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About This Manual

Objectives

This manual provides a concise collection of the information required for writing
programs that directly access the CM-5 vector unit (VU) accelerators. There are
two low-level instruction sets available on the CM-5: DPEAC and CDPEAC. A
program that directly manipulates the VU accelerators will typically include
subroutines written in either DPEAC or CDPEAC. Both methods of
programming the vector unit accelerators are described in this manual.

IMPORTANT

You do not have to use the methods described in this book to
write programs that access the CM-5 VUs. The compilers for
high-level CM languages (such as CM Fortran and C*) auto-
matically take advantage of the VUs where possible, without
the need for explicit instructions. The information presented
here is intended for knowledgeable users who want to hand-
code specific low-level subroutines for execution on the VUs.

Intended Audience

This is a programmer's handbook, not a tutorial. This document describes the
DPEAC and CDPEAC instruction sets in detail, and provides some examples of
their use, but is intended to be used by knowledgeable CM programmers in
writing low-level code. For the most part, this handbook contains concise
summaries of information that these low-level programmers will find helpful.

CMosr Version Z2, August 1993
Copyright 0 1993 Thinking Machines Corporation ix
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Revision Information

This is a new manual.

Organization of This Manual

Chapter 1 Introduction
Presents an overview of the CM-5 and the two low-level instruc-
tion sets DPEAC and CDPEAC.

Chapter 2 The CM-5 Vector Units
Describes the design and features of the CM-5's vector unit
accelerators.

Chapter 3 The DPEAC Instruction Set
Explains the syntax and structure of the DPEAC instruction set.

Chapter 4 DPEAC Instruction Set Reference
Lists the arithmetic, memory, modifier, and accessor instruc-
tions of the DPEAC instruction set.

Chapter 5 The CDPEAC Instruction Set
Explains syntax and structure of the CDPEAC instruction set.

Chapter 6 CDPEAC Instruction Set Reference
Lists the arithmetic, memory, modifier, and accessor instruc-
tions of the CDPEAC instruction set.

Chapter 7 Using DPEAC/CDPEAC in Programs
Presents an example of using a DPEAC (or CDPEAC) subrou-
tine in a CM Fortran program.
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Appendixes:

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

VU Memory Mapping
Explains the layout of VU parallel memory.

VU Memory Maps
A three-page VU memory map and register quick-reference.

VU Pipeline
Describes of the operation of the VU instruction pipeline, and its
effects on execution of VU vector instructions.

VU Arithmetic Operations
Describes the arithmetic instruction set of the VUs, with special
emphasis on the status bits that are modified by each instruction.

The dpas Assembler
Describes dpas, the DPEAC assembler.

The dpcc Compiler
Describes dpcc, the CDPEAC compiler.

How CDPEAC Works
Describes the implementation of CDPEAC via the GCC compil-
er's asm statement and macro facility.

CMRTS and CM Memory Allocation
Describes the CM Run-Tunme system, CM parallel array data
structures, and methods for allocating parallel memory either
through the CMRTS or by other means.

Related Documents

These documents are part of the Connection Machine documentation set.

* Programming the NI, Version 7.1.

* DPEAC Reference Manual, CMOST Version 7.1.
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Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter

italics

UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also programming language
elements, such as keywords, operators, and func-
tion names, when they appear embedded in text.

Argument names and placeholders in function and
command formats.

typewriter

% bold typewriter
regular typewriter

Code examples and code fragments.

In interactive examples, user input is shown in
bold typewriter and system output is shown in
regular typewriter font.

-.

';
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Thining Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinldng Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-supportsthink.com

ames! think! customer-support

Thinkidng Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

CMosT Yersion 7.2, August 1993
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Chapter 1

Introduction

1.1 Programming the CM-5 Vector Units (VUs)

Writing a program that takes explicit control of the vector unit (VU) accelerators
of the Connection Machine CM-5 system requires an understanding of the
CM-5's hardware design (in particular, the design and function of the VUs them-
selves), and how to construct programs that contain assembly-level CM-5 code.

This chapter presents a brief overview of the CM-5's hardware design, along
with a description of the assembly-level instruction sets (DPEAC and CDPEAC)
that are available on the CM-5.

IMPORTANT

You do not have to use the methods described in this book to
write programs that access the CM-5 VUs. The compilers for
high-level CM languages (such as CM Fortran and C*) auto-
matically take advantage of the VUs where possible, without
the need for explicit instructions. The information presented
here is intended for knowledgeable users who want to hand-
code specific low-level subroutines for execution on the VUs.

CMor Version 7.Z2, August i1993
Copyright 0 1993 Thinking Machines Corporation I
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1.2 The CM-5 Hardware

The CM-5 computing environment consists of a partition of processing nodes
(each of which has its own memory) together with a partition manager (PM).
These components are linked together by the CM-5's internal communication
networks: the Data Network and Control Network (see Figure 1).

Depending on how the CM-5's processing nodes have been configured by the
system administrator, there may be one or several partitions active in a CM-5 at
any one time. A partition of processing nodes is treated as a single computing
system for the purpose of assigning and swapping processes.

Figure 1. The CM-S computing environment.

The partition manager (PM) contains a RISC CPU and connecting hardware that
allows the PM to interact with other computers and with users on terminals.
Thus, the PM is the "gateway" by which a programmer gains access to the pro-
cessing nodes of the CM-5 and instructs the CM-5 to execute a program.

1.2.1 The CM-5 Networks

The CM-5's processors can exchange information with each other through the
machine's internal networks.

The Data Network is a high-speed, high-bandwith network for data transmission.
It is the primary means for sending large blocks of information between the
nodes and/or the PM.

The Control Network is a high-speed internal network for control functions, such
as broadcasting a value to the nodes, parallel-prefix computations, and node syn-
chronization.

CMosr Version 72, August 1993
Copyright 0 1993 Thining Machines Corporation
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1.2.2 The CM-5 Processing Nodes

A CM-5 processing node consists of a RISC processor, a Network Interface chip,
4 memory units, 4 vector unit arithmetic accelerators, and a 64-bit MBUS that
links the various components together.

Figure 2. A typical CM-5 processing node.

The RISC processor (CPU) is a SPARC chip in the current implementation, and
will hereafter be referred to as the "SPARC" or the "SPARC CPU".

The Network Interface (NI) is the node's link to the CM-5 networks, and is used
by the SPARC IU to send messages to other nodes and to the PM.

1.2.3 The CM-5 Vector Units

The vector unit (VU) accelerators are located between the SPARC CPU and node
memory, and typically act as memory controllers, handling memory store and
fetch operations as required by the SPARC.

However, some memory operations are interpreted as instructions by the VUs:
the value written is interpreted as a VU arithmetic and/or memory instruction,
and the address to which it is written determines which of the four VUs on the
node will execute the instruction. Thus, VU computations are invoked by (and
look like) SPARC memory operations.

Chapter 2 provides more detail on the vector units, and describes features of their
internal design that are important for DPEAC and CDPEAC programmers.

CMosr Version 2, August 1993
Copyright © 1993 hinking Machines Corporation
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1.3 The DPEAC and CDPEAC Instruction Sets

The Connection Machine system provides a number of layers of software that are
used to write CM-5 programs. The basic structure is shown below. Typically, a
user-written CM-5 program depends on high-level software for the majority of
its data structures and control flow, and only directly calls low-level code for
hand-crafted subroutines that must execute as efficiently as possible.

Figure 3. Structure of software layers on the CM-5.

Note: There is nothing inherently inefficient about a program written in a high-
level CM-5 programming language. The CM-5 language compilers themselves
make use of efficient low-level routines wherever possible.

1.3.1 The CM-5 Assembly Code Level

Because the instruction units of the CM-5 processing nodes are SPARC chips,
the SPARC assembler instruction set is the CM-5's "native" machine language
instruction set. However, there is an entirely different instruction set used to
compose instructions for the CM-5's vector units. This instruction set is called
DPFEAC. There is also a C interface to DPEAC, called CDPEAC. Which instruc-
tion set you use depends on your experience and programming needs.

CMosr Version 7Z2, August 1993
Copyright 0 1993 Thinking Machines Corporation
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1.3.2 DPEAC - Vector Unit Assembly Code

The DPEAC instruction set is the assembly code" of the CM-5 vector unit
accelerators. DPEAC looks much like standard assembly code, in that it consists
of instructions that perform arithmetic and memory operations:

Start: floadv

fmulv

fmadav

floadv

fstorev

[%iO]:4, V2

V2, r3.69, V3

V2, 0r25.0, V4

[%il]:4, V5; fmadav V3,V4,V5

[%i2]:4, V5

However, DPEAC instructions are not executed directly by the SPARC. Instead,
they are assembled into singleword or doubleword values that can be written to
the VUs to cause them to execute the appropriate arithmetic and/or memory
operations.

DPEAC code and SPARC assembly code can be intermixed freely; the SPARC
code is executed by the SPARC processor, and the DPEAC code is sent to the
VUs for execution.

Coding in DPEAC is best for a programmer with some experience in coding at
the assembly-code level. It requires skill in managing the SPARC registers and
a firm knowledge of the SPARC ABI calling conventions, which describe how
subroutines pass values to each other at the SPARC assembly code level.

dpas- The DPEAC Assembler

The dpas assembler is used to assemble a DPEAC program. dpas is an exten-
sion of the SPARC as assembler, it translates DPEAC instructions into SPARC
instructions, and then passes the translated instructions to as for final assembly.

IDPEAC o" I object code 

For a more detailed description of the dpas assembler, see Appendix E.

CMosrT Version Z2, August 1993
Copyright 0 1993 Thinking Machines Corporation
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1.3.3 CDPEAC - DPEAC Written in C

For those programmers who would rather not code at the DPEAC level, there is
an alternative: the CDPEAC instruction set. CDPEAC is a set of macros written
in the C programming language, which can be used to insert DPEAC instructions
into the body of a standard C function or subroutine.

A CDPEAC routine generally consists of both C and CDPEAC code:

CDPEAC routine(aloc,bloc,size)

unsigned aloc,bloc,size;

{ dpsetup();

for ( ; size ; size-= 8 ); {

loadv u(f,aloc,4,V2);

join2( loadv_ u(f,bloc,4,V3), madav(f,V2,V2,V3) );
storev u(f,bloc,4,V3);

aloc += (4*8); bloc +=. (4*8);

}

CDPEAC instructions expand directly into corresponding DPEAC instructions;
the two instruction sets are best seen as two ways of accomplishing the same
thing. Both produce assembly-level code, but CDPEAC lets this code be written
in a form that is familiar to, and readily understandable by, C programmers.

Coding in CDPEAC is best for C programmers who want to use DPEAC instruc-
tions without having to write a DPEAC assembly code routine. CDPEAC still
requires an understanding of the basic vector unit operations being performed,
but does not require as much attention to assembly-level details as does direct
DPEAC coding.

dpcc - The CDPEAC Compiler

The dpcc compiler is used to compile a CDPEAC program. dpec is an extension
of the GNU C compiler gcc; it translates a CDPEAC procedure into the corre-
sponding DPEAC code, then calls dpas to assemble the code.

[ CDPEAC Code I object code 

For a more detailed description of dpcc, see Appendix F.

CMosr Version 7.Z2, August 1993
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1.4 Using DPEAC and CDPEAC

The most common use of DPEAC or CDPEAC in a CM-5 program is for writing
highly efficient subroutines to be called from programs written in a high-level
language (such as CM Fortran). The high-level program uses its own operators
to define parallel CM arrays, and then calls DPEAC (or CDPEAC) routines to
perform efficient arithmetic operations on those arrays.

This is the best way to make use of DPEAC: let the high-level language compiler
manage the details of memory management and data layout, so that the DPEAC
or CDPEAC subroutines can be focused on exactly those parts of the program
that require large amounts of efficient computation.

1.4.1 The DPEAC Header File

To have access to the DPEAC instruction set, including the symbolic constants
defined for the locations of registers, etc., as described later in this book, your
DPEAC source file should include the DPEAC header file:

#include <cmsys/dpeac.h>

This header file is only required in the DPEAC source code file; the other source
files in your program (see Chapter 7) should include whatever other header files
are needed.

1.4.2 The CDPEAC Header File

Similarly, to have access to the CDPEAC instruction set, including the symbolic
constants defined for the locations of registers, etc., as described later in this
book, your CDPEAC source file should include the CDPEAC header file:

#include cm/cdpeac.h>

This header file is only required in the CDPEAC source code file; the other
source files in your program (see Chapter 7) should include whatever other
header files are needed.

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation
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1.5 Using This Handbook

All programmers should read through Chapter 2, which describes the design and
features of the CM-5 vector units.

Programmers who feel comfortable working with SPARC assembly code should
read through Chapters 3 and-4, which describe the DPEAC instruction set. Pro-
grammers who prefer working in C should read Chapters 5 and 6, which describe
CDPEAC. The DPEAC and CDPEAC chapters present basically the same
information, but describe it in terms of the appropriate instruction set. (The
CDPEAC chapter includes occasional notes describing DPEAC features that are
not currently implemented in CDPEAC.)

Both DPEAC and CDPEAC programmers should read through Chapter 7, which
presents an example of a CM Fortran program that calls a DPEAC (or CDPEAC)
subroutine.

The appendixes contain useful information about the vector units and about the
dpas assembler and dpcc compiler, which are used to assemble/compile
DPEAC and CDPEAC source code. Appendix D, in particular, provides detailed
descriptions of the VU arithmetic operations and their effects on the flags in the
VU status register.

CMor Version 2, August 1993
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Chapter 2

The CM-5 Vector Units

2.1 CM-5 Vector Unit Accelerators

The vector unit (VU) accelerators are located between the SPARC CPU and the
memory banks of the processing node (see Figure 4).

Figure 4. A typical CM-5 processing node, showing the location of the 4 VUs.

The VUs act as memory controllers, handling memory store and fetch operations
as required by the SPARC. However, some memory operations are interpreted
as instructions by the VUs: the value written is interpreted as a VU arithmetic
and/or memory instruction, and the address to which it is written determines
which of the four VUs on the node will execute the instruction.

VU instructions can be strided, or made to operate step-wise across many
memory or VU register locations; hence the term "vector unit" for the accelerator
hardware. (This striding is specified either by explicit instructions, or by a
default value stored in a VU control register.)

CMor Version 7.Z2, August 1993
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2.1.1 Vector Unit Hardware

There are actually only two VU chips in each processing node; each chip con-
tains the hardware necessary to simulate the operations of a pair of VWs. Thus,
VU instructions that select groups of VUs can only select them as follows: one
VU alone, all VUs at once, or fixed pairs (0/1 or 2/3).

Figure 5. Internal arrangement of VU chips in CM-5 processing node.

For the Curious: The VU chips operate at approximately 32 MHz, while the
memory chips operate at 16MHz. Thus, each VU chip performs two memory
operations per cycle, one for each of the two attached memory chips.

2.1.2 VU Virtual Memory Layout

Each vector unit instruction can be performed either by a single VU, or by two
or four of the VUs operating in parallel (this parallel operation typically provides
the best performance).

The vector units that perform a given VU instruction are selected by the VU
memory address to which the instruction is written. There is a set of virtual
addresses for each VU and permitted combination of VUs (see Figure 6).

These VU memory regions all correspond to the same physical memory region,
but each VU region selects a different VU or set of VUs to execute a DPEAC
statement. (There are also memory regions devoted to ordinary SPARC serial
memory references, which don't trigger VU operations.)

CMosr Version 7.Z2, August 1993
Copyright 0 1993 Thindking Machines Corporation
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Figure 6. VU virtual memory regions.

Each of the VU regions includes two separate address spaces, called data space
and instruction space, that refer to the same physical VU memory, but have dif-
ferent effects on the VUs (see Figure 7). Data space addresses allow the SPARC
to perform normal load/store operations on VU parallel memory. Instruction
space addresses cause the VU(s) to perform an operation using the instruction
space address as the memory operand.

Figure 7. Contents of a single VU memory region.

The instruction and data spaces of each VU virtual memory region refer to a
single physical memory region that includes a parallel stack and a parallel heap.
The stack and heap are "striped" across the VU memory banks in such a way that
they occupy the same locations in each VU memory region.

Note: The diagrams above are a simplification. Refer to Appendix A for a more
detailed description of the way the vector units are mapped into the physical and
virtual memory of the SPARC CPU.

CMosr Version 72, August 1993
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2.2 VU Registers

Each VU has an internal set of registers, along with hardware for both memory
accessing and register arithmetic. Thus, a single VU operation can involve a
memory operation, a register arithmetic operation, or both at once.

Figure 8. VU internal components.

2.2.1 VU Data Registers

Each VU has a register file containing 128 data registers, each 32 bits long,
which are used as operands for arithmetic and memory operations. These regis-
ters are typically addressed as vectors, that is, blocks of registers that are either
adjacent to each other or are located a constant distance (or stride) apart.

Depending on the data type in use, the data registers may be accessed individu-
ally as singleword (32-bit) values, or in pairs as doubleword (64-bit) values. The
typical way to view these data registers is as 16 vectors of 8 elements:

Figure 9. VU data registers: 16 vectors of 8 registers.

CMosT Version 7.2, August 1993
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2.2.2 VU Control Registers

Each VU also has internal control registers that affect VU instruction execution.

VU Vector Mask Registers:

dp_vectormask - Vector mask register:
Source of context bits (see below) and storage for arithmetic status bits.

dp_vectormask direction - Vector mask shift direction:
One-bit register, 0 means shift right (towards LSB), 1 means shift left

dp_vector_maskbuffer - Vector mask copy buffer:
Copy of vector mask register loaded or stored prior to each operation.

dp_vector_mask_mode - Default vector mask conditionalization mode:
Indicates which of ALU and memory instructions are conditionalized.

VU Arithmetic Status Registers:

dp_status - Status register:
Holds status bits produced by arithmetic operations.

dp_status_enable - Status enable register:
Selects status bits that are ORed and stored in vector mask register.

C/DPEAC Instruction Default Registers:

dp_vector_length - Vector length register:
Default length of vectors (number of steps) for vector operations.

dp_stride_rsl - Rsl register operand stride:
Default stride for Rsl operand in arithmetic operations.

dp_stridememory - Memory operand stride:
Default stride for memory operations.

dp_alu_mode - Arithmetic mode register:
Selects Fast or IEEE mode for arithmetic operations.

Important: The pair of VUs on a single chip (that is, VUs 0/1 and 2/3) actually
share all control registers except for the two registers dpvectormask and
dp_vectormask_buffer. This means that any change to a shared register
affects both VUs that share it.

CMor Version Z2, August 1993
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2.3 Effects of VU Control Registers

The VU control registers are used for a number of purposes:

* Conditionalization of VU instructions (described in Section 2.3.1).

* Contextualization, or collection of status bits (described in Section 2.3.2).

* Default registers for DPEAC and CDPEAC operators. (These are are
described in the chapters on DPEAC and CDPEAC, along with the
instructions that use and modify these registers.)

Figure 10 summarizes the effects of the control registers (and some instruction
modifiers) on the ALU and memory components of VU instructions:

I dpyvector_mask.._buffer 

vmold
mask copy mode vmolnew

instruction modifier T vmnop

vmrotate

SPA_ N-
[urlauUl -
mode

modifier

- I..- so -

vmc

eLi:u :enabling
/IO R\

15

urrent

accumulated
context count

ny zzho
.I bit sense L vminvert

dpt m d c | modifier ede r - m ask - d rec ion

vmtrue

condionaization ~'i
mode

I d p_vector_makmode

I dpstatus enable I conditonalization
(do or don't do)
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tor lenath I
I - - I

Figure 10. Effects of VU control registers on ALU and memory instructions.
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2.3.1 Vector Mask and Conditionalization

The VUs have the ability to conditionalize vector operations. The vector mask
register (dp_vector_mask) is used to mask individual ALU and memory
instructions in a vector operation. At each step of a vector operation, a context
bit is shifted out of the mask register (see Figure 11). This bit can be used to mask
out (prevent) the ALU operation, the memory operation, both operations, or nei-
ther of them. (Note: In the current implementation, dpvector_mask is a
32-bit register, but only the least significant 15 bits are used.)

By default, the vector mask mode register (dp_vectormask_mode) deter-
mines which, if any, of the ALU and/or memory operations are conditionalized.
Initially, the mode register is set so that no conditionalization is done. A 0 context
bit masks the corresponding ALU and/or memory operation, preventing the
results from being stored in the destination register. A context bit allows the
results to be written. (Note: Scalar operations are never conditionalized.)

C/DPEAC instruction modifiers let you override the mode register and/or change
its value while executing an instruction. There is also a C/DPEAC instruction
modifier that allows you to invert the sense of the context bit, so that a 1 bit
masks the operation, and a 0 bit allows the operation to proceed.

vmrotate: status bits context bits

15 0

vmcurrent: | -E-

15 vlen 0

Figure 11. Bit-shifting modes of vector mask register.

2.3.2 ALU Status and Contextualization

Every ALU operation sets the flags in the status register (dp_status) to indi-
cate the results of the operation. There is a similar set of flags in the status enable
register (dp_status_enable), indicating which of the dp_status flags are
ORed together to make the status bit of a vector operation.

CMOST Version 7.Z2, August 1993
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At each step of a vector operation, the ALU sets the flags in dpstatus, and
then the flags selected by 1 bits in dp_status_enable are ORed together into
a single status bit, indicating whether or not the ALU operation completed suc-
cessfully. This status bit is shifted into the vector mask register.

Status bits are typically rotated into the vector mask register at the end opposite
to that from which condition-bits are drawn (this is known as rotate mode.) How-
ever, a C/DPEAC instruction modifier can cause the context bits to be inserted
into the vector mask register in numerical order at the same end from which they
are drawn (current mode). See Figure 11 above.

The vector mask shift direction register, dpvector_mask_direction, deter-
mines which way the vector mask bits are shifted. If it is 0, the default, the bits
are shifted right (toward the low end of the register, as shown in Figure 11). If
the mask direction is 1, bits are shifted left (toward the high end).

2.3.3 Status Register Flags

The current flags in the dp_status and dp_statusenable registers,
together with their symbolic names as defined by the C/DPEAC header files, are
shown in the table below. (Starred status flags are the IEEE-defined exceptions.)

