
Texas
Instruments

TVP4020 PERMEDIA
®

 2
Programmer’s Reference

Manual

Issue 4

Contents TVP4020 Programmers Reference Manual

iv

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

TVP4020 Programmers Reference Manual Contents

iii

3Dlabs is the worldwide trading name of 3Dlabs Inc. Ltd.

3Dlabs, GLINT and PERMEDIA are registered trademarks of 3Dlabs Inc. Ltd.

Microsoft, Windows and Direct3D are either registered trademarks or trademarks
of Microsoft Corp. in the United States and/or other countries. OpenGL is a
registered trademark of Silicon Graphics, Inc. Macintosh and Power Macintosh
are registered trademarks and QuickDraw is a trademark of Apple Computer Inc.

All other trademarks are acknowledged and recognized.

Contents TVP4020 Programmers Reference Manual

iv

Contents

1. Introduction.. 1
1.1 How to use this manual.. 1
1.2 Further Reading ... 1

2. Overview .. 2
2.1 TVP4020 Key Features.. 2
2.2 Functional Overview .. 3

3. Programming Model.. 6
3.1 PERMEDIA as a Register file .. 7
3.2 PERMEDIA I/O Interface ... 9
3.3 Interrupts.. 20
3.4 Synchronization ... 20
3.5 Host Memory Bypass... 21
3.6 DMA Controller .. 22
3.7 Register Read back ... 22
3.8 Byte Swapping ... 23
3.9 Red and Blue Swapping .. 23

4. Memory I/O and Organization... 25
4.1 Patched Data ... 25
4.2 Localbuffer ... 25
4.3 Framebuffer ... 27
4.4 Double Buffering .. 33
4.5 Texture Buffer .. 37

5. Graphics Programming... 40
5.1 The Graphics HyperPipeline .. 40
5.2 Delta Unit ... 42
5.3 Rasterizer Unit ... 48
5.4 Scissor/Stipple Unit.. 68
5.5 Localbuffer Read and Write Units .. 73
5.6 Stencil/Depth Test Unit .. 77
5.7 Texture Address Unit ... 85
5.8 Texture Read Unit.. 88
5.9 YUV Unit .. 95
5.10 Framebuffer Read and Write Units .. 98
5.11 Color DDA Unit .. 105
5.12 Texture/Fog/Blend ... 109
5.13 Color Format Unit... 118
5.14 Logical Op Unit .. 121
5.15 Host Out Unit ... 124

6. Initialization.. 130
6.1 Initializing PERMEDIA.. 130
6.2 System Initialization ... 130
6.3 Window Initialization... 134

TVP4020 Programmers Reference Manual Contents

iii

6.4 Application Initialization ..137
6.5 Bypass Initialization ..138

7. Programming Tips ...139
7.1 PCI Bus Issues...139
7.2 Graphics Hyperpipeline ..141
7.3 Area Filling Techniques ..142
7.4 Copies and Downloads...144
7.5 Multi Buffering...145
7.6 Overlays ...146
7.7 Memory Organization ...146
7.8 Chroma Test...147
7.9 Configuration for 2D ...147

8. Delta Programming Examples ..148

Appendix A. Graphics Register Reference..162

Appendix B. Pseudocode Definitions ..272

Appendix C. Screen Widths Table..274

Appendix D. A Gouraud Shaded Triangle without using the Delta Unit276

Appendix E. Register Tables ..284

Appendix F. TVP4010 and TVP4020 Differences...294

Glossary ...300

Index ...306

Contents TVP4020 Programmers Reference Manual

iv

Table of Figures
Figure 2.1 External Interfaces ... 3
Figure 3.1 DMA Tag Description Format.. 13
Figure 3.2 Indexed Format ... 15
Figure 5.1 Hyperpipeline .. 41
Figure 5.2 Triangle Mesh... 43
Figure 5.3 Triangle Fan. .. 43
Figure 5.4 Rasterizing a triangle.. 49
Figure 5.5 Polyline... 51
Figure 5.6 Relationship between Bitmask and Scanning Directions ... 55
Figure 5.7 Copy Operation .. 58
Figure 5.8 Real Coordinate Representation .. 61
Figure 5.9 Screen Scissor and User Scissor Tests... 69
Figure 5.10 Scissor Mode Register ... 70
Figure 5.11 AreaStippleMode Register ... 70
Figure 5.12 LBReadMode Register ... 75
Figure 5.13 LBWriteMode Register ... 75
Figure 5.14 LBReadFormat / LBWriteFormat Register ... 76
Figure 5.15 Depth Interpolation ... 80
Figure 5.16 Depth Derivative Format .. 81
Figure 5.17 StencilMode Register ... 81
Figure 5.18 StencilData Register... 81
Figure 5.19 DepthMode Register .. 82
Figure 5.20 Window Register .. 82
Figure 5.21 Texture Address Interpolation .. 85
Figure 5.22 Fixed Point S and T Format ... 86
Figure 5.23 Fixed Point Q Format ... 86
Figure 5.24 TextureAddressMode... 87
Figure 5.25 TextureReadMode Register ... 90
Figure 5.26 TextureMapFormat Register .. 91
Figure 5.27 TextureDataFormat Register.. 91
Figure 5.28 TexelLUTMode Register .. 92
Figure 5.29 TexelLUTAddress register ... 92
Figure 5.30 YUVMode Register... 97
Figure 5.31 ChromaUpperBound and ChromaLowerBound Registers RGB Format........................ 97
Figure 5.32 ChromaUpperBound and ChromaLowerBound Registers YUV Format 97
Figure 5.33 FBReadMode Register... 103
Figure 5.34 FBWriteMode Register ... 103
Figure 5.35 FBReadPixel Register .. 104
Figure 5.36 PackedDataLimits Register .. 104
Figure 5.37Color Representation .. 105
Figure 5.38 Color Interpolation .. 106
Figure 5.39 Fixed Point Color Format ... 106
Figure 5.40 ColorDDAMode Register.. 107
Figure 5.41 Fog Interpolation Over A Triangle .. 111
Figure 5.42 Fog Interpolant Fixed Point Format.. 112
Figure 5.43 Fogging .. 113
Figure 5.44 TextureColorMode Register ... 115
Figure 5.45 Texel0 Register - RGB and YUV formats... 115
Figure 5.46 FogMode Register.. 116
Figure 5.47 AlphaBlendMode Register.. 116

TVP4020 Programmers Reference Manual Contents

iii

Figure 5.48 Dither Mode Register ..119
Figure 5.49 LogicalOpMode Register ..123
Figure 5.50 FilterMode Register...127
Figure 5.51 StatisticMode Register ..127
Figure 5.52 PickResult Register...127
Figure 8.1 Geometry of the Mesh and Clip regions. ..148

List of Tables
Table 2.1 Standard VGA Modes ..4
Table 2.2 VESA SVGA Modes...5
Table 3.1 Memory Regions ..6
Table 3.2 Region 0 Address Map...7
Table 4.1 Supported Color Formats..31
Table 5.1 Vertex Parameters ...42
Table 5.2 Draw Command Bit Field Assignments Affecting Delta ...45
Table 5.3 DeltaMode Register Bit Field Assignments..46
Table 5.4 Rasterizer Command Registers...63
Table 5.5 Rasterizer Control Registers..64
Table 5.6 Render Command Register Fields...65
Table 5.7 Rasterizer Mode Register ..66
Table 5.8 Localbuffer Read/Write Modes...74
Table 5.9 Stencil Comparison Modes ..78
Table 5.10 Possible Update Operations for Stencil Planes ...78
Table 5.11 Stencil Operations..78
Table 5.12 Stencil Sources ..79
Table 5.13 Depth Comparison Modes ...79
Table 5.14 Depth Sources. ..80
Table 5.15 Depth Interpolation Registers...82
Table 5.16 Texture Interpolation Registers ..86
Table 5.17 Chroma Test Modes...96
Table 5.18 Framebuffer Read/Write Modes...100
Table 5.19 Color Interpolation Registers..107
Table 5.20 Logical Operations ...121
Table 5.21 Filter Modes ...125
Table 7.1 Memory Organization...147

TVP4020 Programmers Reference Manual Introduction

1

1. Introduction

TVP4020 is a high performance PCI/AGP graphics processor that
balances high quality 3D polygon and textured graphics acceleration,
windows acceleration and state-of-the-art MPEG1/MPEG2 playback with
a fast integrated SVGA core, integrated RAMDAC and video ports. This
document provides a high level overview of the architecture of the
TVP4020 graphics processor and is intended as an introduction for
design engineers and project managers planning the implementation of
TVP4020 based systems.

TVP4020 sets the standard for 3D and multimedia acceleration, making
it the ideal solution to meet the increasingly pervasive need for balanced
3D and multimedia acceleration - and all in a single, low cost PCI device.

This document has been written as the primary reference for
programmers and system designers who wish to develop software to
drive TVP4020. Information on programming the I/O registers can be
found in the TVP4020 Hardware Reference Manual.

TVP4020 is the second generation PERMEDIA device. Compared with
TVP4010, it provides greater flexibility, additional features and enhanced
performance. Throughout this manual the terms TVP4020 and PERMEDIA

are used interchangeably.

An understanding of the principles of 2D and 3D graphics programming
will be useful in reading this document.

1.1 How to use this manual

Chapter 2 gives an overview of PERMEDIA.

Chapter 3 details the programming model for the chip.

Chapter 4 describes the data formats that PERMEDIA supports in the
framebuffer, localbuffer and texture buffer.

Chapter 5 describes how to use PERMEDIA for graphics rendering.

Chapter 6 describes the initialization of PERMEDIA.

Chapter 7 provides tips for programming PERMEDIA.

Chapter 8 provides examples of Delta programming.

Appendix A details the PERMEDIA registers.

Appendix B gives the format used in the pseudocode examples
throughout the document.

Introduction TVP4020 Programmers Reference Manual

2

Appendix C gives a table used to set-up common screen widths.

TVP4020 Programmers Reference Manual Introduction

1

Appendix D describes how a Gouraud shaded triangle can be rendered
without using the Delta Unit. This is helpful in understanding how the
chip works and
also when dealing with TVP4010 legacy.

Appendix E tabulates the TVP4020 registers.

Appendix F describes the differences between TVP4010 and 2

A Glossary of technical terms follows the Appendices.

An extensive index is included.

1.2 Further Reading

• TVP4020 Data Manual, Texas Instruments

• TVP4020 Architecture Overview, Texas Instruments

• OpenGL Programming Guide, Jackie Neider et al, Reading MA:
Addison-Wesley

• Microsoft WIN32 Software Development Kit 3.1, Microsoft

• Windows NT 3.1 Graphics Programming, Emeryville CA, Ziff-Davis
Press

• Computer Graphics: Principles and Practice, James D. Foley et al,
Reading MA: Addison-Wesley

• Programmer’s Guide to the EGA, VGA and Super VGA Cards,
Richard F. Ferraro, Reading MA: Addison-Wesley, ISBN 0-201-
62490-7

Overview TVP4020 Programmers Reference Manual

2

2. Overview

2.1 TVP4020 Key Features

• Full support for Intel’s Accelerated Graphics Port (AGP) and PCI
• 66 MHz operation
• DMA and Execute mode support
• Sideband addressing

• Enhanced 3D graphics features and performance (at 83MHz)
• 83M perspective correct, bilinear filtered, texture mapped

pixels/sec
• 42M perspective correct, bilinear filtered, texture mapped, depth

buffered pixels/sec
• 800K texture mapped polygons/sec
• True-color 3D graphics
• Polygon based with Z buffer
• Texture decompression
• Full scene anti-aliasing

• Enhanced GUI acceleration
• Ultra-fast BLT engine and 2D rasterizer
• Stretch BLTs, monochrome/color expansion and logic ops
• 8, 16, 24 and 32-bit packed framestore

• MPEG2 compatible Video playback acceleration
• YUV 4:4:4, YUV 4:2:2 and YUV 4:2:0 (native MPEG2 format)
• Unlimited multiple playback windows (occluded)
• Independent XY scaling and mirroring

• Integrated geometry pipeline set-up processor
• Integrated true-color 230 MHz RAMDAC

• 320x200 to 1600x1200 screen resolution
• DPMS, DDC1 and DDC2AB+
• Clock synthesizer and Hardware cursor

• Multi-mode video streams
• Simultaneous input and output video
• Optional scaling and filtering
• Optional color space conversion and gamma correction

• Fast on-chip SVGA
• Flexible multi-function SDRAM or SGRAM memory (2, 4, 6 or 8

Mbytes)
• Microsoft PC97 and Intel GPC97 compliance
• Comprehensive suite of optimized software drivers
• Reference board designs and manufacturing kits

TVP4020 Programmers Reference Manual Overview

3

2.2 Functional Overview

2.2.1 Memory Subsystem

PERMEDIA provides flexible support for the memory subsystem (Fig. 2.1).
This allows the system designer a wide choice of price/performance
tradeoffs.

The same physical memory holds all data used by PERMEDIA. Internally
the data types are divided into texture, localbuffer and framebuffer. The
localbuffer holds depth and stencil data; the framebuffer holds color data
for display.

Bus
Interface

Memory
Interface

VGA

Graphics Hyperpipeline
Host Bus SGRAM

Bypass

Figure 2.1 External Interfaces

2.2.2 Host Interface

Conceptually PERMEDIA can be viewed as a register file. Control registers
are primed with the information required for a primitive, and then to start
the chip drawing, a write is made to a Command register

PERMEDIA registers can be accessed directly through the memory map.
Registers can be accessed either individually or in groups.

The chip also supports a bypass route to the memory to allow direct
read/write of pixels, and implementation of algorithms not directly
supported by PERMEDIA.

Overview TVP4020 Programmers Reference Manual

4

2.2.3 Task Switching

Where multiple applications wish to make simultaneous access to
PERMEDIA, it is the responsibility of the software driving the chip to handle
the loading of correct state. PERMEDIA has been designed to support a
number of different software architectures.
• Synchronous operation means that a new task can load its context

without waiting for current rendering to complete
• All loadable state can be read back
• A Sync command is provided to flush all rendering. This can be polled

or it can return an interrupt

2.2.4 SVGA

PERMEDIA contains a fast VGA core. The PERMEDIA SVGA is used for
DOS VGA applications and during boot time before switching to use the
Graphics Hyperpipeline. This document does not cover VGA
programming. Specific information on PERMEDIA’s VGA can be found in
the TVP4020 Hardware Reference Manual. VGA information, such as
standard registers, is described in the “Programmer’s Guide to the EGA,
VGA and Super VGA Cards” by Richards F. Ferraro.

The following standard VGA modes are supported:
Mode
(hex)

Alpha
Format

Char Size Colors Max
Page

Type
Format

Resolution

00 0
 0*
 0+

40 by 25
40 by 25
40 by 25

8 by 8
8 by 14
9 by 16

16/256K bw
16/256K bw
16/256K bw

8
8
8

Alpha
Alpha
Alpha

320 by 200
320 by 350
360 by 400

01 1
 1*
 1+

40 by 25
40 by 25
40 by 25

8 by 8
8 by 14
9 by 16

16/256K
16/256K
16/256K

8
8
8

Alpha
Alpha
Alpha

320 by 200
320 by 350
360 by 400

02 2
 2*
 2+

80 by 25
80 by 25
80 by 25

8 by 8
8 by 14
9 by 16

16/256K bw
16/256K bw
16/256K bw

8
8
8

Alpha
Alpha
Alpha

640 by 200
640 by 350
720 by 400

03 3
 3*
 3+

80 by 25
80 by 25
80 by 25

8 by 8
8 by 14
9 by 16

16/256K
16/256K
16/256K

8
8
8

Alpha
Alpha
Alpha

720 by 200
640 by 350
720 by 400

04 4 40 by 25 8 by 8 4/256K 1 Graph 320 by 200
05 5 40 by 25 8 by 8 4/256K bw 1 Graph 320 by 200
06 6 80 by 25 8 by 8 2/256K bw 1 Graph 640 by 200
07 7
 7+

80 by 25
80 by 25

9 by 14
9 by 16

bw
bw

8
8

Alpha
Alpha

720 by 350
720 by 400

0D D 40 by 25 8 by 8 16/256K 8 Graph 320 by 200
0E E 80 by 25 8 by 8 16/256K 4 Graph 640 by 200
0F F 80 by 25 8 by 14 bw 2 Graph 640 by 350
10 10 80 by 25 8 by 14 16/256K 2 Graph 640 by 350
11 11 80 by 30 8 by 16 2/256K 1 Graph 640 by 480
12 12 80 by 30 8 by 16 16/256K 1 Graph 640 by 480
13 13 40 by 25 8 by 8 256/256K 1 Graph 320 by 200

Table 2.1 Standard VGA Modes

TVP4020 Programmers Reference Manual Overview

5

The following VESA SVGA modes are supported:
Mode (hex) Pixels Colors
100 640 by

400
256

101 640 by
480

256

Table 2.2 VESA SVGA Modes

ModeX is also supported.

Programming Model TVP4020 Programmers Reference Manual

6

3. Programming Model
This chapter describes the programming model for PERMEDIA. It
describes the interface conceptually rather than detailing specific
registers and their exact usage. In-depth descriptions of how to program
PERMEDIA for specific drawing operations can be found in later chapters.

PERMEDIA is divided into the following memory regions:
Region Address Space Bytes Description Comments
Config Configuration 256 PCI Configuration PCI special
Zero Memory 128K Control Registers relocatable
One Memory 8M Memory Region One relocatable
Two Memory 8M Memory Region Two relocatable
ROM Memory 64K Expansion ROM relocatable
SVGA Memory & I/O - SVGA Addresses optional & fixed

Table 3.1 Memory Regions

Address Range Description Byte Swap
0000.0000 -> 0000.0FFF Control & Status No
0000.1000 -> 0000.1FFF Memory Control No
0000.2000 -> 0000.2FFF GP FIFO access No
0000.3000 -> 0000.3FFF Video Control No
0000.4000 -> 0000.4FFF RAMDAC No
0000.5000 -> 0000.57FF Video Streams General Purpose

Bus
No

0000.5800 -> 0000.5FFF Video Streams Control No
0000.6000 -> 0000.6FFF SVGA Control No
0000.7000 -> 0000.7FFF Reserved No
0000.8000 ->
0000.FFFF

GP Registers No

0001.0000 -> 0001.0FFF Control & Status Yes
0001.1000 -> 0001.1FFF Memory Control Yes
0001.2000 -> 0001.2FFF GP FIFO access Yes
0001.3000 -> 0001.3FFF Video Control Yes
0001.4000 -> 0001.4FFF RAMDAC Yes
0001.5000 -> 0001.57FF Video Streams General Purpose

Bus
No

0001.5800 -> 0001.5FFF Video Streams Control No
0001.6000 -> 0001.6FFF SVGA Control Yes
0001.7000 -> 0001.7FFF Reserved Yes

TVP4020 Programmers Reference Manual Programming Model

7

0001.8000 ->
0001.FFFF

GP Registers Yes

Table 3.2 Region 0 Address Map

3.1 PERMEDIA as a Register file

The simplest way to view the interface to the PERMEDIA Graphic
Processor is as a flat block of memory-mapped registers (i.e. a register
file). This register file appears as part of the address map for PERMEDIA.

When a PERMEDIA host software driver is initialized it can map the
register file into its address space. Each register has an associated
address tag, giving its offset from the base of the register file (since all
registers reside on a 64-bit boundary, the tag offset is measured in
multiples of 8 bytes). The most straightforward way to load a value into a
register is to write the data to its mapped address. In reality the chip
interface comprises a 256 entry deep FIFO, and each write to a register
causes the written value and the register’s address tag to be written as a
new entry in the FIFO.

Programming PERMEDIA to draw a primitive consists of writing values to
the appropriate registers followed by a write to a command register. This
last write triggers the start of drawing.

PERMEDIA has approximately 200 registers. All registers are 32 bits wide
and should be 32-bit addressed. Many registers are split into bit fields,
and it should be noted that bit 0 is the least significant bit.

In future chip revisions the register file may be extended and currently
unused bits in certain registers may be assigned new meanings.
Software developers should ensure that only defined registers are
written to and that undefined bits in registers are always written as
zeros. The only exception to this rule is that in certain registers it is
convenient to allow unmasked values to be written to registers which
hold numeric data. These fields are marked as "not used" in Appendix A
and elsewhere.

Register Types

PERMEDIA has three main types of register:

• Control Registers

• Command Registers

• Internal Registers

Control Registers are updated only by the host - the chip effectively uses
them as read-only registers. Examples of control registers are the
scissor clip min and max registers. Once initialized by the host, the chip

Programming Model TVP4020 Programmers Reference Manual

8

only reads these registers to determine the scissor clip extents. Most
registers are control registers.

Command Registers are those which, when written to, cause some
action to occur. Typically, the host will initialize the appropriate control
registers and then write to a command register to initiate drawing. Some
command registers such as ResetPickResult or Sync do not initiate
rendering. Apart from these, there are two types of command registers:
begin-draw and continue-draw. Begin-draw commands cause rendering
to start with those values specified by the control registers. Continue-
draw commands cause drawing to continue with internal register values
as they were when the previous drawing operation completed. Making
use of continue-draw commands can significantly reduce the amount of
data that has to be loaded into PERMEDIA when drawing multiple
connected objects such as polylines. Examples of command registers
include the Render and ContinueNewLine registers.

For convenience in this document we often refer to "sending a Render
command to PERMEDIA" rather than saying "the Render Command
register is written to, which initiates drawing".

Internal Registers are not accessible to host software. They are used
internally by the chip to keep track of changing values. Some control
registers have corresponding internal registers. When a begin-draw
command is sent and before rendering starts, the internal registers are
updated with the values in the corresponding control registers. If a
continue-draw command is sent then this update does not happen and
drawing continues with the current values in the internal registers. For
example, if a line is being drawn then the StartXDom and StartY control
registers specify the (x, y) coordinates of the first point in the line. When
a begin-draw command is sent these values are copied into internal
registers. As the line drawing progresses these internal registers are
updated to contain the (x, y) coordinates of the pixel being drawn. When
drawing has completed the internal registers contain the (x, y)
coordinates of the next point that would have been drawn. If a continue-
draw command is now given, these final (x, y) internal values are not
modified and further drawing uses these values. If a begin-draw
command had been used the internal registers would have been re-
loaded from the StartXDom and StartY registers.

For the most part internal registers can be ignored. It is helpful to
appreciate that they exist in order to understand the continue-draw
commands.

Efficiency Issues and Register Types

Software developers wishing to write device drivers for PERMEDIA should
become familiar with the different types of registers. Some control
registers such as the StartXDom and StartY registers have to be

TVP4020 Programmers Reference Manual Programming Model

9

updated for almost every primitive whereas other control registers such
as those for scissor clip or logical ops can be updated much less
frequently. Pre-loading of the appropriate control registers can reduce
the amount of data that has to be loaded into the chip for a given
primitive thus improving efficiency. In addition, as described above, the
final values in internal registers can sometimes be used for subsequent
drawing operations.

The tables in Appendix D lists the graphics registers according to their
type, name and address.

3.2 PERMEDIA I/O Interface

There are four ways of loading PERMEDIA registers:

• The host writes a value to the mapped address of the register

• The host writes address-tag/data pairs to the FIFO.

• The host writes address-tag/data pairs to the FIFO via DMA.

• The host writes to raw memory mapped GP FIFO addresses.

In cases where the host writes data values directly to the chip via the
register file, consideration has to be given to FIFO overflow (unless PCI
Disconnect is enabled). The InFIFOSpace register indicates how many
free entries remain in the FIFO. Before writing to any register, the host
must ensure that there is enough space left in the FIFO. The values in
this register can be read at any time. When using DMA, the DMA
controller will automatically ensure that there is room in the FIFO before
it performs further transfers. Thus a buffer of any size up to 64K, 32 bit
words, can be passed to the DMA controller. The FIFO and DMA
controller are described in more detail below.

3.2.1 PCI Disconnect

The PCI bus protocol incorporates a feature known as PCI Disconnect,
which is supported by PERMEDIA. PCI Disconnect is enabled by writing a
one to bit zero of the DisconnectControl register which is at offset 0x68
in PCI Region 0. Once the PERMEDIA is in this mode, if the host processor
attempts to write to the full FIFO then instead of the write being lost, the
PERMEDIA chip will assert PCI Disconnect which will cause the host
processor to keep retrying the write cycle until it succeeds.

This feature allows faster download of data to PERMEDIA, since the host
need not poll the InFIFOSpace register but should be used with care
since whenever the PCI Disconnect is asserted the bus is effectively
hogged by the host processor until such time as the PERMEDIA frees up
an entry in its FIFO. In general this mode should only be used either for
operations where it is known that the PERMEDIA can consume data faster

Programming Model TVP4020 Programmers Reference Manual

10

than the host can generate it, or where there are no time critical
peripherals sharing the PCI bus.

3.2.2 Idle bit

In some systems, PCI Disconnect may cause interrupts to be lost if it
used too often or for too long. It is normal to only rely on this feature
when it is known that the data to be sent to PERMEDIA will be absorbed
quickly enough that the disconnect will seldom be used. It also advisable
to check that the Graphics Processor is not processing a large primitive
before transferring data of this sort, and this may be done by checking
the Graphics Processor Active bit in the PCI Disconnect register.
Disconnect should not normally be enabled if this bit is set.

3.2.3 FIFO ControlFIFO Control

The description in section §3.1 above considered the PERMEDIA interface
to be a register file. More precisely, when a data value is written to a
register, this value and the address tag for that register are combined
and put into the FIFO as a new entry. The actual register is not updated
until PERMEDIA processes this entry. In the case where PERMEDIA is busy
performing a time consuming operation (e.g. drawing a large texture
mapped polygon), and not draining the FIFO very quickly, it is possible
for the FIFO to become full. If a write to a register is performed when the
FIFO is full no entry is put into the FIFO and that write is effectively lost.

The input FIFO is 256 entries deep and each entry consists of a tag/data
pair; an address word which addresses the register to be updated,
followed by the data to be sent to the register. The InFIFOSpace register
can be read to determine how many entries are free. The value returned
by this register will never be greater than 256.

An example of loading PERMEDIA registers using the FIFO is given below.
The pseudocode fills a series of rectangles. Details of the conventions
used in the pseudocode examples may be found in Appendix B.

Assume that the data to draw a single rectangle consists of 5 words
(including the Render command).

dXDom(0x0); // common set-up
dXSub(0x0);
dY(1);

for (i = 0; i < nrects; ++i) {
while (*InFIFOSpace < 5)

; // wait for room

StartXDom (rect->x1);
StartXSub (rect->x2);
Count (rect->y2 - rect->y1);
YStart(rect->y1);

TVP4020 Programmers Reference Manual Programming Model

11

Render (PERMEDIA_TRAPEZOID_PRIMITIVE);
}

The InFIFOSpace FIFO control register contains a count of the number
of entries currently free in the FIFO. The chip increments this register for
each entry it removes from the FIFO and decrements it every time the
host puts an entry in the FIFO. Before writing to the input FIFO, the user
must check that there is sufficient space by reading the InFIFOSpace
register.

The Graphics Core FIFO interface provides a port through which both
GC register addresses and data can be sent to the input FIFO. A range
of 4 Kbytes of host space is provided although all data may be sent
through one address in the range. ALL accesses go directly to the FIFO;
the range is provided to allow for data transfer schemes which force the
use of incrementing addresses.

Note that the GC registers cannot be read through this interface.
Command buffers generated to be sent to the input FIFO interface, may
be read directly by PERMEDIA by using the DMA controller.

A data formatting scheme is provided to allow for multiple data words to
be sent with one address word where adjacent or grouped registers are
being written, or where one register is to be written many times.

Note. The FIFO interface can be accessed at 32 bit boundaries. This is
to allow a direct copy from a DMA format buffer.

3.2.4 The DMA Interface

Loading registers directly via the FIFO is often an inefficient way to
download data to PERMEDIA. Given that the FIFO can accommodate only
a small number of entries, PERMEDIA has to be frequently interrogated to
determine how much space is left. Also, consider the situation where a
given API function requires a large amount of data to be sent to
PERMEDIA . If the FIFO is written directly then a return from this function is
not possible until almost all the data has been consumed by PERMEDIA.
This may take some time depending on the types of primitives being
drawn.

To avoid these problems PERMEDIA provides an on-chip DMA controller
which can be used to load data from arbitrary sized (< 64K 32-bit words)
host buffers into the FIFO. In its simplest form the host software has to
prepare a host buffer containing register address tag descriptions and
data values. It then writes the base address of this buffer to the
DMAAddress register and the count of the number of words to transfer
to the DMACount register. Writing to the DMACount register starts the
DMA transfer and the host can now perform other work. In general, if the
complete set of rendering commands required by a given call to a driver

Programming Model TVP4020 Programmers Reference Manual

12

function can be loaded into a single DMA buffer then the driver function
can return. Meanwhile, in parallel, PERMEDIA is reading data from the
host buffer and loading it into its FIFO. FIFO overflow never occurs since
the DMA controller automatically waits until there is room in the FIFO
before doing any transfers.

The only restriction on the use of DMA control registers is that before
attempting to reload the DMACount register the host software must wait
until previous DMA has completed. It is valid to load the DMAAddress
register while the previous DMA is in progress since the address is
latched internally at the start of the DMA transfer. Many display driver
functions can be implemented using the following skeleton structure:

do any pre-work

DMAAddress(address of dma_buffer);

while (TRUE) {

count = *DMACount; // note this is volatile

 if (count) {

 while (--count)

 ; // wait for count to expire

 }

 else

 break; // DMA completed

}

copy render data into DMA buffer

DMACount(number of words in DMA buffer)

return

Using DMA leaves the host free to return to the application, while in
parallel, PERMEDIA is performing the DMA and drawing. This can increase
performance significantly over loading a FIFO directly. In addition, some
algorithms require that data be loaded multiple times (e.g. drawing the
same object across multiple clipping rectangles). Since the PERMEDIA

DMA only reads the buffer data, it can be downloaded many times
simply by restarting the DMA. This can be very beneficial if composing
the buffer data is a time consuming task.

A further optimization is to use a double buffered mechanism with two
DMA buffers. This allows the second buffer to be filled before waiting for
the previous DMA to complete thus further improving the parallelism
between host and PERMEDIA processing.

TVP4020 Programmers Reference Manual Programming Model

13

do any pre-work

get free DMA buffer and mark as in use

put render data into this new buffer

DMAAddress(address of new buffer)

while (TRUE) {

count = *DMACount; // note this is volatile

 if (count) {

 while (--count)

 ; // wait for count to expire

 }

 else

 break; // DMA completed

}

DMACount(number of words in new buffer)

mark the old buffer as free

return

In general the DMA buffer format consists of a 32-bit address tag
description word followed by one or more data words. The DMA buffer
consists of one or more sets of these formats. The following paragraphs
describe the different types of tag description words that can be used.

DMA Tag Description Format

When DMA is performed each 32-bit tag description in the DMA buffer
conforms to the following format.

reserved
08162431

Count or Mask Address Tagreserved

Mode
0 = Hold tag
1 = Increment tag
2 = Indexed tag
3 = Reserved

Figure 3.1 DMA Tag Description Format

There are 3 different tag addressing modes for DMA: hold, increment
and indexed. The different DMA modes are provided to reduce the
amount of data which needs to be transferred, hence making better use
of the available DMA bandwidth. Each of these is described in the
following sections. Each row in the following diagrams represents a 32-
bit value in the DMA buffer. The address tag for each register is given in
the Graphics Register Reference Appendix D.

Hold Format

Programming Model TVP4020 Programmers Reference Manual

14

address-tag with Count=n-1, Mode=0

value 1

...

value n

This is commonly used for image download by setting the
SyncOnHostData bit in the Render command.. In this format the 32-bit
tag description contains a tag value and a count specifying the number
of data words following in the buffer. The DMA controller writes each of
the data words to the same address tag. For example, this is useful for
image download where pixel data is continuously written to the Color
register. The bottom 9 bits specify the register to which the data should
be written; the high-order 16 bits specify the number of data words
(minus 1) which follow in the buffer and which should be written to the
address tag (note that the 2-bit mode field for this format is zero so a
given tag value can simply be loaded into the low order 16 bits).

A special case of this format is where the top 16 bits are zero indicating
that a single data value follows the tag (i.e. the 32-bit tag description is
simply the address tag value itself). This allows simple DMA buffers to
be constructed which consist of tag/data pairs. For example to render a
horizontal span 10 pixels long starting from (2,5) the DMA buffer could
look like this:

StartXDom

2 << 16

StartY

5 << 16

StartXSub12 << 16

Count

1

Render

(trapezoid render command)

Increment Format
address-tag with Count=n-1, Mode=1

value 1

...

value n

This format is similar to the hold format except that as each data value is
loaded the address tag is incremented (the value in the DMA buffer is
not changed; PERMEDIA updates an internal copy). Thus, this mode
allows contiguous PERMEDIA registers to be loaded by specifying a single
32-bit tag value followed by a data word for each register. The low-order
9 bits specify the address tag of the first register to be loaded. The 2 bit
mode field is set to 1 and the high-order 16 bits are set to the count

TVP4020 Programmers Reference Manual Programming Model

15

(minus 1) of the number of registers to update. To enable use of this
format, the PERMEDIA register file has been organized so that registers
which are frequently loaded together have adjacent address tags. For
example, the 8 AreaStipplePattern registers can be loaded as follows:

AreaStipplePattern0, Count=7, Mode=1

row 0 bits

row 1 bits

...

row 7 bits

Indexed Format

PERMEDIA address tags are 9 bit values. For the purposes of the Indexed
DMA Format they are organized into major groups and within each
group there are up to 16 tags. The low-order 4 bits of a tag give its offset
within the group. The high-order 5 bits give the major group number.
Appendix D Register Table, lists the individual registers with their Major
Group and Offset.

09 4

Major Group Offset

8

Figure 3.2 Indexed Format

This format allows up to 16 registers within a group to be loaded while
still only specifying a single address tag description word.

address tag with Mask, Mode=2

value 1

...

value n

If the Mode of the address tag description word is set to indexed mode
then the high-order 16 bits are used as a mask to indicate which
registers within the group are to be used. The bottom 4 bits of the
address tag description word are unused. The group is specified by bits
4 to 8. Each bit in the mask is used to represent a unique tag within the
group. If a bit is set then the corresponding register will be loaded. The
number of bits set in the mask determines the number of data words that
should be following the tag description word in the DMA buffer. The data
is stored in order of increasing corresponding address tag. For example,

Programming Model TVP4020 Programmers Reference Manual

16

0x003280F0

value 1

value 2

value 3

The Mode bits are set to 2 so this is indexed mode. The Mask field
(0x0032) has 3 bits set so there are three data words following the tag
description word. Bits 1, 4 and 5 are set so the tag offsets are 1, 4 and 5.
The major group is given by the bits 4-8 which are 0x0F (in indexed
mode bits 0-3 are ignored). Thus the actual registers to update have
address tags 0x0F1, 0x0F4 and 0x0F5. These are updated with value 1,
value 2 and value 3 respectively.

DMA Example

The following pseudo-code shows the previous example of drawing a
series of rectangles but this time using the DMA controller. This example
uses a single DMA buffer and the simplest Hold Mode for the tag
description words in the buffer.

UINT32 *pbuf;

DMAAddress (physical address of dma_buffer)

while (*DMACount != 0)

; // wait for DMA to complete

pbuf = dma_buffer;

*pbuf++ = PERMEDIATagdXDom;

*pbuf++ = 0;

*pbuf++ = PERMEDIATagdXSub;

*pbuf++ = 0;

*pbuf++ = PERMEDIATagdY;

*pbuf++ = 1 << 16;

for (i = 0; i < nrects; ++i) {

*pbuf++ = PERMEDIATagStartXDom;

*pbuf++ = rect->x1 << 16; // Start dominant edge

*pbuf++ = PERMEDIATagStartXSub

*pbuf++ = rect->x2 << 16; // Start of subordinate edge

*pbuf++ = PERMEDIATagCount;

*pbuf++ = rect->y2 - rect->y1;

*pbuf++ = PERMEDIATagYStart;

*pbuf++ = rect->y1 << 16;

*pbuf++ = PERMEDIATagRender;

*pbuf++ = PERMEDIA_TRAPEZOID_PRIMITIVE;

}

// initiate DMA

DMACount((int)(pbuf - dma_buffer))

TVP4020 Programmers Reference Manual Programming Model

17

The example assumes that a host buffer has been previously allocated
and is pointed at by “dma_buffer”. It is worth noting that significantly
less data would be required if indexed tags were used in this example.

DMA Buffer Addresses

Host software must generate the correct DMA buffer address for the
PERMEDIA DMA controller. Normally, this means that the address passed
to PERMEDIA must be the physical address of the DMA buffer in host
memory. The buffer must also reside at contiguous physical addresses
as accessed by PERMEDIA . On a system which uses virtual memory for
the address space of a task, some method of allocating contiguous
physical memory, and mapping this into the address space of a task,
must be used.

If the virtual memory buffer maps to non-contiguous physical memory
then the buffer must be divided into sets of contiguous physical memory
pages and each of these sets transferred separately. In such a situation
the whole DMA buffer cannot be transferred in one go; the host software
must wait for each set to be transferred. Often the best way to handle
these fragmented transfers is via an interrupt handler.

DMA Interrupts

PERMEDIA provides interrupt support, as an alternative means of
determining when a DMA transfer is complete. This can provide
considerable speed advantage. If enabled, the interrupt is generated
whenever the DMACount register changes from having a non-zero to
having a zero value. Since the DMACount register is decremented every
time a data item is transferred from the DMA buffer this happens when
the last data item is transferred from the DMA buffer.

To enable the DMA interrupt, the DMAInterruptEnable bit must be set in
the IntEnable register. The interrupt handler should check the DMAFlag
bit in the IntFlags register to determine that a DMA interrupt has actually
occurred. To clear the interrupt a word should be written to the IntFlags
register with the DMAFlag bit set to one.

A typical use of DMA interrupts might be as follows:
prepare DMA buffer

DMACount(n); // start a DMA transfer

prepare next DMA buffer

while (*DMACount != 0) {

mask interrupts

set DMA Interrupt Enable bit in IntEnable register

sleep on interrupt handler wake up

unmask interrupts

}

DMACount(n) // start the next DMA sequence

Programming Model TVP4020 Programmers Reference Manual

18

The interrupt handler could then be
if (*IntFlags & DMA Flag bit) {

reset DMA Flag bit in IntFlags

send wake up to main task

}

Interrupts are complicated and depend on the facilities provided by the
host operating system. The above pseudocode only hints at the system
details.

This scheme frees the processor for other work while DMA is being
completed. Since the overhead of handling an interrupt is often quite
high for the host processor, the scheme should be tuned to allow a
period of polling before sleeping on the interrupt.

3.2.5 Output FIFO and Graphics Processor FIFO Interface

To read data back from PERMEDIA an output FIFO is provided. Each entry
in this FIFO is 32-bits wide and it can hold tag or data values. Thus its
format is unlike the input FIFO whose entries are always tag/data pairs
(we can think of each entry in the input FIFO as being 41 bits wide – 9
bits for the tag and 32 bits for the data). The type of data written by
PERMEDIA to the output FIFO is controlled by the FilterMode register. This
register allows filtering of output data in various categories including the
following:

• Depth: output in this category results from an image upload of the
Depth buffer.

• Stencil: output in this category results from an image upload of the
Stencil buffer.

• Color: output in this category results from an image upload of the
framebuffer.

• Synchronization: synchronization data is sent in response to a Sync
command.

The data for the FilterMode register consists of 2 bits per category. If the
least significant of these two bits is set (0x1) then output of the register
tag for that category is enabled; if the most significant bit is set (0x2)
then output of the data for that category is enabled. Both tag and data
output can be enabled at the same time. In this case the tag is written
first to the FIFO followed by the data. The FilterMode register is
described in more detail in section §5.15.

For example, to perform an image upload from the framebuffer, the
FilterMode register should have data output enabled for the Color
category. Then, the rectangular area to be uploaded should be
described to the Rasterizer. Each pixel that is read from the framebuffer
will then be placed into the output FIFO. If the output FIFO becomes full,

TVP4020 Programmers Reference Manual Programming Model

19

then PERMEDIA will block internally until space becomes available. It is
the programmer’s responsibility to read all data from the output FIFO.
For example, it is important to know how many pixels should result from
an image upload and to read exactly this many from the FIFO.

To read data from the output FIFO the OutputFIFOWords register should
first be read to determine the number of entries in the FIFO (reading
from the FIFO when it is empty returns undefined data). Then this many
32-bit data items are read from the FIFO. This procedure is repeated
until all the expected data or tag items have been read. The address of
the output FIFO is described below.

NB all expected data must be read back. PERMEDIA will block if the output
FIFO becomes full. Programmers must be careful to avoid the deadlock
condition that will result if the host is waiting for space to become free in
the input FIFO while PERMEDIA is waiting for the host to read data from
the output FIFO.

Graphics Processor FIFO Interface

PERMEDIA has a sequence of 1K x 32 bit addresses in the PCI Region 0
address map called the Graphics Processor FIFO Interface. To read
from the output FIFO any address in this range can be read (normally a
program will choose the first address and use this as the address for the
output FIFO). All 32-bit addresses in this region perform the same
function – the range of addresses is provided for data transfer schemes
which force the use of incrementing addresses.

Writing to a location in this address range provides raw access to the
input FIFO. Again, the first address is normally chosen. Thus the same
address can be used for both input and output FIFOs. Reading gives
access to the output FIFO; writing gives access to the input FIFO.

Writing to the input FIFO by this method is different from writing to the
memory mapped register file. Since the register file has a unique
address for each register, writing to this unique address allows PERMEDIA

to determine the register for which the write is intended. This allows a
tag/data pair to be constructed and inserted into the input FIFO. When
writing to the raw FIFO address an address tag description must first be
written followed by the associated data. In fact, the format of the tag
descriptions and the data that follows is identical to that described above
for DMA buffers. Instead of using the PERMEDIA DMA it is possible to
transfer data to PERMEDIA by constructing a DMA-style buffer of data and
then copying each item in this buffer to the raw input FIFO address.
Based on the tag descriptions and data written PERMEDIA constructs
tag/data pairs to enter as real FIFO entries. The DMA mechanism can
be thought of as an automatic way of writing to the raw input FIFO
address.

Programming Model TVP4020 Programmers Reference Manual

20

Note, that when writing to the raw FIFO address the FIFO full condition
must still be checked by reading the InFIFOSpace register. However,
writing tag descriptions does not cause any entries to be entered into the
FIFO – such a write simply establishes a set of tags to be paired with the
subsequent data. Thus, free space need be ensured only for actual data
items that are written (not the tag values). For example, in the simplest
case where each tag is followed by a single data item, assuming that the
FIFO is empty, then 32 writes are possible before checking again for
free space.

See the TVP4020 Hardware Reference Manual for more details of the
Graphics Processor FIFO Interface address range.

3.3 Interrupts

All interrupts can be individually enabled and disabled. Refer to the
TVP4020 Hardware Reference Manual for more details.

3.4 Synchronization

There are two main cases where the host must synchronize with
PERMEDIA:

• before reading back from PERMEDIA registers

• before directly accessing the memory via the bypass mechanism

Also the host must synchronize with PERMEDIA for framebuffer
management tasks such as double buffering, though this may be better
handled using the SuspendUntilFrameBlank command. Synchronizing
with PERMEDIA implies waiting for any pending DMA to complete and
waiting for the chip to complete any processing currently being
performed. The following pseudo-code shows the general scheme:

TVP4020 Programmers Reference Manual Programming Model

21

PERMEDIAData data;

// wait for DMA to complete

while (*DMACount != 0) {

poll or wait for interrupt

}

while (*InFIFOSpace < 2) {

; // wait for free space in the FIFO

}

// enable sync output and send the Sync command

data.Word = 0;

data.FilterMode.Synchronization = 0x1;

FilterMode(data.Word);

Sync(0x0);

/* wait for the sync output data */

do {

while (*OutFIFOWords == 0)

; // poll waiting for data in output FIFO

} while (*OutputFIFO != Sync_tag);

Initially, we wait for DMA to complete as normal. We then have to wait
for space to become free in the FIFO (since the DMA controller actually
loads the FIFO). We need space for 2 registers: one to enable
generation of an output sync value, and the Sync command itself. The
enable flag can be set at initialization time. The output value will be
generated only when a Sync command has actually been sent, and
PERMEDIA has then completed all processing.

Rather than polling, it is possible to use a Sync interrupt as mentioned in
the previous section. As well as enabling the interrupt and setting the
filter mode, the data sent in the Sync command must have the most
significant bit set in order to generate the interrupt. The interrupt is
generated when the tag or data reaches the output end of the Host Out
FIFO. Use of the Sync interrupt has to be considered carefully as
PERMEDIA will generally empty the FIFO more quickly than it takes to set-
up and handle the interrupt.

3.5 Host Memory Bypass

Normally, the host will access memory indirectly via commands sent to
the PERMEDIA FIFO interface. However, PERMEDIA does provide the whole
memory as part of its address space so that it can be memory mapped
by an application. Access to the memory via this route is independent of
the PERMEDIA FIFO.

Programming Model TVP4020 Programmers Reference Manual

22

Drivers may choose to use direct access to memory for algorithms which
are not supported by PERMEDIA or for better performance in some
specific cases. This may be so, for example, when multiple pixels can be
written simultaneously and there is minimal host software overhead.

A driver making use of the bypass mechanism should synchronize
memory accesses made through the FIFO with those made directly
through the memory map. If data is written to the FIFO and then an
access is made to the memory, it is possible that the memory access will
occur before the commands in the FIFO have been fully processed. This
lack of temporal ordering is generally undesirable.

There are two windows through which the memory can be accessed.
Each window can have its own data formatting control that allows for
different forms of byte swapping and data packing. If the framebuffer is
set to use the 5:5:5:1Front and 5:5:5:1Back color modes, two pixels are
packed into each 32 bit word, but each pixel belongs to a different buffer.
Adjacent pixels in the same buffer are separated by 16 bits. As some
software has difficulty with pixels that are not packed together, the
memory windows can be configured to remap the data so that only the
front or back buffer is visible, and it appears packed.

3.6 DMA Controller

A DMA controller is provided to allow transfer of data from the PCI bus to
PERMEDIA memory. This controller is independent of the DMA controller
which feeds the Graphics Processor FIFO, and has support for
rectangular data structures and data formatting.

3.7 Register Read back

Under some operating environments, multiple tasks will want access to
the PERMEDIA chip. Sometimes a server task or driver will want to
arbitrate access to PERMEDIA on behalf of multiple applications. In these
circumstances, the state of the PERMEDIA chip may need to be saved and
restored on each context switch. To facilitate this, the PERMEDIA registers
can be read back. For details of which registers are readable, see
Appendix D Register Tables. Internal and command registers cannot be
read back.

To perform a context switch the host must first synchronize with
PERMEDIA. This means sending a Sync command and waiting for the
sync output data to appear in the output FIFO. After this the registers
can be read back.

TVP4020 Programmers Reference Manual Programming Model

23

To read a PERMEDIA register the host reads the same address which
would be used for a write, i.e. the base address of the register file plus
the offset value for the register.

Note that since internal registers cannot be read back care must be
taken when context switching a task which is making use of continue-
draw commands. Continue-draw commands rely on the internal registers
maintaining previous state. This state will be destroyed by any rendering
work done by a new task. To prevent this, continue-draw commands
should be performed via DMA since the context switch code has to wait
for outstanding DMA to complete. Alternatively, continue-draw
commands can be performed in a non-preemptable code segment.

Normally, reading back individual registers should be avoided. The need
to synchronize with the chip can adversely affect performance. It is
usually more appropriate to keep a software copy of the register which is
updated whenever the actual register is changed.

3.8 Byte Swapping

Internally PERMEDIA operates in little-endian mode. However, PERMEDIA is
designed to work with both big - and little-endian host processors. Since
the PCI Bus specification defines that byte ordering is preserved
regardless of the size of the transfer operation, PERMEDIA provides
facilities to handle byte swapping. See the TVP4020 Hardware
Reference Manual for more details of byte-swapping via the PCI bus.

Additional support is provided within the graphics core of the chip to byte
swap images and bitmasks as they are transferred to and from the host.
These are documented in the relevant sections of chapter §5.

3.9 Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will usually force a
given interpretation for true color pixel values. For example, 32-bit pixels
will be interpreted as either RGB (red at byte 2, green at byte 1 and blue
at byte 0) or BGR (blue at byte 2 and red at byte 0). The byte position for
red and blue may be important for software which has been written to
expect one byte order or the other, in particular when handling image
data stored in a file.

PERMEDIA provides three registers to specify the byte positions of blue
and red internally. In the Texture/Fog/Blend unit the AlphaBlendMode
register contains a 1-bit field called ColorOrder. If this bit is set to zero
then the byte ordering is BGR; if the bit is set to one then the ordering is
RGB. As well as setting this bit in the Alpha Blend unit, it must also be

Programming Model TVP4020 Programmers Reference Manual

24

set in the Color Format unit and the Texture Read unit via the
DitherMode and TextureDataFormat registers.

TVP4020 Programmers Reference Manual Memory I/O and Organization

25

4. Memory I/O and Organization

This section describes the arrangement of data stored in memory.
Although PERMEDIA has a single unified memory space for ease of
reference, this is divided into three buffers: the localbuffer, framebuffer
and texture buffer. Any of these buffers can be any size at any position
in the memory.

For 3D operation, associated with the framebuffer there would normally
be a localbuffer to hold depth and/or stencil information. A texture buffer
may be present if needed. For 2D operation the localbuffer would not
generally be used, but the texture buffer may be used to store pixmaps.

4.1 Patched Data

PERMEDIA supports an optional scheme for organizing memory, known as
“patching”. Data is normally stored linearly in memory such that
incrementing addresses move from left to right along a scanline of the
appropriate buffer. The type of memory supported by PERMEDIA uses a
page structure which allows fast accesses within a 2 Kbyte region, but
imposes a penalty for moving to a new 2 Kbyte region. This page
structure favors access patterns that move along a scanline but is
inefficient for moving vertically as the large change in address may
cause a page break.

Patched data is organized so that there is less penalty for moving
vertically in a buffer at the expense of a decrease in performance for
moving horizontally. This is done by organizing memory such that a two
dimensional region or patch in the buffer corresponds to a linear
sequence in memory. A buffer will comprise lots of patches.

Two patch modes are supported which differ in the detail of how the data
is organized within the patch. Normal patch mode is used for localbuffer
and framebuffer data. Subpatch mode is used for texture and
framebuffer data. Patched data cannot be displayed, so patching of
framebuffer data is normally only done for off-screen bitmaps or when
processing localbuffer or texture data through the framebuffer units.

4.2 Localbuffer

The localbuffer holds the Depth and Stencil information corresponding to
each displayed pixel. The Depth field can be either 15 or 16 bits wide
and the Stencil field either 1 or 0 bits wide. The total width of the

Memory I/O and Organization TVP4020 Programmers Reference Manual

26

localbuffer data cannot be greater than 16 bits. If a Stencil field is
defined then it occupies bit 15; the depth field always starts at bit 0.

The format of the localbuffer is specified in two places: the
LBReadFormat register and the LBWriteFormat register.

4.2.1 Localbuffer Coordinates

The translation from the internal coordinate system to the external
address map involves setting the base address of the window (or screen
if coordinates are screen relative) and positioning the origin in either the
top left or bottom left corner. The origin is specified in the LBReadMode
register.

The actual equations used to calculate the localbuffer address to read
and write are:

Bottom left origin

Destination address = LBWindowBase - Y * W + X

Source address = LBWindowBase - Y * W + X + LBSourceOffset

Top left origin

Destination address = LBWindowBase + Y * W + X

Source address = LBWindowBase + Y * W + X + LBSourceOffset

where:

X is the pixel's X coordinate.

Y is the pixel's Y coordinate.

LBWindowBase holds the base address in the localbuffer of the
current window.

LBSourceOffset is normally zero except during a copy operation
where data is read from one address and
written to another address. The offset between
source and destination is held in the
LBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PP0,
PP1 and PP2 fields in the LBReadModeregister.
See the table in Appendix C for more details.

This produces the localbuffer address in pixels. For PERMEDIA, the
localbuffer data is always 16 bits so the physical byte address is two
times the pixel address. The destination address is the address that data
will be written to; data may also be read from this address if read-modify-
write operations are needed such as depth testing. The source address
is mainly used for copy operations and is only used for reading data.

TVP4020 Programmers Reference Manual Memory I/O and Organization

27

4.3 Framebuffer

The framebuffer holds color data produced by PERMEDIA. The
framebuffer may hold both displayed and non-displayed data. Color
buffers can be placed anywhere in memory, there is no restriction on
areas that can be displayed from.

There may be several buffers, such as the front and back buffers of a
double buffered system, or the left and right buffers of a stereo system.
No restrictions are placed on the number or organization of the buffers
other than the total amount of memory fitted.

To access alternative buffers either the FBPixelOffset register can be
loaded, or the base address of the window held in the FBWindowBase
register can be redefined.

