
~- -

"TEXAS
INSTRUMENlS

TAfS370 Family XDS/22

1989 8·Bit Microcontroller Family

· TMS370 Family XDS/22
User's Guide

~
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. TI advises its customers to obtain the latest version of the relevant in
formation to verify, before placing orders, that the information being relied
upon is current.

TI warrants performance of its semiconductor products to current specifica
tions in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec
tual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used.

WARNING

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits for computing devices pursuant to sub
part J of part 15 of FCC rules, which are designed to provide reasonable pro
tection against radio frequency interference. Operation of this equipment in
other environments may cause interference with radio communications, in
which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

Copyright © 1989, Texas Instruments Incorporated

Contents

Section

1

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.2
3.3
3.4
3.4.1
3.4.2
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction

Getting Started
Unpacking the XDS
Kit Contents
Environmental Requirements
Emulator/Debugger Cabling
AC Input Requirements
Software Installation
Power-up Procedure
Invoking the Debugger
Communications Problems

Functional Overview
Window-Oriented User Interface

Code Window
Display Window
CPU Registers Window
Register File Window
Stack Window
Expression Window

Command Language
Object Modules
Expressions

Constants, Symbols, and Registers
Operators

Displayed Values
Saving and Restoring Configurations
Error Messages
Online Help
Execution Modes
Breakpoint, Trace and Timing (BTT) Board
Memory Mapping

Operation
Command Menus
Function Keys
Inspect Mode ..
Escape Key
Edit Fields and Prompts
Status Line
Updating the Screen

Page

1-1

2-1
2-2
2-4
2-5
2-6
2-7
2-8
2-10
2-11
2-12

3-1
3-2
3-3
3-3
3-4
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-9
3-9
3-9
3-10
3-11

4-1
4-2
4-2
4-3
4-3
4-4
4-6
4-8

iii

5
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.2
5.3
5.4
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.6
5.7
5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.8.7
5.8.8
5.8.9
5.8.10
5.8.11
5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.10
5.11
5.12
5.13
5.14
5.15
5.16

iv

Top Level Commands and Functions
Fill Display Window - The D Command

Display Memory - The M Option ...
Display Peripheral Registers - The P Option
Display File - The F Option '"
Display Symbols - The S Option
Display Modules - The 0 Option

Execute Code - The X Command . .
Display and Modify Registers - The R Command
Modify, Fill or Assemble Memory - M M, M F and MA
Breakpoint Operations - The B Command

Simple Breakpoints
Setting a Simple Breakpoint - The A Option .
Removing a Simple Breakpoint - The D Option
Removing all Simple Breakpoints - The R Option
Loading a Breakpoint File - The L Option
Saving a Breakpoint File - The S Option

Evaluate an Expression - The E Command
Configuration and Memory Map - The C Command
Inspect Trace Samples - The T Command

Trace Samples
Timers Window
Inspect Trace Commands
Position at an Index - The P Command
Position at the Top Samples - The T Command
Position at the Bottom Samples - The B Command
Look for a Qualified Sample - The L Command
Save Trace Samples in File - The S Command
Toggle the Timers Window - The I Command
Format the Time Stamp - The F Command . .
Execute Code from the Trace Screen - The X Command

Loading a File - The L Command
Loading an Object File
Loading Configuration Files
Command Files
Loading Files from the Command Line

Setting the Current Module - The 0 Command
Halting the CPU - The H Command
Escaping to DOS - The S Command '"
Leaving the Debugger - The Q Command
Moving to Windows - F1
Updating the Screen - F9
On-Line Help - F10

5-1
5-3
5-3
5-4
5-4
5-4
5-5
5-6
5-6
5-7
5-9
5-9
5-10
5-10
5-10
5-10
5-10
5-11
5-13
5-14
5-15
5-16
5-16
5-17
5-17
5-18
5-18
5-18
5-19
5-19
5-19
5-20
5-20
5-21
5-21
5-22
5-23
5-24
5-24
5-25
5-26
5-26
5-26

6 Executing Code
6.1 Execute Command Options
6.1.1 Single-Stepping - The I Option
6.1.2 Single-Stepping - The S Option
6.1 .3 Executing a Loop - The L Option
6.1.4 Conditional Execution - The W Option
6.1.5 Conditional Execution - The U Option
6.1.6 Returning to Caller - The F Option ..
6.1.7 Run from Current PC - The G Option
6.1.B Software Reset and Run - The R Option
6.1.9 Wait for Target Reset - The A Option
6.1.10 Inspect Trace Samples - The T Option
6.2 Running in Normal Mode
6.3 Running in Continuous Mode

7
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.4.3
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.7
7.7.1
7.7.2
7.7.3
7.7.4

Inspect Mode
Function Key Usage

Moving Between Windows - F1 and F2
Scrolling - F3 and F4 .. .
Memory Dump - F5 ..
Disassemble - F6
Expand the Window - FB
Update the Screen - F9
Online Help - F10

Inspect Code
Position at a Specified Address - The A Command
Toggle a Simple Breakpoint - The B Command
Execute Code - The X Command
Move to the Current PC - The P Command
Set the PC - The S Command
Edit Code - The E Command

Inspect Memory Dump
Position at a Specified Address - The A Command
Interactively Modifying Values - The E Command

Inspect Peripheral Registers
Interactively Modifying Values - The E Command
Position at a Specified Register - The P Command
Change the Display Format - The F Command

Inspect File
Find String - The F Command
Find Next - The N Command
Position at a Line Number - The L Command
Position at Top of File - The T Command
Position at Bottom of File - The B Command

Inspect Symbols
Find String - The F Command . . .
Find Next - The N Command
Position at First Symbol - The T Command
Position at Last Symbol - The B Command

Inspect Modules
Find String - The F Command
Find Next - The N Command
Position at First Module - The T Command
Position at Last Module - The B Command

6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-4
6-4
6-5
6-6

7-1
7-2
7-3
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-6
7-6
7-6
7-6
7-6
7-6
7-8
7-9
7-9
7-10
7-10
7 -11
7 -11
7-12
7-13
7-13
7-13
7-13
7-13
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-17
7-17
7-17

v

~"r:' 1 .1 .;.> Set the Current Module - The S Command
7.8 Inspect CPU Registers
7.8.1 Interactively Modifying Values - The E Command
7.9 Inspect Register File
7.9.1 Interactively Modifying Values - The E Command
7.9.2 Position at a Specified Register - The P Command
7.10 I nspect Stack
7.10.1 Interactively Modifying Values - The E Command
7.10.2 Position at the Top of Stack - The T Command
7.11 Inspect Expressions
7.11.1 Adding a New Expression - The A Command
7.11 .2 Deleting an Expression - The D Command . .
7.11.3 Editing an Expression - The E Command ...
7.11.4 Change the Display Format - The F Command
7.11 .5 Change the Data Size - The I Command ..,

.7.11.6 Change the Display Name - The N Command
7.11.7 Load Expressions From a File-The L Command
7.11.8 Save Expressions to a File - The S Command

8 Hardware Breakpoints, Tracing and Timing
8.1 Actions
8.2 Qualifiers
8.3 States
8.3.1 Resource Allocation
8.3.2 Events and Breakpoints
8.3.3 Timers......
8.3.4 Trace Buffer
8.4 Sample BIT Programs
8.4.1 A Simple Example
8.4.2 Using the Event Counter
8.4.3 Using Multiple States ..
8.4.4 Using The Loop Counter
8.5 Programming the BTT
8.6 BTT Command Window . .
8.6.1 Clear BTT Configuration - The R Command
8.6.2 Load a BTT Configuration - The L Command
8.6.3 Save a BTT Configuration - The S Command
8.6.4 Exit and Program BIT - The E Command
8.6.5 Exit Without Programming - The A Command
8.6.6 Edit Next Action - F1
8.6.7 Edit Previous Action - F2 ..
8.6.8 Change States - F4
8.6.9 Edit Local State Settings - F5
8.6.10 Edit Global Settings - F6
8.7 Editing Actions
8.7.1 Entering New Actions
8.7.2 Removing an Action - F3
8.8 Editing Qualifiers
8.8.1 Range Specifications - F7
8.8.2 Masks - F8
8.8.3 IGNORE a qualifier - F9
8.8.4 Expressions as Qualifiers
8.8.5 Action Specific Prompts
8.8.6 Address Prompts
8.8.7 Data Prompts
8.8.8 Cycles Prompt

vi

7-17
7-18
7-18
7-19
7-19
7-20
7-21
7-22
7-22
7-23
7-24
7-25
7-25
7-25
7-25
7-25
7-25
7-26

8-1
8-3
8-4
8-5
8-5
8-7
8-8
8-9
8-11
8-11
8-11
8-12
8-12
8-14
8-16
8-16
8-17
8-17
8-17
8-17
8-18
8-18
8-18
8-18
8-18
8-19
8-19
8-20
8-21
8-21
8-22
8-23
8-23
8-23
8-23
8-24
8-24

I

8.8.9 External Qualifiers Prompt
8.9 Local State Settings
8.9.1 Mode of State Prompt
8.9.2 Trace Mode
8.9.3 Event Count
8.10 Global Settings
8.10.1 Delay Count
8.10.2 Max Trace .
8.10.3 End State
8.1 0.4 Loop Cou nt
8.10.5 Time Out

9
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.3
9.4
9.5

Debugger Configuration
Configuration Command Menu

Configure the Memory Map - The M Command
Reset CPU - The R Command
Setup Screen Colors - The C Command
Edit Configuration Settings - F1

Configuration Settings
Run Mode
Auto- Update
Trace Disassemble
Clock Source
Additional Configuration Values

Debugger Color Setup
The DBSETUP Screen
D BS ETU P Operation

10 Memory Mapping
10.1 Memory Map Screen
10.2 Memory Types
10.2.1 Register File Memory ..
10.2.2 Peripheral Frame Memory
10.2.3 Program ROM Memory .
10.2.4 Program EPROM Memory
10.2.5 Program EEPROM Memory
10.2.6 Data EEPROM Memory ..
10.2.7 EEPROM/EPROM Control Frame Memory
10.2.8 User Memory
10.3 Top Level Memory Map Commands
10.3.1 Load Map from File - The L Command
10.3.2 Save Map in File - The S Command
10.3.3 Reset Map - The R Command
10.3.4 Select a Standard Device Type - The D Command
10.4 Device Definition Window
10.4.1 Register File Size
10.4.2 Data EEPROM Size ..
10.4.3 Program Memory Size
10.4.4 Program Memory Type
10.4.5 EEPROM Control Frame
10.5 Memory Map Window
,10.5.1 Adding a New Range - The A Command

j
' 0.5.2 Reset a Range to Default/Delete - The D Command

0.5.3 Modify Protection - The R, W, and N Commands
. 0.5.4 Modify Mapping Attributes - The E and T Commands

8-24
8-25
8-25
8-25
8-26
8-27
8-27
8-28
8-28
8-28
8-29

9-1
9-3
9-3
9-3
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-5
9-6
9-7
9-9

10-1
10-2
10-3
10-4
10-4
10-4
10-5
10-5
10-6
10-6
10-7
10-8
10-9
10-9
10-10
10-10
10-11
10-12
10-12
10-12
10-12
10-13
10-14
10-15
10-16
10-17
10-17

vii

10.6 PeriphercJl File VVindm.v
10.6.1 Modify Mapping Attributes - The E and I Commands
10.6.2 Modify Protection - The R, W, and N Commands

11 The XDS System
11.1 Chassis Description
11.1.1 Operator Panel
11 .1 .2 Rear Panel
11 .1 .3 Card Cage and Cover .
11.1.4 Chassis Cable Mounting
11.1.5 Power Supply "
11.2 Memory Expansion/Communication Card
11.2.1 Card Removal
11.2.2 Switch Settings
11.2.3 Card Installation
11.3 The TMS370 Emulator Card
11.3.1 Card Removal
11.3.2 Operating Frequency Options
11.3.3 Onboard Crystal Option
11.3.4 Target System Clock Option
11.3.5 Onboard Crystal Oscillator Option
11.3.6 Emulator Board Installation Procedure
11.4 Breakpoint/Trace/Timing Card
11 .4.1 Card Removal
11.4.2 BTT Cabling
11.4.3 Extended-Address Probes
11.4.4 Breakpoint/Trace/Timing Card Installation
11.5 Target Cables
11.5.1 Target Cable Assembly
11.5.2 Handling the Target Connector
11.5.3 Connecting the Target Cable to the Target System
11.5.4 Installing the Target Cable Assembly in the Emulator
11.6 User Maintenance
11.6.1 Cleaning Cabinet
11.6.2 Cleaning Air Filters
11.6.3 Fuse Replacement
11.7 Factory Repair Information
11.7.1 Shipping Information
11.7.2 Warranty Determination
11.8 XDS/22 System Repair Guide
11.8.1 XDS/22 Does Not Power Up
11.8.2 System Menu Not Displayed
11.8.3 Target System Doesn't Respond
11.8.4 When All Else Fails

A
8

viii

Debugger Command Overview
Debugger Error Messages

10-18
10-18
10-19

11-1
11-2
11-2
11-3
11-4
11 -6
11-6
11-8
11-8
11-9
11-9
11 -11
11 -11
11 -12
11 -13
11 -14
11 -14
11 -14
11 -17
11 -18
11 -19
11-24
11-25
11-27
11-27
11-28
11-29
11-29
11-31
11 -31
11 -31
11-33
11-35
11-35
11-36
11-37
11-37
11-37
11-38
11-39

A-2
8-1

Illustrations

Figure

2-1 XDS/22 Interior as Shipped
2-2 XDS/22 Model Plate
3-1 Top-Level Screen
5-1 Trace Sample Screen
8-1 Understanding the BTT
8-2 Flow of BTT Operation
8-3 BTT Screen .. .
9-1 Debugger Configuration Screen
9-2 DBSETUP Screen
10-1 Memory Map Screen
10-2 Device Specifications for Various Memory Maps
10-3 Memory Map Configuration Screen
11 -1 XDS/22 Front Panel Controls and Indicators
11 -2 Rear of XDS/22 Unit
11 -3 TMS370 XDS/22 Complete Chassis Configuration
11 -4 Card Cage Cover, Right Side
11 -5 Chassis Cable Mounting
11 -6 Memory Expansion/Communications Card
11 -7 Communications Cable Connections
11 -8 TMS370 Emulator Board with Target Cable Attached
11 -9 Crystal Oscillator Pin Locations
11 -10 XDS/22 with Breakpoint/Trace and Emulator Cards Installed
11 -11 Breakpoint/Trace/Timing Card
11 -12 Breakpoint/Trace/Timing Card Block Diagram
11-13 Texas Instruments LOGIC-SHOW Cable
11-14 LOGIC-SHOW Cable Showing Pinout Label
11-15 Extended-Address Cable
11 -16 Extended-Address Cable Connector with Probes "
11-17 XDS/22 Card Cage Ejector Tab Holes
11-18 TMS370C050 Target Cable Assembly
11-19 TMS370C010 Target Cable Assembly
11 -20 Target Cable Attachment
11 -21 Top Cover Removal .. .

Tables

Table

Page

2-3
2-7
3-2
5-14
8-2
8-10
8-14
9-2
9-7
10-2
10-3
10-8
11-2
11 -3
11 -4
11-5
11-6
11 -8
11 -9
11 -12
11 -14
11 -16
11 -17
11 -18
11-20
11-21
11-23
11-24
11-25
11-27
11-28
11-29
11-32

Page

12 -1
2-2
2-3
2-4
3-1
4-1
4-2

Contents of TMS370 XDS Kit 2-4
XDS Temperature and Humidity Ranges 2-5
Emulator - Host Cable RS-232 Pin-outs 2-6
XDS/22 Chassis Power Requirements .. 2-7
Valid Operators .. 3-7
Edit Field Control Keys , 4-5
Status Codes .. 4-6

ix

4-3 Halt Reasons
5-1 Top Level Commands and Functions
5-2 Display Commands and Functions
5-3 Breakpoint Commands and Functions
5-4 Expression Evaluation Examples .. "
5-5 Displayed Trace Samples
5-6 Inspect Trace Commands
5-7 Conventions for File Extensions ,
5-8 Command File Example- " ..
6-1 Execute Command Options
7 -1 Inspect Mode Function Keys
7 -2 Inspect Mode Control Keys
7 -3 Inspect Mode Commands Specific to the Code Window
7 -4 Inspect Memory Dump Commands
7 -5 Inspect Peripheral Registers Commands
7 -6 Inspect File Commands
7 -7 Inspect Symbols Commands
7 -8 Inspect Modules Commands
7 -9 Inspect CPU Registers .. .
7 -10 Inspect Register File Commands
7 -11 Inspect Stack Commands
7 -12 Inspect Expressions Commands
8-1 Address-Only Configurations
8-2 Adaress + Data Configurations
8-3 BTT Command Window
8-4 Function Keys for Editing Actions and Qualifiers
8-5 New Action Keys .. .
8-6 Function Keys for Editing Qualifiers Only
8- 7 Interpreting Range Specifications
8-8 Cycles Prompt Selections
8-9 Local State Editing Keys
8-10 Keys for Editing Global Settings .,
9-1 Configuration Commands
9-2 Field Descriptors .. .
9-3 DBSETUP Commands .. .
10-1 Memory Map Commands
10-2 Device Definitions
10-3 Device Definition Window Editing .Keys
10-4 Inspect Memory Commands ,
10-5 Peripheral File Window Commands
11-1 XDS/22 Card-Cage Slot Assignments
11 -2 Maximum XDS/22 Chassis DC Power Available
11 -3 XDS Board Set DC Power Requirements
11 -4 Memory Expansion/Communications Card Switch Settings
11 -5 Crystal Oscillator Package Pinout
11 -6 Chassis Configuration Label Information
11-7 LOGIC-SHOW Cable Pinout
11 -8 Data Signal Values tor Extended-Address Cable Lines
11 -9 Target Cable Connections
11 -10 Fuse Replacement Guide

x

4-7
5-2
5-3
5-9
5-12
5-15
5-17
5-20
5-22
6-2
7-2
7-2
7-5
7-8
7-10
7-12
7 -14
7 -16
7 -18
7 -19
7-21
7-23
8-6
8-7
8-16
8-19
8-20
8-21
8-21
8-24
8-25
8-27
9-3
9-8
9-9
10-9
10-10
10-11
10-14
10-18
11-4
11-6
11 -7
11-9
11 -14
11 -15
11 -21
11-24
11-30
11 -33'

Section 1

Introduction

The TMS370 debugger is a screen-oriented, interactive program that aids in
the development of applications for TMS370 family microcontrollers. The
debugger is used with a hardware unit called an emulator, which provides
realtime in-circuit emulation of the TMS370 microcontroller. The debugger
runs under the MS-DOS operating system on an IBM or TI personal computer
(or compatible) and connects to the emulator through an RS-232 serial
communications link.

The TMS370 emulator contains three boards: a communications board that
connects to the PC; a breakpoint, trace, and timing board (BIT) that monitors
microcontroller execution and causes hardware breakpoints; and the emulator
board itself.

Attached to the emulator is a target cable with the same pinout as the device
being emulated. This connector plugs directly into the application system's
circuit board using the same socket that would normally hold the TMS370
microcontroller. The application system is also referred to as the target sys
tem.

The emulator has onboard memory that can be mapped into any part of the
address space and used instead of actual target memory. This memory also
simulates the operation of EEPROM and ROM on the TMS370 devices.

The TMS370 assembler and linker produce executable gOFF object modules.
The debugger is then used to download a program into target or emulator
memory and execute it. The debugger provides interactive control of the em
ulator with the following features:

• Window-oriented user interface with menu-driven command structure.

• Ability to display arid change registers and memory.

• Full access to symbol tables.

• A line by line patch assembler.

• A symbolic reverse assembler that displays object code.

• Full symbolic expression analysis that recognizes all assembly language
operators.

• Full control of microcontroller execution, including single-step exe
cution.

• Software breakpoints for halting execution at selected addresses.

1-1

Introduction

1-2

• Hardware breakpoints and tracing, allowing detailed monitoring and
execution control at the hardware level.

• Continuous run mode, allowing features listed above to be used while
the microcontroller is running.

• Memory mapping that allows appropriate configuration of emulator
memory.

Section 2

Getting Started

This section includes the proper procedures to set up an XDS/22 system
containing an XDS/370 emulator. The following topics are covered:

2.1 Unpacking the XDS .. 2-2
2.2 Kit Contents .. 2-4
2.3 Environmental Requirements ... 2-5
2.4 Emulator/Debugger Cabling .. 2-6
2.5 AC Input Requirements ... 2-7
2.6 Software Installation ... 2-8
2.7 Power-up Procedure ... 2-10
2.8 Invoking the Debugger .. 2-11
2.9 Communications Problems .. 2-12

2-1

Unpacking the XDS

2.1 Unpacking the XDS

2-2

1) Remove the XDS from its shipping carton' along with a cable package,
then place the unit on a clean work surface as near to its permanent
operating station as possible. Be sure to lift the XDS only by
grasping it from the sides and bottom. Do not use the front
panel, decorating trim, or back-panel connectors as handles.

Caution:

Do not connect system to power source at this time. Wait until
all installation checks are complete.

Protect target-connector pins with the supplied plastic pin
guard (or non-conductive foam) when not connected to a tar
get system to prevent physical damage to the connector pins
or electrical damage from transient voltages or electrostatic
discharges.

2) Remove the front panel of the unit as follows:

Loosen the two thumbscrews located at the bottom of the front panel.
These screws will not detach completely from the panel but will loosen
completely from the main chassis. Gently pull the cover outward and
down until its top edge clears the chassis.

3) Check the card-location chart inside the card-cage cover against the
actual cards installed.

4) Remove shipping retainer from XDS/22 interior.

5) Reseat any card that appears loose in its socket. Do this by pulling out
on the inside edge of the card ejectors then firmly pressing the card back
into its socket by pressing in on the card ejectors. It may be necessary
to move the card slightly up or down within its slot.

Caution:

To avoid damage to the card or injury to yourself, do NOT grasp
the top or bottom of the card.

6) Make sure all required cables are connected and secured.

7) Replace the front panel and tighten the screws. Be careful not to sna,
or crimp the cables exiting from the card cage.

Save the carton for possible reuse if the unit must be shipped.

Unpacking the XDS

BREAKPOINT /TRACE/TIMING
CARD

EMULATOR
CARD

MEMORY
EXPANSION/COMMUNICATIONS
CARD

SHIPPING RETAINER
TO BE REMOVED

Figure 2-1. XDS/22 Interior as Shipped

2-3

The XDS System - Kit Contents

2.2 Kit Contents

2-4

Please verify that you received the components listed in the following table
by matching the part number given with the number printed on each compo
nent.

Table 2-1. Contents of TMS370 XDS Kit

Part Number Description

2310990-1 XDS/22 chassis (USA)

2243660-2 Breakpoint/Trace/Timing board

2536810-1 TMS370 emulator board

2539628-1 Target cable assembly (68-pin PLCC)

2539634-1 Target cable assembly (28-pin PLCC)

2311050-2 Memory Expansion/Communications board

The following are also included in the XDS shipping container.

• XDSj22 chassis with 370 emulator, communications, and BTT boards

• Interface cables
EIA 25-pin cable (male-male/female)
25-to-9 pin adaptor

• Power Cord
USA cord terminated for 5-15R wall socket, or,
European cord unterminated unless country was specified by cus
tomer at order time

• BTT Probes
• 68-pin PLCC cable

68-pin PLCC- PGA adapter (installed)
68-pin PLCC surface mount socket

• 28-pin PLCC cable
28-pin PLCC-PGA adapter
28-pin PLCC- 01 P adapter (installed)
28-pin surface mount socket

• 2 grounding clips with E2 hook terminations

• Documentation kit

Environmental Requirements

2.3 Environmental Requirements

A minimum clearance of 5 inches (12.7 cm) must be maintained between the
XDS unit and surrounding walls and/or equipment to permit sufficient air
flow.

Temperature and humidity requirements, for both operation and storage, are
given in the following table:

Table 2-2. XDS Temperature and Humidity Ranges

Operation Storage

Temperature Humidity Temperature Humidity

60°F - 90°F 30% - 80% -40°F - +185°F 5% - 90%
16°C - 32°C -40°C - +85°C

2-5

Emulator/Debugger Cabling

2.4 Emulator/Debugger Cabling

2-6

The debugger host machine connects to the emulator with a serial RS-232
communications link. This section briefly describes the interface so that any
problems can be corrected.

Three standard RS-232 signals plus ground are used to implement the com
munications protocol. Two data lines transmit characters back and forth. An
"attention" line from the emulator is used to alert the debugger when events
such as breakpoints are encountered.

The pin-out at the host and emulator for these signals is illustrated below.
The host pin-out shown is for a standard DB-25 connector for the host serial
port. The IBM AT serial port has a OB-9 connector instead of the standard
DB-25, and its pin-out is shown in parentheses.

The EIA cable supplied with the XOS unit is wired as shown below, and must
be connected between Port A of the XDS and the serial port on the personal
computer. No additional cabling or handshaking is needed.

Table 2-3. Emulator - Host Cable RS-232 Pin-outs

EMULATOR HOST
(male DB-25) (OB-25) (DB-9)

Function Pin Signal Signal Pin (AT)

Connection established 8 DCD <----------- OCD 8 (1)

Data to host 3 TX -----------> RX ., 3 (2)

Data to emulator 2 RX <----------- TX 2 (3)

Terminal ready 20 DTR <----------- DTR 20 (4)
Signal ground 7 GND ------------ GNO 7 (5)

Emulator ready 6 DSR -----------> DSR 6 (6)

Attention to emulator 4 CTS <----------- RTS 4 (7)

Attention to host 5 RTS -----------> CTS 5 (8)

Not used 22 RI ------------ RI 22 (9)

AC Input Requirements

2.5 AC Input Requirements

Ensure the compatibility of the local power source with the XDS/22 power
requirement (Table 2-4) shown on the back-panel model plate (Figure 2-2).
Make sure the POWER switch is in the OFF position.

Do not connect any electric motors or fluorescent lights to the XDS/22 power
circuit. Noise and/or voltage spikes from these devices could affect operation.

Table 2-4. XDS/22 Chassis Power Requirements

Rated Rated Rated Wall Outlet
Voltage Frequency Current Specification

100 Vac 50/60 Hz 3 Amps 5-15R

115 Vac 60 Hz 3 Amps 5-15R

220 Vac 50 Hz 2 Amps Schuko 1050

240 Vac 50 Hz 2 Amps BSI 1363

.. TEXAS INSTRUMENTS
IB

INCORPORATED
AUSTIN,TEXAS

MADE IN USA

SERIAL NO: VOLTS:

PART NO: FREQ:

AMPS: PHASES: WATTS:

Figure 2-2. XDS/22 Model Plate

2-7

Software Installation

2.6 Software Installation

This section contains step-by-step instructions for installing the TMS370 as
sembly language tools package. This package can be installed on the IBM
PC (running PC-DOS2) and the TI PC (running MS-DOS3).

The TMS370 software package is shipped on one double-sided, dual-density
diskette. There are two distributed versions, one for the TI-PC and one for the
IBM and IBM-compatible PCs. You need the following items to use the
package:

• IBM-PC or IBM-compatible PC, TI-PC, or MS-DOS compatible PC

• 512K or more RAM memory
• Serial communications port
• Floppy disk drive (to read the TMS370 software disk)

In addition, the following are recommended:

• Fixed disk drive
• Color monitor

The following instructions are for both fixed disk drive systems and dual
floppy drive systems. On a dual-drive system, the PCjMS-DOS system disk
ette should be in drive B. The instructions use these symbols for drive names:

A: Floppy disk drive for hard disk systems or source drive for dual-drive
systems.

8: Destination or system disk drive for dual-drive systems.
C: Winchester (hard disk) for hard disk systems. (E: on TI PCs.)

1) Make backups of the product diskettes. First format a blank diskette.
Insert a blank (destination) diskette in drive A. Enter:

FORMAT A: <CR>

When PCjMS-DOS prompts: FORMAT ANOTHER (YIN)?, respond with
N. Now copy the disks.

On hard disk systems, enter:

DISKCOPY A: A: <CR>

Follow the system prompts, removing and inserting the product and
blank diskettes as directed. When PCjMS-DOS prompts: COPY AN
OTHER (YIN)?, respond with N.

On dual-drive systems, place a product diskette in drive A: and a blank,
formatted diskette in drive B. Enter:

COPY A:*.* B:*.* <CR>

2 PC- DOS is a trademark of International Business Machines.

3 MS is a trademark of Microsoft Corporation.

2-8

Software Installation

2} Create a directory to contain the TMS370 software.

On hard disk systems, enter: MD C: \3 70TOOLS <CR>

On dual-drive systems, enter: MD B: \3 70TOOLS <CR>

3} Copy the TMS370 tools onto the hard disk or the system disk.

On hard disk systems, enter: COPY A: \ * . * C: \3 70TOOLS\ *. * <CR>

On dual-drive systems, enter: COpy A: *. * B: \370TOOLS*. * <CR>

You will need to make two changes to the system files on your PC. First, the
CONFIG. SY S file must contain the line:

FILES=20

Second, you must add a string to the DOS environment to tell the debugger
where display configuration and help files are stored. Use the DOS command
SET to define the environment variable IPCDIR as follows:

C> SET IPCDIR=E:\370TOOLS

If the symbol IPCDIR is not found in the environment, the debugger will look
in the current directory for configuration or help files. You can put the SET
command in your AUTOEXEC. BAT file to define the symbol each time the
system is booted. (This is also discussed in Section 9.3, Debugger Color
Setup.)

You do not have to be in your debugger subdirectory to run the debugger; the
DOS PATH command will allow DOS to find the executable debugger file.
Refer to your DOS manual for examples of how to use the PATH command.

2-9

Power-up Procedure

2.7 Power-up Procedure

2-10

Caution:

Always ensure the power to the XDS is off before connecting
or disconnecting connectors or installing or removing circuit
boards.

Remove and install circuit boards and connectors only in a
static-free workstation following normal MOS-device static
handling procedures.

If a target system is to be used, replace the TMS370 microprocessor in the
target system with the target connector of the XDS. See Section 11.5 for
connection to a target system.

Caution:

When replacing the TMS370 microprocessor in the target sys
tem with the target connector, make sure pin orientation is
correct. Pin 1 is located on the side opposite the cable.

Connect the power source to the unit by plugging the power cord into the
wall outlet.

Apply power to the unit by pressing the POWER switch.

Verify that the POWER light is on. If not, turn power off immediately and
perform the following checks:

1) Check that power is available from the source.

2) If power is present but the unit is not operating, unplug the unit and
check the fuses.

Invoking the Debugger

2.8 Invoking the Debugger

Before invoking the debugger, be sure that the emulator is plugged in and that
the cable from the emulator to the PC host is properly connected. The de
bugger will not operate unless the emulator is connected and turned on.

The command to run the debugger from MS- DOS is:

DBR370 [/b=<baud>] [/p=<port>] [<file1> <file2> ...]

Example: DBR370/b=2400 /p=2 test.out test.mmp

Options:

<baud>

<port>

<files>

Note:

The default baud rate is 19200. If for some reason 19200 baud
cannot be used, specify a new baud rate with this option. Valid
baud rates are 1200, 2400, 4800, 9600, and 19200.

A number from 1 to 4 that specifies which serial port on the host
PC is connected to the emulator. If no port is specified, port 1
is used.

Optional arguments that specify one or more files to be loaded
into the debugger.

The command for the TI-PC version is DBR370T. Make sure you have the
correct version for your system.

After the debugger is invoked, it clears the screen and displays a version
number and copyright message and prints Initializing ... on the bottom
line of the screen while it resets the emulator. After a short delay of 3-10
seconds, the top-level screen is displayed. If a filename was specified on the
command line, the debugger immediately loads the file. See Loading a File
The L Command, page 5-20 for a description of how files are loaded. If the
screen shows an error, press the white XDS reset button and retry.

2-11

Communications Problems

2.9 Communications Problems

2-12

The emulator and debugger communicate at 19200 baud, with eight data bits
and one parity bit. The emulator automatically matches baud rate when it is
initialized by the debugger.

Port 1 is used as the default serial port if the host PC has mUltiple serial ports.
A different port can be used for the emulator via the "/p=<port>" option on
the command line, where <port> is a number from 1 to 4 that specifies the
port number.

If the debugger tries to perform an operation and the emulator either does not
respond within a five second time-out period or responds incorrectly, the de
bugger prints an error message on the bottom of the screen:

"Emulator not responding correctly: Abort, Retry?"

This message indicates that one of several problems may have occurred, in
cluding:

• The emulator is not turned on.
• The host communications port cannot be initialized.
• The cable between the emulator and the PC is not properly connected.
• The TMS370 device is in an improper state, causing the emulator to

"hang".

If you respond to the message by typing A (Abort), the debugger immediately
exits and returns to the operating system. Typing R (Retry) causes the de
bugger to try to reset the emulator. If successful, the operation will be tried
again. If not, the message will be re-displayed. If the debugger fails after se
veral attempts to reset the emulator, you should manually reset it by pressing
the reset button on the XDS system. (See Section 11.1.1, (3operator Panel.)

Section 3

Functional Overview

This section summarizes the main features of the TMS370 debugger. The
following topics are included:

Section Page
3.1 Window-Oriented User Interface ... 3-2
3.2 Command Language ... 3-5
3.3 Object Modules .. 3-5
3.4 Expressions ... 3-6
3.5 Displayed Values .. 3-8
3.6 Saving and Restoring Configurations ... 3-8
3.7 Error Messages ... 3-9
3.8 Online Help ... 3-9
3.9 Execution Modes ... 3-9
3.10 Breakpoint, Trace and Timing (BTT) Board 3-10
3.11 Memory Mapping .. 3-11

3-1

Functional Overview

3.1 Window-Oriented User Interface

3-2

Debugging a system requires attention to a number of different areas: the
code being executed, the registers of the target machine, the variables in the
program, etc. The debugger models this by providing a set of windows on
the screen. Each window contains information pertinent to one aspect of the
debugging process. You can move from window to window to perform spe
cific operations such as moving to the code window to examine code or
moving to the CPU register window to clear a register.

In addition to windows, the top-level debugging screen consists of the fol
lowing elements:

• Top line: menu of single letter commands

• Second line: display of current system status

• Bottom line: active function key assignments

An example of the top-level screen is shown in Figure 3-1.

Debug: !Display elecute liIeg lIem IDpoint Ival Sanfig ~ad r-&ule lalt Eystem"
HALTED:SS DONE

7000
1m)

7003
700b
7009

7008
700C

0000
0008
0010
0018
0020
0028
0030
0038
0040
0048

code cpu registers
start: PC 7002 SP III ST cnzv21
52F0 MOV 240.8 A 0b 8 F0 40 010000
FD LDSP =r fi le stack
repeat: R2 91 R3 00 ~i.ii-i 0b
8E7008 CALL. clear R4 05 R5 Bi - 1 (FDl 70
8E7017 CAL.l. Wr I te Rb 00 R7 00 - 2(FCl 00
00F5 JMP start R8 00 R9 00 - 3(FBl 00
clear: R10 iii Rl1 00 - 4(FAl 00
B5 CLR A R12 00 R13 00 - 5(F91 00
52EF MOV 239.8 R14 00 R15 00 - b(F8) 00

display RIb 00 R17 00 - 7(F71 00
06 F0 91 00 05 00 00 00 R18 00 R19 00 - 8(Fbl 00
00 00 00 00 00 00 00 00 R20 00 R21 00 - 9(F51 00
00 00 00 00 00 00 00 00 expressions
54 4D 53 33 37 30 20 20 TMS370 PC 07002h
44 b5 b2 75 b7 b7 b5 72 Debugger start 052F0h
00 00 00 00 00 00 00 00 SP 000FEH
00 00 00 00 00 00 00 00 A+B 24b
00 00 00 00 00 00 00 00 CTRL1 10000000b
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

I

j
--------------------------~----------

I

IIilUpdate _He 1 p

Figure 3-1. Top-Level Screen

Some windows are fixed; that is, they always monitor the same thing. Others
are dynamic: you can tell the debugger what to display in the window.

Functional Overview

Windows are based on virtual buffers in the debugger. This means that the
debugger keeps track of more information than is actually displayed in a given
window. This allows the window to be scrolled up and down in a local area
without having to go to the emulator to get new data for the buffer. The
window can, of course, move outside the local area, in which case the de
bugger automatically updates the buffer with new data from the emulator.

Windows on the screen are automatically updated whenever the microcon
troller has stopped running. You may also specifically request that the screen
be updated at any time by pressing the Update function key. When a window
containing registers, memory or expressions is updated and a value has
changed, the new value is highlighted so that changes can be easily spotted
on the screen. See Section 4.7, Updating the Screen.

As shown in Figure 3-1, the top level screen is divided into six windows.
Except for the display window in the lower left corner of the screen, each
window is dedicated to displaying a specific type of information. The six top
level windows are described in the following sections.

3.1.1 Code Window

The code window is located in the upper left corner of the screen and is ded
icated to displaying the code being debugged. The code in this window is
disassembled from object code in memory.

The disassembler uses the symbol table and inserts labels into the disassembly
wherever possible, with the exception of relocatable register symbols. The
instruction at the current PC is identified with a highlighted address. Also,
instructions at which simple breakpoints have been set are marked with a
breakpoint number to the left of the address. Immediate values in instructions
are displayed in hexadecimal.