Flag Mask Symbol
DP STATUS EABLE SK INEXACT

DP STATUS ENABLE MASK DIDEBY ZERO

DPSTATUSENABLE(ASK_ UDERFLOW

DPSTATUSENABLE_ ASKOVERFLOW

DP STATUSENABLE MASK INVALID OPERATION

DP_STATUS_ENABLEASK_INT_OVERFLOW

DP-STATUSENABLE(AKSK NEGATIVEUNSIGNED

DP_STATUS_EIABLEMASK DENORUOPUT

DP_STATUS_ENABLEMASK ZERO

DPSTATUS_ ENABLE MASK_ POSITIVE

DP_STATUS_ENABLEMASKNEGATIVE

DP STATUS-ENABLE MASK INTEGER CARRY

DPPSTATUS ENABLE MASK.INFI NITY

DP STATUSENABLE MASK NAN

DPSTATUSENABLEASKDENOK

DP8 TATUSENABLEMABSKUNORDERED

DP_STATUS_ENABLE ASK NDER

DP_STATUS_ENABLEMASKDENO

Status
Float result is inexact (*)
Division by zero (*)
Float underflow (*)
Float overflow (*)
Invalid operation (*)
Integer overflow
Negative integer result
Float input denormalized
Float/integer result of zero
Float/integer result positive
Float/integer result negative
Integer carry
Float result is +/- infinity
Float result is a NaN
Float result is denormal
(Internal, do not use)
(Internal, do not use)
(Internal, do not use)
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See Appendix D for a more detailed description of the meanings of the status
flags, and for descriptions of the VU arithmetic operations that modify them.

2.3.4 The Vector Mask Buffer

Prior to each DPEAC operation, the contents of the vector mask register may be
stored to, or copied from, the vector mask buffer register (dpvec-
tor_mask_buffer). By default, no such copying is done. The vector mask
buffer can be useful, for example, for keeping a fixed vector mask handy so that
it can be copied into the mask register before each DPEAC operation.

A C/DPEAC instruction modifier allows you to override the value of this register
for a given instruction, or modify its value to affect future instructions.

2.4 Other VU Features

2.4.1 Accumulated Context Count

The C/DPEAC format modifier vmcount causes the individual context bits
shifted out of the vector mask register to be stored in a series of VU data regis-
ters. This accumulated context count feature can be useful for determining which
instructions in a VU operation were masked out. For more information, see the
discussion of the vmcount modifier (Section 4.3 for DPEAC, and Section 6.7
for CDPEAC).

2.4.2 Population Count

The C/DPEAC format modifier [d]epc causes the vector units to do a population
count, or count of the number of 1 bits, on a register. This is a strided operation,
and acts like a memory instruction in a VU operation. (Section 4.3 for DPEAC,
and Section 6.7 for CDPEAC).

CMorT Version 7.2, August 1993
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2.5 VU Control Register Constants

The following constants are defined by the C/DPEAC header files, giving the
offsets of the VU control registers.

Register Register Constant Current Value
dp_stride r1 DP_STRIDE_RS1 OxiOC
dp_stride_memory DP_STRIDE MEMORY 0x108
dpvector length DP VECTORLENGTH 0x104

dpalumode DPALU_MODE 0x100
dp_status DP_STATUS 0x124
dp_status_enable DP_STATUSENABLE 0x120
dp_vector mask DPVECTOR MASK 0x110
dp_vectormaskdirectionDPVECTORMASK DIRECTION 0xllC
dp_vectormaskbuffer DPVECTORMASKBUFFER 0x114

dp_vector_mask_mode DP_VECTOR_MASK_MODE 0x118

Note: These offsets are for use only with accessor instructions such as dpset
and dpget. C/DPEAC statement formats also allow you to implictly use and/or
set the value of one or more control registers while executing a VU operation.
See the mode set format in particular (Section 3.9 for DPEAC, Section 5.9 for
CDPEAC) for examples.

CMosr Version 7.2, August 1993
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Chapter 3

The DPEAC Instruction Set

The DPEAC instruction set is an extension of SPARC assembly code, providing
extra instructions that are used to manipulate the vector units. When a routine
containing DPEAC code is assembled, each DPEAC instruction is translated into
one or more SPARC memory operations that send appropriately assembled
instruction word(s) to the VU hardware.

3.1 DPEAC Code

A DPEAC routine consists of a series of statements. Each statement is either a
SPARC instruction, a DPEAC statement, or a DPEAC accessor instruction. A
DPEAC statement can occupy either a single text line or several text lines, with
a "\" character immediately preceding each linebreak but the last.

A DPEAC statement consists of one or more DPEAC instructions, separated by
semicolons. (An optional extra semicolon can follow the last instruction.)
DPEAC instructions are grouped in three categories:

* arithmetic instructions, which cause the VUs to perform register arithmetic

dfaddv VO,V2,V4

* memory instructions, which move data between VU registers and memory

floadv [%iO] :4,VO

fstorev [%il]: 8,R16

* modifiers, which alter the assembly or execution of the DPEAC statement

vmcurrent ; noalign ; vmnew

CMosr Version 7.2, August 1993
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tain both a memory instruction and an arithmetic instruction (but no more than
one of each type). At least one memory or arithmetic instruction must be present.
When a DPEAC statement includes both memory and arithmetic instructions, the
memory instruction executes first, and any value it obtains from memory can be
used by the arithmetic instruction.

A DPEAC statement may also include any number (including zero) of modifiers,
as permitted by the statement's format.

The components of a DPEAC statement may be arranged in any order, but for
readability you should adopt a consistent form. A good "canonical" DPEAC
statement order, used by many DPEAC programmers, is:

arithmetic-op ; memory-op; modifier-1 ; modifier-2 ...

This order is recommended because although the memory operation and modifi-
ers are usually executed and/or applied before the arithmetic operation, it is the
arithmetic part of the instruction that is typically of the greatest interest.

3.1.1 Chain Loading

When a DPEAC statement refers to the same register in both the memory and
arithmetic operations, and when the memory operation is a load, the loaded
value from the memory operation is used in the arithmetic operation. This is
called chain loading. In a vector operation, this can happen for each step in the
vector operation.

There are some modifier operations (such as population counting), that can also
chain load, and some modifier operations that cannot chain load. Section 4.3 lists
the DPEAC modifiers and indicates any that can or cannot chain load.

3.1.2 DPEAC Accessor Instructions

A DPEAC accessor instruction is a DPEAC instruction that doesn't correspond
to a VU arithmetic/memory operation. DPEAC accessor instructions are typi-
cally utility operations such as reading and writing VU registers from the
SPARC, directly reading and writing parallel memory locations, etc. Accessor
instructions can be recognized by their "dp" prefix: dpeet, dpget, etc.

CMosr Version 7.2, August 1993
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3.2 DPEAC Syntax

3.2.1 General Syntax

Numbers are 64-bit constants, parsed as in C. Numbers starting with 0 are octal
by default, and numbers starting with a non-zero digit are decimal. The ox (hex),
Ob (binary), 0o (octal), and On (decimal) integer forms are provided, as well as
Of (32-bit), Or (32-bit) and Od (64-bit) IEEE float forms.

ASCII constants appear in single quotes ('ABC'), and represent the integer
obtained by concatenating the character bytes (the first byte is most significant).
Comments are denoted by a " ", and extend to the end of the line (as in as).
C-like /*comment*/ and #comment forms are provided by dpas itself.

Expressions in DPEAC evaluate to a constant when assembled. There are three
classes: constant-expressions, as-expressions, and general-expressions.

A constant-expression is evaluated at dpas assembly time, using 64-bit integer
arithmetic (signed for products/divisions, else unsigned). The following opera-
tors are supported, and are evaluated in the order shown (first across, then down):

+ Unary plus (no-op) - Negate (2's complement)
! Logical not - Invert (l's complement)
%lo Low 10 bits %hi High 22 bits
& Bitwise AND I Bitwise OR
A Bitwise XOR
* Signed multiply / Signed divide
<< Logical Left shift >> Logical Right shift
+ Addition - Subtraction
< Less than < Less than or equal
-- Equal to !- Not equal to (<> also allowed)
> Greater than >- Greater than or equal
&& Logical AND II Logical OR

A constant-expression can include symbols only if they can be translated into
constants by the dpas preprocessor. Floating-point constants are allowed, but are
"cast" as integers. (Note that floating-point constants and the operators < and
&& are dpas extensions to as expression syntax.)

An as-expression is passed directly to the as assembler, and must follow as syn-
tax. It is evaluated as a 32-bit integer. It can contain any symbols processed by
as, but cannot contain either float constants or the operators <- and &&.

A general-expression can be either a constant-expression or an as-expression. If
dpas cannot parse a general-expression as a constant-expression, it assumes it
is an as-expression, and passes it directly to as.

CMosr Version 7.2, August 1993
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3.2.2 SPARC CPU Registers

DPEAC memory instructions refer to SPARC registers by these symbols:

%r31 IU registers % - %31
%17 in registers %o00 - %o7
%f 31 FP registers %0gO - %g7

Processor state register %f sr
Window invalid register %tbr
Multiply-step (Y) register %fq

IU registers (alternate form)
out registers
global registers

FP state register
Trap base register
FP queue register

(Note: Later descriptions denote an arbitrary SPARC register as as-register.)

'I
Ins %10-%17

11.ocals %10-%17

)uts %oO-%o7

obals %gO-%g7

Figure 12. SPARC CPU registers accessible from DPEAC.

Register Restrictions: The following SPARC registers are used by DPEAC
operations to store default values, so these registers should be avoided:

=. State Reg %psr

Ip Base Reg %tbr

Inval. Msk %wim

ultiply Step %y

Usage
(Reserved)
(Reserved)
(Temporaries)

Default memory operand (Selects all VU's)
dpinstructionext register pointer
Used as temporaries in VU instructions

%16 and %17 are initialized by dpas, which expects them to be preserved.
dpas assumes that these registers are no longer correct if a. seg directive or
a dpunset accessor instruction is included. %g2 and %g3 are overwritten by
dpas code execution, but are not expected to be preserved. Thus, these regis-
ters can be used as temporaries in code that has no VU instructions.

CMosr Version 7.2, August 1993
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3.2.3 Vector Unit Data Registers

DPEAC arithmetic and memory instructions refer to the 128 VU data registers
by the following names:

R0 - R127

V0 - VS15

S0 - S15

so - s30(even)

All 128 registers in sequential order
Vector regs (first in each vector, same as Ro, R8 ... R120)
Scalar regs (single precision), same as R0 - R1
Scalar regs (double precision), same as RO - R30 (even)

Restrictions: DPEAC statements in immediate format use the R0 and R1 regis-
ters to store immediate operands, so these registers should be avoided.

The VU data registers are grouped in banks of 8, called vector registers. The
special register names vo - vis are used to refer to the first data register in each
vector. When a vector instruction requires an "aligned vector" operand, the oper-
and must be one of the vnn registers (or the equivalent Rnn).

Figure 13. VU data registers: 16 vectors of 8 registers.

A subset of these registers is designated as the scalar registers. These are so -
Sis (singleword), or the even registers from so - s30 (doubleword). (The snn
names are equivalent to Rnn, and explicitly show use of scalar registers.) Scalar
operations that use scalar registers assemble into efficient instructions.

You can apply a register offset to a data register to access one of the registers
succeeding it in Rnn order (this is mainly useful for accessing the elements of vnn
vectors):

Regn [k] Refers to register Regn + k. (Ex: V2 15] = R16+5 - R21)

CMoTr ersion Z2, August 1993
Copyright © 1993 hinking Machines Corporation

VO V1 V2 V3 V4 V5 V6 V7 V14 V15
RO R8 R16 R24 R32 R40 R48 R56 R112R120
R R17 R25 R33 R41 R49 R57 13 R121
R2 R R18 R26 R34 R50 R58 R114 R122
R3 R l R19 R27 R35 R43 R51 R59 [R15- R123
R4 R12 R20 R28 R36 R44 R52 R60_ R16 R124
R5 R13 R21 R29 R37 R45 R53 R81 R117R125
R R14 R22 R30 R R46 R54 R62 R118 R12
R7 R15 R23 R31 R39 R47 R55 R63 R119R127
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3.2.4 Vector Unit Control Registers

There are symbols for all the VU control registers, as described in Section 2.5.
However, these symbols are typically only used for accessor instructions such as
dpset and dpget. DPEAC statement formats allow you to implicitly use and/or
set the value of one or more control registers while executing a VU operation.
See the mode set format in particular (Section 3.9) for examples.

3.2.5 VU Register and Memory Stride Markers

Some VU arithmetic and memory operations can stride through a group of regis-
ters or memory addresses. The stride length is indicated by a stride marker
attached to the appropriate register or memory operand. The generic syntax of
these markers is shown below.

Important: The stride markers shown here are not valid for all statement for-
mats; most statement formats restrict the types of stride markers that are allowed.

Register Stride Markers

The general syntax of register stride markers is shown below, where register is
any valid VU register, and stride and set-stride are constant expressions in the
range -128 to +128. Register striding is always in terms of the Rnn ordering,
even when a Vnn register name is specified. A stride of zero causes the same
register to be used at each step.

Syntax Effect
register Use unit stride (1 for words, 2 for doublewords).
register: stride Temporarily use specified stride.
register:mode Use stride value stored in dp.stridersl.
register: -stride Set dp_striderl to stride and use it.
register:stride-set-stride Set dp_stride_ral to set-stride, but use stride.
register=stride Set dp_stride_r. to stride (scalar ops only).

Note: The last four stride marker forms shown above are valid only for the rS1
register argument of an arithmetic instruction.

rSl Stride Restriction: When you apply a stride of 0 to the rS1 argument of an
arithmetic operation (for example, R0: 0), the rSl register must be one of the
scalar registers so through sis5, or S30 for double-precision.

CMosr Version 7Z2, August 1993
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VU Memory Stride Markers

The general syntax of memory stride markers is shown below, where n and set-n
is a general expression or as-register giving the stride in bytes. Note that the
stride value is limited to a 24-bit signed integer. A stride of zero causes the same
address to be used at each step.

Syntax
memory-operand
memory-operand: n
memory-operand: =n
memory-operand: n=set-n
memory-operand-n

Effect
Use default stride in dp stride_memory.
Temporarily stride by n bytes.
Set dp_stride_memory to n and use it.
Set dp_stride_memory to set-n, but use n.
Set dp_stridememory to n (scalar ops only).

In the above formats, n and set-n are either 4 or a for singleword data types, or
8 or 16 for doubleword data types.

When you write DPEAC code by hand, you should make sure the default
memory stride register dpstride_memory is set to the stride you require (for
example, 4 bytes for single-precision or 8 bytes for double-precision). You can
use the DPEAC accessor instruction dpset for this purpose; for example:

dpset ALLDPS, 8, DPSTRIDEMEMORY

3.2.6 VU Selection in DPEAC Statements

The VUs that execute a DPEAC statement are selected by the memory address
specified in the statement. (Deselected VUs are effectively idle.) A DPEAC
statement's memory address is:

* the value of the memory-operand in the memory instruction

* the value specified by the maddx modifier, if any

* If neither of these is supplied, a default address that selects all the VUs.
The default address used is DPVSTACK_INSTPORTALL.

Typically, you won't construct these memory addresses yourself; your compiler
and/or the dpas assembler generate these addresses for you.

CMosT Version 7.2, August 1993
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3.2.7 VU Selection in DPEAC Accessor Instructions

The VU(s) referenced by a DPEAC accessor instruction are determined by the
"VU selector" argument. This argument must be a valid VU selector as described
below.

A VU selector is an integer or symbolic constant that specifies one or more VUs
to perform a given accessor instruction. The syntax is:

Syntax
constant-expression
as-register
as-register<
*

Immediate Value
Use the specified selector constant (see table below).
Use value from a SPARC register (all bits).
Use value from SPARC register (bits 12: 15is).
Select all VUs.
Use both VUs on chip n (O=VU's 0&l, 1-=VU's 2&3).

The modifier " <" makes as-register references faster (fewer SPARC operations)
because only 4 bits (12 through is) of the register are used. The constant-expres-
sion form can be either an integer VU selector value, a physical VU selector (an
integer preceded by a "$"), or one of the symbols defined in the header file dp. h
for these values. (Use of predefined symbols is recommended.)

The legal VU selector values, and their corresponding symbols, are:

VU
Number(s)

VU n
ALL VUs

VUs 0 and 1
VUs 2 and 3

VU
Value

2*n
8
10
12

Selector
Symbol
DPn

ALLDPS

DPS 0_AND_1

DPs_2_AND_3

Physical VU Selector
Selector Symbol

$n DP PHYS N n
$8 ALLPHYS_ NUMDPS
$9 DP PHYB NUM 0 AND 1

$11 DP PYSNEM 2_AND _3

CMosr Version 7.Z2, August 1993
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3.3 DPEAC Instructions

3.3.1 Scalar and Vector Instructions

DPEAC memory and arithmetic instructions come in two forms: scalar and
vector.

Scalar instructions execute just once for the supplied operands, and are distin-
guished by an "a" suffix on the opcode.

Vector instructions execute repeatedly for each of a series of operands, and are
distinguished by a "v" suffix on the opcode. Vector operations start with the
specified register or memory address operand(s) and then step through succeed-
ing locations determined by the vector stride and vector length:

* The vector stride determines the number of registers or memory addresses
a vector operation advances at each step. The default vector stride depends
on the type of operation (memory or arithmetic).

* The vector length determines the number of registers or memory addresses
affected by a vector instruction. The vector length defaults to the value of
the VU register dp_vectorlength, unless a different vector length is
specified explicitly.

Note: If a DPEAC statement includes both a memory instruction and an
arithmetic instruction, the two must agree in form: they must be either both scalar
instructions or both vector instructions.

3.3.2 Register Operands

The register operands of arithmetic and memory instructions are indicated by the
following symbols, indicating arbitrary VU registers:

rS1, rS2 First and second source registers.
rLS Load/store (or third source) register.
rD Destination register.
rLA Indirect addressing (used in Register Indirect format).

When an instruction format requires vector (vnn) register arguments, the sym-
bols vSl, vS2, vLS, vD, and via are used instead. Similarly, when scalar (snn)
register arguments are required, the symbols sSl, sS2, sLS, sD, and slA are used.

CMosr Version Z2, August 1993
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3.3.3 Data Types

The data type of a DPEAC instruction is typically indicated.by one of the follow-
ing prefixes on the instruction opcode:

i Signed 32-bit integer
di Signed 64-bit integer
f Single (32-bit) float

u Unsigned 32-bit integer
du Unsigned 64-bit integer
df Double (64-bit) float

3.3.4 Arithmetic Instructions

An arithmetic instruction causes the VUs to perform a register arithmetic opera-
tion. Arithmetic instructions have the following general forms, where opcode is:
{ i,di,u,du,f,df l operation{v,s }

Monadic (one source argument):
Dyadic (two source arguments):
Triadic (three source arguments):

opcode
opcode
opcode

rSI, rD
rSl, rS2, rD
rSI, rLS, rS2, rD

Note: In the statement format descriptions in Section 3.4, the arithmetic opera-
tion is always shown in triadic form. Dyadic and monadic forms are obtained
simply by omitting the appropriate operand symbols (rLS and rS2).

(Appendix D describes the VU arithmetic instructions in detail, and describes the
VU status bits that are affected by each instruction.)

Vector instructions have a default stride of 1 (singleword) or 2 (doubleword) for
register operands, unless the instruction explicitly specifies a different stride.

rS2 Operand Restrictions: The rS2 operand of an arithmetic instruction has the
following restrictions:

* For vector operations, rS2 cannot be any of RO through R7, by any name
(so, vo, etc.).

* In scalar operations, rS2 cannot be any of Rnn, where nn is any multiple
of 16 (for single-precision) or 32 (for double-precision).

This restriction is imposed by the internal representation of DPEAC operations.

Triadic/Memory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are Joined, the rLS operand of the arithmetic
operation must be identical to the rLS operand of the memory operation.

CMos Version 7.2, August 1993
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3.3.5 Memory Instructions

A memory instruction causes the VUs to move data between memory and VU
registers. The operands of a memory instruction are a memory address and a VU
register. Memory instructions have the following general form:

{ i,di,u,du,f,df } memory-operation {v,s } memory-operand, rLS

The rLS operand can be any VU register, but if a triadic arithmetic operation and
a memory operation are combined, the rLS operand of both must be the same,
and the memory operation can only be a load, not a store. The default stride
for the rLS register is determined by the arithmetic operation, and the stride
required by the memory operation must agree.

The memory-operand can be any memory address that selects one or more VUs,
and it is specified by SPARC register indirection, using Sun-4 Assembler syntax:

Syntax
[as-register]
[as-registeri + as-register2]
[as-register + offset]

Memory Address
Contents of as-register
Sum of as-registerl and as-register2
Contents of as-register + offset

where offset is limited to the range -4096 to +4095. Note that double precision
memory references must be doubleword (8-byte) -aligned.

The stride of vector instructions is either specified explicitly in the instruction,
or else defaults to the dp stridememory register value.

Singleword Doubleword Performance Note: Doublewords are the natural
word size for the VUs. Singleword operations require a read-modify-write step.
Thus, singleword operations are less efficient than doubleword operations.

CMosr Version 7.2, August 1993
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3.3.6 Modifiers

Modifiers: Modifiers are keywords, such as pad, maddr, vmcurrent, etc., that
modify the assembly or execution of a DPEAC statement. The modifiers per-
mitted in a DPEAC statement are determined by the statement's format. The
available modifiers are listed below, and described indnore detail in Section 4.3.

Modifiers That Can Be Used in All (or Most) Formats:

[no]pad[ :pad-size] Pad vector length

maddr=memory-operand Default memory address

{vmrotate,vmcurrent} Packing mode for vector mask bits

[no]align Doubleword alignment declaration

vmmode: [-]mode-keyword Conditionalization mode selector

Conditionalization Modifiers (Mode Set Format Only):

{jvminvert,vmtrue} Conditionalization bit sense selector

vmold, vmnew, vmnop Vector mask copying mode

Special Modifiers (Mode Set Format Only):

[d]epcjv,s} (vLS) -rA stride Population count

vmcount[s]-reg:stride Accumulated context count

[no]exchange On-chip VU data exchange

CMosr Version 7.2, August 1993
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3.4 DPEAC Statement Formats

There are two main classes of statement formats, short format and long format.
The distinction comes from the way the two formats are assembled into SPARC
operations.

A short format statement assembles into a singleword (32-bit) operation. Short
format instructions execute faster than those in long format, but lack some of the
features provided by the long format.