4.3.1 Framebuffer Coordinates

Coordinate generation for the framebuffer is similar to that for the
localbuffer except for the addition of FBPixelOffset. The WindowOrigin
bit in the FBReadMode register selects top left or bottom left as the
origin for the framebuffer.

The actual equations used to calculate the framebuffer address to read
and write are:

Bottom left origin

Destination address = FBWindowBase - Y * W + X + FBPixelOffset

Source address = FBWindowBase - Y * W + X + FBPixelOffset + FBSourceOffset

Top left origin

Destination address = FBWindowBase + Y * W + X + FBPixelOffset

Source address = FBWindowBase + Y * W + X + FBPixelOffset + FBSourceOffset

where:

X is the pixel's X coordinate,

Y is the pixel's Y coordinate,

FBWindowBase holds the base address in the framebuffer of the
current window.

FBPixelOffset is normally zero except when multi-buffer writes
are needed when it gives a way to access pixels
in alternative buffers without changing the
FBWindowBase register. This is useful as the
window system may be asynchronously
changing the window's position on the screen. It
is held in the FBPixelOffset register.

Memory I/O and Organization TVP4020 Programmers Reference Manual

28

FBSourceOffse
t

is normally zero except during a copy operation
where data is read from one address and
written to another address. The FBSourceOffset
is held in the FBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PP0,
PP1 and PP2 fields in the FBReadMode
register. See the table in Appendix C for more
details.

These address calculations translate a 2D address into a linear address
so non power of two framebuffer widths (e.g. 640) are economical in
memory. The address is in pixels; this is translated to a physical byte
address by multiplying by the number of bytes in the pixel.

The width is specified as the sum of selected partial products which are
selected by the fields PP0, PP1 and PP2 in the FBReadMode register.
This is the same mechanism as is used to set the width of the
localbuffer, however the widths may be set independently. The range of
widths supported are tabulated in Appendix C, together with the values
for each of the PP fields. This table holds all the common screen widths.

For arbitrary screen sizes, for instance when rendering to 'off screen'
memory such as bitmaps the next largest width from the table must be
chosen. The difference between the table width and the bitmap width will
be an unused strip of pixels down the right hand side of the bitmap.

Note that such bitmaps can be copied to the screen only as a series of
scanlines rather than as a rectangular block, unless the Texture Read
unit is used. In this case the stride for the read can be set differently to
the write by means of the partial products However, windowing systems
often store offscreen bitmaps in rectangular regions which use the same
stride as the screen. In this case normal bitblts can be used

4.3.2 Framebuffer Color Formats

The contents of the framebuffer can be regarded in two ways:

• As a collection of fields of up to 32 bits with no meaning or assumed
format as far as PERMEDIA is concerned. Bit planes may be allocated
to control cursor, color look up tables (LUTs), multi-buffer visibility or
priority functions. In this case PERMEDIA will be used to set and clear
bit planes quickly but not perform any color processing such as
interpolation or dithering. All the color processing can be disabled so
that raw reads and writes are done and the only operations are
writemasking and logical ops. This allows the control planes to be
updated and modified as necessary.

TVP4020 Programmers Reference Manual Memory I/O and Organization

29

• As a collection of one or more color components. All the processing of
color components, except for the final writemask and logical ops are
done using the internal color format . The final stage before writemask
and logical ops processing converts the internal color format to that
required by the physical configuration of the framebuffer and video
logic. The range of supported formats are given in table 4.1. The
nomenclature n@m means this component is n bits wide and starts at
bit position m in the framebuffer. The least significant bit position is 0
and a dash in a column indicates that this component does not exist
for this mode.

Some important points to note:

• The alpha channel, when present, is always associated with the RGB
color channels rather than being a separate buffer. This allows it to
be moved in parallel and to work correctly in multi-buffer updates and
double buffering.

• For the Front and Back modes the data value is duplicated in both
buffers. In general, if the data format does not take 32 bits the data is
repeated in the empty bit planes. If the data format requires 8 bits,
the same value is repeated in all four bytes of the word. The pixel size
then determines how many of the bytes are written to memory. If a 16
bit format is chosen (e.g. 5:5:5:1) then the data is repeated in the
upper and lower halves of the word. If the pixel size is set to 16 bits
then only half the word is written to memory; if the pixel size is set to
32 bits then both halves are written, with the same data in each. A
writemask can be used to select which bits are written. This is used
for certain types of double buffering. The front and back modes are
used in the alpha blend unit to extract the appropriate buffer.

• The offset modes (10 and 11) format the colors into a 7 bit value and
then add 64 to the result. This avoids reserved entries in window
system color tables.

• YUV formats are only available as textures. PERMEDIA can convert
YUV textures to RGB and apply them to polygons; it cannot convert
RGB to YUV for storage. If a YUV texture is being loaded into the chip
it should be done as raw data or converted to RGB as it is loaded.

• The CI4 format is only available as a texture.

• When reading the framebuffer, RGBA components are scaled to their
internal width if needed for alpha blending.

• The color format of the framebuffer is independent of the color format
of the texture buffer; the texture buffer supports the same formats as
the framebuffer plus some for YUV color formats

Color information is stored as values of red, green and blue (RGB) with
or without alpha values. Alternatively, it can be stored as a color index

Memory I/O and Organization TVP4020 Programmers Reference Manual

30

value (CI) where each value references an entry in a color look up table
that contains RGB values.

TVP4020 Programmers Reference Manual Memory I/O and Organization

31

The color format information needs to be stored in three places: the
DitherMode register1, the AlphaBlendMode register2 and the
TextureDataFormat register.

Internal Color Channels

Forma
t

Color
Order

Name R/Y G/U B/V A

BGR 0 BGR 8:8:8:8 8@0 8@8 8@16 8@24

1 BGR 5:5:5:1Front 5@0 5@5 5@10 1@15

2 BGR 4:4:4:4 4@0 4@4 4@8 4@12

5 BGR 3:3:2Front 3@0 3@3 2@6 0

6 BGR 3:3:2Back 3@8 3@11 2@14 0

9 BGR 2:3:2:1Front 2@0 3@2 2@5 1@7

10 BGR 2:3:2:1Back 2@8 3@10 2@13 1@15

11 BGR 2:3:2FrontOff 2@0 3@2 2@5 0

12 BGR 2:3:2BackOff 2@8 3@10 2@13 0

13 BGR 5:5:5:1Back 5@16 5@21 5@26 1@31

16 BGR 5:6:5Front 5@0 6@5 5@11 0

17 BGR 5:6:5Back 5@16 6@21 5@27 0

YUV 18 BGR YUV444 8@0 8@8 8@16 8@24

19 BGR YUV422 8@0 8@8 8@8 0

RGB 0 RGB 8:8:8:8 8@16 8@8 8@0 8@24

1 RGB 5:5:5:1Front 5@10 5@5 5@0 1@15

2 RGB 4:4:4:4 4@8 4@4 4@0 4@12

5 RGB 3:3:2Front 3@5 3@2 2@0 0

6 RGB 3:3:2Back 3@13 3@10 2@8 0

9 RGB 2:3:2:1Front 2@5 3@2 2@0 1@7

10 RGB 2:3:2:1Back 2@13 3@10 2@8 1@15

11 RGB 2:3:2FrontOff 2@5 3@2 2@0 0

12 RGB 2:3:2BackOff 2@13 3@10 2@8 0

13 RGB 5:5:5:1Back 5@26 5@21 5@16 1@31

16 RGB 5:6:5Front 5@11 6@5 5@0 0

17 RGB 5:6:5Back 5@27 6@21 5@16 0

YUV 18 RGB YUV444 8@16 8@8 8@0 8@24

19 RGB YUV422 8@8 8@8 8@0 0

CI 14 - CI8 8@0 0 0 0

15 - CI4 4@0 0 0 0

Table 4.1 Supported Color Formats

1 Note: the DitherMode register does not support the YUV444, YUV422 or CI4 formats.

2 Note: the AlphaBlendMode register does not support the YUV444, YUV422 or CI4
formats.

Memory I/O and Organization TVP4020 Programmers Reference Manual

32

4.3.3 Special Memory Modes

PERMEDIA uses SGRAM to store data. SGRAM devices usually have
special features that are particularly useful for graphics.

Hardware Writemasks.

These allow writemasking in the framebuffer without incurring a
performance penalty. If hardware writemasks are not available, PERMEDIA

must be programmed to read the memory, merge the value with the new
value using the writemask, and write it back.

To use hardware writemasking, the required writemask is written to the
FBHardwareWriteMask register, the FBSoftwareWriteMask register
should be set to all 1's, and the number of framebuffer reads is set to 0
(for normal rendering). This is achieved by clearing the ReadSource and
ReadDestination enables in the FBReadMode register.

To use software writemasking (if hardware masks are not available), the
required writemask is written to the FBSoftwareWriteMask register and
the number of framebuffer reads is set to 1 (for normal rendering). This
is achieved by setting the ReadDestination enable in the FBReadMode
register.

Block Writes

Block writes cause consecutive pixels in the framebuffer to be written
simultaneously. This is useful when filling large areas but does have
some restrictions:

• No depth or stencil testing can be done

• All the pixels must be written with the same value so no color
interpolation, alpha blending, dithering or logical ops can be done

Block writes are not restricted to rectangular areas and can be used for
any trapezoid. Hardware writemasking is available during block writes,
but not software writemasking. The scissor tests and extent checking
operate correctly with block writes, and bitmask patterns can be applied.

The FBBlockColor register holds the value to write to each pixel. Note
that this register should not be updated immediately after a Render
command which performs a block write.

Sending a Render command with the PrimitiveType field set to
"trapezoid" and the FastFillEnable field set will then cause block filling of
the area. Note that during a block fill any inappropriate state is ignored
so even if stippling, color interpolation, depth testing and/or logical ops,
for example, are enabled they have no effect. However, scissor clipping
does function correctly with block writes.

PERMEDIA always writes 32 pixels per block fill. It takes care of any partial
blocks at the beginning or end of spans.

TVP4020 Programmers Reference Manual Memory I/O and Organization

33

4.4 Double Buffering

Double buffering is a technique used to achieve visually smooth
animation, by rendering a scene to an offscreen buffer, known as the
back buffer, before quickly displaying it.

For further details see section §5.12.6, §5.12.7 and §5.13 of this manual,
and refer to the TVP4020 Hardware Reference Manual.

4.4.1 BitBlt Double Buffering

BLT double buffering in its simplest form requires a complete duplicate
buffer of non-displayed display RAM to be maintained. To swap buffers,
a BLT is performed to the displayable area. The features are:

• takes significant time to swap buffers

• the offscreen buffer requires as much RAM as the displayed buffer

• any number of windows can be independently double buffered

• pixel depth is limited only by the amount of available RAM.

The BLT can be performed using the texture units to allow arbitrary
scaling and filtering of data.

4.4.2 Full Screen Double Buffering

This section describes how to implement full-screen double buffering
with PERMEDIA when using the video timing generator. To perform full-
screen double buffering, the available display RAM must be partitioned
into two parts – buffer 0 and buffer 1 – each of which contains enough
memory to display a full screen of pixel information. The partitioning
consists of deciding the offset into RAM at which a given buffer starts.
This offset is used to program various PERMEDIA registers. For a given
resolution and pixel depth there must be enough RAM configured on the
display adapter for this to be possible. For example, with 32 bit deep
pixels and 4MB of RAM it is possible to implement full-screen double
buffering at 800x600 resolution, but not at 1024x768.

There are two factors to consider for full-screen double buffering. Firstly,
the video output hardware must be configured to display the pixels from
the correct buffer. Secondly, the PERMEDIA chip must be programmed to
render into the correct buffer. To achieve smooth animations, the buffer
being rendered into is usually different from the buffer being displayed.

Video Output

To display a given buffer, the video output hardware must be
programmed with the offset of that buffer in RAM. In the PERMEDIA

Memory I/O and Organization TVP4020 Programmers Reference Manual

34

internal timing generator this is controlled by the ScreenBase register
located in the PERMEDIA control space at offset 0x3000.

PERMEDIA Rendering

When determining the memory location of a pixel being rendered,
PERMEDIA operates in screen coordinates.

To simplify the calculation of pixel coordinates that are loaded into
PERMEDIA, this value may be loaded into the FBPixelOffset register. The
last thing PERMEDIA does before passing a pixel address to the
framebuffer interface is to add the value in the FBPixelOffset register to
its address. Thus it is possible to move the rendering origin to any pixel
location in memory. When swapping buffers it is normal to move this
position to be the pixel at which a given buffer starts.

These values can be pre-calculated at system start-up ready to be
loaded as required.

Synchronization

Double buffering allows the displaying of one buffer (the front buffer)
whilst rendering into the other (the back buffer). When the rendering has
been completed to the back buffer, the buffers are swapped and
rendering continues into the new back buffer. As a general rule, buffers
should not be swapped until all rendering to the back buffer has
completed so that the buffer swap does not result in visible tearing, or
screen break-up.

PERMEDIA reads the ScreenBase register at the end of each vertical
blanking period to determine the starting pixel for the next frame to be
displayed. Thus, in principle, this register can be written at any time to
swap buffers and will only take effect on the next frame. The same is not
true of loading the FBPixelOffset register. This register gets updated as
soon as the command to load it works its way through the input FIFO.
Hence, any rendering that takes place after the FBPixelOffset has been
loaded will occur in the new buffer. If care is not taken, this can result in
rendering being seen before the buffers have been swapped. The
following scheme would probably produce picture break-up:
ScreenBase = Buf0_Addr // display buffer 0

FBPixelOffset = Buf1_Offset // draw to buffer 1 now

Render Commands // draw next frame

ScreenBase = Buf1_Addr // display buffer 1

FBPixelOffset = 0 // draw to buffer 0 now

Render Commands // draw next frame

There are two problems here. Firstly, even though the write to the
ScreenBase register happens immediately, PERMEDIA does not actually
swap the buffers till the end of the next vertical blanking period. Thus the
start of rendering of the next frame may be seen in the front buffer prior

TVP4020 Programmers Reference Manual Memory I/O and Organization

35

to the buffer swap. Secondly, once a command has been loaded into the
input FIFO the host is free to continue with other work, while PERMEDIA

executes the command. Accesses to the ScreenBase register bypass
the FIFO so it is possible for the host to update it, and for the buffer
swap to happen, before PERMEDIA has completed rendering the last
frame.

The PERMEDIA includes the SuspendUntilFrameBlank command to solve
these problems without the need for the host synchronizing with
PERMEDIA. Here is the preferred version of the above example:
SuspendUntilFrameBlank(parameters) // display buffer 0

FBPixelOffset = Buf1_Offset // draw to buffer 1 now

Render Commands // draw next frame

SuspendUntilFrameBlank(parameters) // display buffer 1

FBPixelOffset = 0 // draw to buffer 0 now

Render Commands // draw next frame

The SuspendUntilFrameBlank command will flush all outstanding reads
and writes to the framebuffer, and will prevent any further framebuffer
memory accesses until after the buffers have been swapped.

The data that is loaded into the SuspendUntilFrameBlank command
enables PERMEDIA to swap the buffers automatically when the VBLANK
occurs by loading a new buffer offset into the ScreenBase register as
discussed above. For full details, see the detailed description in the
register reference, Appendix A.

Thus a single command register access ensures that:

• all rendering has completed to the back buffer

• the chip will wait for VBLANK before carrying out the swap

• the host can continue sending rendering commands to PERMEDIA
without risk of them affecting the displayed buffer.

As a general performance note, it is best to send non-framebuffer
related commands to PERMEDIA following the SuspendUntilFrameBlank
command. This allows better overlap between the host and PERMEDIA. In
general any commands that will not cause rendering to the framebuffer
to occur can be queued in the PERMEDIA FIFO before waiting on
VBLANK.

Eventually more framebuffer rendering commands will be sent by the
host, and the PERMEDIA will then stall its hyperpipeline until the buffer
swap completes. Ideally the host should use this time to perform non-
rendering operations e.g. prepare additional DMA buffers

Using this scheme the host will not normally ever need to wait for
VBLANK, unless it is making framebuffer memory accesses through the
bypass.

Memory I/O and Organization TVP4020 Programmers Reference Manual

36

To wait for VBLANK, the LineCount register can be polled. There is also
a VBLANK interrupt available (see TVP4020 Hardware Reference
Manual for details). The LineCount register is reset at the start of the
VBLANK period and is incremented by one for each scanline as the
video scanner moves down the screen. Thus polling for this register to
have a value of less than the value held in the VbEnd register indicates
that PERMEDIA is in the VBLANK period.

4.4.3 Bitplane Double Buffering

Bitplane double buffering is of use at 32 bits per pixel framebuffer depth
using 32768 colors in 5:5:5:1 true color mode. It relies on the RAMDAC
selecting between the high and low 16 bits of its input stream based on
whether bit 31 is set or clear. Effectively the front and back buffer for
each pixel, become interleaved within the same 32 bit word in the
framebuffer, i.e. buffer 0 becomes the lower 16 bits and buffer 1
becomes the upper 16 bits.

The buffer swap is thus implemented as a block fill of bit 31 of the
interior of a window with either one or zero. While this is not as quick as
full screen double buffering which just requires a single register
ScreenBase to be updated, it is many times quicker than BitBlt double
buffering, and like the BitBlt case allows any number of windows to be
hardware double buffered simultaneously..

Note that when rendering GUI data (such as window borders, titles etc.)
bit 31 must always be set to the same value so that these pixels are
always displayed from the same buffer. The hardware writemask can
then be used to write to only the high, or only the low, 16 bits when
rendering the animating contents of a window.

The features are:

• "almost instantaneous" buffer swap

• no offscreen buffer required (e.g. 1152x900 would be the maximum
resolution on a 4MB framebuffer at 32bpp depth)

• Multiple windows can be double buffered. GUI can write with no
performance penalty.

• Only useful at 5:5:5:1 RGB color depth.

• No triple buffering or other advanced buffer operations

In order to allow the Microsoft Windows 95 DIB engine to render direct to
the framebuffer in the 5:5:5:1 format, a special framebuffer bypass
option is supported which presents the front and back buffers
uninterleaved, i.e. as a 5:5:5:1 16bpp packed framebuffer. This allows
rarely used complex primitives to be rendered by software.

TVP4020 Programmers Reference Manual Memory I/O and Organization

37

4.4.4 Panning

Display panning can be achieved by setting the ScreenBase and
ScreenStride registers appropriately. The ScreenBase register defines
where in the framebuffer the image is to start. For panning to work, the
image in the framebuffer must be larger than that to be displayed. The
ScreenStride holds this difference in terms of 64 bit units per scanline.
For example, with a screen width of 640 pixels and a framebuffer image
width of 660, 32 bit pixels, the ScreenStride needs to be set to 10.

4.5 Texture Buffer

The texture buffer is very similar to the framebuffer. Textures are stored
in the formats the framebuffer supports, and loaded into memory through
the Framebuffer Write unit. If the texture format is different to the
framebuffer format, the DitherMode register should be temporarily set to
the texture format during texture loads. Textures are read through the
Texture Read unit.

If the texture is already in the correct format then a fast texture load can
be used. This is done by writing raw texture data to the TextureData
register. Raw data is 32 bits wide, with the correct bit pattern to be
stored in memory. No data formatting or packing is done, so the texture
must be pre-processed if this is required. The texture is stored linearly in
memory from the address specified in TextureDownLoadOffset which is
automatically incremented; no patching is done, so if the texture is to be
patched it must be done by the host. This method avoids setting up the
Rasterizer and changing the state of the pipeline.

4.5.1 Texture Load Through Bypass

Alternatively, a texture map may be loaded through the bypass, either
directly by the CPU or by the DMA controller. This mechanism supports
patching of data, but not general data formatting. The only data
formatting supported is conversion of YUV420 to YUV422. Refer to the
TVP4020 Hardware Reference Manual for more details.

4.5.2 Texture Buffer Co-ordinates

Texture co-ordinates are formed by the Texture Address unit and
passed to the Texture Read unit. In place of the Rasterize X and Y
coordinate system, the Texture Address unit generates S and T values.

The actual equations used to calculate the texture buffer address are:

Bottom left origin

Texture address = TextureBaseAddress - T * W + S

Top left origin

Memory I/O and Organization TVP4020 Programmers Reference Manual

38

Texture address = TextureBaseAddress + T * W + S

TVP4020 Programmers Reference Manual Memory I/O and Organization

39

where:

S is the texel's S coordinate,

T is the texel's T coordinate,

TextureBaseAddr
ess

holds the base address in the framebuffer of the
current window.

W is the texture map width. Only a subset of widths
are supported and these are encoded into the PP0,
PP1 and PP2 fields in the TextureReadMode
register. See the table in Appendix C for more
details.

These address calculations translate a 2D address into a linear address
so non power of two texture widths (e.g. 640) are economical in memory.
Note that the width of the texture map used for these calculations is
independent of the width and height used for texture effects such as
repeat or clamp. The address is in texels; the physical byte address is
calculated by multiplying the texel address by the number of bytes in the
texel.

4.5.3 Texture Color Formats

Texture maps have the same choice of formats as the framebuffer plus
YUV and 4 bit Color Index formats (see section §4.3.2 for details). The
formats of the texture map and framebuffer do not have to be the same.

Graphics Programming TVP4020 Programmers Reference Manual

40

5. Graphics Programming

PERMEDIA provides a rich variety of operations for 2D and 3D graphics
supported by its Hyperpipelined architecture. Section §5.1 shows the
units in the HyperPipeline. Sections §5.2 to §5.15 describe each unit.

5.1 The Graphics HyperPipeline

The Graphics Hyperpipeline, or Graphics Processor, supports:

• Point, Line, Triangle Rectangle and Bitmap primitives.

• Flat and Gouraud shading

• Texture Mapping, Fog and Alpha blending

• Scissor and Stipple

• Stencil test, Depth (Z) buffer test

• Dithering

• Logical Operations

The units in the HyperPipeline are:

• Delta Unit calculates parameters.

• Rasterizer scan converts the primitive into a series of fragments.

• Scissor/Stipple tests fragments against a scissor rectangle and a
stipple pattern.

• Localbuffer Read loads localbuffer data for use in the Stencil/Depth
unit.

• Stencil/Depth performs stencil and depth tests.

• Texture Address generates addresses of texels for use in the Texture
Read unit.

• Texture Read accesses texture values for use in the texture application
unit.

• YUV converts YUV to RGB and applies chroma test.

• Localbuffer Write stores localbuffer data to memory.

• Framebuffer Read loads data from the framebuffer.

• Color DDA generates color information.

• Texture/Fog/Blend modifies color.

• Color Format converts the color to the external format.

• Logic Ops performs logical operations.

TVP4020 Programmers Reference Manual Graphics Programming

41

• Framebuffer Write stores the color to memory.

• Host Out returns data to the host.

Rasterizer
Scissor/
Stipple

Localbuffer
Read

Stencil/
Depth

Texture
Address

Color DDA
Framebuffer

Read
Localbuffer

Write YUV
Texture
Read

Texture/
Fog/
Blend

Color Format Logic Ops
Framebuffer

Write Host Out

Delta

Figure 5.1 Hyperpipeline

The order of the Hyperpipeline shows the order in which operations are
performed. The Scissor/Stipple unit is before the texture address
generator, so any fragments that fail a stipple test will not cause a
texture access. This makes best use of the processing capacity of the
pipeline. An awareness of the pipeline is important when programming
PERMEDIA; all units in the pipeline can be thought of as independent. For
example, enabling the XOR logic op will not automatically enable
reading from the framebuffer; this must be done explicitly.

Graphics Programming TVP4020 Programmers Reference Manual

42

5.2 Delta Unit

For best performance, the Delta unit in PERMEDIA should be used to
calculate the edge deltas used by the Graphics Processor.

The Delta Unit accepts the following vertex parameters:
Offset Category Parameter Fixed Point Format IEEE Single Precision

Floating Point Range
0 s 2.30 s footnote 1 -1.0…1.0 footnote 2

1 t 2.30 s -1.0…1.0
2 q 2.30 s -1.0…1.0
3 Texture Ks 2.22 us 0.0…2.0
4 Kd 2.22 us 0.0…1.0
5 red 1.30 us 0.0…1.0
6 green 1.30 us 0.0…1.0
7 Color blue 1.30 us 0.0…1.0
8 alpha 1.30 us 0.0…1.0
9 Fog f 10.22 s -512.0…512.0
10 x 16.16 s -32K…+32K footnotes

3,4

11 Coordinate y 16.16 s -32K…+32K
12 z 1.30us 0.0…1.0
14 PackedColo

r
PackedColor 8888 8888

Table 5.1 Vertex Parameters

While values may be written to the vertex store in either floating or fixed
point formats, any values returned via the readback mechanism will be
the clamped floating point (IEEE single precision) version of the value
written. The returned value of a parameter may be different from the
value written if any of the following conditions has occurred:

• Any clamping has occurred;

• The input number was a NaN or Denormalized IEEE number;

• The input value has exceeded the internal range (approximately
±232).

1This is the range when Normalise is not used. When Normalise is enabled the fixed point
format can be anything, providing it is the same for the s, t and q parameters. The
numbers will be interpreted as if they had 2.30 format for the purpose of conversion to
floating point. If the fixed point format (2.30) is different from what the user had in mind
then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary
point positions) prior to conversion.
2This is the range when Normalise is not used. When Normalise is enabled the range is

extended to 2±32 approximately. This also applies to the t and q values as well.
3The normal range here is limited by the size of the screen.
4K = 1024.

TVP4020 Programmers Reference Manual Graphics Programming

43

No parameters are corrupted by the calculations so parameter sharing
between primitives is simply achieved by not re-loading those
parameters. For example if the first triangle in a triangle strip is loaded
into V0, V1 and V2, then the next triangle will load V0, the next V1, etc..
This is shown below.

below:

T1
T2

T3
T4

0

1

2

0

1

2

Figure 5.2 Triangle Mesh.

The vertices are automatically sorted so any vertex can be associated
with any vertex store.

Similarly a triangle fan may be implemented initially loading V0, V1 and
V2 and then cycling through loading V1 and V2 as shown below (note
that T1 and T5 share a vertex which is loaded first in V1 and then in V2):

T1

T2

T3T4

T5 0

1/2
2

1

2

1

Figure 5.3 Triangle Fan.

Individual triangles, strips, or fans may be backface culled such that
triangles that face away from the viewer are not drawn. Detection of
backfacing triangles is done by the sign of the area of the triangle, but
whether positive or negative areas should be rejected depends on the
definition of the triangle format (whether the vertices are considered to
go clockwise or counter-clockwise). It may also vary when meshed
primitives are drawn, such a strip where the sign of the area alternates
triangle by triangle. When backface culling is enabled in the Delta Unit,
the sign to reject may be set for each triangle as it is drawn.

Lines are handled slightly differently in that only V0 and V1 are used.
The direction of the line is defined as part of the command. Hence a line
may run either from V0 to V1 or from V1 to V0. A polyline may be drawn
by loading the first vertex into V0, the second vertex into V1, the third
vertex into V0, the fourth vertex into V1 etc..

Graphics Programming TVP4020 Programmers Reference Manual

44

The texture parameters (S, T and Q) are handled differently to the other
parameters as their range must be constrained to get the best results
from the finite precision DDA and perspective division hardware
available in the Graphics Processor. Any operation on the texture
parameters before they are used is controlled by the
TextureParameterMode in the DeltaMode register. The options are
NoClamp, Clamp or Normalize. The NoClamp and Clamp options work
the same as for the other parameters. The Normalize option finds the
maximum absolute value of the texture S, T and Q values for the
primitive and normalizes all the value to lie in the range -1.0 … 1.0
inclusive prior to being used in the set-up calculations. Note that the
texture values in the vertex store are not changed by the Normalize
option to allow normalization to work on a triangle by triangle basis
across a triangle mesh.

5.2.1 Drawing Commands

The Delta Unit responds to five drawing commands: DrawTriangle,
RepeatTriangle, DrawLine01, DrawLine10 and RepeatLine. When using
Delta, these drawing commands replace the Render command, and
have the same data field.

The Draw and Repeat commands cause Delta to calculate the required
data for the rendering devices and update the Start, dX and dyDom
registers in the Rasterizer, Color, Depth, Texture and Fog Units of the
Graphics Processor. Any additional registers in the Rasterizer Unit are
also loaded (N.B. the RasterizerMode register is not updated). Finally
the Render and ContinueNewSub commands are sent to the rendering
devices.

The data field accompany the DrawTriangle or DrawLine command is
used to control some aspects of the Delta's operation in conjunction with
the DeltaMode register. The relevant bits in the Draw command, and
their effect in the Delta Unit are described in Table 5.2. Note that the
values in the remaining bits must be compatible with the desired
operation.

Bit
No.

Name Description

13 TextureEnable When set (and qualified by the TextureEnable bit in the
DeltaMode register) causes the texture values (S, T and
Q) to be calculated.

14 FogEnable When set (and qualified by the FogEnable bit in the
DeltaMode register) causes the fog values to be
calculated.

TVP4020 Programmers Reference Manual Graphics Programming

45

16 SubPixelCorrectionEnab
le

When set (and qualified by the
SubPixelCorrectionEnable bit in the DeltaMode register)
enables the sub pixel correction of any value interpolated
in the Y direction. The rendering devices will perform the
sub pixel corrections in the X direction.

20 RejectNegativeFace Qualified by the BackFaceCull field in the DeltaMode
register. If set rejects triangles with a negative area. If
clear, rejects triangles with a positive area.

Table 5.2 Draw Command Bit Field Assignments Affecting Delta

5.2.2 DrawLine Commands

The command DrawLine01 causes Delta to draw a line from vertex 0 -
V0 to vertex 1 - V1. Conversely DrawLine10 causes Delta to draw a line
from V1 to V0. These two commands allow polylines to be drawn by
updating V0 and V1 alternately. The alternate use of DrawLine01 and
DrawLine10 allows the line stipple pattern to continue correctly across
segments in a polyline.

Note, that due to the DDA algorithm, drawing direction may affect the
rendered pixels. Hence, with the same data in V0 and V1, the two
DrawLine commands may render different pixels. This may be important
for operations such as XOR lines or patterned lines.

5.2.3 Repeat Commands

The RepeatTriangle and RepeatLine commands allow the previously
set-up triangle or line to be repeated again. This is useful when some
rendering state has changed and the primitive must be redrawn. An
example of this is when the scissor region is updated and the primitive
redrawn to implement window clipping.

A RepeatTriangle command should only follow a DrawTriangle
command and not a DrawLine command. Mixing the incorrect Repeat
and Draw commands will cause undefined visual effects.

5.2.4 DeltaMode Register

The DeltaMode register is used to hold 'long term' state information. The
per primitive control information is taken from the Draw command as
already outlined. The following table lists the DeltaMode register bit field
assignments and describes their function.

Bit
No.

Name Description

0, 1 Reserved
2, 3 DepthFormat The following options apply:

0 15 bit depth
1 16 bit depth
2 Reserved
3 Reserved

Graphics Programming TVP4020 Programmers Reference Manual

46

4 FogEnable When set enables the fog calculations. This field is
qualified by the FogEnable bit in the Draw command.

5 TextureEnable When set enables the texture calculations. This field
is qualified by the TextureEnable bit in the Draw
command.

6 SmoothShadingEnable When set enables the color calculations.
7 DepthEnable When set enables the depth calculations.
8 SpecularTextureEnable When set enables the specular texture calculations.
9 DiffuseTextureEnable When set enables the diffuse texture calculations.
10 SubPixelCorrectionEnabl

e
When set provides the subpixel correction in Y. This
is qualified by the SubPixelCorrectionEnable in the
Draw command.

11 DiamondExit When set enables the application of the OpenGL
'Diamond-exit' rule to modify the start and end
coordinates of lines.

12 NoDraw When set prevents a Render command from being
sent to the rendering devices. This field only affects
the Draw commands.

This field allows the host to alter the set-up
parameters before sending a Render command.

13 ClampEnable When set causes the input values to be clamped to a
parameter specific range. Note that the texture
parameters are not affected by this field.

14,
15

TextureParameterMode These field causes the texture parameters to be:
0: Used as given
1: Clamped to lie in the range -1.0 to 1.0
2: Normalize to lie in the range -1.0 to 1.0

16 Reserved
17 BackFaceCull When set enables backface culling of triangles.

Rejection is based on the sign of the area of the
triangle, whether +ve or -ve is controlled by the draw
command.

18 ColorOrder Specifies order of colors in V*PackedColor
messages.
 Bit 31 Bit 0
0 = Alpha, Blue, Green, Red
1 = Alpha, Red, Green, Blue

Each color component is 8 bits.

Table 5.3 DeltaMode Register Bit Field Assignments.

Any unused bits in the DeltaMode register should be set to zero.

Note that any Repeat commands will use the DeltaMode values which
were in effect when the corresponding Draw command was issued.

5.2.5 Rasterizer Modes

The only Delta specific requirement for the rendering modes in the
Rasterizer Unit is that the BiasCoordinates bits in the RasterizerMode

TVP4020 Programmers Reference Manual Graphics Programming

47

register (bits 4 and 5) are set to zero to select a zero bias for addition to
the start X and Y values.

Graphics Programming TVP4020 Programmers Reference Manual

48

5.3 Rasterizer Unit

The Rasterizer decomposes a given primitive into a series of fragments
for processing by the rest of the HyperPipeline.

PERMEDIA can directly rasterize:

• aliased screen aligned trapezoids

• aliased single pixel wide lines

• aliased single pixel points

• rectangles

All other primitives are treated as one or more of the above.

5.3.1 Trapezoids

PERMEDIA's basic area primitive is the screen aligned trapezoid. This is
characterized by having top and bottom edges parallel to the X axis. The
side edges may be vertical (a rectangle), but in general will be diagonal.
The top or bottom edges can degenerate into points in which case we
are left with either flat topped or flat bottomed triangles. Any polygon can
be decomposed into screen aligned trapezoids or triangles. Usually,
polygons are decomposed into triangles because the interpolation of
values over non-triangular polygons is ill defined. The Rasterizer does
handle flat topped and flat bottomed 'bow tie' polygons which are a
special case of screen aligned trapezoids.

To render a triangle, the approach adopted to determine which
fragments are to be drawn is known as 'edge walking'. Suppose the
aliased triangle shown in Fig. 5.5 was to be rendered from top to bottom
and the origin was bottom left of the window. Starting at (X1, Y1) then
decrementing Y and using the slope equations for edges 1-2 and 1-3,
the intersection of each edge on each scanline can be calculated. This
results in a span of fragments per scanline for the top trapezoid. The
same method can be used for the bottom trapezoid using slopes 2-3 and
1-3.

It is usually required that adjacent triangles or polygons which share an
edge or vertex are drawn such that pixels which make up the edge or
vertex get drawn exactly once. This may be achieved by omitting the
pixels down the left or the right sides and the pixels along the top or
lower sides. PERMEDIA has adopted the convention of omitting the pixels
down the right hand edge. Control over whether the pixels along the top
or lower sides are omitted depends on the start Y value and the number
of scanlines to be covered. With the example, if StartY = Y1 and the
number of scanlines is set to Y1-Y2, the lower edge of the top half of the

TVP4020 Programmers Reference Manual Graphics Programming

49

triangle will be excluded. This excluded edge will get drawn as part of
the lower half of the triangle.

To minimize delta calculations, triangles may be scan converted from left
to right or from right to left. The direction depends on the dominant edge
that is the edge which has the maximum range of Y values. Rendering
always proceeds from the dominant edge towards the relevant
subordinate edge. In the example above, the dominant edge is 1-3 so
rendering will be from right to left.

Subordinate Edge 1-2

Dominant Edge 1-

dXDom
Top

Trapezoid

Bottom
Trapezoid

(X1,Y1)

Subordinate Edge 2-3

dXSub 1-2

dXSub 2-3

(X2,Y2)

(X3,Y3)

Knee

Figure 5.4 Rasterizing a triangle.

The sequence of actions required to render a triangle (with a 'knee') are:

• Load the edge parameters and derivatives for the dominant edge and
the first subordinate edges in the first triangle.

• Send the Render command. This starts the scan conversion of the first
triangle, working from the dominant edge. This means that for triangles
where the knee is on the left we are scanning right to left, and vice
versa for triangles where the knee is on the right.

• Load the edge parameters and derivatives for the remaining
subordinate edge in the second triangle.

• Send the ContinueNewSub command. This starts the scan conversion
of the second triangle.

Graphics Programming TVP4020 Programmers Reference Manual

50

Pseudocode for the above example is:
// Set the Rasterizer mode to the default, see

// §5.3.11

RasterizerMode (0)

// Set-up the start values and the deltas.

// Note that the X and Y coordinates are converted to

// 16.16 format

StartXDom (X1<<16)

dXDom (((X3- X1)<<16)/(Y3 - Y1))

StartXSub (X1<<16)

dXSub (((X2- X1)<<16)/(Y2 - Y1))

StartY (Y1<<16)

dY (-1<<16) // Down the screen

Count (Y1 - Y2)

// Set the render mode to aliased primitive with

// subpixel correction. See §5.3.7

render.PrimitiveType = PERMEDIA_TRAPEZOID_PRIMITIVE

render.SubpixelCorrectionEnable = PERMEDIA_TRUE

// Draw top half of the triangle

Render (render)

// Set the start and delta for the second half of the

// triangle.

StartXSub (X2<<16)

dXSub (((X3- X2)<<16)/(Y3 - Y2))

// Draw lower half of triangle

ContinueNewSub (abs(Y2 - Y3))

After the Render command has been sent, the registers in PERMEDIA can
immediately be altered to draw the second half of the triangle. For this,
note that only two registers need be loaded and the command
ContinueNewSub be sent. Once drawing of the first triangle is complete
and PERMEDIA has received the ContinueNewSub command, drawing of
this sub-triangle will start. The ContinueNewSub command register is
loaded with the remaining number of scanlines to be rendered.

A Continue command can be used instead of the ContinueNewSub
command in certain situations where it is beneficial to avoid reloading

TVP4020 Programmers Reference Manual Graphics Programming

51

the Rasterizer’s edge DDAs. However, accumulation of rasterization
errors can occur which may result in imprecise rendering.

The ContinueNewDom command can be used to draw complex 2D
shapes as a series of trapezoids. Since this command only affects the
Rasterizer DDA and not that of any other units, it is not suitable for 3D
operations.

5.3.2 Lines

Single pixel wide aliased lines are drawn using a DDA algorithm, so all
PERMEDIA needs by way of input data is StartX, StartY, dX, dY and
length. The algorithm calculates:

while (length--)

{

X = X + dx

Y = Y + dy

plot ((int)X, (int)Y)

}

Consider rendering a two segment
polyline from (X1, Y1) to (X2, Y2) to
(X3, Y3)

Both segments are X major so:

abs (Xn+1 - Xn) > abs (Yn+1- Yn)

The pseudocode to render this line
is shown below.

(X1, Y1)

(X2, Y2)

(X3, Y3)

Figure 5.5 Polyline

Graphics Programming TVP4020 Programmers Reference Manual

52

// Set the Rasterizer mode to the default, see

// §5.3.11

RasterizerMode (0)

// Load the delta values for the first segment.

StartXDom (X1<<16)

dXDom (1.0<<16)

StartY (Y1<<16)

dY (((Y2- Y1)<<16)/(X2 - X1))

Count (abs (X2 - X1))

// Set the render mode

render.PrimitiveType = PERMEDIA_LINE_PRIMITIVE

// Start rendering

Render (render)

// The first segment is complete, load delta

// for the second

dXDom (1.0<<16)

dY (((Y3- Y2)<<16)/(X3 - X2))

// Continue with the second segment

ContinueNewLine (abs (X3 - X2))

Note that the mechanism to render the second segment with the
ContinueNewLine command is analogous to the ContinueNewSub
command used at the knee of a triangle. Care must be taken when a
continue command is being used for lines. Incorrect rendering can occur
with operations such as alpha blending and logical ops if a segment
draws back over the previous line segment thus attempting to reuse
pixels that have just been updated. The solution is to send a Sync prior
to the ContinueNewLine. This will ensure pending writes are flushed
before the framebuffer reads for the new line segment. Note that there is
no need to poll for the Sync here; the act of loading this command
register is sufficient.

When a Continue command is used rather than a ContinueNewLine,
some error will be propagated along the line so this is rarely used for
lines. To minimize these errors, a choice of actions are available as to
how the DDA units are restarted on the receipt of a ContinueNewLine
command, see section §5.3.11.

TVP4020 Programmers Reference Manual Graphics Programming

53

It is recommended that for OpenGL rendering, the ContinueNewLine
command is not used and individual segments are rendered.

5.3.3 Points

PERMEDIA supports a single pixel aliased point primitive. For points larger
than one pixel, trapezoids should be used. The fields in the Render
command register are described in detail later, however, in this case the
PrimitiveType field in the Render command should be set to equal
PERMEDIA_POINT_PRIMITIVE. The pseudocode portion to render an
aliased unity sized point is:

// Set the Rasterizer mode to the default, see

// §5.3.11

RasterizerMode (0)

// Set-up the start values and the deltas.

// Note that the X and Y coordinates are converted to

// 16.16 format

StartXDom (X<<16)

StartY (Y<<16)

// Set-up the render command.

render.PrimitiveType = PERMEDIA_POINT_PRIMITIVE

// Render the point

Render (render)

5.3.4 Rectangles

The rectangle primitive is restricted to integer pixel positions only;
rectangles requiring sub-pixel positioning should use the trapezoid
primitive. The rectangle is defined with two registers, RectangleOrigin
which defines the X and Y start point, and RectangleSize which defines
the width and height. The direction in which the rectangle is filled can be
controlled by the Render command, with separate control of fill direction
in X and Y making the primitive suitable for copy operations.

5.3.5 Spans

Shapes more complex than points, lines or trapezoids may be drawn as
a series of spans. Each span may be drawn as a horizontal line or as a
single pixel high trapezoid. Both are special cases of 5.3.2 and 5.3.3 in
that the loading of certain registers may be omitted e.g. dXDom, dXSub
and dY. However, trapezoids can optionally use block writes for constant
color spans and so may be preferable.

Graphics Programming TVP4020 Programmers Reference Manual

54

5.3.6 Block Write Operation

PERMEDIA supports SGRAM block writes with block sizes of 32 pixels.
Any screen aligned trapezoid can be filled using block writes, not just
rectangles. The SGRAM hardware writemasks can be used in
conjunction with block writes.

The use of block writes is enabled by setting the FastFillEnable field in
the Render command register.

Note only the Rasterizer and Framebuffer Write units are involved in
block filling. The other units will ignore block write fragments, so it is not
necessary to disable them.

5.3.7 Sub Pixel Precision and Correction

As the Rasterizer has fractional precision of 15 bits in X and Y, and the
maximum screen width is 2048 pixels wide a number of bits, called
subpixel precision bits, are available. The extra bits are required for a
number of reasons:

• when using an accumulation buffer (where scans are rendered multiple
times with jittered input vertices)

• for correct interpolation of parameters to give high quality shading as
described below

PERMEDIA supports subpixel correction of interpolated values when
rendering trapezoids. Subpixel correction ensures that all interpolated
parameters associated with a fragment (color, depth, fog, texture) are
correctly sampled at the fragment's center. This correction is required to
ensure consistent shading of objects made from many primitives. It
should generally be enabled for all rendering which uses interpolated
parameters.

5.3.8 Bitmaps

A Bitmap primitive is a trapezoid or line of ones and zeros which control
which fragments are generated by the Rasterizer. Only fragments where
the corresponding Bitmap bit is set are submitted for drawing. The
normal use for this is in drawing characters, although the mechanism is
available for all primitives. The Bitmap data is packed contiguously into
32 bit words so that rows are packed adjacent to each other. Bits in the
mask word are by default used from the least significant end towards the
most significant end and are applied to pixels in the order they are
generated in. The relationship between bits in the mask and the
scanning order is shown in Fig. Figure 5.6.

Instead of rejecting fragments which fail the bitmask, they may be set to
the background color. This is controlled by the RasterizerMode register.

TVP4020 Programmers Reference Manual Graphics Programming

55

The background color comes from the Texel0 register, which may be
static or dynamically loaded through the Texture Read unit.

The Rasterizer scans through the bits in each word of the Bitmap data
and increments the X,Y coordinates to trace out the rectangle of the
given width and height. By default, any set bits (1) in the Bitmap cause a
fragment to be generated, any reset bits (0) cause the fragment to be
rejected.

0 1 2 3

4 5 6 7

8 9 A B

C D E F

BitMask value

0123456789ABCDEF

0 1 2 3

4 5 6 7

8 9 A B

C D E F F E D C

B A 9 8

7 6 5 4

3 2 1 0 F E D C

B A 9 8

7 6 5 4

3 2 1 0

Figure 5.6 Relationship between Bitmask and Scanning Directions

The selection of bits from the BitMaskPattern register can be mirrored,
that is, the pattern is traversed from MSB to LSB rather than LSB to
MSB. Also, the sense of the test can be reversed such that a set bit
causes a fragment to be rejected and vice versa. This control is found in
the RasterizerMode register, described in section §5.3.11.

When one Bitmap word has been exhausted and pixels in the rectangle
still remain then rasterization is suspended until the next write to the
BitMaskPattern register, or the bitmask can be reused. If the bitmask is
still valid when a new line is started it can continue to the next line or be
discarded and a new one started; the start position of the mask can be
specified to allow the first bits to be ignored. It is also possible to index
into the mask using the X position of the Rasterizer. This allows 32 bit
wide window aligned bit pattern; used with a new mask for every
scanline a 32x32 stipple pattern can be supported.

For example a 5 pixel wide, 8 pixel high bitmap requires a register set-up
as follows:

Graphics Programming TVP4020 Programmers Reference Manual

56

// Set the Rasterizer mode to the default, see

// §5.3.11

RasterizerMode (0)

// Set-up the start values and the deltas.

// Note that the X and Y coordinates are converted to

// 16.16 format

StartXDom (X<<16)

dXDom (0)

StartXSub ((X + 5)<<16) // Right hand edge pixels get

 // missed off.

StartY (Y<<16)

dY (1<<16)

Count (8)

// At least the following bits require setting for the

// Render command.

render.PrimitiveType = PERMEDIA_TRAPEZOID_PRIMITIVE

render.SyncOnBitMask = PERMEDIA_TRUE

render.ReuseBitMask = PERMEDIA_FALSE

// Issue render command. First fragment will be

// generated on receipt of the BitMaskPattern

Render (render)

// 8x5 pixel bitmap requires 40 bits, and so 2

// 32 bit words.

BitMaskPattern (patternWord0)

BitMaskPattern (patternWord1)

Rendering will start as soon as the first patternWord is loaded into the
BitMaskPattern register.

5.3.9 Block Writes and Bitmaps

The fastest way to render downloaded bitmap data, not requiring logical
op processing, is to use block fills. The Rasterizer is set-up as normal
setting the FastFillEnable bit. If it is necessary to also plot the
background color then, the operation should be repeated for the
background color but with the InvertBitMask bit set in the
RasterizerMode register.

TVP4020 Programmers Reference Manual Graphics Programming

57

Since the downloaded bitmask data will be ANDed with masks
generated by the Rasterizer without any re-alignment being performed, it
is up to the host software to ensure that the masks match up. This can
be achieved in two ways. First, the host software can align the bits that it
downloads to match the alignment of the Rasterizer. A faster way is to
use the User Scissor. This is the recommended method. Note that this is
a general algorithm. In the special case where the data to be
downloaded is already aligned to 32 bits on both the left and right edges
then the scissor need not be used.

For example, suppose that we want to download data to fill a rectangle
with left edge at 10 and right edge at 200. And further, assume that the
host bitmap data is to be loaded from an offset of 35 within the bitmap.
Our goal is to match the bit at offset 35 with the pixel at offset 10.

Since we want to do the least amount of work on the host by avoiding
shifting the data, we will actually download the host bitmap data at the
previous 32-bit boundary. This means that we must set PERMEDIA up to
discard the first 3 bits of data. We achieve this by rasterizing a rectangle
whose left edge is 3 pixels less than that required, in this case we would
rasterize the left edge to start at pixel 7. This causes the source bitmap
data to be correctly aligned with the mask data produced by the
Rasterizer. But, in order to protect the 3 pixels that we would otherwise
overwrite, we use the scissor clip and set its bounds to be those of the
original rectangle.

When using a block write operation like this, the Rasterizer will wait for
new bitmask data to be downloaded at the start of each scanline. So we
do not have to perform the alignment operation on the right hand edge.

A similar algorithm can be used to implement fast text rendering. For
example, for fonts where each line fits into 32 bits, each line of a glyph
can be downloaded as a mask.

Block writes can be used in combination with bitmasks with
InvertBitMask and/or MirrorBitMask options but not BitMaskOffset or
BitMaskPacking.

5.3.10 Copy/Upload/Download

PERMEDIA supports three "pixel rectangle" operations: copy, upload and
download. These can apply to all buffer types.

Typically, a PERMEDIA copy moves raw blocks of data around buffers. To
zoom or re-format data, either external software must upload the data,
process it and then download it again, or the texture part of the
Texture/Fog/Blend unit should be used.

To copy a rectangular area, the Rasterizer would be configured to
render the destination rectangle, thus generating fragments for the area

Graphics Programming TVP4020 Programmers Reference Manual

58

to be copied. PERMEDIA copy works by adding a linear offset to the
destination fragment's address to find the source fragment's address.
The calculation of the offset value is as shown in the diagram below:

Note that the offset is independent of the origin of the buffer or window,
as it is added to the destination address. Care must be taken when the
source and destination overlap to choose the source scanning direction
so that the overlapping area is not overwritten before it has been moved.
This may be done by swapping the values written to the StartXDom and
StartXSub, or by changing the sign of dY and setting StartY to be the
opposite side of the rectangle.

Source
Rectangle

X Offset

Y Offset * Screen Width + X Offset

Destination
Rectangle

Screen Width

Increasing
Physical
Address

Offset = -

Offset

Y Offset

Figure 5.7 Copy Operation

PERMEDIA buffer upload/downloads are very similar to copies in that the
region of interest is generated in the Rasterizer. However, the localbuffer
and framebuffer are generally configured to read or to write only, rather
than both read and write. The host out unit should be set to output data
to the FIFO for image uploads. For downloads, the Rasterizer should be
set to sync on the appropriate data type. This means that the Rasterizer
will not generate the next fragment address until data is supplied from
the host processor.

Units which can generate fragment values, the Color DDA unit for
example, should generally be disabled for any copy/upload/download
operations.

Warning: During image upload, all the returned fragments must be read
from the Host Out FIFO, otherwise the PERMEDIA pipeline will stall. In

TVP4020 Programmers Reference Manual Graphics Programming

59

addition it is strongly recommended that any units which can discard
fragments (for instance the following tests: bitmask, user scissor, screen
scissor, stipple, depth, stencil), are disabled otherwise a shortfall in
pixels returned may occur, also leading to deadlock.

Note that because the area of interest in copy/upload/download
operations is defined by the Rasterizer, it is not limited to rectangular
regions.

Color formatting can be used when performing image copies, uploads
and downloads. This allows data to be formatted from, or to, any of the
supported PERMEDIA color formats, section §5.12.6 fully describes this
operation.

5.3.11 Rasterizer Mode

A number of long-term modes can be set using the RasterizerMode
register, these are:
• Mirror BitMask: This is a single bit flag which specifies the direction that bits are

checked in the BitMaskPattern register. If the bit is reset, the direction is from least
significant to most significant (bit 0 to bit 31), if the bit is set, it is from most significant
to least significant (from bit 31 to bit 0).

• Invert BitMask: This is a single bit which controls the sense of the accept/reject test
when using a Bitmask. If the bit is reset then when the BitMask bit is set the fragment
is accepted and when it is reset the fragment is rejected. When the bit is set the
sense of the test is reversed.

• Fraction Adjust: These 2 bits control the action taken by the Rasterizer on receiving a
ContinueNewLine command. As PERMEDIA uses a DDA algorithm to render lines, an
error accumulates in the DDA value. PERMEDIA provides for greater control of the
error by doing one of the following:

• leaving the DDA running, which means errors will be propagated along
a line.

• or setting the fraction bits to either zero, a half or almost a half
(0x7FFF).

• Bias Coordinates: Only the integer portion of the values in the DDAs are used to
generate fragment addresses. Often the actual action required is a rounding of
values. This can be achieved by setting the bias coordinate bit to true which will
automatically add almost a half (0x7FFF) to all input coordinates.

• ForceBackgroundColor: When set, if a fragment fails the bitmask test it is not
discarded, but it is made to use the contents of the Texel0 register in place of the
normal color. This is used to provide foreground/background color selection.

• BitMaskByteSwapMode. This controls how or whether the bitmask is byte swapped a it
is loaded. Four different byte orders are supported.

• BitMaskPacking. Controls whether a bitmask is discarded at the end of a scanline or
continued onto the next. Not supported for block writes.

• BitMaskOffset. Sets the position of the first bit in the bitmask to test. Not supported for
block writes.

• HostDataByteSwapMode. Controls byte swapping of host data being sent to the chip.
This applies to any operation using the SyncOnHostData in the Render register. Four
different byte orders are supported.