You can scroll down through the code, adding or removing simple break
points. Scrolling back up through the code works normally up to the top of
the debugger's virtual buffer. Scrolling above the top of the virtual buffer is
allowed one byte at a time. This can cause the entire code window to be
disassembled incorrectly because the disassembly can start in the middle of
an instruction. The disassembly will correct itself as the user continues to
scroll upward in the window. The new location to which you scroll will be
come the new top of the virtual buffer.

3.1.2 O'isplay Windovv

The display window is located in the lower left corner of the screen. The
window displays one of several miscellaneous debugger outputs such as:

• Memory, dumped in hexadecimal and ASCII formats
• Peripheral file registers
• Symbols in the symbol table

• Module names

• A file

The functions (Fkeys) available depend on what is being displayed.

3-3

Functional Overview

3.1.3 CPU Registers Window

Five TMS370 registers (A, B, PC, SP, and ST) are displayed in the CPU reg
isters window in the upper right corner of the screen. This window cannot
be scrolled. You can move to this window and modify the contents of any of
these reg isters. .

3.1.4 Register File Window

The register file window is located on the left, under the CPU registers. The
window displays the contents of 20 registers from the register file. This win
dow can be scrolled up and down to see different areas of the register file, as
well as change the contents of any register shown.

3.1.5 Stack Window

The stack window is located to the right of the register file window and con
tains the contents of the current program stack within the register file. The
stack window differs from the register file window in that a) when updated,
the stack window automatically changes the display to reflect the offset of
each register from the current top of stack, and b) the registers are displayed
in reverse order, so that "higher" on the stack (i.e., closer to the top of stack)
corresponds to higher in the window.

3.1.6 Expression Window

3-4

The expression window is located in the lower right corner of the screen. This
window is used to display expressions specified by the user.

Functional Overview - Command Language/Object Modules

3.2 Command Language

The debugger command language allows you to control the debugging pro
cess. The top level of the command language is a menu of single-letter com
mands. Each command is invoked by typing the letter, upper or lower case,
for the command. Many of the commands require additional input and quali
fication, so they either prompt you for input or display a menu of subcom
mands.

The command language is designed to be both simple for the inexperienced
user and efficient for the expert. This is accomplished by limiting command
menus to just one or two levels, so that nearly everything in the debugger can
be controlled by a simple two-letter command with no wasted keystrokes.

The ten function keys complement the command language by providing ad
ditional control of the debugger itself. Function keys are used to scroll win
dows up and down, move between windows, etc. The actual function keys
displayed and avail~ble at anyone time are activity-dependent.

The escape key is used throughout the debugger to exit from the current op
eration and return to the previous command level. In this manual, the escape
key is referred to with the symbol < Esc>. Similarly, the "Return" or "Enter"
key is designated as <CR>.

3.3 Object Modules

The debugger can execute COFF (Common Object File Format) executable
linked object modules. When the debugger loads an object module, in
structions and data are downloaded into the address space of the target sys
tem (into either target or emulator memory, depending on the current
configuration of the memory map). The complete symbol table from the file
is also loaded into internal debugger memory.

The object module's symbol table contains information about each symbol in
the program, including the symbol name, storage class, type, size, and value.
Upper and lower case are significant in symbol names. The storage class of a
symbol indicates whether the symbol is global (visible to other modules) or
static (visible only in the module in which it is defined).

The object module's symbol table also contains the names of the source mo
dules and identifies which static symbols were defined in which modules. The
debugger uses the concept of a current module to identify static symbols.
Only the static symbols in the current module can be accessed at any time.
To access statics in other modules, the current module must be changed.
Global symbols are always visible to the debugger.

The symbol table is used in two ways: the expression analyzer uses it to
evaluate symbols in expressions and the disassembler uses it to insert symbols
into the disassembly. The disassembler does not guarantee that symbols show
up in the disassembly whenever they were used in the source; instead, the
disassembler tries to find symbols that match labels and 16-bit operands
whenever it can. Eight-bit (reg) symbols are not used by the disassembler.
Symbols defined in the symbol table may be used by the line by line assem
bler, but new symbols can not be defined by the line by line assembler.

3-5

Functional Overview - Expressions

3.4 Expressions

Whenever the debugger prompts for an address or a value, you may enter an
arbitrarily complex expression. The debugger evaluates expressions using the
symbol table and the emulator. Expressions may consist of numeric constants,
symbols, and register names, separated by operators. Any expression used in
the assembler source will evaluate to the same value when used in the de
bugger. Spaces are insignificant in expressions.

Expressions are evaluated using 16-bit signed arithmetic. Both intermediate
and final vaiues for expressions can therefore range only from -32768 to
+32767. If a value exceeds this range, the displayed result will be incorrect.

You will find more information on expression evaluation in Section 5.6, Eval
uate an Expression - The E Command on page 5-11 .

3.4.1 Constants, Symbols, and Registers

3-6

Numeric constants can be hexadecimal, octal, binary, or decimal. Constants
are identified with a suffix, as follows:

Radix Suffix

hexadecimal H or h

octal Q or q

binary 8 or b

decimal D or d

The first character of a hex constant must be a decimal digit to distinguish it
from a symbol name. For example, Fh is an invalid constant; OFh is the correct
form. Numbers that have no suffix and do not begin with a zero are assumed
to be decimal.

Symbols are identifiers of up to 32 characters in length as stored in the COFF
symbol table. Case is significant in symbol names. The valid characters are
a ... z, A. .. Z, 0 ... 9, $, -. Symbols must not begin with a number.

Register names are identifiers for the standard TMS370 registers. Upper or
lower case may be used for all register names. Register names are:

PC Program counter

SP Stack pointer

ST Status register

A Register A (ROO)

8 Register 8 (R01)

Rn Register n t

Pn Peripheral n t

t n is a number from 0 to 255 (decimal)
or 00 to OFF (hex)

Functional Overview - Expressions

3.4.2 Operators

Table 3-1 lists the operators that can be used in expressions. Operators are
listed in order of highest to lowest precedence. Operators with higher pre
cedence are applied first during expression evaluation. Operators in the same
section of the table have the same precedence. Parentheses can be used to
alter the order of evaluation.

Unary operators are used by prefixing the operand with the operator (-x ,
@sym) and are right associative (@-a = @(-a). Binary operators are used
by infixing the operator between the operands (a+b, x mod y) and are left
associative (a+b-c = (a+b)-c). Logical operators interpret· any non-zero
operand as TRUE; the result of logical operators is either 1 for true or 0 for
false.

Table 3-1. Valid Operators

Operator Function

+x Unary positive; no effect
-x Unary negative; twos complement
,..,x (COM) Ones complement
!x (NOT) Logical negate; returns 1 or 0
HIX High byte of x
LO X Low byte of x
*x Contents of location x
@x Indirection; value pointed to by the contents

at memory location [x-1]: [x]

#x Address of; use 16-bit address of symbol x
x * y Multiplication
x/y Integer division; quotient truncated
x%y (MOD) Modulo
x« y (SHL) X shifted left by y bits
x» y (SHR) X shifted right by y bits

x + y Addition
x - y Subtraction
x&y (AND) Bit-wise AND operation
x ~ y (OR) Bit-wise OR
x y (XOR) Bit-wise exclusive OR

x < y True if x less than y
x <= y True if x less than or equal to y
x>y True if x greater than y
x >= y True if x greater than or equal to y
x == y True if x equal to y
x!= y True if x not equal to y

x &&y True if x and yare both true; logical AND

x II y True if x or Y is true; logical OR

Note: Operators in parentheses indicate alternate form.

3-7

Functional Overview - Saving/Restoring Configurations

3.5 Displayed Values

Numeric values are displayed on the screen in one of two ways, in standard
suffix numeric form as described above, or in implied hex notation. When you
cannot change the radix of displayed values, as in the register or peripheral file
windows, values are displayed in hex with no suffix. Anywhere you have the
option of selecting different radices for displayed values, as in the expression
window, values are displayed with a suffix to indicate the selected radix. De
cimal values are displayed with no suffix.

When you have the option of changing the format, the debugger uses a sub
menu of radix selections from which you select the desired format. The op
tions and corresponding formats are described here:

Option Format

X Hexadecimal

D Decimal

a Octal

B Binary

A ASCII t
t Non-printable characters displayed as '.'

3.6 Saving and Restoring Configurations

3-8

The debugging environment includes a number of configurations and set-ups
that could be tedious to recreate each time the debugger is invoked. To avoid
this, the debugger can save and restore a number of these configurations us
ing disk files. In addition, file load operations can be performed under the
control of a single command file, so that many set-up files can be loaded with
one operation. The configurations that can be saved and restored in this way
are:

• BTT settings
• Simple breakpoint addresses
• Device configuration
• Expressions in the expression window

Functional Overview - Error Messages/Online Help

3.7 Error Messages

If you try to perform an action that is illegal, the debugger displays an error
message on the bottom line of the screen and prompts you to "hit esc key".
Press the "esc" key, the message is erased, the function key help line reap
pears, and the debugger continues its normal operation.

Under certain abnormal circumstances, the debugger cannot communicate
with the emulator. If this occurs, the debugger displays the message

Emulator not responding correctly - Abort, Retry, Ignore?

The reasons for this message and possible solutions are described in Section
2.9, Communications Problems, and Section 11.8, XDS/22 System Repair
Guide.

3.8 Online Help

The debugger has a built-in interactive help system that can be invoked from
anywhere in the debugger by pressing the F10 key. The debugger opens a
temporary window on the screen and displays help information. Help is con
text sensitive; the text displayed depends on what operation is in progress
when F10 is pressed. From some help screens, additional levels of help can
be invoked to explain the current operation in more detail.

3.9 Execution Modes

There are two different run modes in the emulator: norma I and
continuous. Each mode has different ways of actually running a program.

In normal run mode, the CPU and BTT run together as a unit and cannot
be interrupted until one halts, in which case the other is halted also. Execution
can be halted by the user, by the BTT, by a simple breakpoint, or by some
exception condition such as an illegal opcode or a memory access violation.
While running, the emulator cannot perform any operations except checking
the status of the CPU or forcing it to halt. Thus, the CPU must be halted be
fore the debugger can see any of the effects caused by running.

In continuous run mode, like normal run mode, the CPU and BTT start as
a unit. No operations can be performed while both are running, and if the
CPU halts, the BTT halts also. However, the BTT can be halted while the CPU
continues to run. This allows the emulator to perform nearly all operations
that are normally possible. This includes dumping the contents of the trace
buffer, reconfiguring the BTT, updating the screen, and modifying the con
tents of registers and memory. Whenever the debugger accesses registers and
memory, the CPU is halted just long enough to perform the operation and is
then restarted. Thus, continuous run mode is not truly realtime unless no
memory or register accesses are requested.

The BTT can be restarted in continuous run mode without interrupting the
CPU. Single-step execution is not possible in continuous run mode.

3-9

Functional Overview - BTT Board

3.10 Breakpoint, Trace and Timing (BTT) Board

3-10

The Breakpoint, Trace and Timing (BTT) board in the emulator provides the
capability to monitor system operation at a hardware level. The board can be
programmed to take various actions that are triggered by the occurrence of a
specified combination of qualifiers. These qualifiers may include a particular
address or range of addresses on the address bus, a particular data value or
range of data values on the data bus, the type of memory cycle, and signals
from up to eight external logic probes that can be connected to the application
system.

The board has three timers, two of which can be started or stopped by quali
fying an event and one other that is free-running. The timers allow timing
statistics to be taken, such as percent of time spent in a certain region of code.

There is a 2K x 104 bit trace memory in which all the qualifiers described
above plus a time stamp from the free-running timer can be stored for later
inspection.

The BTT is always in one of four logical states. Up to four actions can be
qualified per state, with certain restrictions. A qualified event can cause a
transition to another state with another set of qualifiers and actions. In this
way, multi-level or sequenced breakpoints can be applied to solve complex
debugging problems.

The actions that can be taken on the basis of qualified events are:

• Halt the processor (breakpoint)
• Halt the BTT (continuous run mode only)
• Store the qualifiers in a trace sample memory

• Start or stop the timers
• Cause a transition to a different state

Functional Overview - Memory Mapping

3.11 Memory Mapping

The emulator board contains 64K bytes of RAM reserved for emulation. Me
mory references from the TMS370 can be satisfied in one of three ways:

• Internally from the TMS370 device,
• Externally from target system memory, or
• Externally from emulatOi RAM.

The 64K byte address range of the microcontroller is divided into 16-byte ar
eas called frames. The memory mapping scheme of the debugger and emu
lator allows you to specify, for each sixteen-byte frame of the address space,
where memory references to that frame are to be satisfied. References to the
register file (addresses O-OFFh) are always satisfied internally. Sixteen-byte
frames in the peripheral register file (addresses 1 OOOh-1 OFFh) can be mapped
either internally or to an optional user-supplied peripheral expansion board
on the emulator.

In addition to mapping various parts of the address space to different parts of
the physical memory, you can protect areas of memory from certain types of
access. Protection can be on read cycles, write cycles, both, or none. If the
CPU tries to execute a memory cycle on an address that is protected for that
cycle, a trap occurs and the CPU is halted. Thus, memory can be used as
ROM by write protecting it, and it can be treated as non-existent by both read
and write protecting it. Any memory not explicitly mapped by the user is fully
protected in this way so that any access to an address outside configured
memory, as defined by the user, causes a trap and halts the CPU.

Some TMS370 devices contain regions of built-in EEPROM that can be pro
grammed by the CPU at run time. The emulator has no internal ROM or
EEPROM. Instead, areas of emulator RAM can be mapped in to emulate ROM
and EEPROTvL This allows the emulator hardware to support non-real time
simulation of EEPROM programming.

The emulator traps accesses to the EEPROM control register and EEPROM
memory addresses, detects what operation is being performed and simulates
the behavior of the actual EEPROM programming using emulator RAM. The
simulation is not completely accurate, and it is not done in real time. The CPU
is halted when the trap occurs and restarted after the operation is completed,
resulting in a delay of approximately 12 ms.

Emulation of ROM is performed simply by write-protecting the ROM area of
emulator memory.

3-11

Functional Overview - Memory Mapping

3-12

Section 4

Operation

This section includes the following topics:

Section Page
4.1 Command Menus .. 4-2
4.2 Function Keys ... 4-2
4.3 Inspect Mode ... 4-3
4.4 Escape Key .. 4-3
4.5 Edit Fields and Prompts .. 4-4
4.6 Status Line .. 4-6
4.7 Updating the Screen ... 4-8

4-1

Operation - Command Menus/Function Keys

4.1 Command Menus

Overal' operation of the debugger is through command menus. Command
menus are lists of command names, each of which is displayed with one
highlighted letter, usually the first character in the name. The highlighted let
ters are the keys· used to invoke the corresponding commands. Some menus
have a default command letter displayed in square brackets after the fist of
commands; the default can be selected by simply pressing <CR>. The top
level menu has more commands than can fit across the width of the screen.
Use the left and right arrow keys to display the additional commands.

Command letters can be in upper or lower case. Any character that is not ei
ther a command letter in the menu or some control key (such as an arrow,
function key, or <Esc» is ignored. When a valid command letter is selected,
the debugger clears the command line, displays the name of the selected
command, and executes the command. Most commands require additional
information, in which case the debugger either prompts for parameters or
displays a submenu of commands.

4.2 Function Keys

4-2

Function keys F1-F10 are used to invoke various actions in the debugger in
addition to the command menus. There are four disjoint sets of function keys:
one set for the top level command menu, one set for inspect mode, one set for
programming the BTT, and one set for setting up the memory map and con
figuration.

Each key has one unique function within a function key set. For example, in
inspect mode, F3 always scrolls a window down and F4 always scrolls it up.

,."
Some keys have the same function throughout the debugger. For example,
F1 and F2 are used to move forward and backward between windows, and
F10 is always the help key.

Only a subset of the keys within each set may be valid at any given time.
Currently valid keys are displayed on the bottom line of the screen for refer
ence.

Operation - Inspect Mode/Escape Key

4.3 Inspect Mode

The F1 key is used from the top level command line to move into the windows
on the screen to perform various editing and scrolling functions. Moving into
a window is called inspecting the window. The F1 key is also used to move
forward between windows on the screen. The F2 key moves backward be
tween windows. The escape key «Esc» exits inspect mode and returns to
the command line.

When inspecting a window, different commands and functions are available
that are not possible from the main command line. When a window is entered,
the command and function key lines change to reflect operations specific to
the selected window. On the left edge of the status line, a reminder is dis
played indicating the contents of the window and your position within it.

See Section 7, Inspect Mode, for detailed descriptions of inspect mode for the
various types of windows.

4.4 Escape Key

The escape key «Esc» can be pressed anywhere in the debugger to imme
diately terminate the current activity and return to the previous command level.
If < Esc> is pressed while entering input in response to a prompt, one of two
things can happen: If the prompt is a parameter to a command (such as the
address at which to display memory), the entire command is immediately
aborted and the response is ignored. If, however, the prompt is a setting or a
value on the screen (such as a BTT qualifier or the value of a register in a
window), the value is accepted and used before the debugger escapes to the
previous level.

4-3

Operation - Edit Fields and Prompts

4.5 Edit Fields and Prompts

4-4

The debugger often requires you to enter some input in response to a prompt.
The debugger has a simple field editor for this purpose. The field editor is also
used in situations where you can move the cursor to a value on the screen and
modify it, such as in inspect mode. The field editor has two different modes
of operation, depending on the type of field being edited: text mode and
numeric mode.

All command line prompts use the text mode. In text mode, all characters are
accepted; the input can be any arbitrary expression or character string. The
numeric mode is for direct modification of numeric values on the screen. If the
value is displayed with suffix notation, the response must be a numeric value
that also uses the suffix notation. The response can be in a different radix, so
long as the radix is specified. Some values are displayed with an implied radix
(see Section 3.5, Displayed Values). In this case, the only valid input for the
field is a number in the same form, with no suffix allowed.

Examples:

1) Debugger prompts with:

"Display Memory - address:

Valid response is any character string:

1000h 1234 10010001b sym1 @(sym1 + 3)

2} Inspecting P registers, displayed value is 107Fh".
Valid input is any numeric constant:

Offh 1234 1770h

3) Inspecting register file, displayed value is 17F".
Valid input is a hex constant only:

If 20 3A

Using the field editor can be equated to building an output buffer from an in
put buffer. The input buffer contains the contents of the field before any ed
iting and is either a default value supplied by the debugger or the current value
of a displayed item. The input buffer is displayed on the screen when editing
begins. As the output buffer is built, it overlays the input buffer on the screen.
The output buffer is displayed with a different attribute (highlighted or reverse
video) to differentiate it from the input buffer.

As characters are typed, they are added to the output buffer and the cursor
advances to show the current position in the output buffer. Field editing can
be terminated by pressing <CR> or <Esc>, or as shown in Table 4-1.

Operation - Edit Fields and Prompts

When editing terminates, the current contents of the output buffer are taken
as the result. A special case occurs when the edit is terminated and there are
no characters in the output buffer. In this case, the entire input buffer is co
pied into the output buffer and is used as the result. This way, the default or
former value can be selected simply by pressing <CR> in response to the
prompt.

Table 4-1 lists special control keys that can be used when editing fields. The
effect of each key on the output buffer is stated for both text and numeric
mode fields. Any control key not listed in the table, such as a function key,
another arrow, etc., is ignored.

Table 4-1. Edit Field Control Keys

RETURN or ESCAPE
Terminates input and uses output buffer.

SPACE Text: Inserts a space into output buffer.
Numeric: Terminates input and uses output buffer.

BACKSPACE Text: Erases character before cursor and backs up one space.
Numeric: Backs up one space without erasing.

INSERT Text: Subsequent characters are inserted at the cursor position and
characters after the cursor are moved right, even out of the field.
Remains in effect until the I NSERT key or another control key is
selected.
Numeric: No effect.

DELETE Text: Deletes character at cursor.
Numeric: No effect.

LEFT ARROW Backs up one space without erasing.

RIGHT ARROW Copies the next character in the input buffer to the output buffer.

CTRL-LEFT ARROW
Text: Moves the cursor to the beginning of the output buffer.
Numeric: Terminates input and uses output buffer.

CTRL-RIGHT ARROW
Text: Copies all characters to the right of the current cursor position
from the input buffer to the output buffer.
Numeric: Terminates input and uses output buffer.

4-5

Operation - Status line

4.6 Status Line

4-6

The second line of the screen is the status line. The debugger uses the left
side of the status line to display special instructions or information. The left
side of the status line is also used in inspect mode to indicate the contents of
the current window and your position in the window.

The right side of the status line is used to indicate whether the CPU and BTT
are currently running or halted. Whenever the CPU or BTT halt, the status
codes are updated to show the reason for halting. In continuous run mode,
the status of the CPU and BTT are displayed separately since they can be
running or halted somewhat independently. Table 4-2 and Table 4-3 describe
the status messages that appear on the right side of the status line.

Table 4-2. Status Codes

Reset Status Codes

RESET The emulator has been reset. This condition can be caused by hit-
ting the reset button on the emulator or by the debugger resetting
the emulator after it has responded improperly.

POWER-UP RESET
The emulator has just been powered up.

Status Codes in Normal Run Mode

CPUjBTT RUNNING
The emulator is running.

STEPPING The emulator is single-stepping.

HALTED: < halt reason>
The CPU has been halted for the reason shown. If no reason is

given, the CPU has been halted by the user pressing a key.

Status Codes in Continuous Run Mode

CPU: RUNNING BTT: RUNNING
The emulator is running.

CPU: RUNNING BTT: <halt reason>
The BTT has been halted for the reason shown. The CPU is still

running. If the <halt reason> is simply HALTED, the BTT has been
halted by the user.

CPU: <halt reason> BTT: HALTED
The CPU has been halted for the reason shown. If no reason is

given, the CPU has been halted by the user.

Operation - Status Line

Table 4-3. Halt Reasons

SPOINT The CPU was halted by a simple breakpoint.

ACCESS VIOL A memory protection violation occurred to halt the CPU.

HW SPOINT The BTT was halted by a qualified hardware event.

TRACE FULL The BTT was halted because the number of trace samples
taken reached the specified maximum.

TIME OUT The BTT free-running timer has reached a specified
maximum time.

SAD OPCODE The CPU halted because it tried to execute
an illegal opcode.

SS DONE The CPU halted after completing an instruction
in single-step mode.

4-7

Operation - Updating the Screen

4.7 Updating the Screen

4-8

There are three ways the screen can be updated with new data from the em
u�ator:

1) The debugger automatically updates the screen after the emulator has
run and then halted.

2) Pressing F9 (Update) forces a screen update.

3) The debugger updates the screen at some other points, such as after the
Register command.

A special case of a screen update occurs when the Execute command has
been run from the trace sample screen. In this case, the debugger simply re
reads the trace buffer from the emulator and displays the most recent samples
on the screen.

In the main screen, different windows are updated slightly differently. For
screen updates after running, the code window is scrolled, if necessary, to
position the current PC near the top of the window. For other screen updates,
the code window is not scrolled.

If the PC remains in the virtual buffer for the code window, the disassembler
is not invoked. This means that if you have self-modifying code, the modifi
cations may not show up when the screen is updated. You can force a new
disassembly in the code window by using F9 to update the screen, in which
case the disassembler is always re-invoked.

Register and memory dump windows are updated by reading the displayed
registers or memory from the emulator and changing the values on the screen.
Any values that have changed since the last update are highli'ghted. The stack
window is· updated the same way, except that after running, the window is
scrolled so that the top-of-stack is displayed at the top of the window.

The debugger updates the expression window by re-evaluating each ex
pression in the window and displaying the new value. Values that have
changed are highlighted.

Other windows, such as text, symbols, and module names are not updated
since their data cannot be changed by the emulator.

Section 5

Top Level Commands and Functions

This section includes the following topics:

Section Page
5.1 Fill Display Window - The D Command ... 5-3
5.2 Execute Code - The X Command .. 5-6
5.3 Display and Modify Registers - The R Command 5-6
5.4 Modify, Fill or Assemble Memory - MM, MF and MA 5-7
5.5 Breakpoint Operations - The B Command 5-9
5.6 Evaluate an Expression - The E Command 5-11
5.7 Configuration and Memory Map - The C Command 5-13
5.8 Inspect Trace Samples - The T Command 5-14
5.9 Loading a File - The L Command ... 5-20
5.10 Setting the Current Module - The 0 Command 5-23
5.11 Halting the CPU - The H Command ... 5-24
5.12 Escaping to DOS - The S Command .. 5-24
5.13 Leaving the Debugger - The Q Command 5-25
5.14 Moving to Windows - F1 ... 5-26
5.15 Updating the Screen - F9 ... 5-26
5.16 On-Line Help - F1 0 ... 5-26

Table 5-1 summarizes the commands and functions available from the top
level of the debugger.

5-1

Top Level Commands and Functions

Table 5-1. Top Level Commands and Functions

Command Function

D (Display) Fill display window with peripheral registers,
memory, symbols, module names, or text file

X (Execute) Run or single step

R (Register) Dispiay and modify a register

M (Memory) Modify, Fill or Assemble memory

B (Breakpoint) Set or remove breakpoints

E (Evaluate) Evaluate any expression

C (Configure) Configure debugger and memory map

T (Trace/Time) Inspect trace samples

L (Load) Load an object or configuration file

o (Module) Set the current module

H (Halt) Halt the CPU if running

S (System) Temporary escape to operating system

Q (Quit) Exit from debugger

F1 (Inspect) Move to code window and enter inspect mode

F9 (Update) Update screen with current data

F10 (Help) Display help information

5-2

Top Level Commands - Fill Display Window

5.1 Fill Display Window - The D Command

The D (Display) command displays a menu that allows you to specify the
contents of the display window as shown in Table 5-2.

Table 5-2. Display Commands and Functions

Command Function

M (Memory) Display a memory dump

P (Pregs) Display peripheral registers

F (File) Display a file

5 (Symbols) Display symbol table

o (Modules) Display module names

C (Clear) Clear window

ESC (Escape) Return to top level

F1 (Inspect) Inspect Window

F9 (Update) Update Screen

F10 (Help) Help for display command

The following sections describe each operation of the D command in detail.
Many of the options prompt for parameters. After you specify what to display,
the display window is cleared and re-filled with the specified data. If an error
is detected and the window cannot be filled, it is left empty and the display
submenu is redisplayed.

5.1.1 Display Memory - The M Option

You can display memory with the M option of the display command. The
debugger prompts for the starting memory address:

Display Memory - address:

Enter an expression that represents the starting address. The debugger reads
the contents of memory from the emulator and displays it in the window in a
hexadecimal dump format. The address is displayed on the left of each line,
followed by eight bytes of memory contents, followed by eight characters that
represent the memory contents as ASCII values. Non-printable ASCII char
acters are represented by the period C.') character.

You can move to the display window and scroll up and down through memory
or modify individual addresses. See Section 7.3, Inspect Memory Dump.

5-3

Top level Commands - Fill Display Window

5.1.2 Display Peripheral Registers - The P Option

You can display registers in the peripheral file with the P option of the display
command. The debugger reads the contents of the registers starting at register
PO and displays them in the display window in a two-column hex format.
Values are displayed with hex suffix notation.

You can move to the display window and scroll up and down through the
peripheral registers, modify values, and change the display formats of individ
ual registers. See Section 7 A, Inspect Peripheral Registers.

5.1.3 Display File - The F Option

You can show a text file in the display window using the F option of the dis
play command. The debugger prompts you for a file name:

File:

Type the pathname of the file to display. If the file exists, the debugger dis
plays the first lines of it in the window. The maximum size of a file that can
be displayed is 2048 lines. Any file larger than this is truncated to 2048 lines
and displayed. Maximum file size is also limited by available memory, as the
entire file is kept memory-resident.

You can move to the display window and scroll up and down through the file,
temporarily expand the window so the file is displayed on the whole screen,
and search the file for text strings. See also Section 7.5, Inspect File.

5.1.4 Display Symbols - The S Option

5-4

Use the S option of the display command to display symbols from the symbol
table. The debugger prompts for two qualifiers:

Display Symbols - from module: ___ pattern:

The first prompt is for a module name. Use the word "all" to display symbols
from all source modules or use a particular module name to display symbols
from a particular module.

The second prompt is a template for symbol names to be displayed. Only
symbol names that match the template are displayed. Two wildcard characters
are allowed in the template: ,*, which matches any string of characters and '?'
which matches any single character. For example, the template "s*" would
display only symbols that start with's'. The template "s???s" would display
only five letter symbols that start and end with's'. The default template is
simply "*", which causes all symbols to be displayed.

Symbols are listed in the display window with the symbol's module name on
the left, the symbol name in the center, and the value (address) of the symbol
on the right. A module name of "*,, indicates the symbol is external.

You can move to the display window, scroll through the symbols, and search
for text strings in the window. See Section 7.6, Inspect Symbols.

Top level Commands - Fill Display Window

5.1.5 Display Modules - The a Option

The 0 option of the display command is used to list the names of all the
source modules that are represented in the currently loaded executable object
module. If the linker was not used to create the executable module, this
command simply displays the name of the single source file. Otherwise, the
names of all source modules that contributed object code to the executable
module are listed in the display window. The debugger's current module,
which is the one currently being used for all non-global references to the
symbol table, is highlighted in the list.

You can move to the display window, scroll through the module names,
search for text strings, and set any module to be the current module. See
Section 7.7, Inspect Modules.

5-5

Top Level Commands - Execute Code/Display Registers

5.2 Execute Code - The X Command

The X (eXecute) command is used to cause the CPU to run. The command
is unique in that it is available from three places in the debugger: at the top
level, when inspecting code, or when inspecting trace samples. The eXecute
command is is described in Section 6, Executing Code.

5.3 Display and Modify Registers - The R Command

5-6

Use the R (Register) command to display and modify the contents of one re
gister. This command is a convenient way to change a register without having
to move to the appropriate window. When you enter the R command, the
debugger prompts for the name of the register:

Register: __

Type the name of the register you want to display, such as R 12 or ROC. The
debugger then reads the contents of the register from the emulator and dis
plays it in hex format as the default response to a prompt:

value: <old value>

The contents of the register can be modified by typing an expression for the
new value or left alone by simply pressing <CR> in response to the value
prompt. The new value is written to the register, even if it wasn't changed.

The screen is updated so that any side-effects caused by modifying the regis
ter show up in the windows. See Section 4.7, Updating the Screen on page
4-8.

Top Level Commands - Modify or Fill Memory

5.4 Modify, Fill or Assemble Memory - MM, MF and MA

The M (Memory) command allows either displaying and modifying the con
tents of one memory location or filling a range of memory with a particular
value. A submenu is displayed; select M (Modify) or F (Fill).

If M is selected, the debugger prompts for a memory address:

location:

Type an expression representing the address of the memory location to dis
play. The debugger then reads the contents of the memory location from the
emulator and displays it in 1 -byte hex format as the default response to a
prompt:

value: <old value>

To modify the contents of the memory location, type an expression for the new
value, or leave it alone by simply pressing <CR> in response to the value
prompt. The new value is written to memory, even if not changed.

To fill memory, select the F option of the submenu. The debugger prompts
for the address range and fill value as follows:

Fill Memory - start: __ length: -- value: __

Enter expressions for the starting address and length to fill (in bytes). Then
enter an expression representing a 1 -byte fill value. This vallJ..e is written to
each address in the specified range. While memory is being filled, the de
bugger displays

Filling '"

on the status line. Fill operations can be somewhat lengthy; filling the entire
address space (OOOOh - OFFFFh) takes about 2.5 minutes.

To assemble a memory location, select the A option of the submenu. The
debugger prompts for a memory address:

location: asm:-----

Type an expression representing the address of the instruction to assemble.
The debugger reads the location and displays the old disassembled instruc
tion. Type in a new instruction followed by a <CR> to modify the location or
just <CR> to leave it unchanged. If the instruction entered is invalid, an ap
propriate message will display and the location will be unchanged. Otherwise
the instruction will be assembled and the proper opcode and operands written
to memory beginning at the address entered.

Note: No compensation is made for instances where the new instruction
is not the same size as the original instruction (i.e., A two byte instruction
to replace a one byte instruction will also overwrite the location following
the given add ress).

5-7

Top Level Commands - Breakpoint Operations

5-8

After either a modify, assemble, or fill command, the screen is updated so that
any resulting side-effects show up on the screen. See Section 4.7, Updating
the Screen on page 4-8.

Top level Commands - Breakpoint Operations

5.5 Breakpoint Operations - The B Command

The B (Breakpoint) command provides access to both types of breakpoints -
simple and hardware. Hardware breakpoints (using the BTT) are handled by
a special screen. This screen is accessed with the B (BTT) option of this
command. Thus, access to the BTT screen is obtained by typing B B from the
top level command menu.

Simple breakpoints are described in this section; hardware breakpoints with
the BTT are described in Section 8, Hardware Breakpoints, Tracing and Tim
ing. The options on the Breakpoint command submenu are described in Table
5-3.

Table 5-3. Breakpoint Commands and Functions

Command Function

A (Add) Add a simple breakpoint at a specified address

D (Delete) Delete a simple breakpoint

R (Remove All) Remove all simple breakpoints

L (Load) Load breakpoints from file

S (Save) Save breakpoints to a file

B (BIT) Go to the BTT screen for hardware breakpoints

ESC (Escape) Return to the top level command menu

F10 (Help) Help for the Breakpoint command

5.5.1 Simple Breakpoints

Simple breakpoints are set on memory addresses with no other qualifiers. If
the CPU is running and an instruction acquisition occurs at an address where
a simple breakpoint has been set, the CPU halts prior to fetching the next in
struction. Simple breakpoints are set in code, so that an instruction fetch at
some address stops the CPU. Note that the CPU halts AFTER the instruction
at which the breakpoint is set. Also, note that a simple breakpoint encount
ered in continuous run mode does halt the CPU, unlike hardware breakpoints
which halt only the BTT.

You can have up to 30 simple breakpoints set at any time. Each breakpoint
has a breakpoint I D number for reference. I D numbers start at 1 and are allo
cated as they are available. For example, the first breakpoint set is assigned
an I D of 1. The next is assigned 2, then 3, etc. If breakpoint 2 is cleared, I D
2 becomes available and the next breakpoint is assigned an I D of 2.

In the code window, addresses where simple breakpoints have been set are
identified with the I D number of the breakpoint displayed just to the left of the
address. You can also easiiy set and remove simple breakpoints while in
specting the code window. See Toggle a Simple Breakpoint - The B Com
mand on page 7 -6.

5-9

Top Level Commands - Breakpoint Operations

5.5.2 Setting a Simple Breakpoint - The A Option

Use the A (Add) option of the Breakpoint command to set a simple break
point. The debugger prompts for the address where the breakpoint is to be
set:

Address:

Type an expression representing the address where you want the breakpoint.
If the breakpoint is on an address of an instruction in the code window, the
reference number of the breakpoint appears in the window next to the in
struction.

5.5.3 Removing a Simple Breakpoint - The D Option

The 0 (Delete) option of the Breakpoint command removes a breakpoint with
a specified I D number. The debugger prompts for the I D of the breakpoint to
be removed:

Remove breakpoint #: --

Enter the number of the breakpoint to be removed. If the I D number repres
ents a breakpoint that is currently set, the breakpoint is removed. Otherwise,
the debugger displays an error message to indicate that no breakpoint with
that I D has been set.

5.5.4 Removing all Simple Breakpoints - The R Option

The R (Remove all) option simply removes all simple breakpoints that are
currently set.

5.5.5 Loading a Breakpoint File - The L Option

The L (Load file) option loads a previously saved breakpoint file. The de
bugger prompts you for a filename; you may omit the extension if it is ".bp",
the default for breakpoint files.

Breakpoint files can also be loaded using the L (Load) command at the top
level debugger menu; see Section 5.9 on page 5-20.

5.5.6 Saving a Breakpoint File - The S Option

5-10

The S (Save file) option saves the current breakpoint settings in a disk file for
later retrieval. This allows the use of different breakpoint settings for different
debugging sessions without having to manually re-enter the breakpoints each
time.

The debugger prompts for a filename; the default extension is ".bp" and
should be used so that the -rile can be loaded from the main screen also. If a
file with the same name already exists, it will be replaced by this file.

Top Level Commands - Evaluate an Expression

5.6 Evaluate an Expression - The E Command

The E (Evaluate) command provides a way to evaluate an expression and
display the result. You can use it to see the contents of a variable, do arith
metic, or convert between hex and decimal. You can also add the expression
to the expression window for permanent tracking.

The debugger prompts you for the expression to evaluate:

Expression:

Any expression (see page 3-6, Expressions) entered is evaluated by the de
bugger and displayed as a 16-bit value in both hex and decimal. For example,
suppose you type the expression "PC + 23h" and the PC currently contains
the value 7000h. The debugger displays

PC+23h = 07023h = 28707

and displays the message

<CR> to save, <ESC> to exit

Pressing <CR> adds the expression to the bottom of the expression window
in hex format and word data size (see Inspect Expressions, page 7 -23). If
there is no need to remember the value of the expression, press < Esc>.

For the purposes of expression evaluation, remember that:

• Register A is an alias for ROO.
• Register B is an alias for R01.
• Two-byte values are located in memory at addresses [x-1] :[x], where

[x] contains the low-order byte.
• symbol = value of symbol.

#symbol = value of symbol (used in order to be consistent with assem
bler).
*symboi = contents of symbol. value = ([symbol-1]: [symbol])
@symbol = value at address pointed to by contents of symbol; same as
**symbol. value = (([symbol-1]:[symbolJ))

Refer to Table 3-1 on page 3-7 for a list of valid operators in expressions.