A long format statement assembles into a doubleword (64-bit) operation. Long
format instructions are slower to issue, but use the extra word to provide addi-
tional operand types and modifiers that are not permitted by the short format.
Specifically, the long instruction format comes in three varieties:

Immediate format allows an immediate operand in the arithmetic operation.

Register stride format allows register striding in the arithmetic operation.

Memory stride format allows address striding in the memory operation.

Mode setformat provides access to a number of VU features, including regis-
ter/memory indirection and overriding of many VU instruction defaults.

Each of the varieties of long format represents a modification of the short format.
In terms of DPEAC source code, you can think of the short format as the back-
bone of features that all DPEAC source lines share, with each of the long formats
representing some modification of or addition to those features.

Important! Because of the way that DPEAC code is assembled, the modifica-
tions provided by each of the long formats cannot be combined. You can use only
one of the long formats, or none of them (that is, use the short format) in a single
statement.

For the Curious: Each DPEAC statement is assembled into a word (or double-
word) containing fields for each of the opcodes and operands in the statement.
Each of the long formats is assembled as a doubleword, and uses the extra word
for a different purpose; thus the extensions provided by the long formats are
physically incompatible within a single DPEAC statement.

Note: In the syntax descriptions below, escaped linebreaks (indicated by "\") are
sometimes inserted for clarity when a statement's syntax is long and/or complex.
These linebreaks are not a syntax requirement - all statement formats occupy
one line in a DPEAC program.
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3.5 The Short Format

The short statement format is:

Vector Instuctions:
arith-opcode rSI, vLS, vS2, vD; mem-opcode mem-operand, vLS; modifier; ...

Scalar Instuctions:
arith-opcode rSl, sLS, sS2, sD; mem-opcode mem-operand, sLS modifier; ...

With one exception (the mode set statement format, see Section 3.9), the rSI
operand can only have one of the following explicit stride forms:

rSl Use register rSl, with unit stride for vector ops.
rSl :mode Use register rSl, with dp_stride rsl stride.
sSl :0 Use scalar register sSl with 0 stride.

The remaining register operand(s) must be aligned vector (vnn) registers for a
vector operation, or scalar (nn) registers for a scalar operation. Vector instruc-
tions always use unit striding, so stride markers are not allowed in short format
(see register stride format, Section 3.7).

The mem-operand must have one of the following forms:

mem-operand Use dp_stridememory stride.
mem-operand[: tempstride] Use restricted tempstride.

The optional tempstride is restricted to 4 or 8 for single word operations, 8 or
16 for doubleword operations (see memory stride fonrmat, Section 3.8). If temps-
tride is specified, the rSl operand must be an aligned vector (vnn) register or a
scalar (snn) register with a stride of 0.

The vector length is taken from dp_vector_length. This cannot be overridden
in the short format (see mode set format, Section 3.9)

Only the following modifiers are permitted by the short format:

[no]pad[ :pad-size] Vector length padding (default is 4).
maddr=mem-operand Memory operand specifier.
[no]align Doubleword alignment guarantee.
{vmrotate, vmcurrent} Status bit rotation mode.
vmmode: [=]mode-keyword Conditionalization mode selector

Note: {vmcurrent, vmrotate} are useful only for comparison operations,
where the result of the comparison produces status bits that can be rotated.
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Examples:

V0, Vl

VO,Vl; iloadv [%iO],VO

VO,V1; iloadv [%iO]:8,VO

VO: mode, Vi

SO: 0,V1

SO: 0,S1

[%iO] ,Vi

[%iO],V1; noalign

[%iO]:4,VO

[%iO]:8,V0

[%iO]:8,VO

[%iO]:16,VO

VO,Vl; maddr=[%iO]

VO, V1

VO,V1; vmcurrent

! Integer monadic

! same, chain-loaded

! same, temp stride

! Default reg. stride

! Scalar reg, 0 stride

! Scalar operation

! memory operation

! same, non-aligned

! unit stride

! double stride

! unit stride

! double stride

! maddr modifier

! Conditional
! same, with modifier

VO,V1,V2 ! Float dyadic

VO,Vl,V2; nopad ! No vlen padding

VO,Vl,V2 ! Mult-add

VO,Vl,V2 ! Mult-add, inverted

VO,Vl,V2,V3; floadv [%iO],V1

! True triadic, chain-loaded

lmovev

imovev

imovev

imovev

imovev

imoves

iloadv

iloadv

floadv

floadv

dfloadv

dfloadv

itestv

dfgtv

dfgtv

faddv

faddv

fmadav

fmadiv

fmadtv
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3.6 Immediate (Long) Format

The immediate format modifies the short format by replacing one source operand
in the arithmetic instruction with an immediate value. (The operand replaced
depends on the arithmetic instruction in use - see the instruction listings in
Chapter 4.) The immediate value is loaded into RO (singleword operations) or Ro

and R1 (doubleword operations) prior to use.

Vector Instuctions: (rS2 replaced with immediate value)
arith-opcode rSl, vLS, imm, vD ; mem-opcode mem-operand, vLS; modifier; ...

Scalar Instuctions: (rS2 replaced with immediate value)
arith-opcode rSl, sLS, imm, sD ; mem-opcode mem-operand, sLs; modifier; ...

The imm operand is a 32-bit immediate value, either an as-register or a general
expression. Immediate values are sign-extended in double integer arithmetic
(zero-extended for double unsigned operations). For double-precision constants,
only the upper 32 bits are included in the instruction. Thus, only floating-point
numbers with Os in the 32 least significant bits of their mantissas are allowed.

Older syntax required an immediate value expression to be preceded by a dollar
sign ($). This syntax is still supported, but is discouraged in new code.

Restrictions: With the exception of the immediate operand, all register and
memory operands have the same restrictions as in the short format. Vector length
comes from dp_yector_length, and the permitted modifiers are the same.

Examples:

imovev 29,V1 ! Monadic immed.
imovev %iO,V1 ! SPARC register

imovev 29,V1; iloadv [%iO],V2 ! with memory op.

imovev 29,V1; iloadv [%iO]:8,VO ! with temp stride

imoves 29,S1 ! Scalar operation

faddv RO:0,29,V1 ! Inmmned arithmetic

fmadtv RO:0,V1,29,V3; dfloadv [%iO],V1
! Triadic immediate

CMosr Version 7.2, August 1993
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3.7 Register Stride (Long) Format

The register stride format modifies the short format by allowing arbitrary stride
markers on the rS2, rLS, and rD register operands. (rS1 format doesn't change.)

Vector Instuctions:
arith-op rSl, vLS[:stride2], vS2[:stride3], vD[ :stride4]; \
mem-op mem-operand vLS[: stride2]; \
modifier; ...

Scalar Instuctions:
arith-op rSl, sLS[ stride2], sS2[ stride3], sD [: stride4]; \
mem-op mem-operand, sLS[: stride2]; \
modifier; ...

The stride markers can be any of the register stride markers in Section 3.2.5,
except those that apply to rSl only. If a triadic arithmetic operation is used, the
rLS stride must be the same for both the arithmetic and memory operations.

The register operands do not have to be vector-aligned, and thus can be any of
the 128 data registers.

The short format's operand, vector length, and modifier restrictions apply.

Examples:

imovev VO,R4:4 ! Integer monadic
imovev VO,R4:4; iloadv [%iO],VO ! same, chain-loaded
imovev VO,R4:4; iloadv [%iO]:8,VO ! same, temp stride
iloadv [%iO] ,R4:4; ! memory operation
imovev VO:mode,R4:4 ! Default reg. stride
imovev SO:O,R4:4 ! Scalar reg, 0 stride
imoves S0:0, S3:2 ! Scalar operation
dfgtv VO,R12:10 ! Conditional
faddv VO,R20:4,R6:3 ! Float dyadic

fmadtv RO:0,V1:2,R20:4,R60:7; dfloadv [%iO],V1:2

! True triadic, chain-loaded
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3.8 Memory Stride (Long) Format

The memory stride format modifies the short format by allowing an arbitrary
stride marker on the memory operand.

Vector Instuctions:
arith-op rSI, vLS, vS2, vD ; mem-op mem-operand[: stride], vLS; modifier; ...

Scalar Instuctions:
arith-op rSl, sLS, sS2, sD; mem-op mem-operand[ stride], sLS; modifier; ...

The stride marker can be any of the memory stride markers in Section 3.2.5.

The short format's operand, vector length, and modifier restrictions apply.

Examples:

iloadv [%iO] :=8,Vl; ! use and set 8
iloadv [%iO]:8=4,V1; ! use 8, set-4

iloads [%iO]=4,SO; ! set 4 (scalar op)

imovev VO,V1; iloadv [%iO]:=8,VO ! Chain-loaded

CMosr Version Z2, August 1993
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3.9 Mode Set (Long) Format

The mode set format is the most complex of the long formats. It allows you to
do any or all of the following:

* Override and/or set the default vector length in dp_vector_length.

* Override the default conditionalization mode (vmmode).

* Override the default conditionalization sense (vminvert, vmtrue).

* Override the default vector mask copy mode (vmold, vmnew, vmnop).

* Use any of the modifiers permitted by the short format.

Mode set format also allows you to use one (and only one) of the following
mutually incompatible extensions to the short format:

* Register stride markers on the rSl operand.

* Register indirection on the rS1 operand.

* Memory indirection on the memory-operand.

* Exchange of data between the two VUs on a single chip ([no]exchange).

* Accumulated count of conditionalization bits (vmcount[s]).

* Population counts ([d]epctv,s).

The mode set "format" is actually a family of distinct but related variants, deter-
mined by the appearance of one of the incompatible features listed above. These
variants are presented, with examples, in the sections below.

CMosT Version Z7.2, August 1993
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3.9.1 Mode Set Format Variants

The legal mode set variants are:

Vector Length Variant

arith-op[vec-len] rSI, vLS, vS2, vD; \

mem-op[vec-len] mem-operand, vLS; \

modifier; ...

(The syntax for the vec-len specifier is described in Section 3.9.2.)

This is the basic mode set variant, in which the only features used are those
that are allowed in all mode set variants. In other words, this variant lets you
specify an arbitrary vector length for a vector operation, and use general
mode set modifiers like vmnew, vminvert, and vmcurrent.

Examples:

imovev*16

imovev*16

iloadv*16

iloadv*16

VO,V2 ! Integer monadic

VO,V2; iloadv [%iO],V0

! same, chain-loaded

[%iO],V1; ! memory operation

[%io],V1; noalign

! same, non-aligned

faddv*16 VO,V2,V4 ! Float dyadic

fmadtv*16 VO,V2,V4,V6; dfloadv [%iO],V2
! True triadic, chain-loaded

imovev* = 16

imovev*%i2

imovev*=%i2

imovev*%i2<

imovev*=%i2<

imoves=16

VO,V2

VO,V2

VO,V2

VO,V2

VO,V2

SO,S8

! Use and set len.

! SPARC register

! Use and set

! 4 bit length

! 4 bit use/set

! Scalar set

vmcurrent;

vmnew;

vmnop;

iloadv [%iO]

! Current mode

! New mask copy

! No mask copy

,VO; vminvert;

! Inverted conditional
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rS1 Stride Variant

arith-op[vec-len] rSl[ : stride] vLS, vS2, vD; \
mem-op[vec-len] mem-operand, vLS; \
modifier; ...

This variant lets you specify an arbitrary stride marker for the rSl operand.
This stride marker can be any of the register stride markers in Section 3.2.5.

Examples:

V0:2,V2 !

VO:1=4,V2 !

RO=4,R6 

V0:2,V2,V4 !

VO:1=O,V2,V4,V6;

dfloadv [%iO],V2

Use stride 2

Use 1, set 4

Set 4 (scalar)

Float dyadic

\Triadic
! Triadic

Register Stride Indirection Variant

arith-op[vec-len] rSl[ (rLA stride)], vLS, vS2, vD; \
mem-op[vec-len] mem-operand, vLS; \
modifier ;...

This variant allows the use of an arbitrary VU register to specify the rSI
stride. Register indirection format is described in Section 3.9.3.

Examples:

VO(V2),V4 ! Reg. indirection

VO(V2),V4; iloadv [%io],V0 \

! same, chain-loaded

VO(V2:2),V4 ! Indirect, with stride

imovev*16

imovev

imoves

faddv*16

fmadtv

imovev

imovev*16

imovev
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Memory Stride Indirection Variant

arith-op[vec-len] rS1, vLS, vS2, vD; \
mem-op[vec-len] mem-operand[ (rLA :stride) ], vLS; \
modifier ;...

This variant allows the use of a VU register to specify the mem-operand
stride. Memory indirection format is described in Section 3.9.4.

Examples:

[%io] (V2),VO;

[%iO] (2:4),vO;

VO,V4; iloadv [%iO]

! Mem. Indirect

! with stride

(V2),VO

! Chain-loading

Population Count Variant

arith-op[vec-len] rS1, vLS, vS2, vD; \
[d]epc{v,s} (vLS[:unit])=rL4[:stride] ; \
other-modifier; ...

This variant allows you to specify the [d]epc {vs modifier, which cannot be
combined with a memory operation, or with any other mode set variant. (See
Section 4.3.3.)

Examples:

epcv (VO)=V1 ! Unit stride

epcv (VO)=V1:2 ! Explicit stride

depcv (VO)=V1:2 ! Double op

faddv*16 VO,V1,V2; epcv (VO)=V1; ! Chain-loading

dfaddv*16 VO,V1,V2; depcv (VO)=V4; ! Double op

CMoST Version 7.2, August 1993
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Special Modifier Variant

arith-op[vec-len] rSl, vLS, vS2, vD; \

mem-op[vec-len] mem-operand, vLS; \

{ [no]exchange, vmcount[s]=reg[ stride]} ;

other-modifier; ...

This variant allows you to specify one (and only one) of the [no]exchange

or vmcount[s] modifiers, which cannot be combined with any other mode

set variant. (See Section 4.3.3.)

Examples:

faddv VO,V1,V2; exchange;

faddv VO,V1,V2; \
floadv [%iO],VO; exchange;

vmcount=VO;
vmcount=VO:2;

! exchange values

! chain-load

! Context count

! with stride

faddv VO,V1,V2; vmcount=VO;

faddv VO,V1,V2; \
floadv [%iO],VO; vmcount=VO;

faddv VO,V1,V2; vmcount=VO:2;

! chain-loaded

! chain-loaded

! strided

Scalar Instruction Variant

arith-op[vec-len] rS [ stride], sLS, sS2, sD; \
mem-op[vec-len] mem-operand, vLS; \
modifier ;...

This variant lets you use a scalar DPEAC operation to set the default vector
length for future instructions (and specify an arbitrary rSl stride marker).
This mode set variant is much more efficient than using the dpset accessor
instruction to modify the dp_vector_length register.

Examples:

fadds VO,V1,V2; exchange;
fadds VO,Vl,V2; \

floads [%iO],VO; exchange;

! exchange values

! chain-load
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3.9.2 Vector Length Modifier

In all mode set format variants, the vec-len modifier specifies the.vector length
for the operation, and can also be used to modify the default vector length stored
in the register dp_vectorlength. The syntax of the vec-len modifier is:

Syntax
opcode*vlen
opcode*-vlen
opcode*as-register
opcode*-as-register
opcode*as-register<
opcode* -as-register<
opcode-vlen

Effect
Use constant length vlen.
Use/set dp_vectorlength to vlen.
Use length from as-register (all bits, + 1).
Use/set dpvectorlength from as-register.
Use length from as-register (bits 19 22, + 1).
Use/set dpvector_length from as-register.
Set dpvectorlength to vlen (scalar ops.)

where vlen is a constant-expression. The length specified must always be an inte-
ger from 1 to 16. Any unused bits of a referenced as-register must be 0. The
modifier " <" makes as-register references faster (fewer SPARC operations)
because only 4 bits (19 through 22) of the register are used.

The vec-len modifier can be attached to either the arithmetic opcode or memory
opcode, or both, and it applies to both. (If a vec-len modifier is specified on both
the arithmetic and memory opcodes, the two modifiers must be identical.)

Note: All forms that obtain a length value from a register implicitly add 1 to the
value before use. All forms that store a value into dp_vectorlength store the
value in decremented form, so that this implicit incrementing will work properly.

3.9.3 Register Stride Indirection

For register stride indirection, the rSl operand format is:

Syntax
rS (rlA)
rSl (rlA:stride)

Effect
Indirect addressing, unit stride.
Indirect addressing, constant stride.

The rLA register operand contains offsets that are separately added to the rSl base
register to obtain the actual Rnn register containing the rSl stride. (Note: This
offset addition is not cumulative.)
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The register offsets are packed four to a register in the specified rL4 register and
in subsequent registers at the specified stride. Since offsets cannot exceed 127
(7 bits), the eighth bit of each offset byte must be zero:

iS offsetl [O of set 2 f* offset 3 1 offset 4

31 30 24 23 22 16 15 14 876 0

Note: If a stride is not specified, then the "unit" stride is always 1 register for
both single- and doubleword operations; one doubleword "register" corresponds
to two singleword registers.

3.9.4 Memory Indirection

For memory stride indirection, the mem-operand format is:

Syntax
mem-operand (register)
mem-operand (register: stride)

Effect
Memory indirection, unit stride.
Memory indirection, constant stride.

The indirection modifier replaces the [: tempstride] modifier of the short format.

The specified single-precision VU register contains offsets that are separately
added to the memory address to obtain each operand location. The addition is
done in two's-complement, so negative offsets will work correctly. (Note: This
offset addition is not cumulative.) The memory offsets are stored one byte per
register, taken from the specified single-precision register and subsequent regis-
ters at the specified stride.

Note: If a stride is not specified, then the "unit" stride is 1 single-precision regis-
ter for single-precision memory operations, and 2 single-precision registers (1
double-precision register) for double-precision memory operations.
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3.9.5 Mode Set Format Modifiers

The following modifiers are permitted by the mode set format:

These modifiers are permitted by the short format:

[no]pad[:pad-size] Vector length padding (default is 4).
maddr-mem-operand Memory operand specifier.
[no]align Doubleword alignment guarantee.
vmrotate, vmcurrent} Status bit rotation mode.

vmmode: [-]mode-keyword Conditionalization mode selection.

These are the mutually-compatible modifiers added by the mode set format:

vminvert,vmtrzue)}; Conditionalization bit sense selection.
{vmold,vmnew,vmnop}; Vector mask copy mode.

These are only allowed in the pop. count and special modifier variants:

[d]epctv,s} (vLS[:unit]) -rLA :stride Population count.
vmcount[s]-reg:stride Accumulated context count.
[no]exchange VU on-chip data swapping.

These modifiers are all described in more detail in Section 4.3.

CMosr Version 7.2, August 1993
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DPEAC Instruction Set Reference
* .w~**p ~ %~

This chapter presents a quick-reference list of the DPEAC instruction set, includ-
ing DPEAC instructions, instruction modifiers, and accessor instructions.

4.1 DPEAC Arithmetic Instructions

4.1.1 Monadic (One-Source) Arithmetic Instructions

These operators perform an arithmetic operation on rSl, storing the result in rD.
(Note: In immediate format, the rSl source argument is the immediate value.)

Formats:

opcode rS1, rD

Monadic Opcodes
{i,di,u,du,f,df I move {vs 
{i,di,u,du,f,df test {v,s}

{u,dul not{vs}
{f,df I cas {v,s }
{f,df } exp{v,s}
{f,df I mant {v,s }
{u,dul ffblv,s}

{i,di,fdf I negfv,s }
{i,di,fdf I abs fvs)}

{f,df}) inv{v,s)}
f,df } sqrt v,s 

t f,df I isqt{v,s 

Function
Move rSl to rD, no status generated.
Move rS1 to rD and test.
Bitwise invert (rD = rSI).
Classify operand (rD -= class of rSI).
Extract exponent from float.
Extract mantissa with hidden bit.
Find first "1" bit.
Negate (rD = o - rSl).
Absolute value (rD = I rS I).
Invert (rD = /rSl).
Square root (rD = SQRT (rSl)).
Inverse root (rD = /SQRT (rSl)).
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The to operator converts between data types: rSl is of the first type in the
opcode, and rD is of the second type. (In immediate format, rSl is an immediate
value.)

Formats:

opcode rSl, rD

Monadic Opcodes
{ i,di,u,du) to{ f,df I {v,s 

{f,df totf,df {v,s}
{f,df } to{ i,di,u,dujr Iv, s}
{f,df tot i,di,u,du} {v,s}

Function
Convert integer to float.
Convert to another precision.
Convert to integer (round).
Convert to integer (truncate).

4.1.2 Dyadic (Two-Source) Instructions

These operators perform an arithmetic operation on the rS1 and rS2 arguments,
and store the result in the rD argument. (In immediate format, rS2 is an immedi-
ate value.)

Formats:

opcode rSl, rS2, rD

Dyadic Opcodes
{i,di,u,du,f,df } add{v,s)

{ i,di,u,du} addc lv,s}

{i,di,u,du,f,df I
{i,di,u,du}

sub{v,s}
subctv,s)

{i,di,u,du,f,df } subr {v,s I
{i,di,u,du} sbrc{v,s}

I i,di,u,du,f,df} mult v,s }
{ di,dul mulh{v,s}

{If,df I div{v,s }

{ u,dul enc{v,s}

Function
Add (rD = rS1 + rS2).
Integer add with carry bit from shift

of vector mask register.
Subtract (rD = rS1 - rS2).
Integer subtract with carry bit from shift

of vector mask register.
Subtract reversed (rD - rS2 - rS1).
Integer subtract reversed with carry bit

from shift of vector mask register.
Multiplication (low 32/64 bits for ints).
Integer multiply (high 64 bits).
Divide (rD = rS1 / rS2).

Make float from exp and mant (rS1, rS2).
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Dyadic (Two-Source) Instructions (continued)

Formats:

opcode rS1, rS2, rD

Dyadic Opcodes
{u,du}
{u,du}

{ i,di,u,du}
{i,di,u,du}

{u,du}
{u,du}
{u,du}
{u,du}
{u,du}
{u,du}

shl{v,s}
shlr{v,sI
shr {v,s}
shrr{v,sI

and{v,s}
nand{v,s}
andc{v,s}
or{v,}
nor {v,s}
xor{v,s}

I i,di,u,du,f,df I mrg{v,s)

Function
Shift left (rD = rSl << rS2).
Shift left, reversed (rD = rS2 << rSI).
Shift right (rD = rSl >> rS2).
Shift right, reversed (rD = rS2 >> rSl).