Graphics Programming TVP4020 Programmers Reference Manual

60

• LimitsEnable. When enabled, this allows quick rejection of fragments outside the
defined area.

• BitMaskRelative. If enabled, this specifies that the bitmask should be accessed by an
index made up of the lower 5 bits of the X coordinate of the current fragment.

5.3.12 Synchronization

For most circumstances PERMEDIA will automatically synchronize
between primitives so that data for the first primitive is written before
data for the second primitive is read. This is handled by data type, so
localbuffer reads and writes are synchronized as are framebuffer reads
and writes, but localbuffer reads are not synchronized with framebuffer
writes.

If a unit is used to modify data that is not its normal type, then it may be
necessary to explicitly synchronize the pipeline. If the Framebuffer Write
unit is used to clear the localbuffer with block fills then the pipeline must
be synchronized before localbuffer data is read. If the Framebuffer Write
unit is used to download a texture map, the pipeline must be
synchronized before the Texture Read unit accesses the texture.

Explicit synchronization of the pipeline is done by the WaitForCompletion
command. This has no data field, and may be inserted into a stream of
commands; there is no need to wait for PERMEDIA to report that
synchronization has taken place.

Alternatively, synchronization must be done with the Sync command, but
this does require the host processor to poll the chip until it reports that
the pipeline is idle (see the section on the Host Out unit).

5.3.13 X and Y limits clipping

The Rasterizer will normally rasterize all pixels on every scanline,
generating a fragment per pixel. If large numbers of scanlines are
subsequently clipped out by, for example, the scissor unit, then a lot of
time can be wasted. The Ylimits register has been added to provide a
way of quickly eliminating whole scanlines for a given primitive. This
register effectively provides a Y scissor clip in the Rasterizer.

If limits testing has been enabled in the RasterizerMode register, and if a
scanline being rasterized falls outside the Y limits bounds, then the
Rasterizer will move directly onto the next scanline without rasterizing in
X.

The Xlimits register has been added to avoid unnecessary rasterization,
but does not act as a true X scissor clip. This is to ensure correct
interpolation of color, fog etc. The limits registers are provided for
efficiency reasons.

Both X and Y Limits clipping are automatically disabled when
SyncOnHostData or SyncOnBitMask is used.

TVP4020 Programmers Reference Manual Graphics Programming

61

5.3.14 Registers

Real coordinates with fractional parts are provided to the Rasterizer in
2's complement fixed point. The point is kept consistent with a 16.16
format even though some of the integer and fractional bits may not be
significant. The integer portion should be sign extended to fill unused
bits; unused bits in the fraction should be set to zero.

Integer Portion Fractional Portion

08162431

Figure 5.8 Real Coordinate Representation

Graphics Programming TVP4020 Programmers Reference Manual

62

When reference is made to “Signed Fixed Point Format”, the sign bit is
included in the integer section. For example, a signed fixed point format
of 12.15 implies 1 sign bit followed by 11 integer bits and 15 fraction bits.

Register Name Data
Field

Description

Render See
below

Starts the rasterization process

ContinueNewDom 12 bit
integer

Allows the rasterization to continue with a new dominant edge The
dominant edge DDA is reloaded with the new parameters. The
subordinate edge is carried on from the previous trapezoid. This allows
any convex polygon to be broken down into a collection of trapezoids,
with continuity maintained across boundaries. Since this command
only affects the Rasterizer DDA and not that of any other units, it is not
suitable for 3D operations.

The data field holds the number of scanlines to fill. Note this count
does not get loaded into the Count register.

ContinueNewSub 12 bit
integer

Allows the rasterization to continue with a new subordinate edge. The
subordinate DDA is reloaded with the new parameters. The dominant
edge is carried on from the previous trapezoid. This is useful when
scan converting triangles with a 'knee' (i.e. two subordinate edges).

The data field holds the number of scanlines to fill. Note this count
does not get loaded into the Count register.

Continue 12 bit
integer

Allows the rasterization to continue after new delta value(s) have been
loaded, but does not cause either of the primitive's edge DDAs to be
reloaded. This can result in the accumulation of rasterization errors
causing imprecise rendering.

The data field holds the number of scanlines to fill. Note this count
does not get loaded into the Count register.

ContinueNewLine 12 bit
integer

Allows the rasterization to continue for the next segment in a polyline.
The XY position is carried on from the previous line, however the
fraction bits in the DDAs can be: kept, set to zero, half, or nearly one
half, under control of the RasterizerMode.

The data field holds the number of pixels in a line. Note this count does
not get loaded into the Count register.

The use of ContinueNewLine is not recommended for OpenGL
because the DDA units will start with a slight error as compared with
the value they would have been loaded with for the second and
subsequent segments.

TVP4020 Programmers Reference Manual Graphics Programming

63

WaitForCompletio
n

Not used This is used to suspend the PERMEDIA core until all outstanding
reads and writes in framebuffer memory units have completed. This is
intended to prevent a new primitive from starting to be rasterized
before the previous primitive is completely finished. It would be used,
for example, to separate texture downloads from the surrounding
primitives. The same functionality can be achieved using the Sync
command and waiting for it in the Host Out FIFO. However, using
WaitForCompletion doesn’t involve the host and can be inserted into a
DMA buffer.

Table 5.4 Rasterizer Command Registers

Graphics Programming TVP4020 Programmers Reference Manual

64

RasterizerMod
e

See below Defines the long term mode of operation of the
Rasterizer.

StartXDom Signed fixed point 12.15
format

Initial X value for the dominant edge in trapezoid filling,
or initial X value in line drawing.

dXDom Signed fixed point 12.15
format

Value added when moving from one scanline to the
next for the dominant edge in trapezoid filling.

Also holds the change in X when plotting lines so for Y
major lines this will be some fraction (dx/dy), otherwise
it is normally ± 1.0, depending on the required
scanning direction.

StartXSub Signed fixed point 12.15
format

Initial X value for the subordinate edge.

dXSub Signed fixed point 12.15
format

Value added when moving from one scanline to the
next for the subordinate edge in trapezoid filling.

StartY Signed fixed point 12.15
format

Initial scanline in trapezoid filling, or initial Y position for
line drawing.

dY Signed fixed point 12.15
format

Value added to Y to move from one scanline to the
next. For X major lines this will be some fraction
(dy/dx), otherwise it is normally ± 1.0, depending on
the required scanning direction.

Count 12 bit integer Number of pixels in a line. Number of scanlines in a
trapezoid.

Xlimits Xmax: 2’s complement 12
bit value in the upper
word.
Xmin: 2’s complement 12
bit value in the lower word.

Defines the X extents that the Rasterizer should fill
between. A span is rasterized if its X value satisfies:
Xmin £ X < Xmax

Ylimits Ymax: 2’s complement 12
bit value in the upper
word.
Ymin: 2’s complement 12
bit value in the lower word.

Defines the Y extents that the Rasterizer should fill
between. A scanline is filled if its Y value satisfies:
Ymin £ Y < Ymax

RectangleOrigi
n

Y: 2’s complement 12 bit
value in the upper word.
X: 2’s complement 12 bit
value in the lower word.

Defines the origin of a rectangle primitive. The corner
of the rectangle this refers to is controlled by the
rectangle fill direction fields in the Render command.

RectangleSize Height: 2’s complement 12
bit value in the upper
word.
Width: 2’s complement 12
bit value in the lower word.

Table 5.5 Rasterizer Control Registers

TVP4020 Programmers Reference Manual Graphics Programming

65

For efficiency, the Render command register has a number of bit fields
that can be set or cleared per render operation, and which qualify other
state information within PERMEDIA. These bits are AreaStippleEnable,
TextureEnable, FogEnable, ReuseBitMask and SubpixelCorrection.

One use of this feature can occur when a window is cleared to a
background color. For normal 3D primitives, stippling and fog operations
may have been enabled, but these are to be ignored for window clears.
Say that initially the FogMode and AreaStippleMode registers are
enabled through the unit Enable bits. Now bits need only be set or
cleared within the Render command to achieve the required result,
removing the need to load the FogMode and AreaStippleMode registers
for every Render operation.

The bit fields of the Render command register are detailed as follows:

Bit No. Name Description

0 AreaStippleEnable Enable area stippling.

1, 2 Reserved

3 FastFillEnable Enable fast fill using VRAM block mode.

4, 5 Reserved

6, 7 PrimitiveType Set type of primitive:
 0 = line
1 = trapezoid
2 = point
3 = rectangle

8, 9, 10 Reserved

11 SyncOnBitMask Enable bitmask test. Wait for new bitmask

when current one expires unless

SyncOnHostData or ReuseBitmask enabled.

12 SyncOnHostData Wait for host data before sending step

message.

13 TextureEnable Enable texturing.

14 FogEnable Enable fog.

15 Reserved

16 SubPixelCorrectionEnable Enable sub-pixel correction.

17 ReuseBitMask Reuse bitmask when last bit used.

18, 19 Reserved

20 RejectNegativeFace Used by Delta unit.

21 IncreaseX Direction of fill for rectangle

22 IncreaseY Direction of fill for rectangle

Table 5.6 Render Command Register Fields

Graphics Programming TVP4020 Programmers Reference Manual

66

Several long-term Rasterizer modes are stored in the RasterizerMode
register as shown below:

Bit
No

Name Description

0 MirrorBitMask When this bit is set the bitmask bits are consumed from the most
significant end towards the least significant end.
When this bit is reset the bitmask bits are consumed from the least
significant end towards the most significant end.

1 InvertBitMask When this bit is set the bitmask is inverted first before being
tested.

2,3 FractionAdjust These bits are for the ContinueNewLine command and specify
how the fraction bits in the Y and XDom DDAs are adjusted:

0: No adjustment is done
1: Set the fraction bits to zero
2: Set the fraction bits to half
3: Set the fraction to nearly half, i.e. 0x7fff

4,5 BiasCoordinates These bits control how much is added onto the StartXDom,
StartXSub and StartY values when they are loaded into the DDA
units. The original registers are not affected:

0: Zero is added
1: Half is added
2: Nearly half, i.e. 0x7fff is added

6 ForceBackgroundColo
r

This bit, when set, causes the color to be taken from the Texel0
register instead of the normal color if the bitmask test fails.

7,8 BitMaskByteSwapMod
e

Controls byte swapping of the bitmask. If input is ABCD,
0: ABCD
1: BADC
2: CDAB
3: DCBA

9 BitMaskPacking If enabled, the current bitmask is discarded at the end of every
scanline even if it has not been finished.

0: Enabled
1: Disabled

10..1
4

BitMaskOffset Position of first bit to test in bitmask.

15,16 HostdataByteSwapMo
de

Controls byte swapping of host data. If input is ABCD,
0: ABCD
1: BADC
2: CDAB
3: DCBA

17 Reserved

18 LimitsEnable If enabled, quickly reject areas of primitive outside defined area.
0: Disabled
1: Enabled

19 BitMaskRelative Controls whether bitmask is indexed by counter or by lower 5 bits
of X value.

0: Disabled
1: Enabled

Table 5.7 Rasterizer Mode Register

TVP4020 Programmers Reference Manual Graphics Programming

67

The register BitMaskPattern simply holds the 32-bit mask for bit mask
stippling.

Graphics Programming TVP4020 Programmers Reference Manual

68

5.4 Scissor/Stipple Unit

Two scissor tests are provided in PERMEDIA, the User Scissor test and
the Screen Scissor test. The user scissor checks each fragment against
a user supplied scissor region; the screen scissor checks that the
fragment lies within the screen. The stipple test checks each fragment
against an 8x8 pattern.

5.4.1 User Scissor Test

The user scissor test, tests each fragment as follows:

XMin <= X < XMax

YMin <= Y < YMax

Where X and Y are the coordinates for the fragments, and XMin, XMax,
YMin and YMax define the user supplied scissor region. If a fragment
fails the test it is discarded. The test may be screen or window relative.
This test applies to normal pixels and block fill operations.

5.4.2 Screen Scissor Tests

This test ensures that a pixel lies within the screen boundaries. For
each fragment the XY origin stored in the WindowOrigin register is
added to the fragment coordinates and this is tested against the screen
boundaries stored in the ScreenSize register. Since the X and Y
coordinates are held as 2's complement numbers, the window origin can
be moved off the edges of the screen.

The following test is made:

0 <= (X + WX) < SW

0 <= (Y + WY) < SH

Where:

X = Fragment X coordinate WX = Window origin X coordinate

Y = Fragment Y coordinate WY = Window origin Y coordinate

SW = Screen Width

SH = Screen Height

The diagram below shows a simple scenario of a screen with a single
window which has a user defined scissor region. The shaded area
shows the region where fragments pass the user and screen scissor
tests and so can progress in the pipeline. Fragments outside this region
are culled from the pipeline. This test applies to normal pixels and block
fill operations.

TVP4020 Programmers Reference Manual Graphics Programming

69

(X, Y)

Screen
Height
(SH)

Screen Width (SW)

Window Origin
(WX, WY)

User
Scissor

Min

User
Scissor
Max

Writeable Region

Scissor Region

Screen

Figure 5.9 Screen Scissor and User Scissor Tests

This test may reject fragments if some part of a window has been moved
off the screen. It will not reject fragments if part of a window is simply
overlapped by another window.

The screen scissor would normally be enabled. The most common
exception is during image upload.

5.4.3 Area Stippling

An 8 x 8 bit area stipple pattern can be applied to fragments. The least
significant 3 bits of the fragment's (X,Y) coordinates, index into a 2D
stipple pattern. If the selected bit in the pattern is set, then the fragment
passes the test, otherwise it is rejected. In addition the bit pattern can be
inverted or mirrored. Inverting the bit pattern has the effect of changing
the sense of the accept/reject test. If the mirror bit is set the most
significant bit of the pattern is towards the left of the window, the default
is the converse.

In some situations window relative stippling is required but coordinates
are only available screen relative. To allow window relative stippling, an
offset is available which is added to the coordinates before indexing the
stipple table. X and Y offsets can be controlled independently.

If the ForceBackgroundColor bit is set in the AreaStippleMode register,
fragments which fail the area stipple test are not discarded. Instead, the
contents of the Texel0 register are used in place of the normal color for
that pixel.

Area stippling is enabled using the AreaStippleMode register and must
be qualified by the AreaStippleEnable bit in the Render command

Graphics Programming TVP4020 Programmers Reference Manual

70

register. Area stippling may be used with block fills, but in this case the
background color is not available.

5.4.4 Registers

The scissor operation is controlled by the ScissorMode register:

08162431

User scissor enable

Reserved

Screen scissor enable

Figure 5.10 Scissor Mode Register

The screen scissor test would normally always be enabled. The most
common exception is during image upload.

The user scissor region is specified by two registers ScissorMinXY and
ScissorMaxXY the X values are stored in the least significant 16 bits of
the register, the Y values in the most significant 16 bits of the register.

The WindowOrigin register has the X coordinate of the origin stored in
the least significant 16 bits of the register, and the Y coordinate in the
most significant 16 bits of the register. As each fragment is generated by
the Rasterizer unit, this origin is added to the coordinates of the
fragment to generate its screen coordinates.

The ScreenSize register specifies the screen width and height, with the
width in the least significant 16 bits and the height in the most significant
16 bits.

The area stipple operation is controlled by the AreaStippleMode register:

08162431

Enable UnitNot used

Invert Stipple Pattern

Reserved

MirrorX

MirrorY

ForceBackgroundColor

XOffsetYOffset

Not used

Reserved

Figure 5.11 AreaStippleMode Register

TVP4020 Programmers Reference Manual Graphics Programming

71

The EnableUnit bit is qualified by the AreaStippleEnable bits in the
Render command register. The area stipple is set-up in the
AreaStipplePattern n register, where n represents an integer between 0
and 7.

5.4.5 Scissor Example

To enable screen scissor for a region: 10 <= X < 500, 100 <= Y < 200
with a screen size of 1280x1024 and the window origin at (100,100).

// Set the screen size

screenSize.Width = 1280

screenSize.Height = 1024

ScreenSize(screenSize)

// Set the window origin

windowOrigin.X = 100

windowOrigin.Y = 100

// Set-up the user scissor values

minXY.X = 10

minXY.Y = 100

maxXY.X = 500

maxXY.Y = 200

ScissorMinXY(minXY) // Load the registers

ScissorMaxXY(maxXY)

// Enable the unit

scissorMode.UserScissorEnable = PERMEDIA_ENABLE

scissorMode.ScreenScissorEnable = PERMEDIA_ENABLE

ScissorMode(scissorMode)

// Render primitives

Graphics Programming TVP4020 Programmers Reference Manual

72

5.4.6 Area Stipple Example

A repeating area stipple pattern of 2x2 pixels producing a 50% grey
area:

AreaStipplePattern0(0xAA)

AreaStipplePattern1(0x55)

AreaStipplePattern2(0xAA)

AreaStipplePattern3(0x55)

AreaStipplePattern4(0xAA)

AreaStipplePattern5(0x55)

AreaStipplePattern6(0xAA)

AreaStipplePattern7(0x55)

// Set-up mode register

areaStippleMode.UnitEnable = PERMEDIA_ENABLE

areaStippleMode.XOffset = 0

areaStippleMode.YOffset = 0

areaStippleMode.Invert = 0

areaStippleMode.MirrorY = 0

areaStippleMode.MirrorX = 0

// Load mode register

AreaStippleMode(areaStippleMode)

// When issuing a Render command, the AreaStippleEnable bit

// should be set in addition to the area stipple test being

// enabled:

// render.AreaStippleEnable = PERMEDIA_TRUE

TVP4020 Programmers Reference Manual Graphics Programming

73

5.5 Localbuffer Read and Write Units

The localbuffer holds the Stencil and Depth data associated with a
fragment. Although separate units in the Hyperpipeline, the localbuffer
read and write units are best considered as a pair.

5.5.1 Localbuffer Read

The LBReadMode register can be configured to make 0, 1 or 2 reads of
the localbuffer. The following are the most common modes of access to
the localbuffer:

• Normal rendering without depth or stencil testing. This requires no
localbuffer reads or writes.

• Normal rendering with depth and/or stencil testing required which
conditionally requires the localbuffer to be updated. This requires
localbuffer reads and writes to be enabled.

• Copy operations. Operations which copy all or part of the localbuffer.
This requires reads and writes enabled.

• Upload/download operations. Operations which download depth or
stencil information to the localbuffer, or read back depth or stencil
values from the localbuffer to the host.

The address calculation implements the following equations:

Bottom left origin -

Destination address = LBWindowBase - Y * W + X

Source address = LBWindowBase - Y * W + X + LBSourceOffset

Top left origin -

Destination address = LBWindowBase + Y * W + X

Source address = LBWindowBase + Y * W + X + LBSourceOffset

where:

Destination
address

is the address any write will be made to and any
destination read will be made from.

Source address is the address a source read will be made from.

X is the pixel's X coordinate.

Y is the pixel's Y coordinate.

LBWindowBase holds the base address in the localbuffer of the
current window.

Graphics Programming TVP4020 Programmers Reference Manual

74

LBSourceOffset is normally zero except during a copy operation
where data is read from one address and written to
another address. The offset from destination to
source is held in the LBSourceOffset register.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PP0, PP1
and PP2 fields in the LBReadMode register. See the
table in Appendix C for more details.

The localbuffer can be read in three formats: LBDefault, LBStencil or
LBDepth. These tell PERMEDIA which areas of the localbuffer is required.
LBDefault is used for all copy and rendering operations, LBStencil and
LBDepth are used for image upload of the Stencil and Depth planes.
The table below summarizes the common rendering operations and the
read modes required for them:

ReadSourc
e

ReadDestinati
on

Writes Data Type Rendering Operation

Disabled Disabled Disabled - Rendering with no Depth or Stencil
enabled.

Disabled Disabled Enabled LBStencil
LBDepth

Download to localbuffer from host

Disabled Enabled Disabled LBStencil
LBDepth

Upload from localbuffer to host

Disabled Enabled Enabled LBDefault Rendering with depth and/or stencil
updates enabled.

Enabled Disabled Enabled LBDefault Localbuffer copy operations .

Table 5.8 Localbuffer Read/Write Modes

5.5.2 Localbuffer Write

Writes to the localbuffer must be enabled to allow any update of the
localbuffer to take place. The LBWriteMode register is a single bit flag
which controls updating of the buffer.

5.5.3 Localbuffer Data Formats

The Depth field can be either 15 or 16 bits wide and the Stencil field
either 1 or 0 bits wide. The total width of the localbuffer data should not
be greater than 16 bits. If a Stencil field is defined it occupies bit 15; the
depth field always starts at bit 0.

The LBReadFormat and LBWriteFormat registers must be configured to
the appropriate values, see Fig. 5.15. The format can be different for
different windows.

TVP4020 Programmers Reference Manual Graphics Programming

75

5.5.4 Registers

The LBReadMode register is as shown below:

08162431

Reserved PP2Reserved PP1 PP0

Partial product selection

ReadSource enable

ReadDestination enable

Data Type

Window origin

Patch Enable

Figure 5.12 LBReadMode Register

PatchEnable, when set, enables normal patch addressing of the
localbuffer. This typically results in more efficient memory bandwidth
utilization.

The Partial Product fields PP0, PP1, and PP2 define the width of the
localbuffer. They are described in Appendix C.

ReadSourceEnable and ReadDestinationEnable control localbuffer
reads of the destination address and source address respectively.
DataType controls the format of localbuffer data, and WindowOrigin
specifies if the window origin is Top Left or Bottom Left.

08162431

Reserved

Write Enable

Figure 5.13 LBWriteMode Register

The localbuffer format must be specified for both reads and writes using
the LBReadFormat and LBWriteFormat registers. Normally these
registers are set to identical values. It may be useful to set them to
different values when, say, copying between two windows using different
depth widths.

Graphics Programming TVP4020 Programmers Reference Manual

76

08162431

Reserved

Depth Width

Stencil Width

Figure 5.14 LBReadFormat / LBWriteFormat Register

LBWriteMode is a single bit register. When the least significant bit is set,
writes to the localbuffer are enabled.

LBSourceOffset holds a 24 bit 2's complement value used in copy
operations.

LBWindowBase updates the base address of the localbuffer.

The relative positions of the depth and stencil fields within the localbuffer
are fixed. If a Stencil field is defined then it occupies bit 15. The depth
field always commences at bit 0.

5.5.5 Localbuffer Example

The following is an example of a rendering operation with localbuffer
read and write. PERMEDIA is configured with a 16 bit localbuffer such that
15 bits are used for depth and 1 bit for stencil with a screen size of
800x600.

TVP4020 Programmers Reference Manual Graphics Programming

77

lbReadFormat.DepthWidth = 3 // 15 bit

lbReadFormat.StencilWidth = 3 // 1 bit

LBReadFormat(lbReadFormat) // Load read format

LBWriteFormat(lbReadFormat) // Write is same as read

// Set the localbuffer write mode

LBWriteMode(PERMEDIA_ENABLE)

// Set the localbuffer read mode

// Partial products for 800 : 512 + 256 + 32

lbReadMode.PP0 = 5 // 512 (<< 9)

lbReadMode.PP1 = 4 // 256 (<< 8)

lbReadMode.PP2 = 1 // 32 (<< 5)

lbReadMode.ReadSource = PERMEDIA_DISABLE

lbReadMode.ReadDestination = PERMEDIA_ENABLE

lbReadMode.DataType = PERMEDIA_LBDEFAULT

lbReadMode.WindowOrigin = as appropriate
lbReadMode.PatchMode = PERMEDIA_DISABLE

LBReadMode(lbReadMode)

// Now ready to render with localbuffer read and write

// suitable for stencil and depth buffering operations.

5.6 Stencil/Depth Test Unit

The stencil test conditionally rejects fragments based on the outcome of
a comparison between the value in the stencil buffer and a reference
value. The stencil buffer is updated according to the current stencil
update mode which depends on the result of the stencil test and the
depth test. Stencil testing can be used in many different ways, e.g.
hidden line removal, decals, masking areas of the screen, stippling.

The depth (Z) test, if enabled, compares a fragment's depth against the
corresponding depth in the depth buffer. If the test fails, the fragment will
be rejected.

5.6.1 Stencil Test

This test only occurs if all the preceding tests (bitmask, scissor, stipple)
have passed. The stencil test is controlled by the stencil function and the
stencil operation. The stencil function controls the test between the
reference stencil value and the value held in the stencil buffer. If the test

Graphics Programming TVP4020 Programmers Reference Manual

78

is LESS and the result is true then the fragment value is less than the
source value. The stencil operation controls the updating of the stencil
buffer, and is dependent on the result of the stencil and depth tests.

The table below shows the stencil functions available:

Mode Comparison Function
0 Never
1 Less
2 Equal
3 Less or Equal
4 Greater
5 Not Equal
6 Greater or Equal
7 Always

Table 5.9 Stencil Comparison Modes

Some of these comparison modes are effectively redundant as PERMEDIA

only uses 1 bit stencil values. They have been included to ease software
compatibility with GLINT and possible future devices.

If the stencil test is enabled then the stencil buffer will be updated
depending on the outcome of both the stencil and the depth tests (if the
depth test is disabled the depth result is set to pass). Refer to the tables
below and the definition of the StencilMode register in section §5.6.4 to
fully understand their relationship.

Stencil Test
Pass Fail

Depth Test Pass dppass sfail
Fail dpfail sfail

Table 5.10 Possible Update Operations for Stencil Planes

The entries dppass, dpfail and sfail are set to one of the update
operations below, source stencil is the value in the stencil buffer:

Update Method Mode Stencil Value
Keep 0 Source stencil
Zero 1 0
Replace 2 Reference stencil
Increment 3 Clamp (Source stencil + 1) to 2stencil width - 1
Decrement 4 Clamp (Source stencil -1) to 0

5 ~Source stencil

Table 5.11 Stencil Operations

TVP4020 Programmers Reference Manual Graphics Programming

79

In addition a comparison bit mask is supplied in the StencilData register.
This is used to establish which bits of the source and reference value
are used in the stencil function test.

The source stencil value can be from a number of places as controlled
by a field in the StencilMode register:

LBWriteData
Stencil

Use

Test logic This is the normal mode.
Stencil register This is used, for instance, in the OpenGL draw pixels function where

the host supplies the stencil values in the Stencil register.
It is used when a constant stencil value is needed, for example
when clearing the stencil buffer .

LBSourceData:
(stencil value read
from the localbuffer)

This is used, for instance, in the OpenGL copy pixels function when
the stencil planes are to be copied to the destination. The source is
offset from the destination by the value in LBSourceOffset register.

Source stencil value
read from the
localbuffer

This is used, for instance, in the OpenGL copy pixels function when
the stencil planes in the destination are not to be updated. The
stencil data will come from the localbuffer data.

Table 5.12 Stencil Sources

See The OpenGL Reference Manual and The OpenGL Programming
Guide from Addison-Wesley for more details of the stencil operations
and examples of its use.

5.6.2 Depth Test

This test is only performed if all the preceding tests (bitmask, scissor,
stipple) have passed. The comparison tests available are:

Mode Comparison Function
0 Never
1 Less
2 Equal
3 Less Than or Equal
4 Greater
5 Not Equal
6 Greater Than or Equal
7 Always

Table 5.13 Depth Comparison Modes

The test compares the fragment's depth against a source depth value. If
the compare function is LESS and the result is true then the fragment
value is less than the source value. The source value can be obtained
from a number of places as controlled by a field in the DepthMode
register.

Graphics Programming TVP4020 Programmers Reference Manual

80

Source Use
DDA (see below) This is used for normal Depth buffered 3D rendering.
Depth register This is used, for instance, in the OpenGL draw pixels function where

the host supplies the depth values through the Depth register.
Alternatively this is used when a constant depth value is needed, for
example, when clearing the depth buffer or 2D rendering where the
depth is held constant.

LBSourceData:
Source depth value
from the localbuffer

This is used, for instance, in the OpenGL copy pixels function when
the depth planes are to be copied to the destination.

Source Depth This is used, for instance, in the OpenGL copy pixels function when
the depth planes in the destination are not updated. The depth data
will come from the localbuffer.

 Table 5.14 Depth Sources.

For a depth buffered trapezoid, PERMEDIA interpolates from the dominant
edge of a trapezoid to the subordinate edges. This means that two
increment values are required, one to move along the dominant edge
and one to move across the span to the subordinate edge. This is
illustrated in the diagram below. The rendering direction chosen here is
bottom to top.

ZStart = Start Z value

dZdyDom = Increment along dominant edge

dZdx = Increment along the scan line.

The dZdx value is not required for Z-buffered lines.

dZdyDom dZdX

Subordinate Edges

Dominant Edge

ZStart

Figure 5.15 Depth Interpolation

The number format for the increment values is 2's complement fixed
point integer: 16 bits integer and 11 bits fraction. All the start, derivative
and internal data is in this format. This is mapped into the Upper and
Lower registers (U and L) as shown below:

TVP4020 Programmers Reference Manual Graphics Programming

81

16 bits integer 11 bits fraction remaining bits
0

U L

not used

sign bit

Figure 5.16 Depth Derivative Format

This data format is compatible with GLINT 300SX and GLINT 500TX
graphics processors. In many instances, the fractional part can be left
containing zero, avoiding the need to continually update ZStartL, dZdxL
and dZdyDomL .

The Depth unit must be enabled to update the depth buffer. If it is
disabled then the depth buffer will only be updated if ForceLBUpdate is
set in the Window register. If no updates of the localbuffer are required,
setting DisableLBUpdate in the Window register may improve
performance.

5.6.3 Registers

Stencil test is controlled by the StencilMode register:

08162431

Unit enable

Reserved func dppass

Update MethodStencil source

dpfailsfailsrc

Unsigned compare function

Figure 5.17 StencilMode Register

The StencilData register holds the other data associated with the test.

08162431

Reference Stencil

Reserved Reserved Reserved

Compare MaskWrite Mask

Figure 5.18 StencilData Register

The stencil writemask is used to control which stencil planes are updated
as a result of the test. The Stencil register holds an externally sourced
stencil value. It is a 32bit register of which only the least significant bit is
used. The unused bits should be set to zero.

Graphics Programming TVP4020 Programmers Reference Manual

82

The Stencil unit must be enabled to update the stencil buffer. If it is
disabled then the stencil buffer will only be updated if ForceLBUpdate is
set in the Window register.

Operation of the Depth unit is controlled by the DepthMode register:

08162431

Unit enable

Write Mask

New Depth SourceCompare Mode

Reserved

Figure 5.19 DepthMode Register

The single bit writemask is used to control updating all the bits in the
depth buffer.

The Depth register holds an externally sourced 16 bit depth value. If the
depth buffer holds 15bits then the user supplied depth value is right
justified to the least significant end of the register. The unused most
significant bit should be set to zero.

The DDA and other registers are shown below (note the increment
values are split into two registers):

Register Description
ZStartU Depth start value
ZStartL
dZdxU Depth derivative per unit X
dZdxL
dZdyDomU Depth derivative per unit Y, dominant edge or along a

line.
dZdyDomL

 Table 5.15 Depth Interpolation Registers

The Window register is used to control the update of the localbuffer.

08162431

Reserved

Reserved

Force LB Update

LB UpdateSource

Disable LB Update

Reserved

Figure 5.20 Window Register

TVP4020 Programmers Reference Manual Graphics Programming

83

5.6.4 Stencil Example

This example sets the Stencil unit to use a supplied reference value
(0x1) and to test fragments to be LESS than this value. It also sets the
stencil planes update function to be Decrement if the test passes and
the depth test passes (or is not enabled), otherwise it sets the update
function to Keep. Because Decrement is the selected mode, this
example does not require that the Stencil register be loaded.

// Set the localbuffer read and write modes

// See section §5.5

// Set the stencil modes

stencilMode.UnitEnable = PERMEDIA_ENABLE

stencilMode.DPPass = PERMEDIA_STENCIL_METHOD_DECREMENT

stencilMode.DPFail = PERMEDIA_STENCIL_METHOD_KEEP

stencilMode.SFail = PERMEDIA_STENCIL_METHOD_KEEP

stencilMode.CompareFunction = PERMEDIA_STENCIL_COMPARE_LESS

stencilMode.StencilSource = PERMEDIA_SOURCE_TEST_LOGIC

StencilMode(stencilMode)

// Set the reference stencil value and set the

// compare and writemasks to 0x1

stencilData.ReferenceStencil = 0x1

stencilData.CompareMask = 0x1

stencilData.StencilWriteMask = 0x1

StencilData(stencilData)

// Enable the depth test here if required, if not enabled

// the result of the depth test is set to pass.

5.6.5 Depth Example

This example does the required set-up for drawing a depth buffered
primitive.

Graphics Programming TVP4020 Programmers Reference Manual

84

// Set the localbuffer read and write modes

// See section §5.5

depthMode.UnitEnable = PERMEDIA_ENABLE

depthMode.WriteMask = 1

depthMode.NewDepthSource = PERMEDIA_NEW_DEPTH_SOURCE_DDA

depthMode.CompareMode = PERMEDIA_DEPTH_COMPARE_MODE_LESS

DepthMode(depthMode)

// Load the depth start values and deltas for the dominant edge

// and the body of the trapezoid

ZStartU() // Load upper and lower start values

ZStartL()

dZdxU() // Load upper and lower dZdx deltas

dZdxL()

dZdyDomU() // Load upper and lower dominant edge deltas

dZdyDomL()

// Render primitive

TVP4020 Programmers Reference Manual Graphics Programming

85

5.7 Texture Address Unit

The Texture Address unit calculates the address of the texel that maps
to the current fragment XY position. Perspective correction can be
applied as part of the operation.

The texture coordinates are referred to as S and T where S is analogous
to X and T to Y. The S and T values are generated by interpolation; a
third component, Q, may also be interpolated and is used in perspective
correction.

5.7.1 Texture Interpolation

The DDA units perform linear interpolation given a set of start and
increment values.

PERMEDIA interpolates from the dominant edge of a trapezoid to the
subordinate edges. This means that two increment values are required
per texture component, one to move along the dominant edge and one
to move across the span to the subordinate edge. This is illustrated, for
the S component, in the diagram below:

dSdyDom dSdX

Subordinate Edges

Dominant Edge

SStart = Initial S value
dSdyDom = S gradient in the Y direction along the dominant edge
dSdx = S gradient in the X direction

Figure 5.21 Texture Address Interpolation

The calculation for the delta values is the same as other parameters
such as depth values see Appendix D6.

If perspective correction is not enabled then the S and T values are the
texture coordinates of the appropriate vertex. If perspective correction is
enabled the texture coordinates are divided by the homogenous
coordinate W, and Q is formed from 1/W. S and T are then normalized
with respect to Q so that Q lies in the range 1 to 1/127. These values are
then used to calculate delta values in the same way as color or depth. If

Graphics Programming TVP4020 Programmers Reference Manual

86

the dynamic range of Q is such that it cannot be normalized to the
supported range, the software should either tessellate the triangle into
smaller regions to reduce the range or accept a reduction in accuracy; a
Q value of zero will be handled in a reasonable manner.

If perspective correction is enabled each interpolated S and T value is
divided by the interpolated Q value. The result is passed to the Texture
Read unit which reads the texel from memory.

If subpixel correction has been enabled for a primitive, then any
correction required will be applied to the texture coordinates.

5.7.2 Registers

The S and T values are in 30 bit 2's complement format:

08162431

Integer Fraction

Reserved

Figure 5.22 Fixed Point S and T Format

The Q values are in 29 bit 2's complement format:

08162431

ReservedFraction

Integer

Figure 5.23 Fixed Point Q Format

The registers to set-up Texture interpolation are:
Register Data Field Description
Sstart 30 bit 2's comp fix pt S start value
dSdx 30 bit 2's comp fix pt S derivative per unit X
dSdyDom 30 bit 2's comp fix pt S derivative per unit Y, dominant edge
Tstart 30 bit 2's comp fix pt T start value
dTdx 30 bit 2's comp fix pt T derivative per unit X
dTdyDom 30 bit 2's comp fix pt T derivative per unit Y, dominant edge
Qstart 29 bit 2's comp fix pt Q start value
dQdx 29 bit 2's comp fix pt Q derivative per unit X
dQdyDom 29 bit 2's comp fix pt Q derivative per unit Y, dominant edge

 Table 5.16 Texture Interpolation Registers

TVP4020 Programmers Reference Manual Graphics Programming

87

08162431

Reserved

Enable unit

Perspective Correction

Figure 5.24 TextureAddressMode

5.7.3 Texture Interpolation Example

This example sets up the parameters for 2D texture mapping. 1D texture
mapping can be achieved by setting TStart, dTdx and dTdyDom to zero.

// Load the start values and deltas for the dominant edge

// and the body of the trapezoid

SStart() // Load S start value

TStart() // Load T start value

QStart() // Load Q start value

dSdx() // Load S delta for X

dTdx() // Load T delta for X

dQdx() // Load Q delta for X

dSdyDom() // Load S dominant edge delta

dTdyDom() // Load T dominant edge delta

dQdyDom() // Load Q dominant edge delta

// Render primitive

Graphics Programming TVP4020 Programmers Reference Manual

88

5.8 Texture Read Unit

The texture buffer holds texture data. The buffer shares the same
memory as the localbuffer and framebuffer; texture maps are normally
written to memory through the framebuffer write unit in a similar manner
to image download.

The Texture Read unit receives texture addresses from the Texture
Address unit and reads data from memory. If bilinear filtering is enabled,
several accesses may be done to collect the correct number of texels.

5.8.1 Read Unit

The address calculation implements the following equations:

Bottom left origin -

Address = TextureBaseAddress - T* W + S

Top left origin -

Address = TextureBaseAddress + T * W + S

where:

Address is the address any read will be made from.

S is the texel's S coordinate.

T is the texel's T coordinate.

TextureBaseA
ddress

holds the base address of the current texture.

W is the texture width. Only a subset of widths are
supported and these are encoded into the PP0, PP1
and PP2 fields in the TextureReadMode register. See
the table in Appendix C for more details.

The TextureMapFormat register specifies how the texture map is held in
memory. This includes the width of the texture map using partial product
codes and the size of the texel. The TextureReadMode register
specifies how the texture map should be handled internally. This sets
the width (maximum S) and height (maximum T) that should be used
when accessing the texture. There are three ways that the address can
be modified if it exceeds either the width or height (or goes negative):

Clamp clamp the coordinate to 0 or the maximum value.

Repeat access the map modulo the width or height. This
results in the texture map being repeated.

Mirror access the map modulo the width or height and mirror
alternate texture maps.

TVP4020 Programmers Reference Manual Graphics Programming

89

The width used to repeat or clamp can be different to the width used to
set the stride of the texture in memory. This allows a texture to be
selected from part of a larger image.

5.8.2 Texture Base Address

The base address of the texture map is set in the TextureBaseAddress
register. The lower 24 bits of this field specify the address of the map in
texels. Bit 30 is used to specify that the texture is held in system memory
instead of local memory and the texture should be ‘executed’ directly
across the PCI bus without first copying the texture to local memory.
Refer to the TVP4020 Hardware Reference Manual for more details.

The base address of the texture may be loaded indirectly from memory
using the TextureID register. The value loaded into this register should
be the address in memory of the base address of the texture (specified
in 32 bit units). Loading the TextureID register causes the real base
address to be loaded from memory. If bit 31 of the value loaded is set,
the value is interpreted as invalid, the graphics processor halted, and an
interrupt issued to the CPU. This mechanism is normally used to indicate
that the required texture is not resident in local memory and should be
copied in. Once the copy has been completed and the texture base
address in memory is updated with its invalid bit clear, the graphics
processor re-reads this value and restarts. Refer to the TVP4020
Hardware Reference Manual for details on loading textures while the
Graphics Processor has stalled.

5.8.3 Texture Filtering

A bilinear filter is available which combines the values of the 4 texels
surrounding the index into the texture map to produce a single value.
This filter will reduce pixelation effects when textures are enlarged, and
reduce aliasing effects when textures are shrunk.

5.8.4 Texture Formatting

The texture map can be held in memory in a variety of formats that
correspond to the formats supported by the framebuffer. Two additional
formats are provided to allow texture maps to be stored in YUV color
format. When a texel is read into PERMEDIA it is converted to the internal
color format. External color formats are shown in table 4.1. Note: the
color format value is made up of the 4 bits of the TextureFormat field
and the 1 bit TextureFormatExtension field in the TextureDataFormat
register.

If the selected format has no alpha buffer, a default value of 0xFF, which
is the maximum is used. If the NoAlphaBuffer bit is set in the
TextureDataFormat register then 0xFF is used even if the format has an
alpha buffer.

Graphics Programming TVP4020 Programmers Reference Manual

90

If the texture is in Color Index mode (either 4 or 8 bits) the single value is
repeated for all color components. If the framebuffer format is also Color
Index, the single value is used as the pixel color; if the framebuffer is
RGBA, then the texture value becomes grey scale.

The texture values may be indexed through a 256 entry look-up table.
Each entry of the table holds a 32 bit RGBA value. If the CI8 texture is
used, then the whole LUT is used for each texture; if the CI4 texture
format is used each texture uses 16 entries, so 16 separate LUTs may
be loaded and the appropriate one indexed (the upper 4 bits of the index
are supplied by the upper 4 bits of TexelLUTIndex).

If an RGB or RGBA texture format is used (as opposed to CI8 or CI4)
the individual R, G, B, and A components are indexed separately which
allows remapping functions such as gamma correction.

5.8.5 Registers

The TextureReadMode register controls the way that textures are read
from memory.

The S and T wrap modes can be set to clamp, repeat or mirror as
described earlier.

With Filter Mode disabled, nearest-neighbor texture mapping will be
performed. With this bit set, bilinear filtering is enabled.

The Packed Data bit is used to define how texels are read from memory.
If this bit is cleared, each texel is read one at a time; if set several texels
can be read simultaneously improving efficiency. The actual number of
texels read in this case is dependent on the texel size. See section
§5.10.4 for how this can be used for packed copies.

The TextureReadMode register controls the way that textures are read
from memory. With Filter Mode disabled, nearest-neighbor texture
mapping will be performed. With it set, bilinear filtering is enabled.

08162431

Reserved

TWrapMode

Enable

Reserved ReservedHeight Width

Packed Data Filter Mode SWrapMode

Figure 5.25 TextureReadMode Register

TVP4020 Programmers Reference Manual Graphics Programming

91

The TextureMapFormat register specifies the way that the texture map is
held in memory. The partial product codes are detailed in Appendix C.
The window origin specifies the origin as being top left or bottom left.
SubPatchMode when enabled, improves the performance of typical
texture mapping.

08162431

ReservedReserved PP1

Partial product selection

Window origin

SubPatch mode

Reserved

Texel Size

PP2 PP0

Figure 5.26 TextureMapFormat Register

The TextureDataFormat register specifies the color format of the texture.
The TextureFormat combined with the TextureFormat Extension contain
one of the modes described in table 4.1. The color order specifies
whether the texture is in RGB or BGR color format.

08162431

Reserved

No Alpha Buffer

Texture Format

Color Order

Texture Format Extension

Alpha Map

Span Format

Figure 5.27 TextureDataFormat Register

5.8.6 Using the Texel LUT

The TexelLUT0 to 15 registers contain the texture color look-up table.
Each register contains 8 bit fields for red, green, blue and alpha color
components. The TexelLUTMode register allows use of the TexelLUT0
to 15 registers. When enabled, the texel value becomes an index into
this look-up table.

Graphics Programming TVP4020 Programmers Reference Manual

92

PixelsPerEntry
0 = 1 pixel
1 = 2 pixels
2 = 4 pixels
3 = reserved

LUTOffset

DirectIndex

Enable

Reserved

Figure 5.28 TexelLUTMode Register

The LUT must be enabled before a look-up will be done. The other fields
of this register are used to control use of the LUT for 2D operations.
Enabling DirectIndex causes the LUT to be indexed by the address of
the fragment, not by data read from memory. If block fills are used the
LUT is indexed at the start of every scanline based on the lower 3 bits of
the Y value (X is ignored), the LUTOffset which is added to the index,
and the PixelsPerEntry field; two consecutive entries in the LUT are
used to fill the upper and lower halves of the 64 bit block color register.

If block fills are not used the lower 3 bits of the X and Y values of each
fragment are used to index the LUT; the PixelsPerEntry field scales the
X and Y values so that an 8 pixel by 8 pixel pattern is supported, and the
LUTOffset field is added to the index before it is used.

If the LUT is used for 2D operations, the texture application unit should
be enabled and set to copy mode so that the texture color generated by
the look-up table is converted to a color that can be plotted on the
screen.

08162431

24 bit unsigned integerReserved

System Memory

Reserved

Figure 5.29 TexelLUTAddress register

If all 256 entries in the LUT need to be filled, the TexelLUTData and
TexelLUTOffset registers should be used. The offset into the LUT for the
first entry to be loaded should be written to the TexelLUTOffset register,
then a succession of LUT entries written to the TexelLUTData register.
The offset into the LUT will be automatically incremented after each
entry is written.

TVP4020 Programmers Reference Manual Graphics Programming

93

It is also possible to load the LUT directly from memory. This is initiated
by loading the TexelLUTAddress register with the address of the LUT in
memory (in 32 bit units) and the TexelLUTTransfer register:

The Index field specifies the first entry in the LUT to load, while the
Count field specifies the number of entries to load. Bit 30 of the
TexelLUTAddress register specifies that the LUT is resident in system
memory and should be read across the PCI bus.

The TextureLUTAddress register may be loaded indirectly by the
TexelLUTID register. This operates in an identical manner to the TexelID
register. There may be some latency between the register value being
written to PERMEDIA and the interrupt being asserted, and it is possible
that both registers will have been loaded before the interrupt is received.
To determine which register caused the interrupt, they may be read back
and will hold the value read from memory.

To read back the LUT entries, first read from the TexelLUTOffset register
which resets the read back index to zero, then from the TexelLUTData
register as many times as necessary.

5.8.7 Block Fill Textures

If texture mapping is enabled (and DirectIndex disabled) when a block fill
is done the mask for the block fill is read from memory as a texture map.
The texture address unit must be set appropriately so that the S value
increments or decrements by one for each block of 32 pixels while T
stays at zero. The texture address calculated is used to index a texture
map and data returned is used as a mask to control which pixels are
plotted during a block fill. This feature might be used to draw text for
which the font has been previously loaded into a font cache in memory.

The layout of the data in memory should be byte aligned, so if the
character is up to 8 pixels wide specify a texel size of 8 bits, up to 16 use
16, up to 24 use 24, and up to 32 use 32. If the character is wider than
32 pixels change to a word aligned bitmask and keep the pixel size to 32
bits. To match the normal data format for fonts, set the SpanFormat field
in the TextureDataFormat register which allows the data to be stored
with the bits in each byte mirrored.

5.8.8 Alpha Mapping

Alpha mapping performs a color key test before bilinear filtering, and
prevents any of the red, green, or blue, components of a rejected pixel
taking part in the filtering. The alpha channel is treated differently, and if
a pixel fails the color test its alpha value is set to zero, but if it passes it
is left at the original value. The alpha channel of all pixels, whether
rejected or accepted, are filtered. This results in an alpha value of zero
where all contributing pixels are rejected, an alpha value of one where

Graphics Programming TVP4020 Programmers Reference Manual

94

all contributing pixels are accepted, and a varying alpha value where
some are rejected and some accepted. As the magnification factor of the
bilinear zoom is increased the variable alpha is spread across more
destination pixels. The range of alpha values rejected by the chroma key
test in the YUV unit can be adjusted to allow fine control over the exact
size of the cut-out. If blending is enabled then the varying alpha values
smooth the transition of the edge of the sprite to the background.

The registers AlphaMapUpperBound and AlphaMapLowerBound are
used to control the range over which the test is done. The test is enabled
by the TextureDataFormat register.

5.8.9 Texture Download Example

fbReadMode.PatchMode = PERMEDIA_TRUE

fbReadMode.SubPatchMode = PERMEDIA_SUBPATCH

FBReadMode(fbReadMode);

fbWriteMode.Enable = PERMEDIA_TRUE

FBWriteMode(fbWriteMode)

// Set format to 8 bits

ditherMode.UnitEnable = PERMEDIA_TRUE

ditherMode.Enable = PERMEDIA_FALSE

ditherMode.ColorMode = PERMEDIA_COLOR_FORMAT_RGB_332

DitherMode(ditherMode)

// Do image download

5.8.10 Texture Mapping Example

Texture map a trapezoid:

TVP4020 Programmers Reference Manual Graphics Programming

95

textureAddressMode.Enable = PERMEDIA_TRUE

textureAddressMode.PerspectiveCorrection = PERMEDIA_TRUE

TextureAddressMode(textureAddressMode)

// Load texture address parameters

SStart()

dSdx()

dSdyDom()

TStart()

dTdx()

dTdyDom()

QStart()

dQdx()

dQdyDom()

// Configure texture read

textureReadMode.Enable = PERMEDIA_TRUE

textureReadMode.SWrapMode = PERMEDIA_TEXTURE_WRAP_REPEAT

textureReadMode.TWrapMode = PERMEDIA_TEXTURE_WRAP_REPEAT

textureReadMode.Width = width

textureReadMode.Height = height

textureReadMode.FilterMode = PERMEDIA_FALSE

TextureReadMode(textureReadMode)

textureMapFormat.PP0 = partialProduct0

textureMapFormat.PP1 = partialProduct1

textureMapFormat.PP2 = partialProduct2

textureMapFormat.SubPatchMode = PERMEDIA_TRUE

textureMapFormat.TexelSize = PERMEDIA_8_BITS_PER_TEXEL

TextureMapFormat(textureMapFormat)

textureDataFormat.TextureFormat = PERMEDIA_COLOR_FORMAT_RGB_332

TextureDataFormat(textureDataFormat)

// Enable texture/fog/blend unit, load other parameters and

// render

5.9 YUV Unit

The YUV unit converts from YUV color format, also known as YCbCr, to
RGB. It also does chroma key testing. This test may be done either
before or after the conversion.

Graphics Programming TVP4020 Programmers Reference Manual

96

The YUV conversion is done on data that is being loaded into the Texel0
register. The data for this may come from the TextureRead unit or from
the host, so YUV conversion can be done either during texture download
or on a texture as it is applied to a primitive. The YUV data can be in
either 444 format or 422 format. The chroma test may be done with
either YUV or RGB data.

5.9.1 Chroma Test

The chroma test specifies upper and lower bounds against which the
Texel0 value is tested. The test may be set to pass if the components of
Texel0 are either all inside or all outside the bounds. This is controlled
by the accept/reject TestMode options of the YUVMode register. If the
test passes, the Texel0 data may be used in the Texture/Fog/Blend unit
as normal. If the test fails, then the fragment to which the texture data
maps, may be rejected (not plotted). This is useful for cut-outs and
sprites. Alternatively, on test failure, the Texel0 value may be rejected
and the texture operation on the fragment suppressed. This is achieved
by setting the RejectTexel bit in the YUVMode register. In this case the
underlying color provided by PERMEDIA is used without being modified by
the texture color. This is useful for applying a logo to a shaded polygon
where the underlying color is provided by the Color DDA unit.

The test modes available are:

Mode Test Mode
0 No test
1 Accept
2 Reject

 Table 5.17 Chroma Test Modes

Chroma key testing can be done without texture mapping by setting the
TexelDisableUpdate field in the YUVMode register. This allows fragment
rejection during a copy operation. If chroma testing is required against
the destination color of a copy (i.e. only overwrite pixels of the specified
color), then the destination region of the screen is used as the texture
map and the framebuffer units are set-up to do a normal copy. The
texels are read in and tested. Fragments are rejected if the colors do not
match. The copy operation for that pixel will not take place if the
fragment has been rejected. Setting the TexelDisableUpdate bit discards
the texel as soon as the test has been done which improves
performance.

TVP4020 Programmers Reference Manual Graphics Programming

97

08162431

Enable
TestMode

TestData
RejectTexel

TexelDisableUpdate

Reserved

Figure 5.30 YUVMode Register

The TestData bit controls when the chroma test occurs in relation to the
color conversion. Setting this bit causes the chroma test to occur on the
output of the unit; clearing it causes the chroma test to occur on the
input i.e. after or before color conversion respectively, assuming the
Enable bit is set.

The TestMode can be set to:

Accept, i.e. pass test if (upper bound <= color >= lower bound

Reject, i.e. fail test if (upper bound <= color >= lower bound

08162431

BlueAlpha Green Red

Figure 5.31 ChromaUpperBound and ChromaLowerBound Registers RGB Format

08162431

VAlpha U Y

Figure 5.32 ChromaUpperBound and ChromaLowerBound Registers YUV Format

Graphics Programming TVP4020 Programmers Reference Manual

98

5.10 Framebuffer Read and Write Units

Before drawing can take place, PERMEDIA must be configured to perform
the correct framebuffer read and write operations. Framebuffer read
modes affect the operation of alpha blending, logic ops, software
writemasks, image upload and image copy operations. Framebuffer write
modes are relevant to all drawing in the framebuffer.