5-11

Top Level Commands - Evaluate an Expression

Register
Register

Expr

16

#16

*16

@16

R016

#R016

*R016

@R016

*@R016

FLAGS

#FLAGS

*FLAGS

@FLAGS

TABLE

#TABLE+1

*(TABLE+1)

@(TABLE+1)

START

#START

*(START+1)

5-12

Table 5-4 shows several different kinds of expressions and how they are
evaluated by the debugger. The examples shown use the following code and
memory assignments, with any unspecified memory set to zero .

FLAGS . EQU R016
.sect memO,2040h

2040 BCll TABLE .WORD BCllh

.sect meml,7000h
7000 52FO START: MOV #OFOh,B

15 (ROF) 70h Register 21 (R015) 20h Memory BCIOh 08h
16 (ROIO) Olh Register 22 (R016) 41h Memory 8Cllh 45h

The debugger evaluates the following expressions as shown, assuming a de
fault display radix of hexadecimal and word display length.

Table 5-4. Expression Evaluation Examples

Comment Value Notes

Immediate value 0010h Value of the number

Immediate value 0010h Value of the number

Contents of value 7001h Contents at address

Word indirect 52FOh Value pointed to by contents at address

Register value 0016h Value of register, hexadecimal

Register value 0016h Value of register

Register contents 2041h Contents of register (R01 5: R016)

Register indirect 8C11h Vaiue pointed to by register « R015: R016»

Address indirect 0845h Value pointed to by address in location pointed to
by contents of register « (R01 5: R016»)

Defined register 0016h Value of defined register

Immediate value 0016h Value of defined register

Immediate value 2041h Contents of register

Register indirect 8C11h Value pointed to by contents of register

Defined symbol 2040h Value of program variable 'TABLE'

Symbol address 2041h Value of program variable 'TABLE'+1

Symbol address 8C11h Contents at address TABLE:TABLE+1

Symbol pointer 0845h Contents at address «TABLE:TABLE+1)}

Code Label 7000h Value of symbol or label

Symbol address 7000h Value of symbol or label

Word indirect 52FOh Contents of address; (7000h)

Top Level Commands - Configuration and Memory Map

5.7 Configuration and Memory Map - The C Command

The C (Config) command provides access to the device configuration and
memory mapping functions of the debugger. These functions use a special
screen that is drawn when the 'C' command is chosen. This screen is fully
described in Section 9, Debugger Configuration. Memory mapping is de
scribed in Section 10.

5-13

Top Level Commands - Inspect Trace Samples

5.8 Inspect Trace Samples - The T Command

Inspect
Sample =
INDX ST
0000 0
0001 0 E
0002 0
0003 0
0004 0
0005 0
000b 0
0007 0
0008 0
0009 0
0010 0
0011 0

5-14

The T (Trace/Time) command is used to display trace samples that have been
collected by the BTT board and also to display the values of the two BTT
timers. When you type T, the main screen is erased and replaced with the
trace sample screen. Most of the screen consists of space for the trace sam
ples. A window at the bottom of the screen displays the timer values. This
window can be toggled on and off the screen with the I (timers) command,
so that you have more lines available for trace samples if you don't need to see
the timers.

The Trace command is actually an inspect function - it puts you in a window
where you can move and scroll through trace samples in much the same way
that you inspect the other windows.

See Figure 5-1 for an example of the trace sample screen.

Trace: los it i on lop Dottom lookup Bave TImers iormatTime elecute
0, Total = 12
h m s ms

0 00 00'.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000
0 00 00.000

us ns
000 400
000 800
001 000
001 200
001 b00
002 200
002 400
003 000
003 400
003 800
004 400
004 800

EXTERNAL CYCLE
11111111 lAO,
1111111 i READ
11111111 READ
11111111 WRITE
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

000 000
000 000

lAO,
READ
READ
lAO,
READ
READ
WRITE
WRITE

ADDR DATA REVERSE ASM
7000 52 MOV t102,B
7001 02
0001 02
0001 02
7002 FD LDSP
0004 0b
0001 02
7003 8E CALL clear
7004 70
7005 OB
0003 70
0004 0b

timer 2: 0:00:00.000 000 000

Help

Figure 5-1. Trace Sample Screen

Top Level Commands - Inspect Trace Samples

5.8.1 Trace Samples

Trace samples are snapshots of bus cycle activity that are collected and stored
by the BTT while the emulator is running. The BTT must be programmed to
collect trace samples. Programming the BTT is described in Section 8, Hard
ware Breakpoints, Tracing and Timing. The BTT has a circular trace buffer that
can hold 2047 samples. If more samples than this are collected, the buffer
wraps around and new samples overwrite the old ones. Each sample is 104
bits wide and contains the following information:

• Address and data bus values

• Bus cycle type
• External logic probe values
• State and event indicators
• A time stamp from the free-running timer.

The state and event flags indicate which state the BTT was in when the sample
was taken, and whether an event or breakpoint occurred on the cycle repres
ented by the trace sample.

Each trace sample is referred to by its index in the trace buffer, starting from
O. Trace samples with lower indices are chronologically older than samples
with higher indices. Thus, if the buffer is full, sample 2046 is always the most
recent sample taken.

When trace samples are displayed on the screen, they include the information
shown in Table 5-5, identified by a heading displayed on top of the screen.

Table 5-5. Displayed Trace Samples

Field Description

INDEX Index in trace buffer

STATE BIT state in which sample was taken

FLAG E - event occurred on this cycle
L - last event (cycle caused breakpoint)

TIME STAMP Timer value, displayed in the format:
hh:mm:s5.mmm uuu nnn

where
hh = hours
mm = minutes
S5 = seconds
mmm = milliseconds
uuu = microseconds
nnn = nanoseconds

EXTERNAL Values of external probe inputs

CYCLE TYPE READ - memory read cycle
WRITE - memory write cycle
lAO - instruction fetch cycle

ADDRESS 16-bit value of address bus

DATA 8-bit value of data bus

REVERSE ASM Disassembled code, for lAO cycles

5-15

Top Level Commands - Inspect Trace Samples

On lAO cycles, the trace buffer includes a reverse assembly of the instruction
that was executed.

lAO samples in the trace buffer are displayed in a different color in order to
distinguish the executed instructions from the rest of the memory cycles. Time
stamps are also displayed in a different color.

5.8.2 Timers Window

The window at the bottom of the trace screen displays the value of the two
programmable BTT timers. These timers can be programmed to time the in
tervals between specific events in your program or collect performance statis
tics. Programming the timers is described in Section 8, Hardware Breakpoints,
Tracing and Timing.

The BTT has two separate programmable timers. The current setting for timer
#1 is displayed on the left side of the window, and the setting for timer #2 is
displayed on the right.

A third time value, representing the average time for timer #1, is displayed on
the left underneath the setting for timer #1. Average time is defined as the
total accumulated time, divided by the number of times the timer was started.
For example, if timer #1 has an accumulated time value of 10.0 seconds, and
it was started 20 different times, the average time would be 0.5 seconds. Av
erage time is computed for timer #1 only; the BTT does not have the capability
to determine the average time for timer #2.

5.8.3 Inspect Trace Commands

5-16

When the trace screen is first entered, the debugger checks the emulator to
determine how many trace samples have been collected. If the emulator has
no trace samples, the message

NO TRACE SAMPLES TAKEN

appears on the screen. Otherwise, the debugger reads a screenful of the most
recent trace samples and displays them on the screen. A menu of special
commands for trace samples is displayed, along with a special set of function
keys. The commands and functions available while inspecting trace samples
are shown in Table 5-6.

Top Level Commands - Inspect Trace Samples

Table 5-6. Inspect Trace Commands

Command Function

P (Position) Position screen at specified index

T (Top) Position screen at top (oldest samples)

B (Bottom) Position screen at bottom (newest samples)

L (Lookup) Find a sample with certain qualifications

S (Save) Save samples to a file

I (Timers) Toggle the timers window on or off the screen

F (Format) Select a format for the time stamp

X (Execute) Run the CPU to collect more samples

F1 (Find Next) Lookup next sample matching previous qualifications

F3 (Down) Scroll down through samples

F4 (Up) Scroll up through samples

F10 (Help) Help for inspect trace samples

ESC (Escape) Return to main screen and top level command menu

The arrow keys can be used in addition to the keys listed above to move up
and down through the trace buffer and left and right on the screen.

5.8.4 Position at an Index - The P Command

The P (Sample Number) command in the inspect trace screen is used to po
sition the screen at a particular sample index. The debugger prompts for the
desired sample number:

Sample Number: -----

Enter a number from 0 to the maximum index, which is the total number of
samples (shown on the status line) minus 1. The window scrolls or refills, if
necessary, and the cursor moves to the sample with the specified index.

5.8.5 Position at the Top Samples - The T Command

Use the T(op Samples) command to position the screen at the top of the trace
buffer. The oldest samples in the buffer are displayed, starting with index O.

5-17

Top Level Commands - Inspect Trace Samples

5.8.6 Position at the Bottom Samples - The B Command

Use the B(ottom Samples) command to position the screen at the bottom of
the trace buffer. The most recent samples in the buffer are displayed. If the
buffer is full, the highest index is 2046. Otherwise, the highest index is one
less than the total number of samples taken, which is indicated on the status
line.

5.8.7 Look for a Qualified Sample - The L Command

The L (Lookup) command allows you to search the trace buffer for a sample
that matches a particular set of qualifications. The qualifications are specified
in much the same way as for an action in the BTT.

When you type L, a small window opens on the right side of the screen that
contains a list of qualifiers. These qualifiers are identical to the qualifiers used
to specify a BTT action. The function keys and control keys are also used in
exactly the same way. See Section 8.7, Editing Actions, for a description of
how to enter these qualifiers. One additional qualifier is included after the
others: a Flag parameter that allows you to specify EVENT, LAST, or NONE
(use the space bar to toggle though these selections).

When you are finished specifying qualifiers, press either F1 (Accept) or < Esc>
to begin the search. The emulator begins at the current cursor position and
searches forward through the buffer for a sample that matches the specified
qualifiers. If one is found, the screen is scrolled so that the matching sample
is on the screen. The matching sample will be highlighted. If no matching
sample is found, the message "not found" is displayed, and the cursor remains
at its present position.

To search for the next sample with the same qualifications, press F1 again.
This leaves the qualifiers unchanged for use in the next search.

5.8.8 Save Trace Samples in File - The S Command

5-18

The 5 (Save) command on the trace screen saves trace samples to a disk file
for later inspection. ANY number of samples can be saved, up to the number
that were recorded. When you enter 5, the debugger prompts for the name
of the file to which the samples will be written:

Save trace samples in file:

After the filename is entered, the debugger prompts for the starting and ending
sample numbers:

start: -- end: --

Enter the indices of the first and last samples to be saved. The default start
index is 0, and the default end index is the last sample taken; using both de
faults causes the whole trace buffer to be saved.

The specified trace samples are read from the emulator, formatted just as they
would be for display on the screen, and written to the file. If many samples
are saved, this process can be somewhat lengthy. For example, saving a full
trace buffer of 2047 samples takes approximately 2.5 minutes.

Top Level Commands - Inspect Trace Samples

5.8.9 Toggle the Timers Window - The I Command

The I (timers) command removes and restores the timers window from the
bottom of the screen, which expands the screen space by four trace samples.
This is a convenient command if the timers are not being used, because it al
lows more trace samples to be seen at one time.

If the timers are used later in the debugging session, simply type I again to
restore the timers window.

5.8.10 Format the Time Stamp - The F Command

The Time Stamp in the trace samples can be displayed in one of three different
ways, allowing you to more easily comprehend the data according to your
needs. Use the F (ormat) command to select one of the three possible formats:

Absolute

Delta

Mark

Display time elapsed since beginning the execution of this run.

Display the difference between each sample and the previous
sample.

Display the time from the current sample. Samples before the
current sample will show a negative time and samples after the
current sample will show a positive time.

5.8.11 Execute Code from the Trace Screen - The X Command

Code can be executed while inspecting trace samples using the X (eXecute)
command from the inspect trace menu. The Execute command operates here
in exactly the same way as it does from the top level command menu. The
command is described in Section 6, Executing Code.

After code executes and the BTT halts, the trace screen is updated by reading
new trace samples from the emulator and displaying the most recent ones.
This command is especially useful in continuous run mode, where you can
repeatedly trace program operation as it executes without ever leaving the
trace screen.

5-19

Top Level Commands - Loading a File

5.9 Loading a File - The L Command

The L (Load) command loads a disk file into the debugger. There are several
different types of files that may be loaded; this same command is used in ex
actly the same way to load any of them. The debugger prompts for the name
of the file to be loaded:

Load file:

Type the pathname of the file to be loaded. The debugger uses the extension
of the file name to determine the type of file being loaded. In order to load
files using this command, the naming conventions for extensions must be
followed. Table 5-7 lists the various file types and the extensions used to
identify them.

Table 5-7. Conventions for File Extensions

Extension File Type

.out Object file containing an executable TMS370 program

.mmp Memory map file

.bp Simple (software) breakpoint file

.btt BTT configuration and hardware breakpoint file

.exp Expression file

.cmd Command file (used to load other files)

The debugger identifies the file type and looks for the file. If the file is found,
the debugger loads it as described below. A message identifying the file name
and type, such as

Loading object file "test.out"

is displayed on the status line to indicate that the file is being loaded. Files
with an extension not listed above are loaded as object files (see the following
section). If the file cannot be found, an error message is displayed.

5.9.1 Loading an Object File

5-20

If the filename has an extension of ".out" or has no extension at all, the de
bugger loads it as an object file. ".Out" is appended to any filename that has
no extension, unless the filename ends with a period ('.'). For example, the·
debugger assumes the following filenames represent object files:

test.out
test
test.

(loaded file is test.out)
(loaded file is test)

The TMS370 linker produces an executable object file. Loading the executa
ble file is the first step to take when using the debugger to run a program. The
debugger loads symbolic information from the file into its internal symbol table
and object data from the file into target memory at the addresses specified in
the file. No relocation is performed when the file is loaded. Any symbols that
were in the symbol table from a previous file are erased; the symbol table
contains only symbols from the currently loaded file.

Top Level Commands - Loading a File

Whenever an object file is loaded into the debugger, the expression window
is cleared since some expressions may depend on symbols that are no longer
in the symbol table. Also, all simple breakpoints are cleared. The PC is set to
the entry point defined in the file, and the screen is completely updated.

5.9.2 Loading Configuration Files

The Load command at the top level can also be used to load configuration files
for the debugger, provided that the naming conventions for filenames are fol
lowed. You can load memory map files, breakpoint files, BTT setup files, and
expression files. These configuration files are created using individual Save
commands within the various local command menus where you set up the
configurations themselves. For example, a memory map save file is created
from the memory map screen using the S command. Configuration files can
be also be loaded from the local menus using individual Load commands. The
L command at the top level simply provides an alternative way for you to load
the files, without having to go into one or two levels of subcommands. Con
figuration files are loaded in exactly the same way, regardless of where you
invoke the command.

Memory Map configuration files are described in Section 10.3, Top Level
Memory Map Commands. BTT files are described in Load a BTT Configura
tion - The L Command on page 8-16 and Save a BTT Configuration - The S
Command on page 8-17. Section 7.11.5 and Section 7.11.6 starting on page
7 -25 describe saving and loading of expression files.

5.9.3 Command Files

The debugger has a very simple batch capability that allows it to load object
and configuration files under the control of a special file called a command
file. The command file contains commands to load other files. Thus, by using
a single command, you can cause several files to be loaded. You can set up
a custom command file for a particular debugging application; the command
file would load your object, BTT, memory map, simple breakpoints, and ex
pression files. Then, simply load the command file when you invoke the de
bugger, thereby avoiding tedious initialization and set-up chores. The file
extension of the command file must be ".cmd".

Each line of the command file must contain the word load, followed by the
name of a file to load. The filename may contain a disk drive designator and
a pathname, if the file is to be loaded from a different directory. Blank lines
are allowed in command files. Command files must not contain anything ex
cept commands; any extraneous text or poorly formed commands will cause
the following message

command not recognized -- hit any key

to be displayed when the file is loaded.

A file type keyword can be used between the word load and the filename to
override the default file type, which would normally be determined from the
extension.

5-21

Top Level Commands - Loading a File

Table 5-8. Command File Example·

Assume the following command file:

load c:\test\test.mmp
load test
load btt \test\bpoint.dat
load test.exp

Loading this file causes the following files to be
loaded:

A memory map file test. mmp from the directory c: \ test

An object file test. out from the current directory

A BTT file bpoint. dat from the directory \ test

An expressions file test. exp from the current directory

Note the use of the keyword btt to identify the file bpoint. dat as a BTT file.
The file type keywords are the same as the default extensions.

Each file is loaded just as if you used the L command to load it individually.
The status line displays a normal "loading ... " message as each file is
loaded, although some files are loaded so quickly that the message is dis
played for only a fraction of a second.

Remember that loading an object file clears all expressions and simple break
points so, in general, object files should be specified first in the command file
before any expression or simple breakpoint files.

5.9.4 Loading Files from the Command Line

5-22

When invoking the debugger from the command line of DOS, you can include
any number of filename arguments. Files specified on the command line are
automatically loaded when the debugger comes up. For example, suppose the
debugger is invoked with the command

C> dbr370 test.mmp test test.btt

The object file test. out, the BTT file test. btt, and the memory map file
test. mmp are immediately loaded as soon as the debugger initializes. Com
mand files can also be loaded in this way.

Top Level Commands - Setting the Current Module

5.10 Setting the Current Module - The 0 Command

The 0 (mOdule) command is used to set the current module name in the de
bugger. The current module determines how non-external symbols are to be
accessed. When you use a symbol in an expression, if the symbol is not an
externally defined symbol, it must be defined in the current module or the de
bugger does not recognize the symbol. You can use the 0 command to spe
cify the name of the source file that will be used as the current module. The
debugger prompts for the module name, using the current module name as a
default.

Current Module:

Enter the filename. If the filename is in the list of source files that were used
to build the executable file, the current module is set to the specified file. If
no symbol table has been loaded, or the module you typed is not part of the
object file, an error message is displayed and the current module remains un
changed.

You can display the list of modules using the D (Display) command and the
o option from the top level command menu. See Display Modules - The 0
Option on page 5-4.

5-23

Top Level Commands - Halting the CPU/Escaping to DOS

5.11 Halting the CPU - The H Command

The H command halts the CPU. If the CPU is not running, the message

Not running

is displayed and the command is ignored. Otherwise, the CPU is halted and
the screen is updated. See Section 4.7, Updating the Screen.

The Halt command is the only way you can force the CPU to halt after running
it in continuous run mode.

5.12 Escaping to DOS - The S Command

5-24

If you type the S (System) command from the top level menu, the debugger
suspends itself, remains resident in memory, and exits to the operating system.
The screen is cleared, the message

Type EXIT to return to debugger

is displayed, and DOS is loaded. You can perform as many DOS operations
as the memory allows, since the debugger remains resident in memory. When
you are ready to return to the debugger, type exit at the DOS prompt. The
debugger screen will be restored and you can continue using the debugger
normally.

The System command has no effect on the debugger or emulator environment.
In fact, the CPU can be running during the whole time you escape to DOS.
It will not be affected when you exit or return to the debugger.

If the PC does not have enough memory to save the debugger, the system
will return to the debugger. If this happens, save all needed data and execute
the Quit comrnand.

Top Level Commands - Leaving the Debugger

5.13 Leaving the Debugger - The Q Command

The a (Quit) command is for exiting the debugger. Before the debugger ac
tually quits, you must confirm that this is what you want to do. The debugger
prompts you with:

Confirm: _

Type Y or y to confirm that you really want to quit. Any other key is inter
preted as a retraction of the quit command - the command is ignored and the
debugger returns to the top level command menu. Note that the default for
the confirm prompt is y, so if you simply press <CR>, you will quit.

When the debugger quits, it does not affect the emulator at all. If the emulator
is running, it will continue to do so. However, when the debugger is invoked
next time, the emulator will be reset so that the debugger can initialize it.

5-25

Top Level Commands - Function Keys

5.14 Moving to Windows - F1

You can move from the top level command menu into the windows on the
screen to perform various editing and scrolling functions. This is called in
specting the windows. Use the F1 (Inspect) key to go into inspect mode.
The cursor moves into the code window and the menu and function key lines
are replaced with commands specific to inspecting code. Once in inspect
mode, the F1 key moves forward through the windows on the screen, and the
F2 key moves backwards through the windows. Press < Esc> to return from
inspecting a window back to the top level command menu.

Refer to Section 7, Inspect Mode, for information on the operations you can
perform in the various windows while in inspect mode.

5.15 Updating the Screen - F9

The F9 (Update) key forces the debugger to update all displayed values from
the emulator and redisplay them on the screen. This is useful after you have
performed some operation that may have caused displayed values to change
and you wish to see exactly what changed as a result of the operation. The
process by which the debugger updates the screen is described in Section 4.7,
Updating the Screen.

5.16 On-Line Help - F10

5-26

The F10 (Help) key at the top level invokes the top level of the debugger's
on-line help utility. When help is invoked, a temporary window opens on the
screen and help text for the main menu is displayed. You can invoke addi
tional layers of help by following the instructions given in the help text. When
you exit help, the temporary window is removed and operation proceeds nor
mally.

Note:

The help file DBR3 70. HLP must be in either the current directory or the
directory pointed to by the DOS environment variable IPCDIR.

Section 6

Executing Code

The X (eXecute) command allows you to run your programs with the
TMS370. It can be accessed from the top level command menu, the code
window, or the trace sample screen. The Execute command has two forms.
The form used depends on whether the current run mode is normal or con
tinuous.

Both forms of the execute command operate in the same general way. First,
a submenu is displayed that allows you to select how the CPU is to be run
(see Table 6-1 on the next page). After all the selections have been made, the
CPU and BTT start running. The debugger displays a message on the status
line of the screen to indicate that the emulator is running and waits for one
of the following events to occur:

• A key is pressed on the keyboard.
• The emulator (CPU or BTT or both) stops on its own.

The emulator may stop because of a breakpoint, completion of a single step
operation, access violation, or some other exception condition. Whenever the
emulator halts, the emulator status display on the right side of the status line
is updated to indicate the reason. If the emulator is running, the display also
indicates this. See Section 4.6, Status Line, on page 4-6 for a description of
the status line codes.

The action taken by the debugger when either a key is pressed or the emulator
halts depends on the run mode and the actual execute option specified.

This section includes the following topics:

Section Page
6.1 Execute Command Options .. 6-2
6.2 Running in Normal Mode ... 6-5
6.3 Running in Continuous Mode ... 6-6

6-1

Executing Code - Command Options

6.1 Execute Command Options

The submenu of the execute command selects how the CPU is to be run. The
single-step options in Table 6-1 are available only in the submenu for the
normal run mode. Single-stepping is not possible in the continuous run
mode. Detailed descriptions of the execute options follow the table.

Table 6-1. Execute Command Options

Options For Normal Run Mode Only

Command Function

I (Instruction) Single-step through one or more instructions

S (Statement) Single-step through instructions and function calls

L (Loop) Single-step once through a loop

W (While) Single-step while an expression is true

U (Until) Single-step until an expression is true

F (Function) Single-step to the end of a function

Options For All Run Modes

Command Function

G (Go) Start running from current PC

R (Reset) Software reset and run

A (tArget Reset) Wait for target to be reset and run

ESC (Escape) Return back to top level command menu

F10 (Help) Help for execute command

T (Trace) Inspect trace samples

6.1.1 Single-Stepping - The I Option

6-2

Use the I (Instruction) option for single-stepping. The debugger prompts for
the number of instructions to execute:

Execute Instruction--how many: -----

The emulator begins single stepping through the specified number of in
structions.

Executing Code - Command Options

6.1.2 Single-Stepping - The S Option

The 5 (Statement) option is similar to the instruction option. The difference
is in the way CALL instructions are treated. When executing a CALL instruc
tion, the entire function call is treated as one statement. Using the statement
option, you can step over an entire function call without stepping through the
entire function. For example, in the following situation, executing one state
ment would execute lunc and leave the PC at 7003.

PC --) 7000 CALL func
7003 MOV A,B

The statement option also prompts for a count of how many statements to
execute.

6.1.3 Executing a Loop - The L Option

The L (Loop) option repeatedly single-steps until the PC returns to the current
position. Using the loop option allows easy execution of one iteration of a
loop.

Warning:

Do not use this option if your program is not inside a loop.

6.1.4 Conditional Execution - The W Option

The W (While) option of the execute command prompts for a conditional ex
pression:

Execute While-condition:

The expression is evaluated. If the result is true (nonzero), the CPU single
steps through one instruction and the expression is re-evaluated. This
evaluation/single-step cycle is repeated as long as the value of the expression
is nonzero. For example, in the following situation, executing while B> 5

would run through the loop 5 times and stop with the PC at 7002 and a value
of 5 in register B.

PC --) 7000 MOV #10,B
7002 DJNZ B,7002

Refer to Table 3-1 and Table 5-4 for a list of expression operators and notes
on expression evaluation.

6-3

Executing Code - Command Options

6.1.5 Conditional Execution - The U Option

The U (Until) option is similar to the While option. However, the conditional
expression is evaluated after each single-step rather than before. Also, exe
cution continues as long as the expression evaluates to false and halts when
the expression becomes true.

Refer to Table 3-1 and Table 5-4 for a list of expression operators and notes
on expression evaluation.

6.1.6 Returning to Caller - The F Option

The F (Function) option repeatedly single-steps until the RTS or RTI instruc
tion that ends the subroutine is executed; thus, it will step through a subrou
tine within a subroutine. When debugging a function, this option can be used
to finish executing the current function and return to the calling function.

6.1.7 Run from Current PC - The G Option

The G (Go) option is the standard "run" command. It simply starts the CPU
running from the current PC.

6.1.8 Software Reset and Run - The R Option

The R (Reset) option asserts the reset line on the TMS370 device. The device
fetches the reset vector from memory, loads the vector into the PC, and begins
running. This option always causes the BTT to be reset.

6.1.9 Wait for Target Reset - The A Option

The A (tArget Reset) option is like the Reset option but instead waits for the
reset signal to be asserted externally from the target application system
through the target cable. The device then fetches the reset vector and begins
running. This option allows you to exercise the reset circuitry of your system.

6.1.10 Inspect Trace Samples - The T Option

See Section 5.8 for details.

6-4

Executing Code - Running in Normal Mode

6.2 Running in Normal Mode

In normal run mode, depending on the execute option selected, the emulator
either begins single-stepping or running. The right side of the status line
shows either STEPPING or CPU/BTT RUNNING to indicate what the emulator
is doing.

If the emulator is STEPPING, the left side of the status line displays the fol
lowing message.

Hit any key to halt

The emulator continues single stepping until either a key is pressed or the
specified single-step operation terminates. The screen is then updated (see
Section 4.7, Updating the Screen).

If the emulator is RUNNING, the left side of the status line displays the follow
ing message.

Press 'c' to continue or any other key to halt

The emulator continues running until a key other than 'c' is pressed or it halts
on its own. When the emulator halts, the CPU and BTT halt together. The
debugger updates the screen (see Section 4.7, Updating the Screen), re-dis
plays the submenu of execute options, and displays the following message.

<SP) == repeat

You can press the space bar to repeat the last execute option (useful for sin
gle-stepping), select another execute option, or press <Esc> to return to the
top level command menu.

Pressing the C key while the emulator is running causes the debugger to im
mediately return to the top level command menu. Other operations can be
performed while the emulator continues to run. However, no operation can
be performed that affects the emulator in any way. Trying such an operation
causes the following error message to be displayed.

Can't perform the command, emulator is running

You can, however, display a file, symbols, or modules, escape to the operating
system, or anything else that does not require access to the device.

The emulator may halt on its own or be explicitly halted using the H (Halt)
command from the top level menu. In either case, the status line indicates the
reason for halting (see Section 4.6, Status Line, on page 4-6) and the screen
is updated.

6-5

Executing ~ode - Running in Continuous Mode

6.3 Running in Continuous Mode

6-6

In continuous mode, the BTT can be stopped independently of the CPU and
then re-started. The emulator cannot single-step in continuous mode.

If the CPU is already running when the X command is entered, the command
simply starts running the BTT. If the CPU is not running, an option must be
selected from the execute submenu. This submenu is like the submenu for
normal run mode with the single-step commands omitted.

The CPU is started according to the selected option (unless it was already
running), and the BTT is also started. The right side of the status line indi
cates this condition by showing: CPU: RUNNING BTT: RUNNING. CPU
status and BTT status are always displayed separately in continuous run mode.

The debugger displays the following message:

Hit any key to halt BTT

and waits for the BTT to be halted in one of three ways: any key is pressed,
the BTT halts on its own, or the CPU halts on its own and forces the BTT to
halt.

The right side of the status line indicates what caused the BTT or CPU to halt.
(See Status Line, page 4-6.) After the BTT halts, the screen is updated and
the debugger returns to the either the top level command menu or the inspect
trace menu, depending on where you were when the X command was entered.

Section 7

Inspect Mode

Inspect mode allows you to perform various editing, scrolling, and other op
erations on the information displayed in the windows of the screen. Each
window has its own unique combination of operations that can be performed
during inspection. However, operations are consistent between windows; si
milar functions in different windows are generally invoked the same way.

This section describes the features common to inspecting all the windows and
the meaning of each of the inspect mode function keys. Following sections
provide specific information on inspecting each type of window in the de
bugger.

Many of the commands and functions in inspect mode operate on a value or
object at the current cursor position. When a window is entered for in
spection, the debugger moves the cursor into the window. The cursor can
then be moved around in the window with the commands and functions de
scribed in this section.

The debugger uses the status line as a current position indicator to help keep
track of where you are on the screen and what is at the current cursor position.
The left side of the status line displays a field that describes what window you
are in and the address or line number of where you are within the window.
Whenever you move in the window, the status line is updated to reflect your
new position.

Inspect mode relies heavily on function keys for various operations. The same
set of function keys is used for inspecting all windows, although in some
windows certain keys are not appropriate and are therefore disabled. Table
7 -1 on the next page describes the inspect mode functions and the operations
they perform. Specific information about the function keys for each window
type is given in the sections that describe the windows themselves.

This section includes the following topics:

Section Page
7.1 Function Key Usage .. 7-2
7.2 Inspect Code .. 7-5
7.3 Inspect Memory Dump ... 7-7
7.4 Inspect Peripheral Registers ... 7-9
7.5 Inspect File ... 7-11
7.6 Inspect Symbols .. 7-13
7.7 Inspect Modules .. 7-15
7.8 Inspect CPU Registers .. 7 -17
7.9 Inspect Register File .. 7 -18
7.10 Inspect Stack .. 7-20
7.11 Inspect Expressions ... 7 -22

7-1

Inspect Mode - Function and Control Keys

7.1 Function Key Usage

7-2

Table 7 -1 describes the usage of function keys while in Inspect mode.

Table 7-1. Inspect Mode Function Keys

Command Function

F1 (Next) Move to next window and inspect it

F2 (Previous) Move to previous window and inspect it

F3 (Down) Scroll forward

F4 (Up) Scroll back

F5 (Dump) Memory dump using current cursor value

F6 (DisAsm) Disassemble using current cursor value

F8 (Expand) Expand window to full screen

F9 (Update) Update the screen

F10 (Help) Help for current window

ESC (Escape) Leave inspect mode and return to top level command menu

Note:

On the TI PC host, the Shift-DOWN ARROW and Shift-UP ARROW keys
have the same effect as the F3 and F4 function keys. On the IBM PC host,
the PAGE-DOWN and PAGE-UP keys on the keypad have the same effect
as F3 and F4.

In addition to the function keys listed in Table 7-1, certain control keys are
used in various windows to move the cursor. These keys are listed in Table
7-2.

Table 7-2. Inspect Mode Control Keys

Command Function

LARROW Move cursor left one space or item

R ARROW Move cursor right one space or item

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary.

SPACE Move cursor right one space or item

INSERT Scroll text windows left

DELETE Scroll text windows right

RETURN Exit edit mode

Inspect Mode - Function and Control Keys

7.1.1 Moving Between Windows - F1 and F2

The F1 (Next) and F2 (Previous) keys are used in a/l the inspect windows to
leave the current window. F1 moves to the next window on screen, and F2
moves back to the previous window. The order of windows on the screen for
moving between them is:

1) Code
2) Display (Memory, P registers, File, Symbols, or Modules)
3) CPU Registers
4) Register File
5) Stack
6) Expressions

7.1.2 Scrolling - F3 and F4

The F3 (Down) and F4 (Up) keys are used in all but the CPU Registers win
dow to move the cursor down or up by the length of the window. The win
dow is scrolled if possible and re-filled with either data from the window's
virtual buffer or new data from the emulator. When the top or bottom limit of
a window is reached, such as the beginning or end of a file, the window does
not scroll further and these function keys are ignored.

7.1.3 Memory Dump - F5

The F5 (Dump) key is used only in those windows that display values from
registers or memory. The dump key uses the value at the current cursor posi
tion (the contents of the current register or memory location) indirectly as an
address from which to dump memory into the display window. For conven
ience, the current value, which is the dump address, is displayed on the status
line along with the current position.

For example, suppose you are in the expression window, the cursor is at an
expression expr, and the dispiayed value is OlOOOh. If you press F5, the de
bugger will dump memory starting at address 1000h into the display window.

7.1.4 Disassemble - F6

The F6 (Disassemble) key operates similarly to the F5 key. Instead of dump
ing memory using the current value, F6 invokes the disassembler. The disas
sembler uses the current vaiue as an address and disassembles memory into
the code window starting at that address. This is useful if you are inspecting
an item that represents a label in your code. You can see the code at that label
simply by pressing the F6 function key.

7-3

Inspect Mode - Function and Control Keys

7.1.5 Expand the Window - F8

The F8 (Expand) key is used only in the display window. When F8 is pressed,
the window expands so that it uses the whole screen. This allows a more ef
ficient view of the file. While the window is expanded, F8 becomes a Restore
key. Pressing F8 a second time causes the window to be restored to its normal
size and the other windows to reappear.

An expanded window is automatically restored to its normal size when you
leave it and re-expanded when you return to it.

7.1.6 Update the Screen - F9

The F9 (Update) key forces the debugger to update all displayed values from
the emulator and redisplay them on the screen. This is useful after an opera
tion has been performed that may have caused displayed values to change and
you wish to see exactly what changed as a result of the operation. The proc
ess by which the debugger updates the screen is described in Section 4.7,
Updating the Screen.

7.1.7 Online Help - F10

7-4

Pressing the F10 (Help) key invokes the debugger's on-line help utility. When
help is invoked, a temporary window opens on the screen and help text for the
current window is displayed. Additional layers of help can be invoked by
following the instructions given in the help text. When help is exited, the
temporary window is removed and operation proceeds normally.

Inspect Mode - Inspect Code

7.2 Inspect Code

Table 7 -3 describes the commands, functions, and control keys for inspect
mode in the code window.

Table 7-3. Inspect Mode Commands Specific to the Code Window

Command Function

A (Address) Invoke disassembler at specified address

B (Breakpoint) Toggle a simple breakpoint at current address

E (Edit) Invoke the patch assembler at current address

P (PC) Invoke disassembler at current PC

S (Set PC) Set PC to current address

X (eXecute) Run or single-step

F1 (Next) Move to display window

F2 (Previous) Move to expression window

F3 (Down) Scroll forward through code

F4 (Up) Scroll back through code

F9 (Update) Update the screen

F10 (Help) Help for inspect code

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor left one space

R ARROW Move cursor right one space

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary.

In the code window, it is not possible to scroll up past the lowest address that
was used when the virtual buffer was first filled with disassembled code. This
is because the debugger cannot disassemble backwards through memory. So
you can start at a particular address, scroll down, and then scroll back to that
address, but no further. If you scroll down past the limit of the buffer, the
buffer wraps around and you will not be able to scroll back to the original
starting address. You can use the A(ddress) command in the code window
to get around this problem by invoking the disassembler at any specified ad
dress.

While inspecting the code window, the status 'line displays the address or label
at the current cursor position. Example:

Inspect Code: [701F]

7-5

Inspect Mode - Inspect Code

7.2.1 Position at a Specified Address - The A Command

Typing A (Address) in the code window allows you to move the window to
a specified address. The debugger prompts for the address, using the address
currently at the top of the window as a default.

7.2.2 Toggle a Simple Breakpoint - The B Command

You can set a simple breakpoint on the instruction at the current cursor posi
tion using the B (Breakpoint) command while inspecting code. Simple
breakpoints are described in the section on Simple Breakpoints on page 5-9.
If you type B while on an instruction that has no breakpoint set, the debugger
sets a simple breakpoint there and displays the reference I D number of the
breakpoint to the left of the instruction. If the instruction already has a
breakpoint set, the B command removes it and the I D number is freed.

7.2.3 Execute Code - The X Command

You can use the X (eXecute) command from the code window to execute
code without first leaving the code window. The Execute command from the
code window operates exactly like the execute command from the top level,
described in Section 6, Executing Code. Leaving the execute command
causes the debugger to return to the top level and not back to the code win
dow.

7.2.4 Move to the Current PC - The P Command

The P (PC) command in the code window positions the window so that the
instruction at the current PC is displayed at the top of the window.

7.2.5 Set the PC - The S Command

You can use the S (Set PC) command to set the PC to the address of the in
struction at the current cursor position. The debugger writes the current ad
dress into the PC and highlights the current instruction to show that it
corresponds to the PC. This way, you can move to a particular point in code,
set the PC there with this command, and begin running from that point with
the X command.

