
1987

• TEXAS
INSTRUMENTS

TMS34010Ma~/G,aphks
Function Library

1987 Graphics Products

TItfS34010 Math/Graphics
Function Library

User's Guide

-II
TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. TI advises its customers to obtain the latest version of the relevant in
formation to verify, before placing orders, that the information being relied
upon is current.

TI warrants performance of its semiconductor products to current specifica
tions in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is 1I10t necessarily performed.

TI assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does TI warrant or represent that license, either express or implied, is
granted under any patent right. copyright. mask work right. or other intellec
tual property right of TI covering or relating to any combination, machine, or
proceS"S in which such semiconductor products or services might be or are
used.

Copyright © 1987. Texas Instruments Incorporated

Section

1
1.1
1.2
1.3
1.4

2

Introduction
Development Tools Overview
Manual Organization
Related Documentation
Style and Symbol Conventions

Installation and Operation

Contents

2.1
2.2
2.3
2.4
2.4.1
2.4.2

Installation for IBM/TI PCs with PC/MS-DOS

3
3.1
3.2
3.3
3.4

Installation for VAX/VMS
Installation for VAX/ULTRIX and VAX/System V
Using the Library

Creating an Object Module that Contains Called Functions
Archive Files

Math Routines
Double-Precision Functions
Math Routine Error Reporting
Single- Precision Routines
Array Conversion Functions

4 Graphics and Text Functions
4.1 Summary Table (Functional Grouping)
4.2 Graphics System Initialization Functions
4.3 3D Transformation Functions
4.4 Text Output Functions
4.5 Text Attribute Inquiry and Control Functions
4.6 Font Management Functions
4.7 Available Fonts
4.8 Graphics Output Functions
4.9 Graphics Attribute Control Functions
4.10 Fill Patterns
4.11 Color Palette Functions
4.12 Pixel and Pixel Array Manipulation Functions
4.13 Viewport Management Functions
4.14 Miscellaneous Functions
4.1 5 Special Data Formats ..
4.15.1 Transformation Matrix
4.15.2 Vertex List
4.15.3 Point List
4.15.4 Line List
4.16 Mapping Pixels to XY Coordinates
4.16.1 Area Filling Conventions
4.16.2 Vector Drawing Conventions
4.16.3 The Drawing Pen
4.17 System Implementation Issues
4.17.1 Register Usage Conventions
4.17.2 Functions with System Dependencies
4.17.3 Uninitialized System Parameters
4.17.4 Interrupts

Page

1-1
1-2
1-4
1-5
1-6

2-1
2-2
2-3
2-3
2-4
2-5
2-6

3-1
3-2
3-4
3-5
3-5

4-1
4-3
4-6
4-7
4-8
4-9
4-11
4-14
4-16
4-19
4-20
4-23
4-24
4-25
4-28
4-29
4-29
4-29
4-30
4-31
4-33
4-33
4-34
4-35
4-36
4-36
4-37
4-38
4-38

iii

5 Alphabetical Reference of Functions . 5-1

iv

Illustrations

Figure

1 -1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
5-1

Table

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15'
5-1

TMS34010 Assembly Language Development Flow
Text Attributes .. .
Font Data Structure .. .
Five Fonts
Drawing the Text Display for Figure 4-3
A 1 6 x 1 6 Pattern .. .
Program for Displaying the Default Patterns
Program for Installing Fonts
Two Viewports
Transformation Matrix Format
Vertex List Format
Point List Format .. .
Line List Format .. .
Rectangle Fill .. .
Polygon Fill .. .
Polygon Outline .. .
Perspective Transformation

Tables

Summary of Graphics System Initialization Functions
Summary of 3D Transformation Functions
Summary of Text Output Functions
Summary of Text Attribute Inquiry Functions
Summary of Font Management Functions
Installable Font Symbols
List of Figure Types and Drawing Styles
Checklist of Available Figure Types and Drawing Styles
Summary of Graphics Output Functions
Summary of Graphics Attribute Control Functions
Summary of Color Palette Functions
Summary of Pixel Array Functions
Summary of Viewport Management Functions
Summary of Miscellaneous Functions
Functions with System Dependencies
Image Array Format .. .

Page

1-2
4-9
4-11
4-14
4-15
4-20
4-21
4-22
4-25
4-29
4-30
4-30
4-32
4-33
4-34
4-35
5-132

Page

4-6
4-7
4-8
4-10
4-11
4-14
4-16
4-17
4-17
4-19
4-23
4-24
4-27
4-28
4-38
5-145

v

vi

Section 1

Introduction

The TMS34010 Graphics System Processor (GSP) is an advanced 32-bit
microprocessor optimized for graphics systems. The GSP is a member of the
TMS340 family of computer graphics products from Texas Instruments. The
TMS34010 is well supported by a full set of hardware and software develop
ment tools, including a C compiler, a full-speed emulator, a software simulator,
an IBM/TI-PC development board, and a math/graphics function library.

The TMS3401 0 math/graphics function library is a collection of mathematics
and graphics functions that can be called from C programs. The math functions
include standard C double-precision floating-point routines for performing al
gebraic, trigonometric, and transcendental operations. The graphics functions
include routines for viewport management, bit-mapped text, graphics output,
cOlor-palette control, three-dimensional transformations, and graphics initial
ization.

The library can be installed on the following systems:

• pes:

• VAX:

Note:

IBM-PC with PC-DOS
TI-PC with MS-DOS

VMS
DEC Ultrix
Unix System V

In order to use the math/graphics function library, you must have the
TMS34010 assembly language tools package and the TMS34010 C
compiler.

The TMS34010 can execute all the functions in the library. Most of the
functions are system-independent. Some of the graphics functions, however,
must manage system-dependent features; such functions are compatible with
the TMS34010 software development board. For more information about
system-dependent features, see Section 4.17 on page 4-36.

Topics covered in this introductory section include:

Section Page
1.1 Development Tools Overview .. 1 -2
1.2 Manual Organization ... 1 -4
1.3 Related Documentation .. 1 -5
1.4 Style and Symbol Conventions .. 1 -6

1-1

Introduction - Development Tools Overview

1.1 Development Tools Overview

1-2

Figure 1-1 shows the TMS3401 0 assembly language development flow. The
center section of the illustration highlights the most common path; the other
portions are optional.

C Source ,
I
I
I
I
I
I
I I ____ J

<

Math/Graphics
Function
Library

Font
Library

Runtime-Support.
Floating-Point
libraries

Object
Format

Converter

"

EPROM
Programmer

Simulator TMS34010
Software

Development
Board

XDS
Emulator

Figure 1-1. TMS34010 Assembly Language Development Flow

Introduction - Development Tools Overview

• The C compiler translates C source code into TMS34010 assembly
language source code.

• The assembler translates assembly language source files into machine
language object files.

• The archiver allows you to collect a group of files into a single archive
library. It also allows you to modify the library by deleting, replacing,
extracting, or adding members. One of the most useful applications of
the archiver is to build a library of object modules. Several object li
braries are available as TMS3401 0 products:

The math/graphics function library is discussed in this man
ual.

The font library is a separate product that contains a variety of
proportionally spaced and monospaced fonts.

The runtime-support and floating-point libraries are shipped
with the C compiler.

The CCITT group3/group4 compression/decompression li
brary.

The 8514 IBM graphics display library.

These libraries contain functions that can be called from a C program.
You can also create your own object libraries. To use an object library,
you must specify it as linker input; the linker will include the members
in the library that resolve external references during the link.

• The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files and
object libraries as input.

• The main purpose. of this development process is to produce a module
that can be executed in a system that contains a TMS34010. You can
use one of several debugging tools to refine and correct your code;
available products include:

A simulator,

A software development board (SDB), and

An emulator (XDS).

An object format converter is also available; it converts a COFF ob
ject file into a Tektronix-hex, Intel-hex, or TI-tagged object format file
that can be downloaded to an EPROM programmer.

1-3

Introduction - Manual Organization

1.2 Manual Organi~ation

Section 1 Introduction

Prpvides an overview of the function library, describes the TMS3401 0 devel
opment support tools, lists related documentation, and explains the style and
symbol conventions used throughout this document.

Section 2 Installation and Operation

Contains instructions for installing the function library on PC and VAX sys
tems, describes the files that are shipped with the product, provides examples
of compiling, assembling, and linking C code that calls the functions, and
provides examples of using the archiver with the library.

Section 3 Math Routines

Describes the functional categorielj of math routines, including double
precision floating-point functions, single-precision functions, type-conversion
functions, and math routine error reporting.

Section 4 Graphics and Text Functions

Summarizes the graphics and text functions by category and provides general
information about each category. Contains supplemental information about
fonts and font management.

Section 5 Alphabetical Reference of Functions

1-4

Provides a page-by-page alphabetical reference of the functions that are in the
library.

Introduction - Related Documentation

1.3 Related Documentation

The following TMS3401 0 documents are available from Texas Instruments:

• The TMS34010 C Compiler User's Guide (literature number
SPVU005) tells you how to use the TMS34010 C compiler. This C
compiler accepts standard Kernighan and Ritchie C source code and
produces TMS3401 0 assembly language source code. We suggest that
you use The C Programming Language (Kernighan and Ritchie) as a
companion to the TMS34010 C Compiler Usels Guide.

• The TMS34010 Assembly Language Tools User's Guide (literature
number SPVU004) describes common object file format, assembler di
rectives, macro language, and assembler, linker, archiver, simulator, and
object format converter operation.

• The TMS34010 Font Library User's Guide (literature number
SPVU007) describes a set of fonts that are available for use in a
TMS3401 O-based graphics system.

• The TMS34010 Data Sheet (literature number SPVS002) contains the
recommended operating conditions, electrical specifications, and timing
characteristics of the TMS3401 O.

• The TMS34010 User's Guide (literature number SPVU001) discusses
hardware aspects of the TMS3401 0, such as pin functions, architecture,
stack operation, and interfaces, and contains the TMS3401 0 instruction
set.

• The TMS34010 Software Development Board User's Guide (lit
erature number SPVU002) describes using the TMS3401 0 software de
velopment board (a high-performance, PC-based graphics card) for
testing and developing TMS3401 O-based graphics systems.

• The TMS34070 User's Guide (literature number SPPU016) describes
the TMS34070 color palette chip.

• The TMS34010 Software Development Board Schematics (liter
ature number SPVU003) is a companion to the TMS34010 Software
Development Board Usels Guide.

You may also find the following documents useful:

Cody, William J. Jr. and William Waite. A Software Manual for the Elementary
Functions. Englewood Cliffs, New Jersey: Prentice-Hall, 1980.

Kernighan, Brian, and Dennis Ritchie. The C Programming Language. Engle
wood Cliffs, New Jersey: Prentice- Hall, 1978.

Newman, W.M., and R.F. Sproull. Principles of Interactive Computer
Graphics. 2nd ed. New York: McGraw- Hill, 1979.

1-5

Introduction - Style and Symbol Conventions

1.4 Style and Symbol Conventions

1-6

• In this document. program listings or examples, interactive displays, file
names, and symbol names are shown in a special font. Examples use
a bold version of the special font for emphasis. Here is a sample
program listing:

rvalu 0.0;
rvalv = 1.0;
radians = atan(rvalu, rvalv)

• CR means press the carriage return key.

Section 2

Installation and Operation

This section contains step-by-step instructions for installing and operating the
math/graphics function library. The library can be installed on five operating
systems:

IBM and TI PCs

• PC-DOS1 (IBM PC)
• MS-DOS2 (TI PC)

Digital Equipment Corporation VAX-113

• VMS operating system
• DEC Ultrix operating system
• Unix System V operating system

To use the math/graphics function library, you need the following software
tools and object libraries:

• TMS34010 C compiler
• TMS34010 assembly language tools package (assembler, linker,

and archiver)
• Runtime-support and floating-point libraries (rts. lib and

flib.lib)4

The TMS34010 C Compiler User's Guide and TMS34010Assembly Language
Tools User's Guide describes these tools.

You will find instructions for installing and using the library in the following
sections:

Section Page
2.1 PC Installations .. 2-2
2.2 VAX/VMS Installation ... 2-3
2.3 VAX/ULTRIX and System V Installation .. 2-3
2.4 Using the Library ... 2-4

PC-DOS is a trademark of International Business Machines.

2 MS is a trademark of Microsoft Corporation.

3 VAX-11 and VMS are trademarks of Digital Equipment Corporation.

4 These libraries are shipped with the TMS3401 0 C compiler.

2-1

Software Installation for pes

2.1 Installation for IBM/TI PCs with PC/MS-DOS

2-2

The math/graphics function library is shipped on several double-sided, dual
density diskettes.

The installation instructions use these symbols for drive names:

A: Floppy disk drive.
C: Winchester or hard disk (E: on TI PCs).

1) Make backups of the product diskettes.

a) First format several blank diskettes. Insert a blank (destination)
diskette in drive A. Enter:

FORMAT A: CR

b) Now copy the disks; enter:

DISKCOPY A: A: CR

Follow the system prompts, removing and inserting the product
and blank diskettes as directed.

2) Create a directory to c.ontain the TMS3401 0 software. Enter:

MD C:\GSPLIB CR

3) Copy the files onto the hard disk. Insert a product diskette in drive A.
Enter:

COpy A:*.* C:\GSPLIB*.* CR

Software Installation for VAX Systems

2.2 Installation for VAX/VMS

The tape was created with the VMS BACKUP utility at 1600 BPL

1) Mount the tape on your tape drive.

2) Execute the following commands. Note that you must create a destina
tion directory for the tools; in this example, DEST: directory represents
that directory. Replace TAPE: with the name of the tape drive you are
using.

$ allocate
$ mount/for/den=l600
$ backup
$ dismount
$ dealloc

TAPE:
TAPE:
TAPE:GSP.bck DEST:directory
TAPE:
TAPE:

2.3 Installation for VAX/ULTRIX and VAX/System V

This tape was made at 1600 BPI using the TAR utility. Follow these in
structions to install the software:

1) Mount the tape on your tape drive.

2) Make sure that the directory in which you will store the tools is the cur
rent directory.

3) Enter the TAR command for your system; for example,

TAR x

This copies the entire tape into the directory.

2-3

Installation and Operation - Using the Library

2.4 Using the Library

2-4

Several types of files are shipped with the math/graphics library product:

• Object libraries (.lib extension). These libraries contain the compiled,
assembled versions of the functions; libraries are in archive format. The
object libraries that are shipped with this product include:

grafix.lib
vuport.lib
text. lib
math. lib

• Source libraries (.sTe extension). These libraries contain the C source
or assembly language source versions of the functions; libraries are in
archive format. The source libraries that are shipped with this product
include:

grafixl. sre
grafix2.sre
grafix3.sre
vuport.sre
text.sre
math.sre

• Batch and command files (.bat and .emd extensions):

Notes:

gspe . bat invokes the compiler (preprocessor, parser, and code
generator) and the assembler.

Ie. bat invokes the linker and calls a linker command file named
le.emd.

1. Ie. bat expects Ie. emd to be in a directory named gsplib.

2. Ie. emd expects the functions in the math/graphics library to be in a
directory named gsplib; it expects the rts.lib and flib.lib li
braries to be in a directory named gsptools.

Refer to the product release notes for a complete list of the files that are
shipped with the product.

Installation and Operation - Using the Library

2.4.1 Creating an Object Module that Contains Called Functions

Most of the the math/graphics functions can be called from a C program.
(The syntaxes of various function calls are defined in later sections). To use
the functions, you must compile, assemble, and link the C source program that
calls the functions. When you link the resulting object file, you must also link
in the appropriate function library. Whenever you specify an object library as
linker input, the linker automatically includes the library members that contain
called functions or resolve symbol references.

Example 2-1 and Example 2-2 show methods for compiling, assembling, and
linking a C source program that calls functions in the function library. Note
that the examples are for PC/MS-DOS systems. In these examples, assume
that a file named test. c calls the functions open-vuport, select-vuport, and
close-vuport; these functions are in the library \gsplib\vuport.libs.

Example 2-1. Method 1 - Invoke Each Tool Individually

1) Compile test. c:

a) gspcpp test
C Pre-Processor, Version x.x, 87.100
(c) Copyright 1985, 1987 Texas Instruments Inc.

b) gspcc test
GSP C Com~iler, Version x.x, 87.100
(c) Copyrlght 1985, 1987 Texas Instruments Inc.

"test.c" ==> main

c) gspcg test
GSP C Codegen, Version x.x, 87.100
(c) copyri~ht 1985, 1987 Texas Instruments Inc.

"test.c' ==> main

This creates an output file named test. asm.

2) Assemble test. asm:

gspa test
GSP COFF Assembler, Version x.x, 87.100
(c) Copyright 1985, 1987 Texas Instruments Inc.
PASS 1
PASS 2

No Errors, No Warnings

This creates an output file named test. obj.

3) Set the environment variable so the linker can find the object li
braries:

set C-DIR = \libs; \gsplib

4) Link test. obj with the appropriate object libraries:

gsplnk test vuport.libs rts.lib flib.lib -0 test.out
GSP COFF Linker, Version x.x, 87.260
(C) Copyright 1985, 1987, Texas Instruments Inc.

This creates an object module called test. out.

2-5

Installation and Operation - Using the Library

Example 2-2. Method 2 - Use the Batch Files to Invoke the Tools

1) Use the gspc. bat file to compile and assemble test. c:

gspc test
---[testj---
C Pre-Processor, Version x.x, 87.100
(c) Copyright 1985, 1987 Texas Instruments Inc.
GSP C Compiler, version x.x, 87.100
(c) Copyright 1985, 1987 Texas Instruments Inc.

"test.c" ==> main
GSP C Codegen, Version x.x, 87.100
(c) Copyright 1985, 1987 Texas Instruments Inc.

"test.c" ==> main
GSP COFF Assembler, Version x.x, 87.100
(c) Copyright 1985, 1987 Texas Instruments Inc.
PASS 1
PASS 2

No Errors, No Warnings
Successful Compile of Module test

2) Use the 1c.bat file to link test.obj. lc.bat calls a linker com
mand file named lc. cmd that automatically links in the object li
braries.

lc test
gsplnk -c -m test.map -0 test.out test.obj
\gsplib\lc. cmd
GSP COFF Linker, Version x.x, 87.260
(C) Copyright 1985, 1987, Texas Instruments Inc.

This creates an object module called test. out.

2.4.2 Archive Files

2-6

An archive file (or library) is a partitioned file that contains complete files as
members. The math/graphics function library contains two types of libraries:

• Source libraries, which contain the source versions of the functions as
members.

• .Object libraries, which contain the compiled, assembled versions of the
functions as members.

The TMS3401 0 archiver is a software utility that allows you to manipulate the
members of a library by adding members, extracting members, deleting mem
bers, and ·replacing members. The TMS34010 Assembly Language Tools Us
er's Guide contains complete instructions for using the archiver. Example 2-3,
Example 2-4, and Example 2-5 show how you might use the archiver to ma
nipulate the math/graphics libraries.

Installation and Operation - Using the Library

Example 2-3. Listing the Contents of a Library

Since the math/graphics library contaf'ns several object archive files, you
may want to list the contents of the individual libraries so that you can
determine which functions reside in which libraries. To do this, invoke the
archiver with the -t option:

gspar -t \gsplib\vuport.lib
GSP Archiver Version x.x, 87.261
(cl Copyright 1985, 1987, Texas Instruments Inc.

FILE NAME SIZE DATE
---------------- ------------------------

set_visr.asm 4961 Mon Mar 9 11:03:32 1987
c1ose_vu.c 2532 Tue Mar 31 08:14:56 1987
copy_vup.c 6891 Tue Mar 31 08:29:40 1987
initvupo.c 2716 Tue Mar 3 15:05:06 1987

Example 2-4. Extracting and Replacing a Member

Assume that you want to modify a function called close-vuport. The
source code for this function is in the library \gsplib\ vuport. src; the
object code for this function is in the library \gsplib\ vuport.lib.
Follow these steps to create a new object file and replace it in the library:

1) Extract the function from the source library (the -x option tells the
archiver to extract the specified member):

gspar -xv \gsp1ib\vuport.1ib c1ose-vu.c
GSP Archiver Version x.x, 87.261
(cl Copyright 1985, 1987, Texas Instruments Inc.

==) extract 'close-vu.c'

2) Edit the source file.

3) Compile and assemble the modified function:

gspc c1ose_vuport

4) Replace the version of c1ose_vu.obj that is in the library with the
new version (the -r option tells the archiver to replace the specified
member):

gspar -rv \gsp1ib\vuport.lib close-vu.obj
GSP Archiver Version x.x, 87.261
(cl Copyright 1985, 1987, Texas Instruments Inc.

==) replace 'close-vu.c'
==) building archive '\gsplib\vuport.lib'

Note that the v command tells the archiver to print supplementary status
information.

2-7

Installation and Operation - Using the Library

Example 2-5. Extracting all the Members from a Library

2-8

You can extract all the members of a library by invoking the archiver with
the -x option without specifying any member names:

gspar -x \gsplib\vuport.src
GSP Archiver Version x.x, 87.261
(cl Copyright 1985, 1987, Texas Instruments Inc.

==> extract 'close-vu.c'
==> extract 'close_vu.c'
==> extract 'copy_vup.c'
==> extract 'initvupo.c'

Section 3

Math Routines

The math routines are a collection of algebraic, trigonometric, and transcen
dental functions on real arguments. The library includes:

• Double-precision, floating-point functions that can be called from C.

These functions conform to the ANSI C standard function names and
definitions. The arguments that are input to these functions and the
values that are returned from them are double-precision, floating-point
numbers. The TMS34010 C Compiler User's Guide describes floating
point formats.

Double-precision, floating-point math errors are reported by means of
the customizable fp-error function (discussed in the TMS34010 C
Compiler User's Guide). An error number is assigned to each type of
error; refer to Section 3.2 for a list of errors and their associated error
numbers.

• Single-precision functions that can be called from assembly langWlge.

These functions inctude addltion, multiplication, sine, cosine, and con
version between single-preciSion floating-point format and 32-bit
fixed-point format. The math .routines are implemented in TMS34010
assembly language, and call fUnctions contained in the floating-point
library flib.lib. The TMS34010 C Compiler User's Guide describes
floating-point formats.. The functions use a 32-bit fixed-point format,
which is a 2s complement representation with 16 bits of integer and 16
bits of fraction.

• Type-conversion functions that can be called from C.

These functions convert lllrrays of numbers between floating-point,
fixed-point, short-integer, aRd long-integer representations. The func
tions accept an input array of one type and produce an output array of
another type.

The algorithms used in the trigonometric, logarithmic, hyperbolic, and expo-
. nential functions are adapted from A Software Manual for the Elementary
Functions (Cody and Waite).

Topics in this section include:

Section Page
3.1 Double-Precision Functions .. 3-2
3.2 Math Routine Error Reporting ... 3-4
3.3 Single-Precision Routines ... 3-5
3.4 Array Conversion Functions .. 3-5

3-1

Math Routines - Double-Precision Functions

3.1 Double-Precision Functions
These math routines can be called from a C program.

Function Name Description
double acos(x) Returns a double-precision number that represents the
double X; arc cosine of x.
double asin(x) Returns a double-precision number that represents the
double X; arc sine of x.
double atan(x) Returns a double-precision number that represents the
double X; arc tan of x.
double atan2(u,v) Returns a double-precision number that represents the
double U,Vj arc tangent of u divided by v.
double ceil(x) Returns a double-precision number that represents the
double X; smallest integer greater than or equal to x.
double cos (x) Returns a double-precision number that represents the
double X; cosine of x.
double cosh(x) Returns a double-precision number that represents the
double X; hyperbolic cosine of x.
double cotan(x) Returns a double-precision number that represents the
double X; cotangent of x.
double exp(x) Returns a double-precision number that represents the natural
double X; number e raised to the power of X (eX).
double fabs(x) Returns a double-precision number that represents the
double X; the absolute value of x.
double flo.or (x) Returns a double-precision number that represents
double X; the largest integer less than or equal to the value of x.
double fmod(x,y) Returns a double-precision number that represents the
double x,y; remainder of X divided by y, according to the formula x-yx N,

where N is the quotient of xlv truncated to an integer.
double frexp(value, exp) Breaks a double-precision number into a normalized
double value; fraction and an exponent.
double ldexp(value, exp) Returns value x 2exp; commonly used
double value; to rebuild a double-precision number.
int exp;
double log(x) Returns a double-precision number that represents the
double X; natural logarithm (base e) of X; that is, In(x).
double loglO(x) Returns a double-precision number that represents the
double X; common logarithm of X; that is, log 10(X).
double modf(value, exp) Breaks a double-precision number into a signed
double value; fraction and a signed integer.
int *exp;
double pow(x,y) Returns a double-precision number that represents
double x,y; X raised to the power of y; that is, xy.
double sin(x) Returns a double-precision number that represents the
double X; sine of x.
double sinh(x) Returns a double-precision number that represents the
double X; hyperbolic sine of x.
double sqrt(x) Returns a double-precision number that represents the
double X; square root of x.
double tan(x) Returns a double-precision number that represents the
double X; tangent of x.
double tanh(x) Returns a double-precision number that represents the
double X; hyperbolic tangent of x ..

3-2

Math Routines - Math Routine Error Reporting

3.2 Math Routine Error Reporting

Error Code Error Code Functions

(decimal) (hexadecimal)
Error Description Generating

the Error

17 11 Argument> 1.0 E+8 sin
default result is zero cos

18 12 abs(argument) > 1.0 asin
default result is ± <Xl acos

19 13 abs(argument) < 1.0 E-300 cotan
default result is ± <Xl

20 14 abs(argument) > 1.0 E+8 cotan
default result is zero tan

21 15 argument> 500 exp
default result is ± <Xl

22 16 argument < -500 exp
default result is zero

23 17 Both arguments = 0.0 atan2
default result is +<Xl

24 18 Xv, where X < 0 pow
default result is (-X) Y

25 19 XV, where X=O and YSO pow
default result is -<Xl

26 1A Argument S 0 log
default result is "<Xl log10

27 18 XV results in overflow pow
default result is + <Xl

28 1C XV results in underflow pow
default result is zero

3-3

Math Routines - Single-Precision Routines/Array Conversion Functions

3.3 Single· Precision Routines
These math routines can be called from assembly language programs by using
the EXGPC instruction.

Function Description
Name

FL-ADD Adds two single-precision floating-point values.

Fl.-COS Calculates the cosine of a real number that represents an angle ex-
pressed in radians.

Fl.-MULT Multiplies two single~precision floating-point values.

Fl.-SIN Calculates the sine of a real number that represents an angle expressed
in radians.

FIX2FL Converts a fixed-point number to a single-precision floating-point
number.

FL2FIX Converts a single-precision floating-point number to a fixed-point
number.

3.4 Array Conversion Functions

These conversion routines can be called from C programs.

Function Description
Name

fix-ta-float Convert an array of fixed-point numbers to an array of single-precision
floating-point numbers.

fix-ta-Iong Convert an array of fixed-point numbers to an array of long integers.

fix-to-short Convert an array of fixed-point numbers to an array of short integers.

float-ta-fix Convert an array of single-precision floating-point numbers to an array
of fixed-point numbers.

long-ta-fix Convert an array of long integers to an array of fixed-point numbers.

short-ta-fix Convert an array of short integers to an array of fixed-point numbers.

3-4

Section 4

Graphics and Text Functions

The Math/Graphics Function Library contains a variety of graphics and text
functions. The graphics functions:

• Perform viewport management.
• Produce graphics output, including:

Lines,
Ellipses,
Arcs, and
Polygons.

• Provide color palette control.

The text functions:

• Provide the capability for drawing bit-mapped text to the screen.
• Allow you to select among a variety of fonts.
• Supply information about text attributes.

The library supports both proportionally spaced and monospaced fonts, and
includes several fonts. Additional fonts are available with the TMS3401 0 Font
Library (see the TMS34010 Font Library User's Guide for more information).

This section describes the graphics and text functions:

Section Page
4.1 Summary Table (Functional Grouping) .. 4-2
4.2 Graphics System Initialization Functions .. 4-6
4.3 3D Transformation Functions ... 4-7
4.4 Text Output Functions ... 4-8
4.5 Text Attribute Inquiry and Control Functions 4-9
4.6 Font Management Functions .. 4-11
4.7 Available Fonts ... 4-14
4.8 Graphics Output Functions ... 4-16
4.9 Graphics Attribute Control Functions .. 4-19
4.10 Fill Patterns ... 4-20
4.11 Color Palette Functions ... 4-23
4.12 Pixel and Pixel Array Manipulation Functions 4-24
4.13 Viewport Management Functions .. 4-25
4.14 Miscellaneous Functions ... 4-28
4.15 Special Data Formats ... 4-29
4.16 Mapping Pixels to XV Coordinates .. 4-33
4.17 System Implementation Issues ... 4-36

4-1

Graphics and Text Functions - Summary Table

4.1 Summary Table (Functional Grouping)

Graphics System Initialization Functions
Function Description

clear-screen Clears the entire screen to a specified pixel value.
init-grafix Initializes the graphics environment.
init-palet Sets the color lookup table to default palette values.
in it-screen Clears the screen and sets the palette to default colors.
in it-text Initializes text data structures and installs the system font.
init-video Initializes video timing and screen refresh registers.
init-vuport Initializes viewport data structures and opens viewport O.
new-screen Clears the entire screen and initializes the color palette.

30 Transformation Matrix Functions
Function Description

copy-matrix Copies an input matrix to an output matrix.
copy-vertex Copies an input vertex list to an output vertex list.
in it-matrix Initializes an array to a 4-by-4 identity matrix.
perspec Performs perspective transformation on a list of vertices.
rotate Rotates a 3D matrix in the XV, YZ, and ZX planes.
scale Scales a matrix in the X, y, and Z dimensions.
transform Uses a matrix to transform a vertex list.
translate Translates a matrix by displacements in X, y, and Z.
vertex-tO-point Converts a list of 3D vertices to a list of 2D points.

Text Output Functions
Function Description

draw--ehar Draws a single bit-mapped character to the screen.
draw-string Draws a string of bit-mapped characters to the screen.

Text Attribute Inquiry and Control Functions

Function Description

add-text-space Incrementally adjusts horizontal spacing between characters.
char-high Returns the character height for the selected font.
char-wide-max Returns the maximum character width in the selected font.
get-ascent Returns the ascent value for the selected font.
get-descent Returns the descent value for the selected font.
get-first--eh Returns the first character represented in the selected font.
get-Iast--eh Returns the last character represented in the selected font.
get-leading Returns the leading value for the selected font.
get-width Returns the pixel width of the specified character string.

Font Management Functions

Function Description

get-font-max Returns the maximum number of installed fonts.
install-font Installs a font and assigns the designated index.
select-font Selects a previously installed font.

Graphics Output Functions

Function Description

bound-fill Fills to a specified boundary color.
bound-patnfill Fills to a specified boundary color with pattern.
draw_line Draws a pixel-thick line between two points.
draw-oval Draws the outline of an ellipse one pixel thick.
draw-ovalarc Draws an elliptical arc one pixel in thickness.
draw-piearc Draws a one-pixel-thick outline of a pie slice of an ellipse.
draw-point Draws a pixel at designated coordinates.

4-2

Graphics and Text Functions - Summary Table

Graphics Output Functions (continued)
Function Description

draw-polyline Draws a list of one-pixel-thick lines.
draw-rect Draws an outline of a rectangle one pixel thick.
fill-convex Draws a solid-filled convex polygon.
fill-oval Draws a solid-filled ellipse.
fill-piearc Draws a solid-filled pie slice of an ellipse.
fill-polygon Draws a solid-filled polygon.
fill-rect Draws a solid-filled rectangle.
frame-oval Draws a solid elliptical border of specified thickness.
frame-rect Draws a solid rectangular border of specified thickness.
patnfi II-oval Draws a pattern-filled ellipse.
patnfi II-polygon Draws a pattern-filled polygon.
patnfill-rect Draws a pattern-filled rectangle.
patnframe-oval Draws a pattern-filled elliptical border of specified thickness.
patnframe-rect Draws a pattern-filled rectangular border of specified thickness.
patnfi II-eonvex Draws a pattern-filled convex. polygon.
patnfi II-piearc Draws a pattern-filled pie slice of an ellipse.
patnpen-line Uses a pen and pattern to draw a line between two points.
patnpen-ovalarc Uses a pen and pattern to draw an elliptical arc.
patnpen-piearc Uses a pen and pattern to draw a pie slice of ellipse.
patnpen-point Draws a pattern-filled pen at designated coordinates.
patnpen-polyline Uses a pen and pattern to draw a list of lines.
pen-line Uses a solid pen to draw a line between two points.
pen-ovalarc Uses a solid pen to draw an elliptical arc.
pen-piearc Uses a solid pen to draw a pie slice of an ellipse.
pen-point Draws a solid-filled pen at designated coordinates.
pen-polyline Uses a pen to draw a list of lines.
seed-fill Seed (or flood) fills a connected region with a solid color.
seed-patnfill Seed fills a connected region with a pattern.
styled-line Draws a styled line between two points.

Pixel and Pixel Array Manipulation Functions
Function Description

bit-expand Expands a two-dimensional bit array to colors 0 and 1.
get-pixel Reads a pixel from the specified coordinates.
get-rect Copies a rectangular area of the screen into a pixel array.
move-pixel Moves a pixel from source to destination.
move-rect Moves pixels from source rectangle to destination.
put-pixel Writes a pixel to the specified coordinates.
put-rect Copies a pixel array to a rectangular area of screen.
run-decode Decompresses a run-length encoded image onto the screen.
run-encode Stores the on-screen image in run-length encoded form.
zoom-rect Zooms a source rectangle to fit a destination rectangle.

Graphics Attribute Control Functions
Function Description

get-patn-max Returns the maximum number of installed patterns.
get-pmask Returns the current color plane mask.
get-ppop Returns the current pixel processing option.
get-psize Returns the current pixel size.
get-transp Returns the current transparency flag.
install-patn Installs a 16-by-16 bit map in the pattern table.
select-patn Selects a pattern from the pattern table.
set-col orO Sets the background color.
set-color1 Sets the foreground color.
set-pensize Sets the pen width and height.
set-pmask Sets the color plane mask.
set-ppop Sets the pixel processing operation.
transp.-off Disables the pixel attribute of transparency.
transp-on Enables the pixel attribute of transparency.

4-3

Graphics and Text Functions - Summary Table

Color Palette Functions
Function Description

color-blend Blends from starting color to ending color over a specified block
of scan lines.

getall-palet Reads multiple registers in the color lookup table.
set-palet Loads specified register in the color lookup table.
setall-palet Loads multiple registers in the color lookup table.

Viewport Management Functions
Function Description

clos8-vuport Closes a viewport.
copy-vuport Copies attributes of one viewport to another.
cpw Compares a point to a window (visibility rectangle).
get-vuport-max Returns the maximum number of open viewports.
mov8-vuport Moves a viewport to a new position on screen.
open-vuport Opens a new viewport and returns its index.
select-vuport Selects a viewport that is already open.
set-cliprect Sets the size and position of a clipping rectangle.
set-origin Sets the position of a viewport-relative origin.
size-vuport Changes the size of a viewport.

Miscellaneous Graphics Functions
Function Description

delay Waits for the specified number of ticks (tick = 1/60 second).
lib-id Returns a string identifier for the library revision.
Imo Returns the bit number of the leftmost one in an argument.
peek Returns the specified word in memory.
peek-breg Returns the specified B-file register.
poke Writes a value to the specified word in memory.
poke-breg Writes a value to the specified B-file register.
rep-pixel Replicates a pixel value throughout a 32-bit integer.
rmo Returns the bit number of the rightmost one in an argument.
wait-scan Waits for the designated horizontal line to be scanned.
xytoaddr Converts XV coordinates to the memory address of pixel.

4-4

Graphics and Text Functions - Graphics System Initialization Functions

4.2 Graphics System Initialization Functions

These functions initialize the software graphics environment by:

• Setting selected 110 registers and B-file registers to appropriate
initial values, .

• Assigning default values to key variables,
• Clearing the screen, and
• Setting the color palette to default values.

Table 4-1 summarizes the graphics system initialization functions.

Table 4-1. Summary of Graphics System Initialization Functions

Function Name Description

clear-screen Clears the frame buffer to the specified pixel value.

init.:-grafix Initializes the graphics environment. This function must be called
before using any of the graphics output functions.

init.:-palet Loads the default color palette into the color lookup table.

init-screen Clears the frame buffer to the specified pixel value and loads the
default color palette values into the color lookup table.

init-text Initializes the text data structures. and opens the system font as
font number O. This function must be called before using any of
the text functions.

in it-video Initializes CRT control timing. enables screen refresh. and defines
screen dimensions and pixel size. This function must be called
before using the initialization functions init-grafix and
init.:-vuport.

init.:-vuport initializes viewport data structures. and opens system viewport 0
as the system viewport. This function must be called before using
any of the viewport functions.

new-screen Clears the frame buffer to the specified pixel value. and loads the
specified color palette values into the color lookup table.

4-5

Graphics and Text Functions - 3D Transformation Functions

4.3 3D Transformation Functions

4-6

These functions allow you to rotate, scale, translate, and apply perspective
transformations to points in three-dimensional space. You can use these
functions to construct a a 4 x 4 homogeneous transform matrix, and transform
the object that the matrix represents through a series of rotations, scaJings, and
translations. You can then use the resulting matrix to transform an object re
presented as a list of 3D points.

The Z coordinate axis used for 3D operations is assumed to be perpendicular
to the face of the screen. The positive Z direction moves away from a person
who is looking at the screen (into the screen). The face of the screen is at
Z=O. The X axis is horizontal along the face of the screen; the positive X di
rection is left to right. The Y axis is vertical along the face of the screen; the
positive Y direction is top to bottom. You can use the viewport functions in
cluded in the library to move the XY origin used for graphics output. The de
fault location of the origin is at the top left corner of the screen; this is the
location of the origin following initialization.

Points in three-dimensional space are represented in a data structure called a
vertex list. Each point in the vertex list is represented by three coordinates,
(x'Y,Z). The vertex list can be converted to a list of two-dimensional points,
each specified by two coordinates, (x'Y). to facilitate their use by graphics
output functions such as draw-polyline and fill-polygon.

Vertex list elements and transformation elements are represented as 32-bit
fixed-point values. The fixed-point format is not a standard C ,data type, but
is an internal data format used by several library functions. A fixed-point value
is a 32-bit, 2s complement value whose 16 lSBs lie to the right of the binary
point.

Table 4-2 summarizes the matrix functions. Refer to Principles of Interactive
Computer Graphics (Newman and Sproull) for a description of homogeneous
coordinate transformations.