5.10.1 Framebuffer Read

The FBReadMode register allows PERMEDIA to be configured to make 0,
1 or 2 reads of the framebuffer. The following are the most common
modes of access to the framebuffer:

• Rendering operations with no logical operations, software
writemasking or alpha blending. In this case no read of the
framebuffer is required and framebuffer writes should be enabled.
Framebuffer reads should be disabled for maximum efficiency.

• Rendering operations which use logical ops, software writemasks or
alpha blending. In these cases the destination pixel must be read from
the framebuffer and framebuffer writes must be enabled.

• Image copy operations. Here set-up depends on whether logical ops,
software writemasks and/or alpha blending are occurring with the
copy. If any of these are, the framebuffer needs two reads, one for the
source and one for the destination. Otherwise, only one read is
required.

• Image upload. This requires reading of the destination framebuffer
pixels to be enabled and framebuffer writes to be disabled.

• Image download. This case requires no framebuffer reads (as long as
software writemasking, alpha blending and logic ops are disabled) but
writes must be enabled.

Note: Avoiding unnecessary additional reads will enhance performance.

For both the read and the write operations, an offset is added to the
calculated address. The source offset (FBSourceOffset) is used for copy
operations. The pixel offset (FBPixelOffset) can be used to allow multi-
buffer updates1. The offsets should be set to zero for normal rendering.
The address calculation implements the following equations:

1 The OpenGL specification, for example, allows any combination of the Front, Back, Left
and Right color buffers to be updated 'simultaneously'. In this case a scene would be
rendered multiple times changing the FBPixelOffset as appropriate. When using this

TVP4020 Programmers Reference Manual Graphics Programming

99

Bottom left origin

Destination address = FBWindowBase - Y * W + X + FBPixelOffset

Source address = FBWindowBase - Y * W + X + FBPixelOffset + FBSourceOffset

Top left origin

Destination address = FBWindowBase + Y * W + X + FBPixelOffset

Source address = FBWindowBase + Y * W + X + FBPixelOffset + FBSourceOffset

where:

Destination
Address

is the address in the framebuffer which is written
to if writes are enabled, and is also the address
read when ReadDestination is enabled.

Source Address is the address in the framebuffer which is read
from when ReadSource is enabled.

X is the pixel's X coordinate,

Y is the pixel's Y coordinate,

FBWindowBase holds the base address in the framebuffer of the
current window.

FBPixelOffset is normally zero except when multi-buffer writes
are needed when it gives a way to access pixels
in alternative buffers without changing the
FBWindowBase register. This is useful as the
window system may be asynchronously
changing the window's position on the screen. It
is held in the FBPixelOffset register.

FBSourceOffset is normally zero except during a copy operation
where data is read from one address and
written to another address. The FBSourceOffset
is held in the FBSourceOffset register and is the
offset from destination to source.

W is the screen width. Only a subset of widths are
supported and these are encoded into the PP0,
PP1 and PP2 fields in the FBReadMode
register. See the table in Appendix C for more
details.

mode it is important to ensure that the buffers which affect the rendering are updated
only once. For example, when rendering with depth buffering enabled, localbuffer writes
should only be enabled for the last buffer updated.

Graphics Programming TVP4020 Programmers Reference Manual

100

The calculation of FBSourceOffset can be avoided by using the
FBSourceDelta and FBSourceBase registers. For screen to screen
copies FBSourceBase should be set to the same value as
FBWindowBase (this is done automatically whenever FBWindowBase is
loaded) and FBSourceDelta should hold the distance from the
destination area to the source area in X and Y. If the copy is from an
offscreen bitmap, FBSourceBase should hold the base address of the
bitmap, and FBSourceDelta should hold the offset in X and Y into the
bitmap to where the source area begins.

The data read from the framebuffer may be either FBDefault (data which
may be written back into the framebuffer or used in some manner to
modify the fragment color) or FBColor (data which will be uploaded to
the host). The table below summarizes the framebuffer read/write
control for common rendering operations:

ReadSourc
e

ReadDestinati
on

Writes Read
Data Type

Rendering Operation

Disabled Disabled Enabled - Rendering with no logical
operations, software writemasks or
alpha blending.

Disabled Disabled Enabled - Image download.
Disabled Enabled Disabled FBColor Image upload.
Enabled Disabled Enabled FBDefault Image copy with hardware

writemasks.
Disabled Enabled Enabled FBDefault Rendering using destination-only

logical operations, software
writemasks or alpha blending.

Enabled Enabled Enabled FBDefault Image copy with logical operations,
software writemasks or alpha
blending.

Table 5.18 Framebuffer Read/Write Modes

Incorrect data can be read if reads are enabled but the same data had
just been written with reads disabled. To avoid this problem, a
WaitForCompletion command should be sent after enabling reads, but
prior to the next primitive.

5.10.2 Framebuffer Write

Framebuffer writes must be enabled to allow the framebuffer to be
updated. A single 1 bit flag controls this operation.

The Framebuffer Write unit is also used to control the operation of fast
block fills, if supported by the framebuffer. Fast fill rendering is enabled

TVP4020 Programmers Reference Manual Graphics Programming

101

via the FastFillEnable bit in the Render command register. The block
color is 64 bits wide; normally the same values are used in the upper
and lower halves of the register so they are both set with one register,
FBBlockColor . If different data is required in both halves of the register,
use the FBBlockColorUpper and FBBlockColorLower registers. The
data put in the color registers should be of the raw framebuffer format.
When using the framebuffer in 8 bit packed mode, the data should be
repeated in each byte. When using the framebuffer in packed 16 bit
mode, the data should be repeated in the top 16 bits.

Note that due to restrictions in the way that the memory devices
implement block fills, a packed 24 bit RGB framestore may only use
block fills for colors that have all bytes in the pixel set to the same value.

When uploading images the UpLoadData bit can be set to allow color
formatting. See sections §5.12.6 for more details.

5.10.3 Patching

Data in the framebuffer can use patched addressing to improve
performance under certain circumstances. However, only non-visible
data is normally patched. Patch mode organizes data for efficient
drawing of scanline primitives; it also helps line drawing. This form is
typically used in the localbuffer, see §5.5.4, for patching the depth buffer.
The SubPatch mode re-organizes data for efficient texture operations;
see section §5.8.5. SubPatchPack mode is used when 4 bit textures are
loaded as 8 bits i.e. the subpatch packing takes into account the 2 texels
per byte.

5.10.4 Packed Copies

Packed copies move 32 bits at a time even though the real pixel size
may be 8, 16, or 24 bits. The PackedDataLimits register holds the left
and right X coordinates for the destination area of the screen in the
native pixel format. Any pixels outside this area are not plotted. The
relative offset field in the FBReadMode register specifies the number of
pixels that the source data has to be adjusted to align with the
destination data. The relative offset field is also available in the
PackedDataLimits register, the value from the last register loaded takes
effect.

5.10.5 Image Downloads

An image download can be performed in one of four ways. It can be
achieved by loading the data in standard color format into the Color
register and using the Color Format unit to organize it into the
framestore format. Or it can be achieved by loading the data in raw
framebuffer format either into the Color register or the FBData register.
The former requires that the Color Format unit is disabled whilst the

Graphics Programming TVP4020 Programmers Reference Manual

102

latter ignores this unit. Alternatively, the data can be loaded as some
other raw format into the FBSourceData register and have the
Texture/Fog/Blend unit convert it into the internal color format. The
Color Format unit can then convert it into the arrangement to be stored
in the framebuffer. Both techniques require setting up the Rasterizer
appropriately.

5.10.6 Fast Texture Download

Normal texture download is done as an image download. This involves
setting up the Rasterizer to draw a rectangle and changing the state of a
number of units. This is a good way to load the texture if any processing
needs to be done on it, such as color format conversion, color space
conversion or patching.

If the texture is held on the host in the raw framebuffer format, the fast
texture download approach can be used. The TextureDownloadOffset
register holds the base address of the framebuffer using 32 bit pixel
addressing. The TextureData register holds the texture data in raw
framebuffer format 32 bits at a time. The load of this register is ignored
by all other units in the pipeline so no state needs to be saved and
restored. Following the receipt of each TextureData value, the
TextureDownloadOffset value is incremented. If this register is read, it
returns the current count, not the original value.

If fast download is used, the texture map on the host must be in exactly
the format it will be stored in memory, including any color formatting,
byte swapping, or address patching. If a texture will be loaded several
times, it can be downloaded as an image the first time using all
formatting controls, and then uploaded again as a raw image for later
use.

Using this technique, framebuffer writes do not need to be enabled.

5.10.7 Hardware Writemasks

Hardware writemasks, if available, are controlled using the
FBHardwareWriteMask register. If the framebuffer memory devices
support hardware writemasks, and they are to be used, then software
writemasking should be disabled (by setting all the bits in the
FBSoftwareWriteMask register). This will result in fewer framebuffer
reads when no logical operations or alpha blending is needed.

If the framebuffer is used in 8 bit packed mode, then an 8 bit hardware
writemask must be repeated in all 4 bytes of the FBHardwareWriteMask
register. If the framebuffer is in 16 bit packed mode then the 16 bit
hardware writemask must be repeated in both halves of the
FBHardwareWriteMask register.

TVP4020 Programmers Reference Manual Graphics Programming

103

As there is no overall enable for this feature, the hardware writemask
MUST be set to all 1’s, except when hardware writemasking is explicitly
required.

5.10.8 Frame Blank Synchronization

The SuspendUntilFrameBlank command register may be used to stall
the PERMEDIA pipeline until the next frameblank. For double buffering, it is
beneficial to synchronize to the monitor blanking. By using this register,
full screen double buffering can be controlled through the pipeline and
the host does not need to wait for vertical frame blank itself. Instead,
once the SuspendUntilFrameBlank command register has been loaded,
the host can continue to load PERMEDIA registers and issue commands.
PERMEDIA will continue processing these as long as they do not involve
writing to the framebuffer. The data field of this register is the base
address of the buffer to be displayed and is passed to the Internal Video
Timing generator.

5.10.9 Registers

The FBReadMode register layout is as follows:

08162431

PP2Reserved PP1 PP0

Partial product selection

ReadSource enable

ReadDestination enable

Data type

Window originPatch Enable

Packed data

Relative offset

Reserved

Patch Mode

Reserved

Reserved

Figure 5.33 FBReadMode Register

See Appendix C for more information on setting partial product codes.

FBWindowBase holds the base address of the window in the
framebuffer in 24 bit unsigned format. The FBPixelOffset and
FBSourceOffset registers hold 24 bit 2's complement offsets used in
copy operations and multi-buffer updates, as described above.

The FBWriteMode controls the framebuffer write operations:

08162431

Reserved

Write enable

Reserved

UpLoadData

Figure 5.34 FBWriteMode Register

Graphics Programming TVP4020 Programmers Reference Manual

104

The FBReadPixel sets the pixel size.

08162431

Reserved

Pixel Size

Figure 5.35 FBReadPixel Register

The PackedDataLimits register is used to control packed copies.

08162431

12 bit integer XStart Not used 12 bit integer XEnd

Reserved

RelativeOffset

Figure 5.36 PackedDataLimits Register

FBHardwareWriteMask is a 32bit register where each bit acts as a mask.
FBColor is a read-only register which returns the data to the host during
image upload operations.

5.10.10 Image Copy Example

This example copies a rectangular region of the framebuffer, without
moving any data in the localbuffer. The region extends from the origin
(0,0) to (100,100) and will be shifted right by 200 pixels. The destination
rectangle is scan converted.

// First set-up the framebuffer read mode

fbReadMode.ReadSource = PERMEDIA_ENABLE

fbReadMode.ReadDestination = PERMEDIA_DISABLE

fbReadMode.DataType = PERMEDIA_FBDEFAULT

FBReadMode(fbReadMode) // Update register

// Now enable framebuffer writefbWriteMode.WriteEnable = PERMEDIA_ENABLE

FBWriteMode(fbWriteMode) // Update register

// Offsets. No Pixel offset, source offset of 200

FBPixelOffset (0x0)

FBSourceOffset (-200)

// All the tests which could remove the fragment must be

// disabled (Stipple, Stencil, Depth) except

// the Scissor test which is still needed for screen

// and possibly window clipping.

TVP4020 Programmers Reference Manual Graphics Programming

105

// If software writemasks are to be used then they are

// set appropriately, and the framebuffer set-up to do

// extra read operation

// Disable the Color DDA unit, we do not want to

// associate a color with this fragment.

colorDDAMode.UnitEnable = PERMEDIA_FALSE

ColorDDAMode(colorDDAMode)

// Define the region we wish to copy from.

StartXDom (200<<16)

StartXSub (300<<16)

dXSub (0)

dXDom (0)

StartY (0)

dY (1<<16)

Count (100)

render.PrimitiveType = PERMEDIA_TRAPEZOID

Render (render) // Start the rasterization

5.11 Color DDA Unit

The Color DDA unit is used to associate a color with a fragment
produced by the Rasterizer. This unit should be enabled for rendering
operations and disabled for pixel rectangle operations (i.e. copies,
uploads and downloads).

5.11.1 RGBA and Color-Index(CI) Modes

Two color modes are supported by PERMEDIA, true color RGBA and
color index (CI).

PERMEDIA's internal color representation is RGBA with 8 bits per
component:

08162431

BlueAlpha Green Red

Figure 5.37 Color Representation

This format is the same for all the different framebuffer configurations
supported. If the number of bits in the framebuffer for a color component
is less than 8 then the color value is left shifted into the most significant
bits of that components field. The unused least significant bits should be
set to zero.

Graphics Programming TVP4020 Programmers Reference Manual

106

In CI mode, the color index is placed in the lower byte of the 32 bit
register (i.e., the red component).

5.11.2 Gouraud Shading

When in Gouraud shading mode, the Color DDA unit performs linear
interpolation given a set of start and increment values. Clamping is used
to ensure that the interpolated value does not underflow or overflow the
permitted color range.

For a Gouraud shaded trapezoid, PERMEDIA interpolates from the
dominant edge of a trapezoid to the subordinate edges. This means that
two increment values are required per color component, one to move
along the dominant edge and one to move across the span to the
subordinate edge. This is illustrated in the diagram below, where C
represents a color component (red, green, blue or color index). Alpha is
not interpolated and stays at its initial value.

dCdyDom dCdX

Subordinate Edges

Dominant Edge

CStart = the initial color value
dCdyDom = color gradient in the Y direction along the dominant edge
dCdx = color gradient in the X direction

Figure 5.38 Color Interpolation

See Appendix D4 Delta values for a Gouraud Shaded Triangle.

For Gouraud shaded lines, each line is treated as the dominant edge of
a trapezoid, and so no dCdx increment is required.

To allow accurate interpolation, the increment values are specified in a
17bit fixed point format. The format is 2's complement with 1 bit sign, 5
bits integer and 11 bits fraction:

9 bit integer 11 bit fractionIgnored Ignored

031

Figure 5.39 Fixed Point Color Format

TVP4020 Programmers Reference Manual Graphics Programming

107

Note that if you are rendering to multiple buffers and have initialized the
start and increment values in the Color DDA unit, then any subsequent
Render command will cause the start values to be reloaded.

If subpixel correction has been enabled for a primitive, then any
correction required will be applied to the color components.

5.11.3 Flat Shading

In flat shading mode, a constant color is associated with each fragment.
This color is loaded into the ConstantColor register which has the format
shown in Fig. 5.36 above.

5.11.4 Registers

The main control register for the Color DDA unit is the ColorDDAMode
register:

08162431

Reserved

Shading Mode Unit Enable

Figure 5.40 ColorDDAMode Register

The registers to set-up Gouraud shading in the Color DDA unit are:
Register Data Field Description
RStart 17 bit 2's comp fix pt Red start value
dRdx 17 bit 2's comp fix pt Red derivative per unit X
dRdyDom 17 bit 2's comp fix pt Red derivative per unit Y, dominant

edge
GStart 17 bit 2's comp fix pt Green start value
dGdx 17 bit 2's comp fix pt Green derivative per unit X
dGdyDom 17 bit 2's comp fix pt Green derivative per unit Y, dominant

edge
BStart 17 bit 2's comp fix pt Blue start value
dBdx 17 bit 2's comp fix pt Blue derivative per unit X
dBdyDom 17 bit 2's comp fix pt Blue derivative per unit Y, dominant

edge
AStart 17 bit 2's comp fix pt Alpha start value

 Table 5.19 Color Interpolation Registers

Graphics Programming TVP4020 Programmers Reference Manual

108

5.11.5 Flat Shading Example

A flat shaded primitive:

// Set DDA to flat shade mode

colorDDAMode.UnitEnable = PERMEDIA_ENABLE

colorDDAMode.Shade = PERMEDIA_FLAT_SHADE_MODE

ColorDDAMode(colorDDAMode)

ConstantColor(0xFFFFFFFF) // Load the flat color

5.11.6 Gouraud Shaded Trapezoid Example

See Appendix D for details of how to calculate delta values.

// Enable unit in Gouraud shading mode

colorDDAMode.UnitEnable = PERMEDIA_ENABLE

colorDDAMode.Shade = PERMEDIA_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// Load the color start values and deltas for dominant edge

// and the body of the trapezoid

RStart() // Set-up the red component start value

dRdx() // Set-up the red component increments

dRdyDom()

GStart() // Set-up the green component start value

dGdx() // Set-up the green component increments

dGdyDom()

BStart() // Set-up the blue component start value

dBdx () // Set-up the blue component increments

dBdyDom ()

5.11.7 Gouraud Shaded Line Example

TVP4020 Programmers Reference Manual Graphics Programming

109

See Appendix D for details of how to calculate delta values.

// Set DDA for Gouraud shaded mode

colorDDAMode.UnitEnable = PERMEDIA_ENABLE

colorDDAMode.Shade = PERMEDIA_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// For lines we need only start values and dominant edge

// deltas

RStart() // Set-up the red component start value

dRdyDom() // Set-up the red component increment

GStart() // Set-up the green component start value

dGdyDom() // Set-up the green component increment

BStart() // Set-up the blue component start value

dBdyDom () // Set-up the blue component increment

5.12 Texture/Fog/Blend

The Texture/Fog/Blend unit applies effects to the interpolated color. The
effects are applied in the order: texture then fog then blend.

5.12.1 Texture Application

There are two major types of texture application, one suitable for RGB
applications and one suitable for Ramp applications; Ramp applications
use RGB textures and framebuffer format but are limited to a white light
source. The enable bit in the TextureColorMode register and the
TextureEnable bit in the Render register must both be enabled before
texture will be applied.

RGB Texture Application

This is referred to elsewhere as the OpenGL type of texture application.
It can be done in one of three ways.

In copy mode, the texture color replaces the current fragment color.

In decal mode the texture color is blended with the fragment color using
the texture alpha value:

Cf = CtAt+ Cf(1-At)

Af = Af

where: Cf is the fragment color, Ct is the texture color , Af fragment
alpha and At is the texture alpha. If the texture alpha value is one, decal
becomes the same as copy.

In modulate mode the color components are multiplied together:

Graphics Programming TVP4020 Programmers Reference Manual

110

Cf = CtCf

Af = AtAf

where: Cf is the fragment color, Ct is the texture color , Af fragment
alpha and At is the texture alpha.

Ramp Texture Application

This is referred to elsewhere as the Apple type of texture application
because of the approach adopted by QuickDraw3D. This type of texture
application is done three stages, where each stage can be
independently enabled or disabled. The first stage is decal, which does
the operation:

Cf = CtAt+ Cf(1-At)

Af = Af

If decal is not enabled then the following operation is done:

Cf = Ct

Af = AtAf

The next operation is modulate, which does:

Cf = KdCD

Af = KdAD

where: Cf is the fragment color, Kd is an interpolated parameter which
represents the diffuse light intensity, At is the texture alpha, CD is the
color after the decal operation and AD is the alpha value after the decal
operation.

The next operation is highlight:

Cf = CM+Ks

Af = AM+Ks

where: Cf is the fragment color, Ks is an interpolated parameter which
represents the specular or highlight intensity, At is the texture alpha, CM

is the color after the modulate operation and AM is the alpha value after
the modulate operation.

5.12.2 Fog Application

The fog unit is used to combine the incoming fragment's color
(generated by the Color DDA unit, and potentially modified by the
texture unit) with a pre-defined fog color. Fogging can be used to
simulate atmospheric fogging, and also to depth-cue images.

Fog application has two stages; derivation of the fog index for a
fragment, and application of the fogging effect. The fog index is a value

TVP4020 Programmers Reference Manual Graphics Programming

111

which is interpolated over the primitive using a DDA in the same way
color and depth are interpolated. The fogging effect is applied to each
fragment using the equation described below.

Note that although the fog values are linearly interpolated over a
primitive the fog values at each vertex can be calculated on the host
using a linear fog function (typically for simple fog effects and depth-
cueing) or a more complex function to model atmospheric attenuation.
This might be an exponential function.

A fog test is supported that will reject a fragment if its fog value is
negative. This may be used if the background of the scene has been
cleared to the fog color; any pixels that are far enough from the eye to
be completely fogged need not be plotted.

The enable bit in the FogMode register and the FogEnable bit in the
Render register must both be enabled before fog will be applied.

5.12.3 Fog Index Calculation - The Fog DDA

The fog DDA is used to interpolate the fog index (F) across a primitive.
For a fogged trapezoid, PERMEDIA interpolates from the dominant edge of
a trapezoid to the subordinate edges. This means that two increment
values are required, one to move along the dominant edge and one to
move across the span to the subordinate edge. This is illustrated in the
diagram below. The rendering direction chosen here is bottom to top.

FStart = Start fog value

dFdyDom = Increment along dominant edge.

dFdx = Increment along the scan line.

The dFdx value is not required for fogged lines.

The mechanics are similar to those of the other DDA units, as the
diagram below illustrates:

dF dyDom dF dX

Subordinate Edges

Dominant Edge

Figure 5.41 Fog Interpolation Over A Triangle

Graphics Programming TVP4020 Programmers Reference Manual

112

where:
FStart = initial fog value.
dFdx = Fog gradient in the X direction.
dFdyDom = Fog gradient along the dominant edge of a primitive.

Note that for fogged lines the dFdx delta is not required.

The fog index is specified as an 18bit fixed point value. The format is 2's
complement with 2 bits integer and 16 bits fraction.

08162431

Integer

Not used Fraction Not used

Sign bit

Figure 5.42 Fog Interpolant Fixed Point Format

The fog DDA calculates a fog index value which is clamped to lie in the
range 0.0 to 1.0 before it is used in the fogging equations described
below.

5.12.4 Fogging Equation

The fogging equation is:

C = fCi + (1-f)Cf

where:
C = outgoing fragment color
Cf = fog color
Ci = incoming fragment color
f = fog index

The equation is applied to the color components, red, green and blue;
alpha is not modified. The diagram below shows how the fogging would
typically affect a scene. Initially no fogging occurs, f >=1.0, then a region
of linear combination of the fragment color and fog color occurs 1.0 < f >
0.0, followed by a region of constant fog color, f <= 0.0.

TVP4020 Programmers Reference Manual Graphics Programming

113

0

Fog Index (f)

Linear Fogging
 Range

1.0

Fragment Color Fogged Color

Increasing Screen Depth

C=Ci

C=Cf

C=fCi + (1-f)Cf

Figure 5.43 Fogging

5.12.5 Alpha Blending

The Alpha Blend Unit supports alpha blending or color formatting. Two
types of alpha blending are supported, one that is common for RGB1

and Ramp2 applications, and one that is specific to Ramp applications.
Alpha blending combines the fragment's color, potentially after texture
and fog have been applied, with that stored in the framebuffer.

Data from the framebuffer is in the raw format so must be converted to
the internal format before the blend can be done. This is achieved by
setting the ColorFormat and ColorFormat Extension fields in the
AlphaBlendMode register.

In some situations blending is desired when no retained alpha buffer is
present. In this case the alpha value which is considered to be read from
the framebuffer will be set to 1.0. The NoAlphaBuffer bit in the
AlphaBlendMode register controls this.

Common Blend Mode

The common blend operation is defined as:

Co = CsAs+ Cd(1-As)

where: Co is the output color, Cs is the source color , As is the source
alpha and Cd is the destination color read from the framebuffer. Setting
the Operation field to “Blend” in the AlphaBlendMode register will
achieve this.

1 RGB is also referred to as OpenGL mode.
��5DPS�LV�DOVR�UHIHUUHG�WR�DV�$SSOH�PRGH�

Graphics Programming TVP4020 Programmers Reference Manual

114

See The OpenGL Reference Manual and The OpenGL Programming
Guide from Addison-Wesley for more details of this style of alpha
blending.

Ramp Blend Mode

The alternative blend mode is called PreMult and does the operation:

Co = Cs+ Cd(1-As)

For correct operation of Apple PreMult blending, the BlendType needs to
be set to Ramp.

5.12.6 Image Formatting

The Alpha Blend and Color Format units can be used to format image
data into any of the supported PERMEDIA framebuffer formats.

Consider the case where the framebuffer is in RGBA 5.5.5.1 mode, and
an area of the screen is to be uploaded and stored in an 8 bit RGB 3:3:2
format. The sequence of operations is:

• Set the Rasterizer as appropriate see section §5.3.10

• Enable framebuffer reads

• Disable framebuffer writes and set the UpLoadData bit in the
FBWriteMode register

• Enable the Alpha Blend unit, set the operation to “Format” (assuming
no alpha blending is needed) and set the color mode to RGBA 5.5.5.1.
This can all be achieved by setting the appropriate fields in the
AlphaBlendMode register.

• Set the Color Format unit to format the color of incoming fragments to
an 8 bit RGB 3:3:2 framebuffer format.

The upload now proceeds as normal. This technique can be used to
upload data in any supported format.

The same technique can be used to download data which is in any
supported framebuffer format. In this case the Rasterizer is set to
synchronize with FBData (rather than Color), framebuffer writes are
enabled and the UpLoadData bit cleared.

Normally internal color and alpha values require scaling if they are less
than 8 bits. However there are situations where the least significant bits
should be zeroed. This is needed for multi-pass rendering to prevent
dithering occurring multiple times. This option can be independently
applied to color and alpha values by setting the ColorConversion and/or
AlphaConversion bits in the AlphaBlendMode register to Shift rather than
Scale.

TVP4020 Programmers Reference Manual Graphics Programming

115

5.12.7 Registers

The TextureColorMode register is used to enable and disable texturing
(qualified by the texture application bit in the Render command register).
The KsDDA and KdDDA bits enable the internal DDAs and should be
set for modulate or highlight Ramp texture application modes. The
Texture Type field differentiates between Ramp and RGB application
modes. Combinations of decal, modulate and highlight are supported
with Ramp Application Mode.

08162431

Reserved

Enable Texture

Application Mode

Texture TypeKdDDA

KsDDA

Figure 5.44 TextureColorMode Register

The Texel0 register holds the texture value. This may be loaded
automatically by the Texture Read unit, or supplied from the host for a
procedural texture. Fig 5.44 and 5.45 show texture values in RGB and
YUV formats respectively. This register is also used to hold the
background color for the bitmask and stipple tests. If the tests fail then
this color can be used in place of that from the Color DDA unit.

08162431

Alpha RedGreenBlue

Figure 5.45 Texel0 Register - RGB and YUV formats

The six registers: KsStart, dKsdx, dKsdyDom, KdStart, dKddx and
dKddyDom hold the start, dx and dyDom parameters for Ks and Kd.
The format is 2's complement 2.16 fixed point format (1 bit sign, 1 bit
integer, 16 bits fraction) with an effective range of ±1.999. The values of
Ks and Kd at each vertex are used to calculate the gradient values in
much the same way as the Z gradients, when interpolating depth see
Appendix D.

The FogMode register is used to enable and disable fogging (qualified
by the fog application bit in the Render command register). Setting Fog
Test causes fragments with negative fog values to be rejected see
section §5.12.2.

Graphics Programming TVP4020 Programmers Reference Manual

116

08162431

Reserved

Fog Enable

Reserved

FogTest

Figure 5.46 FogMode Register

Additional fog registers are, FogColor, which holds the fog color in the
standard color format. FStart, dFdx & dFdyDom which control the fog
DDA and are formatted in 2's complement 2.16 fixed point format as
described above.

Blending is controlled by the AlphaBlendMode register:

08162431

Reserved

AlphaBlendEnable
NoAlphaBuffer

ColorFormat Operation

ColorOrder
BlendTypeReserved

ColorFormatExtension

ColorConversion
AlphaConversion

Figure 5.47 AlphaBlendMode Register

The color format and order is needed as the destination color is read
from the framebuffer and needs to be converted into the internal
PERMEDIA representation, it should therefore be set as appropriate for the
framebuffer. The operation can be either format or blend or PreMult.

5.12.8 Texture Application Example

Example of texture mapped trapezoid:

// Set-up Texture/Fog/Blend unit

textureColorMode.Enable = PERMEDIA_TRUE

textureColorMode.ApplicationMode = PERMEDIA_TEXTURE_MODULATE

TextureColorMode(textureColorMode)

// Render with texture enabled in render command

// render.TextureEnable = PERMEDIA_TRUE

TVP4020 Programmers Reference Manual Graphics Programming

117

5.12.9 Fog Example

A Gouraud shaded, fogged RGBA trapezoid, with the fog color set to
white. See Appendix D for details of how to calculate depth delta values
- fog values are calculated in a similar way.
// Enable the Color DDA unit in Gouraud shading mode

colorDDAMode.UnitEnable = PERMEDIA_ENABLE

colorDDAMode.Shade = PERMEDIA_GOURAUD_SHADE_MODE

ColorDDAMode(colorDDAMode)

// Enable the Fog unit

fogMode.FogEnable = PERMEDIA_TRUE

FogMode(fogMode)

// Set the fog color to white

FogColor(0xFFFFFFFF)

// Load the color start values and deltas for dominant edge

// and the body of the trapezoid

RStart() // Set-up the red component start value

dRdx() // Set-up the red component increments

dRdyDom()

GStart() // Set-up the green component start value

dGdx() // Set-up the green component increments

dGdyDom()

BStart() // Set-up the blue component start value

dBdx () // Set-up the blue component increments

dBYDom()

// Load the start value and delta for dominant edge

// and the body of the trapezoid

// Note that the fog deltas are calculated in the same

// way as the color deltas

FStart() // Set-up the fog component start value

dFdx() // Set-up the fog component increments

dFdyDom()

// When issuing a Render command the FogEnable bit

// should be set in addition to the fog unit being

// enabled:

// render.FogEnable = PERMEDIA_TRUE

Graphics Programming TVP4020 Programmers Reference Manual

118

5.13 Color Format Unit

The Color Format unit converts from PERMEDIA's internal color
representation to a format suitable to be written into the framebuffer.
This process may optionally include dithering of the color values. If the
unit is disabled then the color is not modified in any way.

5.13.1 Color Formats

The framebuffer may be configured to be RGBA or Color Index (CI).
Table 4.1 shows the full list of color modes supported by PERMEDIA. The
R, G, B and A columns show the width of each color component. The
least significant bit position is 0. For the Front and Back Modes the value
is repeated in both buffers, and writemasks may be used to update only
one buffer. In CI mode, the index is repeated in all streams.

5.13.2 Color Dithering

PERMEDIA uses an ordered dither algorithm to implement color dithering.
It also has a line dither mode which uses a different algorithm which will
generally give better results for lines because it is independent of
orientation. This mode is not available for trapezoids.

If the Color Format unit is disabled, the color components RGBA are not
modified and will be truncated when placed in the framebuffer. In CI
mode, the value is truncated to the nearest integer. In both cases the
result is clamped to a maximum value to prevent overflow.

PERMEDIA supports 8888 RGBA format for 2d operations only. If this
mode is selected and dithering is enabled, it will result in 5551RGBA
quality for each 32 bit pixel. This can be used when the window manager
needs to be set-up for true color at the same time as 3D windows are
required.

In some situations only screen coordinates are available, but window
relative dithering is required. This can be resolved by setting up the
optional X and Y offsets which get added to the coordinates before the
dither tables are indexed. Each offset is a two bit number which is
supplied for each coordinate. The XOffset and YOffset fields in the
DitherMode register control this operation and should be set to zero if
window relative coordinates are used.

5.13.3 ForceAlpha

The Color Format unit can force the alpha value to be either 0x0 or the
maximum 0xFF, or leave it unchanged. This can be used to implement
overlays. See section §7.6 for a detailed description.

TVP4020 Programmers Reference Manual Graphics Programming

119

5.13.4 Registers

One register controls the operation of this unit, DitherMode, and its
layout is:

08162431

Color format

Reserved

Dither enable

Unit enable

X offset

Y offset

ForceAlphaColor format extension

DitherMethod

Reserved

Color order

Figure 5.48 Dither Mode Register

The X and Y offset fields are for window relative dithering. Color order
species RGB or BGR color order. The Color format and Color format
extension fields control color depth and options are given in table 4.1.

5.13.5 Dither Example

To set the framebuffer format to RGB 3:3:2 and enable dithering:

// 332 Dithering

ditherMode.UnitEnable = PERMEDIA_TRUE

ditherMode.DitherEnable = PERMEDIA_TRUE

ditherMode.ColorMode = PERMEDIA_COLOR_FORMAT_RGB_332

DitherMode (ditherMode) // Load register

5.13.6 Color Format Example

To set the framebuffer format to RGB 3:3:2 and disable dithering:

// 332 No Dither

ditherMode.UnitEnable = PERMEDIA_TRUE

ditherMode.DitherEnable = PERMEDIA_FALSE

ditherMode.ColorMode = PERMEDIA_COLOR_FORMAT_RGB_332

DitherMode(ditherMode) // Load register

5.13.7 Color Format Example

To set the framebuffer to RGBA 8:8:8:8 and not dithered:

Graphics Programming TVP4020 Programmers Reference Manual

120

// 8888 Dithered (No effect as 8 bit components are

// not dithered)

ditherMode.UnitEnable = PERMEDIA_TRUE

ditherMode.DitherEnable = PERMEDIA_FALSE

ditherMode.ColorMode = PERMEDIA_COLOR_FORMAT_RGBA_8888

DitherMode(ditherMode) // Load register

TVP4020 Programmers Reference Manual Graphics Programming

121

5.14 Logical Op Unit

The Logical Op unit performs three functions:

• logic operations between the fragment color (source color) and a
value from the framebuffer (destination color)

• software writemasking

• optional control of a special PERMEDIA mode which allows flat shading
rendering.

5.14.1 Logical Operations

The logical operations supported by PERMEDIA are:

Mode Name Operation
0 Clear 0
1 And S & D
2 And Reverse S & ~D
3 Copy S
4 And Inverted ~S & D
5 No-op D
6 Xor S ^ D
7 Or S | D
8 Nor ~(S | D)
9 Equivalent ~(S ^ D)
10 Invert ~D
11 Or Reverse S | ~D
12 Copy Invert ~S
13 Or Invert ~S | D
14 Nand ~(S & D)
15 Set 1

Where: S = Source (fragment) Color, D = Destination
(framebuffer) Color

Table 5.20 Logical Operations

For correct operation of this unit in a mode which takes the destination
color, PERMEDIA must be configured to allow reads from the framebuffer
using the FBReadMode register. See section §5.10 for more details.

PERMEDIA makes no distinction between RGBA and CI modes when
performing logical operations. However, logical operations are generally
only used in CI mode.

Graphics Programming TVP4020 Programmers Reference Manual

122

5.14.2 Software Writemasks

Software writemasking is normally only implemented when Hardware
writemasking is unavailable. It is controlled by the FBSoftwareWriteMask
register. The data field has one bit per framebuffer bit which when set,
allows the corresponding framebuffer bit to be updated. When reset, it
protects the bit from being written. Software writemasking is applied to
all fragments and is not controlled by an enable/disable bit. However it
may effectively be disabled by setting the mask to all 1's. If the mask is
not all 1’s, the ReadDestination bit must be enabled in the FBReadMode
register to correctly use software writemasks. See the Framebuffer
Read/Write section for details of how to enable/disable framebuffer
reads.

The software writemask MUST be set to all 1’s, except when software
writemasking is explicitly required.

5.14.3 Flat Shaded Rendering

A special PERMEDIA rendering mode is available which allows rendering
of unshaded images.

Note: This method is no longer recommended on TVP4020. Other
methods of flat shading are as least as fast and are simpler to
set-up correctly. It has been included here for the benefit of
understanding legacy TVP4010 software.

• Flat shaded primitive

• No dithering required

• No logical ops

• No stencil or depth testing required

• No alpha blending

The following are available:

• Bit masking in the Rasterizer

• Area and line stippling

• User and Screen Scissor test

If all the conditions are met then rendering can be achieved by setting
the FBWriteData register to hold the framebuffer data (in raw framebuffer
format) and setting the UseConstantFBWriteData bit in the
LogicalOpMode register. All unused units should be disabled.

This mode is most useful for 2D applications or for clearing the
framebuffer when the memory does not support block writes. Note that
FBWriteData register should be considered volatile when context
switching.

TVP4020 Programmers Reference Manual Graphics Programming

123

5.14.4 Registers

The operation of the unit is controlled by the LogicalOpMode register:

08162431

Reserved

LogicalOp enable

UseConstantFBWriteData

LogicOp

Figure 5.49 LogicalOpMode Register

5.14.5 XOR Example

To set the logical operation to XOR.

// Set framebuffer to allow reads

// Not shown

logicalOpMode.UnitEnable = PERMEDIA_ENABLE

logicalOpMode.LogicalOp = PERMEDIA_LOGICOP_XOR

LogicalOpMode(logicalOpMode) // Load register

5.14.6 Software Writemask Example

To set the logical operation to COPY, enable the software writemask,
and write to the green component in an 8 bit framebuffer configured in
3:3:2 RGB mode:

Graphics Programming TVP4020 Programmers Reference Manual

124

// Set framebuffer to allow reads

// Not shown

ditherMode.UnitEnable = PERMEDIA_ENABLE

ditherMode.DitherEnable = PERMEDIA_ENABLE

ditherMode.ColorMode = PERMEDIA_COLOR_FORMAT_RGB_332

DitherMode(ditherMode) // Load register

logicalOpMode.UnitEnable = PERMEDIA_ENABLE

logicalOpMode.LogicalOp = PERMEDIA_LOGICOP_COPY

LogicalOpMode(logicalOpMode) // Load register

FBSoftwareWriteMask(0xFFFFFFE3)

5.15 Host Out Unit

The Host Out Unit controls which registers are available at the output
FIFO, gathers statistics about rendering operations (picking and extent
testing) and controls synchronization of PERMEDIA with the host.

5.15.1 Filtering

Filtering controls the data made available at the output FIFO. There are
the following categories:

• Depth, Stencil, Color: These are data values associated with a
fragment which has been read from the localbuffer or framebuffer, or
generated using the UpLoadData flag in the Framebuffer Write Unit.
This category is normally associated with uploading data to the host.

• Synchronization: A single register, Sync which is used to synchronize
PERMEDIA and flush the graphics pipeline.

• Statistics: The registers associated with extent checking and picking.

The filtering is controlled by the FilterMode register which has 2 bit fields
for each category. These fields select whether the register tag and/or
register data, are passed to the output FIFO. The format of the
FilterMode register is shown in the table below.

Register Category Tag
Control

Bit

Data
Control

Bit

Description

Reserved 0 1

Reserved 2 3

Depth 4 5 This is the data from image upload of the
Depth (Z) buffer.

TVP4020 Programmers Reference Manual Graphics Programming

125

Stencil 6 7 This is the data from image upload of the
Stencil buffer.

Color 8 9 This is the data from image upload of the
Framebuffer (FBColor).

Synchronization 10 11

Statistics 12 13 This is the data generated following a
command to read back the results of the
statistic measurements: PickResult,
MaxHitRegion, MinHitRegion

Reserved 14 15

 Table 5.21 Filter Modes

Note, the filter unit must be set appropriately before any synchronization
can take place.

5.15.2 Statistic Operations

There are two statistic collection modes of operation; picking and extent
checking. Picking is normally used to select drawn objects or regions of
the screen. Typically, extent checking is used to determine the bounds
within which drawing has occurred so that a smaller area of the
framebuffer can subsequently be cleared.

Statistic collection is controlled using the StatisticMode register.

Picking

In picking mode, the active and/or passive fragments have their
associated XY coordinates compared against the coordinates specified
in the MinRegion and MaxRegion registers. If the result is true, then the
PickResult flag is set, otherwise it holds its previous state. The compare
function can be either Inside or Outside. Before picking can start, the
ResetPickResult register must be loaded to clear the PickResult flag.

The MinRegion and MaxRegion registers are loaded to select the region
of interest for picking. A coordinate is inside the region if:

Xmin ≤ X < Xmax

Ymin ≤ Y < Ymax

where X and Y are from the fragment and the min/max values are from
MinRegion and MaxRegion registers. This comparison is identical to the
one used in the scissor tests.

The following stages are required for picking:
1) load ResetPickResult, MinRegion and MaxRegion registers

2) Set-up the FilterMode to allow statistic commands out of PERMEDIA

Graphics Programming TVP4020 Programmers Reference Manual

126

3) Draw the primitives.

4) Send a PickResult command.

5) Poll the output FIFO waiting for the PickResult to have passed
through PERMEDIA.

Block fills are ignored by the picking operation.

Extent Checking

In extent mode, active and/or passive fragments have their associated
XY coordinates compared to the MinRegion and MaxRegion registers
and if found to be outside the defined rectangular region, then the
appropriate register is updated with the new coordinate(s) to extend the
region. The Inside/Outside bit has no effect in this mode. Block fills are
included in the extent checking if the StatisticMode register is set to
include spans.

The MinRegion and MaxRegion registers are loaded to select the
maximum value (MinRegion) and minimum value (MaxRegion) for extent
checking. A coordinate is inside the region if:

Xmin ≤ X < Xmax

Ymin ≤ Y < Ymax

where X and Y are from the fragment and the min/max values are from
MinRegion and MaxRegion registers. This comparison is identical to the
one used in the scissor tests.

Once all the necessary primitives have been rendered the results can be
found using the MinHitRegion and MaxHitRegion commands, which
cause the contents of the MinRegion and MaxRegion registers
respectively to be written into the output FIFO (under control of the
FilterMode register).

5.15.3 Synchronization

The Sync command register provides a means of ensuring that PERMEDIA

has completed all outstanding actions such as localbuffer and
framebuffer accesses. Sync is filtered and written to the output FIFO in a
similar fashion to the other registers. The host can either poll for Syncs
by reading the output FIFO or await a Sync interrupt

If generation of an interrupt is required, then the most significant bit of
the Sync command register must be set, and the filtering must be set-up
to at least allow the Sync to be written into the FIFO. If the FilterMode is
set-up so the Sync is not written to the FIFO, then Sync interrupts will
not be generated. The actual interrupt will not occur until the Sync data
or tag has passed through PERMEDIA and is on the output of the FIFO.

TVP4020 Programmers Reference Manual Graphics Programming

127

This to allow low level resynchronization between the graphics core and
PCI clock domains. The FIFO has an extra bit in width to accommodate
the interrupt signal. When both the data and tag are written into the
FIFO, only the first entry in the FIFO will cause the interrupt (assuming
an interrupt was requested).

The remaining bits in the Sync data field are free and can be used by the
host to identify the reason for the Sync.

5.15.4 Registers

Filtering is controlled by the FilterMode register:

08162431

Reserved Individual bits defined above

Figure 5.50 FilterMode Register

Statistic collection is controlled by the StatisticMode register:

08162431

Reserved

Enable Statistics

Statistics TypeMonitor Culled Fragments

Compare Function

Include Spans

Monitor Pixels Written

Figure 5.51 StatisticMode Register

The Include Spans bit allows control over whether or not block fills are
included in the returned information.

08162431

Reserved

Pick Flag

Figure 5.52 PickResult Register

ResetPickResult is used to clear the pick flag. The data field for this
register is unused.

Graphics Programming TVP4020 Programmers Reference Manual

128

MinRegion, MaxRegion registers are used to load picking/extent regions,
and MaxHitRegion and MinHitRegion are used to read the registers
back. The format is 16 bit 2's complement numbers with Y in the most
significant part and X in the least significant part of the word.

Setting the most significant bit of the Sync register will request a Sync
interrupt. Bits 0-30 are available for the user.

5.15.5 Filter Mode Example

// Set-up Filter mode to only permit read back of

// synchronization tag and data

FilterMode(0x0C00) // Set bits 10 & 11

5.15.6 Picking Example

Set the statistic mode to picking and detect any active fragments in the
region 0x0 <= x < 0x100, 0x0 <= y < 0x100. Render some primitives
then read back the results.

TVP4020 Programmers Reference Manual Graphics Programming

129

// Set filter mode as above

FilterMode(0x0C00) // Set bits 10 & 11

// Set statistic mode

MinRegion(0)

MaxRegion(0x100 | 0x100 << 16)

// Clear the picking flag

ResetPickResult(0x0) // Data not used

// Now render primitives.... ...

Render (render) // All units set as appropriate

// All rendering finished.

// Set the filter mode to allow read back of Syncs and

// statistic information (tag and data)

FilterMode(0x3C00) // Set bits 10 to 13

// Write to the PickResult register

PickResult(0x0) // Data not used

// Now read the PickResult from the output FIFO (not shown)

5.15.7 Sync Interrupt Example

Generate a synchronization interrupt and encode some user defined
data (0x34) in the lower 31 bits of the Sync register.
// Set-up Filter mode to only permit read back of

// synchronization tag and data

FilterMode(0x0C00) // Set bits 10 & 11

// Write to the Sync register with the top bit (bit 31) set and

// user data encoded into the lower bits (0-30)

sync = (0x1 << 31) | (0x34 & 0x7FFFFFFF)

Sync (sync)

// Now wait for the sync interrupt. Not shown.

Initialization TVP4020 Programmers Reference Manual

130

6. Initialization

6.1 Initializing PERMEDIA

This section illustrates how to initialize PERMEDIA following reset, prior to
carrying out rendering operations.

Initialization falls broadly into three areas, though in different systems
precise responsibilities can vary:

• System initialization covers the setting up of the PCI bus, memory and
video output. This information typically is only initialized once following
reset.

• Window initialization, also referred to as context initialization, covers
the setting of the base address of the current rendering window and its
color format. This must occur at reset, but will need updating each time
PERMEDIA starts drawing to a new window.

• Application initialization covers state that is typically dynamic; enabling
and disabling depth testing for example. Again this state must be set at
reset, but is likely to be updated relatively frequently.

To make use of the full functionality of PERMEDIA, consult the relevant
sections of the Graphics Programming chapter (chapter §5). Examples
are given which make use of the pseudocode conventions given in
Appendix B.

Note: In general the graphics registers (those listed in Appendix A, as
opposed to those documented in the TVP4020 Hardware
Reference Manual) are not hardware initialized to specific values
at reset. In the examples below it is assumed that the data
structures used to load these registers are initialized to zero. Thus
bit fields which are not set explicitly, will default to zero.

6.2 System Initialization

6.2.1 PCI

There are a set of PCI related registers which can be interrogated for
information about the chip, for example its revision and device ID. Some
of these PCI related registers will need to be set-up at reset, for instance
to configure the base addresses of the different memory regions of the
chip. For more details refer to the TVP4020 Hardware Reference Manual
and the PCI Local Bus Specification Rev2.1.

TVP4020 Programmers Reference Manual Initialization

131

6.2.2 Memory Configuration

The memory interface control registers should be programmed to reflect
the type and amount of memory fitted. The registers are specified in the
TVP4020 Hardware Reference Manual.

6.2.3 SVGA and Internal Video Timing Registers

Details for programming the SVGA registers can be found in the
TVP4020 Hardware Reference Manual.

The core video timing generator should be programmed to reflect the
timings of the monitor being used and the screen resolution and color
depth. Note that there is also a SVGA VTG and care must be taken to
ensure the correct one is enabled at the right time. To change from
SVGA to core display mode, two stages are required. Firstly the core
VTG must be set-up and then VGAControlReg must be loaded (the
EnableVGADisplay bit set to 0).

Details of programming the registers for both VTGs can be found in the
TVP4020 Hardware Reference Manual.

6.2.4 Screen Width

The width of the screen is initialized by setting the three partial products
fields in the FBReadMode, LBReadMode and TextureMapFormat
registers. Note that the width is in pixels, not in bytes, so the same
values apply regardless of framebuffer depth, for a given screen
resolution. A full list is given in Appendix C.

To initialize the screen to be 1024 pixels wide the registers would be set
as follows.

fbReadMode.PP0 = 5
fbReadMode.PP1 = 5
fbReadMode.PP2 = 0
FBReadMode(fbReadMode)

lbReadMode.PP0 = 5
lbReadMode.PP1 = 5
lbReadMode.PP2 = 0
LBReadMode(lbReadMode)

textureMapFormat.PP0 = 5
textureMapFormat.PP1 = 5
textureMapFormat.PP2 = 0
TextureMapFormat(textureMapFormat)

Initialization TVP4020 Programmers Reference Manual

132

Note that the PERMEDIA Graphics Core supports a maximum screen
resolution of 2048 x 20481.

6.2.5 Screen Clipping Region

PERMEDIA supports a screen scissor clip which should be set at system
initialization, and a user scissor clip which should initially be disabled.
Assuming that the FBWindowBase and LBWindowBase registers are set
appropriately, then setting the screen clip prevents writing outside the
framebuffer memory (and localbuffer), which could have undesirable
results. The following example would be appropriate for a resolution of
1024 by 768 pixels:

screenSize.X = 1024
screenSize.Y = 768
ScreenSize(ScreenSize)

scissorMode.ScreenScissorEnable = PERMEDIA_ENABLE
scissorMode.UserScissorEnable = PERMEDIA_DISABLE
ScissorMode(ScissorMode)

6.2.6 Localbuffer and Framebuffer Configuration

Since PERMEDIA supports a unified memory architecture, it must be
decided how the memory is to be partitioned between framebuffer,
localbuffer and texture memory. A typical configuration might be to
allocate 2 screen sized buffers: one for the visible screen, the other for
the 3D back buffer. Then allocate a localbuffer: this is always 16 bits per
pixel; and allow the remainder to be used for texture memory. The
localbuffer and texture memory can be considered to have different
shapes to the front and back buffers. For example, suppose that a
screen resolution of 800x600 at 8 bits per pixel is required, then the
following offsets could be used. Each offset is a count in pixels from the
start of memory.

Front buffer: pixel offset 0
Back buffer: pixel offset 480000 (= 600*800 bytes)
Local buffer: pixel offset 480000 (offset in 16 bit pixels)
Texture memory: byte offset 1920000 (= 2*600*800 +
600*800*sizeof(USHORT))

The size of the pixel depends on the buffer being considered. Hence the
offset to the back buffer and the localbuffer appear to be the same but
one is measured in bytes, the other in shorts.

These offsets should be saved as software copies to used as required.
For example, to select the front buffer for rendering, the FBPixelOffset

1 The actual screen resolution obtainable will be limited by the RAMDAC. In the case of
the integrated RAMDAC this is 1600 x 1280 at a screen refresh rate of 85 Hz.

TVP4020 Programmers Reference Manual Initialization

133

register would be set to 0; to select the back buffer it would be set to the
Back buffer pixel offset. The localbuffer offset should be added to the
window base offset whenever the LBWindowBase register is updated.
The value loaded into the TextureBaseAddress is a count of the number
of texels from the start of memory. Thus the byte offset should be
modified to be a texel count when used. In practice, some sort of texture
allocation scheme will be needed where textures are allocated starting at
the texture memory offset. The final value loaded into the
TextureBaseAddress register will be the texture memory offset + offset
to the required texture with the final value converted to a texel count
from the start of memory.

PERMEDIA supports a range of localbuffer configurations. During
initialization, fields in the LBWriteFormat and LBReadFormat registers
should be set to appropriate values. For example:

lbReadFormat.DepthWidth = 3 // 15 bit depth buffer
lbReadFormat.StencilWidth = 3 // 1 bit stencil
LBReadFormat(lbReadFormat)

lbWriteFormat.DepthWidth = 3 // 15 bit depth buffer
lbWriteFormat.StencilWidth = 3 // 1 bit stencil
LBWriteMode(lbWriteFormat)

Note it is possible to dynamically change the number of bits allocated to
the depth and stencil buffers, for instance on a per window basis.

Set the framebuffer and localbuffer read units to their default data
sources:

fbReadMode.DataType = PERMEDIA_FBDATA
FBReadMode(fbReadMode)

lbReadMode.DataType = PERMEDIA_LBDEFAULT
LBReadMode(lbReadMode)

The following registers are typically only needed for certain specialized
operations. Normally their offsets will be zero.

FBSourceOffset(0)
FBPixelOffset(0)
LBSourceOffset(0)

6.2.7 Host Out Unit

Under some circumstances it is necessary to synchronize with PERMEDIA.
This is controlled through the Sync command. The host out FIFO should
normally be initialized so as to output the Sync tag and data (they can be
filtered out).

