIRCUIT

The output circuit selected for the SBP 9900 is an injected open-collector transistor shown in Figure 16B. Since this transistor is injected, output sourcing capability is directly related to injector current. In other words, the number of loads which may be sourced by an SBP 9900 output is directly reduced as injector current is reduced.

The output circuit characteristic for logic-level low output voltage (VOL) versus logic-level low output current (IOL) is shown in Figure 18. At rated injector current, the SBP 9900 output circuit offers a low-level output voltage of typically 220 mV.

The output circuit characteristics for 1) logic-level high output voltage (VOH) and current (IOH), 2) rise times, and 3) next stage input noise immunity, are a function of the load circuit being sourced. The load circuit may be either:

 A) the direct input, if no source current is required, of a five-volt logic family function,

or, for greater noise immunity and improved rise times,

B) the direct input of a five-volt logic family function in conjunction with a discrete pull-up resistor.

When a discrete pull-up resistor (R_L) is utilized, the fanout requirements placed on a particular SBP 9900 output restrict both the maximum and minimum value

OUTPUT CURRENT 400 ICC = 500 mA TA = 25°C 350 ٤ 300 VO - OUTPUT VOLTAGE 250 200 150 100 50 0 5 10 15 20 25 IO - OUTPUT CURRENT - mA

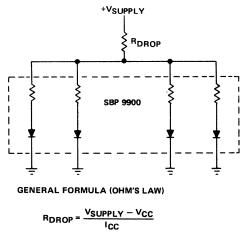

OUTPUT VOLTAGE

FIGURE 18 - TYPICAL OUTPUT CHARACTERISTICS

of R_L. Techniques for calculating $R_{L(max)}$ and $R_{L(min)}$ respectively are explained in the SBP 0400A, SBP 0401A data manual in Chapter 2 of this data book.

5. POWER SOURCE

1²L is a current-injected logic. When placed across a curve tracer, the processor will resemble a silicon switching diode. Any voltage or current source capable of supplying the desired current at the injector node voltage required will suffice. A dry-cell battery, a 5-volt TTL power supply, a programmable current supply (for power-up/power-down operation) – literally whatever power source is convenient can be used for most cases. For example, if a 5-volt TTL power supply is to be used, a series dropping resistor would be connected between the 5-volt supply and the injector pins of the l²L device, as illustrated in Figure 19, to select the desired operating current.

EXAMPLE FOR VSUPPLY = 5V, AND ICC = 500 mA:

$$R_{DROP} = \frac{5 - 1.05}{0.5} = \frac{3.95}{0.5} = 7.9 \text{ OHMS}$$

FIGURE 19 - INJECTOR CURRENT CALCULATIONS

Operating from a constant current power source, the SBP 9900 may be powered-up/powered-down with complete maintenance of data integrity to execute instructions over a speed/power range spanning several orders of user-selectable injector-supplycurrent range as illustrated in Figure 21.

Figures 22 and 23 show the typical injector node voltages which occur across the temperature and injector current ranges.

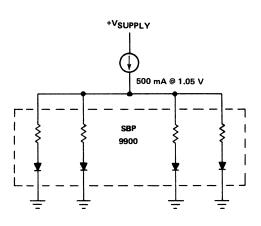


FIGURE 20 - INJECTOR CURRENT SOURCE

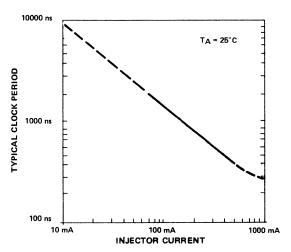
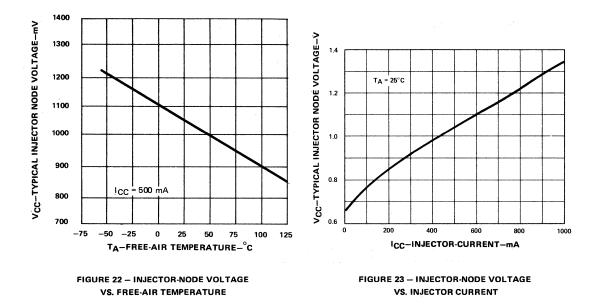



FIGURE 21 - SBP 9900 CLOCK PERIOD VS. INJECTOR CURRENT

577

6. ELECTRICAL AND MECHANICAL SPECIFICATIONS

6.1 SBP 9900 RECOMMENDED OPERATING CONDITIONS, UNLESS OTHERWISE NOTED ICC = 500 mA

		MIN	NOM	MAX	UNIT
Supply current, ICC		450	500	550	mA
High-level output voltage, VOH				5.5	V
Low-level output current, IOL				20	mA
Clock frequency, fclock		0		2	MHz
Width of electronics t	High (67%) (V _{IH} = 2.5 V max)	330			
Width of clock pulse, t _W	Low (33%)	170			ns
Clock rise time, t _r			10		ns
Clock fall time, t _f		1	10		ns
	HOLD	2101			
	READY	1401			1
	D0 D15	851			
Setup time, t _{su} (see Figure 24)	CRUIN	651	•		ns
	INTREQ	25↑			
	IC0 – IC3	25↑			1
	HOLD	25↑			
	READY	651			
Hold time to (see Figure 24)	D0 – D15	65↑			
Hold time, t _h (see Figure 24)	CRUIN	55↑			ns
	INTREQ	901			
	IC0 – IC3	106			
Operating free-air temperature, TA	SBP 9900 M/N	55		125	°c
operating free on compositions, r A	SBP 9900E	-40		85	

Thising edge of clock pulse is reference.

32

TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas instruments reserves the right to change specifications for this product in any manner without notice.

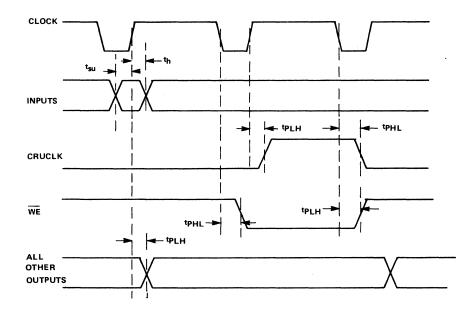
6.2 SBP 9900 ELECTRICAL CHARACTERISTICS (OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE, UNLESS OTHERWISE NOTED)

	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	UNIT
VIH	High-level input volta	ge			2			V
VIL	Low-level input volta	ge					0.8	V
VIK	Input clamp voltage		ICC = MIN,	lj = -12 mA			-1.5	V
юн	High-level output cur	rent	I _{CC} = 500 mA, V _{IL} = 0.8 V,	V _{IH} = 2 V V _{OH} = 5.5 V			400	μA
VOL	Low-level output volt	age	I _{CC} = 500 mA, V _{IL} = 0.8 V,	V _{IH} = 2 V I _{OL} = 20 mA			0.4	v
1.	Input current	Clock	I _{CC} = 500 mA,	Vi = 2.4 V		480	600	
li –	mput current	All other inputs	100 mA,	v] - 2.4 v		240	300	μA

[†]For conditions shown as MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at I_{CC} = 500 mA, T_A = 25°C.

6.3 SBP 9900 SWITCHING CHARACTERISTICS, I_{CC} = 500 mA, (OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE UNLESS OTHERWISE NOTED) SEE FIGURES 24 AND 25.

PARAMETER	FROM	то	TEST CONDITIONS	MIN	түр‡	MAX	UNIT
f _{max}	MAXIMUM	CLOCK FREQUENCY		2			MHz
tPLH or tPHL	CLOCK	ADDRESS BUS (A0 – A14)			170	225 ·	ns
tPLH or tPHL	CLOCK	DATA BUS (D0 - D15)			170	26 5	ns
tPLH or tPHL	CLOCK	WRITE ENABLE (WE)			220	295	ns
tPLH or tPHL	CLOCK	CYCLE END (CYCEND)			170	225	ns
tPLH or tPHL	CLOCK	DATA BUS IN (DBIN)			190	250	ns
tPLH or tPHL	CLOCK	MEMORY ENABLE (MEMEN)	C _L = 150 pF, R _L = 280 Ω		155	205.	ns
tPLH or tPHL	CLOCK	CRU CLOCK (CRUCK)			187	280	ns
tPLH or tPHL	CLOCK	CRU DATA OUT (CRUOUT)			210	265	ns
tPLH or tPHL	CLOCK	HOLD ACKNOWLEDGE (HLDA)			320	410	ns
tPLH or tPHL	CLOCK	WAIT			155	210	ns
tPLH or tPHL	CLOCK	INSTRUCTION ACQUISITION (1AQ)			155	210	ns

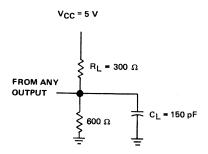
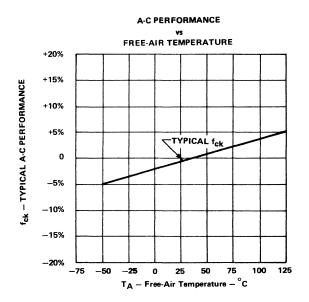

 \ddagger All typical values are at 25° C.

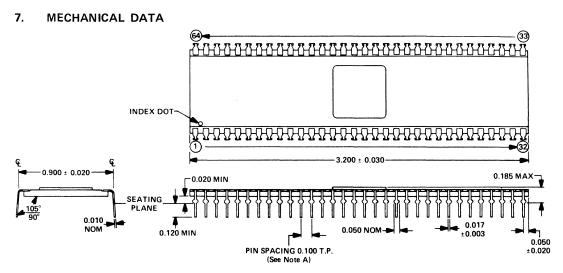
TENTATIVE DATA SHEET

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

° 33

1277


FIGURE 25 - SWITCHING TIMES LOAD CIRCUITS

6.4 CLOCK FREQUENCY VS. TEMPERATURE

Stability of the operational frequency over the full temperature range of -55°C to 125°C is illustrated in Figure 26.

NOTE A. Each pin centerline is located within 0.010 of its true longitudinal position.

8. SBP 9900 PROTOTYPING SYSTEM

8.1 HARDWARE

The TMS 9900 prototyping system enables the user to generate and debug software and to debug I/O controller interfaces. The prototyping system consists of:

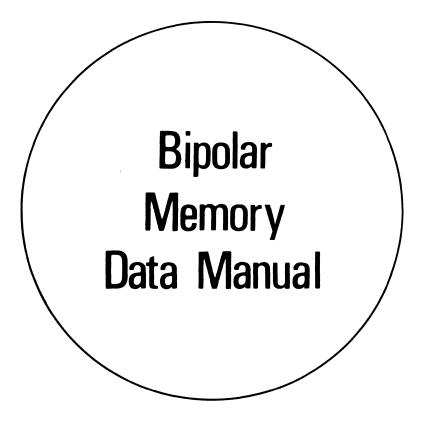
- 990/4 computer with TMS 9900 microprocessor
- 1024 bytes of ROM containing the bootstrap loader for loading prototyping system software, the front-panel and maintenance utility, and the CPU self-testing feature
- 16,896 bytes of RAM with provisions for expansion up to 57,334 bytes of RAM
- Programmable-write-protect feature for RAM
- Interface for Texas Instruments Model 733 ASR* Electronic Data Terminal with provisions for up to five additional interface moculdes

* Requires remote device control and 1200 baud EIA interface option on 733 ASR.

- Available with Texas Instruments Model 733 ASR Electronic Data Terminal
- 7-inch-high table-top chassis
- Programmer's front panel with controls for run, halt, single-instruction execute, and entering and displaying memory or register contents
- Power supply with the following voltages:
 - 5 V dc @ 20 A
 - 12 V dc @ 2 A
 - —12 V dc @ 1 A
 - –5 V dc @ 0.1 A
- Complete hardware and software documentation.

8.2 SYSTEM CONSOLE

The system console for the prototyping system is the 733 ASR, which provides keyboard entry, 30-character-per-second thermal printer, and dual cassette drives for program loading and storage.


8.3 SOFTWARE

The following software is provided on cassette for loading into the prototyping system:

- Debug Monitor Provides full control of the prototyping system during program development and includes single instruction, multiple breakpoints, and entry and display capability for register and memory contents for debugging user software under 733 ASR console control.
- One-Pass Assembler Converts source code stored on cassette to relocatable object on cassette and generates program listing. (Object is upward compatible with other 990 series assemblers).
- Linking Loader Allows loading of absolute and relocatable object modules and links object modules as they are loaded.
- Source Editor Enables user modification of both source and object from cassette with resultant storage on cassette.
- Trace Routine Allows user to monitor status of computer at completion of each instruction.
- PROM Programming/Documentation Facility Provides documentation for ROM mask generation, or communicates directly with the optional PROM Programmer Unit.

The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

SEPTEMBER 1977

TEXAS INSTRUMENTS

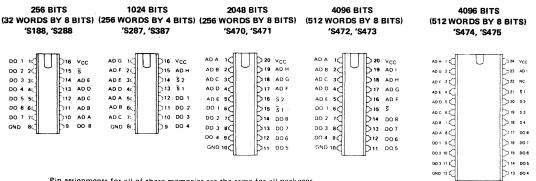
INDEX FOR SCHOTTKY TTL BIPOLAR MEMORIES

FIELD PROGRAMMABLE READ-ONLY MEMORY (PROM) LINE SUMMARY (SEE PAGES 1 AND 6)

MASK-PROGRAMMED READ-ONLY MEMORY (ROM) LINE SUMMARY

	TYPE OF	BIT SIZE	TYPICAL PE	RFORMANCE	
TYPE NUMBER	OUTPUT(S)			POWER DISSIPATION	SEE PAGE
SN54/7488A	Open-Collector	256 Bits (32 W x 8 B)	26 ns	320 mW	9
SN54/74187	Open-Collector	1024 Bits (256 W x 4 B)	40 ns	460 mW	9
SN54S/74S270	Open-Collector	2048 Bits	45	FOF 14	
SN54S/74S370	3-State	(512 W × 4 B)	- 45 ns	525 mW	9
SN54S/74S271	Open-Collector	2048 Bits	45	F05	
SN54S/74S371	3-State	(256 W x 8 B)	- 45 ns	525 mW	9
SBP 8316M/C	0-C or 10 kΩ pullup	16.384	≥350 ns	≤500 mW	16
SBP 9818M/C	Open-Collector	(2048W x 8 B)	≥150 ns	≤500 mW	10

READ/WRITE MEMORY (RAM) LINE SUMMARY


	BIT SIZE	ΟυΤΡυΤ	TYPICAL PE	FORMANCE	SEE
TYPE NUMBER	(ORGANIZATION)	CONFIGURATION	ADDRESS ACCESS TIME	POWER DISSIPATION	PAGE
SN54S/74S189(J,N) SN54S/74S289(J,N)	64 bits (16 W x 4B)	Three-state Open-Collector	25 ns	375 mW	20
SN74S201(J,N)	256 bits	Three-State	42 ns	500 mW	24
SN74S301(J,N)	(256 W x 1B)	Open-Collector	42 ns	500 mW	24
SN74S214(J,N)			40 ns	550 mW	
SN74LS214(J,N)		Three-State	65 ns	200 mW	
SN74LS215(J,N)	1024 bits		75 ns	200/100*mW	27
SN74S314(J,N)	(1024 W × 1B)		40 ns	550 mW	21
SN74LS314(J,N)		Open-Collector	75 ns	200 mW	
SN74S314(J,N)			75 ns	200/100*mW	
SN74S207(J,N)			40 ns	600 mW	
SN74LS207(J,N)	1024 bits	4 bits Three-State		200 mW	. 33
SN74S208(J,N)	(256 W × 4B)	i mee-State	40 ns	600 mW	33
SN74LS208(J,N)	Ľ		75 ns	200 mW	

FIRST-IN/FIRST-OUT (FIFO) MEMORY

TYPE NUMBER	017 0175		TYPICAL PER	FORMANCE		SEE
	BIT SIZE (ORGANIZATION)	DATA	RATES	FALL	POWER	PAGE
	(URGANIZATION)	INPUT	OUTPUT	THROUGH	DISSIPATION	FAGE
SN74S225	80 bits (16 W x 5B)	d-c to 10 MHz	d-c to 10 MHz	190 ns	400 mW	39

- Titanium-Tungsten (Ti-W) Fuse Links for Fast, Low-Voltage, Reliable Programming
- All Schottky-Clamped PROM's Offer: . Fast Chip Select to Simplify System Decode Choice of Three-State or Open-Collector Outputs P-N-P Inputs for Reduced Loading on System Buffers/Drivers
- Full Decoding and Chip Select Simplify System Design
- **Applications Include:** Microprogramming/Firmware Loaders Code Converters/Character Generators Translators/Emulators Address Mapping/Look-Up Tables

	R (PACKAGES)	BIT SIZE	OUTPUT	TYPICAL PE	RFORMANCE
-55°C to 125°C	0°C to 70°C	(ORGANIZATION)	CONFIGURATION	ADDRESS ACCESS TIME	POWER DISSIPATION
SN54S188(J, W)	SN74S188(J, N)	256 bits	open-collector	05	
SN54S288(J, W)	SN74S288(J, N)	(32 W × 8 B)	three-state	25 ns	400 mW
SN54S287(J, W)	SN74S287(J, N)	1024 bits	three-state	40	500
SN54S387(J, W)	SN74S387(J, N)	(256 W × 4 B)	open-collector	42 ns	500 mW
SN54S470(J)	SN74S470(J, N)	2048 bits	open-collector	50	
SN54S471(J)	SN74S471(J, N)	(256 W × 8 B)	three-state	50 ns	550 mW
SN54S472(J)	SN74S472(J, N)	4096 bits	three-state		
SN54S473(J)	SN74S473(J, N)	(512 W x 8 B)	open-collector	55 ns	600 mW
SN54S474(J, W)	SN74S474(J, N)	4096 bits	three-state		000 14
SN54S475(J, W)	SN74S475(J, N)	(512 W × 8 B)	open-collector	55 ns	600 mW

Pin assignments for all of these memories are the same for all packages.

description

977

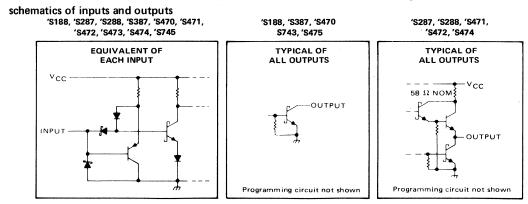
These monolithic TTL programmable read-only memories (PROM's) feature titanium-tungsten (Ti-W) fuse links with each link designed to program with a 100 microsecond pulse. These PROM's offer considerable flexibility for upgrading existing designs or improving new designs as they feature full Schottky clamping for improved performance, low-current MOS-compatible p-n-p inputs, choice of bus-driving three state or open-collector outputs, and improved chip-select access times.

The high-complexity 2048- and 4096-bit 20-pin PROM's can be used to significantly improve system density for fixed memories as all are offered in dual-in-line packages having pin-row spacings of 0.300 inch.

PRELIMINARY DATA SHEET: Supplementary data may be published at a later date. TEXAS INSTRUMENTS POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.

1


SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

description (continued)

Data can be electronically programmed, as desired, at any bit location in accordance with the programming procedure specified. All PROM's, except the 'S287 and 'S387 are supplied with a low-logic-level output condition stored at each bit location. The programming procedure open-circuits Ti-W metal links, which reverses the stored logic level at selected locations. The procedure is irreversible; once altered, the output for that bit location is permanently programmed. Outputs never having been altered may later be programmed to supply the opposite output level. Operation of the unit within the recommended operating conditions will not alter the memory content.

Active level(s) at the chip-select input(s) enables all of the outputs. An inactive level at any chip-select input causes all outputs to be off.

The three-state output offers the convenience of an open-collector output with the speed of a totem-pole output; it can be bus-connected to other similar outputs yet it retains the fast rise time characteristic of the TTL totem-pole output. The open-collector output offers the capability of direct interface with a data line having a passive pull-up.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (see Note 1)		 	7V
Input voltage		 	5.5 V
Off-state output voltage		 	5.5 V
Operating free-air temperature range:	SN54S' Circuits	 	–55°C to 125°C
Storage temperature range		 	–65°C to 150°C

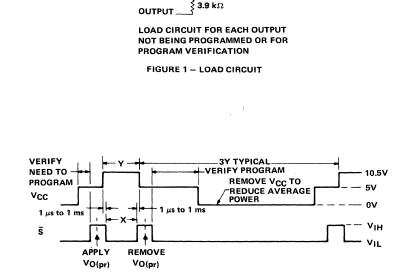
recommended conditions for programming the 'S188, 'S287, 'S288, 'S387, 'S470 through 'S475

		SN5	4S', SN	74S'	
		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC} (see Note 1)	Steady state	4.75	5	5.25	v
Supply voltage, VCC (see 100te 1)	Program pulse	10	10.5	11†	V
Input voltage	High level, VIH	2.4		[.] 5	v
input voltage	Low level, VIL	0		0.5	
Termination of all outputs except the one to be programmed		See			
		(Figure	1)	
Voltage applied to output to be programmed, $V_{Q(pr)}$ (see Note 2)		0	0.25	0.3	V
Duration of V _{CC} programming pulse Y (see Figure 2 and Note 3)		98	100	103	μs
Programming duty cycle		1	25	35	%
Free-air temperature		0		55	°C

[†]Absolute maximum ratings.

NOTES: 1. Voltage values are with respect to network ground terminal. The supply-voltage rating does not apply during programming.
 2. The 'S188, 'S288, 'S470, 'S471, 'S472, 'S473, 'S474, and 'S475 are supplied with all bit locations containing a low logic level, and programming a bit changes the output of the bit to high logic level. The 'S287 and 'S387 are supplied with all bit outputs at a high

logic level, and programming a bit changes it to a low logic level. The S287 a


3. Programming is guaranteed if the pulse applied is 98 µs in duration.

step-by-step programming procedure for the 'S188, 'S287, 'S288, 'S387, 'S470 through 'S475

- 1. Apply steady-state supply voltage (V_{CC} = 5 V) and address the word to be programmed.
- 2. Verify that the bit location needs to be programmed. If not, proceed to the next bit.
- 3. If the bit requires programming, disable the outputs by applying a high-logic-level voltage to the chip-select input(s).
- 4. Only one bit location is programmed at a time. Connect each output not being programmed to 5 V through $3.9k\Omega$ and apply the voltage specified in the table to the output to be programmed. Maximum current out of the programming output is 150 mA. This current flows from the programmer into the PROM output.
- 5. Step V_{CC} to 10.5 V nominal. Maximum supply current required during programming is 750 mA.
- 6. Apply a low-logic-level voltage to the chip-select input(s). This should occur between 1 μs and 1 ms after V_{CC} has reached its 10.5-V level. See programming sequence of Figure 2.
- 7. After the X pulse time is reached, a high logic level is applied to the chip-select inputs to disable the outputs.
- 8. Within 1 μ s to 1 ms after the chip-select input(s) reach a high logic level, V_{CC} should be stepped down to 5 V at which level verification can be accomplished.
- 9. The chip-select input(s) may be taken to a low logic level (to permit program verification) $1 \mu s$ or more after V_{CC} reaches its steady-state value of 5 V.
- 10. At a Y pulse duty cycle of 35% or less, repeat steps 1 through 8 for each output where it is desired to program a bit.

5V

NOTE: Only one programming attempt per bit is recommended.

Δ

SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES WITH 3-STATE OUTPUTS

recommended operating conditions

PARAMETER	PARAMETER		'S287, 'S471		'S288			'S472, 'S474			
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Sumphraphane Mar	Series 54S	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	
Supply voltage, VCC	Series 74S	4.75	5	5.25	4.75	5	5.25	4.75	5	5,25	
High lovel entered entered in	Series 54S			-2			-2			-2	
High-level output current, IOH	Series 74S			-6.5			6.5			-6.5	mΑ
Low-level output current, IOL				16			20			12	mA
Operation from air temperature T	Series 54S	-55		125♦	-55		125	-55		125	0.0
erating free-air temperature, TA	Series 74S	0		70	0		70	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	D				SN54S'		SN74S'			
	PARAMETER	TEST CONDIT	IONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH ·	High-level input voltage			2			2			v
VIL	Low-level input voltage					0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	lı =18 mA			-1.2			-1.2	V
∨он	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.4		2.4	3.2		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = MAX			0.5			0.5	v
IOZH	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,			50			50	μΑ
IOZL	Off-state output current, low-level voltage applied	V _{CC} = MAX, V _O = 0.5 V	V _{IH} = 2 V,			-50			50	μΑ
lj	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
Чн	High-level input current	V _{CC} = MAX,	V1 = 2.7 V			25			25	μA
41	Low-level input current	V _{CC} = MAX,	V _I = 0.5 V			-250			-250	μA
los	Short-circuit output current §	V _{CC} = MAX		-30		-100	-30		-100	mA
		V _{CC} = MAX,	'S287		100	135		100	135	
		Chip select(s) at 0 V,	'S288		80	110		80	110	
ICC	Supply current	Outputs open,	'S471		110	155		110	155	mA
		See Note 4	'S472, 'S474		120	155		120	155	1

switching characteristics over recommended ranges of TA and VCC (unless otherwise noted)

ТҮРЕ	TEST CONDITIONS	t _{a(ad)} (ns) Access time from address			t _a (͡S) (ns) Access time from chip select (enable time)			tp _{XZ} (ns) Disable time from high or low level			UNIT
		MIN	TYP‡	MAX	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
SN54S287			42	75		15	40		12	40	ns
SN74S287	CL= 30 pF for		42	65		15	35		12	35	ns
SN54S288	t _{a(ad)} and t _a (S)		25	50		12	30		8	30	ns
SN74S288	5 pF for tpxz;		25	40		12	25		8	20	ns
SN54S471	R _L = 300 Ω;		50	80		20	40		15	35	ns
SN74S471	See Figure 2,		50	70		20	35		15	30	ns
SN54S472, SN54S474	Page 13		55	85		20	45		15	40	ns
SN74S472, SN74S474			55	75		20	40		15	35	ns

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C. §Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

An SNS4287 in the W package operating at free-air temperatures above 108°C requires a heat sink that provides a thermal resistance from case-to-free-air, $R_{\phi CA}$, of not more than 42° C/W. NOTE 4: The typical values of I_{CC} shown are with all outputs low.

recommended operating conditions

PARAMETER			'S188		's	387, 'S	470	'S	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, V _{CC}	Series 54S	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5		
	Series 74S	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	l v	
High-level output voltage, VOH				5.5			5.5			5.5	5 V	
Low-level output current, IOL	vel output current, IOL			20			16			12	mA	
Operating free-air temperature, T_A	Series 54S	55		125	-55		125♦	-55		125	°c	
	Series 74S	0		70	0		70	0		70		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONST	MIN	гүр‡	МАХ	UNIT
VIH	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	lj =18 mA			-1.2	V
юн	High-level output current	V _{CC} = MIN, V _{IH} = 2 V,	V _{OH} = 2.4 V			50	μA
ЮН		V _{IL} = 0.8 V	V _{OH} = 5.5 V			100	μΑ
VOL	Low-level output voltage	V _{CC} = MIN,	V _{IH} = 2 V,			0.5	v
VOL		V _{IL} = 0.8 V,	I _{OL} = MAX			0.5	v
4	Input current at maximum input voltage	V _{CC} = MAX,	VI = 5.5 V			1	mA
Чн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V			25	μA
ЧL	Low-level input current	V _{CC} = MAX,	V ₁ = 0.5 V			-250	μA
		V _{CC} = MAX,	ʻS188		80	110	
1	Current and	Chip select(s) at 0 V,	ʻS387		100	135	
1cc	Supply current	Outputs open,	'S470		110	155	mA
		See Note 4	'S473; 'S475		120	155]

switching characteristics over recommended ranges of TA and VCC (unless otherwise noted)

ТҮРЕ	TEST CONDITIONS	Acce	^t a(ad) ess time address		c	^t a(S) ess time hip sele nable tir	ct	put fr	^t PLH ition del -high-lev om chip sable tir	el out- select	UNIT
		MIN	TYP‡	MAX	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
SN54S188			25	50		12	30		12	30	ns
SN74S188			25	40		12	25		12	25	ns
SN54S387	$C_L = 30 \text{ pF},$		42	75		15	40		15	40	ns
SN74S387	$R_{L1} = 300 \Omega,$		42	65		15	35		15	35	ns
SN54S470	$R_{L2} = 600 \Omega$, See Figure 1, Page 13		50	80		20	40		15	35	ns
SN74S470			50	70		20	35		15	30	ns
SN54S473, SN54S475			55	85		20	45		15	40	ns
SN74S743, SN74S475			55	75		20	40		15	35	ns

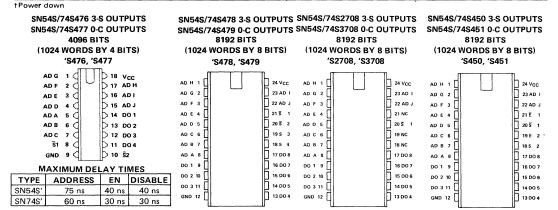
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25° C.

A SN54S387 in the W package operating at free-air temperatures above 108° C requires a heat sink that provides a thermal resistance from case-to-free-air, R_{θ} C_A, of not more than 42° C/W.

NOTE 4: The typical values of ICC shown are with all outputs low.

5


4

SCHOTTKY† PROMS

SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

- Titanium-Tungsten (Ti-W) Fuse Links for Fast Low-Voltage Reliable Programming
- Full Decoding and Chip Select Simplify System Design
- Power-Down Versions ('S450, 'S451) Can Reduce System Power Requirements
- Fast Chip Select to Simplify System Decode
- Choice of Three-State or Open Collector Outputs
- PNP Inputs for Reduced Loading on System Buffers/Drivers
- Applications Include: Microprogramming/Firmware Loaders Code Converters/Character Generators Translators/Emulators Address Mapping/Look-Up Tables

TYPE NUMBE	R (PACKAGES)	BIT SIZE	OUTPUT	TYPICAL PERFORMANCE							
-55°C to 125°C	0°C to 70°C	(ORGANIZATION)	CONFIGURATION	ACCESS	TIMES	POWER					
-55 C 10 125 C	000000	(UNGANIZATION)	CONFIGURATION	ADDRESS	SELECT	DISSIPATION					
SN54S450(J)	SN74S450(J,N)	8192 bits	three-state	45 ns	20 ns	600/100 [†] mW					
SN54S451(J)	SN74S451(J,N)	1024 W x 8 B	open-collector	45 ns	20 hs	600/100° mw					
SN54S478(J)	SN74S478(J,N)	8192 bits	three-state	45		000					
SN54S479(J)	SN74S479(J,N)	1024 W x 8 B	open-collector	45 ns	20 ns	600 mW					
SN54S2708(J)	SN74S2708(J,N)	8192 bits	three-state	45		000 111					
SN54S3708(J)	SN74S3708(J,N)	1024 W x 8 B ·	open-collector	45 ns	20 ns	600 mW					
SN54S476(J)	SN74S476(J,N)	4096 bits	three-state	05	45	175					
SN54S477(J)	SN74S477(J,N)	1024 W × 4 B	open-collector	35 ns	15 ns	475 mW					

description

These monolithic TTL programmable read-only memories (PROM's) features titanium-tungsten (Ti-W) fuse links with each link designed to program with a 100 microsecond pulse. They offer considerable flexibility for upgrading existing designs or improving new designs as they feature full Schottky clamping for improved performance, low-current MOS-compatible p-n-p inputs, and choice of bus-driving three-state or open-collector outputs. Additionally, the 'S450, 'S451 features dual enable/disable inputs which power-down or power-up the PROM providing additional cost effectiveness in power-sensitive applications. The power-down and power-up functions are sequenced to occur with the outputs at a high impedance.

Data can be electrically programmed, as desired, at any bit location in accordance with the programming procedure specified. These new PROM's are supplied with a high logic-level output condition stored at each bit location. The programming procedure open-circuits Ti-W metal links, which reverses the stored logic level at selected locations. The

6

DESIGN GOAL This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

TEXAS INSTRUMENTS

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas 977 Instruments. U.S. Patent Number 3,463,975.

SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

procedure is irreversible. Once altered, the output for that bit location is permanently programmed. Outputs never having been altered may later be programmed to supply the opposite output level. Operation of the unit within the recommended operating conditions will not alter the memory content. Active level(s) at the chip-select(s) or memory enable (E) input(s) activates all of the outputs, and the 'S450, 'S451 memory enable will initiate a power-up sequence. An inactive level at any chip-select or memory enable input causes all outputs to be off, and the memory enable will initiate a power-down sequence. The three-state output offers the convenience of an open-collector output with the speed of a totem-pole output; it can be bus-connected to other similar outputs yet it retains the fast rise time characteristic of the TTL totem-pole output. The open-collector output offers the capability of direct interface with a data line having a passive pull-up.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage																				7	v
Input voltage																					
Off-state output voltage																					
Operating free-air temperatur	e r	ang	ge:	SN	154	S' (Circ	uit	s								-5	5°C	to	125	°c
																				o 70	
Storage temperature range																	6	5°C	to	150	°C

recommended conditions for programming

PARAMETER	' \$4	50, 'S	451		HER S	UNIT					
		MIN	NOM	ΜΑΧ			MAX				
	Steady state	5.8	6	6.25	4.75	5	5.25	v			
Supply voltage, V _{CC} (See Note 1)	During programming	6.8	7	7.25	5.75	6	6.25				
	High level, VIH	2.4		5	2.4		5				
Address input voltage	Low level, VIL	0.0		0.5	0.0		0.5	v			
	to disable	9.75	10	10.25†	9.75	10	10.25†				
Select input voltage, VS	to enable	0.0		0.5	0.0		0.5	V			
Termination of all outputs except the one to be programmed		0.0		0.5	0.0		0.5	V			
Voltage applied to output to be programmed, $V_{O(pr)}$ (See Note 2)		16.75	17	17.25†	16.7	5 17	17.25†	V			
Programming ramp (10% to 90% times	Rise time, t _r	10‡		50	10‡		50				
for VCC, VS, and VO(pr)	Fall time, t _f	10			10			μs			
Duration of VO(pr) programming pulse (See Figure 3)		98	100	10 ³	98	100 10 ³					
Programming duty cycle	25 35 25 35							%			
Free air temperature		0		55	0		55	°C			

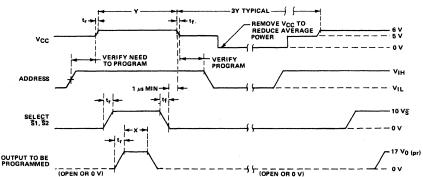
[†]Absolute maximum ratings.

 $\ddagger This minimum rise time applies only for the <math display="inline">V_{O(pr)}$ ramp.