Table 4-2. Summary of 3D Transformation Functions

Function Name Description

copy-matrix Copies a 4 x 4 matrix.

copy-vertex Copies a vertex list (list of three-dimensional vertices).

init-matrix Initializes a 16-element array to a 4 x 4 identity matrix.

perspec Performs perspective transformation on a vertex list (list of three-
dimensional vertices).

rotate Rotates a matrix by specified angles in the XY, YZ, and ZX planes.

scale Scales a matrix by specified scaling factors in the X, y, and Z di-
mensions.

transform Uses a 4 x 4 transformation matrix to transform a list of three-di-
mensional vertices.

translate Translates a matrix by specified displacements in the X, y, and Z
directions.

vertex-tO-point Converts a vertex list (list of three-dimensional vertices) to a list
of two-dimensional points.

Graphics and Text Functions - Text Output Functions

4.4 Text Output Functions

The text output functions draw bitmapped text to the screen. The library
supports both proportionally spaced and monospaced fonts. Text can be
placed at arbitrary positions on the screen. Table 4-3 summarizes the text
output functions.

Table 4-3. Summary of Text Output Functions

Function Name Description

draw-char Draws a single character to the screen using the current font.

draw-string Draws a string of characters to the screen using the current font.

4-7

Graphics and Text Function - T.ext Attribute Functions

4.5 Text Attribute Inquiry and Control Functions

4-8

These functions provide you with values that are associated with text attri
butes. Several attributes, including ascent, descent, leading, character height,
and character width, are associated with each font in the font library. Figure
4-1 illustrates these attributes.

character
origin

character
rectangle

Figure 4-1. Text Attributes

ascent
line

character
rectangle

base
line

descent
line

T
c
h
a
r
a
c
t
e
r

h
e
I

~
t

1

• The character origin is a point on the baseline that is positioned at the
left side of the character pattern. This point is used as a reference for
locating the character to be drawn.

• The character rectangle is a rectangle that encloses the character
image. The sides of the rectangle are defined by the image width and
the character height. For example, in Figure 4-1, the character rectangle
for a is seven pixels wide and ten pixels high.

• The character width is the image width plus the space separating this
character from the next character. The character width can vary within
a font and between fonts.

• The image width is the width in pixels of the portion of the character
pattern bitmap that contains the character image, excluding the space to
the right of the character. The image width can vary within a font and
between fonts.

• The ascent line is a horizontal line that coincides with the top of the
highest-reaching character in the font. The ascent value is the difference
between the Y coordinates of the ascent line and the baseline.

• The baseline is an imaginary horizontal line that coincides with the
bottom of each character, excluding descenders. The starting Y coordi-

Graphics and Text Function - Text Attribute Functions

nate given to the draw-string or draw-char function specifies the Y
value of the baseline. The starting X coordinate specifies the left edge
of the first character. The starting X and Y coordinates together define
the character origin of the first character in the string.

• The descent line is a horizontal line that coincides with the bottom of
the character having the lowest-reaching descender in the font. The
descent value is the difference between the Y coordinates of the descent
line and the baseline.

• The character height is the vertical separation between successive
rows of text, and is the sum of the ascent. descent, and leading values.

• The leading is the vertical spacing between the bottom of one row of
characters and the top of the row of characters below it. The leading
value is calculated as difference in Y coordinates of the descent line of
one row of characters and the ascent line of the row of characters below
that row.

Table 4-4 summarizes the text attribute functions. Refer to the TMS34010
Font Library User's Guide for additional information on the font data structure.

Table 4-4. Summary of Text Attribute Inquiry Functions

Function Name Description

add-text-space Specifies a value to be added to the default horizontal spacing
between characters.

char-high Returns the character height for the current font.

get-first-ch Returns the first character represented in the current font.

get-Iast-ch Returns the last character represented in the current font.

char-wi de-max Returns the maximum character width in the current font.

get-ascent Returns the ascent value for the current font.

get-descent Returns the descent value for the current font.

get-leading Returns the leading value for the current font.

get-width Returns the width (in pixels) of a specified character string drawn
in the current font.

4-9

Graphics and Text Function - Font Management Functions

4.6 Font Management Functions

The font management functions allow you to install a text font and select one
of the installed fonts for uSe. The function library includes several bit-mapped
text fonts; additional fonts are available with the TMS34010 Font Library.
Table 4-5 summarizes the font management functions.

Table 4-5. Summary of Font Management Functions

Function Name Description

get-font-max Returns the maximum number of fonts that can be
installed.

install-font Installs a new font. and assigns an index to it.

select-font Selects a previously installed font.

Each font is fully described by a font data structure. which contains the char
acter pattern bitmap and other information necessary to extract individual
character patterns from the bitmap. Figure 4-2 shows the C definition for this
structure.

/*--* TMS34010. Graphics Function Library
--~----------- font_struct data structure
* * Data structure for storage of text font bit map and attributes.
* The charpatn [1 i loctable [1, and owtable [1 arrays vary in size
* according to the font. This is the reason they are given dummy
* declarations below. The routines that manipulate these arrays
* are written in assembly code.
*--
*/

struct font_struct {
short fonttype; /*
short firstchar; /*
short lastchar; /*
short widemax; /*
short kernmax; /*
short ndescent; /*
short frectwide; /*
short charhigh; /*

/*
/*
/*
} ;

short owtloc; /*
short ascent; /*
short descent; /*
short leading; /*
short rowwords; /*
short charpatn[n];
short loctable[n];
short owtable[nl;

font type code * /
ASCII code of first character */
ASCII code of last character */
maximum character width */
maximum character kerning amount */
negative of the descent value */
width of font rectangle * /
character height */
offset to offset/width table */
ascent (how far above baseline) */
descent (how far below baseline) */
leading (row bottom to next row top) */
no. of words per row of char patterns */
character pattern bitmap */
character offsets in charpatn */
offset/width table */

typedef struct font-struct FONT;

Figure 4-2. Font Data Structure

4-10

Graphics and Text Function - Font Management Functions

and thus can be explicitly manipulated in a C program. The last three members
(arrays charpatn, loctable, and owtable) have variable lengths; they are
given dummy declarations in the structure definition above, and are manipu
lated by assembly language routines. The font structure members are defined
as follows:

fonttype Font type code. This code designates the type of font. Proportionally spaced
fonts are identified by a fonttype value of 9000h. (The software treats even
monospaced fonts such as Corpus-Christi as proportionally spaced fonts.)

firstchar ASCII code of first character. The f irstchar value identifies the lowest AS
CII code for. which a character pattern (other than the missing character pat
tern) is provided.

last char ASCII code of last character. The lastchar value identifies the highest ASCII
code for which a character pattern (other than the missing character pattern)
is provided.

widemax Maximum character width. The widemax value is the character width of the
widest character in the font. It equals the sum of the image width and the
space to the right of the character image.

kernmax Maximum character kerning amount. The font structure permits character
kerning; that is, a character's pattern may overlap the space occupied by the
character to its left. The kerning amount is the number of horizontal pixels of
overlap, and is equal to the portion of the image width of the character that
falls to the left of the character origin. It should always be 0 or negative. The
kernmax is the maximum kerning amount for all characters in the font.

ndescent Negative of the descent value. The ndescent value is the negative (2s com
plement) of the number of pixels between the baseline and the descent line
for the font.

frectwide Width of font rectangle. The frectwide is the width of the widest character
image in the font. Whereas widemax represents the sum of the image width
and the space to the right of the character, frectwide represents only the
image width.

charhigh Character height. The charhigh value represents the vertical distance (in
pixels) between the baseline of one row of text and the baseline of the fol
lowing row. It equals the sum of the ascent and the descent. The charhigh
value is also the number of rows in the bitmap representing the character
patterns for the font.

owtloc Offset to offset/width table. The owtloc value is the word offset from itself to
the start of the owtable array. It is equivalent to 4+ (rowwords x charhigh)
+ (lastchar-firstchar+3)+1.

ascent Ascent. The ascent value is the vertical distance (in pixels) from the baseline
to the ascent line for the font.

descent Descent. The descent value is the vertical distance (in pixels) from the de
scent line one row of text to the ascent line of the next row of text beneath it.

leading Leading. The leading is the vertical distance (in pixels) from the descent line
of one row of text to the ascent line of the next row of text beneath it.

4-11

Graphics and Text Function - Font Management Functions

rowwords Number of words per row of character pattern bitmap. The rowwords value
is the width (in words) of the bitmap containing the patterns for the characters
in the font. The pitch (width in bits) of the bitmap is obtained by multiplying
rowwords by 16.

charpatn [nl Character pattern bitmap. Figure 4-1 shows the format of the Character pat
tern bitmap contained in the charpatn array. The last character image in the
bitmap is that of the missing symbol. The top row of the bitmap contains the
top row of the image for each character in the font; the second row contains
the second row of the image for each character; and so on. The storage space
in words required by the bitmap is calculated as (rowwords)(charhigh).

loctable [n 1 Table for locating individual character images in the character pattern bitmap.
The loctable member corresponding to a particular ASCII character code
gives the offset in bits from the start of the charpatn array to the start of the
image for that character. The loctable array contains entries only for ASCII
characters firstchar through last char, plus the missing character. The to
tal number of members in the loctable array is equal to n = (lastchar
firstchar+3). The location of the first character is contained in
loctab Ie [0]; the location of the last character is contained in
loctable[lastchar-firstchar]. The location of the missing character is
contained in loctable[lastchar-f irstchar +1]. The final array member,
loctable [lastchar-f irstchar +2], points to one bit beyond the end of the
top row of the missing character image. The offset of the image for an ASCII
code ; from the base address of the charpatn array is contained in
loctable[i-firstchar]. The width of the image is calculated as w =
(loctable[i-firstchar+1] - (loctable[i-firstchar]. If the character
represented by ASCII code; is missing from the table, the loctable member
representing that character has the same value as the member for character ;-1 :
loctable [i-f irstchar] = loctable [i-f irstchar+1].

owtable [nl Offset/width table. The owtable array is a table of values giving the character
offset and character width for each character in the font; the 8 MSBs of each
member give the character offset, and the 8 LSBs give the character width.
However, if an ASCII code i represents a character whose pattern is missing
from the font, then owtable [i-f irstchar], the offset/width table entry for
that character, is set to -1 (aIl1s). The owtable array contains entries only
for ASCII characters firstchar through lastchar, and also for the missing
character. The owtable array has the same number of members as the
loctable array. The offset/width value for the first character is contained in
owtable [0]. The offset/width value for the last (nonmissing) character is
contained in owtable[lastchar-firstchar]. The offset/width value for
the missing symbol is contained in owtable [lastchar-f irstchar +1].
The last member of the array, owtable[lastchar-firstchar+2], contains
a value of -1.

4-12

Graphics and Text Functions - Available Fonts

4.7 Available Fonts

The math/graphics function library includes several fonts that can be used
with the library's text functions. The TMS3401 0 Font Library provides addi
tional fonts (see the TMS34010 Font Library User's Guide).

Figure 4-3 shows the five fonts that are included in the math/graphics func
tion library.

CORPUS CHRISTI 161 The quick bro.n fox JUlped over i

,CORPUS CHRISTI 29: The qu

NORTH POl.E 30: The quick brown f

Figure 4-3. Five Fonts

The font names are listed in Table 4-6 along with the font structure names that
are used within a C program to install the font in the font table.

Table 4-6. Installable Font Symbols

Font Name Symbol Name

CORPUS CHRISTI 16 corpus-christi16

CORPUS CHRISTI 29 corpus-christi29

MONTROSE 28 montrose28

NORTH POLE 30 north-pole30

SAN MARCOS 21 sSh-marcos21

The program in Figure 4-4 draws the text display shown in Figure 4-3.

4-13

Graphics and Text Functions - Available Fonts

/*---
* Show available fonts.
*---
*/

#include "fntstruc.h" /* Define FONT structure as data type. */

extern FONT corpus_christi29,
montrose28,
north-pole30,
san-marcos21;

static char *cap[] = {

/* Corpus Christi font, size
/* Montrose font, size
/* North Pole font, size
/* San Marcos font, size

"CORPUS CHRISTI 16: ,"CORPUS CHRISTI 29: ,
"MONTROSE 29: ", "NORTH POLE 30: ", "SAN MARCOS 21:

} ;

main()
(

char *s;
int x, y;
int i;

/* text */
/* text coordinates */
/* loop counter */

init_video(l);
init_grafix() ;

29 */
28 */
30 */
21 */

init_text(); /* Corpus Christi 16 selected as default font */
init_screen();

4-14

/* Remember the '&' symbol!
install_font(l, &corpus-christi29);
install_font(2, &montrose28);
install_font (3, &north-pole30);
install-font (4, &san-marcos21);

*/

s = "The quick brown fox jumped over the lazy sleeping dog.";
for (i = 0, Y = 50; i (= 4; ++i) (

Y += char_high(); /* character height */
select_font (i) ;
y += char_high(); /* character height */
x = draw_string(O, y, cap[i]);
draw_string (x, y, s);

Figure 4-4. Drawing the Text Display for Figure 4-3

Graphics and Text Functions - Graphics Output Functions

4.8 Graphics Output Functions

The graphics functions draw several shapes in a variety of styles. Table 4-7
describes the figure types and drawing styles. Table 4-8 shows which shapes
can be drawn in a particular style. The column headers list the available styles
and the row headers list the available shapes; a check mark indicates that a
shape can be drawn with a particular style. Table 4-9 (page 4-17) describes
the individual graphics output functions.

Table 4-7. List of Figure Types and Drawing Styles

Figure Types

Function Name Description

bound Fill bounded set of pixels beginning at specified start point.

line A straight line.

oval Ellipse in standard position (major and minor axes parallel with
coordinate axes).

ovalarc An arc of an ellipse in standard position, specified in terms of be-
ginning and ending angles.

point A single pixel or pen image drawn at the indicated XV coordinate
pair.

polygon A filled region defined by a collection of straight edges. Both
convex polygons and arbitrarily complex polygons are supported.

polyline A collection of straight lines. Figures made up of many lines can
be drawn more efficiently by using the polyline commands than
by repeated calls to the line functions.

piearc Pie arc or wedge. Similar to oval are, but with addition of sides
drawn from center of ellipse to arc endpoints to produce closed
figure.

rect Rectangle with vertical and horizontal sides.

seed Fill connected set of pixels beginning at specified seed point.

Drawing Styles

Function Name Description

draw Draws figure outline one pixel wide using COLOR1.

fill Draws figure interior filled in solid COLOR1.

frame Draws frame in solid COLOR1. Horizontal and vertical thicknesses
of frame border are both specified.

patnframe Draws frame using pattern in COLORO and COLOR1. Horizontal
and vertical Jhicknesses of frame border are both specified. The
16-by-16 pattern is programmable.

patnpen Draws figure outline using pen and pattern in COLORO and
COLOR1. Pen Size and 16-by-16 pattern are programmable.

pen Draws figure outline using pen in solid COLOR1. Pen is rectan-
gular with programmable height and Width.

patnfill Draws figure interior filled with pattern in COLORO and COLOR1.
The 16-by-16 pattern is programmable.

4-15

Graphics and Text Functions - Graphics Output Functions

Table 4~8. Checklist of Available Figure Types and Drawing Styles

Drawing Style

Figure draw pen patnpen fill patnfill frame patnframe
Type

bound .j .j
line .j .j ~-L
oval .j .j .j .j .j
ovalarc .j .j .j
piearc .j .j .j .j .j
point .j .j .j
polygon .j .j
polyline .j .j .j
rect .j .j i .j .j
seed .j .j

Table 4-9. Summary of Graphics Output Functions

Function Name Description

bound-fil·1 Fills a bounded set of pixels given a starting point and a boundary
color.

bound-patnfill Fills a bounded set of pixels with the current pattern given a
starting point and a boundary color.

draw-line Draws a straight line one pixel thick.

draw-oval Draws the outline of an ellipse. The outline is one pixel in thick-
ness.

draw-oval arc Draws an elliptical arc one pixel thick.

draw-piearc Draws the outline of a pie slice of an ellipse. The outline is one
pixel thick.

draw-point Draws a pixel at the specified coordinates.

draw-polyline Draws a list of lines one pixel thick.

draw-rect Draws the outline of a rectangle. The sides are one pixel in thick-
ness.

fill-eonvex Fills a convex polygon.

fill-oval Draws a solid-filled ovalangle.

fill-piearc Draws a solid-filled pie slice of an ellipse.

fill-polygon Draws a solid-filled polygon given a list of edges.

fill-rect Draws a solid-filled rectangle.

4-16

Graphics and Text Functions - Graphics Output Functions

Table 4-9. Summary of Graphics Output Functions (Concluded)

Function Name Description

frame-oval Draws an elliptical frame of specified thickness. The frame border
is solid-filled.

frame-rect Draws a rectangular frame of specified thickness. The frame border
is solid-filled.

patnfi II-convex Fills a convex polygon with the current pattern.

patnfill-oval Draws an ellipse filled with the current pattern.

patnfill-piearc Draws a pattern-filled pie slice of an ellipse.

patnfill-polygon Draws a pattern-filled polygon given a list of edges.

patnfi II-rect Draws a rectangle filled with the current pattern.

patnframe-oval Draws an elliptical frame of specified thickness. The frame border
is filled with the current pattern.

patnframe-rect Draws a rectangular frame of specified thickness. The frame border
is filled with the current pattern.

patnpen-line Draws a straight line using the drawing pen and the current pat-
tern.

patnpen-ovalarc Draws an elliptical arc using the drawing pen with the current
pattern.

patn pen-piearc Draws the outline of a pie slice of an ellipse using the drawing pen
and the current pattern.

patnpen-point Draws the pen with the current pattern at the specified coordi-
nates.

patnpen-polyline Draws a list of lines using the drawing pen and the current pattern.

pen-line Draws a straight line using the drawing pen.

pen-oval arc Draws an elliptical arc using the drawing pen.

pen-piearc Draws the outline of a pie slice of an ellipse using the drawing
pen.

pen-point Draws the pen at the specified coordinates.

pen-polyline Draws a list of lines using the drawing pen.

seed-fill Fills a connected set of pixels given a seed point.

seed-patnfi II Fills a connected set of pixels with a pattern given a seed point.

styled-line Draws a styled line using the specified 32-bit line-style pattern.

4-17

Graphics and Text Functions - Graphics Attribute Control Functions

4.9 Graphics Attribute Control Functions

4-18

These functions allow you to select and enable a variety of graphics attributes,
including:

• Foreground (COLOR1) and background (COLORO) colors,
• Pixel transparency,
• Pixel processing operation code,

• Plane mask,
• Pen width and height. and
• 16 x 16 fill pattern.

Table 4-10 summarizes these functions. Refer to the TMS34010 Usels Guide
for descriptions of COLORO, COLOR1, transparency, pixel processing, and the
plane mask.

Table 4-10. Summary of Graphics Attribute Control Functions

Function Nanie Description

get-patn-max Gets the maximum number of patterns that can be installed in
pattern table at one time.

get-pmask Gets the current plane mask.

get-ppop Gets the current pixel processing option.

get-psize Gets the current pixel size.

get-transp Gets the current transparency flag.

install-patn Installs a new pattern in pattern table.

select-patn Selects a pattern that is already installed in pattern table.

set-colorO Sets the background color used for text, bitmap expansion, and
patterns.

set-color1 Sets the foreground drawing color used for vectors, fills, text, bit-
map expansion and patterns.

set-pensize Sets the width and height of rectangular drawing pen.

set-ppop Sets the pixel processing operation code.

set-pmask Sets the plane mask, enabling or disabling individual color planes
as specified.

transp-off Disables the pixel attribute of transparency.

transp-on Enables the pixel attribute of transparency.

Graphics and Text Functions - Fill Patterns

4.10 Fill Patterns
Graphics functions which include patn as part of their names draw with a
pattern instead of a solid color. The pattern is specified as a 16 x 16 bitmap,
and is represented in memory as an array of 256 contiguous bits. The bits in
a pattern are listed in left-to-right order within a row, and rows listed in top
to-bottom order. You must install a pattern in the library's pattern table before
you call a function that draws with the pattern.

Figure 4-5 shows an example of a pattern as it appears on the screen. The
small squares represent individual bits in the pattern; shaded squares represent
1 s and white squares represent Os. The bit at the top left corner is the first bit
(bit 0) in the pattern array. The bit at the lower right hand is the last bit (bit
255) in the array.

Figure 4-5. A 16x16 Pattern

When a pattern is drawn to the screen, the Os in the bit map are replaced with
COLORO, and the 1 s in the bit map are replaced with COLOR1. The pattern
is mapped into 16 x 16 cells on the screen. The X and Y coordinates at the top
left corner of each cell are both multiples of 16.

The library supports several patterns that are installed as the default patterns
when the init-grafix function is called. You can view the default patterns by
executing the program shown in Figure 4-6.

4-19

Graphics and Text Functions - Fill Patterns

/*--* Show available patterns in deck-of-cards display.
*t---i/

maine)
(

4-20

int x, y, dx, dy, i, hueO, huel;

init_video(l);
init_grafix(); /* Initialize default patterns. */
init_screen();
i = get_patn-max();
dx = 480 / i;
dy = 3~0 / i;
x = Y = 0;
hueO = huel = 0;
for (--i; i >= 0; --i, x += dx, Y += dy) (

select_patn (i) ;
set-colorO(rep_pixel(hueO++» ;
set_colorl(rep_pixel(--huel»;
patnfill_rect(160, 160, x, y);

Figure 4-6. Program for Displaying the Default Patterns

You can use the install-patn function to install your own pattern in any po
sition in the pattern table. The program in Figure 4-7 installs and displays the
pattern shown in Figure 4-5.

Graphics and Text Functions - Fill Patterns

/*--
* Install a pattern in the pattern table.

/*--
*/

main()
{

typedef enum { FIELDWIDTH = 1 } BIT,
static BIT mypatn[] = {

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
0,1,1,1,1,1,1.1,1,1,1,1,1,1,1,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,
0,1,1,0,0,1,1,1,1,1,1,1,1,1,0,0,
0,1,1,0,0,1,1,0,0,0,0,0,1,1,0,0,
0,1,1,0,0,1,1,0,0,0,0,0,1,1,0,0,
0,1,1,0,0,1,1,1,1,1,0,0,1,1,0,0,
0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,
0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

J;

init_video(1) ,
init_grafix() ,
init_screen() ,
insta1l_patn(5, mypatn),
set_colorO(rep_pixel(4)) ,
set-color1(rep_pixel(7)) ,
patnfill-oval(448, 288, 96,

/* Installs default patterns. */

/* Assign index = 5. */
/* Expand Os to this color. */
/* Expand 1s to this color. */
96) ,

Figure 4-7. Program for Installing Fonts

4-21

Graphics and Text Functions - Color Palette Functions

4.11 Color Palette Functions

4-22

These functions allow you to read and modify the color lookup table that is
used to translate pixel values into colors on the screen. In systems that sup
port color indexing, the color associated with each possible pixel value is
specified in the corresponding entry in a color lookup table. The colors seen
on the display are generated by using the pixel values from the display memory
as indices into the lookup table. Each table entry specifies the red, green, and
blue intensities that make up the color.

The color lookup table is loaded into the internal registers of a color-palette
device such as a TMS34070 color-palette chip. The driver routines that im
plement the palette functions are necessarily device dependent. The imple
mentation that runs on the TMS3401 0 Software Development Board assumes
a pixel size of four bits and a TMS34070 color palette that is configured in
line-load mode. The set-palet function changes the color associated with a
specified pixel value, and is relatively easy to emulate in systems containing
other types of palette devices. More difficult to emulate are the functions
which make use of the ability of the TMS34070 color-palette chip to load its
registers with a new lookup table at the beginning of each scan line in the
frame. With this ability, a different color palette can be assigned to each scan
line or group of scan lines. Three functions use this feature of the TMS34070
color palette: setall-palet, getall-palet and color-blend.

Refer to the TMS34070 User's Guide for information about the TMS34070
color palette. Refer to the TMS34010 Software Development Board User's
Guide for information on configuring the palette on the SDB to operate in
line-load mode.

Table 4-11 summarizes the color palette functions.

Table 4-11. Summary of Color Palette Functions

Function Name Description

color-blend Creates gradual changes in shading, highlights, and color blending
effects by gradually varying the red, green and blue intensities of
the color associated with a specified pixel value on a line-by-line
basis.

getall-palet Reads multiple registers of the TMS34070 color palette. The pal-
ette for the specified scan line is returned.

set-palet Changes the color that is associated with a specified pixel value.

setall-palet Loads multiple registers of the TMS34070 color palette. The pal-
ette is affected only over a specified group of scan lines.

Graphics and Text Functions - Pixel and Pixel Array Functions

4.12 Pixel and Pixel Array Manipulation Functions

These functions copy and process individual pixels and two-dimensional ar
rays of pixels. (2D pixel arrays correspond to rectangular areas of the screen.)
Table 4-12 summarizes the pixel array functions.

Table 4-12. Summary of Pixel Array Functions

Function Name Description

bit-expand Expands a bitmap to the specified rectangular area of the screen.
The expansion process replaces the 1 s in the bitmap with COLOR1
and replaces the Os with COLORO.

get-pixel Returns the value of the specified pixel on the screen.

get-rect Captures a rectangular area of the screen into the specified pixel
array.

move-pixel Copies a pixel from one screen location to another.

move-rect Copies the pixels in a rectangular area of the screen to another
rectangular area of the same size.

put-pixel Copies the specified value to the specified pixel on the screen.

put-rect Copies an array of pixels to a rectangular area of the screen.

run-decode Decompresses a previously run-length encoded image and copies
the image to a specified location on the screen.

run-encode Uses run-length encoding to compress an image contained in a
specified rectangular area of the screen.

zoom-rect Zooms the pixels in the specified source rectangle on the screen
to fit the specified destination rectangle on the screen.

4-23

Graphics and Text Functions - Viewport Management Functions

4.13 Viewport Management Functions

4-24

These functions allow you to change the position and size of a viewport. They
also allow you to change the relative origin and clipping rectangle associated
with the viewport.

A viewport is a rectangular area of the screen; drawing can occur within the
boundaries of a viewport. Multiple viewports can be open simultaneously, but
only one viewport is active at a time. Drawing operations can take place only
within the active viewport. All graphics output is automatically clipped so that
only pixels lying inside the boundaries of the viewport are drawn.

When a viewport is moved or resized, anything previously drawn to the screen
is not affected; changes in the viewport do affect subsequent drawing oper
ations. Similarly, when the relative origin is moved, or the clipping rectangle
is changed, only subsequent drawing operations are affected.

Figure 4-8 shows an example in which two viewports, 0 and 6, are open. A
relative XV origin and a clipping rectangle are associated with each viewport
in Figure 4-8. All graphics output is drawn in the coordinate system defined
by the relative origin associated with the active viewport. The clipping rec
tangle allows you to restrict drawing to a rectangular region within the view
port. Drawing car:"! occur only in the visibility rectangle represented by the
intersection of the active viewport, the clipping rectangle associated with that
viewport, and the screen.

j~ ",,,.
viewport 0

\
y

relative origins

----l--~i ·

clipping rectangles

y :
I
I
I
I
I
I
I
I
I

I
I - ______ 1

Figure 4-8. Two Viewports

Applications that do not require viewports, clipping rectangles, or relative ori
gins can ignore them. The init-grafix function establishes a default viewport

Graphics and Text Functions - Viewport Management Functions

for which the visibility rectangle is the entire screen. It also positions the XY
origin at the top left corner of the screen. Applications that use viewports,
clipping rectangles, or relative origins must call the init-vuport function before
calling any of the viewport functions.

A set of graphics and text attributes are associated with each open viewport.
When a viewport is activated, the state of these attributes at the end of the
previous activation (of the same viewport) is automatically restored. The fol
lowing is a list of attributes associated with each viewport:

• The viewport width and height and the XY coordinates of its top left
corner (specified as displacements from the top left corner of the
screen).

• A relative origin that is specified in terms of its X and Y displacements
from the top left corner of the viewport.

• A clipping rectangle that is specified in terms of its width and height,
and the XY coordinates at its top left corner, relative to the viewport's
relative origin.

• A pattern index that indicates the current pattern.
• A font index that indicates the current font.
• A text horizontal spacing increment that indicates the amount by

which the default spacing between characters is modified. The incre
ment can be positive, negative, or zero. (See the add-text-space
function.)

• The current width and height of the drawing pen.
• The current COLORO that defines the background color specified for

text and pattern drawing.
• The current COLOR1 that defines the foreground color specified for text

arid pattern drawing, and the drawing color used for lines, solid fills, and
so on.

• The current pixel processing operation code that identifies one of the
22 pixel processing operations performed by the TMS3401 O.

• A transparency flag that indicates whether the pixel transparency at
tribute is currently enabled or disabled.

• The current plane mask that indicates which color planes are enabled
and disabled during graphics output operations.

When you move a viewport, you must specify the viewport's new position (as
measured from its top left corner) relative to the screen origin, which lies at
the top left corner of the screen. When you move the viewport's relative XY
origin, you must specify the new origin in terms of its X and Y displacements
from the top left corner of the viewport. When the viewport position is
changed, the relative origin moves with it. The position of the clipping rec
tangle is defined in terms of the relative origin. When the position of either the
viewport or the relative origin is changed, the position of the clipping rectan
gle moves accordingly.

Table 4-13 summarizes the viewport management functions.

4-25

Graphics and Text Functions - Viewport Management Functions

Table 4-13. Summary of Viewport Management Functions

Function Name Description

clos6--vuport Closes a viewport that was previously opened.

copy-vuport Copies the attributes from one viewport to another. Both view-
ports must be open.

cpw Compares point to window and returns 4-bit outcode.

get-vuport-max Gets maximum number of viewports that can be open at once.

init-vuport Initializes the viewport data structures, and opens the system
viewport as viewport O.

mov6--vuport Moves the viewport to a new position on the screen. The position
is specified in terms of X and Y displacements from the top' left
corner of the screen.

open-vuport Opens a new viewport.

select-vuport Activates a viewport that is already open.

set-cl i prect Sets the clipping rectangle to the specified width and height. and
moves it to the specified pOSition. The position is specified in
terms of X and Y displacements from the viewport-relative origin.

set-origin Sets the XY origin for the viewport to the new position. The po-
sition is specified in terms of X and Y displacements from the top
left corner of the viewport.

siz6--vuport Changes the width and height of a viewport as specified. The
position of the top left corner of the viewport remains fixed while
the bottom right corner is adjusted to accommodate the new di-
mensions.

4-26

Graphics and Text Functions - Miscellaneous Functions

4.14 Miscellaneous Functions

Table 4-14 summarizes the functions that are not described in the previous
categories.

Table 4-14. Summary of Miscellaneous Functions

Function Name Description

delay Delays the specified number of ticks (tick = 1/60 second).

lib-id Gets character string specifying current revision of function library.

Imo Returns the bit number of the leftmost one in the 32-bit argument.

peek Fetches a 16-bit word from the specified address in memory.

peek-breg Reads the contents of a specified 32-bit B-file register.

poke Pokes a 16-bit word into the specified address in memory.

poke-breg Loads a specified B-file register with a 32-bit value.

rep-pixel Replicates a pixel value throughout a 32-bit integer.

rmo Returns the bit number of the rightmost one in the 32-bit argu-
ment.

wait-scan Waits until the electron beam has finished scanning the specified
horizontal line of the CRT.

xytoaddr Converts viewport-relative XY coordinates to 32-bit memory ad-
dress of a pixel.

4-27

Graphics and Text Functions - Special Data Formats

4.15 Special Data Formats

The library's graphics functions use the following four data formats:

• Transformation matrix,

• Vertex list,
• Point list, and
• Line list.

These four data formats specify the organization of information that is passed
between the function library routines and an application program. They differ
from the text font storage structure described earlier, which is managed auto
matically by the text functions. The transformation matrix, vertex list, point list,
and line list are described in the following paragraphs.

4.15.1 Transformation Matrix

4.15.2

4-28

The transformation matrix is a 4 x 4 matrix that is stored in a 16-element array
of 32-bit fixed-point values. The 32-bit fixed-point format places the 16 LSBs
to the right of the binary point, partitioning the value into a 16-bit 2s-com
plement integer Matrix elements are mapped into the array in row major order,
as illustrated in Figure 4-9.

ao,o aO,1 aO,2 aO,3 matrix[O] a 0,0 matrix[8] = a2,0
matrix[1] aO,1 matrix[9] = a2,1

a1.0 aU a1,2 a1,3 matrix[2] a 0,2 matrix[10] = a2,2
matrix[3] aO,3 matrix[11] = a2,3

a2,0 a2,1 a2,2 a2,3 matrix[4] a 1,0 matrix[12] = a3,0
matrix[5] a1,1 matrix[13] = a3,1

a3,0 a3,1 a3,2 a3,3 matrix[6] a 1,2 matrix[14] = a3,2
matrix[7] a1,3 matrix[15] = a3,3

Figure 4-9. Transformation Matrix Format

Vertex list

The vertex list is an array of values that represent a collection of points in
three-dimensional space. Each point is specified in terms of its X, Y, and Z
coordinates. Each coordinate is represented as a 32-bit fixed~point value.
Figure 4-10 illustrates the vertex list format. The X, Y, and Z coordinate values
for a point k are stored in vertex-list array elements 3k, 3k+1 and 3k+2,
respectively. An array that specifies N vertices must contain 3N 32-bit fixed
point elements, each of which is a coordinate value.

Graphics and Text Functions - Special Data Formats

typedef long FIX; 1* 32-bit fixed-point type */
/* x,y,z values for vertices */

FIX x[N], y[N], z[N]; /* 0, I, 2, , k */
FIX vertex-list [3*N] ; /* vertex list */

vertex-list [0] x[O] ; /* x,y,z coords for point 0 */
vertex-list[l] y[O] ;
vertex-list [2] z [0] ;
vertex-list[3] x[l] ; 1* x,y,z coords for point 1 */
vertex-list [4] y[l] ;
vertex-list[5] z [1] ;
vertex-list [6] x[2] ; /* x,y,z coords for point 2 */
vertex-list [7] y[2] ;
vertex-list [8] z [2] ;

vertex-list [3k] x[k]; /* x,y,z coords for point k */
vertex-list [3k+l] y[k];
vertex-list [3k+2] = z[k];

Figure 4-10. Vertex list Format

4.15.3 Point List

The point list is an array of values representing a collection of points in two
dimensional space. Each point is specified in terms of its X and Y coordinates.
Each coordinate is represented as a 16-bit integer (C type short). Figure 4-11
illustrates the point list format. The X and Y coordinate values for a point k
are stored in point_list array elements 2k and 2k+1, respectively. An array
specifying N points must contain 2N 16-bit integer elements, each of which
is a coordinate value.

/* x,y values for points O,l,2, ... ,k */
short x[N], y[N];
short point-list [2*N] ; /* point list */

point_list [0] x[O] ; /* x,y coord's for
point_list [1] y[O] ;
point_list [2] x[l] ; /* x,y coord's for
point-list [3] y[l] ;
point_list [4] x[2) ;
point-list [5] y[2] ;

/* x,y coord's for

point 0 */

point 1 */

point 2 */

point_list [2k] x[k]; /* x,y coord's for point k */
point_list [2k+l] = y[k];

Figure 4-11. Point list Format

. 4-29

Graphics and Text Functions - Special Data Formats

4.15.4 Line List

4-30

The line list is an array of values that represent a collection of straight lines.
Each element of the line list array is an index into a point list (described in
Section 4.15.3). The line list contains the topology information for a graphics
object, and specifies which pairs of points are connected by the lines (if wir
eframe) or edges (if solid) of the object. Each line in the line list is represented
by two adjacent elements. The first element is an index specifying the starting
point for the line, and the second element is an index specifying the ending
point. Each index is a 16-bit integer (C type short).

Figure 4-12 illustrates the relationship between the line list and point list for
mats. The example contains a wireframe figure that is made up of four lines.
The indices for the starting and ending points of a line k are stored in
line-list array elements 2k and 2k+1, respectively. An array that specifies n
lines must contain 2n 16-bit integer elements, each of which is an index into
a point list. The figure shown in Figure 4-12(a) can be drawn using the fol
lowing function call:

draw_polyline(6, line-list, point_list)

Figure 4-12 (b) shows the mapping of the data for the figure in Figure
4-12(a) to'the line_list and point_list arrays. For example, line LO is
defined in the line list as having end points PO and P1. Points PO and P1 are
defined in the point list as having coordinates (xO,yO) and (x1 ,y1).

If line_list array elements 2k and 2k+1 contain index values nand m, re
spectively, the line is drawn from point n to point m of the point list array.
Point list elements 2n and 2n+1 contain the two coordinates of point n,
(xn,yn). Similarly, the two coordinates of point m, (xm,ym), are stored in
point list elements 2m and 2m+1.

Graphics and Text Functions - Special Data Formats

PO

P1

P3------~,_--_JV
P2

(a) A Wireframe Figure

line_list

LO
01 _~O~~------____ ~
1~ PO

L1 2~~ __ ~------__ ~~~P1
3 2
1------1
4~~2~~----~~~~Z:~P2
51----,3'---1

L3 { ~ ~---.i~!....----j/'/.c--:;,.-<;.2::::::!: P3

L2

~: U I-------'~'-------l

point list:
PO = (xo'Yo)
P1 = (x l 'Yl)
P2= (X2,Y2)
P3 = (Xa, Ya)

line list:
LO = (PO,P1)
L1 = (P1,P2)
L2 = (P2,P3)
L3 = (P3,PO)
L4 = (PO,P2)
L5 = (P1,P3)

o
1

2

3
4

5
6

7

point list -
Xo

Yo

xl

Yl

X2

Y2

X3

Y3

(b) Mapping Data from the Wireframe into the
line-list and pt-list Arrays

Figure 4-12. line list Format

4-31

Graphics and Text Functions - Mapping Pixels to XV Coordinates

4.16 Mapping Pixels to XV Coordinates

Figure 4-13 illustrates the conventions that are used to map XV coordinates
to pixels on the screen. The filled area is a rectangle of width w=5 and height
h=3 whose top left corner is located at XV coordinates (4,2). The fill is per
formed by the following function call:

fill_rect(5, 3, 4, 2)

Pixels lying within the perimeter of the specified rectangle are "turned on" to
represent the fill area. By convention, X increases from left to right, and V in
creases from top to bottom. The default origin is at the upper left corner of the
screen. (The origin may be relocated at an arbitrary position on or off screen
by means of a call to the set-origin function.) The XV coordinates passed to
graphics routines are constrained to be integer values. The coordinate grid is
overlayed on the screen such that integer XV coordinate pairs coincide with
pixel corners (not with pixel centers). The conventions used for determining
which pixels are selected to represent filled areas and infinitely thin vectors are
explained in the following discussion.

049 __ +-________ -T' ______________ ~I~x

2 --------t-:=--==--==--==--==-i

5 _______ -"-"=--=---'=--='----'=....1

y

Figure 4-13. Rectangle Fill

4.16.1 Area Filling Conventions

4-32

Figure 4-14 shows a complex filled area. In this case, a fill-polygon com
mand defines the fill area indicated by the straight edges in the figure. The rule
for determining whether a pixel is selected as part of the fill area is as follows.
If the center of the pixel falls within the mathematical boundary of the area, it
is "turned on" to indicate that it is part of the fill area. (If a pixel's center falls
precisely on the boundary between two areas, by convention the pixel is
considered to be part of the area immediately below and to the right of the
pixel). Pixels whose centers lie outside the boundary are not considered part
of the fill region. The same principles are applied to the filling of other shapes
(ellipses and thick lines drawn with a rectangular drawing pen, for example).