Initialization TVP4020 Programmers Reference Manual

134

In addition the host out unit should normally be set to filter out all other
output data, otherwise the host software must regularly poll the output
FIFO to keep it drained and prevent it freezing the pipeline. For example:

filterMode.Depth = PERMEDIA_NULL
filterMode.Stencil = PERMEDIA_NULL
filterMode.Color = PERMEDIA_NULL
FilterMode.Synchronization = PERMEDIA_FILTER_TAG_AND_DATA
 // Allow Syncs through
filterMode.Statistics = PERMEDIA_NULL
filterMode.Remainder = PERMEDIA_NULL
FilterMode(filterMode)

6.2.8 Disabling Specialized Modes

Some operations should be disabled until they are need. Refer to the
Graphics Programming chapter (chapter §5) for more details on their
use.

window.LBUpdateSource = PERMEDIA_TRUE
window.ForceLBUpdate = PERMEDIA_FALSE
window.DisableLBUpdate = PERMEDIA_TRUE
Window(window)

6.3 Window Initialization

PERMEDIA supports the concept of a window origin, and makes it
relatively simple to implement systems which allow different color
formats to coexist in different windows.

6.3.1 Color Format

The Color Format unit and the alpha blend unit should be initialized to an
appropriate color format at reset. The units support a variety of different
formats, listed in table 4.1.

For example to render in 3:3:2, 8 bit color format, the following would be
needed:

ditherMode.ColorFormat = PERMEDIA_COLOR_FORMAT_RGB_332_FRONT
DitherMode(ditherMode)

alphaBlendMode.ColorFormat =
PERMEDIA_COLOR_FORMAT_RGB_332_FRONT
AlphaBlendMode(alphaBlendMode)

TVP4020 Programmers Reference Manual Initialization

135

To enable dithering use the following:
ditherMode.XOffset = 0
ditherMode.YOffset = 0
ditherMode.DitherEnable = PERMEDIA_ENABLE
ditherMode.UnitEnable = PERMEDIA_ENABLE
DitherMode(ditherMode)

Note that the Color Format unit is normally always enabled even if
dithering itself is not. This is because the unit handles color formatting as
well as the dithering operation.

6.3.2 Setting the Window Address and Origin.

PERMEDIA supports the concept of a current window origin. The origin of
the window can be specified either as being in the Top Left or Bottom
Left corner. This allows the user to pick the most appropriate
coordinate system to use; for 3D graphics it would typically be bottom
left, whereas for window systems it would be top left. Thus for OpenGL
set:

fbReadMode.WindowOrigin = PERMEDIA_BOTTOM_LEFT_WINDOW_ORIGIN
FBReadMode(fbReadMode)

lbReadMode.WindowOrigin = PERMEDIA_BOTTOM_LEFT_WINDOW_ORIGIN
LBReadMode(lbReadMode)

textureMapFormat.WindowOrigin =
PERMEDIA_BOTTOM_LEFT_WINDOW_ORIGIN

TextureMapFormat(textureMapFormat)

The window origin is set in the Scissor unit. This information usually is
provided by the window system. It will need updating if the window
moves. As an example if the position of the window is (200, 600) (using
a bottom left coordinate system), the origin is specified as follows:

windowOrigin.X = 200
windowOrigin.Y = 600
WindowOrigin(windowOrigin)

The base address of the window must also be established in the
localbuffer read and framebuffer read units. The base address is the
physical address that represents the base address of the window.
Assuming the base address of the framebuffer represents the pixel in
the top left corner of the screen, then for the example above the actual
physical address of the bottom left pixel of the window will be set as
follows:

fbWindowBase = fbBaseAddress +
 (fbWidth * (fbHeight-1-600) + 200)
FBWindowBase(fbWindowBase)

Initialization TVP4020 Programmers Reference Manual

136

lbWindowBase = lbBaseAddress +
 (lbWidth * (lbHeight-1-600) + 200)
LBWindowBase(lbWindowBase)

Where fbBaseAddress, fbWidth and fbHeight are the physical base
address, width and height of the framebuffer (in pixels). fbBaseAddress
and lbBaseAddress will have been precomputed as described in Section
§6.2.6. As with the WindowOrigin data, if the window moves, these
registers must be updated.

6.3.3 Writemasks

Normally both the hardware (if present) and the software writemasks will
initially be set to make all bitplanes writeable:

FBSoftwareWriteMask(PERMEDIA_ALL_WRITEMASKS_SET)
FBHardwareWriteMask(PERMEDIA_ALL_WRITEMASKS_SET)

6.3.4 Enabling Writing

Which buffers are enabled at any given time is window specific and
should be considered for performance reasons. Performance will be
improved if unnecessary reads from, and writes to, buffers are disabled.
For example if the current rendering does not use depth or stencil testing
then reading and writing to the localbuffer may be disabled. The
following example initializes the buffers to allow depth buffering and
alpha blending:

fbWriteMode.UnitEnable = PERMEDIA_ENABLE
FBWriteMode(fbWriteMode)

lbWriteMode.UnitEnable = PERMEDIA_ENABLE
LBWriteMode(lbWriteMode)

lbReadMode.ReadSourceEnable = PERMEDIA_DISABLE
lbReadMode.ReadDestinationEnable = PERMEDIA_ENABLE
LBReadMode(lbReadMode)

fbReadMode.ReadSourceEnable = PERMEDIA_DISABLE
fbReadMode.ReadDestinationEnable = PERMEDIA_ENABLE
FBReadMode(fbReadMode)

Note that to use software writemasking, the FBReadMode register's
ReadDestinationEnable field will need to be set if the writemask is set to
other than all 1's.

6.3.5 Setting Pixel Size

The size of the pixels must be set so that the memory can be accessed
correctly. To do this, use the FBReadPixel register e.g.:

TVP4020 Programmers Reference Manual Initialization

137

fbReadPixel.PixelSize = PERMEDIA_16_BIT_PIXEL
FBReadPixel(fbReadPixel)

Three framebuffer pixel sizes are possible: 8, 16, 24 and 32 bits. The
localbuffer pixel size is fixed at 16 bits.

6.4 Application Initialization

While an application is running, it may dynamically use features of
PERMEDIA such as depth buffering, alpha blending, logical operations,
etc.. Initially, however, it is recommended that the respective units are
disabled, to ensure that they are in a known state:

areaStippleMode.UnitEnable = PERMEDIA_DISABLE
AreaStippleMode(areaStippleMode)

depthMode.UnitEnable = PERMEDIA_DISABLE
DepthMode(depthMode)

stencilMode.UnitEnable = PERMEDIA_DISABLE
StencilMode(stencilMode)

textureAddressMode.UnitEnable = PERMEDIA_DISABLE
TextureAddressMode(textureAddressMode)

textureReadMode.UnitEnable = PERMEDIA_DISABLE
TextureReadMode(textureReadMode)

texelLUTMode.UnitEnable = PERMEDIA_DISABLE
TexelLUTMode(texelLUTMode)

yuvMode.UnitEnable = PERMEDIA_DISABLE
YUVMode(yuvMode)

colorDDAMode.UnitEnable = PERMEDIA_DISABLE
ColorDDAMode(colorDDAMode)

textureColorMode.UnitEnable = PERMEDIA_DISABLE
TextureColorMode(textureColorMode)

fogMode.UnitEnable = PERMEDIA_DISABLE
FogMode(fogMode)

alphaBlendMode.UnitEnable = PERMEDIA_DISABLE
AlphaBlendMode(alphaBlendMode)

logicalOpMode.UnitEnable = PERMEDIA_DISABLE
LogicalOpMode(logicalOpMode)

statisticMode.EnableStats = PERMEDIA_DISABLE
StatisticMode(statisticMode)

Initialization TVP4020 Programmers Reference Manual

138

6.5 Bypass Initialization

The PERMEDIA bypass mechanism gives direct access to memory that
PERMEDIA uses to hold the framebuffer, localbuffer and textures. In some
situations it is useful for an application to have direct access to this
memory without going through the graphics processor. Initialization of
PCI registers, in particular the Bypass Writemask register, covers
initialization of the bypass mechanism.

The writemask register BypassWriteMask is undefined at boot time and
should be set to -1.

Refer to the TVP4020 Hardware Reference Manual for further details.

TVP4020 Programmers Reference Manual Programming Tips

139

7. Programming Tips

This chapter covers a variety of programming tips that make best use of
PERMEDIA. The topics covered here are not exhaustive.

7.1 PCI Bus Issues

7.1.1 Improving PCI bus bandwidth for Programmed I/O and DMA

The simplest way to program PERMEDIA is by writing data values into the
memory mapped registers. i.e. programmed I/O. This is appropriate for
primitives which require few set-up parameters such as 2D lines.

For more complex primitives such as Gouraud shaded triangles, where a
significant number of registers must be loaded for each primitive, it may
be more optimal to write directly to the PERMEDIA FIFO input.

The advantage of this mechanism is that it is then possible to use DMA
burst transfers. The disadvantage of this method is that both the address
of the register and the data value to be loaded must be written,
apparently doubling the amount of data to be loaded.

However, to improve bus bandwidth utilization, the registers have been
grouped, into blocks which frequently all need to be updated together,
and an indexed addressing mode is supported which allows a single
"address" to be loaded, followed by the data for a whole set of registers.

An additional mode is supported which allows a large number of data
values to be loaded to the same register. This is useful for image
downloads.

For more detail, refer to section §3.2.

7.1.2 PCI burst transfers under Programmed I/O

PCI bus burst transfers typically allow up to four times the bandwidth of
individual transfers. However burst transfers are only initiated on the PCI
bus when successive addresses are being written to (i.e. the byte
address is incremented by 4). When using burst transfers to perform
programmed I/O to load the PERMEDIA FIFOs, PERMEDIA multiply maps
the FIFO input register throughout the range:

0x00002000 to 0x00002FFF in region 0

Thus when data is being loaded into the FIFO a software loop should be
written which starts by writing the first data item at the lower extreme of

Programming Tips TVP4020 Programmers Reference Manual

140

this address range, and works towards the upper. For further information
see section §3.2.

7.1.3 Using PCI Disconnect under Programmed I/O

The PCI bus protocol incorporates a feature known as PCI Disconnect,
which is supported by PERMEDIA. Once PERMEDIA is in this mode, if the
host processor attempts to write to the full FIFO then instead of the write
being lost, the PERMEDIA chip will assert PCI Disconnect. This in turn will
cause the host processor to keep retrying the write cycle until it
succeeds.

This feature allows faster download of data to PERMEDIA since the host
need not poll the InFIFOSpace register. But it should be used with care
since whenever the PCI Disconnect is asserted, the bus is effectively
hogged by the host processor until such time as the PERMEDIA frees up
an entry in its FIFO.

7.1.4 Using bus mastership (DMA)

It is expected that most PERMEDIA boards will support PCI bus
mastership. This allows the on-board DMA of PERMEDIA to be used to
copy data from host memory into the PERMEDIA FIFO.

The use of PCI bus mastership has a number of benefits:

• PCI bus bandwidth utilization is generally much improved.

• PCI bus bandwidth is further improved because the driver software no longer needs to
poll the FIFO flags to find how many entries are empty, before loading it.

• Overall system performance may benefit through increased parallelism between
PERMEDIA and the host, as the host can often perform useful work preparing the
next DMA buffer once it has initiated a DMA transfer.

See section §3.2.4 for more details on using DMA.

7.1.5 Improving performance with DMA

The use of DMA interrupts can significantly improve performance as
these allow useful work to be done in time which would be otherwise be
used by polling.

Having multiple DMA buffers is usually advantageous. The size and
number of buffers is dependent on OS dependent issues such as
context switch time.

7.1.6 Improving Texture Mapping performance

The use of interrupts can significantly improve the performance of
texture mapping operations. It achieves this by downloading textures 'on
demand'. That is during a texture mapping operation, if the required
texture map does not exist in local memory, an interrupt is generated so

TVP4020 Programmers Reference Manual Programming Tips

141

that it can be downloaded. See section §5.8.2 to §5.8.6 for further
details.

7.1.7 AGP Support

The Advanced Graphics Port extensions to the PCI protocol are
supported by TVP4020. When in an AGP slot, TVP4020 will function as
a 66MHz PCI device, and also perform single edge AGP read master
transfers, optionally with sideband addressing.

7.2 Graphics Hyperpipeline

7.2.1 Disable Unused Units

Any unit which is not being used should be disabled. This will maximize
pixel throughput in the graphics core.

It is important to make sure that data is not being read from the texture
buffer, localbuffer or framebuffer unless it is needed. For instance it is
perfectly possible to set-up the localbuffer read unit such that PERMEDIA

reads per pixel information, such as Z or stencil buffer data, which is
then discarded. The effect will be the same visually, but the cost in
performance of making the memory accesses will be very high. It is also
important to set the LBDisableUpdate bit in the Window register if
localbuffer writes are not needed.

For optimal performance, hardware writemasks should be used in
preference to software masks.

7.2.2 Avoid Unnecessary Register Updates

PERMEDIA control registers maintain their state between primitives so they
do not need to be updated unless the data needs to change. For
example, the dY register might be set to +1 for a trapezoid and does not
need to be reloaded until a line primitive is drawn.

All delta values and start values are maintained across primitives, so if
two triangles share a dominant edge, the start and dominant edge
values do not need to be calculated or loaded twice.

Similarly, window clipping need not reload all the registers for each clip
rectangle. For example: Load the registers ready for a primitive to be
drawn, then enter a loop which repeatedly loads the coordinates for a
clip rectangle into the Scissor unit and then sends the Render command.
Any number of clip rectangles can be processed in this way but
PERMEDIA requires only one set-up for each primitive.

Programming Tips TVP4020 Programmers Reference Manual

142

7.2.3 Loading Registers in Unit Order

To maximize performance, the control registers for the next primitive
should be loaded into the PERMEDIA FIFO in unit order. Thus the registers
associated with the Rasterizer unit should be loaded first, then Scissor,
Stipple, Localbuffer Read, and so on until the last unit to be loaded is the
Host Out unit (if necessary). Then finally the relevant command register
should be loaded.

For the order of the units in the hyperpipeline, refer to Fig. 5.1.

7.2.4 Use of Continue Commands

The continue commands provide an efficient method for drawing
complex primitives without decomposing them into trapezoids or single
lines.

As far as context switching is concerned, each primitive should be
treated as atomic. For example, if PERMEDIA context switched after the
Render command for a triangle, but before it’s associated
ContinueNewDom command, the second part of the primitive may be
drawn incorrectly. This is because PERMEDIA relies on internal state set-
up by the Render command which would have been corrupted by any
intervening context.

A second requirement of the continue commands is that data written to
the framebuffer or localbuffer before the continue, should not be read
after it. This is not a common occurrence, but a possible situation is
where two lines are drawn, the second joining the end of the first and
being started by ContinueNewLine. If these lines are XOR'd they will
read the pixel they are about to write to. If the second line is at a sharp
angle so that it folds back and overwrites some or all of the first line, the
XOR operation is not guaranteed to be correct because the pixels from
the first line may not have been written to memory before the second
line reads them.

If this situation is likely to occur, a Sync command should be sent before
the ContinueNewLine. This will ensure that all necessary writes
complete before the corresponding reads. The software does not have
to wait for the Sync to be read from the output FIFO, simply sending
Sync is enough to guarantee correct operation.

7.3 Area Filling Techniques

7.3.1 Clearing Buffers Quickly

Block writes are a feature of SGRAMs. Data written once to a single
address can be applied to several addresses at the same time. This is a

TVP4020 Programmers Reference Manual Programming Tips

143

very fast way of filling areas of the screen, but there are restrictions on
when they can be used which are covered elsewhere in this manual.

Block writes are most obviously useful for clearing the screen, but
because PERMEDIA has a unified memory buffer it is possible to clear the
localbuffer with block writes also.

The extent checking in the host out unit can be used to indicate the area
of the screen that has been written, so the screen clear can be limited to
the minimum area necessary.

7.3.2 Avoid Clearing Buffers

Although block writes can be used for fast clearing of buffers, it is best
not to clear them at all. If all pixels on the screen are drawn at least once
per frame then the framebuffer does not need to be cleared. There is no
need to clear the localbuffer either if the following procedure is followed.

For even frames, put the viewer at a depth position of zero and draw
objects in the lower half of the depth range with the depth test set to
'less than'. For odd frames, put the viewer at the maximum depth value
and draw objects into the upper half of the depth range with the depth
test set to 'greater than'.

This loses half of the depth range, but avoids the need to clear the depth
buffer if every pixel is touched at least once.

7.3.3 Trapezoid Fills

Block writes are most useful when clearing the framebuffer, but can be
used to fill any trapezoid.

Block fills, however, are limited to the area defined by the Rasterizer and
cannot be changed by the stipple test. A quick filling technique that
permits these tests can be achieved by setting the
UseConstantFBWriteData bit in the Logic Op unit. When this bit is set,
the required color should be loaded into the FBWriteData register in the
format needed by the memory. All unrequired units should be disabled
and the Rasterizer started. The fill can be done up to twice as quickly
using this method as opposed to the ConstantColor register method.

Also remember that even though the display may be 8 bits per pixel, the
chip can be told to draw at 32 bits per pixel. When this is done four
pixels are plotted at one time, but the width of the region the Rasterizer
covers should be reduced by a factor of four. Use the technique
described in the tip about packed copies to get the Framebuffer Write
Unit to calculate addresses correctly for 32 bit pixels. The
PackedDataLimits register can also be used to mask out unwanted
pixels on the left and right edge.

Programming Tips TVP4020 Programmers Reference Manual

144

7.4 Copies and Downloads

7.4.1 Copies

If the pixel size is 8 or 16 bits per pixel, the copy speed can be improved
by moving more than one pixel at a time. This is achieved by setting the
PackedCopy bit in the Framebuffer Read unit. This bit tells PERMEDIA that
it should pretend that the pixel size is 32 bits and calculate the
addresses accordingly. The screen width does not need to be changed,
nor does the base address or source offset value. The Rasterizer should
be programmed to rasterize a rectangle that is a factor of four narrower
(for 8 bit pixels) or a factor of 2 narrower (for 16 bit pixels) than the
normal size.

The groups of four or two pixels that are copied are all aligned to a 32 bit
boundary, but if some of the edge pixels are not needed, the
PackedDataLimits register can be used to mask them out. If the source
and destination pixels have a different alignment then the RelativeOffset
field in the FBReadMode register can be used to specify how the source
needs to be shifted to line up with the destination.

7.4.2 Downloads

The same registers described in the previous tip can also be used to
pack data during a download to the framebuffer or localbuffer. If the
Rasterizer is set to sync on FBData, the data sent to PERMEDIA must be
in the raw memory format. Four 8 bit pixels can be written at one time to
the chip, and the PackedDataLimits register set to mask any unwanted
pixels at the left and right edges; the RelativeOffset field is used to shift
the alignment of the data as it is being stored.

Downloads to the localbuffer can use LBData, but the Rasterizer does
not support sync on LBData, so the data must be explicitly synchronized
using the Sync command. Alternatively, downloads of stencil and/or
depth data can be performed through the framebuffer write unit, allowing
WaitForCompletion or sync on FBData to be used.

7.4.3 Loading Textures

PERMEDIA handles internal synchronization so that all necessary writes
complete before reads for a given buffer. If the same data is treated as
two different types then the chip must be explicitly synchronized. When a
texture is downloaded it is written to memory through the framebuffer
write unit, but it is read through the Texture Read unit. This means that
the chip must be synchronized between loading the texture and reading
it otherwise it is not guaranteed that the writes will have completed
before the reads have begun. A Sync command can be used to do this,

TVP4020 Programmers Reference Manual Programming Tips

145

or a WaitForCompletion command which does not require the polling of
the output FIFO.

Similarly, if the Framebuffer Write unit is used to clear the localbuffer, or
the Texture Read unit is used in a copy operation, the chip must be
synchronized. The chip will synchronize between localbuffer read and
localbuffer write, and between framebuffer read and framebuffer write.
Any operations that mix buffers need synchronization.

If a texture is downloaded as a normal image, it can make use of the
formatting in the chip to change color format and reorganize the data
into rectangular patches. If texture is already in the required format, a
fast texture download can be used. To use this, set the
TextureDownloadOffset register to point to the start address of the
texture (in 32 bit words). Write 32 bit texture data to the TextureData
register and this will be written to memory without changing format. The
TextureDownloadOffset will automatically increment following each write.
If the texture is 8 bits per texel, then 4 texels must be supplied at a time.
This method of texture download avoids the need to set-up the
Rasterizer for image download and allows the state of the chip to be left
unchanged. Even the framebuffer writes do not have to be enabled.

7.5 Multi Buffering

7.5.1 Fast Double Buffering

PERMEDIA board designs can readily support a variety of double buffering
mechanisms depending on the memory configuration and LUT-DAC
used, including:

• BLT

• Full Screen

• Bitplane

For further details see section §4.4, §5.12.6, §5.12.7 and §5.13 of this
manual.

Note that optimal functionality may be achieved by mixing two or more of
the above double buffering techniques.

As a general performance note, it is best to send non-framebuffer
related commands to PERMEDIA following a SuspendUntilFrameBlank
command. This allows better overlap between the host and PERMEDIA. In
general any commands that will not cause rendering to the framebuffer
to occur can be queued in the PERMEDIA FIFO before waiting on
VBLANK.

Programming Tips TVP4020 Programmers Reference Manual

146

7.5.2 Triple Buffering

Most 3D systems support double buffering where one frame is displayed
while the next frame is being drawn. To avoid display artifacts, the
change between old and new buffers must happen during a vertical
frame blank, but this imposes a granularity on the frame rate. If a scene
takes slightly longer than one frame period to draw, it has to wait for
another frame before it can display so the frame rate halves.

If three buffers are used, the quantization is removed and the system
can continue to draw at maximum rate.

7.6 Overlays

Overlays are only available with the 5551 color format in a 32 bit pixel.
The PERMEDIA 5551 color formats copy the data into both 16 bit halves of
the 32 bit pixel. The writemask is used to write either the upper or lower
half to memory.

The RAMDAC can be programmed to display a 16 bit pixel from either
the upper or lower half of the 32 bit word; which one is displayed is set
by bit 31. Bit 31 corresponds to the alpha bit of the 16 bit pixel, and this
can be forced to either 1 or 0 by the Color Format unit.

When drawing to the underlay (or main image) set the Color Format unit
to force the alpha to zero, set the writemask to allow writes to the lower
half of the word. When drawing to the overlay set the Color Format unit
to force the alpha value to 1 and writemask to allow writes to the upper
half of the word.

If the RAMDAC is set into the appropriate mode, pixels in the overlay
half of the word will be drawn where alpha is 1 in the overlay and from
the main image where it is zero in the overlay.

7.7 Memory Organization

The amount of memory available to PERMEDIA depends on the board it is
fitted to. The most efficient way to allocate memory will depend on the
needs of the system, but in general the display should be allocated at
one end of the SGRAM and the localbuffer at the other end. This leaves
a region between the two buffers in which textures can be stored. For
optimal performance, each buffer (front color, back color, texture and
depth) should reside in separate memory banks. Memory is organized
as follows:

memory bank size per

TVP4020 Programmers Reference Manual Programming Tips

147

size s bank

2Mb 2 1Mb

4Mb 4 1Mb

6Mb 4 1 or 2Mb

8Mb 4 2Mb

 Table 7.1 Memory Organization

With 6Mb of memory, the first two banks will contain 1Mb and the
subsequent two, 2Mb.

7.8 Chroma Test

Chroma key testing can be done without involving texture mapping. This
is achieved by setting the TexelDisableUpdate field in the YUVMode
register. This will allow fragments to be rejected by chroma testing as
part of a copy operation. The texels are read in and tested, and
fragments rejected if the colors do not match. Setting the
TexelDisableUpdate bit discards the data as soon as the test has been
done which improves performance.

This is described in more detail in section §5.9.1.

7.9 Configuration for 2D

Particular fields of several registers can be set by writing to a single
register, Config. This groups together fields of registers commonly used
in 2D operations together so that PERMEDIA may be configured by fewer
accesses. Reading from this register returns invalid data.

Delta Programming Examples TVP4020 Programmers Reference Manual

148

8. Delta Programming Examples

The following examples demonstrate how to render a depth buffered,
Gouraud shaded triangle mesh using the Delta Unit. The window into
which the rendering takes place is partially obscured and hence is
clipped by two clip rectangles.

10, 300

60, 100

110,300 310, 300

0, 0

400, 350

Overlapping window

160, 100

210,300

110, 150

Figure 8.1 Geometry of the Mesh and Clip regions.

The three examples cover drawing the mesh as a set of points at the
vertices, as connected line segments and finally as filled triangles. For
simplicity, the triangles in these examples are either flat topped or flat
bottomed. In practice, triangles are not restricted to these shapes and
can have any orientation, size or shape.

TVP4020 Programmers Reference Manual Delta Programming Examples

149

// This is the header file for the Delta Unit PRM example code.

// It only contains the necessary items to support the examples.

#ifdef BIG_ENDIAN

// The DeltaMode register fields.

typedef struct {

unsigned int pad: 14;

unsigned int ColorOrder: 1;

unsigned int BackfaceCallEnable: 1;

unsigned int TextureParameterMode: 2;

unsigned int ClampEnable: 1;

unsigned int NoDraw: 1;

unsigned int DiamondExit: 1;

unsigned int SubPixelCorrectionEnable: 1;

unsigned int DiffuseTextureEnable: 1;

unsigned int SpecularTextureEnable: 1;

unsigned int DepthEnable: 1;

unsigned int SmoothShadingEnable: 1;

unsigned int TextureEnable: 1;

unsigned int FogEnable: 1;

unsigned int Reserved: 4;

unsigned int TargetChip: 2;

} __DeltaModeFmat;

// The DrawTriangle and DrawLine command fields.

typedef struct {

unsigned int pad: 14;

unsigned int ReuseBitMask: 1;

unsigned int SubPixelCorrectionEnable: 1;

unsigned int Reserved: 1;

unsigned int FogEnable: 1;

unsigned int TextureEnable: 1;

unsigned int SyncOnHostData: 1;

unsigned int SyncOnBitMask: 1;

unsigned int Reserved: 3;

unsigned int PrimitiveType: 2;

unsigned int Reserved: 2;

unsigned int FastFillEnable: 1;

unsigned int Reserved: 2;

unsigned int LineStippleEnable: 1;

} __DeltaRenderFmat;

#else

// The DeltaMode register fields.

typedef struct {

Delta Programming Examples TVP4020 Programmers Reference Manual

150

unsigned int Reserved: 4;

unsigned int FogEnable: 1;

unsigned int TextureEnable: 1;

unsigned int SmoothShadingEnable: 1;

unsigned int DepthEnable: 1;

unsigned int SpecularTextureEnable: 1;

unsigned int DiffuseTextureEnable: 1;

unsigned int SubPixelCorrectionEnable: 1;

unsigned int DiamondExit: 1;

unsigned int NoDraw: 1;

unsigned int ClampEnable: 1;

unsigned int TextureParameterMode: 2;

unsigned int BackfaceCallEnable: 1;

unsigned int ColorOrder: 1;

unsigned int pad: 14;

} __DeltaModeFmat;

// The DrawTriangle and DrawLine command fields.

typedef struct {

unsigned int AreaStippleEnable: 1;

unsigned int ReservedC: 2;

unsigned int FastFillEnable: 1;

unsigned int reserved: 2;

unsigned int PrimitiveType: 2;

unsigned int ReservedB: 1;

unsigned int SyncOnBitMask: 1;

unsigned int SyncOnHostData: 1;

unsigned int TextureEnable: 1;

unsigned int FogEnable: 1;

unsigned int ReservedA: 1;

unsigned int SubPixelCorrectionEnable: 1;

unsigned int pad: 14;

unsigned int ReuseBitMask: 1;

} __DeltaRenderFmat;

#endif

// The tag values for the registers.

#define __Delta_V0FloatTag 0x230

#define __Delta_V1FloatTag 0x240

#define __Delta_V2FloatTag 0x250

#define __DeltaTagDeltaMode 0x260

#define __DeltaTagDrawTriangle 0x261

#define __DeltaTagRepeatTriangle 0x262

#define __DeltaTagDrawLine01 0x263

#define __DeltaTagDrawLine10 0x264

#define __DeltaTagRepeatLine 0x265

// Some temp defines to keep things compiling easily.

TVP4020 Programmers Reference Manual Delta Programming Examples

151

#define DrawTriangleTag __DeltaTagDrawTriangle

#define DrawLine01Tag __DeltaTagDrawLine01

#define DrawLine10Tag __DeltaTagDrawLine10

#define RepeatTriangleTag __DeltaTagRepeatTriangle

#define RepeatLineTag __DeltaTagRepeatLine

Delta Programming Examples TVP4020 Programmers Reference Manual

152

#include "delta.h"

#include <stdio.h>

extern unsigned long *dmaPtr;

extern DMA *dma;

// Change these macros to what is needed to write the values to Delta // Unit, or add them to a
dma buffer.

#define LD_REG(reg, value) dmaPtr = dma->Space(2); *dmaPtr++ = reg;\

*dmaPtr++ = value;

#define LD_PARAM(reg, value) dmaPtr = dma->Space(2); *dmaPtr++ = reg;\

*dmaPtr++ = *((unsigned long *) &value);

// Prototypes

void PointMesh (gal &cx);

void LineMesh (gal &cx);

void TriangleMesh (gal &cx);

// Simple structure to use in the example code

typedef struct { float x, y, z, r, g, b, a; } Vertex;

typedef struct { short x, y; } XY;

typedef struct { XY scissorMin, scissorMax; } ClipRectangle;

// Define some test data.

#define verticesInMesh 7

Vertex mesh[verticesInMesh] = {

// x y z r g b a

{ 10, 300, 0.1, 1.0, 1.0, 1.0, 1.0 },

{ 60, 100, 0.2, 1.0, 1.0, 0.0, 1.0 },

{ 110, 300, 0.3, 1.0, 0.0, 1.0, 1.0 },

{ 160, 100, 0.4, 1.0, 0.0, 0.0, 1.0 },

{ 210, 300, 0.5, 0.0, 1.0, 1.0, 1.0 },

{ 260, 100, 0.6, 0.0, 1.0, 0.0, 1.0 },

{ 310, 300, 0.7, 0.0, 0.0, 1.0, 1.0 }};

#define numberClipRectangles 2

ClipRectangle clipRectangles[numberClipRectangles] = {

 { {110, 0}, {400, 150} },

 { {0, 150}, {400, 350} }};

enum {paramS, paramT, paramQ, paramKs, paramKd, paramR, paramG, paramB, paramA,
paramF, paramX, paramY, paramZ};

TVP4020 Programmers Reference Manual Delta Programming Examples

153

// This function draws the vertices in the mesh as points. There is
// no direct support for points in Delta Unit as they do not need
// any set-up calculations. Delta Unit can be used to plot points
// (maybe because you want to always work in floating point) by
// having Delta Unit do the set-up calculations for a line, but tell
// the rendering device to render points.

Delta Programming Examples TVP4020 Programmers Reference Manual

154

void PointMesh (gal &cx)

{

__DeltaModeFmat deltaMode;

__DeltaRenderFmat drawCmd;

int rect, v;

 // Assume the rendering device is already initialized.

// Note we expect the BiasCoords mode in the RasterizerMode

// register to be set to add a bias of zero.

// Set-up the DeltaMode register.

deltaMode.pad = 0;

deltamode ColorOrder = 0;

deltamode BackfaceCallEnable = 0;

deltaMode.TextureParameterMode = 1; // Clamp.

deltaMode.ClampEnable = 1; // Clamp enabled.

deltaMode.NoDraw = 0; // Do drawing.

deltaMode.DiamondExit = 0; // Not needed for this

// example.

deltaMode.SubPixelCorrectionEnable = 0; // No sub pixel

// correction.

deltaMode.DiffuseTextureEnable = 0; // Disable.

deltaMode.SpecularTextureEnable = 0; // Disable.

deltaMode.DepthEnable = 1; // Enable.

deltaMode.SmoothShadingEnable = 1; // Enable.

deltaMode.TextureEnable = 0; // Disabled.

deltaMode.FogEnable = 1; // Enabled, but

// controlled from the

// draw command.

deltaMode.Reserved = 0;

LD_REG (__DeltaTagDeltaMode, *((long *) &deltaMode));

 // Set-up the draw command data.

drawCmd.pad = 0;

drawCmd ReuseBitMask = 0;

drawCmd.SubPixelCorrectionEnable = 0; // Enable.

drawCmd.ReservedA = 0;

drawCmd.FogEnable = 0; // Disable.

drawCmd.TextureEnable = 0; // Disable.

drawCmd.SyncOnHostData = 0; // Disable.

drawCmd.SyncOnBitMask = 0; // Disable.

drawCmd.ReservedB = 0;

drawCmd.AntialiasEnable = 0; // Disable.

drawCmd.PrimitiveType = 2; // ** Point **

drawCmd.reserved = 0;

drawCmd.FastFillEnable = 0; // Disable.

drawCmd.ReservedC = 0;

drawCmd.AreaStippleEnable = 0; // Disable.

TVP4020 Programmers Reference Manual Delta Programming Examples

155

// We need to ensure that the end vertex of the line (in V1)
// can never be the same as the point vertices. Any X (or Y)

// coordinate which is out of the normal range (0.0 to screen

// width) will do so in this case an X of -1.0 has been used.

float tempEndCoord = -1.0;

LD_PARAM ((__Delta_V1FloatTag + paramX), tempEndCoord);

for (v = 0; v < verticesInMesh; v++)

{

LD_PARAM((__Delta_V0FloatTag + paramR), mesh[v].r);

LD_PARAM((__Delta_V0FloatTag + paramG), mesh[v].g);

LD_PARAM((__Delta_V0FloatTag + paramB), mesh[v].b);

LD_PARAM((__Delta_V0FloatTag + paramA), mesh[v].a);

LD_PARAM((__Delta_V0FloatTag + paramX), mesh[v].x);

LD_PARAM((__Delta_V0FloatTag + paramY), mesh[v].y);

LD_PARAM((__Delta_V0FloatTag + paramZ), mesh[v].z);

for (rect = 0; rect < numberClipRectangles; rect++)

{

// Load in the scissor rectangle.

LD_REG(ScissorMinXYTag, (clipRectangles[rect].scissorMin.y

<< 16 | clipRectangles[rect].scissorMin.x));

LD_REG(ScissorMaxXYTag, (clipRectangles[rect].scissorMax.y

<< 16 | clipRectangles[rect].scissorMax.x));

if (rect == 0)

{

LD_REG(DrawLine01Tag, *((long *) &drawCmd));

}

else

{

LD_REG(RepeatLineTag, 0); // data field not used.

}

}

 }

}

// This array holds the order we are going to visit the

// vertices in to draw each line segment.

Lint lineOrder[12] = {1, 0, 2, 4, 6, 5, 4, 3, 2, 1, 3, 5};

Delta Programming Examples TVP4020 Programmers Reference Manual

156

// This function draws the mesh as a series of lines. The order the

// lines are drawn in is hardcoded (this is only an example!).

void LineMesh (gal &cx)

{

 __DeltaModeFmat deltaMode;

 __DeltaRenderFmat drawCmd;

 int vertexStore, rect, i, v;

// Assume the rendering device is already initialized. Note we
// expect the BiasCoords mode in the RasterizerMode register to

// be set to add a bias of zero.

 // Set-up the DeltaMode register.

deltaMode.pad = 0;

deltamode.ColorOrder = 0;

deltamode.BackfaceCallEnable = 0;

deltaMode.TextureParameterMode = 2; // Auto normalize.

deltaMode.ClampEnable = 1; // Clamp enabled.

deltaMode.NoDraw = 0; // Do drawing.

deltaMode.DiamondExit = 1; // Not needed for this

// example.

deltaMode.SubPixelCorrectionEnable = 1; // Enable sub pixel

// correction.

deltaMode.DiffuseTextureEnable = 0; // Disable.

deltaMode.SpecularTextureEnable = 0; // Disable.

deltaMode.DepthEnable = 1; // Enable.

deltaMode.SmoothShadingEnable = 1; // Enable.

deltaMode.TextureEnable = 0; // Disabled.

deltaMode.FogEnable = 1; // Enabled, but

// controlled from the

// draw command.

deltaMode.Reserved = 0;

TVP4020 Programmers Reference Manual Delta Programming Examples

157

LD_REG (__DeltaTagDeltaMode, *((long *) &deltaMode));

// Set-up the draw command data.

drawCmd.pad = 0;

DrawCmd.ReuseBitMask = 0;

drawCmd.SubPixelCorrectionEnable = 1; // Enable.

drawCmd.ReservedA = 0;

drawCmd.FogEnable = 0; // Disable.

drawCmd.TextureEnable = 0; // Disable.

drawCmd.SyncOnHostData = 0; // Disable.

drawCmd.SyncOnBitMask = 0; // Disable.

drawCmd.ReservedB = 0;

drawCmd.AntialiasingQuality = 0; // Not used.

drawCmd.AntialiasEnable = 0; // Disable.

drawCmd.PrimitiveType = 0; // Line.

drawCmd.reserved = 0;

drawCmd.FastFillEnable = 0; // Disable.

drawCmd.ReservedC = 0;

drawCmd.AreaStippleEnable = 0; // Disable.

Delta Programming Examples TVP4020 Programmers Reference Manual

158

 for (i = 0; i < 12; i++)

 {

v = lineOrder[i];

vertexStore = __Delta_V0FloatTag + 16 * (i % 2);

LD_PARAM((vertexStore + paramR), mesh[v].r);
LD_PARAM((vertexStore + paramG), mesh[v].g);
LD_PARAM((vertexStore + paramB), mesh[v].b);
LD_PARAM((vertexStore + paramA), mesh[v].a);
LD_PARAM((vertexStore + paramX), mesh[v].x);
LD_PARAM((vertexStore + paramY), mesh[v].y);
LD_PARAM((vertexStore + paramZ), mesh[v].z);

if (i >= 1)
{

 // We now have enough vertices to draw a line.

 for (rect = 0; rect < numberClipRectangles; rect++)

 {

// Load in the scissor rectangle.

LD_REG(ScissorMinXYTag,

(clipRectangles[rect].scissorMin.y << 16 |

clipRectangles[rect].scissorMin.x));

LD_REG(ScissorMaxXYTag,

(clipRectangles[rect].scissorMax.y << 16 |

clipRectangles[rect].scissorMax.x));

if (rect == 0)

{

if (i & 1)

{

 LD_REG(DrawLine01Tag, *((long *) &drawCmd));

}

else

{

 LD_REG(DrawLine10Tag, *((long *) &drawCmd));

}

}

else

{

LD_REG(RepeatLineTag, 0); // data field unused

}

 }

}

}

}

TVP4020 Programmers Reference Manual Delta Programming Examples

159

// This function draws the mesh as a series of shaded triangles.

void TriangleMesh (gal &cx)

{

__DeltaModeFmat deltaMode;

__DeltaRenderFmat drawCmd;

int vertexStore;

int rect, v;

// Assume the rendering device is already initialized. Note we

// expect the BiasCoords mode in the RasterizerMode register to be

// set to add a bias of zero.

// Set-up the DeltaMode register.

deltaMode.pad = 0;

deltamode.ColorOrder = 0;

deltamode.BackfaceCallEnable = 0;

deltaMode.TextureParameterMode = 2; // Auto normalize.

deltaMode.ClampEnable = 1; // Clamp enabled.

deltaMode.NoDraw = 0; // Do drawing.

deltaMode.DiamondExit = 1; // Not needed for this

// example.

deltaMode.SubPixelCorrectionEnable = 1; // Enable sub pixel

// correction.

deltaMode.DiffuseTextureEnable = 0; // Disable.

deltaMode.SpecularTextureEnable = 0; // Disable.

deltaMode.DepthEnable = 1; // Enable.

deltaMode.SmoothShadingEnable = 1; // Enable.

deltaMode.TextureEnable = 0; // Disabled.

deltaMode.FogEnable = 1; // Enabled, but

// controlled from

// the draw command.

deltaMode.Reserved = 0;

 LD_REG (__DeltaTagDeltaMode, *((long *) &deltaMode));

 // Set-up the draw command data.

drawCmd.pad = 0;

drawCmd.ReuseBitMask = 0;

drawCmd.SubPixelCorrectionEnable = 1; // Enable.

drawCmd.RaservedA = 0;

drawCmd.SyncOnBitMask = 0; // Disable.

Delta Programming Examples TVP4020 Programmers Reference Manual

160

drawCmd.FogEnable = 0; // Disable.

drawCmd.TextureEnable = 0; // Disable.

drawCmd.SyncOnHostData = 0; // Disable.

drawCmd.ReservedB = 0;

drawCmd.AntialiasEnable = 0; // Disable.

drawCmd.PrimitiveType = 1; // Trapezoid.

drawCmd.reserved = 0;

drawCmd.FastFillEnable = 0; // Disable.

drawCmd.ReservedC = 0;

drawCmd.AreaStippleEnable = 0; // Disable.

TVP4020 Programmers Reference Manual Delta Programming Examples

161

for (v = 0; v < verticesInMesh; v++)

{

 vertexStore = __Delta_V0FloatTag + 16 * (v % 3);

LD_PARAM((vertexStore + paramR), mesh[v].r);
LD_PARAM((vertexStore + paramG), mesh[v].g);
LD_PARAM((vertexStore + paramB), mesh[v].b);
LD_PARAM((vertexStore + paramA), mesh[v].a);
LD_PARAM((vertexStore + paramX), mesh[v].x);
LD_PARAM((vertexStore + paramY), mesh[v].y);
LD_PARAM((vertexStore + paramZ), mesh[v].z);

if (v >= 2)

{

// We now have enough vertices to draw a triangle.
for (rect = 0; rect < numberClipRectangles; rect++)

{

// Load in the scissor rectangle.
LD_REG(ScissorMinXYTag,

(clipRectangles[rect].scissorMin.y << 16 |

clipRectangles[rect].scissorMin.x));

LD_REG(ScissorMaxXYTag,

(clipRectangles[rect].scissorMax.y << 16

clipRectangles[rect].scissorMax.x));

if (rect == 0)

{

LD_REG(DrawTriangleTag, *((long *) &drawCmd));

}

else

{

LD_REG(RepeatTriangleTag, 0); // data field not

 // used.

}

}

}

}
}

Graphics Register Reference TVP4020 Programmers Reference Manual

162

Appendix A. Graphics Register Reference
This chapter gives details of the format of each of the Graphics registers for PERMEDIA.
The registers are listed alphabetically by name within their function, with the functions
themselves listed alphabetically.

• Tag specifies the offset for this register from the base address of the region.

• Read/write indicates that the register can be both read and written.

• Write indicates that the register can only be written. The value of any read from this
address is undefined.

• Reset Value specifies the value of the register following hardware reset. In general
this is undefined for Graphics registers.

In the diagrams:

• Reserved indicates bits that may be used in future members of the PERMEDIA
family. To ensure upwards compatibility, any software should not assume a value
for these bits when read, and should always write them as zeros.

• Not used indicates bits that are adjacent to numeric fields. These may be used in
future members of the PERMEDIA family, but only to extend the dynamic range of
these fields. The data returned from a read of these bits is undefined. When a “Not
used” field resides in the most significant position, a good convention to follow is to
sign extend the numeric value, rather than masking the field to zero before writing
the register. This will ensure compatibility if the dynamic range is increased in future
members of the PERMEDIA family.

• For enumeration fields which do not specify the full range of possible values, only
the specified values should be used. An example of an enumeration field is the
comparison field in the DepthMode register. Future members of the PERMEDIA
family may define a meaning for the unused values.

TVP4020 Programmers Reference Manual Graphics Register Reference

163

Name: Alpha Blend Mode

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.8810

Tag: 0x0102

Reset Value: Undefined

Read/write

08162431

Reserved

AlphaBlendEnable
NoAlphaBuffer

ColorFormat Operation

ColorOrder
BlendTypeReserved

ColorFormatExtension

ColorConversion
AlphaConversion

Controls Alpha Blending.

Bit0 Enable:
0 = Disable
1 = Enable alpha blending or color formatting

Bit1-7 Operation:

Bit17 Color Conversion:
0 = Scale
1 = Shift

Bit18 Alpha Conversion:
0 = Scale
1 = Shift

Mode Operation R G B A
16 Format Rd Gd Bd Ad
84 Blend Rs * As + Rd * (1-

As)
Gs * As + Gd * (1-
As)

Bs * As + Bd * (1-
As)

As * As + Ad * (1-
As)

81 PreMult Rs + Rd * (1-As) Gs + Gd * (1-As) Bs + Bd * (1-As) As + Ad * (1-As)

For correct operation of Apple PreMult blending, the BlendType needs to be set to Ramp.

Result of different operations. Cs = source color component, Cd = destination color
component.

(See overleaf for description of the remaining bits).

AlphaBlendMode

Graphics Register Reference TVP4020 Programmers Reference Manual

164

Bit8-11 Color Format:

Internal Color Channel
Format Color Order Name R G B A

0 BGR 8:8:8:8 8@0 8@8 8@16 8@24
1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15
2 BGR 4:4:4:4 4@0 4@4 4@8 4@12
5 BGR 3:3:2 Front 3@0 3@3 2@6 0
6 BGR 3:3:2 Back 3@8 3@11 2@14 0
9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7
10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15
11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0
12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0
13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31
14 BGR CI8 8@0 0 0 0
16 BGR 5:6:5 Front 5@0 6@5 5@11 0
17 BGR 5:6:5 Back 5@16 6@21 5@27 0
0 RGB 8:8:8:8 8@16 8@8 8@0 8@24
1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15
2 RGB 4:4:4:4 4@8 4@4 4@0 4@12
5 RGB 3:3:2 Front 3@5 3@2 2@0 0
6 RGB 3:3:2 Back 3@13 3@10 2@8 0
9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7
10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15
11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0
12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0
13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31
14 RGB CI8 8@0 0 0 0
16 RGB 5:6:5 Front 5@11 6@5 5@0 0
17 RGB 5:6:5 Back 5@27 6@21 5@16 0

Notes: The format column is also dependent on bit16. n@m means n bits starting at bit m.
Front and Back modes replicate the color value to assist with double buffering. CI values
are replicated into each byte to assist with double buffering. Offset modes have 64 added
to the 7 bit formatted value. If the format has no alpha bits, the alpha field defaults to 0xF8

Bit12 NoAlphaBuffer

0 = Alpha buffer present
1 = No alpha buffer present

Bit13 ColorOrder:
0 = BGR
1 = RGB

Bit14 BlendType:
0 = RGB
1 = Ramp

Bit16 Color Format Extension. Most significant bit extension to Color Format
held in bits8-11.

TVP4020 Programmers Reference Manual Graphics Register Reference

165

Name: Alpha Map Color Test Lower and Upper Bounds

Unit: Texture Read

Region: 0 Offset: 0x0000.8F20

Tag: 0x01E4

Reset Value: Undefined

Read/write

08162431

BlueAlpha Green Red

Specifies the lower and upper bounds for the alpha map test.

Name: Alpha Map Color Test Lower and Upper Bounds

Unit: Texture Read

Region: 0 Offset: 0x000.8F18

Tag: 0x01E3

Reset Value: Undefined

Read/write

08162431

BlueAlpha Green Red

Specifies the lower and upper bounds for the alpha map test.

AlphaMapLowerBound

AlphaMapUpperBound

Graphics Register Reference TVP4020 Programmers Reference Manual

166

Name: Area Stipple Mode

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.81A0

Tag: 0x0034

Reset Value: Undefined

Read/write

08162431

Reserved

Enable UnitNot used

Invert Stipple Pattern

Reserved

MirrorX

MirrorY

ForceBackgroundColor

XOffsetYOffset

Not used

Controls Area Stippling. Both the AreaStippleEnable bit in the Render command and the
enable in the AreaStippleMode register must be set to enable the area stipple test.

Bit0 Unit Enable
0 = Disable
1 = Enable

Bit7-9 XOffset

Bit12-14 YOffset

Bit17 Invert Stipple Pattern
0 = No Invert
1 = Invert

Bit18 Mirror X
0 = No Mirror in X
1 = Mirror stipple pattern in X direction

Bit19 Mirror Y
0 = No Mirror in Y
1 = Mirror stipple pattern in Y direction

Bit20 ForceBackgroundColor. Controls operation of the stipple test. If disabled
any fragment failing the test is discarded. If enabled any fragment failing
the test is drawn (other tests allowing) but the color is taken from the
Texel0 register. Used to support foreground and background colors.

0 = Disable
1 = Enable

AreaStippleMode

TVP4020 Programmers Reference Manual Graphics Register Reference

167

Name: Area Stipple Pattern

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.8200, ...,0x0000.8238

Tag: 0x0040, ...,0x0047

Reset Value: Undefined

Read/write

08162431

Reserved 8 bit mask

These 8 registers provide the bitmask which enables and disables corresponding
fragments for drawing when rasterizing a primitive with area stippling.

Both the AreaStippleEnable in the Render command and enable in the AreaStippleMode
register must be set, to enable the area stipple test.

AreaStipplePattern[0...7]

Graphics Register Reference TVP4020 Programmers Reference Manual

168

Name: Initial Alpha Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87C8

Tag: 0x00F9

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Alpha for a vertex when in Gouraud
shading mode. The value is 2's complement 9.11 fixed point format.

Name: Bit Mask Pattern

Unit: Rasterizer

Region: 0 Offset: 0x0000.8068

Tag: 0x000D

Reset Value: Undefined

Write only

08162431

32 bit mask

Value used to control the bit mask stipple operation (if enabled). Fragments are accepted
or rejected based on the current BitMask test modes defined by the RasterizerMode
register. Note that the SyncOnBitmask bit in the Render command must also be enabled.

AStart

BitMaskPattern

TVP4020 Programmers Reference Manual Graphics Register Reference

169

Name: Initial Blue Color

Unit: Color DDA

Region: 0 Offset: 0x0000. 87B0

Tag: 0x00F6

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Blue for a vertex when in Gouraud
shading mode. The value is 2's complement 9.11 fixed point format.

Name: Chroma Lower Bound, Chroma Upper Bound

Unit: YUV

Region: 0 Offset: 0x00008F10., 0x0000.8F08

Tag: 0x01E2, 0x01E1

Reset Value: Undefined

Read/write

08162431

BlueAlpha Green Red

08162431

VAlpha U Y

Specifies the lower and upper bounds for the chroma test. The test is done against the
contents of the Texel0 register which holds data in the internal RGB format or the YUV
format (before conversion) of 8 bits per component. The test is done on all 8 bits of each
component. All components must be inside the bounds for the test to pass, if TestMode is
set to 1 in the YUVMode register, or fail if TestMode is set to 2 in the YUVMode register.

BStart

ChromaLowerBound,ChromaUpperBound

Graphics Register Reference TVP4020 Programmers Reference Manual

170

Name: Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87F0

Tag: 0x00FE

Reset Value: Undefined

Write

08162431

BlueAlpha Green Red

Used for downloading image data to the framebuffer. The format is either the standard
color format, or the raw framebuffer format if the Color Format unit is disabled.

In CI mode the color index is placed in bits 0-7. If there are less than 8 bits in a component
it should be left justified and the unused bits set to zero.

This register cannot be saved and restored as part of a task context switch.

When used this register should always be reloaded at start of every command, and the
Color DDA unit must be disabled prior to loading it.

Color

TVP4020 Programmers Reference Manual Graphics Register Reference

171

Name: Color DDA Mode

Unit: Color DDA

Region: 0 Offset: 0x0000.87E0

Tag: 0x00FC

Reset Value: Undefined

Read/write

08162431

Reserved

Shading Mode Unit Enable

The bit fields control the mode of operation of the Color DDA unit:

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Shading mode control:
0 = Flat
1 = Gouraud

ColorDDAMode

Graphics Register Reference TVP4020 Programmers Reference Manual

172

Name: Configuration

Unit:

Region: 0 Offset: 0x0000.8D90

Tag: 0x01B2

Reset Value: Undefined

Read/write

08162431

FBReadMode: ReadSource
FBReadMode: ReadDestination

FBWriteMode: Enable
CoorDDAMode: Enable

LogicOpMode: Enable
LogicOpMode: LogicOp

FBReadMode: PackedData

Reserved

Sets the specified fields in various registers.

Config

TVP4020 Programmers Reference Manual Graphics Register Reference

173

Name: Constant Color

Unit: Color DDA

Region: 0 Offset: 0x0000.87E8

Tag: 0x00FD

Reset Value: Undefined

Read/write

08162431

BlueAlpha Green Red

08162431

32 bit value

Holds the constant color in either RGBA or raw framebuffer format. This value is used
when the ColorDDAMode register is set to flat shading mode.

The internal color format will interpret the 8 bit fields as either 5.3 fixed point for 3D
operations or 8 bit integer for 2D operations. In CI mode the color index is placed in bits 0-
7. If a component has less than 8 bits, it should be left justified and the unused bits set to
zero.

Name: Continue

Unit: Rasterizer

Region: 0 Offset: 0x0000.8058

Tag: 0x000B

Reset Value: Undefined

Write

08162431

Reserved 12 bit unsigned integer

This command causes rasterization to continue after new delta value(s) have been loaded,
but does not cause either of the trapezoid’s edge DDAs to be reloaded.

The data field holds the number of scanlines to fill. Note this count does not get loaded into
the Count register.