NOTES: 1. Voltage values are with respect to network ground terminal.

All bit locations contain a high logic level and programming a bit changes the output of the bit to low logic level.
 Programming is guaranteed if the pulse applied is 98 μs in duration.

step-by-step programming procedure


- 1. Apply steady-state supply voltage and address the word to be programmed.
- 2. Enable the PROM and verify that the bit location needs to be programmed. If not, proceed to the next bit.
- If the bit requires programming, increase V_{CC} by 1 volt (minimum current capability should be 200 mA) and disable the outputs by applying 10 volts to chip-select inputs. Minimum chip-select input current capabilities should be 5 mA.
- 4. Only one bit location is programmed at a time. Connect each output not being programmed to a 0 to 0.5 volt source. Apply the VO(pr) voltage pulse specified in the table to the output to be programmed. Minimum current capability of the programming output supply (during programming) should be 200 mA. See programming sequence of Figure 1.
- 5. After the X pulse is completed, disconnect the output that was programmed. Then, remove the 0 to 0.5 volt source from the remaining outputs.

7

SERIES 54S/74S PROGRAMMABLE READ-ONLY MEMORIES

- 6. The chip-select inputs may be taken to a low logic level (to permit program verification).
- One microsecond after the chip select input(s) reach low logic level V_{CC} should be decreased 1 V at which verification can be accomplished by measuring V_{OL} at the programmed output.
- 8. At a Y pulse duty cycle of 35% or less, repeat steps 1 through 7 for each output where it is desired to program a bit.

NOTE: Only one programming attempt per bit is recommended.

recommended operating conditions

PARAMETE			'S450			'S451		'S4	78, 'S2	708	' S4	79, 'S3	708		'S476			'S477		
PARAMETE	R	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage,	SN54S	5.8	6	6.5	5.8	6	6.5	4.5	5	5.5	4.5	5	5,5	4.5	5	5.5	4.5	5	5.5	v
Vcc	SN74S	5.8	6	6.25	5.8	6	6.25	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	v
High-level output	SN54S			-2						-2						-2				
current, IOH	SN74S			-3.2						-3.2						-3.2				mA
Low-level output				12			12			12			12			16			16	
current, IOL				12			12			12			12			10			10	mA
Operating free-air	SN54S	-55		125	-55		125	-55		125	-55		125	-55		125	-55		125	°c
temperature, TA	SN74S	0		70	0		70	0		70	0		70	0		70	0		70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST COM		1), 'S476, 3, 'S2708	'S451, 'S4 'S479, 'S3		UNIT
				MIN T	YP‡ MAX	MIN TYP‡	MAX]
VIH	High-level input voltage			2		2		V
VIL	Low-level input voltage				0.8		0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	1 ₁ = -18 mA		-1.2		-1.2	V
v _{он}	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.4			v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = MAX		0.5		0.5	v
IOZH,	Off-state output current,	VCC = MAX,	V ₀ = 2.4 V		50		50	
юн	high-level voltage applied	V _{IH} = 2 V,	V _O = 5.5 V				100	μA
loz∟	Off-state output current, low-level voltage applied	V _{CC} = MAX, V _O = 0.5 V	V _{IH} = 2 V,		50			μA
4	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 5.5 V		1		1	mA
ήн	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V		25		25	μA
կլ	Low-level input current	VCC = MAX,	V1 = 0.5 V		-250		-250	μA
1.0.0	Short-circuit output current §	VMAX	SN54S'	-20	-100			-
los	Short-circuit output currents	V _{CC} = MAX	SN74S'	-15	-100]		mA
1	Suealu aureat		4096-BIT PROM		95 140	95	140	
'cc	Supply current	V _{CC} = MAX	8192-BIT PROM		120	120		1 mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_A = 25°C.

§Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

DESIGN GOAL

This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice. TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

TTL MEMORIES

SERIES 54/74, 54S/74S READ-ONLY MEMORIES

BULLETIN NO. DL-S 7512259, MAY 1975

DO 1 1(

DO 2 2(

DO 3 30

DO 4 41

DO 5 50

DO 6 61

007 70

GND 8C

256 BITS (32 WORDS BY 8 BITS) '884

⊃16 Vcc

〕14 AD E

AD C

AD B

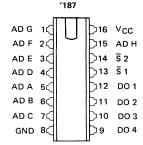
AD A

DO 8

)15 s

ີ 112

<u>ን</u>11


ጋ10

ጋ9

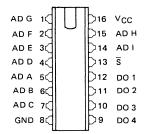
- Mask-Programmed Memories That Can Replace PROMs
- Full On-Chip Decoding and Fast Chip Select(s) Simplify System Decoding
- All Schottky-Clamped ROMs Offer
 - -Choice of 3-State or Open-Collector Outputs
 - -P-N-P Inputs for Reduced Loading on System Buffers/Drivers
- Applications Include:
 - -Microprogramming Firmware/Firmware Loaders
 - -Code Converters/Character Generators
 - -Translators/Emulators
 - -Address Mapping/Look-Up Tables

TYPE NUMBER	R (PACKAGES)	TYPE OF	BIT SIZE	TYPICAL ACCE	SS TIMES
–55°C to 125°C	0°C to 70°C	OUTPUT(S)	(ORGANIZATION)	CHIP-SELECT	ADDRESS
SN5488A(J, W)	SN7488A(J, N)	Open-Collector	256 Bits	22 ns	26 ns
3113466A(J, W)	5486A(J, W) 3N7486A(J, N) Open-		(32 W × 8 B)	22 115	20 /15
SN54187(J, W)	SN74187(J, N)	Open-Collector	1024 Bits	20 ns	40 ns
51054167(3, W)	5N/410/(J, N)	Open-Conector	(256 W × 4 B)	20 ms	40 ns
SN54S270(J)	SN74S270(J, N)	Open-Collector	2048 Bits	15 ns	45 ns
SN54S370(J)	SN74S370(J, N)	3-State	(512 W × 4 B)	15 ns	45 ns
SN54S271(J)	SN74S271(J, N)	Open-Collector	2048 Bits	15	45
SN54S371(J)	SN74S371(J, N)	3-State	(256 W × 8 B)	15 ns	45 ns

description

These monolithic TTL custom-programmed read-only memories (ROMs) are particularly attractive for applications requiring medium to large quantities of the same bit pattern. Plug-in replacements can be obtained for most of the popular TTL PROMs.

The high-complexity 2048-bit ROMs can be used to significantly improve system bit density for fixed memory as all are offered in compact 16- or 20-pin dual-in-line packages having pin-row spacings of 0.300-inch.


The Schottky-clamped versions offer considerable flexibility for upgrading existing designs or improving new designs as they feature improved performance; plus, they offer low-current MOS-compatible p-n-p inputs, choice of bus-driving three-state or open-collector outputs, and improved chip-select access times.

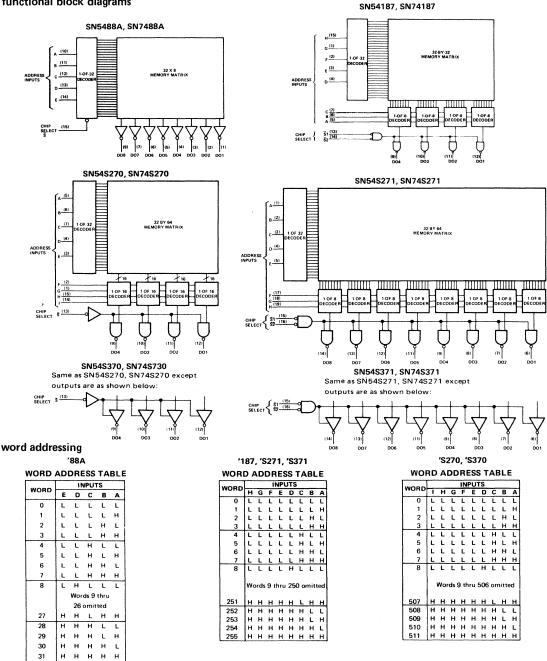
Data from a sequenced deck of data cards punched according to the specified format are permanently programmed by the factory into the monolithic structure for all bit locations. Upon receipt of the order, Texas Instruments, will assign a special identifying number for each pattern programmed according to the order. The completed devices will be marked with the appropriate TI special device number. It is important that the customer specify not only the output levels desired at all bit locations, but also the other information requested under ordering instructions.

The three-state outputs offer the convenience of an open-collector output with the speed of a totem-pole output: they can be bus-connected to other similar outputs yet they retain the fast rise time characteristic of the TTL totem-pole output. The open-collector outputs offer the capability of direct interface with a data line having a passive pull-up.

Word-addressing is accomplished in straight positive-logic binary and the memory may be read when all \bar{S} inputs are low. A high at any \bar{S} input causes the outputs to be off.

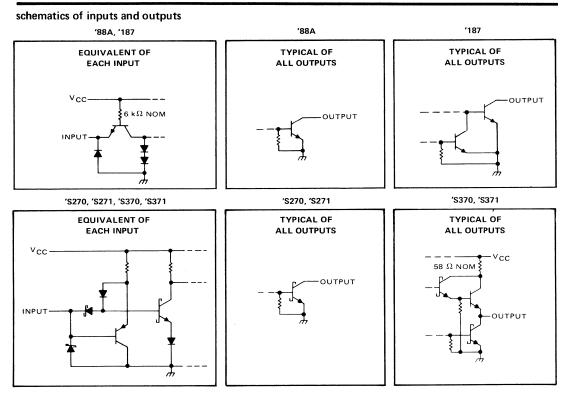
2048 BITS (512 WORDS BY 4 BITS) 'S270, 'S370

2048 BITS (256 WORDS BY 8 BITS) 'S271, 'S371


AD A	ਾਪੀ		₿20	Vcc
AD B	2		j⊃ 19	AD H
AD C	3⊄		Þ 18	AD G
AD D	4		Þ17	AD F
AD E	5		Þ 16	Š 2
DO 1	6		2 15	<u>s</u> 1
DO 2	70		14	DO 8
DO 3	8		⊅13	DO 7
DO 4	₽₫		D 12	DO 6
GND	10		Þ11	DO 5
	L	L	L	

TEXAS INSTRUMENTS

Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.


SERIES 54/74, 54S/74S **READ-ONLY MEMORIES**

functional block diagrams

Word selection is accomplished in a conventional positive-logic binary code with the A address input being the least-significant bit progressing alphabetically through the address inputs to the most-significant bit.

SERIES 54/74, 54S/74S READ-ONLY MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)				 	⁻ 7V
Input voltage				 	5.5 V
Off-state output voltage					
Operating free-air temperature range:	SN54', SN54S	Circuits (see	Note 2)	 	–55°C to 125°C
	SN74', SN74S	Circuits .		 	0° C to 70° C
Storage temperature range				 	$-65^{\circ}C$ to $150^{\circ}C$

recommended operating conditions

			'88A		′187 ,	'S270,	'S271	'S	370, 'S3	371	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	SN54'	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	
(See Note 1)	SN74'	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	l v
High-level output voltage, VOH				5.5			5.5			5.5	V
High-level output	SN54'									-2	
current, IGH	SN74'									6.5	mA
Low-level output current, IOL				12			16			16	mA
Operating free-air temperature,	SN54'	-55		125	-55		125	-55		125	00
T _A (See Note 2)	SN74'	0		70	0		70	0		70	°C

NOTES: 1. Voltage values are with respect to network ground terminal.

 An SN54187 in the W package operating at free-air temperatures above 111°C requires a heat sink that provides a thermal resistance from case-to-free-air, R_{∂CA}, of not more than 46°C/W.

SERIES 54S/74S READ-ONLY MEMORIES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	′S	270, 'S27	1		\$370, ' \$3	371	
				MIN	TYP‡	MAX	MIN	түр‡	MAX	1
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	l _l = -18 mA			-1.2			-1.2	V
v _{он}	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,					2.4			v
юн	High-level output current	V _{CC} = MIN, V _{IH} = 2 V,	V _{OH} = 2.4 V			50				μA
0	- · · · · · · · · · · · · · · · · · · ·	VIL = 0.8 V	V _{OH} = 5.5 V			100				μA
V _{OL}	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,				0.5			0.5	v
IOZH	Off-state output current, high-level voltage applied	V _{CC} = MAX, V _O = 2.4 V							50	μA
IOZL	Off-state output current low-level voltage applied	V _{CC} = MAX, V _O = 0.5 V	V _{IH} = 2 V,						-50	μA
4	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
Чн	High-level input current	$V_{CC} = MAX,$	V _I = 2.7 V			25			25	μA
μL	Low-level input current	V _{CC} = MAX,	V ₁ = 0.5 V			-0.25			-0.25	mA
los	Short-circuit output current §	V _{CC} = MAX					-30		-100	mA
lcc	Supply current	V _{CC} = MAX,	See Note 4		105	155		105	155	mA
Co	Off-state output capacitance	V _{CC} = 5 V, f = 1 MHz	V _O = 5 V,		6.5			6.5		pF

 $^{\dagger}_{\mu}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

[§]Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

NOTE 4: With outputs open and \overrightarrow{Cs} input(s) grounded, I_{CC} is measured first by selecting a word that contains the maximum number of programmed high-level outputs; then by selecting a word that contains the maximum number of programmed low-level outputs.

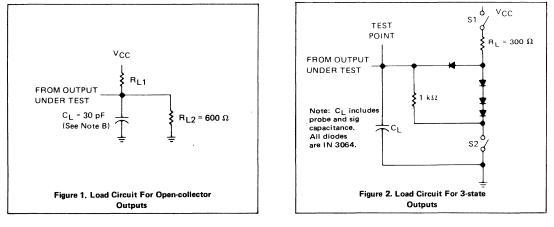
switching characteristics over recommended ranges of TA and VCC (unless otherwise noted)

	PARAMETER	TEST	SN54 SN54		SN74 SN74		SN54S370 SN54S371		SN74S370 SN74S371		UNIT
		CONDITIONS	TYP‡	MAX	TYP‡	MAX	TYP‡	MAX	TYP‡	MAX	
ta(ad)	Access time from address		45	95	45	70					ns
ta(S)	Access time from chip select (enable time)	$R_{L1} = 300\Omega$,	15	45	15	30					ns
	Propagation delay time,	See Figure 1									
tPLH	low-to-high-level output	See ligure i	15	40	15	25					ns
	from chip select (disable time)										
ta(ad)	Access time from address	C _L = 30 pF,					45	95	45	70	ns
ta(S)	Access time from chip select (enable time)	See Figure 2					15	45	15	30	ns
^t PXZ	Disable time from high or low level	CL = 5 pF, See Figure 2					10	40	10	- 25	ns

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

	PARAMETER	TEST CO		'88A				UNIT		
				MIN	TYP‡	MAX	MIN	ТҮР‡	MAX	
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	l _l = –12 mA			-1.5			-1.5	V
юн	High-level output current	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, V _{OH} = 5.5 V			40			40	μA
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 12 mA		0.2	0.4			0.4	v
		V _{IL} = 0.8 V	I _{OL} = 16 mA						0.45	
4	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
Чн	High-level input current	V _{CC} = MAX,	V ₁ = 2.4 V		·····	25			40	μA
11L	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V			-1			-1	mA
1cc	Supply current	V _{CC} = MAX,	See Note 3		64	80		92	130	mA
с _о	Off-state output capacitance	V _{CC} = 5 V , f = 1 MHz	V _O = 5 V,		6.5			6.5		pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)


[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 3: With outputs open and CS input(s) grounded, I_{CC} is measured first by selecting a word that contains the maximum number of programmed high-level outputs, then by selecting a word that contains the maximumnumber of programmed low-level outputs.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	''	38A	1	UNIT	
2			ТҮР	MAX	ТҮР	MAX	1
ta(ad)	Access time from address	C _L = 30 pF,	26	45	40	60	ns
ta(S)	Access time from chip select (enable time)	R _{L1} = 400 Ω ('88A)	22	35	20	30	ns
	Propagation delay time,	300 Ω ('187)					
tPLH	low-to-high-level output	R _{L2} = 600 Ω,	22	35	20	30	ns
	from chip select (disable time)	See Figure 1					

parameter measurement information

SERIES 54/74, 54S/74S TTL READ-ONLY MEMORIES

ORDERING INSTRUCTIONS

Programming instructions for these read-only memories are solicited in the form of a sequenced deck of standard 80-column data cards providing the information requested under "data card format," accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete function table for the requested part. This function table, showing output conditions for each of the words, will be forwarded to the purchaser as verification of the input data as interpreted by the computerautomated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the function table should be completed promptly.

Each card in the data deck prepared by the purchaser identifies the words specified and describes the levels at the outputs for each of those words. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown.

SUPPLEMENTARY ORDERING DATA

Submit the following information with the data cards:

- a) Customer's name and address
- b) Customer's purchase order number
- c) Customer's drawing number.

The following information will be furnished to the customer by Texas Instruments:

- a) TI part number
- b) TI sales order number
- c) Date received.

'88A DATA CARD FORMAT (32 CARDS)

Column

1-2 Punch a right-justified integer representing the positive-logic binary input address (00-31) for the word described on the card.

3-4 Blank

- 5 Punch "H" or "L" for output Y8. H = highvoltage-level output, L = low-voltage-level output
- 6-9 Blank
- 10 Punch "H" or "L" for output DO 7.
- 11-14 Blank

- 15 Punch "H" or "L" for output DO 6.
- 16-19 Blank
 - 20 Punch "H" or "L" for output DO 5.
- 21-24 Blank
 - 25 Punch "H" or "L" for output DO 4.
- 26-29 Blank
 - 30 Punch "H" or "L" for output DO 3.
- 31-34 Blank
 - 35 Punch "H" or "L" for output DO 2.
- 36-39 Blank
 - 40 Punch "H" or "L" for output DO 1.
- 41-49 Blank
- 50-51 Punch a right-justified integer representing the current calendar day of the month.
- 52 Blank
- 53-55 Punch an alphabetic abbreviation representing the current month.
- 56 Blank
- 57-58 Punch the last two digits of the current year.
 - 59 Blank
- 60-61 Punch "SN"
- 62-66 Punch a left-justified integer representing the Texas Instruments part number. This is supplied by the factory through a TI sales representative.
- 67-68 Blank
- 69-80 Preferably these columns should be punched to reflect the customer's part or specification-control number. This information is not essential.

'187 DATA CARD FORMAT (32 CARDS)

Column

- 1- 3 Punch a right-justified integer representing the binary input address (000-248) for the first set of outputs described on the card.
 - 4 Punch a "-" (Minus sign)
- 5-7 Punch a right-justified integer representing the binary input address (007-255) for the last set of outputs described on the card.
- 8-9 Blank

ORDERING INSTRUCTIONS

10-13 Punch "H", "L", or "X" for bits four, three, two, and one (outputs DO 4, DO 3, DO 2 and DO 1 in that order) for the first set of outputs specified on the card. H = high-voltage-level output, L = low-voltage-level output, X = output level irrelevant.

••	Diani
15-18	Punch "H", "L", or "X" for the second set of outputs.

19 Blank

Blank

14

- 20-23 Punch "H", "L", or "X" for the third set of outputs.
 - 24 Blank
- 25-28 Punch "H" "L", or "X" for the fourth set of outputs.
 - 29 Blank
- 30-33 Punch "H", "L", or "X" for the fifth set of outputs.
 - 34 Blank
- 35-38 Punch "H", "L", or "X" for the sixth set of outputs.
 - 39 Blank
- 40-43 Punch "H", "L", or "X" for the seventh set of outputs.
 - 44 Blank
- 45-48 Punch "H", "L", or "X" for the eighth set of outputs.
 - 49 Blank
- 50-51 Punch a right-justified integer representing the current calendar day of the month.
 - 52 Blank
- 53-55 Punch an alphabetic abbreviation representing the current month.
 - 56 Blank
- 57-58 Punch the last two digits of the current year.
- 59 Blank
- 60-61 Punch "SN"
- 62-66 Punch a left-justified integer representing the Texas Instruments part number. This is supplied by the factory through a TI sales representative.
- 67-68 Blank
- PRINTED IN U.S.A.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE. 69-80 Preferably these columns should be punched to reflect the customer's part or specification-control number. This information is not essential.

'S270, 'S370 DATA CARD FORMAT (64 CARDS)

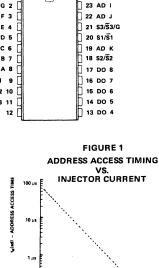
Column

- 1-3 Punch a right-justified integer representing the binary input address (000-504) for the first set of outputs described on the card.
- 4 Punch a "-" (Minus sign)
- 5-7 Punch a right-justified integer representing the binary input address (007-511) for the last set of outputs described on the card.
- 8-80 Same as the '187 data card format.

'S271, 'S371 DATA CARD FORMAT (64 CARDS)

Column

- Punch a right-justified integer representing the binary input address (000-252) for the first set of outputs described on the card.
 - 4 Punch a "-" (Minus sign)
- 5- 7 Punch a right-justified integer representing the binary input address (003-255) for the last set of outputs described on the card.
- 8-9 Blank
- 10.17 Punch "H", "L", or "X" for bits eight, seven, six, five, four, three, two, and one (outputs DO 8, DO 7, DO 6, DO 5, DO 4, DO 3, DO 2, and DO 1 in that order) for the first set of outputs specified on the card. H = high-voltage-level output, L = low-voltage-level output, X = output level irrelevant.
 - 18 Blank
- 19-26 Punch "H", "L", or "X" for the second set of outputs.
 - 27 Blank
- 28-35 Punch "H", "L", or "X" for the third set of outputs.
 - 36 Blank
- 37-44 Punch "H", "L", or "X" for the fourth set of outputs.
- 45-49 Blank
- 50-80 Same as the '187 data card format.


TEXAS INSTRUMENTS

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

BIPOLAR MEMORIES

TYPES SBP 8316, SBP 9818 16,384-BIT I²L READ-ONLY MEMORIES

- **JOR N PACKAGE** Mask Programmable I²L ROM (TOP VIEW) Fully TTL Compatible Inputs/Outputs AD H 1 24 VCC/INJ AD G 2 [h **Programmable Options Include:** AD F 3 User Selectable Speed/Power Operation: AD E 4 - Wide Range for Injector Current Supply AD D 5 AD C 6 **Operation (SBP 9818)** AD B 7 - Resistor Options for 5-Volt Supply AD A 8 Operation (SBP 8316) DO 1 9 Choice of Outputs: DO 2 10 Γ DO 3 11 - Open-Collector for VCC or INJ Operation GND 12 - Internal 10K Ω Pull-Up Resistors to VCC (SBP 8316) Choose Any Combination of Up to 3 Boolean Variables for Chip Select or 2 Boolean Variables with Latched Outputs TIME 1**00** µ • Industry Standard Pin Assignments in 24-Pin ADDRESS ACCESS Plastic or C-DIP Packages 10 µ • Choice of Temperature Ranges: □ SBP 8316CN, SBP 9818CN for 0 to 70°C Applications
 - □ SBP 8316MJ, SBP 9818MJ for -55°C to 125°C Applications

10 m 4

1 m 4 ICC - INJECTOR CURRENT 100 mA

description

These integrated injection logic (I²L) 16,384-bit mask programmable read-only memories are organized as 2048-words of 8-bit length. They offer a system designer the highest degree of selectivity with respect to speed/power/performance and a wide choice of programmable options in a single monolithic ROM function. These flexible, high density, bipolar ROM's can provide the basis for cost-effective solutions to a wide range of applications especially large, fixed macroand microprogram memory having a capacity which may include code converters, constants, character generators, and look-up tables.

These ROM's feature a unique capability of being dedicated at programming to become either:

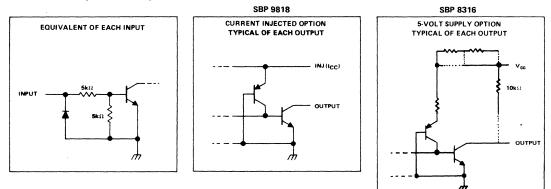
- Pure I²L, SBP 9818, for operation from an injector (INJ) current source with user selectable speed/power performance and open-collector outputs. This option is injector-source compatible with other user selectable speed/power I²L products such as the SBP 9900, SBP 0400A, and SBP 0401A. See Figure 1 and schematic of outputs.
- Or, the SBP 8316, with a fixed voltage source (V_{CC}) in the range of 1.5 to 5 volts, has on-chip supply current resistor supplied and output pull-up resistors available. See Figure 1 and schematic of outputs. This option is VCC compatible with Schottky TTL or low-threshold MOS and can eliminate the need for external resistors.

In addition to the data bits, other programmable selections available are:

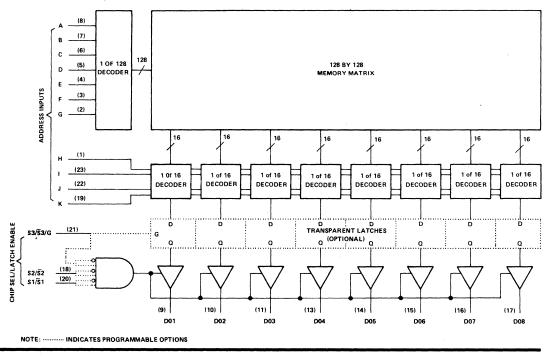
To include or eliminate latches for the outputs which are controllable from the strobe input (G). If latches are selected, the strobe being high will make the latches transparent, and when low the addressed data is latched.

DESIGN GOAL

This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.


16

TEXAS INSTRUMENTS POST OFFICE BOX 5012 . DALLAS, TEXAS 75222


Active high or active low chip selects (S). Two inputs are dedicated as chip selects and if output latches are
not used, a third chip-select input is available. Each can be specified active high or low providing the
flexibility of selecting the ROM with any Boolean combination of up to three inputs.

The SBP 8316M and SBP 9818M are characterized for operation over the full military temperature range of -55° C to 125°C and the SBP 8316C and SBP 9818C are characterized for operation from 0°C to 70°C.

schematics of inputs and outputs

functional block diagram

TYPES SBP 8316, SBP 9818 16,384-BIT I²L READ-ONLY MEMORIES

recommended operating conditions

	Τ	SBP 8316							SBP	9818			
	S	BP 8316	SM	S	BP 8316	6C	S	BP 9818	M	SBP 9818C			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Supply current, ICC							300		500	300		500	mA
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25							V
Operating free-air temperature, TA	-55		125	0		70	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	BAD 414		TEST CONDIT	IONS		SBP 831	6	5	SBP 981	8	UNIT
	PARAME	IER	TEST CONDIT	IUNS	MIN	түр	MAX	MIN	түр	MAX	UNIT
νін	High-level i	nput voltage			2			2			V
VIL	Low-level i	nput voltage					0.8			0.8	V
vik	Input clam	p voltage	I _{CC} = 3 mA or V _{CC} = 5 V II =12 mA				-1.5			-1.5	~
	High-level	Open-collector	ICC = 300 to 500 mA or	V _O = 2.4 V			200			200	
1		outputs	V _{CC} = 5 V	Vo = 5.5 V			400			400	
юн	output current	10-kΩ Pull-	V _{CC} = 5 V,	R _{VCC} = 40 Ω		-310					μA
	current	up Resistors	V _O = 2.4 V	HVCC = 40 32		-310					
			V _{CC} = MIN,								
	Low-level c	utout	V _{IH} ≈ 2 V,	l _{OL} = 5.6 mA		0.4			0.		
VOL	voltage	diput	V _{IL} = 0.8 V								
	Voltage		I _{CC} = 300 mA	IOL = 16 mA			0.4			0.4	
			I _{CC} = 500 mA	IOL = 20 mA			0.5			0.5	
1.			V _I = 2.4 V			340			340	1	μA
11	Input curre	ant.	V ₁ = 0.4 V			25			25		μΑ
1cc			V _{CC} = 5 V	R _{VCC} = 40 Ω		100					mA

typical switching characteristics, $T_A = 25^{\circ}C$, $C_L = 50 \text{ pF}$

PARAMETER		SBP 8316	SBP 9818				
		R _{VCC} = 40 Ω	I _{CC} = 300 mA	I _{CC} = 500 mA			
ta(ad)	Access time from address	350 ns	200 ns	150 ns			
^t a(S)	Access time from chip select	175 ns	75 ns	60 ns			

DESIGN GOAL

This document provides tentative information 18 on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without actice.

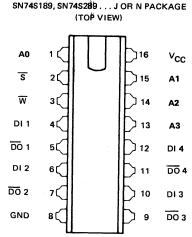
TEXAS INSTRUMENTS

PRINTED IN U.S.A. 977 TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

I CAAS IIISI RUMENT IS INCORPORATED TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIM POST OFFICE BOX 5012 • DALLAS, TEXAS 75222 IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBI

ORDERING INSTRUCTIONS

TO BE COMPLETED BY REQUESTOR	BIT PROGRAMMING INSTRUCTIONS
COMPANY: ADDRESS: POSTAL ZIP CODE:	Programming instructions for each bit location of these read-only memories are solicited in the form of a sequenced deck of standard 80-column data cards providing the information requested below, and accompanied by a properly sequenced listing of these cards. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete function table for the
CONTACT(NAME):	requested part. This function table, showing output conditions for
PHONE: (Area Code)(NO.)	each of the words, will be forwarded to the purchaser as verification of the input data as interpreted by the computer-automated design
	(CAD) program. This single run also generates mask and test
CUSTOMER PRINT OR I.D. NO: CUSTOMER PART NO:	program data; therefore, verification of the function table should be
SYMBOLIZE AS PART NO:	completed promptly.
ROM POWER-SUPPLY OPTIONS (Choose A or B): A. INJECTOR-SUPPLY VERSION (outputs are open-collector) B. 5V-SUPPLY VERSION (choose one	Each card in the data deck prepared by the purchaser identifies the words specified and describes the levels at the outputs for each of those words. All addresses must have all outputs defined and columns designated as "blank" must not be punched. The 512 cards should be punched according to the following data card format: Column
pullup resistor option):	1-3 Punch a right-justified integer representing the binary
B1. OUTPUT COLLECTOR $\int \Box$ 10k Ω	input address (000-2044) for the first set of outputs described on the card.
PULLUPS (check one) 🛛 🗌 NONE (open)	4 Punch a "-" (Minus sign)
	5-7 Punch a right-justified integer representing the binary input address (003-2047) for the last set of outputs described on the card.
ROM MEMORY-ENABLE OPTIONS	8-9 Blank
(Choose one option for each pin):	8-9 Blank
 A. PIN 18 □ H = true enable (Check one) □ L = true enable B. PIN 20 □ H = true enable 	10-17 Punch "H", "L", or "X" for bits eight, seven, six, five, four, three, two, and one (outputs DO 8, DO 7, DO 6, DO 5, DO 4, DO 3, DO 2, and DO 1 in that order) for the first set of outputs specified on the card. (See note 1.)
(Choose one) 🗌 L = true enable	18 Blank
NOTES: 1. L = True enable pins will be logically true if left open.	
2. All memory enable pins must be true to enable the outputs.	19-26 Punch "H", "L", or "X" for the second set of outputs.
ROM LATCH/ENABLE OPTIONS (Choose one option):	27 Blank
A. D TRANSPARENT LATCH FOR EACH OUTPUT	28-35 Punch "H", "L", or "X" for the third set of outputs.
(Pin 21 = H for transparency, L for storing)	36 Blank
B. □ NO LATCHES (Choose memory-enable option for pin 21): □ H = true enable B1. PIN 21 (Choose one) □ H = true enable	37-44 Punch "H", "L", or "X" for the fourth set of outputs.
L = true enable	45-49 Blank
	50-80 Same as the '187 data card format, page 15.
SALES ORDER NO:	
CONTACT (NAME):	PHONE EXT:


SCHOTTKY† TTL MEMORIES

64-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

- Static Fully Decoded Ram's Organized as 16 Words of Four Bits Each
- Schottky-Clamped for High Speed: Read Cycle Time . . . 25 ns Typical Write Cycle Time . . . 25 ns Typical
- Choice of Three-State or Open-Collector Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Select Input Simplifies External
 Decoding

description

These 64-bit active-element memories are monolithic Schottky-clamped transistor-transistor logic (TTL) arrays organized as 16 words of four bits each. They are fully decoded and feature a chip-select input to simplify decoding required to achieve expanded

SN54S189, SN54S289 . . . J OR W PACKAGE

Pin assignments are same for all packages.

system organization. The memories feature p-n-p input transistors that reduce the low-level input current requirement to a maximum of -0.25 milliamperes, only one-eighth that of a Series 54S/74S standard load factor. The chip-select circuitry is implemented with minimal delay times to compensate for added system decoding.

write cycle

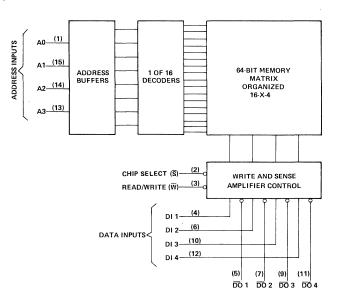
The information applied at the data input is written into the selected location when the chip-select input and the write-enable input are low. While the write-enable input is low, the 'S189 output is in the high-impedance state and the 'S289 output is off. When a number of outputs are bus-connected, this high-impedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

read cycle

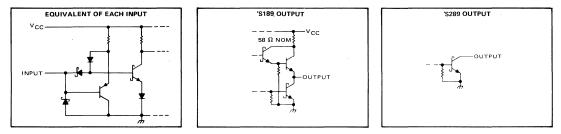
The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the chip-select input is low. When the chip-select input is high, the 'S189 output will be in the high-impedance state and the 'S289 output will be off.

FUNCTION TABLE

FUNCTION	IN	PUTS	'S189	ʻS289		
FONCTION	CHIP SELECT WRITE ENABLE		OUTPUT	OUTPUT		
Write	L L		High Impedance	Off		
Read	L	н	Complement of Data Entered	Complement of Data Entered		
Inhibit	н	Х	High Impedance	Off		


 $H \equiv high \ level, \ L \equiv low \ level, \ X \equiv irrelevant$

PRELIMINARY DATA SHEET: Supplementary data may be published at a later date.


TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 • DALLAS, TEXAS 75222 [†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.