Graphics functions that follow the above conventions for filled areas include
all functions whose names include the modifiers fill, pen, or frame.

Graphics and Text Functions - Mapping Pixels to XV Coordinates

o 3 5 7 8
_~ ___ -;I ___ ~ __ -r'--t--- x

2 ------+=--,,~-=":--:~

5· -----

9 ------'-=.......:>=--='---'=--=~

y

Figure 4-14. Polygon Fill

4.16.2 Vector Drawing Conventions

Points, lines, and arcs are defined mathematically to be infinitely thin. Since
these figures contain no area, they are invisible if drawn using the conventions
described above for filled areas. A different set of conventions must be used
to make points, lines, and arcs visible. These are referred to as vector drawing
conventions (to distinguish them from the area filling conventions discussed
previously). Vector drawing conventions apply to all functions whose names
include the modifier draw.

The vector drawing conventions associate the point identified by the integer
coordinate pair (X,V) with the pixel located to its lower right; that is, the pixel
whose center is located at coordinates (X+1/2,V+1/2). For example, the
draw-point(7,10) command turns on the pixel at (7.5,10.5). As a second
example, the polygon from Figure 4-14 is shown again in Figure 4-15, but is
outlined rather than filled. (THe draw-polyline function is used.) The points
selected to represent the right side of the polygon are indicated as small black
dots. The pi.xel to the lower right of each point is turned on to represent the
edge of the polygon.

A line or arc drawn using the vector drawing conventions consists of a con
nected set of pixels. This means that the line or arc is drawn as a continuous
set of pixels that connect (or touch) horizontally, vertically or diagonally,
without gaps or holes in between.

4-33

Graphics and Text Functions - Mapping Pixels to XY Coordinates

o 3 5 7 8
--~------~-----4------~-+~·Y

2 -----+=--=.,-+= __ =__

5

x

Figure 4-15. Polygon Outline

4.16.3 The Drawing Pen

4-34

The drawing commands that use vector drawing conventions can only draw
lines and arcs that are a single pixel thick. To draw lines and curves of arbi
trary thickness, a rectangular pen (or brush or logical pel) is used. Graphics
functions that use the drawing pen have names containing the modifier pen.

You can use graphics commands to set the drawing pen's height and width
to arbitrary positive, nonzero values. The pen is rectangular; its position is
identified by its top left corner. For example, when a pen of width wand
height h draws a point at (X,Y), the resulting rectangle's top left corner lies at
(X,Y), and its bottom right corner lies at (X+w,Y+h). The rectangular area
covered by the pen is filled with either a solid color or with the current pattern,
depending on the function used.

The area under the drawing pen is filled according to the area filling con
ventions described previously. When the width and height of the drawing pen
both equal 1, a line or arc drawn by the pen is similar in appearance to that
drawn by a function following the vector drawing conventions. However, the
pen functions conform to the area filling conventions, so a pen function can
more faithfully track the perimeter of a filled area than a corresponding draw
function. For example, consider an ellipse defined by some width w, height
h, and coordinates (x,y), If a draw-oval(w,h,x,y) function call outlines a filled
ellipse drawn by a fill-ovlIl(w,h,x,y) function, the draw-oval function may
not in all instances select the same perimeter pixels as the filled ellipse. This
can leave gaps between the filled area and the outline. In contrast, a
pen-oval(w,h,x,y) function call follows the filled ellipse precisely, remaining
flush to the ellipse at all points along the perimeter.

Graphics and Text Functions - System Implementation Issues

4.17 System Implementation Issues
Most of the functions in the library are independent of system-dependent
features such as pixel size and frame buffer dimensions. However, imple
mentations of hardware functions such as the color palette, video timing, and
bulk clearing of VRAMs necessarily differs from system to system. The func
tion library provides several system-dependent functions to control such fea
tures.

4.17.1 Register Usage Conventions

Assembly language functions that are used in conjunction with the graphics
functions should follow certain guidelines for register use. The following
registers must be restored to their original states (the state before the function
was called) before control is returned to the calling routine:

• Status register fields FE1 and FS1 must be restored. Fields FEO and FSO
need not be restored.

• All A-file registers except A8 must be restored.

• In general, all B-file registers must be restored. However, certain B-file
registers may be altered by attribute control functions that update pa
rameters such as COLORO and COLOR1.

• In general, I/O registers CONTROL, DPYCTL, CONVSP, and CONVDP
should be restored before returning to the calling routine. However,
some I/O register bits may be altered by attribute control functions that
update parameters such as the plane mask, pixel processing operation,
or transparency flag. These register bits typically are not changed by
graphics output functions.

Upon entry to a function, certain registers are in a known state and contain
well-defined parameters. Assume that the following registers are in these
states:

• Status register. The C environment always leaves the FE1 and FS1
fields defined as follows:

FE1 = 0
FS1 = 32

FEO and FSO are undefined.

• B-file registers. Seven of the B-file registers are in a known state
when a function is entered:

SPTCH - pitch of selected font.

DPTCH - screen pitch (difference in starting memory addresses of
any two successive scan lines in display memory).

OFFSET - memory address of pixel at top left of screen.

WSTART - top left corner of current visibility region.

4-35

Graphics and Text Functions - System Implementation Issues

WEND - bottom right corner of current visibility region.

COLORO - source background color for PixBlts (text and pattern
fills).

COLOR1 - source foreground color for Pix Bits, fills and vectors.

• I/O registers. Certain I/O registers contain defined parameters at entry
to a function:

CONTROL - contains current pixel processing operation code and
transparency control bit. These are set by the application program
and may vary from one call to the next. In contrast, the window
mode, PBH and PBV bits are set to specific values. The window
mode is set to enable clipping without interrupts (W=3). The PBH
and PBV bits are both zero.

CONVSP - is set up for the pitch of the selected font.

CONVDP - is set up for the screen pitch.

PSIZE - the number of bits per pixel on the screen.

PMASK - contains the current plane mask.

4.17.2 Functions with System Dependencies

4-36

The current implementation of system-dependent library functions supports
the TMS3401 0 Software Development Board. System-dependent aspects of
the SDB are chiefly due to the special capabilities of the VRAM and color
palette device that are used on the SDB. The TMS4161 or TMS4461 video
RAMs used on the SDB are capable of bulk clearing the frame buffer, but vi
deo RAMs from other manufacturers may not support the register-to-memory
cycles necessary to implement this feature. (The bulk clear capability is de
scribed in the TMS34010 User's Guide.) Also, the TMS34070 color palette
provides color indexing for displays using four bits per pixel. The TMS34070
is capable of loading a new lookup table prior to each scan line of the display,
and this permits the color palette to be changed on a line-by-line basis.
Comparable devices from other manufacturers may not provide this capability.

Table 4-15 is a list of library routines that perform system dependent func
tions. If a routine is not listed, assume that it is not system dependent.

Graphics and Text Functions - System Implementation Issues

Table 4-15. Functions with System Dependencies

Function System Dependency

clear-screen Uses the TMS34070 color palette; uses the bulk clear capability of the
TMS4161 video RAM.

color-blend Uses the TMS34070 color palette.

getall-palet Uses the TMS34070 color palette.

init-palet Uses the TMS34070 color palette.

in it-screen Uses the TMS34070 color palette; uses the bulk clear capability of the
TMS4161 video RAM.

init-video Initializes video timing and screen refresh registers.

new-screen Uses the TMS34070 color palette; uses the bulk clear capability of the
TMS4161 video RAM.

set-palet Uses the TMS34070 color palette.

setall-palet Uses the TMS34070 color palette.

4.17.3 Uninitialized System Parameters

The function library assumes that certain system parameters are under control
of an operating system or control program, and avoids initializing or modifying
these parameters. Specifically, library functions do not alter the following
hardware registers:

• The master interrupt enable bit (IE) in the status register
• The INTENB (interrupt enable) register
• The cache disable bit (CD) in the CONTROL register
• The DRAM-refresh control bits (RR and RM) in the CONTROL register
• The four host interface registers (HSTADRL, HSTADRH, HSTDATA, and

HSTCTL)

4.17.4 Interrupts

The assembly language routines within the library use the TMS34010's A14
register as a general-purpose register. Interrupt service routines should make
no assumptions regarding the state of A 14 at the time an interrupt occurs. In
particular, they should not assume that A14 points to the top of the C param
eter stack.

The library does not use interrupts. A number of graphics functions in the li
brary make use of the window violation detection capabilities of the
TMS34010, but they assume that the WV interrupt is disabled.

Similarly, the library's wait-scan and delay functions poll the display interrupt
request, but assu'me that the display interrupt is disabled. An operating envi
ronment or application program that includes a display interrupt service rou
tine may have difficulty using these two functions as currently implemented.

4-37

Graphics and Text Functions

4-38

Section 5

Alphabetical Reference of Functions

This section contains a reference of the math/graphics function library. The
discussions are organized into alphabetical order; each discussion begins on
a new page so you easily can find each function. Each discussion:

• Shows the syntax of the function declaration and arguments that the
function uses.

• Contains a description of the function operation, which explains any
input arguments and return values.

• Provides an example that uses the function.

Note:

All of the functions can be called from a C program except for these
functions:

FIX2FL
FL2FIX
FL-ADD
FL-COS
FL-MULT
FL-SIN

5-1

acos Arc Cosine Function

Syntax double acos(x)
double X;

Description The acos function calculates the inverse cosine of a double-precision
floating-point number. Both the argument X and the return value are
double-precision floating-point numbers.

Example

5-2

The return value is an angle expressed in radians:

• If x is in the range [-1,1], the return value is in the range [O,TT].

• If x is outside the range [-1,1], fp-error is called with error code =
18 (see the description of the floating-point facility in TMS34010
C Compiler User's Guide).

• If x > 1, a value of + 00 is returned.

• If x < -1, a value of - 00 is returned.

/***/
/* acos returns value expressed in radians */
/***/

extern double acos{);
double realval, radians;

realval = 1. 0;
radians = acos(realval);
return (radians); /* acos returns TT/2 */

Add Text Space Function add-text-space

Syntax void add-text_space(n)
int n; /* Add n to default spacing */

/* between characters */

Description The add-text-space function changes the horizontal spacing between
characters by an amount n. Associated with each text font is a default
spacing between a character and the character to its right. When a string
of characters is drawn to the screen, n is added to the default spacing
between characters defined in the data structure for the current font. Ar
gument n is specified in multiples of the pixel width; it can be positive or
negative, depending on whether you wish to increase or decrease the
spacing.

Example

Once text spacing is modified by the add-text-space function, the spac
ing increment remains in effect (within the viewport) until this function
is called again. The init-text function sets the spacing increment to its
default value, O.

Note:

Before you call the add-text-space function, call the init-text function
to initialize the text data structures.

short x, y, i;
char *s;

init-video(l);
init_grafix();
init_screen();
init_text () ;
s = "Note increasing space between characters.";
for (i = -8, Y = 0; i < 20; ++i)

add-text-space(i);
x = 320 - get_width(s)/2;
y += char-high();
draw_string (x, y, s);

5-3

asin

Syntax

Description

Example

5-4

double asin(x)
double X;

Arc Sine Function

The asin function calculates the inverse sine of a double-precision float
ing-point riumber. Both the argument X and the return value are dou
ble-precision floating-point nutnbers.

The return value is an angle expressed in radians.

• If x is in the range [-1,1]. the return value is in the range
[-n/2, +n/2].

• If x is outside the range [-1,1], fp.-error is called with error code =
18 (see the description of the floating-point facility in TMS34010
C Compiler User's Guide).

• If x > 1, a value of + 00 is returned.

• If x < -1, a value of - 00 is returned.

/***/
/* asin returns value expressed in radians */
/***/

extern double asin();
double realval, radians;

real valLO;
radians = asin(realval); /* asin returns n/2 */

Arc Tangent Function atan

Syntax

Description

Example

double atan(x)
double x;

The atan function calculates the inverse tangent of a real number. Both
argument x and the return value are double-precision floating-point val
ues.

Given an input argument x, atan(x) returns a number y such that tan(y) =
x. The return value is an angle expressed in radians, and is restricted to the
range [-TT/2, +TT/2].

/**/
/* atan returns a value expressed in radians */
/**/

extern double atan();
double realval, radians;

realval 0.0;
radians = atan(realval); /* return value o */

5-5

atan2 Arc Tangent 2 Function

Syntax double atan2(u,v)
double u,v;

Description The atan2 function calculates the inverse tangent of the quotient of real
number u divided by real number v. The two arguments u and v and the
return value are all double-precision floating-point values.

The return value is an angle expressed in radians, and is in the range
[-n,+n].

• Given input arguments u and v, atan(u,v) returns a number y such
that tan(y) = u/v.

• When both arguments are 0, the return value is +00, and fp....-error is
called with error code = 23 (see the description of the floating-point
facility in TMS34010 C Compiler User's Guide).

Example extern double atan2 () ;
double rvalu, rvalv;
double radians;

5-6

rvalu
rvalv
radians

0.0;
1. 0;

= atan2(rvalr, rvalu); /* return value o */

Bit Expand Function bit-expand

Syntax void bit-expand(srcbits,
short srcbits [1 ;
long srcpitch;
int w, h;
int xleft, ytop;

srcpitch, w, h, xleft, ytop)
/* source bit map */
/* source pitch */
/* dest width and height */
/* dest left side and top */

Description The bit-expand function expands a bit map onto the screen by replacing
each bit in the source with one of two pixel values. as in the bit map are
expanded to pixel value COLORa, and 1 s are expanded to COLOR1. (See
references to set-colora and set-color1 functions.)

• The source bitmap is specified in terms of its base address and pitch:

srcbits specifies the base address.
srcpitch specifies the memory pitch of the bit map.

• The last four arguments specify the rectangular area of the screen
that is modified:

The width w,
The height h, and
The coordinates of the top left corner (xleft,ytop).

wand h must be nonnegative.

The source pitch is the difference in starting addresses of two adjacent
rows in the source bitmap. (TMS34010 addresses are bit addresses. The
pitch is the number of bits in memory between the start of one row of the
bit map and the next.) The pitch can be any number greater than or equal
to the number of pixels per row of the destination array (the w argument).
The source array srcbits containing the bit map must be large enough
to contain one bit for every pixel in the destination array.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

5-7

bit-expand Bit Expand Function

Exan7ple /**********************************/

5-8

/* Expand bitmap onto screen */
/**********************************/
typedef enum { FIELDWIDTH = 1 } BIT;
static BIT bitmap[) = {

} ;

0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,
O,O,O,1,1,1,1,1,1,Q,~,O,O,O,O,O,
0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,
0,0,1,1,0,0,0,1,1,1,1,1,0,0,0,0,
0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,
0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,
0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,
1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,
1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
O,1,1,1,1,1,O,1,1,1,1,O,O,O,O,O~
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,
0,1,1,1,1,1,0,1,1,1,1,1,0,0,0,0,
1,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0

short buf[640/4); /* Assume 4 bits/pixel */
int x=20, y=10, p=16, w=16, h=41;

init_video (1) ;
init_grafix();
init_screen() ;
bit-expand (bitmap, p, w, h, x, y);
zooll1-rect(w, h, x, y, 10*w, 10*h i 100, 10i buf);

Boundary Fill Function bound-fill

Syntax void bound-fill(x, y, buffer, size, b-colorl
int x, y; /* starting point for */

/* seed fill */
char buffer[]i /* temporary buffer */
int size; /* size of buffer in */

/* bytes */
unsigned long b_color; /* boundary color */

Description The bound-fill function fills a bounded set of pixels. Starting at pixel
coordinates (x, y), the function flood fills in all directions until the boun
dary color b_color is encountered. Pixels in the filled region are set to
the current COLOR1.

Given a pixel size of n bits, the function uses only the n LSBs of
b_color. The function ignores higher order bits.

A pixel is considered part of the bounded region if it is not equal to the
boundary color, and has a horizontally or vertically adjacent neighbor pixel
that is part of the region. (A diagonally adjacent neighbor is not suffi
cient.)

Argument buff er is an array that the function uses as as temporary
working storage. The function destroys the original contents of the buffer.
Argument size is the size of the buffer in bytes.

The bound-fill function differs from the seed-fill function, which fills a
connected set of pixels the same color as the starting pixel.

The bound-fill function aborts (returns immediately) if any of these con
ditions are detected:

• The pixel at starting coordinates (x,y) is equal to the boundary color
b_color.

• Starting coordinates (x, y) lie outside the current visibility rectangle
(window).

• If at any point the buffer size is insufficient to continue.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

5-9

bound-fill Boundary Fill Function

Example long u, v" a, b, c, dc;
char buffer [100j ;

5-10

init-video(l) ;
init_grafix() ;
init_screen();
dc = Oxl111111l; /* Assume 4 bits/pixel */
u = v = 36 « 16;
for (c = -1; c != 0; c -= dc) (

set_co1or1(c);

}

a = u » 16;
b = v » 16;
draw_line (320+a, 240-b, 320+b, 240+a)
draw_line(320+b, 240+a, 320-a, 240+b)
draw-line(320-a, 240+b, 320-b, 240-a)
draw_line(320-b, 240-a, 320+a, 240-b)
u += u » 3;
v += v » 3;
u += v » 3;
v -= u » 3;

set_colorl(Ox11ll1111) ; /* fill color */
bound-fi11(320, 240, buffer, 100, 7);

Boundary Pattern Fill Function bound-patnfill

Syntax void bound-patnfill(x, y, buffer, size, b-colorl
int x, y; /* starting point for */

/* seed fill */
char buffer[]; /* temporary buffer */
int size; /* size of buffer in */

/* bytes */
unsigned long b_color; /* boundary color */

Description The bound-patnfill function fills a bounded set of pixels. Starting at pixel
coordinates (x,y), the function flood fills in all directions until the boun
dary color b-color is encountered. Pixels in the filled region are drawn
with the current pattern, which is drawn in COLORO and COLOR1.

Given a pixel size of n bits, the function uses only the n LSBs of
b_color. The function ignores higher order bits.

A pixel is considered part of the bounded region if it is not equal to the
boundary color, and has a horizontally or vertically adjacent neighbor pixel
that is part of the region. (A diagonally adjacent neighbor is not suffi
cient.)

Argument buffer is an array that the function uses as temporary working
storage. The function destroys the original contents of the buffer. Argu
ment size is the size of the buffer in bytes.

The bound-patnfill function differs from the seed-patnfill function, which
fills a connected set of pixels the same color as the starting pixel.

The bound-patnfill function aborts (returns immediately) if any of these
conditions are detected:

• The pixel at starting coordinates (x, y) is equal to the boundary color
b_color.

• Starting coordinates (x, y) lie outside the current visibility rectangle
(window).

• !f at any point the buffer size is insufficient to continue.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

5-11

bound-patnfill Boundary Pattern Fill Function

Example

5-12

long u, v, a, b, c, dc;
char buffer[100];

init_video(l) ;
init_grafix();
init_screen();
dc = Ox11111111; /* Assume 4 bits/pixel */
u = v = 36 « 16;
for (c = -1; c 1= 0; c -= dc) (

set_color1(c) ;

}

a = u » 16;
b = v » 16;
draw_line(320+a, 240-b, 320+b, 240+a);
draw-1ine(320+b, 240+a, 320-a, 240+b);
draw-line(320-a, 240+b, 320-b, 240-a);
draw_1ine(320-b, 240-a, 320+a, 240-b);
u += u » 3;
v += v » 3;
u += v » 3;
v -= u » 3;

select_patn(10);
set_colorO(Ox11111111) ;
set_color1(Ox33333333)i
bound-patnfil1(320, 240,

/* fill pattern */
/* fill co1orO */
/* fill color1 */

buffer, 100, 7);

Ceiling Function Function ceil

Syntax

Description

Example

double ceil (x)
double Xi

The ceil function returns a double floating point number representing the
smallest integer greater than or equal to the input argument x.

extern double ceil();

double answer;

answer = ceil(3.14l5,&exp);

/* after execution, answer will be 4.0 */

5-13

char-high Character Height Function

Syntax int char-high()

Description The char-high function returns the character height (in pixels) for the
current font. The character height is defined as the vertical distance be
tween two adjacent rows of text, as measured from the two baselines. The
character height is calculated as the sum of three quantities:

Example

5-14

• Ascent,
• Descent, and
• Leading.

Note:

Before you call the char-high function, call the init-text function to
initialize the text data .structures.

extern int char_high();
static char *s[] = (

"1st line",
"2nd line",
"3rd line"

} ;
int i, x, y;

init_video (1) ;
init_grafix() ;
init_text () ;
x = 8;
y = char-high();
for (i = 0; i (= 2; ++i) (

draw_string (x, y, s[i]);
y += char_high();

Get Maximum Character Width Function char-wide-max

Syntax int char_wide-max()

Description The char-wide-max function returns the width (in pixels) of the widest
character in the current font. The returned value is the sum of the char
acter image width and the space preceding the next character to the right.
(The character image is the bit map containing the character pattern.)

Example

Note:

Before you call the char-wide-max function, call the in it-text function
to initialize the text data structures.

extern int char-high(), char_wide-max();
static char c, *s;
int i, w, h, x, y;

init_video (1) ;
init_grafix() ;
init_text() ;
x = w = char_wide-max();
y = h = char_high();
s = "TMS34010";
while ((c = *s++) 1= '\0')

draw_char (x, y, c);
y += h;
x += w;

5-15

clea r -screen Clear Screen Function

Syntax void clear_screen (pixval)
long pixval; /* pixel value to which */

/* screen is set */

Description The clear-screen function clears the screen to the specified pixel value.

Example

5-16

The entire display memory is affected. For example, clear-screen(O)
clears the entire frame buffer to Os, including the color palette areas along
the left edge of the screen. Video RAM register-to-memory cycles are
used to make this function execute rapidly.

The pixel value must be replicated to fill the entire 32 bits of pixval. For
eICample, if the pixel size is 4 bits, and the pixel value is 5, pixval is
specified as Ox55555555.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short mypalet(16) = {

} ;

OxOOOO, OxOOFO, OxOFOO, OxOFFO, OxFOOO, OxFOFO,
OxFFOO, OxFFFO, OxOOOO, Ox0090, Ox0900, Ox0990,
Ox9000, Ox9090, Ox9900, Ox9990

init_video(l);
init_grafix() ;
/* Assume 4 bits per pixel */
clear_screen(Ox55555555);
/* Restore palette */
setall_palet(mypalet,OxFFFF,480,0);
/* Draw border */
frame-rect(640, 480, 0, 0, 25, 20);

Close Viewport Function close-vuport

Syntax int close-vuport(index)
int index; /* Identifies viewport to be closed */

Description The close-vuport function closes a viewport that was previously opened
and deletes all reference to the viewport structure from the graphics envi
ronment. The viewport is specified by argument index, which is the index
value returned when the viewport was opened.

Example

If the active viewport is designated by the argument. viewport 0 automat
ically becomes the active viewport when the previous viewport is closed.
Viewport 0 cannot be closed; only viewports in the range 1 to n-1 can be
closed, where n is the value returned by the get-vuport-max function.
When the function is called with a valid index, the value 0 is returned to
confirm that the viewport was closed as requested. When the function is
called with an invalid index, a value of -1 is returned to indicate that no
action was taken.

Note:

Before you call the close-vuport function, call the init-vuport function
to initialize the viewport data structures.

int index;

index open-vuport() ;

close-vuport(index);

5-17

color-blend Color Blend Function

Syntax void color-blend(pxlval, yl, y2, redl, grnl, blul,
red2, grn2, blu2)

int pxlval; /* pixel value affected */
int yl; /* starting scan line */
int y2; /* ending scan line */
int redl; /* red intensity at yl */
irit grnl; /* green intensity at yl */
int blul; /* blue intensity at yl */
int red2; /* red intensity at y2 */
int grn2; /* green intensity at y2 */
int blu2; /* blue intensity at y2 */

Description The color-blend function creates gradual changes in shading, highlights,
and color blending effects by gradually varying the red, green, and blue
intensities of the color associated with a specified pixel value on a line
by-line basis. Gradual vertical shading over takes place over a group of
contiguous scan lines. The starting scan line is designated by yl, and the
ending scan line is designated by y2.

Example

5-18

Argument pxlval is the pixel value whose color is affected over the spe
cified scan lines. It is also the number of the color palette register loaded
with the specified red, green, and blue intensities. The range of pxlval
is 0 to 15.

The y coordinates yl and y2 are relative to the origin of the active view
port. Note that it is not necessary for yl to be less than y2, and vice versa.
Changes to the palette are automatically restricted to the y limits of the
visibility rectangle (intersection of screen with active viewport and clip
ping rectangle); scan lines corresponding to y values outside this range
are unaffected. Intensities redl, grnl, blu1, red2, grn2, andb1u2 are
8-bit values in the range 0 to 255. Linear interpolation is used to adjust
the 4-bit red, green, and blue values output by the TMS34070 DACs to
approximate the 8-bit resolutions specified for the intensities.

Note:

Before you call this function, call the init--grafix function to initialize the
graphics environment. .

/**/
/* Draw solid-filled rectangle that gradually */
/* changes colors from red at the top to blue- */
/* gray at the bottom. */
/**/
set_color1(Ox33333333); /* 4 bits per pixel */
fill_rect(200, 100, 125, 65);
co1or-b1end(3, 65, 165, 255, 0, 0, 70, 70, 150);

Copy Matrix Function copy-matrix

Syntax

Description

Example

typedef long FIX
void copy-matrix(matrixin, matrixout)

FIX matrixin[l6];
FIX matrixout[l6];

The copy-matrix function copies a 4 x 4 input matrix to a 4 x 4 output
matrix. Both the input matrix matrixin and output matrix matrixout
are stored in 16-element arrays of type FIX.

typedef long FIX;
(
FIX matrixin[16];
FIX matrixout[16];

copy-matrix(matrixin, matrixout);
}

5-19

copy-vertex Copy Vertex Function

Syntax

Description

Example

5-20.

void copy_vertex(n, vertexin, vertexout)
typedef long FIX; /* fixed-point format
int n; /* number of vertices
FIX vertexin[]; /* input vertex list
FIX vertexout[); /* output vertex list

*/
in list */

*/
*/

The copy-vertex function copies an input vertex list to an output vertex
list. Input argument n is the number of vertices that are copied from the
input vertex list to the output vertex list. Both the input vertex list ver
texin and output vertex list vertexout are arrays of 32-bit fixed-point
values. A vertex is stored as three consecutive 32-bit coordinate values,
X, Y, and Z. Each array contains 3n 32-bit elements. See Figure 4-10
(page 4-30) for the vertex list format.

typedef long FIX;
/***/
/* Copy 5 vertices from vertexin[) to vertexout[). */
/* Each vertex consumes 3 storage elements in an */
/* array, and the minimum array size is 3*5 = 15. */
/***/
FIX vertexin[3*5), vertexout[3*5);

copy_vertexeS, vertexin, vertexout);

Copy Viewport Function copy-vuport

Syntax

Description

Example

int copy_vuport(indexl, index2)
int indexl, index2;

The copy-vuport function copies all attributes of the source viewport to
the destination viewport. The source viewport is designated by argument
indexl, which is the value returned by the open-vuport function when
the viewport was opened. The destination viewport is designated by ar
gument index2. Both the source and the destination viewports must be
opened before calling the copy-vuport function.

The destination viewport automatically becomes the active viewport. If
either viewport was not previously opened, a value of -1 is returned to
indicate that an errQr was detected and that no viewport was copied.
Otherwise, a value of 0 is returned to indicate that the viewport was suc
cessfully copied. See the description of the open-vuport function for a
list of viewport attributes copied by the function.

Note:

Before you call the copy-vuport function, call the init-vuport function
to initialize the viewport data structures.

/**/
/* Create 2 new viewports identical to the first, */
/* but located in different areas of the screen. */
/**/
int index[4]; /* viewport indices */

init-video(l)i
init_grafix() ;
init_vuport() ;
init_screen() ;
/*** Open viewport 1 ***/
index[l] = open-vuport();
size-vuport(l50,300) ;
move_vuport(lO,50);

/*** Make two new viewports similar to first ***/
t index[l] = open-vuport(); /* create viewport 2 */

index[2] = open-vuport(); /* create viewport 3 */
copy_vuport(index[1],index[2]);
copy_vuport(index[ll,index[3]);
/*** Move viewport 3 to right of viewport 1 ***/
move_vuport(340,50) ;
/*** Move viewport 2 between other two viewports ***/
select_vuport(index[2]) ;
move_vuport(l70,50) ;

5-21

cos

Syntax

Description

Example

5-22

double cos (x)
double X;

Cosi neFunction

The cos function calculates the cosine of real number x, where x is an that
is angle expressed in radians. Both the argument and return value are
double-precision floating-point values.

An argument x with a magnitude greater than or equal to 1.0E+8 causes
cos (x) to return a value of 0, and fp-error is called with error code = 17
(see the TMS34010 C Compiler User's Guide for a description of the
fp-error function).

extern double eos();
double radians, eval;

radians = 3.1415927;
eva1 = cos(radians)i
return(eval)i

/* eval is returned by cos */

/* return value = -1 */

Hyperbolic Cosine Function cosh

Syntax double cosh(x)
double Xi

Description The cosh function returns the hyperbolic cosine of a real number x. Both
the argument X and return value are double-precision floating-point val
ues.

Example extern double cosh();
double x, y;

x 0.0;
y = cosh(x); /* return value 1.0 */

5-23

cotan

Syntax

Description

Example

5-24

double cotan(x)
double x;

Cotangent Function

The cotan function calculates the cotangent of a real number x, where x
is an angle that is expressed in radians. The sign of the result is the same
as the sign of the argument. Argument x and the return value are both
double-precision floating-point values.

If the absolute value of argument x is greater than or equal to 1.0E +8,
then a value of 0 is returned, and fp-error is called with error code = 20.
If the absolute value of x is less than or equal to 1.0E-300, then cotan(x)
returns a value of + 00 or - 00, and fp-error is called with error code = 19
(see the TMS34010 C Compiler User's Guide for a description of the
fp-error function).

extern double cotan();
double radians, cotval;

radians = 3.1415927/2.0;

cotva1 = cotan(radiansl;

/* 90 degrees */

/* return value = 0 */

Compare Point to Window Function cpw

Syntax int cpw(x, y)
int x, y; /* pixel coordinates */

Description The cpw function generates 4-bit outcode based on a pixel's position re
lative to the current window. Arguments x and yare the coordinates of
the pixel.

The window is the visibility rectangle defined as the intersection of:

• The screen,
• The viewport, and
• The clipping rectangle.

The outcode value is contained in the 4 LSBs of the return value. Outcode
values include:

00002 if the point lies within the window.

01 xX2 if the point lies above the window.

10xx2 if the point lies below the window.

xx012 if the point lies left of the window.

xx102 if the point lies right of the window.

Refer to the TMS34010 User's Guide for a detailed description of the
outcodes.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

5-25

cpw

Example

5-26

Compare Point to Window Function

/**/
/* Bounce dot off walls of window */
/**/
#define XMIN 100 /* Define window limits */
#define YMIN 100
#define XMAX 300
#define YMAX 300
extern int cpw();
int i, out code , x=XMIN, y=YMIN, dx=5, dy=3;

init_video(l) ;
init_grafix() ;
init_vuport() ;
init_screen() ;
set_cliprect(XMAX-XMIN, YMAX-YMIN, XMIN, YMIN);
for (i '= 1; i < 200; ++i) {

if «outcode = cpw(x += dx, y += dy» != 0) (

}

if (outcode & 1) (/* Bounce off */
x += 2*(XMIN-x); /* left wall */
dx = -dx;

else if (outcode & 2) /* Bounce off */
x -= 2* (x-XMAX) ; /* right wall */
dx = -dx;

}
if (outcode & 4) (/* Bounce off */

/* top wall */ Y += 2*(YMIN-y);
d:(= -dy;

else ~f (outcode & 8)
y -= 2* (y-YMAX) ;
dy = -dy;

/* Bounce off */
/* bottom wall */

draw_point (x, y);

Delay Function delay

Syntax void delay(n)
int n; /* number of ticks */

Description The delay function waits for a number of ticks, n, to elapse before return
ing control to the calling program. One tick equals 1/60th of a second.
The function is synchronized to the frame rate, and a tick is registered at
the end of each frame.

Example

Given a positive argument n, the function counts n+ 1 end-of-frames be
fore returning control to the calling program. Control is returned just after
the bottom line of the display is output. If n = 0, the function delays only
until the end of the current frame is encountered.

If the display interrupt is enabled, the function aborts immediately upon
being called. If argument n is negative, the function aborts immediately.
No error code is generated in either case.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

/**********************************/
/* Draw ticking second hand */
/**********************************/
typedef long FIX;
static FIX rotation[3] = {a, 0, a};
static long xyz[] = {0,-200,0, 30,0,0, 0,30,0, -30,0,0};
static short connect [8] = {O,l, 1,2, 2,3, 3,0};
FIX matrix[16] ;
FIX verts[12];
short xy[8];
int angle;

init_video(1) ;
init_grafix() ;
init_vuport() ;
set_origin(320, 240);
for (;;)

for (angle = 0; angle < 360; angle += 6) {
init-matrix(matrix) ;
rotation[O] = angle « 16;
rotate (matrix, rotation);
long_to_fix(12, xyz, verts);
transform(matrix, 4, verts);
vertex-to_point(4, verts, xy);
delay (60) ; /* Wait 1 second * /
init_screen() ;
draw_oval (420, 420, -210, -210);
draw_polyline (4, connect, xy);

5-27

draw-char Draw Character Function

Syntax int draw_char (x, y, c)
int x, Yi /* starting coordinates */
char C; /* ASCII character code */

Description The draw-char function draw a single bit-mapped character. The char
acter is drawn in the current font.

Example

5-28

• Arguments x and Y specify the position of the character:

Coordinate x is the horizontal position at the left edge of the
character.
Coordinate y is the vertical position at the baseline of the string
(not at the top of the string).

• Argument c is a pointer to a character.

The return value is the x coordinate of the next character position to the
right of the specified character. The x value is expressed in viewport
relative coordinates. If the character lies entirely above or below the win
dow, the unmodified starting x coordinate is returned.

Note:

Before you call the draw-char function, call the init-text function to
initialize the text data structures and call the init-grafix function to ini
tialize the graphics environment.

int x, y;
char c;

init_video(l) ;
init_grafix() ;
init_text(); /* Install default font */
init_screen();
x = 0;
y = -170 « 16;
/** Draw the letters 'A' through 'z' **/
for (c = 'A'; c < 'Z'; ++c) {

draw_char ((x»16)+304, (y»16)+244, c);
x += y » 3;
y -= x » 3;
draw_char«x»16)+304, (y»16)+244, c -'A'+'a');
x += y » 3;
y -= x » 3;

Draw Line Function draw-line

Syntax

Description

Example

void draw_line(xl, yl, x2, y2)
int xl, yl; /* Start coordinates */
int x2, y2; /* End coordinates */

The draw-line function uses Bresenham's algorithm to draw a line from
the starting point to the ending point.

• xl and yl specify the starting coordinates

• x2 and y2 specify the ending coordinates.

The line is one pixel in thickness and is drawn in the current COLOR1 .

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int i, xl = -40, yl

init-video(l);
init_grafix() ;
init_screen() ;

80, x2 80, y2 280;

/*** Draw 202 lines in different orientations ***/
for (i = 202; i > 0; --i) (

draw_line(xl+305, yl+222, x2+305, y2+222);
xl += yl » 5;
yl xl» 5;
x2 += y2 » 5;
y2 x2» 5;

5-29

draw-oval

Syntax

Draw Oval Function

void draw_oval(w, h, xleft, ytop)
int w, h; /* width and height of */

/* enclosing rectangle */
int xleft, ytop; /* XY coordinates at */

/* top left corner */

Description The draw-oval function draws the outline of an ellipse given the minimum
enclosing rectangle in which the ellipse is inscribed. The ellipse is in
standard position, with its major and minor axes parallel to the coordinate
axes. The enclosing rectangle is defined by four arguments:

Example

5-30

• The width w
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The outline is one pixel thick, and is drawn in the current COLOR1.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y;

init-video(l) ;
init_grafix() ;
init_screen() ;
/*** Draw ellipses of various sizes ***/
for (w = 0, x = 4; w < 33; ++w, x += W + 3)

for (h = 0, Y = 4; h < 28; ++h, y += h + 3)
draw_oval(w, h, x, y);

Draw Oval Arc Function draw-ovalarc

Syntax

Description

Example

void draw-ovalarc(w,
int w, h,
int xl eft , ytop;
int theta;
int arc;

h, xleft, ytop, theta, arc)
/* width and height */
/* top left corner */
/* starting angle (degrees) */
/* angle extent (degrees) */

The draw-ovalarc function draws an arc taken from an ellipse. The ellipse
is in standard position, with the major and minor axes parallel to the co
ordinate axes. The arc is one pixel in thickness, and is drawn in the current
COLOR1.

The ellipse from which the arc is taken is specified in terms of the mini
mum enclosing rectangle in which it is inscribed. The first four arguments
define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Po
sitive angles are in the clockwise direction, negative angles are
counterclockwise.

• The arc extent, arc, specifies the number of degrees (positive or
negative) spanned by the angle. If the arc extent is outside the range
[-359, +359), the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical arc, with 360 de
grees representing one full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

#define XC 320 !* Screen center coordinates
#define YC 240
#define WMAX 636 /* Limits of enclosing rectangle
#define HMAX 476
#define OX 16 /* Increment rectangle dimensions
#define OY 12
int w, h;

/*** Oraw spiral using draw_ovalarc function ***/
init_video(1) ;
init_grafix() ;
init_screen() ;
for (w = WMAX, h = HMAX; w > OX; h -= OY) {

draw_ovalarc(w, h, XC-w/2, YC-h/2, 0, 270) i
w -= OX;
draw_ovalarc(w, h, XC-w/2, YC-h/2, 270, 90);

*/

*/

*/

5-31

draw-piearc Draw Pie Arc Function

Syntax void draw_piearc(w, h,
int w, h,
int xleft, ytop;
int theta;
int xend, yend

xleft, ytop, theta, arc)
/* width and height */
/* top left corner */
/* starting angle (degrees) */
/* XY coordinates for end pt*/

Description The draw-piearc function draws an arc taken from an ellipse. Two
straight lines connect the two end points of the arc with the center of the
ellipse. The ellipse is in standard position, with the major and minor axes
parallel to the coordinate axes. The arc and two lines are all one pixel in
thickness, and are drawn in the current COLOR1.

Example

5-32

The ellipse from which the arc is taken is specified in terms of the mini
mum enclosing rectangle in which it is inscribed. The first four arguments
define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Po
sitive angles are in the clockwise direction, negative angles are
cou nterclockwise.