ConstantColor

Continue

Graphics Register Reference TVP4020 Programmers Reference Manual

174

Name: Continue - New Dominant Edge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8048

Tag: 0x0009

Reset Value: Undefined

Write

08162431

Reserved 12 bit unsigned integer

This command causes rasterization to continue with a new dominant edge. The dominant
edge DDA is reloaded with the new parameters. The subordinate edge is carried on from
the previous trapezoid. This allows any convex polygon to be broken down into a collection
of trapezoids and continuity maintained across boundaries.

Since this command only affects the Rasterizer DDA (and not of any other units), it is not
suitable for 3D operations.

The data field holds the number of scanlines to fill. Note this count does not get loaded
into the Count register.

Name: Continue - New Line Segment

Unit: Rasterizer

Region: 0 Offset: 0x0000.8040

Tag: 0x0008

Reset Value: Undefined Write

08162431

Reserved 12 bit unsigned integer

This command causes rasterization to continue for the next segment in a polyline. The XY
position is carried on from the previous line, however the fraction bits in the DDAs can be
kept, set to zero, one half, or nearly one half, under control of the RasterizerMode register.

The data field holds the number of pixels in a line. Note this count does not get loaded into
the Count register.

The use of ContinueNewLine is not recommended for OpenGL because the DDA units will
start with a slight error as compared with the value they would have been loaded with for
the second and subsequent segments.

ContinueNewDom

ContinueNewLine

TVP4020 Programmers Reference Manual Graphics Register Reference

175

Name: Continue - New SubordinateEdge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8050

Tag: 0x000A

Reset Value: Undefined

Write

08162431

Reserved 12 bit unsigned integer

This command causes rasterization to continue with a new subordinate edge. The
subordinate DDA is reloaded with the new parameters. The dominant edge is carried on
from the previous trapezoid. This is very useful when scan converting triangles with a
'knee' (i.e. two subordinate edges).

The data field holds the number of scanlines to fill. Note this count does not get loaded into
the Count register.

Name: Count

Unit: Rasterizer

Region: 0 Offset: 0x0000.8030

Tag: 0x0006

Reset Value: Undefined

Read/write

08162431

Reserved 12 bit unsigned integer

Interpretation of contents is dependent on the mode set in the Render command i.e. it
specifies the number of pixels in a line, or the number of scanlines in a trapezoid.

ContinueNewSub

Count

Graphics Register Reference TVP4020 Programmers Reference Manual

176

Name: X Derivative - Blue

Unit: Color DDA

Region: 0 Offset: 0x0000.87B8

Tag: 0x00F7

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the X derivative for the Blue value for the interior of a trapezoid when
Gouraud shading. The value is 2's complement 9.11 fixed point format.

Name: Y Derivative Dominant - Blue

Unit: Color DDA

Region: 0 Offset: 0x0000.87C0

Tag: 0x00F8

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the Y derivative dominant for the Blue value along a line, or the dominant
edge of a trapezoid when Gouraud shading. The value is 2's complement 9.11 fixed point format.

dBdx

dBdyDom

TVP4020 Programmers Reference Manual Graphics Register Reference

177

Name: Delta Mode

Unit: Delta

Region: 0 Offset: 0x0000.9300

Tag: 0x00260

Reset Value: Undefined

Read/write

08162431

Reserved

Fog Enable

Texture Enable
Smooth Shading Enable

Depth Enable

Specular Enable

Diffuse Enable

Subpixel Correction Enable

Diamond Exit Enable

No Draw Enable

Clamp Enable
Texture Parameter Mode

Reserved
Backface Cull Enable

Color Order

Reserved

Bit4 FogEnable: This field is qualified by the FogEnable bit in the Draw
command.

0 = Disable
1 = Enable

Bit5 TextureEnable: This field is qualified by the TextureEnable bit in the Draw
command.

0 = Disable
1 = Enable

Bit 6 SmoothShadingEnable

0 = Disable
1 = Enable

Bit 7 DepthEnable

DeltaMode

Graphics Register Reference TVP4020 Programmers Reference Manual

178

0 = Disable
1 = Enable

Bit 8 SpecularTextureEnable

0 = Disable
1 = Enable

Bit 9 DiffuseTextureEnable

0 = Disable
1 = Enable

Bit 10 SubPixelCorrectionEnable: This is qualified by the
SubPixelCorrectionEnable in the Draw command.

0 = Disable
1 = Enable

Bit 11 DiamondExit

0 = Disable
1 = Enable

Bit 12 NoDraw: When set prevents a Render command from being sent to the
rendering devices. This field only affects the Draw commands. This field
allows the host to alter the set-up parameters before sending a Render
command.

0 = Disable
1 = Enable

Bit 13 ClampEnable: When set causes the input values to be clamped to a
parameter specific range. Note that the texture parameters are not
affected by this field.

0 = Disable
1 = Enable

Bit 14, 15 TextureParameterMode:

0: Used as given

1: Clamped to lie in the range -1.0 to 1.0

2: Normalize to lie in the range -1.0 to 1.0

Bit 17 BackFaceCull

0 = Disable
1 = Enable

Bit 18 ColorOrder: Specifies order of colors in V*PackedColor messages.

 Bit 31 Bit 0

0 = Alpha, Blue, Green, Red

1 = Alpha, Red, Green, Blue

Each color component is 8 bits.

TVP4020 Programmers Reference Manual Graphics Register Reference

179

Name: Depth

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89A8

Tag: 0x0135

Reset Value: Undefined

Read/write

08162431

Depth valueNot used

08162431

Depth valueNot used

Holds an externally sourced 16 or 15 bit depth value. The unused most significant bits
should be set to zero.

This is used in the draw pixels function where the host supplies the depth values through
the Depth register.

Alternatively this is used when a constant depth value is needed, for example, when
clearing the depth buffer, or for 2D rendering where the depth is held constant.

Depth

Graphics Register Reference TVP4020 Programmers Reference Manual

180

Name: Depth Mode

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89A0

Tag: 0x0134

Reset Value: Undefined

Read/write

08162431

Unit enable

Write Mask

New Depth SourceCompare Mode

Reserved

Controls the comparison of a fragment's depth value and updating of the depth buffer. If
the compare function is LESS and the result is true then the fragment value is less than
the source value.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Writemask:
0 = Disable write to depth buffer
1 = Enable write to depth buffer

Bit2-3 Source of depth value for comparison:
0 = Fragment's depth value
1 = LBData -
 for copy pixels when destination depth planes are not updated.
2 = Depth register
3 = LBSourceData -
 for copy pixels when destination depth planes are updated.

Bit4-6 Comparison function:

0 = NEVER
1 = LESS
2 = EQUAL
3 = LESS OR EQUAL
4 = GREATER
5 = NOT EQUAL
6 = GREATER OR EQUAL
7 = ALWAYS

DepthMode

TVP4020 Programmers Reference Manual Graphics Register Reference

181

Name: X Derivative - Fog

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86A8

Tag: 0x00D5

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Fog coefficient derivative per unit X for use in rendering trapezoids. The value is in 2's
complement 2.19 fixed point format.

Name: Y Derivative Dominant - Fog

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86B0

Tag: 0x00D6

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Fog coefficient derivative per unit Y along a line, or the dominant edge of a trapezoid. The
value is in 2's complement 2.19 fixed point format.

dFdx

dFdyDom

Graphics Register Reference TVP4020 Programmers Reference Manual

182

Name: X Derivative - Green

Unit: Color DDA

Region: 0 Offset: 0x0000.87A0

Tag: 0x00F4

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the X derivative for the Green value for the interior of a
trapezoid when Gouraud shading. The value is 2's complement 9.11 fixed point format.

Name: Y Derivative Dominant - Green

Unit: Color DDA

Region: 0 Offset: 0x0000.87A8

Tag: 0x00F5

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the Y derivative dominant for the Green value along a line, or
the dominant edge of a trapezoid when Gouraud shading. The value is 2's complement
9.11 fixed point format.

dGdx

dGdyDom

TVP4020 Programmers Reference Manual Graphics Register Reference

183

Name: Dither Mode

Unit: Color Format

Region: 0 Offset: 0x0000.8818

Tag: 0x0103

Reset Value: Undefined

Read/write

08162431

Color format

Reserved

Dither enable

Unit enable

X offset

Y offset

ForceAlphaColor format extension

DitherMethod

Reserved

Color order

Controls the Color Format unit.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1 Dither Enable:
0 = Disable
1 = Enable

(see overleaf for description of the remaining bits)

DitherMode

Graphics Register Reference TVP4020 Programmers Reference Manual

184

Bit2-5 Color Format:

Internal Color Channel
Format Color Order Name R G B A

0 BGR 8:8:8:8 8@0 8@8 8@16 8@24
1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15
2 BGR 4:4:4:4 4@0 4@4 4@8 4@12
5 BGR 3:3:2 Front 3@0 3@3 2@6 0
6 BGR 3:3:2 Back 3@8 3@11 2@14 0
9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7
10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15
11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0
12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0
13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31
14 BGR CI8 8@0 0 0 0
16 BGR 5:6:5 Front 5@0 6@5 5@11 0
17 BGR 5:6:5 Back 5@16 6@21 5@27 0
0 RGB 8:8:8:8 8@16 8@8 8@0 8@24
1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15
2 RGB 4:4:4:4 4@8 4@4 4@0 4@12
5 RGB 3:3:2 Front 3@5 3@2 2@0 0
6 RGB 3:3:2 Back 3@13 3@10 2@8 0
9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7
10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15
11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0
12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0
13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31
14 RGB CI8 8@0 0 0 0
16 RGB 5:6:5 Front 5@11 6@5 5@0 0
17 RGB 5:6:5 Back 5@27 6@21 5@16 0

Notes: The format column is also dependent on bit16. n@m means n bits starting at bit m.
Front and Back modes replicate the color value to assist with double buffering. CI values
are replicated into each byte to assist with double buffering. Offset modes have 64 added
to the 7 bit formatted value. If the format has no alpha bits, the alpha field defaults to 0xF8

Bit6-7 XOffset to enable window relative dithering.

Bit8-9 YOffset to enable window relative dithering.

Bit10 Color Order:
0 = BGR
1 = RGB

Bit11 Dither Method:
0 = Ordered
1 = Line

Bit12-13 ForceAlpha:
0 = Disable
1 = Force to 0
2 = Force to 0xF8

Bit16 Color Format Extension. Most significant bit extension to Color Format
held in bits 2-5

TVP4020 Programmers Reference Manual Graphics Register Reference

185

Name: X Derivative - Kd

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86E8

Tag: 0x00DD

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Diffuse light coefficient derivative per unit X for use in rendering texture mapped trapezoids
using ramp application mode. The value is in 2's complement 2.19 fixed point format.

Name: Y Derivative Dominant - Kd

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86F0

Tag: 0x00DE

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Diffuse light coefficient derivative per unit Y along a line, or for the dominant edge of a
trapezoid, for use with ramp texture application mode. The value is in 2's complement 2.19
fixed point format.

dKddx

dKddyDom

Graphics Register Reference TVP4020 Programmers Reference Manual

186

Name: X Derivative - Ks

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86D0

Tag: 0x00DA

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Specular light coefficient derivative per unit X for use in rendering texture mapped
trapezoids using ramp application mode. The value is in 2's complement 2.19 fixed point
format.

Name: Y Derivative Dominant - Ks

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86D8

Tag: 0x00DB

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Specular light coefficient derivative per unit Y along a line, or for the dominant edge of a
trapezoid, for use with ramp texture application mode. The value is in 2's complement 2.19
fixed point format.

dKsdx

dKsdyDom

TVP4020 Programmers Reference Manual Graphics Register Reference

187

Name: X Derivative - Homogeneous texture coordinate

Unit: Texture Address

Region: 0 Offset: 0x0000.83C0

Tag: 0x0078

Reset Value: Undefined

Read/write

08162431

ReservedFraction

Integer

Sign

Used to set the X derivative for the Q coordinate when texture mapping. Format is 2's
complement 2.27 fixed point.

Name: Y Derivative Dominant - Homogeneous texture coordinate

Unit: Texture Address

Region: 0 Offset: 0x0000.83C8

Tag: 0x0079

Reset Value: Undefined

Read/write

08162431

ReservedFraction

Integer

Sign

Used to set the Y dominant derivative for the Q coordinate when texture mapping. Format
is 2's complement 2.27 fixed point.

dQdx

dQdyDom

Graphics Register Reference TVP4020 Programmers Reference Manual

188

Name: Draw line

Unit: Delta

Region: 0 Offset: 0x0000.9318

Tag: 0x0263

Reset Value: Undefined

Write

08162431

Reserved Reserved

Primitive typeReserved

Reserved

Texture enableSubPixelCorrectionEnable

Fog enable

Bit6-7 PrimitiveType These bits indicate the type of PERMEDIA primitive to be
drawn. The primitives supported and the corresponding codes are:

0 = lines,
1 = trapezoids,
2 = points,
3 = rectangles.

Bit13 TextureEnable. Note that the Texture Units must be suitably enabled as
well for any texturing to occur.

0 = Disable
1 = Enable

Bit14 FogEnable. Note that the Fog Unit must be suitably enabled as well for
any fogging to occur.

0 = Disable
1 = Enable

Bit16 SubPixelCorrectionEnable. Enables the sub pixel correction of color,
depth, fog and texture values at the start of a scanline span.

0 = Disable
1 = Enable

DrawLine01

TVP4020 Programmers Reference Manual Graphics Register Reference

189

Name: Draw line

Unit: Delta

Region: 0 Offset: 0x0000.9320

Tag: 0x0264

Reset Value: Undefined

Write

08162431

Reserved Reserved

Primitive typeReserved

Reserved

Texture enableSubPixelCorrectionEnable

Fog enable

Bit6-7 PrimitiveType These bits indicate the type of PERMEDIA primitive to be
drawn. The primitives supported and the corresponding codes are:

0 = lines,
1 = trapezoids,
2 = points,
3 = rectangles.

Bit13 TextureEnable. Note that the Texture Units must be suitably enabled as
well for any texturing to occur.

0 = Disable
1 = Enable

Bit14 FogEnable. Note that the Fog Unit must be suitably enabled as well for
any fogging to occur.

0 = Disable
1 = Enable

Bit16 SubPixelCorrectionEnable. Enables the sub pixel correction of color,
depth, fog and texture values at the start of a scanline span.

0 = Disable
1 = Enable

DrawLine10

Graphics Register Reference TVP4020 Programmers Reference Manual

190

Name: Draw Triangle

Unit: Delta

Region: 0 Offset: 0x0000.9308

Tag: 0x0261

Reset Value: Undefined

Write

08162431

Reserved Reserved

Primitive typeReserved

Reserved

Texture enableSubPixelCorrectionEnable

Fog enable

Bit6-7 PrimitiveType These bits indicate the type of PERMEDIA primitive to be
drawn. The primitives supported and the corresponding codes are:

0 = lines,
1 = trapezoids,
2 = points,
3 = rectangles.

Bit13 TextureEnable. Note that the Texture Units must be suitably enabled as
well for any texturing to occur.

0 = Disable
1 = Enable

Bit14 FogEnable. Note that the Fog Unit must be suitably enabled as well for
any fogging to occur.

0 = Disable
1 = Enable

Bit16 SubPixelCorrectionEnable. Enables the sub pixel correction of color,
depth, fog and texture values at the start of a scanline span.

0 = Disable
1 = Enable

DrawTriangle

TVP4020 Programmers Reference Manual Graphics Register Reference

191

Name: X Derivative - Red

Unit: Color DDA

Region: 0 Offset: 0x0000.8788

Tag: 0x00F1

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the X derivative for the Red value for the interior of a trapezoid
when Gouraud shading. The value is 2's complement 9.11 fixed point format.

Name: Y Derivative Dominant - Red

Unit: Color DDA

Region: 0 Offset: 0x0000.8790

Tag: 0x00F2

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the Y derivative dominant for the Red value along a line, or the
dominant edge of a trapezoid when Gouraud shading. The value is 2's complement 9.11
fixed point format.

dRdx

dRdyDom

Graphics Register Reference TVP4020 Programmers Reference Manual

192

Name: X Derivative - Texture S coordinate

Unit: Texture Address

Region: 0 Offset: 0x0000.8390

Tag: 0x0072

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the X derivative for the S coordinate when texture mapping. Format is 2's
complement 12.18 fixed point.

Name: Y Derivative Dominant - Texture S coordinate

Unit: Texture Address

Region: 0 Offset: 0x0000.8398

Tag: 0x0073

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the Y dominant derivative for the S coordinate when texture mapping. Format
is 2's complement 12.18 fixed point.

dSdx

dSdyDom

TVP4020 Programmers Reference Manual Graphics Register Reference

193

Name: X Derivative - Texture T coordinate

Unit: Texture Address

Region: 0 Offset: 0x0000.83A8

Tag: 0x0075

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the X derivative for the T coordinate when texture mapping. Format is 2's
complement 12.18 fixed point.

Name: Y Derivative Dominant - Texture T coordinate

Unit: Texture Address

Region: 0 Offset: 0x0000.83B0

Tag: 0x0076

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the Y dominant derivative for the T coordinate when texture mapping. Format
is 2's complement 12.18 fixed point.

dTdx

dTdyDom

Graphics Register Reference TVP4020 Programmers Reference Manual

194

Name: Delta X Dominant

Unit: Rasterizer

Region: 0 Offset: 0x0000.8008

Tag: 0x0001

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Value added when moving from one scanline to the next for the dominant edge in
trapezoid filling. The value is in 2's complement 12.15 fixed point format.

Also holds the change in X when plotting lines. For Y major lines this will be some fraction
(dx/dy), otherwise it is normally ± 1.0, depending on the required scanning direction.

Name: Delta X Subordinate

Unit: Rasterizer

Region: 0 Offset: 0x0000.8018

Tag: 0x0003

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Value added when moving from one scanline to the next for the subordinate edge in
trapezoid filling. The value is in 2's complement 12.15 fixed point format.

dXDom

dXSub

TVP4020 Programmers Reference Manual Graphics Register Reference

195

Name: Delta Y

Unit: Rasterizer

Region: 0 Offset: 0x0000.8028

Tag: 0x0005

Reset Value: Undefined

Read/write

08162431

Not used

Not used

14 bit fraction10 bit integer

Sign

Value added to Y to move from one scanline to the next.

For trapezoids the value will be ±1.0 depending on the scanning direction.

Name: Depth Derivative X - Lower

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89C8

Tag: 0x0139

Reset Value: Undefined

Read/write

08162431

11 bit fraction Not used

This register holds part of the depth derivative per unit in X used in rendering trapezoids.
dZdxU holds the most significant bits, and dZdxL the least significant bits. The combined
value is in 2's complement 17.11 fixed point format.

dY

For X major lines this will be some fraction (dy/dx), otherwise it is normally ± 1.0,
depending on the required scanning direction. The value is in 2's complement 11.14 fixed
point format.

dZdxL

Graphics Register Reference TVP4020 Programmers Reference Manual

196

Name: Depth Derivative X - Upper

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89C0

Tag: 0x0138

Reset Value: Undefined

Read/write

08162431

Not Used 16 bit integer

Sign

This register holds part of the depth derivative per unit in X used in rendering trapezoids.
dZdxU holds the most significant bits, and dZdxL the least significant bits. The value is in
2's complement 17.11 fixed point format.

Name: Depth Derivative Y Dominant - Lower

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89D8

Tag: 0x013B

Reset Value: Undefined

Read/write

08162431

11 bit fraction Not used

This register holds part of the depth derivative per unit in Y used for the dominant edge of
a trapezoid, or along a line. dZdyDomU holds the most significant bits, and dZdyDomL the
least significant bits. The value is in 2's complement 17.11 fixed point format.

dZdxU

dZdyDomL

TVP4020 Programmers Reference Manual Graphics Register Reference

197

Name: Depth Derivative Y Dominant - Upper

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89D0

Tag: 0x013A

Reset Value: Undefined

Read/write

08162431

Not Used 16 bit integer

Sign

This register holds part of the depth derivative per unit in Y used for the dominant edge of
a trapezoid, or along a line. dZdyDomU holds the most significant bits, and dZdyDomL the
least significant bits. The value is in 2's complement 17.11 fixed point format.

Name: Framebuffer Block Fill Color

Unit: FramebufferWrite

Region: 0 Offset: 0x0000.8AC8

Tag: 0x0159

Reset Value: Undefined

Read/write
08162431

32 bit value

Note that this register should not be updated immediately after a Render command which
performs a block write.

Contains the color (and optionally alpha value) to be written to the framebuffer during block
writes. Note the format is the raw data format of the framebuffer.

If the framebuffer is used in 8 bit packed mode, then data should be repeated in all 4 bytes
of the register.

If the framebuffer is in 16 bit packed mode then the data must be repeated in both halves
of the register.

dZdyDomU

FBBlockColor

Graphics Register Reference TVP4020 Programmers Reference Manual

198

Name: Framebuffer Block Fill Lower color

Unit: FramebufferWrite

Region: 0 Offset: 0x0000.8C70

Tag: 0x018E

Reset Value: Undefined

Read/write

08162431

32 bit value

Contains the color (and optionally alpha value) to be written to the framebuffer during block
writes. Note the format is the raw data format of the framebuffer. Each block fill writes a
pattern of 8 bytes defined by these registers, repeating the same data until 32 pixels have
been filled.

If the framebuffer is used in 8 bit packed mode, then data should be repeated in all 4 bytes
of the register.

If the framebuffer is in 16 bit packed mode then the data must be repeated in both halves

of the register.

Name: Framebuffer Block Fill Upper color

Unit: FramebufferWrite

Region: 0 Offset: 0x0000.8C68

Tag: 0x018D

Reset Value: Undefined

Read/write

08162431

32 bit value

Contains the color (and optionally alpha value) to be written to the framebuffer during block
writes. Note the format is the raw data format of the framebuffer. Each block fill writes a
pattern of 8 bytes defined by these registers, repeating the same data until 32 pixels have
been filled.

If the framebuffer is used in 8 bit packed mode, then data should be repeated in all 4 bytes
of the register.

If the framebuffer is in 16 bit packed mode then the data must be repeated in both halves
of the register.

FBBlockColorL

FBBlockColorU

TVP4020 Programmers Reference Manual Graphics Register Reference

199

Name: Framebuffer Color Upload

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8A98

Tag: 0x0153

Reset Value: Undefined

Read/write

08162431

32 bit framebuffer data

The format is dependent on the raw framebuffer organization and any reformatting which
takes place due to the format specified in the DitherMode register.

Name: Framebuffer Data

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AA0

Tag: 0x0154

Reset Value: Undefined

Write

08162431

32 bit value

Supplies the data for image download, where subsequent formatting is required. The
formatting can be achieved by means of the AlphaBlendMode register to convert to the
internal PERMEDIA format, and then via the DitherMode register to convert to the required
format.

FBColor

Internal register used in image upload. Note that this register should not be written to. It is
documented here to give the format and tag value of the data returned through the Host
Out FIFO.

FBData

Graphics Register Reference TVP4020 Programmers Reference Manual

200

Name: Hardware Writemask

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AC0

Tag: 0x0158

Reset Value: Undefined

Read/write

08162431

32 bit mask

Contains the hardware writemask for the framebuffer. If a bit is set to one then the
corresponding bit in the framebuffer is enabled for writing, otherwise it is disabled. Only
applicable to configurations where the framebuffer supports a hardware writemask. In
cases where it is not supported, this register should NOT be written to.

If hardware writemasks are used then all the bits in the FBSoftwareWriteMask register
must be set to 1, so that software writemasking is disabled.

If the framebuffer is used in 8 bit packed mode, then an 8bit hardware writemask must be
repeated in all 4 bytes of the FBHardwareWriteMask register.

If the framebuffer is in 16 bit packed mode then the 16 bit hardware writemask must be
repeated in both halves of the FBHardwareWriteMask register.

FBHardwareWriteMask

TVP4020 Programmers Reference Manual Graphics Register Reference

201

Name: Framebuffer Pixel Offset

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8A90

Tag: 0x0152

Reset Value: Undefined

Read/write

08162431

24 bit 2’s complement integerNot used

Offset between buffers when operating on multiple buffers in the framebuffer at the same
time (e.g. left/right/top/bottom in some OpenGL implementations). The offset can be
treated as signed or unsigned.

FBPixelOffset

Graphics Register Reference TVP4020 Programmers Reference Manual

202

Name: Framebuffer Read Mode

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8A80

Tag: 0x0150

Reset Value: Undefined

Read/write

08162431

PP2Reserved PP1 PP0

Partial product selection

ReadSource enable

ReadDestination enable

Data type

Window originPatch Enable

Packed data

Relative offset

Reserved

Patch Mode

Reserved

Reserved

Controls reading from framebuffer memory.

Incorrect data can be read if reads are enabled but the same data had
just been written with reads disabled. To avoid this problem, a
WaitForCompletion command should be sent after enabling reads, but
prior to the next primitive.

Bit0-2 Partial Product 0 - See Appendix C for a table of values.

Bit3-5 Partial Product 1 - See Appendix C for a table of values.

Bit6-8 Partial Product 2 - See Appendix C for a table of values.

Bit9 Read Source Enable:
0 = no read
1 = do read

Bit10 Read Destination Enable:
0 = no read
1 = do read

Bit15 Data Type:
0 = FBDefault - for data that may be written back to the framebuffer
1 = FBColor - for image upload

Bit16 Window Origin:
0 = Top left
1 = Bottom left

FBReadMode

TVP4020 Programmers Reference Manual Graphics Register Reference

203

Bit18 Patch Enable:
0 = Disable
1 = Enable patched addressing for framebuffer accesses

Bit19 PackedData:
0 = Disable. Force PERMEDIA to read one pixel at a time.
1 = Enable. Allow PERMEDIA to read multiple packed pixels when

possible.

Bit20-22 RelativeOffset

3 bit 2's compliment value which specifies the number of pixels that
the source data has to be adjusted to align with the destination
data. The PackedDataLimits register also has this field and the last
loaded of these two registers takes effect.

Bit25-26 Patch Mode
0 = Patch (suitable for depth buffer patching)
1 = Subpatch (suitable for texture buffer patching)
2 = SubpatchPack (suitable for packed texture patching)

Graphics Register Reference TVP4020 Programmers Reference Manual

204

Name: Framebuffer Read Pixel

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AD0

Tag: 0x015A

Reset Value: Undefined

Read/write

08162431

Reserved

Pixel Size

Sets the pixel size for reading from the framebuffer.

Bit0-1 Pixel Size:
0 = 8 bits
1 = 16 bits
2 = 32 bits
3 = reserved
4 = 24 bits

FBReadPixel

TVP4020 Programmers Reference Manual Graphics Register Reference

205

Name: Software Writemask

Unit: Logic Op

Region: 0 Offset: 0x0000.8820

Tag: 0x0104

Reset Value: Undefined

Read/write

08162431

32 bit mask

If hardware writemasks are used then all the bits in the software writemask must be set to
1, so that software writemasking is disabled.

Name: Base address of source framebuffer data

Unit: Framebuffer Read

Region: 0 Offset: 0x0000.8D80

Tag: 0x01B0

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerReserved

The base address of source data for framebuffer copies. Tracks the value of
FBWindowBase, so to modify this register it must be loaded after FBWindowBase.

FBSoftwareWriteMask

Contains the software writemask for the framebuffer. If a bit is set to one then the
corresponding bit in the framebuffer is enabled for writing, otherwise it is disabled. In
addition, whenever the writemask is other than all 1s, framebuffer reads must be enabled
by setting the ReadSourceEnable bit in the FBReadMode register.

FBSourceBase

Graphics Register Reference TVP4020 Programmers Reference Manual

206

Name: Framebuffer Source Data

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AA8

Tag: 0x0155

Reset Value: Undefined

Write

08162431

32-bit value

Supplies the data for image download with logic ops, where the data is treated as the
source rather than the destination parameter.

The data supplied should be in raw framebuffer format.

Name: Difference between destination to source data

Unit: Framebuffer Read

Region: 0 Offset: 0x0000.8D88

Tag: 0x01B1

Reset Value: Undefined

Read/write

08162431

Not used 12 bit 2’s complement Y delta Not used 12 bit 2’s complement X delat

The difference from destination to source data in the framebuffer. Loading this register
causes an appropriate value to be calculated and loaded into FBSourceOffset.

FBSourceData

FBSourceDelta

TVP4020 Programmers Reference Manual Graphics Register Reference

207

Name: Framebuffer Source Offset

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8A88

Tag: 0x0151

Reset Value: Undefined

Read/write

08162431

24 bit 2’s complement integerNot used

Sets the offset from destination to source for a copy operation in the framebuffer i.e.

source offset = destination address - source address

Name: Framebuffer Window Base

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AB0

Tag: 0x0156

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerReserved

Contains the current base address of the window in the framebuffer.

FBSourceOffset

FBWindowBase

Graphics Register Reference TVP4020 Programmers Reference Manual

208

Name: Framebuffer Write Data

Unit: Logic Op

Register 0 Offset 0x0000. 8830

Tag: 0x106

Reset Value: Undefined

Read/write

08162431

32 bit data

It is not recommended that this register be used. It is included here for the benefit of
understanding legacy TVP4010 software.

Contains the color value to be written to the framebuffer when the
UseConstantFBWriteData bit of the LogicalOpMode register is set to one. Note that the
following conditions must be met for this mode of rendering to be used:

• Flat shaded aliased primitive

• No dithering required

• No logical operation involving a destination factor

• No stencil or depth test

• No texture, fog or alpha blending

• No software writemasking

The data is in the raw format of the framebuffer. If the pixel size is 8 bits then the data
should be repeated in all four bytes. If the pixel size is 16 bits the data should be repeated
in both halves of the word.

Hardware writemasks can be used if available.

FBWriteData

TVP4020 Programmers Reference Manual Graphics Register Reference

209

Name: Framebuffer Write Mode

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8AB8

Tag: 0x0157

Reset Value: Undefined

Read/write

08162431

Reserved

Write enable

Reserved

UpLoadData

Controls writing to the framebuffer.

Bit0 Write Enable:
0 = Disable
1 = Enable

Bit3 UpLoadData:
0 = No upload
2 = Upload color to host

FBWriteMode

Graphics Register Reference TVP4020 Programmers Reference Manual

210

Name: Filter Mode

Unit: Host Out

Region: 0 Offset: 0x0000.8C00

Tag: 0x0180

Reset Value: Undefined

Read/write

08162431

Reserved Individual bits defined below

Controls culling of information from the output FIFO. If both tag and data are specified then
the tag is always the first word in the FIFO.

Bit0-3 Reserved for future use - set to zero.

Bit4 Depth Tag Filter: Used in-depth buffer image upload.
0 = Cull Depth Tags from being passed to output FIFO
1 = Pass Depth Tags to output FIFO

Bit5 Depth Data Filter: Used in-depth buffer image upload
0 = Cull Depth data values from being passed to output FIFO
1 = Pass Depth data values to output FIFO

Bit6 Stencil Tag Filter: Used in Stencil buffer image upload
0 = Cull Stencil Tags from being passed to output FIFO
1 = Pass Stencil Tags to output FIFO

Bit7 Stencil Data Filter: Used in Stencil buffer image upload
0 = Cull Stencil data values from being passed to output FIFO
1 = Pass Stencil data values to output FIFO

Bit8 Color Tag Filter: Used in Framebuffer image upload
0 = Cull Color Tags from being passed to output FIFO
1 = Pass Color Tags to output FIFO

Bit9 Color Data Filter: Used in Framebuffer image upload
0 = Cull Color data values from being passed to output FIFO
1 = Pass Color data values to output FIFO

Bit10 Synchronization Tag Filter:
0 = Cull Synchronization Tags from being passed to output FIFO
1 = Pass Synchronization Tags to output FIFO

Bit11 Synchronization Data Filter:
0 = Cull Synchronization data values from being passed to output

FIFO
1 = Pass Synchronization data values to output FIFO

FilterMode

TVP4020 Programmers Reference Manual Graphics Register Reference

211

Bit12 Statistics Tag Filter: Used in Picking and Extent read back
0 = Cull Statistics Tags from being passed to output FIFO
1 = Pass Statistics Tags to output FIFO

Bit13 Statistics Data Filter: Used in Picking and Extent read back
0 = Cull Statistics data values from being passed to output FIFO
1 = Pass Statistics data values to output FIFO

Bit14-15 Reserved for future use - set to zero.

Name: Fog Color

 Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.8698

Tag: 0x00D3

Reset Value: Undefined

Read/write

08162431

Alpha RedGreenBlue

Provides the color to be blended with the fragment's color when fogging is enabled.

FogColor

Graphics Register Reference TVP4020 Programmers Reference Manual

212

Name: Fog Mode

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.8690

Tag: 0x00D2

Reset Value: Undefined

Read/write

08162431

Reserved

Fog Enable

Reserved

FogTest

Controls operation of the Fog unit.

Enabling FogTest causes fragments with negative fog values to be rejected.

Note that the FogEnable bit in the Render command must be set for fogging to be applied
to a primitive.

Bit0 Enable Fog:
0 = Disable
1 = Enable

Bit2 Fog Test:
0 = Disable
1 = Enable

FogMode

TVP4020 Programmers Reference Manual Graphics Register Reference

213

Name: Initial Fog Value

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86A0

Tag: 0x00D4

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Fog coefficient start value. Note the interpolation coefficient is used to blend the fragment's
color with the color in the FogColor register. The value is in 2's complement 2.19 fixed
point format.

Name: Initial Green Color

Unit: Color DDA

Region: 0 Offset: 0x0000.8798

Tag: 0x00F3

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Green value for a vertex when in
Gouraud shading mode. The value is 2's complement 9.11 fixed point format.

FStart

GStart

Graphics Register Reference TVP4020 Programmers Reference Manual

214

Name: Initial Kd Value

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86E0

Tag: 0x00DC

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Start value for diffuse light parameter when texture mapping using ramp application mode.
The value is in 2's complement 2.19 fixed point format.

Name: Initial Ks Value

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.86C8

Tag: 0x00D9

Reset Value: Undefined

Read/write

08162431 4122028

FractionsNot Used

Sign Integer Not Used

Start value for specular light parameter when texture mapping using ramp application
mode. The value is in 2's complement 2.19 fixed point format.

KdStart

KsStart

TVP4020 Programmers Reference Manual Graphics Register Reference

215

Name: Localbuffer Data Download

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8898

Tag: 0x0113

Reset Value: Undefined

Write

08162431

Reserved 15 or 16 bit Depth value

1 bit Stencil value

Used to download depth and/or stencil data to localbuffer memory. Data should be
supplied in the raw localbuffer format.

Name: Localbuffer Depth Upload

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88B0

Tag: 0x0116

Reset Value: Undefined

Read/write

08162431

0 16 bit Depth value

Used to upload depth data from localbuffer memory. This register should not be written to.
It is documented here to give the tag value and format of the data when read from the Host
Out FIFO. If the depth buffer is less than 16 bits, the depth value is right justified and zero
extended

LBData

LBDepth

Graphics Register Reference TVP4020 Programmers Reference Manual

216

Name: Localbuffer Read Format

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8888

Tag: 0x0111

Reset Value: Undefined

Read/write

08162431

Reserved

Depth Width

Stencil Width

Specifies the format used when reading from localbuffer memory. The effect of creating a
format with overlapping fields is undefined. There is no need to synchronize PERMEDIA
before changing this register.

Bit0-1 Depth Width:
0 = 16
1 = reserved
2 = reserved
3 = 15

Bit2-3 Stencil Width:
0 = 0
1 = reserved
2 = reserved
3 = 1

LBReadFormat

TVP4020 Programmers Reference Manual Graphics Register Reference

217

Name: Localbuffer Read Mode

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8880

Tag: 0x0110

Reset Value: Undefined

Read/write

08162431

Reserved PP2Reserved PP1 PP0

Partial product selection

ReadSource enable

ReadDestination enable

Data Type

Window origin

Patch Enable

Controls reading from localbuffer memory.

Incorrect data can be read if reads are enabled but the same data had just been written
with reads disabled. To avoid this problem, a WaitForCompletion command should be sent
after enabling reads, but prior to the next primitive.

Bit0-2 Partial Product 0 - See Appendix C for a table of values

Bit3-5 Partial Product 1 - See Appendix C for a table of values

Bit6-8 Partial Product 2 - See Appendix C for a table of values

Bit9 Read Source Enable:
0 = no read
1 = do read

Bit10 Read Destination Enable:
0 = no read
1 = do read

Bit16-17 Data Type:
0 = Default
1 = Localbuffer Stencil
2 = Localbuffer Depth

Bit18 Window Origin:
0 = Top left
1 = Bottom left

Bit19 Patch Enable

0 = Disable
1 = Enable patched addressing of the localbuffer

LBReadMode

Graphics Register Reference TVP4020 Programmers Reference Manual

218

Name: Localbuffer Source Offset

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.8890

Tag: 0x0112

Reset Value: Undefined

Read/write

08162431

24bit signed integerNot used

Sets the offset from destination to source for a copy operation in the localbuffer, i.e.:

source offset = destination address - source address

Name: Localbuffer Stencil Upload

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88A8

Tag: 0x0115

Reset Value: Undefined

Read/Output

08162431

0

1 bit Stencil value

Used to upload stencil data from localbuffer memory. This register should not be written to.
It is documented here to give the tag value and format of the data when read from the Host
Out FIFO.

LBSourceOffset

LBStencil

TVP4020 Programmers Reference Manual Graphics Register Reference

219

Name: Localbuffer Window Base

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88B8

Tag: 0x0117

Reset Value: Undefined Read/write

08162431

24 bit unsigned integerNot used

Contains the current base address of the window in the localbuffer.

LBWindowBase

Graphics Register Reference TVP4020 Programmers Reference Manual

220

Name: Localbuffer Write Format

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88C8

Tag: 0x0119

Reset Value: Undefined

Read/write

08162431

Reserved

Depth Width

Stencil Width

Specifies the format used when writing to localbuffer memory. The effect of setting a
configuration with overlapping fields is undefined.

Bit0-1 Depth Width:
0 = 16
1 = reserved
2 = reserved
3 = 15

Bit2-3 Stencil Width:
0 = 0
1 = reserved
2 = reserved
3 = 1

LBWriteFormat

TVP4020 Programmers Reference Manual Graphics Register Reference

221

Name: Localbuffer Write Mode

Unit: Localbuffer R/W

Region: 0 Offset: 0x0000.88C0

Tag: 0x0118

Reset Value: Undefined

Read/write

08162431

Reserved

Write Enable

Bit0 Write Enable:
0 = Disable
1 = Enable

LBWriteMode

Controls writing to the localbuffer.

Graphics Register Reference TVP4020 Programmers Reference Manual

222

Name: Logic Op Mode

Unit: Logic Op

Region: 0 Offset: 0x0000.8828

Tag: 0x0105

Reset Value: Undefined

Read/write

08162431

Reserved

LogicalOp enable

UseConstantFBWriteData

LogicOp

Controls Logical Operations on the framebuffer.

The UseConstantFBWriteData bit when set to one, causes the color value in the
FBWriteData register to be written to the framebuffer, rather than the fragment's color. This
can achieve higher bandwidth into the framebuffer for flat shaded primitives, but may only
be used when LogicalOps are disabled (bit 0 cleared to 0)

Bit0 Logic Op Enable:
0 = Disable
1 = Enable

Bit1-4 Logic Op:

Mode Name Operation Mode Name Operation
0 CLEAR 0 8 NOR ~(S | D)
1 AND S & D 9 EQUIV ~(S ^ D)
2 AND REVERSE S & ~D 10 INVERT ~D
3 COPY S 11 OR REVERSE S | ~D
4 AND INVERTED ~S & D 12 COPY INVERT ~S
5 NO-OP D 13 OR INVERT ~S | D
6 XOR S ^ D 14 NAND ~(S & D)
7 OR S | D 15 SET 1

Where: S = Source (fragment) color, D = Destination (framebuffer) color.

Bit5 UseConstantFBWriteData:
0 = Variable
1 = Constant

LogicalOpMode

TVP4020 Programmers Reference Manual Graphics Register Reference

223

Name: Max Hit Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C30

Tag: 0x0186

Reset Value: Undefined

Write

The format of the data input is:

08162431

Reserved

The format of the data output is:

08162431

16 bit 2’s complement integer Max X16 bit 2’s complement integer Max Y

This command causes the maximum coordinates of the hit region to be passed to the Host
Out FIFO, unless culled by the statistics bits in the FilterMode register.

The corresponding tag value output is: 0x186

MaxHitRegion

Graphics Register Reference TVP4020 Programmers Reference Manual

224

Name: Max Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C18

Tag: 0x0183

Reset Value: Undefined

Read/write

08162431

16 bit 2’s complement integer Max X16 bit 2’s complement integer Max Y

This register has two uses:

1. During Picking it contains the maximum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial minimum (X,Y) extent, and thereafter will
be updated whenever an eligible fragment is generated which has a higher X or Y value,
with that higher value. Note eligible fragments can be either those that are written as pixels
OR those that were rasterized, but were culled from being drawn, as controlled by the
StatisticMode register.

This register is unusual in that its contents are updated by PERMEDIA during rendering,
and so if read back, will not necessarily be the same as when originally stored.

MaxRegion

TVP4020 Programmers Reference Manual Graphics Register Reference

225

Name: Min Hit Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C28

Tag: 0x0185

Reset Value: Undefined

Write

The format of the data input is:

08162431

Reserved

The format of the data output is:

08162431

16 bit 2’s complement integer Min X16 bit 2’s complement integer Min Y

This command causes the minimum coordinates of the hit region to be passed to the Host
Out FIFO, unless culled by the statistics bits in the FilterMode register.

The corresponding tag value output is: 0x185

MinHitRegion

Graphics Register Reference TVP4020 Programmers Reference Manual

226

Name: Min Region

Unit: Host Out

Region: 0 Offset: 0x0000.8C10

Tag: 0x0182

Reset Value: Undefined

Read/write

08162431

16 bit 2’s complement integer Min X16 bit 2’s complement integer Min Y

This register has two uses:

1. During Picking it contains the minimum (X,Y) value for the pick region.

2. During Extent collection, it is set to the initial maximum (X,Y) extent, and thereafter will
be updated whenever an eligible fragment is generated which has a lower X or Y value,
with that lower value. Note eligible fragments can be either those that are written as pixels
OR those that were rasterized, but were culled from being drawn, as controlled by the
StatisticMode register.

This register is unusual in that its contents are updated by PERMEDIA during rendering,
and so if read back, will not necessarily be the same as when originally stored.

MinRegion

TVP4020 Programmers Reference Manual Graphics Register Reference

227

Name: Packed copy limits

Units: Framebuffer R/W

Region: 0 Offset: 0x0000.8150

Tag: 0x002A

Reset Value: Undefined

Read/write

08162431

12 bit integer XStart Not used 12 bit integer XEnd

Reserved

RelativeOffset

Sets the start and end limits in X for packed copies. Any pixels lying outside the specified
range are not plotted. This test is only active when the PackedData bit in FBReadMode is
enabled.

Bit0-11 XEnd: 12 bit 2's complement value

Bit16-27 XStart: 12 bit 2's complement value

Bit29-31 Relative Offset:

3 bit 2's compliment value which specifies the number of pixels that the
source data has to be adjusted to align with the destination data. The
FBReadMode register
also has this field and the last loaded of these two registers takes effect.

PackedDataLimits

Graphics Register Reference TVP4020 Programmers Reference Manual

228

Name: Pick Result

Unit: Host Out

Region: 0 Offset: 0x0000.8C38

Tag: 0x0187

Reset Value: Undefined

Write

The format of the data input is:

08162431

Reserved

The format of the data output is:

08162431

Reserved

PickFlag

This command causes the current status of the picking result to be passed to the Host Out
FIFO, unless culled by the statistics bits in the FilterMode register.

The corresponding tag value output is: 0x187

Bit0 PickFlag:
0 = Miss
1 = Hit has occurred

Bit1 BusyFlag:
0 = Idle
1 = Busy - used to validate the Pick Flag bit if this register is polled

directly

PickResult

TVP4020 Programmers Reference Manual Graphics Register Reference

229

Name: Initial texture Q value

Unit: Texture Address

Region: 0 Offset: 0x0000.83B8

Tag: 0x0077

Reset Value: Undefined

Write

The format of the data input is:

08162431

ReservedFraction

Integer

Sign

Used to set the initial value for the Q coordinate when texture mapping. Format is 2's
complement 2.27 fixed point.

QStart

Graphics Register Reference TVP4020 Programmers Reference Manual

230

Name: Rasterizer Mode

Unit: Rasterizer

Region: 0 Offset: 0x0000.80A0

Tag: 0x0014

Reset Value: Undefined

Read/write

08162431

Reserved

MirrorBitMask

InvertBitMask

FractionAdjust

BiasCoordinates

ForceBackgroundColor

BitMaskByteSwapMode

BitMaskPacking

BitMaskOffset

HostDataByteSwapMode

Reserved

BitMaskRelative

LimitsEnable

Defines the long term mode of operation of the Rasterizer.

Bit0 MirrorBitMask

0 = use bit mask from least to most significant bit
1 = use bit mask from most to least significant bit

Bit1 InvertBitMask

0 = test against bitmask
1 = test against inverted bitmask

Bit2-3 FractionAdjust These bits are for the ContinueNewLine command and
specify how the fraction bits in the Y and XDom DDAs are adjusted.

0 = No adjustment is done,
1 = Set the fraction bits to zero,
2 = Set the fraction bits to half.
3 = Set the fraction to nearly half, i.e. 0x7FFF

Bit4-5 BiasCoordinates These bits control how much is added onto the
StartXDom, StartXSub and StartY values when they are loaded into the
DDA units. The original registers are not effected.

0 = Zero is added,
1 = Half is added
2 = Nearly half is added, i.e. 0x7FFF

Bit6 ForceBackgroundColor Controls operation of bitmask test. If disabled any
fragment failing the test is discarded. If enabled any fragment failing the
test is drawn (other tests allowing) but the color is taken from the Texel0
register. Used to support foreground/background colors.

RasterizerMode

TVP4020 Programmers Reference Manual Graphics Register Reference

231

0 = disabled
1 = enabled

Bit7-8 BitMaskByteSwapMode. Controls byte swapping for bitmask. Input
ABCD

0 = ABCD
1 = BADC
2 = CDAB
3 = DCBA

Bit9 BitMaskPacking.

0 = bitmask packed
1 = new data every scanline

Bit10-14 BitMaskOffset. Position of first bit to test in bitmask.

Bit15-16 HostDataByteSwapMode. Controls byte swapping for host data. Input
ABCD

0 = ABCD
1 = BADC
2 = CDAB
3 = DCBA

Bit18 LimitsEnable. Enable X and Y limits checking

0 = disabled
1 = enabled

Bit19 BitMaskRelative

0 = bitmask indexed by counter
1 = bit mask indexed by X position

Graphics Register Reference TVP4020 Programmers Reference Manual

232

Name: Rectangle Origin

Unit: Rasterizer

Region: 0 Offset: 0x0000.80D0

Tag: 0x001A

Reset Value: Undefined

Write

08162431

Ignored IgnoredY X

Bits 0-15 X origin of the rectangle to be drawn.

Bits 16-31 Y origin of the rectangle to be drawn.

Name: Rectangle Origin

Unit: Rasterizer

Region: 0 Offset: 0x0000.80D8

Tag: 0x001B

Reset Value: Undefined

Write

08162431

Ignored IgnoredHeight Width

Bits 0-15 Width of the rectangle to be drawn.

Bits 16-31 Height of the rectangle to be drawn.

RectangleOrigin

RectangleSize

TVP4020 Programmers Reference Manual Graphics Register Reference

233

Name: Render

Unit: Rasterizer

Region: 0 Offset: 0x0000.8038

Tag: 0x0007

Reset Value: Undefined

Write

08162431

Reserved

AreaStippleEnable

Reserved

FastFill enable

Reserved

Primitive typeReserved

SyncOnBitMask

Reserved

SyncOnHostData

Texture
enable

SubPixelCorrectionEnable

Fog enableReuseBitMask

Reserved

IncreaseXIncreaseY

Command to start the rendering process.

The data field defines the short term modes required by this primitive. For details, see
Table 5.4.

Bit0 AreaStippleEnable. Note that area stipple in the Stipple Unit must be
enabled as well for stippling to occur.

0 = Disable
1 = Enable

Bit3 FastFillEnable
0 = Disable block filling
1 = Enable block filling

Bit6-7 PrimitiveType. These bits indicate the type of PERMEDIA primitive to be
drawn. The primitives supported and the corresponding codes are:

0 = lines,
1 = trapezoids,
2 = points,
3 = rectangles.

Bit11 SyncOnBitMask. Enable bitmask test. Wait for new bitmask when current
one expires unless SyncOnHostData or ReuseBitMask enabled.

0 = Disable
1 = Enable

Render

Graphics Register Reference TVP4020 Programmers Reference Manual

234

Bit12 SyncOnHostData. When this bit is set, a fragment is produced only when
one of the following registers has been written by the host: Depth, FBData,
FBSourceData, Stencil, Color or Texel0. Also BitMaskPattern if
SyncOnBitMask is set.

0 = Disable
1 = Enable

Bit13 TextureEnable. Note that the Texture Units must be suitably enabled as
well for any texturing to occur.

0 = Disable
1 = Enable

Bit14 FogEnable. Note that the Fog Unit must be suitably enabled as well for
any fogging to occur.

0 = Disable
1 = Enable

Bit16 SubPixelCorrectionEnable. Enables the sub pixel correction of color,
depth, fog and texture values at the start of a scanline span.

0 = Disable
1 = Enable

Bit17 ReuseBitMask. Allows the bitmask to be reused when it has expired; if
enabled the Rasterizer will not wait for a new mask when the current one
has been used.

0 = Disable
1 = Enable

Bit18-20 Reserved.

Bit21 IncreaseX. Specifies that the rectangle primitive should be filled in the
direction of increasing X.

0 = Disable
1 = Enable

Bit22 IncreaseY. Specifies that the rectangle primitive should be filled in the
direction of increasing Y.

0 = Disable
1 = Enable

TVP4020 Programmers Reference Manual Graphics Register Reference

235

Name: Repeat line

Unit: Delta

Region: 0 Offset: 0x0000.9328

Tag: 0x0265

Reset Value: Undefined

Write

08162431

Reserved

The data field is not used

Name: Repeat Triangle

Unit: Delta

Region: 0 Offset: 0x0000.9310

Tag: 0x0262

Reset Value: Undefined

Write

08162431

Reserved

The data field is not used.

RepeatLine

RepeatTriangle

Graphics Register Reference TVP4020 Programmers Reference Manual

236

Name: Reset Pick Result

Units: Host Out

Region: 0 Offset: 0x0000.8C20

Tag: 0x0184

Reset Value: Undefined

Write

08162431

Reserved

This command causes the current value of the picking result to be reset to zero. The data
field is not used.

Name: Initial Red Color

Unit: Color DDA

Region: 0 Offset: 0x0000.8780

Tag: 0x00F0

Reset Value: Undefined

Read/write

08162431

IntegerNot used Fraction Not used

Sign

This register is used to set the initial value for the Red value for a vertex when in Gouraud
shading mode. The value is 2's complement 9.11 fixed point format.

ResetPickResult

RStart

TVP4020 Programmers Reference Manual Graphics Register Reference

237

Name: Scissor Rectangle - Maximum XY

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.8190

Tag: 0x0032

Reset Value: Undefined

Read/write

08162431

Not used 12 bit 2’s complement Max Y Not used 12 bit 2’s complement Max X

Specifies the user scissor rectangle corner farthest from the screen origin.

Name: Scissor Rectangle - Minimum XY

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.8188

Tag: 0x0031

Reset Value: Undefined

Read/write

08162431

Not used 12 bit 2’s complement Min Y Not used 12 bit 2’s complement Min X

Specifies the user scissor rectangle corner closest to the screen origin.

ScissorMaxXY

ScissorMinXY

Graphics Register Reference TVP4020 Programmers Reference Manual

238

Name: Scissor Mode

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.8180

Tag: 0x0030

Reset Value: Undefined

Read/write

08162431

User scissor enable

Reserved

Screen scissor enable

Controls enabling of the screen and user scissor tests.

Bit0 User Scissor Enable:
0 = Disable
1 = Enable

Bit1 Screen Scissor Enable:
0 = Disable
1 = Enable

Name: Screen Size

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.8198

Tag: 0x0033

Reset Value: Undefined

Read/write

08162431

Not used 11 bit unsigned integer WidthNot used11 bit unsigned integer Height

Screen dimensions for screen scissor clip. The screen boundaries are (0, 0) to (width - 1,
height - 1) inclusive.

ScissorMode

ScreenSize

TVP4020 Programmers Reference Manual Graphics Register Reference

239

Name: Initial texture S value

Unit: Texture Address

Region: 0 Offset: 0x0000.8388

Tag: 0x0071

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the initial value for the S coordinate when texture mapping. Format is 2's
complement 12.18 fixed point.