64-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

functional block diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		 	7V
Input voltage			
Off-State output voltage	· · · · · · ·	 	5.5 V
Operating free-air temperature range:			
	SN74S' Circuits	 	\cdot 0°C to 70°C
Storage temperature range		 	–65°C`to 150°C

21

64-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

recommended operating conditions

		s	N54S18	39	s	SN54S289		SN74S189		SN74S289				
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	
Suppl	y Voltage, V _{CC}	4.5	5	5.5	4.5	5	5.5	4.75	5	5.25	4.75	5	5.25	V
High-I	evel output voltage, VOH						5.5						5.5	V
High-I	evel output current, IOH			-2						-6.5				mA
Low-le	evel output current, IOL			16			16			16			16	mA
	of write pulse (write enable ^t w(wr)	25			25			25			25			ns
	Address before write pulse, t _{su(da)}	01			01			0↓			O↓			
Setup time	Data before end of write pulse, t _{su} (da)	25↑			25↑			25↑			25↑			ns
	Chip-select before end of write pulse, t _{su} (S)	25↑			25↑			25↑			25↑			1
	Address after write pulse, th(ad)	01			10			0↑			01			
Hold	Data after write pulse, th(da)	01			10			0 ↑			10			1
time	Chip-select after write pulse, t _h (S)	0†			01			0†			10			ns
Opera	ting free-air temperature, T _A	-55		125	-55		125	0		70	0		70	°C

†↓The arrow indicates the transition of the write-enable input used for reference: ↑ for the low-to-high transition, ↓ for the high-to-low transition.

electrical characteristics over recommended operating free-air temperature range (otherwise noted)

	PARAMETER	теет	CONDITIONS	•+		ʻS189			'S289		
	FARAMETER	1531	CONDITIONS	, ·	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	v
VIK	Input clamp voltage	$V_{CC} = MIN$,	I _I =18mA				-1.2			-1.2	v
∨он	High-level output voltage	$V_{CC} = MIN,$	VIH = 2 V,	SN54S'	2.4	3.4					v
VOH		V _{IL} = 0.8 V,	IOH = MAX	SN74S'	2.4	3.2					v
юн	High-level output current	$V_{CC} = MIN$,	VIH = 2 V,	V _O =2.4 V						40	μA
·0n	High-level output current	V _{IL} = 0.8 V		V _O =5.5 V						100	μA
Vai	Low-level output voltage	$V_{CC} = MIN,$	V _{IH} = 2 V,	SN54S'		0.35	0.5		0.35	0.5	
VOL	Low-level output voltage	V _{IL} = 0.8 V,	I _{OL} = 16 mA	SN74S'		0.35	0:45		0.35	0.45	v
1	Off-state output current,	V _{CC} = MAX,	V _{IH} = 2 V,				50				
юzн	high-level voltage applied	V _{IL} = 0.8 V,	V _{OH} = 2.4 V				50				μA
1	Off-state output current,	V _{CC} ≈ MAX,	V _{IH} = 2 V,				50	1			
IOZL	low-level voltage applied	V _{IL} = 0.8 V,	V _{OL} = 0.4 V				-50				μΑ
II.	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
цн	High-level input current	V _{CC} = MAX,	VI = 2.7 V				25			25	μA
ΊL	Low-level input current	V _{CC} = MAX,	V _I = 0.5 V				-250			-250	μA
los	Short-circuit output current §	V _{CC} = MAX			-30		-100				mA
Icc	Supply current	V _{CC} = MAX,	See Note 2			75	110		75	105	mA

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. ‡All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. §Duration of the short circuit should not exceed one second.

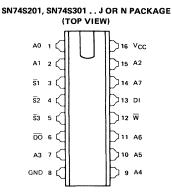
NOTES: 1. Voltage values are with respect to network ground terminal. 2. I CC is measured with the read/write and chip-select inputs grounded. All other inputs at 4.5V, and the outputs open. 'S189 switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	SN54	SN74S189			
]	I ANAME I EN		TEST CONDITIONS	TYP‡	MAX	TYP‡	MAX	UNIT
ta(ad)	Access time from address		C _L = 30 pF,	25	50	25	35	ns
t _a (S)	Access time from chip select (enable time)		R _L = 300 Ω See Note 3	12	25	12	17	ns
tSR	R Sense recovery time			22	40	22	35	ns
tova	Disable time from high or low level	from S	$C_L = 5 pF$, $B_L = 300 p$	12	25	12	17	
^t PXZ	Disable time from high of low level	from W	R _L = 300 Ω, See Note 3	12	30	12	25	ns

'S289 switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PABAMETER		TEST CONDITIONS	SN54	S289	SN74	IS289	
	d) Access time from address ;) Access time from chip select (enable time)		TEST CONDITIONS	TYP‡	MAX	ТҮР‡	MAX	UNIT
ta(ad)	Access time from address		$C_{L} = 30 pF$,	25	50	25	35	ns
ta(S)	Access time from chip select (enable time)		RL1 = 300 Ω,	12	25	12	17	ns
tSR	Sense recovery time		R _{L2} = 600 Ω,	22	40	22	35	ns
to	Propagation delay time, low-to-high-level	from S	See Note 3	12	25	12	17	
^t PLH	output (disable time)	from W		12	30	12	25	ns

 ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C


NOTES: 3. Load circuit and voltage wave forms are shown in Appendix A, page 44.

SCHOTTKY† TTL MEMORIES

256-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

SEPTEMBER 1977

- Static Fully Decoded RAM's Organized as 256 Words of One Bit Each
- Schottky-Clamped for High Performance
- Choice of Three-State or Open-Collector Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Select Inputs Simplify External Decoding

Pin assignments are same for all packages.

description

These 256-bit active-element memories are monolithic transistor-transistor logic (TTL) arrays organized as 256 words of one bit. They are fully decoded and have three chip-select inputs to simplify decoding required to achieve expanded system organizations.

write cycle

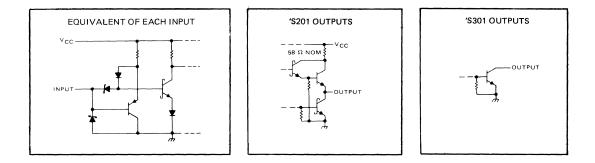
The information applied at the data input is written into the selected location when the three chip-select inputs and the write-enable input are low. While the write-enable input is low, the 'S201 outputs are in the high-impedance state and the 'S301 outputs are off. When a number of outputs are bus-connected, this high-impedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

read cycle

The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the three chip-select inputs are low. When any one of the chip-select inputs are high, the 'S201 outputs will be in the high-impedance state and the 'S301 outputs will be off.

FUNCTION TABLE

	INP	JTS		
FUNCTION	CHIP ENABLE (Ei) OR SELECT (Si)	WRITE ENABLE	'S201 OUTPUT (DO)	'S301 OUTPUT (DO)
Write	L	L	High Impedance	Off
Read	L	Н	Complement of Data Entered	Complement of Data Entered
Inhibit	Н	x	High Impedance	Off


 $H \equiv high \ level, \ L \equiv low \ level, \ X \equiv irrelevant$

[‡]For chip-select: L \equiv all Si inputs low, H \equiv one or more Si inputs high

TEXAS INSTRUMENTS

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} 9see Note 1)	
Input voltage	5.5 V
Off-State output voltage	
Operating free-air temperature range	$\dots \dots 0^{\circ}$ C to 70° C
Storage temperature range	$\dots -65^{\circ}C$ to $150^{\circ}C$

recommended operating conditions

		8	SN74S20)1	SN74301			
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply	Voltage, V _{CC} (see Note 1)	4.75	5	5.25	4.75	5	5.25	V
High-le	evel output voltage, V _{OH}						5.5	V
High-le	evel output current, IOH			-10.3				mA
Low-le	vel output current, IOL			16			16	mA
Width	of write pulse (write enable low), t _{w(wr)}	65	******		65	*******		ns
Setup	Address before write pulse, t _{su(ad)}	o↓	_		04			
time	Data before end of write pulse, t _{su} (da)	651			65↑			ns
time	Chip-select before end of write pulse, t _{su(S)}	65↑			651			
Hold	Address after write pulse, th(ad)	01			01			
	Data after write pulse, th(da)	01			0 ↑			ns
time	Chip-select after write pulse, th(S)	01			0†			
Operat	ing free-air temperature, TA	0		70	0		70	°C

↑↓ The arrow indicates the transition of the write input used for references: ↑ for the low-to-high transition, ↓ for the high-to-low transition.

NOTES: 1. Voltage values are with respect to network ground terminal.

256-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

	DADAMETED		T CONDITIONS [†]		'S201			′S301		
	PARAMETER	IES	CONDITIONS	MIN	TYP	MAX	MIN	түр	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	lı =18mA			-1.2			-1.2	V
VOH	High-level	V _{CC} = MIN,		2.4						v
· UH	output voltage	V _{IL} = 08 V,	I _{OH} = MAX							
VOL	Low-level	V _{CC} = MIN,	V _{IH} = 2 V,			0.45			0.45	v
VOL	output voltage					0.45			0.45	v
1	High-level	V _{CC} = MIN,	V _{IH} = 2 V, V _O =2.4 V						40	μA
юн	output current	V _{IL} = 0.8 V	V _O =5.5 V						100	μΑ
1	Off-state output current,	V _{CC} = MAX,	V _{IH} = 2 V,			40				
IOZH	high-level voltage applied	$V_{1L} = 0.8 V$,	V _{OH} ≈ 2.4 V			40				μA
1	Off-state output current,	$V_{CC} = MAX,$	V _{IH} = 2 V,			40				
IOZL	low-level voltage applied	V _{IL} = 0.8 V,	V _{OL} = 0.5 V			40				μA
1.	Input current at maximum	VMAX				1			1	
4	input voltage	V _{CC} = MAX,	V = 5.5 V						1	mA
Чн	High-level input current	V _{CC} = MAX,	V ₁ = 2.7 V			25			25	μA
կլ	Low-level input current	V _{CC} = MAX,	V ₁ = 0.5 V			-250			-250	μA
los	Short-circuit output current§	V _{CC} = MAX		-30		-100				mA
^I CC	Supply current	$V_{CC} = MAX,$	See Note 2		100	140		100	140	mA

electrical characteristics over recommended operating free-air temperature range (otherwise noted)

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operation conditions.

[‡]These typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§Duration of the short circuit should not exceed one second.

NOTE: 2. I CC is measured with all chip-select inputs grounded, all other inputs at 4.5 V, and the output open

'S201 switching characteristics over recommended operating ranges of ${\sf T}_A$ and ${\sf V}_{CC}$ (unless otherwise noted)

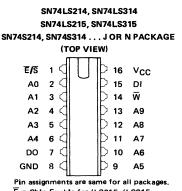
	PARAMETER		1	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
^t a(ad)	Access time from add	ess		CL = 30 pF,		42	65	ns
t _a (S)	Access time from chip	select (select time)		RL=300 Ω,		13	30	ns
^t SR	Sense recovery time			See Note 3		20	40	ns
^t PXZ	Disable time from high or low level	From S From W		C _L = 5 pF, R _L = 300 Ω, See Note 3		9	20	ns

'S301 switching characteristics over recommended operating ranges of ${\sf T}_{\sf A}$ and ${\sf V}_{\sf CC}$ (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
^t a(ad)	Access time from address		C _L = 30 pF,		42	65	ns
ta(S)	Access time from chip enable	e (enable time)	R _{L1} = 300 Ω,		13	30	ns
^t SR	Sense recovery time		R _{L2} = 600 Ω,		20	40	ns
^t PLH	Propagation delay time, low-to-high-level output (disable time)	From S From W	See Note 3		8 15	20 35	ns

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE: 3, Load circuit and voltage waveforms are shown in Appendix A, page 44.


SCHOTTKY† TTL MEMORIES

1024-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

SEPTEMBER 1977

- Static Fully Decoded RAM's Organized 1024 Words of One Bit Each
- Schottky-Clamped for High Performance
- Choice of Three-State or Open-Collector Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Enable/Select Inputs Simplify External Decoding
- Typical Performance

TYPES	READ ACCESS TIMES	POWER
'S214/'S314	40 ns	550 mW
'LS214/'LS314	75 ns	200 mW
'LS215/'LS315	75 ns	200 mW
'LS215/'LS315	75 ns	125 mW
POWER DOWN	(to power-up)	125 1110

E = Chip-Enable for 'LS215, 'LS315

S = Chip-Select for 'LS214, 'LS314, 'S214, 'S314

description

These 1024-bit active-element memories are monolithic transistor-transistor logic (TTL) arrays organized as 1024 words of one bit. They are fully decoded and have a chip-enable or chip-select input to simplify decoding required to achieve expanded system organizations. When the 'LS215/'LS315 is disabled, all read and write functions are in a power-down mode, that is, turned off.

write cycle

The information applied at the data input is written into the selected location when the chip-enable/select input and the write-enable input are low. While the write-enable input is low, the 'S214, 'LS214, and 'LS215 outputs are in the high-impedance state and the 'S314, 'LS314, and 'LS315 outputs are off. When a number of outputs are bus-connected, this high-impedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

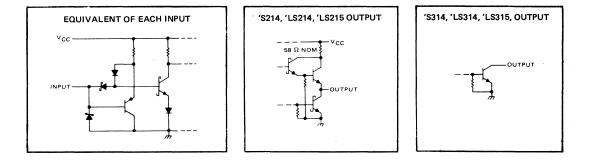
read cycle

The stored information is available at the output when the write-enable input is high and the chip-enable/select input is low. When the chip-enable/select input is high, the 'S214, 'LS214, or 'LS215 output will be in the high-impedance state, the 'S314, 'LS314, or 'LS315 output will be off, and 'LS215 or 'LS315 will be in a power-down mode.

TENTATIVE DATA SHEET

This document provides tentative information on new products. Texas Instruments reserves the right to change specifications for these products in any manner without notice.

TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 • DALLAS, TEXAS 75222 [†]Integrated Schottky-Barrier diodeclamped transistor is patented by 27 Texas Instruments, U. S. Patent Number 3,463,975.


1024-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

FUNCTION	TABLE

	INPL	JTS	' S214	' S314
FUNCTION	CHIP ENABLE (Ë) OR SELECT (S)	WRITE ENABLE (W)	'LS214 'LS215 OUTPUT (DO)	'LS314 'LS315 OUTPUT (DO)
Write	L	L	High Impedance	Off
Read	L	н	Stored Data	Stored Data
Inhibit	н	х	High Impedance	Off

 $\mathsf{H} \equiv \mathsf{high} \; \mathsf{level}, \; \mathsf{L} \equiv \mathsf{low} \; \mathsf{level}, \; \mathsf{X} \equiv \mathsf{irrelevant}$

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)																	. 7V
Input voltage																	. 5.5 V
Off-State output voltage			•				•	•			•				•		. 5.5 V
Operating free-air temperature rang																	
Storage temperature range .	•		•			•		•	•	•	•	•	•			-65°C	to 150°C

NOTE: 1. Voltage values are with respect to network ground terminal.

'S214 recommended operating conditions

		s	N74S21	14	UNIT
		MIN	NOM	MAX	
Supply	voltage, V _{CC} (see Note 1)	4.75	5	5.25	V
High-I	evel output current, IOH			-10.3	mA
Low-le	evel output current, IOL			16	mA
Width	of write pulse (write enable low), t _{W(wr)}	50			ns
Setup	Address before write pulse, t _{su(ad)}	15↓			
time	Data before end of write pulse, t _{su(da)}	55 ↑			ns
ume	Chip select before end of write pulse, $t_{su}(\overline{s})$	551			
Hold	Address after write pulse, th(ad)	201			
time	Data after write pulse, t _{h(da)}	51			ns
ume	Chip select after write pulse, $t_{h}(\overline{S})$	51			
Opera	ting free-air temperature, T _A	0		70	°C

'S314 recommended operating conditions

		s	N74S31	14	UNIT
		MIN	NOM	MAX	
Supply	y voltage, V _{CC} (see Note 1)	4.75	5	5.25	V
High-I	evel output voltage, V _{OH}			5.5	V
Low-I	evel output current, IOL			16	mA
Width	of write pulse (write enable low), t _{w(wr)}	50			ns
Setup	Address before write pulse, t _{su(ad)}	15↓			
time	Data before end of write pulse, t _{su(da)}	55↑			ns
ume	Chip select before end of write pulse, t _{su} (S)	55↑			
Hold	Address after write pulse, th(ad)	201			
time	Data after write pulse, t _{h(da)}	5↑			ns
ume	Chip select after write pulse, th(S)	51			
Opera	ting free-air temperature, T _A	0		70	°C

 $\uparrow\downarrow$ The arrow indicates the transition from the read/write input used for reference: \uparrow for the low-to-high transition, \downarrow for the high-to-low transition.

NOTE: 1. Voltage values are with respect to network ground terminal.

1024-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

				SN74LS SN74LS		-	N74LS2 N74LS3		UNIT
			MI	NOM	MAX	MIN	NOM	MAX	
Supply	/ Voltage, V _{CC} (see Note))	4.75	i 5	5.25	4.75	5	5.25	v
High-le	evel output voltage, V _{OH}	LS314,			5.5				
ingirit	ever output voltage, vOH	LS315			5.5			5.5	
	evel output current, IOH	LS214,							
righ-it	ever output current, IOH	LS215			-5.2			5.2	mA
Low-le	evel output current, IOL				16			16	mA
Width	of write pulse (write enab	e low),	60			60			
tw(wr)			0			60			ns
	Address before write puls),	20			20↓			
	^t su(ad)		20	14		201			
Setup	Data before end of write	oulse,	75	•		75↑			
time	^t su(da)		/8	ι τ		751			ns
	Chip-select/enable before	end	75	•					
	of write pulse, t _{su} (E), t _{su}	<u>s</u>)		1		1101			
	Address after write pulse,	th(ad)	15	it .		15↑			
Hold	Data after write pulse, th	da)	1!	5†		15t			
time	Chip-select/enable after w	rite pulse				454			ns
	$t_{h}(\overline{E}), t_{h}(\overline{S})$		18	θŦ		15↑			
Operat	ting free-air temperature, T	Α)	70	0		70	°C

'LS214, 'LS314, 'LS215, 'LS315 recommended operating conditions

'S214, 'S314 electrical characteristics over recommended operating free-air temperature range (otherwise noted)

	PARAMETER	TEST CONDITIO	Net		'S214			'S314		
	FARAMETER	TEST CONDITIO	N2.	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA				-1.2			-1.2	V
Vali	High-level	$V_{CC} = MIN, V_{IH} = 2 V,$		2.4	2.9					v
∨он	output voltage	V _{IL} = 0.8 V, I _{OH} = MAX		2.4	2.9					v
VOL	Low-level	$V_{CC} = MIN, V_{IH} = 2 V,$				0.45			0.45	v
VOL	output voltage	V _{IL} = 0.8 V, I _{OL} = MAX				0.45			0,45	v
1	High-level	$V_{CC} = MIN, V_{IH} = 2 V,$	V _O =2.4 V						50	μA
юн	output current	V _{IL} = 0.8 V	V _O =5.5 V						100	μΑ
1	Off-state output current,	$V_{CC} = MAX, V_{IH} = 2 V,$	•			50				μA
юzн	high-level voltage applied	V _{IL} = 0.8 V, V _{OH} = 2.4 V	,			50				μΑ
1	Off-state output current,	$V_{CC} = MAX, V_{IH} = 2 V,$				-50				μA
OZL	low-level voltage applied	V _{IL} = 0.8 V, V _{OL} = 0.5 V				-50				μΑ
1.	Input current at maximum	Vcc = MAX, VI = 5.5 V				1			1	mA
4	input voltage	VCC = WAX, V1 = 3.5 V							•	
Чн	High-level input current	V _{CC} = MAX, V _I = 2.7 V				25			25	μA
ΗL	Low-level input current	V _{CC} = MAX, V _I = 0.5 V				-250			-250	μA
los	Short-circuit output current §	V _{CC} = MAX		-30		-100				mA
Icc	Supply current	VCC = MAX, See Note 2	T _A =0°C			155			155	mA
			T _A = 70°C			130			130	

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. [‡]These typical values are at $V_{CC} = 5 V$, $T_A = 25 C$. § Duration of the short circuit should not exceed one second. NOTES: 1. Voltage values are with respect to network ground terminal. 2. I_{CC} is measured with all inputs grounded and the output open.

'LS214, 'LS314, 'LS215, 'LS315 electrical characteristics over recommended operating free-air temperature range (otherwise noted)

	PARAMETER		TEST CONDITIONS [†]		SN74'		UNIT
				MIN	TYP‡	MAX	1
VIН	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
VIK	Input clamp voltage		$V_{CC} = MIN, I_I = -18 \text{ mA}$			-1.2	V
	High-level	'LS214,	$V_{CC} = MIN, V_{IH} = 2 V,$	2.4	3.3		V
۷он	output voltage	'LS215	VIL = 0.8 V, I _{OH} = MAX	2.4	3.3		ľ
	Low-level		$V_{CC} = MIN, V_{IH} = 2 V,$			0.5	V
VOL	output voltage		V _{IL} = 0.8 V, I _{OL} = MAX			0.5	ľ
	High-level	'LS314,	V _{CC} = MIN, V _{IH} = 2 V, V _O =2.4 V			50	μA
юн	output current	'LS315	V _{IL} = 0.8 V V _O =5.5 V			100	1 ^{#A}
	Off-state output current,	'LS214,	V _{CC} = MAX, V _{IH} = 2 V,			50	μA
IOZH	high-level voltage applied	'LS215	V _{IL} = 0.8 V, V _{OH} = 2.4 V			50	
	Off-state output current,	'LS214,	$V_{CC} = MAX, V_{IH} = 2 V,$			-50	μA
IOZL	low-level voltage applied	'LS215	V _{IL} = 0.8 V, V _{OL} = 0.5 V			-50	μ.Α.
	Input current at maximum						-
4	input voltage		$V_{CC} = MAX, V_I = 5.5 V$				mA
Чн	High-level input current		V _{CC} = MAX, V _I = 2.7 V			25	μA
ΗL	Low-level input current		V _{CC} = MAX, V _I = 0.5 V		-	- 250	μA
IOS	Short-circuit output current §	'LS214, 'LS215	V _{CC} = MAX	-20		-100	mA
ICC	Supply current	•	V _{CC} = MAX, See Note 2		40	58	mA
ICC	Supply current - Power dow	(LS215 n (LS315	V _{CC} = MAX, Ē = 2.4 V		25	30	mA

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. [‡]These typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Duration of the short circuit should not exceed one second. NOTE: 2. I_{CC} is measured with all inputs grounded and the output open.

'S214, 'LS214 switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER		TEST	s	N74S2	14	S	14		
	PARAMETER		CONDITIONS	MIN	түр‡	MAX	MIN	N TYP‡ N		UNIT
ta(ad)	Access time from ad	dress			40	70		75	95	ns
^t a(͡S)	Access time from ch (select time)	ip select	C _L = 30 pF, R _L = 400 Ω, See Note 3		15	40		30	50	ns
^t SR	Sense recovery time				25	50		35	65	ns
	Disable time from	from S	$C_{L} = 5 pF, R_{L} = 400 \Omega,$		20	40		30	40	
tPXZ	high or low level	from \overline{W}	See Note 3		20	40		35	50	ns

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE: 3. Load circuit and voltage waveforms are shown in Appendix A, page 44.

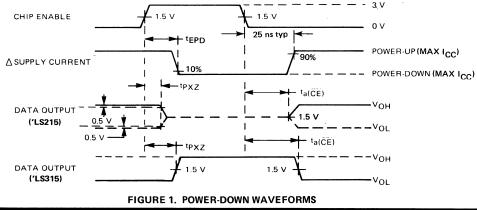
1024-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

'S314 and 'LS315 switching characteristics over recommended operating ranges of T_A and V_{CC} (unless otherwise noted)

			TEST	5	N74S3	14	S	14		
	PARAMETER		CONDITIONS	MIN	түр‡	MAX	MIN	TYP‡	мах	
t _{a(ad)}	Access time from address				40	70		75	95	ns
ta(S)	Access time from chip sel (select time)	ect			15	40		35	50	ns
tSR	Sense recovery time		$C_{L} = 30 \text{ pF}, R_{L1} = 300 \Omega,$		25	50		35	50	ns
Propagation delay time, tPLH low-to-high-level output (disable time)	$R_{L2} = 600 \Omega$, See Note 3		20 25	40 40		45 35	60 50	ns		
	(disable time)				20	40		35	50	

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

'LS215 switching characteristics over recommended operating ranges of T_A and V_{CC} (unless otherwise noted)

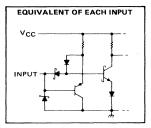

(u	nless otherwise noted)			SN74LS215			
	PARAMETER		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
ta(ad)	Access time from address		C _L = 15 pF,		75	95	ns
t _a (Ē)	Access time from chip enable (enabl	e time)	RL = 400 Ω,		75	95	ns
tSR	Sense recovery time		See Note 5		35	65	ns
tpxz	Disable time from high or low level	from E	C _L = 5 pF, R _{L1} = 400 Ω,		30	40	ns
		from W	See Note 3		35	50	
^t EPD	Chip power-down time		See Figure 1		40	65	ns

'LS315 switching characteristics over recommended operating ranges of T_A and V_{CC} (unless otherwise noted)

(u	mess otherwise noted)			5	SN74LS	315	
	PARAMETER		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
ta(ad)	Access time from address		C ₁ = 15 pF,		75	95	ns
t _a (Ē)	Access time from chip enable (enable ti	me)	R _{L1} = 400 Ω,		75	95	ns
tSR	Sense recovery time		$R_{L2} = 600 \Omega,$		35	50	ns
	Propagation delay time,	from E	See Note 3		30	60	
^t PLH	low-to-high level output (disable time)	from W	See Note 3		35	50	ns
tepd	Chip power-down time		See Figure 1		40	65	ns

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C

NOTE: 3. Load circuit and voltage waveforms are shown in Appendix A, page 44.


- Static Fully Decoded RAM's Organized as 256 Words of Four Bits Each
- Schottky-Clamped for High Performance
- Edge-Triggered Write Control
- 'S207 Data and Address are Same Pins as 1K PROM's ('S287, 'S387)
- High-Density Dual-in-Line Packages have Pin-Row Spacing of 0.300-Inch
- Three-State Output for Driving Bus-Organized Systems and/or Highly Capacitive Loads
- Compatible with Most TTL and I²L Circuits
- Typical Performance:

TYPEO	ACCESS	TIMES	POWER
TYPES	WRITE	READ	DISS.
'S207/'S208	35 ns	40 ns	600 mW
'LS207/'S208	65 ns	75 ns	200 mW

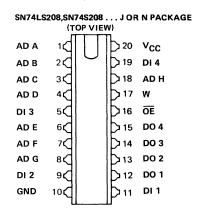
description

These 1024-bit active-element memories are monolithic transistor-transistor logic (TTL) arrays organized as 256 words of four bits each. They are fully decoded with output enable inputs to simplify decoding required to achieve the desired system organization. Read and write times are virtually equal, which simplifies control implementation.

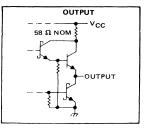
schematics of inputs and outputs

write cycle

While the output-enable input, \overline{OE} , of the 'LS207, 'S207 is high, data applied to the input/output (I/O) is written into the selected location on a positive transition at the write input. Information at the data input of the 'LS208, 'S208 memory is written into the selected location on a positive transition at the write input regardless of the state of the output-enable input. While the output-enable input of either is high, the output is in the high-impedance state. When a number of outputs are bus-connected, this high-impedance output state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up if desired.

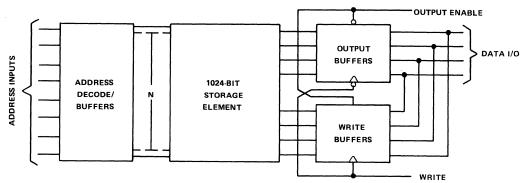

read cycle

The stored information is available at the output when the output-enable input is low.


DESIGN GOAL This document provides tentative information on a product in the developmental stage. Texas Instruments reserves the right to change or discontinue this product without notice.

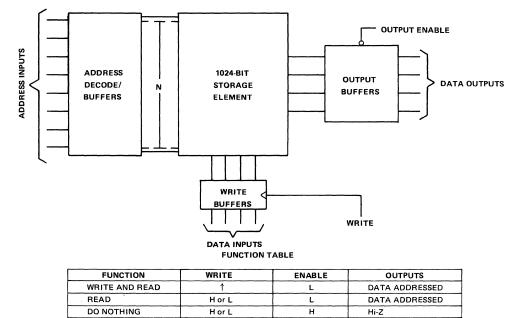
TEXAS INSTRUMENTS

SN74LS207,SN74S207 ... J OR N PACKAGE (TOP VIEW) AD G 1(〕16 Vcc AD H AD F 20 े15 w AD E 3ť ≥14 ÕE **4**¢ े 13 AD D 712 1/0 1 AD A 5ť AD B **6**(<u>)</u>11 1/0 2 1/0 3 AD C 7٢ 〉10 1/0 4 GND 81 g


Pin assignments are same for all packages.

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.

1024-BIT EDGE-TRIGGERED RANDOM-ACCESS MEMORIES



FUNCTION TABLE

FUNCTION	WRITE	ENABLE	OUTPUTS
WRITE	1	н	Hi-Z (USE AS DATA INPUTS)
READ	H or L	L	DATA ADDRESSED
DO NOTHING	H or L	н	Hi-Z

 $H = HIGH, L = LOW, \uparrow = LOW-TO-HIGH TRANSITION$

'LS208, 'S208 functional block diagram

 WRITE ONLY
 ↑
 H

 H = HIGH, L = LOW, ↑= LOW-TO-HIGH TRANSITION
 H
 H

Hi-Z

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)																	7 V	'
Input voltage																		
Off-state output voltage																	5.5 V	'
Operating free-air temperature range:															0)°C to	5 70° C	;
Storage temperature range																		
NOTE 1: All voltage values are with respect to r	netv	vork	gro	unc	d ter	min	al.											

'S207, 'S208 recommended operating conditions

			SN74S'		
		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level output curre	ent, IOH		1.000	-6.5	mA
Low-level output curre	int, I _{OL}			16	mA
Width of write pulse (h		151		ns	
Setup time	Address before write, t _{su(ad)}		o†		ns
(see Figures 3 and 4)	Data before write, t _{su(da)}		01		1 "
	Output enable after write, $t_{h}(\overline{OE})$ (see Figure 3) 'S207	^t h(da)	t		
Hold time	Address after write, $t_{h(ad)}$ (see Figures 3 and 4)		351		ns
	Data after write, t _{h(da)} (see Figures 3 and 4)		351		1
Operating free-air temp	rating free-air temperature, T _A				

The arrow indicates that the rising transition of the write input is used for reference.

'S207,'S208 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	Т т	TEAT OON			SN74S'		UNIT
	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input Clamp voltage		V _{CC} = MIN,	I _I =18 mA			-1.2	V
v _{он}	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	3.2		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA			0.5	v
1	Off-state output current	'S207	V _{CC} = MAX,	V _{1H} = 2 V,			100	μA
lozh	high-level voltage applied	ʻS208	V ₀ = 2.4 V				50	1 **~
1	Off-state output current	'S207	V _{CC} = MAX,	V _{IH} = 2 V,			-250	μA
IOZL	low-level voltage applied	'S208	V _O = 0.5 V				50	<u> </u>
4	Input current at maximum i	nput voltage	V _{CC} = MAX,	V ₁ = 5.5 V			1	mA
1	Link lovel instance and and	'S207	1/ MAA.V	N/ - 2 4 M			100	μA
Чн	High-level input current	'S208	V _{CC} = MAX,	V ₁ = 2.4 V			25	μ.Α.
ΙL	Low-level input current		V _{CC} = MAX,	V ₁ = 0.5 V			-250	μA
los	Short-circuit output current	§	V _{CC} = MAX		-30		-100	mA
	C. and L.	'S207	N MAX	San Nata 2		120		
ICC	Supply current	'S208	V _{CC} = MAX,	See Note 2		120		mA

1024-BIT EDGE-TRIGGERED RANDOM-ACCESS MEMORIES

'LS207, 'LS208 recommended operating conditions

			SN74LS	5	UNIT
		 MIN	NOM	MAX	
Supply voltage, V _{CC}		4.75	5	5.25	v
High-level output curre	ent, IOH			-6.5	mA
Low-level output curre	ent, IOL			16	mA
Width of write pulse (H	nigh), t _{w(wr)}		251		ns
Setup time	Address before write, t _{su(ad)}		01		ns
(see Figures 3 and 4)	Data before write, t _{su(da)}		01		1 115
	Output enable after write, th(OE) (see Figure 3) 'S207	^t h(da) [↑]			
Hold time	Address after write, t _{h(ad)} (see Figures 3 and 4)		651		ns
	Data after write, t _{h(da)} (see Figures 3 and 4)		65 1		1
Operating free-air tem	perature, T _A	0		70	°C

[†]The arrow indicates that the rising transition of the write input is used for reference.

'LS207, 'LS208 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

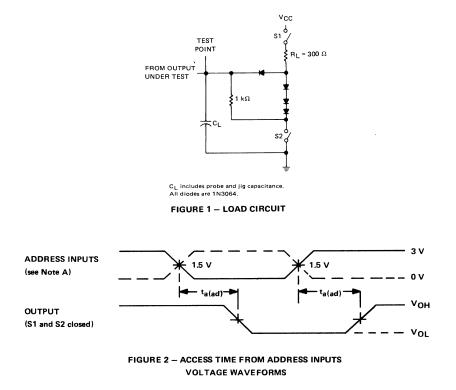
	PARAMETER		TEST CON	DITIONET		SN74LS	i	UNIT
	FARAMETER		TEST CON	DITIONS.	MIN	TYP‡	MAX	
⊻ін	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
Viк	Input Clamp voltage		V _{CC} = MIN,	lj =18 mA			-1.2	V
V _{OH}	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		2.4	3.2		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 16 mA			0.5	v
1	Off-state output current	'LS207	V _{CC} = MAX,	V _{IH} = 2 V,			100	μA
IOZH	high-level voltage applied	'LS208	V _O = 2.4 V				50	<i>µ</i> A
1	Off-state output current	'LS207	V _{CC} = MAX,	V _{IH} = 2 V,			-250	μA
IOZL	low-level voltage applied	'LS208	V _O = 0.5 V				-50	1
4	Input current at maximum i	nput voltage	V _{CC} = MAX,	V _I = 5.5 V			1	mA
Чн	High-level input current	'LS207 'LS208	V _{CC} = MAX,	V ₁ = 2.4 V			100 25	μA
46	Low-level input current		V _{CC} = MAX,	V ₁ = 0.5 V			-250	μA
los	Short-circuit output current	§	V _{CC} = MAX		-20		-100	mA
lcc	Supply current	'LS207 'LS208	V _{CC} = MAX,	See Note 2		40 40		mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25° C.

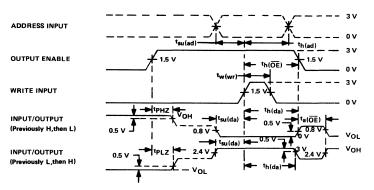
§Duration of the short-circuit should not exceed one second.