7.2.6 Edit Code - The E Command

7-6

You can use the patch assembler to change the instruction at the current ad
dress. After the new instruction is entered the location is modified and the
debugger remains in edit mode and points to the next instruction. Either enter
<CR> to leave the instruction unchanged and go to the next instruction, enter
the new instruction in its place, or enter ESC to exit edit mode.

Relative addressing modes are handled as either an absolute destination ad
dress or a relative offset value. If a relative offset is desired, use the correct
value. If an absolute address is desired, use a colon prefix (:) before the ad
dress. See the examples below:

JMP 020h ijump 20 bytes ahead
JMP :7020h ijump to location 7020h (must be

Inspect Mode - Inspect Code

BTJO

BR
BR

Rl,R2,:7020

7020h
:7020h

in range)
jump to location 7020h (must be
in range)

go to location 7020h
colon makes no difference for absolute

modes

The patch assembler can use all labels and values from a downloaded program
but it does not allow new definitions of values. Most assembler directives are
not available but the .BYTE and .WORD directives can be used to give one
value per line. The assembler does not allow the cursor to move to previous
instructions.

7-7

Inspect Mode - Inspect Memory Dump

7.3 Inspect Memory Dump

7-8

Table 7 -4 summarizes the commands, functions, and control keys available for
inspecting the display window when a memory dump is displayed. Memory
is displayed in a hex format, with eight memory locations displayed per line,
and ASCII values on the right. The cursor moves between displayed locations
on the screen.

Table 7-4. Inspect Memory Dump Commands

Command Function

A (Address) Dump memory at specified address

E (Edit) Modify displayed values

F1 (Next) Move to CPU window

F2 (Previous) Move to code window

F3 (Down) Scroll forward through memory

F4 (Up) Scroll back through memory

F5 (Dump) Dump using current value as address

F6 (Disassemble) Disassemble using current value

F9 (Update) Update the screen

F10 (Help) Help for inspect dump

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor to previous location

R ARROW Move cursor to next location

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary

SPACE Move cursor to next location

RETURN Exit from 'Edit'

TAB Move forward 4 locations

Shift-TAB Move back 4 locations

CTRL LARROW Move to beginning of line

CTRL R ARROW Move to end of line

When inspecting the dump window, the status line displays the address of the
current location and the 16-bit value that is stored there. It is this 16-bit value
that is used as the address for the F5 (Dump) and F6 (Disassemble) keys.
Example:

[lOlF] F26E

Inspect Mode - Inspect Memory Dump

7.3.1 Position at a Specified Address - The A Command

Typing A (Address) in the dump window allows you to move the window to
a specified address. The debugger prompts for the address, using the value
at the current cursor position as a default. Type an expression that represents
the address at which you want to dump memory. The window is replaced
with a memory dump beginning at the specified address.

7.3.2 Interactively Modifying Values - The E Command

The E (Edit) command puts you in a special mode that allows you to overwrite
the contents of memory simply by typing new values. When you type E, the
value at the current location is highlighted to indicate that it can be edited ..
Type the new value in hex. Use the normal movement keys (arrows, space
bar) to write the current location and edit another one. Press < CR> to write
the current location and leave edit mode.

When you edit a value, whether you change it or not, the debugger writes the
edited value to the emulator (so be careful of side effects). After an edited
value is written to the emulator, the debugger re-reads and re-displays the
value. Thus, if a value cannot be written (for example if no real memory exists
at that address), the value will be shown accurately as unchanged on the
screen. .

7-9

Inspect Mode - Inspect Peripheral Registers

7.4 Inspect Peripheral Registers

Table 7 -5 summarizes the commands, functions, and control keys for in
specting the peripheral register file. The P registers are displayed in the display
window in a two-column format as a result of the D (isplay) P(regs) com
mand.

Table 7-5. Inspect Peripheral Registers Commands

Command Function

E (Edit) Modify displayed values

P (Position) Move window to specified register

F (Format) Change format of current value

F1 (Next) Move to CPU window

F2 (Previous) Move to code window

F3 (Down) Scroll forward

F4 (Up) Scroll back

F5 (Dump) Dump using current value as address

F6 (Disassemble) Disassemble using current value

F9 (Update) Update the screen

F10 (Help) Help for inspecting P registers

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor back one register

R ARROW Move cursor to next register

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary

SPACE Move cursor to next register

RETURN Exit from' Edit'

The status line for inspecting the peripheral registers window includes the
current register and its contents, both in hex as follows:

[POlE] = OOFF

7.4.1 Interactively Modifying Values - The E Command

7-10

The E (Edit) command puts you in a special mode that allows you to overwrite
the contents of peripheral registers simply by typing new values. When you
type E, the vaiue at the current location is highlighted to indicate that it can
be edited. Type the new value as a numeric constant, including radix, prefix
or suffix. Use the normal movement keys (arrows, space bar) to write the
current register and edit another one. Press <CR> to write the current register
and leave edit mode.

When you edit a register, whether you change it or not, the debugger writes
the edited value to the emulator (so be careful of side effects). After an edited
value is written to the emulator, the debugger re-reads and re-displays the
value. Thus, if a register cannot be written (for example if the register is

Inspect Mode - Inspect Peripheral Registers

read-only), the value will be shown accurately as unchanged on the screen
even if you edit it.

7.4.2 Position at a Specified Register - The P Command

The P (Position) command in the peripheral register window allows you to
move the window so that a register you specify is positioned at the top. The
debugger prompts for a register number; type a decimal number from 0 to 255
or hexadecimal number from 0 to OFFh. The window is scrolled and refilled
so that the specified register is positioned at the top.

7.4.3 Change the Display Format - The F Command

Use the F (Format) command to change the displayed format of the peripheral
register at the current position. The default display radix is hexadecimal:
When you type F, the debugger displays a submenu of radix options. The
various options are described in Section 3.5, Displayed Values. Select the
format you want for the current register. The debugger will convert the value
and display it in the selected radix.

7 -11

Inspect Mode - Inspect File

7.5 Inspect File

7-12

Table 7 -6 outlines the commands, functions, and control keys available when
you inspect a file in the display window.

Table 7-6. Inspect File Commands

Command Function

F (Find) Find a character string

N (Next) Find the next occurrence of the string

L (Line No.) Move to specified line number

T (Top) Move to top of file

B (Bottom) Move to end of file

F1 (Next) Move to CPU window

F2 (Previous) Move to code window

F3 (Down) Scroll down through file

F4 (Up) Scroll up through file

Fa (Expand) Expand window to full screen

F9 (Update) Update the screen

F10 (Help) Help for inspect file

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor left one space, scrolling if necessary

R ARROW Move cursor right one space, scrolling if necessary

CTRL LARROW Move to beginning of line

CTRL R ARROW Move to end of line

INSERT Scroll window left

DELETE Scroll window right

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary

For inspect file, the status line displays the name of the file, the current line
number, and the total number of lines in the file as shown below.

"file.txt" line 113/355

Inspect Mode - Inspect File

7.5.1 Find String - The F Command

The F (Find) command allows you to search for a particular string of charac
ters in the file. The debugger prompts you for a character string; type a string
up to 32 characters long. The debugger begins at the current position and
searches for the string. If the debugger reaches the end of the file without
finding the string, it wraps around to the beginning of the file and searches
from there to the original cursor position. If the string is not found anywhere,
the cursor simply remains in its current position. If the string is found, the
window is scrolled, if necessary, and the cursor is moved to the start of the
target string.

7.5.2 Find Next - The N Command

The N (Next) command searches for the next occurrence of a string that was
previously found with the Find command. When you type N, the debugger
begins one space past the current position and begins searching for the same
string as used with the most recent Find command. If no Find command ha~
been used, the debugger searches for a null string which is always found at
the current position - the cursor does not move. The search proceeds exactly
as in the Find command.

7.5.3 Position at a Line Number - The L Command

The L (Line Number) command allows you to move to a specified line number
in the file. The debugger prompts you for the line number, with the current
line as the default. Enter either an absolute line number or a relative offset
from the current line, using '+' and '-' in front of the number to indicate a re
lative offset. The debugger positions the cursor at the specified line number,
scrolling the window if necessay.

7.5.4 Position at Top of File - The T Command

The T (Top) command positions the cursor on the first line of the file, scrolling
the window if necessary.

7.5.5 Position at Bottom of File - The B Command

The B (Bottom) command positions the cursor on the last line of the file,
scrolling the window if necessary.

7-13

Inspect Mode - Inspect Symbols

7.6 Inspect Symbols

7-14

Symbols are displayed in the display window as "lines" of text strings, in ex
actly the same way that a file is displayed. Therefore, inspecting symbols is
very similar to inspecting a file. Many of the same commands are used. Table
7 -7 lists the available functions when inspecting symbols.

Table 7-7. Inspect Symbols Commands

Command Function

F (Find) Find a character string

N (Next) Find the next occurrence of the string

T (Top) Move to first symbol

B (Bottom) Move to last symbol

F1 (Next) Move to CPU window

• F2 (Previous) Move to code window

F3 (Down) Scroll down

F4 (Up) Scroll up

F9 (Update) Update the screen

F10 (Help) Help for inspect symbols

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor left one space, scrolling if necessary

R ARROW Move cursor right one space, scrolling if necessary

CTRL LARROW Move to beginning of line

CTRL R ARROW Move to end of line

INSERT Scroll window left

DELETE Scroll window right

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary

For inspect symbols, the status line displays the template used when the
symbols were displayed:

Symbols "s*"

Inspect Mode - Inspect Symbols

7.6.1 Find String - The F Command

The F (Find) command allows you to search for a particular string of charac
ters in the symbol list. You can use the Find command to find symbol names,
addresses, module names, or any string that occurs anywhere in the window.
The debugger prompts you for a character string; type a string up to 32 char
acters long. The debugger begins at the current position and searches for the
string. If it reaches the end of the symbols without finding the string, it wraps
around to the beginning and searches from there to the original cursor posi
tion. If the string is not found anywhere, the cursor simply remains in its
current position. If the string is found, the window is scrolled, if necessary,
and the cursor is moved to the start of the target string.

7.6.2 Find Next - The N Command

The N (Next) command searches for the next occurrence of a string that was
previously found with the Find command. When you type N, the debugger
begins one space past the current position and begins searching for the same
string as used with the most recent Find command. If no Find command has
been used, the debugger searches for a null string which is always found at
the current position - the cursor does not move. The search proceeds exactly
as in the Find command.

7.6.3 Position at First Symbol - The T Command

The T (Top) command positions the cursor at the first symbol in the virtual
buffer, scrolling the window if necessary.

7.6.4 Position at Last Symbol - The B Command

The B (Bottom) command positions the cursor at the last symbol in the virtual
buffer, scrolling the window jf necessary.

7-15

Inspect Mode - Inspect Modules

7.7 Inspect Modules

Inspecting module names is very much like inspecting symbols. In the module
window, the debugger's current module is highlighted. Table 7 -8 summarizes
the available commands and functions.

Table 7-8. Inspect Modules Commands

Command Function

F (Find) Find a character string

N (Next) Find the next occurrence of the string

T (Top) Move to first module

B (Bottom) Move to last module

S (Set Current) Set the current module

F1 (Next) Move to CPU registers window

F2 (Previous) Move to code window

F3 (Down) Scroll down

F4 (Up) Scroll up

F9 (Update) Update the screen

F10 (Help) Help for inspect modules

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor left one space, scrolling if necessary

R ARROW Move cursor right one space, scrolling if necessary

CTRL LARROW Move to beginning of line

CTRL R ARROW Move to end of line

INSERT Scroll window left

DELETE Scroll window right

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary

For inspect modules, the status line simply displays the message:

Inspect Modules

7.7.1 Find String - The F Command

7-16

The F (Find) command allows you to search for a particular string of charac
ters in the module list. The debugger prompts you for a character string; type
a string up to 32 characters long. The debugger begins at the current position
and searches for the string. If it reaches the end of the module list without
finding the string, it wraps around to the beginning and searches from there
to the original cursor position. If the string is not found anywhere, the cursor
simply remains in its current position. If the string is found, the window is
scrolled, if necessary, and the cursor is moved to the start of the target string.

Inspect Mode - Inspect Modules

7.7.2 Find Next - The N Command

The N (Next) command searches for the next occurrence of a string that was
previously found with the Find command. When you type N, the debugger
begins one space past the current position and begins searching for the same
string as used with the most recent Find command. If no Find command has
been used, the debugger searches for a null string which is always found at
the current position - the cursor does not move. The search proceeds exactly
as in the Find command.

7.7.3 Position at First Module - The T Command

The T (Top) command positions the cursor at the first module in the virtual
buffer, scrolling the window if necessary.

7.7.4 Position at Last Module - The B Command

The 8 (Bottom) command positions the cursor at the last module in the virtual
buffer, scrolling the window if necessary.

7.7.5 Set the Current Module - The S Command

The 5 (Set Current) command sets the debugger's current module to be the
one at the cursor position. The current module is the one used to look up local
symbols in the symbol table; see Section 5.10, Setting the Current Module -
The 0 Command. The module selected is highlighted in the window to show
that it is now the current module.

7-17

Inspect Mode - Inspect CPU Registers

7.8 Inspect CPU Registers

Table 7-9 summarizes the commands, functions, and control keys for in
specting the CPU register window. The five registers - A, B, PC, SP, and ST
- are displayed in fixed positions in the window. The status register is dis
played both in hex and in binary.

Table 7-9. Inspect CPU Registers

Command Function

E (Edit) Modify displayed values

F1 (Next) Move to register file window

F2 (Previous) Move to display window

F5 (Dump) Dump using current value as address

F6 (Disassemble) Disassemble using current value

F9 (Update) Update the screen

F10 (Help) Help for inspecting CPU registers

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor back one register

R ARROW Move cursor to next register

UP ARROW Move up one line

ON ARROW Move down one line

SPACE Move cursor to next register

RETURN Exit from 'Edit'

The status line for inspecting the CPU registers window includes the current
register and its contents as follows:

[PC] = 702F

7.8.1 Interactively Modifying Values - The E Command

7-18

The E (Edit) command puts you in a special mode that allows you to overwrite
the contents of registers simply by typing new values. When you type E, the
value at the current location is highlighted to indicate that you can edit it.
Type the new value in hex, with no prefix or suffix. Use the normal movement
keys (arrows, space bar) to write the current register and edit another one.
Press <CR> to write the current register and leave edit mode. When you edit
a register, whether you change it or not, the debugger writes the edited value
to the emulator (so be careful of side effects). After an edited value is written
to the emulator, the debugger re-reads and re-displays the value.

Inspect Mode - Inspect Register File

7.9 Inspect Register File

Table 7-10 summarizes the commands, functions, and control keys for in
specting the register file. The registers are displayed in a two-column format,
all in hex.

Table 7-10. Inspect Register File Commands

Command Function

E (Edit) Modify displayed values

P (Position) Move window to specified register

F1 (Next) Move to stack window

F2 (Previous) Move to CPU register window

F3 (Down) Scroll forward

F4 (Up) Scroll back

F5 (Dump) Dump using current value as address

F6 (Disassemble) Disassemble using current value

F9 (Update) Update the screen

F10 (Help) Help for inspecting register file

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor back one register

R ARROW Move cursor to next register

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary

SPACE Move cursor to next register

RETURN Exit from 'Edit'

The status line for inspecting the register file window includes the current re
gister and its contents as follows:

[R01A] = OOFF

7.9.1 Interactively Modifying Values - The E Command

The E (Edit) command puts you in a special mode that allows you to overwrite
the contents of registers simply by typing new values. When you type 'E', the
value at the current location is highlighted to indicate that it can be edited.
Type the new value as a hex constant, with no prefix or suffix. Use the normal
movement keys (arrows, space bar) to write the current register and edit an
other one. Press <CR> to write the current register and leave edit mode.
When you edit a register, whether you change it or not, the debugger writes
the edited vaiue to the emulator (so be careful of side effects). After an edited
value is written to the emulator, the debugger re-reads and re-displays the
value.

7-19

Inspect Mode - Inspect Register File

7.9.2 Position at a Specified Register - The P Command

7-20

The P (Position) command in the register file window allows you to move the
window so that a register you specify is positioned at the top. The debugger
prompts for a register number; type a decimal number from 0 to 255 or a
hexadecimal number from 0 to OFFh. The window is scrolled or refilled so that
the specified register is positioned at the top.

Inspect Mode - Inspect Stack

7.10 I nspect Stack

Table 7-11 summarizes the commands, functions, and control keys for in
specting the stack window. The TMS370 has an 8-bit stack pointer, so the
stack is located within the register file in the address range 0-255. Each value
in the stack window is displayed with its offset from the top of the stack, the
absolute address in hex, and the actual contents of the register in hex. For
example, a displayed value may appear as:

-2(F7) AS

meaning that location OF7h (which is also R247) is two locations below the
top of stack and contains the value OA5h. The location at the top of the stack
is displayed with an offset of liSP" and highlighted.

Note:

The stack grows upward (toward larger memory addresses) and the SP
points to the item that was pushed onto the stack.

Table 7-11. Inspect Stack Commands

Command Function

E (Edit) Modify displayed values

T (Top) Position window at top of stack

F1 (Next) Move to expression window

F2 (Previous) Move to register file window

F3 (Down) Scroll forward

F4 (Up) Scroll back

F5 (Dump) Dump using current value as address

F6 (Disassemble) Disassemble using current value

F9 (Update) Update the screen

F10 (Help) Help for inspecting stack

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move cursor back one register

R ARROW Move cursor to next register

UP ARROW Move up one line, scrolling if necessary

ON ARROW Move down one line, scrolling if necessary

SPACE Move cursor to next register

RETURN Exit from 'Edit'

The status line for inspecting the stack window includes the current register
and its contents as follows:

[-2(F7)] OOA5

7-21

Inspect Mode - Inspect Stack

7.10.1 Interactively Modifying Values - The E Command

The E (Edit) command puts you in a special mode that allows you to overwrite
the contents of registers simply by typing new values. When you type E, the
value at the current location is highlighted to indicate that it can be edited.
Type the new value as a numeric constant, with no prefix or suffix. Use the
normal movement keys (arrows, space bar) to write the current register and
edit another one. Press <CR> to write the current register and leave edit
mode. When you edit a register, whether you change it or not, the debugger
writes the edited value to the emulator (so be careful of side effects). After
an edited value is written to the emulator, the debugger re-reads and re-dis
plays the value.

7.10.2 Position at the Top of Stack - The T Command

7-22

The T (Top) command in the stack window scrolls the window so that the
register currently pointed to by the stack pointer is positioned at the top of the
window.

Inspect Mode - Inspect Expressions

7.11 Inspect Expressions

Use the expiGssion window to display values that are important to keep track
of as you debug your program. You can display any expressions in the win
dow. The debugger evaluates the expression and displays it in the window
in whatever format is specified. Each time the screen is updated, the debugger
re-evaluates all the expressions in the window and displays the new values,
highlighting the ones that have changed. Up to 128 expressions can be stored
in the expression window, all of which can be scrolled through.

Table 7-12 summarizes the commands and functions you can use while in
specting the expression window.

Table 7-12. Inspect Expressions Commands

Command Function

A (Add) Add a new expression to window

o (Delete) Remove an expression

E (Edit) Change the expression

F (Format) Change the display format of an expression

I (size) Change data size

N (Name) Change the label displayed with an expression

L (Load) Load expressions from a file

S (Save) Save expressions to a file

F1 (Next) Move to code window

F2 (Previous) Move to stack window

F3 (Down) Scroll forward through expressions

F4 (Up) Scroll back through expressions

F5 (Dump) Dump using current value as address

F6 (Disassemble) Disassemble using current value

F9 (Update) Update the screen

F10 (Help) Help for expression window

ESC (Escape) Leave inspect mode and return to top level command menu

LARROW Move up one line

R ARROW Move down one line

UP ARROW Move up one line

ON ARROW Move down one line

SPACE Move down one line

The status line for inspecting expressions includes the current expression and
its value in hex as follows:

"exprl" OlF4

7-23

Inspect Mode - Inspect Expressions

7.11.1 Adding a New Expression - The A Command

7-24

The A (Add) command lets you add a new expression to the window. When
you type A, the debugger prompts for an expression. Type any valid ex
pression that can be evaluated by the debugger: a symbol name, a register, a
memory location, a complex expression using operators, etc.

See Section 3.4, Expressions. for a description of what constitutes a valid ex
pression. Also refer to Section 5.6 for a description of the process of ex
pression evaluation.

The debugger then prompts for the "display name" of the expression. This is
the string that is to be displayed next to the expression's value in the window.
The default for the name is simply the expression itself. For example, the ex
pression "@SP" represents the 16-bit value on the top of the stack. Assume
the expression evaluates to 7006h. You could enter "TOP" as the name for
the expression, and the expression would be displayed as:

TOP 07006h

Note that when this line is displayed on the status line the original expression,
not the name, will be shown there:

"@SP" 07006h

The debugger then displays a submenu that lets you select the radix that will
be used to display the value of the expression. The options on this menu are
described in Section 3.5, Displayed Values. The default option is 'X' (for hex).

After the radix is selected, the debugger displays another submenu on the
same line for you to select the data size of the value. The menu has only two
choices: 'B' (Byte) and 'W' (Word). The default is Byte. If you choose Byte,
the expression is displayed as an 8-bit value. If you choose Word, the ex
pression is displayed as a 16-bit value. All internal computations are done
with words so beware of side effects particularly when using the shift right
operator.

After the above four items have been specified, the debugger inserts the new
expression into the window just after the expression at the current position.
The expression remains in the window until you either remove it with the
Delete command or load an object file, in which case all expressions are re
moved.

Inspect Mode - Inspect Expressions

7.11.2 Deleting an Expression - The D Command

When the D (Delete) command is typed in the expression window, the ex
pression at the current cursor position is removed from the window. Other
expressions below the deleted one are scrolled up to fill the vacated line in the
window.

7.11.3 Editing an Expression - The E Command

Use the E (Edit) command to change the expression. When you type E, the
debugger displays the expression on the command line for editing.

7.11.4 Change the Display Format - The F Command

Use the F (Format) command to change the displayed format of the ex
pression at the current position. When you type F, the debugger displays the
same submenu of radix options that is used for adding expressions. The var
ious options are described in Section 3.5, Displayed Values. Select the format
you want for the current expression. The debugger will convert the value and
display it in the selected radix.

7.11.5 Change the Data Size - The I Command

The I (size) command allows changing the displayed size from byte to word
or vice versa. While the displayed size of an expression can be changed, all
internal computations are done using 16 bits. Beware of any side effects
particularly when using the shift right operator.

7.11.6 Change the Display Name - The N Command

The N (Name) command allows editing of the expression name that appears
with the current expression (at the left of its value). When you type N, the
debugger displays the name on the command line for editing.

7.11.7 Load Expressions From a File - The L Command

The L (Load) command is used to add expressions saved in a file to the win
dow. Expressions can be saved with the Save command, described in the
following section. When L is typed, the debugger prompts for a filename from
which expressions are to be read. You can omit the extension on the file
name; the default extension is . expo The debugger reads all the expressions
from the file, evaluates them, and inserts them into the window. Any previous
expressions remain in the window.

The expression file contains the name, expression, radix, size, and module
number for each expression. Be sure that any symbols that are used in saved
expressions are available to the debugger when the saved expressions are re
loaded. For example, assume you save an expression window while debug
ging an object file called prog. out and that expressions in the window
contain symbols from that object file. If you want to load the saved expression
file in a subsequent debugging session, you must first load prog. out so that
the symbols used in the saved expressions are available to the debugger.

7-25

Inspect Mode - Inspect Expressions

If any expression in the file cannot be evaluated when the file is loaded, an
error message is displayed and the expression is ignored. The debugger pro
ceeds with reading the remaining expressions from the file.

7.11.8 Save Expressions to a File - The S Command

7-26

Use the S (Save) command to build a file of expressions so that they can be
reloaded at a later time. When S is typed, the debugger prompts for the name
of the file into which the expressions are to be saved. You can omit the ex
tension on the filename; the default extension is . expo If the file exists, it will
be replaced with the new expressions. Each expression in the virtual buffer
(not just the ones currently on the screen) is written to the file. The file con
tains the name, expression itself, radix, size, and module number for each ex
pression.

Section 8

Hardware Breakpoints, Tracing and Timing

The TMS370 emulator contains a separate board that provides circuitry to
monitor the operation of the system at a hardware level. This board is called
the BTT (Breakpoint, Trace, and Timing) board. The BTT board operates by
monitoring the CPU as it runs and taking certain actions when particular pat
terns of bus activity are detected. You specify a set of qualifiers that define the
bus cycle patterns being looked for, as well as the actions to be taken when
the qualifiers me matched. This specification process is called programming
the BTT. Each action has an associated set of qualifiers. Refer to Figure 8-1
and Figure 8-2 (on page 8-10) while reading this section.

This section includes the following topics:

Section Page
8.1 Actions .. 8-3
8.2 Qualifiers ... 8-4
8.3 States ... 8-5
8.4 Sample BTT Programs ... 8-11
8.5 Programming the BTT ... 8-14
8.6 BTT Command Window ... 8-16
8.7 Editing Actions .. 8-19
8.8 Editing Qualifiers ... 8-21
8.9 Local State Settings .. 8-25
8.10 Global Settings .. 8-27

8-1

Hardware Breakpoints, Tracing and Timing

JUMP

STATE 0 STATE 1 STATE 2

START

t 8P-8REAKPOINT/EVENT

Figure 8-1. Understanding the BTT

8-2

STATE 3

~
~

Hardware BTT - Actions

8.1 Actions

The various actions that the BTT can perform when a set of qualifiers is
matched are described below.

BPjEVENT Triggering a breakpoint/event may either cause a hardware
breakpoint, decrement the event counter, or transfer control
to the next state. The relationship between events and
breakpoints is described in the section on Events and
Breakpoints on page 8-7.

TRACE A cycle which satisfies the TRACE qualifiers will be stored
in the TRACE buffer. This provides a history of program
execution for later inspection.

J U M P The BTT has four separate states in which different sets of
actions can be specified. The J U M P action forces a tran
sition into a different state when triggered.

POINT TIM ER The BTT has two timers that can be started or stopped by
qualified actions. The POINT TIMER action uses the two
address qualifiers to control one timer. The timer is started
when the first address is qualified and stopped when the
other address is qualified.

RANGE TIMER The RANGE TIMER actions also control the BTT timers but
differ from the point timer action in that one action starts
a timer and a separate action stops it. Thus, there are ac
tually two actions, range timer start and range timer stop.

8-3

Hardware BTT - Qualifiers

8.2 Qualifiers

8-4

The qualifiers that can be monitored by the BTT to trigger anyone action are
described below. An action is triggered when a cycle occurs that matches all
the qualifiers for the action.

ADDRESS The BTT monitors the memory bus during all memory cycles.
Two address qualifiers can be used to trigger an action on a
particular address or range of addresses. These can be used to
define two distinct single point addresses, an inclusive range
(any address within the range qualifiers), or an exclusive range
(any address outside the range qualifiers). You can specify a
mask to selectively ignore some or all of the address qualifier
bits.

DATA The BTT also monitors the value on the data bus during each
memory cycle. Two data qualifiers can be used with the data
bus in exactly the same way as the two address qualifiers are
used with the address bus. You can specify a mask to selec
tively ignore some or all of the data qualifier bits.

CYCLE You can specify which types of memory cycles qualify to trig
ger an action. Memory cycle types are read, write, and in
struction fetch. Either a single type or combinations of cycles
can be qualified.

EXTERNAL The BTT monitors the logic level of the eight external probe
lines. Refer to Section 11 .4.3, page 11 -18, for more specific
information about the probes. There is a qualifier that can be
used to trigger an action on a particular value from these in
puts. You can specify a mask to selectively ignore some or all
of the external qualifier bits. Refer to Section 8.8.2 and Section
8.8.9 for information on masks and editing qualifiers.

Hardware BTT - States

8.3 States

The BTT has four independent sets of actions available. Each set of actions
is called a state. Up to four actions can be specified per state. When the BTT
is running, it is always in one of the four states. Only the actions in the current
state can be triggered; the other states are inactive. Qualifiers for actions in
an inactive state are ignored until the BTT makes a transition into that state.

All the actions programmed in the current state are simultaneously active. In
other words, any cycle can trigger any or all of the actions in the state.

The states are numbered 0-3. When the Bn is reset, it always begins in state
O. The Bn can transition from one state to another in two different ways.
First, a JUMP action can be programmed in a state. If the JUMP action is
triggered, the BTT will change to a specified destination state. Second, the
Bn can automatically change states when a certain number of EVENT actions
occur. The conditions under which this occurs are described in the section
on Events and Breakpoints on page 8-7.

Each state can be programmed in address only or address+data mode. In
address-only mode, the data qualifiers are unavailable, and you can have up
to four actions in the state. In address+data mode, the data qualifiers are
available, but the state can contain a maximum of only two actions. The
number of actions in each state is also subject to various limitations that are
described in the section on Resource Allocation.

In addition to the mode, each state has additional parameters and settings that
determine how the board acts in that state. Different states can have different
values for these parameters. These are referred to as local settings since they
affect only one state. The various local settings are described in Section 8.9,
Local State Settings. In addition, there are a number of parameters that affect
the operation of the board in all states. There is only one set of these param
eters, so they are called global settings (see Global Settings on page 8-27).

8.3.1 Resource Allocation

Not all combinations of the maximum four actions (in address-only mode) or
two actions (in address+data mode) can always be programmed in a state.
Due to limitations of the BTT hardware, there are a fixed number of possible
configurations for each state. Each possible configuration represents a com
bination of actions that can be used. Other combinations of actions are not
allowed.

The debugger keeps track of what actions have been used and what are
available as you program a state. It displays a summary of the available ac
tions based on the possible combinations. In this way, allocating actions into
a state such that they form a valid combination is somewhat transparent. The
debugger prevents you from specifying an action that would result in an in
valid combination and displays an error message if you try.

Table 8-1 and Table 8-2 show all the possible configurations of actions that
can be allocated into anyone state for both address+data mode and ad
dress-only mode, respectively. The numbers in the tables represent how many
times an action can be used. A blank entry means that no actions of that type
can be used.

8-5

Hardware BTT - States

8-6

For example, in address+data mode, it is possible to have one EVENT and one
JUMP in a state (from line 3 of Table 8-2). Or, you can have one TRACE and
one POINT TIMER (line 6). However, it is not possible to have a TRACE and
a JUMP in the same state.

In address-only mode, you can have two EVENTs, a TRACE, and a JUMP
(from line 9 of the second table). However, it is not possible to have three
JUMPs in any state.

Table 8-1. Address-Only Configurations

BPI Point Range
Number Event Trace Jump Timer Timer

(1) 4

(2) 3 1

(3) 3 1

(4) 3 1

(5) 2 2

(6) 2 2

(7) 2 1

(8) 2 2

(9) 2 1 1

(10) 2 1 1

(11) 2 1 1

(12) 1 3

(13) 1 2 1

(14) 1 2 1

(15) 1 1 2

(16) 1 1 1

(17) 1 2 1

(18) 1 1 1

(19) 1 1 2

(20) 1 1 1

(21) 4

(22) 2 1

(23) 2

Numbers in the left column refer only to this table.

Hardware BTT - States

Table 8-2. Address + Data Configurations

BPI Point Range
Number Event Trace Jump Timer Timer

(1) 2

(2) 1 1

(3) 1 1

(4) 1 1

(5) 2

(6) 1 1

(7) 1

(8) 2

Numbers in the left column refer only to this table.

8.3.2 Events and Breakpoints

EVENT actions in the BTT can be used to cause a hardware breakpoint that
halts the CPU and BTT. (The CPU is halted only in normal run mode.) Vari
ous counters on the BTT, along with the state transition scheme, determine
when an actual hardware breakpoint is caused. The counters start at a value
you specify when programming the BTT and count towards O.

Each state has an EVENT counter. The initial value of the event counter is one
of the local state settings. Each time an EVENT occurs in the state, the event
counter is decremented. When an EVENT occurs that decrements the event
counter to zero, the BTT automatically sequences to the next higher state. The
BTT can also change states with J U M P actions.

One of the global settings on the BTT board is an end state. If the event
counter in the end state reaches zero, the BTT has completed its state se
quence. At this point, another counter called the loop counter is decre
mented. The initial value of the loop counter is another global setting. If the
loop counter is not 0 after the completion of the entire state sequence (when
the event counter in the end state reaches 0), the BTT resets to state 0 and
begins another state sequence.

When the loop counter reaches 0, another counter, called the delay
counter, begins to take effect. The delay counter is decremented (after the
loop counter expires) each time a TRACE action occurs using the end state's
qualifiers. The initial value of the delay counter is another global setting.
When the delay counter reaches 0, a hardware breakpoint occurs. The delay
counter allows you to take a number of trace samples before halting, so that
you can see what happens just after an event occurs.

In summary: The BTT sequences through a cycle of states, each of which has
an associated event counter. When the event counter in a state expires (re
aches zero), the BTT sequences to the next state. The BTT completes a cycle
when the event counter in the end state expires; the loop counter is then de
cremented and the BTT begins again at state O. When the loop counter ex
pires, the BTT waits for a number of trace samples (specified by the delay
count) to be taken. When the delay count expires, a hardware breakpoint

8-7

Hardware BTT - States

occurs and the BTT halts. The flowchart in Figure 8-2 illustrates the logical
operation of the BTT.

8.3.3 Timers

8-8

The BTT has two timers that can be programmed to start and stop by qualified
actions. The timers can be used to do timing analysis on your program in real
time as the program runs. There are two actions used to control these timers:
POINT TIMER and RANGE TIMER. Note that these two different actions
share the same two timers; the two actions are simply different ways of start
ing and stopping the timers.

The timers are like stopwatches. Both timers start at 0 when the BTT is reset.
When a POINT TIMER or RANGE TIMER action that starts a timer is qualified,
the timer starts and begins accumulating elapsed time. The timer continues
to run until a POINT TIMER or RANGE timer action to stop the timer is qual
ified. Like a stopwatch, the timer can be started and stopped many times;
when a timer is re-started it does not reset to 0 but continues to accumulate
time from the point at which it was stopped.

The timers are designated timer #1 and timer #2. Both timers behave the
same, except that timer #1 has an averaging feature that timer #2 does not
have. Timer #1, in addition to accumulating elapsed time, keeps track of the
number of times it is started. Then, when the program finishes running, timer
#1 calculates the average amount of time that elapsed each time the timer ran.
Average time is calculated by dividing the total accumulated time by the
number of times the timer was started. For example, suppose that after the
program begins running, timer #1 is started and then stopped 7 seconds later.
Then, timer #1 is started again and stopped 3 seconds later. The total accu
mu�ated time for timer #1 is 10 seconds (7 +3). The average time is 5 seconds
(10 seconds total divided by 2 starts).

The values of the two timers. and the average value for timer #1, are displayed
on the trace screen of the debugger. See Section 5.8, Inspect Trace Samples
- The T Command.

A single POINT TIMER action uses its two address qualifiers (all actions have
two address qualifiers) to start and stop the timer. The first address starts the
timer and the second stops it. The other qualifiers are shared between the two
addresses and apply to both starting and stopping the timers. For example,
suppose a POINT TIMER action is specified as follows:

ACTION: PointTimer
timer #1
addrl = 7000h
addr2 = 7FFOh
data IGNORE

cycles IAQ
extern IGNORE

When an lAO at address 7000h occurs, timer #1 is started. The timer runs
until an lAO at 7FFOh occurs, at which point it is stopped.

A RANGE TIMER action, on the other hand, uses two separate actions: one
dedicated to starting the timer and another to stopping it. These two actions

Hardware BTT - States

are completely independent. For example, suppose a RANGE TIMER action
is specified as follows:

ACTION: RangeTimer
start #2
addrl = 7000h
addr2 = 7FFOh
data = IGNORE
cycles IAQ
extern IGNORE

ACTION: RangeTimer
stop #2
addr = IGNORE
data = OFFh

cycles MR
extern IGNORE

When an IAQ from address 7000h or 7 FFOh occurs, timer #2 is started. This
is controlled by the first action. The timer stops when a memory read cycle
reads the data value OFFh from any address in memory. This is controlled by
the second action.

The first timer action in a state always uses timer #1. The second timer action
uses timer #2. If you have two timer actions and delete the first one, the sec
ond timer action switches from using timer #2 to timer #1 (since it is now the
first timer action). Which timer is being used by an action is displayed under
the action type field in the list of qualifiers.

You can control a timer from two different states. If a timer is started in one
state and the BTT sequences to a different state, an action in the new state
can stop the timer. Timers are not affected by transitions between states.

The BTT has an additional time-out timer that can be programmed to stop
your program when a specified amount of time has passed. This time-out
timer is independent of the two programmable timers. You specify a time-out
value in the BTT global settings window, described in Section 8.10, Global
Settings.

8.3.4 Trace Buffer

The BTT Trace Buffer is a circular buffer with a capacity of 2047 trace samples.
If more than this number of samples is collected, the buffer wraps around and
overwrites old samples. Trace samples are also discussed in Trace Samples
on page 5-14.