Name: Start X Value - Dominant Edge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8000

Tag: 0x0000

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Initial X value for the dominant edge in trapezoid filling, or initial X value in line drawing.
The value is in 2's complement 12.15 fixed point format.

SStart

StartXDom

Graphics Register Reference TVP4020 Programmers Reference Manual

240

Name: Start X Value - Subordinate Edge

Unit: Rasterizer

Region: 0 Offset: 0x0000.8010

Tag: 0x0002

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Initial X value for the subordinate edge in trapezoid filling. The value is in 2's complement
12.15 fixed point format.

Name: Start Y Value

Unit: Rasterizer

Region: 0 Offset: 0x0000.8020

Tag: 0x0004

Reset Value: Undefined

Read/write

08162431

Not used

Sign

15 bit fraction11 bit integer

Not used

Initial scanline in trapezoid filling, or initial Y position for line drawing. The value is in 2's
complement 12.15 fixed point format.

StartXSub

StartY

TVP4020 Programmers Reference Manual Graphics Register Reference

241

Name: Statistic Mode

Unit: Host Out

Region: 0 Offset: 0x0000.8C08

Tag: 0x0181

Reset Value: Undefined

Read/write

08162431

Reserved

Enable Stats

Stats Type
Monitor Pixels Written

Monitor Culled Fragments
Compare Function

Include Spans

Controls the mode of statistics collection.

Bit0 EnableStats:
0 = Disable Statistics collection
1 = Enable Statistics collection

Bit1 StatsType:
0 = Picking mode
1 = Extent collection

Bit2 Active Steps:
0 = Excludes Pixels that were drawn
1 = Includes Pixels that were drawn

Bit3 Passive Steps:
0 = Excludes fragments that were culled from being drawn
1 = Includes fragments that were culled from being drawn

Bit4 CompareFunction:
0 = Inside region
1 = Outside region

Bit5 Spans:
0 = Exclude block filled spans
1 = Include block filled spans

StatisticMode

Graphics Register Reference TVP4020 Programmers Reference Manual

242

Name: Stencil

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.8998

Tag: 0x0133

Reset Value: Undefined

Read/write

08162431

Stencil

Reserved

The stencil value to be used in clearing down the stencil buffer, or in drawing a primitive
where the host supplies the stencil value.

Name: Stencil Data

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.8990

Tag: 0x0132

Reset Value: Undefined

Read/write

08162431

Reference Stencil

Reserved Reserved Reserved

Compare MaskWrite Mask

Holds data used in the stencil test.

The stencil writemask controls which stencil planes are updated as a result of the test.

Bit0 Reference Stencil is the reference value for the stencil test.

Bit8 Compare Mask is the mask used to determine which bits are significant in
the comparison.

Bit16 Stencil Writemask is the mask used to determine which bits in the
localbuffer are updated.

Stencil

StencilData

TVP4020 Programmers Reference Manual Graphics Register Reference

243

Name: Stencil Mode

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.8988

Tag: 0x0131

Reset Value: Undefined

Read/write

08162431

Unit enable

Reserved func dppass

Update MethodStencil source

dpfailsfailsrc

Unsigned compare function

Controls the stencil test, which conditionally rejects fragments based on the outcome of a
comparison between the value in the stencil buffer and a reference value in the
StencilData register. If the test is LESS and the result is true then the fragment value is
less than the source value.

Bit0 Unit Enable:
0 = Disable
1 = Enable

Bit1-3 Update Method if Depth test passes and Stencil test passes:
(see table below)

Bit4-6 Update Method if Depth test fails and Stencil test passes:
(see table below)

Bit7-9 Update Method if Stencil test fails:

Mode Method Result
0 Keep Source stencil
1 Zero 0
2 Replace Reference stencil
3 Increment Clamp (Source stencil + 1) to 2stencil width - 1
4 Decrement Clamp (Source stencil -1) to 0
5 Invert ~Source stencil

Bit10-12 Unsigned Comparison Function:

Mode = Comparison Function
0 = NEVER
1 = LESS
2 = EQUAL
3 = LESS OR EQUAL

StencilMode

Graphics Register Reference TVP4020 Programmers Reference Manual

244

4 = GREATER
5 = NOT EQUAL
6 = GREATER OR EQUAL
7 = ALWAYS

Bit13-14 Stencil Source:
0 = Test Logic
1 = Stencil Register
2 = LBData
3 = LBSourceData

Name: Suspend until
frameblank

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.8C78

Tag: 0x018F

Reset Value: Undefined

Write

08162431

32 bit integer address

This command causes all outstanding framebuffer writes to be flushed and then
suspension of framebuffer accesses until the next frameblank period. The data field is the
start address of the next frame to be displayed. This address will be used from the next
frameblank until a new address is supplied.

Bit0-31 Address

SuspendUntilFrameblank

TVP4020 Programmers Reference Manual Graphics Register Reference

245

Name: Synchronization

Unit: Host Out

Region: 0 Offset: 0x0000.8C40

Tag: 0x0188

Reset Value: Undefined

Write

08162431

31 user defined bits

Interrupt enable

This command can be used to synchronize PERMEDIA with the host. It is also used to
flush outstanding PERMEDIA operations such as pending memory accesses. It also causes
the current status of the picking result to be passed to the Host Out FIFO, unless culled by
the statistics bits in the FilterMode register.

Bit0-30 User Defined

Bit31 InterruptEnable:
0 = Disable Interrupt for this command
1 = Enable Interrupt for this command

The data output is the value written to the register by this command. If interrupts are
enabled, then the interrupt does not occur until the tag and/or data have been written to
the output FIFO.

The corresponding tag value output is: 0x188

Sync

Graphics Register Reference TVP4020 Programmers Reference Manual

246

Name: Texel Value

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.8600

Tag: 0x00C0

Reset Value: Undefined

Read/write

08162431

Alpha RedGreenBlue

08162431

VAlpha U Y

The texel value can be loaded using the Rasterizer SyncOnHostData mode. This is useful
for direct application of procedural textures. It is also used when downloading YUV data
which needs to be converted to RGB; the YUV conversion is done on the contents of this
register.

This register is also used to supply the background color if ForceBackgroundColor has
been enabled in either the RasterizerMode or the AreaStippleMode registers.

Name: Texel LUT entries 0 to 15

Unit: Texture Read

Region: 0 Offset: 0x0000.8E80 ,…, 0x0000.8EF8

Tag: 0x01D0,…,0x1DF

Reset Value: Undefined

Read/write

08162431

RedGreenBlueNot used

The value to be loaded into the specified texel look-up-table entry.

Texel0

TexelLUT[0..15]

TVP4020 Programmers Reference Manual Graphics Register Reference

247

Name: Address of LUT in memory

Unit: Texture Read

Region: 0 Offset: 0x0000.84D0

Tag: 0x009A

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerReserved

System Memory

Reserved

The address in memory in 32 bit units of data to be loaded into the texture look-up table. If
bit 30 is set the LUT resides in system memory rather than local buffer and should be
loaded across the PCI bus. Bit 31 is ignored if this register is loaded directly. If it is loaded
indirectly by the TexelLUTID register.

Name: Data for texture LUT

Unit: Texture Read

Region: 0 Offset: 0x0000.84C8

Tag: 0x0099

Reset Value: Undefined

Read/write

08162431

RedGreenBlueAlpha

Data to be loaded into the texture look-up table.

TexelLUTAddress

TexelLUTData

Graphics Register Reference TVP4020 Programmers Reference Manual

248

Name: Indirect handle for texture LUT

Unit: Texture Read

Region: 0 Offset: 0x0000.8F78

Tag: 0x001EF

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerReserved

System Memory

Reserved

The 24 bit field holds the address of the data that should be loaded into the
TexelLUTAddress register. If bit 30 is set this data is in system memory and should be
fetched across the PCI bus.

Name: Index data for LUT

Unit: Texture Read

Region: 0 Offset: 0x0000. 84C0

Tag: 0x00098

Reset Value: Undefined

Read/write

08162431

Reserved Index

The TexelLUTIndex register holds the index into the texel LUT where the write of
subsequent TexelLUTData will be written. The index is held in the lower 8 bits of the
TexelLUTIndex register and this is auto incremented after every write to TexelLUTData.
Reading back from TexelLUTIndex returns the auto incremented value, if any writes to
TexelLUTData have occured. A side effect of reading the TexelLUTIndex register is to
reset an internal counter used to generate the LUT index when reading TexelLUTData.
This internal counter will autoincrement after every read of TexelLUTData.

TexelLUTID

TexelLUTIndex

TVP4020 Programmers Reference Manual Graphics Register Reference

249

Name: Texel LUT Mode

Unit: Texture Read

Region: 0 Offset: 0x0000.8678

Tag: 0x00CF

Reset Value: Undefined

Read/write

08162431

Reserved

Enable

DirectIndex

Offset

PixelsPerEntry

Controls the operation of the texture look-up table.

Bit0 Enable:

0 = No
1 = Lookup

Bit1 DirectIndex:

0 = Index from texture data
1 = Index from fragment XY values

Bit2-9 Offset:0x0000. Offset to add index in DirectIndex mode

Bit10-11 PixelsPerEntry: number of pixels per entry in LUT

0 = 1 pixel
1 = 2 pixels
2 = 4 pixels

TexelLUTMode

Graphics Register Reference TVP4020 Programmers Reference Manual

250

Name: Initiates loading of LUT data from memory

Unit: Texture Read

Region: 0 Offset: 0x0000.84D8

Tag: 0x0009B

Reset Value: Undefined

Read/write

08162431

CountReserved Index

The index field specifies the first entry in the LUT to load, and the Count field specifies the
number of entries to load.

Name: Texture Address Mode

Unit: Texture Address

Region: 0 Offset: 0x0000.8380

Tag: 0x0070

Reset Value: Undefined

Read/write

08162431

Reserved

Texture Address Enable
Perspective Correction

Controls the calculation of texture addresses.

If bit 1 is set, PERMEDIA performs fast, accurate perspective correction.

Bit0 Texture Address Enable:
0 = Disable
1 = Enable

Bit1 Perspective Correction:
0 = Disable
1 = Enable

TexelLUTTransfer

TextureAddressMode

TVP4020 Programmers Reference Manual Graphics Register Reference

251

Name: Address of texture in memory

Unit: Texture Read

Region: 0 Offset: 0x0000.8580

Tag: 0x00B0

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerReserved

System Memory

Invalid Address

Base address of texture map. Specified in texels from the base of the memory. If bit 3o is
set the texture resides in system memory rather than local buffer and should be fetched
across the PCI bus. Bit 31 is ignored if this register is loaded directly. If it is loaded
indirectly by the TextureID register, bit 31 indicates that the address is invalid and should
not be used.

TextureBaseAddress

Graphics Register Reference TVP4020 Programmers Reference Manual

252

Name: Texture Color Mode

Unit: Texture/Fog/Blend

Region: 0 Offset: 0x0000.8680

Tag: 0x00D0

Reset Value: Undefined Read/write

08162431

Reserved

Texture Enable

Application Mode

Texture TypeKdDDA

KsDDA

Controls the application of texture. The KsDDA and KdDDA bits enable the internal DDAs
and should be set for modulate or highlight Ramp texture application modes. The Texture
Type field differentiates between RGB (OpenGL) and Ramp (Apple) application modes. With
Ramp Application Mode, various modes can be simultaneously applied e.g. decal with
highlight.

Note: The TextureEnable bit in the Render command must also be set for a primitive to be
texture mapped.

Bit0 Texture Enable:
0 = Disable
1 = Enable texture application

Bit1-3 Application Mode:
RGB Ramp
0 = Modulate Bit 1 = Decal
1 = Decal Bit 2 = Modulate
2 = Reserved Bit 3 = Highlight
3 = Copy
4 = Modulate + Highlight
5 = Decal + Highlight
6 = Reserved
7 = Copy + Highlight

Bit4 Texture Type:
0 = RGB
1 = Ramp

Bit5 KdDDA:
0 = Disable
1 = Enable

Bit6 KsDDA:
0 = Disable
1 = Enable

TextureColorMode

TVP4020 Programmers Reference Manual Graphics Register Reference

253

Name: Texture Data

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.88E8

Tag: 0x011D

Reset Value: Undefined

Write

08162431

Data

Used with TextureDownloadOffset to load raw texture data into memory. This may include
multiple texels depending on the texel size.

Bit0-31 Data

TextureData

Graphics Register Reference TVP4020 Programmers Reference Manual

254

Name: Texture Data Format

Unit: Texture Read

Region: 0 Offset: 0x0000.8590

Tag: 0x00B2

Reset Value: Undefined

Read/write

08162431

Reserved

Texture Format
No Alpha Buffer

Color Order
Texture Format Extension

AlphaMap

SpanFormat

Specifies the color format of the texture map in memory. (see overleaf for description of
the bit fields)

Bit0-3 Texture Format:

Internal Color Channel
Format Color Order Name R/Y G/U B/V A

0 BGR 8:8:8:8 8@0 8@8 8@16 8@24
1 BGR 5:5:5:1 Front 5@0 5@5 5@10 1@15
2 BGR 4:4:4:4 4@0 4@4 4@8 4@12
5 BGR 3:3:2 Front 3@0 3@3 2@6 0
6 BGR 3:3:2 Back 3@8 3@11 2@14 0
9 BGR 2:3:2:1 Front 2@0 3@2 2@5 1@7
10 BGR 2:3:2:1 Back 2@8 3@10 2@13 1@15
11 BGR 2:3:2 FrontOff 2@0 3@2 2@5 0
12 BGR 2:3:2 BackOff 2@8 3@10 2@13 0
13 BGR 5:5:5:1 Back 5@16 5@21 5@26 1@31
14 BGR CI8 8@0 0 0 0
15 BGR CI4 4@0 0 0 0
16 BGR 5:6:5 Front 5@0 6@5 5@11 0
17 BGR 5:6:5 Back 5@16 6@21 5@27 0
18 BGR YUV444 8@0 8@8 8@16 8@24
19 BGR YUV422 8@0 8@8 8@8 0
0 RGB 8:8:8:8 8@16 8@8 8@0 8@24
1 RGB 5:5:5:1 Front 5@10 5@5 5@0 1@15
2 RGB 4:4:4:4 4@8 4@4 4@0 4@12
5 RGB 3:3:2 Front 3@5 3@2 2@0 0

TextureDataFormat

TVP4020 Programmers Reference Manual Graphics Register Reference

255

6 RGB 3:3:2 Back 3@13 3@10 2@8 0
9 RGB 2:3:2:1 Front 2@5 3@2 2@0 1@7
10 RGB 2:3:2:1 Back 2@13 3@10 2@8 1@15
11 RGB 2:3:2 FrontOff 2@5 3@2 2@0 0
12 RGB 2:3:2 BackOff 2@13 3@10 2@8 0
13 RGB 5:5:5:1 Back 5@26 5@21 5@16 1@31
14 RGB CI8 8@0 0 0 0
15 RGB CI4 4@0 0 0 0
16 RGB 5:6:5 Front 5@11 6@5 5@0 0
17 RGB 5:6:5 Back 5@27 6@21 5@16 0
18 RGB YUV444 8@16 8@8 8@0 8@24
19 RGB YUV422 8@8 8@0 8@0 0

Notes: The format column is also dependent on bit6. n@m means n bits starting at bit m.
Front and Back modes replicate the color value to assist with double buffering. CI values
are replicated into each byte to assist with double buffering. Offset modes have 64 added
to the 7 bit formatted value. If the format has no alpha bits, the alpha field defaults to 0xF8

Bit4 No Alpha Buffer:
0 = Alpha buffer present
1 = Alpha buffer not present

Bit5 Color Order:
0 = BGR
1 = RGB

Bit6 Texture Format Extension. Most significant bit extension to Texture
Format held in bits0-3

Bit7-8 AlphaMap:
0 = None
1 = Include: pass texels that lie within the AlphaMap bounds

2 = Exclude: fail texels that lie within the AlphaMap bounds
Bit9 SpanFormat: used to control the data format of a texture map holding

block fill masks.
0 = Normal
1 = Flip: mirror the bits within each byte

Graphics Register Reference TVP4020 Programmers Reference Manual

256

Name: Texture Download Offset

Unit: Framebuffer R/W

Region: 0 Offset: 0x0000.88F0

Tag: 0x011E

Reset Value: Undefined

Write/Read

08162431

22 bit unsigned integer addressReserved

32 bit aligned address at which the texture load will start. Each write to TextureData
increments this value by one after the store has taken place. Note, if this register is read
back it will not necessarily contain the same value as the written value.

Bit0-21 Address

Name: Indirect handle for texture map

Unit: Texture Read

Region: 0 Offset: 0x0000.8F70

Tag: 0x001EE

Reset Value: Undefined

Read/write

08162431

24 bit unsigned integerReserved

System Memory

Reserved

The 24 bit field holds the address of the data that should be loaded into the
TextureBaseAddress register. If bit 30 is set this data is in system memory and should be
fetched across the PCI bus.

TextureDownloadOffset

TextureID

TVP4020 Programmers Reference Manual Graphics Register Reference

257

Name: Texture Map Format

Unit: Texture Read

Region: 0 Offset: 0x0000.8588

Tag: 0x00B1

Reset Value: Undefined

Read/write

08162431

ReservedReserved PP1

Partial product selection

Window origin

SubPatch mode

Reserved

Texel Size

PP2 PP0

Specifies the organization of the texture map in memory.

Enabling subpatch addressing improves the performance of texture mapping in typical
situations.

Bit0-2 Partial Product 0 - See Appendix C for a table of values

Bit3-5 Partial Product 1 - See Appendix C for a table of values

Bit5-7 Partial Product 2 - See Appendix C for a table of values

Bit16 Window Origin:
0 = Top
1 = Bottom Left

Bit17 Subpatch Mode:
0 = Disable
1 = Enable

Bit19-20 Texel Size:
0 = 8 bits
1 = 16 bits
2 = 32 bits
3 = 4 bits
4 = 24 bits

TextureMapFormat

Graphics Register Reference TVP4020 Programmers Reference Manual

258

Name: Texture Read Mode

Unit: Texture Read

Region: 0 Offset: 0x0000.8670

Tag: 0x00CE

Reset Value: Undefined Read/write

08162431

Reserved

TWrapMode

Enable

Reserved ReservedHeight Width

Packed Data Filter Mode SWrapMode

Controls texture read operations. When FilterMode is set, bilinear texture mapping is
performed otherwise nearest neighbor texture mapping occurs. The S and TWrapModes
specify the action to be taken when the S and T coordinates fall outside the required
range. Clamp is useful when texture mapping a single image onto an object, Repeat cause
the texture pattern to be repeated, whilst mirror causes the texture pattern to be alternately
reversed. The Packed Data bit is used to define how texels are read from memory. If this
bit is cleared, each texel is read one at a time; if set several texels can be read
simultaneously improving efficiency. The actual number of texels read in this case is
dependent on the texel size.

Bit0 Enable
0 = Disable texture reads
1 = Enable texture reads

Bit1-2 SWrapMode
0 = Clamp
1 = Repeat
2 = Mirror

Bit3-4 TWrapMode
0 = Clamp
1 = Repeat
2 = Mirror

Bit9-12 Width - log2 texture map width

Bit13-16 Height - log2 texture map height

Bit17 FilterMode
0 = Disable bilinear texture filtering
1 = Enable bilinear texture filtering

Bit24 PackedData
0 = off
1 = on

TextureReadMode

TVP4020 Programmers Reference Manual Graphics Register Reference

259

Name: Initial texture T value

Unit: Texture Address

Region: 0 Offset: 0x0000.83A0

Tag: 0x0074

Reset Value: Undefined

Read/write

08162431

Integer Fraction

ReservedSign

Used to set the initial value for the T coordinate when texture mapping. Format is 2's
complement 12.18 fixed point.

TStart

Graphics Register Reference TVP4020 Programmers Reference Manual

260

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9000,.. 0x0000.9078

Tag: 0x00200,..0x0020F

Reset Value: Undefined

Read/write

08162431

32 bit value

Data for vertex 0. The following table shows the valid entries:

Offset Category Parameter Fixed Point
Format

0 s 2.30 s1

1 Texture t 2.30 s
2 q 2.30 s
3 Ks 2.22 us
4 Kd 2.22 us
5 red 1.30 us
6 green 1.30 us
7 Color blue 1.30 us
8 alpha 1.30 us
9 Fog f 10.22 us
10 x 16.16 s
11 Coordinate y 16.16 s
12 z 1.30 us
13 Reserved Reserved
14 PackedColor PackedColor 8888

1This is the range when Normalise is not used. When Normalise is enabled the fixed point
format can be anything, providing it is the same for the s, t and q parameters. The
numbers will be interpreted as if they had 2.30 format for the purpose of conversion to
floating point. If the fixed point format (2.30) is different from what the user had in mind
then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary
point positions) prior to conversion.

V0Fixed[0..15]

TVP4020 Programmers Reference Manual Graphics Register Reference

261

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9080, 0x0000.90F8

Tag: 0x00210, 0x0021F

Reset Value: Undefined

Read/write

08162431

32 bit value

Data for vertex 1. The following table shows the valid entries:

Offset Category Parameter Fixed Point
Format

0 s 2.30 s1

1 Texture t 2.30 s
2 q 2.30 s
3 Ks 2.22 us
4 Kd 2.22 us
5 red 1.30 us
6 green 1.30 us
7 Color blue 1.30 us
8 alpha 1.30 us
9 Fog f 10.22 us
10 x 16.16 s
11 Coordinate y 16.16 s
12 z 1.30 us
13 Reserved Reserved
14 PackedColor PackedColor 8888

1This is the range when Normalise is not used. When Normalise is enabled the fixed point
format can be anything, providing it is the same for the s, t and q parameters. The
numbers will be interpreted as if they had 2.30 format for the purpose of conversion to
floating point. If the fixed point format (2.30) is different from what the user had in mind
then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary
point positions) prior to conversion.

V1Fixed[0..15]

Graphics Register Reference TVP4020 Programmers Reference Manual

262

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9100, .. 0x0000.9178

Tag: 0x00220 .. 0x0022F

Reset Value: Undefined

Read/write

08162431

32 bit value

Data for vertex 2. The following table shows the valid entries:

Offset Category Parameter Fixed Point
Format

0 s 2.30 s1

1 Texture t 2.30 s
2 q 2.30 s
3 Ks 2.22 us
4 Kd 2.22 us
5 red 1.30 us
6 green 1.30 us
7 Color blue 1.30 us
8 alpha 1.30 us
9 Fog f 10.22 us
10 x 16.16 s
11 Coordinate y 16.16 s
12 z 1.30 us
13 Reserved Reserved
14 PackedColor PackedColor 8888

1This is the range when Normalise is not used. When Normalise is enabled the fixed point
format can be anything, providing it is the same for the s, t and q parameters. The
numbers will be interpreted as if they had 2.30 format for the purpose of conversion to
floating point. If the fixed point format (2.30) is different from what the user had in mind
then the input values are just pre-scaled by a fixed amount (i.e. the difference in binary
point positions) prior to conversion.

V2Fixed[0..15]

TVP4020 Programmers Reference Manual Graphics Register Reference

263

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9180, 0x0000.91F8

Tag: 0x00230, 0x0023F

Reset Value: Undefined

Read/write

08162431

32 bit value

Data for vertex 0. The following table shows the valid entries:

Offset Category Parameter IEEE Single Precision Floating Point
Range

0 s -1.0…1.0
1 t -1.0…1.0
2 Texture q -1.0…1.0
3 Ks 0.0…2.0
4 Kd 0.0…1.0
5 red 0.0…1.0
6 Color green 0.0…1.0
7 blue 0.0…1.0
8 alpha 0.0…1.0
9 Fog f -512.0…512.0
10 x -32K…+32K footnotes 1,2

11 Co-ordinate y -32K…+32K footnotes 1,2

12 z 0.0…1.0
13 Reserved Reserved
14 PackedColo

r
PackedColo

r
8888

1The normal range here is limited by the size of the screen.
2K = 1024.

V0Float[0..15]

Graphics Register Reference TVP4020 Programmers Reference Manual

264

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9200, 0x0000.8278

Tag: 0x00240, 0x0024F

Reset Value: Undefined

Read/write

08162431

32 bit value

Data for vertex 1. The following table shows the valid entries:

Offset Category Parameter IEEE Single Precision Floating Point
Range

0 s -1.0…1.0
1 Texture t -1.0…1.0
2 q -1.0…1.0
3 Ks 0.0…2.0
4 Kd 0.0…1.0
5 red 0.0…1.0
6 Color green 0.0…1.0
7 blue 0.0…1.0
8 alpha 0.0…1.0
9 Fog f -512.0…512.0
10 x -32K…+32K footnotes 1,2

11 Co-ordinate y -32K…+32K footnotes 1,2

12 z 0.0…1.0
13 Reserved Reserved
14 PackedColo

r
PackedColo

r
8888

1The normal range here is limited by the size of the screen.
2K = 1024.

V1Float[0..15]

TVP4020 Programmers Reference Manual Graphics Register Reference

265

Name: Vertex 0 data

Unit: Delta

Region: 0 Offset: 0x0000.9280, 0x0000.92F8

Tag: 0x00250, 0x0025F

Reset Value: Undefined

Read/write

08162431

32 bit value

Data for vertex 2. The following table shows the valid entries:

Offset Category Parameter IEEE Single Precision Floating Point
Range

0 s -1.0…1.0
1 Texture t -1.0…1.0
2 q -1.0…1.0
3 Ks 0.0…2.0
4 Kd 0.0…1.0
5 red 0.0…1.0
6 Color green 0.0…1.0
7 blue 0.0…1.0
8 alpha 0.0…1.0
9 Fog f -512.0…512.0
10 x -32K…+32K footnotes 1,2

11 Co-ordinate y -32K…+32K footnotes 1,2

12 z 0.0…1.0
13 Reserved Reserved
14 PackedColo

r
PackedColo

r
8888

1The normal range here is limited by the size of the screen.
2K = 1024.

V2Float[0..15]

Graphics Register Reference TVP4020 Programmers Reference Manual

266

Name: Wait for completion

Unit: Rasterizer

Region: 0 Offset: 0x0000.8088

Tag: 0x0017

Reset Value: Undefined

Write

08162431

Reserved

This command register causes PERMEDIA to suspend operation until all framebuffer writes
have completed. Useful to separate, say, a texture download from subsequent primitives.

Bit0-31 Reserved

WaitForCompletion

TVP4020 Programmers Reference Manual Graphics Register Reference

267

Name: Window

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.8980

Tag: 0x0130

Reset Value: Undefined

Read/write

08162431

Reserved

Reserved

Force LB Update

LB UpdateSource

Disable LB Update

Reserved

If the Force LB Update bit is set, this overrides the stencil and depth tests, and the per unit
enables, to force the localbuffer to be updated. Writes must still be enabled in the
LBWriteMode register. When this bit is clear any update is conditional on the outcome of
the stencil and depth tests.

If the Disable LB Update bit is set the results of the stencil and depth tests are overridden
and the localbuffer not updated, even if localbuffer writes are enabled. When writes are
disabled in LBWriteMode there may be a performance advantage in also setting Disable
LB Update.

Bit3 Force LB Update:
0 = Not Forced
1 = Forced

Bit4 LB Update Source:
0 = LBSourceData
1 = Registers

Bit18 Disable LB Update
0 = Update
1 = No Update

Window

Graphics Register Reference TVP4020 Programmers Reference Manual

268

Name: Window Origin

Unit: Scissor/Stipple

Region: 0 Offset: 0x0000.81C8

Tag: 0x0039

Reset Value: Undefined

Read/write

08162431

Not used 12 bit 2’s complement X12 bit 2’s complement Y Not used

As the Rasterizer unit generates each fragment, the fragment’s coordinates are adjusted
by the amount of the origin to generate the fragment’s screen coordinates. This occurs
prior to doing the screen scissor test.

Name: X extent for rasterizing

Unit: Rasterizer

Region: 0 Offset: 0x0000.80C8

Tag: 0x0019

Reset Value: Undefined

Read/write

08162431

Not used 12 bit 2’s complement X Min12 bit 2’s complement X Max Not used

Defines the X extent the Rasterizer should fill between.

WindowOrigin

XLimits

TVP4020 Programmers Reference Manual Graphics Register Reference

269

Name: Y extent for rasterizing

Unit: Rasterizer

Region: 0 Offset: 0x0000.80A8

Tag: 0x0015

Reset Value: Undefined

Read/write

08162431

Not used 12 bit 2’s complement Y Min12 bit 2’s complement Y Max Not used

Defines the Y extent the Rasterizer should fill between.

YLimits

Graphics Register Reference TVP4020 Programmers Reference Manual

270

Name: YUV Mode

Unit: YUV

Region: 0 Offset: 0x0000.8F00

Tag: 0x01E0

Reset Value: Undefined

Read/write

08162431

Enable
TestMode

TestData
RejectTexel

TexelDisableUpdate

Reserved

Control YUV to RGB conversion and/or chroma test.

Bit0 Enable
0 = YUV to RGB color space conversion disabled
1 = YUV to RGB color space conversion enabled

Bit1-2 TestMode
0 = No chroma test
1 = Pass if within chroma bounds
2 = Fail if within chroma bounds

Bit3 TestData
0 = Apply chroma test on input data (before color space conversion

if enabled)
1 = Apply chroma test on output data (after color space conversion

if enabled)

Bit4 RejectTexel
0 = Do not plot pixel if chroma test fails
1 = Do not texture pixel if chroma test fails

Bit5 TexelDisableUpdate
0 = Pass on texel data
1 = Reject texel data immediately after chroma test

YUVMode

TVP4020 Programmers Reference Manual Graphics Register Reference

271

Name: Depth Start Value - Lower

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89B8

Tag: 0x0137

Reset Value: Undefined

Read/write

08162431

11 bit fraction Not used

This register holds part of the start value for depth interpolation. ZStartU holds the most
significant bits, and ZStartL the least significant bits. The combined value is in 2's
complement 17.11 fixed point format.

Name: Depth Start Value - Upper

Unit: Stencil/Depth

Region: 0 Offset: 0x0000.89B0

Tag: 0x0136

Reset Value: Undefined

Read/write

08162431

Not Used 16 bit integer

Sign

This register holds part of the start value for depth interpolation. ZStartU holds the most
significant bits, and ZStartL the least significant bits. The combined value is in 2's
complement 17.11 fixed point format.

ZStartL

ZStartU

Pseudocode Definitions TVP4020 Programmers Reference Manual

272

Appendix B. Pseudocode Definitions
In many areas of the document fragments of pseudocode are given, to
describe the loading of registers. These are based on a C interface to
PERMEDIA in which each 32 bit register is represented as a C structure,
potentially split into a series of bit fields. In an example where only a
subset of the bit fields in a register are set, it is assumed either that a
software copy of the register is being modified, or that the current
contents of the register has first been read back to the host. This style
has been chosen for clarity; there are often more efficient strategies.

The constant definitions and register bit field definitions are based upon
those used in the 3Dlabs driver software. Sources including header files
for this are available under source license agreement.

Warning: the order of loading control registers into the HyperPipeline
has also been chosen for clarity, rather than efficiency. The optimal
order is documented in section §7.2.3.

Loading of a PERMEDIA register is expressed as:
register-name(value)

When writing directly to the register file (i.e. to a FIFO) this would be
implemented by writing “value” to the mapped-in address of the register
called “register-name”.

Fragmentary examples are not in strict C syntax, a typical example is:
// Sample code to rasterize a 10x10 rectangle at the
// framebuffer origin.

StartXDom (0) // Start dominant edge
StartXSub (1<<16) // Start of subordinate
dXDom (0x0)
dXSub (0x0)
Count (0xA)
YStart(0)
dY (1<<16)

// Set-up to render a trapezoid.

render.AreaStippleEnable = PERMEDIA_DISABLE
render.PrimitiveType = PERMEDIA_TRAPEZOID
render.FastFillEnable = PERMEDIA_DISABLE
render.FogEnable = PERMEDIA_DISABLE
render.TextureEnable = PERMEDIA_DISABLE
render.ReuseBitMask = PERMEDIA_DISABLE
render.SyncOnBitMask = PERMEDIA_FALSE
render.SyncOnHostData = PERMEDIA_FALSE

Render (render) // Render the rectangle

TVP4020 Programmers Reference Manual Pseudocode Definitions

273

Code is shown in courier and comments are C++ style '//' indicating that
the rest of the line is a comment. Any statement which ends in
parenthesis is a register update, other statements will generally be
assignments. A variable, say render, is of a type associated with the
register being modified. This will usually be clear by the context and will
not usually be declared as such. All the type definitions are in the header
files. The values assigned to a register will be either a variable as
described above, a macro i.e. PERMEDIA_TRUE, as found in the headers,
or an immediate constant in C style format i.e. 0x45. In registers which
have several fields, some of which are not relevant to a particular
example, the field can be ignored completely or set to don't care. In
some registers, values for fields which need to be set but are not readily
available will typically be set as appropriate.

In some fragments, simply a list of commands is given e.g.:
// Sample code to rasterize a rectangle

StartXDom () // Start dominant edge
StartXSub () // Start of subordinate
dXDom ()
dXSub ()
Count ()
YStart()
dY ()

// Set-up to render an aliased trapezoid.

Render () // Render the rectangle

This technique is used to simply give a feel for the registers involved in a
particular operation and where a detailed treatment is not warranted.

To take the address of a register, the name is used, thus this example
stores the address of the StartXDom register in the buffer pointed to by
the variable buf and increments the pointer:

*buf++ = StartXDom

To test the value of a register the register name is dereferenced using
the C '*' operator as for instance in this example which tests for the
completion of a DMA operation:

while(*DMACount != 0) ;

Screen Widths Table TVP4020 Programmers Reference Manual

274

Appendix C. Screen Widths Table
The screen width is specified as the sum of selected partial products so
a full multiply operation is not needed. The partial products are selected
by the fields PP0, PP1 and PP2 in the FBReadMode register,
LBReadMode register and TextureMapFormat register. The range of
widths supported by this technique are tabulated below, together with
the values for each of the PP fields.

Screen Width PP0 PP1 PP2
0 0 0 0

32 1 0 0

64 1 1 0

96 1 1 1

128 2 1 1

160 2 2 1

192 2 2 2

224 3 2 1

256 3 2 2

288 3 3 1

320 3 3 2

384 3 3 3

416 4 3 1

448 4 3 2

512 4 3 3

544 4 4 1

576 4 4 2

640 4 4 3

768 4 4 4

800 5 4 1

832 5 4 2

896 5 4 3

1024 5 4 4

1056 5 5 1

1088 5 5 2

1152 5 5 3

1280 5 5 4

1536 5 5 5

1568 6 5 1

1600 6 5 2

1664 6 5 3

1792 6 5 4

2048 6 5 5

Table C.1 Partial Products

Note that PERMEDIA supports a maximum screen resolution of 2048 x
2048.

TVP4020 Programmers Reference Manual A Gouraud Shaded Triangle

275

 A Gouraud Shaded Triangle
TVP4020 Programmers Reference Manual

276

Appendix D. A Gouraud Shaded Triangle
without using the Delta Unit

For best performance, the Delta unit in PERMEDIA should be used to
calculate the edge deltas used by the Graphics Processor. For backward
compatibility, or special situations, the edge delta registers may be
programmed directly, and this appendix describes the calculations that
are needed to do this correctly.

In this section we show how to render a typical 3D graphics primitive
without using the Delta Unit. The primitive is a Gouraud shaded, depth
buffered triangle. This appendix is included to understand any legacy
TVP4010 software to allow alternative rasterization techniques to be
used. For this example, assume the coordinate origin is bottom left of
the window and drawing will be from top to bottom. PERMEDIA can draw
from top to bottom or bottom to top.

D1 A Gouraud Shaded Triangle

Consider a triangle with vertices, v1, v2 and v3 where each vertex
comprises X, Y and Z coordinates, shown below. Each vertex has a
different color made up of red, green and blue (R, G and B) components.

Top half

Lower half

(X1Y1Z1

R1G1B1)

(X2Y2Z2

R2G2B2)

(X3Y3Z3

R3G3B3)

 V1

 V2

 V3

Figure D1 Example Triangle

The diagram makes a distinction between top and bottom halves
because PERMEDIA is designed to rasterize screen aligned trapezoids
and flat topped or bottomed triangles as shown below:

TVP4020 Programmers Reference Manual A Gouraud Shaded Triangle

277

Figure D2 Screen aligned trapezoid and flat topped triangle

D2 Initialization

PERMEDIA requires many of its registers to be initialized in a particular
way, regardless of what is to be drawn; for instance, the screen size and
appropriate clipping must be set-up. Normally this only needs to be done
once and for clarity this example assumes that all initialization has
already been done. More details may be found in the chapter on
initialization, chapter §6.

Other state will change occasionally, though not usually on a per
primitive basis, for instance enabling Gouraud shading and depth
buffering. A detailed treatment will be found in later sections of this
chapter, and details are not included here.

D3 Dominant and Subordinate Sides of a Triangle

The dominant side of a triangle is that with the greatest range of Y
values. The choice of dominant side is optional when the triangle is
either flat bottomed or flat topped.

PERMEDIA always draws triangles starting from the dominant edge
towards the subordinate edges. This simplifies the calculation of set-up
parameters as will be seen below.

Dominant
Side

Subordinate
Sides

Dominant
Side

Subordinate
Side

Subordinate
Side

Figure D3 Dominant and Subordinate Sides of a Triangle

 A Gouraud Shaded Triangle
TVP4020 Programmers Reference Manual

278

D4 Calculating Color values for Interpolation

To draw from left to right and top to bottom, the color gradients (or
deltas) required are:

dRdy
R R

Y Y
13

3 1

3 1
=

−
− dGdy13 = G3 − G1

Y3 − Y1
dBdy13 = B3− B1

Y3− Y1

And from the plane equation:

dRdx= {(R1− R3) × (Y2 − Y3)

a
} − {(R2 − R3) × (Y1 −Y3)

a
}

dGdx= {(G1− G3) ×
(Y2 − Y3)

a
} − {(G2 − G3) ×

(Y1 −Y3)

a
}

dBdx= {(B1 − B3) ×
(Y2 − Y3)

a
} − {(B2 − B3) ×

(Y1 − Y3)

a
}

where:

a = ABS({(X1− X3) × (Y2 − Y3)} − {(X2− X3) × (Y1− Y3)})

These values allow the color of each fragment in the triangle to be
determined by linear interpolation. For example, the red component
color value of a fragment at Xn,Ym could be calculated by:

• adding dRdy13, for each scanline between Y1 and Yn, to R1.

• then adding dRdx for each fragment along scanline Yn from the left
edge to Xn.

The example chosen has the 'knee' i.e. vertex 2, on the right hand side,
and drawing is from left to right. If the knee were on the left side (or
drawing was from right to left), then the Y deltas for both the subordinate
sides would be needed to interpolate the start values for each color
component (and the depth value) on each scanline. For this reason
PERMEDIA always draws triangles starting from the dominant edge and
towards the subordinate edges. For the example triangle, this means left
to right.

D5 Register Set-up for Color Interpolation

For the example triangle the PERMEDIA registers must be set as follows.
Details of register formats are given later.

TVP4020 Programmers Reference Manual A Gouraud Shaded Triangle

279

// Load the color start and delta values to draw

// a triangle

RStart (R1)

GStart (G1)

BStart (B1)

dRdyDom (dRdy13) // To walk up the dominant edge

dGdyDom (dGdy13)

dBdyDom (dBdy13)

dRdx (dRdx) // To walk along the scanline

dGdx (dGdx)

dBdx (dBdx)

D6 Calculating Depth Gradient Values

To draw from left to right and top to bottom, the depth gradients (or
deltas) required for interpolation are:

dZdy13 = Z3 − Z1

Y3 − Y1

And from the plane equation:

dZdx= {(Z1 − Z3) ×
(Y2 − Y3)

a
} − {(Z2 − Z3) ×

(Y1 − Y3)

a
}

where

a = ABS({(X1− X3) × (Y2 − Y3)} − {(X2− X3) × (Y1− Y3)})

The divisor, shown here as a, is the same as for color gradient values.
The two deltas, dZdy13 and dZdx allow the Z value of each fragment in
the triangle to be determined by linear interpolation as was described for
the color interpolation above.

D7 Register Set-up for Depth Testing

Internally PERMEDIA uses fixed point arithmetic. The formats for each
register are described later. Each depth value must be converted into a
2's complement fixed point number and then loaded into the appropriate
pair of registers. The 'Upper' or 'U' registers store the integer portion,
whilst the 'Lower' or 'L' registers store the fractional bits, left justified and
zero filled.

For the example triangle, PERMEDIA would need its registers set-up as
follows:

 A Gouraud Shaded Triangle
TVP4020 Programmers Reference Manual

280

// Load the depth start and delta values

// to draw a triangle

ZStartU (Z1_MS)

ZStartL (Z1_LS)

dZdyDomU (dZdy13_MS)

dZdyDomL (dZdy13_LS)

dZdxU (dZdx_MS)

dZdxL (dZdx_LS)

D8 Calculating the Slopes for each Side

PERMEDIA draws filled shapes such as triangles as a series of spans with
one span per scanline. Therefore it needs to know the start and end X
coordinate of each span. These are determined by 'edge walking'. This
process involves adding one delta value to the previous span's start X
coordinate and another delta value to the previous span's end X
coordinate to determine the X coordinates of the new span. These delta
values are in effect the slopes of the triangle sides. To draw from left to
right and top to bottom, the slopes of the three sides are calculated as:

dX13 = X3 − X1

Y3 − Y1
dX12 = X2 − X1

Y2 − Y1
dX23 = X3 − X2

Y3 − Y2

This triangle will be drawn in two parts, top down to the 'knee' i.e. vertex
2 and then from there to the bottom. The dominant side is the left side so
for the top half:

dXDom= dX13 dXSub= dX12

The start X,Y, the number of scanlines, and the above deltas give
PERMEDIA enough information to edge walk the top half of the triangle.
However, to indicate that this is not a flat topped triangle (PERMEDIA is
designed to rasterize screen aligned trapezoids and flat topped
triangles), the same start position in terms of X must be given twice as
StartXDom and StartXSub.

To edge walk the lower half of the triangle, selected additional
information is required. The slope of the dominant edge remains
unchanged, but the subordinate edge slope needs to be set to:

dXSub= dX23

Also the number of scanlines to be covered from Y2 to Y3 needs to be
given. Finally to avoid any rounding errors accumulated in edge walking
to X2 (which can lead to pixel errors), StartXSub must be set to X2.

TVP4020 Programmers Reference Manual A Gouraud Shaded Triangle

281

D9 Rasterizer Mode

The PERMEDIA Rasterizer has a number of modes which remain effective
from the time they are set until they are modified and can thus affect
many primitives. In the case of the Gouraud shaded triangle, the default
values for these modes are suitable.

RasterizerMode (0) // Default Rasterizer mode

D10 Subpixel Correction

PERMEDIA can perform subpixel correction of all interpolated values when
rendering aliased trapezoids. This correction ensures that any
parameter (color/depth/texture/fog) is correctly sampled at the center of
a fragment. In general, subpixel correction will always be enabled when
rendering any trapezoid which has interpolated parameters. Control of
subpixel correction is in the Render command register described in the
next section, and is selectable on a per primitive basis. It does not need
to be enabled for any primitive that does not use interpolation, including
copy operations. If it is disabled and interpolators are used, the values
calculated for the primitive may not be exactly correct; enabling sub-pixel
correction may reduce the performance of the chip, particularly for small
primitives.

D11 Rasterization

PERMEDIA is almost ready to draw the triangle. Setting up the registers as
described here and sending the Render command will cause the top half
of the example triangle to be drawn.

For drawing the example triangle, all the bit fields within the Render
command should be set to 0 except the PrimitiveType which should be
set to trapezoid and the SubPixelCorrectionEnable bit which should be
set to TRUE.

 A Gouraud Shaded Triangle
TVP4020 Programmers Reference Manual

282

// Draw triangle with knee

// Set deltas

StartXDom (X1<<16) // Converted to 16.16 fixed point

dXDom (((X3 - X1)<<16)/(Y3 - Y1))

StartXSub (X1<<16)

dXSub (((X2 - X1)<<16)/(Y2 - Y1))

StartY (Y1<<16)

dY (-1<<16)

Count (Y1 - Y2)

// Set the render command mode

render.PrimitiveType = PERMEDIA_TRAPEZOID_PRIMITIVE

render.SubPixelCorrectionEnable = TRUE

// Draw the top half of the triangle

Render (render)

After the Render command has been issued, the registers in PERMEDIA

can immediately be altered to draw the lower half of the triangle. Note
that only two registers need be loaded and the command
ContinueNewSub sent. Once PERMEDIA has received ContinueNewSub,
drawing of this sub-triangle will begin.

// Set-up the delta and start for the new edge

StartXSub (X2<<16)

dXSub (((X3 - X2)<<16)/(Y3 - Y2))

// Draw sub-triangle

ContinueNewSub (Y2 - Y3) // Draw lower half

TVP4020 Programmers Reference Manual Register Tables

283

Register Tables TVP4020 Programmers Reference Manual

284

Appendix E. Register Tables
The following tables list registers by: unit, name and register address,
giving their tag values and indicating their type. The register groups may
be used to improve data transfer rates to PERMEDIA when using DMA.
The following types of register are distinguished:

• Control: Set state and control bits ready to draw a primitive. This is
the default and is indicated by a blank entry in the “Type” column.

• Command: Initiates some operation e.g. drawing of a primitive.

• Mixed A control register which may also be used to supply successive
data values during download.

• Output: An internal register that cannot be read or written, but whose
contents is passed to the Host Out FIFO under the control of certain
commands.