NOTES: 1. All voltage values are with respect to network ground terminal.


2. ICC is measured with the write input high, output enable input grounded, all other inputs at 4.5 V, and all outputs open.

switching characteristics at V_{CC} = 5 V, T_A = 25° C

	PARAMETER		TEST CONDITIONS	'S207	, 'S208	'LS207	,'LS208	UNIT
	PARAMETER	TEST CONDITIONS	түр	MAX	TYP	MAX		
ta(ad)	Access time from address		$C_{L} = 30 pF, R_{L} = 300 \Omega,$	40		75		ns
ta(OE)	Access time from output enable (See Figures 1 thru 5	15		20		ns	
ta(wr)	Access time from write	'LS208, 'S208		25		50		ns
	Disable time from high or low	from OE §	$C_{L} = 5 pF$, $R_{L1} = 300 \Omega$,	15		20		ns
^t PXZ	level (see Note 4)	See Figures 3 and 5	15		20		, ''s	


 $\ensuremath{\S{\text{This}}}$ parameter defines the delay for the I/O port to enter the input mode.

PARAMETER MEASUREMENT INFORMATION

NOTE A. When measuring delay times from address inputs, the output-enable and write inputs are low.

1024-BIT EDGE-TRIGGERED RANDOM-ACCESS MEMORIES

FIGURE 3 - 'LS207, 'S207 WRITE AND READ VOLTAGE WAVEFORMS

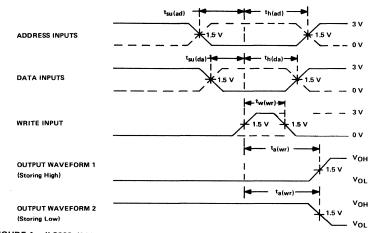
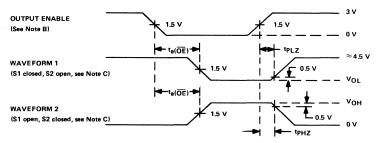
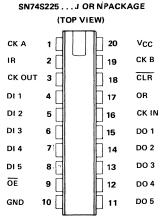



FIGURE 4 - 'LS208, 'S208 WRITE WHILE READ VOLTAGE WAVEFORMS (OUTPUT ENABLE IS LOW)

FIGURE 5 – ACCESS (ENABLE) TIME AND DISABLE TIME FROM OUTPUT ENABLE VOLTAGE WAVEFORMS

- NOTES: B. When measuring delay times from the output-enable input, the address inputs are steady-state and the write/read input is low. C. Waveform 1 is for the output with internal conditions such that the output is low except when disabled, Waveform 2 is for the
 - output with internal conditions such that the output is high except when disabled.
 - D. Input waveforms are supplied by the pulse generators having the following characteristics: $t_r \le 2.5$ ns, $t_f \le 2.5$ ns, PRR ≤ 1 MHz, and $Z_{out} \approx 50 \ \Omega$.

TEXAS INSTRUMENTS


POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

PRINTED IN U.S.A. TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SEPTEMBER 1976

- Independent Synchronous Inputs and Outputs
- Organized as 16-Words of 5 Bits •
- DC to 10 MHz Data Rate
- 3-State Data Outputs
- 20-Pin, 300-mil, High Density Package

Pin assignments are same for all packages

description

This 80-bit active-element memory is a monolithic, Schottky-clamped transistor-transistor logic (STTL) array organized as 16 words of five-bits each. The 'S225 can easily be expanded to 16N-words of 5N-bits in length and features a single enable control for all 3-state data outputs.

operation

A FIFO is a memory storage device which allows data to be written into and/or read from its array at independent data rates. The 'S225 is a FIFO which will process data at any desired clock rate from DC to 10 MHz. The data is processed in a parallel format, word by word.

Reading or writing is done independently utilizing separate synchronous data clocks. Data may be written into the array on the low-to-high transition of either load clock input. Data may be read out of the array on the low-to-high transition of the unload clock input (normally high). When writing data into the FIFO one of the load clock inputs must be held high while the other strobes in the data. This arrangement allows either load clock to function as an inhibit for the other

Status of the 'S225 is provided by three outputs. Input ready monitors the status of the last word location and signifies when the memory is full. This output is high whenever the memory is available to accept any data. The unload clock output also monitors the last word location. This output generates a low-logic-level pulse (synchronized to the internal clock pulse) when the location is vacant. The third status output, output ready, is high when the first word location contains valid data and unload clock input is high. When unload clock input is low, output ready will be low. The first word location is defined as the location from which data is provided to the outputs.

The data outputs are noninverted with respect to the data inputs and are three-state with a common control input, output enable. When output enable is low, the data outputs are enabled to function as totem-pole outputs. A high-logic-level forces each data output to a high-impedance state while all other inputs and outputs remain active.

The clear input invalidates all data stored in the memory array by clearing the control logic and setting output ready to a low-logic-level on the high-to-low transition of a low-active pulse. The data outputs do not change as a result of the clear input; however, the output ready at a low-logic-level signifies invalid data.

TENTATIVE DATA SHEET This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

TEXAS INSTRUMENTS POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments, U. S. Patent Number 3,463,975.

FUNCTION TABLES

Table	1	Input	Functions
-------	---	-------	-----------

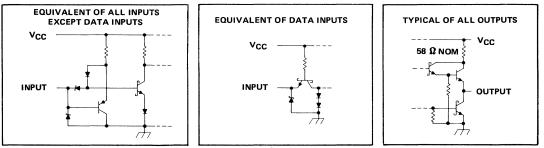
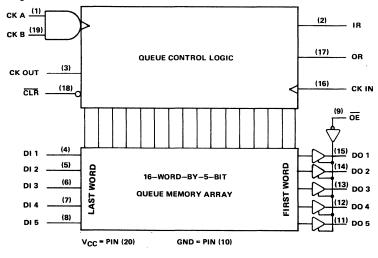

Input	Pin	Description
CK A	1	Load Clock A
DI 1 - DI 5	4-8	Data Inputs
ŌĒ	9	Output Enable
CK IN	16	Unload Clock Input
ĈĽŔ	18	Clear
СК В	19	Load Clock B
GND	10	Ground pin
Vcc	20	Supply Voltage

Table 2 - Output Functions


Output	Pin	Description
IR	2	Input Ready
CK OUT	3	Unload Clock Output
DO 5 - DO 1	11 - 15	Data Outputs
OR	17	Output Ready

1276

sohematics of inputs and outputs

functional block diagram

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply Voltage, V _{CC} (see Note 1) .																					7V
Input Voltage																				5.	.5V
Off-State Output Voltage																				5.	.5V
Operating Free-Air Temperature Range																				0°C to 70	с°С
Storage Temperature Range					•														-	65°C to 150	°С
Storage Temperature Range	•	•	·	•	·	•	·	•	·	•	·	·	·	·	•	·	·	·		65°C to 150)°С

NOTE 1: All voltage values are with respect to network ground terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply Voltage, V _{CC}		4.75	5	5.25	V
	All Outputs Except Data			-3.2	mA
High-level output current, IOH	Data Outputs			-6.5	
	All Outputs Except Data			8	mA
Low-level output current, IOL	Data Outputs			16	mA
	Load Clock A or B, t _w (high)	25			
Pulse Width	Unload Clock Input, tw (low)	7			ns.
	Clear, t _w (low)	40			
Setup Time	Data to Load Clock, t _{su} (DIi) See Note 2	-201			ns
	Clear Release to Load Clock, t _{su}	25†			1
Hold Time, Data from Load Clock, th(Dli)		70†			ns
Operating free-air temperature, TA		0		70	°C

NOTE 2: Data must be setup within 15 ns after the load clock positive transition.

 \dagger = The arrow indicates that the low-to-high transition of the load clock is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONST	MIN	TYP‡	MAX	UNIT	
VIH	High-level input voltage			2			v	
VIL	Low-level input voltage					0.8	V	
VIK	Input clamp voltage		V _{CC} = MIN,	l₁ = −18 mA			-1.2	V
∨он	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = MAX	2.4	2.9		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = MAX		0.35	0.50	v
lоzн	Off-state output current, high-level voltage applied		V _{CC} = MAX, V _{IL} = 0.8 V,	V _{IH} = 2 V, V _O = 2.4 V			50	μA
IOZL	Off-state output current, low-level voltage applied		V _{CC} = MAX, V _{IL} = 0.8 V,	V _{IH} = 2 V, V _O = 0.5 V			-50	μΑ
Ι _Ι	Input current at maximum input voltage		V _{CC} = MAX,	V _I = 5.5 V			1	mA
1		Data In		V = 0.7.V			40	
Чн	High-level input current	All Inputs Except Data In	V _{CC} = MAX,	V _I = 2.7 V			25	μA
		Data In	V MAX	Vi = 0.5 V			-1	mA
4L	Low-level input current	All Inputs Except Data In	V _{CC} = MAX,	VI - 0.5 V			-250	μA
los	Short-circuit output current §		V _{CC} = MAX		-30		-100	mA
Icc	Supply Current		V _{CC} = MAX,	See Note 3		80	120	mA

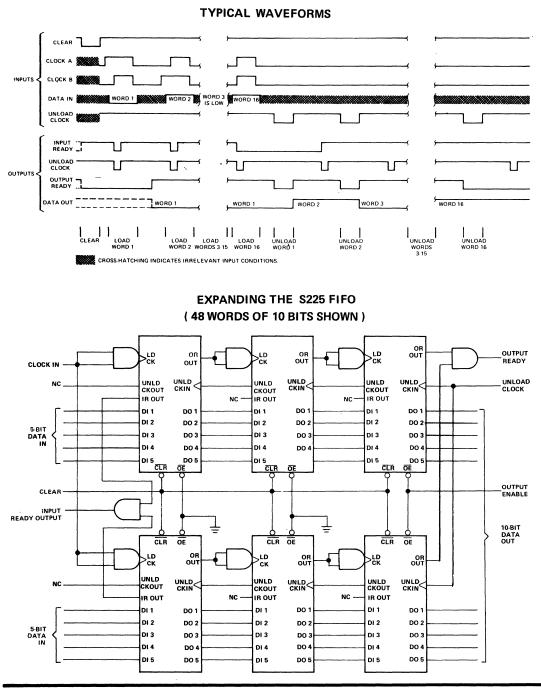
[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions. ‡All typical values are at $V_{CC} = 5 V$, $T_A = 25^\circ C$. §Duration of the short circuit should not exceed one second. NOTE 3: I_{CC} is measured with all inputs grounded and the output open.

PARAMETERS¶	FROM	то	TEST CONDITIONS	MIN	түр‡	мах	UNIT
f _{max}	CK A		CL = 30 pF,	10	20		MHz
f _{max}	СК В		RL = 300 Ω,	10	20		MHz
f _{max}	CK IN		See Note 4	10	20		MHz
tw	CK OUT		566 NOIE 4	7	14		ns
^t PXZ	ŌĒ	DOi	Cլ = 5 pF		10	25	
^t PZX	02				10	25	ns
^t PLH	CK IN	DOi			50	75	
^t PHL		001			50	75	ns
tРLН	CK A or CK B	OR			190	300	ns
tPLH .	014 111	0.5	CL = 30 pF, RL = 300 Ω,		40	60	
^t PHL	CK IN	OR			30	45	ns
^t PHL	CLR	OR			35	60	ns
^t PHL	CK A or CK B	ск оит			25	50	ns
^t PHL	CK IN	CK OUT	See Note 4		270	400	ns
^t PHL	CK A or CK B	IR			55	75	ns
^t PLH	CK IN	IR			255	400	ns
^t PLH	CLR	IR			16	35	ns
^t PLH	OR↑				10	20	
^t PHL	OR↓	DOi			10	20	ns

switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

¶ fmax ≡ maximum clock frequency.

 $t_W \equiv pulse width (output)$


t↓ = The arrow indicates that the low-to-high (1) or high-to-low (↓) transition of the output ready (OR) output is used for reference.

 $t_{PLH} \equiv propagation delay time, low-to-high level output.$

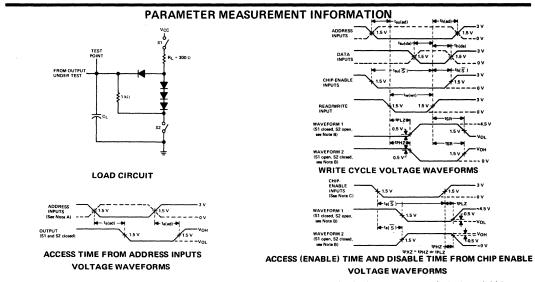
tPHL ≡ propagation delay time, high-to-low-level output.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 4: Load circuit and voltage waveforms are shown in Appendix A.

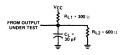
PRINTED IN U.S.A.

TI cannot assume any responsibility for any circuits shown

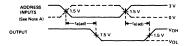

or represent that they are free from patent infringement. 43

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

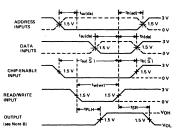
377


TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

APPENDIX A



- NOTES: A. When measuring access times from address inputs, the enable/select input (s) is (are) low and the read/write input is high.
 - B. Waveform shown is for the output with internal conditions such that the output is low except when disabled.
 C. When measureing access and disable times from enable/select input (s), the address inputs are steady-state and the read/write input is high.
 - D. Input waveforms are supplied by pulse generators having the following characteristics and $Z_{\text{Out}}\approx$ 50 $\Omega.$


TESTING RAM's WITH 3-STATE OUTPUTS

LOAD CIRCUIT

ACCESS TIME FROM ADDRESS INPUTS VOLTAGE WAVEFORMS

WRITE CYCLE VOLTAGE WAVEFORMS

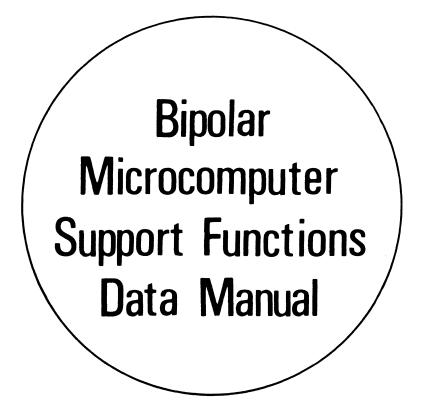
ACCESS (ENABLE) TIME AND DISABLE TIME FROM CHIP ENABLE VOLTAGE WAVEFORMS

NOTES: A. When measuring access times from address inputs, the enable/select input (s) is (are) low and the read/write input is high.

- B. Waveform shown is for the output with internal conditions such that the output is low except when disabled.
- C. When measureing access and disable times from enable/select input (s), the address inputs are steady-state and the read/write input is high.
- D. Input waveforms are supplied by pulse generators having the following characteristics

TESTING RAM'S WITH OPEN COLLECTOR OUTPUTS

PRINTED IN U.S.A.


44 TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

DECEMBER 1976 REVISED DECEMBER 1977

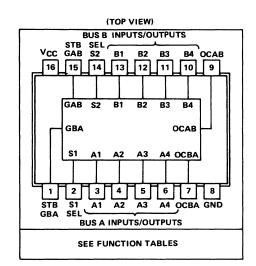
TEXAS INSTRUMENTS

INDEX TO BIPOLAR MICROCOMPUTER SUPPORT FUNCTIONS

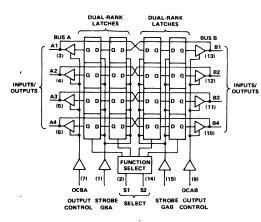
TYPE NUMBER	(PACKAGES)	FUNCTION	SEE
–55° C to 125° C	to 125°C 0°C to 70°C		PAG
SN54S226(J)	SN74S226(J,N)	4-BIT PARALLEL LATCHED BUS TRANSCEIVERS	1
SN54S240(J)	SN74S240(J,N)	OCTAL INVERTING BUS BUFFER DRIVERS/RECEIVERS	-
SN54S241(J)	SN74S241(J,N)	OCTAL BUS BUFFER DRIVER/RECEIVERS	5
SN54S299(J)	SN74S299(J,N)	OCTAL UNIVERSAL SHIFT/STORAGE REGISTERS	9
SN54S330(J)	SN74S330(J,N)	12-INPUT, 50-TERM, 6-OUTPUT FIELD-	10
SN54S331(J)	SN74S331(J,N)	PROGRAMMABLE LOGIC ARRAYS (FPLA)	13
SN54S373(J)	SN74S373(J,N)	OCTAL D-TYPE TRANSPARENT LATCHES	26
SN54S374(J)	SN74S374(J,N)	OCTAL D-TYPE FLIP-FLOPS	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
SN54S412(J)	SN74S412(J,N)	OCTAL MULTIMODE BUFFERED LATCHES	30
	SN74S428(N)	CONTROLLERS AND BUS DRIVERS	35
	SN74S438(N)	FOR 8080A SYSTEMS	35
SN54S482(J)	SN74S482(J,N)	4-BIT-SLICE EXPANDABLE CONTROL ELEMENTS	41

BULLETIN NO. DL-S 7712477, OCTOBER 1976-REVISED AUGUST 1977

- Universal Transceivers for Implementing System Bus Controllers
- Dual-Rank 4-Bit Transparent Latches Provide
 - Exchange of Data Between 2 Buses In One Clock Pulse
 - Bus-to-Bus Isolation
 - Rapid Data Transfer
 - Full Storage Capability
- Hysteresis at Data Inputs Enhances Noise Rejection
- Separate Output Control Inputs Provide Independent Enable/Disable for Either Bus Output
- 3-State Outputs Drive Bus Lines Directly


description

These high-performance Schottky TTL quadruple bus transceivers employ dual-rank bidirectional four-bit transparent latches and feature three-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The bus-management functions implemented and the high-impedance controls offered provide the designer with a controller/ transceiver that interfaces and drives system busorganized lines directly. They are particularly attractive for implementing:


> Bidirectional bus transceivers Data-bus controllers

The bus-management functions, under control of the function-select (S1, S2) inputs, provide complete data integrity for each of the four modes described in the function table. Directional transparency provides for routing data from or to either bus, and the dual store and dual readout capabilities can be used to perform the exchange of data between the two bus lines in the equivalent of a single clock pulse. Storage of data is accomplished by selecting the latch function, setting up the data, and taking the appropriate strobe input low. As long as the strobe is held low, the data is latched for the selected function. Further control is offered through the availability of independent output controls that can be used to enable or

SN54S226 ... J PACKAGE SN74S226 ... J OR N PACKAGE

functional block diagram

REVISED AUGUST 1977

BUS-MANAGEMENT FUNCTION TABLE

OPERATION	S2	S1	LATCH FUNCTIONS
DRIVE BUS A	L	L	Pass Bus B Data to Bus A
DRIVE BUS B	н	L	Pass Bus A Data to Bus B
EXCHANGE	н	н	Store Bus A and Bus B Data
BUS A AND B	L	н	Readout Stored Data

OUTPUT-CONTROL FUNCTION TABLE

OCAB	ОСВА	OUTPUT FUNCTION
L	×	Disable Bus B Outputs (Hi-Z)
н	×	Enable Bus B Outputs
x	L	Disable Bus A Outputs (Hi-Z)
х	н	Enable Bus A Outputs

disable the outputs as shown in the output-control function table, regardless of the latch function in process. Store operations can be performed with the outputs disabled to a high impedance (Hi-Z). In the Hi-Z state the inputs/outputs neither load nor drive the bus lines significantly. The p-n-p inputs feature typically 400 millivolts of hysteresis to enhance noise rejection.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)			 7V
Input voltage			 5.5 V
Off-state output voltage			
Operating free-air temperature range:	SN54S226 (see Note	2)	 –55°C to 125°C
	SN74S226		
Storage temperature range			 –65°C to 150°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. An SN54S226 in the J package operating at temperatures above 113°C requires a heat-sink that provides a thermal resistance from case to free air, R_{#CA}, of not more than 48°C/W.

REVISED AUGUST 1977

recommended operating conditions

		s	N54S22	26	Ś	N74S22	26	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH				5.5			5,5	V
High-level output current, IOH				-6.5			-10.3	mA
Pata antun tima t	Data (A or B)	01			01			
Data setup time, t _{su}	Select	01			01			ns
Pata hald time to	Data (A or B)	30↓			30↓			
Data hold time, t _h	Select	30↓			30 ↓			ns
Operating free-air temperature, TA (see Note 2)	-55		125	0		70	°C	

↓The arrow indicates that the high-to-low transition of the enable input is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST	CONDITION	st	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage					2			V
VIL	Low-level input voltage						0.8	V	
VIK	Input clamp voltage		V _{CC} = MIN,	lj =18 mA				-1.2	V
V	High-level output voltage	SN54S226	V _{CC} = MIN,	V _{IH} = 2 V,	SN54S226	2.4	3.3		
∨он		SN74S226	V _{IL} = 0.8 V,	IOH = MAX	SN74S226	2.4	2.9		ľ
Vai	Low-level output voltage		V _{CC} = MIN,	V _{1H} = 2 V,				0.5	v
VOL			V _{IL} = 0.8 V,	I _{OL} = 20 mA	N			0.5	
1	Off-state output current,		V _{CC} = MAX,	VIH = 2 V,				100	μA
IOZH	high-level voltage applied		V _O = 2.4 V					100	" "
10.71	Off-state output current,		V _{CC} = MAX,	VIH = 2 V,				-100	μA
OZL	low-level voltage applied		V _O = 0.5 V					-100	<u> </u>
ų –	Input current at maximum input voltage		V _{CC} = MAX,	V1 = 5.5 V				1	mA
Чн	High-level input current		V _{CC} = MAX,	V ₁ = 2.7 V				100	μA
ΊL	Low-level input current		V _{CC} = MAX,	V ₁ = 0.5 V				-380	μA
los	Short-circuit output current §		V _{CC} = MAX			50		-180	mA
ICC	Supply current		V _{CC} = MAX,	See Note 3			125	185	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

NOTES: 2. An SN54S226 in the J package operating at temperatures above 113°C requires a heat-sink that provides a thermal resistance from case to free air, $R_{\theta CA}$, of not more than 48°C/W.

3. ICC is measured with all inputs (and outputs) grounded.

REVISED AUGUST 1977

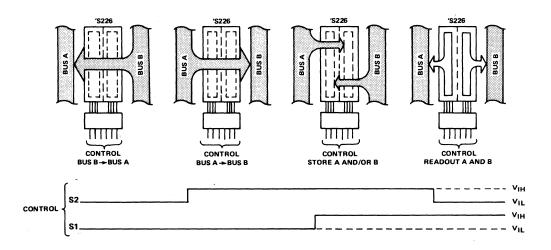
switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CO	MIN	түр	MAX	UNIT	
^t PLH	A or B	B or A				20	30	
^t PHL	AUB	BORA				15	30	ns
^t PLH	Select	A	1			25	37	
^t PHL	Select	Any	CL = 50 pF,	RL = 280 Ω,		19	30	ns
^t PLH	Strobe GBA	A or B	1			25	37	
^t PHL	or GAB	A or B				19	30	ns
^t PZH	Output Control	A	1			12	20	
^t PZL	OCBA or OCAB	A or B				12	20	ns
^t PHZ	Output Control		CL = 5 pF,	RL = 280 Ω,	1	10	15	
^t PLZ	OCBA or OCAB	A or B				10	15	ns

 $t_{PLH} \equiv propagation delay time, low-to-high-level output$

tpHL ≡ propagation delay time, low-to-high-level output

 $t_{ZH} \equiv$ output enable time to high level


 $t_{ZL} \equiv output enable time to low level$

 $t_{HZ} \equiv$ output disable time from high level

 $t_{LZ} \equiv$ output disable time from low level

applications

The following examples demonstrate four fundamental bus-management functions that can be performed with the 'S226. Exchange of data on the two bus lines can be accomplished with a single high-to-low transition at S2 when S1 is high.

TYPES SN54S240. SN54S241, SN74S240, SN74S241 OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS WITH 3-STATE OUTPUTS

BULLETIN NO. DL-S 7512346, DECEMBER 1975

SN54S240 . . . J PACKAGE

features:

- High-Performance Schottky TTL Line Drivers and/or Receivers in a **High-Density 20-Pin Package**
- **3-State Outputs Drive Bus Lines Directly**
- P-N-P Inputs Reduce D-C Loading on **Bus Lines**
- Hysteresis at Inputs Improve Noise Margins
- 'S241 Can Be Interconnected With No External Components to Perform as **Bi-directional Bus Transceiver**

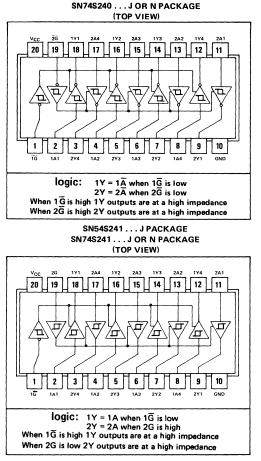
typical characteristics:

- Fan-Out: SN74S' SN54S' IOI (Sink Current) 64 mA 48 mA IOH (Source Current) -15 mA -12 mA
- **Typical Propagation Delay Times:** Data-to-Output: 'S240 (Inverting) . . . 4.5 ns 'S241 (Noninverting) . . . 6 ns
- Enable-to-Output . . . 9 ns

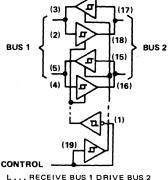
description

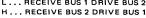
These buffers/line drivers are designed specifically to improve both the performance and p-c board density of 3-state buffers/drivers employed as memory-address drivers. clock drivers, and bus-oriented transmitters/receivers. Featuring 400 millivolts of hysteresis at each low-current p-n-p data-line input, they provide improved noise rejection and high-fan-out outputs to restore Schottky TTL levels completely, or the SN74S' versions can be used to drive terminated lines down to 133 Ω .

Typically, the 'S240 can replace the equivalent of six SN54S04, SN74S04 inverters or four SN54S130, SN74S140 line drivers at their rated drive capabilities with the added benefits of input hysteresis and 3-state outputs. The 'S241 offers the same complexity and drive capability but is designed for use in non-inverting applications.


In bus-organized systems, the 'S241 can be connected with no external components to perform as a non-inverting input/output bus transceiver. With complementing enable inputs, the control function can be connected directly to both enable inputs while the two 4-line data paths can be connected (at adjacent pins) input-to-output on both sides to form the asynchronous transceiver/buffer.

Unused inputs must not be left open, or used inputs must not experience driving impedances of \geq 40 k Ω .


TENTATIVE DATA SHEET


This document provides tentative information TEXAS INSTRUMENTS the right to change specifications for this POST OFFICE BOX 5012 . DALLAS, TEXAS 75222 product in any manner without notice.

977

S241 BUS TRANSCEIVER

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments. U.S. Patent Number 3,463,975.

5

TYPES SN54S240, SN54S241, SN74S240, SN74S241 OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

PARAMETER	SN54S'						
FARAMETER	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-12			15	mA
Low-level output current, IOL			48			64	mA
Operating free-air temperature, T _A (see Note 2)	55		125	0		70	°C

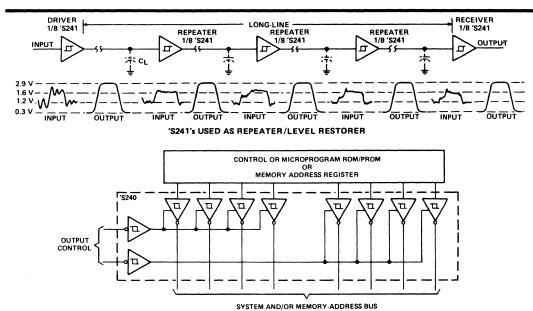
NOTES: 1. These voltage values are with respect to network ground terminal.

2. An SN54S241J operating at free-air temperature above 116°C requires a heat sink that provides a thermal resistance from case to free-air, R_{ØCA}, of not more than 40°C/W.

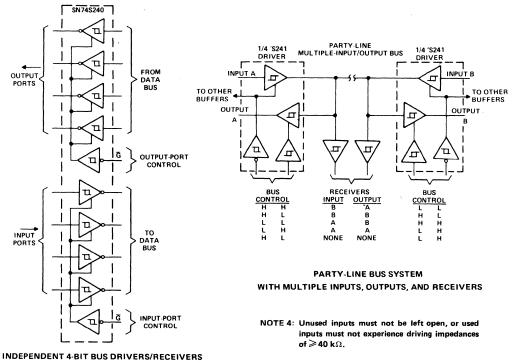
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED		7507 0010	uzioniat	L	'S240			'S241		
	PARAMETER		TEST COND	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	lj =18 mA			1.2			-1.2	V
	Hysteresis ($V_{T+} - V_{T-}$)		V _{CC} = MIN		0.2	0.4		0.2	0.4	•	V
∨он	High-level output voltage		V _{CC} = MIN, I _{OH} ≈3 mA	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		v
VOH	ingniever output vortage		V _{CC} = MIN, I _{OH} = MAX	V _{IL} = 0.5 V,	2			2			v
VOL	Low-level output voltage		V _{CC} = MIN,	IOL = MAX	1		0.55			0.55	V
lozн	Off-state output current, high-level voltage applied		V _{CC} = MAX,	V _O = 2.4 V			50			50	
IOZL	Off-state output current, low-level voltage applied		V _{IH} = 2 V, V _{IL} = 0.8 V	V _O = 0.5 V			50			50	μΑ
4	Input current at maximur input voltage	n	V _{CC} = MAX,	V _I = 5.5 V			1			1	mA
Чн	High-level input current, a	iny input	V _{CC} = MAX,	VIH = 2.7 V			50			50	μA
41	Low-level input current	Any A Any G	V _{CC} = MAX,	V _{IL} = 0.5 V			400			400 2	μA mA
los	Short-circuit output curre		V _{CC} = MAX		-50		-225	-50		-225	mA
-03		Total.		SN54S'	+	80	123		95	147	
		outputs high		SN74S'	<u> </u>	80	135		95	160	
	0	Total,	VCC = MAX,	SN54S'	1	100	145		120	170	
1cc	Supply current	outputs low	Outputs open	SN74S'		100	150		120	180	mA
		Outputs at		SN54S'		100	145		120	170	
		Hi-Z		SN74S'		100	150		120	180	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST OC	TEST CONDITIONS			* \$240			* \$241		
	FARAMETER	TEST CC				MAX	MIN	TYP	MAX	UNIT	
₽LH	Propagation delay time, low-to-high-level output				4.5	7		6	9	ns	
ΦHL	Propagation delay time, high-to-low-level output	CL = 50 pF, See Note 3	R _L = 90 Ω,		4.5	7		6	9	ns	
^t ZL	Output enable time to low level	-			10	15		10	15	ns	
^t ZH	Output enable time to high level	7			6.5	10		8	12	ns	
^t LZ	Output disable time from low level	C _L = 5 pF,	RL = 90 Ω		10	15		10	15	ns	
tHZ	Output disable time from high level		-		6	9		6	9	ns	

TYPES SN54S240, SN54S241, SN74S240, SN74S241 OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS WITH 3-STATE OUTPUTS

'\$240 USED AS SYSTEM AND/OR MEMORY BUS DRIVER-4-BIT ORGANIZATION CAN BE APPLIED TO HANDLE BINARY OR BCD

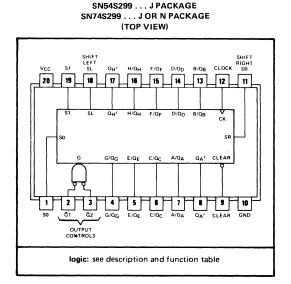
IN A SINGLE PACKAGE

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

PRINTED IN USA

TI cannot assume any responsibility for any circuits shown **7** or represent that they are free from patent infringement.


TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

SCHOTTKY† TTL

TYPES SN54S299, SN74S299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

DECEMBER 1976

- Multiplexed Inputs/Outputs Provide Improved Bit Density
- Four Modes of Operation: Hold (Store) Shift Left Shift Right Load Data
- Operates with Outputs Enabled or at High Z
- 3-State Outputs Drive Bus Lines Directly
- Can be cascaded for N-Bit Word Lengths
- Applications: Stacked or Push-Down Registers, Buffer Storage, and Accumulator Registers

description

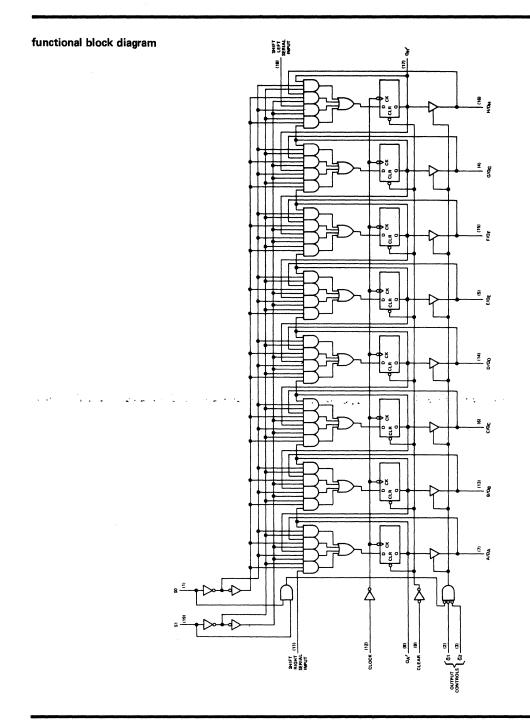
These Schottky TTL eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

				INPU'	rs				INPUTS/OUTPUTS									OUTPUTS	
MODE	FUNCTION OUTPUT CLEAR SELECT CONTROL CLOCK		SERIAL		A/0∆	B/QB	c/Q _C	D/QD	E/QF	F/QF	G/Q _G	H/QH	۵۵٬	QH,					
		S1	S 0	Ğ1†	Ğ2†		SL	SR		5	Ŭ	5	-					••	
Class	L	x	L	L	L	х	х	х	L	L	L	L	L	L	L	L	L	L	
Clear	L	L	н	L	L	х	х	х	L	L	L	L	L	L	L	L	L	L	
Hold	н	L	L	L	L	х	х	х	Q _{A0}	QB0	Q _{C0}	Q _{D0}	QE0	QFO	Q _{G0}	Q _{H0}	Q _{A0}	QH0	
HOID	н	x	X	L	L	L	х	х	Q _{A0}	Q _{B0}	OC0	Q _{D0}	QE0	QF0	Q _{G0}	QH0	QA0	QH0	
Shift Right	н	L	н	L	L	1	х	н	н	Q _{An}	Q _{Bn}	QCn	0 _{Dn}	QEn	Q _{Fn}	QGn	н	QGn	
Shirt Hight	н	L	н	L	L	† ↑	х	L	L	QAN	Q _{Bn}	QCn	۵ _{Dn}	QEn	Q _{Fn}	Q _{Gn}	L	QGn	
Shift Left	н	н	L	L	L	†	н	х	Q _{Bn}	QCn	Q _{Dn}	QEn	Q _{Fn}	QGn	Q _{Hn}	н	QBn	н	
Shirt Leit	н	н	L	L	Ľ	1	L	х	QBn	QCn	Q _{Dn}	QEn	Q _{Fn}	Q _{Gn}	Q _{Hn}	L	0 _{Bn}	L	
Load	н	н	н	X	Х	1	X	Х	а	b	с	d	е	f	g	h	a	h	

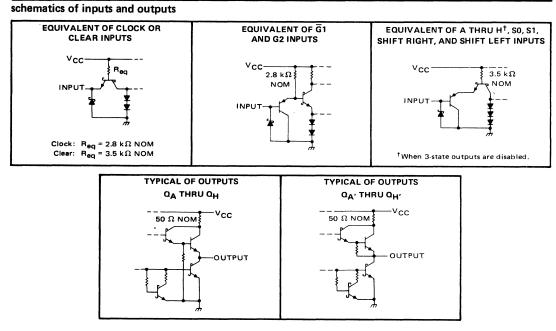
operation or clearing of the register is not affected.

a... h = level of the steady-state input at inputs A through H, respectively. These data are loaded into the flipflops while the flip-flop outputs are isolated from the input/output terminals.