Bitwise
Bitwise
Bitwise
Bitwise
Bitwise
Bitwise

logical AND.
logical NAND.

logical NOT(rSl) ANDm rS2.
logical OR.
logical NOR.
logical XOR.

If vector mask bit = 1 then rS1 else rS2.

4.1.3 Arithmetic Comparisons

These operators perform an arithmetic comparison between the rSl and rD
arguments, and set status flags accordingly. (In immediate format, rD is an
immediate value.)

Formats:

opcode rS1, rD

Opcodes
I i,di,u,du,fdf I gt jv,s 

I i,di,u,du,f,df } ge {v,s}

I i,di,u,duf ,df }) It {vs 
I i,di,u,du,f,df I le{v,s}I
{ i,di,u,du,f,df I eq{v,s) }
I i,di,u,du,f,df I ne {v,s }
{i,di,u,du,f,df I lg{v,s}
{i,di,u,duf,df }un{v,s I

Function
Greater than.
Greater than or equal.
Less than.
Less than or equal.
Equal.
Not equal or unordered.
Ordered and not equal.
Unordered.
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4.1.4 Compare (Dyadic with rD constant)

The compare operation tests for a numeric relationship between the rSl and rS2
arguments, as indicated by the supplied constant code. (In immediate format, rS1
is an immediate value.)

Format:

{i,di,u,du,f,df)cmp{v,s} rSl,rS2,code

Code
0
1
2
3
4
5
6
7

Purpose
Test for greater than.
Test for equal.
Test for less than.
Test for greater than or equal.
Test for unordered (NaN present).
Test for ordered and not equal.
Test for not equal or unordered.
Test for less than or equal.

4.1.5 Dyadic Mult-Op Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the rSl, rS2, and rD arguments, and store the result in rD. Note: The optional
[h] suffix indicates that the high 64 bits of the multiplication are to be used in
the logical operation, rather than the low 64 bits (the default). (In immediate for-
mat, rS2 is an immediate value.)

Format:

opcode rSl, rS2, rD

Accumulative Opcodes
{i,di,u,du,f,df }mada{v,s}
{ i,di,u,du,f,df }msba{v,s}
{i,di,u,du,f,df }msra{v,s}
{ i,di,u,du,f,df )nmaa{v,s }

dum[h]sa{v,s }
dum[h]ma{v,s }
dum[h]oa{v,s 
dum[h]xa{v,s}

Function
rD = (rSl
rD = (rS1
rD = rD-

rD = -rD
rD = (rSl
rD = (rSI
rD = (rSl
rD = (rS1

* rS2)
* rS2)
(rS *
- (rSl
* rS2)
* rS2)
* rS2)
* rS2)

+ rD
- rD
rS2)

* rS2)
AND rD
AND NOT rD
OR rD
XOR rD

CMosr Version 7.2, August 1993
Copyright 1993 Thinking Machines Corporation

VU Programmer Handbook48



Chapter 4. DPEAC Instruction Set Reference 49

Dyadic Mult-Op Operators (continued)

Format:

opcode rSl, rS2, rD

Inverted Opcodes
{ i,di,u,du,f,df Imadi {v,s }
{ i,di,u,du,f,df Imsbi {v,s }
i,di,u,du,f,df Imri v,}

{ i,di,u,du,f,df Inmai {v,s }
dum[h]si v,n }
dum[h]mi {v,s }
dum[h]oif{v,s}
dum[h]xi{v,s}

Function
rD = (rS2 * rD) + rS1
rD = (rS2 * rD) - rS1
rD = rS1 - (rS2 * rD)
rD = -rS1 - (rS2 * rD)
rD = (rS2 * rD) AND rS1
rD = (rS2 * rD) AND NOT rS1
rD = (rS2 * rD) OR rS1
rD = (rS2 * rD) XOR rS1

4.1.6 Convert Operation (Dyadic with rS2 constant)

These operations convert the rS1 argument to the type indicated by the constant
code argument, and store the result in the rD argument. The symbolic code
constants listed below are defined by the dp. h header file. (In immediate format,
rS1 is an immediate value.)

Format:

cvt f,fi,i,ir} {v,s} rSl, code, rD

Opcodeflype
cvt i[r]
cvt i[r]
cvt i[r]
cvt i[r]
cvt i[r]
cvt i[r]
cvt i[r]
cvt i[r]
cvt f
cvt f

Code
CVTICDFI (4)

CVTICDFU(5)

CVTICDFDI(6)

CVTICDF DU(7)

CVTICD_DFI(12)
CVTICD_DFU(13)

CVTICDDFDI (14)

CVTICDDFDU(14)

CVTFCDFDF(3)

CVTFCDDFF(9)

Purpose
Single float to single signed integer.
Same, to unsigned integer.
Single float to double signed integer.
Same, to unsigned integer.
Double float to single signed integer.
Same, to unsigned integer.
Double float to double signed integer.
Same, to unsigned integer.
Single float to double float.
Double float to single float.
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Convert Operation, Continued

Format:

cvt{f,fi,i,ir } {v,s} rSl,code,rD

Opcode/Iype
cvt fi
cvt fi
cvt fi
cvt fi
cvt fi
cvt fi
cvt fi
cvt fi

Code
CVTFICD_I_F (1)
CVTFICD_U_F (5)
CVTFICD_I_DF (3)
CVTFICD_U_DF(7)
CVTFICD_DI_F (9)
CVTFICD_DU_F(13)
CVTFICD_DI_DF(11)
CVTFICDDUDF(15)

Purpose
Single signed integer to single float.
Same, but from unsigned integer.
Single signed integer to double float.
Same, but from unsigned integer.
Double signed integer to single float.
Same, but from unsigned integer.
Double signed integer to double float.
Same, but from unsigned integer.

4.1.7 True Triadic (Three-Source) Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the rSI, rS2, and rLS arguments, and store the result in rD. (In imediate
format, rS2 is an immediate value.)

Format:
opcode rSl, rLS, rS2, rD

True Triadic Opcodes
(i,di,u,du,f,df})madt {v,s }
i,di,u,du,f,df msbt {v,s)

{ i,di,u,du,f,df I}msrt {vs I}
{ i,di,u,du,f,df )}nmat {v,s I

dum[h]st {v,s) }

dum[h]mt {vs }
dum[h]ot{v,s}
dum[h]xt{v,s 8}

Function
rD = (rS1 * rLS) + rS2
rD = (rS1 * rLS) - rS2
rD - rS2 - (rS * rLS)
rD - -rS2 - (rS * rLS)
rD = (rS1 * rLS) AND rS2
rD = (rS * rLS) AND NOT rS2
rD = (rS * rS) OR rS2
rD = (rS * rLS) xoR rS2

Note: In the opcode descriptions above, the optional [h] indicates that the high
64 bits of the multiplication are to be used in the logical operation, rather than
the low 64 bits (the default).

Triadicl/Memory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are j oined, the rLS operand of the arithmetic
operation must be identical to the rLS operand of the memory operation.
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4.1.8 No-Op Operator

The untyped arithmetic no-op allows modifier side effects without specifying an
operation. The no-op takes no arguments.

Formats:

fnop {v,s (No arithmetic operation.)

4.2 DPEAC Memory Instructions

The following opcodes are supported for memory operations.

Format:

opcode memory-address, rD

Opcodes
{ i,di,u,du,f,df } loadv,s }
I i,di,u,du,f ,df } store v,s }

Function
Load Vs from memory.
Store Vs to memory.

4.2.1 No-Op Operator

The following opcodes are supported for memory operations.

Format:

memnop memory-address, rD

Opcodes
memnop

Function
No memory operation.

The memnop operation allows the side effects of memory syntax (setting of stride
defaults by stride markers, etc.) to happen without an actual memory operation.
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4.3 DPEAC Instruction Modifiers

This section describes the statement modifiers that can be combined with arith-
metic and memory operations to affect their assembly and/or execution. Note:
Some of these modifiers (such as the last three) can be used on their own.

4.3.1 Modifiers That Can Be Used in All (or Most) Formats

[no]pad[ :pad-size] Default: pad: 4

Vector Length Padding: Pads vector length of instruction to at least pad-
size. Has no effect if vector length is already that size. Used to avoid
instruction pipeline hazards. If not supplied, defaults to pad:4. The nopad
variant is the same as pad: o. Pads between 0 and 4 are allowed, but have the
same effect as pad: 4.

maddx memory-operand Default: None

Memory Operand Specifier: Used to supply a default memory operand for
DPEAC statements that omit the memory instruction - this memory operand
is used solely to determine VU selection.

{vmrotate, vmcurrent} Default: vmrotate

Status Bit Rotation Mode: Determines how status bits from vector opera-
tions are stored in the register dp_vector_mask. vmrotate "rotates" them
in, vmcurrent inserts them in bit order. (See Figure 14.) Note: this modifier
is allowed by the short format for conditional operations only. Otherwise, it
can only be used in the mode set format.

Figure 14. Bit-shifting modes of vector mask register.
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[no]align Default: noalign

Doubleword Alignment Guarantee: Declares whether or not the memory
operand is doubleword-aligned (even for singleword operations). If align-
ment is guaranteed, dpas can generate more efficient code. (Note: The
default setting of this modifier can be reversed by providing the -a command
line switch to dpas.)

4.3.2 Conditionalization Modifiers

These modifiers are used to control the conditionalization mechanism. For more
information, see Section 2.3.1.

vmmode: [=]mode-keyword Default: vmmode:vmmode

Conditionalization Mode: The vmmode modifier overrides the value of the
dp_vectormask _mode register, which affects whether arithmetic opera-
tions and/or memory operations are to be conditionalized. The permitted
mode-keyword operands are:

Mode
vmmode:vmmode
vmmode:always
vmmode:=always
vmmode:condmem
vmmode:=condmem
vmmode:condalu
vmmode:=condalu
vmmode:=cond

Effect
Use current value of dp vectormaskmode.
Do not use conditionalization in this instruction.
Set dp_vectormask mode for no conditionalization.
Conditionalize loads and stores in this instruction.
Set dp_vectormask_mode for conditionalization.
Conditionalize arithmetic in this instruction.
Set dpvector maskmode for conditional arithmetic.
Set dp_vector maskmode for full conditionalization.

It is not legal to override dpvector mask_mode for full conditionaliza-
tion. Thus, "vmmode: cond" is not allowed.

Usage Note: Scalar instructions are executed without conditionalization, so
you may add vmmode: always to any scalar instruction in any format with
no effect. Similarly, you may add vmmode :vmmode to any vector instuction
in any format since it represents the default action taken by the hardware.
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{vmainvert,vmtrue Default: vmtrue

Conditionalization Bit Sense: The vminvert and vmtrue modifiers con-
trol whether the conditionalization bits shifted out of the dp_vector_mask
are inverted. If inverted, the sense of these bits is reversed; i.e., 0 selects a
vector element, and 1 deselects it.

Modifier Effect
vminvert Invert sense of vector mask bits for conditionalization.
vmtrue Do not invert sense of vector mask bits.

Note: This modifier is only allowed in the mode set statement format.

{vmold,vmnew,vmnop} Default: vmold

Vector Mask Copy Mode: The vmold, vmnew, and vmnop modifiers control
the copying of the vector mask and vector mask buffer registers prior to
instruction execution:

Modifier Effect
vmold Copy dp_vector_maskbuffer to dp_vector_mask.

vmnew Copy dpvector_mask to dpvectormaskbuffer.

vmnop No copy.

Note: This modifier is only allowed in the mode set statement format.

4.3.3 Special Modifiers (Mode Set Format Only)

[d]epc{v,s) (vLS[:unit])=rL4[ :stride] Default: None

Population Count: The [d]epc {v,s I modifier enables the population count
feature. Specifically, the single- or double-precision register vLS (and subse-
quent registers at a unit stride) are read and the "1" bits in each are counted.
The results, each a single-precision unsigned integer between 0 and either 32
(single-precision) or 64 (double-precision), are written to the register Ria
(and subsequent single-precision registers at the specified stride, a constant-
expression that defaults to the unit stride for the data type).

The [d]epc {v,s I modifier effectively replaces the normal memory operation
in a DPEAC statement. The Vs register operand is used, so population count-
ing cannot be combined with any memory operation. Population counting
also cannot be used in conjunction with register or memory indirection or the
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vmcount[s] or [no]exchange modifiers. The population count result is
written before the operands are read for the arithmetic operation, so the
[d]epctv,s } modifier chain loads. The vLS operand is always strided with a
unit (1 or 2 register) stride, so the :-unit keyword is optional and has no
effect other than to emphasize the unit striding.

Implementation Note: Currently, the [d]epc{v,s} modifier cannot be used
in conjunction with a long-latency arithmetic operation, i.e., [f,df]div,
[f,df]sqrt, [f,df]inv, or [f,df]isqt.

vmcount[s]=reg:stride Default: None

Accumulated Context Count: The vmcount modifier enables the VU chip's
accumulated context count feature. The single-precision VU register reg (and
subsequent registers at the given stride, a constant-expression) is loaded with
the accumulated count of "1" bits in the vector mask at each step in the vector
operation. This accumulation is inclusive; the count includes the bit that is
shifted out of the vector mask register for each element. The scalar version,
vmcounts, is intended for use with scalar operations. It is an error to use
vmcounts with any vector operation.

For each element in the vector, the vmcount result is written before the oper-
ands are read for the arithmetic operation, so this modifier chain loads. This
modifier cannot be used in conjunction with either register or memory
indirection, nor with the [d]epc{v,s }, or [no]exchange modifiers.

[no]exchange Default: noexchange

VU On-Chip Data Swapping: Controls exchange of data between two VUs
on the same chip. Specifying exchange causes arithmetic results on each VU
to be written to the destination register(s) of the other VU. In conditionalized
ALU operations, deselected elements are not written to the opposite VU.
Selected elements are written, even if the corresponding element in the oppo-
site VU is deselected.

The [no]exchange modifier is only used in the mode set format. However,
it is incompatible with register stride indirection, memory stride indirection,
and with the [d]epc{v,s), and vmcount[a] modifiers.

Implementation Note: This modifier is implementationdependent, and may
not be available in the future. Also, the current implementation of exchanging
does not allow chain loading into the arithmetic destination register.
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4.4 DPEAC Accessor Instructions

These accessor instructions are always used as single statements, execute on the
node microprocessor (the SPARC), and generally move data between the SPARC
and the VU, or affect values stored in SPARC registers.

4.4.1 VU Register Accessor Instructions

Instruction(s)
dpwrt[d], dprd[d]
dpset[d], dpget[d]
dpchgbk
dpchgsp
dpld[d], dpst[d]
dpsync

Function(s)
Write and read VU data registers.
Write and read VU control registers.
Convert address from one VU region to another.
Convert between VU data and instruction spaces.
Read and write VU parallel memory.
Synchronize instruction pipelines of VUs.

These instructions move data between VU data registers and SPARC registers:

dpwrt[d]
dpwrt[d]
dprd[d]

dpwrt

dpwr t
dprd

VU-selector, as-src-reg, VU-dest-reg [, I sync, nosync)} ]
VU-selector, value, VU-dest-reg [, {I sync, nosync I ]
VU-selector, VU-src-reg, as-dest-reg [, { sync, nosync ]

ALLDPS,%il,VO,sync

DPS_0_AND_1,29,V0,nosync

DP_3,VO,%iO

These instructions move data between VU control registers and SPARC registers.
(See Section 2.5 for a list of predefined control register constants.)

dpset[d] VU-selector, as-src-reg, ctl-reg-offset [, SUPERVISOR]
dpset[d] VU-selector, value, ctl-reg-offset [, SUPERVISOR]
dpget[d][s] VU-selector, ctl-reg-offset, as-dest-reg [, SUPERVISOR]

dpset DP 3,%i0,DP VECTOR MASK

dpset ALLDPS,0,DPVECTORMASK

dpget DPS_0_AND_1,DP_VECTOR_MASK, %i0
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This instruction converts a VU memory address between the data and instruction
virtual memory spaces:

dpchgsp srcreg, destreg

dpchgsp R5, R6

This instruction modifies a VU memory address to refer to a different VU
memory region:

dpchgbk srcreg, VU-selector, destreg

dpchgbk R5, DPS_0, R6

These instructions move data between VU parallel memory and a SPARC IU
register:

dpld[d] as-mem-operand, as-dest-register
dpst[d] as-src-register, as-mem-operand

dpld [%io], %il
dpst %il, [%io]

This instruction generates code to prevent the preceding and following instruc-
tions from overlapping in the instruction pipeline of the VUs (see Appendix C):

dpsync

faddv VO,V1,V2
dpsync
fmulv V1,V2,V3

4.4.2 VU Trap Instructions

These instructions generate traps and provide direct SPARC access to the
dp_vectormask register:

Opcode Function
trap Generate trap unconditionally.
etrap Generate trap if set_enb bit in the

dp_interrupt_causegreen register is set.
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4.4.3 Vector Mask Instructions

Opcode
ldvm rS1
stvm rS1

Function
Move rS] to dp_vectormask.
Move dp_vector_mask to rS].

I.dvm VI

stvm Vi

4.4.4 SPARC Accessor Instructions

These instructions assemble into SPARC-only code, and do not affect the VUs:

Instruction
dpentry
dpretn
load[d]

dpunset

dpregs

Function
Creates a callable DPEAC routine.
Returns from DPEAC routine.
Loads an IU register with a constant value.
Signals that one or both reserved registers

may have been overwritten.
Overrides SPARC default register usage.

dpentry name, argwords, localbytes

ROUTINENAME, 0, 0

The dpentry instruction creates a callable DPEAC routine. name is an as-
symbol, the name of the routine. (Don't forget the leading underscore when
naming routines to be called from C.)

argwords is the number of stack words reserved for arguments (in excess of
6) to subroutines. (Doubleword arguments count as two words.) If there are
no subroutine calls (or none with more than 6 arguments), argwords is 0.

localbytes is the number of bytes beyond the standard frame size (MINFRAME,
i.e., 92) to be allocated on the stack frame for local temporaries. (hese are
located at the top of the frame and referenced by negative offsets from %fp.)

The dpentry instruction implies a "dpregs -, =, "- that is, the Default
Maddr Base and Instruction Extension Pointer registers are initialized.
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dpretn

dpretn

This instruction generates a return from the DPEAC routine. It takes no argu-
ments, and generates the following code:

ret
restore

To return values from a routine, place them in %io and %il, as per the C
convention. Floats are returned as a double in the floating-point register %f 0.

load[d] general-expression, as-register

load 1066, %iO

This instruction loads a SPARC IU register with a constant value, automati-
cally generating the SPARC instructions needed to load the value. loadd
loads an aligned pair of registers with a doubleword value.

dpunset

dpunset

The dpunset "instruction" informs the dpas assembler that one or both of
the reserved registers (%16 and %17) may have been overwritten. If succeed-
ing code requires the original values of these registers, dpas inserts
instructions to reinitialize them.

dpregs

dpregs %16,%17,%g2

dpregs %16=,-,%g2+

The dpregs "instruction" modifies the default SPARC registers used by
dpas for code construction. The syntax is:

dpregs MaddrReg, InstExtPtrReg, TempRegs
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Argument Register Usage

MaddrReg

InstExtPtrReg

TempRegs

Default Maddr Base Register, used for executing
DPEAC statements lacking a memory address.
Default value is DPV STACK INSTRPORTALL.

Instruction Extension Pointer Register, used in
non-doubleword-aligned memory references;
contains 0xC0000176, a value used to compute
a pointer to the dp_instructionext register.

An even-numbered SPARC register; declares that
both the specified register and its immediate successor
can be used as temporaries to execute VU instructions.

Each of these arguments can have any one of the following forms:

Argument
as-register
as-register-

a

{as-register} +
(blank)

Meaning
Use this register and mark it as uninitialized.
Use this register and generate code to initialize it.
Generate code to initialize the current register.
Tell dpas to not use any register for this feature.
Tell dpas to use the register, but not alter its value.
Do not change the current setting (NOP).

The default setting at the beginning of dpas assembly is:

dpregs %16,%17,%g2 ! declare regs, but don't initialize

If "-"-syntax is used to turn off Maddr Register usage, subsequent VU instruc-
tions that don't specify a memory address will signal an error. If the Instruction
Extension Pointer Register is turned off, dpas will generate code two cycles
slower wherever a long format instruction performs a memory operation on a
possibly non-doubleword-aligned memory address (one for which neither the the
align modifier nor the -a switch to dpas were given).

The "-" (disable) and "=" (initialize) markers can only be applied to the Maddr-
Reg and InstExtPtrReg operands.

Declaring a register but not immediately setting it up (i.e., specifying a register
name, but not using the "=" syntax), causes dpas to mark that register as unini-
tialized. This causes initialization code to be inserted later in assembly when the
value of the register is needed again. This can be used when a register may have
been overwritten to declare that dpas should not assume its contents are valid.
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The CDPEAC instruction set is a set of preprocessor macros implemented in the
C programming language. These macros are based on the C asm statement,
which allows a programmer to directly insert a line of assembly code as a state-
ment in a C procedure. (See Appendix G for more information.)

When a C program containing CDPEAC statements is compiled, each CDPEAC
statement is translated into an asm statement that inserts a line of DPEAC code.
This DPEAC code is further compiled into SPARC assembly code, which sends
appropriately assembled instruction word(s) to the VU hardware.

CDPEAC asm I DPEAC _ SPARC
statements I macros statements code

Figure 15. Process of translation used for CDPEAC code.

The most common use of CDPEAC is for efficient arithmetic functions: a main
program written in a high-level CM language (such as C* or CM Fortran) defines
parallel CM arrays using its own operators, and then calls a CDPEAC subroutine
to perform a specific arithmetic operation on the contents of the arrays.

Note: CDPEAC is C interface for DPEAC programmers. There are a few lesser-
used features of DPEAC syntax that have no analogues in CDPEAC syntax -
these are noted in the appropriate sections of this chapter.

Also, because CDPEAC statements expand into DPEAC code with little internal
translation, some familiarity with DPEAC is very helpful for effective CDPEAC
programming. In particular, the syntax of CDPEAC arguments is virtually the
same as that for DPEAC (see Section 5.2).
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5.1 CDPEAC Code

A CDPEAC procedure is just a C procedure that includes CDPEAC statements.
A CDPEAC statement is one of the following:

a U instruction

* a VU accessor instruction

* a special instruction

5.1.1 VU Instructions

A CDPEAC VU instruction corresponds to a scalar or vector operation executed
on the vector units. (In other words, a CDPEAC instruction corresponds to a
single DPEAC statement.)