In addition the table indicates whether the register can be read back. A
blank entry in this column indicates that the register’s contents cannot
be read back.
The following table is a list of registers in unit order:

Unit Register Major Group (hex) Offset
(hex)

Type Readabl
e

Delta V0Fixed[14] 20 0…D •
V1Fixed[14] 21 0…D •
V2Fixed[14] 22 0…D •
V0Float[14] 23 0…D •
V1Float[14] 24 0…D •
V2Float[14] 25 0…D •
DeltaMode 26 0 •
DrawTriangle 26 1
RepeatTriangle 26 2
DrawLine01 26 3
DrawLine10 26 4
RepeatLine 26 5

Rasterizer StartXDom 00 0 •
dXDom 00 1 •
StartXSub 00 2 •
dXSub 00 3 •
StartY 00 4 •
dY 00 5 •
Count 00 6 •
Render 00 7 Command
ContinueNewLine 00 8 Command
ContinueNewDom 00 9 Command
ContinueNewSub 00 A Command
Continue 00 B Command
BitMaskPattern 00 D Mixed
RectangleOrigin 01 A
RectangleSize 01 B

TVP4020 Programmers Reference Manual Register Tables

285

RasterizerMode 01 4 •
Ylimits 01 5 •
WaitForCompletion 01 7 Command
Xlimits 01 9 •
PackedDataLimits 02 A •

Scissor/Stipple ScissorMode 03 0 •
ScissorMinXY 03 1 •
ScissorMaxXY 03 2 •
ScreenSize 03 3 •
AreaStippleMode 03 4 •
WindowOrigin 03 9 •
AreaStipplePattern[0..7] 04 0..7 •

LBRead/Write LBReadMode 11 0 •
LBReadFormat 11 1 •
LBSourceOffset 11 2 •
LBData 11 3
LBStencil 11 5 Output
LBDepth 11 6 Output
LBWindowBase 11 7 •
LBWriteMode 11 8 •
LBWriteFormat 11 9 •

Stencil/Depth Window 13 0 •
StencilMode 13 1 •
StencilData 13 2 •
Stencil 13 3 Mixed •
DepthMode 13 4 •
Depth 13 5 Mixed •
ZstartU 13 6 •
ZStartL 13 7 •
dZdxU 13 8 •
dZdxL 13 9 •
dZdyDomU 13 A •
dZdyDomL 13 B •

Texture Address TextureAddressMode 07 0 •
Sstart 07 1 •
dSdx 07 2 •
dSdyDom 07 3 •
Tstart 07 4 •
dTdx 07 5 •
dTdyDom 07 6 •
Qstart 07 7 •
dQdx 07 8 •
dQdyDom 07 9 •

Texture Read TextureBaseAddress 0B 0 •
TextureMapFormat 0B 1 •
TextureDataFormat 0B 2 •
Texel0 0C 0 •
TextureReadMode 0C E •
TexelLUTMode 0C F •
TexelLUT[0..15] 1D 0..F •
AlphaMapUpperBound 1E 3 •
AlphaMapLowerBound 1E 4 •
TexelLUTIndex 09 8 •
TexelLUTData 09 9 •

Register Tables TVP4020 Programmers Reference Manual

286

TexelLUTAddress 09 A •
TexelLUTTransfer 09 B •
TextureID 1E E Command •
TexelLUTID 1E F Command •

YUV YUVMode 1E 0 •
ChromaUpperBound 1E 1 •
ChromaLowerBound 1E 2 •

FBRead/Write FBReadMode 15 0 •
FBSourceOffset 15 1 •
FBPixelOffset 15 2 •
FBColor 15 3 Output
FBData 15 4 Mixed
FBSourceData 15 5 Mixed
FBWindowBase 15 6 •
FBWriteMode 15 7 •
FBHardwareWriteMask 15 8 •
FBBlockColor 15 9 •
FBReadPixel 15 A •
TextureData 11 D
TextureDownloadOffset 11 E •
SuspendUntilFrameBlan
k

18 F Command

FBBlockColorU 18 D •
FBBlockColorL 18 E •
FBSourceBase 1B 0 •
FBSourceDelta 1B 1 Command •

Color DDA Rstart 0F 0 •
dRdx 0F 1 •
dRdyDom 0F 2 •
Gstart 0F 3 •
dGdx 0F 4 •
dGdyDom 0F 5 •
Bstart 0F 6 •
dBdx 0F 7 •
dBdyDom 0F 8 •
Astart 0F 9 •
ColorDDAMode 0F C •
ConstantColor 0F D •
Color 0F E Mixed

Texture/Fog/Blend TextureColorMode 0D 0 •
FogMode 0D 2 •
FogColor 0D 3 •
Fstart 0D 4 •
dFdx 0D 5 •
dFdyDom 0D 6 •
KsStart 0D 9 •
dKsdx 0D A •
dKsdyDom 0D B •
KdStart 0D C •
dKddx 0D D •
dKddyDom 0D E •
AlphaBlendMode 10 2 •

Color Format DitherMode 10 3 •
Logical Ops FBSoftwareWriteMask 10 4 •

TVP4020 Programmers Reference Manual Register Tables

287

LogicalOpMode 10 5 •
Host Out FilterMode 18 0 •

StatisticMode 18 1 •
MinRegion 18 2 •
MaxRegion 18 3 •
ResetPickResult 18 4 Command
MinHitRegion 18 5 Command
MaxHitRegion 18 6 Command
PickResult 18 7 Command •
Sync 18 8 Command

Multiple Config 1B 2

Table E1 Registers by Unit

Register Tables TVP4020 Programmers Reference Manual

288

The following table is a list of registers in register order.
Register Major Group (hex) Offset

(hex)
Type Readable

AlphaBlendMode 10 2 •
AlphaMapLowerBound 1E 4 •
AlphaMapUpperBound 1E 3 •
AreaStippleMode 03 4 •
AreaStipplePattern[0..7
]

04 0..7 •

AStart 0F 9 •
BitMaskPattern 00 D Mixed
BStart 0F 6 •
ChromaLowerBound 1E 2 •
ChromaUpperBound 1E 1 •
Color 0F E Mixed
ColorDDAMode 0F C •
Config 1B 2
ConstantColor 0F D •
Continue 00 B Command
ContinueNewDom 00 9 Command
ContinueNewLine 00 8 Command
ContinueNewSub 00 A Command
Count 00 6 •
dBdx 0F 7 •
dBdyDom 0F 8 •
DeltaMode 26 0 •
Depth 13 5 Mixed •
DepthMode 13 4 •
dFdx 0D 5 •
dFdyDom 0D 6 •
dGdx 0F 4 •
dGdyDom 0F 5 •
DitherMode 10 3 •
dKddx 0D D •
dKddyDom 0D E •
dKsdx 0D A •
dKsdyDom 0D B •
dQdx 07 8 •
dQdyDom 07 9 •
DrawLine01 26 3
DrawLine10 26 4
DrawTriangle 26 1
dRdx 0F 1 •
dRdyDom 0F 2 •
dSdx 07 2 •
dSdyDom 07 3 •
dTdx 07 5 •
dTdyDom 07 6 •
dXDom 00 1 •
dXSub 00 3 •
dY 00 5 •
dZdxL 13 9 •
dZdxU 13 8 •
dZdyDomL 13 B •

TVP4020 Programmers Reference Manual Register Tables

289

dZdyDomU 13 A •
FBBlockColor 15 9 •
FBBlockColorL 18 E •
FBBlockColorU 18 D •
FBColor 15 3 Output
FBData 15 4 Mixed
FBHardwareWriteMask 15 8 •
FBPixelOffset 15 2 •
FBReadMode 15 0 •
FBReadPixel 15 A •
FBSoftwareWriteMask 10 4 •
FBSourceBase 1B 0 •
FBSourceData 15 5 Mixed
FBSourceDelta 1B 1 Command •
FBSourceOffset 15 1 •
FBWindowBase 15 6 •
FBWriteMode 15 7 •
FilterMode 18 0 •
FogColor 0D 3 •
FogMode 0D 2 •
FStart 0D 4 •
GStart 0F 3 •
KdStart 0D C •
KsStart 0D 9 •
LBData 11 3
LBDepth 11 6 Output
LBReadFormat 11 1 •
LBReadMode 11 0 •
LBSourceOffset 11 2 •
LBStencil 11 5 Output
LBWindowBase 11 7 •
LBWriteFormat 11 9 •
LBWriteMode 11 8 •
LogicalOpMode 10 5 •
MaxHitRegion 18 6 Command
MaxRegion 18 3 •
MinHitRegion 18 5 Command
MinRegion 18 2 •
PackedDataLimits 02 A •
PickResult 18 7 Command •
QStart 07 7 •
RasterizerMode 01 4 •
RectangleOrigin 01 A
RectangleSize 01 B
Render 00 7 Command
RepeatLine 26 5
RepeatTriangle 26 2
ResetPickResult 18 4 Command
RStart 0F 0 •
ScissorMaxXY 03 2 •
ScissorMinXY 03 1 •
ScissorMode 03 0 •
ScreenSize 03 3 •
SStart 07 1 •

Register Tables TVP4020 Programmers Reference Manual

290

StartXDom 00 0 •
StartXSub 00 2 •
StartY 00 4 •
StatisticMode 18 1 •
Stencil 13 3 Mixed •
StencilData 13 2 •
StencilMode 13 1 •
SuspendUntilFrameBla
nk

18 F Command

Sync 18 8 Command
Texel0 0C 0 •
TexelLUT[0..15] 1D 0..F •
TexelLUTAddress 09 A •
TexelLUTData 09 9 •
TexelLUTID 1E F Command •
TexelLUTIndex 09 8 •
TexelLUTMode 0C F •
TexelLUTTransfer 09 B •
TextureAddressMode 07 0 •
TextureBaseAddress 0B 0 •
TextureColorMode 0D 0 •
TextureData 11 D
TextureDataFormat 0B 2 •
TextureDownloadOffset 11 E •
TextureID 1E E Command •
TextureMapFormat 0B 1 •
TextureReadMode 0C E •
TStart 07 4 •
V0Fixed[14] 20 0…D •
V0Float[14] 23 0…D •
V1Fixed[14] 21 0…D •
V1Float[14] 24 0…D •
V2Fixed[14] 22 0…D •
V2Float[14] 25 0…D •
WaitForCompletion 01 7 Command
Window 13 0 •
WindowOrigin 03 9 •
XLimits 01 9 •
YLimits 01 5 •
YUVMode 1E 0 •
ZStartL 13 7 •
ZStartU 13 6 •

Table E2 Registers by Name

TVP4020 Programmers Reference Manual Register Tables

291

The following table is a list of registers in address order.
Major Group

(hex)
Offset (hex) Register Type Readabl

e
00 0 StartXDom •
00 1 dXDom •
00 2 StartXSub •
00 3 dXSub •
00 4 StartY •
00 5 dY •
00 6 Count •
00 7 Render Command
00 8 ContinueNewLine Command
00 9 ContinueNewDom Command
00 A ContinueNewSub Command
00 B Continue Command
00 D BitMaskPattern Mixed
01 4 RasterizerMode •
01 5 Ylimits •
01 7 WaitForCompletion Command
01 9 XLimits •
01 A RectangleOrigin
01 B RectangleSize
02 A PackedDataLimits •
03 0 ScissorMode •
03 1 ScissorMinXY •
03 2 ScissorMaxXY •
03 3 ScreenSize •
03 4 AreaStippleMode •
03 9 WindowOrigin •
04 0..7 AreaStipplePattern[0..7

]
•

07 0 TextureAddressMode •
07 1 SStart •
07 2 dSdx •
07 3 dSdyDom •
07 4 TStart •
07 5 dTdx •
07 6 dTdyDom •
07 7 QStart •
07 8 dQdx •
07 9 dQdyDom •
09 8 TexelLUTIndex •
09 9 TexelLUTData •
09 A TexelLUTAddress •
09 B TexelLUTTransfer •
0B 0 TextureBaseAddress •
0B 1 TextureMapFormat •
0B 2 TextureDataFormat •
0C 0 Texel0 •
0C E TextureReadMode •
0C F TexelLUTMode •
0D 0 TextureColorMode •
0D 2 FogMode •
0D 3 FogColor •

Register Tables TVP4020 Programmers Reference Manual

292

0D 4 FStart •
0D 5 dFdx •
0D 6 dFdyDom •
0D 9 KsStart •
0D A dKsdx •
0D B dKsdyDom •
0D C KdStart •
0D D dKddx •
0D E dKddyDom •
0F 0 RStart •
0F 1 dRdx •
0F 2 dRdyDom •
0F 3 GStart •
0F 4 dGdx •
0F 5 dGdyDom •
0F 6 BStart •
0F 7 dBdx •
0F 8 dBdyDom •
0F 9 AStart •
0F C ColorDDAMode •
0F D ConstantColor •
0F E Color Mixed
10 2 AlphaBlendMode •
10 3 DitherMode •
10 4 FBSoftwareWriteMask •
10 5 LogicalOpMode •
11 0 LBReadMode •
11 1 LBReadFormat •
11 2 LBSourceOffset •
11 3 LBData
11 5 LBStencil Output
11 6 LBDepth Output
11 7 LBWindowBase •
11 8 LBWriteMode •
11 9 LBWriteFormat •
11 D TextureData
11 E TextureDownloadOffset •
13 0 Window •
13 1 StencilMode •
13 2 StencilData •
13 3 Stencil Mixed •
13 4 DepthMode •
13 5 Depth Mixed •
13 6 ZStartU •
13 7 ZStartL •
13 8 dZdxU •
13 9 dZdxL •
13 A dZdyDomU •
13 B dZdyDomL •
15 0 FBReadMode •
15 1 FBSourceOffset •
15 2 FBPixelOffset •
15 3 FBColor Output
15 4 FBData Mixed

TVP4020 Programmers Reference Manual Register Tables

293

15 5 FBSourceData Mixed
15 6 FBWindowBase •
15 7 FBWriteMode •
15 8 FBHardwareWriteMask •
15 9 FBBlockColor •
15 A FBReadPixel •
18 0 FilterMode •
18 1 StatisticMode •
18 2 MinRegion •
18 3 MaxRegion •
18 4 ResetPickResult Command
18 5 MinHitRegion Command
18 6 MaxHitRegion Command
18 7 PickResult Command •
18 8 Sync Command
18 D FBBlockColorU •
18 E FBBlockColorL •
18 F SuspendUntilFrameBla

nk
Command

1B 0 FBSourceBase •
1B 1 FBSourceDelta Command •
1B 2 Config
1D 0..F TexelLUT[0..15] •
1E 3 AlphaMapUpperBound •
1E 4 AlphaMapLowerBound •
1E E TextureID Command •
1E F TexelLUTID Command •
1E 0 YUVMode •
1E 1 ChromaUpperBound •
1E 2 ChromaLowerBound •
20 0…D V0Fixed[14] •
21 0…D V1Fixed[14] •
22 0…D V2Fixed[14] •
23 0…D V0Float[14] •
24 0…D V1Float[14] •
25 0…D V2Float[14] •
26 0 DeltaMode •
26 1 DrawTriangle
26 2 RepeatTriangle
26 3 DrawLine01
26 4 DrawLine10
26 5 RepeatLine

 Table E3 Registers by Address

TVP4010 and TVP4020 Differences TVP4020 Programmers Reference Manual

294

Appendix F. TVP4010 and TVP4020 Differences

F1 Introduction

This document describes the differences between the original PERMEDIA

referred to as TVP4010 and TVP4020. Most of these differences are due
to additional functionality provided in TVP4020.

F2 New Units

F2.1 Video Streams

TVP4020 supports independent input and output of digital video. The
input stream complies to the VESA VMI specification. Input data may be
scaled and filtered before being written to local memory. The output
stream is based on the VMI specification and is designed to work with
common PAL/NTSC encoders. Both streams are independent of the
video output to the monitor.

The interface may be configured to meet different needs. The table
shows the modes supported:

Input width Output width Notes

8 8 Simultaneous input and output

16 0 Input only Zoom Video port

0 16 Output only Zoom Video port

8 0 Input data with random access parallel
bus

Input data may be scaled and filtered to reduce memory requirements.
The output stream may be gamma corrected and converted from RGB to
YUV. The output video is a slave and supplies data on demand from the
external encoder chip. Both streams support automatic hardware triple
buffering.

Separate control is provided for Vertical Blank Interval (VBI) data such
as closed caption, Teletext, or Intercast. VBI data may be inserted into
the output stream or extracted from the input stream as required.

The interface supports two separate buses for programming devices
connected to the video streams. The I2C bus is a two wire serial bus that
is commonly used to control chips supplying or receiving data on the
video ports. The general purpose bus is a parallel bus that supports a
higher bandwidth and uses an eight bit data path with a four bit address.
If the parallel bus is used, only input video is available.

TVP4020 Programmers Reference Manua TVP4010 and TVP4020 Differences

295

In TVP4020, the external ROM is used to store the Video BIOS and is
also used to store the power up configuration information (removing
most of the configuration resistors needed for a TVP4010 design).
Access to the ROM is by the general purpose bus during which both
video streams are disabled.

F2.2 RAMDAC

TVP4020 incorporates a high performance 230MHz RAMDAC.
Resolutions of up to 1600x1280 @ 85Hz are supported, with a wide
variety of pixel formats and a hardware cursor of 64x64x2. There are
also integrated phase locked loops for generating all clocks required by
TVP4020.

TVP4020 directly supports DDC1 and DDC2 monitor configuration, and
Apple Macintosh monitor sensing. The DDC2 serial bus is independent
of the serial bus in the VMI interface.

F2.3 Delta

The 100MFLOP geometry pipeline processor used in the Delta chip is
integrated into TVP4020. The integrated Delta has been enhanced to
support backface culling; this is enabled by in the DeltaMode register,
and rejection of positive or negative area triangles i.e. front or back
faces, is controlled by the Render command.

A packed color format has been added to the Delta vertex interface
allowing all four color components to be loaded in a single 32 bit word.
The data should be written to offset 14 of the vertex store as packed
8888 format; the order of the color components within the word can be
controlled by the DeltaMode register.

F3 PCI Differences

F3.1 AGP Support

The Advanced Graphics Port extensions to the PCI protocol are
supported by TVP4020. When in an AGP slot, TVP4020 will function as
a 66MHz PCI device, and also perform single edge AGP read master
transfers, optionally with sideband addressing.

F3.2 Bypass DMA Engine

A DMA engine has been added to allow high speed transfers from
system memory to local memory through the bypass. As the transfer is
done the data can be formatted to match the patching organization used
by the graphics core texture units. It can also do conversion from
YUV420 to YUV422 formats.

TVP4010 and TVP4020 Differences TVP4020 Programmers Reference Manual

296

F3.3 Host Out DMA engine

A DMA engine has been added to the PCI interface to allow high speed
transfers from the graphics core output FIFO to system memory.

F3.4 Extra Interrupts

The following interrupts have been added to TVP4020.
• Invalid texture
• Bypass DMA complete
• Video stream A interrupt
• Video stream B interrupt
• Video streams external interrupt
• DDC interrupt

F4 Video Unit Differences

F4.1 FIFO Threshold Control

Programmable high and low watermarks have been added to the video
FIFO to allow optimum bursting of video data for different screen
resolutions.

F4.2 Stereo Control

Support has been added for left and right eye screens that are displayed
alternately. An external pin signals which eye is being displayed and
may be used to drive LCD shutter glasses.

F4.3 Frameblank Control

TVP4020 has additional control over behavior at frameblank. It
continues to support automatic synchronization to frameblank where the
new base address for the screen is only accepted during the vertical
blank interval. In addition, it supports a free running mode where the
base address is updated immediately without waiting for the blanking
period.

TVP4020 also supports a sync to frame rate mode which only allows the
base address to be updated in frameblank while the frame rate keeps up
with the monitor refresh rate. If the frame rate drops below the refresh
rate the base address is updated immediately.

F5 Core Differences

F5.1 Maximum Screen Size

The maximum screen size has been increased to 2048x2048.

TVP4020 Programmers Reference Manua TVP4010 and TVP4020 Differences

297

F5.2 Rectangle Primitive

A new primitive is supported for drawing rectangles. It is restricted to
integer pixel positions only; rectangles requiring sub-pixel positioning
should continue to use the trapezoid primitive. The rectangle is defined
with new registers, RectangleOrigin which defines the X and Y start
point, and RectangleSize which defines the width and height. The
direction in which the rectangle is filled can be controlled by the Render
command, with separate control of fill direction in X and Y making the
primitive suitable for copy operations.

F5.3 Texture Mapping

The TextureAddressMode option for accurate or fast perspective divide
has been removed in TVP4020. All divides are done faster than the
TVP4010 fast speed, while the accuracy has been improved beyond that
of the TVP4010 accurate mode.

Textures may be stored in system memory or local memory but an
individual texture map must not be split across system and local
memory.

The base address of the texture map may be accessed indirectly
through a table instead of by the TextureBaseAddress register. If the
TexureID register is loaded, TVP4020 will access memory to fetch the
actual base address of the texture. Bit 31 of this address is a validity
flag, and if set to invalid the graphics pipeline halts and an interrupt is
generated. The host can then load the texture through the bypass and
restart the graphics core. This mechanism allows efficient texture
caching by decoupling the memory management of textures from their
use.

F5.4 LUTs

TVP4020 has a 256 entry texture LUT, each entry is 32 bits wide. It can
also be used as 16 smaller LUTs of 16 entries each. The contents of the
LUT can be loaded through the graphics pipeline or from memory (local
or system). If the LUT is held in memory its address can be loaded
indirectly using the same mechanism as the texture caching.

The LUT can be used to index 4 or 8 bit textures, in which case the
single index is used to generate all 4 color components. If the texture
type has separate color components (i.e. it is not an index) each
component is indexed independently through the LUT. This allows color
remapping operations such as gamma correction.

The LUT can also be accessed directly from the XY position of the pixel
being drawn, and it can hold block fill colors.

TVP4010 and TVP4020 Differences TVP4020 Programmers Reference Manual

298

F5.5 Block Fills

The block fill color register has been extended to 64 bits to allow greater
flexibility. Two new registers have been added, BlockColorUpper and
BlockColorLower, which set the upper and lower 32 bits of the color
respectively. If the TVP4010 BlockColor register is used, its contents are
used for both upper and lower halves of the block color giving full
backward compatibility.

Texture mapping has been extended to hold block fill masks. Designed
specifically for font caching, a byte packed font may be stored in local
memory and used to control which pixels are drawn by a block fill.

Any block fill pattern may be stippled using the normal stipple pattern
table.

The texture LUT can hold data that is used to update the block fill color
on each scanline. This is designed for pattern filling.

F5.6 Sprite Control

The chroma key testing has been extended to improve the quality of cut-
outs which have been bilinear filtered, and to smooth the edges of
sprites. Two additional registers, AlphaMapUpperBound and
AlphaMapLowerBound, have been added to define the range of colors
that should have their alpha value mapped to zero. The TVP4010
chroma key registers are used to reject the pixels with an alpha value
not equal to one. Texels that have failed the alpha map test are not
included in filtering, so edge effects often seen with filtered cut-outs are
removed.

The alpha values of the edge pixels are filtered so that they form a range
from one within the area to be drawn to zero within the area not to be
drawn. In the region close to the edge of what is to be drawn, the alpha
values are filtered to lie between zero and one. The range of alpha
values rejected by the chroma key test can be adjusted to allow fine
control over the exact size of the cut-out. If blending is enabled then the
varying alpha values smooth the transition of the edge of the sprite to
the background.

F5.7 Alpha Blending

An optimization has been added to TVP4020 which reduces the memory
bandwidth if blending is enabled. If the alpha value used for blending is
derived exclusively from a texture map, the FBReadMode register can
be set to disable reading of the framebuffer for any pixels for which the
corresponding texel has an alpha value of one. If the alpha value is one,
the final color will not include any of the previous framebuffer color so it
does not need to be read.

TVP4020 Programmers Reference Manua TVP4010 and TVP4020 Differences

299

TVP4020 adds extra control over formatting of the framebuffer color
when blending. The AlphaBlendMode register allows control over the
way that framebuffer data is mapped to the internal color format. This
can prevent visual artifacts when blending with a dithered framebuffer.

F5.8 Color Formats

TVP4020 performs all internal color calculations at true color accuracy,
where TVP4010 performed 3D calculations at 5 bits per color
component.

An additional pixel and texel size has been added to TVP4020, 24 bits,
which has 8 bits of red, green , and blue, but no alpha channel. All pixel
operations are available at this size except block fills which are restricted
to colors which have all bytes the same value (i.e. shades of grey). This
restriction is due to the operation of the memory devices.

F5.9 Miscellaneous

TVP4020 will calculate the value of FBSourceOffset from an XY delta
value, removing a multiply from the set-up needed for a copy operation.

The relative offset field in the FBReadMode register is also in the
PackedDataLimits register, the one used will be the last one set before a
primitive is drawn. This reduces the number of registers that have to be
written for a copy operation.

A register has been added to the TVP4020 PCI interface which can be
used to determine when the chip is idle. If the idle status is set then
TVP4020 will process the next command without delay. It does not
mean that all previous operations have completed and data written to
memory.

An additional TVP4020 register can be used to configure a number of
controls that are normally set by separate registers. The Config register
controls parts of the FBReadMode, FBWriteMode, LogicalOpMode, and
ColorDDAMode, registers.

Glossary TVP4020 Programmers Reference Manual

300

Glossary
accumulation buffer A color buffer of higher resolution than the displayed buffer

(typically 16bits per component for an 8bit per component
display). Typically used to sum the result of rendering several
frames from slightly different viewpoints to achieve motion blur
effects or eliminate aliasing effects.

active fragment A fragment which passes all the various culling tests, such as
scissor, depth(Z), alpha, etc., is written to/combined with the
corresponding pixel in the framebuffer. See also "fragment"
and "passive fragment".

aliasing A phenomena resulting from a rendering style which ignores
the fact that a pixel may not be wholly covered by a primitive,
leading to jagged edges on primitives.

alpha blending The ability to combine supplied Red, Green and Blue color
values with those that exist in the framebuffer according to the
supplied alpha value. Alpha blending forms the basis for
techniques such as transparency and painting.

alpha buffer A memory buffer containing the fourth component of a pixel's
color in addition to Red, Green and Blue. This component is
not displayed, but may be used for instance to control color
blending.

area stipple A two dimensional binary pattern which is used to cull
fragments from being drawn.

bitblt Bit aligned block transfer. Copy of a rectangular array of pixels
in a bitmap from one location to another.

bitblt double buffering A technique to provide independent windowed double
buffering by blting an area from one buffer to the other.

bitplane double buffering A technique whereby fast independent windowed
double buffering can be achieved by using a single bitplane
bit.

block write A feature provided in some memory devices such as VRAM
and SGRAM which allows multiple pixels to be set to a given
value by a single write. Fast fill is an alternative name for this
feature.

chroma keying Also known as bluescreening, this is the practice of excluding
color from an image allowing an underlying image to show
through.

chroma test The means by which chroma keying can be achieved.

TVP4020 Programmers Reference Manual Glossary

301

color index The mode in which the color information is stored for each
pixel as a single number, the color index rather than as
separate Red, Green, Blue and optionally Alpha values
(RGBA mode). Each color index references an entry in a color
look up table that contains a particular set of Red, Green and
Blue values.

command register A register which when loaded triggers activity in PERMEDIA. For
instance the Render command register when loaded will
cause PERMEDIA to start rendering the specified primitive with
the parameters currently set-up in the control registers.

context The state information associated with a particular task.
Typically in a system more than one task will be using
PERMEDIA to render primitives. Software on the host must save
away the current contents of the PERMEDIA control registers
when suspending one task to allow another to run, and must
restore the state when that task is next scheduled to run.

control register A register which contains state that dictates how PERMEDIA will
execute a command.

culling The process of eliminating a fragment, object face, or
primitive, so that it is not drawn.

DDA Digital Differential Analyzer. An algorithm for determining the
pixels to draw along a line or polygon edge. Also used to
interpolate linearly varying values such as color and depth.

delta A gradient of color, fog, depth etc. in the X or Y directions for a
primitive.

depth (Z) buffer A memory buffer containing the depth component of a pixel.
Used to, for example, eliminate hidden surfaces.

depth-cueing A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. Also known as fogging.

dithering A rendering style which increases the perceived range of
displayed colors at the cost of spatial resolution. The
technique is similar to the use of stippled patterns of black and
white pixels, to achieve shades of grey on a black and white
display.

dominant edge The side of a primitive such as a triangle, which has the
greatest range of Y values.

double-buffering A technique for achieving smooth animation, by rendering only
to an undisplayed back buffer, and then swapping the back
buffer to the front once drawing is complete.

Glossary TVP4020 Programmers Reference Manual

302

extent checking A technique which determines the rectangular bounds of the
area which has been rendered to.

fast fill A feature provided in some memory devices such as VRAM
and SGRAM which allows multiple pixels to be set to a given
value by a single write. Block write is an alternative name for
this feature.

flat shading The constant color shading or area filling of a primitive.

fogging A technique which determines the color of a pixel based on its
depth. Used, for instance, to fade far away objects into the
background. Also known as depth-cueing.

fragment A fragment is an object generated as a result of the
rasterization of a primitive. It corresponds to and contains all
the components of a single pixel. If a fragment passes all the
various culling tests, such as scissor, depth(Z), stencil, etc., it
will be written to/combined with the corresponding pixel in the
framebuffer.

framebuffer An area of memory containing the displayable color buffers
(front, back, left, right, overlay, underlay), their (optional)
associated alpha components, and any associated (optional)
window control information. This memory is typically separate
from the localbuffer.

Gouraud shading The technique of variable color shading or area filling of a
primitive using interpolation to gradually vary the color
between vertices. Often known as smooth shading.

hardware writemaskA bitmask implemented in memory devices such as VRAM
and SGRAM to enable or inhibit the writing of the
corresponding bits of a fragment's color into the framebuffer.

host The processor which controls PERMEDIA.

localbuffer An area of memory which may be used to store textures
and/or non-displayable depth(Z) and/or stencil pixel
information. This memory is typically separate from the
framebuffer.

logic ops The technique of applying logical operations such as OR, XOR
or AND to the fragment color values and/or those in the
framebuffer.

LUT A look-up-table. This normally contains color values to allow
mapping from an index value to the desired Red, Green and
Blue value.

overlays The technique of ensuring certain drawn objects always
remain foremost in view and not obscured by others.

TVP4020 Programmers Reference Manual Glossary

303

Historically this was one method of providing a cursor and was
usually achieved by providing extra bit planes.

packed data The arrangement of data in a buffer which allows multiple
pixels to be read or written in a single access.

passive fragment A fragment which fails one or more of the various culling tests,
such as scissor, depth(Z), stencil, etc., is nor written
to/combined with the corresponding pixel in the framebuffer.
See also "fragment" and "active fragment".

patched addressing A technique whereby data is organized in memory such that
there is improved performance for accesses to adjacent
scanlines in a buffer. For PERMEDIA, this is available for depth
and/or stencil buffer accesses. For textures a special form,
subpatch addressing is provided.

picking A means of selecting drawn objects or primitives .

preMult A method of alpha blending, also known as Ramp blend
mode, used by QuickDraw3D.

pixel Picture element. A pixel comprises the bits in all the buffers
(whether stored in the localbuffer or framebuffer),
corresponding to a particular location in the framebuffer.

primitive A geometric object to be rendered. The PERMEDIA primitives
are points, lines, trapezoids (including triangles as a subset),
and bitmaps.

Ramp blend mode A method of alpha blending, also known as preMult, used by
QuickDraw3D.

rasterization The act of converting a point, line, polygon, or bitmap, in
device coordinates, into fragments.

rendering Conversion of primitives in object coordinates into an image.

scissor test A means of culling fragments which lie outside the defined
scissor rectangle. The scissor rectangle is defined in device
coordinates.

software writemasking A means of simulating hardware writemasking by
performing a read-modify-write operation on framebuffer data.

stencil buffer A buffer used to store information about a pixel which controls
how subsequent stenciled fragments at the same location may
be combined with its current value. Typically used to mask
complex two-dimensional shapes.

stipple A one or two dimensional binary pattern which is used to cull
fragments from being drawn.

Glossary TVP4020 Programmers Reference Manual

304

subordinate edge The sides of a primitive such as a triangle, which do not have
the greatest range of Y values.

subpatch addressing A technique whereby data is organized in memory such
that there is improved performance for accesses to adjacent
scanlines in a buffer. For PERMEDIA, this particular form of
patched addressing is available for accessing texture maps.
See also Patch Addressing.

subpixel correction A means of ensuring that all interpolated parameters
associated with a fragment (color, depth, fog, texture) are
correctly sampled at the fragment’s center. This is required, for
example, to ensure correct color shading of objects comprised
of many primitives.

tag The data item that uniquely identifies a Graphics Core register.

task A process, or thread on the host which uses the PERMEDIA co-
processor. Typically tasks assume that they have sole use of
PERMEDIA and rely on a device driver to save and restore their
PERMEDIA context, when they are swapped out.

texel Texture element. An element of an image stored in texture
memory which represents the color of the texture to be applied
(fully or in part) to a corresponding fragment.

texture An image used to modify the color of fragments during
processing. Often used for instance to achieve high realism in
a scene, with relatively few primitives.

texture mapping The process of applying a two dimensional image to a
primitive. For instance to apply a wood grain effect to a table.

writemask A bit pattern used to enable or inhibit the writing of the
corresponding bits of a fragment's color into the framebuffer.
See also Software Writemask and Hardware Writemask.

YUV An alternative color format to RGB, also known as YCbCr.
Color format used by MPEG.

Z buffer An alternative name for the depth buffer.

TVP4020 Programmers Reference Manual Index

305

Index TVP4020 Programmers Reference Manual

306

Index

TVP4020 Programmers Reference Manual Index

307

accumulation buffer, 49, 281
active fragment, 281
Address of texture in memory, 235
aliasing, 80, 281
Alpha blend, 99
Alpha blend unit, 28, 104, 123
Alpha Blend unit, 23
Alpha blending, 28, 30, 37, 48, 89, 91, 93,

103, 104, 106, 112, 124, 125, 147, 192, 281
alpha buffer, 80, 103, 148, 239, 281
alpha color, 152, 160, 166, 175, 197, 220
Alpha Map Color Test Lower and Upper

Bounds, 149
AlphaBlendMode, 23, 29, 103, 104, 106, 123,

126, 147, 183, 267, 269, 273
Application Initialization, 125
area stipple, 30, 61, 62, 64, 150, 151, 217,

281
Area Stippling, 61
AreaStippleMode, 58, 61, 62, 64, 125, 150,

151, 230, 266, 269, 272
AreaStipplePattern, 15, 64, 151, 266, 269,

272
AStart, 98, 152, 160, 166, 175, 197, 220, 267,

269, 273
Base address of source framebuffer data, 189
bilinear texture mapping, 79, 242
bitblt, 27, 34, 281
bitblt double buffering, 34, 281
bitblt Double Buffering, 31
bitmap, 50, 51
bitmaps, 24, 27
Bitmaps, 49, 51
bitmask, 50, 51, 53, 54, 57, 59, 215, 218
bitmask packing, 54, 59, 215
bitmask pattern, 30
bitmask test, 69, 70, 152, 217
BitMaskPattern, 50, 51, 59, 152, 218, 265,

269, 272
bitmasks, 23
bitplane double buffering, 34, 281
block fills, 51
block write, 30, 52
Block write, 49
block writes, 30, 49, 112, 130, 131, 181, 182,

281
Block Writes, 51
BlockWrites, 30
BStart, 98, 99, 107, 153, 261, 267, 269, 273
bypass, 4, 20, 22, 33, 34, 126
Bypass Initialization, 126
byte swap, 7
byte swapped, 54

byte swapping, 22, 54, 59, 93, 215
Byte Swapping, 23
chroma keying, 281
chroma test, 37, 86, 87, 88, 134, 149, 153,

254, 281
Chroma Test, 134
ChromaLowerBound, 88, 153, 267, 269, 274
ChromaUpperBound, 88, 153, 267, 269, 274
CI, 28, 29, 81, 96, 108, 111, 148, 154, 157,

168, 238, 239
CI4, 28
Clears, 130
Color, 14, 19, 28, 92, 104, 114, 122, 154, 194,

218, 267, 269, 273
Color DDA, 53, 197
Color DDA unit, 37, 87, 96, 97, 98, 101, 105,

107, 152, 153, 154, 155, 156, 157, 160,
161, 166, 175, 182, 189, 190, 197, 220,
231, 232, 234, 235, 240, 244, 245, 246,
247, 248, 249, 267

color format, 28, 53, 80, 82, 86, 92, 106, 109,
119, 123, 132, 133, 147, 154, 157, 238

Color Format, 97, 123, 148, 168
Color Format Examples, 109
Color Format unit, 23, 37, 92, 104, 108, 123,

134, 154, 167, 267
Color Format Unit, 108
Color Formats, 29, 108
color formatting, 92, 93
color index, 36
Color Index, 28, 81, 96, 108, 154, 157, 281
color interpolation, 30, 97, 98, 260, 262
Color Interpolation, 261
color order, 29, 82, 148, 168, 238, 239
ColorDDAMode, 98, 99, 107, 125, 155, 157,

267, 269, 273
Command, 265
Command Register, 4, 8, 9, 22, 33, 46, 48,

49, 57, 58, 61, 62, 93, 104, 105, 116, 129,
250, 263, 282

Command Registers, 8, 9
Common Blend Mode, 103
Computer Graphics Principles and Practice, 2
Configuration, 156
ConstantColor, 97, 98, 131, 157, 267, 269,

273
context, 5, 119, 130, 257
context switch, 23, 154
context switching, 22, 112, 130
Continue, 46, 48, 56, 157, 265, 269, 272
Continue commands, 9, 22, 130
ContinueNewDom, 46, 56, 130, 158, 265,

269, 272

Index TVP4020 Programmers Reference Manual

308

ContinueNewLine, 9, 47, 48, 54, 56, 59, 130,
158, 214, 265, 269, 272

ContinueNewSub, 45, 48, 56, 159, 264, 265,
269, 272

Control, 265
Control register, 4, 7, 9, 11, 98, 120, 129,

256, 265, 282
Control registers, 8
Control Registers, 8
Copies, 131
Copy, 52, 65, 66, 89, 91, 95
Count, 56, 57, 157, 158, 159, 265, 269, 272
culling, 60, 194, 207, 208, 209, 210, 212, 225,

229, 282
Data for texture LUT, 231
dBdx, 98, 99, 107, 261, 267, 269, 273
dBdyDom, 98, 99, 156, 161, 182, 189, 190,

231, 232, 234, 235, 240, 244, 245, 246,
247, 248, 249, 261, 267, 269, 273

DDA, 46, 47, 48, 54, 56, 59, 71, 73, 76, 98,
99, 101, 105, 157, 158, 159, 214, 236, 282

decal, 100, 236
delta, 45, 46, 47, 48, 51, 56, 75, 76, 78, 98,

99, 102, 106, 107, 129, 157, 260, 261, 262,
263, 264, 282

Delta, 219
Delta Mode, 161
depth, 192, 199
Depth, 18, 24, 65, 66, 71, 73, 114, 122, 163,

164, 194, 218, 266, 269, 273
depth buffer, 18, 69, 71, 72, 73, 92, 122, 131,

163, 164, 187, 194, 199
depth buffered, 71, 75, 259
depth buffering, 68, 124, 125, 260
Depth Example, 75
Depth gradients, 261
depth interpolation, 262
depth test, 25, 30, 37, 69, 74, 75, 119, 131,

227, 251
Depth test, 70
depth testing, 112
Depth Testing, 262
depth writemask, 73, 75
Depth(Z) buffer, 37, 114, 282
depth-cueing, 101, 282
DepthMode, 71, 73, 75, 125, 146, 164, 266,

269, 273
device ID, 119
device revision, 119
dFdx, 101, 102, 106, 107, 165, 267, 269, 273
dFdyDom, 101, 102, 106, 107, 165, 267, 269,

273
dGdx, 98, 99, 107, 261, 267, 269, 273

dGdyDom, 98, 99, 107, 261, 267, 269, 273
Difference between destination and source

data, 190
Dither Example, 109
dithering, 27, 30, 108, 109, 112, 123, 168,

192, 282
Dithering, 37, 108, 109
DitherMode, 23, 29, 35, 85, 108, 109, 110,

113, 123, 167, 183, 267, 269, 273
dKddx, 105, 169, 267, 269, 273
dKddyDom, 105, 169, 267, 269, 273
dKsdx, 105, 170, 267, 269, 273
dKsdyDom, 105, 170, 267, 269, 273
DMA, 10, 11, 12, 13, 14, 18, 20, 22, 127, 128,

257, 265
DMA buffer, 12, 13, 14, 15, 16, 17, 18, 56,

128
DMA Buffer Address, 17
DMA buffers, 20, 128
DMA controller, 10, 12, 16, 17, 21
DMA Example, 16
DMA Interface, 12
DMA interrupts, 17, 18, 128
DMA Tag Format, 14
DMAAddress, 12, 17
DMACount, 12, 13, 17, 18, 21, 257
Dominant, 156, 161, 165, 169, 170, 171, 176,

177, 178, 180, 181, 182, 189, 190, 231,
232, 234, 235, 240, 244, 245, 246, 247,
248, 249

dominant edge, 45, 71, 129, 263
Dominant edge, 158, 260
double buffered, 13, 26, 31, 34
double buffering, 20, 28, 32, 93, 133, 148,

168, 239, 282
Double Buffering, 31
Double Buffering - fast, 133
download, 10, 12, 13, 14, 51, 52, 53, 65, 66,

79, 85, 89, 91, 92, 96, 104, 127, 128, 132,
133, 154, 183, 190, 199, 230, 265

Download, 52, 131
dQdx, 77, 78, 86, 171, 266, 269, 272
dQdyDom, 77, 78, 86, 171, 266, 269, 272
Draw line, 172, 173
Draw Triangle, 174
dRdx, 98, 99, 107, 261, 267, 269, 273
dRdyDom, 98, 99, 107, 261, 267, 269, 273
dSdx, 76, 77, 78, 86, 176, 266, 269, 272
dSdyDom, 76, 77, 78, 86, 176, 266, 269, 272
dTdx, 77, 78, 86, 177, 266, 269, 272
dTdyDom, 77, 78, 86, 177, 266, 269, 272
dX, 47
dXDom, 11, 49, 57, 178, 265, 269, 272

TVP4020 Programmers Reference Manual Index

309

dXSub, 11, 49, 57, 178, 264, 265, 269, 272
dY, 11, 47, 49, 53, 57, 129, 179, 265, 269,

272
dZdxL, 72, 74, 75, 179, 180, 262, 266, 269,

273
dZdxU, 74, 75, 179, 180, 262, 266, 269, 273
dZdyDomL, 72, 74, 75, 180, 181, 262, 266,

269, 273
dZdyDomU, 74, 75, 180, 181, 262, 266, 270,

273
extent checking, 30, 113, 114, 130, 195, 282
Extent Checking, 115
extent collection, 208, 210, 225
extent regions, 117
Fast block fill lower and upper colors, 182
fast fill, 91, 282
FBBlockColor, 30, 181, 267, 270, 274
FBColor, 91, 95, 114, 183, 186, 267, 270, 273
FBData, 92, 104, 122, 132, 183, 218, 267,

270, 274
FBHardwareWriteMask, 30, 93, 95, 124, 184,

267, 270, 274
FBPixelOffset, 26, 32, 33, 89, 90, 94, 122,

185, 267, 270, 273
FBRead, 189, 190
FBReadMode, 26, 27, 30, 85, 89, 90, 92, 94,

111, 112, 120, 122, 123, 125, 132, 186,
189, 211, 258, 267, 270, 273

FBReadPixel, 94, 125, 188, 267, 270, 274
FBSoftwareWriteMask, 30, 93, 111, 113, 124,

184, 189, 267, 270, 273
FBSourceData, 92, 190, 218, 267, 270, 274
FBSourceOffset, 26, 27, 89, 90, 94, 122, 191,

267, 270, 273
FBWindowBase, 26, 90, 94, 121, 124, 191,

267, 270, 274
FBWriteData, 112, 131, 192, 206
FBWriteMode, 85, 94, 104, 124, 193, 267,

270, 274
FIFO Control, 11
Filter Mode Example, 117
FilterMode, 18, 19, 21, 114, 115, 116, 117,

118, 122, 194, 207, 209, 212, 229, 242,
267, 270, 274

flat shaded, 98, 192, 206
flat shading, 37, 111, 157, 283
Flat shading, 97
Flat shading - high speed, 112
Flat Shading example, 98
fog, 49, 58, 99, 103, 106, 165, 172, 173, 174,

192, 195, 196, 197, 218
Fog, 37
Fog Application, 101

Fog DDA, 101
Fog Example, 106
fog interpolation, 102
FogColor, 106, 107, 197, 267, 270, 272
fogging, 105, 172, 173, 174, 196, 218, 283
FogMode, 58, 101, 105, 107, 125, 196, 267,

270, 272
fonts, 52
ForceAlpha, 108
ForceBackgroundColor, 54, 59, 61, 214, 230
fragment, 37, 38, 44, 49, 261, 263, 283
Frame Blank Synchronization, 93
framebuffer, 4, 20, 24, 33, 38, 53, 79, 89, 92,

116, 283
Framebuffer, 26, 121
framebuffer base address, 124, 191
framebuffer clears, 131
Framebuffer Color Formats, 27
Framebuffer coordinates, 26
framebuffer depth, 120
framebuffer format, 36, 92, 93, 99, 104, 108,

157, 183, 192
Framebuffer Read, 112
Framebuffer Read unit, 37, 89, 122, 124, 131
Framebuffer Read/Write units, 89, 181, 183,

184, 185, 186, 188, 190, 191, 193, 211,
228, 237, 240, 267

framebuffer reads, 30, 48, 54, 89, 91, 93, 104,
132, 189

framebuffer units, 87
Framebuffer Write unit, 35, 37, 49, 79, 91,

114, 131, 132
framebuffer writes, 54, 89, 93, 94, 95, 104,

133, 228, 250
FStart, 101, 102, 106, 107, 197, 267, 270,

273
Full Screen Double Buffering, 31
Glossary, 281, 286
glyph, 52
Gouraud shading, 37, 96, 97, 98, 99, 259,

260, 263, 283
Gouraud Shading examples, 98
GP FIFO Interface, 18
Graphics HyperPipeline, 37
GStart, 98, 99, 107, 261, 267, 270, 273
hardware writemask, 34, 49, 91, 129, 184,

189, 283
hardware writemasking, 30, 111
hardware writemasks, 93, 192
Hardware Writemasks, 30, 93
highlight, 100, 105, 236
Hold Format, 14
host, 283

Index TVP4020 Programmers Reference Manual

310

Host Interface, 4
Host Memory Bypass, 21
Host Out FIFO, 21, 53, 56, 122, 183, 199,

202, 207, 209, 212, 229, 265
Host Out Filtering, 113
Host Out unit, 37, 53, 55, 113, 122, 129, 130,

194, 207, 208, 209, 210, 212, 220, 225,
229, 267

Host Out Unit, 122
I/O Interface, 10
Image Formatting, 104
Increment Format, 15
Indexed Format, 15
Indirect handle for texture LUT, 232
Indirect handle for texture map, 240
InFIFOSpace, 10, 11, 20, 128
Iniates loading of LUT data from memory, 234
Initial Blue Color, 153
Initial Green Color, 197
Initial Red Color, 220
Initializing PERMEDIA, 119
input FIFO, 11, 18, 32
Internal Registers, 9
Internal Video Timing, 120
interpolation, 27, 44, 49
Interrupts, 20
invert bitmask, 51, 52, 54, 59
invert bitmasks, 214
invert stencil, 70, 227
invert stipple, 61, 64, 150
KdStart, 105, 198, 267, 270, 273
KsStart, 105, 198, 267, 270, 273
LBData, 132, 164, 199, 228, 266, 270, 273
LBDepth, 66, 199, 266, 270, 273
LBReadFormat, 25, 66, 67, 68, 122, 200, 266,

270, 273
LBReadMode, 25, 65, 66, 67, 68, 120, 122,

123, 124, 201, 258, 266, 270, 273
LBSourceOffset, 25, 65, 66, 68, 70, 122, 202,

266, 270, 273
LBStencil, 66, 202, 266, 270, 273
LBWindowBase, 25, 65, 68, 121, 124, 203,

266, 270, 273
LBWriteFormat, 25, 66, 67, 68, 122, 204, 266,

270, 273
LBWriteMode, 66, 67, 68, 122, 124, 205, 251,

266, 270, 273
LineCount, 33
Lines, 47, 49
localbuffer, 4, 24, 53, 65, 72, 116, 124, 134,

283
Localbuffer, 24, 121
localbuffer clears, 130

Localbuffer Coordinates, 25
Localbuffer example, 68
Localbuffer Read, 65, 67, 68, 132
Localbuffer Read unit, 37, 122, 124, 129
Localbuffer Read/Write units, 65, 199, 200,

201, 202, 203, 204, 205
Localbuffer Reads, 54
Localbuffer Write, 54, 68, 129, 132, 251
Localbuffer Write unit, 37
Logic Op unit, 37, 131, 189, 192, 206
logical op, 51, 192
Logical Op Unit, 111
Logical Operations, 37
logical ops, 9, 27, 30, 37, 48, 89, 91, 93, 111,

112, 125, 206, 283
LogicalOpMode, 112, 113, 126, 192, 206,

267, 270, 273
LUT, 27, 82, 133, 283

Data for texture, 231
Indirect handle for texture, 232
Iniates loading of a LUT from memory, 234
Texel Mode, 233

MaxHitRegion, 114, 116, 117, 207, 268, 270,
274

MaxRegion, 115, 116, 117, 118, 208, 268,
270, 274

Memory Configuration, 120
Memory I/O and Organization, 24
Memory Organization, 134
Memory Subsystem, 4
MinHitRegion, 114, 116, 117, 209, 268, 270,

274
MinRegion, 115, 116, 117, 118, 210, 268,

270, 274
mirror bitmask, 54, 59, 214
mirror stipple pattern, 150
modulate, 100, 105, 236
Multi-Buffering, 133
nearest neighbour, 81, 242
OpenGL Programming Guide, 2
Origin, 123
Output FIFO, 18
OutputFIFOWords, 19
overlays, 108, 283
Overlays, 133
packed copies, 94, 131, 211
Packed Copies, 92
Packed copy limits, 211
packed data, 283
packed framebuffer, 34
packed mode, 91, 93, 181, 182, 184
packed texture patching, 187

TVP4020 Programmers Reference Manual Index

311

PackedDataLimits, 92, 94, 95, 131, 132, 211,
266, 270, 272

Panning, 34
passive fragment, 283
patch, 24, 67
patched addressing, 92, 187, 201, 284
Patched Data, 24
patched textures, 35
patches, 132
patching, 92, 93, 187
Patching, 92
PCI, 7, 23, 116, 119, 127
PCI burst transfers, 127
PCI bus bandwidth, 127
PCI bus mastership, 128
PCI Disconnect, 10, 128
Picking Example, 117
PickResult, 114, 115, 117, 118, 212, 268,

270, 274
pixel, 284
Pixel Size - setting, 125
Points, 48, 172, 173, 174, 217
preMult, 104, 106, 147, 284
primitive, 284
primitives, 37
procedural texture, 105
procedural textures, 230
Programmed I/O, 127
QStart, 77, 78, 86, 213, 266, 270, 272
Ramp blend mode, 103, 104, 148, 284
ramp texture application, 99, 105, 169, 170,

198, 236
Ramp Texture Application, 100
rasterization, 56, 264, 284
Rasterizer, 19, 35, 46, 49, 50, 51, 52, 53, 112,

131, 132, 133, 158, 230
Rasterizer unit, 37, 44, 49, 57, 104, 129, 152,

157, 158, 159, 172, 173, 174, 178, 179,
214, 216, 217, 219, 223, 224, 250, 252,
253, 263, 265

RasterizerMode, 50, 51, 54, 55, 56, 57, 59,
152, 158, 214, 230, 263, 265, 270, 272

Red and Blue Swapping, 23
Register file, 8
Register load order, 129
Register Read back, 22
Register Tables, 265
Register Types, 8
Register updates - avoiding, 129
Render, 9, 14, 30, 48, 54, 56, 57, 91, 104,

129, 130, 172, 173, 174, 216, 217
rendering, 284
Repeat line, 219

Repeat Triangle, 219
reserved, 146
reset, 112, 119
reset value, 146
ResetPickResult, 8, 115, 117, 118, 220, 268,

270, 274
reuse bitmask, 218, 256
RGB Texture Application, 100
RStart, 98, 99, 107, 261, 267, 270, 273
scissor, 52
Scissor, 37
scissor clip, 8, 9, 30, 52, 55
Scissor example, 63
scissor rectangle, 37
scissor test, 30, 60, 62, 70, 112, 115, 116,

222, 252, 284
scissor tests, 69
Scissor/Stipple tests, 37
Scissor/Stipple unit, 38, 55, 60, 124, 129, 150,

151, 217, 221, 222, 252, 266
ScissorMaxXY, 62, 63, 221, 266, 270, 272
ScissorMinXY, 62, 63, 221, 266, 270, 272
ScissorMode, 62, 63, 121, 222, 266, 270, 272
Screen Clipping Region, 121
screen scissor, 53
screen scissor clip, 121
Screen Scissor Tests, 60
Screen Width, 120
Screen Widths Table, 258
ScreenBase, 32, 33, 34
ScreenSize, 60, 62, 63, 121, 222, 266, 270,

272
ScreenStride, 34
software writemask, 89, 91
software writemask example, 113
software writemasking, 89, 93, 111, 124, 125,

184, 189, 192, 284
Software writemasking, 30
Software Writemasks, 111
Specialized Modes - disabling, 122
SStart, 76, 77, 78, 86, 223, 266, 271, 272
StartX, 47
StartXDom, 9, 53, 57, 59, 214, 223, 263, 265,

271, 272
StartXSub, 53, 57, 59, 214, 224, 263, 264,

265, 271, 272
StartY, 9, 44, 47, 53, 57, 59, 214, 224, 265,

271, 272
Statistic Operations, 114
StatisticMode, 114, 115, 117, 126, 208, 210,

225, 268, 271, 274
stencil, 4, 53, 68, 74, 112, 122, 132, 192, 199,

202, 226, 228

Index TVP4020 Programmers Reference Manual

312

Stencil, 18, 24, 65, 66, 70, 73, 74, 114, 218,
226, 228, 266, 271, 273

stencil buffer, 18, 114, 122, 129, 194, 226,
227, 284

Stencil Example, 74
stencil test, 37
Stencil Test, 69
stencil testing, 30, 65, 68, 72, 124, 226, 227,

251
stencil writemask, 73, 226
Stencil/Depth, 37
Stencil/Depth unit, 37, 68, 163, 164, 179, 180,

181, 226, 227, 251, 255, 266
StencilData, 70, 73, 75, 226, 227, 266, 271,

273
StencilMode, 69, 70, 72, 75, 125, 227, 266,

271, 273
stipple, 284
Stipple, 37
stipple pattern, 37, 50, 64
stipple test, 38, 53, 60, 69, 70, 105, 131, 150,

151
Sub Pixel Precision, 49
subordinate edge, 45, 56, 57, 71, 76, 96, 101,

158, 159, 178, 224, 256, 257, 263, 284
Subordinate edge, 260
subordinate side, 261
subpatch, 187
subpatch addressing, 241, 284
subpatch mode, 24, 82, 85, 86, 92, 241
subpatch pack mode, 92, 187
subpixel correction, 46, 49, 57, 77, 97, 172,

173, 174, 218, 263, 264, 284
SuspendUntilFrameBlank, 20, 33, 93, 133,

228, 267, 271, 274
SVGA, 5, 7, 120
Sync, 8, 48, 55, 116, 122, 130, 229
Sync interrupt, 21
Sync Interrupt Example, 118
Synchronization, 19, 20, 32, 54, 114, 116
System Initialization, 119
tag, 8, 11, 12, 114, 146, 284
task, 285
Task Switching, 5
texel, 285
Texel LUT Mode, 233
Texel0, 50, 54, 59, 61, 86, 87, 105, 150, 153,

215, 218, 230, 266, 271, 272
TexelLUT, 232
TexelLUT[0..15], 82, 230, 266, 271, 274
TexelLUTData, 232
TexelLUTIndex, 232
TexelLUTMode, 82, 125, 266, 271, 272

texture, 24, 49, 52, 80, 81, 87, 99, 103, 132,
134, 172, 173, 174, 192, 218, 237, 285

texture address, 86, 234
Texture Address unit, 35, 37, 76, 79, 171,

176, 177, 213, 223, 234, 243, 266
texture allocation, 121
texture application, 99, 236
Texture Application Example, 106
texture buffer, 4, 24, 28, 187
Texture Buffer, 35
Texture Buffer Coordinates, 35
Texture Color Formats, 36
texture coordinates, 76
texture download, 55, 56, 86, 132, 133, 240,

250
Texture Download, 92
texture download example, 85
Texture Filtering, 80
texture format, 35, 82
Texture Formatting, 80
texture interpolation, 77
Texture Interpolation, 76
Texture Interpolation Example, 78
Texture Loading, 132
texture map, 79, 82, 241
texture mapped, 11
texture mapped trapezoid, 106
texture mapping, 81, 87, 92, 134, 243, 285
Texture Mapping, 37
texture mapping example, 85
texture maps, 79
texture read, 242
Texture Read, 232, 240
Texture Read unit, 23, 27, 35, 37, 50, 55, 77,

79, 105, 132, 230, 233, 238, 241, 242, 266
Texture/Fog/Blend unit, 23, 37, 52, 86, 87, 92,

99, 106, 147, 165, 169, 170, 195, 196, 197,
198, 230, 236, 267

Texture| Read, 149
TextureAddress, 38
TextureAddressMode, 78, 86, 125, 234, 266,

271, 272
TextureBaseAddress, 35, 79, 121, 266, 271,

272
TextureColorMode, 99, 104, 106, 125, 236,

267, 271, 272
TextureData, 35, 93, 132, 237, 240, 267, 271,

273
TextureDataFormat, 23, 29, 80, 82, 86, 238,

266, 271, 272
TextureDownloadOffset, 35, 93, 132, 237,

240, 267, 271, 273

TVP4020 Programmers Reference Manual Index

313

TextureMapFormat, 79, 82, 86, 120, 123,
241, 258, 266, 271, 272

TextureReadMode, 36, 79, 81, 86, 125, 242,
266, 271, 272

textures, 28, 35, 81
Trapezoid Fills, 131
Trapezoids, 44
Triple Buffering, 133
TStart, 77, 78, 86, 243, 266, 271, 272
Unused units - disabling, 129
upload, 18, 19, 53, 62, 65, 66, 89, 91, 92, 93,

95, 96, 104, 183, 186, 193, 194, 199, 202
Upload, 52
uploading, 114
UseConstantFBWriteData, 112
user scissor, 51, 53
User Scissor Test, 60
VBLANK, 33
Vertex 0 data, 244, 245, 246, 247, 248, 249
VGA, 5
VGAControlReg, 120
Video Output, 31
Video Timing, 120
VTG, 120
WaitForCompletion, 55, 56, 91, 132, 186,

201, 250, 265, 271, 272
Window, 72, 73, 74, 123, 124, 129, 251, 266,

271, 273
Window Address and Origin, 123
Window Initialization, 123
WindowOrigin, 60, 62, 252, 266, 271, 272
Windows NT 3.1.Graphics Programming, 2
writemask, 28, 285
writemasking, 27, 30
writemasks, 108
Writemasks, 124
Writing - enabling, 124
X and Y limits, 55
X Derivative - Blue, 160
X Derivative - Green, 166
X Derivative - Red, 175
XLimits, 55, 57, 252, 266, 271, 272
XOR example, 113
Y Derivative Dominant - Blue, 160
Y Derivative Dominant - Green, 166
Y Derivative Dominant - Red, 175
YCbCr, 86
YLimits, 55, 57, 253, 265, 271, 272
YUV, 36, 230, 285
YUV color format, 80, 86, 105, 153
YUV textures, 28
YUV to RGB conversion, 254
YUV unit, 37, 86, 153, 254, 267

YUVMode, 87, 125, 134, 153, 254, 267, 271,
274

Z buffer, 285
ZStartL, 72, 74, 75, 255, 262, 266, 271, 273
ZStartU, 74, 75, 255, 262, 266, 271, 273

Index TVP4020 Programmers Reference Manual

314