[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.

1276

TEXAS INSTRUMENTS


POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

TYPES SN54S299, SN74S299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

TEXAS INSTRUMENTS POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

TYPES SN54S299, SN74S299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)		 	7V
Input Voltage		 	5.5 V
Off-state output voltage		 	5.5 V
Operating free-air temperature range:			
·	SN74S299	 	$. 0^{\circ}C$ to $70^{\circ}C$
Storage temperature		 	–65°C to 150°C

NOTES 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	SN54S29	39	S	N74S29	99	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5,5	4.75	5	5.25	V
High-level output current, IOH	Q _A thru Q _H			-2			-6.5	
riginever output current, IOH	Q _A , or Q _H ,			-0.5			-0.5	mA
Low-level output current, IOL	Q _A thru Q _H			20			20	
Low-level output current, IOL	Q _A , or Q _H ,			6			6	mA
Clock frequency, fclock		0		50	0		50	MHz
Width of clock pulse to the state	Clock high	10			10			
Width of clock pulse, t _{w(clock)}	Clock low	10			10			ns
Width of clear pulse, tw(clear)	Clear low	10			10			ns
	Select	15↑			15↑			
Catura time t	High-level data [♦]	7↑			7↑			
Setup time, t _{su}	Low-level data [♦]	5↑			5↑			ns
	Clear inactive-state	10↑			10↑			
	Select	5↑			5↑			
Hold time, t _h	Data [♦]	5↑			5↑			ns
Operating free-air temperature, TA		-55		125	0		70	°c

 \diamond Data includes the two serial inputs and the eight input/output data lines.

TYPES SN54S299, SN74S299 8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

	PARAMETER		TEST CON	IDITIONS [†]	MIN	ТҮР‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage		1				0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	lı =18 mA	1		-1.2	V
∨он	High-level output voltage	Q _A thru Q _H	V _{CC} = MIN,	VIH = 2 V,	2.4	3.2		
∙он	inginever output vortage	Q _A , or Q _H ,	V _{IL} = 0.8 V,	I _{OH} = MAX	2.7	3.4		V V
VOL	Low-level output voltage		V _{CC} = MIN,	V _{IH} = 2 V,			0.5	v
			V _{IL} = 0.8 V,	I _{OL} = MAX				
lоzн	Off-state output current,	Q _A thru Q _H	V _{CC} = MAX,	V _{IH} = 2 V,			100	
'02H	high-level voltage applied	QA IIIU QH	V _O = 2.4 V		1		100	μA
1	Off-state output current	0	V _{CC} = MAX,	VIH = 2 V,	1		05.0	
IOZL	low-level voltage applied	Q _A thru Q _H	V _O = 0.5 V				250	μA
1	Input current at maximum input voltage		V _{CC} = MAX,	VI = 5.5 V	1		1	mA
1	High lovel input everent	A thru H, S0, S1	N		1		100	
ЧН	High-level input current	Any other	$V_{CC} = MAX,$	VI = 2.7 V			50	μA
1	Low-level input current	Clock or clear	N. MANY	N - 05 M	1		-2	mA
Կட	Low-level input current	Any other	V _{CC} = MAX,	V _I = 0.5 V			-250	μA
1	Short-circuit output current §	Q _A thru A _H	N		-40		-100	
los	Short-circuit output currents	Q _A , or Q _H	V _{CC} = MAX		-20		-100	mA
1CC	Supply current		V _{CC} = MAX		1	140	225	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]AII typical values are at V_{CC} = 5 V, T_A = 25^oC.

§Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second.

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	МАХ	UNIT
^f max			See Note 2	50	70		MHz
^t PLH	Clock	Q _{A'} or Q _{H'}	$C_L = 15 pF$, $R_L = 1 K\Omega$,		12	20	
^t PHL			See Note 2		13	20	ns
^t PHL	Clear	Q _A , or Q _H ,	See Note 2		14	21	ns
^t PLH	Clock	O to three Out			15	21	
tPHL	CIOCK	Q _A thru Q _H	0 - 15 - 5 - 0 - 000 o		15	21	nis
^t PHL	Clear	Q _A thru Q _H	CL = 45 pF, RL = 280 Ω, See Note 2		16	. 24	ns
^t PZH	Ğ1, Ğ2	O . the O .			10	18	
^t PZL	61, 62	Q _A thru Q _H			12	18	ns
^t PHZ	<u></u> G1, <u>G</u> 2	O thru Ou	$C_{L} = 5 pF, R_{L} = 280 \Omega,$		7	12	
^t PLZ	01, 02	Q _A thru Q _H	See Note 2		7	12	ns

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

 $f_{max} \equiv maximum$ clock frequency

 $t_{PLH} \equiv$ propagation delay time, low-to-high-level output

 $t_{PHL} \equiv propagation delay time, high-to-low-level output$

 $t_{PZH} \equiv output enable time to high level$

t $PZL \equiv$ output enable time to low level

 $t_{PHZ} \equiv output disable time from high level$

 $t_{PLZ} \equiv$ output disable time from low level

NOTE 2: For testing fmax, all outputs are loaded simultaneously, each with CL and RL as specified for the propagation times.

SCHOTTKY† TTL

- Field-Programmable Logic Array Organized 12-Inputs/50-Product Terms/6-Outputs
- Programmable Options Include:
 - Active High or Low Inputs/Outputs
 - Choice of Dedicated Enable Input or Automatic Enable by True Product Terms
- Number of Inputs, Outputs, and Product Terms are Expandable
- High Density 20-Pin Package
- Full Schottky Clamping for High-Performance:
 - 30 ns Typical Data Delay Time
 - 20 ns Typical Enable Time
- Reliable TI-W Fuse Links for Fast, Low-Voltage Programming

• Choice of 3-State ('S330) or 2.5 kΩ Passive-Pull-up ('S331) Outputs

description

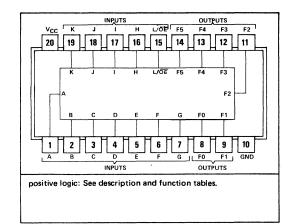
These high-performance, Schottky-clamped 12-input, 6-output logic arrays can be field programmed to provide 50 product terms derived from the 12 inputs and sum the 50 products onto 6-output lines. They feature a programmable option which permits the FPLA outputs to be automatically enabled by a true product term or, to dedicate during programming, input (L/\overline{OE}) to serve as an output enable (\overline{OE}) . Either option makes the FPLA expandable with respect to product terms. Other options permit use of both dedicated or automatic enable or no disable.

For every product term, 12 input variables can be programmed as high or low. Logic flexibility is further enhanced by the feature that the six outputs can be programmed individually to be active high or low.

The 'S330 is implemented with bus-driving 3-state outputs and can be connected directly to similar outputs in a busorganized system. The 'S331 is implemented with a 2.5 k Ω passive pull-up resistor on each output meaning that:

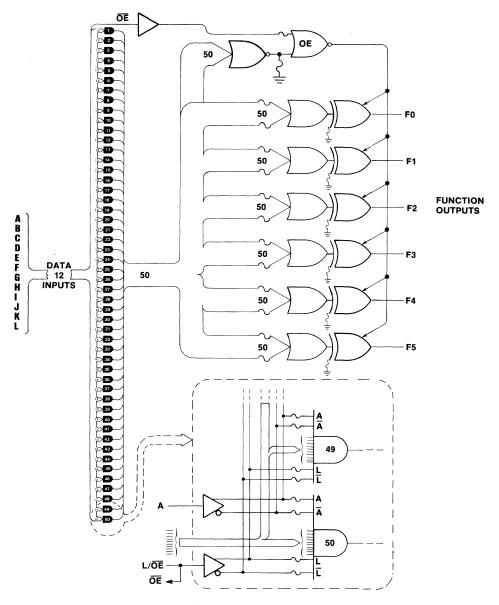
- a. The output can be combined with other similar or open-collector outputs to perform the logical wire-AND or a simple enable/disable function.
- b. The 'S331 outputs are also rated at VOH = 3.7 minimum for direct interface with MOS input thresholds.

The TI-W fuse links, used in the 'S330/'S331, feature the same low-voltage programming characteristics and proven reliability which Texas Instruments PROM's have demonstrated over a number of years.



TENTATIVE DATA SHEET This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice.

TEXAS INSTRUMENTS


POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by 13 Texas Instruments, U. S. Patent Number 3,463,975.

SN74S330, SN74S331 . . J OR N PACKAGE

5

WHERE:

 $F_i = F_0$, F_1 , F_2 , F_3 , F_4 , or F_5 (ABC L)_i = 12 PROGRAMMABLE INPUTS (H = TRUE OR L = TRUE) FOR EACH OF 50 PRODUCT TERMS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1) .	•																			. 7	v
Input voltage											-									5.5	V
Off-state output voltage																				5.5	V
Operating free-air temperature range		-	. '	-	-													0 °	C to	о 70 [°]	°C
Storage temperature range	·	•	•	•			•	•	•	•		•	•	•	•	•-	-65	ΰ°C	to	150°	C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		5	SN74S3	330, SN	74S331	UNIT
			MIN	NOM	MAX	
Supply voltage, V _{CC}			4.75	5	5.25	V
	'S330 (T-S)				-6.5	
High-level output current, IOH	'S331 (2.5 kΩ Pullup)				-0.25	mA
Operating free-air temperature, TA			0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	SN74S	330, SN		UNIT
	TANAMETER		TESTCON	DITIONS	MIN	TYPŦ	MAX	
∨ін	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		$V_{CC} = MIN,$	lj =18 mA			-1.2	V
∨он	High-level output voltage	ʻS330	V _{CC} = MIN, V _{IH} = 2 V	IOH = MAX	2.4	3.1		v
*UH		ʻS331	V _{IL} ≈ 0.8 V	IOH = MAX	3.7	4.4		Ň
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} ≈ 0.8 V,	V _{IH} = 2V, I _{OL} = 12 mA			0.5	v
10ZH	Off-state output current,	' \$330	V _{CC} = MAX	$V_0 = 2.4V$			50	
loff	high-level voltage applied	ʻS331		Vo = Vcc			150	μA
IOZL	Off-state output current,	'S330	V _{CC} = MAX,				50	μA
	low-level voltage applied	0000	VCC 111/2/2,	*0 0.5 *			-50	# ^
4	Input current at maximum		V _{CC} = MAX,	Vi = 5.5 V	1		1	mA
	input voltage		00	·				
Чн	High-level input current		V _{CC} = MAX,				50	μA
ΠL	Low-level input current		V _{CC} = MAX,	V ₁ = 0.5 V			-0.25	mA
100	Short-circuit output	'S330	V _{CC} = MAX		-30		-100	~ ^
los	current§	'S331			-1.4		-4.4	mA
100	Supply current	'S330	V _{CC} = MAX,	See Note 2		110	155	mA
lcc		' \$331				122	165	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†]All typical values are at V_{CC} = 5 V, T_A = 25°C. [§]Not more than one output of the 'S330 should be shorted at a time.

a Not more than one output of the 5330 should be shorted at a time.

NOTE 2: I $_{\mbox{CC}}$ is measured with all outputs open and all inputs grounded.

switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

PARAN	NETER	FROM	то	TEST CO	NDITIONS		'S330			ʻS331		UNIT
' \$330	ʻS331	FROM	10	' \$330	ʻS331	MIN	түр	MAX	MIN	TYP	MAX	UNIT
^t PLH	^t PLH	Any data	Any output	$C_{1} = 30 pF_{2}$	R _{L1} = 300Ω,		35	60		35	60	
^t PHL	tPHL	input	Any output	See Figure 2,	С _L = 30 рF,		35	60		35	60	ns
^t ZL	^t PHL	ŌĒ	Any output	Section 4, page 13	See Figure 1,		20	35		20	35	ns
^t ZH		02	Any output	Section 4, page 15	Section 4, page 13		20	35				
tHZ		AE or OE	Any output	CL = 5 pF,	R _{L1} = 300Ω,		15	30				ns
^t LZ	^t PLH	AE OF UE	Any output	See Figure 2,	CL = 30 pF,		15	30		15	30	
^t ZL	tPHL	Any data	Any output	Section 4, page 13	See Figure 1,		40	70				ns
tZH		input (AE)	Any output	Section 4, page 15	Section 4, page 13		40	70		40	70	

programming the FPLA

The 'S330 and 'S331 are fabricated to include reliable low-voltage programmable Ti-W fuse links which have identical fusing characteristics with those used for most of TI's PROM's; however, the AND-OR combinational logic performed by an FPLA requires that sequential programming be employed which establishes the AND term including the data/enable L/\overline{OE} input before the OR term. Programming the automatic enable feature active and the data/enable input (L/\overline{OE}) can be accomplished before or after the AND and OR matrices are established. Programming the true low level of the outputs should be performed last.

recommended conditions for programming

		м	N NO	M MAX	UNIT
Supply voltage, V _{CC} (see Note 1)		4.7	'5	5 5.75	V
Program pulse voltage, V(pr) (see Not	9 1)		0 10	.5 11†	v
Program pulse rise time			10	00	ns
Input voltage (see Note 1)	High level, VIH	2	.4	5	V
Input voltage (see Note 1)	Low level, VIL		0	0.5	1 °
Voltage applied to output for OR prop	gramming, V _{O(pr)} (see Figure 4)		0 0.2	25 0.3	V
Duration of programming pulse Y (see	Figures 1, 3, 4, and Note 2)		98 10	00 10 ³	μs
Programming duty cycle			2	25 35	%
Free-air temperature			0	55	°C

[†]Absolute maximum ratings.

NOTES: 1. Voltage values are with respect to the GND terminal.

2. Programming is guaranteed if the pulse applied is 98 µs in duration.

TABLE I - ADDRESSES FOR PROGRAMMING ENABLES AND OUTPUT LEVELS

ADD	DRESS	APPL	ED TO	OUT	PUTS	PRODUCT TERM		
F5	F4	F3	F2	F1	FO	ADDRESSED	PROGRAM	15
н	н	L	L	н	L	50 ₂	Output F5 true low)	
н	н	L	L	н	н	51 ₂	Output F ₄ true low	
н	н	L	н	L	L	52 ₂	Output F ₃ true low	PROGRAM
н	н	L	н	L	н	53 ₂	Output F ₂ true low	LAST
н	н	L	н	н	L	54 ₂	Output F ₁ true low	
) н	н	L	н	н	н	55 ₂	Output F ₀ true low	
н	н	н	L	L	L	56 ₂	$L/\overline{OE} = L$ input	
н	н	н	L	L	н	57 ₂	Automatic output ena	able active

TABLE II - OUTPUT ENABLE OPTIONS

TERM FUSED	PROGRAMS
Neither 562 nor 572	"L/OE" as "OE" (L Must be Programmed "don't care")
56 ₂ (See Note 3)	Outputs to be Continously Enabled (L/OE as L input)
57 ₂	L/\overline{OE} as \overline{OE} and Automatic Enable (AE) Active (F _i = $\overline{OE} \bullet AE$, Where: AE = True Product Term Addressed)
56_2 and 57_2 (See Note 3)	Automatic Enable (AE) Active (F _i = AE)

NOTE 3: If the L/\overline{OE} input is not used as an enable input, programming the fuse at address 56₂ will cause the outputs to be continously enabled. This function can be used to simplify verification during programming even if address 57₂ is fused subsequently to activate the automatic enable.

programming the automatic enable (AE) to be active

The 'S330 and 'S331 are supplied with a fuse link disabling the automatic enable circuit. When a true product term is not present at the inputs this circuit is designed to automatically disable the six outputs [high-impedance (Z) for 'S330, high (H) for 'S331]. Fusing one link (See Table I) activates the automatic enabling circuit resulting in the six outputs being enabled for any true input term.

The fuse is programmed by addressing term 572 and fusing in accordance with the step-by-step procedure. See Table II above for options available.

programming the L/OE input

The L/OE input must be programmed either to function as a dedicated enable or to function as the 12th data input.

If it is to become the 12th data input a single fuse, at term 562 (see Table 1), should be programmed in accordance with steps 1 through 5 below; then, input L is programmed logically into each AND/AND product term.

If input L/\overline{OE} is to function as an output enable, term 562 is not fused: however, both AND/AND fuse links at each of the 50 product term addresses must be fused as outlined in the step-by-step procedures for the AND matrix creating a "don't care" for input L. This causes the input to become an overriding output disable for the package. See Table II for other output enable options.

step-by-step programming procedure for enable options and output polarity

- 1. Apply steady-state supply voltage (V_{CC} = 5 V) and disable the outputs by applying 10.5 volts to the 12 data inputs. See Figure 1.
- 2. For output polarity, verify that the fuse link needs to be programmed. If not, proceed to the next term.
- Only one fuse link is programmed at a time. Address the term to be programmed by applying VIH and VIL to the outputs in accordance with Table 1 and recommended conditions for programming.
- 4. Step VCC to 10.5 V nominal. Maximum supply current required during programming is 750 mA.
- 5. After the Y pulse time is reached, V_{CC} should be stepped down to 5 V.
- The data inputs may be taken to logic levels (to permit output polarity verification) 1 μs or more after V_{CC} reaches its steady-state value of 5 V.
- 7. At a Y pulse duty cycle of 35% or less, repeat steps 1 through 6 for each function to be programmed.

NOTE 4: VCC should be removed between program-pulses to reduce dissipation and chip temperatures. See Figure 1.

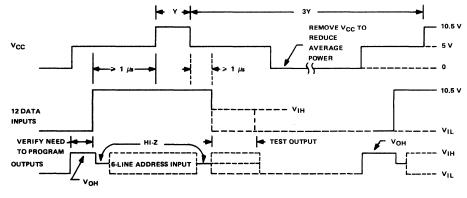
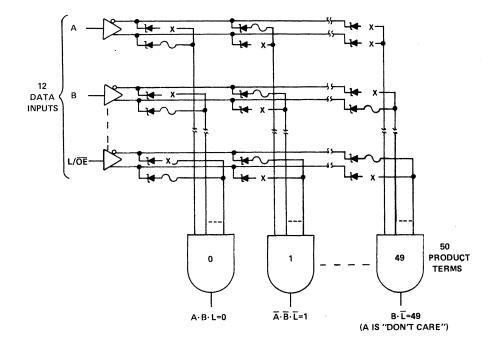


FIGURE 1 - OUTPUTS AND ENABLES PROGRAMMING SEQUENCE

programming the true/false logic level of the outputs


The FPLA is supplied with internal conditions established such that when a programmed AND or $\overline{\text{AND}}$ input term is true the associated function output (F_i) will be at a high logic level voltage, VOH.

After programming the enables, product terms, and OR matrix, the outputs can be programmed to provide a low logic level voltage (VOL) output. This is accomplished by using AND/ $\overline{\text{AND}}$ terms 50 through 55 shown in Table I and fusing the desired outputs using the step-by-step procedure.

Programming can be verified by applying V_{CC} = 5 V and the input conditions which correspond to each term programmed to result in an active low-level output, measuring V_{OL} ≤ 0.5 V at the programmed outputs.

programming the AND/AND product terms

Each of the 50 product terms are capable of being programmed to decode a 12-wide term consisting of any combination of active (true) high, active (true) low, or don't care (H or L) input conditions at each of the 12 lines. This capability is implemented by providing AND/AND decode input gates each having a pair of associated fusible links which can be programmed to inactivate the unused decode level. Both decode levels can be removed resulting in a "don't care" input. The equivalent logic diagram showing the fusible links is shown in Figure 2.

A particular pattern is assumed to have been programmed into the AND/ \overline{AND} fuse matrix with fused links opened at the locations marked with an "X". The resultant product terms are enumerated for the outputs of each product-term AND gate.

Product terms programmed into the AND/AND matrix will be used to select the term for programming the OR (summing) matrix. Redundant product terms will select two sum terms in the OR matrix, and overlapping product terms may select two or more sum terms. Reliable programming can be accomplished if redundant product terms are avoided and overlapping product terms are made unique within the FPLA for programming.

Redundant product terms are defined as being absolutely equal; i.e., ABCDEFG≡ABCDEFG. Use of apparently redundant terms is possible if the term does not use all inputs as the remaining inputs can be utilized to create FPLA unique terms for programming purposes by expansion:

Example:

ABCDEFGH#ABCDEFGH

After programming the entire OR matrix, the product terms can be readdressed and expanded inputs can be programmed "don't care".

Overlapping terms are defined as two or more product terms in which the lesser product term can be addressed as a result of the application of a larger product term.

Examples:

ABCDEFG - This large product term

AB DE G

The small terms can be made FPLA unique for programming by simply expanding to non-redundant inputs.

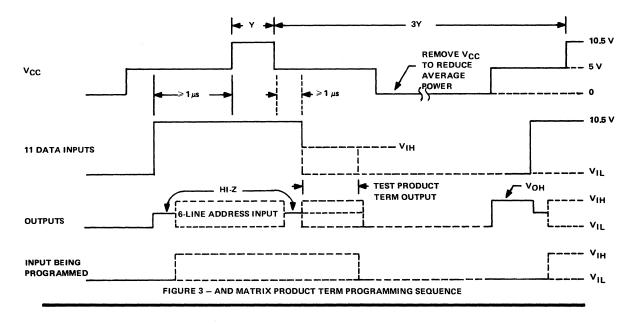
ABCDEFG - Large term

AB DEFG

After programming the entire OR matrix, the product terms can be shortened by readdressing the expanded terms and programming the added inputs to a "don't care". The AND/AND matrix is programmed one fuse at a time by addressing the term in accordance with Table III and fusing the input while applying the logic level desired to be active. See Figure 3.

ADD	RESS	APPLI	ED TO	OUTP	UTS	PRODUCT
F5	F4	F3	F2	F1	Fo	ADDRESSED
L	L	L	L	L	L	0
L	L	L	L	L	н	1
L	L	L	L	н	L	2
L	L	L	L.	н	н	3
н	н	L	L	L	L	48
н	н	Ł	L	L	н	49

TABLE III - ADDRESSES FOR PROGRAMMING PRODUCT TERMS

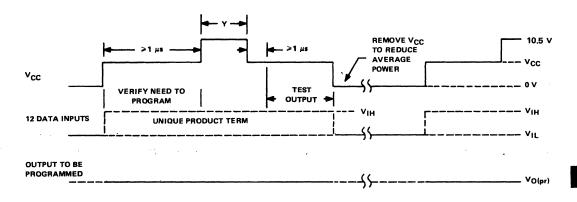

step-by-step programming procedure for AND matrix

Programming efficiency may be enhanced by programming the OR matrix upon completion of the 12-wide AND/AND term associated with it; or, the entire AND/AND term matrix can be programmed for all 50 product terms before programming the summing matrix.

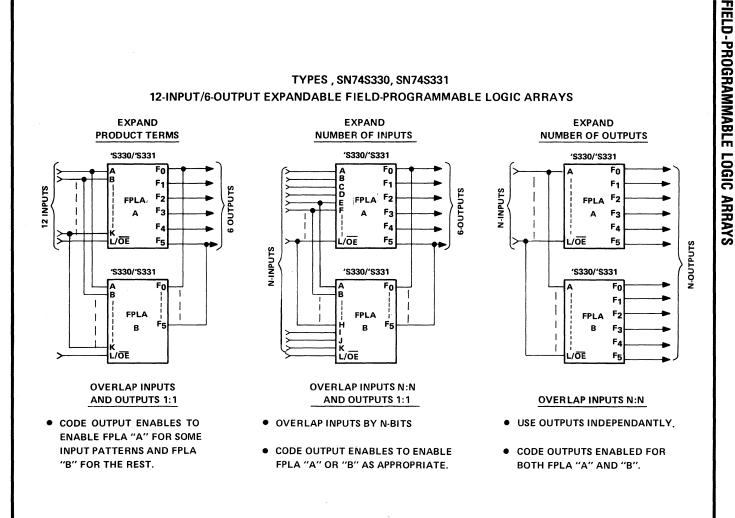
- 1. Apply steady-state supply ($V_{CC} = 5$ V) and disable the outputs by applying 10.5 volts to the 11 data inputs not being programmed. See Figure 3.
- 2. Only one fuse link is programmed at a time. Address the term to be programmed by applying VIH and VIL to the outputs in accordance with Table II.
- 3. Apply the logic level to be true at the input to be programmed.
- 4. Step V_{CC} to 10.5 V nominal. Maximum supply current required during programming is 750 mA.
- 5. After the Y pulse time is reached, V_{CC} should be stepped down to 5 V. See notes 6 and 7.
- 6. The data inputs may be taken to logic levels (to permit product term verification) 1 μ s or more after V_{CC} reaches its steady-state value of 5 V.
- 7. At a Y pulse duty cycle of 35% or less, repeat steps 1 through 6 for each input to be programmed.

NOTES: 5. V_{CC} should be removed between program pulses to reduce dissipation and chip temperatures. See Figure 3.

- 6. If the input just programmed is to be a "don't care" and is not being used to expand the product term repeat steps 3 and 4 with the opposite logic level applied to the input. Before changing the product term address, program all inputs (A through L/OE for this product term including all "don't cares".
- If input L/OE is to be used as a dedicated package enable it must be programmed as a "don't care" by fusing both links at each of the 50 product term locations.


step-by-step programming procedure for OR matrix

Programming the OR matrix consists of fusing (one at a time) those outputs (F_0 through F_5) which are desired to be false in the addressed product term. The procedure is:


- 1. Apply steady-state supply voltage (V_{CC} = 5 V) and apply the unique product term. See Figure 4.
- 2. Verify that the fuse link needs to be programmed. If not, proceed to the next fuse link.
- Only one fuse link is programmed at a time. Enable the output to be programmed by applying VO(pr) to the first output to be false in the product term.
- 4. Step V_{CC} to 10.5 V nominal. Maximum supply current required during programming is 750 mA.
- 5. After the Y pulse time is reached, V_{CC} should be stepped down to 5 V.
- 6. Verification can occur 1 µs or more after V_{CC} reaches its steady-state value of 5 V.
- 7. At a Y pulse duty cycle of 35% or less repeat steps 1 through 6 for each output to be programmed false for the active product term. Repeat for all product terms. Then program active-low outputs.

NOTES: 8. V_{CC} should be removed between program pulses to reduce dissipation and chip temperatures. See Figure 1.

 If product terms were expanded to make them unique for programming purposes the product terms can be addressed and the added inputs can be removed by programming them to a "don't care" (fuse the remaining links).

FIGURE 4 - OR TERM PROGRAMMING SEQUENCE

EXPANDABLE 12-INPUT, 50-TERM

TYPES

SN74S330, SN74S331

FIGURE 5 - EXPANDING THE 'S330, 'S331 FPLA

TEXAS INSTRUMENTS

1277

APPLICATIONS

The FPLA is efficiently suited for generating the sum of product terms which are normally required to implement:

- Memory mapping/supplemental functions
- Random logic or function generators
- Sequential controllers
- Status decoders or result interpreters
- Priority encoders

In addition, the FPLA introduces an alternative approach to the implementation of some code converters, pattern generators, and look-up tables which have commonly utilized PROMs and/or ROMs.

MEMORY CONTROL/SUPPLEMENTAL FUNCTIONS

The FPLA is ideally suited for implementing a wide variety of functions with respect to the control and/or supplementing of system memory capabilities. Some are:

- Memory mapping
- Microprogram control
- Memory patch
- PROM extension

The wide input capability of the 'S330/'S331 FPLA makes it ideal for decoding either a current memory address or a variety of status lines and generate a unique system control function.

MEMORY MAPPING/MICROPROGRAM CONTROL (See Figure 6)

These similar control functions utilize FPLAs which decode the assigned (mapped) addresses to accomplish system memory management; and/or, the FPLAs decode the current system address/status and implement the hardwired jump, branch-to-subroutine, or starting address in the microprogram control memory.

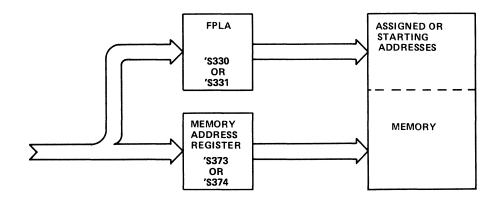


FIGURE 6 - MEMORY MAPPING/MICROPROGRAM CONTROL

SCHOTTKY TTL

TYPES SN74S330, SN74S3 EXPANDABLE 12-INPUT, 50-TER FIELD-PROGRAMMABLE LOGIC ARRA'

ORDERING INSTRUCTIONS (SHEET 1 OF 2)

	то е	E CON	PLET	ED BY	REQU	ESTO	R						т	O BE (СОМРІ	ETED	вү ті		
COMPANY										SPE	CIAL	DEVIC	ΕN	o:					
ADDRESS:																			
POSTAL ZI		E ·								SAI	LES OF	RDER	٥٥:						
CUSTOMER				:):						co	NTACI		IE):						
PHONE: (A	rea Coo	de)		_(No.)															
CUSTOMER										LO	CATIO	N:							
CUSTOMER												VT.							
CUSTOMEI SYMBOLIZ												хт:							
		ISABL			C	AUT	ΟΜΑΤΙ		BLE (4/E)			CE			SN74S SN74S			
	(0	heck o	ne)		Ľ			D L/OE	E (OE)										
						Pin (Pin)							PL/ DIF	ASTIC		SN74S SN74S			
					L.		c outs ena	abled)					0			011740	00111		
					C		4E • 0	-					οι			VE LE oreach			
											OL	JTPUT		F0	F1	F2	F3	F4	F5
												≥2.4 V							
PRODU	СТ ТЕ	RM IN	IPUT.	FILL		TER		BERS	FOR		L	≼0.5 V							
ALL IN													su	MMIN	IG DA	TA: Fil	l in usi	ng:	
																		-	
H = Ac product			= Act	ive lov	v, X =	Irrele	vant. L	eave u	nused							output			
H = Ac			= Act	ive lov	v, X =	Irrele	vant. L	.eave u	nused							output active			
H = Ac		blank.					JT V			EVE	LS				B = In		or not	summø	
H = Ac product PROD.	terms A	PRC B	DDU(ERM	INPL	JT VC G	DLTA	AGE I	J	к	prov	duct	t term. F0	B = In SUN F1	IMIN F2	G DA	TA F4	d. F5
H = Ac product	terms	blank. PR(DDU	ст ті	ERM	INPL	υτ να	DLTA	GE I			pro	duct	t term.	B = In SUN	active	or not	summe ATA	d.
H = Ac product PROD. TERM	terms A	PR(B PIN	DDU(ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ad product PROD. TERM NO.	terms A	PR(B PIN	DDU(ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1	terms A	PR(B PIN	DDU(ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5 6	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5 6 7 8	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5 6 7 8 9	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5 6 7 8 9 9 10	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5 6 7 8 9 10 11	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5 6 7 8 9 10 11 11 12	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN
H = Ac product PROD. TERM NO. 0 1 2 3 4 5 6 7 8 9 10 11	terms A	PR(B PIN	DDU(D PIN 4	ERM E	INPL F PIN	JT VC G	DLTA H PIN	GE L	J PIN	K PIN	prov L/OE PIN	duct	F0 FIN	B = In SUN F1 PIN	MIN F2 PIN	G DA F3 PIN	TA F4 PIN	d. F5 PIN

TERM PI 15 16 17 18 19 20 21 22	A B IN PIN 1 2	C PIN 3	D PIN 4	E PIN 5	F PIN 6	G PIN 7	H PIN 16	I PIN 17	J PIN 18	K PIN 19	L/OE PIN 15	F	FO PIN 8	F1 PIN 9	F2 PIN 11	F3 PIN 12	F4 PIN 13	FI PI 14
15 16 17 18 19 20 21 22		3	4	5	6	7	16	17	18	19	15		8	9	11	12	13	1.4
16 17 18 19 20 21 22																		<u>+ "</u>
17 18 19 20 21 22												-				ļ	ļ	<u> </u>
18 19 20 21 22												-						-
19 20 21 22												F						ļ
20 21 22				· .													ļ	-
21 22																		
22												L						
	Ì																	
22																		
23																		
24																		
25			1															
26												T						
27																		
28																		
29												F						
30												-						\vdash
31		1																
32		1																
33																		
34																		
35																		
36		1										+						-
37		1																<u> </u>
38		1																┢─
39		1										\vdash						\vdash
40		1																
41		+																
42		1																\vdash
43		+																-
44		+										+						\vdash
45		+										-						-
46		+											-					
40		+										-						┝
																		┝
48 49		1																

ORDERING INSTRUCTIONS (SHEET 2 OF 2)

SCHOTTKY † TTL MSI

TYPES SN54S373, SN54S374, SN74S373, SN74S374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

BULLETIN NO. DL-S 7512350, OCTOBER 1975

- Choice of 8 Latches or 8 D-Type Flip-Flops In a Single Package
- 3-State Bus-Driving Outputs
- Full Parallel-Access for Loading and Reloading
- Buffered Control Inputs
- Clock/Enable Input has Hysteresis to Improve Noise Rejection
- P-N-P Inputs Reduce D-C Loading on Data Lines
- Operates with outputs Enabled or at High Z

SN74S373

	ENABLE G	D	ουτρυτ
L	н	н	н
L	н	L	L
L	L	х	0 ₀
н	x	х	Hi-Z

SN74S374

OUTPUT CONTROL	CLOCK	D	ουτρυτ
L ·	↑ (н	н
L	1	L	L
L	L	х	Q0
н	х	х	Hi-Z

 $\mathbf{Q}_{0} \equiv$ the level of Q before the indicated stead-state input conditions were established.