8-9

Hardware BTT - States

8-10

STATE =
STATE + 1

TRACE ACTION
OCCURS

TAKE TRACE
SAMPLE

DECREMENT
DELAY CNT

Figure 8-2. Flow of BTT Operation

Hardware BTT - State Examples

8.4 Sample BTT Programs

8.4.1 A Simple Example

Few situations require multiple states or use of all counters. A common case
is to set up the following situation using default values for the counters:

• Set a BPjEvent action in state 0

• Set Event Count = 1 (default)

• Set End State = 0 (default)

• Set Loop Count = 1 (default)

• Set Delay Count = 0 (default)

When the BPjEvent is triggered: the event count is decremented and expires
immediately. No state transition occurs, because the end state is O. The loop
count is decremented and expires immediately. The delay count is already 0,
so it also expires immediately. Thus, a hardware breakpoint occurs as soon
as the EVENT action is qualified.

8.4.2 Using the Event Counter

For the second example, assume that the program to be debugged has a long
software loop. Initialization occurs before entering the loop and then the loop
is repeated several times. The program appears to operate correctly the first
time through the loop but fails on each succeeding pass.

To catch a trace sample the second time through the loop, use the event
counter.

1) Set a BPjEvent in state 0 to occur when the address is equal to the be
ginning of the loop during an IAQ cycle.

2) Set a Trace action in state O.

3) Set the Event Count to 2.

4) Leave the End State at O.

5) Leave the Loop Count at 1.

6) Set the Delay Count to 1000.

This setting causes the emulator to continuously capture trace samples. When
the trace buffer is full, the oldest sample is "pushed out" to make room for a
new sample. When the program fetches the instruction at the top of the loop
for the second time, the emulator starts counting and allows 1 ,000 more me
mory cycles to be captured in the trace buffer before it stops execution.

The end result is that the trace buffer contains a record of the last 1 047 me
mory cycles from the first time through the loop, and the 1,000 memory cycles
from the second time through the loop.

8-11

Hardware BTT - State Examples

8.4.3 Using Multiple States

For the third example, assume that your program calls a subroutine to read a
character from another machine. This subroutine is called from several lo
cations in the program, but you only get unexpected results when it is called
from one specific location.

Setting a BP jEvent at the point that the routine is called will not guarantee
that the subroutine can be traced, since the routine waits an indefinite time for
the character to come from the other machine. Setting the BPjEvent after a
character is received may cause the emulator to trace when the subroutine is
called from some other part of the program.

The solution is to use multiple states. In state 0, set a BPjEvent to occur on
the instruction acquisition of the call to the receive character routine. In state
1, set a BP jEvent to occur when a character is actually detected. Also set a
Trace in state 1. Now set the delay count so that you can see a few cycles
before the acquisition of the character and several cycles following the acqui"
sition.

1) Set a BPjevent in state 0 to occur when the address is equal to the
subroutine call during an IAQ cycle.

2) Set a BPjevent in state 1 to occur when the-eddress is equal to the in-
struction following the successful detection of a character.

3) Set a trace action in state 1.

4) Leave the event count in both states at 1 .

5) Set the End State to 1.

6) Leave the Loop Count at 1.

7) Set the Delay Count to 1000.

8.4.4 Using The Loop Counter

8-12

For the fourth example, assume that you need to measure the average time our
subroutine spends waiting for a character when it is called from a specific part
of the program. When you need to repeat sequences that require the use of
more than one state, you use the loop counter.

1) Set a BPjEvent in state 0 to occur when the address is equal to the
subroutine call during an IAQ cycle.

2) Set a Range Timer in state 1 to start when the address is equal to the
instruction where the program begins checking for reception of a char
acter.

3) Set the Range Timer in state 1 to stop when the address is equal to the
instruction where the program has detected the reception of a character.

4) Set a BPjEvent in state 1 to occur when the address is equal to the in
struction where the program has detected the reception of a character.

Hardware BTT - State Examples

5) Leave the event count in both states at 1.

6) Set the End State to 1.

7) Set the Loop Count to 1000.

When the program halts (due to a hardware breakpoint), the trace buffer dis
play will show the total time spent waiting for 1,000 characters to arrive in the
Timer 1 register. The average time spent waiting for a character will be shown
in Timer 1 Average.

8-13

Hardware BTT - Programming

8.5 Programming the BTT

The debugger keeps a representation of the current configuration of the entire
BTT board that includes all the actions, qualifiers, local state settings, and
global settings. You can use the special BTT screen of the debugger to display
and modify any of the parameters. When you exit the BTT screen, the de
bugger programs the BTT with the configuration you have built.

To get to the BTT screen from the top level command menu of the debugger,
type BB. The first B selects the breakpoint command from the top level and
the second selects the BTT option of the breakpoint command.

BTT: lie set load lave Ix i t Ibor t

STATE 0

ACTION: Trace ACTION: BP/event

addr = IGNORE
data = IGNORE

cycles ALL
extern HiNORE

addr1 = 0700Bh
addr2 = 0700Eh
data = IGNORE

cycles lAO,
extern IGNORE

=avai lable locals=====;r=======globals=====
BP/event· 0

1
mode: ADDR+DATA de lay count: 0

Trace 0 trace mode: NORMAL max trace: 0
Jump 0 event count: 100 end state: 0
PointTimer 0 loop count: 1
RangeTimer 0 I time out: ssss.mmm uuu nnn

IIEdliliLast IINextStat~LocalDDPlobal

8-14

Figure 8-3. BTT Screen

An example of the BTT screen is pictured in Figure 8-3. The screen displays
the settings for one state at a time; you change the currently displayed state
with function key F4. The currently displayed state is indicated on the third
line of the screen, toward the left. The central area of the screen is for the four
possible actions in the state and their associated qualifiers. When no actions
are programmed into the state, this area is blank. As actions are added to the
state, the area fills up with action specifiers and qualifiers. The example in
Figure 8-3 shows two of the four action areas filled. The bottom third of the
screen is divided into three windows named available, locals, and globals.

Hardware BTT - Programming

The leftmost window indicates what actions are currently available. Each type
of action is listed along with a number that indicates how many of that action
type remain available for use in the state. When you program an action, the
window is updated to reflect the new availability, according to the table of
possible combinations and the currently programmed actions.

The middle window shows the local state settings for the currently displayed
state. The meaning of each setting and how to change it is described in Sec
tion 8.9, Local State Settings. When you change the displayed state, the val
ues in this window change also to reflect the settings for the new state.

The rightmost window shows the global settings for the BIT. The meaning
and programming of these settings are described in Section 8.10, Global Set
tings.

The BTT screen has a command menu like the menus in other parts of the
debugger. You can move off the command line into the center area of the
screen to enter or modify actions and qualifiers. You can move to the local
settings window to change any parameters there, or you can move to the
global settings window to change global parameters.

8-15

Hardware BTT - Commands

8.6 BTT Command Window

Table 8-3 summarizes the commands and functions available from the BTT
command menu. These functions are described in detail in the sections that
follow.

Table 8-3. BTT Command Window

Command Function

R (Reset) Clear the configuration

L (Load) Load BTT configuration from file

S (Save) Save BTT configuration into file

E (Exit) Exit BTT screen and program BTT with current
configuration

A (Abort) Exit BTT screen but do not program BTT

ESC (Escape) Exit and program - same as 'E'

F1 (Edit) Move to the first action area to add, edit, or remove
an action

F2 (Last) Move to the last action area to add, edit, or remove
an action

F4 (NextState) Display the next BTT state

F5 (Locals) Move to local state settings and edit them

F6 (Globals) Move to global settings and edit them

F10 (Help) Help for BTT command menu

8.6.1 Clear BTT Configuration - The R Command

8-16

The R (Reset) command in the BTT command menu clears the entire BIT
configuration. All actions are removed from all states, so that no actions re
main programmed. The local state settings for each state and the global set
tings are reset to their default values. If the BTT is programmed with a cleared
configuration, it will perform no operations when it runs.

Using the Reset command does not actually program the BTT with the cleared
configuration; this does not occur until you leave the BTT screen. You can
use the Reset command to clear an earlier setting and then program new ac
tions and settings from scratch.

Hardware BTT - Commands

8.6.2 load a BTT Configuration - The l Command

The L (Load) command of the BTT menu loads a complete BTT configuration
from a file that has been created previously with the 5 (Save) command. The
configuration in the file includes actions and qualifiers for all states, local state
settings for all states, and global settings. When you type l, the debugger
prompts for a filename. You can omit the extension on the filename; the de
fault extension is ".btt". If the file exists, the debugger loads it and redraws
the screen to reflect the newly loaded configuration. You can then modify the
new configuration or use it directly to program the BIT by exiting from the
BTT screen.

8.6.3 Save a BTT Configuration - The S Command

The 5 (Save) command of the BTT menu saves the current BTT configuration
into a file. This way, you can restore a particular configuration later using the
L (Load) command. When you type 5, the debugger prompts for a filename.
You can omit the extension on the filename; the default extension is ".btt". If
a file of that name exists, it is replaced by the new file. The 5 command does
not affect the current configuration in any way.

8.6.4 Exit and Program BTT - The E Command

Use the E (Exit) command of the BTT menu or the <Esc> key to program the
BTT with the current configuration and return to the main screen of the de
bugger. The next time you use the Execute command to run code, the BIT
behaves in the way you have specified.

8.6.5 Exit Without Programming - The A Command

The A (Abort) command leaves the BTT screen and returns to the main de
bugging screen without actually programming the BTT. The BIT remains
configured as it was the last time it was programmed. The Abort command is
useful when you are setting up a BIT configuration and need to temporarily
check something on the main screen, such as the location of a particular in
struction. You can Abort, check, and return to the BTT screen without pro
gramming the board itself.

Note:

The BIT screen will not reflect the actual state of the BIT if you Abort;
it will contain the last set of your modifications.

8-17

Hardware BTT - Commands

8.6.6 Edit Next Action - F1

The F1 (Edit) function key is used to move to the action area of the currently
selected state and add a new action, modify an existing action, or remove an
action. Typing F1 from the command line moves you to the first (leftmost)
action on the screen. Successively typing F1 moves forward through the four
action areas and then back to the command line. The editing process for BTT
actions is described in Section 8.7, Editing Actions.

8.6.7 Edit Previous Action - F2

The F2 (Last) function key is like the F1 key, except that it moves you from
the command line to the last (rightmost) action area. Successively typing F2
moves backward through the four action areas, rather than forward.

8.6.8 Change States - F4

The F4 (NextState) function key cycles through the four states. Use this key
to change the displayed state so that you can set up actions or local state
settings in different states. When a new state is displayed, the debugger up
dates the actions, availability window, and local state settings window to re
flect the configuration for the new state. The currently displayed state is
indicated on the third line of the screen, toward the left.

8.6.9 Edit Local State Settings - F5

The F5 (Local) function key moves to the local state settings window on the
bottom of the screen so that you can modify the values there. The meaning
and editing of these values is described in Section 8.9, Local State Settings.

8.S.10 Edit Global Settings - FS

8-18

The F6 (Global) function key moves to the global settings window on the
bottom of the screen so that you can modify the values there. The meaning
and editing of these values is described in Section 8.10, Global Settings.

Hardware BTT - Editing Actions

8.7 Editing Actions

When you move to the central area of the screen with the F1 (Edit) key, you
can enter or modify the actions that are programmed into the current state.
Each of the four "action areas" in the center of the screen consists of a list of
settings that specify an action and the qualifiers that are used to trigger the
action. The action areas are filled in from left to right as you enter new actions
into the state.

Use F1 (Next) and F2 (Prev) to move forward and backward through the ac
tions. Once an action is allocated into a state, the action itself cannot be
changed. You can, however, move to the action and change its qualifiers.
Or, you can delete the action completely and then enter a different action. For
example, suppose you have entered an EVENT action into the state with an
address qualifier of 7000h. You cannot change the EVENT to a TRACE, but
you can change the address from 7000h to 7010h.

A number of function keys can be used to perform special actions while edit
ing actions and qualifiers. Table 8-4 lists what these keys are and their effect.

Table 8-4. Function Keys for Editing Actions and Qualifiers

Command Function

F1 (Next) Move to next action

F2 (Prev) Move to previous action

F3 (Clear) Clear the current action

F4 (NextState) Display the next BTT state

F5 (Local) Move to local state settings and edit them

F6 (Global) Move to global settings and edit them

F10 (Help) Help

ESC (Escape) Return to BTT command menu

UP ARROW Move up to previous qualifier

DOWN ARROW Move down to next qualifier·

Most of these keys have already been described. Function keys F1, F2, F4,
F5, and F6 operate in exactly the same way as on the command menu and are
described in Section 8.6, BTT Command Window.

8.7.1 Entering New Actions

To enter a new action, use F1 (or F2) to step over existing actions to the first
blank action area. Initially, all the areas are blank and a new action can be
entered by typing F1 just once.

The first setting in each list is for the action type. When you move to an action
area, the cursor is positioned at this setting. For a new action, the debugger
displays a submenu of options that you use to select the action type, as sum
marized below:

8-19

Hardware BTT - Editing Actions

Table 8-5. New Action Keys

Command Function

B (BP/Event) Selects EVENT action

T (Trace) Selects TRACE action

J (Jump) Selects JUMP action

P (PointTimer) Selects POINT TIMER action

R (RangeTimer) Selects RANGE TIMER action

The various actions are described in Section 8.1, Actions. A new action can
be entered into the state by selecting one of the options from the menu.
Check the availability window on the bottom of the screen to see if the action
is available. If the number corresponding to the action is greater than zero, the
action is available. If you select an action that is not available, the debugger
displays an error message. Otherwise, the debugger allocates the new action
into the state, updates the avaifablity window, and displays the list of qualifiers
for the action, with default values, under the action. RANGE TIMER actions
are allocated in pairs: one action to start the timer and a separate one to stop
it. Because of this, RANGE TIMER actions fill two of the four areas on the
screen when they are allocated.

The cursor is positioned on the first qualifier. You can then enter the qualifiers
for triggering the new action. See Section 8.8, Editing Qualifiers.

8.7.2 Removing an Action - F3

8-20

An action can be removed from a state by moving to it and pressing F3
(Clear). When an action is removed, the other actions are moved to the left
in order to fill the space vacated by the deleted action. The availability win
dow is updated to reflect the fact that one action has just been freed.

Note that RANGE TIMER actions are allocated in pairs; when you delete either
the start or stop action of a range timer, the other action is deleted also.

You can edit the qualifiers of an action by using the DOWN ARROW key to
move to the proper position. You can move to another action by pressing F1
(Next) or F2 (Prev). You can move to the local state settings or global set
tings windows with F5 (Local) or F6 (Global). Or you can return to the
command line with the <Esc> key.

Hardware BTT - Editing Qualifiers

8.8 Editing Qualifiers

Qualifiers are listed on the screen below the action they represent. The qual
ifiers for an action are used to determine under what conditions the action is
triggered. The various qualifiers are explained in Section 8.2, Qualifiers. When
you initially enter an action, the qualifiers appear as shown below (assuming
address+data mode):

Action: BP/Event
addr IGNORE
data IGNORE

cycles ALL
extern IGNORE

The arrow keys are used to move up and down through the qualifiers, making
any desired changes.

Many of the function and control keys used throughout the BTT screen are
also valid when specifying qualifiers. Use of these keys has been explained
in previous sections. There are three special keys that are used only with the
qualifiers: F7 (Range), F8 (Mask), and F9 (Ignore). A description of these
keys follows.

Table 8-6. Function Keys for Editing Qualifiers Only

Command Function

F7 (Range) Select address interpretation

F8 (Mask) Define a bitmask for a qualifier

F9 (Ignore) Set a qualifier to be ignored (mask 0)

8.8.1 Range Specifications - F7

There are two address and two data qualifiers for each action on the BIT
board. Table 8-7 shows the ways that the two address qualifiers can be in
terpreted and how the qualifiers are displayed for each interpretation. The
qualification column in the table gives the condition that causes an input value
of "x" on the address bus to qualify. The data qualifiers work in exactly the
same way.

Table 8-7. Interpreting Range Specifications

Interpretation Display Oualification

Single point addr = <value> x = <value>

Two points addr1 = <value1 > x = <value1> OR
addr2 = <value2> x = <value2>

Inclusive range addr = <value1 > x >= <value1> AND
... <value2> x <= <value2>

Exclusive range addr ! = <value1 > x < <value1 > AND
... <value2> x> <value2>

The default interpretation is single point for all qualifiers. When the cursor is
positioned on any address qualifier or any data qualifier, use the F7 (Range)
key to cycle through the four interpretations shown in Table 8-7.

8-21

Hardware BTT - Editing Qualifiers

S.S.2 Masks - FS

8-22

The address, data, and external probe qualifiers on the BTT each have a mask
associated with them that allows you to selectively ignore bits of the address
bus, data bus, or external probe inputs. The address qualifiers have a 16-bit
mask, and the others have 8-bit masks. Before a value from the bus (or
probes) is compared with the qualifiers, the associated mask is logically
AN Oed with both the value and the qualifiers. Thus, any zero bits in the mask
force the associated bits in both the input value and the qualifier to be zero
also, thereby causing those bits to be equal and effectively ignored.

For example, assume it is necessary to qualify an action based on the external
probe inputs, but you need only four of the eight bits. You want the action
to be triggered when the four bits have a binary value of 1010, or OAh. You
can use the four least significant probe inputs, select a value of OAh for the
external qualifier, and a mask of OFh. This way, the top four bits are masked
off and ignored. When the lower four bits have a value of OAh, the qualifier
is satisfied.

By default, if a value is specified for a qualifier, all the mask bits are ones so
the mask has no effect. In this case, the mask is not displayed on the screen
with the other qualifiers. You can bring the mask for a qualifier onto the
screen by typing the F8 (Mask) key. This allows you to edit the mask value,
changing some of the bits to zero if desired. If you type F8 when a mask for
the qualifier is already on the screen, the mask is set to all ones and removed
from the screen.

When the mask is enabled, it is displayed in the qualifier list below the asso
ciated address, data, or external qualifiers. For example:

Before typing F8:

ACTION: TRACE

addr = 7000h
data = IGNORE

cycles ALL
extern OFFh

After typing F8:

ACTION: TRACE

addr = 7000h
mask OFFFFh

data = IGNORE
cycles ALL
extern OFFh

(-- current position

(-- current position

The desired value for the address mask can now be entered.

A special case occurs when a qualifier is set to IGNORE, as described in the
next section. In this case, the mask is 0 but not displayed on the screen.

Hardware BTT - Editing Qualifiers

8.8.3 IGNORE a qualifier - F9

The address, data, and external probe qualifiers have a special setting called
IGNORE, which simply means that the mask is set to 0 for that qualifier. Now
ANY value will qualify; the entire qualifier is effectively ignored.

When a new action is entered, all the qualifiers initially default to IGNORE.
This means that every bus cycle qualifies and will trigger the action. The ac
tion can be made more selective by editing only the qualifiers of interest.

A qualifier can be forced to the IGNORE setting by typing the F9 (Ignore) key
when positioned at the qualifier. This sets the mask to 0 and displays IGNORE
for the value of the qualifier.

8.8.4 Expressions as Qualifiers

Where qualifiers have numeric values, any expression can be entered. For BTT
qualifiers, expessions are limited to 11 characters in length. When an ex
pression is entered it is evaluated immediately and the resulting static value
used to program the BTT. If you leave the currently displayed state (either by
moving to a different state or exiting the BTT screen) and then return, all set
tings are displayed with their numeric values only.

For example, assume you enter "PC+SYM" for an address qualifier. The PC
is currently 7000h and SYM has a value of OF3h. The value stored in the
qualifier is 70F3h. Now assume you return to the main screen, change the
PC to 8000h, and return to the BTT screen. The address qualifier is displayed
as 70F3h, representing the VALUE it was originally programmed with and not
the expression used to get that value.

8.8.5 Action Specific Prompts

If you select a JUMP action, the debugger prompts for the jump destination
state on the line below the action prompt, as shown below:

Action: JUMP
to --

Enter the state (0-3) that you want the BTT to enter if the JUMP action is
qualified.

8.8.6 Address Prompts

The address qualifiers are displayed at the top of the qualifier list. There are
either one or two addresses (depending on the range interpretation) and a
mask (if enabled). For each prompt, enter an expression representing the ad
dress or mask you want to use. The range interpretations have been previously
described in Range Specifications - F7 on page 8-21. Masks were described
in Masks - F8 on page 8-21.

8-23

Hardware BTT - Editing Qualifiers

8.8.7 Data Prompts

In address+data mode, the data qualifiers are displayed after the address
qualifiers and are specified exactly the same way. In address-only mode, there
are no data qualifiers.

8.8.8 Cycles Prompt

The cycles qualifier allows you to specify what types of bus cycles qualify to
trigger the action. You select the desired cycle type or combination by using
the space bar to toggle through the various selections at the cycles prompt.
This qualifier applies to both address and data lines. The various selections
and their meanings are listed below.

Table 8-8. Cycles Prompt Selections

Cycles Meaning

ALL Any cycle type qualifies

NONE No cycle type qualifies
(Prevents the action from ever occurring)

MR Memory read cycles qualify

MW Memory write cycles qualify

MR+MW Memory reads and writes both qualify

lAO Only instruction fetch cycles qualify

IAO+MR Both instruction fetches and memory reads qualify

IAO+MW Both instruction fetches and memory writes qualify

You can use the F9 (Ignore) key to force the cycle type qualifier to ALL.

8.8.9 External Qualifiers Prompt

8-24

The prompt for external probe qualifiers is the last item under each action.
Enter an expression that represents the 8-bit value for the external probe in
puts. The external qualifiers can be masked; if enabled, the mask appears be
low the prompt for the qualifiers.

Hardware BTT - local States

8.9 Local State Settings

Use the F5 (Local) key from anywhere in the BTT screen to enter the local
state settings window. There are three prompts in the window, for mode, trace
mode, and event count. The local state settings are for one state only; these
settings may have different values in different states. The following function
and control keys can be used while editing the local state settings.

Table 8-9. Local State Editing Keys

Command Function

F6 (Global) Move to global settings window

F10 (Help) Help for editing local state settings

ESC (Escape) Exit from window

UP ARROW Move up to previous prompt in window

DOWN ARROW Move down to next prompt in window

8.9.1 Mode of State Prompt

The first prompt in the local state window selects the mode of the state. The
two choices are ADDR ONLY and ADDR+DATA. Use the space bar to cycle
between these two selections.

In address-only mode, there are no data qualifiers. An event cannot be trig
gered on the basis of any data bus activity. In this mode, up to four actions
can be allocated into the state.

In address+data mode, data qualifiers can be used to trigger actions. How
ever, any state in address+data mode is limited to a maximum of two actions.
Address+data mode is the initial default mode for all states.

If you have actions in the state, it may not be possible to switch from address
only to address+data mode, because there may already be too many actions
in the state. In this case, an error message is displayed. You can then go back
and clear out some of the actions before you switch modes.

8.9.2 Trace Mode

The BTT has two different ways in which trace actions can be qualified: TRIX
and normal. TRIX stands for "TRace Instruction acquisition eXtended." Each
state can be in either normal trace mode or TRIX mode, according to a local
state setting. The trace mode is the second prompt in the local state window.
Use the space bar to toggle between NORMAL and TRIX mode for the state.

In normal mode, trace actions are qualified just like other actions: any bus
cycle that matches ALL the qualifications for the action triggers the action.
The range specifiers allow you to trace instructions within a certain address
range: for example, one routine in your program. This presents a problem,
however, because instructions in the specified range probably cause memory
cycles outside the range and these are not traced. You get to see the in
structions that executed but not all the memory cycles that occur as a result
of those instructions.

8-25

Hardware BTT - Local States

TRIX mode solves this problem. In TRIX mode, the address and data qualifiers
are used to qualify the lAO (instruction fetch) cycle only. Any lAO cycle that
meets the address and data qualifications qualifies the entire instruction for
tracing. Then, any cycle that occurs during the execution of the qualified in
struction is traced if the cycle matches the cycle qualifier for the action.

The advantage of TRIX mode is that it not only traces instructions in a range
of addresses but traces memory cycles outside that range as well. The cycles
traced outside the range must be a result of instructions inside the range.

In other words, the address and data qualifiers affect only the lAO cycle of an
instruction; the cycle qualifier determines what cycles under that instruction
are also traced,

8.9.3 Event Count

8-26

The last prompt in the local state window allows you to initialize the event
counter for the state. The event counter counts the number of EVENT actions
that occur in the state. Events are allowed to occur until the event counter
reaches O. When the counter reaches 0, the BTT either sequences to the next
state, or if the current state is the end state, completes a state sequence and
possibly causes a hardware breakpoint. The operation of the event counter is
described more fully in the section on Events and Breakpoints on page 8-7.

The event counter must be a value from 0 to OFFFFh (65535 decimal). The
default value is 1; this means that any event that occurs is enough to sequence
to the next state or cause a breakpoint. A 0 disables the breakpoint function.

Hardware BTT - Global Settings

8.10 Global Settings

Use the F6 (Global) key from anywhere in the BTT screen to enter the global
settings window. There are five prompts in the window, delay count, max
trace, end state, loop count, and time out. The global settings affect the
operation of the entire BTT, independent of the states. Table 8-10 lists the
function and control keys that can be used while editing global settings.

Table 8-10. Keys for Editing Global Settings

Command Function

F5 (Local) Move to local settings window

F10 (Help) Help for editing global settings

ESC (Escape) Exit from window

UP ARROW Move up to previous prompt in window

DOWN ARROW Move down to next prompt in window

8.10.1 Delay Count

The first prompt in the globals window allows you to set the delay count. The
delay counter is used when the BTT reaches a hardware breakpoint condition.
Before the breakpoint occurs, the BTT waits for additional trace samples to
be taken, according to the number in the delay count. If the delay count is 0,
which is the default value, no trace samples are taken and the breakpoint oc
curs immediately.

The delay count allows you to see (via the trace) what happened after, or as
a result of, an event. (The delay count must be greater than zero, and a
breakpoint must be qualified on the event itself.)

After the event occurs, the BTT will wait until a number of samples equal to
the delay count have been taken before actually halting. The delay count is
also described in Section 8.3.2, Events and Breakpoints.

If you use a non-zero delay count, you must be sure that there is a TRACE
action programmed into the end state (the state the BTT will be in when it
halts). Otherwise, no trace samples can be taken and the delay count never
expires.

In some cases, the number of trace samples taken may exceed the specified
value of the delay count because the emulator can stop only on an instruction
boundary. If this happens, you will lose some of your trace samples. The
delay count must be a number from 0 to 7FFh (2047 decimal).

8-27

Hardware BTT - Global Settings

8.10.2 Max Trace

The trace buffer on the BTT can hold a maximum of 7FFh (2047 decimal)
trace samples. Normally, if more than this number of samples is collected, the
buffer wraps around and the new samples overwrite the old ones. This cor
responds to a max trace value of 0, which indicates that trace samples are to
be collected indefinitely. Zero is the default value for this setting.

A nonzero value for the max trace setting directs the BTT to halt after it has
collected that number of trace samples. When the specified number of TRACE
actions occur, the BTT halts on the next instruction boundary. The status line
on the screen displays the message TRACE FULL to indicate that the halt
occurred because max trace has been reached.

The max trace value is specified as the second prompt in the globals window.
The value must be in the range of 0-7FFh (2047 decimal).

8.10.3 End State

Of the four states in the BTT, one must be specified as the end state. The end
state is the end-of-sequence state for EVENT actions. The BIT must be in the
end state for a hardware breakpoint to occur. How the end state a~fects the
operation of the BIT is described more fully in the section on Events and
Breakpoints on page 8-7.

The end state defaults to the first state, state O. With this value, the BTT will
not sequence to state 1 if the event count expires. The end state is the third
prompt in the global settings window. To change the end state, enter a value
of 0-3 at the prompt.

8.10.4 loop Count

8-28

The loop count is another global counter that affects hardware breakpoints.
The loop count is used to repeat the state sequence a specified number of
times before acually halting. The operation of the loop count is described in
Section 8.3.2, Events and Breakpoints.

The default value of the loop count is 1. This means that the state sequence
will occur only one time. When the event count expires in the end state, the
hardware breakpoint is enabled, the delay count takes effect, and the BTT halts
as soon as the delay count expires.

To change the loop count, move to the fourth prompt in the global window
and enter a value in the range O-OFFFFh (65535 decimal).

Hardware BTT - Global Settings

8.10.5 Time Out

The BTT has a free-running timer that starts when the BTT is reset (when the
CPU starts running). This timer is sampled each time a TRACE action occurs,
and the value from the timer is included in the trace sample.

The free-running timer can also be used to halt the CPU after it has run for a
specified period of time. If you specify a non-zero value for the time out set
ting, the BTT will halt immediately when the timer reaches the specified value.
If this occurs, the status line of the debugger displays TIME OUT as the rea
son for halting.

The default value for the time out is 0, which allows the CPU to run indefi
nitely. The time out value is the fifth prompt in the global settings window.
The value can be changed by moving to the fifth prompt and entering a new
constant. Specify the time constant in terms of seconds, milliseconds, micro
seconds and nanoseconds.

8-29

Hardware BTT - Global Settings

8-30

Section 9

Debugger Configuration

The debugger has a separate screen for displaying and editing various control
settings that affect the overall operation of the debugger. This screen is ac
cessed through the C (Config) command of the top level command menu.
The configuration screen allows you to:

• Set the emulator to "continuous" run mode.

• Allow auto-update of the screen while the CPU is running.

• Set the clock source for the TMS370 CPU.

• Display the period of the current clock source.

• Display the current mode of the TMS370 device.

• Display whether or not the BTT board is installed.

• Access the memory map screen to configure the emulator memory.

• Access the color configuration utility to setup the screen colors.

This section includes the following topics:

Section Page
9.1 Configuration Command Menu ... 9-3
9.2 Configuration Settings .. 9-4
9.3 Debugger Color Setup .. 9-6
9.4 The DBSETUP Screen ... 9-7
9.5 DBSETUP Operation ... 9-9

The configuration screen is pictured in Figure 9-1. The screen consists simply
of the command line, function key line, and one small window. Those con
figuration settings that can be edited are displayed inside the window, and the
three values that cannot be edited are displayed outside the window.

9-1

Debugger Configuration

9-2

Configuration: ~mory map leset device !plors

run mode: NORMAL

trace disasm: FROM MEMORY
clock source: CRYSTAL

device mode: MICROCOMPUTER
clock period:200 ns
BTT: INSTALLED

Figure 9-1. Debugger Configuration Screen

Debugger Configuration - Command Menu

9.1 Configuration Command Menu

Table 9-1 summarizes the commands and functions available from the con
figuration command submenu. These functions are described in detail in the
following sections.

Table 9-1. Configuration Commands

Command Function

M (Memory Map) Go to the memory map screen

R (Reset) Reset the TMS370 device

C (Colors) Go to the color setup utility

ESC (Escape) Return to the main screen of the debugger

F1 (Edit) Move to the window to edit the values there

F10 (Help) Help for the config screen

9.1.1 Configure the Memory Map - The M Command

The M (Memory Map) command in the configuration menu exits from the
configuration screen and invokes the memory map screen, which is described
in Section 10, Memory Mapping.

9.1.2 Reset CPU - The R Command

The R (Reset) command causes the reset pin on the TMS370 device to be
activated. This provides a way to reset the chip independently of any reset
circuitry in the target system. The reset command also allows the debugger
to update the device mode field on the screen, since this field is updated only
when the debugger initiates the reset. Otherwise, the debugger cannot detect
when a reset has occurred, and the mode display may be inaccurate.

9.1.3 Setup Screen Colors - The C Command

The C (Colors) command exits from the configuration screen and invokes the
color setup utility for the debugger. This utility allows you to define the colors
and display attributes used throughout the debugger. The debugger setup
utility is described in Section 9.3, Debugger Color Setup.

9.1.4 Edit Configuration Settings - F1

The F1 (Edit) function key moves the cursor to the window on the screen and
allows you to edit the settings there. The meaning and editing of these set
tings are described in Section 9.2.

9-3

Debugger Configuration - Configuration Settings

9.2 Configuration Settings

There are three items on the configuration screen that are user-selectable: run
mode, source of trace disassembly, and clock source.

9.2.1 Run Mode

The emulator has two different modes under which the CPU can execute code.
In normal run mode, the emulator cannot perform any other operation while
the CPU is running. The BTT and CPU run synchronously; they are started
together and a halt condition on either causes both to halt. Normal run mode
allows the CPU to single-step, executing one instruction at a time.

The other mode is called continuous run mode. In this mode, the BTT can
be started and stopped independently of the CPU. The CPU can continue to
run while the BTT is stopped. In this case, the emulator can perform nearly
all the operations that are normally possible, such as dumping the contents
of the trace buffer, re-configuring the BTT, updating the screen, and modifying
the contents of registers and memory. When the debugger accesses registers
and memory while the CPU is running in continuous mode, the CPU is halted
just long enough to perform the operation and then restarted. Single-step
operation is unavailable in continuous run mode.

The first prompt in the configuration window allows you to select the current
run mode. Use the space bar to toggle between NORMAL and CONTIN
UOUS and make the desired selection by pressing <CR>.

9.2.2 Auto-Update

9-4

If the current run mode is continuous, the second prompt in the configuration
window allows you to toggle the auto-update option. (In normal run mode,
auto-update is not available so the prompt does not appear in the window.)
Auto-update takes effect when you return to the main screen and start the
CPU running. Whenever the CPU is running and the BTT is halted, the main
screen is repeatedly updated with new data from the emulator. This allows
you to watch your program as it runs. Updates occur appoximately 1 -3 times
per second, depending on the speed of your host machine and the amount of
information on the screen.

Auto-update can be enabled or disabled by pressing the space bar to toggle
between ON and OFF in response to the prompt. Make a selection, then press
<CR>.

Auto-update significantly affects realtime operation of your program. The
program still runs continuously, but the emulator constantly interrupts it to
update the screen. Auto-update should not be used if realtime operation is
critical.

The screen is not updated all at the same time; several instructions execute
during each update cycle. For this reason, information on the screen may not
appear to be consistent. For example, the same register displayed at two dif
ferent places on the screen may appear as having two different values, because
the running program changed its value in between updates.

Debugger Configuration - Configuration Settings

While the screen is updating, you can still enter commands to the debugger.
The debugger processes your commands between screen updates. The result
is that response to commands appears to be sluggish while the screen is being
auto-updated.

9.2.3 Trace Disassemble

This prompt allows you to decide how the trace sample will be disassembled.
Use the space bar to toggle between the two choices, and press <CR> to
make the selection. The choices are:

From memory: trace sample is disassembled from data read from memory.

From trace:

9.2.4 Clock Source

trace sample is disassembled from data obtained from the
trace buffer. Use this selection if the traced code is no
longer in memory.

The final prompt in the configuration window allows you to select the clock
source for the CPU. Use the space bar to toggle between the three choices,
and press <CR> to make the selection. The choices are:

Crystal

Oscillator

Target

A crystal in the emulator is used to generate the clock.

An oscillator circuit on the emulator is used.

The CPU expects the clock input from the target system.

There is no clock buffer circuitry in the target cable head, so the external clock
must be a TTL compatible clock. A crystal will not work.

If you change the clock source, the debugger tries to reset the TMS370 device
with the new clock source. If the emulator detects that the device is not op
erating properly, it rejects the new clock source and resets the chip again, re
storing the old clock. When this occurs, an error message is displayed:

<x> not available for clock

where <x> is the clock source you tried to select.

9.2.5 Additional Configuration Values

Three additional items are displayed on the configuration screen, just below
the window of configuration settings. The first of these indicates the device
mode and can be either MICROPROCESSOR or MICROCOMPUTER. The
device mode is read and updated whenever the debugger resets the TMS370
device, either by the R (Reset) command or by changing the clock source.
The device mode is not updated at any other time; the debugger cannot detect
external resets of the device. The second displayed value indicates the clock
cycle period, in nanoseconds. The final item indicates whether the BTT board
is installed in the emulator or not.

9-5

Debugger Configuration - Color Setup

9.3 Debugger Color Setup

9-6

A utility program called DBSETUP, provided with the TMS370 debugger, al
lows configuration of the display attributes used by the debugger to display
the screen. Display attributes consist of color and various effects such as
highlighting, reverse video, and underlining. Using DBSETUP, the screen at
tributes can be customized to fit personal tastes and the capabilities of the
display device in use.

DBSETUP stores attribute data in a file called colors. dbr. When the de
bugger initializes, it reads that file and uses the attributes stored there. If the
file does not exist, it is created and a default set of attributes is written into it.

Colors. dbr can be stored anywhere on the host PC. Both the debugger
and DBSETUP look for the symbol IPCDIR in the DOS environment table
to locate the directory in which colors. dbr resides. If the symbol is found,
its value is used for the directory; if not, the current directory is used.

For example, assume you want to keep the colors file in a directory with the
path name c: \debug\conf ig\colors. dbr. Use the DOS command SET
to define the environment symbol as follows:

C> set IPCDIR=c:\debug\config

Now, when you use the debugger or DBSETUP, the colors. dbr file will
be looked for in the directory c: \debug\conf ig. You can put the SET
command in your autoexec. bat file to initialize the symbol each time the
system is booted.

DBSETUP allows interactive modification of the attribute data in this file.
DBSETUP can be run stand-alone from the operating system or directly from
the debugger by using the C (Config) command at the top level command
menu followed by the C (Colors) subcommand. When exiting DBSETUP after
having run it from the debugger, the colors. dbr file is re-read and the
screen displayed using the new attributes.