• The arc extent, arc, specifies the number of degrees (positive or
negative) spanned by the angle. If the arc extent is outside the range
[-359, +359], the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical arc, with 360 de
grees representing one full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y, t, dt, dx;

init-video(l);
init_grafix() ;
t = dx = dt = 8;
w = h = 80;
/** Draw animated pieman **/
for (x = -w, y = 240-w/2; x < 650; x += dx) {

if «t += dt) > 80 II t <= 0)
dt = -dt;

delay(O);
init_screen() ;
draw_piearc(w, h, x, y, t/2, 360-t);
draw_piearc(w, h, x+w/2, y, -15, 30);

Draw Point Function draw-point

Syntax void draw_point(x, y)
int x, y; /* pixel coordinates */

Description The draw-point function draws a single pixel. Arguments x and y give
the XV coordinates of the designated pixel. The pixel is drawn in the
current COLOR1.

Example

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int i, x, y, xy, yx;

init-video(l) ;
init_grafix() ;
init_screen() ;
x = xy = 0;
y = yx = 200;
/** Draw lissajous pattern in dots **/
for (i = 1200; i > 0; --i) {

draw_point (x+320, y+240);
x += yx » 4
yx -= x » 4
y += xy » 5
xy -= y » 5

5-33

draw-polyline Draw Polyline Function

Syntax void draw-polyline(n, linelist, ptlist)
int n; /* number of· lines * /
short linelist[]; /* list of lines */
short ptlist[]; /* list of points */

Description The draw-polyline function draws multiple lines.

5-34

• n specifies the number of lines that are drawn.

• line list is an array of type short; it specifies the list of lines that
are drawn. Each element in the linelist array is an index into the
ptlist array.

• The third argument, the ptlist array, contains the XY coordinates
of the starting and ending points for each line.

Each pair of adjacent 16-bit elements in the ptlist array is an X coordi
nate followed by a Y coordinate. Each pair of adjacent 16-bit elements in
the line list array is a pair of indices into the ptlist array, and desig
nates the start and end points of a line.

For example, the first line drawn is specified in the first two elements,
linelist[O] and linelist[1]. Assume that these contain index values
4 and 7, respectively. The starting coordinates for the line are contained
in ptlist[2*4] and ptlist[2*4+1]. The ending coordinates are con
tained in ptlist[2*7] and ptlist[2*7+1j.

The individual elements of the linelist array are assigned as follows:

linelist [0]
linelist[1]
line list [2]
line list [3]

= starting point of line 0 .
= ending point of line 0
= starting point of line 1
= ending point of line 1

line list [2n] = starting point of line n-1
linelist[2n+1] = ending point of line n-1

The individual elements of the ptlist array are assigned as follows:

ptlist[O]
ptlist[1]
ptlist[2]
ptlist[3]

= x coordinate value for point 0
= y coordinate value for point 0
= x coordinate value for point 1
= y coordinate value for point 1

ptlist[2m] = x coordinate value for point m-1
ptlist[2m+1] = y coordinate value for point m-1

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Draw Polyline Function draw-polyline

Example
static short xy[] = {

} ;

380,200, 480,200, 480,300, 380,300,
340,270, 340,170, 440,170,
230,180, 280,300, 160,300, 146,263

static short cube[] =
0,1, 1,2, 2,3, 3,4, 4,5, 5,6, 6,1, 3,0, 5,0,

} ;
static short pyramid[] = {

7,8, 8,9, 9,10, 10,7, 7,9
} ;

/*** Draw a cube and a pyramid sitting side by side ***/
init_video(l) ;
init_grafix() ;
init_screen() ;
draw_polyline (9, cube, xy);
set_co1or1(Ox11111111); /* Assume 4 bits/pixel */
draw_po1yline(5, pyramid, xy);

5-35

draw,-rect

Syntax

Description

Example

5-36

Draw Rectangle Function

void draw-rect(w, h, xleft, ytop)
int w, h; /* width and height */

/* of rectangle */
int xleft, ytop; /* coordinates at top */

/* left corner */

The draw-rect function draws the outline of a rectangle. The first four
arguments define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The outline is one pixel in thickness, and is drawn in the current COLOR1.

The draw-rect function is equivalent to the following four calls to the
draw-line function:

draw_line (xleft, ytop, xleft+w, ytop);
draw_line(xleft, ytop+h, xleft+w, ytop+h);
draw-line (xleft, ytop+l, xleft, ytop+h-2);
draw_line (xleft+w, ytop+l, xleft+w, ytop+h-2);

Note:

8eforeyou call this function, call the init-grafix function to initialize the
graphics environment.

ini t_v ideo (1) ;
init_grafix();
init_screen();
/******************************/
/** Draw one big rectangle **/
/** and four little ones **/
/******************************/
draw_rect(440, 280, 100, 100);
draw_rect(420, 30, 110, 110);
draw_rect(220, 220, 110, 150);
draw_rect(190, 150, 340, 150);
draw_rect(190, 60, 340, 310);

Draw Character String Function draw-string

Syntax

Description

Example

int draw_string(x, y, s)
int x, y; /* starting coordinates */
char *s; /* ASCII string terminated by NULL */

The draw-string function draws a string of characters to a position on the
screen. The string is drawn in the current font.

• The first two arguments define the starting position for the string:

Coordinate x is the horizontal position at the left edge of the
string.
Coordinate y is the vertical position at the baseline of the string
(not the top of the string).

• Argument s is a character string. The string is in standard C format:
a sequence of 8-bit ASCII character codes terminated by a NULL
character (ASCII code = 0).

The return value is the x coordinate of the next character position to the
right of the string. The x value is expressed in viewport-relative coordi
nates. If the string lies entirely above or below the window, the unmodi
fied starting x coordinate is returned.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int i, x, y;
char *s;

s = "Hello world.";
init_video(l) ;
init_grafix() ;
init_text() ;
init_screen() ;
transp_on() ;
x = 0;
y = 200 « 16;
/** Write "Hello world" to the screen 50 times **/
for (i = 50; i > 0; --i) {

draw_string«x»16)+272, (y»16)+244, s);
x += y » 3;
y -= x » 3;

5-37

exp

Syntax

Description

Example

5-38

double exp(x)
double X;

Exponential Function

The exp function calculates the exponential function of real number x.
The value returned is natural number e raised to the power x. Both the
argument and return value are double-precision floating-point values.

• If X > 500, a value of + OX> is returned, and fp-error is called with
error code = 21 (see the reference to the fp-error function in the
TMS34010 C Compiler User's Guide).

• If x < -500, a value of ° is returned, and fp-error is called with error
code = 22. .

extern double exp();
double x, y; /* y is returned by exp */

x 2.0;
y = exp(x); /* y = 7.38, which is e**2.0 */

Absolute Value Function fabs

Syntax double fabs(x)
double X;

Description The fabs function calculates the absolute value of a real number x. Both
argument X and the return value are double-precision floating-point val
ues.

Example extern double fabs();
double x, y;

x -57.5;
Y = fabs(xl; /* return value +57.5 */

5-39

fill-convex Fill Convex Polygon Function

Syntax int fill_convex(n, edgelist, ptlist)
int n; /* number of polygon vertices */
short edgelist[]; /* list of edges */
short ptlist[]; /* list of vertices (points) */

Description The fill-convex function fills a convex polygon given a list of points re
presenting the vertices. In order to be drawn correctly, the polygon must
be convex; that is, it should contain no concavities. A polygon must have
at least three vertices to be visible. An edge of the polygon is assumed
between the first and last vertices specified. The polygon is solid-filled
with the current COLOR1.

5-40

The function requires three input arguments:

• Argument n defines the number of vertices in the polygon.

• The second argument, edge list, is an array of type short. The
members of the array are indices that specify the order in which the
vertices are traversed, moving in a clockwise direction around the
edge of the polygon. (Clockwise, in this context, assumes X in
creasing from left to right and Y increasing from top to bottom.)
Each element of the edgelist array is an index into the ptlist
array.

• The third argument, ptlist, is an array of type short. Each pair of
adjacent 16-bit elements contains the X and Y coordinates, respec
tively, of a vertex.

For example, edgelist [k] contains the index for vertex k, where k is in
the range 0 to n-1. The XY coordinates for vertex k are contained in
ptlist[2*n] and ptlist[2*n+1].

The fill-convex function does automatic culling of back faces to support
3D applications. In other words, a polygon is drawn only if its front side
is visible; that is, if it is facing toward the screen. If the vertices are spec
ified in counterclockwise order, the polygon is assumed to be facing away
from the screen and is therefore not drawn. In this case, a value of 0 is
returned by the function. Otherwise, a value of 1 is returned to indicate
that the polygon is visible.

The back face test is done by first comparing vertices n-2, n-1 and 0 to
determine whether the polygon vertices are specified in clockwise (front
face) or counterclockwise (back face) order. This test relies on the poly
gon containing no concavities. If the three vertices are found to be coli
near, the back face test is made again using the next three vertices, n-1, 0
and 1. The test repeats until three vertices are found that are not colinear.
If all the vertices are colinear, the polygon is invisible and a value of 0 is
returned.

This function is similar to the fill-polygon routine, but is specialized for
rapid drawing of convex polygons. Note that the edgelist array format
for the fill-convex function differs from the linelist array format for the
fill-polygon function. While the fill-convex function is more specialized
than the fill-polygon function, it also executes more rapidly and supports
realtime applications such as animation.

Fill Convex Polygon Function flll-eonvex

Example

Note:

Before you call this function, call the init-9rafix function to initialize the
graphics environment.

long i, hue;
static short connect[] = { 0, 1, 2 };
static short xy[] = { 0,-170, 196,170, -196,170 };

init_video(1) ;
init_grafix() ;
init_vuport();
set_origin(320, 240);
init_screen() ;
/** Fill triangles in 15 different colors **/
for (± = 15, hue = 0; i > 0; --i) {

set_co1or1(hue += Ox11111111);
fill_convex(3, connect, xy);
xylOl += xy[l] » 3;
xy[l] xy[O]» 3;
xy[2] += xy[3] » 3;
xy[3] xy[2]» 3;
xy[4] += xy[5] » 3;
xy[5] xy[4]» 3;

5-41

fill-ovai Fill Oval Function

Syntax void fill_oval(w, h, xleft, ytop)
int w, h; /* width and height of */

/* enclosing rect */
int xleft, ytop; /* XY coordinates of */

/* top left corner */

Description The fill-oval function draws. an ellipse that is solid-filled with the current
COLOR1. The ellipse is in standard position, with its major and minor
axes parallel to the coordinate axes.

Example

5-42

The ellipse is defined by the minimum enclosing rectangle in which it is
inscribed. The first four arguments define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y;

init_video(l);
init_grafix() ;
init_screen() ;
/*** Fill ellipses of various sizes ***/
for (w = 0, x = 4; w < 33; ++w, x += W + 3)

for (h = 0, Y = 4; h < 28; ++h, Y += h + 3)
fill_oval(w, h, x, y);

Fill Pie Arc Function fill-piearc

Syntax void fill_piearc(w, h, xleft, ytop, theta, arc)
int w, h, /* width and height */
int xleft, ytop; /* top left corner */
int theta; /* starting angle (degrees) */
int arc; /* extent of angle (degrees) */

Description The fill-piearc function draws a pie-shaped wedge that is solid-filled with
the current COLOR1. The wedge is bounded by an arc and two straight
edges. The arc is taken from an ellipse in standard position, with its major
and minor axes parallel to the coordinate axes. The two straight edges are
defined by lines connecting the end points of the arc with the center of
the ellipse.

The ellipse from which the arc is taken is specified in terms of the mini
mum enclosing rectangle in which it is inscribed. The first four arguments
define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Po
sitive angles are in the clockwise direction, negative angles are
counterclockwise.

• The arc extent. arc, specifies the number of degrees (positive or
negative) spanned by the angle. If the arc extent is outside the range
[-359, +359]. the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical arc, with 360 de
grees representing one full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

5-43

fill-piearc Fill Pie Arc Function

EXBn1p/e /********************************/

5-44

/* Draw animated pieman */
/**********.**********************/
int w, h, X, y, t, dt;

init_video(1);
init_grafix() ;
t = dt = 8;
w = h = 80;
for (x = -120, Y = 350; x < 720; x += 8) {

if «t += dt) > 80 II t <= 0)
dt = -dt;

delay(O) ;
init_screen() ;
fill_piearc(w, h, x, y, t/2, 360-t);
fill_~iearc(w, h, x+40, y, -15, 30);

Fill Polygon Function fill-polygon

Syntax void fill_polygon(n, linelist, ptlist)
int n; /* number of edges * /
short linelist[]; /* list of edges */
short ptlist[]; /* list of vertex coordinates */

Description The fill-polygon function fills a polygon given a list of lines representing
the edges of the polygon. No restrictions are placed on the shape of the
polygons filled by the function: edges can cross each other, filled areas
can contain holes, and two or more filled regions can be disconnected
from each other. The polygon is solid-filled with COLOR1.

The function requires three input arguments:

• Argument n defines the number of vertices in the polygon.
• The second argument, linelist, is an array of type short. Each pair

of elements in the linelist array defines an edge: the first of the
two elements defines the starting vertex of the edge, and the second
defines the ending vertex. Each element of the line list array is
an index into the ptlist array.

• The third argument, ptlist, is an array of type short. Each pair of
adjacent 16-bit elements contains the X and Y coordinates, respec
tively, of a vertex.

Each pair of adjacent 16-bit elements in the ptlist array is an X coordi
nate followed by a Y coordinate. Each pair of adjacent 16-bit elements in
the linelist array is a pair of indices into the ptlist array.

For example, the first edge that is drawn is specified in array elemenfs,
linelist[O] and line list [1]. Assume that these contain index values
4 and 7, respectively. The starting coordinates for the line defining the
edge are contained in ptlist[2*4] and ptlist[2*4+1]. The ending
coordinates are contained in ptlist[2*7] and ptlist[2*7+1].

The individual elements of the line list array are assigned as follows:

line list [0]
line list [1]
linelist[2]
line list [3]

= starting vertex for edge 0
= ending vertex for edge 0
= starting vertex for edge 1
= ending vertex for edge 1

linelist [2n] = starting vertex for edge n-1
linelist[2n+1] = ending vertex for edge n-1

The individual elements for the ptlist array are assigned as follows:

ptlist[O]
ptlist[1]
ptlist[2]
ptlist[3]

= x coordinate value for point 0
= y coordinate value for point 0
= x coordinate value for point 1
= Y coordinate value for point 1

ptlist[2m] = x coordinate value for point m-1
ptlist[2m+1] = y coordinate value for point m-1

5-45

fill-polygon Fill Polygon Function

Example

5-46

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short xy[] = {

} i

440,80, 540,380, 500,380, 472,300, 368,300,
340,380, 300,380, 400,80, 420,140, 459,260,
381,260, 277,133, 248,346, 300,340, 222,138,
319,147, 204,333, 180,311, 340,172, 360,200,
160,280, 150,240, 368,240, 360,280, 160,200,
180,168, 340,308

static short shape[] = {
0,1, 1,2, 2,3, 3,4, 4,5, 5,6, 6,7, 7,0, 8,9,
9,10,10,8,11,12,12,13,13,14,14,11,15,16,
16,17, 17,18, 18,15, 19,20, 20,21, 21,22, 22,19,
23,24, 24,25, 25,26, 26,23

} i
init-video(l)i
init-grafix()i
init_screen() i
/* Fill overlapping 'A' and '*' shapes */
fill_polygon(27, shape, xy);

Fill Rectangle Function fill-rect

Syntax

Description

Example

void fill_rect(w, h,
int w, h;

int xleft, ytop;

xleft, ytop)
/* width and height */
/* of rectangle */
/* XY coords at top */
/* left corner */

The fill-rect function draws a rectangle that is solid-filled with the current
COLOR1. The first four arguments define the rectangle:

• The width w,

• The height h, and
• The coordinates of the top left corner (xleft,ytop).

init_video(l) ;
init_grafix() ;
init_screen() ;
/******************************/
/** Draw one big rectangle **/
/** and four little ones **/
/******************************/
fill_rect(440, 280, 100, 100);
set_colorl(Oxllllllll) ; /* Assume 4 bits/pixel */
fill_rect(420, 30, 110, 110};
fi11_rect(220, 220, 110, 150);
fill_rect(190, 150, 340, 150);
fill_rect(190, 60, 340, 310);

5-47

fix-to-float Fixed Point to Float Function

Syntax float *fix-to_float(n, ill-array, out-array)
typedef long FIX; /* fixed-point format */
int n; /* number of elements to be */

/* converted */
FIX ill-array[] ; /* array of fixed-point values */
float out_array[] ; /* array of float values */

Description The fix-to-float function converts an array of fixed-point values to sin
gle-precision floating-point values. Elements of input array are 32-bit, 2s
complement, fixed-point numbers with the binary point located between
the 16 LSBs and 16 MSBs. Elements of output array are of type float.

Example

5-48

The input arguments include:

• The number of elements n that are converted,
• The input array ill-array, and
• The output array out_array.

A pointer to the first element of the output array is returned.

typedef long FIX;
long xyzl[9] = { 0,-58,0, 50,29,0, -50,29,0 };
FIX xyz2[9];
float xyz3[9];

long_to_fix(9, xyzl, xyz2);
fix-tO-float(9, xyz2, xyz3};

Fixed Point to Long Function fix-to-Iong

Syntax long *fix-to_long{n, in-array, out-array)
typedef long FIX;
int n; /* number of elements to */

/* be converted */
FIX in-array[] i /* array of fixed-point

/* values */
long out_array[]; /* array of integers */

Description The fix-to-Iong function converts an array of fixed-point numbers to long
integers. Elements of the input array are 32-bit, 2s complement, fixed
point numbers with the 16 LSBs to the right of the binary point. Elements
of the output array are 32-bit, 2s complement integers (C type long). The
conversion from fixed-point format is done by simply shifting the elements
right by 16 (truncation with sign extension).

Example

The input arguments include:

• The number of elements n that are converted,
• The input array in-array, and
• The output array out_array.

A pointer to the first element of the output array is returned.

The value returned by the function is a pointer to the output array,
out_array.

typedef long FIX;
static FIX xyl[2]
long xy2[2];

init_video(l) ;
init_grafix{);
init_vuport() ;
set_origin{320, 240);
for (i;) (

(0, -150«16 };

fix-to_1ong{2, xyl, xy2);
delay{O) ;
init_screen() ;
draw_line{O, 0, xy2[0], xy2[1])i
xy1[0] xy1[1]» 6;
xy1[1] +; xy1[0] » 6;

5-49

fix-to-short Fixed Point to Short Function

Syntax short *fix-to_short(n, in-array, out-array)
typedef long FIX;
int n; /* number of elements to be */

/* converted */
FIX in-array[]; /* array of fixed-point */

/* values */
short out_array[]; /* array of integers */

Description The fix-to-short function converts an array of fixed-point numbers to
short integers. Elements of the input array are 32-bit, 2s complement,
fixed-point numbers whose 16 LSBs are to the right of the binary point.
Elements of the output array are 16-bit, 2s complement integers (C type
short). The conversion from fixed-point format is done by simply shifting
the elements right by 16 (truncation).

Example

5-50

The input arguments include:

• The number of elements n that are converted,
• The input array in-array, and
• The output array out-array.

The value returned by the function is a pointer to the output array,
out_array.

typedef long FIX;
static short ptlist[] = (0,-200, 30,15, -30,15 };
static short connect[] = (0, 1, 2 };
FIX xy[6];
int i;

init_video(1);
init_grafix() ;
init_vuport () ;
short_to_fix(6, ptlist, xy);
set_origin(320, 240);
for (; ;) (

for (i = 0; i <= 2; ++i) (
xy[2*i] -= xy[2*i+1] » 6;
xy[2*i+1] += xy[2*i] » 6;

}
fix-to_short(6, xy, pt1ist);
delay(O) ;
init_screen() ;
fi11_convex(3, connect, ptlist);

Fixed Point to Float Function FIX2FL

Syntax

Description

Example

.global FIX2FL

The FIX2F!- function converts a fixed-point number to a single-precision
floating-point number. The format used for a 32-bit, 2s complement,
fixed-point number places the binary point between the 16 LSBs and 16
MSBs. Refer to discussion of single-precision floating-point format in
Appendix 0 of the TMS34010 C Compiler User's Guide.

Note:

You cannot call the FIX2FL function from a C program. You must call
it from an an assembly language program by using the EXGPC in
struction. Arguments are passed through the TMS3401 0 register file.

The argument is passed to this function in register A10 and the result is
returned in A 10. The prior contents of AS, A 11, and A 10 are lost. The
function is called with an EXGPC instruction using register A5.

**
*** Convert fixed-point array to floating point. ***
**

LOOP:
MOVI FIX2FL,A4

MOVE
MOVE
EXGPC
MOVE
DSJS

*Al+,AlO,l
A4,AS
AS
AIO,*A2+,1
AO,LOOP

load address of FIX2FL routine

get next element from input
copy address of FIX2FL routine
execute FIX2FL routine
copy converted element to output
more elements to convert?

5-51

Fl2FIX

Syntax

Description

Example

5-52

Float to Fixed Point Function

.global FL2FIX

The FL2FIX function converts a single-precision floating-point value to a
fixed-point value. The format used for a 32-bit, 2s complement, fixed
point number places the binary point between the 16 LSBs and 16 MSBs.

Note:

You cannot call the FL2FIX function from a C program. You must call
it from an an assembly language program by using the EXGPC in
struction. Arguments are passed through the TMS3401 0 register file.

The argument is passed to this function in register A10 and the result is
returned in A 10. The prior contents of A8, A 10, and A 11 are lost. The
function is called with an EXGPC instruction using register A5.

*** Convert floating-point array to fixed point. ***

LOOP:
MOVI FL2FIX,A4

MOVE
MOVE
EXGPC
MOVE
DSJS

*Al+,AlO,l
A4,A5
A5
AIO,*A2+,1
AO,LOOP

load address of FL2FIX routine

get next element from input
copy address of FL2FIX routine
execute FL2FIX routine
copy converted element to output
more elements to convert?

Floating-Point Add Function FL-ADD

Syntax

Description

Example

.global FL-ADD

The FL-ADD function adds two single-precision floating-point values.
Refer to discussion of single-precision floating-point format in Appendix
D of the TMS34010 C Compiler User's Guide.

Note:

You cannot call this function from a C program. You must call it from
an assembly language program by using the EXGPC instruction.

The single-precision arguments are passed via registers A9 and A10; the
result is returned in A10. The prior contents of A7 through A12 are lost.
The. function is called with an EXGPC function using register A5.

**
* Vector addition routine: add array x to array y. *
**

LOOP:

.global
MOVE
MOVE
MOVE

MOVE
MOVE
MOVI
EXGPC
MOVE
DSJ

FL-ADD
*-Al4,AO,1
*-A14,Al,1
*-A14 ,A2, 1

*Al+,A9,1
*A2,AIO,1
FL-ADD,A5
AS
AIO,*A2+,1
AO,LOOP

declare function external
get count
get pointer to x array
get pointer to y array

get xli]
get yli]
put entry point in AS

store sum of xli], yli]
loop again if --count > 0

5-53

FL-COS Floating-Point Cosine Function

Syntax .global FL-COS

Description The FL-COS function calculates the cosine of a real number that repres
ents an angle expressed in radians. Both the input value and return value
are single-precision floating-point values.

Example

5-54

Note:

You cannot call this function from a C program. You must call it from
an assembly language program by using the CALLA instruction.

The single-precision argument to this function is passed via register A10
and the result is returned in A10. The prior contents of A10 and AS are
lost.

. global
MOVE
CALLA

FL_COS
*Al+,AlO,l
FL-COS

declare function external
get angle in AIO
returns cos (angle) in AIO

Floating-Point Multiply Function FL-MULT

Syntax

Description

Example

.global FL_MULT

The FL-MUL T function multiplies two single-precision floating-point
values. The result is also a single-precision floating-point value. Refer to
discussion of single-precision floating-point format in Appendix D of the
TMS34010 C Compiler User's Guide.

Note:

You cannot call this function from a C program. You must call it from
an assembly language program by using the EXGPC instruction.

Arguments are passed to the function in registers A9 and A 10, and the
result is returned in A 10. The prior contents of A9 through A 12 are lost.
The function is called with an EXGPC function using register A5.

* Vector multiply routine: multiply array y by array x.
*

LOOP:

.global FL-MULT declare function external
MOVE *-A14,AO,1 get count
MOVE *-A14,Al,1 get pointer to x array
MOVE *-A14,A2,1 get pointer to y array

get xli]
get y[i]
put entry point in AS

MOVE
MOVE
MOVI
EXGPC
MOVE
DSJ

*Al+,A9,1
*A2,A10,1
FL-MULT,AS
AS
A10,*A2+,1
AO,LOOP

store x[i]*y[i] in y[i]
loop again if --count)O

5-55

FL-SIN Floating-Point Sine Function

Syntax . global Fl.-SIN

Description The FL-SI N function calculates the sine of a real number that represents
an angle expressed in radians. Both the input value and return value are
single-precision floating-point values.

Example

5-56

Note:

You cannot call this function from a C program. You must call it from
an assembly language program by using the CALLA instruction.

The single-precision argument to this function is passed via register A10
and the result is returned in A10. The prior contents of A10 and AS are
lost.

. global
MOVE
CALLA

Fl.-SIN
*Al+,AlO,l
FI-SIN

declare function external
get angle in AlO
returns sin(angle) in AlO

Float to Fixed Point Function float-to-fix

Syntax

Description

Example

in_array, out_array) FIX *float_to_fix(n,
typedef long FIX; /* put this before function */

/* definition */
int n; /* number of elements to be */

/* converted * /
float in_array[);
FIX out_array[);

/* array of float values */
/* array of fixed-point values */

The float-to-fix function converts an array of single-precision floating
point values to fixed-point values. Elements of the input array are of type
float. Elements of the output array are 32-bit, 2s complement, fixed-point
numbers with the binary point located between the 16 LSBs and 16
MSBs. The input arguments include:

• The number of elements n that are converted,
• The input array ill-array, and
• The output array out_array.

A pointer to the first element of the output array is returned.

typedef long FIX;
static float xyzl[9) {

} ;
FIX xyz2 [9) ;

o. ,-58. ,0., 50. ,29. ,0., -50. ,29. ,0.

float-to_fix(9, xyzl, xyz2);

5-57

floor Floor Function Function

Syntax double floor(x)
double x;

Description The floor function returns a double-precision floating-point number re
presenting the largest integer less than or equal to the input argument x.

EXBr.nple extern double floor();

double answer;

answer = floor(3.l41S, &exp);

/* after execution, answer will be 3.0 */

5-58

Remainder Function fmod

Syntax

Description

Example

double fmod(x, y)
double x, y;

The fmod function calculates the floating-point remainder of x/yo The
input arguments and return value are all double-precision floating-point
numbers. If the quotient x/y cannot be represented, the result is unde
fined, and the floating-point error routine fp-error is called. Otherwise,
the function returns the value x-i*y, where i is an integer such that, if y
is nonzero, the result has the same sign as x and a magnitude less than the
magnitude of y.

If input argument y is 0, the return value is 0, and an error code of 8 is
transmitted to the fp-error routine. If input argument x is + 00 or - 00, the
return value is 0, and an error code of 9 is transmitted to fp-error (see the
floating-point description in the TMS34010 C Compiler User's Guide).

/**************************************/
/* fmod returns double result */
/**************************************/
extern double fmod();
double x, y, r;

x 1.0;
y 2.0;
r = fmod(x, y); /* fmod returns 1.0 */

5-59

frame-oval Frame Oval Function

Syntax void frame_oval(w, h,
int w, h;

int xleft, ytop;

int dx, dy;

xleft, ytop, dx, dy)
/* width and height of */
/* enclosing rectangle */
/* coordinates at top */
/* left corner */
/* width and height of */
/* frame border */

Description The frame-oval function solid-fills an ellipse-shaped frame with the cur
rent COLOR1. The frame consists of a filled region between two con
centric ellipses. The portion of the screen enclosed by the frame is not
altered.

Example

5-60

The outer ellipse is specified in terms of the minimum enclosing rectangle
in which it is circumscribed. The first four arguments define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The thickness of the frame in the X and Y dimensions is defined by two
additional arguments, dx and dy, which specify the horizontal and vertical
distances, respectively, between the outer and inner ellipses.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y, dx, dy;

init_video(l)
init_grafix()
init_screen()
w 480;
h 360;
x 80;
y 60;
dx 40;
dy 30;
frame-oval(w, h, x, y, dx, dy);

Frame Rectangle Function frame-rect

Syntax

Description

Example

void frame_rect(w, h, xleft, ytop, dX, dyl
int w, h; /* width and height of */

/* enclosing rectangle */
int xleft, ytop; /* coordinates at top */

/* left corner */
int dX, dy; /* width and height of */

/* frame border */

The frame-rect function solid-fills a rectangular frame with the current
COLOR1. The frame consists of a filled region between two concentric
rectangles. The portion of the screen enclosed by inner edge of the frame
is not altered.

The first four arguments define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The thickness of the frame in the X and Y dimensions is defined by two
additional arguments, dx and dy, which specify the horizontal and vertical
distances, respectively, between the outer and inner rectangles.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y, dX, dy;

init_video(ll
init_grafix(1
init_screen(1
w 480;
h = 360;
x = 80;
y = 60;
dx = 40;
dy = 30;
frame_rect(w, h, x, y, dX, dy);

5-61

frexp

Syntax

Description

Example

5-62

Fraction and Exponent Function Function

double frexp(value, exp)
double value; /* input floating-point number */
int *exp; /* pointer to exponent */

The frexp breaks a double-precision floating-point number into a normal
ized fraction and an exponent. The fraction is returned by the function,
and the exponent is placed in the integer pointed to by expo

extern double frexp();

double fraction;
int exp;

fraction = frexp(3.l415, &exp);

/* after execution, fraction will be .1415, and
exp will contain 3 */

Get All Palette Function getall-palet

Syntax void getall-palet(palet_array, reg_mask, y)
short palet_array[161; /* palette reg. values */
int reg-mask; /* register-select mask */
int y; * scan line * /

Description The getall-palet function reads multiple color palette registers into the
destination array. The purpose of this function is to make selected palette
register values available for inspection and modification. This function
assumes a TMS34070 color palette or functional equivalent. The pixel
size is therefore four bits, and the palette contains 16 registers. The values
contained in the palette registers can change on a line-by-line basis.

Example

Each 16-bit palette register is organized according to the following format:

15 1211 87 4 3 0

I blu I grn I red I att I
MSB LSB

The red, green, and blue intensity fields are 4-bit. unsigned binary num
bers. The attribute field contains a color-repeat bit that is set to one to
enable automatic filling by the palette device. See the TMS34070 User's
Guide for details.

• The first argument, palet_array, is the array into which the register
values from the color palette are written.

• The second argument. reg-mask, specifies which of the 16 palette
registers are written to the destination array. Bit positions 0 to 15
in the mask enable (if 1) or disable (if 0) writing the corresponding
palette registers. For example, a mask value of 001716 enables
writing of palette registers 0, 1, 2 and 4 into palet_array elements
0,1,2 and 4.

• The third argument, y, designates at which scan line the color palette
is examined. This argument is necessary because the palette can
differ from line to line. Scan lines are numbered in ascending order
beginning with 0 at the top of the screen.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

short temp_array[161;

/**/
/* Copy palette registers 5, 6, 8 and 9 */
/* from the 18th scan line */
/**/

geta1l_pa1et(temp-array, Ox0360, 17);

5-63

get-ascent Get Ascent Function

Syntax int get_ascent ()

Description The get-ascent function returns the value of the ascent parameter for the
current font. The ascent value is the number of vertical pixels from the
baseline to the top of the tallest character in the font. The ascent for t~e
current font is defined in the font structure; the get-ascent function re
trieves the ascent value from the structure.

Example

5-64

Note:

Before you call the get-ascent function, call the in it-text function to
initialize the text data structures.

/**************************************/
/* Draw text flush with top of screen */
/**************************************/
static char *s = "Hello world.";
int w, h, x, y;

init_video (I) ;
init_grafix() ;
init_text(); /* sets up default font */
init_screen() ;
x = y = 0; /* top left corner */
w = get_width(s);
h = get-ascent();
set_colorl(Oxllllllll); /* assume 4 bits/pixel */
fill-rect{w, h, x, y);
transp_on() i
set_colorl(Ox77777777);
draw_string(x, y+h, s);

Get Descent Function get-descent

Syntax

Description

Example

int get-descent()

The get-descent function returns the value of the descent parameter for
the current font. The descent descent is the the vertical distance measured
in pixels from the baseline to the lowest descender in the character set.
The descent for the current font is defined in the font structure; the
get-descent function retrieves the descent value from the structure.

Note:

Before you call the get-descent function, call the in it-text function to
initialize the text data structures.

/***********************************/
/* Draw line just below descenders */
/***********************************/
static char *s = "jumping jimminy";
int w, h, x, y;

init_video(l) ;
init_grafix();
init_text(); /* sets up default font */
init_screen() ;
x 0;
y = get_ascent();
w = get-width(s);
h = get-descent();
draw_string(x, y, s);
set_colorl(Oxllllllll); /* assume 4 bits/pixel */
fill_rect(w, 1, x, y+h);
h = char_high() + 1;

5-65

get-first-ch Get First Character Function

Syntax

Description

Example

5-66

int get_first_ch()

The get-first-ch function returns the ASCII character code for the first
character present in the current font. All characters whose codes are less
than the return value correspond to "missing" characters; that is, their
character images are omitted from the font structure.

Note:

Before you call the get-first-ch function, call the init-text function to
initialize the text data structures.

/***/
/* Draw all characters implemented in current font */
/***/
unsigned char c;
int x, y;

init_video(l);
init_grafix() ;
init_text(); /* sets up default font */
init_screen() ;
x = 10;
Y = 100;
for (c = get-first-ch(); c <= get_last_ch();

++c, x += char_wide-max())
if (x > 640) {

x = 10;
Y += 50;

}
draw-char (x, y, c);

Get Font Maximum Function get-font-max

Syntax int get-font-max()

Description The get-font-max function returns the maximum number of fonts that
can be installed simultaneously (see the description of the install-font
function also). If a value of n is returned, font indices can range from 0
to n-1.

Example int n;

n = get-font-max();

5-67

get-Iast-eh Get Last Character Function

Syntax

Description

Example

5-68

int get_Iast_ch()

The get-Iast-ch function returns the ASCII character code for the last
character present in the current font. All characters whose codes are
greater than the return value correspond to "missing" characters; that is,
their character images are omitted from the font structure

Note:

Before you call the get-Iast-ch function, call the init-text function to
initialize the text data structures.

/***/
/* Draw all characters implemented in current font */
/***/
unsigned char c;
int x, y;

init_video (1) ;
init_grafix() ;
init_text(); /* sets up default font */
init-screen();
x = 10;
Y = 100;
for (c = get_first_ch(); c <= get-1ast-ch();

++c, x += char_wide-max(»
if (x > 640) {

x = 10;
Y += 50;

}
draw_char(x, y, c);

Get Leading Function get-leading

Syntax

Description

Example

int get_leading()

The get-leading function returns the leading value for the current font.
The leading is the empty space between rows of text; that is, it is the
number of vertical pixels from the lowest descenders of one row of text to
the tallest characters of the line of text below it. This function retrieves the
leading value from the font structure.

Note:

Before you call the get-leading function, call the in it-text function to
initialize the text data structures.

/**/
/* Draw lines between successive rows of text */
/**/
static char s [1 = "The quick brown fox ... ";
int x, y, dx;

init_video(l);
init_grafix() ;
init_text(); /* sets up default font */
init_screen();
transp_on() ;
dx = (640 - get_width(s» / (480 / char_high(»;
for (x = 0, y = get_ascent(); y < 480;

x += dx, Y += char_high(» {
draw_string (x, y, s);
fill-rect(640, I, 0, Y + get_descent() +

get-leading(}/2};

5-69

get-patn-max Get Pattern Maximum Function

Syntax

Description

Example

5-70

int get_patn-max{}

The get-patn-max function returns the maximum number of patterns that
can be installed at anyone time. If return value is n, available range of
vertices is 0 to n-1. The maximum number of patterns is a function of the
size of the pattern table data structure.

int w, h, x, y, dX, dy, pmax, patn;

init_video{l} ;
init_grafix{} ;
init-screen{} ;
set_colorO{Oxllllllll} ;

/* Install default patterns */

/* Assume 4 bits/pixel */

/**********************************/
/* Display all available patterns */
/**********************************/

pmax = get_patn-max();
x y = 0;
w 84;
h 68;
dx 96;
dy 80;
for {patn = 0; patn < pmax; select_patn{++patn}}

patnfill-rect{w, h, x, y};
if {{x += dx} > 640 - w} {

x = 0;
y += dy;

Get Pixel Value Function get-pixel

Syntax

Description

Example

int get_pixel (x, y)
int x, y; /* coordinates of pixel */

The get-pixel function returns the value of the pixel at coordinates (x,y).
The coordinates are relative to the viewport origin. Given a pixel size of
n bits, the pixel is contained in the n LSBs of the return value (the MSBs
are Os).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int xs, ys, xd, yd;
static char s [] = "topsy turvy";
short buf[640/4]; /* line buffer for zoom */

init_video(l) ;
init-grafix() ;
init_text() ;
init-screen() ;
draw-string (0 , get-ascent(), s);

/*********************************/
/* Flip and mirror original text */
/*********************************/

for (ys = 0, yd = 29; ys <= 19; ++ys, --yd)
for (xs = 0, xd = 89; xs <= 89; ++xs, --xd)

put_pixel(get-pixe1(xs, ys), xd, yd);
zoom-rect(40, 40, 0, 0, 160, 160, 240, 160, buf);

5-71

get-pmask Get Plane Mask Function

Syntax long get_pmask ()

Description The get-pmask function returns the value of the plane mask (TMS34010
PMASK register). Although only the 16 LSBs of the PMASK register are
implemented in the TMS3401 0, the plane mask is 32 bits for the sake of
upward compatibility with future GSPs.

Example

5-72

The plane mask designates which bits within a pixel are protected against
writes, and affects all operations on pixels. The protected bits are repli
cated throughout the 32-bit plane mask in a manner similar to that used
for the COLORO and COLOR1 values. The 1 s in the plane mask specify
protected bits in the destination pixel that cannot be modified, while the
Os specify bits that can be altered. The plane mask can be altered by me
ans of a call to the set-pm ask function. See the TMS34010 User's Guide
for a further discussion of plane masking.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

long mask;

/* Assume pixel size is 4 bits */
init_video(l) ;
/* sets PMASK = alIOs */
init_grafix() ;
set_pmask(Oxllllllll) ;
/* Write protect pixel bit #0 */
mask = get_pmask();
/* Return value = OxOOOOlll1 */

Get Pixel Processing Operation Function get-ppop

Syntax long get_ppop ()

Description The get-ppop function returns the code for the current pixel processing
operation (the PPOP field in the TMS3401 O's CONTROL register). The
5-bit PPOP code resides in the 5 LSBs of the return value; a" higher order
bits are Os.