H ≡ high level

L ≡ low level

- $Hi-Z \equiv high impedance$
- X ≡ irrelevant
- \uparrow = transition from low to high level

description

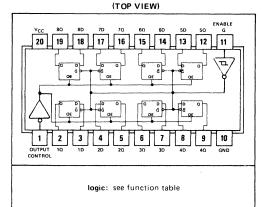
26

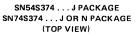
These 8-bit registers feature totem-pole 3-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance third state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing:

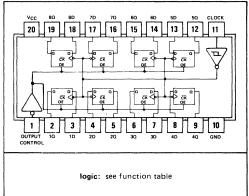
Buffer Registers

I/O Ports

Bidirectional Bus Drivers


Working Registers.


The SN54S373 and SN74S373 are transparent D-type latches meaning that while the enable (G) is high the Q output will follow the data (D) input. When the enable is taken low the output will be latched at the data that was setup.


TENTATIVE DATA SHEET

[†]Integrated Schottky-Barrier diodeclamped transistor is patented by Texas Instruments, U. S. Patent Number 3,463,975.

SN54S373 . . . J PACKAGE SN74S373 . . . J OR N PACKAGE

description (continued)

The SN54S374 and SN74S374 are edge-triggered D-type flip-flops. On the positive transition of the clock the Q output will be set to the logic state that was setup at the D input.

Schmitt-trigger buffered inputs at the enable ('S373) and clock ('S374) lines simplifies system design as a-c and d-c noise rejection is improved by typically 400 mV due to the input hysteresis. A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state (Hi-Z). In the Hi-Z state the outputs neither load nor drive the bus line significantly.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)							7V
Input voltage							
Off-state output voltage							
Operating free-air temperature range: SN54S373, SN54S374				۰.			-55° C to 125° C
SN74S373, SN74S374							. 0°C to 70°C
Storage temperature range							-65° C to 150° C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54	S373, SN5	54S374	SN74	S373, SN7	4S374	
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V _{OH}				5.5			5.5	V
High-level output current, IOH				2			6.5	mA
Width of clock/enable pulse, tw	High	6			6			
whath of clock/enable pulse, tw	Low	7.3			7.3			ns
Data setup time, t _{su}	' \$373	01			01	Vand Bolde of the off		
Data setup time, t _{su}	' \$374	5†			5↑			ns
Data hold time, th	'S 373	10↓			10↓			
'S374		2↑			2↑			ns
Operating free-air temperature, TA		-55		125	0		70	°C

↑↓ The arrow indicates the transition of the clock/enable input used for reference: ↑ for the low-to-high transition, ↓ for the high-to-low transition.

TYPES SN54S373, SN54S374, SN74S373, SN74S374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST C	ONDITIONS [†]	MIN	TYPŦ	MAX	UNIT
ViH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIК	Input clamp voltage		$V_{CC} = MIN,$	l _l =18 mA			-1.2	V
.,	11 ² k 1 1	SN54S'	V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.4		
∨он	High-level output voltage	SN74S'	V _{IL} = 0.8 V,	IOH = MAX	2.4	3.1		- v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,				0.5	v
lozh	Off-state output current, high-level voltage applied		V _{CC} = MAX, V _O = 2.4 V	V _{IH} = 2 V,			50	μA
IOZL	Off-state output current, low-level voltage applied		V _{CC} = MAX, V _O = 0.5 V	V _{IH} = 2 V,			50	μA
4	Input current at maximum i	nput voltage	V _{CC} = MAX,	V _I = 5.5 V			1	mA
Чн	High-level input current		V _{CC} = MAX,	V ₁ = 2.7 V			50	μA
μL	Low-level input current		V _{CC} = MAX,	V ₁ = 0.5 V			-250	μA
los	Short-circuit output current	ş	V _{CC} = MAX		40		-100	mA
	C			' \$373		105	160	
'cc	Supply current		V _{CC} = MAX	' \$374		90	140	- mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

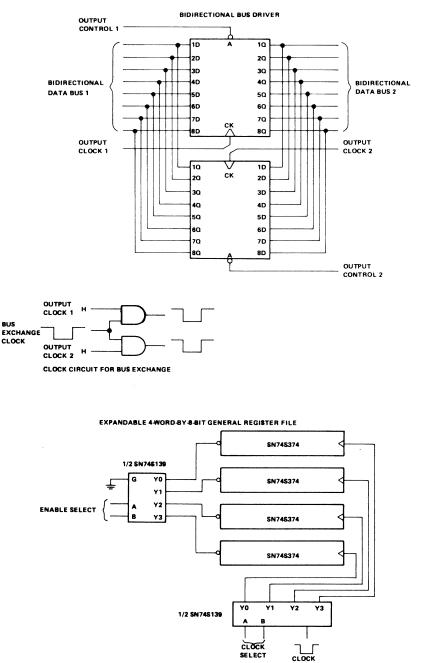
[†]All typical values are at V_{CC} = 5 V, T_A = 25° C.

Not more than one output should be shorted at a time and duration of the short-circuit test should not exceed one second,

PARAMETER	FROM	то	TERT COMPLETIONS	S373						UNIT
FARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	MIN	ТҮР	MAX	UNIT
f _{max}							75	100		MHz
^t PLH	Data	Any Q			5	9				
^t PHL	Data	Any U	C = 15 pc $D = 280.0$		9	13				ns
^t ₽LH	Clock or	A === 0		$C_{L} = 15 \text{ pF}, R_{L} = 280 \Omega,$ See Note 10 18	18		8	15		
^t PHL	enable	Any Q	See Note		12 18	18		11	17	ns
^t ZH	Output	A			8	15		8	15	
^t ZL	Control	Any Q			11	18		11	18	ns
tHZ	Output	1	$C_{L} = 5 pF$, $R_{L} = 280 \Omega$,		6	9		5	9	
tLZ	Control	Any Q	See Note		8	12		7	12	ns

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

NOTE: f_{max} is tested with all outputs loaded. See load circuits and waveforms on page 3-10 of The TTL Data Book for Design Engineers, second edition, LCC4112.


 $t_{\text{PL}} \equiv \text{propagation delay time, high-to-low level}$ $t_{\text{PL}} \equiv \text{propagation delay time, high-to-low level}$ $t_{\text{ZH}} \equiv \text{output enable time to high level}$

 $t_{ZL} \equiv$ output enable time to low level

 $t_{HZ} \equiv$ output disable time from high level $t_{LZ} \equiv$ output disable time from low level

TYPES SN54S373, SN54S374, SN74S373, SN74S374 OCTAL D-TYPE TRANSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

APPLICATIONS

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS. TEXAS 75222

 $$\rm PF\ title\ tri\ USA$. The cannot assume any responsibility for any circuits shown ar represent that they are free from patent infringement.

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE. 5

29

BULLETIN NO. DL-S 7512351, OCTOBER 1975

- P-N-P Inputs and 3-State Outputs Maximize I/O and Data Bus Capabilities
- Data Latch Transparency Permits Asynchronous or Latched Receiver Modes
- Mode and Select Inputs Permit Storing
 With Outputs Enabled or Disabled
- Strobe-Controlled Flag Flip-Flop Indicates Status or Interrupt
- Asynchronous Clear Sets All Eight Data Lines Low and Initializes Status Flag
- High-Level Output Voltage, Typically 4 V, Drives Most MOS Functions Directly
- Direct Replacement for Intel 3212 or 8212

description

This high-performance eight-bit parallel expandable buffer register incorporates package and mode selection inputs and an edge-triggered status flip-flop designed specifically for implementing bus-organized input/output ports. The three-state data outputs can be connected to a common data bus and controlled from the appropriate select inputs to receive or transmit data. An integral status flip-flop provides package busy or request interrupt commands. The outputs, with a 4-volt typical high-level voltage, are compatible for driving low-threshold MOS directly.

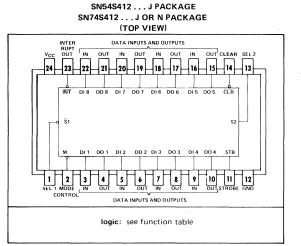
DATA LATCHES

The eight data latches are fully transparent when the internal gate enable, G, input is high and the outputs are enabled (OE = H). Latch transparency is selected by the mode control (M), select ($\overline{S}1$ and S2), and the strobe (STB) inputs and during transparency each data output (DO_i) follows its respective data input (DI_i). This mode of operation can be terminated by clearing, de-selecting, or holding the data latches. See data latches function table.

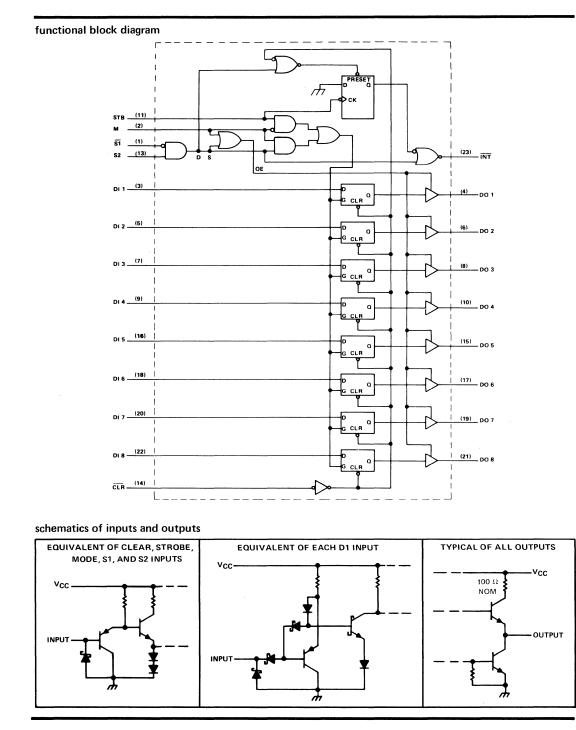
MODE SELECTION

An input mode or an output mode is selectable from this single input line. In the input mode, MD = L, the eight data latch inputs are enabled when the strobe is high regardless of device selection. If selected during an input mode, the outputs will follow the data inputs. When the strobe input is taken low, the latches will store the most-recently setup data.

In the output mode, M = H, the output buffers are enabled regardless of any other control input. During the output mode the content of the register is under control of the select (S1 and S2) inputs. See data latches function table.


STATUS FLIP-FLOP

30


The status flip-flop provides a low-level output signal when:

- a. the package is selected
- b. a strobe input is received.

This status signal can be used to indicate that the register is busy or to initiate an interrupt type command.

TENTATIVE DATA SHEET

POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

5

FUNCTION	CLEAR	м	sī1	S2	STB	DATA IN	DATA OUT
0	L	н	н	X	X	×	L
Clear	L	L	L	н	L	х	L.
De-select	X	L	X	L	×	x	Z
De-select	x	L	н	X	×	x	z
Hold	н	н	н	L	X	x	00 00
HOIG	н	L	L	н	L	x	0 ₀
Data Bus	н	н	L	н	х	L	L
Data Dus	н	н	L	н	x	н	н
Data Bus	н	L	L	н	н	L	L
Data Dus	н	L	L	н	н	н	н

DATA LATCHES FUNCTION TABLE

STATUS FLIP-FLOP FUNCTION TABLE

	CLEAR	sī1	S2	STB	ĪNT
ſ	L	н	х	х	н
	L	х	L	х	н
	н	х	х	↓	L
	н	L	н	х	L

 $H \equiv high \ level \ (steady \ state)$

L ≡ low level (steady state)

 $X \equiv irrelevant$ (any input, including transitions)

 $Z \equiv$ high impedance (off)

 $\downarrow \equiv \text{transition from low to high level}$

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) .		•							•	7V
Input voltage										
Operating free-air temperature range:	SN54S412									. –55°C to 125°C
	SN74S412									$\cdot \cdot 0^{\circ}$ C to 70 $^{\circ}$ C
Storage temperature range		•	• •		•	•	•			. –65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal,

recommended operating conditions

· ·		SN54S412	SN74S412	
		MIN NOM MA	MIN NOM MA	X UNIT
Supply voltage, V _{CC}		4.5 5 5.	5 4.75 5 5.2	25 V
Pulse width, tw	STB or \$1 • S2	25	25	
(see Figures 1, 2, and 4)	Clear low	25	25	ns
Setup time, t _{su} (see Figure 3)		15↓	15↓	ns
Hold time, th (see Figures 1 and	13)	20↓	20↓	ns
Operating free-air temperature,	TA	55 12	5 0	°C °C

 \downarrow The arrow indicates that the falling edge of the clock pulse is used for reference.

32

	DADAMETER		TEST OO		S	N54S41	2	S	N74S41	2	
	PARAMETER		TEST CO	NDITIONS	MIN	TYPŦ	MAX	MIN	түр‡	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.85			0.85	V
٧ıĸ	Input clamp voltage		V _{CC} = MIN,	l _l = –18 mA			-1.2			-1.2	V
v _{он}	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA	3. 6 5	4		3.65	4		v
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V,	$I_{OL} = 15 \text{ mA}$			0.45			0.45	v
			V _{IL} = 0.8 V	IOL = 20 mA			0.5			0.5	
1	Off-state output current,	DO 1 thru	Vcc = MAX,	$\lambda = 24\lambda$			50			50	μΑ
lozh	high-level voltage applied	DO 8	VCC - MAA,	VO = 2.4 V			50			50	μΑ
10-	Off-state output current,	DO 1 thru	Vcc = MAX,				-50			50	μA
IOZL	low-level voltage applied	DO 8	VCC - MAA,	VO = 0.5 V			-50			50	μΑ
li -	Input current at		V _{CC} = MAX,	V. = 5 5 V			1			1	mA
"	maximum input voltage		VCC MAA,	v] = 5.5 v							
Чн	High-level input current		V _{CC} = MAX,	V ₁ = 5.25 V			20			10	μA
		<u></u> \$1					1			-1	
hι	Low-level input current	м	V _{CC} = MAX,	V _I = 0.4 V	1		-0.75			-0.75	mA
		All others					-0.25			-0.25	mA
los	Short-circuit output current	ŝ	V _{CC} = MAX		-20		-65	20		65	mA
lcc	Supply current		V _{CC} = MAX,	see Note 2		82			82	130	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

 \S Not more than one output should be shorted at a time.

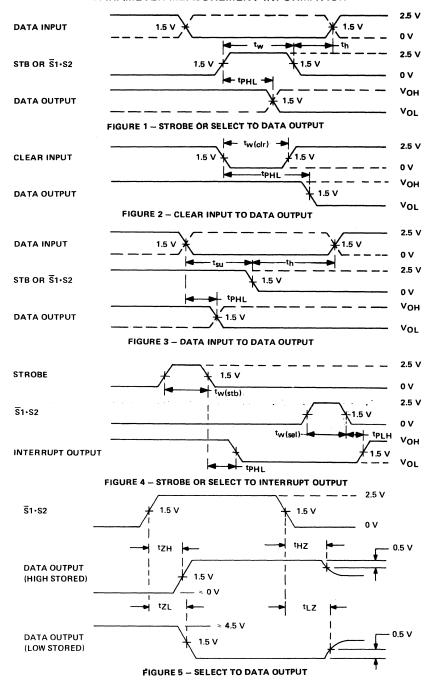
NOTE 2: I $_{\mbox{CC}}$ is measured with all outputs open, clear input at 4.5 V, and all other inputs grounded.

CC = 5 V, TA = 25 C					$(1, \dots, n, n) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$			
PARAMETER	FROM	то	FIGURE	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	STB, $\overline{S}1$, or S2	Any	1	CL = 30 pF		18	27	ns
ΨHL		DO				15	25	
^t PHL	CLR	Any DO	2			18	27	ns
^t PLH	DIi	DOi	3			12	20	ns
^t PHL						10	20	
^t PLH	S1 or S2	INT	4	C _L = 30 pF		12	20	ns
tPHL	STB	INT	4			16	25	
^t ZH	51, S2, or M	Any DO	5	C _L = 30 pF		21	35	ns
^t ZL						25	40	
tHZ	51, S2, or M	Any DO	5	C _L = 5 pF		9	20	ns
^t LZ						12	20	

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

 $t_{PLH} \equiv propagation delay time, low-to-high-level output$

 $t_{PHL} = propagation delay time, high-to-low-level output$


 $t_{ZH} \equiv output enable time to high level$

tZL ≡output enable time to low level

 $t_{HZ}^{--} \equiv$ output disable time from high level $t_{LZ} \equiv$ output disable time from low level

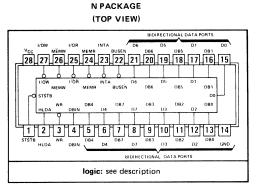
TEXAS INSTRUMENTS POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

TYPES SN54S412, SN74S412 (TIM8212) MULTI-MODE BUFFERED LATCHES

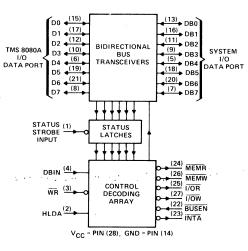
PARAMETER MEASUREMENT INFORMATION

TEXAS INSTRUMENTS

POST OFFICE BOX 5012 . DALLAS. TEXAS 75222


TYPES SN74S428(TIM8228), SN74S438(TIM8238)

CONTROLLER AND BUS DRIVER FOR 8080A SYSTEMS


BULLETIN NO. DL-S 7612468, OCTOBER 1976

Designed to Be Interchangeable with Intel 8228 and 8238

PIN DESIGNATIONS										
DESIGNATION	PIN NOS.	FUNCTION								
D0 that D7	15, 17, 12, 10,	BIDIRECTIONAL DATA PORT								
D0 thru D7	6, 19, 21, 8	(TO TMS 8080A)								
DB0 thru DB7	13, 16, 11, 9,	BIDIRECTIONAL DATA PORT								
	5, 18, 20, 7	(TO SYSTEM BUS)								
I/OR	25	READ OUTPUT TO I/O								
	25	(ACTIVE LOW)								
10/W	27	WRITE OUTPUT TO I/O								
		(ACTIVE LOW)								
MEMB	24	READ OUTPUT TO MEMORY								
		(ACTIVE LOW)								
MEMW	26	WRITE OUTPUT TO MEMORY								
	20	(ACTIVE LOW)								
		INPUT TO INDICATE								
DBIN	4	TMS 8080A IS IN INPUT								
		MODE (ACTIVE HIGH)								
INTA	23	INTERRUPT ACKNOWLEDGE								
		OUTPUT (ACTIVE LOW)								
		HOLD ACKNOWLEDGE								
HLDA	2	INPUT (ACTIVE HIGH)								
		FROM TMS 8080A								
		INPUT TO INDICATE								
WR	3	TMS 8080A IS IN WRITE								
		MODE (ACTIVE LOW)								
		SYSTEM DATA PORT								
BUSEN	22	ENABLE INPUT (ACTIVE								
		LOW)								
	· . 5.	SYNCHRONIZING STATUS								
STSTB	1	STROBE INPUT FROM								
		SN74LS424 (TIM8224)								
Vcc	28	SUPPLY VOLTAGE (5 V)								
GND	14	GROUND								

functional block diagram

description

TTL

LSI

These monolithic Schottky-clamped TTL system controllers are designed specifically to provide bus-driving and peripheral-control capabilities for interfacing memory and I/O devices with the 8080A in small to medium-large micro-computer systems.

A bidirectional eight-bit parallel bus driver is provided that isolates the 8080A bus from the memory and I/O data bus allowing the system designed to utilize cost-effective memory and peripheral devices while obtaining the maximum efficiency from the microprocessor. The TTL system drivers also provide increased fan-out with a lower impedance that enhances noise margins on the system bus.

Implementation of the status latches and control decoding array of the SN74S428/SN74S438 provides for using either a single-level interrupt vector RST7 for small systems, or multiple-byte call instructions for systems needing unlimited interrupt levels.

This document provides tentative information on a new product. Texas Instruments reserves the right to change specifications for this product in any manner without notice. POST OFFICE BOX 5012 + DALLAS, TEXAS 75222

TENTATIVE DATA SHEET

description (continued)

With respect to the system clocks, the SN74S438 is configured to generate an advanced response for I/O or memory write output signals to further simplify peripheral control implementation of complex systems. See Figure 3.

8-bit parrallel bus transceiver

The 8-bit parallel bus transceiver buffers the 8080A data bus from the memory and I/O system bus by providing one port (DO through D7) to interface with the 8080A and another port (DBO through DB7) to interface with the system devices. The 8080A side of the transceiver is designed specifically to interface with the microprocessor data bus ensuring not only that the processor output drive capabilities are adequate, but also that the inputs are driven with enhanced noise margins. The system bus side features high fan-out buffers designed to drive a number of system devices simultaneously and directly. The system port is rated to sink ten milliamperes of current and to source one milliampere of current at standard low-threshold voltage levels.

Status lines from the 8080A instruction-status decoder and the system bus enable input (BUSEN) provide complete transceiver directional and enable control to ensure integrity of both the processor data and the system bus data.

status latches

During the beginning of each machine cycle, the six status latches receive status information from the 8080A data bus indicating the type of operation that will be performed. When the STSTB input goes low, the latches store the status data and generate the signals needed to enable and sequence the memory and I/O control outputs. The status words and types of machine cycles are enumerated in Table A.

STATUS				808	0A				TYPE OF	'S428/'S438
WORD			ST	ATUS	OUTP	UT			MACHINE CYCLE	COMMAND
WOND	D0	D1	D2	D3	D4	D5	D6	D7	MACHINE CTCLE	GENERATED
. 1	Ŀ	Н	L	. L.	L.	н	. L	н	Instruction fetch	MEMR
2	L	Ĥ	L	L	L	L	Ĺ	́н́	Memory read	MEMR
3	L	L	L	L	L	L	L	L	Memory write	MEMW
4	Γ.	н	Ή	L	L	L	L	н	Stack read	MEMR
5.	L	L	н	L	L	L	L	L	Stack write	MEMW
6	L	н	L	L	L	L	н	L	Input read	1/OR
7	L	L	L	L	н	L	L	L	Output write	I/OW
8	н	н	L	L	L	н	L	L	Interrupt acknowledge	INTA
9	. L	н	L	н	L	L	L	н	Halt acknowledge	NONE
10	н	н	L	н	L	н	L	L	Interrupt acknowledge at halt	INTA
	INTA	<u>ow</u>	STACK	нгта	OUT	۳	N	MEMR		
			STAT	JS INI	ORM	ATION	J			

TABLE A - STATUS WORDS

decoding array

The decoding array receives enabling commands from the status latches and sequencing commands from the 8080A and generates memory and I/O read/write commands and an interrupt acknowledgement.

description (continued)

The read commands ($\overline{\text{MEMR}}$, $\overline{I/OR}$) and the interrupt acknowledgement ($\overline{\text{INTA}}$) are derived from the status bit(s) and the data bus input mode (DBIN) signal. The write commands ($\overline{\text{MEMW}}$, $\overline{I/OW}$) are derived from the status bit(s) and the write mode ($\overline{\text{WR}}$) signal. (See Table A.) All control commands are active low to simplify interfacing with memory and I/O controllers.

The interrupt acknowledgement (INTA) command output is actually a dual function pin. As an output, its function is to provide the INTA command to the memory and I/O peripherals as decoded from the status inputs and latches. When CALL is used as an interrupt instruction, the SN74S428/SN74S428 generates the proper sequence of control signals. Additionally, the terminal includes high-threshold decoding logic that permits it to be biased through a one-kilohm series resistor to the 12-volt supply to implement an interrupt structure that automatically inserts an RST7 instruction on the bus when the DBIN input is active and an interrupt is acknowledged. This capability provides a single-level interrupt vector with minimal hardware.

The asynchronous bus enable (BUSEN) input to the decoding array is a control signal that protects the system bus. The system bus can be accessed and driven from the SN74S428/SN74S428 controller only when the BUSEN input is at a low voltage level.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
nput voltage	
Operating free-air temperature range \ldots	70°C
Storage temperature range \ldots	50°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level output current, IOH	D0 thru D7			-10	μA
High level output current, IOH	All others			1	mA
	D0 thru D7			2	
Low-level output current, IOL	All others			10	mA
Status strobe pulse width, tw(STSTB) (see Figure 3)		22			ns
Sotup time to (ee Figure 2)	Status inputs D0 thru D7	8			
Setup time, t _{su} (see Figure 3)	System bus inputs to HLDA	10			ns
	Status inputs D0 thru D7	5			
Hold time, t _h (see Figure 3)	System bus inputs to HLDA	20			ns
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			V
VIL	Low-level input voltage						0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	l ₁ = -5 mA			-1	V
Val	High-level output voltage	D0 thru D7	V _{CC} = MIN,	V _{IH} = 2 V,	3.6	4		v
Vон I	High-level output voltage	All other outputs	V _{IL} = 0.8 V,	I _{OH} = MAX	2.4			1
V _{OL} La	Low-level output voltage		V _{CC} = MIN,	V _{IH} = 2 V,			0.45	v
			V _{IL} = 0.8 V,	IOL = MAX			0.45	
1	Off-state output current,						100	
IOZH	high-level voltage applied		V _{CC} = MAX,	v0 - 5.25 v			100	μΑ
1	Off-state output current,			N/ - 0.45 M			100	
IOZL	low-level voltage applied		V _{CC} = MAX,	v _O = 0.45 v			-100	μA
		INTA	V _{CC} = MIN,	See Figure 1			5	mA
Чн	High-level input current	DO thru D7	Vcc = MAX,	V E 2E V			20	
		All other inputs	VCC - MAA,	v] - 5.25 v			100	μA
		D2 or D6	1				-750	
ЧL	Low-level input current	STSTB	V _{CC} = MAX,	V _I = 0.45 V			-500	μA
		1				-250	1	
los	Short-circuit output current§		V _{CC} = MAX		-15		-90	mA
¹ CC	Supply current		V _{CC} = MAX			140	190	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

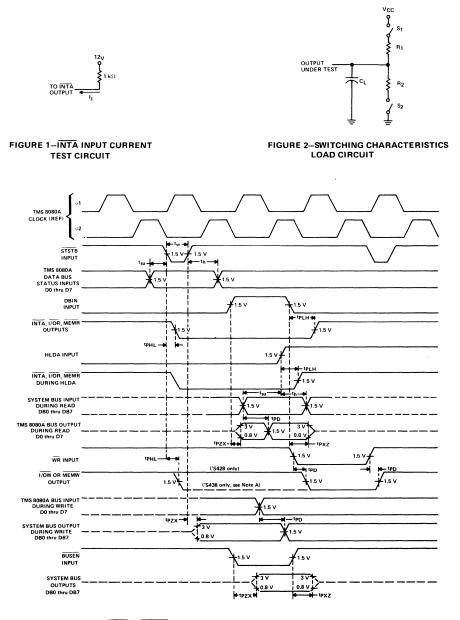
 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25^oC.

[§]Not more than one output should be shorted at a time.

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST COM	DITIONS	MIN	түр	MAX	UNIT
^t PD	D0 thru D7	DB0 thru DB7	$C_{L} = 100 pF$,	See Figure 2	5		40	ns
tPD	DB0 thru DB7	D0 thru D7	CL = 25 pF,	See Figure 2			30	ns
^t PHL	STSTB	INTA, I/OR, MEMR, I/OW, MEMW			20		60	ns
^t PD	WR	1/OW, MEMW	C _L = 100 pF,	See Figure 2	5		45	ns
ΨLH	DBIN	INTA, I/OR, MEMR	1			30	ns	
^t PLH	HLDA	INTA, I/OR, MEMR					25	ns
ΨZX	DBIN	D0 thru D7	C _I = 25 pF,	S 5: 0	<u> </u>		45	ns
^t PXZ	DBIN	D0 thru D7	- CL = 25 pF,	See Figure 2	 		45	ns
^t PZX	STSTB, BUSEN	DB0 thru DB7	C 100 - F	Sec 5: 2			30	ns
^t PXZ	tPXZ BUSEN DB0 thru DB7		С _L = 100 рF,	See Figure 2			30	ns

switching characteristics, V_{CC} = 5 V, T_A = 25°C, see figure 3

 $f_{\text{tp}\,\text{D}} \equiv \text{propagation delay time}$


 $t_{PHL} \equiv propagation delay time, high-to-low-level output$

 $t_{PLH} \equiv propagation delay time, low-to-high-level output$

 $t_{PZX} \equiv$ output enable time from high-impedance state

 $t_{PXZ} \equiv output disable time to high-impedance state$

PARAMETER MEASUREMENT INFORMATION

NOTE A: Advanced response of I/OW or MEMW for the SN74S438 is indicated by the dashed line.

FIGURE 3-VOLTAGE WAVEFORMS

TEXAS INSTRUMENTS POST OFFICE BOX 5012 • DALLAS, TEXAS 75222 5

TYPICAL APPLICATION DATA

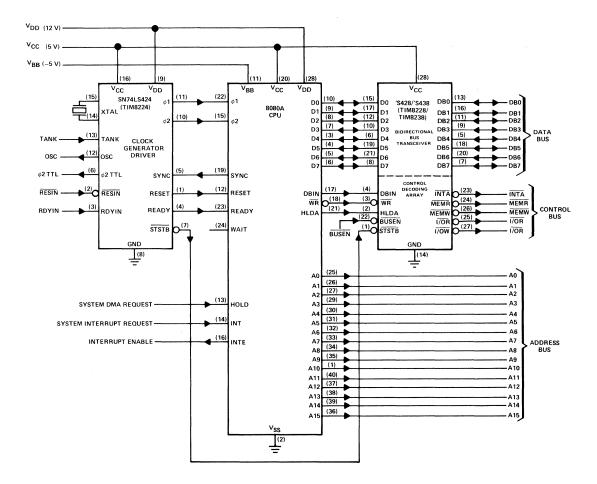
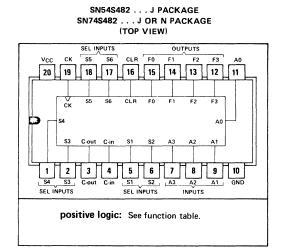


FIGURE 4-SYSTEM INTERFACING WITH CENTRAL PROCESSING UNIT

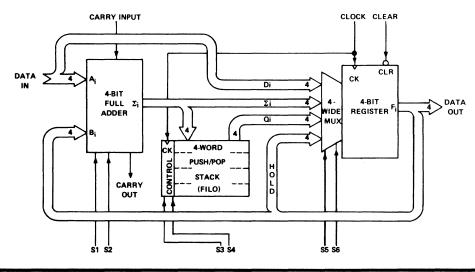
TEXAS INSTRUMENTS


POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

TYPES SN54S482, SN74S482 4-BIT-SLICE EXPANDABLE CONTROL ELEMENTS

BULLETIN NO. DL-S 7612384, MARCH 1976

- 4-Bit Slice is Cascadable to N-Bits
- Designed Specifically for Microcontroller/ Next-Address Generator Functions
- Increment/Decrement by One (Immediate or Direct Symbolic Addressing Modes)
- Offset, Vector, or Branch (Indexed or Relative Addressing Modes)
- Store Up to Four Returns or Links (Program Return Address from Subroutine)
- Program Start or Initialize (Return to Zero or Clear Mode)
- On-Chip Edge-Triggered Output Register (Provides Steady-State Micro-Address/ Instruction)
- High-Density 20-Pin Dual-in-Line Package with 300-Mil Row Pin Spacing



description

The 'S482 is a high-performance Schottky TTL 4-bit-slice control element for use in any computer/control application requiring the coupling of high-performance bipolar speeds with the flexibility of microprogram control and bit-slice expandability. When used as a next-address generator, two 'S482 elements can address up to 256 words of microprogram; three elements can address up to 4096 words of microprogram; or a number of 'S482 elements can generate N words in multiples of four lines.

Comprised of an output register, push-pop stack, and a full adder, the 'S482 provides the capability to implement multiway testing needed to generate or to determine and select the source of the next function of microprogram address.

functional block diagram

TENTATIVE DATA SHEET

This document provides tentative information TEXAS INSTRUMENTS on a new product. Texas Instruments reserves the right to change specifications for this POST OFFICE BOX 5012 • DALLAS, TEXAS 75222 product in any manner without notice. [†]Integrated Schottky-Barrier diode-41 clamped transistor is patented by Texas Instruments. U. S. Patent Number 3,463,975.

TYPES SN54S482, SN74S482 4-BIT-SLICE EXPANDABLE CONTROL ELEMENTS

output register and source functions

The 4-bit edge-triggered register provides a steady-state output throughout each system clock cycle. An asynchronous clear extends the multiway testing to directly implement system initialization at ROM address zero.

Two source-select lines (S5, S6) provide the output register with access to either the current instruction (no change), an operand or address stored in the push-pop stack, the output of a four-function full adder, or a direct data-in address port. The sources and functions are summarized in Tables I and II.

SEL	ECT	REGISTER INPUT SOURCE
S5	S6	REGISTER INPUT SOURCE
Ľ	L	DATA-IN PORT (Di)
L	н	FULL ADDER OUTPUTS (Si)

PUSH-POP STACK OUTPUTS (Qi)

REGISTER OUTPUTS (HOLD)

TABLE I. REGISTER-SOURCE FUNCTIONS

 $H \equiv high level, L \equiv low level$

н

н

TABLE II. PUSH-POP STACK CONTROL AND REGISTER-SOURCE FUNCTIONS

				INF	UTS		INTERNAL	OUTPUTS
	S 3	S4	S5	S6	CLOCK	CLEAR	QiA	Fi
HOLD	X	Х	х	х	L	н	QiA0	FiO
CLEAR	×	х	х	х	×	L	QiA0	L
PUSH-POP	L	L	L	L	<u>,</u> †	н	QiA0*	Di
STACK	L	L	L	н	1	н	QiA0*	Σί
"HOLD"	L	L	н	L	1	н	QiA0*	QiA0
	L	L	н	н	†	Н	QiA0*	Fi0
PUSH-POP	L	Н	L	L	†	н	Σi*	Di
STACK	L	Ħ	L	н	1	н	Σi*	Σi
"LOAD"	L	н	н	L	1	н	Σi*	QiA0
	L	н	н	н	1	н	Σi*	Fi0
PUSH-POP	н	L	L	L	1	н	QiB0 [†]	Di
STACK	н	L	L	н	1	н	QiB0 [†]	Σi
"POP"	н	L	н	L	1	н	QiB0 [†]	QiA0
'°' (н	L	н	н	1	н	QiB0 [†]	FiO
	н	н	L	L	1	н	Σi‡	Di
STACK	н	н	L	н	1	н	Σi‡	Σi
"PUSH"	н	н	н	L	1	н	Σi‡	QiA0
L L	н	н	н	н	1	н	Σi‡	Fi0

Ai ≡ Data inputs

- $QiA \equiv Push-pop$ stack word A output (internal)
- $QiAO \equiv$ the level of Qi before the indicated inputs conditions were established.