A VU instruction is either:

* an arithmetic instruction, which causes the VUs to perform a register
arithmetic operation:

addv( i, VO, V1, V2 ) /* vector add (V2=VO+V1) */

* a memory instruction, which moves data between VU registers and
parallel memory:

loadv( i, address , VO ) /* load values into VO */

* a statement modifier, which affects the compilation and/or execution of a
CDPEAC statement:

vmmode(cond) /* Vector mask conditionalization */

* or some combination of the above instruction types, made with the
CDPEAC joinn operator:

Join3( addv(i,VO,Vl,V2),

loadv(i,address,VO),

vmmode(cond)
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5.1.2 VU Accessor Instructions

A CDPEAC VU accessor instruction is a CDPEAC instruction that doesn't cor-
respond to a VU arithmetic or memory operation (that is, an instruction executed
by the SPARC). Accessor instructions are typically utility operations such as
reading and writing VU registers from the SPARC, directly reading and writing
parallel memory locations, etc. Accessor instructions can be recognized by their
"dp" prefix, i.e., dpset, dpget, etc.:

/* Get memory argument stride */

dpget( i, DP_1, dp_stride_memory, sp_dest )

/* Read VU data register into SPARC register */
dprd( i, ALL_DPS, RO, sp_dest )

5.1.3 VU Special Instructions

A CDPEAC special instruction is an instruction not belonging in either of the
other classes but that peforms some useful operation on the SPARC and/or VUs:

setvectorlength(8) /* Set default vector length */
ldvm(RO) /* Set contents of dp_vectormask register */

5.1.4 The Join Macro

CDPEAC includes a macro named (I oinn) that joins two or more CDPEAC VU
instructions into a more efficient single instruction:

join[1-9](instructionl,...,instructionn) - n-way join

This joining is not arbitrary, however; it is based on the underlying statement
syntax of DPEAC.

A single CDPEAC VU instruction represents a single VU operation, so a j oinn
statement can include no more than one memory instruction and one arithmetic
instruction. Either or both can be omitted (in which case appropriate no-ops are
generated). A j oinn statement may also include any number (including zero) of
modifiers, as permitted by the statement format in use (see Section 5.4).
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The component instructions of a join statement may be arranged in virtually any
order, but for readability you should adopt a consistent form. A good "canonical"
join statement order, used by many CDPEAC programmers, is:

joinn ( arithmetic-inst, memory-inst, modifier-1, modifier-2 ... )

This order is recommended because while the memory operation and modifiers
are usually executed and/or applied before the arithmetic operation, it is the arith-
metic part of the instruction that is typically of greatest interest.

Note: The n in the j oinn macro name must match the number of arguments. It
can range from 1 to 9. If there are only two arguments, the n can be omitted.
Also, join statements cannot be used as arguments to other join statements
(for example, you can't apply j oin2 to two other join statements).

Chain Loading

When a join statement includes both memory and arithmetic instructions, the
memory instruction executes first, and any value it obtains from memory can be
used by the arithmetic instruction.

When a join statement refers to the same register in both the memory and arith-
metic operations, and when the memory operation is a load, the loaded value
from the memory operation is used in the arithmetic operation. This is called
chain loading. In a vector operation, this can happen for each step in the vector
operation.

There are some modifier operations (such as population counting), that can also
chain load, and some modifier operations that cannot chain load. Section 6.7 lists
the CDPEAC statement modifiers and indicates which can and can't chain load.

5.1.5 Instruction Suffixes

CDPEAC instructions often use special suffixes, such as _i", "v, etc., to indi-
cate alternate forms of a single arithmetic or memory instruction:

loadv_i(i,source,V2,VO) /* memory indirection */

movevv(i,16,VO,V2) /* explicit vector length */

These suffixes are introduced in the syntax and statement format sections below.
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5.1.6 Argument Macros

There are also argument macros that apply to a single argument of a CDPEAC
instruction, and provide some modification of the instruction's effects on that
argument:

dreg_u( V8, 8 ) /* Register stride of 8 */
dreg_x( V2, 5 ) /* Register offset of 5 */

These macros are described in more detail in the syntax sections below.

5.2 CDPEAC Syntax

5.2.1 General Syntax

Since CDPEAC procedures are written in C, standard C syntax is followed for
the overall structure of a CDPEAC procedure and declaration of its arguments.
However, the arguments to a CDPEAC macro have their own syntax, which is
derived from the underlying DPEAC syntax. CDPEAC expression syntax is the
same as the DPEAC syntax described in Section 3.2, with one exception: the
SPARC register syntax of DPEAC is replaced by references to C variables, as
described below.

CDPEAC operations that need to refer to parallel memory addresses or SPARC
registers, in particular the memory instruction operations load and store, take
C variables as the parallel memory address or SPARC register argument. (These
variables are converted internally into appropriate references for DPEAC.) Thus,
for example, in the CDPEAC fragment:

unsigned source, dest;

loadv( f, source , VO );

storev( f, dest, VO );

the variables source and dest must be pointers to arrays in parallel memory
of values (floating-point values, in this example). The length of these arrays must
be as least as large as the current value of dpvectorlength. The contents
of the source array are copied into the vector register vo of the VUs, and then
read back out and stored in the dest array.

Note: Typically, the C variables used in this fashion will be addresses supplied
by a C* or CM Fortran program, representing a subgrid of an array argument.
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5.2.2 Vector Unit Data Registers

CDPEAC code refers to the 128 VU data registers by the following names:

R0 - R127

VO - V15

SO - S15

SO - S30(even)

All 128 registers in sequential order.
Vector regs (first in each vector, same as R0, R8 ... R120).

Scalar regs (single-precision), same as R0 - R15.

Scalar regs (double-precision), same as Ro - R30 (even).

Restrictions: CDPEAC statements in immediate format use the Ro and R1 regis-
ters to store immediate arguments, so these registers should be avoided.

The VU data registers are grouped in banks of 8, called vector registers. The
special register names vo - V15 are used to refer to the first data register in each
vector. When a vector instruction requires an "aligned vector" argument, the
argument must be one of the vnn registers (or the equivalent Rnn).

Figure 16. VU data registers: 16 vectors of 8 registers.

A subset of these registers is designated as the scalar registers. These are so -
S15 (singleword), or the even registers from so - S30 (doubleword). (The snn
names are equivalent to Rnn, and explicitly show use of scalar registers.) Scalar
operations that use scalar registers assemble into efficient instructions.

5.2.3 Vector Unit Control Registers

There are symbols for all the VU control registers, as described in Section 2.5.
However, these symbols are typically only used for accessor instructions such as
dpset and dpget. CDPEAC j oinn statement formats allow you to implicitly
use and/or set the value of one or more control registers while executing a VU
operation. See the mode set format in particular (Section 5.9) for examples.
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VO V1 V2 V3 V4 V5 V6 V7 V14 V15
RO R8 R16 R24 R32 R40 R48 R56 - R112R120
R1 R9 R17 R25 R33 R41 R49 R57 ___ - - - R113 2
R2 R10 R18 R26 R34 R42 R50 R58 _ R114 R122
R3 R R11 R27 R35 R43 R51 R59 ___ R115R123
R4 R12 R20 R28 R36 R44 R52 R60 I 16R124
R5 R13 R21 R29 R37 R45 R53 R61 R117R125

R6 R14 R22 R30 R38 R46 R54 RB2 R118 R12
R7 R23 R31 R39 R47 R55 R63 R119R127
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5.2.4 Register Offset Macro

You can apply a register offset to a data register, and thereby access one of the
registers succeeding it in Rnn order (this is mainly useful for accessing the ele-
ments of vnn vectors):

dregx( dreg, index )

For example, dreg_ ( V2, 5 ) refers to R21, that is, V2 (=R16) + 5 = R21

5.2.5 VU Register Stride Macros

VU arithmetic operations can stride, or step through, a group of data registers.
The stride increment is indicated by a stride macro applied to the appropriate
register argument. The general syntax is shown below:

Macro Syntax
register

dregu ( register, stride)
scalar (register, stride)
dreg. (register, mode)
dreg.s (register, stride)
dregus ( register, stride,

Effect
Unit stride (1 for singlewords, 2 for double).
Temporarily use specified stride.
Scalar striding, same as dreg (register, 0).
Use stride value stored in dp_stride_rsl.
Set dp_stride_rsl to stride and use it.

set-stride )
Set dp_stride_rsl to set-stride, use stride.

In the above, register is any valid VU data register, and stride and set-stride are
constant expressions in the range -128 to +128. Register striding is always in
terms of the Rnn ordering, even when a vnn register name is specified. A stride
of zero causes the same register to be used at each step.

Important: The stride marker forms shown here are not valid for all statement
formats - most statement formats restrict the types of stride markers that are
allowed. In particular, the latter four forms are valid only for the rSl register
argument of an arithmetic instruction.

rSl Stride Restriction: When you apply a stride of 0 to the rS1 argument of an
arithmetic operation (for example, dreg_u (RO, 0)), the rSI register must be
one of the scalar registers so through s15s, or s30 for double-precision.

Note for DPEAC Programmers: There is no CDPEAC macro equivalent to the
DPEAC register-stride stride marker format.

CMOST Version 7.2, August 1993
Copyright C 1993 Thinking Machines Corporation

Chapter 5. he CDPEAC nstruction Set 67



68 VUProgrammerI. Handbook

5.2.6 VU Memory Striding

VU memory operations can also stride through memory locations. The stride of
vector instructions is either specified explicitly in the instruction, or else defaults
to the value of the dp_stridememory control register. Typically, the default
memory stride (dp_stridememory) is used, but CDPEAC memory instruc-
tions also allow you to specify the memory stride as part of the instruction.

For each memory instruction, there are a number of suffixes you can add that
change the striding of the memory address argument. (Note: These memory
stride instruction forms are mainly of use for CDPEAC instructions written in
memory stride format; see Section 5.8.)

Instruction Suffix Effect
mem-inst (type, memop, reg) Use default stride on memop.
mem-instu (type, memop, stride, reg) Use stride stride on memop.
mem-insts (type, memop, stride, reg) Set default stride to stride and use it.
mem-inst us (type, memop, stride, set-stride, reg)

Set default to set-stride, but use
stride for this instruction.

For all the above suffix formats, the stride values that can be specified are
restricted to 4 or 8 for singleword operations, and 8 or 16 for doubleword opera-
tions. When you write CDPEAC code by hand, you should make sure the default
memory stride register dp_stride_memory is set to the stride you require (for
example, 4 bytes for single-precision or 8 bytes for double-precision). You can
use the CDPEAC accessor instruction dpset for this purpose; for example:

dpset ( i, ALL_DPS, 8, DP_STRIDE_MEMORY )

5.2.7 VU Selection in CDPEAC Statements

The VUs that execute a CDPEAC statement are selected by the memory address
specified in the statement. (Deselected VUs are effectively idle.) A CDPEAC
statement's memory address is:

* the value of the memory-argument in the memory instruction.

* the value specified by the madd: modifier, if any.

* If neither of these is supplied, a default address that selects all the VUs.
The default address used is DPV_STACK_INST_PORT_ALL.
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Typically, you won't construct these memory addresses yourself; your high-level
language compiler and/or the dpcc compiler generate these addresses for you.

5.2.8 VU Selection in CDPEAC Accessor Instructions

The VU(s) referenced by a CDPEAC accessor instruction are determined by the
"VU selector" argument. This argument must be a valid VU selector, as
described below.

A VU selector is an integer or symbolic constant that specifies one or more VUs
to perform a given accessor instruction. The syntax is:

Syntax
constant-expression
C variable
*

Immediate Value
Use the specified selector constant (see table below).
Use value of specified variable.
Select all VWs.
Use both VUs on chip n (O=VU's 0&l, =VU's 2&3).

The constant-expression form can be either an integer VU selector value, a
physical VU selector (an integer preceded by a "$"), or one of the symbols
defined by the header file cdpeac . h for these values. (Use of predefined sym-
bols is recommended.)

The legal VU selector values, and their corresponding symbols, are:

VU
Number(s)

VU n
ALL VUs

VUs 0 and 1
VUs 2 and 3

VU Selector
Value Symbol

2*n DP n
8 ALL DPS

10 DPS 0 AND 1

12 DPS 2 AND 3

Physical VU Selector
Selector Symbol

$n DPPHYSNUMn

$8 ALL_PHYS_NUM_DPS

$9 DP-PHYS NUM 0 AND 1

$11 DPPHYS NUM_2 AND 3

DPEAC Usage Note: There is no CDPEAC equivalent of the modifier "<" for
VU selectors in DPEAC, which selects bits 12:15 of the value.
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5.3 CDPEAC Instructions

5.3.1 Scalar and Vector Instructions

CDPEAC memory and arithmetic instructions come in two forms: scalar and
vector

Scalar instructions execute just once, for the supplied arguments, and are distin-
guished by an "a" suffix on the instruction name.

Vector instructions execute repeatedly for each of a series of arguments, and are
distinguished by a "v" suffix on the instruction name. Vector instructions start
with the specified register or memory address argument(s) and then step through
succeeding locations determined by the vector stride and vector length:

* The vector stride determines the number of registers or memory addresses
a vector instruction advances at each step. The default vector stride
depends on the type of operation (memory or arithmetic).

* The vector length determines the number of registers or memory addresses
affected by a vector instruction. The vector length defaults to the value of
the VU register dp_vectorlength, unless a different vector length is
specified explicitly.

Note: If a CDPEAC join statement includes both a memory instruction and an
arithmetic instruction, the two must agree in form: they must be either both scalar
instructions or both vector instructions.

5.3.2 Register Arguments

The register arguments of CDPEAC arithmetic and memory instructions are
indicated by the following symbols, indicating arbitrary VU registers:

rS1, rS2 First and second source registers.
rLS Load/store (or third source) register.
rD Destination register.
rA Indirect addressing (used in register indirect format).

When an instruction format requires vector (vnn) register arguments, the sym-
bols vS1, vS2, vLS, vD, and viaL4 are used instead. Similarly, when scalar (snn)
register arguments are required, the symbols sSI, sS2, sLS, sD, and slA are used.

CMosr Version Z2, August 1993
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5.3.3 Data Type Argument

Vitually every CDPEAC instruction has an initial type argument, which speci-
fies the data type of the instruction. This argument must be one of the following
data-type symbols:

i Signed 32-bit integer u Unsigned 32-bit integer
di Signed 64-bit integer du Unsigned 64-bit integer
f Single (32-bit) float df Double (64-bit) float

5.3.4 Arithmetic Instructions

An arithmetic instruction causes the VUs to perform a register arithmetic opera-
tion. Arithmetic instructions have the following general forms:

Monadic (one source): instruction{v,s} ( type, rSl, rD )
Dyadic (two sources): instruction{v,s} ( type, rSl, rS2, rD)
Triadic (three sources): instruction {v,s } ( type, rSl, rLS, rS2, rD)

Note: In the statement format descriptions in Section 5.4, the arithmetic opera-
tion is always shown in triadic form. Dyadic and monadic forms are obtained
simply by omitting the appropriate arguments (rLS and rS2).

(Appendix D describes the VU arithmetic instructions in detail, and describes the
VU status bits that are affected by each instruction.)

Vector instructions have a default stride of 1 (singleword) or 2 (doubleword) for
register arguments, unless the argument explicitly specifies a different stride (see
Section 5.2.5.)

rS2 Argument Restrictions: The rS2 argument of an arithmetic instruction has
these restrictions, imposed by the internal representation of the instruction:

* For vector operations, rS2 cannot be any of RO through R7, by any name
(so, vo, etc.).

* In scalar operations, rS2 cannot be any of Rnn, where nn is any multiple
of 16 (for single-precision) or 32 (for double-precision).

Triadic/Memory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are joined, the rLS operand of the arithmetic
operation must be identical to the rLS operand of the memory operation.
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5.3.5 Memory Instructions

A memory instruction causes the VUs to move data between memory and VU
registers. The arguments of a memory instruction are a memory address and a
VU register. Memory instructions have the following general form:

memory-operationfvs) (type, memory-argument, rLS )

The rLS argument can be any VU register, but if a triadic arithmetic operation
and a memory operation are combined, the rLS argument of both must be the
same, and the memory operation can only be a load, not a store. The default
stride for the rLS register is determined by the arithmetic operation, and the stride
required by the memory operation must agree.

The memory-argument can be any memory address that selects one or more VUs,
and it is specified by a C variable containing the address as an unsigned integer.

The stride of vector instructions is always the default value given by the
dp_stride memory register.

Singleword Doubleword Performance Note: Doublewords are the natural
word size for the VUs. Singleword operations require a read-modify-write step.
Thus, singleword operations are less efficient than doubleword operations.

CMosr Version 7.2 August 1993
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5.3.6 Modifiers

Modifiers: Modifiers are keywords, such as pad, madcMr, vmcurrent, etc., that
modify the assembly or execution of a CDPEAC statement. The modifiers per-
mitted in a CDPEAC statement are determined by the statement's format. The
available modifiers are listed below, and described in more detail in Section 6.7.

Modifiers That Can Be Used in All (or Most) Formats:

nopad, pad[ (pad-size)] Vector length padding (default is 4).

maddr (memory-argument) Default memory address.

vmrotate, vmcurrent} Packing mode for vector mask bits.

[no]align Doubleword alignment declaration.

vmmodeLs] (mode-keyword) Conditionalization mode selector.

Conditionalization Modifiers (Mode Set Format Only):

{vminvert, vmtrue} Conditionalization bit sense selector.

{vmold, vmnew, vmnop} Vector mask copying mode.

Special Modifiers (Mode Set Format Only):

epc{v,s} (type, sreg, dreg) Population count.

vmcount[s] (dreg) Accumulated context count.

[no]exchange On-chip VU data exchange.
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5.4 CDPEAC Statement Formats

As noted in Section 5.1.4, the permissible arguments to a join statement are
constrained by the DPEAC code that the Join statement turns into. Thus, there
are two main classes of join statement formats, short format and long format.

A shortformat statement assembles into a single word (32-bit) operation. Short
format statements execute faster than those in long format, but lack some of the
features provided by the long format.

A long format statement assembles into a doubleword (64-bit) operation. Long
format statements are slower is issue, but use the extra word to provide additional
argument types and modifiers that are not permitted by the short format. Specifi-
cally, the long format comes in four varieties:

Immediate format allows an immediate argument in the arithmetic operation.

Register stride format allows register striding in the arithmetic operation.

Memory stride format allows address striding in the memory operation.

Mode setformat provides access to a number of VU features, including regis-
ter/memory indirection and overriding of many VU instruction defaults.

Each of the varieties of long format represents a modification of the short format.
You can think of the short format as the backbone of features that all CDPEAC
j oin statements are allowed to have, with each of the long formats representing
some modification of or addition to those features.

Important! Because of the way that CDPEAC code is compiled and assembled,
the modifications provided by each of the long formats cannot be combined. You
can use only one of the long formats, or none of them (that is, use the short for-
mat) in a single join statement.

Note: You do not have to use the j oin macro to make use of the statement for-
mats described below. It is perfectly legal to write a CDPEAC statement
consisting of a single arithmetic or memory instruction using a modifier or macro
allowed by any of the statement formats. Just be sure that you don't try to use
more than one statement format in the same instruction.
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5.5 The Short Format

The short statement format is:

Vector Instuctions:
J oinn ( arith-inst( type, rSl, vLS, vS2, vD),

mem-instLu] ( type, mem-argument, [stride,] vLS ),
modifier...

Scalar Instuctions:
Joinn( arith-inst( type, rSl, sLS, sS2, sD),

mem-instLu] ( type, mem-argument, [stride,] sLS ),
modifier... )

With one exception (the mode set statement format, see Section 5.9), the rS1
argument can only have one of the following explicit stride forms:

rSl Use register rS1, with unit stride for vector ops.
dreg_u ( rSI, mode) Use register rSl, with dpstride_rsl stride.
dreg _u (sS1, ) Use scalar register sSl with 0 stride.

The remaining register argument(s) must be aligned vector (nn) registers for a
vector operation, or scalar (snn) registers for a scalar operation. Vector instruc-
tions always use unit striding, so stride markers are not allowed in short format
(see register stride format, Section 5.7).

The mem-inst instruction can be in the "_u" (explicit memory stride) form, but
if a memory stride is specified then the rS1 argument must be either an aligned
vector (vnn) register, or a scalar (snn) register with an explicit stride of 0. The
mem-argument must be a C variable (unsigned integer) giving a valid memory
address.

The vector length for a vector operation is taken from dp_vector_length.
This cannot be overridden in the short format (see mode set format, Section 5.9).

Only the following modifiers are permitted by the short format.

nopad, pad[ (pad-size) ] Vector length padding (default is 4).
maddr (memory-argument) Default memory address.
{vmrotate, vmcurrent} Pacldking mode of vector mask bits.
[no]align Doubleword alignment declaration.
vmodeLs] (mode-keyword) Conditionalization mode selector.

Note: {vmcurrent, vmrotate} are useful only for comparison operations,
where the result of the comparison produces status bits that can be rotated.
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Examples:

movev(i,VO,Vl) /* Integer monadic */

join2(movev(i,VO,Vl),loadv(i,source,VO))

/* Same, chain-loaded */

movev(i,dreg_u(VO,mode),V1) /* Default reg. stride */

movev(i,dreg_u(SO,O),Vl) /* Scalar reg, 0 stride */

moves(i,dreg_u(SO,0),Sl) /* Scalar operation */

loadv (i, source,V1)

join2(loadv(i,source,V1),

loadvu(f,source,4,VO)

loadvu(f,source,8,VO)

loadvu(df,source,8,VO)

loadvu(df,source,16,VO)

/* memory operation */

noalign)

/* same, non-aligned */

/* unit stride, singleword */

/* unit stride, singleword */

/* unit stride, doubleword */

/* unit stride, doubleword */

join2(testv(i,VO,V1), maddr(source))

/* maddr modifier */

gtv(df,VO,Vl) /* Conditional */

join2(gtv(df,VO,Vl), vmcurrent)

/* Conditional, with modifier */

addv(f,VO,Vl,V2) /* Float dyadic */

join2(addv(f,VO,Vl,V2),nopad)/* No vlen padding */

madav(f,VO,Vl,V2) /* Mult-add */

madiv(f,VO,Vl,V2) /* Mult-add, inverted */

join2(madtv(f,VO,Vl,V2,V3),loadv(f,source,Vl))

/* True triadic, chain-loaded */

join2(addv(f,VO,Vl,V2) ,load(i,source,VO),vmmode(condmem))

/* Conditional mem. op. */

join2(addv(f,VO,Vl,V2),load(i,source,VO),vmmode(condalu))

/* Conditional arith. op. */
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5.6 Immediate (Long) Format

The immediate format (indicated by an "i" suffix on the arithmetic operator)
modifies the short format by replacing one source argument in the arithmetic
instruction with an immediate value. (The operand replaced depends on the arith-
metic instruction in use - see the instruction listings in Chapter 6.) The
immediate value is loaded into RO (singleword operations) or Ro and RI (double-
word operations) prior to use.