Example

The PPOP code determines the manner in which pixels are combined
(Iogica"y or arithmetically) during drawing operations. A new PPOP code
can be selected by means of the set-ppop function. Legal PPOP codes
are in the range 0 to 21. The effects of the 22 different codes are de
scribed in the TMS34010 User's Guide.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

long ppop;

init_video{l) ;
init_grafix{) ;
set-ppop (10) ;
ppop = qet_ppop();

/* PPOP = alIOs (REPLACE) */

/* select XOR */
/* returns PPOP = 10 */

5-73

get-psize Get Pixel Size Function

Syntax int get-psize()

Description The get-psize function returns the pixel size (contents of TMS34010
PSIZE register). The pixel size for the display system is typically a con
stant defined within the init-video function. The TMS34010 supports
pixels of 1, 2, 4, 8, and 16 bits. Future GSPs may support additional pixel
sizes.

Example

5-74

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

long psize;

init_video(l) ;
init_grafix() ;
psize = get_psize();

/* sets PSIZE */

Get Rectangle Function get-rect

Syntax

Description

void get-rect(w, h, xleft, ytop, darray, dpitch)
int w, h; /* width and height of */

/* source rectangle */
int xleft, ytop; /* coordinates at top left */

/* corner */
short darray[] /* destination pixel array */
long dpitch; /* destination pitch */

The get-rect function copies pixels contained in a rectangular area of the
screen into a packed pixel array. The first four arguments define the source
rectangle (the rectangular area of the screen):

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

wand h must be nonnegative.

The last two arguments describe the destination array:

• The destination array, darray, and
• The pitch of the array, dpitch.

The array pitch is the difference in the starting addresses of two adjacent
pixel rows of the array. The pitch must be a positive multiple of the pixel
size. The minimum pitch is the product of wand the pixel size. The pixel
size can be obtained by calling the get-psize function. The destination
array must be large enough to contain the source array. The minimum
number of bits required in the destination array is the product of hand
dpitch.

The source rectangle is clipped to positive XV coordinate space before
being copied. Portions of the source array lying in negative XV space are
not copied, and the corresponding portions of the destination array remain
unaltered. Portions of the source array lying outside the current viewport
and clipping rectangle are not clipped unless they lie in negative XV
space.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

5-75

get-rect

Example

5-76

int w, h, X, V, pitch, i;
short buf[80*60*4/16];

init_video(l);
init_grafix();
init_screen() ;
w 80;
h = 60;
x = 280;
Y = 210;
pitch = w * get_psize();

Get Rectangle Function

/*** Draw picture ***/
fi11-rect(w-2, h-2, x+1, y+1);
set_co1orO(Ox11111111); /* Assume 4 bits/pixel */
set_co1or1(Ox44444444);
patnframe_ova1(w-2, h-2, x+1, y+1, 20, 15);
/*** Capture picture from screen ***/
geLrect(w, h, x, y, lJuf, pitch);
/*** Put picture onto screen ***/
for (i = 25, x = 0, y = -150«16; i > 0; --i)

x += y » 2;
y -= x » 2;
put-rect(buf, pitch, w, h, (x»16)+280, (y»16)+210);

Get Transparency Function get-transp

Syntax int get_transp()

Description The get-transp function returns the state of the transparency enable bit
(the T bit from the TMS3401 O's CONTROL register). A value of 1 is re
turned if transparency is enabled; otherwise, 0 is returned.

Example

Transparency is an attribute that affects text drawing and pattern fills. If
transparency is enabled, and the result of a pixel processing operation is
0, the destination pixel is not altered. If transparency is disabled, the
destination pixel is replaced by the result of the pixel processing operation
regardless of the value of that result. See the TMS34010 User's Guide for
a further discussion of transparency.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int ti

init-video (1) i /* Disables transparency */
init_grafix();
t = get-transp(); /* Return value 0 */
transp_on() ;
t = get-transp () ; /* Return value 1 */

5-77

get-vuport-max Get Viewport Maximum Function

Syntax int get_vuport-max{)

Description The get-vuport-max function returns the maximum number of viewports
that can be open at anyone time. If the return value is a number n, the
range of indices for available viewports is 0 to n-1.

Example int v;

5-78

init-video{l) ;
init_grafix{) ;
init_vuport{);
v = get_vuport-max();

Get Width of String Function get-width

Syntax

Description

Example

int get_width(s)
char *s; /* ASCII char string terminated by NULL */

The get-width function returns the width of a character string s. The
width is the number of pixels from the left edge to the right edge of the
string, where the string is drawn in the current font. The spacing between
characters is included in this number, including any adjustments to the
font's default spacing due to a previous call to the add-text-space func
tion.

The character string is in standard C format; that is, the string is a se
quence of ASCII character codes terminated by a NULL (ASCII code =
0).

Note:

Before you call the get-width function, call the init-text function to
initialize the text data structures.

#include "fntstruc.h"
#define XC 320
#define YC 240

extern FONT corpus_christi29;
static char *s[] = {

} ;

"The get_width function",
"is easily used",
"to center text",
"on your screen."

int x, y, i;

init_video(l);
init_grafix();
init_text() ;
init-screen();
set_colorl(Oxllllllll);
draw_line (XC, 0, XC, 2*YC); /* crosshairs */
draw_line (0, YC, 2*XC, YC);
install_font(l,&corpus_christi29);
y = YC - 4*char_high()/2 + get_ascent();
transp_on() ;
set_colorl(Ox33333333);
for (i = 0; i <= 3; ++i) {

x = XC - get-width(s[i)/2;
draw_string(x, y, sri]); /* centered text */
y += char-high();

5-79

init-grafix Initialize Graphics Function

Syntax void init_grafix()

Description The init-grafix function initializes the graphics environment. It sets up the
data structures for the graphics functions, and assigns default values to
system parameters. You should call this function before performing any
graphics or text drawing operations.

Example

5-80

Note:

Call the init-video function before you call the init-grafix function.

The init-grafix function performs these tasks:

• Disables pixel transparency.
• Sets pixel processing operation to replace.
• Enables all color planes (PMASK all Os).
• Moves XY origin to default position at top left corner of screen.
• Sets visibility rectangle (clipping window) to full screen.
• Sets drawing pen to default size.
• Initializes pattern data structures, and installs default patterns.

int x, y, i;

init_video(l); /* Initialize video */
init-grafix(); /* Initialize graphics */
init_screen(); /* Initialize screen */
/*** Ready to draw something... ***/
for (i = 100, x = 0, y = 200«16; i > 0; --i) {

draw_line(320, 240, 320+(x»16), 240+(y»16»;
x += y » 4;
y -= x » 4;

Initialize Matrix Function init-matrix

Syntax void init-matrix(matrix)
typedef long FIX;
FIX matrix[16);

Description The init-matrix function initializes a 16-element, fixed-point array to a
4 x 4 identity matrix. The format used for a 32-bit. 2s complement, fixed
point value places the binary point between the 16 LSBs and 16 MSBs.
A fixed-point value of 1 can be represented in C as long integer constant
Ox10000.

The resulting identity matrix is ready to be transformed by the rotate, scale
and translate functions. See Principles of Computer Graphics (Newman
and Sproull) for a detailed discussion of homogeneous 3D transf
ormations.

The matrix elements are mapped into the array in row-major order as fol
lows:

matrix[O] = 1;
matr ix[1] = 0;
matr ix[2] = 0;
matrix[3] = 0;

matrix[4] = 0;
matrix[5] = 1;
matrix[6] = 0;
matrix[7] = 0;

matrix[8] = 0;
matrix[9] = 0;
matrix[10]= 1;
matrix[11]= 0;

matrix[12]= 0;
matr ix [13]= 0;
matr ix [1 4]= 0;
matr ix[15]= 1;

matrix element aOO
matrix element a01
matrix element a02
matrix element a03

matrix element a10
matrix element a11
matrix element a12
matrix element a13

matrix element a20
matrix element a21
matrix element a22
matrix element a23

matrix element a30
matrix element a31
matrix element a32
matrix element a33

begin 1 st row

begin 2nd row

begin 3rd row

begin 4th row

5-81

init-matrix

Example

5-82

Initialize Matrix Function

typedef long FIX;
static FIX rotation[3]
static FIX translatl[3]
static FIX translat2[3]
static long xyz[] = {

0, 0, ° };
-320, -240, ° };
320, 240, 0 };

320,40,0, 340,240,0, 320,260,0, 300,240,0
} ;
static short connect[8j = { 0,1, 1,2, 2,3, 3,0 };
FIX matrix[16j;
FIX verts[12];
short xy[8];
int angle;

init_video(l);
init_grafix() ;
long_to_fix(3, translat1, translat1);
long_to_fix(3, translat2, translat2);
for (;;)

for (angle = 0; angle < 360; ++angle)
init-matrix(matrix);
translate (matrix, translatl);
rotation[O] = angle « 16;
rotate (matrix, rotation);
translate (matrix, translat2);
long_to_fix(12, xyz, verts);
transform(matrix, 4, verts);
vertex-to_point(4, verts, xy);
delay(O) ;
init_screen();
draw_oval (420, 420, 110, 30);
draw_polyline (4, connect, xy);

Initialize Palette Function init-palet

Syntax void init_palet()

Description The init-palet function initializes the color look-up table to default palette
values.

Example

Note:

Call the init-video and init-grafix functions before you call the
init-palet function.

The results of this function are system dependent. In the case of the
TMS34010 software development board, the pixel size is four bits, and the
TMS34070 color palette contains 16 registers. When the SOB is config
ured for analog RG B output, the following default colors are assigned to
pixel values 0 to 15 by the init-palet function:

Pixel Value Color Pixel Value Color

0 black 8 black
1 red 9 light red
2 green 10 light green
3 yellow 11 light yellow
4 blue 12 light blue
5 magenta 13 light magenta
6 cyan 14 light cyan
7 white 15 gray

The current implementation of the ioit-palet function assumes that the
TMS34070 color palette is configured in line-load mode (see TMS34010
Software Development Board User's Guide for description of hardware
jumper options). The default palette is updated over the entire screen.

long w, h, x, y, c, dc;

init-video(l); /* Configure SDB for analog output */
init_grafix();
init_text();
clear-screen(O); /* Fill frame buffer with Os */
init_palet(); /* Install default color palette */
c = 0;
dc = Oxllllllll;
w = 30;
h = 440;
for (x = 5, Y = 30; x < 639; x += 40, c += dc) {

set_colorl(c) ;

}

fill_rect(w, h, x, y);
set-colorl(Ox77777777) ;
draw-rect(w+l, h+l, x-I, y-l);

draw_string(5, 20, "Default Color Palette");

5-83

init-screen Initialize Screen Function

Syntax void init_screen()

Description The init-screen function initializes the screen. The entire frame buffer is
cleared (filled with Os). If the system contains a color lookup table, the
table is loaded with the default color palette.

Example

5-84

Note:

Call the init-video and init-grafix functions before you call the
init-screen function.

The implementation of this function is system-dependent. In the case of
a TMS34010 software development board configured for analog output,
the RGB signals to the monitor are assumed to be generated by a
TMS34070 color palette configured in line-load mode (see the
TMS34010 Software Development Board User's Guide for a description
of hardware jumper options). The init-screen function loads the palette
region of the frame buffer (the first 256 bits of each scan line) with default
color values, and clears the remainder of the frame buffer to Os. If the SDB
is instead configured for digital output, the TMS34070 is not used, and
the init-screen function fills the entire frame buffer with Os.

long w, h, X, y, c, dc;

init_video(l);
*/
init_grafix() ;
init_text() ;
init_screen() ;
*/
cO;
dc = Oxllllllll;
w = 30;
h = 440;

/* Configure SDB for analog output

/* Clear screen, load default palette

for (x = 5, Y = 30; x < 639; x += 40, c += dc) {
set_colorl(c) ;

}

fill_rect(w, h, x, y);
set_colorl(Ox77777777) ;
draw_rect(w+l, h+l, x-l, y-l);

draw_string(5, 20, "Default Color Palette");

Initialize Text Function init-text

Syntax

Description

Example

void init_text ()

The init-text function initializes text data structures, and installs the de
fault "system" font as font number O. The additional text spacing incre
ment is initialized to 0, but can be modified by a call to the
add-text-space function.

Call the init-text function before you call any of the following functions:

add-text---space
char-high
char-wide-max
draw-char
draw---String
get-ascent
get-descent

get-first-char
get-last-char
get-leading
get-width
install-font
select-font

#include "fntstruc.h" /* Define FONT type */
#define XC 320
#define YC 240
extern FONT corpus_christi29;
static char s[] = "34010";
int x, y;

init-text(); /* Initialize text */
*/
*/
*/

init_video(l); /* Initialize video
init_grafix(); /* Initialize graphics
init_screen(); /* Initialize screen
install_font(l, &corpus_christi29); /*
y = YC + get_ascent()/2;

Remember the & */

x = XC - get_width(s)/2;
draw_string (x, y, s); /* center text */

5-85

init-video Initialize Video Function

Syntax int init_video(monitor_val)
int monitor_val; /* display monitor type */

Description The init-video function initializes video display by setting up the
TMS3401 D's video timing and screen refresh registers to drive a display
monitor. This function initializes all system-dependent portions of the
graphics environment. The other initialization routines (init-grafix,
in it-text, and init-vuport) initialize system-independent portions of the
graphics environment.

5-86

Argument monitor_val specifies the type of monitor present. Arguments
in the range 1 to 5 are currently supported, but the init-video function
may be enhanced in the future to support additional monitor types.
Monitor types that are currently supported include:

monitor_val Display Configuration
1 Sets up the SDB to drive an analog RGB monitor for 640x480 re-

solution. Video crystal = 25 MHz. Monitors compatible with this
configuration are:
~ Princeton Graphics SR-12P Analog RGB
- NEC JC-1401 P3A Multi-Sync Analog RGB
- Sony CPD-1302 Multi-Scan Analog RGB
Noninterlaced display with 60-Hz frame rate. Also assumes
TMS34070 palette in line-load mode.

2 Sets up the SDB to drive an analog RGB monitor for 640x480 re-
solution. Video crystal = 25 MHz. Monitors compatible with this
configuration are:
- IBM 5175 Professional Graphics Display
Noninterlaced display with 60-Hz frame rate. Also assumes
TMS34070 palette in line-load mode.

3 Sets up the SDB to drive a TTL RGB monitor for 720x300 resol-
ution. Video crystal = 18 MHz. Monitors compatible with this co-
nfiguration are:
- TI PC Color Display Monitor
Noninterlaced display with 60-Hz frame rate. Assumes SDB con-
figured for TTL RGB output levels.

4 Sets up the SDB to drive a TTL RGB monitor for 720x512 resol-
ution. Video crystal = 18 MHz. Monitors compatible with this co-
nfiguration are:
- TI PC Color Display Monitor
Interlaced display with 30-Hz frame rate. Assumes SDB configured
for TTL RGB output levels.

5 Sets up the SOB to drive an analog RGB monitor 448x480 resol-
ution. Video crystal = 25 MHz. This configuration is used to pro-
vide double buffering. and is compatible with these monitors:
- Princeton Graphics SR-12P Analog RGB
- NEC JC-1401 P3A Multi-Sync Analog RGB
- Sony CPD-1302 Multi-Scan Analog RGB
Noninterlaced display with 60-Hz frame rate. Assumes SDB con-
figured for analog RGB output.

Initialize Video Function init-video

Example

Note:

Call the init-video function before calling the init-grafix or init-vuport
function.

If an invalid argument is received, the function returns a value of -1 and
aborts. If the argument is valid, the function returns a value of 0 as confir
mation.

The init-video function performs these tasks:

• Sets up the horizontal and vertical video timing registers.
• Sets up the screen refresh registers.
• Defines screen horizontal and vertical dimensions.
• Defines the memory locations of the screen and workspace buffers.
• Sets the pixel size.
• Sets COLORO and COLOR1 to their default values (black and white).
• Sets up the DPTCH and CONVDP registers to the screen pitch.
• Loads screen base address into OFFSET register (B4).
• Sets up the default XV origin at top left of screen.
• Sets the DPVTAP register to O.

int x, y, i;
static char s [1 "Hello World.";

init_text(); /*
init-video(l); /*
init_grafix(); /*
init_vuport(); /*
init_screen(); /*
set_origin(320, 240);

Initialize
Initialize
Initialize
Initialize
Initialize

text */
video */
graphics */
vuport */
screen */

/*** Ready to draw something... ***/
for (i = 101, x = 0, y = 200«16; i > 0; --i)

draw_Iine(x»17, y»17, x»16, y»16);
x += y » 4;
y -= x » 4;

}
draw_string(-get_width(s)/2, get_ascent()/2, s);

5-87

init-vuport Initialize Viewport Function

Syntax void init_vuport{)

Description The init-vuport function initializes the viewport data structures and opens
viewport 0, the "system" viewport. All other viewports remain closed until
they are explicitly opened.

Example

5-88

Note:

Before you call this function, call the init-grafix and init-video func
tions.

Call the init-vuport function before using any of the following viewport
specific functions:

close-vuport
move-vuport
open-vuport
select-vuport

set-origin
set-cliprect
size-vuport

Immediately after calling init-vuport, the coordinate origin is located in the
upper left corner of the screen, and the viewport and clipping rectangle
encompass the entire screen.

int index;

init_video(l); /* Must precede init-vuport */
init_grafix();
init_vuport(); /* Opens viewport 0 */
index; open-vuport(); /* Opens 2nd viewport */
move-vuport(100, 100);
size_vuport(200, 150);
patnfi11_rect(999, 999, 0, 0); /* Fills viewport */

Install Font Function install-font

Syntax

Description

Example

int install_font (index, fontname)
int index; /* index to be assigned to font */
FONT *fontname; /* font structure */

The install-font function installs a font structure in the font table. The font
structure contains the character bitmap and other information necessary to
extract the individual character patterns from the bitmap. (See the
TMS34010 Font Library User's Guide for more information about the font
structure.) The installed font becomes the current font and it is selected for
subsequent text operations.

The font structure itself is not copied into the font table. Instead, a pointer
to the font structure is inserted into the font table in the position indicated
by argument index. This index identifies the font in subsequent trans
actions. Argument fontname is the pointer to the font structure.

The maximum number of fonts n that can be simultaneously installed is
obtained from the get-font-max function. The legal range of indices is 0
to n-1. A value of -1 is returned if index is out of range; otherwise, a value
of 0 is returned.

Note:

Before calling the install-font function, call the init-text function to
initialize the text data structures.

'include "fntstruc.h"
extern FONT corpus_christi29; /* Corpus Christi font */

init_video(l);
init_grafix() ;
init_text(); /* default font = corpus-christi16 */
init_screen() ;
insta11_font(1, &corpus-christi29); /* Don't forget & */
draw-string(50, 100, "Hello world.");

5-89

install-patn Install Pattern Function

Syntax

Description

Example

5-90

int install_patn(index, pattern)
int index;
short pattern[16];

The install-patn function installs a pattern in the pattern table. The 256
bits of the 16 x 16 two-dimensional bit map are copied into the pattern table
location indicated by index. The index argument identifies the pattern
in subsequent transactions. Argument pattern is a pointer to the pattern
bitmap. This pattern becomes the current pattern and it is selected for
subsequent pattern filling operations.

When the installed pattern is later drawn to the screen, the Os in the pattern
are replaced with the current COLORO, and the 1 s in the pattern are re
placed with the current COLOR1.

The maximum number of patterns n that can be simultaneously installed is
obtained from the get-patn-max function. The legal range of indices is 0
to n-1. A value of -1 is returned if index is out of range. Otherwise, a value
of 0 is returned.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

typedef enum { FIELDWIDTH = 1 } BIT;
static BIT mypatn[] = {

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,
0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,
0,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,
0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,
0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,
0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,
0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,
0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,
0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,
0,0,1,1,1,1,1,0,0,1,1,1,1,1,0,0,
0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,
0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,
0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

} ;

/* Installs default patterns */
init-video(l) ;
init_grafix() ;
init_screen();
install_patn(S, mypatn}; /*
set_colorO(Oxllllllll); /*
set_co1orl(Ox33333333); /*
patnfill-rect(448, 288, 96,

Assign
Expand
Expand
96) ;

index = 5 */
Os to this color */
Is to this color */

Multiply Double by Power of Two Function Idexp

Syntax double ldexp(value, exp)
double value;
int exp;

Description The Idexp function returns value multiplied by 2 raised t the power of
exp, and is commonly used to rebuild a double-precision floating-point
value.

Example extern double ldexp();

double value,result;
int exp;

value = 1.5;
exp = 5;

result = ldexp(value,exp);

/* after execution, result will contain 48.0 */

5-91

lib-id library Identifier Function

Syntax char * lib_id ()

Description The lib-id function returns character string identifying library and revision.

Example

5-92

init_video(l);
init_grafix();
init_text () ;
init_screen();
draw_string(SO, 200, lib-ide»~;

leftmost One Function Imo

Syntax int lmo(n)
long n; /* 32-bit integer */

Description The Imo function calculates the bit number of the leftmost one in argument
n. The argument is treated as a 32-bit number whose bits are numbered
from 0 to 31, where bit 0 is the LSB (the rightmost bit position) and bit 31
is the MSB (the leftmost bit position).

Example

For nonzero arguments, the return value is in the range 0 to 31. If the ar
gument is 0, a value of -1 is returned.

int i;

init_video(l) ;
init_grafix() ;
init_screen() ;
for (i = 1; i < 640; ++i)

draw_line(i, i, 1 « Imo(i), i);

5-93

log Natural Logarithm Function

Syntax double log(x)
double Xi

Description The log function calculates the natural logarithm of real number x. Both
the argument X and the return value are double-precision floating-point
values.

Example

5·94

If argument x is less than or equal to 0, a value of -00 is returned, and
fp-error is called with an error code of 26 (see the TMS34010 C Compiler
User's Guide for a description of the fp-error function).

extern double loge);
float x, Yi

x 2.718282;
Y = log(x); /* Return value 1.0 */

Common Logarithm Function log10

Syntax double loglO(x)
double x;

Description The log10 function calculates the logarithm to the base 10 of x. Both the
argument x and the return value are double-precision floating-point values.

Example

If argument x is less than or equal to 0, a value of - ex;> is returned, and
fp-error is called with an error code of 26 (see the TMS34010 C Compiler
User's Guide for a description of the fp-error function).

extern double loglO();
float x, y;

x 10.0;
Y = loglO(x); /* Return value 1. 0 */

5-95

long-to-fix Long to Fixed Point Function

Syntax

Description

Example

5-96

FIX *long_to_fix(n, in-array, out-array)
typedef long FIX;
int n; /* number of elements to be */

/* converted */
long in-array[];
FIX out_array[];

/* array of integers */
/* array of fixed-point */
/* values */

The long-ta-fix function converts an array of long integers to fixed-point
numbers. Elements of the input array are 32-bit, 2s complement integers
(C type long). Elements of the output array are 32-bit, 2s complement,
fixed-point numbers with the 16 LSBs to the right of the binary point. The
conversion from integer format is done by simply shifting the elements left
by 16 bits.

The function requires three arguments;

• The number of elements n that are converted,
• The input array in-array, and
• The output array out_array.

The value returned by the function is a pointer to the output array,
out_array.

typedef
static
static
FIX
short

long FIX;
short triangle[] = {O,l, 1,2, 2,0};
long xyz1[9] = {0,-116,0, 100,58,0,
xyz2 [9] ;
xy[6] ;

init_video(l) ;
init_grafix() ;
init_vuport() ;
set_origin(320, 240);
init_screen();
long_to_fix(9, xyzl, xyz2);
vertex-to_point(3, xyz2, xy);
pen-polyline (3, triangle, xy);

-100,58,0};

Signed Integer and Fraction Function modf

Syntax

Description

Example

double modf(value, exp}
double value, /* input floating point number */
int *exp, /* pointer to exponent */

The modf function breaks a double-precision floating-point value into a
signed fraction and a signed integer. The integer is stored at the integer
object pointed to by exp, and the signed fractional value is returned.

extern double modf(};

double value, ipart, fpart,

value -3.1415,

fpart = modf(value, &ipart);

/* after execution, ipart will contain -3.0, and
fpart will contain -0.1415 */

5-97

move-pixel Move Pixel Function

Syntax

Description

Example

5-98

void move_pixel(xs, ys, xd, yd)
int xs, ys; /* coordinates of source pixel */
int xd, yd; /* coordinates of destination pixel */

The move-pixel function copies a pixel from one screen location to an
other. Arguments (xs,ys) are the coordinates of the source location. Ar
guments (xd,yd) are the coordinates of the destination location.
Coordinates are relative to the viewport origin.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int xs, ys, xd, yd;
static char s [] = "topsy turvy";
short buf[640/4]; /* line buffer (640x4 bits) */

init_video(1);
init_grafix() ;
init_text();
init_screen() ;
draw_string (0, get_ascent(), s);
/*** Flip and mirror original text ***/
for (ys = 0, yd = 29; ys <= 19; ++ys, --yd)

for (xs = 0, xd = 89; xs <= 89; ++xs, --xd)
move_pixe1(xs, ys, xd, yd);

zoom-rect(40, 40, 0, 0, 160, 160, 240, 160, buf);

Move Rectangle Function move-rect

Syntax

Description

Example

void move_rect(w, h, xs, ys, xd, yd)
int w, h; /* width and height of */

/* rectangle */
int xs, ys; /* coordinates at top left */

/* of source */
int xd, yd; /* coordinates at top left */

/* of destination */

The move-rect function copies pixels from one rectangular region of the
screen to another.

• The first two arguments specify the width (w) and height (h) of the
rectangle. These arguments must be nonnegative.

• The source rectangle is located by the coordinates (xs,ys) of its top
left corner.

• The destination rectangle is located by the coordinates (xd,yd) of its
top left corner.

If a portion of the source rectangle lies in negative X or Y coordinate space,
that portion is not copied; only the portion lying in positive XY space is
moved. Only the portion of the destination rectangle lying within the cur
rent visibility rectangle (the window corresponding to the intersection of
the viewport and clipping rectangle) is modified on the screen.

The rectangle is copied correctly even when the source and destination
rectangles overlap.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

long w, h, xs, ys, xd, yd, i;

init_video(l);
init_grafix();
init_screen()j
w = 80;
h = 60;
xs = 280;
ys = 210;
/******* Draw picture *******/
fill-rect(w, h, xs, YS)j
set_colorO(Oxllllllll) ; /* Assume 4 bits/pixel */
set_colorl(Ox44444444) ;
patnframe_oval(w, h, xs, ys, 20, 15);
/* Move picture to several places on screen */
for (i = 25, xd = 0, yd = -150«161 i > 0; --i)

xd += yd » 2 j

yd -= xd » 2;
move-rect(w, h, xs, ys, (xd»16)+280, (yd»16)+210);

5-99

move-vuport Move Viewport Function

Syntax void move_vuport(xleft, ytop)
int xleft, ytop; /* new position */

Description The move-vuport function moves the viewport to a new position on the
screen. The viewport is rectangular. Its position is adjusted so that fts top
left corner coincides with the coordinates xl eft and ytop. These coordi
nates are expressed as displacements from the screen origin, located at the
top left corner of the screen.

Example

5-100

Note:

Before you call the move-vuport function, call the init-vuport function
to initialize the viewport data structures.

static char *s[) = {
"Coordinate origin",
"and clipping rectangle",
"move with viewport."
} ;

int i, xtext, ytext, xvu, yvu;

init-video(l);
init_grafix() ;
init_vuport(); /* Initialize viewport 0 */
init_text () ;
init_screen() ;
set_co1orO(OxCCCCCCCC) ;
for (xvu = yvu = 0; xvu < 447; xvu += 8, yvu += 6) {

move-vuport(xvu, yvu);
set_color1(OxCCCCCCCC);
fill-rect(192, 76, 0, 0);
set_color 1 (Ox44444444) ;
frame_rect(188, 72, 2, 2, 4, 4);
set_color1(Ox77777777) ;
xtext = char_wide--Illax();
ytext = 12 + get_ascent();
for (i = 0; i <= 2; ++i) {

draw-string (xtext, ytext, still;
ytext += char_high();

New Screen Function new-screen

Syntax void new_screen(pixel, palet)
long pixel;
short palet[l6];

Description The new-screen function clears screen (entire frame buffer) to a specified
pixel value, and loads the color look-up table with an array of palette values.
The implementation of this function is system dependent, and relies on
features of the TMS34070 color palette and TMS4161 video RAM: Video
RAM register-to-memory cycles are used to make this function execute ra
pidly.

Example

The pixel value must be replicated throughout the 32 bits of the first argu
ment, pixel. For example, at four bits per pixel, a pixel value of 9 is repli
cated as follows: Ox99999999.

The second argument, palet, is the array that contains the color palette.
The array contains 16 elements, and each element is 16 bits. The fields
within each element of the palet array are defined as follows:

15 1,11 87 4 3 0 I blu grn I red I an I
MSB ~B

Symbols red, grn, and blu represent 4-bit red, green, and blue intensity va
lues, respectively. The rightmost field contains the color-repeat attribute
bit. The attribute field is typically set to O. Refer to the TMS34070 Color
Palette User's Guide for a description of the color repeat attribute bit.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short palet[16] = (
OxOOOO, OxlllO, Ox2220,
Ox4440, Ox5550, Ox6660,
Ox8880, Ox9990, OxAAAO,
oxeeeo, OxDDDO, OxEEEO,

} ;
long pixval, x;

init_video(l);
init_grafix();

/* gray scale */
Ox3330,
Ox7770,
OxBBBO,
OxFFFO

pixval = Ox77777777; /* 4 bits/pixel */
new_screen (pixval, palet);
for (x = 13, pixval = 0; x < 620; x += 39) (

set_colorl(pixval) ;
fill_rect(29, 460, x, 10);
set_colorl(O) ;
draw-rect(30, 461, x-l, 9);
pixval += Oxllllllll;

5-101

open-vuport Open Viewport Function

Syntax int open-vuport()

Description The open-vuport function opens a new viewport and returns an index that
identifies the viewport in subsequent transactions .. The new viewport au
tomatically becomes the active viewport for subsequent drawing oper
ations. The new viewport inherits the attributes of the viewport that was
active at the time the call was initiated.

Example

5-102

The new viewport automatically inherits the viewport attributes of the pre
vious active viewport (that is, the viewport that was active just prior to the
call to the open-vuport function). The inherited attributes include:

• Viewport size and position
• XV coordinate origin
• Clipping rectangle

• Font
• COLORO and COLOR1
• Pixel processing operation

• Plane mask
• Transparency attribute (on or off)
• Drawing pen width and height
• 1 6 x 1 6 pattern
• Incremental text spacing parameter (see add-text-space function)

If the maximum number of viewports are already opened at the time of the
call, a value of -1 is returned in place of a valid viewport index.

Note:

Before you call the open-vuport function, call the init-vuport function
to initialize the viewport data structures.

#include "colors.h"
int vindex;

init_video(l) ;
init_grafix() ;
init-vuport(); /* Open vuport a
init_screen() ;
set_colorO(BLUE); /* Viewport a's colora = BLUE
vindex = open-vuport();/* Open vuport 1
/*** Viewport 1 inherits colora from viewport a
set_color1(GRAY) i /* Viewport l's color1 = GRAY
/*** Fill square with blue-and-gray pattern
patnfill-rect(96, 96, 272, 192) i

*/

*/
*/
***/

*/
***/

Pattern Fill Convex Polygon Function patnfi II-convex

Syntax int patnfill_convex(n, edgelist, ptlist)
int n; /* number of polygon vertices */
short edgelist[]; /* list of edges */
short ptlist[]; /* list of vertices (points) */

Description The patnfill-convex function fills a convex polygon with a pattern given a
list of points representing the vertices. In order to be drawn correctly, the
polygon must be convex; that is, it should contain no concavities. A poly
gon must have at least three vertices to be visible. An edge of the polygon
is assumed between the first and last vertices specified. The polygon is
pattern-filled with the current pattern, which is drawn in colors COLORO
and COLOR1.

The function requires three input arguments:

• Argument n defines the number of vertices in the polygon.

• The second argument, edgelist, is an array of type short. The
members of the array are indices that specify the order in which the
vertices are traversed, moving in a clockwise direction around the
edge of the polygon. (Clockwise, in this context, assumes X increas
ing from left to right and Y increasing from top to bottom.) Each el
ement of the edgelist array is an index into the ptlist array.

• The third argument, ptlist, is an array of type short. Each pair of
adjacent 16-bit elements contains the X and Y coordinates, respec
tively, of a vertex.

For example, edgelist[k] contains the index for vertex k, where k is in the
range 0 to n-1. The X and Y coordinates for vertex k are contained in
ptlist[2*n] and ptlist[2*n+1].

The patnfill-convex function does automatic culling of back faces to sup
port 3D applications. In other words, a polygon is drawn only if its front
side is visible; that is, if it is facing toward the screen. If the vertices are
supplied in counterclockwise order, the polygon is assumed to be facing
away from the screen and is therefore not drawn. In this case, a value of 0
is returned by the function. Otherwise, a value of 1 is returned to indicate
that the polygon is visible.

The back face test is done by first comparing vertices n-2, n-1, and 0 to
determine whether the polygon vertices are specified in clockwise (front
face) or counterclockwise (back face) order. This test relies on the polygon
containing no concavities. If the three vertices are found to be colinear, the
back face test is made again using the next three vertices, n-1 , 0 and 1. The
test repeats until three vertices are found that are not colinear. If all the
vertices are colinear, the polygon is invisible and a value of 0 is returned.

This function is similar to the patnfill-polygon routine, but is specialized for
rapid drawing of convex polygons. Note that the edge list array format
for the patnfill-convex function differs from the line list array format for
the patnfill-polygon function. While the patnfill-convex function is more
specialized than the patnfill-polygon function, it also executes more rap
idly.

5-103

patnfi II-eonvex Pattern Fill Convex Polygon Function

Example

5-104

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

long i, hue, patn;
static short connect[] = (0, 1, 2 };
static short xy[] = (0,-170, 196,170, -196,170 };

init_video(l) ;
init_grafix() ;
init_vuport() ;
set_origin(320, 240);
init_screen() ;
for (i = 15, hue = patn = 0; i > 0; --i) (

set-colorO(hue += OxIlllllll);
set_colorl (-hue) ;
select_patn(patn++) ;
patnfill_convex(3, connect, xy);
xylOl += xy[l] » 3;
xy[l] xy[O]» 3;
xy[2] += xy[3] » 3;
xy[3] xy[2]» 3;
xy[4] += xy[5] » 3;
xy[5] xy[4]» 3;

Pattern Fill Oval Function patnfill-ova I

Syntax

Description

Example

void patnfill_oval(w, h, xleft, ytop)
int w, h; /* width and height

/* rectangle
of enclosing */

int xleft, ytop; /* XY coordinates of top
/* corner

left
*/
*/
*/

The patnfill-oval function fills an ellipse with a pattern. The ellipse is in
standard position, with its major and minor axes parallel to the coordinate
axes. The ellipse is filled with the current pattern in colors COLORO and
COLOR'.

The ellipse is defined by the minimum enclosing rectangle in which it is
inscribed. Four arguments define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y, hue, patn;

init_video(l) ;
init_grafix() ;
init_screen() ;
/*** Pattern fill ellipses of
x = Y = hue = patn = 0;
for (w = 640, h = 480; w >= 192; w

set_colorO(hue += Ox11111111);
set_colorl(-hue);
select_patn(patn++) ;
patnfill_oval(w, h, x, y);

various sizes ***/

-= 32, h -= 24) (
/* pixel = 4 bits */

5-105

patnfill-piearc Pattern Fill Pie Arc Function

Syntax void patnfill_piearc{wj h, xleft, ytop, theta, arc)
int w, h, /* width and height */
int xleft I ytop; /* top left corner * /
int theta; . /* starting angle (degrees) */
int arc; /* extent of angle (degrees) */

Description The patnfill-piearc function fills a pie-shaped wedge with a pattern. The
wedge is bounded by an arc and two straight edges. The arc is taken from
an ellipse in standard position, with its major and minor axes parallel to the
coordinate axes. The two straight edges are defined by lines connecting the
end points of the arc with the center of the ellipse. The arc is filled with the
current pattern in colors COLORO and COLOR1.

5-106

The ellipse from which the arc is taken is specified in terms of the minimum
enclosing rectangle in which it is inscribed. The first four arguments define
the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Posi
tive angles are in the clockwise direction, negative angles are coun
terclockwise.

• Th~ arc extent, arc, specifies the number of degrees (positive or ne
gative) spanned by the angle. If the arc extent is outside the range
[-359, +359], the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing orie full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Pattern Fill Pie Arc Function patnfill-piea rc

Example /****************************/
/* Draw a pie chart */
/****************************/
static int tarc[] = { 50, 40, 35, 100, 80, 55 };
long i, w, h, x, y, tstart, patn;
long hue = OxEEEEEEEE; /* Assume 4 bits/pixel */

init_video{l);
init_grafix{) ;
init-screen{) ;
w 480;
h 360;
x 50;
y 60;
tstart 25;
patn 0;
for (i 0; i <= 5; ++i) {

set-colorl{hue -= Oxllllllll);
set-colorO (-hue) ;
select-patn{++patn);
if (i == 5)

x += w/8;
patnfill_piearc(w, h, x, y, tstart, tarc[i);
tstart += tarc[i];

5-107

patnfill-polygon Pattern Fill Polygon Function

Syntax void patnfill_polygon(n, linelist, ptlist)
int n; /* number of edges * /
short linelist[]; /* list of edges */
short ptlist[]; /* list of vertex coordinates */

Description The patnfill-polygon function fills a polygon with a pattern given a list of
lines representing the edges of the polygon. No restrictions are placed on
the shape of the polygons filled by the function: edges can cross each other,
filled areas can contain holes, and two or more filled regions can be dis
connected from each other. The polygon is filled with the current pattern
in colors COLORO and COLOR1.

5-108

The function requires three input arguments:

• Argument n defines the number of vertices in the polygon.
• The second argument, linelist, is an array of type short. Each pair

of array elements defines an edge: the first of the two elements defines
the starting vertex of the edge, and the second defines the ending
vertex. Each element of the linelist array is an index into the
ptlist array.

• The third argument, ptlist, is an array of type short. Each pair of
adjacent 16-bit elements contains the X and Y coordinates, respec
tively, of a vertex.

Each pair of adjacent 16-bit elements in the ptlist array is an X coordinate
followed by a Y coordinate. Each pair of adjacent 16-bit elements in the
linelist array is a pair of indices into the ptlist array.

For example, the first edge drawn is specified in array elements,
linelist [0] and linelist [1]. Assume that these contain index values
4 and 7, respectively. The starting coordinates for the line defining the edge
are contained in ptlist[2*4] and ptlist[2*4+1]. The ending coordi
nates are contained in ptlist[2*7] and ptlist[2*7+1].