Fi ≅ Device outputs
Fi0 ≡ the level of Fi before the indicated input conditions were established.

 $\Sigma i \equiv Adder outputs (internal)$

*QiB, QiC, QiD do not change

 $\begin{tabular}{l} $ ^\dagger \end{tabular} \end{tabular} $ ^\dagger \end{tabular} \end{tabular} $ ^\dagger \end{tabular} \end{ta$

push-pop stack control

The 4-word push-pop stack can be used for nesting up to four levels of program or return (link) addresses. In the load mode, the first (top) word is filled with new data from the output of the full adder, and no push occurs meaning that previous data at that location is lost. However, all other word locations in the push-pop stack remain unchanged. In the push mode, the new word is again entered in the first (top) location; however, previous data residing in the top three words are pushed down one word location and retained at their new locations. The bottom word is written over and lost.

In the pop mode, words in the push-pop stack move up one location on each clock transition. A unique function is provided by the bottom (fourth) register as its content is retained during the pop mode, and after 3 clock transitions, all words in the stack are filled with the operand/address that occupied the bottom register.

The operand/address will remain available indefinitely if stack functions are limited to the pop or hold modes.

TABLE III. PUSH-POP STACK FUNCTIONS													
	FUNCTION	SE	L.	REG.	REG.	REG.	REG.	INPUT/					
	FUNCTION	S3	S3 S4 D		С	в	A	Ουτρυτ					
BIT 0	LOAD	L	н	QiD0	QiC0	QiB0	· ←	Σί ΙΝ					
			L				Σί						
BIT 1	PUSH	н	н	+	←	←	-	ΣΗΝ					
011 1				QiC0	QiB0	QiA0	Σί	2111					
BIT 2	POP	н	L	€ →	\rightarrow	→	\rightarrow	O'A OUT					
BIT 2	FOF	п	L	QiD0	QiD0	QiC0	QiB0	QiA OUT					
віт з	HOLD	L	L	QiD0	QiC0	QiB0	QiA0	QiA OUT					

The push-pop stack functions are shown in Tables II and III.

µlink operations show previous data location after clock transition.

full adder

376

The four-function full adder is controllable from select inputs S1 and S2 to perform:

A or B incrementation, or decrementation of B

Unconditional jumps or relative offsets

No change

Return to zero or one

Incrementation can be implemented by forcing a carry (high) into the ALU. In this mode either of the following options are possible:

- 1. Increment (A plus zero plus carry)
- 2. Increment B (zero plus B plus carry), or decrement B (all highs at A then A plus B with carry input low and disregard, don't use, carry out)
- 3. Increment the jump or offset (A plus B plus carry)

full adder (continued)

- 4. Start at zero or one and increment on each clock (select zero plus zero plus carry, then select zero plus B plus carry), or set register to N and decrement B (see 2 above).
- 5. No change (carry input is always active and removal of carry combined with either the ALU or register hold mode will retain the current address).

Unconditional jumps can be implemented by applying and selecting the jump directly from the data inputs to the output register. Offset can be accomplished by summing the output register with the offset magnitude (A plus B) with carry low.

The ALU functions are shown in Table IV.

INP	UTS	INTERNAL
S1	S2	Σί
н	н	0 PLUS 0 PLUS C-in
н	L	0 PLUS Bi PLUS C-in
L	н	Ai PLUS 0 PLUS C-in
L	L	Ai PLUS Bi PLUS C-in

TABLE IV. ADDRESS CONTROL FUNCTIONS

compound generator functions

As the function-select lines of the register sources, push-pop stack, and adder are independent, compound functions can be selected to occur on the next clock transition.

Subroutine branches and returns can be simplified by saving the return or link addresses in the push-pop stack. This branch-and-save function can be accomplished on the same clock time as follows:

DATA-IN	ADDER	PUSH-POP STACK	REGISTER SOURCE
Branch address	Zero plus B plus one	Push	Data-in
	(S1 = H, S2 = L)	(S3 = S4 = H)	(S5 = S6 = L)

Up to four branches can be made with the return stored in the 4-word push-pop stack.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) .							•	•		•		7V
Input voltage				•					•	•	•	5.5 V
Off-state output voltage												
Operating free-air temperature range:	SN54S482		• •									. –55°C to 125°C
	SN74S482										•	0°C to 70°C
Storage temperature range		•										. –65°C to 150°C

NOTE 1. All voltage values are with respect to network ground terminal.

TYPES SN54S482, SN74S482 4-BIT-SLICE EXPANDABLE CONTROL ELEMENTS

recommended operating conditions

		S	N54S48	2	S	N74S48	32	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High level entrut entrust terr	Carry output			-1			-1	
High-level output current, IOH	Any F output			-2			-2	mA
	Carry output			10			10	mA
Low-level output current, IOL	Any F output			16			16	
	Data-in, S5, S6	01	<u>}</u>		o↑			
	Data-in via adder	201	۱ ۱		15↑			
Setup time, t _{su}	S1, S2	401	۱.		30↑			ns
	S3, S4	201			15↑]
	Clear-inactive state	01	•		^0			
Pulse width t	Clock (high or low)	50			30			
Pulse width, t _W	Clear (low)	15			15			ns
Clock input rise time, tr				50			50	ns
<u> </u>	Data-in, S5, S6	301	È la chianta anna anna anna anna anna anna anna		25↑			
	Data-in via adder	151	1		10↑]
lold time, t _h	S1, S2	151			10↑			ns
	S3, S4	251	•		201			
Operating free-air temperature, TA		-55		125	0	25	70	°C

 \uparrow_{The} arrow indicates that the rising edge of the clock pulse is used for reference,

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	D. D. A.M.F.T				S	N54S48	32	S	N74548	32	
	PARAMET	EK	TEST CON	DITIONS	MIN	түрŧ	MAX	MIN	түрŧ	MAX	UNIT
VIH	High-level inpu	t voltage			2			2			V
VIL	Low-level inpu	t voltage					0.8			0.8	V
Vik	Input clamp vo	oltage	V _{CC} = MIN,	I _I =18 mA			-1.2			-1.2	V
∨он	High-level outp	out voltage	V _{CC} = MIN, V _{IL} = 0.8 V,		2.5	3.4		2.7	3.4		v
VOL	Low-level outp	out voltage	V _{CC} = MIN, V _{IL} = 0.8 V,				0.5			0.5	v
4	Input current a	at maximum input voltage	V _{CC} = MAX,	V ₁ = 5.5 V			1			1	mA
		S1, S2, Cin					50			50	
1	High-level	S3, S4, S5, S6, clock	V _{CC} = MAX,	V 27V			100			100]
Чн	input current	Clear		vi = 2.7 v			250		_	250	μΑ
		Any A					150			150	
		S1, S2					-1			-1	
		C-in					0.8			-0.8]
1	Low-level	S3, S4					-1.2			-1.2	
46	input current	Any A, S5, S6, CK	V _{CC} = MAX,	vi = 0.5 v			2			-2	- mA
		Clear					-4			-4	1
		Clock					-2.8			-2.8	1
los	Short-circuit o	utput current§	V _{CC} = MAX		-40		-110	-40		-110	mA
1cc	Supply current		V _{CC} = MAX			90	130		90	140	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

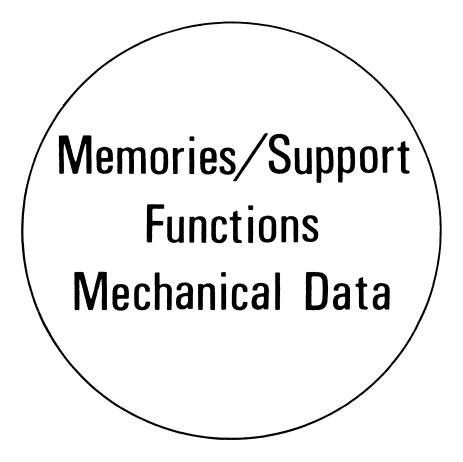
\$Not more than one output should be shorted at a time.

TYPES SN54S482, SN74S482 4-BIT-SLICE EXPANDABLE CONTROL ELEMENTS

switching characteristics over recommended operating ranges of T_A and V_{CC} (unless otherwise noted)

PARAMETER	FROM	то то	TEST CONDITIONS	5	SN54S4	32	S	SN74S482			
FARAMETER	FROM	10	TEST CONDITIONS	MIN	TYPŦ	MAX	MIN	TYPŦ	MAX	UNIT	
tPLH	CLOCK	DATA OUT		-	12	30		12	25		
^t PHL	CLOCK	DATA UUT			15	30		15	25	ns	
^t PHL	CLEAR	DATA OUT	$C_{1} = 15 \text{ pc}$		12	25		12	20	ns	
^t PLH	CARRY IN	CARRY OUT	$C_{L} = 15 \text{ pF},$ $R_{L} = 280 \Omega$		12	22		12	18		
^t PHL	CANTIN	CANNI OUT	HL - 200 12		10	22	[10	18	ns	
tPLH	DATA IN	CARRY OUT			17	30		17	25		
tPHL		CANNY OUT			12	30		12	25	- ns	

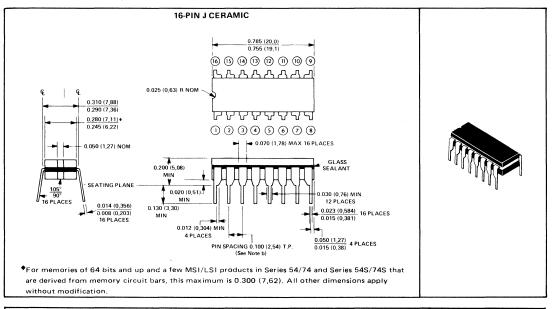
[‡]All typical values are at V_{CC} = 5 V, T_A = 25° C.

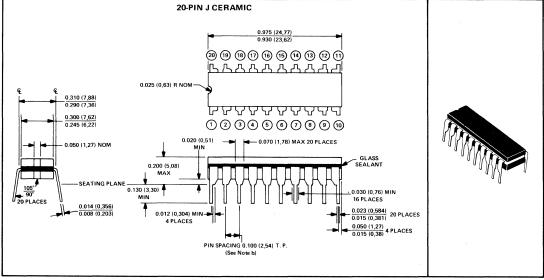

PRINTED IN U.S.A 376

46

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE.

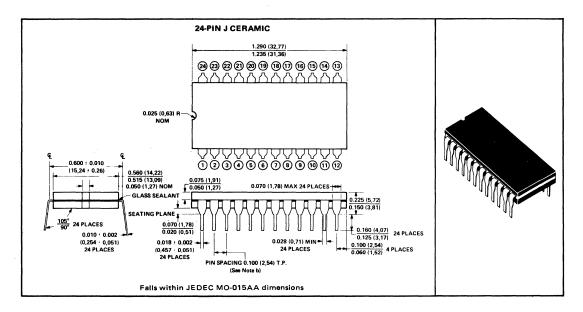
The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

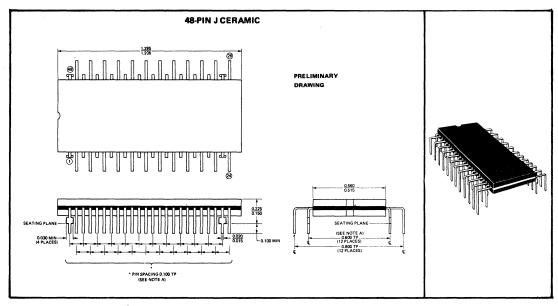

DECEMBER 1976


TEXAS INSTRUMENTS

TTL INTEGRATED CIRCUITS MECHANICAL DATA

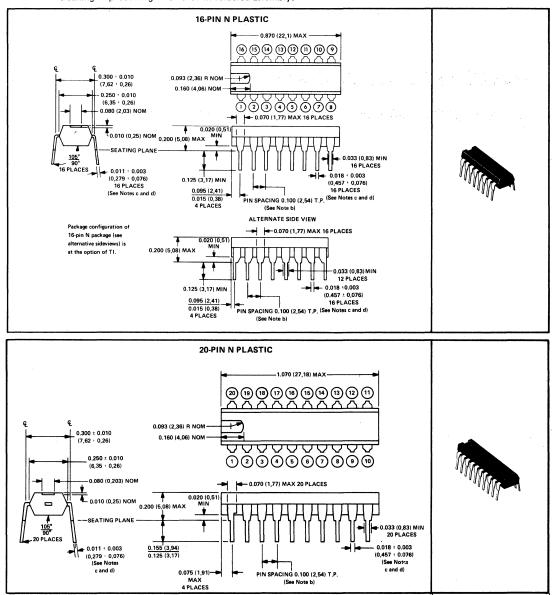
J ceramic dual-in-line package


These hermetically sealed dual-in-line packages consist of a ceramic base, ceramic cap, and a 14-, 16-, 20-, or 24-lead frame. Hermetic sealing is accomplished with glass. The packages are intended for insertion in mounting-hole rows on 0.300 (7,62) or 0.600 (15,24) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

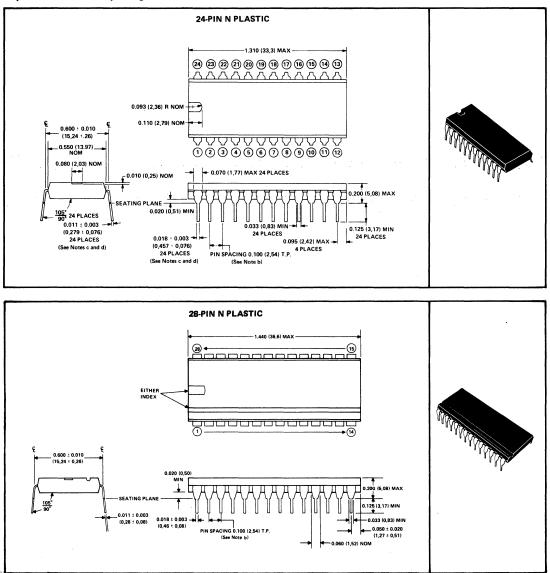


TEXAS INSTRUMENTS POST OFFICE BOX 5012 . DALLAS, TEXAS 75222

J ceramic dual-in-line packages (continued)



NOTES: a. All dimensions are shown in inches (and parenthetically in millimeters for reference only). Inch dimensions govern. b. Each pin centerline is located within 0.010 (0,26) of its true longitudinal position.

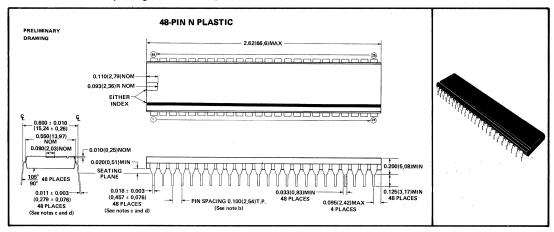

TTL INTEGRATED CIRCUITS MECHANICAL DATA

N plastic dual-in-line packages

These dual-in-line packages consist of a circuit mounted on a 14-, 16-, 20-, or 28-lead frame and encapsulated within an electrically nonconductive plastic compound. The compound will withstand soldering temperature with no deformation and circuit performance characteristics remain stable when operated in high-humidity conditions. The packages are intended for insertion in mounting hole rows on 0.300 (7,62) or 0.600 (15,24) centers. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

N plastic dual-in-line packages (continued)

-


6

NOTES: a. All dimensions are shown in inches (and parenthetically in millimeters for reference only). Inch dimensions govern.

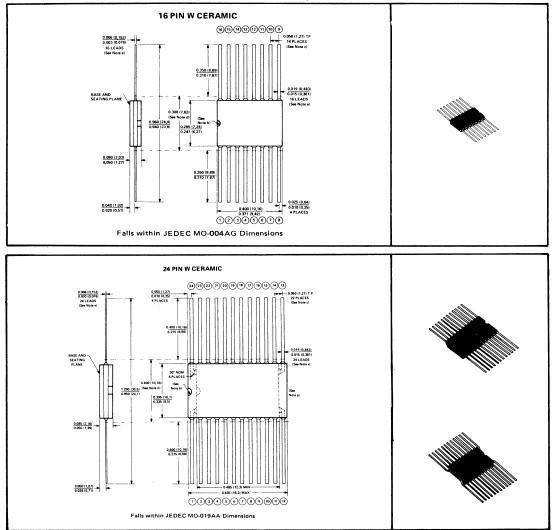
- b. Each pin centerline is located within 0,010 (0,26) of its true longitudinal position.
- c. This dimension does not apply for solder dipped leads.
- d. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0.020 (0,50) above the seating plane.

TTL INTEGRATED CIRCUITS MECHANICAL DATA

N plastic dual-in-line packages (continued)

NOTES: a. All dimensions are shown in inches (and parenthetically in millimeters for reference only). Inch dimensions govern.

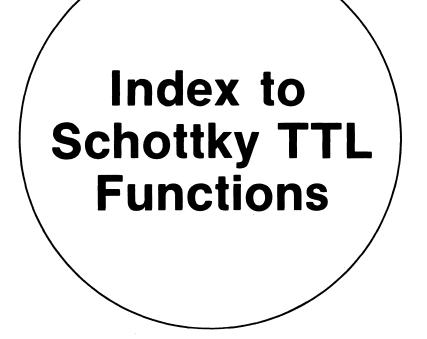
b. Each pin centerline is located within 0.010 (0,26) of its true longitudinal position.


c. This dimension does not apply for solder dipped leads.

d. When solder-dipped leads are specified, dipped area of the lead extends from the lead tip to at least 0.020 (0,50) above the seating plane.

TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 • DALLAS, TEXAS 75222

W ceramic flat package


These hermetically sealed flat packages consist of an electrically nonconductive ceramic base and cap, and a 14-, 16-, or 24-lead frame. Hermetic sealing is accomplished with glass. Tin-plated ("bright-dipped") leads (-00) require no additional cleaning or processing when used in soldered assembly.

NOTES: a. All dimensions are shown in inches (and parenthetically in millimeters for reference only). Inch dimensions govern.

- b. Index point is provided on cap for terminal identification only.
- c. Leads are within 0.005 (0,13) radius of true position (T.P.) at maximum material condition.
- d. This dimension determines a zone within which all body and lead irregularities lie.
- e. Not applicable for solder-dipped leads.
- f. When solder-dipped leads are specified, dipped area extends from lead tip to within 0.050 (1,27) of package body.
- g. End configuration of 24-pin package is at the option of TI.

SEPTEMBER 1977

TEXAS INSTRUMENTS

INDEX TO 54S/74S, 54LS/74LS, AND I²L FUNCTIONS

Function	Page
Accumulators, Arithmetic Logic Units,	
Look-Ahead Generators	3
Adders	3
AND Gates	12
AND-OR-Invert Gates	9
Arithmetic Logic Gates	3
Arithmetic Operators	3.
Asynchronous Counter	6
BCD-to-Decimal Decoders/Drivers	11
BCD-to-Seven Segment Decoders/Drivers	11
Bit-Slice Processor Elements	
Buffer and Interface Gates	10
Buffers, Clock Drivers	11
Bus Drivers.	6
Bus Transceiver Gates	10
Clock Drivers, Buffers	
Clock Generator Circuits.	
Comparators.	
Controllers and Support Functions,	
Microprocessor	4
Counters, Asynchronous	
Counters, Synchronous.	
Current-Sensing Gates	
Data Selectors, Multiplexers	
Decoders, Demultiplexers	
Display Drivers/Decoders	
Field Programmable Logic Arrays.	
First-In, First-Out Memory (FIFO)	
Flip-Flops, Dual J-K.	
Flip Flops/Registers.	
Gates, AND	
Gates, AND-OR-INVERT	
Gates, Buffer, Interface and Transceiver	
Gates, NAND	
Gates, NOR	
Gates, OR	
J-K Flip Flops, Dual.	
Latches	

Function	Page
Line Drivers, 50-Ohm/75-Ohm	11
Logic Arrays, Field Programmable	1
Look-Ahead Carry Generators	3
Memories, PROM's	1
Memories, RAM's	2
Memories, ROM's	2
Microprocessor Controllers and	
Support Functions	4
Microprocessors, 16-Bit I ² L	1
Monostable Multivibrators	
Multiplexers, Data Selectors	
Multipliers	3
NAND Gates	12
NOR Gates	12
Operators, Arithmetic	3
OR Gates	11
Parity Generators/Checkers	
Priority Encoders/Registers	
Processor Elements, 4-Bit Slice	
Programmable Read-Only Memories (PROM's)	
Random-Access Read-Write Memories (RAM's)	
Read-Only Memories, Programmable (PROM's)	1
Read-Only Memories (ROM's)	
Register Files	
Register Flip Flops	
Register, Other	
Register, Shift	
Retriggerable Monostable Multivibrators	
Sensing Gates, Current	
Shift Registers	
S-R Latches	
Support Functions, Microprocessor	
Synchronous Counters	
Transceivers and Drivers, Bus	
Transceiver Gates	
4-Bit-Slice Processor Elements	
16-Bit I ² L Microprocessor	
50-Ohm/75-Ohm Line Drivers	11

I²L 16-BIT MICROPROCESSORS

DESCRIPTION		CLOCK FREQUENCY	-		E TYPE ACKAGE		SEC. PAGE
	INSTRUCTIONS	Theodeliet	–55°C to 12	5°C	-40°C to 8	5°C	NO.
MEMORY-TO-MEMORY ARCHITECTURE	60		SBP 9900M		SBP 9900E		
SUPPORTED WITH SEPARATE MEMORY	69	2 MHz			36F 9900E	J	3-1
AND CRU INTERRUPT BUSES	(TI 990/4)		SBP 9900N‡	J			

BIPOLAR BIT-SLICE PROCESSOR ELEMENTS

	CASCADABLE	TYPICAL			DEVIC	Е ТҮРЕ		SEC.
DESCRIPTION	то	μ-OPERATION	TECHNOLOGY		AND PA	ACKAGE		PAGE
	N-BITS	TIME		-55°C to 12	5°C	0°C to 70	°C	NO.
	Yes	50 ns	STTL			SN74S481	J, N	1-1
EXPANDABLE	Yes	100 ns	LSTTL	SN54LS481	J	SN74LS481	J, N	1-1
4-BIT SLICE	Yes	300 ns	1 ² L	SBP0400AM	J	SBP0400AC	J, N	2-1
	Yes	300 ns	1 ² L	SBP0401AM	J	SBP0401AC	J, N	2-1

EXPANDABLE FIELD-PROGRAMMABLE LOGIC ARRAYS

DESCRIPTION	ORGANI-	TYPICAL DELAY	OUTPUTS TYPE/		CE TYPE ACKAGE		SEC. PAGE
	ZATION	TIME	NO.	–55°C to 125°C	0°C to 70	NO.	
AUTOMATIC OR	12 X 50 X 6	35 ns	3-State/6		SN74S330	J, N	5-13
DEDICATED ENABLE	12 ~ 30 ~ 6	30 NS	O-C/6		SN74S331	J, N	5-13

FIRST-IN FIRST-OUT MEMORY (FIFO)

	ТҮРЕ	TYPICAL	TYP TOTAL	DEVIC	E TYPE		SEC.
DESCRIPTION	OF	CLOCK	POWER	AND PA		PAGE	
	OUTPUT	FREQUENCY	DISSIPATION	-55°C to 125°C 0°C to 70°C			NO.
ASYNCHRONOUS 16 X 5	3-State	20 MHz	400 mW	SN74S225 J, N		4-39	

PROGRAMMABLE READ-ONLY MEMORIES (PROM'S)

DESCRIP	TION,	ORGANI	TYPE	TYPICAL	TYPICAL	TYP POWER	[DEVIC	Е ТҮРЕ		SEC.
PKG. P	INS,	ZATION	OF	ADDRESS	ENABLE	DISSIPATION	A	AND PACKAGE			PAGE
AND ROW S	SPACING	ZATION	OUTPUT	TIME	TIME	PER BIT	–55°C to 1	25°C	0°C to 70	0°C	NO.
	20-Pin	512 X 8	3-State	55 ns	20 ns	0.14 mW	SN54S472	J	SN74S472	J, N	
	300-Mil	512 X 8	0-C	55 ns	20 ns	0.14 mW	SN54S473	J	SN74S473	J, N	
4096-BIT	24-Pin	512 X 8	3-State	55 ns	20 ns	0.14 mW	SN54S474	J, W	SN74S474	J, N	
ARRAYS	600-Mil	512 X 8	0-C	55 ns	20 ns	0.14 mW	SN54S475	J, W	SN74S475	J, N	4-1
	18-Pin	1024 X 4	3-State	35 ns	20 ns	0.14 mW	SN54S476	J	SN74S476	J, N	1
	300-Mil	1024 X 4	0-C	35 ns	20 ns	0.14 mW	SN54S477	J	SN74S477	J, N	
2048-BIT	20-Pin	256 X 8	0-C	50 ns	20 ns	0.24 mW	SN54S470	J	SN74S470	J, N	
ARRAYS	300-Mil	256 X 8	3-State	50 ns	20 ns	0.27 mW	SN54S471	J	SN74S471	J, N	4-1
1024-BIT	16-Pin	256 X 4	3-State	40 ns	15 ns	0.49 mW	SN54S287	J, W	SN74S287	J, N	
ARRAYS	300-Mil	256 X 4	0-C	40 ns	15 ns	0.49 mW	SN54S387	J, W	SN74S387	J, N	4-1
256-BIT	16-Pin	32 X 8	0-C	25 ns	12 ns	1.56 mW	SN54S188	J, W	SN74S188	J, N	
ARRAYS	300-Mil	32 X 8	3-State	25 ns	12 ns	1.56 mW	SN54S288	J, W	SN74S288	J, N	4-1

[‡]MIL-STD-883 level B processing.

SCHOTTKY TTL AND I²L FUNCTIONS FUNCTIONAL INDEX/SELECTION GUIDE

an a	ORGANI-	TYPE	TYPICAL	TYPICAL	TYP POWER	D	EVIC	Е ТҮРЕ		SEC.
DESCRIPTION	ZATION	OF	ADDRESS	ENABLE	DISSIPATION	A		CKAGE		PAGE
	ZATION	OUTPUT	TIME	TIME	PER BIT	–55°C to 12	5°C	0°C to 70°	°C	NO.
		O-C or	150(350) ns	60(150)ns	0.03 mW					
16384-BIT ARRAYS	2048 X 8	10K Ω	to	to	to	SBP 9818M	J	SBP 9818C	J, N	4-16
		Púllup	20 µs	8 μs	0.0002 mW	(SBP 8316M)	J	(SBP 8316C)	J, N	
	512 X 4	0-C	45 ns	15 ns	0.26 mW	SN54S270	J	SN74S270	J, N	
2048-BIT ARRAYS	256 X 8	0-C	45 ns	15 ns	0.26 mW	SN54S271	J	SN74S271	J, N	4-9
2040-DIT ANNA 13	512 X 4	3-State	45 ns	15 ns	0.26 mW	SN54S370	J	SN74S370	J, N	4-5
	256 X 8	3-State	45 ns	15 ns	0.26 mW	SN54S371	J	SN74S371	J, N	
1024-BIT ARRAYS	256 X 4	0-C	40 ns	20 ns	0.46 mW	SN54187	J, W	SN74187	J, N	4-9
256-BIT ARRAYS	32 X 8	0-C	26 ns	22 ns	1.1 mW	SN5488A	J, W	SN7488A	J, N	4-9

READ-ONLY MEMORIES (ROM'S)

RANDOM-ACCESS READ-WRITE MEMORIES (RAM'S)

DESCRIPTION	ORGANI-	TYPE OF	TYPICAL ADDRESS		TYP POWER	-		E TYPE ACKAGE		SEC. PAGE
	ZATION	OUTPUT	TIME	TIME	PER BIT	-55°C to 12		0°C to 70	°c	NO.
1024-BIT ARRAYS	1024 X 1	3-State	75 ns	75 ns	0.2/0.07 mW			SN74LS215	JD, N	4-27
WITH POWER-DOWN	1024 X 1	0-C	75 ns	75 ns	0.2/0.07 mW			SN74LS315	JD, N	4-27
	1024 X 1	3-State	75 ns	35 ns	0.2 mW			SN74LS214	JD, N	
	1024 X 1	3-State	40 ns	15 ns	0.51 mW			SN74S214	JD, N	4-27
	1024 X 1	0-C	75 ns	35 ns	0.2 mW			SN74LS314	JD, N	4-27
1024-BIT ARRAYS	1024 X 1	O-C	40 ns	15 ns	0.51 mW			SN74S314	JD, N	
1024-DIT ARRA 15	256 X 4	3-State	75 ns	20 ns	0.3 mW			SN74LS207	J, N	
	256 X 4	3-State	40 ns	15 ns	0.59 mW			SN74S207	J, N	4-33
	256 X 4	3-State	75 ns	20 ns	0.3 mW			SN74LS208	J, N	4-33
	256 X 4	3-State	40 ns	15 ns	0.59 mW			SN74S208	J, N	
OF O DIT A D D A MO	256 X 1	3-State	42 ns	17 ns	1.9 mW			SN74S201	J, N	4-24
256-BIT ARRAYS	256 X 1	0-C	42 ns	13 ns	1.9 mW			SN74S301	J, N	4-24
	16 X 4	3-State	25 ns	12 ns	5.9 mW	SN54S189	J, W	SN74S189	J, N	4-20
64-BIT ARRAYS	16 X 4	O-C	25 ns	12 ns	5.9 mW	SN54S289	J, W	SN74S289	J, N	4-20

REGISTER FILES[†]

DESCRIPTION	TYPICAL ADDRESS	TYP READ ENABLE	DATA INPUT	TYP TOTAL POWER				
	TIME TIME		RATE	DISSIPATION	-55°C to 125°C		0°C to 70°C	
FOUR WORDS OF FOUR BITS	27 ns	15 ns	20 MHz	125 mW	SN54LS170	J, W	SN74LS170	J, N
FOUR WORDS OF FOUR BITS (3-STATE OUTPUTS)	24 ns	19 ns	20 MHz	135 mW	SN54LS670	J, W	SN74LS670	J, N

 $^{\dagger}\textsc{See}$ the TTL Data Book for Design Engineers, Second Edition, LCC4112.

ACCUMULATORS, ARITHMETIC LOGIC UNITS, LOOK-AHEAD CARRY GENERATORS[†]

DESCRIPTION	TYPICAL CARRY	TYPICAL ADD	TYP TOTAL POWER	DEVICE TYPE AND PACKAGE				
	TIME	TIME	DISSIPATION	-55°C to 125°C		0°C to 70°C		
4BIT PARALLEL BINARY ACCUMULATORS	10 ns	20 ns	720 mW	SN54S281	J,W	SN74S281	Э, N	
4-BIT ARITHMETIC LOGIC UNITS/ FUNCTION GENERATORS	11 ns 7 ns 16 ns	20 ns 11 ns 24 ns	525 mW 600 mW 102 mW	SN54S381 SN54S181 SN54LS181	J, W J, W	SN74S381 SN74S181 SN74LS181	J, N J, N J, N	
LOOK-AHEAD CARRY GENERATORS	7 ns		260 mW	SN54S182	J,W	SN74S182	J, N	

ADDERS[†]

	TYPICAL	TYPICAL	TYP POWER	DEVICE TYPE			
DESCRIPTION	CARRY	ADD	DISSIPATION	ON AND PACKAG			
	TIME	TIME	PER BIT	–55°C to 125°C	0°C to 70°C		
	20 ns	15 ns	24 mW	\$N54LS83A J, W	SN74LS83A	J, N	
4-BIT FULL ADDERS	10 ns	15 ns	24 mW	SN54LS283 J, W	SN74LS283	J, N	
	11 ns	7 ns	124 mW	SN54S283 J	SN74S283	J, N	
DUAL CARRY-SAVE FULL ADDERS	15 ns	15 ns	23 mW	SN54LS183* J, W	SN74LS183*	J, N	

MULTIPLIERS

DESOBURTION	DEVICE TYPE AND PACKAGE							
DESCRIPTION	–55°C to 12	0°C to 70°C						
2-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS	SN54LS261	J, W	SN74LS261	J, N				
4-BIT-BY-4-BIT PARALLEL BINARY MULTIPLIERS	SN54S274	J	SN74S274	J, N				
7-BIT-SLICE WALLACE TREES	SN54LS275	J	SN74LS275	J, N				
7-BIT-SLICE WALLACE TREES	SN54S275	J	SN74S275	J, N				

COMPARATORS[†]

	TYPICAL	TYP TOTAL	DEVICE TYPE					
DESCRIPTION	COMPARE	POWER		ACKAGE				
	TIME	DISSIPATION	-55°C to 1	25°C	0°C to 70°C			
	11.5 ns	365 mW	SN54 S 85	J, W	SN74S85	J, N		
4-BIT MAGNITUDE COMPARATORS	23.5 ns	52 mW	SN54LS85	J, W	SN74LS85	J, N		

OTHER ARITHMETIC OPERATORS[†]

DESCRIPTION	TYPICAL DELAY	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE				
	TIME		-55°C to 12	25°C	0°C to 70	°C	
QUADRUPLE 2-INPUT EXCLUSIVE-OR	7 ns	250 mW	SN54S86	J, W	SN74S86	J, N	
GATES WITH TOTEM-POLE OUTPUTS	10 ns	30 mW	SN54LS86	J, W	SN74LS86	J, N	
GATES WITH TOTEM-FOLE OUTFUTS	10 ns	30 mW	SN54LS386	J, W	SN74LS386	J, N	
QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES WITH OPEN-COLLECTOR OUTPUTS	18 ns	30 mW	SN54LS136	J, W	SN74LS136	J, N	
QUADRUPLE 2-INPUT EXCLUSIVE-NOR GATES	18 ns	40 mW	SN54LS266	J, W	SN74LS266	J, N	
QUADRUPLE EXCLUSIVE OR/NOR GATES	8 ns	325 mW	SN54S135	J, W	SN74S135	J, N	

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112. *New Product in development as of August 1977.