Debugger Configuration - The DBSETUP Screen

9.4 The DBSETUP Screen

The OBSETUP screen is pictured in Figure 9-2. The top line of the screen is
a command menu similar to the other command menus in the debugger. The
bottom line is a list of function keys; each key represents a color. To the right
of the center of the screen is a miniature mock-up of the main debugger
screen. To the left of that, a list of field descriptors is displayed. Each field
descriptor corresponds to some part of the debugger screen and has a separate
attribute associated with it. The field descriptors and the parts of the mock-up
screen that correspond to them are displayed with their corresponding attri
butes. This way, you can see how the real screen will look.

Debugger Setup Utility: leverse .ighlight IDlink ~it I=>0rt

Command Line
COrnf'!"rlnCJ h I q~' I I "--A~ t
r (" t ~ E:' (C-...

Screen Dividers
Status Line
Display Fields

Function Keys

Debug Menu: lommand,
[exprJ: 0ABC

0000 THIS IS CODE .. THIS IS CODE
0002 THIS IS CODE
0003 THIS IS CODE

FF00 00 01 02 03
FF04 AA bb CC DD
FF08 Fl lA BB CC
FF0C 00 01 02 03

IKey1 IIKey2 lI<ey3

lommand, Iommand
Status: SETUP

R0 0000 Rl -R2fIIIJ R3 3333
R4 4444 R5_
Rbllll'l R7 7777

exprl ~AA
expr2 BBBB
expr3 IIIiI
expr4 DDDD

liB-Green &II-Cyan III-Red .-Magenta .-Ye llow .-Wh i te

Figure 9-2. DBSETUP Screen

The various field descriptors and what they represent on the screen are de
scribed in Table 9-2 on the next page.

9-7

Debugger Configuration - The DBSETUP Screen

Table 9-2. Field Descriptors

Field Description

Command Line Top-line menu titles and command names.

Command Highlight Selection letters on menus, and function keys.

Edit Fields Current output buffer for field editor.

Screen Dividers Double lines that delimit the windows.

Status Line All messages and status displays on second line of screen.

Display Fields Any displayed values. Trace samples, disassembly. BTT qualifi-
ers and settings. Memory map and configura-
tion settings.

Highlight Fields Highlighted fields such as current PC. values that have changed
since last update. Also, current input buffer for
field editor.

Labels Names that identify displayed values. Also, IAQ trace samples.

Error Messages Messages displayed on bottom line of the screen.

Function Keys Function key command names on the bottom line of the screen.

9-8

Debugger Configuration - DBSETUP Operation

9.5 DBSETUP Operation

The cursor is positioned just to the left of the field descriptors. The cursor can
be moved up and down through the descriptors using the arrow keys. At each
field descriptor, you can set the color using a function key or perform various
other commands as described by Table 9-3.

Table 9-3. DBSETUP Commands

Field Description

R (Reverse) Toggle reverse video for current field

H (Highlight) Toggle highlight (bright) anribute for
current field (IBM PC only)

B (Blink) Toggle blink attribute for current field

Q (Quit) Quit, saving attribute data in "colors.dbr"

A (Abort) Quit, but do not save attribute data

ESC (Escape) Quit, with save (same as 'Q')

F1 (Blue) Set color of current field to blue

F2 (Green) Set color of current field to green

F3 (Cyan) Set color of current field to cyan

F4 (Red) Set color of current field to red

F5 (Magenta) Set color of current field to magenta

F6 (Yellow) Set color of current field to yellow

F7 (White) Set color of current field to white

UP ARROW Move up to the previous field descriptor

DOWN ARROW Move down to the next field descriptor

Note:

On an IBM PC with a monochrome display board, all the colors are dis
played as white, except for blue, which appears as underlined white. Also,
the R (Reverse) attribute is visible only if the selected color for the field
is white.

9-9

Debugger Configuration - DBSETUP Operation

9-10

Use the commands and functions above to move between the field descriptors
and select attributes for them. When you change an attribute, the field de
scriptor and corresponding parts of the mock-up screen are immediately dis
played with the new attribute.

When finished, type a (Quit). The new attributes are stored in the file co
lars. dbr. If you have made changes but do not want to save them, exit
with A (Abort).

If you called DBSETUP from the debugger, you return to the debugger. The
debugger reads the new colors file and updates the screen to reflect any
changes made.

Section 10

Memory Mapping

The memory mapping capability of the TMS370 debugger allows you to spe
cify, for various ranges of the address space, exactly how memory accesses
are satisfied by the CPU. The TMS370 device provides significant flexibility
in the memory map, with its various configurations of internal memory and
external addressing capability. In addition, the emulator has 64K bytes of
high-speed emulation RAM, which can be used to functionally emulate target
system memory. The debugger memory mapping system allows you to take
advantage of the hardware's flexibility.

Specifying the memory map is accomplished by dividing the 64K address
space into ranges. Each range starts and ends on a 16-byte boundary and has
three attributes that determine how addresses in the range are accessed. The
three attributes are type, mapping, and protection.

The type attribute for a memory range specifies what class of memory the
range falls into, such as register file, program ROM, EEPROM, etc. The type
for a given range is determined by the architecture of the particular TMS370
device being emulated. The mapping attribute specifies, for a given type,
whether the memory is to be accessed internally on the chip, from external
target memory, or from emulator RAM. Finally, the protection attribute allows
you to prevent the CPU from reading and/or writing to the given address
range.

Any address that is not covered by a specified range in the debugger memory
map is considered to be unconfigured. All unconfigured memory is protected
against both read and write operations, so that if the CPU tries to access an
unconfigured location, an access violation occurs and the CPU halts.

Contents of this section include:

Section Page
10.1 Memory Map Screen ... 10-2
10.2 Memory Types ... 10-3
10.3 Top Level Memory Map Commands ... 10-8
10.4 Device Definition Window ... 10-11
10.5 Memory Map Window .. 10-14
10.6 Peripheral File Window .. 10-18

10-1

Memory Mapping - Memory Map Screen

10.1 Memory Map Screen

The memory map screen of the debugger is pictured in Figure 10-1. The
screen is divided into three areas. The first area, in the upper left part of the
screen, contains specifications of the TMS370 device being emulated. These
specifications define the type attribute for all addresses in the memory map.
The second area, in the lower left, allows you to specify address ranges and
define the attributes for them. Finally, the right half of the screen is dedicated
to a "blow-up" of the map for the peripheral file. This allows you to specify
mapping and protection attributes for individual frames of the peripheral file
without having to explicitly specify frames as separate ranges.

Memory Map: load Save liJeset Bevi ceSelect

============device definition================~=========peripheral map=========

REGISTER FILE - size: 00100h from to mapping prot
DATA EEPROM - size: 00100h
PROGRAM MEM - size: 01000h type: ROM
EEPROM CTRL FRAME: 01h I • 01010h - 0101Fh INTERNAL

memory map 2 01020h - 0102Fh INTERNAL
type from to mapping prot 3 01030h - 0103Fh INTERNAL

4 0t040h - 0t04Fh INTERNAL
R FILE 00000h - 000FFh INTERNAL 5 01050h - 0105Fh INTERNAL
P FILE 0t000h - 010FFh b 010b0h - 010bFh INTERNAL
D EEPROM 01F00h - 01FFFh INTERNAL eeprm

02000h - 020tFh EMULATE RW 7 01070h - 0107Fh INTERNAL

03000h 030tFh EMULATE 8 01080h - 0108Fh INTERNAL
P ROM 07000h - 07FFFh INTERNAL -W 9 01090h - 0t09Fh INTERNAL

A 010A0h - 010AFh INTERNAL
B 010B0h - 0t0BFh INTERNAL
C 010C0h - 0t0CFh INTERNAL
D 010D0h - 010DFh INTERNAL
E 0t0E0h - 010EFh INTERNAL
F 0t0F0h - 010FFh INTERNAL

"Ed it

Figure 10-1. Memory Map Screen

10-2

Memory Mapping - Memory Types

10.2 Memory Types

Any given range in the memory map is one of eight types: REGISTER FILE,
PERIPHERAL FRAME, PROGRAM ROM, PROGRAM EEPROM, PROGRAM
EPROM, DATA EEPROM, EEPROM CONTROL FRAME, and USER. In the
memory map window, the memory type for a given range is displayed with the
range. Each type is described below. Also, the options for mapping and
protecting each type of memory is given.

Figure 10-2 shows a map of the address space and how memory types are
assigned to addresses according to the device definition. The device definition
is described in Section 10.4, Device Definition Window.

OOOOh

(RSIZE - 1)
RSIZE

(2000h

(BOOOh

1000h
1010h

10FFh
1100h

- DSIZE)

1FFFh
2000h

3000h

- PSIZE)

7FFFh
8000h

FFFFh

-
-

-
-

-

R FILE

USER

P FRAME
P FRAME
P FRAME

USER

DATA EEPROM

RESERVED

USER

PROGRAM ROM
EEPROM OR EPROM

USER

WHERE: RSIZE = REGISTER FILE SIZE
DSIZE = DATA EEPROM SIZE
PSIZE = PROGRAM MEMORY SIZE

Figure 10-2. Device Specifications for Various Memory Maps

10-3

Memory Mapping - Memory Types

10.2.1 Register File Memory

Description: Locations are part of the TMS370 on-chip register file.

Mapping Attributes: The mapping attribute for the register file is always
INTERNAL, meaning that accesses to these locations always occur on the
device itself; no external referencing is possible.

Protection Attributes: Any combination of read and write protection can
be applied to register file addresses. If the CPU accesses a protected register,
an access violation trap occurs and the CPU halts.

Note:

A write protection violation causes the trap but does not prevent the data
from being written to the register. The default mapping for the register file
is no protection.

10.2.2 Peripheral Frame Memory

Description: This type is used for 16-byte ranges in the peripheral register
file. These ranges appear in the right half of the screen, separate from the main
memory map where they are grouped together as P FILE.

Mapping Attributes: By default, peripheral frames are mapped as INTER
NAL, which means that accesses are to the actual periphera~registers on the
TMS370 device. However, an expansion board can be added to the emulator
which contains hardware for additional peripheral frames or replacement
hardware for existing on-chip frames. A frame on the expansion board can
be accessed by setting the mapping attribute for the frame to EXTERNAl.

Protection Attributes: Any combination of read and write protection can
be applied to peripheral file addresses. If the CPU accesses a protected reg
ister, an access violation trap occurs and the CPU halts.

10.2.3 Program ROM Memory

10-4

Description: This memory type is used for addresses that fall in the range
of the on-chip mask ROM. If the program memory space of the current device
is EEPROM, there is no memory of this type in the map. Program ROM is
emulated using the high-speed RAM in the emulator; the TMS370 device
used in the emulator has no actual on-chip ROM of its own.

Mapping Attributes: Program ROM is always mapped as INTERNAL,
which means that whenever internal memory is enabled on the device, mem
ory accesses in this range are satisfied by the emulator (just as if the memory
were actually on the chip). If internal memory is disabled, such as when the
device is in microprocessor mode, accesses in this range are to external mem
ory on the target system.

Protection Attributes: Program ROM is, by default, write protected. Write
cycles to addresses in a range of this type cause an access violation trap to
occur. If internal memory is enabled, which means that data would be written
to emulator RAM, the data is not written (in other words, emulator RAM that

Memory Mapping - Memory Types

is write protected cannot be written to). Writes to external target memory
cause a trap, but the write operation cannot be prevented.

Write protection is the default for Program ROM, although the protection at
tribute can be changed. You can remove the write protection and have no
protection, or you can add read protection so that all or part of the program
ROM space is completely protected.

10.2.4 Program EPROM Memory

Description: Program EPROM memory is similar to program EEPROM me
mory with the following differences:

1) Only write to zero is supported (W1 WO=O).

2) No block erase feature is supported.

Mapping Attributes: See Program EEPROM above.

Protection Attributes: You cannot change the protection attributes of
EPROM. On the memory map screen, EPROM is displayed as eprm to indi
cate the special treatment of this memory range. Write cycles to EPROM me
mory do not cause access violation traps which halt the CPU.

10.2.5 Program EEPROM Memory

Description: The Program EEPROM type is used for addresses that fall in
the range ot the on-chip program EEPROM. EEPROM is emulated using the
high-speed RAM in the emulator; the TMS370 device used in the emulator
has no actual on-chip EEPROM of its own.

The emulator simulates the operation of the EEPROM by trapping internally
whenever the EEPROM or its control registers are accessed, deciding how the
real EEPROM would behave, and then simulating that behavior. Thus, EEP
ROM emulation is not accurate, and there are some side effects of this scheme
that could cause problems in certain target environments.

First, since EEPROM is simulated by software in the emulator, EEPROM op
erations are not realtime. The software emulates an EEPROM write by halting
the processor for several milliseconds. This delay occurs during any memory
access to the EEPROM Control Frame or any write to EEPROM memory. If
the delay is not wanted, change the EEPROM size to 0 and redefine a new
block of memory in the memory map window.

Second, no mapping or protection options are allowed for EEPROM memory
types. Finaliy, EEPROM simulation is always in effect, even if internal memory
in the device is disabled. In other words, if your application is switching be
tween internal and external memory, the program memory should not be de
fined as EEPROM or accesses to external target memory will never occur. The
best way around this limitation is to define the program memory space as
ROM or USER, so that mode changes are more accurately emulated.

Mapping Attributes: EEPROM memory types are always mapped as IN
TERNAL, which means that memory accesses in this range are satisfied by the
emulator. Note that this is true even if internal memory is disabled (see the
discussion above).

10-5

Memory Mapping - Memory Types

Protection Attributes: You cannot change the protection attributes of
EEPROM. On the memory map screen, EEPROM is displayed as eeprm to
indicate the special treatment of this memory range. Write cycles to EEPROM
memory do not cause access violation traps which halt the CPU.

10.2.6 Data EEPROM Memory

Description: The Data EEPROM type is used for addresses that fall in the
range of the on-chip data EEPROM. Some devices have no memory of this
type in the memory map. Data EEPROM is emulated using the high-speed
RAM in the emulator in exactly the same way as Program EEPROM. See the
description above for details on how EEPROM is treated in the emulator and
the restrictions on its use.

Mapping Attributes: See Program EEPROM above.

Protection Attributes: See Program EEPROM above.

10.2.7 EEPROM/EPROM Control Frame Memory

10-6

Description: This is a special memory type that is applied to the peripheral
register frame in which the control registers for EEPROM/EPROM are located.
If no EEPROM/EPROM is present in the memory map, there will be no
EEPROM/EPROM control frame. When EEPROM/EPROM is present in the
map, accesses to the control registers are trapped and simulated in the same
way as accesses to the EEPROM/EPROM itself.

Since mapping is on 16-byte boundaries, ANY write access to the frame in
which the control registers are located causes this trap to occur. This trap
causes the processor to halt for several milliseconds. On the actual TMS370
device, the control register is frame 1 (addresses 101 Oh - 101 Fh). Frame 1
contains many other control registers and it is desirable to avoid taking a trap
whenever any of the other registers are accessed.

To avoid this problem, you can map the EEPROM/EPROM control registers
into a different frame of the peripheral file and thereby avoid causing a delay
whenever frame 1 is accessed. Typically, the control registers are mapped into
an unused frame. The offset for each control register in the frame remains the
same. For example, the registers on the actual device are at addresses 101 Ah,
101 Ch, and 101 Eh. If you change the EEPROM/EPROM control frame to
frame 8, the emulator acts as if the registers are at addresses 108Ah, 108Ch,
and 108Eh. You could modify your source code to operate on the new ad
dresses. If you want the several-millisecond delay, use ".equ" directives in the
assembly source to define the EEPROM/EPROM control registers.

The EEPROM/EPROM control frame is specified with the device parameters.
The peripheral frame that is defined as the EEPROM/EPROM control frame is
identified on the screen with an asterisk ('*') next to the frame number.

Memory Mapping - Memory Types

10.2.8 User Memory

Description: Any memory range that is not explicitly defined by the device
characteristics to be one of the other types is a USER memory range. Thus,
all memory addresses are either USER or one of the types described above.
User ranges show up in the memory map with no "type" field. USER memory
allows you to configure other regions of the address space as being accessible
to the CPU, in addition to those implicitly configured by the device type.

Mapping Attributes: USER memory can be mapped as EMULATE or
TARGET. When an address range is mapped as EMULATE, the emulator uses
the on -board emulation RAM for accesses to those addresses in the range.
When mapped as target, the emulator expects the target system to satisfy
memory cycles to addresses in the range. You can use EMULATE as a sub
stitute for target memory when the target memory circuitry is missing or in
complete.

Protection Attributes: Any combination of read and write protection is
available for use with USER ranges. By default, all USER memory is fully
protected against both read and write access, thus causing an access violation
trap to occur when the CPU attempts a cycle. Such default ranges do not
appear in the memory map display unless you explicity specify them for in
clusion in the window. Then, you can remove all protection, specify read
protection only, or specify write protection only.

Note:

If a write protection violation occurs with memory that is mapped to
TARGET, the emulator cannot prevent the data from being written out
(the trap occurs, but the write is not prevented). The write cycle is pre
vented only if the address range is mapped to EMULATE.

10-7

Memory Mapping - Memory Map Commands

10.3 Top Level Memory Map Commands

You invoke the memory map screen from the top level command menu by
typing eM (Config,Memory). The current memory map configuration is dis
played in the three areas of the screen, an example of which is shown in Figure
10-3. The memory map screen has its own menu of commands, which are
used for top level memory map functions. You can also move to each of the
three windows to perform editing operations.

Memory Map: load gave Eeset SeviceSelect

============device definition================~=========peripheral map=========

10-8

REGISTER FILE - size: 00100h n from to mapping prot
DATA EEPROM - size: 00100h
PROGRAM MEM - size: 01000h type: ROM
EEPROM CTRL FRAME: 01h 1 • 01010h - 0101Fh INTERNAL

memory map 2 01020h - 0102Fh INTERNAL
type from to mapping prot 3 01030h - 0103Fh INTERNAL

4 01040h - 0104Fh INTERNAL
R FILE 00000h - 000FFh INTERNAL 5 01050h - 0105Fh INTERNAL
P FILE 01000h - 010FFh b 010b0h - 010bFh INTERNAL D EEPROM 01F00h - 01FFFh INTERNAL eeprm

02000h - 0201Fh EMULATE RW 7 01070h - 0107Fh INTERNAL

03000h 0301Fh EMULATE 8 01080h - 0108Fh INTERNAL
P ROM 07000h - 07FFFh INTERNAL -W 9 01090h - 0109Fh INTERNAL

A 010A0h - 010AFh INTERNAL
B 010B0h - 010BFh INTERNAL
C 010C0h - 010CFh INTERNAL
D 010D0h - 010DFh INTERNAL
E 010E0h - 010EFh INTERNAL
F 010F0h - 010FFh INTERNAL

_Help

Figure 10-3. Memory Map Configuration Screen

Table 10-1 describes the commands and functions for the memory map com
mand menu.

Memory Mapping - Memory Map Commands

Table 10-1. Memory Map Commands

Command Function

L (Load) Load the memory map from a file

S (Save) Save the current configuration in a file

R (Reset) Reset all ranges to default

o (Device Select) Define map for "standard" TMS370 device

ESC (Escape) Return to the main screen

F1 (Edit) Move to the device definition window

F2 (Last) Move to the peripheral file window

F10 (Help) Help for the memory map screen

10.3.1 Load Map from File - The L Command

The L (Load) command in the memory map command menu allows you to
load a file containing memory map information and set up the memory map
according to the information in the file. Memory map files contain the settings
from all three of the windows: device definition, additional attributes/ranges,
and peripheral file mapping. Use the 5 (Save) command described below to
create a saved memory map file. Note that loading a new memory map de
stroys the current map.

When you type L, the debugger prompts you for a filename. You can omit the
extension on the filename if the default extension is • mmp (for Memory Map).
If the file entered cannot be found or is found to be of the wrong type (me
mory map files have a special identification code), an error message is issued
and the command aborts. Otherwise, the debugger reads the file, sets up the
memory map in the emulator accordingly, and displays the newly loaded map
on the screen.

Memory map files can also be loaded using the L (Load) command at the top
level debugger menu, provided a • mmp extension is added. See Section 5.9,
Loading a File - The L Command.

10.3.2 Save Map in File - The S Command

The 5 (Save) command saves the current memory map specification in a disk
file for later retrieval using the L (Load) command. This allows the use of
different map specifications for different debugging applications, without
having to re-enter the map each time the debugger is invoked.

When the 5 command is entered, the debugger prompts for a filename. Again,
the default extension is • mmp and should be used so that map files can be
loaded from the main screen also. The debugger creates the file, deleting any
existing file with the same name, and stores a representation of the current
memory map in the file.

Memory map files contain the settings from all three of the windows: device
definition, additional attributes/ranges, and peripheral file mapping. The file
is stored with a special key to indicate that it is a memory map file and is in
machine readable format only.

10-9

Memory Mapping - Memory Map Commands

10.3.3 Reset Map - The R Command

The R (Reset) command simply restores the memory map to the basic con
figuration as defined by the current device definition. All ranges in the map
are set to have the default attributes for their memory type. All USER ranges
are removed (since the default attributes for USER memory makes it uncon
figured).

The effect of this command is to "undo" anything you have done to the me
mory map in the map or peripheral file windows. The Reset command has no
effect on the device definition settings.

1 0.3.4 Select a Standard Device Type - The D Command

Device

The 0 (Device Select) command is a shortcut for specifying a set of values in
the device definition window. The debugger has a table of standard device
types corresponding to the TMS370 devices that are currently available. For
each device, the table contains the complete set of device definition values.
The device table is shown as Table 10-2.

Table 10-2. Device Definitions

R File D EEPROM Prog Mem Prog Mem EEPROM
Size- Size Size Type Control

TMS370C010 80h 100h 1000h ROM 1

TMS370C810 80h 100h 1000h EEPROM 1

TMS370C050 100h 100h 1000h ROM 1

TMS370C850 100h 100h 1000h EEPROM 1

10-10

On initial power-up, the debugger sets up the memory map according to the
definition of the TMS370C050 device.

When you type 0, the debugger displays the name of the most recently se
lected device. Use the space bar to cycle through the devices in the table.
Press < CR > to select one of the devices. The debugger fills the values from
the selected device into the device specification window, sends the config
uration to the emulator, and updates the screen to reflect the new memory
map.

Selecting a device with the 0 command is exactly equivalent to moving to the
device specification window and manually entering the values from a row of
Table 10-2.

Memory Mapping - Device Definition Window

10.4 Device Definition Window

The values represented in this window define the memory architecture char
acteristics of the device being emulated. Specifically, the device specifications
determine the memory type attributes for the entire address space. This is the
only way that type attributes can be set or changed.

Any changes you make to the device definition do not take effect until you
leave the window. Then, the changes are sent to the emulator, and the screen
is updated to reflect the new configuration of the memory map. When you
change the device definition, all old device definitions are removed from the
map.

Any USER memory ranges are kept but may be fragmented or deleted if they
overlap ranges that are imposed by the new device definition. For example,
assume you have a USER range from address 6000h to 7FFFh and no program
memory. Then, you modify the device definition to put 4K of Program ROM
from address 7000h to 7FFFh. This causes the USER range to be fragmented,
resulting in USER memory from 6000h to 6FFFh and Program ROM from
7000h to 7FFFh. This can be summarized as follows: when a new device
definition is merged into the memory map, the memory ranges defined by the
new device have priority over all other existing ranges in the map.

Refer to Table 10-2 to see how the device definition parameters are used to
assign type attributes to the address space. Refer to Section 10.2, Memory
Types, for a description of the memory type attributes and to Section 10.5.1
on page 10-15 for examples.

You edit the settings by moving to the appropriate prompt and entering a new
value. The debugger produces error messages when values are out of range
or otherwise ,invalid. Table 10-3 outlines the editing keys used to move
around in the window.

Table 10-3. Device Definition Window Editing Keys

Command Function

ESC (Escape) Return to the main screen

F1 (Next) Move to the memory map window

F2 (Prev) Move to the peripheral file window

F10 (Help) Help for the device definition window

LARROW Left or up to previous prompt

UP ARROW Move up to the previous prompt

R ARROW Right or down to next prompt

ON ARROW Move down to the next prompt

A description of each device definition follows.

10-11

Memory Mapping - Device Definition Window

10.4.1 Register File Size

The first prompt in the device specification window defines the size of the re
gister file. The register file can be from 128(80h) to 256(100h) bytes long,
in increments of 16(1 Oh) bytes. The register file always starts at address Oh.
Any memory from OOOOh through the size of the register file is assigned type
REGISTER FILE.

10.4.2 Data EEPROM Size

The second prompt defines the size of the data EEPROM area on the device.
The value can range from 0 to 1000h, although the largest data EEPROM area
currently available on an actual device is 100h bytes. The size must be a
multiple of 16 (10h) bytes. You can specify a size of 0, in which case no
memory in the map is of type DATA EEPROM.

The data EEPROM area in the map grows downward from a high boundary
at address 2000h. Thus, the starting address can be found by subtracting the
size from 2000h.

10.4.3 Program Memory Size

The third prompt in the device definition window determines how much on
chip program memory the device has. This memory can be either mask ROM
or EEPROM, depending on the value of the program memory type (next
prompt). Program memory size can range from 0 to 4000h. You can specify
a size of 0, in which case no memory in the map is configured for program
memory.

The program memory area in the TMS370 map grows downward from a high
boundary at address 8000h. The starting address of program memory is found
by subtracting the size from 8000h. For devices that have 1000h bytes of
program memory, the starting address is 7000h.

10.4.4 Program Memory Type

10-12

The prompt for program memory type is located next to the program memory
size. If there is no program memory (size = 0), the type prompt does not ap
pear. There are two choices for program memory type: ROM or EEPROM.
See Section 10.2, Memory Types, for descriptions. Use the space bar to tog
gle between the two choices and press <CR> to make a selection.

Memory Mapping - Device Definition Window

10.4.5 EEPROM Control Frame

The final prompt in the device definition window is for the EEPROM control
frame. If there is no EEPROM specified (data EEPROM size is 0 and program
memory is ROM), this prompt does not appear. Valid values for this prompt
range from 1 to 15 (OFh), corresponding to the 16-byte frames of the pe
ripheral file. The starting address for the frame is given by:

start address = 1000h + (n * 10h)

where n is the frame number.

Any access to any register in the EEPROM control frame will produce a sev
eral-millisecond delay in an attempt to emulate EEPROM. This delay will also
affect the system configuration and interrupt registers. If you want to avoid
the delays caused by this EEPROM emulation scheme, move the EEPROM
control register to an unused frame; i.e., frame 08.

10-13

Memory Mapping - Memory Map Window

10.5 Memory Map Window

10-14

The memory map window, located in the lower left part of the screen, displays
a representation of the memory map for the entire address space. All config
ured memory is represented in this window. The map is displayed as a list of
address ranges, displayed as follows: the type attribute, the addresses in the
range, the mapping attribute, and the protection attributes. Ranges that have
no type attribute are USER ranges.

The entire peripheral file is represented in the map as a range with a dummy
type of P FILE; this range is simply a place holder for the peripheral file ad
dresses. The P FI LE range has no attributes in the memory map window and
cannot be edited, since attributes for the peripheral file can be specified on a
frame-by-frame basis in the separate peripheral file map window.

In the memory map window, you can define new ranges, remove ranges, or
move up and down through the list and modify attributes, under the control
of a command menu. The current range is highlighted. Table 10-4 summa
rizes the commands and functions used to inspect the memory map.

The options available for editing attributes for a given range depend on the
memory type of a range. For example, only protection attributes can be spe
cified for an R FILE range. For an EEPROM range, no editing of attributes is
allowed at all. As you move up and down through the list of memory ranges,
the command menu changes to contain only the options that are available for
the current range.

Table 10-4. Inspect Memory Commands

Command Function

A (Add) Define a new memory range

D (Delete) Restore default attributes to a range

R (Read Protect) Add read protection to a range

W (Write Protect) Add write protection to a range

N (No Protection) Remove all protection from a range

E (Emulate) Set mapping attribute to EMULATE

T (Target) Set mapping attribute to TARGET

ESC (Escape) Return to the memory map top level

F1 (Next) Move to the peripheral file window

F2 (Prev) Move to the device definition window

F10 (Help) Help for the memory map window _

UP ARROW Move up to the previous range

DN ARROW Move down to the next range

Memory Mapping - Memory Map Window

10.5.1 Adding a New Range - The A Command

The A (Add) command allows you to add new ranges to the memory map.
When a new range is added, it is first assigned a type attribute according to
where in the address space the range falls. For example, assume there is a
range of Program ROM from 7000h to 7FFFh. If a new range is added within
this range, its type is also Program ROM. If the new range does not fall within
any existing configured range, it becomes a USER range.

Ranges in the memory map cannot straddle type boundaries. If a new range
is added that overlaps two or more ranges of different types, the new range is
fragmented into multiple ranges having different types.

The mapping and protection attributes for a newly added range are also set to
be the same as whatever the new range overlaps. Thus, adding a new range
has no direct effect on the memory map itself. Adding a range simply enters
the range as a distinct part of the memory map, so that its mapping and pro
tection attributes can subsequently be modified.

Assume the current memory map is as follows:

type from to mapping prot

R FILE OOOOOh - OOOFFh INTERNAL
P FILE OlOOOh - OlOFFh
D EEPROM OlFOOh - OlFFFh INTERNAL -W
P ROM 07000h - 07FFFh INTERNAL -W

Example 1. Add a range from 1 Oh to OFFh. The range falls completely within
the R FILE, so it gets type R FILE. The existing R FILE is fragmented to ac
commodate the new range:

type from to mapping prot

R FILE OOOOOh - OOOOFh INTERNAL
R FILE OOOlOh - OOOFFh INTERNAL (new range)
P FILE OlOOOh - OlOFFh
D EEPROM OlFOOh - OlFFFh INTERNAL -W
P ROM 07000h - 07FFFh INTERNAL -w

Example 2. Add a range from 6000h to 70FFh. The new range overlaps
unconfigured memory from 6000h to 6FFFh and P ROM from 7000h to
70FFh. The new range is broken into two ranges. The first is a USER range
(because it overlaps unconfigured memory) and the second is PROM.

type from to mapping prot

R FILE OOOOOh - OOOFFh INTERNAL
P FILE OlOOOh - OlOFFh
D EEPROM OlFOOh - OlFFFh INTERNAL -w

06000h - 06FFFh TARGET RW (* new range 1 *)
P ROM 07000h - 070FFh INTERNAL -W (* new range 2 *)
P ROM 07100h - 07FFFh INTERNAL -W

Use the A (Add) command to add ranges in the manner described above. The
debugger prompts for the starting and ending addresses - enter expressions
for each of these prompts. The start address must be on a 16-byte boundary,
and the end address must be one less than a 16-byte boundary. If either of
these conditions is not met, the debugger rounds the addresses up to the next

10-15

Memory Mapping - Memory Map Window

satisfactory boundary. The debugger also ensures that the start address is less
than the end address.

If all is in order, the debugger adds the range (or ranges, if the new range gets
fragmented) according to the rules described above. The memory map is re
displayed to reflect the addition of the new range. The cursor is positioned
at the new range so that you can now define mapping and protection attri
butes for it.

10.5.2 Reset a Range to Default/Delete - The D Command

10-16

Use the D (Delete) command to reset the mapping and protection attributes
for the current memory range back to their default values according to the
memory type. This has the effect of undoing any changes you have made to
the mapping or protection of the range. In this way, you can remove non
default ranges (such as USER ranges) from the memory map.

For example, assume the memory map is as follows:

type from to mapping prot

R FILE OOOOOh - OOOFFh INTERNAL
P FILE OlOOOh - OlOFFh
D EEPROM OlFOOh - OlFFFh INTERNAL -W

06000h - 06FFFh EMULATE <=== current
P ROM 07000h - 070FFh INTERNAL RW
P ROM 07100h - 07FFFh INTERNAL -W

The current range is USER memory that has been mapped into emulator me
mory and is completely unprotected. If you type '0' while positioned at this
range, the mapping is changed back to target and all protection is restored
(this is the default for USER memory). The USER map is removed, resulting
in:

type from to mapping prot

R FILE OOOOOh - OOOFFh INTERNAL
P FILE OlOOOh - OlOFFh
D EEPROM OlFOOh - OlFFFh INTERNAL -W
PROM 07000h - 070FFh INTERNAL RW <=== current
PROM 07100h - 07FFFh INTERNAL -W

Now, the current range is ROM that is completely protected. If you type D
again, the protection is reset to the default (write-protect only). The deleted
range is then merged into the rest of P ROM, as follows:

type from to mapping prot

R FILE OOOOOh - OOOFFh INTERNAL
P FILE OlOOOh - OlOFFh
D EEPROM OlFOOh - OlFFFh INTERNAL -W
P ROM 07000h - 07FFFh INTERNAL -W

Memory Mapping - Memory Map Window

10.5.3 Modify Protection - The R, W, and N Commands

The R (ReadProtect) command protects the current range so that any read
operation from the CPU in the specified address range causes an access vio
lation. Similarly, the W (Write Protect} command protects the current range
from write operations. If the CPU executes a write cycle to memory that is
write protected, an access violation occurs.

In some cases, the emulator cannot actually prevent data from being written
to memory when a write violation occurs (the violation is detected but not
prevented). These cases depend on the memory type and where it is mapped.
In general, only write operations to internal emulator RAM can be prevented;
others are only detected.

Internal RAM is used for the following memory types: Program ROM, all
EEPROM, and USER memory that is mapped to EMULATE. Writes to memory
of type R FILE, P FILE, or any memory that is mapped to TARGET can never
be prevented.

The N (NoProtect) command simply removes all protection from the current
memory range.

10.5.4 Modify Mapping Attributes - The E and T Commands

Use the E (Emulate) command to map the current range into emulator mem
ory. By doing this, you can "emulate" the memory of the target system. The
emulator satisfies references to external memory that fall in the current range
using its on-board high-speed emulation RAM, rather than going to the target
system.

Use the T (Target) command to map the range back to target memory. The
emulator expects the target system to satisfy all external memory accesses that
fall within the range.

10-17

Memory Mapping - Peripheral File Window

10.6 Peripheral File Window

The final window on the memory map screen is located on the right half of the
screen and contains a blown-up representaion of the map for the peripheral
file. Each of the 15 peripheral file frames is represented by one line in the
window (frame 0 is omitted since its map is not available for modification).
Each 16-byte frame is treated as a separate range and behaves in a way similar
to the ranges in the main memory map window.

The frame at which the cursor is positioned is the current frame. Like the
memory map window, you can change the mapping and protection attributes
of the current frame or move between the frames using the arrow keys.
Ranges cannot be added or deleted from the peripheral file map.

The EEPROM control frame is displayed with an asterisk ("*") next to the
frame number. You cannot change the mapping or protection of the EEPROM
control frame.

The command menu for inspecting the peripheral frames is similar to the one
for the main memory map. Table 1 0-5 summarizes the available commands
and functions.

Table 1 0-5. Peripheral File Window Commands

Command Function

I (Internal) Set mapping attribute to INTERNAL

E (Expansion) Set mapping attribute to EXPANSION

R (Read Protect) Add read protection to a frame

W (Write Protect) Add write protection to a frame

N (No Protection) Remove all protection from a frame

ESC (Escape) . Return to the memory map top level

F1 (Next) Move to the device definition window

F2 (Prev) Move to the memory map window

F10 (Help) Help for the peripheral file map window

UP ARROW Move up to the previous frame

ON ARROW Move down to the next frame

10.6.1 Modify Mapping Attributes - The E and I Commands

10-18

The emulator supports an add-on peripheral expansion board, which can be
used to realize additional custom peripheral modules. By mapping peripheral
frames to the expansion board, the emulator can access I/O addresses on the
board as if the custom module was a normal on-chip peripheral frame.

Use the E (Expansion) command to map the current frame onto the expansion
board. The emulator then expects the board to satisfy all peripheral file ac
cesses in the frame.

Use the I (Internal) command to map the frame back to normal, so that ac
cesses to the frame occur from within the TMS370 device.

Memory Mapping - Peripheral File Window

10.6.2 Modify Protection - The R, W, and N Commands

The R (ReadProtect) command protects the current frame so that a read op
eration from the CPU to any register in the frame causes an access violation.
Similarly, the W (Write Protect) command protects the current frame from
write operations. If the CPU executes a write cycle to memory that is write
protected, an access violation occurs. The emulator cannot prevent the data
from being written to the register. It simply detects the violation and halts the
CPU.

The N (NoProtect) command simply removes all protection from the current
peripheral frame.

The protection commands can be used to unconfigure peripheral frames that
are non-existent. Simply use Rand W to fully protect any frame that is not
associated with an actual peripheral module. This way, you can detect erro
neous accesses to nonexistent registers.

10-19

Memory Mapping - Peripheral File Window

10-20

Section 11

The XDS System

This section contains installation and operation information for an XDS/22
System containing an XDS/370 Emulator for program development. Emulator
requirements and a summary of startup procedures are presented. Operation
of the emulator is carried out primarily through use of the software described
in the first part of this manual.

The following topics are included in this section:

Section Page
11.1 Chassis Description , ... , 11 -2
11.2 Memory Expansion/Communication Card 11 -8
11.3 The TMS370 Emulator Card .. 11 -11
11.4 Breakpoint/Trace/Timing Card ... 11 -17
11.5 Target Cables , ... 11-27
11.6 User IVlaintenance .. 11 -31
11.7 Factory Repair Information ... 11 -35
11.8 XDS/22 System Repair Guide ... 11 -37

Warning:

Since many of the procedures described in this section require
a working knowledge of computer and electronic equipment,
Texas Instruments recommends that all installations and proce
dures be made by a trained technician.