The individual elements of the linelist array are assigned as follows:

line list [0]
linelist[1]
line list [2]
linelist[3]

= starting vertex for edge 0
= ending vertex for edge 0
= starting vertex for edge 1
= endil)g vertex for edge 1

linelist[2n] = starting vertex for edge n-1
linelist[2n+1] = ending vertex for edge n-1

Pattern Fill Polygon Function patnfill-polygon

Example

The individual elements for the ptlist array are assigned as follows:

ptlist[O]
ptlist[1]
ptlist[2]
ptlist[3]

= x coordinate value for point 0
= y coordinate value for point 0
= x coordinate value for point 1
= y coordinate value for point 1

ptlist[2m] = x coordinate value for point m-1
ptlist[2m+1] = y coordinate value for point m-1

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short xy[] = {
193,60, 460,60, 377,440, 524,423,
15,233, 570,100, 98,382

} ;
static short shape[] = {

0,1, 1,2, 2,3, 3,0, 4,5, 5,6, 6,4
} ;
init_video(l);
init_grafix() ;
init_screen();
set_colorO(Ox44444444); /* pixel
set_color1(Ox77777777) ;
select-patn (4) ;
patnfill_polyqon(7, shape, xy);
for (ii) ;

4 bits */

5-109

patnfi II-rect Pattern Fill Rectangle Function

Syntax

Description

Example

5-110

void patnfill-rect(w, h, xleft, ytop)
int w, h; /* width and height of rectangle */
int xleft, ytop; /* XY coord at top left corner */

The patnfill-rect function fills a rectangle with a pattern. The rectangle is
filled with the current pattern in colors COLORO and COLOR1. Four ar
guments define the rectangle:

• The width w,

• The height h, and
• The coordinates of the top left corner (xleft,ytop).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

init_video (1) ;
init_grafix() ;
init_screen() ;
set_colorl(Oxllllllll); /* Assume 4 bits/pixel */
select_patn(8) ;
patnfill_rect(440, 280, 100, 100);
set_colorO(Ox44444444) ;
set-colorl(Ox77777777);
select_patn(4) ;
patnfill_rect(420, 30, 110, 110);
patnfill_rect(220, 220, 110, 150);
patnfill_rect(190, 150, 340, 150);
patnfill_rect(190, 60, 340, 310);

Pattern Frame Oval Function patnframe-oval

Syntax

Description

Example

void patnframe_oval(w, h, xleft, ytop, dx, dy)
int w, h; /* width and height of enclosing */

/* rectangle */
int xleft, ytop; /* coordinates at top left corner */
int dx, dy; /* width and height of frame border*/

The patnframe-oval function fills an ellipse-shaped frame with a pattern.
The frame consists of a filled region between two concentric ellipses. The
frame is filled with the current pattern in colors COLORO and COLOR1.
The portion of the screen enclosed by the frame is not altered.

The outer ellipse is specified in terms of the minimum enclosing rectangle
in which it is inscribed. The first four arguments define the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The thickness of the frame in the X and Y dimensions is defined by two
additional arguments, dx and dy, which specify the horizontal and vertical
distances, respectively, between the outer and inner ellipses.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y, dx, dy;

init_video(l);
init_grafix() ;
init_screen();
w 480;
h 360;
x 80;
y 60;
dx 40;
dy 30;
set-colorO(Oxllllllll) ;
set_colorl(Ox77777777) ;
select_patn (7) ;
patnframe-oval(w, h, x, y, dx, dy);

5-111

patnframe-rect Pattern Frame Rectangle Function

Syntax void patnframe_rect(w, h, xleft, ytop, d~, dy)
int w, h; /* width and height of enclosing */

/* rectangle */
int ~left, ytop; /* coordinates at top left corner */
int d~, dy; /* width and height of frame border*/

Description The patnframe-rect function fills a rectangular frame with a pattern. The
frame consists of a filled region between two concentric rectangles. The
frame is filled with the current pattern in colors COLORO and COLOR1.
The portion of the screen enclosed by inner edge of the frame is not altered.

Example

5-112

The first four arguments define the outer rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (~left,ytop).

The thickness of the frame in the X and Y dimensions is defined by two
additional arguments, d~ and dy, which specify the horizontal and vertical
distances, respectively, between the outer and inner rectangles.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, ~, y, d~, dy;

init_video(l);
init-grafi~() ;
init-screen() ;
w 480;
h 360;
~ 80;
y 60;
d~ 40;
dy 30;
set_colorO(O~llllllll);
set_colorl(O~77777777);
select_patn (7) ;
patnframe-rect(w, h, ~, y, d~, dy);

Pattern Pen Line Function patnpen-line

Syntax

Description

Example

void patnpen_line(xl, yl, x2, y2)
int xl, yl; /* starting coordinates */
int x2, y2; /* ending coordinates */

The patnpen-line function uses the pen to draw a patterned line. Argu
ments xl and yl specify the starting coordinates of the line, and x2 and
y2 specify the ending coordinates.

The pen is a rectangle whose width and height can be modified by means
of the set-pensize function. At each point on the line drawn by the
patnpen-line function, the pen is located such that its top left corner
touches the line. The area covered by the pen is filled with the current
pattern in colors COLORO and COLOR1.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

long x, y, patn, hue;

init_video(l) ;
init_grafix() ;
init_screen () ;
set_pensize(20, 16);
patn = hue = 0;
for (x=8, y=455; x<63l; x+=43) {

set~colorO(-hue) ;
set_colorl(hue += Oxllllllll); /* pixel
select_patn(patn++) ;
patnpen-line(8, 8, x, y);
patnpen-line(6l0, 8, x, y);

4 bits */

5-113

patnpen-ovalarc Pattern Pen Oval Arc Function

Syntax vo~d patnpen_ovalarc(w, h, xleft, ytop, theta, arc)
int w, h, /* width and height */
int xleft, ytop; /* top left corner */
int theta; /* starting angle (degrees) */
int arc; /* angle extent (degrees) */

Description The patnpen-ovalarc function uses the pen to draw a patterned arc of an
ellipse. The ellipse is in standard position, with the major and minor axes
parallel to the coordinate axes.

5-114

The pen is a rectangle whose width and height can be modified by means
of the set-pensize function. At each point on the arc drawn by the
patnpen-line function, the pen is positioned such that its top left corner
touches the arc. The area covered by the pen is filled with the current pat
tern in colors COLORO and COLOR1.

The ellipse from which the arc is taken is specified in terms of the minimum
enclosing rectangle in which it is inscribed. The first four arguments define
the rectangle: .

• The width w,

• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Posi
tive angles are in the clockwise direction, negative angles are coun
terclockwise.

• The arc extent, arc, specifies the number of degrees (positive or ne
gative) spanned by the angle. If the arc extent is outside the range
[-359, +359]. the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical are, with 360 degrees
representing one full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Pattern Pen Oval Arc Function patnpen-ovalarc

Example int w, h, .x, y, tstart, tarc;
long hue, patn;

init_video (1) ;
init_grafix() ;
init_screen() ;
set_pensize(32, 24);
x = 320;
Y = 240;
w = h = 0;
tarc = 35;
for (tstart = 0; tstart < 1500; tstart += 30) {

set_co1orO(-hue);
if ((hue -= Ox11111111) == 0)

hue = OxFFFFFFFF;
set_color1(hue); .
if (++patn >= get_patn-max(»

patn = 0;
select_patn (patn) ;
patnpen-ovalare(w, h, x,y, tstart, tare);
w += .16;
h += 12;
x 8;
y 6;

5-115

patnpen-piearc Pattern Pen Pie Arc Function

Syntax void patnpen-piearc(w, h, xleft, ytop, theta, arc)
int w, h, /* width and height */
int xleft, ytop; /* top left corner */
int theta; /* starting angle (degrees) */
int arc; /* angle extent (degrees) */

Description The patnpen-piearc function uses the pen to draw a patterned, pie-shaped
wedge from an ellipse. The wedge is formed by an arc of the ellipse, and
by two straight lines that connect the two end points of the arc with the
center of the ellipse. The ellipse is in standard position, with the major and
minor axes parallel to the coordinate axes.

5-116

The pen is a rectangle whose width and height can be modified by means
of the set-pensize function. At each point on the arc drawn by the
patnpen-line function, the pen is positioned such that its top left corner
touches the arc. The two lines from the center are drawn in similar fashion.
The area covered by the pen is filled with the current pattern in colors
COLORO and COLOR1.

The ellipse from which the arc is taken is specified in terms of the minimum
enclosing rectangle in which it is inscribed. The first four arguments define
the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Posi
tive angles are in the clockwise direction, negative angles are coun-
terclockwise. .

• The arc extent, arc, specifies the number of degrees (positive or ne
gative) spanned by the angle. If the arc extent is outside the range
[-359, +359], the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Pattern Pen Pie Arc Function patnpen-piearc

Example static t [] = {
110,100, 30,80, 15,15, 210,90, 300,30, 330,45

} ;
long i, w, h, x, y, patn, hue;

init_video(l);
init_grafix();
init_screen();
w 280;
h = 440;
x = 105;
Y = 20;
patn = 16;
set_pensize(80, 1); /* long, skinny pen */
for (i = hue = 0; i <= 5; ++ i) {

}

if (i == 5)
x += w/4;

select_patn(patn++);
set_colorO(-hue);
set_color1(hue += Ox11111111); /* 4-bit pixel */
patnpell-piearc(w, h, x, y, t[2*.i], t[2*i+l]);

for (i = hue = 0, x w/4; i <= 5; ++i) {
if (i == 5)

x += w/4;
set_colorl(hue += Ox1l111111);
fill_piearc(w, h, x, y, t[2*i], t[2*i+1]);

5-117

patnpen-point Pattern Pen Point Function

Syntax void patnpen-point(x, y)
int x, y; /* pen coordinates */

Description The patnpen-point function uses the pen to draw a patterned point. The
resulting figure is a rectangle the width and height of the pen, and filled
with the current pattern in colors COLORO and COLOR1. The top left
corner of the rect,angle is located at coordinates (x, y).

Example

5-118

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int i, w, h, x, y, patn;
long hue; /* Assume 4 bits/pixel */

init_v ideo (1) ;
init_grafix() ;
init_screen();
w 12;
h = ~;
x = 16 « 16;
y = 12 « 16;
patn = 0;
hue = OxFFFFFFFF;
for (i = 100; i > 0; --i) (

set_co1orO(-hue);
if «hue -= Ox11111111) 0)

hue = OxFFFFFFFF;
set_color1(hue);
set_pensize(++w, ++h);
if (++patn == get_patn-max(»

patn = 0;
select-patn(patn) ;
patnpelL-point((x» 16) +350, (y»16) +200) ;
x += y » 3;
y x » 3;
x += x » 5;
y += Y » 5;

Pattern Pen Polyline Function patnpen-polyline

Syntax void patnpen_polyline(n, linelist, ptlist)
int n; /* number of lines */
short linelist[); /* list of lines */
short ptlist[); /* list of points */

Description The patnpen-polyline function uses the pen to draw mUltiple patterned
lines.

• n specifies the number of lines that are drawn.

• linelist is an array of type short; it specifies the list of lines that are
drawn. Each element in the linelist array is an index into the
ptlist array.

• The third argument, the ptlist array, contains the XY coordinates
of the starting and ending points for each line.

Each pair of adjacent 16-bit elements in the ptlist array is an X coordinate
followed by a Y coordinate. Each pair of adjacent 16-bit elements in the
linelist array is a pair of indices into the ptlist array. all the line
starting and ending points.

The pen is a rectangle whose width and height can be modified by means
of the set-pensize function. At each point on a line drawn by the
patnpen-line function, the pen is located such that its top left corner
touches the line. The area covered by the pen is filled with the current
pattern in colors COLORO and COLOR1.

The individual elements of the linelist array are assigned as follows:

line list [0]
line list [1]
li.nelist[2]
linelist[3]

= starting point of line 0
= ending point of line 0
= starting point of line 1
= ending point of line 1

line list [2n] = starting point of line n-1
linelist[2n+1] = ending point of line n-1

The individual elements of the ptlist array are assigned as follows:

ptlist[O]
ptlist[1]
ptlist[2]
ptlist[3]

= x coordinate value for point 0
= y coordinate value for point 0
= x coordinate value for point 1
= y coordinate value for point 1

ptlist[2m] = x coordinate value for point m-1
ptlist[2m+1] = y coordinate value for point m-1

For example, the first line drawn is specified in the first two elements, li
nelist [0] and line list [1]. Assume that these contain index values 4
and 7, respectively. The starting coordinates for the line are contained in
ptlist[2*4] and ptlist[2*4+1]. The ending coordinates are contained
in ptlist[2*7] and ptlist[2*7+1].

5-119

patnpen-polyline Pattern Pen Polyline Function

Example

5-120

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short xy[) = (

} ;

380,200, 480,200, 480,300, 380,300,
340,270, 340,170, 440,170,
230,180, 280,300, 160,300, 146,263

static short cube[) = (
0,1, 1,2, 2,3, 3,4, 4,5, 5,6, 6,1, 3,0, 5,0,

} ;
static short pyramid[) = (

7,8, 8,9, 9,10, 10,7, 7,9
} ;

/*** Draw a cube and a pyramid sitting side by side ***/
init_video(l) ;
init_grafix() ;
init_screen();
set_pensize(9, 8);
select_patn(21);
patnpen-po1y1ine(9, cube, xy);
set_co1orO(Ox11111111); /* 4-bit pixel */
set_color1(Ox33333333) ;
set_pensize(7, 6);
select_patn(15) ;
patnpen-po1y1ine(5, pyramid, xy);

Peek Function peek

Syntax int peek(address)
long address; /* 32-bit memory address */

Description The peek function returns the contents of a memory location. The value of
the memory word is returned in the 16 LSBs of the 32-bit return value. The
16 MSBs are Os.

Example #define VCLK 160 /* video clock period (ns) */
#define HTOTAL OxC0000030
#define VTOTAL OxC0000070
int tick;

init_video(l) ;
/*** Calculate frame duration in ns ***/
tick = (peek(HTOTAL) + 1) * (peek (VTOTAL) + 1) * VCLK;

5-121

peek-breg Peek B Register Function

Syntax long peek-breg(breg)
int breg; /* B-file register number */

Description The peek-breg function returns the contents of a B-file register. Argument
breg is a register number in the range 0 to 15. the function ignores all but
the 4 LSBs of breg. The return value is 32 bits.

Example

5-122

#define DPTCH 3
long dest_pitch;

init_video (1) ;

/* B3 register */

/*** Read screen pitch ***/
dest-pitch = peek-breg(3);

Pen Line Function pen-line

Syntax void pen_line(xl, yl, x2, y2)
int xl, yl; /* starting coordinates */
int x2, y2; /* ending coordinates */

Description The pen-line function uses the pen to draw a line. Arguments xl and yl
specify the starting coordinates of the line, and x2 and y2 specify the end
ing coordinates.

Example

The pen is a rectangle whose width and height can be modified by means
of the set-pen size function. At each point on the line drawn by the
pen-line function, the pen is located such that its top left corner touches
the line. The area covered by the pen is solid-filled in the current COLOR1.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

long color; /* Assume 4 bits/pixel */
int xl, yl, x2, y2;

init-video(l);
init_grafix();
patnfill_rect(640, 480, 0, 0);
init_palet() ;
set_pensize(20, 16);
color = 0;
xl = yl = 8;
for (x2 = 8, y2 = 455; x2 < 631; x2 += 43) (

set_colorl(color += Oxllllllll);
pen-line(xl, yl, x2, y2};

5-123

pen-ovalarc Pen Oval Arc Function

Syntax void pen-ovalarc(w,
int w, h,
int xleft, ytop;
int theta;
int arc;

h, xleft, ytop, theta, arc)
/* width and height */
/* top left corner */
/* starting angle (degrees) */
/* angle extent (degrees) */

Description The pen-ovalarc function uses the pen to draw an arc taken from an ellipse.

5-124

The ellipse is in standard position, with the major and minor axes parallel
to the coordinate axes.

The pen is a rectangle whose width and height can be modified by means
of the set-pensize function. At each point on the arc drawn by the
pen-line function, the pen is located such that its top left corner touches
the arc. The area covered by the pen is solid-filled in the current COLOR1.

The ellipse from which the arc is taken is specified in terms of the minimum
enclosing rectangle in which it is inscribed. The first four arguments define
the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Posi
tive angles are in the clockwise direction, negative angles are coun
terclockwise.

• The arc extent, arc, specifies the number of degrees (positive or ne
gative) spanned by the angle. If the arc extent is outside the range
[-359, +359], the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Pen Oval Arc Function pen-ovalarc

Example int w, h, x, y, tstart, tare;

init-video(l) ;
init-grafix() ;
init-sereen() ;
set_pensize(4, 3);
x = 320;
Y = 240;
w = h = 0;
tare = 35;
for (tstart = 0; tstart < 1500; tstart += 30)

pen-ova1are(w, h, x, y, tstart, tare);
w += 16;
h += 12;
x 8;
y 6;

5-125

pen-piearc

Syntax void pen-piearc(w, h,
int w, h,
int xleft, ytop;
int theta;
int arc;

Pen Pie Arc Function

xleft, ytop, theta, arc)
/.* width and height * /
/* top left corner */
/* starting angle (degrees) */
/* angle extent (degrees) */

Description The pen-piearc function uses the pen to draw a pie-shaped wedge from
an ellipse. The wedge is formed by an arc of the ellipse, and by two straight
lines that connect the two end points of the arc with the center of the el
lipse. The ellipse is in standard position, with the major and minor axes
parallel to the coordinate axes.

5-126

The pen is a rectangle whose width and height can be modified by means
of the set-pensize function. At each point on the arc drawn by the
pen-line function, the pen is located such that its top left corner touches
the arc. The two lines are drawn in similar fashion. The area covered by the
pen is solid-filled in the current COLOR1.

The ellipse from which the arc is taken is specified in terms of the minimum
enclosing rectangle in which it is inscribed. The first four arguments define
the rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments define the limits of the arc:

• The starting angle, theta, is measured from the center of the right
side of the enclosing rectangle, and is treated as modulus 360. Posi
tive angles are in the clockwise direction, negative angles are coun
terclockwise.

• The arc extent, arc, specifies the number of degrees (positive or ne
gative) spanned by the angle. If the arc extent is outside the range
[-359, +359], the entire ellipse is drawn.

Both arguments are expressed in degrees of elliptical arc, with 360 degrees
representing one full rotation.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Pen Pie Arc Function

Example int w, h, x, y, t, dt, dx;

init_video(l) ;
init_grafix() ;
t = dx = dt = 8;
w = h = 80;
for (x = -w, y = 350; x < 640; x += dx) {

if «t += dt) > 80 II t <= 0)
dt = -dt;

delay(O);
init_screen();
pen-piearc(w, h, x, y, t/2, 360-t);
pen-piearc(w, h, x+w/2, y, -15, 30);

pen-piearc

5-127

pen-point Pen Point Function

Syntax void pen-point(x, y)
int x, y; /* pen coordinates */

Description The pen-point function uses the pen to draw a point. The resulting figure
is a rectangle the width and height of the pen, and solid-filled with the
current COLOR1. The top left corner of the rectangle is located at coordi
nates (x, y).

Example

5-128

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment. .

int i, w, h, x, y;
long C; /* Assume 4 bits/pixel */

init_video(l) ;
init_grafix();
init_screen();
w 12;
h 9;
x = 16 « 16;
y = 12 « 16;
c = OxFFFFFFFF;
for (i = 100; i > 0; --i)

if «c -= Oxllllllll) 0)
c = OxFFFFFFFF;

set_colorl(c) ;
set-pensize(++w, ++h);
pen-point«x»16)+350, (y»16)+200);
x += y » 3;
y x » 3;
x += x » 5;
y += y » 5;

Pen Polyline Function pen-polyl i ne

Syntax void pen-polyline(n, linelist, ptlist)
int ni /* number of lines */
short linelist[) i /* list of lines */
short ptlist[) i /* list of points */

Description The pen-polyline function uses the pen to draw multiple lines.

• n specifies the number of lines that are drawn.

• linelist is an array of type short; it specifies the list of lines that are
drawn. Each element in the line list array is an index into the
ptlist array.

• The third argument, the ptlist array, contains the XY coordinates
of the starting and ending points for each line.

Each pair of adjacent 16-bit elements in the ptlist array is an X coordinate
followed by a Y coordinate. Each pair of adjacent 16-bit elements in the
linelist array is a pair of indices into the ptlist array.

The pen is a rectangle whose width and height can be modified by means
of the set-pen size function. At each point on a line drawn by the
pen-line function, the pen is located such that its top left corner touches
the line. The area covered by the pen is solid-filled in the current COLOR1.

For example, the first line drawn is specified in the first two elements, li
nelist[O] and linelist[1]. Assume that these contain index values 4
and 7, respectively. The starting coordinates for the line are contained in
ptlist[2*4] and ptlist[2*4+1]. The ending coordinates are contained
in ptlist[2*7] and ptlist[2*7+1].

The individual elements of the line list array are assigned as follows:

line list [0]
line list [1]
line list [2]
line list [3]

= starting point of line 0
= ending point of line 0
= starting point of line 1
= ending point of line 1

linelist[2n] = starting point of line n-1
linelist[2n+1] = ending point of line n-1

The individual elerrents of the ptlist array are assigned as follows:

ptlist[O]
ptlist[1]
ptlist[2]
ptlist[3]

= x coordinate value for point 0
= y coordinate value for point 0
= x coordinate value for point 1
= y coordinate value for point 1

ptlist[2m] = x coordinate value for point m-1
ptlist[2m+1] = y coordinate value for point m-1

5-129

pen-polyline Pen Polyline Function

Example

5-130

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short xy[] = {

} ;

380,200, 480,200, 480,300, 380,300,
340,270, 340,170, 440,170,
230,180, 280,300, 160,100, l4~,263

static short cube[] = {
0,1, 1,2, 2,3, 3,4, 4,5, 5,6, 6,1, 3,0, 5,0,

} ;
static short pyramid(] = {

7,8, 8,9, 9,10, 10,7, 7,9
} ;.

/**/
/* Draw a cube and a pyramid sitting side by side */
/**/
init_video(l);
init_grafix() ;
init_screen();
set_pensize(5, 5);
perL-poly1ine(9, cube, xy);
set-colorl(Oxlllll11l); /* Assume 4 bits/pixel */
set_pensize(7, 7);
perL-polyline(S, pyramid, xy),

Perspective Function perspec

Syntax

Description

void perspec(n, vertlist,
typedef long FIX;
int n;
FIX vertlist[);
short ptlist [) ;

ptlist,
1*
/*
/*
/*

int xview, yview, zview; /*

xview, yview, zview)
32-bit fixed-point format */
number of vertices in list */
list of 3D vertices in xyz */
list of 2D points in xy */
viewer's xyz coordinates */

The perspec function performs perspective transformations on an input list
of 3D vertices, mapping them to an output list of 2D points.

• The first argument, n, specifies the number of vertices that are trans
formed.

• The second argument, vertlist, is a list of three-dimensional ver
tices. Each vertex in the list is represented as a 96-bit quantity con
sisting of three 32-bit X, Y, and Z fixed-point coordinate values. The
fixed-point format assumes that the 16 LSBs lie to the right of the
binary point.

• The third argument, ptlist, is a list of two-dimensional points. Each
point in the list is represented as a 32-bit quantity consisting to two
16-bit X and Y coordinate values.

• The last three arguments, xview, yview, and zview, are the coordi-
nates of the viewer's position.

The positive Z direction is into the screen. The face of the screen is at Z=O.
The viewer's position is typically in negative Z space. If a vertex to be
transformed is at the same Z value as the viewer or behind (that is, more
n~gative Z) the viewer, the results are unpredictable.

The perspec function scales the X and Y displacements of each three"
dimensional point. The displacements are measured from the viewer's X
and Y coordinates, and are scaled in inverse proportion to the point's dis
tance in Z from the viewer. The X and Y displacements become smaller as
the distance from the viewer increases. The result is a two-dimensional
array of points representing 3D objects which are scaled in accordance to
their distance from the viewer. Please refer to Principles of Interactive
Graphics (Newman and Sproull) for more information on perspective tran
sformations.

The figure on the next page shows the perspective scaling of a point in
three-dimensional space. For simplicity, only the scaling of the Y coordi
nate is shown. The face of the screen is at Z = 0, and is in the plane con
taining the X and Y axes. The perspective calculations are performed
assuming the viewer is at coordinates (Xview,Yview,Zview), where Zview is
negative. The 3D point is located behind the screen at coordinates
(Zobject,Yobject,Zobject), where Z is positive. The projection of the 3D point
on tile face of the screen is obtained by simple linear interpolation:

Y (Y b· - Y.) x (Z - Y.) Y
screen = 0 Ject view screen view x view

Zobject - Zview

5-131

perspec

5-132

where:

Yscreen = projection of 3D point on screen

Yview,Zview = viewer's Y and Z coordinates

Perspectiv6i function

Y object,Zobject = 3D point's Y and Z coordinates

The value Y screen is the scaled version of Y oblect returned by the perspec
function. An Xscreen value is calculated in similar fashion.

screen
Image ~

y

..

actual
Image ~

Yobject

~~----------~~--------------~~--------__ z

Zvlew Yvlew z = 0
zscreen

Z object

Figure 5-1. Perspective Transformation

Perspective Function perspec

Example typedef long FIX;
static FIX rotation[3] 0, 0, 0 };
static long xyz[] = {

-60,-60,-60, 60,-60,-60,
60, 60,-60, -60, 60,-60,

-60,-60, 60, 60,-60, ~O,
60, 60, 60, -60, 60, 60

} ;
static short faces[6] [41 = {

{ 0, 1, 2, 3 }, { 7, 6, 5, 4 },
{ 4, 5, 1, 0 }, { 5, 6, 2, 1 },
{ 6, 7, 3,2 }, { 4,0, 3, 7 }

} ;
FIX
short
long

matrix[16], verts[24];
xy[16] ;
i, c, angle;

init_video(l) ;
init_grafix();
init_vuport() ;
set_origin(320, 240); /* center origin */
for (;;)

for (angle = 0; angle < 360; angle += 4) {
init-matrix(matrix) ;
rotation[2] = angle « 16;
rotate {matrix, rotation);
long_to_fix(24, xyz, verts);
transform(matrix, 8, verts);
perspec(8, verts, xy, 0, -80, -200);
delay(O) ;
init-screen()j
for (i = c = 0; i <= 5; ++i) {

set_color1(c += Ox11111111); /*pixel=4 bits*/
fill_convex{4, faces[i], xy);

5-133

poke

Syntax

Description

Example

5-134

Poke Function

void poke(address, value)
long address; 1* 32-bit memory address *1
int value; 1* value to be poked *1

The poke function stores the 16 LSBs of value at location address.

init_video(l) ;
1**************************1
1* Change pixel size to 1 *1
I*******************~******I
poke(OxC0000150, 1);

Poke B Register Function poke-breg

Syntax

Description

Example

void poke-breg(breg, value)
long breg; /* B-file register number */
int value; /* 32-bit register contents */

The poke-breg function stores the 32-bit value in a B-file register. Argu
ment breg is a register number from 0 to 15.

init_video(l);
/**************************/
/* Change OFFSET register */
/**************************/
poke-breg(4, 512*4);

5-135

pow Raise to a Power Function

Syntax double pow(x, y)
double x, Yi /* Raise x to power Y */

Description The pow function calculates x raised to the power Y (xY). The two argu
ments and the return value are all double-precision floating-point vall.les.
The value returned is 0 if both x and yare O.

Example

5-136

Several error conditions are detected:

• If x < 0, the return value is (-x)Y, and the -fp-error function is called
with an error code of 24.

• If x = 0 and y <= 0, the return value is -00, and -fp-error is called
with an error code of 25.

• If arithmetic overflow occurs, the return value is + 00, and -fp-error
is called with an error code of 27.

• If arithmetic underflow occurs, the return value is 0, and -fP-error is
called with an error code of 28 (see the TMS34010 C Compiler User's
Guide for a description of the -fp-error function).

extern double pow();
double x, y, Z;

x = 2.0;
Y 3.0;
z = pow(x, y); /* return value 8.0 */

Put Pixel Value Function put-pixel

Syntax

Descriptidn

Example

void put_pixel(val, x, y)
int val; /* pixel value */
int x, y; /* coordinates of pixel */

The put-pixel function writes a value to a pixel on the screen. Argument
val is the value that is written to the pixel located at coordinates (x,y).
Given a pixel size of n bits, the pixel is contained in the n LSBs of val
(higher order bits are ignored).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static char *s[l = {
"Flip all", "the pixels", "in this box."

} ;
int i, j, val, w, xl, yl, x2, y2;

init_video(l) ;
init_grafix() ;
in it_text () ;
init_screen() ;
/*** Draw picture to be flipped ***/
yl = 98;
for (i = 0; i <= 2; ++i, yl += char_high(»

draw_string(126, yl, s[il);
select_patn(16) ;
w = 114;
xl = 114;
yl = 53;
patnframe-rect(w, w, xl, yl, 5, 14);
/*** Now use put_pixel function to flip pixels ***/
x2 = xl + 320;
y2 = yl + 240;
for (i = 0; i <= 113; ++i)

for (j = 0; j <= 11~; ++j) {
val = get_pixel(xl+i, yl+j);
put-pixel (val, x2+w-j, yl+i);
put-pixel (val, x2+w-i, y2+w-j)i
put-pixel (val, xl+w-j, y2+w-i)i

5-137

put-rect

Syntax

Description

5-138

void put-rect(sarray,
short sarray[] i
long spitchi
int w, hi
int xleft, ytOPi

Put Rectangle Function

spitch, w, h, xleft, ytop)
/* source pixel array */
/* source pitch */
/* destination width and height */
/* destination top left corner */

The put-rect function copies pixels from a packed pixel array to a rectan
gular area on the screen.

• The last four arguments define the destination rectangle:

The width w,
The height h, and
The coordinates of the top left corner (xleft,ytop).

wand h must be nonnegative.

• Argument sarray is a two-dimensional array of pixels.

• Successive rows of the source array do not necessarily occupy con
tiguous locations in memory. The source pitch parameter, spitch,
specifies the difference in memory addresses between adjacent rows
of the source array. Argument spitch must be greater than or equal
to width w times the pixel size.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Put Rectangle Function put-rect

Example int w, h, x, y, pitch, i;
short buf[80*60*4 / 16];

init_video(1) ;
init_grafix() ;
init-screen() ;
w 80;
h = 60;
x = 280;
Y = 210;
pitch = w * get_psize();
/*******************************/
/* Draw picture */
/*******************************/
fill-rect(w-2, h-2, x+l, y+l);
set_colorO(Oxllllllll) ; /* Assume 4 bits/pixel */
set_colorl(Ox44444444) ;
patnframe_oval(w-2, h-2, x+l, y+l, 20, 15);
/*******************************/
/* Capture picture from screen */
/*******************************/
get_rect(w, h, x, y, buf, pitch);

/*******************************/
/* Put picture onto screen */
/*******************************/
for (i = 25, x = 0, y = -150«16; i > 0; --i) {

x += y » 2;
y -= x » 2;
put_rect(buf, pitch, w, h, (x»16)+280, (y»16)+210);

5-139

rep-.;-pixel Replicate Pixel Function

Syntax long rep_pixel(val)
int val; /* pixel value */

Description The rep-pixel function replicates a pixel value val throughout a 32-bit in
teger. Given a pixel size of n bits, the n LSBs of val are replicated 32/n
times to fill the 32-bit return value. (The higher order bits of val are ignored
by the function.)

Example

5-140

For example, given a pixel size of 4 bits and an input value of 5, the return
value is Ox55555555. An input value of Ox1234567 produces a return va
lue of Ox77777777, and so on.

The output of this function can be used as input for the set-colorO,
set-color1 , and set-pm ask functions.

Note:

Before you call this function, call the init...:..grafix function to initialize the
graphics environment.

int w, h, x, y, val;
static char s[l = "big";

init-video(l);
init_grafix() ;
init-text() ;
init-screen();
w = get-width(s.);
h = get-ascent() + get-descent();
set-colorl(rep-pixel(4»i
fill-rect(w, h, 0, 0);
set_colorO(rep_pixel(4»i
set-color1(rep-pixe l (7»;
draw_string(O, get_ascent(), S)i
for (x = 0; x < Wi ++x)

for (y = 0; y < h; ++y) {
val = rep-pixel(get-pixel(x,Y»i
set_colorl(val)i
fill_rect(18, 18, 80+20*x, 80+20*y) i

Rightmost One Function rmo

Syntax int rmo(n)
long n; /* 32-bit integer */

Description The rmo function calculates the bit number of the rightmost one in argu
ment n. The argument is treated as a 32-bit number whose bits are num
bered from 0 to 31, where bit 0 is the LSB (the rightmost bit position) and
bit 31 is the MSB (the leftmost bit position).

Example

For nonzero arguments, the return value is in the range 0 to 31. If the ar
gument is 0, a value of -1 is returned.

int i;

init_video(l) ;
init_grafix() ;
init_screen();
for (i = 1; i < 640; ++i)

draw_line(O, i, 2 « rmo(i), i);

5-141

rotate Rotate Function

Syntax void rotate(matrix, angle)
typedef long FIX; /* define fixed-point type */
FIX matrix[16]; /* 4x4 transformation matrix */
FIX angle[3]; /* angles of rotation in radians */

Description The rotate function applies rotations in the XV, YZ, and ZX planes to a
4 x 4 homogeneous transformation matrix. Once the rotation information
is embedded in the matrix, the matrix can be used to transform the X, Y, and
Z coordinates that represent the position of a three-dimensional object.

5-142

• Array matr ix IS a 16-element transformation matrix in row-major or
der.

• Argument angle is a 3-element array that contains the angles of rota
tion in the three planes. Specifically, elements angle[O], angle[1]
and angle [2] contain the angles for the XV, YZ, and ZX planes, re
spectively. The rotation angles are applied to the matrix in the order
XY first, YZ second, and ZX third. The angles are expressed in degrees.
Array elements are 32-bit fixed-point numbers whose 16 LSBs lie to
the right of the binary point.

The rotate function multiplies the input matrix by the following three rota
tion matrices:

• Rotation in the XY plane (about the Z axis). Let LXY = angle[O]:

[CO,(LXV) -sin(LXY) 0 n sin(LXY) cos(LXY) 0
0 0 1
0 0 0

• Rotation in the YZ plane (about the X axis). Let L YZ = angle[1]:

[1 0 0 n 0 cos(L YZ) -sin(L YZ)
0 sin(L YZ) cos(L YZ)
0 0 0

• Rotation in the ZX plane (about the Y axis). Let LZX = angle [2].

[cO,(LZX) 0 sin(LZX) n -Sin(t ZX)
1 0
0 cos(LZX)
0 0

The function is designed to trivially detect rotation angles of 0 degrees in
order to avoid unnecessary computations. See Principles of Interactive
Graphics (Newman and Sproull) for more information on homogeneous
transformations.

Rotate Function

Example typedef long FIX;
static FIX rot[3] = { 0, 0, 0 };
static long xyz[] = {

-50,-50,0, 50,-50,0, 50,50,0, -50,50,0
} ;
static
static
FIX
short
int

short front[4] = { 0,1,2,3 };
short back[4] = { 3,2,1,0 };
matrix[16], verts[12];
xy [8] ;
i, angle;

init_video(l) ;
init_grafix() ;
init_vuport() ;
set_origin(320, 240); /* Center origin */
/***/
/* Rotate the square in each of the 3 planes */
/***/
for (i = 0; i <= 2; ++i)

for (angle = 0; angle <= 360; ++ang1e) {
init-matrix(matrix) ;
rot[i] = angle « 16;
rotate(matrix, rot);
long_to_fix(12, xyz, verts);
transform(matrix, 4, verts);
perspec(4, verts, xy, 0, -100, -300);
delay(O) ;
init_screen() ;
set_color1(Ox11111111); /* 4-bit pixel */
fill_convex(4, front, xy);
set-color1(Ox66666666) ;
fill_convex(4, back, xy);

rotate

5-143

run-decode Decode Run-length-Encoded Image Function

Syntax

Description

Example

5-144

void run-decode(xleft, ytop, image)
int xleft, ytop; /* screen rectangle coords */
short imager]; /* compressed image */

The run-decode function decodes an image previously encoded by the
run-encode function. The decoded image is drawn to the designated area
of the screen.

The image is rectangular; its top left corner is positioned at coordinates
(xleft,ytop). The image produced by the run-decode function has the
same dimensions as the original image captured by the run-encode func
tion. The width and height are embedded in the image array along with the
compressed image.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

#define MAXSIZE 4000
char picture[MAXSIZE];
int x, y;

init_video (1) ;
init-grafix();
init_screen();
/***************************************/
/* Draw a picture */
/***************************************/
set_colorl(rep_pixel(I» ;
frame_rect(98, 78, 1, 1, 8, 8);
set_colorl(rep_pixel(9» ;
fill-rect(84, 64, 8, 8);
set_colorO(rep_pixel(4» ;
set-colorl(rep-pixel(7» ;
patnframe_oval(92, 72, 4, 4, 26, 20);
/***************************************/
/* Capture the picture */
/***************************************/
run-encode(100, 80, 0, 0, picture, MAXSIZE);

/***************************************/
/* Draw the picture back to the screen */
/***************************************/
for (x = 0, y = 394; Y > 0; x += 77, Y -= 56)

run-decode (x, y, picture);

Run-Length Encode an Image Function run-encode

Syntax

Description

int run-encode(w, h, xleft, ytop, image, maxbytes)
int w, h ; /* source width and height */
int xleft, ytop; /* screen rectangle coordinates */
short image[]; /* compressed image */
int maxbytes; /* array capacity in bytes */

The run-encodefunction compresses an image using run-length encoding.
It saves the image contained in a rectangular area of the screen. The image
is stored in the image array.

Run-length encoding stores each horizontal line of the image as a series of
color transitions: the color for each transition is paired with the number of
times the color is repeated (that is, the number of pixels in that color) before
a transition to a new color occurs.

Once an image is encoded using the run-encode function, it can be de
coded and drawn to the screen using the run-decode function.

The first four arguments specify a rectangular area of the screen that is
compressed:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The last two arguments specify the destination array for the compressed
image data.

• Argument image is an array large enough to contain the compressed
image.

• Argument maxbytes is the number of 8-bit bytes available in the array
for storing the compressed image.

The value returned by the function is the number of 8-bit bytes actually re
quired to store the compressed image. If the return value is larger than
maxbytes, the function ceases writing data to the image array following
the point at which it runs out-of room in the array.

Table 5-1 shows the format for the image array.

Table 5-1. Image Array Format

Byte Information

0-1 Image format identifier

2-4 Length of array in bytes

5-6 Width of image rectangle

7-8 Height of image rectangle

9-10 X coordinate at left side of rectangle

11-12 Y coordinate at top of rectangl~

13 ... Run-length encoded image data

5-145

run-encode Run-Length Encode an Image Function

Example

5-146

The first 14 bytes contain header information. The initial word is a format
identifier that specifies the type of encoding used to compress the image.
The next four bytes specify the number of bytes actually used to encode the
image (including the 14 header bytes). The next four bytes specify the
width (two bytes) and height (two bytes) of the original rectangular region
of the screen from which the image is taken. The next four bytes contain
the x (two bytes) and the y (two bytes) coordinate values (relative to the
active viewport at the time the image was encoded) at the top left corner
of the screen rectangle.