Vector Instuctions:
j oinn ( arith-insti ( type, rSl, vLS, imm, vD),

mem-instLu] ( type, mem-argument, [stride,] vLS),
modifier... )

Scalar Instuctions:
j oinn ( arith-insti ( type, rS1, sLS, imm, sD),

mem-instLu] ( type, mem-argument, [stride,] sLS),
modifier... )

The imm argument is a 32-bit immediate value, either a C variable or a general
expression. Immediate values are sign-extended in double integer arithmetic
(zero-extended for double unsigned operations). For double-precision constants,
only the upper 32 bits are included in the instruction. Thus, only floating-point
numbers with O's in the 32 least significant bits of their mantissas are allowed.

Restrictions: With the exception of the imm argument, the register and memory
arguments have the same restrictions as in the short format. Vector length comes
from dpvector_length, and the permitted modifiers are the same.

Examples:

movevi(i,29,V1) /* Monadic immed. */

movevi(i,value,Vl) /* C variable */

join2(movevi(i,29,Vl),loadv(i,source,V2)) /* with mem. op. */

join2(movevi(i,29,Vl),loadvu(i,source,8,VO))

/* with mem stride */

movesi(i,29,S1) /* Scalar operation */

addvi(f,dreg_u(RO,0),29,V1) /* Immed arithmetic */

join2(madtvi (f,dreg_u(RO,O),V1,29,V3),loadv(df,source,V1))

/* Triadic immediate */
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5.7 Register Stride (Long) Format

The register strideformat modifies the short format by allowing any of the regis-
ter stride macros (dreg u, dregs, dregus, etc.) on the rS2, rLS, and rD
register arguments. (The rS1 format does not change.)

Vector Instuctions:
Joinn( arith-inst( type, rS1, stride vLS}, stride vS2}, stride vD} ),

mem-instLu] ( type, mem-argument, [stride,] astride vLS} ),
modifier... )

Scalar Instuctions:
j oinn ( arith-inst( type, rS1, stride sLSJ, stride sS2}, stride sD} ),

mem-instLu] ( type, mem-argument, [stride,] {stride sS} ),
modifier... )

The register arguments do not have to be vector-aligned, and thus can be any of
the 128 data registers.

The stride macros on the rS2, rLS, and rD can be any of the register stride macros
described in Section 5.2.5, except those that apply to rS1 only. If a triadic arith-
metic operation is used, the rLS stride must be the same for both the arithmetic
and memory operations.

The short format's argument, vector length, and modifier restrictions apply.

Examples:

movev(i,VO,dreg_u(R4,4)) /* Integer monadic */

join2(movev(i,VO,dreg_u(R4,4)),loadv(i,source,VO))

/* Chain-loaded */

join2(movev(i,VO,dreg_u(R4,4)),loadvu(i,source,8,VO))

/* same, temp stride */

loadv(i,source,dreg_u(R4,4)) * memory operation */

movev(i,dreg_u(VO,mode),dreg_u(R4,4)) /* Default reg. stride */

movev(i,dreg_u(SO,O),dreg_u(R4,4)) /* Scalar reg, 0 stride */

moves(i,dreg_u(SO,0),dreg_u(S3,2)) /* Scalar operation */

addv(f,VO,dreg_u(R20,4), dreg u(R6,3)) /* Float dyadic */

join2(madtv(f,dreg(RO,0),dreg_u(V1,2),dreg_u(R20,4),dregu(R60,7)),

loadv(df,source,dreg_u(V1,2)))

/* True triadic, chain-loaded */
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5.8 Memory Stride (Long) Format

The memory stride format modifies the short format by allowing any of the
memory stride variants u, _,u a), of the memory instructions to be used.
(See Section 5.2.6.)

Vector Instuctions:
J oinn( arith-inst( type, rSl, vLS, vS2, vD),

mem-inst u,s,u_s }(type,mem-argument, [strideset-stride,] vLS),
modifier... )

Scalar Instuctions:
j oinn ( arith-inst ( type, rSl, sLS, sS2, sD),

mem-inst u,s,u_ s} (type, mem-argument, [stride, set-stride,] sLS),
modifier... )

The short format's argument, vector length, and modifier restrictions apply.

Examples:

loadv_s(i,source,8,V1) /* use and set 8 */

loadv u_s(i,source,8,4,V1) /* use 8, set 4 */

join2(movev(i,VO,Vl),loadvs(i,source,8,VO)) /* Chain-loaded */
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5.9 Mode Set (Long) Format

The mode set format is the most complex of the long formats. It allows you to
do any or all of the following:

* Override and/or set the default vector length in dp_vector_1ength.

* Override the default conditionalization mode (mode).

* Override the default conditionalization sense (vminvert, vmtrue).

* Override the default vector mask copy mode (mold, vmnew, vmnop).

* Use any of the modifiers permitted by the short format.

Mode set format also allows you to use one (and only one) of the following
mutually incompatible extensions to the short format:

* Register stride markers on the rSl argument.

* Register indirection on the rS1 argument.

* Memory indirection on the memory-argument.

* Exchange of data between the two VUs on a single chip ([no]exchange).

* Accumulated count of conditionalization bits (vmcount).

* Population counts (epc{vs}).

The mode set "format" is actually a family of distinct but related variants, each
determined by the appearance of one of the incompatible features listed above.

Note for DPEAC Users: There is no CDPEAC counterpart to the "scalar modi-
fier variant" of the mode set format in DPEAC (described in Section 3.9.1).

CMosr Version 7.Z2, August 1993
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5.9.1 Mode Set Format Variants

The legal mode set variants are:

Vector Length Variant

j oinn ( arith-inst {v,vs,vh,vhs }

( type, vlen, rSl, vLS, vS2, vD),
mem-inst_{ v,vs,vh,vhs } Lu]

( type, vWen, mem-argument, [stride,] vLS),
modifier... )

This is the basic mode set variant, in which the only features used are those

that are allowed in all mode set variants. In other words, this variant lets you

specify an arbitrary vector length for a vector operation, and use general

mode set modifiers like vmnew, vminvert, and vmcurrent. (The syntax for

the vec-len specifier is described in Section 5.9.2.)

Examples:

movev v(i,16,VO,V2) /* Integer monadic */

join2(movevv(i,16,VO,V2),loadv(i,source,VO))

/* same, chain-loaded */

loadvv(i,16,source,V1) /* memory operation */

join2(loadvv(i,16,source,V1), noalign)

/* same, non-aligned */

addvv(f,16,VO,V2,V4) /* Float dyadic */

join2(madtvv(f,16,VO,V2,V4,V6),loadv(f,source,V2))

/* True triadic, chain-loaded */

movevv(i,vlen,VO,V2)

movevvs(i,16,VO,V2)

movevvs(i,vlen,VO,V2)

moves_vs(i,16,SO,S8)

movev_vh(i,vlen,VO,V2)

movev_vhs(i,vlen,VO,V2)

join2 (addv(f,VO,V1,V2),

join2(addv(f,VO,V1,V2),

join2(addv(f,VO,Vl,V2),

join3 (addv(f,VO,Vl,V2),

/* C variable */

/* Use and set len. */

/* Use and set */

/* Scalar set */

/* 4 bit length */

/* 4 bit use/set */

vmcurrent) /* Current mode */

vmnew) /* New mask copy */

vmnop) /* No mask copy */

loadv(i,source,VO), vminvert)

/* Inverted conditional */

CMosT Version 7.2, August 1993
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rSl Stride Variant

Joinn ( arith-instL{v,vs,vh,vhs}]
( type, [vlen,] stride rSl }, vLS, vS2, vD),

mem-instL v,vs,vh,vhs } ]Lu]
( type, [len,] mem-argument, [stride,] vLS),

modifier... )

This variant lets you apply an arbitrary register stride macro to the rSl argu-
ment. This macro can be any of the stride macros described in Section 5.2.5.

Examples:

movevv(i,16,dreg_u(V0,2),V2) /* Use stride 2 */

movev(i,dreg_u_s(V0,1,4),V2) /* Use 1, set 4 */

addvv(f,16,dreg_u(V0,2),V2,V4) /* Float dyadic */

join2(madtv(f,dreg_us(VO,1,O),V2,V4,V6),loadv(df,source,V2))

/* Triadic */

Register Stride Indirection Variant

Joinn ( arith-instL{v,vs,vh,vhs}]
( type, [vlen,] dreg_i (rSl,rlA), vLS, vS2, vD),

mem-instL. v,vs,vh,vhs }] Lu]
( type, [vWen,] mem-argument, [stride,] vLS),

modifier... )
arith-op[vec-len] rSl[ (rlA :stride)], vLS, vS2, vD; \
mem-op[vec-len] mem-argument, vLS; \
modifier; ...

This variant allows the use of an arbitrary VU register to specify the rSI
stride. The macros used to specify the indirection register are described in
Section 5.9.3.

Examples:

movev(i,dreg_i(VO,V2),V4) /* Reg. indirection */

join2(movev_v(i,16,dreg_i(VO,V2),V4),loadv(i,source,VO))

/* Same, chain-loaded */

movev(i,dregi(VO,dreg_u(V2,2)),V4)

/* Indirect. with stride */

CMosTr Version 7.2, August 1993
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Memory Stride Indirection Variant

Joinn ( arith-instLvvsvhvhs }]
( type, [vlen,] rSl, vLS, vS2, vD),

mem-instL{v,vs,vh,vhs }]Li]
( type, [vlen,] mem-argument, rlA, vLS),

modifier... )

This variant allows the use of memory stride indirection (indicated by an
"_i" suffix on the memory instruction). Memory indirection format is
described in Section 5.9.4.

Examples:

loadv_i(i,source,V2,VO) /* Mem. Indirect */

loadv_v_i(i,16,source,V2,VO) /* Same, with vlen */

loadv_v_i(i,16,source,dreg_u(V2,4),VO) /* Same, with stride */

join2(movevv(i,16,VO,V4),loadv i(i,source,V2,VO))

/* Chain-loading */

Population Count Variant

joinn ( arith-instL{vvsvh,vhs}] ( type, [vlen,] rSl, vLS, vS2, vD),
epc{v,s} ( type, vLS, rlA ),
modifier... )

This variant allows you to specify the epc{v,s} modifier, which cannot be
combined with a memory operation, or with any other mode set variant. (See
Section 4.3.3.)

Examples:

epcv(u,VO,Vl) /* Unit stride */

epcv(u,VO,dreg_u(V1,2)) /* Explicit stride */

epcv(du,VO,dreg_u(V1,2)) /* Double op */

join2(addvv(f,16,VO,Vl,V2),epcv(u,VO,V1)) /* Chain-loading */

join2(addvv(df,16,VO,Vl,V2),epcv(du,VO,V4)) /* Double op */

CMosr Version 7.2, August 1993
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Special Modifier Variant

J oinn ( arith-instL{v,vs,vh,vh)}]
( type, [vlen,] rSl, vLS, vS2, vD),

mem-instLt v,vs,vh,vhs }]Lu]
( type, [vlen,] mem-argument, [stride,] vLS),

{ [no]exchange, vmcount[s](reg))
modifier ... )

This variant allows you to specify one (and only one) of the [no]exchange
or vmcount[s] modifiers, which cannot be combined with any other mode
set variant. (See Section 4.3.3.)

Examples:

join2 (addv(f,VO,Vl,V2)

join3(addv(f,VO,Vl,V2)

vmcount(VO)

vmcount(dreg_u(VO,2))

join2 (addv(f,VO,Vl,V2)

join3(addv(f,VO,Vl,V2)

join2 (addv(f,VO,Vl,V2)

,exchange) /* exchange values

,loadv(f,source,VO),exchange)

/* chain-load */

*/

/* Context count */

/* with stride */

,vmcount(VO)) /* chain-loaded */

,loadv(f,source,VO),vmcount(VO))

/* chain-loaded */

,vmcount(dreg_u(VO,2)))

/* strided */

Scalar Instruction Variant

Note for DPEAC Users: There is no CDPEAC counterpart to the "scalar
modifier variant" of the mode set format in DPEAC. However, you can use
the special instructions described in Section 6.9 to accomplish the same
effect.

CMosr Version 7.Z, August 1993
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5.9.2 Vector Length Instruction Suffixes

In all mode set format variants, either (or both) of the arithmetic and memory
instructions can explicitly specify a vector length. This is indicated by a special
suffix attached to the instruction, and by an extra vlen argument. These suffixes
can also be used to modify the default vector length stored in the register
dp_vector_length. The defined vector length suffixes are:

Syntax
operatorv
operator_ vs
operatorvh
operatorvhs

Effect
Use constant vector length vlen.
Use/set dp_vectorlength to vlen.
Use length from bits 19: 22 of vlen.
Use/set dpvectorlength from bits 19:22 of vlen.

Note: The vector length suffixes listed above are, in some mode set variants,
combined with the _i (indirection) and u (explicit stride suffixes), as in the
form operator vhsu.

The vlen argument is either a constant-expression or a C variable. The length
specified must always be an integer from 1 to 16.

Either or both of the arithmetic and memory instructions in a oin statement
may be given a vector length suffix; the specified vector length applies to both
instructions. If a vector length is specified in both instructions, both the suffix
and vector length for both instructions must be the same.

Implementation Note: If you specify the vector length with a C variable (which
is translated into a SPARC register reference at the DPEAC level) or by default-
ing to the value of dp_vector length, then 1 is added to the length before it
is used. Whenever a value is stored into dpvector_length by one of the suf-
fix forms above, it is stored in decremented form, so that this implicit
incrementing by 1 will work properly.

CMosr Version 7Z2, August 1993
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5.9.3 Register Stride Indirection

For register stride indirection, the rSl argument format is:

Syntax
dreg_i (rSl,rIA)
dreg_i (rSl,dreg_u(rA, stride)-)

Effect
Indirect addressing, unit stride.
Indirect addressing, constant stride.

The rLA register argument contains offsets that are separately added to the rSl
base register to obtain the actual Rnn register containing the rS1 stride. (Note:
This offset addition is not cumulative.)

The register offsets are packedfour to a register in the specified rA register and
in subsequent registers at the specified stride. Since offsets cannot exceed 127
(7 bits), the eighth bit of each offset byte must be zero:

X offsetl s offet2 offset3s offset4 

31 30 24 23 22 16 15 14 876 0

Note: If a stride is not specified, then the "unit" stride is always 1 register for
both single- and doubleword operations; one doubleword "register" corresponds
to two singleword registers.

5.9.4 Memory Indirection

For the memory stride indirection (_i suffix) form of CDPEAC memory opera-
tions, the rLA argument format is one of:

Syntax
register
dreg_u (register, stride)

Effect
Memory indirection, unit stride.
Memory indirection, constant stride.

The specified single-precision VU register contains offsets that are separately
added to the memory address to obtain each argument location. The addition is
done in two's-complement, so negative offsets will work correctly. (Note: This
offset addition is not cumulative.) The memory offsets are stored one byte per
register in the specified register and subsequent registers at the specified stride.

Note: If a stride is not specified, then the "unit" stride is 1 single-precision regis-
ter for single-precision memory operations, and 2 single-precision registers
(1 double-precision register) for double-precision memory operations.

CMosr Version 7.2, August 1993
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5.9.5 Mode Set Format Modifier

The following modifiers are permitted by the mode set format:

These modifiers are permitted by the short format:

nopad, pad[ (pad-size) ] Vector length padding (default is 4).
maddr (memory-argument) Default memory address.
{vmrotate,vmcurrent} Packing mode for vector mask bits.
[no]align Doubleword alignment declaration.
vmodeLs] (mode-keyword) Conditionalization mode selector.

These are the mutually compatible modifiers added by the mode set format:

{vminvert,vmtrue} Conditionalization bit sense selector.
{vmold,vmnew,vmnop} Vector mask copying mode.

These are only allowed in the pop. count and special modifier variants:

epc{v,s} (type, sreg, dreg) Population count.
vmcount[s] (dreg) Accumulated context count.
[no]exchange On-chip VU data exchange.

These modifiers are all described in more detail in Section 6.7.
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Chapter 6

CDPEAC Instruction Set Reference

This chapter presents a quick-reference list of the CDPEAC instruction set,
including CDPEAC instructions, argument macros, and accessor instructions.

6.1 The CDPEAC Join Macro

The join operator connects arithmetic operations, memory operations, and
statement modifiers to form compound CDPEAC statements:

join (instructionl, instruction2) - default join, same as join2
joinN(instructioni, . ., instructionN) - N-way join

N = {1,2,3,4,5,6,7,8,9}

A join can have at most one arithmetic and one memory operation, but any
number of modifiers from 0 to 7. The N of a j oinN must match the total number
of instructons (operations and modifiers) supplied to the j oinN.

6.2 CDPEAC Type Abbreviations

These symbols can be used as the type argument of a CDPEAC instruction:

Type

u, du

i , di

f ,df

Meaning
Unsigned integer, singleword (32-bit) and doubleword (64-bit).
Signed integer, singleword and doubleword.
Float value, single-precision (32-bit) and double-precision (64-bit).

CMosT Version 7.2, August 1993
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6.3 CDPEAC Argument Macros

Data Register Offsets:

dreg_x (dreg, index) Data register offset (index must be a constant).
If dreg is Rnn, this form refers to a(nn+index).

Note: The dregx form can be the dreg argument in any modifier below.

Data Register Striding:

dreg With no modifier, use unit striding.
(Unit stride is 1 for singles, 2 for doubles.)

dreg_u (dreg,stride) Use given stride once.
scalar (dreg) Scalar striding, same as dregu (dreg, o).
dreg_u (dreg, mode) Use default stride ( dp_striderl ).
dregs (dreg,stride) Store stride as the rSl default and use it.
dreg_us (dreg, stride, setstride)

Use stride, and store set.stride as default.

Data Register Indirection:

dreg_i (dreg, ireg) Simple register indirection.
dreg_1 (dreg, dreg_.u (ireg,stride)) Register indirection, ireg striding.

6.4 Instruction Suffixes

These suffixes appear at the end of long format CDPEAC instructions, and indi-
cate an alternate instruction form and/or argument list:

Meaning
Immediate value argument.
Memory stride indirection.
Use explicit memory stride.
Use and set memory stride.
Use stride and set set stride

Use explicit vector length.
Use and set vector length.
Vector length from variable.
Vector length from variable.

(arithmetic operations only)
(memory operations only)
(memory operations only)
(memory operations only)

as default. (mem. operations only)

(unsticky)
(sticky)
(unsticky, +(bits 19:22))
(sticky, +(bits 19:22))

CMosr Version 7.2, August 1993
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6.5 CDPEAC Arithmetic Instructions

6.5.1 Monadic (One-Source) Arithmetic Instructions

These operators perform an arithmetic operation on the single rS1 argument, and
store the result in the rD argument. (Note: In immediate format, indicated by the
i suffix, the first source argument, rSl, is the immediate value.)

Formats:

opcode {s,v} [i] (type, rSl, rD)
opcode s,v}_{v,vs,vh,vhs} (ype, vlen, rSl , rD)

type = {u, du, i, di, f, df 

Types
{u, du, i, di, f, df}
{u, du, i, di, f, df} I
{u, du}
{f, df)}
{f, df)}

{f, df)}
{u, du}
!i, di, f, df}
{ji, di, f, df}
{f, df}

{f, df I
{f, df)}

Purpose
Move rSl to rD, no status generated.
Move rSl to rD and test.
Bitwise invert (rD = -rSl).
Classify operand (rD = class of rSl).
Extract exponent from float.
Extract mantissa with hidden bit.
Find first "1" bit.
Negate (rD - o - rSl).
Absolute value (rD - I rS1 ).
Invert (rD = i /rSI).
Square root (rD = sqrt (rSl)).
Inverse root (rD = /sqrt (rSI)).

The to operators have an extra type argument, and convert between the two
types: rSl is of typel, rD of type2. (In immediate, i, format, rS] is immediate.)

Format:

opcode {s,v} [i] (typel,type2[r],rSI, rD)
opcode{s,v}_{v,vs,vh,vhs} (typel,type2[r],vlen,rSl,rD)

typel, type2 = {u, du, i, di, f, df }

Typel
{u, du, i, di}
{f, df}

if,df)

{f, df I

Type2
{f, df I
{f, df I
{u, du, i,
{u, du, i,

di)r

di}

Purpose
Convert integer to float.
Convert to another precision.
Convert to integer (round).
Convert to integer (truncate).

Opcodes
move
test
not

clas
exp
mant
ffb
neg

abs
inv

sqrt
isqt

Opcode
to
to

to

to
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6.5.2 Dyadic (Two-Source) Instructions

These operators perform an arithmetic operation on the rSl and rS2 arguments,
and store the result in the rD argument. (In immediate, , format, the rS2 argu-
ment is the immediate value.)

Formats:

opcode{s, v} [] (type,rSl,rS2,rD)
opcode {s, v}_ v,vs, vh, vhs} (type, Wvlen,rSI , rS2,rD)

type = {u, du, i, di, f, df}

Opcodes
add

addc

Types
{u, du,
{u, du,

i, di, f, df}

i, di)

sub {u, du, i, di, f, df}
subc u,du,i,di}

subr {u, du, i, di, f, df 
sbrc {u,du,i,di}

mul {u, du, i, di, f, df}

mulh {du,di)}

div {f,df)}

enc U, du)

shl

shlr

shr

shrr

and

nand

andc

or

nor

xor

{u, du}

{u, du}
{u, du, i, di)}

{u, du, i, di}

[u, du)

{u, du}
I, du)

{u, du}

{u, du}
{Iu, du}

Purpose
Add (rD = rSl + rS2).
Integer add with carry bit from shift

of vector mask register.
Subtract (rD = rSl - rS2).
Integer subtract with carry bit from shift

of vector mask register.
Subtract reversed (rD = rS2 - rSl).
Integer subtract reversed with carry

bit from shift of vector mask register.
Multiplication (low 32/64 bits for ints).
Integer multiply (high 64 bits).
Divide (rD = rSl / rS2).