PARITY GENERATORS/CHECKERS[†]

DESCRIPTION	TYPICAL DELAY	TYP TOTAL POWER DISSIPATION	DEVICE TYPE				
	TIME		-55°C to 12	25°C	0°C to 70°	°C	
9-BIT ODD/EVEN PARITY	31 ns	80 mW	SN54LS280	J, W	SN74LS280	J, N	
GENERATORS/CHECKERS	13 ns	335 mW	SN54S280	J, W	SN74S280	J, N	

MICROPROCESSOR CONTROLLERS AND SUPPORT FUNCTIONS

DESCRIPTION	SYSTEM	TYP TOTAL POWER			VICE TYPE D PACKAGE		SEC. PAGE
	ATEICATION	DISSIPATION	-55°C to 12	5°C	0°C to 70°C		NO.
	8080A	700 mW			SN74S428 (TIM8228)	N.	5-35
SYSTEM CONTROLLERS	8080A	700 mW			SN74S438 (T1M8238)	N	5-35
	Universal	450 mW	SN54S482	J	SN74S482	J, N	5-41
	TMS 9900	110 mW	SN54LS259	J, W	SN74LS259 (TIM9906)	J, N	t
REGISTERS	MOS	210 mW	SN54LS363*	J	SN74LS363*	J, N	t
	WIUS	210 mW	SN54LS364*	L	SN74LS364*	J, N	1
MULTI-MODE LATCHES	8080A	410 mW	SN54S412	J, W	SN74S412 (TIM8212)	J, N	5-30
TRANSCEIVERS AND	Universal	625 mW	SN54S226	J, W	SN74S226	J, N	5-1
BUS DRIVERS	Offiversal	207 mW	SN54LS245	J	SN74LS245	J, N	†
		98 mW	SN54LS240	J	SN74LS240	J, N	t
		450 mW	SN54S240	J	SN74S240	J, N	5-5
TRANSCEIVERS AND		100 mW	SN54LS241	J	SN74LS241	J, N	t
	Universal	538 mW	SN54S241	J	SN74S241	J, N	5-5
BUS DRIVERS (SSI)		128 mW	SN54LS242	J, W	SN74LS242	J, N	†
		128 mW	SN54LS243	J, W	SN74LS243	J, N	t
		100 mW	SN54LS244	J	SN74LS244	J, N	t
CLOCK ELEMENTS	TMS 9900	669 mW			SN74LS362 (TIM9904)	J, N	†
OLOUN ELEWIEN13	8080A	719 mW			SN74LS424 (TIM8224)	J, N	†
	TMS 9900	190 mW	SN54LS148	J, W	SN74LS148 (TIM9907)	J, N	t
LOGIC ELEMENTS	TMS 9900	35 mW	SN54LS251	J, W	SN74LS251 (TIM9905)	J, N	t
	TMS 9900	63 mW	SN54LS348	J,W	SŃ74LS348 (T1M9908)	J, N	†

QUAD, HEX, AND OCTAL FLIP-FLOP/REGISTERS[†]

	F-F		POWER	DATA	TIMES		DEVIC	Е ТҮРЕ	
DESCRIPTION	PER	FREQ	PER	SETUP	HOLD	AND PACKAGE			
	PKG		FLIP-FLOP	ns	ns	-55°C to 12	5°C	0°C to 70°	°C
		50 MHz	26 mW	20↑	01	SN54LS364*	J	SN74LS364*	J, N
D TYPE 3-STATE WITH ENABLE	8	50 MHz	17 mW	20↑	o†	SN54LS374	J	SN74LS374	J, N
		100 MHz	56 mW	5↑	21	SN54S374	J	SN74S374	J, N
	8	40 MHz	10.6 mW	20↑	51	SN54LS377	J	SN74LS377	J, N
D TYPE WITH ENABLE	6	40 MHz	10.6 mW	20↑	51	SN54LS378	J, W	SN74LS378	J, N
	4	40 MHz	10.6 mW	20↑	51	SN54LS379	J	SN74LS379	J, N
	8	40 MHz	10.6 mW	20↑	5↑	SN54LS273	J	SN74LS273	J, N
	6	40 MHz	10.6 mW	20↑	5↑	SN54LS174	J, W	SN74LS174	J, N
D TYPE WITH CLEAR	0	110 MHz	75 mW	5↑	31	SN54S174	J, W	SN74S174	J, N
	4	40 MHz	10.6 mW	201	5↑	SN54LS175	J, W	SN74LS175	J, N
	4	110 MHz	75 mW	51	31	SN54S175	J, W	SN74S175	J, N

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112.

*New product in development as of August 1977.

	ТҮРЕ	ТҮРІС	AL DELAY T	IMES	TYP TOTAL				
DESCRIPTION	OF	DATA TO INV	DATA TO NON-INV	FROM ENABLE	TYP TOTAL POWER DISSIPATION	A	ND PA	E TYPE CKAGE	
		OUTPUT	OUTPUT			-55°C to 12		0°C to 70°	1
	3-State	4.5ns	8 ns	14 ns	275 mW	SN54S251	J, W	SN74S251	J, N
	3-State	17 ns	21 ns	21 ns	35 mW	SN54LS251	J, W	SN74LS251	J, N
8-LINE-TO-1-LINE	2-State	4.5 ns	8 ns	9 ns	225 mW	SN54S151	J, W	SN74S151	J, N
	2-State	11 ns	18 ns	27 ns	30 mW	SN54LS151	J, W	SN74LS151	J, N
	2-State	11 ns		18 ns	28 mW	SN54LS152	w		
	3-State		12 ns	16 ns	35 mW	SN54LS253	J, W	SN74LS253	J, N
DUAL	2-State	15 ns		22 ns	31 mW	SN54LS352	J, W	SN74LS352	J, N
DUAL	3-State	12 ns		21 ns	43 mW	SN54LS353	J, W	SN74LS353	J, N
4-LINE-TO-1-LINE	2-State		6 ns	9.5 ns	225 mW	SN54S153	J, W	SN74S153	J, N
	2-State		14 ns	17 ns	31 mW	SN54LS153	J, W	SN74LS153	J, N
QUADRUPLE	2-State		20 ns§		65 mW	SN54LS298	J,W	SN74LS298	J, N
2-LINE-TO-1-LINE	2-State		20 ns [§]		32 mW	SN54LS398 🖇	J	SN74LS398	J, N
WITH STORAGE	2-State	20 ns §	20 ns [§]		37 mW	SN54LS399	J, W	SN74LS399	J, N
	3-State	4 ns		14 ns	280 mW	SN54S258	J, W	SN74S258	J, N
	3-State		5 ns	14 ns	320 mW	SN54S257	J, W	SN74S257	J, N
	2-State	4 ns		7 ns	195 mW	SN54S158	J, W	SN74S158	J, N
QUADRUPLE	2-State		5 ns	8 ns	250 mW	SN54S157	J, W	SN74S157	J, N
2-LINE-TO-1-LINE	3-State	12 ns		20 ns	60 mW	SN54LS258A*	J, W	SN74LS258A*	J, N
	3-State		12 ns	20 ns	60 mW	SN54LS257A*	J, W	SN74LS257A*	J, N
	2-State	7 ns		12 ns	24 mW	SN54LS158	J, W	SN74LS158	J, N
	2-State		9 ns	14 ns	49 mW	SN54LS157	J, W	SN74LS157	J, N

DATA SELECTORS/MULTIPLEXERS[†]

DECODERS/DEMULTIPLEXERS[†]

DESCRIPTION	TYPE OF OUTPUT	TYPICAL SELECT TIME	TYPICAL ENABLE TIME	TYP TOTAL POWER DISSIPATION	DEVICE TYPE AND PACKAGE -55°C to 125°C 0°C t			°C
4-LINE-TO-10-LINE, BCD-TO-DECIMAL	Totem-Pole	17 ns		35 mW	SN54LS42	J, W	SN74LS42	J, N
3-LINE-TO-8-LINE	Totem-Pole	8 ns	7 ns	245 mW	SN54S138	J, W	SN74S138	J, N
	Totem-Pole	22 ns	21 ns	31 mW	SN54LS138	J, W	SN74LS138	J, N
DUAL 2-LINE-TO-4-LINE	Totem-Pole	7.5 ns	6 ns	300 mW	SN54S139	W, L	SN74S139	J, N
	Totem-Pole	22 ns	19 ns	34 mW	SN54LS139	W, L	SN74LS139	J, N
	Totem-Pole	18 ns	15 ns	30 mW	SN54LS155	W, L	SN74LS155	J, N
	Open-Collector	33 ns	26 ns	31 mW	SN54LS156	W, L	SN74LS156	J, N

CURRENT-SENSING-GATES[†]

	TYPICAL	TYP POWER	DEVICE TYPE				
DESCRIPTION	PROPAGATION	DISSIPATION	AND PACKAGES				
	DELAY TIME PER GATE		–55°C to 125°C		0°C to 70°C		
HEX	21 ns	3.3 mW	SN54LS63	J, W	SN74LS63	J, N	

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112.

§From clock.

*New Product in development as of August 1977.

BUS TRANSCEIVERS AND DRIVERS

DESCRIPTION	TYPICAL PROPAGATION	MAXIMUM SOURCE	MAXIMUM SINK			E TYPE CKAGE		SEC. PAGE
	DELAY TIMES	CURRENT	CURRENT	-55°C to 12	25°C	0°C to 70	°C	NO.
CONTROLLER AND BUS DRIVER		—1 mA	10 mA			SN74S428	N	5-35
FOR 8080A SYSTEMS		—1 mA	10 mA			SN 74S438	N	5-35
OCTAL BUS TRANSCEIVERS	8 ns	—12 mA	12 mA	SN54LS245	J	SN74LS245	J, N	t
4-BIT BUS TRANCEIVERS	10 ns	CE A	20 mA	SN54S226	J, W	SN 74S226	J.N	5-1
WITH STORAGE	iuns	— 6. 5 mA	20 mA	511545226	J, W	311/45220	J, N	5-1

ASYNCHRONOUS COUNTERS (RIPPLE CLOCK) - NEGATIVE-EDGE TRIGGERED[†]

DESCRIPTION		PARALLEL	CLEAR	TYP TOTAL POWER		DEVICE		
	FREU	LUAD		DISSIPATION	-55°C to 12	J,W SN74S196 J,W SN74LS90 0 J,W SN74LS20 6 J,W SN74LS196 J,W SN74LS196 J,W SN74LS196 J,W SN74LS197 J,W SN74LS93 3 J,W SN74LS233 7 J,W SN74LS197 J,W SN74LS197	С	
	100 MHz	Yes	Low	375 mW	SN54S196	J, W	SN 74S 196	J, N
DEGADE	32 MHz	Set-to-9	High	40 mW	SN54LS90	J, W	SN74LS90	J, N
DECADE	32 MHz	Set-to-9	High	40 mW	SN54LS290	J, W	SN74LS290	J, N
	30 MHz	Yes	Low	60 mW	SN54LS196	J, W	SN74LS196	J, N
	100 MHz	Yes	Low	375 mW	SN54S197	J, W	SN74S197	J, N
	32 MHz	None	High	.39 mW	SN54LS93	J, W	SN74LS93	Ј, N
4-BIT BINARY	32 MHz	None	High	39 mW	SN54LS293	J, W	SN74LS293	J, N
	30 MHz	Yes	Low	60 mW	SN54LS197	J, W	SN74LS197	J, N
DIVIDE-BY-12	32 MHz	None	High	39 mW	SN54LS92	J, W	SN74LS92	J, N
	35 MHz	None	High	75 mW	SN54LS390	J, W	SN74LS390	J, N
DUAL DECADE	35 MHz	Set-to-9	High	75 mW	SN54LS490	J, W	SN74LS490	J, N
DUAL 4-BIT BINARY	35 MHz	None	High	75 mW	SN54LS393	J, W	SN74LS393	J, N

SYNCHRONOUS COUNTERS - POSITIVE-EDGE TRIGGERED[†]

	COUNT	PARALLEL		TYP TOTAL	1	DEVIC	Е ТҮРЕ	
DESCRIPTION	FREQ	LOAD	CLEAR	POWER		AND PA	CKAGE	
	THE	LUAD		DISSIPATION	-55°C to 12	5°C	0°C to 70°	C
	40 MHz	Sync	Sync-L	475 mW	SN54S162	J, W	SN74S162	J, N
DECADE	25 MHz	Sync	Sync-L	93 mW	SN54LS162A	J, W	SN74LS162A	J, N
	25 MHz	Sync	Async-L	93 mW	SN54LS160A	J, W	SN74LS160A	J, N
	40 MHz	Sync	None	500 mW	SN54S168	J, W	SN74S168	J, N
DECADE	25 MHz	Sync	None	100 mW	SN54LS168A	J, W	SN74LS168A	J, N
UP/DOWN	25 MHz	Async	Async-H	85 mW	SN54LS192	J, W	SN74LS192	J, N
	20 MHz	Async	None	100 mW	SN54LS190	J, W	SN74LS190	J, N
	40 MHz	Sync	Sync-L	475 mW	SN54S163	J, W	SN74S163	J, N
4-BIT BINARY	25 MHz	Sync	Sync-L	93 mW	SN54LS163A	J, W	SN74LS163A	J, N
	25 MHz	Sync	Async-L	93 mW	SN54LS161A	J, W	SN74LS161A	J, N
	40 MHz	Sync	None	500 mW	SN54S169	J, W	SN74S169	J, N
4-BIT BINARY	25 MHz	Sync	None	100 mW	SN54LS169A	J, W	SN74LS169A	J, N
UP/DOWN	25 MHz	Async	Async-H	85 mW	SN54LS193	J,W	SN74LS193	J, N
	20 MHz	Async	None	90 mW	SN54LS191	J, W	SN74LS191	J, N

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112.

•

ſ	NO.	SHIFT	SERIAL	ASYNC		NOD	ES		TYP TOTAL	D	EVICE	ТҮРЕ	
DESCRIPTION	OF	FREQ	DATA	CLEAR	#	s-L‡	LOAD	LD	POWER '	AN	ID PAG	CKAGE	
	BITS	Theu	INPUT	CLEAN	5	Ś	2	P	DISSIPATION	-55°C to 125	i°C	0°C to 70°C	:
		50 MHz	D	Low	X	X	X	х	750 mW	SN54S299	J, W	SN74S299	J, N
PARALLEL-IN,	8	35 MHz	D	Low	x	X	X	x	175 mW	SN54LS299*	J	SN74LS299*	J, N
PARALLEL-OUT		35 MHz	D	Sync L	X	x	X	X	175 mW	SN54LS323*	J	SN74LS323*	J, N
(BIDIRECTIONAL)	4	70 MHz	D	Low	X	x	X	X	450 mW	SN54S194	J, W	SN74S194	J, N
	-	25 MHz	D	Low	×	х	X	x	75 mW	SN54LS194A	J, W	SN74LS194A	J, N
	5	10 MHz	D	Low	х		Х		60 mW	SN54LS96	J, W	SN74LS96	J, N
		70 MHz	J-K	Low	X		х		375 mW	SN54S195	J, W	SN74S195	J, N
PARALLEL-IN,		30 MHz	D	Low	x		x		75 mW	SN54LS395A	J, W	SN74LS395A	J, N
PARALLEL-OUT	4	30 MHz	J-₩	Low	×		x		70 mW	SN54LS195A	J, W	SN74LS195A	J, N
		30 MHz	D	None	×		x		65 mW	SN54LS95B	J, W	SN74LS95B	J, N
		25 MHz	D	None	×		x		70 mW	SN54LS295B	J, W	SN74LS295B	J, N
SERIAL-IN,	8	25 MHz	Court	1	x				00.111	0.15 41 0.4 0.4			
PARALLEL-OUT	°	25 MHZ	Gated D	Low	^				80 mW	SN54LS164	J, W	SN74LS164	J, N
PARALLEL-IN,	8	35 MHz	D	None	х		х	X	105 mW	SN54LS165	J, W	SN74LS165	J, N
SERIAL-OUT	đ	35 MHz	D	Low	х		х	x	110 mW	SN54LS166	J, W	SN74LS166	J, N
SERIAL-IN,	8	25 1411-	0-1-1-0	AL.	~				20 111	0.15 41 0.04			
SERIAL-OUT	ő	25 MHz	Gated D	None	×				60 mW	SN54LS91	J, W	SN74LS91	Ј, N

SHIFT REGISTERS[†]

 $\ddagger_{S-R} \equiv_{shift \ right, \ S-L} \equiv_{shift \ left}$

OTHER REGISTERS[†]

DESCRIPTION	FREQ ASYNC		TYP TOTAL POWER	DEVIC AND P	SEC. PAGE	
		CLEAR	DISSIPATION	–55°C to 125°C	0°C to 70°C	NO.
QUADRUPLE MULTIPLEXERS	30 MHz	None	36.5 mW	SN54LS398 J	SN74LS398 J, N	†
WITH STORAGE	30 MHz	None	36.5 mW	SN54LS399 J, W	SN74LS399 J, N	† †
	25 MHz	None	65 mW	SN54LS298 J, W	SN74LS298 J, N	†
8-BIT UNIVERSAL SHIFT/STORAGE	35 MHz	Low	175 mW	SN54LS299* J	SN74LS299* J, N	t
REGISTERS	50 MHz	Low	750 mW	SN54S299 J, W	SN74S299 J, N	5-9
QUADRUPLE BUS-BUFFER REGISTERS	50 MHz	High	85 mW	SN54LS173* J, W	SN74LS173* J, N	t

PRIORITY ENCODERS/REGISTERS[†]

DESCRIPTION	TYPICAL DELAY	TYP TOTAL POWER	DEVICE TYPE AND PACKAGE				
	TIME	DISSIPATION	-55°C to 12	25°C	0°C to 70	°C	
FULL BCD PRIORITY ENCODERS	15 ns	60 mW	SN54LS147	J, W	SN74LS147	J, N	
CASCADABLE OCTAL PRIORITY ENCODERS	15 ns	60 mW	SN54LS148	J, W	9N74LS148	J, N	
CASCADABLE OCTAL PRIORITY ENCODERS WITH 3-STATE OUTPUTS	16 ns	63 mW	SN54LS348	J, W	SN74LS348	J, N	

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112.
 New product in development as of August 1977.

LATCHES[†]

DESCRIPTION	NO. OF	CLEAR	OUTPUTS	TYPICAL DELAY	TYP TOTAL POWER	DEVICI AND PA		SEC. PAGE
	BITS			TIME	DISSIPATION	–55°C to 125°C	0°C to 70°C	-
MULTI-MODE BUFFERED	8	Low	Q	11 ns	410 mW	SN54S412 J	SN74S412 J, f	J t
ADDRESSABLE	8	Low	Q	17 ns	110 mW	SN54LS259 J, W	SN74LS259 J, I	N †
		None	Q	17 ns	210 mW	SN54LS363* J	SN74LS363* J, I	N t
TRANSPARENT	8	None	٥	19 ns	120 mW	SN54LS373 J	SN74LS373 J, I	v †
		None	۵	7 ns	525 mW	SN54S373 J	SN74S373 J, I	5-26
DUAL 2-BIT WITH		None	۵, ۵	11 ns	32 mW	SN54LS75 J, W	SN74LS75 J, I	1 t
INDEPENDENT ENABLE	4	None	Q	10 ns	35 mW	SN54LS77 W		t
INDER CINDENT ENABLE		None	a, ā	12 ns	32 mW	SN54LS375 J, W	SN74LS375 J,	N †
QUAD 3-R (SSI)	4	None	Q	13 ns	19 mW	SN54LS279 J, W	SN74LS279 J, I	V t

S-R LATCHES[†]

	TYPICAL	TYP TOTAL		DEVIC	ТҮРЕ	
DESCRIPTION	PROPAGATION POWER		AND PACKAGE			
	DELAY TIME	DISSIPATION	–55°C to 12	!5°C	0°C to 70°	°C
QUADRUPLE S-R LATCHES	13 ns	19 mW	SN54LS279	J, W	SN74LS279	J, N

MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS[†]

DESCRIPTION	NO. OF	NO. OF INPUTS OUTPUT TYP TOTAL PULSE POWER		DEVICE TYPE AND PACKAGE				
	POSITIVE NEGATIVE		RANGE	DISSIPATION	–55°C to 12	!5°C	0°C to 70	°C
DUAL	1	1	20 ns-70 s	23 mW	1		SN74LS221	J, N
DUAL	1 📸	1	20 ns-49 s	23 mW	SN54LS221	J,W		

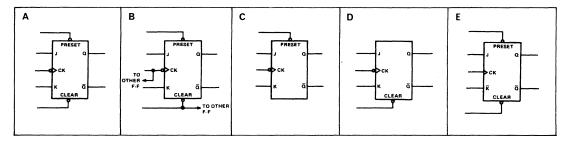
RETRIGGERABLE MONOSTABLE MULTIVIBRATORS[†]

DESCRIPTION	NO. OF	NO. OF INPUTS		OUTPUT PULSE	TYP TOTAL			E TYPE ACKAGE	
	POSITIVE	NEGATIVE	CLEAR	RANGE	POWER	-55°C to 12	25°C	0°C to 70	°C
SINGLE	2	2	Yes	45 ns–∞	30 mW	SN54LS122	J, W	SN74LS122	J, N
DUAL	1	1	Yes	45 ns-∞	60 mW	SN54LS123	J, W	SN74LS123	J, N

CLOCK GENERATOR CIRCUITS[†]

DESCRIPTION		TYP TOTAL POWER	DEVICE TYPE AND PACKAGE				
		DISSIPATION	-55°C to 12	25°C	0°C to 70	°C	
CLOCK GENERATOR/DRIVERS	(FOR TMS 9900)	669 mW			SN74LS362	J, N	
CLOCK GENERATOR/DRIVERS	(FOR TMS 8080A)	719 mW			SN74LS424	J, N	
·	90 mW	SN54LS124	J, W	SN74LS124	J, N		
DUAL VOLTAGE-CONTROLLED OSCILLATOR WITH ENABLE		525 mW	SN54S124	J, W	SN74S124	J, N	
		90 mW	SN54LS326	J, W	SN74LS326	J, N	
	4700	150 mW	SN54LS325	J, W	SN74LS325	J, N	
UAL VOLTAGE-CONTROLLED OSCILLATOR		150 mW	SN54LS327	J, W	SN74LS327	J, N	
VOLTAGE-CONTROLLED OSCILLATOR WITH ENABLE		90 mW	SN54LS324	J,W	SN74LS324	J, N	

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112.


AND-OR-INVERT GATES WITH TOTEM-POLE OUTPUTS[†]

	TYPICAL	TYP POWER	DEVICE TYPE					
DESCRIPTION	PROPAGATION	DISSIPATION	AND PACKAGE					
	DELAY TIME	PER GATE	-55°C to 1	25°C	0°C to 70°C			
2-WIDE 4-INPUT	12.5 ns	2.75 mW	SN54LS55	J, W	SN74LS55	J, N		
4-WIDE 4-2-3-2-INPUT	3.5 ns	29 mW	SN54S64	J,W	SN74S64	J, N		
4-WIDE 2-3-3-2-INPUT	12.5 ns	4.5 mW	SN54LS54	J,W	SN74LS54	J, N		
DUAL 2-WIDE 2-INPUT	3.5 ns	28 mW	SN54S51	J, W	SN74S51	J, N		
DOAL 2-WIDE 2-INPUT	12.5 ns	2.75 mW	SN54LS51	J,W	SN74LS51 .	J, N		

AND-OR-INVERT GATES WITH OPEN-COLLECTOR OUTPUTS[†]

	TYPICAL	TYPICAL TYP POWER		DEVICE TYPE				
DESCRIPTION	PROPAGATION DISSIPATION AND		AND PA	ACKAGE				
	DELAY TIME	PER GATE	-55°C to 125°C		0°C to 7	0°C to 70°C		
4-WIDE 4-2-3-2-INPUT	5,5 ns	36 mW	SN54S65	J, W	SN74S65	J, N		

DUAL J-K EDGE-TRIGGERED FLIP-FLOPS †

DWG.	TYPICAL CHA	RACTERISTICS	DATA	TIMES	DEVICE TYPE			
BEF.	f _{max}	Pwr/F-F	SETUP	HOLD	AND P	ACKAGE		
MEF. (MHz)		(mW)	(ns)	(ns) ·	–55°C to 125°C	0°C to 70°C		
	125	75	3↓	01	SN54S112 J, W	SN74S112 J, N		
A	45	10	20↓	o↓	SN54LS76A J, W	SN74LS76A J, N		
	45	10	20↓	o↓	SN54LS112A J, W	SN74LS112A J, N		
	125	75	3↓	o↓	SN54S114 J, W	SN74S114 J, N		
в	45	10	20↓	o↓	SN54LS78A J, W	SN74LS78A J, N		
	45	10	20↓	o↓	SN54LS114A J, W	SN74LS114A J, N		
с	125	75	3↓	01	SN54S113 J, W	SN74S113 J, N		
	45	10	20↓	o↓	SN54LS113A J, W	SN74LS113A J, N		
D	45	10	20↓	o↓	SN54LS73A J, W	SN74LS73A J, N		
	45	10	20↓	o↓	SN54LS107A J	SN74LS107A J, N		
E	33	10	201	5↑	SN54LS109A J, W	SN74LS109A J, N		

↑↓The arrow indicates the edge of the clock pulse used for reference: ↑ for the rising edge, ↓ for the falling edge. ↑See the TTL Data Book for Design Engineers, Second Edition, LCC4112.

DESCRIPTION	HIGH-LEVEL OUTPUT	LOW-LEVEL OUTPUT	TYPICAL DELAY	TYP POWER PER	DEVICE TYPE AND PACKAGE			
	VOLTAGE CURRENT TIME			GATE	-55°C to 125°C 0°C			C to 70°C
QUADRUPLE	15 V	8 mA	16 ns	2 mW			SN74LS26	J, N
2-INPUT	15 V	4 mA	16 ns	2 mW	SN54LS26	J, W		
POSITIVE-NAND	5.5 V	60 mA	6.5 ns	41 mW	SN54S38	J, W	SN74S38	J, N
	5.5 V	24 mA	19 ns	4.3 mW	- 		SN74LS38	J, N
BUFFERS	5.5 V	12 mA	19 ns	4.3 mW	SN54LS38	J, W		
QUADRUPLE 2-INPUT POSITIVE-	5.5 V	24 mA	19 ns	5.45 mW			SN74LS33	J, N
NOR BUFFERS	5,5 V	·12 mA	19 ns	5.45 mW	SN54LS33	J, W		

BUFFER AND INTERFACE GATES WITH OPEN-COLLECTOR OUTPUTS[†]

GATES, BUFFERS, DRIVERS, AND BUS TRANSCEIVERS WITH 3-STATE OUTPUTS[†]

	TYPICAL	MAXIMUM	MAXIMUM	DEVICE TYPE			
DESCRIPTION	PROPAGATION	SOURCE	SINK		PACKAGE		
	DELAY TIME	CURRENT	CURRENT	–55°C to 125°C	0°C to 70	°C	
12-INPUT NAND GATE	4.5 ns	-6.5 mA	20 mA		SN74S134	J, N	
12-INFOT NAND GATE	4.5 ns	—2 mA	20 mA	SN54S134 J,	w		
QUADRUPLE	8 ns	-2.6 mA	24 mA		SN74LS125A	J, N	
BUS BUFFERS/DRIVERS	8 ns	—1 mA	12 mA	SN54LS125A J,	w		
WITH INDEPENDENT	8.5 ns	-2.6 mA	24 mA		SN74LS126A	(J, N	
OUTPUT CONTROLS	8.5 ns	—1 mA	12 mA	SN54LS126A J,	w		
	9.5 ns	-2.6 mA	24 mA		SN74LS365A	J, N	
	9.5 ns	—1 mA	12 mA	SN54LS365A J,	w		
	9.5 ns	-2.6 mA	24 mA		SN74LS366A	J, N	
HEX BUS BUFFERS/DRIVERS	9.5 ns	—1 mA	12 mA	SN54LS366A J,	w		
	9.5 ns	2.6 mA	24 mA		SN74LS367A	(J, N	
	9.5 ns	—1 mA	12 mA	SN54LS367A J,	w		
	9.5 ns	-2.6 mA	24 mA		SN74LS368A	, IJ, N	
	9.5 ns	-1 mA	12 mA	SN54LS368A J,	w		
	5 ns	-15 mA	64 mA		SN74S240	J, N	
	5 ns	-12 mA	48 mA	SN54S240 J	ı		
	5 ns	—15 mA	64 mA		SN74S241	J, N	
	5 ns	—12 mA	48 mA	SN54S241 J			
OCTAL BUS	10 ns	—15 mA	24 mA		SN74LS240	J, N	
BUFFERS/DRIVERS	10 ns	-12 mA	12 mA	SN54LS240 J			
	10 ns	—15 mA	24 mA		SN74LS241	J, N	
	10 ns	—12 mA	12 mA	SN54LS241 J			
	10 ns	-15 mA	24 mA		SN74LS244	J, N	
	10 ns	-12 mA	12 mA	SN54LS244 J			
CONTROLLER AND BUS DRIVER		-1 mA	10 mA		SN74S428	N	
FOR 8080A SYSTEMS		—1 mA	10 mA		SN74S438	N	
	11 ns	-15 mA	24 mA		SN74LS242	J, N	
	11 ns	-12 mA	12 mA	SN54LS242 J,	w		
QUADRUPLE TRANSCEIVERS	12 ns	-15 mA	24 mA		SN74LS243	J, N	
	12 ns	-12 mA	12 mA	SN54LS243 J,	w		
QUADRUPLE TRANSCEIVERS	10 ns		20 mA		SN74S226	J, N	
WITH STORAGE	10 ns	-6.5 mA	20 mA	SN54S226 J,	w		
	12 ns	—15 mA	24 mA		SN74LS245	J, N	
OCTAL TRANSCEIVERS	12 ns	-12 mA	12 mA	SN54LS245		1	

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112.

BUFFERS;CLOCK DRIVERS WITH TOTEM-POLE OUTPUTS[†]

DESCRIPTION	LOW-LEVEL OUTPUT	HIGH-LEVEL OUTPUT	TYPICAL DELAY	TYP POWER PER	DEVICE TYPE AND PACKAGE			
	CURRENT	CURRENT	TIME	GATE	–55°C to 125°C		0°C to 70°C	
QUADRUPLE								
2-INPUT	24 mA	—1.2 mA	12 ns	5.5 mW			SN74LS28	J, N
POSITIVE-NOR	12 mA	—1.2 mA	12 ns	5.5 mW	SN54LS28	J, W		
BUFFERS]	
QUADRUPLE 2-INPUT	60 mA	—3 mA	4 ns	41 mW	SN54S37	J, W	SN74S37	J, N
POSITIVE-NAND	24 mA	—1.2 mA	12 ns	4.3 mW			SN74LS37	J, N
BUFFERS	12 mA	—1.2 mA	12 ns	4.3 mW	SN54LS37	J, W		
DUAL 4-INPUT	60 mA	-3 mA	4 ns	44 mW	SN54S40	J,W	SN74S40	J, N
POSITIVE-NAND	24 mA	—1.2 mA	12 ns	4.3 mW			SN74LS40	J, N
BUFFERS	12 mA	—1.2 mA	12 ns	4.3 mW	SN54LS40	J, W	ł	

50-OHM/75-OHM LINE DRIVERST

DESCRIPTION	LOW-LEVEL OUTPUT	HIGH-LEVEL OUTPUT	TYPICAL DELAY	TYP POWER PER	DEVICE TYPE AND PACKAGE			
	CURRENT	CURRENT	TIME	GATE	55°C to 1	25°C	0°C to 70	0°C
DUAL 4-INPUT								
POSITIVE-NAND	60 mA	—40 mA	4 ns	44 mW	SN54S140	J, W	SN74S140	J, N
LINE DRIVERS								

OPEN-COLLECTOR DISPLAY DECODERS/DRIVERS[†]

· · · ·	OUTPUT	OFF-STATE	TYP TOTAL		Γ	DEVÍC	Е ТҮРЕ	
DESCRIPTION	SINK OUTPUT		POWER BLANKING		AND PACKAGE			
	CURRENT	VOLTAGE	DISSIPATION	1	-55°C to 12	25°C	0°C to 70°C	
BCD-TO-DECIMAL	80 mA	15 V	35 mW	Invalid Codes			SN74LS145	J, N
DECODERS/DRIVERS	12 mA	15 V	35 mW	Invalid Codes	SN54LS145	J, W		
i i i i i i i i i i i i i i i i i i i	24 mA	15 V	35 mW	Ripple			SN74LS47	J, N
	24 mA	15 V	35 mW	Ripple			SN74LS247	J, N
	12 mA	15 V	35 mW	Ripple	SN54LS47	J, W		}
	12 mA	15 V	35 mW	Ripple	SN54LS247	J, W		
BCD-TO-	6 mA	5.5 V	125 mW	Ripple			SN74LS48	J, N
SEVEN-SEGMENT	6 mA	5.5 V	125 mW	Ripple			SN74LS248	J, N
DECODERS/DRIVERS	2 mA	5.5 V	125 mW	Ripple	SN54LS48	J, W		
DECODERS/DRIVERS	2 mA	5.5 V	125 mW	Ripple	SN54LS248	J, W		
	8 mA	5.5 V	40 mW	Direct			SN74LS249	J, N
	8 mA	5.5 V	40 mW	Direct			SN74LS49	J, N
	4 mA	5.5 V	40 mW	Direct	SN54LS49	J,W		
	4 mA	5.5 V	40 mW	Direct	SN54LS249	J, W		

[†]See the TTL Data Book for Design Engineers, Second Edition, LCC4112.

DESCRIPTION	AND	NAND	NOR	OR
QUAD 2-INPUT	SN54S/74S08	SN54S/74S00	SN54S/74S02	SN54S/74S32
	SN54LS/74LS08	SN54LS/74LS00	SN54LS/74LS02	SN54LS/74LS32
	SN54S/74S09*	SN54S/74S03*		
	SN54LS/74LS09*	SN54LS/74LS03*		10 A
	х х	SN54S/74S132-		
		SN54LS/74LS132		
HEX INVERTERS		SN54S/74S04		
		SN54LS/74LS04		
		SN54S/74S05*		
	•	SN54LS/74LS04*		
		SN54LS/74LS14		
TRIPLE 3-INPUT	SN54S/74S11	SN54S/74S10	SN54LS/74LS27	
	SN54LS/74LS11	SN54LS/74LS10		
	SN54S/74S15*	SN54LS/74LS12*		
	SN54LS/74LS15*			
DUAL 4-INPUT	SN54LS/74LS21	SN54S/74S20		
		SN54LS/74LS20		
		SN54S/74S22*		
		SN54LS/74LS22*		
		SN54LS/74LS13		
DUAL 5-INPUT			SN54S/74S260	
8-INPUT		SN54S/74S30		
		SN54LS/74LS30		
13-INPUT		SN54S/74S133		

SCHOTTKY TTL GATE SUMMARY†

†See the TTL Data Book for Design Engineers, Second Edition, LCC4112.

D_{Schmitt}-trigger inputs

*Open-Collector

TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 5012 • DALLAS, TEXAS 75222