Following the header information is the actual run-length-encoded image.
Each byte of the encoded image represents either a run-length code
(rico de) or a pixel value (pvalue). A positive rlcode means that the byte
following the rlcode is a pvalue representing the pixel value for the next
rlcode pixels. For example, if an rlcode value of +10 is followed by a pvalue
of Ox55, this represents a string of 10 pixels, each of color Ox55. A negative
rlcode means that the next abs(rlcode) pixels are specified as individual
bytes. For example, an rlcode value of -4 followed by Ox11, Ox22, Ox33,
and Ox44 means that the next four pixels are of colors Ox11, Ox22, Ox33,
and Ox44, respectively. the first byte in the image array (following the
header) is always an rlcode.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Refer to the example in the run-decode definition.

Scale Matrix Function scale

Syntax

Description

Example

void scale(matrix, factor)
typedef long FIX; /* fixed-point type definition */
FIX matrix[16]; /* 4x4 transformation matrix */
FIX factor[3]; /* scaling factors in x, y, z */

The scale function applies scaling transformations in the X, Y, and Z di
mensions to a 4 x 4 homogeneous transformation matrix. Once the scaling
information is embedded in the matrix, the matrix can be used to transform
the X, Y, and Z coordinates representing the position of a three-dimensional
object.

• Array matr ix is a 16-element transformation matrix specified in row-
major order. .

• Argument factor is a 3-element array containing the specified scal
ing factors for the X, Y, and Z dimensions. Specifically, elements
factor [0], factor [1] and factor [2] contain the factors for the
X, Y, and Z dimensions, respectively. Array elements are 32-bit
fixed-point numbers whose 16 LSBs lie to the right of the binary
point.

A scaling matrix is constructed from the three scaling factors, and the matrix
specified by the matrix argument is multiplied by the scaling matrix. See
Principles of Interactive Graphics (Newman and Sproull) for more infor
mation on homogeneous transformations.

typedef long FIX;
static FIX factor[3] = { Ox8000, Ox8000, Ox8000 };
static long xyz[] = {

-50,-50,50, 50,-50,50, 50,50,-50, -50,50,-50
} ;
static
FIX
short
int

short object[4] = { 0,1,2,3 };
matrix[16], verts[12];
xy[8] ;
i, f;

init_video(1) ;
init_grafix() ;
init_vuport() ;
set_origin(320, 240); /* Center origin */
set_colorl(Ox11111111); /* 4-bit pixel */
/**/
/* Scale the object in each of the 3 dimensions */
/**/
for (i = 0; i <= 2; ++i)

for (f = Ox8000; f <= Ox18000; f += Ox200) {
init-matrix(matrix) ;
factor[i] = f;
scale(matrix, factor);
long_to_fix(12, xyz, verts);
transform(matrix, 4, verts);
perspec(4, verts, xy, 0, 0, -200);
delay(O) ;
init_screen() ;
fill_convex(4, object, xy);

5-147

;$~ed~fiU Seed FIIiFunction

Syntax void seed-fill(xseed, yseed, buffer, maxbytes)
int xseed, yseed; /* coordinates of seed pixel */
char buffer[]; /* working storage for funct~on */
int maxbytes; /* size of buffer in bytes */

Description The seed-fill function fills a connected region of pixels starting at a speci
fied seed pixel. The seed color is the color of the specified seed pixel at the
time the function is called. The connected region is solid-filled with the
current COLOR1 value.

5-148

• The first two arguments, xseed and yseed, specify the coordinates
of the seed pixel.

• The last two arguments specify a buffer used as working storage
during the seed fill.

Argument buffer is a buffer large enough to contain the tem
porary data that the function uses.
Argument maxbytes is the number of 8-bit bytes available in
the buffer array.

Storage requirements can be expected to increase with the complexity
of the connected region being filled.

The connected region filled by the function always includes the seed pixel.
To be considered part of the connected region, a pixel must both match the
seed color, and be horizontally or vertically adjacent to another pixel that is
part of the connected region. (A diagonally adjacent neighbor is not suffi
cient.)

The seed-fill function aborts (returns immediately) if any of these condi
tions are detected:

• The seed pixel matches the current COLOR1 value.

• The seed pixel lies outside the current visibility rectangle (or window).

• If at any point the storage buffer space specified by maxbytes is in
sufficient to continue.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Seed Fill Function

Example char buf[800);
int i;

init_video(1) ;
init_grafix() ;
init_screen() ;
/*********************************/
/* Draw a connected region */
/*********************************/
set_colorl(rep_pixel(15» ;
draw-rect(63, 63, 0, 0);
set_colorO(rep_pixel(I» ;
set_colorl(O) ;
select_patn (8) ;
patnfill_rect(62, 62, 1, 1);
zoom-rect(64, 64, 0, 0, 320, 320, 160, 80, buf);
/*********************************/
/* Now fill the connected region */
/*********************************/
for (i = 2; i < 15; ++i) {

set_colorl(rep_pixel(i» ;
seed-fill(320, 240, buf, sizeof(buf»;

seed-fill

5-149

seed-patnfi II Seed Pattern Fill Function

Syntax void seed-patnfill(xseed, yseed, buffer, maxbytes)
int xseed, yseed; /* coordinates of seed pixel */
char buffer[]; /* working storage for function */
int maxbytes; /* size of buffer in bytes */

Description The seed-patnfill function fills a connected region of pixels with a pattern,
starting at a specified seed pixel. The seed color is the color of the specified
seed pixel at the time the function is called. The connected region is filled
with the current pattern in colors COLORO and COLOR1.

5-150

• The first two arguments, (xseed, yseedO, specify the coordinates of
the seed pixel.

• The last two arguments specify a buffer used as working storage
during the seed fill.

Argument buffer is a buffer large enough to contain the tem
porary data that the function uses.
Argument maxbytes is the number of 8-bit bytes available in
the buffer array.

Storage requirements can be expected to increase with the complexity
of the connected region being filled.

The connected region filled by the function always includes the seed pixel.
To be considered part of the connected region, a pixel must both match the
seed color, and be horizontally or vertically adjacent to another pixel that is
part of the connected region. (A diagonally adjacent neighbor is not suffi
cient.)

The seed-patnfill function aborts (returns immediately) if any of these
conditions are detected:

• The seed pixel matches either the current COLORO value or the cur
rent COLOR1 value.

• The seed pixel lies outside the current visibility rectangle (or window).

• If at any point the storage buffer space specified by maxbytes is in
sufficient to continue.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Seed Pattern Fill Function seed-patnfill

Example char buf[800];
int i;

init_video(l) ;
init_grafix() ;
init_screen() ;
/*********************************/
/* Draw a connected region */
/*********************************/
set-color1(rep_pixe1(15» ;
draw_rect(63, 63, 0, 0);
set_colorO(rep_pixel(l» ;
set_color 1 (0) ;
select_patn (8) ;
patnfil1_rect(62, 62, I, 1);
zoom-rect(64, 64, 0, 0, 400, 400, 120, 40, buf);
/*********************************/
/* Now fill the connected region */
/*********************************/
set_colorO(rep_pixel(4» ;
set-color1(rep-pixel(7» ;
seed-patnfill(320, 240, buf, sizeof(buf»;

5-151

select-font Select Font Function

Syntax int select_font(index)
int index; /* identifies a font previously opened */

Description The select-font function selects the font identified by index. The desig
nated font is used in all subsequent text-drawing operations within the
current viewport until a new font is selected.

Example

5-152

If the font is not currently open, a value of -1 is returned to indicate an error,
and the system font is selected as a default. Otherwise, a value of 0 is re
turned as confirmation.

Note:

Before you call the select-font function, call the init-text function to
initialize the text data structures.

'include "fntstruc.h"
extern FONT corpus_christi29,
extern FONT montrose28,
extern FONT north-pole30,
extern FONT san-marcos21;
int i, x, y;
char *s;

init_video(l) ;
init_grafix();

/* FONT type definition */
/* Corpus Christi font */
/* Montrose font */
/* North Pole font */
/* San Marcos font */

init_text () ; /* Corpus Christi 16 selected as default font
*/

init_screen() ;
install_font(l, &corpus-christi29); /* Don't forget the & */
install_font (2 , &montrose28);
install-font (3, &north-pole30);
install_font(4, &san-marcos21);
s = "Hello World.";
for (i = 0, y = 0; i <= 4; ++i)

select_font(i);
x = 320 - get_width(s)/2;
y += char_high();
draw_string (x, y, s);

Select Pattern Function select-patn

Syntax int select_patn(index)
int index; /* index into pattern table */

Description The select-patn function selects the pattern identified by the index. The
pattern is used in all subsequent pattern-filling functions in the current
viewport until another pattern is selected.

Example

The pattern is a 16)(16 bit map that is bit-expanded to the current COLORO
and COLOR1 values when drawn to the screen. Argument index represents
the position of the pattern within the pattern table. Runtime initialization
loads the pattern table with a number of default patterns. You can use the
install-patn function to install custom patterns.

If argument index is negative or is greater than or equal to the value re
turned by the get-patn-max function, a value of -1 is returned to flag the
error condition. Otherwise. a value of 0 is returned to confirm that the de
signated pattern was selected.

Note:

Before you call this function, call the init--grafix function to initialize the
graphics environment.

int x, y, dx, dy, i, hueO, huel;

init_video(l) ;
init_grafix(); /* Initialize patterns */
init_screen () ;
i get-patn-max();
dx = 480 / i;
dy = 320 / i;
x = y = 0;
hueO = hue1 = 0;
for (--i ; i >= 0; --i, x += dx, Y += dy) {

selecLpatn(i);
set_colorO(rep_pixel(hueO++»
set_color1(rep_pixel(--hue1»
patnfill_rect(160, 160, x, y)

5-153

select-vuport Select Viewport Function

Syntax

Description

Example

5-154

int select_vuport(index)
int index; /* viewport number */

The select-vuport function selects the viewport identified by index. The
designated viewport becomes the active viewport for subsequent drawing
operations.

The viewport must have been previously opened. At the time the viewport
was opened, the open-vuport function returned the index that identifies
the viewport in subsequent transactions. The system viewport is opened
automatically by the viewport initialization function, init-vuport, and is
identified by an index value of O.

The attributes of the specified viewport replace those of the previously ac
tive viewport. Refer to the description of the open-vuport function for a
list of viewport attributes.

A value of 0 is returned if the index is valid. In the event of an invalid index,
a value of -1 is returned and the active viewport is not changed.

Note:

Before you call the select-vuport function, call the init-vuport function
to initialize the viewport data structures.

int v;

init_video(l) ;
init-grafix() ;
init_vuport(); /* Open viewport ° */
init-screen() ;
set_cliprect(320, 480, 0, 0);
/***/
/* Change viewport O's colors and pattern */
/***/
set_colorO(rep_pixel(l» ;
set-colorl(rep-pixel(7»;
select_patn(l) ;
/***/
/* Change viewport l's colors and pattern */
/***/
v = open_vuport(); /* Open viewport 1 */
move_vuport(320, 0);
set_colorO(rep_pixel{2»;
set_color1{rep_pixel(12» ;
select_patn (4) ;
/***/
/* Display viewport O's colors and pattern */
/***/
select-vuport{O);
patnfill-oval{300, 460, 10, 10);
/*********************************~*********/
/* Display viewport l's colors and pattern */
/***/
select_vuport(v);
patnfill-rect{300, 460, 10, 10);

Set All Palette Function setall-palet

Syntax void setall_palet(palet,
short palet[16];
int reg-Illask;
int n;
int y;

reg_mask, n, y)
/* color palette */
/* register-load mask */
/* no. of lines affected */
/* starting scan line */

Description The setall-palet function loads multiple color palette registers. This func
tion allows a designated subset of the color palette registers to be loaded
from an array.

The function does not necessarily alter the color palette over the entire
screen; if desired, the function can alter the palette over only a specified
group of scan lines. (This is facilitated by the line-load feature of the
TMS34070 color palette chip.)

• Argument n specifies the number of scan lines affected by the color
palette load.

• Argument y is the first line (lowest line number) in the affected group
of lines. Scan lines are numbered in ascending order from top to
bottom, with line 0 at the top of the screen.

• A register mask, reg-Illask, specifies which of the 16 color palette
registers are loaded from the palet array. Only registers corre
sponding to 1 s in the mask are loaded. Mask bits 0 through 15 con
tro� the loading of registers 0 through 15. For example, a mask value
of Ox0027 enables the loading of registers 0, 1, 2, and 5 from palet
array members 0, 1, 2, and 5. Only the 16 LSBs of the mask are used;
the 16 MSBs are ignored.

This function assumes that the system contains a TMS34070 color palette
or functional equivalent. The pixel size is therefore four bits, and the palette
contains 16 registers. The values contained in the palette registers can
change on a line-by-line basis.

Each 16-bit palette register is organized according to the following format:

15 1211 87 4 3 0

I blu I grn I red I at! I
MSB LSB

The red, green, and blue intensity fields are 4-bit, unsigned binary numbers.
The attribute field contains a color-repeat bit that is set to one to enable
automatic filling by the palette device. See the TMS34070 User's Guide for
details.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

5-155

seta II-pa let Set All Palette Function

Example

5-156

static short mypalet[] = {
OxOFFO, OxOEFO, OxODFO, OxOCFO,
OxOBFO, OxOAFO, Ox09FO, Ox08FO,
Ox07FO, Ox06FO, Ox05FO, Ox04FO,
Ox03FO, Ox02FO, Ox01FO, OxOOFO,
Ox10FO, Ox20FO, Ox30FO, Ox40FO,
Ox50FO, Ox60FO, Ox70FO, Ox80FO,
Ox90FO, OxAOFO, OxBOFO, OxCOFO,
OxDOFO, OxEOFO, OxFOFO
} ;

int i;

init_video(1);
init_grafix() ;
init_screen();
/***************************************/
/* Fill horizontal strips in 16 colors */
/***************************************/
for (i = 0; i <= 15; ++i) {

}

set_color1(rep_pixe1(i»;
fill_rect(40, 480, 40*i, 0);

/***************************************/
/* Change palette every 27 lines */
/***************************************/
for (i = 0; i < 15; ++i)

setall_palet(&mypalet[i], OxFFFF, 27, 40+i*27);

Set Clipping Rectangle Function set-cliprect

Syntax

Description

Example

void set_cliprect(w, h, xleft, ytop)
int w, h; /* width and height of */

/* clipping rectangle */
int xleft, ytop; /* top left corner of */

/* clipping rectangle */

The set-cliprect function sets the size and position of the clipping rectangle
for subsequent drawing operations. Drawing operations can alter only
pixels within the visibility rectangle formed by the intersection of:

• The viewport,
• The clipping rectangle, and
• The screen.

Four arguments define the size and position of the clipping rectangle:

• The width w,
• The height h, and
• The coordinates of the top left corner (xleft,ytop).

The coordinates are expressed as displacements from the origin of the active
viewport. If the viewport or viewport-relative origin is moved, the clipping
rectangle moves accordingly.

Note:

Before you call the set-eliprect function, call the init-vuport function
to initialize the viewport data structures.

init_video(1) ;
init_grafix() ;
init_vuport();
init_screen() ;
set-cliprect(l28, 96, 64, 48);
patnfill_rect(1000, 1000, -100, -100);
set_origin(175, 150);
set_colorO(rep_pixel(l)) ;
set_color1(rep_pixel(3)) ;
select_patn(4) ;
patnfill-oval(256, 192, -64, -48);
move_vuport(160, 120);
set_color1(rep_pixel(6)) ;
fill_rect(1000, 1000, -100, -100);

5-157

set.....,colorO· Set Color 0 Function

Syntax void set~colorO (pixel_val)
long pixel_val; /* pixel value +eplicated */

/* to 32 bits */

Description The set-colorO function changes the COLORO value. This is the pixel value
towhich Os in bit maps for text fonts and two-dimensional bit patterns are
expanded as they are drawn to the screen.

Example

5-158

The pixel value is replicated through the entire 32-bit argument. Given a
pixel size of n bits, the n-bit pixel value must be replicated 32/n times. For
example, at four bits per pixel, a value of 5 is replicated 32/4 = 8 times to
form the pixel-val argument value Ox55555555.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

#include "fntstruc.h"
extern FONT corpus_christi29;

static char *s[] =

int i;

"0", "1",
"6", "7",

"11" I "12",
} ;

init_video(l) ;

"2",
"8.11,

"13",

"3",
119",

"14",

/* Define FONT type

"4",
"10",
"15"

"5",

*/

init-grafix()i /* Set default colors */
init_text () ;
install_font(1,&corpus_christi29) ;
init_screen() ;
for Ci = 0; i <= IS; ++i) {

select_patn(i);
set-colorO(rep-pixel(i»;
draw_string(i*40+S, 2S, s[i]);
patnfill_oval(30, 430, i*40+S,

/* Remember the & */

SO) ;

Set Color 1 Function set-eolor1

Syntax

Description

Example

void set-colorl(pixel-val)
long pixel_val; /* pixel value replicated */

/* to 32 bits */

The set-color1 function changes the COLOR1 value. This is the pixel value
that is used for lines and solid fills. It is also the value to which 1 s in bit
maps for text fonts and two-dimensional bit patterns are expanded as they
are drawn to the screen.

The pixel value is replicated through the entire 32-bit argument. Given a
pixel size of n bits, the n-bit pixel value must be replicated 32/n times. For
example, at four bits per pixel, a value of 5 is replicated 32/4 = 8 times to
form the pixel-val argument value Ox55555555.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

#include "fntstruc.h" /* Define FONT type
extern FONT corpus_christi29;

static char *s[] = (

int i;

"0", "1", "2",113", "4", "5",
"6", U71f, "8" I "9", "10",

"11", "12", "13", "14", "15"
} ;

init_video(l) ;

*/

init_grafix(); /* Set default colors */
init_text () ;
install_font(1,&corpus_christi29); /* Remember the & */
init_screen() ;
for (i = 0; i (= 15; ++i) (

select_patn (i) ;
set-co1orl(rep-pixel(i»;
draw-string(i*40+5, 25, s[i]);
fill-rect(30, 215, i*40+5, 50);
patnfill_oval(30, 215, i*40+5, 265);

5-159

set-arigin Set Origin Function

Syntax void set-origin(xO, yO)
int xO, yO; /* displacement from viewport */

/* top left corner */

Description The set-Origin function sets the position of the XV coordinate origin for the
active viewport. This origin is used for subsequent drawing operations to
the viewport.

Example

5-160

Arguments xO and yO define the new position of the origin as displace
ments from the top left corner of the active viewport. The clipping rectan
gle, whose position is relative to the origin, is automatically adjusted to
follow the change in position of the origin. If the viewport is subsequently
moved, the origin and clipping rectangle move with it.

Note:

Before you call the set-origin function, call the init-vuport function to
initialize the viewport data structures.

static short ptlist[] = (

} ;

0,-10, 0,70, -4,62, 4,62,
-10,0, 70,0, 62,-4, 62,4

static short axes[] = (
0,1, 1,2, 1,3, 4,5, 5,6, 5,7

} ;
int i, x, y;

init_video (1) ;
init_grafix() ;
init_screen();
init_vuport(); /* Set default or~g~n */
/**/
/* Move origin to various positions on screen */
/**/
for (x = 10; x < 639; x += 100)

for (y = 10; Y < 479; Y += 100) (
set-origin(x, y);
draw_polyline (6, axes, ptlist);

Set Palette Function set-palet

Syntax

Description

Example

void set_palet(reg, red, grn, blu)
int reg; /* color palette register (0-15) */
int red, grn, blu; /* RGB intensities (0-15) */

The set-palet function loads the designated color palette register with
specified red, green, and blue intensities. The color palette is updated over
the entire screen (all scan lines are affected).

• Argument reg specifies a color palette register number in the range 0
to 15.

• Arguments red, grn, and blu specify 4-bit intensities in the range 0
to 15. Only the four LSBs of the intensities are used; higher-order
bits are ignored.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int i, r, g, bi

init_video(l);
init_grafix() ;
clear_screen(O);
/********************************/
/* Fill vertical stripes */
/********************************/
for (i = OJ i <= 15; ++i) {

set_color1(rep_pixel(i»i
fill-rect(40, 480, i*40, 0);

/********************************/
/* Change color palette values. */
/********************************/
r = 15;
g = b = 0;
for (i = 0; i <= 15; ++i)

set-palet(i, r--, g++, b++);

5-161

set-pensize Set Pen Size Function

Syntax

Description

Example

5-162

void set_pensize(w, h)
int w, h; /* pen width and height */

The set-pensize function specifies the width and height of a rectangular
pen for the active viewport. These pen dimensions are used for any sub
sequent drawing operations that use the pen.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int i, xl, yl, x2, y2;

init-video (I) ;
init_grafix(} ;
init_vuport(} ;
set_origin(320,240} ;
init-screen(} ;
/**/
/* Draw lines with 50 different pen sizes */
/**/
x2 = 0;
y2 = -200;
for (i = 50; i > 0; --i) {

x2 -= y2 » 3;
y2 += x2 » 3;
xl = x2 » 3;
yl = y2 » 3;
set_colorl(rep_pixel(i}} ;
set_pensize(i, i);
pen-line(xl, yl, x2, y2);

Set Plane Mask Function set-pmask

Syntax

Description

Example

void set_pmask(mask)
long pmask, /* plane mask */

The set-pmask function specifies the plane mask that is used in subsequent
drawing operations. The mask determines which bits in a pixel can be
modified during drawing operations. The Os in the mask enable modifica
tion of the corresponding bit planes. The 1 s in the mask write-protect the
corresponding planes.

The mask size is in principle the same as the pixel size, but it must be rep
licated through the entire 32-bit mask argument. Given a pixel size of n
bits, the n-bit mask value must be replicated 32/n times. For example, at
four bits per pixel, a mask value of 6 is replicated 32/4 = 8 times to form
the pixel-val argument value Ox66666666.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short palet[] = {

} ,

OxOOOO, OxOOFO, Ox6F60, Ox08EO,
OxFOOO, OxFOFO, OxF800, Ox8880,
OxFFFO, OxFFFO, OxFFFO, OxFFFO,
OxFFFO, OxFFFO, OxFFFO, OxFFFO

int i, x, y, dx, dy,

init_video(l) ,
init-9rafix(),
new_screen(O, palet),
/***************************************/
/* Assume 4.bits per pixel */
/* Write only to plane 3 * /
/***************************************/
set-pmask(rep-pixel(7»,
set-colorl(rep-pixel(8));
patnfill-rect(480, 352, 80, 64),
/***************************************/
/* Write only to planes 0, 1 and 2 */
/* Note that plane 3 remains unaltered */
/***************************************/
set-pmask(rep-pixel(8»,
x = y = 0,
dx = 28,
dy = 13,
i = 0,
for (, ,) {

if (cpw(x, y) & Ox3)
dx = -dx,

if (cpw(x, y) & Oxe)
dy = -dy,

x += dx,
y += dy, .
set-colorl(rep_pixel(i++)),
fill-rect(lOO, 100, x-50, y-50) ,

5-163

set-ppop Set Pixel Processing Operation Function

Syntax void set-ppop(ppop_code)
int ppop-code; /* pixel processing operation code */

Description The set-ppop function defines the pixel processing operation for subse
quent drawing operations. The specified Boolean or arithmetic operation
determines the manner in which source and destination pixel values are
combined. The range for the ppop-code argument is 0 to 21. The codes
are described in the following table:

Example

5-164

Code Replace Destination Pixel with Code Replace Destination Pixel with:

0 source 11 NOT source AND destination
1 source AND destination 12 all1s
2 sOUrce AND NOT destination 13 NOT source OR destination
3 all Os 14 source NAND destination
4 source OR NOT destination 15 NOT source
5 source EQU destination 16 source + destination
6 NOT destination 17 ADDS(source, destination)
7 source NOR destination 18 destination - source
8 source OR destination 19 SUBS(destination, source)
9 destination 20 MAX (source, destination)
10 source XOR destination 21 MIN (source, destination)

The details of these operations are described in the TMS34010 User's
Guide.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

static short x[] 300, 500, 20, 123
static short y[] 400, 100, 50, 321
static short dx[] 1, 2, 3, 4 } ;
static short dy[] 1, 2, 1, 2 } ;
int ppop, j, i;

init_video(l) ;
init_grafix() ;
init_screen() ;
/**************************************/
/* Show effects of ppops ° through 21 */
/**************************************/
for (ppop = 0; ;) {

seLppop(ppop);
if (++ppop > 21)

ppop = 0;
for (j = 0; j < 1000; ++j)

for (i = 0; i <= 3; ++i) {
if (cpw(x[i], y[i]) & Ox3)

dx[i] = -dx[i];
if (cpw(x[i], y[i]) & Oxe)

dy[i] = -dy[i];
x[ij += dx[ij;

} ;
} ;

y[i] += dy[ij;
set_co1or1(rep_pixe1(i+1» ;
fill-oval(80, 60, x[ij-40, y[ij-30);

Short to fixed-Point Function short-ta-fix

Syntax

Description

Example

FIX *short_to_fix(n, in-array, out_array)
typedef long FIX;
int n; /* number of elements to be */

/* converted * /
short in-array[];
FIX out_array[];

/* array of integers */
/* array of fixed-point values */

The short-to-fix function converts an array of short integers to fixed-point
numbers. Elements of the input array.are 16-bit, 2s complement integers
(C type short). Elements of the output array are 32-bit, 2s complement,
fixed-point numbers whose 16 LSBs are to the right of the binary point.
The conversion to fixed-point format is done by simply shifting the integer
elements left by 16.

Three input arguments are specified:

• The number of elements n that are converted,
• The input array in-array, and
• The output array out_array.

A pointer to the first element of the output array is returned.

The value returned by the function is a pointer to the output array,
out_array.

typedef long
static short
static short
FIX xy[6];
int i, j;

init_video(l) ;
init_grafix() ;
init_vuport() ;

FIX;
ptlist []
triangle []

0,-20, 30,15, -30,15 };
{ 0,1, 1,2, 2,0 };

init_screen() ;
short-ta-fix(6, pt1ist, xy);
set_origin(320, 240);
for (j = 0; j < 100; ++j) {

for (i = 0; i <= 5; ++i)
xy[i] += xy[i] » 4;

fix-to_short(6, xy, ptlist);
draw_polyline(3, triangle, ptlist);

5-165

sin Sine Function

Syntax double sin(x)
double X;

Description The sin function calculates the sine of an angle expressed in radians. Both
argument X and the return value are double-precision floating-point values.

Example

5-166

For arguments greater than 1.0 E +8, a value of 0 is returned, and fp-error
is called with error code = 17 (see the description of the floating-point fa
cility in the TMS34010 C Compiler User's Guide).

extern double sin();
double radian, sval;
radian = 3.1415927;
sval = sin(radian);

/* sin returns sval */

/* sin returns 0 */

Hyperbolic Sine Function sinh

Syntax double sinh(x)
double x,

Description The sinh function returns the hyperbolic sine of a real number x. Both the
argument x and return value are double-precision floating-point values.

Exatnple extern double sinh(),
double x, y,

x 0.0,
y = sinh(x); /* return value 0.0 */

5-167

size-vuport Size Viewport Function

Syntax

Description

Example

5-168

int size_vuport(w, h)
int w, h; /* width and height of viewport */

The size-vuport function changes the size of the active viewport. The
viewport is rectangular. The top left corner of the viewport remains fixed
at its original position; the lower right corner moves to expand or contract
the viewport to wand height h.

Note:

Before you call the size-vuport function, call the init-vuport function
to initialize the viewport data structures.

int i, w, h;

init_video(l);
init_grafix();
init_vuport();
init_screen();
i = 0;
/************************************/
/* Show changes in size of viewport */
/************************************/
for (w = 640, h = 480; w > 0; w -= 32, h -= 24) {

siz8-vuport(w, h);
set_colorl(rep_pixel(++i» ;
fill_rect(2000, 2000, -1000, -1000);

Square Root Function sqrt

Syntax double sqrt(x)
double X;

Description The sqrt function calculates the square root of a real number x.

If the argument X is negative, the square root of the absolute value of x is
returned, and fp-error is called with error code = 10 (see the description
of the floating-point facility in the TMS34010 C Compiler User's Guide).

Example extern double sqrt();
double x, y;

x 100.0;
Y = sqrt(x); /* return value 10.0 */

5-169

styled-line Styled Line Function

Syntax lon~ style~line(xl, yl, x2, y2, style, mode)
int xl, yl; /* start coordinates */
int x2, y2; /* end coordinates */
long style; /* 32-bit repeating line-style */

/* pattern * /
int mode; /* selects I of 2 drawing modes*/

Description The styled-line function uses Bresenham's algorithm to draw a styled line
from point (xl,yl) to point (x2,y2). The line is a single pixel in thickness,
and is drawn in the specified line-style pattern.

5-170

• Arguments xl and yl specify the starting coordinates.

• Arguments x2 and y2 specify the ending coordinates.

• The last two arguments, style and mode, specify the line style and
drawing mode.

Argument style is a Icing integer containing a 32-bit repeating
line-style pattern. Pattern bits are used in the order 0,1, ... ,31,
where 0 is the rightmost bit (the LSB). The pattern is repeated
modulo 32 as the line is drawn. A bit value of 1 in the pattern
specifies that COLOR1 is used to draw the corresponding pixel.
A value of 0 in one of the line-style pattern bits means that the
corresponding pixel is either drawn in COLORO (if mode = 1)
or not drawn (if mode = 0).

The mode argument selects one of two drawing modes. If mode
= 1, pixel positions corresponding to Os in the pattern are drawn
in COLORO. If mode = 0, the COLORO pixels are not drawn;
that is, the line skips over pixel positions corresponding to Os in
the line-style pattern. The function uses only the LSB of mode;
the function ignores higher-order bits of the argument.

The value returned is the style pattern rotated left (n-1) modulo 32, where
n is the nu.mber of pixels in the line drawn by the function (counting both
the COLOR1 and COLORO pixels). This return value can be used as the
line-style pattern for a new line that continues from the end point of the line
just drawn. The line-style pattern will be continuous from the old line to
the new line.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Styled Line Function styled-line

Example long xl, yl, x2, y2, i, mask;

init_video(l) ;
init_grafix() ;
init_vuport() ;
init_screen() ;
set_origin(320, 240);
/**/
/* Draw spiral using styled line segments */
/**/
x2 = 0;
y2 = -20 « 16;
mask = Ox93E493E4; /* line-style pattern */
for (i = 5000; i > 0; --i) {

xl X2i
yl = y2;
x2 += yl » 4;
y2 -= xl » 4;

mask = styled-line(xl»16, yl»16, x2»16, y2»l6,
mask, 0);
}

5-171

tan Tangent Function

Syntax double tan (x)
double X;

Description The tan function calculates the tangent of an angle X expressed in radians.

Example

5-172

Both argument x and the return value are double-precision floating-point
values.

If the absolute value of argument x is greater than 1.0E+8, a value of 0 is
returned, and fP-Elrror is callecl with error code = 20 (see the description
of the floating-point facility in the TMS34010 C Compiler Usels Guide).

extern double tan();
double x, y;

x 3.1415927/4.0;
y = tan(x); /* return value 1.0 */

Hyperbolic Tangent Function tanh

Syntax double tanh(x)
double x;

Description The tanh function returns the hyperbolic tangent of a real number x Both
the argument x and the return value are double-precision floating-point
numbers.

Example extern double tanh();
double x, y;

x 0.0;
y = tanh(x); /* return value 0.0 */

5-173

transform

Syntax

Description

5-174

Transform Matrix Function

void transform(matrix, n, verts)
typedef long FIX; /* fixed-point type definition */
FIX matrix[l6j; /* 4x4 transformation matrix */
int n; /* number of vertices in vertex */

/* list */
FIX verts[}; /* vertex list (x, y, and z) */

The transform function uses a 4 x 4 transformation matrix to transform (ro
tate, scale and translate) a list of three-dimensional vertices.

• The 4 x 4 transformation matrix, matr ix, is a 16-element array of
fixed-point values. A fixed-point value is 32 bits long, and the 16
LSBs lie to the right of the binary point. Embedded in the matrix
transformation is a sequence of scaling, rotation and translation op
erations.

• Argument n specifies the number of vertices that are transformed by
the matrix.

• Vertex list verts is an array containing the three-dimensional coor
dinates of the n vertices. Each vertex in the array is a 96-bit value
consisting of X, Y, and Z coordinate values in fixed-point format.

The data structure for the vertex list, verts, is organized as follows:

verts[O]
verts[1]
verts[2]
verts[3]
verts[4]
verts[5]

verts[3n]
verts [3n +1]
verts[3n+2]

= X coordinate at vertex 0
= Y coordinate at vertex 0
= Z coordinate at vertex 0
= X coordinate at vertex 1
= Y coordinate at vertex 1
= Z coordinate at vertex 1

= X coordinate at vertex n-1
= Y coordinate at vertex n-1
= Z coordinate at vertex n-1

Transform Matrix Function transform

Example typedef long FIX;
static FIX rotation[) = { 0, 0, ° };
static FIX xyz[] = { -150,-200,0, 150,-200,0, 0,0,0 };
static short connect[] = { 0, 1, 2 };
FIX matrix[16], verts[3*3];
short xy[2*3];
int angle;

init_video (1) ;
init_grafix() ;
init_vuport() ;
set_origin(320, 240);
for (;;)

for (angle = 0; angle < 360; ++angle)
init-matrix(matrix) ;
rotation[O] = angle « 16;
rotate (matrix, rotation);
long_to_fix(3*3, xyz, verts);
transform(matrix, 3, verts);
vertex-to_point(3, verts, xy);
delay(O) ;
init_screen() ;
fill_convex(3, connect, xy);

5-175

translate

Syntax

Description

Example

5-176

Translate Matrix Function

void translate(matrix, disp)
typedef long FIX;
FIX matrix[16] /* 4x4 transformation matrix */
FIX disp[3] /* displacements in x, y, z */

The translate function multiplies a 4 x 4 transformation matrix by a trans
lation matrix constructe~ from displacements in the X, Y, and Z directions.

•

•

Argument matr ix is a 4 x 4 homogeneous transformation matrix .
Each matrix element is stored as a 32-bit fixed-point value whose 16
LSBs lie to the right of the binary point. Refer to the definition of the
init-matrix function for a description of the matrix structure.

Argument disp is a three element array containing the displacements
in X, Y, and Z (in that order). Each displacement is stored as a 32-bit
fixed-point value. The translation matrix by which the transformation
matrix is multiplied is formed from the elements of the disp array as
follows:

[
1 0
o 1
o 0

disp[O] disp[1]

o
o
1

disp[2]

Refer t.o Principles of Interactive Graphics (Newman and Sproull) for addi
tional information on homogeneous thr~e-dimensional transformations.

typedef long FIX;
static FIX rotation[3]
static FIX translat1[3]
static FIX translat2[3]
static long xyz[] = (

0, 0, 0 };
-320, -240, 0 };
320, 240, 0 };

320,40,0, 340,240,0, 320,260,0, 300,240,0
} ;
static short connect [8] = (0,1, 1,2, 2,3, 3,0 };
FIX matrix[16];
FIX verts[12];
short xy[8];
int angle;

init_video(l);
init_grafix();
long-to_fix(3, trans1at1, translat1);
long_to_fix(3, translat2, translat2);
for (;;)

for (angle = 0; angle < 360; ++angle)
init-matrix(matrix);
translate(matrix, translatl);
rotation[O] = angle « 16;
rotate (matrix, rotation);
translate (matrix, translat2);
long-to_fix(12, xyz, verts);
transform(matrix, 4, verts);
vertex-to_point(4, verts, xy);
delay(O);
init-screen();
draw-oval (420, 420, 110, 30);
draw-polyline(4, connect, xy);

Transparency Off Function transp-off

Syntax

Description

Example

void transp-off()

The transp-off function disables transparency for subsequent drawing op
erations.

When transparency is enabled, and the result of a pixel operation involving
the source and destination pixels is 0, the destination pixel is not altered.
The transp-off disables transparency, and the result of a subsequent pixel
operation is written to the destination regardless of its value.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

init_video(l) ;
init_grafix() ;
init-screen(); /* Sets 0 = black */
/***/
/* construct source array * /
/***/
frame_rect(190, 190, 25, 145, 2, 2);
set-color1(rep-pixel(6»;
frame_oval (150, 150, 45, 165, 35, 35);
/***/
/* Construct 2 copies of destination */
/***/
set_color1(rep_pixel(12» ;
fill-rect(190, 190, 225, 145);
set_color1(rep_pixel(1» ;
fill_rect(30, 190, 305, 145);
fill-rect(190, 30, 225, 225);
move_rect(200, 200, 220, 140, 420, 140);
/***/
/* Copy source to 1st dest. with transp. ON */
/***/
transp-on();
move-rect(160, 160, 40, 160, 240, 160);
j**'*****/
/* Copy source to 2nd dest. with transp. OFF */
/***/
transp_off();
move-rect(160, 160, 40, 160, 440, 160);

5-177

transp-on Transparency On Function

Syntax void transp-on()

D6scription The transp-on function enables transparency for subsequent drawing op-

Examp/6

5-178

erations. .

When transparency is enabled, and the result of a pixel operation involving
the source and destination pixels is 0, the destination pixel is not altered.
The transp-on enables transparency, and the result of a subsequent pixel
operation is written to the destination only if it is not O.

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Refer to example in description of transp-off function.

Vertex to Point Function vertex-to-poi nt

Syntax

Description

Example

void vertex-to_point(n, verts, ptlist)
int n; /* number of vertices to convert */
FIX verts[]; /* list of 3D vertices (x,y,z) */
short ptlist[]; /* list of 2D points (x,y) */

The vertex-to-point function converts a list of three-dimensional vertices
to a list of two-dimensional points. Each three-dimensional vertex is re
presented in terms of its X, V, and Z coordinates. Each two-dimensional
point is represented in terms of its X and V coordinates.

• Argument n specifies the number of vertices that are converted.

• Each three-dimensional vertex is represented in the verts array as
three adjacent array elements containing the X, V, and Z coordinate
values, respectively. Each element is a 32-bit fixed-point value whose
16 LSBs lie to the right of the binary point. The number of elements
in the verts array is three times n the number of vertices.

• Each two-dimensional point is represented in the ptlist array as two
adjacent elements representing the X and V coordinate values, re
spectively. Each element is a 16-bit integer. The number of elements
in the ptlist array is two times n, the number of vertices.

Each '96-bit vertex in the verts array is converted to a 32-bit point in the
ptlist array. The function converts the integer parts of the X and V co
ordinate values in the verts array to X and V coordinate values in the
ptlist array. The Z values are excluded from the ptlist array.