11 -1

The XDS System - Chassis Description

11.1 Chassis Description

This section describes the XDS/22 unit chassis.

An XDS/22 unit cabinet mounts an operator panel containing switches and
indicator lights; a rear panel containing port connectors, line-cord connector
and fuse holder, and an exhaust fan; a top cover; and a front card-cage cover.

The cabinet contains a power supply, seven -slot card cage with backplane
connector, and chassis cable-mounting bracket.

This section includes the following topics:

11.1.1 Operator Panel .. 11-2
11.1.2 Rear Panel .. 11 -3
11 .1 .3 Card Cage and Cover ... 11 -3
11.1.4 Chassis Cable Mounting .. 11-6
11.1.5 Povver Supply .. 11-6

11.1.1 Operator Panel

11-2

r-------------STATUS------------__

~ ~
2 3

~
POWER

ON -I

IOFF-o 1

RESET

o
Figure 11-1. XDS/22 Front Panel Controls and Indicators

The controls and indicators on the XDS/22 Operator Panel (Figure 11-1)
function as follows:

• ON/OFF POWER Switch: Applies line voltage to the unit.

• POWER Indicator: Lights when power is applied to the unit.

• RESET Switch: When pressed, sends a hardware reset signal to the I/O
devices, TMS370, and multiplexer devices on the TMS370 Emulator
card. There is a slight delay as voltage is sampled to ensure that it is
within an acceptable range.

• STATUS Indicators: Display emulator status.

1) Status Indicator #1, IDLE. This light comes on when the TMS370
is in the idle mode, which indicates that the processor is executing

The XDS System - Chassis Description

an IDLE instruction. The idle indicator resets upon an interrupt
acknowledge or when the emulator enters the control mode.

2) Status Indicator #2, ILLEGAL OPCODE DETECT. This indicator
lights when the emulator detects that the TMS370 has fetched an
invalid instruction.

3) Status Indicator #3, not used by the TMS370 XDS.

4) Status Indicator #4, RUNNING. This indicator lights when the
emulator executes user code.

11.1.2 Rear Panel

The rear panel (Figure 11-2) houses the four female DB-25 port connectors,
line cord/fuse connector, and exhaust fan.

0 o
0 o

C
c:::J
C

0 0 0

0 0 0 o
0

Figure 11-2. Rear of XDS/22 Unit

The line cord/fuse holder accepts 3AG or 5mm x 20mm fuses. The mechanical
design requires that you pull the line cord before replacing the fuse. For In
ternational applications (220 or 240 V, 50 Hz), the holder also includes a
special line filter (TI Part No. 22221618-0001) to meet VDE4 requirements.

The exhaust fan pulls cooling air through the ventilation slots and air filters in
the top cover.

The pinout for the DB-25 connector labeled Port A corresponds to Table 2-3
on page 2-6, and is described in Section 2.4, Emulator/Debugger Cabling.

4 VDE (Vereinigung Deutscher Electrizitaetswerke) sets electrical standards for equipment
sold in the International market, just as Underwriters Laboratory (UL) sets standards for
the United States.

11-3

The XDS System - Chassis Description

11.1.3 Card Cage and Cover

The various emulator cards plug into the card-cage backplane connector in the
order shown in Table 11 -1 .

Table 11-1. XDSj22 Card-Cage Slot Assignments

SLOT PART DESCRIPTION

7 Not used

6 Not used

5 Not used

4 Memory Expansion/Communications card

3 Reserved for emulator card expansion

2 TMS370 Emulator card

1 Breakpoint/Trace/Timing card

The XDSj22 chassis with a full complement of options is shown in Figure
11 -3.

EMULATOR CARD
IN SLOT 2

TARGET -CABLE
BRACKET

EXTENDED-TRACE -~
CABLE GROUND

11 -4

EXTENDED-TRACE
CABLE

LOGIC-SHOW
CABLE

Figure 11-3. TMS370 XDSj22 Complete Chassis Configuration

The XDS System - Chassis Description

11.1.3.1 Card Cage Cover Removal and Replacement

Caution:

To avoid overheating and electromagnetic radiation, never op
erate an XDS/22 without its card cage cover in place.

To remove the card cage cover:

1) Turn power OFF.

2) Loosen two captive thumb screws on lower front of XDS cabinet (Figure
11 -4).

3) Apply slight upward pressure to cover. Pull bottom of cover up and away
from chassis until bottom clears target-cable clamp hardware.

4) Let cover drop enough to clear top lip of chassis.

5) Remove cover. Be careful not to damage target-system cable.

Figure 11-4. Card Cage Cover, Right Side

To replace the card cage cover:

1) Place top of cover under lip at top of XDS/22 unit.

11-5

The XDS System - Chassis Description

2) Push cover bottom toward unit, ensuring that the two thumb screws
start properly.

3) Tighten screws.

Caution:

Do not operate the XDS unit with the front panel removed. This
panel must be installed for proper air circulation and cooling
of the circuit boards. Also, the front panel is required to pre
vent leakage of RFI/EMI radiation.

11.1.4 Chassis Cable Mounting

The chassis cable mounting (Figure 11-5) anchors the LOGIC-SHOW cable
strain-relief bracket. This application uses only the horizontal set of mounting
holes.

EXTENDED ADDRESS
CABLE SLOT

-;;;;;;;;;~a::::::s;\-- HORIZONTAL

+-- 45° ANGLE

Figure 11-5. Chassis Cable Mounting

11.1.5 Power Supply

11-6

The switching power supply generates ± 12 V and +5 V. DC power output
current and tolerance figures are listed in Table 11 -2 below.

All option boards that are installed must have their current requirements cal
culated into the total loading of the power supply.

Table 11-2. Maximum XDS/22 Chassis DC Power Available

DC Tolerance Current
Voltage (Amps)

+5 ±3% 20.0

+12 ±2.5% 4.0

-12 ±5% 2.0

The XDS System - Chassis Description

Table 11 -3 shows the DC power requirements for the XDS board set. This
information can be used to calculate the total DC power requirements of the
XDS system. When adding new boards to the system, this DC power calcu
lation should be made to ensure that the XDS power supply will not be over
loaded. Refer to Table 11 -2 for the power supply rating information.

Table 11-3. XDS Board Set DC Power Requirements

Part Board +5 Volts +12 Volts -12 Volts
Description Part (Amps) (Amps) (Amps)

Number

TMS370 Emulator 2536810-1 3.0 0.0 0.0

BTT Card 2243660-2 4.5 0.0 0.0

Memory Exp/Comm 2311050-2 0.5 1.5 0.5

11-7

Memory Expansion/Communication Card

11.2 Memory Expansion/Communication Card

The Memory Expansion/Communications card (Figure 11-6) mounts proc
essing logic for EIA-Ievel signals to and from the XDS ports. It resides in slot
number 4 in the chassis.

11.2.1 Card Removal

Remove the card from its slot by following this procedure:

1) Remove cables J41, J45, and J47 from front-edge card connectors.

2) Pull out on inside edge of ejector tabs to unseat card.

3) Carefully remove card from card cage.

~
I)l

~
:::

i
Q1
~
~

~
III
~
~

~
:::

Figure 11-6. Memory Expansion/Communications Card

11-8

Memory Expansion/Communication Card

11.2.2 Switch Settings

Verify the settings of switches S3 and S4 on the Communications card and
set correctly, if necessary. Refer to Tabl~ 11 -4 for switch settings.

Table 11-4. Memory Expansion/Communications Card Switch
Settings

Switch
Position S3 S4

1 off off
2 off off
3 off off
4 on off
5 on on
6 on on
7 on off

11.2.3 Card Installation

1) Verify that the Card Assembly Revision level is correct on the..chassis
configuration label inside the card cage cover.

2) Ensure proper switch settings before installing it in chassis slot #4,
component side up. Press firmly on card edge or card-ejector tabs.

3) Connect J41, J45, and J47 (Figure 11-7).

MEMORY EXPANSION AND COMMUNICATIONS BOARD
COMPONENT SIDE OF BOARD

TO PORT A
J41

TO PORT 0
J47

TO PORT C
J45

Figure 11-7. Communications Cable Connections

11-9

Memory Expansion/Communication Card

Note:

Do not attempt to connect J43.

11-10

The xes System - The TMS370 Emulator Card

11.3 The TMS370 Emulator Card

Figure 11 -8 indicates the location of parts on the board that are of particular
interest. To view these, remove the board according to the procedure given
below.

11.3.1 Card Removal

Caution:

Do not remove or install circuit boards or connectors with
power applied to the chassis.

This procedure is to be performed only at a static-free workstation. Adhere to
normal static discharge handling procedures.

1) Remove power from the emulator and the target system.

2) Disconnect the target connector from the target system.

3) Protect the target connector leads by using a non-conductive protector.

4) Remove the emulator front panel by loosening the two thumb screws
located at the bottom of the panel.

5) Detach the target cable strain relief by loosening the two thumb screws
that anchor it to the chassis.

6) Locate the emulator board in slot number 2.

7) Using the two ejector tabs on the emulator board, remove the board from
the chassis, keeping the target cable free of obstructions.

This section includes the following topics:

11.3.2 Operating Frequency Options ... 11 -12
11.3.3 Onboard Crystal Option ... 11 -13
11.3.4 Target System Clock Option ... 11 -13
11.3.5 Onboard Crystal Oscillator Option ... 11 -14

11 -11

The XDS System - The TMS370 Emulator Card

o o
TARGET CABLE-----...,

ASSEMBLY

TMS370
SYSTEM EMULATOR

DEVICE

\:::::::::::::~ 1/ EPROMS 7

I:::::::::V

TMS9996
SYSTEM CONTROLLER

Figure 11-8. TMS370 Emulator Board with Target Cable Attached

11.3.2 Operating Frequency Options

11 -12

The TMS370 emulator provides three methods of input for operating fre
quency. Referring to Figure 11 -8 for locations, these methods are:

1) Onboard crystal oscillator package option at location U27.

2) Target system clock through the target cable assembly on the XTAL
LOW/OSCIN pin. (Pin 31 on the 68-pin package or pin 5 on the 28-pin
package.) Note that this option must be a TTL compatible clock; a
crystal will not work.

3) Onboard crystal at location Y1 with Oscillator Tank Circuit network at
locations L 1 and C1 for 3rd Overtone crystals.

At emulator power-up, the previously selected clock (the selection is stored
in non-volatile memory on the emulator board) is selected for the operating
clock. If this clock does not properly operate the system, the next clock is
used. If this fails, the third clock is used. The order for finding the proper

The XDS System - The TMS370 Emulator Card

clock is as listed above starting with the selected clock and cycling through
the list. Alternate clock selections are made through the appropriate initial
ization command.

The range of frequency inputs supported by the emulator matches that of the
TMS370 microprocessor. Refer to the TMS370 Data Sheet for details.

11.3.3 Onboard Crystal Option

The onboard crystal at location Y1 may be replaced by removing it from the
sockets contained on the emulator board. (Refer to Figure 11 -8 for location.)
The frequency of this crystal should not exceed the frequency range detailed
in the TMS370 Data Sheet.

To ensure that 3rd Overtone crystals operate at the desired frequency, a Tank
Circuit network is provided at locations L2 and C29. This provides a method
of tuning the crystal input circuit. Inductor L2 and capacitor C29 should be
chosen to disable the fundamental frequency of the crystal. The component
values should satisfy the following equation:

VV02 = 1 /(L2 x C29),

where:

Wo is the fundamental radian frequency
L2 is the inductor value
C29 is the capacitor value

For example, to tune a 24 MHz 3rd overtone crystal:

Choose an inductor (L2) of 10 uH

Fundamental frequency

Radian Frequency Wo

= 24 MHz/3
= 8 MHz

=2x3.1416x8MHz

= 50.265 x 106 radians/sec

Capacitor value C29 = 1/ (W02 x L2) = 39.6 pF

When installing components L2 and C29, remove capacitors C30 and C31
from the board. Refer to Figure 11 -8 for locations.

11-13

The XDS System - The TMS370 Emulator Card

11.3.4 Target System Clock Option

The clock from the target system may be used by driving the crystal low input
lead on the target connector, pin 31 on the 68-pin package or pin 5 on the
28-pin package, with a TTL-compatible clock oscillator. The emulator sup
ports the frequency range detailed in the TMS370 Data Sheet.

11.3.5 Onboard Crystal Oscillator Option

An onboard crystal oscillator package at location U27 (Figure 11-8) is also
supported. The oscillator package must conform to the pinout in Table 11 -5
for a 14-pin DIP.

Table 11-5. Crystal Oscillator Package Pinout

Pin
Number Function

1 N/C

7 Ground

8 Output

14 + 5Vdc

14 8

7

Figure 11-9. Crystal Oscillator Pin Locations

11.3.6 Emulator Board Installation Procedure

11-14

Caution:

Do not remove or install circuit boards or connectors with
power applied to the chassis.

This procedure is to be performed only at a static-free work
station. Adhere to normal static discharge handling procedures.

Make sure the Chassis Configuration Label found on the inside surface of the
front cover contains the foilowing information for the TMS370 Emulator
board.

The XDS System - The TMS370 Emulator Card

Table 11-6. Chassis Configuration label Information

Block Title Information Entered

PWB Description TMS370

Part Number 2536810-1

Rev Enter revision letter from TMS370 board

1) Ensure the emulator board is correctly configured for the desired board
options listed previously in this section.

2) If the target cable is to be installed, connect the Plug Board sockets to
the emulator header pins J4 through J7 (see Section 11.5.4).

3) Install card in XDS chassis slot #2, component side up. Seat card into
backplane card connectors by pressing on the inside edge of card-ejec
tor tabs. Be sure emulator target cable goes on top of both
Breakpoint/Trace/Timing card LOGIC-SHOW and extended-address
cables.

4) Secure cable-clamp thumb screws; do not overtighten.

5) Figure 11 -10 shows the completely configured chassis.

6) See Section 11.1.3.1 for card cage cover replacement.

7) If the target cable assembly has been installed on the emulator board,
attach the target cable strain relief to the chassis by tightening the two
thumb screws.

8) Position the front panel by sliding the top of the panel under the chassis
cover lip.

9) Tighten the two thumb screws located near the bottom of the front pa
nel.

11 -15

The XDS System - The TMS370 Emulator Card

EMULATOR CARD
IN SLOT 2

EXTENDED-TRACE
CABLE GROUND

EXTENDED-TRACE
CABLE

LOGIC-SHOW
CABLE

TARGET -CABLE
BRACKET

Figure 11-10. XDS/22 with Breakpoint/Trace and Emulator Cards Installed

11 -16

The XDS System - Breakpoint/Trace/Timing Card

11.4 Breakpoint/Trace/Timing Card

The Texas Instruments Breakpoint/Trace/Timing (BTT) Card gives you ad
vanced breakpoint and tracing operation on up to 32 bits and also adds se
quencing and trace time-stamping functions.

Address, data, and qualifier data from the XDS backplane passes through
latches and lookup RAM to form 32-bit address/data comparisons and pro
cessor-cycle qualifications. These control event and delay counters, trace
sample enable, halt logic, sequence control, and timing logic.

The Breakpoint/Trace/Timing card LOGIC-SHOW cable also brings out sig
nals for display on a logic analyzer or oscilloscope.

Jumper configuration and cabling connections for this card are shown in
Figure 11 -11 .

~.: ... · ·· ·.i ..•. SHOi<TING 8 ~PLUG

ICDI~:(~n
E1

Ips --~

Ip4 ~

Figure 11-11. Breakpoint/Trace/Timing Card

11-17

The XDS System - Breakpoint/Trace/Timing Card

X
D
S

M
o
T
H
E
R
B
o
A
R
D

LOOK-UP
RAM BREAKPOINT,

TRACE
ADDRESS

RANGE
LOGIC

BREAKPOINT,
TRACE
DATA
RANGE
LOGIC

Figure 11-12. Breakpoint/Trace/Timing Card Block Diagram

EXTENDED
PROBE

11.4.1 Card Relnoval

11-18

Remove the Breakpoint/Trace/Timing card by following this procedure:

1) Remove the Emulator card according to the procedure outlined in Sec
tion 11.3.

2) Remove thumb screws holding LOGIC-SHOW cable clamp to chassis
cable bracket.

3) Unplug extended-address cable and its ground connector.

4) Pullout on inside edge of each Breakpoint/Trace/Timing-card ejector
tab simultaneously to unseat card.

5) Carefully remove card from card cage.

The XDS System - Breakpoint/Trace/Timing Card

11.4.2 BTT Cabling

A Breakpoint/Trace/Timing card can have both a LOG Ie-SHOW cable that
plugs into P4 and P5 and an extended-address cable that plugs into P3.

11-19

The XDS System - Breakpoint/Trace/Timing Card

11.4.2.1 LOGIC-SHOW Cable

11-20

The LOGIC-SHOW cable is flat, 2 inches (50mm) wide, and has a strain-relief
bracket that fastens to the XDS chassis cable mount inside the XDS chassis
(Figure 11-5 on Page 11-6). Figure 11-13 illustrates the LOGIC-SHOW cable
with the ribbon cable connectors folded back toward the logic pod. These
connectors are actually inside the chassis when the cable is installed.

Data, address, and qualifiers are brought out to the cable end to allow con
nection to a logic analyzer.

~~J4 AND J5 ON
B~KPOINT /TRACE/TIMING CARD

~~~~STRAIN-RELIEF CLA~ 

Figure 11-13. Texas Instruments LOGIC-SHOW Cable 

The pinout of the logic pod is illustrated in Figure 11 -14 and on the side of 
the logic pod opposite the LOGIC SHOW label. 



The XDS System - Breakpoint/Trace/Timing Card 

Figure 11-14. LOGIC-SHOW Cable Showing Pinout Label 

Table 11-7. LOGIC-SHOW Cable Pinout 

A A A A A A A A A A A A A A A A Q Q Q G 
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 000 N 
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 654 D 

A A A A A A A A A A A A A A A A Q Q Q G 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 000 N 
5 4 3 2 1 o 9 8 7 6 5 4 3 2 1 0 321 D 

D D D D D D D D D D D D D D D D Q R C G 
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 0 U L N 
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 0 NtK D 

D D D D D D D D D D D D D D D D E T Z G 
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 V R R N 
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 TtC OtD 

t indicates active-low signal. 

In Table 11-7, the following definitions apply: 

11-21 



The XDS System - Breakpoint/Trace/Timing Card 

11-22 

AOO - A 15 Processor address lines 
008 - 015 Processor data lines 
00 W/"R. Logic 0 indicates a READ cycle. Logic 1 

indicates a WRITE cycle 
01 OCF - Opcode fetch cycle. Logic 0 indicates that this cycle is 

an instruction opcode FETCH. 

02 Not used. 

03 MEM. - Memory cycle. Active low should be used to qualify 
the CLOCK signal when memory cycle captures are desired. 

04 Not used. 

05 INT - INTERRUPT VECTOR FETCH. A Logic 0 indicates that 
these cycles were fetching an interrupt vector. 

06 Not used. 

RUN Emu running flag. Logic 0, emulator running; Logic 1, pro-
cessor in command-entry mode. In Alternate- Run mode, 
emulator can still be running with RUN signal high. 

CLK Sample clock. Low-high edge transition indicates valid ad-
dress, data, and qualifier. Use to sample a" signals on logic 
pod. 

The EVT, TRC, and ZRO signals occur one cycle after a valid 
M EM signal. They are results of BTT evaluation of the previ
ous cycle due to BTT -card pipelining. Use these signals as 
additional clock qualifiers. The data and address are mean
ingless for that capture, but the capture signifies that the 
previous cycle had special meaning to the BTT card. 

ZRO Breakpoint Halt- Pending Flag. Logic 0 indicates a" break-
point events have occurred and event count has decremented 
to zero. Breakpoint occurs after any delay count. 

EVT Breakpoint Event flag. Logic 0 indicates hardware breakpoint 
event satisfied 

TRC Trace-sample flag. Logic 1 indicates taking of trace sample. 



The XDS System - Breakpoint/Trace/Timing Card 

11.4.2.2 Extended-Address Cable 

The extended-address cable (Figure 11-15) is about 5/16 of an inch (8 mm) 
in diameter and fastens under the LOGIC-SHOW strain-relief bracket or 
adapter bracket in the semicircular groove in the chassis cable mount (see 
Section 11.1.4). 

TO CHASSIS GROUND ------I.-

Figure 11-15. Extended-Address Cable 

TO~ 
CONNECTOR 

P3 ON BTT 
CARD 

11-23 



The XDS System - Breakpoint/Trace/Timing Card 

Figure 11-16. Extended-Address Cable Connector with Probes 

11.4.3 Extended-Address Probes 

11-24 

These probes may be connected to additional address lines or to signals which 
will be qualifiers for Breakpoint or Trace applications. A color coding system 
(shown in Table 11 -8) allows you to keep track of each line. Connect ex
tended-address probes to the extended-address cable only when they are ac
tually in use. 

See the section on BTT command qualifiers (Section 8.2, page 8-4) for more 
information on utilizing these probes. 

Table 11-8. Data Signal Values for Extended-Address Cable lines 

DATA BIT COLOR 
NUMBER OF LINE 

o (LSB) Black 
1 Brown 
2 Red 
3 Orange 
4 Yellow 
5 Green 
6 Blue 
7 (MSB) Violet 
GROUND White 



The XDS System - Breakpoint/Trace/Timing Card 

11.4.4 Breakpoint/Trace/Timing Card Installation 

1) If using a logic analyzer, connect cable J4 (stamped LOG Ie SHOW) to 
BTT P4 and J5 to BTT P5, before instailing the card. Be sure to align 
J4 with P4 and J5 with P5 and press connectors down firmly! 

2) If using extended-address cable, plug its ground push-on connector into 
the XDS chassis clip. 

3) Move card-ejector tabs parallel to side of card. 

4) Place card in slot 1 (lowest) and push it into card cage until it reaches 
backplane card sockets, then back it out slightly until you can rotate 
outside edge of each ejector tab into small square hole on side of card 
cage (Figure 11-17). Take care to guide the extended-address cable past 
the card's soldered side. 

Caution: 

Be careful. The projecting component leads are sharp. 

p) Press card into backplane card connectors by pressing on inside edge 
of card-ejector tabs. 

Figure 11-17. XDS/22 Card Cage Ejector Tab Holes 

11-25 



The XDS System - Breakpoint/Trace/Timing Card 

11-26 

6) Plug extended-address cable into Breakpoint/Trace card connector P3 
after card installation. If a logic analyzer is also used, run extended
address cable underneath LOGIC-SHOW cable. 

7) Secure LOGIC-SHOW cable clamp on chassis cable-mount bracket with 
thumbscrews. Be sure extended-address cable goes in semicircular 
groove in chassis bracket. 

8) If LOGIC-SHOW cable is not used, mount strain-relief adapter on chas
sis bracket mount by tightening the two thumb screws. 

9) If installing no more cards, list Breakpoint/Trace/Timing card on the 
chassis-configuration label located on the card-cage cover. 

After installation, replace cabinet cover as described on page 11 -4. 



The XDS System - Target Cables 

11.5 Target Cables 

Note: 

The XDS may not operate properly when the target connector is con
nected to a target system that is not powered up. 

11.5.1 Target Cable Assembly 

Two target cable assemblies are provided to support emulation of both the 
TMS370C050 (68-pin PLCC) and the TMS370C01 0 (28-pin PLCC and DIP) 
devices. The target cable assemblies are shown in Figure 11 -18 and Figure 
11 -19. 

SS-PIN PLCC ____ ----., 
CONNECTOR ~ 

~~~~ 
PIN 1

Figure 11-18. TMS370C050 Target Cable Assembly

11-27

The XDS System - Target Cables

2B-PIN PLCC
CONNECTOR

MATCHING 45 0 ANGLE NOTCH

PIN 1

28-PIN DIP
1----- ADAPTER

Figure 11-19. TMS370C010 Target Cable Assembly

11.5.2 Handling the Target Connector

11-28

Caution:

Handle the target connector with extreme care at all times be
cause the leads are fragile and can be easily damaged. When
removing the PLCC from its socket, use a sharp instrument to
pry the assembly from the target, as opposed to pulling it out
by the attached cable.

Use the following precautions when handling the target connector:

1) Protect against electrostatic discharge into the target connector, espe
cially in extremely dry air conditions. An electrostatic discharge will
damage the internal circuits in the XDS unit.

2) Power down the target system and the XDS unit when connecting or
disconnecting the target connector to prevent an accidental short circuit.

3) When the target connector is not in use, the leads must be protected
with a non-conductive protector to prevent damage to the leads and to
prevent electrical shorts in the emulator. Conductive material should

The XDS System - Target Cables

never be used for protecting the target connector leads, since this can
cause short circuits and damage to the emulator.

11.5.3 Connecting the Target Cable to the Target System

Caution:

When installing the target connector into the target system,
make sure that the lead orientation is correct.

The target cable assembly terminates in either a 28-lead PLCCjDIP package
or a 58-lead PLCC package at the target connector. Two external ground leads
are provided on the target connector. These are located on the same side of
the connector where the target cable exits. Use the black grounding clip pro
vided to ensure that a good ground connection is made between the XDS unit
and the target system.

For normal applications, plug the target connector into the target system in
place of the microprocessor that is to be emulated. The target system can be
any circuit that incorporates one or more processors. The target connector
pinout for the TMS370 microprocessor and the signal characteristics are pro
vided in the appropriate TMS370 Family device specification.

11.5.4 Installing the Target Cable Assembly in the Emulator

Two target cable assemblies are provided with the emulator: one to support
the 28-lead TMS370C010 device and the other to support the 58-lead
TMS370C050 device. To change from one cable assembly to the other, it is
necessary to remove the emulator board from the XDS unit. Follow the emu
lator board removal procedure detailed in Section 11.3.1.

Figure 11 -8, page 11-12, shows the target cable assembly connected to the
TMS370 emulator board. At the emulator board, the target cable assembly
terminates in a Plug Board, shown in Figure 11 -20, which connects into
headers J4 through J7 (34 pins each). The emulator board and target cables
are marked for proper identification.

Figure 11-20. Target Cable Attachment

Installing the 68 or 28 pin target cable:

1) Remove the emulator board per Section 11.3.

2) Carefully remove the currently installed target cable by grasping the
connectors of the target cable and pulling gently upward while holding
the emulator card down on the table. Do not at any time grasp the cable
itself or the strain relief attached to the cable and pull or twist.

11-29

The XDS System - Target Cables

11-30

3) Align the new target cable's connector with the emulator board accord
ing to Table 11 -9. Move the target cable slightly from side to
side until all of the pins have slipped into the connectors.
Gently push the target cable down onto the emulator card until the cable
is firmly attached. Verify that no pins are bent.

Table 11-9. Target Cable Connections

Emulator 28 Pin PLCC
Connector Connector

J1 J1

J3 J4

J5 J2

J7 J3

J9 J5

Emulator 68 Pin PLCC
Connector Connector

J2 J1

J4 J4

J6 J2

J8 J3

J11 J5

4) Replace the TMS370 emulator board per Section 11.3.

The XDS System - User Maintenance

11.6 User Maintenance

Note:

Texas Instruments assumes no liability or contractual requirements by
publication of maintenance schedules, procedures, and time intervals in
this section; and intends these procedures only as a guide for qualified
service personnel. Procedures subject to change without notice,

The only regular user maintenance is normal cleaning of the system cabinet
and air filter.

11.6.1 Cleaning Cabinet

Texas Instruments recommends that you clean the cabinet monthly, or as ne
cessary.

1) Turn power switch OFF and unplug line cord.
2) Wipe ail unit surfaces with damp, lint-free cloth. For heavy dirt build-up,

use mild soap solution. Avoid spraying soap solution on unit.
3) Clean air intake and exhaust areas.
4) Plug line cord back in.

11.6.2 Cleaning Air Filters

Texas Instruments recommends that you check the air filters monthly or more
often, as necessary.

1) Turn power switch OFF and unplug unit from power source.

2) Remove the top cover:

a) Set unit on its side and remove four 1/4" hexagonal-head screws
marked in Figure 11 -21 that hold top cover to cabinet base. Be
sure to remove only the marked screws.

b) Set unit back on its feet and remove four screws that hold top
cover to rear panel.

c) Remove top cover by spreading lower edges and lifting up.

3) Remove the air filter from each side of top cover by removing four re
taining nuts. Lift each filter from mounting screws. Use a screwdriver
(gently), if necessary.

4) Hold each filter up to window or overhead light. If either filter is very
dirty, clean both as follows:

a) Wash each filter in mild soap and water solution.

b) Remove as much water as possible by blowing compressed air
through filter or patting with paper towels.

c) When completely dry, spray with water-soluble adhesive following
directions on can label.

11-31

The XDS System - User Maintenance

COVER
SCREWS

(4 PLACES)

11-32

5) Reinstall the filters by following steps 1 -3 in reverse.

Caution:

Filter must be completely dry before reinstallation.

Do NOT operate an XDS/22 without both air filters installed. In
addition to blocking dust and dirt, these filters prevent acci
dental entrance of small objects through the ventilation slots.

(3

•

THUMBSCREWS

Figure 11-21. Top Cover Removal

The XDS System - User Maintenance

11.6.3 Fuse Replacement

Only the AC line fuse on the XDS/22 rear panel is replaceable. Use this pro
cedure:

1) Turn the XDS power switch OFF, then unplug the line cord from its re
ceptacle.

2) Remove power cord from back of unit.

3) The power-cord connector also houses the fuse (Figure 11 -2). Pry tab
outward with small screwdriver.

4) Pull drawer unit out from power connector.

Warning:

Do not connect XDS/22 to power source with fuse drawer
pulled out.

5) Lift narrow tab and pull fuse platform from drawer unit.

6) Replace fuse, if necessary, with appropriate selection from Table 11-10.
Do NOT overfuse!

Table 11-10. Fuse Replacement Guide

FUSE RATING

XDS MODEL VOLTS AMPS TYPE TI PART NUMBER EQUIVALENT

2310990-1 125 I 3 I SB 410822-60 Buss MDX-3

2310990-2 250 I 2 I SB 2220531-4 Schurter 034.3120

7) Replace fuse platform in fuse drawer and push in until it locks in place.

8) Insert fuse drawer into power bulkhead until it is flush with the bulk
head.

9) Insert power cord in fuse holder/connector, then plug line cord into
power receptacle.

10) Turn POWER switch on. If line fuse holds, proceed with normal opera
tion.

11) If line fuse opens (fan not running), turn POWER switch off, then unseat
all XDS cards.

12) Replace line fuse as previously described, reconnect power, then turn
POWER switch on. If line fuse opens, turn POWER switch off, unplug
the line cord, and refer to Section 11.7 to send equipment in for factory
exchange or repair.

13) If line fuse holds, turn POWER switch off and reseat the emulator card.

14) Turn POWER switch on.

11-33

The XDS System - User Maintenance

11-34

15) If line fuse opens, turn POWER switch off and send emulator card in for
exchange or repair as detailed in Section 11.7.

16) If line fuse holds, repeat previous two steps, but reseat
Memory/Communications card.

17) Repeat these steps for each remaining card. If any card causes the fuse
to open, send that card in for exchange or repair as detailed in Section
11.7. After receiving the repaired or exchange card, don't forget to re
place the fuse before attempting to operate the XDS.

If these procedures do not isolate the problem, refer to Section 11.7.

The XDS System - Factory Repair Information

11.7 Factory Repair Information

Please consult the Factory Repair and Exchange Instructions that were en
closed with your development system for the most up-to-date instructions.
The following section is included in case that document is unavailable and
represents the most current information available at the time this book was
printed.

The Texas Instruments Incorporated Microprocessor and Microcontroller Pro
ducts Division (MMPD) Factory Repair Center at 12203 Southwest Freeway,
Stafford, TX, 77477, M/S 730, (713) 274-2285, offers warranty repair or ex
change at no charge5 and non-warranty repair at standard labor and material
rates for all current XDS products. Call the above number for price and de
livery schedules.

11.7.1 Shipping Information

For any factory repair, do this:

1) Contact the Factory- Repair Center at (713) 274-2285 and ask for a
Return Authorization Number and an exchange/repair questionnaire.

2) Fill out the questionnaire. Be sure to include the Return Authorization
Number. Make a copy for your records.

3) Pack the XDS carefully and securely (preferably with the original pack
ing material in the original shipping box) and send post or freight pre
paid to:

Texas Instruments Incorporated
Microprocessor and Microcontroller Products Division
Factory- Repair Center, M/S 730
12203 Southwest Freeway
Stafford, TX 77477

4) The package must contain the exchange/repair questionnaire completely
filled out with the following information:

5 Except shipping.

• Return Authorization Number (Remember that Texas Instruments
cannot accept returned equipment without this number)

• Customer name, contact name, and telephone number

• For warranty repair:

a) Proof of date of purchase (required)
b) Payment for return freight, if special return handling is re

quired.
c) Payment for expedited exchange, if that service requested.

• For non-warranty repair, payment (if applicable), including expe
diting charges, if that service is requested.

11-35

The XDS System - Factory Repair Information

• Model number (XDS/22) and serial number (from model plate on
rear)

• "Ship-to" information, including address, amount of insurance,
and shipping method. Texas Instruments ships UPS insured (mi
nimum amount) unless you specify otherwise.

• Invoicing address, if applicable

• Request for return of same serial-numbered unit, if desired.

• Symptoms (please be as specific as possible) and type of service
requested.

5) Make a copy of the waybill for your records.

Upon receipt, Texas Instruments inspects the equipment. If it does not meet
the warranty conditions described on Page 11 -36, Texas Instruments will no
tify you immediately.

11.7.2 Warranty Determination

11-36

Texas Instruments considers an XDS/22 to be in warranty if all these condi
tions apply:

1) You notify Texas Instruments of the problem within 90 days of purchase
from Texas Instruments or an authorized distributor

2) The Factory- Repair Center receives the unit in standard Texas Instru
ments configuration with no customer additions

3) Factory-Repair Center inspection shows problem(s) not caused by ac
cident, alteration, improper installation, improper testing, misuse, neg
lect, or unauthorized repair.

The XDS System - System Repair Guide

11,8 XDSj22 Systelll Repair Guide

e If an XDS/22 does not power up when turned on, that is, the POWER
light on the Operator Panel doesn't light and the fan doesn't run, refer
to Section 11.8.1.

• If either the fan runs, but the POWER light doesn't light, or vice-versa,
refer to Section 11.7.

Caution:

Do not operate your XDS/22 if the fan doesn't work.

• If the XDS/22 powers up, but the associated terminal does not display
anything, refer to Section 11.8.2.

• If the XDS/22 and terminal work, but the target system doesn't respond,
refer to Section 11 .8.3.

11.8,1 XDSj22 Does Not Power Up

If an XDS/22 does not power up when turned on, that is, the POWER light
on the Operator Panel doesn't light and the fan doesn't run, check the fol
lowing:

1) Line cord defective or not connected to outlet or unit.

2) No power at outlet (check with voltmeter or plug known-good lamp or
apparatus into outlet).

3) Chassis fuse blown (Refer to Section 11.6.3).

If none of these apply, refer to Section 11.7.

11.8.2 System Menu Not Displayed

If the XDS/22 powers up, but the computer doesn't display the XDS370
menu, follow this procedure:

1) If the computer screen displays nothing, follow normal troubleshooting
procedures and/or local repair procedures for the computer.

2) If the screen displays a cursor, but doesn't display the XDS370 menu,
do this:

If the computer appears to be operating, first turn the computer off, then
turn the XDS power switch off, then disconnect the terminal-XDS cable
and ckeck its wiring against Table 2-3 (Emulator - Host Cable RS-232
Pin-outs) .

3) If the cable is OK, or after repairing it, reconnect it and power the system
up again.

11-37

The XDS System - System Repair Guide

4) If the problem remains, turn power off, remove the card-cage cover
(page 11-4), then unseat Memory Expansion/Communications card in
slot 4 by pulling out on inside edge of each card-ejector tab simultane
ously, then reseat card by pressing on both card-ejector tabs simultane
ously.

5) Remove and replace each of J41, J45, and J47.

6) Power the system up again. If the terminal doesn't display the system
menu now, turn power off, then check settings of S3 and S4 on the
Memory Expansion/Communications. (Refer to Table 11 -4.)

7) If OK, or after resetting them, res eat the Memory
Expansion/Communications, then power the system up again.

8) If the problem remains, turn power off, then unseat and reseat emulator
card in slot 2.

9) Power the system up again. If the terminal doesn't display the system
menu now, turn power off, then unseat the Breakpoint/Trace/Timing
card and leave it unseated.

10) Power the system up again. If the terminal doesn't display the system
menu now, turn power off, reseat the Breakpoint/Trace/Timing card,
then power the system up again. If the menu still doesn't appear, replace
the card-cage cover and refer to Section 11.7.

11.8.3 Target System Doesn't Respond

11-38

If the XDS/22 and terminal work, but the target system doesn't respond, fol
low this procedure:

1) Check target-system power.

2) If OK, power XDS and target system off, then remove target connector
from system and check for broken or bent pins.

3) If OK, remove emulator card from XDS as follows and check that tar-
get-system cable is properly connected to card:

a)

b)

c)

d)

e)

f)

g)

h)

Remove card-cage cover (Page 11 -4).

Loosen two captive screws holding target-system cable straining
bracket.

Unseat emulator card by pulling out on card-ejector tabs.

Slide emulator card out of card cage.

Carefully remove target cable from emulator card and check for
bent or broken pins on card.

If OK, carefully replace cable on card.

Move card-ejector tabs parallel to card sides.