Make float from exp and mant (rSl, rS2).

Shift left (rD = rSl << rS2).
Shift left, reversed (rD = rS2 << rSl).
Shift right (rD = rSl >> rS2).
Shift right, reversed (rD = rS2 >> rSl).

Bitwise logical ANm.
Bitwise logical NAND.
Bitwise logical NOT(rSl) AND rS2.
Bitwise logical IOR.
Bitwise logical NOR.

Bitwise logical XOR.

mrg {u, du, i, di, f, df If vector mask bit = 1 then rSl else rS2.
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6.5.5 Dyadic Mult-Op Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the rSl, rS2, and rD arguments, and store the result in rD. (In immediate, i,
format, the rS2 argument is the immediate value.)

Format:

opcode{ , v} [i] (type,rSl,rS2,rD)
opcode {s, v}_ {v, vs, vh, vhs } (type, vlen, rSl, rS2, rD)

type = u, du, i, di, f, df}

Note: In the opcode descriptions below, the optional [h] indicates that the high
64 bits of the multiplication are to be used in the logical operation, rather than
the low 64 bits (the default).

Accumulative Operators

Opcodes Types Purpose
mada {u, du, i, di, f, df} rD = (rSl * rS2) + rD
msba {u, du, i, di, f, df} rD = (rSl * rS2) - rD
msra u, du, i, di, f, df} rD = rD - (rSl *rS2)
nmaa {u, du, i, di, f, df} rD = -rD - (rSl *rS2)

m[h]sa (du} rD =(rS1 *rS2)AND rD
m[h]ma {du} rD = (rSl * rS2) AmD NOT rD
m[h]oa {du} rD = (rSl * rS2) IOR rD
m[h]xa {du} rD = (rSl * rS2) XOR rD

Inverted Operators

Opcodes Types Purpose
madi {u, du, i, di, f, df} rD =(rS2 * rD) + rSl
msbi u, du, i, di, f, df} rD = (rS2 * rD) - rSl
mri [u, du, i, di, f, df} rD = rS1 - (rS2 *rD)
nmai [u, du, i, di, f, df} rD = -rSl - (rS2 *rD)

m[h]si {du} rD = (rS2 * rD) AND rS1
m[h]mi Idu} rD =(rS2 * rD) AND NOT rSl
m[h]oi {du} rD = (rS2 * rD) IOR rSl
m[h]xi {du} rD = (rS2 * rD) XOR rSI
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6.5.6 Convert Operation (Dyadic with Rs2 Constant)

These operations convert the rc argument to the type indicated by the constant
code argument, and store the result in the rD argument. The symbolic code
constants listed below are defined by the cdpeac . h header file. (In immediate,
i, format, the rSl argument is the immediate value.)

Format:

opcode{s, v} [i] (type,rSl, code,rD)
opcode {s, v}_{v,vs, vh,vhs} (type, vlen, rSl, code, rD)

type = {i[r], f, fi}
code = a C constant from the list below

Opcode/Type
cvt i[r]
cvt i[r]

Code
CVTICD_F_I(4)

CV'rICD_FU (5)

Purpose
Single float to single signed integer.
Same, to unsigned integer.

cvt i[r] CVTICD_F DI (6)
cvt i[r] CVTICDF DU (7)

cvt i[r] CVTICD DF I (12)
cvt i[r] CVTICDDFU(13)

cvt i[r] CVTICD DF DI (14)
cvt i[r] CVTICDDFDU(14)

cvt f CVTFCDFF (3)
cvt f CVTFCD DFF (9)

cvt fi CVTFICD_IF (1)
cvt fi CVTFICDU F(5)

CVTFICDIDF(3)

CVTFICDUDF(7)

CVTFICD DIF (9)
CVTFICDDUF (13)

CVTFICD DI DF (11)
CVTFICDDUDF(15)

Single float to double signed integer.
Same, to unsigned integer.

Double float to single signed integer.
Same, to unsigned integer.

Double float to double signed integer.
Same, to unsigned integer.

Single float to double float.
Double float to single float.

Single signed integer to single float.
Same, but from unsigned integer.

Single signed integer to double float.
Same, but from unsigned integer.

Double signed integer to single float.
Same, but from unsigned integer.

Double signed integer to double float.
Same, but from unsigned integer.

cvt f i
cvt fi

cvt fi
cvt fi

cvt fi
cvt fi
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6.5.7 True Triadic (Three-Source) Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the rSl, rS2, and rLS arguments, and store the result in rD. (In immediate,
i, format, the rS2 argument is the immediate value.)

Format:

opcode{s,v} [i] (type,rSl,rLS,rS2,rD)
opcode{s,v}_{v,vs,vh,vhsl (type,vlen,rSl,rLS,rS2,rD)

type = u, du, i, di, f, df}

Note: In the opcode descriptions below, the optional [h] indicates that the high
64 bits of the multiplication are to
the low 64 bits (the default).

be used in the logical operation, rather than

Types

{u, du, i, di, f,
{u, du, i, di, f,
{u, du, i, di, f,

{u, du, i, di, f,

{du}
{du}
{du}
{du}

df}

df I
df I
df I

Purpose
rD = (rS *
rD = (rS *
rD = rS2 -
rD = -rS2 -

rD =
rD=
rD=
rD =

(rSl
(rSl
(rSI
(rSl

rLS) + rS2
rLS) - rS2
(rSl * rLS)
(rSl * rLS)

* rLS) AND rS2
* rLS) AND NOT rS2
* rLS) IOR rS2
* rLS) XOR rS2

TriadiclMemory Register Restriction Note: When a triadic arithmetic opera-
tion and a memory operation are joined, the rLS operand of the arithmetic
operation must be identical to the rLS operand of the memory operation.

6.5.8 No-Op Operator

The untyped arithmetic no-op allows modifier side effects without specifying an
operation. The no-op takes no arguments (except for the vlen argument in the
vector-length cases). The suffixes are as described above.

Format:

fnop{s,v} )
fnop{s,v}_{v,vs,vh,vhs} (vien)

CMosT Version 7.2, August 1993
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madt

msbt

mart

nmat

m[h]st

m[h]mt

m[h]ot

m[h]xt
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6.6 CDPEAC Memory Instructions

These operations move data between VU memory and data registers;
Note: The default memory stride is stored in dp stride memory.

Formats:
opcode {s, v} (type, address, dreg)

- use default memory stride.
opcode {s, v)}_u (type, address, stride, dreg)

- use stride once.
opcode { s,v}_s (type, address, stride, dreg)

- use stride and store it as default.
opcode {a, v} u_s (type, address, stride, setstride, dreg)

-use stride, and store setstride as default.
opcode {s,v}_i (type, address, ireg, dreg)

- memory stride indirection.
opcode {s,v}_i (type, address, deg_u (ireg, stride), dreg)

-memory indirection with stride on ireg.
opcode {s,v}_{v,vs,vh,vhs} (type,vlen,address,dreg)

- explicit vector length for CDPEAC statement.
opcode {s,v}_ {v,vs,vh,vhs _i (type, vlen, address, ireg, dreg)

-vector length and memory stride indirection.
opcode {s,v}_{v,vs,vh,vhs} _u(type, vlen, address, cstride, dreg)

- vector length and use-once cstride.
type = u, du, i, di, f, df}

Opcode Types Purpose
load {u, du, i, di, f, df } Load from memory to VU data register.
store {u, du, i, di, f, df} Store from VU data register to memory.

No-Op Instruction: Untyped memory no-op allows modifier side effects with-
out a load or store. Suffixes and arguments are as in the load/store formats above.

memnop(address)
memnopu(address, ustride)

memnop_s (address, stride)
memnop_u_s(address, stride, set_stride)
memnop_i(address, idreg)
memnop_{v,vs,vh,vhs} (vlen, address)
memnop_{v,vs,vh,vhs}_i(vlen, address, idreg)
memnop_ {v,vs,vh,vhs} u(vlen, address, ustride)

CMosr Version 7Z2, August 1993
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6.7 CDPEAC Statement Modifiers

This section describes the statement modifiers that can be joined with arithme-
tic and memory operations to affect their assembly and/or execution. Note: Some
of these modifiers (such as the last three) can be used on their own.

6.7.1 Modifiers That Can Be Used in All (or Most) Formats

nopad, pad(pad-size) Default: pad (4)

Vector Length Padding: Pads vector length of instruction to at least pad-
size. Has no effect if vector length is already that size. Used to avoid
instruction pipeline hazards. If not supplied, defaults to pad:4. The nopad
variant is the same as pad: 0. Pads between 0 and 4 are allowed, but have the
same effect as pad:4.

maddr (memory-address ) Default: None

Memory Operand Specifier: Used to supply a default memory operand for
DPEAC statements that omit the memory instruction - this memory operand
is used solely to determine VU selection.

{vmrotate, vmcurrent Default: vrotate

Status Bit Rotation Mode: Determines how status bits from vector opera-
tions are stored in the register dp_vectormask. vmrotate "rotates" them
in, vmcurrent inserts them in bit order. (See Figure 17.) Note: this modifier
is allowed by the short format for conditional operations only. Otherwise, it
can only be used in the mode set format.

Figure 17. Bit-shifting modes of vector mask register.

CMosr Version 7.2, August 1993
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[no]align Default: noalign

Doubleword Alignment Guarantee: Declares whether or not the memory
operand is doubleword-aligned (even for singleword operations). If align-
ment is guaranteed, dpas can generate more efficient code. (Note: The
default setting of this modifier can be reversed by providing the -a command
line switch to dpas.)

6.7.2 Conditionalization Modifiers

These modifiers are used to control the vector mask conditionalization mecha-
nism. For more information, see Section 2.3.1.

vmmodeLs] (mode-keyword) Default: vmmode (vmmode)

Conditionalization Mode: The vnmode modifier overrides the value of the
dp_vector_maskmode register, which affects whether arithmetic opera-
tions and/or memory operations are to be conditionalized. The permitted
mode-keyword operands are:

Mode Effect
vmmode(vmmode) Use current value of dpvectormask_mode.
vmmode (always) Do not use conditionalization in this instruction.
vmmode s(always) Set dpvectormask mode for no conditionalization.
vmmode(condmem) Conditionalize loads and stores in this instruction.
vmmodes (condmem) Set dpvector mask mode for conditionalization.
vmmode (condalu) Conditionalize arithmetic in this instruction.
vmmode.s (condalu) Set dp_vector maskmode for condit. arithmetic.
vmmodes (cond) Set dpvector mask mode for full conditionalization.

It is not legal to override dp vectormask mode for full conditionaliza-
tion. Thus, "vmmode (cond)" is not allowed.

Usage Note: Scalar instructions are executed without conditionalization, so
you may add vmmode (always) to any scalar instruction in any format with
no effect. Similarly, you may add vmmode (vmmode) to any vector instuction
in any format since it represents the default action taken by the hardware.

CMosrT Version 7.2, August 1993
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{vminvert,vmtrue)} Default: vmtrue

Conditionalization Bit Sense: The vminvert and vmtrue modifiers con-
trol whether the conditionalization bits shifted out of the dp_vectormask
are inverted. If inverted, the sense of these bits is reversed; i.e., 0 selects a
vector element, and 1 deselects it.

Modifier Effect
vminvert Invert sense of vector mask bits for conditionalization.
vmtrue Do not invert sense of vector mask bits.

Note: This modifier is only allowed in the mode set statement format.

(vmold, vnew, vmnop} Default: vmold

Vector Mask Copy Mode: The mold, vmnew, and vmnop modifiers control
the copying of the vector mask and vector mask buffer registers prior to
instruction execution:

Modifier Effect
vmold Copy dp_vector_maskbuffer to dpvector mask.
vmnew Copy dpvectormask to dpvectormaskbuffer.
vmnop No copy.

Note: This modifier is allowed only in the mode set statement format.

6.7.3 Special Modifiers (Mode Set Format Only)

epc{v,s} (type, vLS, rlA) Default: None

Population Count: The epc {v,s) modifier enables the population count fea-
ture. Specifically, the single- or double-precision register vLS (and
subsequent registers at a unit stride) are read and the "1" bits in each are
counted. The results, each a single-precision unsigned integer between 0 and
either 32 (single-precision) or 64 (double-precision), are written to the regis-
ter rLA (and subsequent single-precision registers at the specified stride, a
constant-expression that defaults to the unit stride for the data type).

The epc{vs I} modifier effectively replaces the normal memory operation in
a DPEAC statement. The Vs register operand is used, so population counting
cannot be combined with any memory operation. Population counting also
cannot be used in conjunction with register or memory indirection or the

CMosr Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation I

VU Programmer Handbook100



Ch pt 6 . CD EAC nstr cti n Se Ref renc 10

vmcount[s] or [noexchange modifiers. The population count result is
written before the operands are read for the arithmetic operation, so the
epc {v,s } modifier chain loads. The vLS operand is always strided with a unit
(1 or 2 register) stride, so the unit keyword is optional and has no effect
other than to emphasize the unit striding.

Implementation Note: Currently, the epctv,s} modifier cannot be used in
conjunction with a long-latency arithmetic operation, i.e., [f,df]div,
[f,df]sqrt, [f,df]inv, or [f,df]isqt.

vmcount[s] (reg) Default: None

Accumulated Context Count: The vmcount modifier enables the VU chip's
accumulated context count feature. The single-precision VU register reg (and
subsequent registers at the given stride, a constant-expression) is loaded with
the accumulated count of "1" bits in the vector mask at each step in the vector
operation. This accumulation is inclusive; the count includes the bit that is
shifted out of the vector mask register for each element. The scalar version,
vmcounts, is intended for use with scalar operations. It is an error to use
vmcounts with any vector operation.

For each element in the vector, the vmcount result is written before the oper-
ands are read for the arithmetic operation, so this modifier chain loads. This
modifier cannot he ed in coniiincetion with either reprister or memnrv
indirection, nor with the epc {v,s }, or [no]exchange modifiers.

[no]exchange Default: noexchange

VU On-Chip Data Swapping: Controls exchange of data between two VUs
on the same chip. Specifying exchange causes arithmetic results on each VU
to be written to the destination register(s) of the other VU. In conditionalized
ALU operations, deselected elements are not written to the opposite VU.
Selected elements are written, even if the corresponding element in the oppo-
site VU is deselected.

The [no]exchange modifier is used only in the mode set format. However,
it is incompatible with register stride indirection, memory stride indirection,
and with the epc{v,s}, and vmcount[s] modifiers.

Implementation Note: This modifier is implementation-dependent, and may
not be available in the future. Also, the current implementation of exchanging
does not allow chain loading into the arithmetic destination register.

CMosr Version 7Z2, August 1993
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6.8 CDPEAC Accessor Instructions

These accessor instructions are always used as single statements, execute on the
node microprocessor (the SPARC), and generally move data between the SPARC
and the VU, or affect values stored in SPARC registers.

6.8.1 VU Register Accessor Instructions

Instruction(s)
dpwrt[d], dprd[d]
dpset[d], dpget[d]
dpchgbk
dpchgsp
dpld[d], dpst[d]
dpsync

Function(s)
Write and read VU data registers.
Write and read VU control registers.
Convert address from one VU region to another.
Convert between VU data and instruction spaces.
Read and write VU parallel memory.
Synchronize instruction pipelines of VUs.

These instructions move data between VU data registers and SPARC registers:

dpwrt [_sync,_nosync] (type, selector, sp_src, vudreg)
dpwrt [_sync,_nosync] (type, selector,value,vu_dreg)
dprd[_sync,_nosync] (type,selector,vu_dreg,sp_dest)

type = {u, du, i, di, f, df
sync/nosync - whether to sync VU pipeline (default is sync)

dpwrt_sync(i,ALL_DPS,%il,V0)

dpwrt_nosync(i,DPS_0_AND_1,29,VO)
dprd(i,DP_3,VO,%iO)

These instructions move data between VU control registers and SPARC regis-
ters. (See Section 2.5 for a list of predefined control register constants.)

dpset [..supervisor] (type, selector, sp_src,vu_creg)
dpset [_supervisor] (type, selector, sp_src,vu_creg)
dpget [_supervisor] (type, selector, vu_creg, sp_dest)

type =.{u, du, i, di, f, df}
supervisor get/set in supervisor region

dpset(i,DP_3,%i0,DP_VECTOR_MASK)
dpset(i,ALL_DPS, 0,DP_VECTOR_MASK)
dpget(i,DPS_0_AND_1,DP_VECTOR_MASK,%iO)
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This instruction converts a VU memory address between the data and instruction
virtual memory spaces:

dpchgsp (s r c, de s t) Toggle between data/instruction spaces.

dpchgsp (R5, R6)

This instruction modifies a VU memory address to refer to a different VU
memory region:

dpchgbk(src, selector,dest) Change referenced VU region.

dpchgbk(R5,DPS_O,R6)

These instructions move data between VU parallel memory and a SPARC IU
register:

dpld (type, address, sp_dest)
dpst (ype, sp_src,address)

type = {u, du, i, di, f, df}

dpld(i, [%iO], %il)

dpst(i, %il, [%iO])

This instruction generates code to prevent the preceding and following instruc-
tions from overlapping in the instruction pipeline of the VUs. (See Appendix C.)

dpsync ()

addv(f,VO,V1,V2)
dpsync()

mulv(f,Vl,V2,V3)

CMosr Version 7.2, August 1993
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6.9 CDPEAC Special Instructions

These control operations are always used as single statements, and typically per-
form some useful operation on VU or SPARC registers and/or memory locations.

VU Internal Register Modifiers: These operations expand into CDPEAC
instructions with special modifier flags that set the values of one or more of the
following VU internal registers:

dpvector_mask_mode Default vector mask mode
dp_stride_memory Default memory stride
dpstride_rsl Default rS1 register stride
dp_vector_length Default vector length

set_vmmode(vmmode) Sets dpvector_maskmode to vmmode
setmemstride(stride) Sets dp_stride_memory to stride
setrslstride(rsl_stride) Sets dp_stride_rsl to rts_stride
setvectorlength(vlen) Sets dp_vector_length to vlen

set vectorlength and vmmode(vlen,vmmode)
setvectorlength andrsl_stride(vlen,rsl_stride)
set vector lengthandrsl strideandvmmode

(vlen,rsl_stride,vmmode)

Vector Mask Load/Store: These operators move the value of the vector mask
register to or from the specified VU data register (dreg).

ldvm(dreg)

stvm(dreg)

ldvm V1
stvm VI

CDPEAC Function Setup/Cleanup: These functions set up (and clean up) the
VU registers before and after a user-written CDPEAC routine. (Usage Note:
These operators are not always necessary, depending on the use of a CDPEAC
routine, but it is not harmful to include them. Their use is recommended.)

dpsetup()

dpcleanup )

Initializes the SPARC registers for use with CDPEAC
code; must appear at start of block of CDPEAC code.

Restores state of VU control registers for CM Run-Time
System code. Must appear at end of a block of CDPEAC
code that can be called by the CMRTS.

CMosr Version 7.2, August 1993
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Chapter 7

Using DPEACLCDPEAC in Programs

The most common use of DPEAC and/or CDPEAC in a CM-5 program is for
writing highly efficient subroutines that are called from a program written in a
high-level language. This chapter presents a simple example of just such a sub-
routine, shows how it can be written in either DPEAC or CDPEAC, and
demonstrates how to call it from a CM Fortran program.

7.1 Example: An Arithmetic Subroutine

The subroutine described in this chapter calculates a specific arithmetic formula,

d= b 2 + c
/ 3.69a + 25.0b

elementwise across a set of four array arguments, a, b, c, and d. Each of these
variables represents an element of a high-level array that is passed into the
DPEAC or CDPEAC subroutine. The high-level program that calls this subrou-
tine handles allocation of the arrays and subsequent processing of the results
produced by the subroutine.

Note: You do not have to structure your programs as shown in this chapter to
make use of the CM-5's vector units. The CM Fortran and C* compilers auto-
matically define DPEAC routines in the process of compiling standard CM
programs, and thus implicitly use the vector units whenever they are needed. The
methods shown in this chapter allow you to duplicate the compiler's work for
specific routines that you choose to write by hand.

CMosr Version 7Z2, August 1993
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7.2 Low-Level Program Structure

A CM-5 program that includes user-written DPEAC or CDPEAC routines has
four main parts, each of which is contained in a separate source code file:

* The DPEAC or CDPEAC subroutines, which execute in identical copies
on each of the processing nodes.

* The node interface functions, one for each DPEAC or CDPEAC routine,
which define which node routines can be called from the PM.

* The host interface functions, on the PM, which broadcast a call to the node
interface functions on all the nodes.

* The main program, written in a high-level language (such as CM Fortran),
which calls the host interface functions to invoke the node subroutines.

The overall program structure is as shown below:

Partition Manager (PM)

I program

No

The host and node interface files describe the relationship between a specific set
of function calls made on the PM, and a specific set of functions that are defined
on the nodes. The interface files provide the glue" that allows these function
calls and definitions to compile and link correctly.

CMorr Version 7.Z2, August 1993
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7.2.1 Program Files

Thus, a program with DPEAC or CDPEAC subroutines has four component
source code files:

* A main program file, written in a high-level language.

* A host interface file, containing the definitions of all host interface func-
tions called in the main program.

* A node interface file, containing the definitions for all node interface
functions called in the host interface file.

* A subroutine code file, containing the definitions of all DPEAC/CDPEAC
routines called from the node interface functions.

In addition, there is typically a makefile that is used to build the program via the
UNIX make utility.

Source File Naming Conventions

The tools used to compile and link a program with DPEAC/CDPEAC routines
impose the following restrictions on the program files:

* The host interface file must be written in C, and its name must end with
the suffix ". c".

* The node interface file must also be written in C, but its name must end
with the suffix ".pe". When the program is compiled, this file is run
through a filter that produces a ". c" file for compilation.

* The subroutine code file must be written in DPEAC or CDPEAC, and
must have the suffix ".pe. dp" (for a DPEAC routine file) or ".pe. cdp"
(for a CDPEAC routine file).

It is a convention of the compilers and linkers used on the CM-5 that all object
files containing code to be executed on the nodes must have the suffix " pe. o0".
The suffix restrictions described above ensure that all object files produced in the
compilation process will have the correct object file suffixes for the linker.