Refer also to the definition of the perspec function, which similarly converts
a list of 3D vertices to a list of 20 points, but first performs a perspective
transformation on the vertices.

typedef long FIX;
static long xyz[] = {

0,-100,0, 100,0,0, 0,100,0, -100,0,0
} ;
static short diamond[] = { 0, I, 2, 3 };
FIX verts[12];
short xy[8];

init_video(l);
init_grafix();
init_vuport();
set_origin(320, 240);
init_screen() ;
long_to_fix(12, xyz, verts);
vertex-to_point(4, verts, xy);
patnfill_convex(4, diamond, xy);

5-179

wait-scan

Syntax,

Description

Example

5-180

Wait for Scan Lin~ Function

void wait_scan(line)
int line; /* wait until this scan line is reached */

The wait-scan function waits for a scan line on the CRT to be refreshed.
This function does not return control to the calling routine until the speci
fied line is scanned by the electron beam. Control is returned at the start
of the horizontal blanking interval that follows the designated line. Scan
lines are numbered in ascending order, starting with line 0 at the top of the
screen. Only visible scan lines are counted.

You can use this function to synchronize drawing operations to the electron
beam of a CRT display. For example, when drawing an animated sequence
of frames, transitions from one frame to the next appear smoother if an area
of the screen is not redrawn at the same time it is output to the CRT.

If argument line < 0, the function uses the value 0 in place of the argu
ment value. If line is greater than the bottom scan line, the function uses
the number of the bottom scan line in place of the argument value.

The wait-scan function cannot be used in an application in which the dis
play interrupt is enabled. If the display interrupt is enabled, the function
returns immediately (no error code is returned).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int r, x, y, vx, vy;

init_video(l) ;
init_grafix() ;
init_vuport() ;
r 100;
x 320;
Y = 240;
vx = 1;
vy = -3;
/**/
/* Wait only if ball is on left side of CRT */
/**/
for (; ;) {

if (cpw(x, y) & 3)
vx = -vx;

if (cpw(x, y) & 12)
vy = -vy;

x += vx;
Y += 'l/y;
if (x < 320)

waiLscan(y+r);
clear_screen(O) ;
init-palet () ;
fill_oval(2*r, 2*r, x-r, y-r);

Convert (x,y) to Address Function xytoaddr

Syntax

Description

Example

long xytoaddr(x, y)
int x, y; /* viewport-relative x and y coordinates */

The xytoaddr function calculates the 32-bit memory address of the pixel
located at viewport-relative coordinates (x,y).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

int w, h, x, y, saddr, sptch;
char *s;

init_video(l);
init_grafix();
ini t_text () ;
init_screen();
x = y = 100;
s = "Use cheap trick to slant characters.";
draw_string(x, y, s);
/**/
/* Calculate address at top left corner of text */
/**/
saddr = xytoaddr(x - char-high(), y - get-ascent(»;
sptch = peek-breg(3) + get-psize(); /* SPTCH+PSIZE */
h = char-high();
w = get_width(s) + h;
/**/
/* Treat region of screen as source pixel array */
/**/
put_rect(saddr, sptch, w, h, x, Y + h);

5-181

zoom-rect

Syntax void zoom-rect(ws,
int ws, hs;
int xs, ys;
int wd, hd;
int xd, yd;
short linebuf[];

Zoo.m Rectangle Function

hs, xs, ys, wd, hd, xd, yd, linebuf)
/* source width and height */
/* source top left corner */
/* destination width and height */
/* destination top left corner */
/* scan line buffer */

Description The zoom-rect function expands or shrinks a source rectangle on the
screen to fit the dimensions of a destination rectangle that is on the screen.
Horizontal zooming is accomplished by replicating (if expanding) or delet
ing (if shrinking) columns of pixels from the source array. Vertical zooming
is accomplished by replicating or deleting rows of pixels. This type of
function is sometimes referred to as a "stretch blit."

5-182

• The first four arguments define the source rectangle:

The width ws,
The height hs, and
The coordinates (xs,ys) at the top left corner of the rectangle.

ws and hs must be nonnegative.

• The next four arguments define the destination rectangle:

The width wd,
The height hd, and
The coordinates (xs,ys) at the top left corner of the rectangle.

wd and hd must be nonnegative.

• The final argument, linebuf, is a buffer large enough to contain one
complete line of the display. The function uses the buffer as tempo
rary working storage; the buffer's original contents are destroyed. The
minimum buffer size (in bits) is the number of pixels per line times the
number of bits per pixel.

This zoom function either expands or shrinks the source array, depending
on its dimensions relative to the destination rectangle. Shrinking collapses
several pixels in the source array into a single pixel in the destination rec
tangle. The source pixels collapsed in this manner are combined according
to the current pixel processing operation (see the set-ppop function). For
example, the replace operation simply selects a single source pixel to rep
resent all the source pixels in the region being collapsed. A better result can
often be obtained using a logical-OR operation (at one bit per pixel) or a
max operation (at multiple bits per pixel).

Note:

Before you call this function, call the init-grafix function to initialize the
graphics environment.

Zoom Rectangle Function zoom-rect

Example /***/
/* Assume pixel size is 4 bits */
/***/
typedef struct { unsigned pixelsize : 4; } PIXEL;
static PIXEL imager] = {

} ;

6,7,6,7,6,7,7,7,6,7,6,6,6,7,6,6,6,7,7,7,6,
4,7,4,7,4,7,4,4,4,7,4,4,4,7,4,4,4,7,4,7,4,
5,7,7,7,5,7,7,5,5,7,5,5,5,7,5,5,5,7,5,7,5,
1,7,1,7,1,7,1,1,1,7,1,1,1,7,1,1,1,7,1,7,1,
3,7,3,7,3,7,7,7,3,7,7,7,3,7,7,7,3,7,7,7,3

PIXEL buf[4*640]; /* screen width = 640 */
int wd, hd, xd, yd;

init_video(1);
init_grafix() ;
init_screen() ;
put_rect(image, 21*4, 21, 5, 0, 0);
wd 42;
hd = 10;
xd = 4;
yd = 6;
while (wd < 300) {

zoom-rect(2l, 5, 0, ·0, wd, hd, xd, yd, buf);
xd += wd / 8;
yd += hd + 1;
wd += wd / 8;
hd += hd / 8;

5-183

Alphabetical Reference of Functions

A

acos 3-2, 5-2
add-text-space 4-10, 5-3
archive files 2-6
archiver 1 -2, 1-3, 2-6
ascent 4-12
asin 3-2, 5-4
assembler 1-2, 1-3, 2-5
assembly language development

flow 1-2
atan 3-2, 5-5
atan2 3-2, 5-6

B

batch files 2-4
bit-expand 4-24, 5-7
bound-fill 4-17,5-9
bound-patnfill 4-17,5-11

c
C compiler 1-3, 1-5, 2-5
calling functions 2-5
ceil 5-13
char-high 4-10, 4-12, 5-14
charpatn array 4-13
char-wide-max 4-10, 5-15
clear-screen 4-6,4-38,5-16
clipping rectangles 4-25
close-vuport 4-27,5-17
color palette functions 4-23
color-blend 4-23, 4-38, 5-18
compiling a program 2-5
copy-matrix 4-7,5-19
copy-vertex 4-7,5-20
copy-vuport 4-27, 5-21
cos 3-2, 5-22
cosh 3-2, 5-23
cotan 3-2, 5-24
cpw 4-27, 5-25

Index

o
delay 4-28, 5-27
descent 4-12
development tools ()verview 1 -2
draw-char 4-8, 5-28
drawing styles 4-16
draw-line 4-17,5-29
draw-oval 4-17,5-30
draw-ovalarc 4-17,5-31
draw-piearc 4-17,5-32
draw-point 4-17,5-33
draw-polyline 4-17,5-34
draw-rect 4-17,5-36
draw-string 4-8, 5-37

E

exp 3-2, 5-38

F

fabs 3-2, 5-39
figure shapes 4-16
fill patterns 4-20
fill-convex 4-17, 5-40
fill-oval 4-17, 5-42
fill-piearc 4-17, 5-43
fill-polygon 4-17, 5-45
fill-rect 4-17, 4-33, 5-47
firstchar 4-12
fix-to-float 3-4,5-48
fix-to-Iong 3-4, 5-49
fix-to-short 3-4, 5-50
FIX2FL 3-4, 5-51
FL-ADD 3-4, 5-53
FL-COS 3-4, 5-54
FL-MULT 3-4,5-55
float-to-fix 3-4, 5-57
floor 5-58

Index-1

FL-SIN 3-4, 5-56
FL2FIX 3-4, 5-52
fmod3-2, 5-5,9
font library 1 -5, 4-11
font management 4-11
fonts 4-14
fonttype 4-12
frame-oval 4-17, 5-60
frame-rect 4-17,5-61
frectwide 4-12
frexp 5-62
function library

in the development flow 1 -2

G

getall-palet 4-23, 4-38, 5-63
get-ascent 4-10, 5-64
get-descent 4-10, 5-65
get-first-ch 4-10, 5-66
get-font-max 4-11, 5-67
get-Iast-ch 4-10, 5-68
get-leading 4-10, 5-69
get-patn-max 4-19,5-70
get-pixel 4-24, 5-71
get"-pmask 4-19, 5-72
get-ppop 4-19, 5-73
get.,-'psize 4-19,5-74
get-rect 4-24, 5-75
get-transp 4-19,5-77
get-vuport-max 4-27,5-78
get....:.width 4-10, 5-79
graphics attributes 4-19
graphics output functions 4-16
graphics system initialization 4-6
gspc.bat 2-5, 2-6

H

how to use this manual 1 -4

Index-2

init-grafix 4-6, 5-80
init-matrix 4-7,5-81
init-palet 4-6, 4-38, 5-83
init-screen 4-6, 4-38, 5-84
in it-text 5-85
init-video 4-6, 4-38, 5-86
init-vuport 4-6,4-27,5-88
installation 2-1

MS-DOS 2-2
PC-DOS 2-2
VAX/System V 2-3
VAX/ULTRIX 2-3
VAXNMS 2-3

install-font 4-11, 5-89
install-patn 4-19,5-90
instruction set 1 -5

K

kern max 4-12

L

lastchar 4-12
Idexp 5-91
leading 4-12
lib-id 4-28, 5-92
line list 4-29, 4-31
linker 1-2, 1-3, 2-5
Imo 4-28, 5-93
loctable array 4-13
log 3-2, 5-94
log10 3-2, 5-95
long-to-fix 3-4, 5-96

M

manual organization 1 -4
modf 5-97
move-pixel 4-24, 5-98
move-rect 4-24, 5-99
move-vuport 4-27, 5-100
MS-DOS software installation 2-2

N

ndescent 4-12
new-screen 4-6, 4-38, 5-101

o
object format converter 1 -2
object libraries 1 -2, 2-4
open-vuport 4-27, 5-102
operation 2-1
owtable array 4-13
owtloc 4-12

p

patnfill-convex 4-17 5-103
patnfill-oval 4-17, 5~1 05
patnfill-piearc 4-17,5-106
path fill-polygon 4-17, 5-108
patnfill-rect 4-17,5-110
patnframe-oval 4-17,5-111
patnframe-rect 4-17, 5-112
patnpen-line 4-17,5-113
patnpen-ovalarc 4-17,5-114
patnpen-piearc 4-17,5-116
patnpen-point 4-17,5-118
patnpen-polyline 4-17,5-119
PC-DOS software installation 2-2
peek 4-28,5-121
peek-breg 4-28,5-122
pen-line 4-17,5-123
pen-ovalarc 4-17,5-124
pen-piearc 4-17,5-126
pen-point 4-17,5-128
pen-polyline 4-17, 5-129
perspec 4-7,5-131
pixel functions 4-24
point'list 4-29, 4-30
poke 4-28,5-134
poke-breg 4-28, 5-135
pow 3-2,5-136
put-pixel 4-24,5-137
put-rect 4-24,5-138

R

related documentation 1.-5
rep-pixel 4-28, 5-140
rmo 4-28,5-141
rotate 4- 7, 5-142
rowwords 4-13
run-decode 4-24, 5-144
run-encode 4-24,5-145

s
scale 4-7,5-147
SDB 1-5
seed-fill 4-17,5-148
seed-patnfill 4-17, 5-150
select-font 4-11, 5-152
select-patn 4-19,5-153
select-vuport 4-27, 5-154
setall-palet 4-23,4-38,5-155
set-cliprect 4-27, 5-157
set-colorO 4-19,5-158
set-color1 4-19, 5-159
set-origin 4-27,5-160
set-palet 4-23, 4-38, 5-161
set-pen size 4-19,5-162
set-pmask 4-19,5-163
set~ppop 4-19,5-164
short-tD-fix 3-4, 5-165
simulator 1 -2
sin 3-2,5-166
sinh 3-2,5-167
size-vuport 4-27, 5-168
software development board 1-5
source libraries 2-4
sqrt 5-169
style and symbol conventions 1 -6.
styled-line 4-17,5-170
support tools 1 -2

'T

tan 3-2, 5-172
tanh 3-2,5-173
text attribute functions 4-9
text outp.ut functions 4-8
transform 4-7,5-174
transformation matrix 4-29
translate 4-7, 5-176
transp-Off 4-19, 5-177

Index-3

transp-on 4-19,5-178

v
VAX/System V software installation 2-3
VAX/ULTRIX software installation 2-3
VAX/VMS software installation 2-3
vertex list 4-29
vertex-tO-point 4-7, 5-1 79
viewport management 4-25

w
wait-scan 4-28, 5-180
widemax 4-1 2

Indexc4

x
xytoaddr 4-28,5-181

z
zoom-rect 4-24,5-182

3

3D transformations 4-7

TI Worldwide
Sales Offices
ALABAMA: Huntsyille: SOD Wynn Drive, Suite 514,
Huntsville, Al 35805, (205) 837·7530.

ARIZONA: Phoenix: 8825 N. 23rd.Ave., Phoenix,
AZ 85021, (602) ~95-1007.

CALIFORNIA: Irvine: 11891 Cartwright Ad., Irvine,
CA 92714, (714) 660-8187; Sacramenlo: 1900 Point
West Way, Suite 171, Sacramento, CA 95815,

~~~~ 9J~'~~~lb~:;o.Dh'~2~~~~ (~;~) 2~~&io~:ye., 
Sanla Clara: 5353 Betsy Ross Dr., Santa Clara, GA 
95054, (408) 980·9000: Torrance: 690 Knox St., 
Torrance, CA 90502, (213) 217·7010; 
Woodland Hills: 21220 Erwin 51., Woodland Hills, 
eA 91367, (818) 704-7759. 

COLORADO: Aurora: 1400 S. Potomac Ave., 
Suite 101, Aurnra, CO 80012, (303) 368-8000 

CONNECTICUT: Wallingford: 9 Barnes Industrial 
Park Ad., Barnes Industrial Park, Wallingford, 
CT 06492, (203) 269.(J()74. 

FLORIDA: Flo Lauderdale: 2765 N.W. 62nd St., 
Ft. Lauderdale, FL 33309, (305) 973·8502; 
Mailland: 2601 Maitland Center Parkway, 
Mailland, FL 32751, (305) 660-4600; 
Tampa: 5010 W. Kennedy Blvd., Suite 101, 
Tampa, FL 33609, (813) 870·6420 

GEORGIA: Norcross: 5515 Spalding Drive, Norcross. 
GA 30092, (404) 662·7900 

~r~il~g~~~: ~!:~~':.~LH~~~:(g~~) ~40~J~25.qUin, 
:~~1:8~~,: (~~'9r:l:;~~~~0 Inwood Or., Ft. Wayne, 

Indianapolis: 2346 S. Lynhurst, Suite J·4oo, 
Indianapolis, IN 46241, (317) 248·8555. 

IOWA: Cedar Rapids: 373 Collins Rd. NE, Suite 200, 
Cedar Rapids, IA 52402, (319) 395·9550. 

MARYLAND: Baltimore: 1 Rutherford PI., 
7133 Rutherford Rd., Baltimore, MO 21207, 
(301) 944·8600. 

MASSACHUSETTS: Waltham: 504 Tollen Pond Rd., 
Waltham, MA 02154, (617) 895·9100. 

~!~~~~~:n: ~~~i~t:~~:,1(3l:)7~~3~~. Mile Rd., 

MINNESOTA: Eden Prairie: 11000 W. 78th St., 
Eden Prairie, MN 55344 (612) 828·9300. 

MISSOURI: Kansas City: 8080 Ward Pkwy., Kansas 
City, MO 64114, (818) 523·2500; 
SI. Louis: 11816 Borman Drive, St. Louis, 
MO 63146, (314) 569·7600. 

NEW JERSEY: Iselin: 485E U.S. Route 1 Soulh, 
Parkway Towers, Iselin, NJ 08830 (201) 75()..1050 

~~:"A:~:~~~~u~~bN~U:~'O~~ f:£'~4~~~~~~enl Pkwy 

~:r:J!!~~:yE~~~"?3~5)~:6~~:i9~01Iamer Dr., Easl 
EndlcoH: 112 Nanticoke Ave., P.O. Box 618, Endicott, 
NY 13760, (607) 754·3900; Malville: 1 Huntington 
Quadrangle, Suite 3Cl0, P.O. Box 2936, Melville~ 
NY 11747, (516) 454.e600; Pittsford: 2851 Clover St., 
Pittsford, NY 14534, (716) 385-6770; 

~yU';:01.l(91:l)a:i3~ooh~ Rd., Poughkeepsie, 

NORTH CAROLINA: Charlotte: 8 Woodlawn Green, 
Woodlawn Rd., Charlotte, NC 28210, (704) 527-0930; 

~~eJ'~2;,~~~iB~:f72~~ Blvd., Suite 100, Raleigh, 

OHIO: Beachwood: 23408 Commerce Park Rd., 
BeaChwood, OH 44122, (216) 464-6100; 

g~~0s"d3~:(gf1jY2:~~7i.'24 Linden Ave., Dayton, 

OREGON: Beaverton: 6700 SW 105th St., Suite 110, 
Beaverton, OR 97005, (503) 643-6758. 

PENNSYlVANIA: FI. Washington: 260 New York Dr., 
Ft. Washington, IlA 19034, (215) 643·6450; 
Coraopolis: 420 Rouser Rd., 3 Airport Office Park., 
Coraopolis, PA 15108, (412) 771·8550. 

PUERTO RICO: Halo Rey: Mercantil Plaza Bldg., 
SUIte 505, Hato Rey, PR 00919, (809) 753·8700. 

TEXAS: Austin: P.O. Box 2909, Austin, TX 78769, 
(512) 250·7655; Richardson: 1001 E. Campbell Ad., 
Richardson, TX 75080, 
(214) 680·5082; Houston: 9100 Southwest Frwy., 
Suite 237, Houston, TX 77036, (713) 778-6592; 
San Antonio: 1000 Central Parkway South, 
San Antonio, TX 78232, (512) 496·1779. 

UTAH: Murray: 5201 South Green SE, Suite 200, 
Murray, UT 84107, (801) 266-8972. 

VIRGINIA: Fairfax: 2750 Prosperity, Fairfax, VA 
22031, (703) 849·1400. 

WASHINGTON: Redmond: SOlO 148th NE, Bldg B, 
Suite 107, Redmond, WA 98052, (206) 881-3080. 

WISCONSIN: Brookfield: 450 N. Sunny Slope, 
Suite 150, Brookfield, WI 53005, (414) 785·7140. 

CANADA: Nepean: 301 Moodie Drive, Mallorn 
Center, Nepean, Onlario, Canada, K2H9C4, 
(613) 726·1970. Richmond Hill: 280 Centre SI. E., 
Richmond Hill L4C1B1, Ontario, Canada 
(416) 884·9181; SI. Laurent: Ville St. Laurent Quebec. 
9460 Trans Canada Hwy., St. Laurent, Quebec, 
Canada H4S1A7, (514) 335·8392 

ARGENTINA: Texas Instrumenls Argenlina 
S.A.I.C.F.: Esmeralda 130, 15th Floor, 1035 Buenos 
Aires, Argentina, 1 + 394·3008. 

AUSTRALIA C& NEW ZEALAND): Texas Instruments 
Australia Ltd.: S·10·Talavera Rd., North Ryde 

kS~d8B~~1 ~2~~ 5~~u~~~~~;~ ~~s~~r~: ~6~: 
Melb.Jurne, Victoria, Australia 3004, 3 '" 267·4677; 
~71 ~~~!f~~hway, Elizabeth, South Australia 5112, 

AUSTRIA: Texas Instruments Ges.m.b.H.: 
Industrlestrabe B116, A·2345 BrunnlGebirge, 
2236·646210. 

~;~;J~Mce~~~,s ~~~!:t~V:~:s,~O~ A~:IS~U:!; ~u~~e, 
1130 Brussels, Belgium, 21720.80.00. 

BRAZIL: Texas Instruments Electronlcos do Brasil 
Ltda.: Rua Paes Leme, 524·7 Andar Plnheiros, 05424 
Sao Paulo, Brazil, 0815-6166, 

DENMARK: Texas Instruments A/S, Malrelundvej 
46E, OK·2730 Herlev, Denmark, 2 . 91 74 00. 

FINLAND: Texas Instruments Finland OY: 
Teollisuuskatu 190 00511 Helsinki 51, Finland, (90) 
701-3133. 

FRANCE: Texas Instruments France: Headquarters 
and Prod. Plant, BP 05, 06270 Villeneuve·loubel, 
(93) 20·01·01; Paris Office, BP 67 8-10 Avenue 
Morane·Saulnier, 78141 Velizy·VilIacoublay, 
(3) 946-97·12; Lyon Sales Office, L'Oree O'Ecully, 
Batlment B, Chemin de \a Forestiere, 69130 Ecully, 
(7) 833..()4-40; Strasbourg Sales Office, Le Sebastopol 
3, Quai Kleber, 67055 Strasbourg Cedex, 

~S:i~2~:~6n6~s7(~e:l.~~; ~~~I~~:eu~:I!!aO~~ie, 
Le Peripole-2, Chemin du Pigeonnier de la Cepiere, 
31100 Toulouse, (61) 44·18-19; Marseille Sales Office, 
Noilly Paradis-l46 Rue Paradis, 13006 Marseille, 
(91) 37·25·30. .. 

TEXAS 
INSTRUMENTS 

~~~~~:n~t~:~I:~~~~I~C cf~~~~~~~~~~:~sse " 
D-80!lO Freising, 8161 +80·4591; Kurfuerstendamm
1951198,0·1000 Berlin 15, 30+882-7365; III, Hagen
43JKibbelstrasse, .19, 0-4300 Essen, 201·24250;
Frankfurter Allee 8-8, 0-6236 Eschborm "
06198 + 8070; Hamburgerstrasse 1" 0·2000 Hamburg
76, 040 + 220·1154, Kirchhorsterstrasse 2, 0·3000
Hannover 51, 511 +648021; Maybachstrabe II,
0·7302 Ostfildern 2·Nelingen, 711 +547001;
Mixikoring 19, 0·2000 Hamburg 50, 40+637+0061;
Postfach 1309, Roonstrasse 16, 0·5400 Koblenz,
261 +35044.

HONG KONG (+ PEOPLES REPUBLIC OF CHINA):
Texas Instruments Asia Ltd., 8th Floor, World
Shipping Clr., Harbour City, 7 Canton Rd., Kowloon,
Hong Kong, 3 + 722·1223.

IRELAND: Texas Instruments (Ireland) Limited'
Brewery Ad., Stillorgan, County Dublin, Eire,
1831311.

ITALY: Texas Instruments Semlcondutton lIalia Spa:
Viale Delle Sclenze, 1,02015 Cittaducale (RieU),
Italy, 746 694.1; Via Salaria KM 24 (Palazzo Cosma),
Monterolondo Scalo (Rome), Italy, 6+9003241; Viale
Europa, 38-44, 20093 Cologno Monzese (Milano),
22532541; Corso Svizzera, 185, 10100 Torino, Italy,
11774545; Via J. Barozzl6, 40100 Bologna, Italy, 51
355851.

JAPAN: Texas Instruments Asia Ltd.: 4F Aoyama
Fuji Bldg., 6·12, Kita Aoyama 3·ChOme, Minato-ku,
Tokyo, Japan 107, 3·498·2111; Osaka Branch, 5F,
Nissho Iwa; Bldg., 30 Imabashi 3· Chome,
Higashi.ku, Osaka, Japan 541, 06·204·1881; Nagoya
Branch, 7F Daini Toyota West Bldg., 10·27, Melek;
4·Chome, Nakamura-ku Nagoya, Japan
450, 52·583·8691.

KOREA: Texas Instruments Supply Co.: 3rd Floor,
Samon Bldg., Yuksam·Dong, Gangnam·ku,
135 Seoul, Korea, 2+462·8001.

MEXICO: Texas Instruments de Mexico SA: Mexico
City, .'IV Reforma No. 450 - 10th Floor, Mexico,
O.F., 06600, 5+514·~003.

MIDDLE EAST: Texas Instruments: No. 13, 1st Floor
Mannai Bldg., Diplomalic Area, P.O. Box 26335,
Manama Bahrain, Arabian Gulf, 973 + 274681.

NETHERL.ANDS: Texas Instruments Holland B.v.,
P.O. Box 12995, (Bullewijk) 1100 CB Amsterdam,
Zuid·Oost, Holland 20+5602911.

NORWAY: Texas Instruments Norway A/S: PB106,
Refstad 131, Oslo " Norway, (2) 155090.

PHILIPPINES: Texas Instruments Asia Ltd.: 14th

~~~!t;~~~~g~!~i~l,d~hi~~~rn::~~~g~8~ga~~, 
PORTUGAL: Texas Instruments Equipamenlo 

GII~i~~~~C~ (:~r~i~:15aL~~ia~~~7?i~·:;~~6~\~~al, 
2-948·1003. 

SINGAPORE (+ INDIA, INDONESIA, MALAYSIA, 
THAILAND): Texas Instruments Asia Ltd.: 12 Lorang 
Bakar Batu, Unit 01·02, Kolam Ayer Industrial Estate, 
Republic of Singapore, 747·2255. 

SPAIN: Texas Instruments Espana, S.A.: ClJose 
Lazaro Galdlano No, 6, Madrid 16, 1/458.14.58. 

SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefllialen): Box 39103, 10054 
Stockholm, Sweden, 8 • 235480. 

SWITZERLAND: Texas Inslruments, Inc., Reidstrasse 
6, CH-8953 Oietikon (Zuerich) Switzerland, 
1·740 2220. 

TAIWAN: Texas Instruments Supply Co.: Room 903, 
205 Tun Hwan Rd., 71 Sung-Kiang Road, Taipei, 
Taiwan, Republic of China, 2 + 521·9321. 

UNITED KINGDOM: Texas Instruments Limited: 
Manton Lane, Bedford, MK41 7PA, England, 0234 
67466; SI. James House, Wellington Road North, 
Stockport, SK4 2RT, England, 61 +442·7162. 

8M 



TI Sales Offices TI Distributors 
ALABAMA: Huntsville (205) 837-7530 

ARIZONA: Phoenix (602) 995-1007; 
Tucson (602) 624-3276, 

CALIFORNIA: Irvine (714) 660-1200; 
Sacramento (916) 929-0197; 
San Diego (619) 278-9600; 
Santa Clara (408) 980-9000; 
Torrance (213) 217-7000, 
Woodland Hills (SIS) 704-7759. 

COLORADO: Aurora (3D3) 368-8000. 

CONNECTICUT: Wallingford (203) 269-0074. 

FLORIDA: Altamonte Springs (305) 260-2116; 
Ft. Lauderdale (305) 973·8502; 
Tampa (813) 286-0420 

GEORGIA: Norcross (404) 662·7900, 

ILLINOIS: Arlington Heights (312) 640-3000. 

INDIANA; Carmel (317) 573-6400; 
Ft. Wayne (219) 424-5174 

IOWA: Cedar Rapids (319) 395-9550. 

KANSAS: Overland Park (913) 451·4511. 

MARYLAND: Baltimore (301) 944·8600. 

MASSACHUSETIS: Waltham (617) 895·9100 

MICHIGAN: Farmington Hills (313) 553-1500; 
Grand Rapids (616) 957·4200 

MINNESOTA: Eden Prairie (612) 828·9300 

MISSOURI: St. Louis (314) 569-7600 

NEW JERSEY: Iselin (201) 750·1050. 

NEW MEXICO: Albuquerque (50S) 345·2555. 

NEW YORK: East Syracuse (315) 463·9291, 
Melville (516) 454-6600; Pittsford (716) 385-6770; 
Poughkeepsie (914) 473-2900 

NORTH CAROLINA: Charlotte (704) 527·0930; 
Raleigh (919) 876-2725, 

OHIO: Beachwood (216) 464-6100; 
Dayton (513) 258-3877. 

OREGON: Beaverton (503) 643-6758 

PENNSYLVANIA: Blue Bell (215) 825-9500 

PUERTO RICO: Hato Rey (809) 753-8700. 

TENNESSEE: Johnson City (615) 461-2192 

TEXAS: Austin (512) 250-6769; 
Houston (713) 778·6592; Richardson (214) 680-5082; 
San Antonio (512) 496-1779. 

UTAH: Murray (801) 266-8972 

VIRGINIA: Fairfax (703) 849-1400 

WASHINGTON: Redmond (206) 881·3080. 

WISCONSIN: Brookfield (414) 782-2899 

CANADA: Nepean, Ontario (613) 726-1970; 
Richmond Hill, Ontario (416) 884·9181; 
St. Laurent, Quebec (514) 336-1860. 

TI Regional 
Technology Centers 
CALIFORNIA: Irvine (714) 660-8140; 
Santa Clara (408) 748-2220; 
Torrance (213) 217·7019. 

COLORADO: Aurora (303) 368-8000. 

GEORGIA: Norcross (404) 662·7945. 

!.lUNOIS Arlington Heights (313) 640-2909. 

MASSACHUSETIS: Waltham (617) 895·9196. 

TEXAS: Richardson (214) 680·5066 

CANADA: Nepean, Ontario (613) 726-1970. 

TI AUTHORIZED DISTRIBUTORS 
Arrow/Kierulff Electronics Group 
Arrow Canada (Canada) 
Future ElectroniCS (Canada) 
GRS Electronics Co., inc. 
Hall-Mark Electronics 
Marshall Industries 
Newark ElectroniCS 
Schweber Electronics 
Time Electronics 
Wyle Laboratories 
Zeus Components 

-OBSOLETE PRODUCT ONLY
Rochester Electronics, Inc. 
Newburyport, Massachusetts 
(617) 462-9332 

ALABAMA: ArrowJKierulff (205) 837-6955; 
Hall·Mark (205) 837·8700; Marshall (205) 881·9235; 
Schweber (205) 895-0480 

ARIZONA: ArrowJKierulff (602) 437-0750, 
Hall·Mark (602) 437·1200, Marshall (602) 496·0290; 
Schweber (602) 997-4874; V:'yle (602) 866-2888, 

CALIFORNIA: Los Ange-lesJOrange County: 
Arrow/Kierulfl (818) 701-7500, (714) 838-5422; 
Hall-Mark (818) 716-7300, (714) 669-4100, 
(213) 217-8400; Marshall (818) 407-0101, (818) 459-5500, 
(714) 458-5395; Schweber (818) 999-4702; 
(714) 863-0200. (213) 320·8090; Wyle (213) 322-9953, 
(818) 880-9000, (714) 863-9953; Zeus (714) 921-9000; 
Sacramento: Hall-Mark (916) 722-8600; 
Marshall (916) 635·9700; Schweber (916) 929·9732; 
Wyle (916) 638-5282; 
San Oiego: ArrowfKierulfl (619) 565-4800; 
Hall·Mark (619) 268-1201; Marshall (619) 578·9600; 
Schweber (619) 450-0454; Wyle (619) 565-9171; 
San Francisco Bay Area: Arrow/Klerulff (408) 745-6600, 
Hall-Mark (408) 432-0900; Marshall (408) 942·4600: 
Schweber (408) 432-7171; Wyle (408) 727-2500; 
Zeus (408) 998-5121. 

COLORADO: Arrow/Kierulff (303) 790·4444, 
Hall·Mark (303) 790-1662: Marshall (303) 451·8383; 
Schwebe- (303) 799-0258; Wyle (303) 457-9953 

CONNETICUT: Arrow(Kierulff (203) 265·7741, 
Hall-Mark (203) 269-0100; Marshall (203) 265·3822; 
Schweber (203) 748-7080. 

FLORIDA: FI. Lauderdale: 
Arrdw/Kierulff (305) 429-8200; Hall-Mark (305) 971·9280: 
Marshall (305) 977-4880; Schweber (305) 977·7511, 
Orlando: Arrow/Kierulff (305) 725-1480, (305) 682-6923; 
Hall·Mark (305) 855-4020; Marshall (305) 767-8585; 
Schweber (305) 331-7555; Zeus (305) 365·3000; 
Tampa: Hall-Mark (813) 530-4543, 
Marshall (813) 576-1399. 

GEORGIA: Arrow/Kierulff (404) 449-8252; 
Hall-Mark (404) 447·8000; Marshall (404) 923-5750; 
Schweber (404) 449-9170 

ILLINOIS: Arrow/Kierulff (312) 250-0500; 
Hall-Mark (312) 860-3800: Marshall (312) 490-0155; 
Newark (312) 784·5100; Schweber (312) 364-3750 

INDIANA: Indianapolis: Arrow/Kierulff (317) 243-9353; 
Hall·Mark (317) 872·8875; Marshall (317) 297-0483 

IOWA: Arrow/Kierulff (319) 395-7230: 
Schweber (319) 373·1417. 

KANSAS: Kansas City: Arrow/Kierulff (913) 541-9542; 
Hall-Mark (913) 888-4747; Marshall (?13) 492-3121; 
Schweber (913) 492-2922. 

MARYLAND: Arrow/Kierulff (301) 995·6002, 
Hall·Mark (301) 988-9800; Marshall (301) 840·9450; 
Schweber (301) 840-5900: Zeus (301) 997-1118. 

~ 
TEXAS 

INSTRUMENTS 

MASSACHUSETIS Arrow/Kierulff (617) 935·5134; 
Hall-Mark (617) 667-0902; Marshall (617) 658-0810; 
Schweber (617) 275-5100, (617) 657-0760; 
Time (617) 532-6200; Zeus (617) 863-8800. 

MICHIG,AN: Detroit: Arrow/Kierulff (313) 971-8220; 
Marshall (313) 525-5850; Newark (313) 967-0600; 
Schweber (313) 525-8100; 
Grand Rapids: Arrow/Kierulff (616) 243·0912. 

MINNESOTA: Arrow/Kierulff (612) 830-1800; 
Hall-Mark (612) 941-2600, Marshall (612) 559-2211; 
Schweber (612) 941-5280. 

MISSOURI: SI. Louis: Arrow/Kierulff (314) 567-6888; 
Hall·Mark (314) 291-5350; Marshall (314) 291-4650, 
Schweber (314) 739-0526. 

NEW HAMPSHIRE: Arrow/Klerulff (603) 668-6968: 
Schweber (603) 625·2250. 

NEW JERSEY: Arrow/Kierulff (201) 538-0900, 
(609) 596-8000; GRS Electronics (609) 964-8560; 
Hall·Mark (201) 575-4415, (609) 235-1900; 
Marshall (201) 882·0320, (609) 234-9100; 
Schweber (201) 227-7880. 

NEW MEXICO: Arrow/Klerulff (505) 243-4566. 

NEW YORK: Long Island: 
Arrow/Klerulff (516) 231-1000; Hall-Mark (516) 737-0600; 
Marshall (51S) 273·2424; Schwebel (516) 334-"1555; 
Zeus (914) 937-7400, 
Rochester: Arrow/Klerulff (716) 427-0300 
Hall·Mark (716) 244·9290; Marshall (716) 2,35·7620; 
Schweber (71S) 424-2222; 
Syracuse: Marshall (S07) 798-1611. 

NORTH CAROLINA: Arrow/Kierulff (919) 876-3132, 
(919) 725·8711; Hall·Mark (919) 872-0712; 
Marshall (919) 878-9882; Schweber (919) 876-0000. 

OHIO: Cleveland: Arrow/Kierulff (216) 248·3990; 
Hall·Mark (216) 349-4632; Marshall (216) 248-1788; 
Schweber (216) 464-2970, 
Columbus: Arrow/Kierulff (614) 436-0928; 
Hall-Mark (614) 888-3313; 
Dayton: Arrow/Klerulff (513) 435·5563; 
Marshall (513) 898·4480; Schweber (513) 439-1800. 

OKLAHOMA: Arrow/Kierulff (918) 252-7537; 
Schweber (918) 622-8003. 

OREGON: Arrow/Kierulff (503) 645·6456; 
Marshall (503) 644-5050; Wyle (503) 640-6000. 

PENNSYLVANIA: Arrow/Kierulff (412) 856·7000, 

~2clh5l;~:; (~~g; ~4~~o~~8,tr~~ig) J~1~J8~2J' 7037; 

TEXAS: Austin: Arrow/Kierulff {512} 835·4180; 
Hall-Mark (512) 258-8848; Marshall (512) 837-1991; 
Schweber (512) 339-0088; Wyle (512) 834-9957; 
Dallas: Arrow/Klerulff (214) 380-6464; 
Hall-Mark (214) 5~3-4300; Marshall (214) 233·5200; 
Schweber (214) f 51-5010; Wyle (214) 235·9953; 
Zeus (214) 783-7010; 
Houston: Arrow/Kierulff (713) 530-4700; 
Hall-Mark (713) 781-6100; Marshall (713) 895·9200; 
Schweber (713) 784·3600; Wyle (713) 879-9953. 

UTAH: Arrow/Kierulff (801) 973-6913; 
Hall-Mark (801) 972-1008; Marshall (801) 485·1551; 
Wyle (801) 974-9953. 

WASHINGTON: Arrow/Kierulff (206) 575-4420; 
Marshall (206) 747-9100; Wyle (206) 453·8300. 

WISCONSIN: Arrow/Kierulff (414) 792-0150; 
Hall-Mark (414) 797·7844; Marshall (414) 797-8400; 
Schweber (414) 784-9020. 

CANADA: Calgary: Future (403) 235-5325; 
Edmonton: Future (403) 438-2858: 
Montreal: Arrow Canada (514) 735-5511: 
Future (514) 694-7710; 
Ottawa: Arrow Canada (613) 226-6903; 
Future (613) 820-8313; 
Quebec City: Arrow Canada (418) 687-4231; 
Toronto: Arrow Canada (416) 672-7769; 
Future (416) 638-4771: 
Vancouver: Future (604) 294·1166; 
Winnipeg: Fulure (204) 339-0554. 

Customer 
Response Center 
TOLL FREE: (800) 232-3200 

OUTSIDE USA: (214) 995-6611 
(8:00 a.m. - 5:00 p.m. CST) 

8U 



Printed in U.S.A. 
1604898-9706 

-1!1 
TEXAS 

INSTRUMENTS 

SPVU006 