Slide emulator card into card-cage slot 2 until card just touches
sockets, then back card out slightly until you can rotate outside

The XDS System - System Repair Guide

edge of each ejector tab into small square hole on side of card
cage.

i) Press card into backplane card connectors by pressing on card
ejector tabs.

If target system still does not respond, refer to Section 11.7, Factory
Repair information.

11.8.4 When All Else Fails

If the procedures in this Section do not restore proper system operation, con
tact the nearest Texas Instruments Regional Technology Center (RTC, num
bers below).

Atlanta, GA (Norcross, GA 30092) (404) 662-7945

Boston, MA (Waltham, MA 02154) (617) 895-9196

Chicago,IL (Arlington Heights, I L 60005) (312) 640-2909

Dallas, TX (Richardson, TX 75080) (214) 680-5066

Irvine, CA (Irvine, CA 92714) (714) 660-8140

Also Available

Microcontroller Hotline (713) 274-2370

Microcontroller Bulletin Board (713) 274-3700
Baud 300, 1200, 2400; 8-bit data; no parity; one stop bit

11-39

The XDS System - System Repair Guide

11-40

Appendix A

Debugger Command Overview

A-1

System Command Overview

Top Level Commands

Display Fill the Display Window
Memory Display any memory location
Pregs Display peripheral registers
File Display a file
Symbols Display current module's symbols
mOdules Display modules
Clear Display system revisions

eXecute Run or Single-step the CPU
Instruction Single-step instructions
Statement Single-step statement (special for CALL)
Loop Single-step once through a loop
While Single-step while expression is true
Until Single-step until expression is true
Function Single-step until RTS or RTI is encountered
Go Run from current PC
Reset Software res est and run
tArg et reset/ ru n Wait for target to be reset, then run
Trace/Timer Inspect trace samples

Register Modify a register

Memory Modify or fill memory
Modify Modify a memory location
Fill Fill a range of memory with a value
Assemble Invoke symbolic line by line assembler

Breakpoint Change code breakpoint settings
Add Add a simple breakpoint
Delete Delete a simple breakpoint
Remove all Remove all simple breakpoints
Load Load simple breakpoints from file
Save Save simple breakpoints to a file
BTT Enter BTT Programming Window (see below)

Evaluate Evaluate an expression

Configure Configure the debugger (see below)

Trace/Timer Inspect trace samples
Position Position trace screen at a specific sample
Top Position trace screen at top of trace buffer
Bottom Position trace screen at bottom of trace buffer
Lookup Locate a specific trace sample
Format Select the format for the Time Stamps
Save Save trace buffer to a file
timers Turn the timer window display on or off
eXecute Start the CPU

Load Load a file

mOdule Set the current module

Halt Halt the CPU if running

System Temporary escape to the operating system

Quit Exit from the debugger

A-2

System Command Overview

Configure Window Displayed Items

Inspect or Change
Run Mode (run/continuous)
Trace Source (memory/disassembly)
Clock Source (target/osc/ crystal)

Inspect Only
Device Mode (lJprocessor / IJcom puter)
Clock Period
BTT Card Installed (yes/no)

Configure Commands

Memory Map Configure the memory map
Load Load memory map from file
Save Save memory map to a file
Reset Reset all memory ranges to device default
Device Select Select a standard TMS370xx device

Reset Reset the TMS370 device
Colors Run the Color Setup utility (DBSETUP)

BreakpointjBTT Subcommands

Reset Clear current configuration
Load Load BTT configuration from a file
Save Save BTT configuration to a file
Exit Exit and program BTT with changes
Abort Exit without programming the BTT

A-3

System Command Overview

A-4

Appendix B

Debugger Error Messages

ADDRESS SHOULD BE 16 BYTE (BLOCK) BOUNDARY

- Starting addresses for memory map ranges must begin on a 16-byte boun
dary, of the form {nnnOh}.

BPT IS DISABLED ALREADY

- You tried to remove a breakpoint that is not set.

BPT IS ENABLED ALREADY

- You tried to set a breakpoint that is already set.

BPT IS NOT SET

- You tried to remove a breakpoint that is not set.

CAN'T CHANGE MODE, TOO MUCH ALLOCATED

- You have too many actions in a state to change the state mode from ad
dress-only to address+data.

CAN'T OPEN HELP FILE

- The file DBR370.HLP was not found in either the current directory or the
directory pointed to by the DOS environment variable I PCDI R.

CAN'T PERFORM THE COMMAND, EMULATOR IS RUNNING

- You cannot execute a command that affects the emulator while it is running.
See Section 6.1, Execute Command Options.

CAN'T UPDATE THE SCREEN WHILE EMULATOR IS RUNNING

- You cannot execute a command that affects the emulator while it is running.
See Section 6.1, Execute Command Options.

COMMAND NOT RECOGNIZED -- HIT ESC KEY

- You tried to load and run a command file that contains invalid text.

DEBUGGER TERMINATING - INSUFFICIENT MEMORY

- You do not have enough free memory in your system to run the debugger.

DIVISION BY ZERO IS UNDEFINED

- You entered an expression which includes a division by zero.

EMULATOR NOT RESPONDING CORRECTLY - ABORT, RETRY, IGNORE?

B-1

Debugger Error Messages

B-2

- The debugger is not receiving signals from the emulator. See Figure 11 -7,
Communications Cable Connections.

END STATE MUST BE 0-3

- The only legal state numbers are 0, 1, 2, and 3.

ERROR WRITING FILE

- Caused by either a full disk or an attempt to use an illegal file name. Check
your system.

EVENT COUNT MUST BE O-OFFFFh

- The event count you entered on the BTT screen is out of legal range
(0-65535 decimal).

ILLEGAL ADDRESS

- You entered an address that is out of range, or contains
i"egal characters.

ILLEGAL COMMAND LINE SWITCH

- You entered an invalid option on the debugger command line.

ILLEGAL OPERAND FOR THE UNARY '+' OR '-'

- The unary '+' or '-' operators are only valid for numeric data.

ILLEGAL OPERAND FOR THIS OPERATOR

- You entered an expression with an operator and operands of different types.

ILLEGAL OPERAND FOR UNARY 'NOT' OPERATOR

- The unary 'NOT' operator can only be applied to a numeric value.

INVALID MEMORY MAP ID

- You tried to load a memory map file that is in the wrong format; memory
map files are stored in machine-readable form with a special id

INVALID MODULE NAME

- You tried to select a module that is not part of the object file, or no symbol
table is loaded.

INVALID TIME VALUE

- You entered the time in an incorrect format, or out of range.

INVALID TRACE FORMAT OPTION

<filename> IS NOT A VALID <filetype> FILE

- The file you attempted to load (filename) is not in the correct format for a
filetype file. filetype may be one of BIT, MMP, BP, etc.

JUMP DESTINATION MUST BE 0-3

Debugger Error Messages

The only states you can jump to are 0, 1, 2, and 3.

MISSING ASSIGNMENT OPERATOR

- The expression you entered requires an assignment operator.

MISSING COMMAND LINE SWITCH SETTING AFTER '='

- You omitted a parameter value in the debugger command line.

MISSING COMMAND LINE SWITCH BEFORE '='

- You omitted a keyword in the debugger command line.

MISSING OPERAND IN CONDITIONAL EXPRESSION

- The conditional expression you entered is missing one or both operands.

MISSING RELATIONAL OPERATOR

- The expression you entered requires a relational operator.

MISSING RELATIONAL OPERATOR IN CONDITIONAL EXPRESSION

- You entered an expression with no relational operator (< , > , = , etc.)
where one is required.

MISSING RIGHT PARENTHESIS

- The expression you entered does not have matching left and right paren
theses.

NO HELP FOR THAT CONTEXT

- The section of the debugger you are using does not have a help panel
written specifically for it.

NO ROOM IN WINDOW FOR EXPRESSION

- The Expression Window is full. Delete some of the expressions and try
again.

NO SYMBOL TABLE WAS LOADED
- The symbol table for the module you tried to make current (using the 0

command) is not in memory.

<x> NOT AVAILABLE FOR CLOCK

- The clock source you chose for the CPU is not operating properly.

NOT RUNNING

- You tried to halt the CPU (with the 'H' command) while the CPU was not
running.

SYMBOL NOT FOUND IN SYMBOL TABLE

- You loaded a saved expression file without first loading the object file con
taining the necessary symbol file.

THIS MEMORY LOCATION IS NOT CONFIGURED

B-3

Debugger Error Messages

8-4

- You attempted to access a memory location that is not in the memory map.

UNABLE TO OPEN FILE <filename>
- The filename you specified cannot be found.

UNBALANCED aUOTES ON STRING

- The expression you entered does not have matching left and right quote
marks.

UNDEFINED VARIABLE USED IN EXPRESSION

- You used a symbol that does not match either a register or a label defined
in the code. Use 'Inspect Symbols' to look up the correct spelling and cap
italization.

UNRECOGNIZED MEMORY MAP TYPE

- The id code in the .MMP file is not valid for a memory map file.

UNRECQGNIZED RADIX OPTION

- You used a radix specifier other than B, a, D or H. See Section 3.4, Ex
pressions.

A

address+data
address-only

8-5,8-25
8-5,8-25

B

Breakpoint Operations (B) 5-9
Loading a Breakpoint File (L) 5-10
Removing Simple Breakpoints

(D) 5-10
Removing Simple Breakpoints

(R) 5-10
Saving a Breakpoint File (S) 5-10
Setting Simple Breakpoints (A) 5-10
Simple Breakpoints 5-9

Breakpoint/Trace/Timing Card
Extended-address probe

connection 11 -19
Installation 11 -1 9

BTT Edit Global Settings 8-18
BTT Edit Local Settings 8-18
BTT Edit Next Action 8-18
BTT Edit Previous Action 8-18
BTT Exit/Abandon 8-17
BTT Exit/Program 8-17
BTT Load Config Command 8-17
BTT Reset Command 8-16
BTT Save Config Command 8-17
BTT Select State 8-18

c
Card Installation

Breakpoint/Trace/Timing
Card 11 -19

Emulator Card 11 -12
Memory Expansion/Communication

Card 11-7

Index

Card Removal
Breakpoint/Trace/Timing card 11 -15
Emulator card 11 -8
Memory Expansion/Communications

card 11 -6
Card-Cage Slot Assignments 11-3
Config command 5-13
cover removal 11 -25

D

debugger environmental
requirements 2-5

Debugger/Emulator Interface 2-6

E

emulator 11 -1
emulator board power requirements 11 -5
emulator communications cable 2-6
execution 3-9

continuous run mode 3-9
normal run mode 3-9

expressions 3-6
constants, symbols, and registers 3-6
operators 3-7

F

field editor 4-4
Fill Display Window (D) 5-3

Display File (F) 5-4
Display Memory (M) 5-3
Display Modules (0) 5-5
Display Peripheral Registers (P) 5-4
Display Symbols (S) 5-4

Front Panel 11 -2
Fuse Replacement 11 -27

Index-1

Inspect Trace Samples (T) 5-14
Execute Code (X) 5-19
Format the Time Stamp (F) 5-19
Inspect Trace Commands 5-16
Look for Qualified Sample (L) 5-18
Position at an Index (P) 5-17
Position at Bottom (B) 5-18
Position at Top (T) 5-17
Save Trace Samples (S) 5-18
timers window 5-16
Toggle the Timers Window (I) 5-19
trace samples defined 5-15

installation procedure, emulator
board 11 -11

L

Loading a File (L) 5-20

M

Conditional Execution (U) 6-4
Conditional Execution (W) 6-3
Execute Command Options 6-2
Loading an Object File 5-20
Loading Command Files 5-21
Loading Configuration Files 5-21
Loading Files from the Command

Line 5-22
Return to Caller (F) 6-4
Run from Current PC (G) 6-4
Single-Step the CPU (I) 6-2
Single-Step the CPU (S) 6-3
Software Reset and Run (R) 6-4
Step Through A Loop (L) 6-3
Wait for Target Reset (T) 6-4

Maintenance 11 -25
Memory Expansion/Communication Card

Installation 11 -7
Memory Expansion/Communications Card

Card description 11 -6
General 11 -6

MS- DOS software installation 2-8

Index-2

N

numeric mode 4-4

o
object modules 3-5
operating frequency options in

emulator 11 -9
output, XDS 11 -5

p

PC- DOS software installation 2-8
Power Requirements 2-7

R

removal, top cover 11 -25

5

Setup 2-1
software installation 2-8

MS-DOS 2-8
PC-DOS 2-8

status indicators, XDS 11 -2
Status Lights

Location 11 -3

T

target cable 11 -21
target connector 11 -22
text mode 4-4
TMS370 Emulator card

Installation 11 -12
top cover removal 11 -25
TRIX mode 8-25

u
unpacking instructions 2-2

w
window-oriented user interface 3-2

code window 3-3
CPU registers window 3-4
display window 3-3
expression window 3-4
register file window 3-4

stack window 3-4

x
XDS configuration 2-4
XDS/22 Specifications

Index-3

TI Worldwide
Sales Offices
ALABAMA: Huntsville: 500 Wynn Drive, Suite 514,
Huntsville, AL 35805, (205) 837·7530.

ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix,
AZ 85021, (602) 995·1007;TUCSON: 818 W. Miracle
Mile, Suite 43, Tucson, AZ 85705, (602) 292·2640.

CALIFORNIA: Irvine: 17891 Cartwright Dr., Irvine, CA
92714, (714) 660· 1200; Roseville: 1 Sierra Gate
Plaza, Roseville, CA 95678, (916) 786·9208;
San Diego: 4333 View Ridge Ave., Suite 100,
San Diego, CA 92123, (619) 278·9601;
Santa Clara: 5353 Betsy Ross Dr., Santa Clara, CA
95054, (408) 980·9000; Torrance: 690 Knox St.,
Torrance, CA 90502, (213) 217·7010;
Woodland Hills: 21220 Erwin St., Woodland Hills,
CA 91367, (818) 704·7759.

COLORADO: Aurora: 1400 S. Potomac Ave.,
Suite 101, Aurora, CO 80012, (303) 368·8000.

CONNECTICUT: Wallingford: 9 Barnes Industrial Park
Rd., Barnes Industrial Park, Wallingford,
CT 06492, (203) 269·0074.

FLORIDA: 'Altamonte Springs: 370 S. North Lake Blvd,
Altamonte Springs, FL 32701, (305) 260·2116;
Ft. Leuderdale: 2950 N.W. 62nd St.,
Ft. Lauderdale, FL 33309, (305) 973·B502;
Tampa: 4803 George Rd., Suite 390,
Tampa, FL 33634, (8131885·7411.

GEORGIA: Norcross: 5515 Spalding Drive, Norcross,
GA 30092, (4041 662·7900

ILLINOIS: Arlington Heights: 515 W. Algonquin,
Arlington Heights, IL 60005, (3121 640·2925.

INDIANA: Ft. Wayne: 2020 Inwood Dr.,
Ft. Wayne, IN 46815, (2191424·5174;
Carmel: 550 Congressional Dr., Carmel, IN 46032,
(3171 573·6400.

IOWA: Cedar Rapids: 373 Collins Rd. NE, Suite 201,
Cedar Rapids, IA 52402, (319) 395·9550.

KANSAS: Overland Park: 7300 College Blvd., Lighton
Plaza, Overland Park, KS 66210, (9131 451·4511.

MARYLAND: Columbia: 8815 Centre Park Dr.,
Columbia MD 21045, (301) 964·2003.

MASSACHUSETTS: Waltham: 950 Winter St.,
Waltham, MA 02154, (6171895·9100.

MICHIGAN: Farmington Hills: 33737 W. 12 Mile Rd.,
Farmington Hills, MI 48018, (3131 553·1569.
Grand Rapids: 3075 Orchard Vista Dr. S.E.,
Grand Rapids, MI 49506, (6161 957·4200.

MINNESOTA: Eden Prairie: 11000 W. 78th St.,
Eden Prairie, MN 55344 (612) 828·9300.

MISSOURI: St. Louis: 11816 Borman Drive,
St. Louis, MO 63146, (3141 569·7600.

NEW JERSEY: Iselin: 485E U.S. Route 1 South,
Parkway Towers, Iselin, NJ 08830 (201) 750·1050.

NEW MEXICO: Albuquerque: 2820-D Broadbent Pkwy
NE, Albuquerque, NM 87107, (5051345·2555.

NEW YORK: Eest Syracuse: 6365 Collamer Dr.,
East Syracuse, NY 13057, (315) 463·9291;
Melville: 1895 Walt Whitman Rd., P.O. Box 2936,
Melville, NY 11747, (516) 454·6600;
Pittsford: 2851 Clover St., Pittsford, NY 14534,
(716) 385·6770;
Poughkeepsie: 385 South Rd., Poughkeepsie,
NY 12601, (914) 473·2900.

NORTH CAROLINA: Charlotte: 8 Woodlawn Green,
Woodlawn Rd., Charlotte, NC 28210, (704)
527·0933; Raleigh: 2809 Highwoods Blvd., Suite 100,
Raleigh, NC 27625, (919) 876·2725.

OHIO: Beachwood: 23775 Commerce Park Rd.,
Beachwood, OH 44122, (216) 464·6100;
Beaverr.reek: 4200 Colonel Glenn Hwy.,
Beavercreek, OH 45431, (513) 427·6200.

OREGON: Beaverton: 6700 SW 105th St., Suite 110,
Beaverton, OR 97005, (503) 643·6758.

PENNSYLVANIA: Blue Bell: 670 Sentry Pkwy,
Blue Bell, PA 19422, (215) 825·9500.

PUERTO RICO: Hato Rey: Mercantil Plaza Bldg.,
Suite 505, Hato Rey, PR 00918, (809) 753·8700.

TENNESSEE: Johnson City: Erwin Hwy,
P.O. Drawer 1255, Johnson City, TN 37605
(615) 461·2192.

TEXAS: Austin: 12501 Research Blvd., Austin, TX
78759, (512) 250·7655; Richardson: 1001 E.
Campbell Rd., Richardson, TX 75081,
(214) 680·5082; Houston: 9100 Southwest Frwy.,
Suite 250, Houston, TX 77074, (713) 778·6592;
San Antonio: 1000 Central Parkway South,
San Antonio, TX 78232, (5121496·1779.

UTAH: Murray: 5201 South Green St., Suite 200,
Murray, UT 84123, (801) 266·8972.

WASHINGTON: Redmond: 5010 148th NE, Bldg B,
Suite 107, Redmond, WA 98052, (206) 881·3080.

WISCONSIN: Brookfield: 450 N. Sunny Slope, Suite
150, BrOOkfield, WI 53005, (414) 782·2899.

CANADA: Nepean: 301 Moodie Drive, Mallorn Center,
Nepean, Ontario, Canada, K2H9C4,
(613) 726·1970. Richmond Hill: 280 Centre St. E.,
Richmond Hill L4C181, Ontario, Canada
(416) 884·9181; St. Laurent: Ville St. Laurent
Ouebec, 9460 Trans Canada Hwy., St. Laurent,
Ouebec, Canada H4S1R7, (514) 336·1860.

ARGENTINA: Texas Instruments Argentina Via monte
1119, 1053 Capital Federal, Buenos Aires, Argentina,
5411748·3699

AUSTRALIA (I!. NEW ZEALAND): Texas Instruments
Australia Ltd.: 6·10 Talavera Rd., North Ryde
(Sydney). New South Wales, Australia 2113,
2 + 887·1122; 5th Floor, 418 St. Kilda Road,
Melbourne, Victoria, Australia 3004, 3 + 267·4677;
171 Philip Highway, Elizabeth, South Australia 51 12,
8 + 255·2066.

AUSTRIA: Texas Instruments Ges.m.b.H.:
Industriestrabe B/16, A·2345 8runn/Gebirge,
2236·846210.

BELGIUM: Texas Instruments N.V. Belgium S.A.: 11,
~v2~n2:i3Ig~~ondetlaan 1 1, 1 140 Brussels, Belgium,

BRAZIL: Texas Instruments Electronicos do Brasil
Ltda.: Rua Paes Leme, 524·7 Andar Pinheiros, 05424
Sao Paulo, Brazil, 0815·6166.

DENMARK: Texas Instruments AIS, Mairelundvej 46E,
2730 Herlev, Denmark, 2 . 91 7400.

FINLAND: Texas Instruments Finland OY:
Ahertajantie 3, P.O. Box 81, ESPOO, Finland, (90)
0·461·422.

FRANCE: Texas Instruments France: Paris Office, BP
67 8·10 Avenue Morane·Saulnier, 78141 Velizy·
Villacoublay cedex (1) 30 70 1003.

GERMANY (Fed. Republic of Germany): Texas
Instruments Deutschland GmbH: Haggertystrasse 1,
8050 Freising, 8161 +80·4591; Kurfuerstendamm
195/196, 1000 Berlin 15, 30 + 882·7365; III, Hagen
43/Kibbelstrasse, .19, 4300 Essen, 201·24250;
Kirchhorsterstrasse 2, 3000 Hannover 51,
51 1 + 648021; Maybachstrabe 1 1, 7302 Ostfildern
2·Nelingen, 711 +34030.

TEXAS
INSTRUMENTS

HONG KONG: Texas Instruments Hong Kong Ltd., 8th
Floor, World Shipping Ctr., 7 Canton Rd., Kowloon,
Hong Kong, (852) 3·7351223.

IRELAND: Texas Instruments (ireland) Limited:
7/B Harcourt Street, Stillorgan, County Dublin, Eire,
1781677.

ITALY: Texas Instruments Italia S.p.A. Divisione
Semiconduttori: Viale Europa, 40, 20093 Cologne
Monzese (Milano), 1021 253001; Via Castello della
Magliana, 38, 00148 Roma, (06) 5222651;
Via Amendola, 17,40100 Bologna, (051) 554004.

JAPAN: Tokyo Marketing/Sales (Headquarters):
Texas Instruments Japan Ltd., MS Shibaura Bldg., 9F,
4· 13·23 Shibaura, Minato·ku, Tokyo 108, Japan,
03· 769·8700. Texas Instruments Japan Ltd.: Nissho·
(wai Bldg. 5F, 30 Imabashi 3'chome, Higashi·ku,
Osaka 541, Japan, 06·294·18Bl; Daini Toyota West
Bldg. 7F, 10·27 Meieki 4·chome, Nakamura·ku,
Nagoya 450, 052·583·8691; Daiichi Seimei Bldg. 6F,
3·10 Oyama·cho, Kanazawa 920, Ishikawa·ken,
0762·23·5471; Daiichi Olympic Tachikawa Bldg. 6F,
1·25·12 Akebono·cho, Tachikawa 190, Tokyo,
0425·27·6426; Matsumoto Showa Bldg. 6F, 2·11
Fukashi 1 ·chome, Matsumoto 390, Nagano·ken,
0263·33·1060; Yokohama Nishiguchi KN Bldg. 6F,
2·8·4 Kita·Saiwai·cho, Nishi·ku, Yokohama 220,
045·322·6741; Nihon Seimei Kyoto Yasaka Bldg. 5F,
843·2 Higashi Shiokohjidori, Nishinotoh·in Higashi·iru,
Shiokouji, Shimogyo·ku, Kyoto 600, 075·341·7713;
2597·1, Aza Harudai, Oaza Yasaka, Kitsuki 873, Oita·
ken, 09786·3·3211; Miho Plant, 2350 Kihara Miho·
mura, Inashiki·gun 300·04, Ibaragi·ken,
0298·85·2541.

KOREA: Texas Instruments Korea Ltd., 28th Flo, Trade
Tower, #159, Samsung·Dong, Kangnam·ku, Seoul,
Korea 2 + 551·2810.

MEXICO: Texas Instruments de Mexico S.A.: Alfonso
Reyes- 1 1 5, Col. Hipodromo Condesa, Mexico, D.F.,
Mexico 06120, 525/525·3860.

MIDDLE EAST: Texas Instruments: No.1 3, 1 st Floor
Mannai Bldg., Diplomatic Area, P.O. Box 26335,
Manama Bahrain, Arabian Gulf, 973 + 274681.

NETHERLANDS: Texas Instruments Holland B.V.,
19 Hogehilweg, 1100 AZ Amsterdam-Zuidoost,
Holland 20 + 5602911.

NORWAY: Texas Instruments Norway A/S: PB106,
Refstad 05B5, Oslo 5, Norway, (21 155090.

PEOPLES REPUBLIC OF CHINA: Texas Instruments
China Inc., Beijing Representative Office, 7·05 Citic
Bldg., 19 Jianguomenwai Dajje, Beijing, China, (861)
5002255, Ext. 3750.

PHILIPPINES: Texas Instruments Asia Ltd.: 14th Floor,
Ba· Lepanto Bldg., Paseo de Roxas, Makati, Metro
Manila, Philippines, 817·60·31.

PORTUGAL: Texas Instruments Equipamento
Electronico (Portugal). Lda.: Rua Eng. Frederico Ulrich,
2650 Moreira Da Maia, 4470 Maia, Portugal,
2·948·1003.

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA,
THAILAND): Texas Instruments Singapore (PTEI Ltd.,
Asia Pacific Division, 101 Thompson Rd. #23·01,
United Square, Singapore 1130,350·8100.

SPAIN: Texas Instruments Espana, S.A.: C/Jose
Lazaro Galdiano No.6, Madrid 28036,1/458.14.58.

SWEDEN: Texas Instruments International Trade
Corporation (Sverigefilialenl: 5·164·93, Stockholm,
Sweden, 8 • 752·5800.

SWITZERLAND: Texas Instruments, Inc., Reidstrasse
6, CH·8953 Dietikon (Zuerichl Switzerland,
1·7402220.

TAIWAN: Texas Instruments Supply Co., 9th Floor
Bank Tower, 205 Tun Hwa N. Rd., Taipei, Taiwan,
Republic of China, 2 + 71 3·93 1 1.

UNITED KINGDOM: Texas Instruments Limited:
Manton Lane, Bedford, MK41 7PA, England, 0234
270111.

A·18!

TI Sales Offices TI Distributors
ALABAMA: Huntsville (205) 837·7530.

ARIZONA: Phoenix (602) 995-1007;
Tucson (602) 292·2640.

CALIFORNIA: Irvine (714) 660-1200;
Roseville (916) 786·9208;
San Diego (619) 278·9601;
Santa Clara (408) 980-9000;
Torrance (213) 217·7010;
Woodland Hills (818) 704·7759.

COLORADO: Aurora (303) 368·8000.

CONNECTICUT: Wallingford (203) 269·0074.

FLORIDA: Altamonte Springs (305) 260-2116;
Ft. Lauderdale (305) 973-8502;
Tampa (813) 885-7411.

GEORGIA: Norcross (404) 662·7900.

ILLINOIS: Arlington Heights (312) 640·2925.

INDIANA: Carmel (317) 573·6400;
Ft. Wayne (219) 424·5174.

IOWA: Cedar Rapids (319) 395-9550.

KANSAS: Overland Park (913) 45,·45".

MARYLAND: Columbia (301) 964·2003.

MASSACHUSETTS: Waltham (617) 895-9100.

MICHIGAN: Farmington Hills (313) 553·1569;
Grand Rapids (616) 957·4200.

MINNESOTA: Eden Prairie (612) 828·9300.

MISSOURI: St. Louis (314) 569·7600.

NEW JERSEY: Iselin (201) 750·1050.

NEW MEXICO: Albuquerque (505) 345·2555.

NEW YORK: East Syracuse (315) 463·9291;
Melville (516) 454·6600;
Pittsford (716) 385·6770;
Poughkeepsie (914) 473·2900.

NORTH CAROLINA: Charlotte (704) 527·0933;
Raleigh (919) 876·2725.

OHIO: Beachwood (216) 464·6100;
Beaver Creek (513) 427·6200.

OREGON: Beaverton (503) 643·6758.

PENNSYLVANIA: Blue Bell (215) 825·9500.

PUERTO RICO: Hato Rey (809) 753·8700.

TENNESSEE: Johnson City (615) 461·2192.

TEXAS: Austin (512) 250-7655;
Houston (713) 778·6592;
Richardson (214) 680·5082;
San Antonio (512) 496·1779.

UTAH: Murray (801) 266-8972.

WASHINGTON: Redmond (206) 881·3080.

WISCONSIN: Brookfield (414) 782·2899.

~~~~~~~ ~~r.e~~ia~rot(~~o6~Wa~g;~ 970; 
St. Laurent, Quebec (514) 336·1860. 

TI Regional 
Technology Centers 
CALIFORNIA: Irvine (714) 660-8105; 
Santa Clara (408) 748·2220; 

GEORGIA: Norcross (404) 662·7945. 

ILLINOIS Arlington Heights (312) 640·2909. 

MASSACHUSETTS: Waltham (617) 895·9196. 

TEXAS: Richardson (214) 680-5066. 

CANADA: Nepean, Ontario (613) 726·1970. 

TI AUTHORIZED DISTRIBUTORS 
Arrow/Klerulff Electronics Group 
Arrow (Canada) 
Future Electronics (Canada) 
GRS Electronics Co., Inc. 
Hall·Mark Electronics 
Marshall Industries 
Newark Electronics 
Schweber Electronics 
Time Electronics 
Wyle Laboratories 
Zeus Components 

- OBSOLETE PRODUCT ONLY
Rochester Electronics, Inc. 
Newburyport, Massachusetts 
(508) 462·9332 

ALABAMA: Arrow/KierulH (205) 837·6955; 
Hall·Mark (205) 837·8700; Marshall (205) 881·9235; 
Schweber (205) 895·0480. 

ARIZONA: Arrow/KierulH (602) 437·0750; 
Hall·Mark (602) 437·1200; Marshall (602) 496·0290; 
Schweber (602) 431·0030; Wyle (602) 866·2888. 

CALIFORNIA: Los Angeles/Orange County: 
Arrow/KierulH (818) 701·7500, (714) 838·5422; 
Hall·Mark (818) 773·4500, (714) 669·4100; 
Marshall (818) 407·0101, (818) 459·5500, 
(714) 458·5395; Schweber (818) 880·9686; 

~
'4) 863-0200, (213) 320·8090; Wyle (818) 880·9000, 

714) 863·9953; Zeus (714) 921·9000; (818) 889·3838; 
acramento: Hall·Mark (916) 624·9781; 

Marshall (916) 635·9700; Schweber (916) 364·0222; 
Wyle (916) 638·5282; 

~:~_~~r~o(~t;)~:~~~~~~I~ J~~~~;1~76~~~~78.9600; 
Schweber (619) 450·0454; Wyle (619) 565·9171; 
San Francisco Bay Area: Arrow/KlerulH (408) 745-6600, 
Hall-Mark (408) 432·0900; Marshall (408) 942·4600; 
Schweber (408) 432·7171; Wyle (408) 727·2500; 
Zeus (408) 998·5121. 

COLORADO: Arrow/KlerulH (303) 790·4444; 
Hall·Mark (303) 790·1662; Marshall (303) 451·8383; 
Schweber (303) 799·0258; Wyle (303) 457·9953. 

CONNETICUT: Arrow/KierulH (203) 265·7741; 
Hall·Mark (203) 271·2844; Marshall (203) 265·3822; 
Schweber (203) 264-4700. 

FLORIDA: Ft. Lauderdale: 
Arrow/KlerulH (305) 429·8200; Hall-Mark (305) 971·9280; 
Marshall (305) 977·4880; Schweber (305) 977·7511; 
Orlando: Arrow/KierulH (407) 323·0252; 
Hall·Mark (407) 830·5855; Marshall (407) 767·8585; 
Schweber (407) 331·7555; Zeus (407) 365·3000; 
Tampa: Hall·Mark (813) 530-4543; 
Marshall (813) 576·1399; Schweber (813) 541·5100. 

GEORGIA: Arrow/KlerulH (404) 449-8252; 
Hall·Mark (404) 447·8000; Marshall (404) 923·5750; 
Schweber (404) 449·9170. 

ILLINOIS: Arrow/KierulH (312) 250·0500; 
Hall·Mark (312) 860·3800; Marshall (312) 490·0155; 
Newark (312) 784·5100; Schweber (312) 364·3750. 

INDIANA: Indianapolis: Arrow/KierulH (317) 243·9353; 
Hall·Mark (317) 872·8875; Marshall (317) 297·0483; 
Schweber (317) 843·1050. 

IOWA: Arrow/KierulH (319) 395·7230; 
Schweber (319) 373·1417. 

KANSAS: Kansas City: Arrow/KlerulH (913) 541·9542; 
Hall·Mark (913) 888-4747; Marshall (913) 492·3121; 
Schweber (913) 492·2922. 

• TEXAS 
INSTRUMENTS 

MARYLAND: Arrow/KlerulH (301) 995·6002; 
Hall·Mark (301) 988·9800; Marshall (301) 235·9464; 
Schweber (301) 840-5900; Zeus (301) 997·1118. 

MASSACHUSETTS Arrow/KlerulH (508) 658·0900; 
Hall·Mark (508) 667·0902; Marshall (508) 658·0810; 
Schweber (617) 275-5100; Time (617) 532·6200; 
Wyle (617) 273-7300; Zeus (617) 863·8800. 

MICHIGAN: Detroit: Arrow/KlerulH (313) 462·2290; 
Hall·Mark (313) 462·1205; Marshall (313) 525-5850; 
Newark (313) 967·0600; Schwebe, (313) 525·8100; 
Grand Rapids: Arrow/KlerulH (616) 243·0912. 

~!~~~~~~ ~~t~~~~£~J~~u~~~:~~ll ~~t~ ~~OJ.2211 ; 
Schweber (612) 941·5280. 

MISSOURI: St. louiS: Arrow/KlerulH (314) 567·6888; 
Hall·Mark (314) 291·5350; Marshall (314) 291-4650; 
Schweber (314) 739·0526. 

NEW HAMPSHIRE: Arrow/Klerulff (603) 668-6968; 
Schweber (603) 625·2250. 

NEW JERSEY: Arrow/KlerulH (201) 538·0900, 
(609) 596-8000; GRS ElectroniCS (609) 964·8560; 

~~~M:;~.\~~~; ~;r:~~I~'(~~~V8~~~O~~~~' 
l609l234.911)0; Schweber (201) 227-7880.

NEW MEXICO: Arrow/KlerulH (50S) 243-4566.

~~wT.8:~lff~:f6~ ~~:.~~i>e; Hall-Mark (516) 737-0600;
Marshall (516) 273·2424; Schweber (516) 334·7474;
Zeus (914) 937·7400;

~~I~.,;;:::(~,A:)~;~~J~~ci~ J~::~:ln7~~~~35-7620;
Schweber (716) 424·2222;
Syracuse: Marshall (607) 798·1611.

NORTH CAROLINA: Arrow/KlerulH (919) 876·3132,

~~~2h~~15(~W ~~:!~~~kS~~!~~~~·(~~~~;876.0000. 
OHIO: Cleveland: Arrow/KlerulH (216) 248-3990; 
Hall·Mark (216) 349·4632; Marshall (216) 248·1788; 
Schweber (216) 464·2970; 
Columbus: Hall·Mark (614) 888·3313; 

~~rs~~i, f;~3i~~~1~~0~5~~~!;~:"5(~;;3) 439·1800. 

OKLAHOMA: Arrow/KlerulH (918) 252·7537; 
Schweber (918) 622·8003. 

OREGON: Arrow/KlerulH (503) 645·6456; 
Marshall (503) 644·5050; Wyle (503) 640·6000. 

PENNSYLVANIA: Arrow/Klerulff (4121856.7000, 
(215) 928-1800; GRS ElectroniCS (215 922·7037; 
Marshall (412) 963·0441; Schweber (215) 441·0600, 
(412) 963·6804. 

TEXAS: Austin: Arrow/KierulH (512) 835·4180; 
Hall·Mark (512) 258·8848; Marshall (512) 837·1991; 
Schwaber (512) 339·0088; Wyle (512) 834·9957; 
Dallas: Arrow/KlerulH (214) 380-6464; 
Hall·Mark (214) 553-4300; Marshall (214) 233·5200; 
Schweber (214) 661·5010; Wyle (214) 235·9953; 
Zeus (214) 783·7010; 

~~~~f:~:M:~~~!M;~~lHsr;l~~g~b.4700; 
Hall·Mark (713) 781·6100; Marshall (713) 895-9200;
Schweber (713) 784·3600; Wyle (713) 879·9953.

~!~~:a~r(g~i~~;~~VO~~'~~~;h:~WO') 485.1551;
Wyle (801) 974·9953.

WASHINGTON: Arrow/KlerulH (206) 575·4420;
Marshall (206) 486·5747; Wyle (206) 881·1150.

WISCONSIN: Arrow/KierulH (414) 792·0150;
Hall·Mark (414) 797·7844; Marshall (414) 797·8400;
Schweber (414) 784·9020.

CANADA: Calgary: Fu1ure (403) 235·5325;
Edmonton: Future (403) 438·2858;
Montreal: Arrow Canada (514) 73S·5511;
Future (S14) 694·7710;
Ottawa: Arrow Canada (613) 226-6903;
Future (613) 820·8313;
Quebec City: Arrow Canada (418) 871.7500;
Toronto: Arrow Canada (416) 672·7769;
Future (416) 638·4771; Marshall (416) 674·2161;
Vancouver: Arrow Canada (604) 291·2986;
Future (604) 294·1166.

Customer
Response Center
TOLL FREE: (800) 232·3200

OUTSIDE USA: (214) 995·6611
(8:00 a.m. - 5:00 p.m. CST)

A-la9

Printed in U.S.A., March 1989
2534185·9704

~
TEXAS

INSTRUMENTS

SPNU008A