CMosr Version 7.2, August J 993
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7.2.2 Host/Node Interface Naming Conventions

The tools used to compile and link a program with DPEAC/CDPEAC routines
also impose the following restrictions on function names used in the program:

* The host interface function for each routine can have any legal name in the
main program, but it must be defined in the host interface file with the
same name, in all lower case, and with a trailing underscore "_" added.

(For example, in the sample program below, the host interface function is
called NODECALC in the CM Fortran source file, and nodecalc_ in the
host interface file.)

* The node interface function for each routine can have any legal function
name in the host interface file, but its definition in the node interface file
must have the same name with the prefix "CMPE" attached.

(In the sample program, the node interface function is called nodecalc
in the host interface file, and CMPE_nodecalc in the node interface file.)

• The DPEAC (or CDPEAC) subroutine can have any legal function name
in the node interface file, but its definition in the subroutine file must have
the same name (and, in a DPEAC subroutine file, must have a leading
underscore "_" character added).

(In the sample program, the subroutine name used is nodecalc in the
node interface file, nodecalc in the CDPEAC subroutine file, and

nodecalc in the DPEAC subroutine file.)

For the Curious: These special prefix and case requirements make it easy for
the compiler and linker to determine which host and node interface functions
correspond to which routines in the main program and the DPEAC code file.

The "CMPE-"' prefix for the names of node functions callable from the host has
the additional purpose of making it unlikely that a random function name used
in the main program would happen to match a function name defined in the host/
node interface.

CMosr Version 7.2, August 1993
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7.3 Passing Arrays into DPEAC and CDPEAC Routines

The arguments of a DPEAC or CDPEAC subroutine depend on the manner in
which the entire program is executing on the CM. For example, in programs that
manipulate parallel arrays (such as the sample program in this chapter), the
DPEAC or CDPEAC routine on each node handles the array subgrid that is
stored in that node's memory.

In this case, the arguments to the DPEAC or CDPEAC subroutine are typically
the memory addresses of the array subgrids located in the node's memory. The
subroutines on each node handle the subgrids stored on that node, in such a way
that every element of each array argument is handled by some node in the CM.

(There are other ways to pass data into DPEAC or CDPEAC routines. For exam-
ple, you can use OS routines to allocate parallel memory yourself - Appendix H
describes how to do this. You can then pass the addresses of these parallel
memory regions into DPEAC or CDPEAC subroutines. However, this method
of argument passing is not discussed further in this chapter.)

In CM Fortran, arrays are not referenced by the address of the array data itself,
but instead by a pointer to a data structure known as an array descriptor. This
descriptor contains, among other things, the address of the start of the array and
the number of elements in the array.

Array descriptors are stored on the partition manager. The array location in the
descriptor is a memory address in node memory. Thus, part of the job of the host
interface function is to get the array location from the descriptors of any array
arguments, and pass these memory addresses on to the node interface function.

The contents of an array descriptor can be extracted by calls to special accessor
functions that are part of the CM Run-Tunime System (CMRTS). For example:

CMCOM cmaddress_t CMRT_desc_getcm location
(arrdesc);
int CRT_desc_get_subgrid size(arr_desc);

CMRT desc t arr desc;

CMT_desc_get_cm_location returns the starting address (in node memory)
of the array described by arrdesc.

CMRTdesc_getsubgridsize returns the number of elements of the array
that are stored in the memory of each VU (the "subgrid size" of the array). This
value is required by the DPEAC routine, which must determine how many
memory locations to operate on.
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7.4 Sample Program Source Files

The sample program described below consists of five files:

* A main program written in CM Fortran: main. f cm

* A host interface file: host. c

* A node interface fie: interface.pe

* A DPEAC subroutine file: dpeac_code.pe.dp

* A CDPEAC subroutine file: cdpeac_code.pe. cdp

The DPEAC and CDPEAC subroutine files contain the same routine, written
appropriately for each of the two instruction sets.

The program is designed so that it can be compiled with either the DPEAC or
the CDPEAC subroutine file; the main program and host/node interface files are
identical in both cases. A sample makefile is also prdvided; this makefile can be
used to compile the program with either (or both) of the subroutine files.

7.5 The Main CM Fortran Program (main.fcm)

The CM Fortran program main. f cm does three things:

* It initializes its arrays by assigning

a = 3.0
b = random numbers between o. o and 1.0 o
c = 19.0

d = 0.0

* It evaluates the formula d =-' (b*b+c) /sqrt(3.69*a+25. 0*b) twice:
first, by a ordinary CM Fortran expression (which is internally compiled
into DPEAC code by the CM Fortran compiler); second, by a call to the
host interface function NODECALC.

* The program then prints out the argument arrays and the computed results,
for each of the two methods, to demonstrate that the two methods do in
fact return the same values.
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The main. f cm program is as follows:

program main

parameter (length=32)

real a(length), b(length), c(length)

real dh(length), dn(length)

a=3.0

b=0.0

call CMFRANDOM(b)

c=19.0

c Host calculation

dh=0.0

dh=(b*b+c)/sqrt(3.69*a + 25.0*b)

c Node calculation

dn=0.0

call NODECALC(a,b,c,dn)

c Display results for comparison

print *,''

print *,'Computing d=(b*b+c)/sq rt(3.69*a + 25.0*b):'
print *,' Item ',' A= ',' B= ',' C= ',' Host ','

Node '

do 10 i=l,length

print 900, i, a(i),b(i),c(i),dh(i),dn(i)
10 continue

print *,''

stop

900 format (i6,f6.2,f6.2,f6.2,f6.2,f6.2)

end

7.6 The Host Interface File (host.c)

The host interface file contains a single function, nodecalc_, which does three
things:

* It calls CMRT_desc_get_cmlocation once for each of the array argu-
ments to get the actual node memory locations of the arrays.

* Because all the array arguments must have the same size and shape, the
host interface function calls CMRTdescgetsubgrid size just once
to get the subgrid size of the array arguments.

* Finally, the host interface function makes a call to the corresponding
nodecalc function to execute the DPEAC routine.
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The host. c host interface file is as follows:

#include<cm/cmrt.h>

void nodecalc_ (a,b,c,d)

CMRTdesct a,b,c,d;

{
CMCOM cmaddresst aloc,bloc,cloc,dloc;

int size;

/* get memory location for each array */

aloc=CMRT_desc_getcm_location(a);

bloc=CMRTdesc_getcmlocation(b);

cloc=CMRT_desc_getcmlocation(c);

dloc=CMRT_desc_get_cmlocation(d);-

/* subgrid size is same for all arrays */

size=CMRT_desc_get_subgrid_size(a);

/* call node interface function */

nodecalc(aloc,bloc,cloc,dloc,size);

}

7.7 The Node Interface File (interface.pe)

The node interface file contains one node interface function, CPE_node.

CMPE node takes the array addresses and subgrid size provided by the host func-
tion and passes them directly to the DPEAC (or CDPEAC) subroutine.

The interface.pe node interface file is as follows:

void CMPEnodecalc(aloc,bloc,cloc,dloc,size)
unsigned aloc,bloc,cloc,dloc,size;

{
CMPEnodecalc(aloc,bloc,cloc,dloc,size);

}

Note: This file is passed through a filter, mkpestubs, which converts it into an
appropriate C code file. (This filtering step is handled internally by the makefile.)
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7.8 The DPEAC Subroutine File (dpeac_code.dp)

This file contains the DPEAC version of the arithmetic subroutine:

#include <cmsys/dpeac.h>

dpentry _CMPEnodecalc,O,O ! Entry point

! By convention, function args ae in SPARC input"
! registers, %iO, %il, etc.

I Symbolic names for registers:

! Note that %" prefix is used explicitly in code

I to make SPARC/VU register distinction clear.

# define A iO
# define B il

# define C i2

# define D i3

# define Size i4

! By default, CM Fortran sets vector length to 8,
I and vector mask mode to always". The following
! is insurance; when it is not needed, it is simply redundant

setvector_lengthand_vmmode 8, always

#define VECTORLENGTH 8

! Formula being evaluated is:

I d(b*b+c)/sqrt(3.69*a + 25.0*b)

Loop:

floadv [%B] :4, V2 (Short format, memory stride)

! Load subgrid slice of B into V2,
I striding by 4 bytes for each of

I the 8 vector elements.

add %B,(4*8),%B ! (SPARC instruction)

I Bump array pointer B to next slice

! in subgrid (4 bytes * 8 elements)

floadv [%C] :4, V3; \
fmadav V2,V2,V31 (Short format, chain-loading)

I Load subgrid slice of C into V3,
I striding by 4 for 8 elements,

! and mult-add V3=(B*B)+C in same
I operation.

add %C,(4*8),%C (SPARC instruction)
I Bump array pointer B to next slice
! in subgrid (4 btes * 8 elements)
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floadv [%A :4, V4; \

fmulv V4, 0r3.69, V5 \

I (Immediate format, chain-loading)

I Load subgrid slice of A into V4,

I striding by 4 for 8 elements,

and multiply V5=(3.69*V4) in same

I operation.

add %A,(4*8),%A I (SPARC instruction)

I Bump array pointer A to next slice

I in subgrid (4 bytes * 8 elements)

fmadav V2, 0r25.0, V5 I (Immediate format)

! Mult-add V5-(25.0*B)

fisqtv V5, V5 I (Short format)

I Calculate V5-1/SQRT(V5)

fmulv V5, V3, V5 ! (Short format)
! Multiply V5=(V3*V5)

fstorev [%D] :4, V5 I (Short format, memory stride)
! Store result in D subgrid slice

! striding 4 bytes for 8 elements.

addcc %Size,-VECTORLENGTH,%Size \

! (SPARC instruction)

! Subtract vector length (8) from

I subgrid size argument to see if

I there are subgrid slices left

bne Loop ! (SPARC instruction)

! If result is non-zero,

I go back and do next subgrid slice.

add %D,(4*8),%D (SPARC instruction, DELAY SLOT)

! Bump array pointer D to next slice

I in subgrid (4 bytes * 8 elements)

dpretn ! (DPEAC Accessor Instruction)

I Return from DPEAC subroutine

A few notes on the structure of this program:

• Note that the floadv and fstorev instructions explicitly specify the
memory stride as 4. An alternative to this would be to set the value of the
dp.stride_memory register to 4.

* CM Fortran sets the following VU control registers to these defaults:

dp_vector_length 8

dp_stride_rsl 0

dpstride_memory 0

dp_vector_mask_mode always
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dp_vector_mask_direction right
dpalumodefast fast, not IEEE

Nevertheless, it is always a good precaution to set these registers to the
values you require within your DPEAC code routines, to avoid unneces-
sary surprises should these defaults change.

* Note that the array size is assumed to be a multiple of 8. Since the vector
length is set to 8, there is no remainder, or "tail" of leftover elements. To
handle a more general case, any "tail" of remaining values would need to
be processed in a separate section of code, by resetting the vector length
to the tail length, and repeating the calculation just once for the tail values.

7.9 The CDPEAC Subroutine File (cdpeaccode.cdp)

This file contains the CDPEAC version of the arithmetic subroutine:

#include <cm/cdpeac.h>

/* CDPEAC sample program.
Formula being evaluated is:

d=(b*b+c)/sqrt(3.69*a + 25.0*b) */

CMPEnodecalc(aloc,bloc,cloc,dloc,size)

unsigned aloc,bloc,cloc,dloc,size;

{
/* Initialize SPARC registers for CDPEAC */

dpsetup();

/* By default, CM Fortran sets vector length to 8,
and vector mask mode to always". The following

is insurance; when it is not needed, it is simply

redundant */

setvector_length andvmmode(8,ALWAYS);

/* Loop over each 8-element subgrid slice */
for ( ; size ; size -= 8 );

{
loadvu(f,bloc,4,V2); /* (Short format, memory stride)

Load subgrid slice of B into V2,

striding by 4 bytes for each of

the 8 vector elements. */
bloc += (4*8); /* Bump array pointer of B to new slice

in subgrid (4 bytes * 8 elements) */
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join2( /* (Join of memory and ALU operations) */
loadvu(f,cloc,4,V3), /* (Short format, chain-loading)

Load subgrid slice of C into V3,

striding by 4 bytes for each of

the 8 vector elements. */
madav(f,V2,V2,V3) /* Mult-add V3-(B*B)+C

in same operation. */

); /* (End of join2 macro) */

cloc +- (4*8); /* Bump array pointer of C to next slice
in subgrid (4 bytes * 8 elements) */

join2( /* (Join of memory and ALU operations) */

loadv_ u(f,aloc,4,V4),
/* (Immediate format, chain-loading)

Load subgrid slice of A into V4,
striding by 4 for 8 elements. */

mulvi(f,V4,3.69,V5) /* multiply V5-(3.69*V4)
in same operation. */

); /* (End of join2 macro) */

aloc +- (4*8); /* Bump array pointer of A to new slice

in subgrid (4 bytes * 8 elements)*/

madavi(f,V2,25.0,V5);/* (Immediate format)

Mult-add V5-(25.0*B) */

isqtv(f,V5,V5); /* (Short format)

Calculate V5-1/SQRT(V5) */

mulv(f,V5,V3,V5); /* (Short format)

Multiply V5=(V3*V5) */

storevu(f,dloc,4,V5); /* (Short format, memory stride)
Store result in D subgrid slice

striding 4 bytes for 8 elements. */

dloc +- (4*8); /* Bump array pointer of D to new slice
in subgrid (4 bytes * 8 elements)*/

}
/* Clean up VU control registers -- NOTE: not always needed */
dpcleanup ()
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7.10 Makefile for the Sample Program (Makefile)

Below is a sample Makefile that can be used with the UNIX utility program
make to compile and link the sample program described above.

For those who have not used make before, all you have to do is place the five
code files plus this Makefile into the same directory, set that directory as the
current one (i.e., cd to it in UNIX), and then type make to build the program.
(You will want to be logged on to a CM-5 partition manager when you do this,
so that you will have access to the appropriate compilers and libraries.)

Note: When compiling this program with make, you can select either of the two
subroutine code files by providing an appropriate argument. For example:

make dpeac builds the DPEAC version of the program (run_dp).
make cpdeac builds the CDPEAC version (runcdp).

By default, this Makefile builds both executable versions of the program.

Once you have used make to build the executable files (rundp and/or
run_cdp), you can run the program by typing the appropriate executable file
name. (Again, you'll want to be logged on to a CM-5 partition manager.)

The Makefile shown here performs a number of different operations to bring
the pieces of the sample program together:

* The main CM Fortran program is compiled by cmf to produce two object
files, one for the PM (main. o) and one for the nodes (main.pe. o)..

* The host interface program is compiled by cc, producing an object code
file (host. o) for the PM.

* The node interface program is compiled by dpcc and then passed through
a stubs filter (mkpestubs) to produce a PM object file (pe-call. o).

* The appropriate subroutine file(s) are assembled by dpas, producing node
object files (dpeaccode. o and/or cdpeaccode. o).

* Finally, the various object code files are linked together (again by cmf) to
produce the executable file(s) (run_dp and/or runcdp).

The Makef ile also includes a number of "suffix rule" definitions, which
describe how the various code source files are compiled.
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The Makef ile is as follows:

# Makefile to assemble C/DPEAC example programs

# By William R. Swanson, 5/5/93

# Setup Definitions =--

# Don't display commands while building program

.SILENT:

# Alias macros that are used to clarify Make syntax

SOURCE FILE $<

OBJECT FILE - $0

# debugging: set to -g to compile for debuggers

DEBUG

# = Target File Names =

# Names of final executable files

DPEACEXECUTABLE - run_dp

CDPEACEXECUTABLE = run cdp

# Names of source and object files

MAIN = main
HOST INTF = host
NODE INTF - interface

DPEACCODE= dpeaccode

CDPEACCODE - cdpeac code

# Object file sets

HOSTOBJS - $(MAIN) .o $(HOSTINTF) .o $(NODEINTF).o
DPEACNODEOBJS - $(MAIN).pe.o $(DPEACCODE).pe.o

CDPEACNODEOBJS - $(MAIN).pe.o $(CDPEACCODE).pe.o

DPEACOBJS - $ (HOSTOBJS) $ (DPEAC NODEOBJS)

CDPEACOBJS - $(HOSTOBJS) $(CDPEACNODEOBJS)

# --- Top-level Rules ==

# By default, trigger build of both executables

default: dpeac cdpeac

# To rebuild, do a clean and then trigger both builds

scratch: clean default

# Trigger build of just dpeac executable

dpeac: $(DPEACEXECUTABLE)

# Trigger build of just cdpeac executable

cdpeac: $(CDPEACEXECUTABLE)
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# --- Cleanup Rules ---

cleanobj:

echo Removing old objects, stub files, etc."

rm -f *.o *.s $(NODE_INTF).c

rm -f *# *#[0-9]* *% *-

clean: cleanobj

echo Removing old executable files"

rm -f $(DPEACEXECUTABLE) $(CDPEACEXECUTABLE)

# --- Program-specific Build Rules =-

# CMF driver is used to handle linking:

LINKER - $(CMF)

LINKFLAGS $(CMFFLAGS)

# Main linking step that builds the executable program:

$(DPEAC_EXECUTABLE): $(DPEACOBJS)

echo Linking ($(LINKER)) $(DPEACOBJS)"

echo to make executable file \$(DPEACEXECUTABLE)\""

$(LINKER) $(LINKFLAGS) $(DPEACOBJS) -o $(DPEACEXECUTABLE)

# Main linking step that builds the executable program:

$(CDPEACEXECUTABLE): $(CDPEACOBJS)

echo "Linking ($(LINKER)) $(CDPEACOBJS)"
echo to make executable file \"$(CDPEACEXECUTABLE) \""

$(LINKER) $(LINKFLAGS) $(CDPEAC OBJS) -o

$(CDPEACEXECUTABLE)

# Host stubs obj file is produced from node interface file

interface .o: interface. c

# All other compilation steps are handled by suffix rules

# = Suffix Rules --

# Add CMF and DPEAC suffixes to SUFFIX variable:

SUFFIXES - fcm .dp .cdp .pe

# Clear out default suffix-list and install new list:

.SUFFIXES:

.SUFFIXES: $(SUFFIXES)

# To compile a C file, run it through $(CC)

CC - cc
CFLAGS - -DCM5 DASH -O $(DEBUG)
.c.o:

echo "Compiling ($(CC)) $(SOURCEFILE) into $(OBJECTFILE)"

$(CC) $(CFLAGS) -c $(OBJECTFILE) $(SOURCEFILE)
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# To compile a CMF file, run it through $(CMF)

# Note: This step produces _two- object files: .o and .pe.o

CMF - cmf2.0

CMFFLAGS = -cm5 -vu - -Zcmld -Bstatic $(DEBUG)

NOLINK -c

LINK 

fcm.o:
echo Compiling ($(CMF)) $(SOURCE_FILE) into

$(OBJECTFILE) and $(OBJECTFILE:.o=.pe.o)"

$(CMF) $(CMFFLAGS) $(NOLINK) $(SOURCE_FILE)

# To assemble a DPEAC file, run it through $(DPAS)

DPAS - /usr/bin/dpas

DPFLAGS -t

.dp.o:

echo Assembling ($(DPAS)) $(SOURCE FILE) into

$(OBJECTFILE)"

$(DPAS) $(DPFLAGS) -o $(OBJECT_FILE) $(SOURCE_FILE)

# To assemble a CDPEAC file, run it through $(DPCC)

# This produces one object file: .o

DPCC - /usr/bin/dpcc

DPCCFLAGS =

.cdp.o:

echo Assembling ($(DPCC)) $(SOURCEFILE) into

$(OBJECTFILE)"

$(DPCC) $(DPCCFLAGS) -o $(OBJECT_FILE) $(SOURCE_FILE)

# To process a DPEAC node interface file, run it through

$(MKSTUB)

MKSTUB = /usr/bin/mkpestubs

MKSTUBFLAGS - -n

.pe.c:

echo Processing ($(MKSTUB)) $(SOURCE_FILE) into

$(OBJECT_FILE)"

echo #include <cm/cmcom_types.h>' > $(OBJECTFILE)

$(MKSTUB) $(SOURCE_FILE) $(MKSTUBFLAGS) >> $(OBJECTFILE)
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7.11 Sample Run of the Program

Here is a UNIX session in which the sample program is built and run. (The fol-
lowing assumes that you have logged on to the partition manager of a CM-5, and
are currently in a directory containing the five code files and the makefile.)

%: make clean
Removing old objects, stub files, etc.

Removing old executable files

%: 

Makefile host.c out

cdpeac_code.pe.cdp interface.pe

dpeac_code.pe.dp main.fcm

%: make
Compiling (cmf2.0) main.fcm into main.o and main.pe.o

cmf [CM5 VecUnit 2.0 Beta 2]

Compiling main.fcm

Compiling (cc) host.c into host.o

Processing (/usr/bin/mkpestubs) interface.pe into \

interface.c

Compiling (cc) interface.c into interface.o

Assembling (/usr/bin/dpas) dpeac_code.pe.dp into \

dpeac_code.pe.o
Linking (cmf2.0) main.o host.o interface.o \

main.pe.o dpeac_code.pe.o \

to make executable file "run_dp"

cmf [CM5 VecUnit 2.0 Beta 2]

Linking.. done.

Assembling (/usr/bin/dpcc) cdpeac_code.pe.cdp into \

cdpeac_code.pe.o

Linking (cmf2.0) main.o host.o interface.o \

main.pe.o cdpeac_code.pe.o \

to make executable file "runcdp"

cmf [CM5 VecUnit 2.0 Beta 2]
Linking.. done.

24.1u 16.5s 2:22 28% 0+676k 21+652io 177pf+0w
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%: run dp

Computing d=(b*b+c)

Item A= B=

1 3.00 0.77

2 3.00 0.77

3 3.00 0.67

4 3.00 0.59

5 3.00 0.19

6 3.00 0.44

7 3.00 0.20

. . < other
30 3.00 0.88

31 3.00 0.99

32 3.00 0.39

/sqrt(3.69*a

C= Host

19.00 3.56

19.00 3.55

19.00 3.68

19.00 3.81

19.00 4.78

19.00 4.09

19.00 4.73

values omitted >
19.00 3.44

19.00 3.34

19.00 4.21

+ 25.0*b):

Node

3.56

3.55

3.68

3.81

4.78

4.09

4.73

3.44

3.34

4.21

FORTRAN STOP

%: runcdp
Computing d=

Item A=

1 3.00

2 3.00

3 3.00

4 3.00

5 3.00

6 3.00

7 3.00

. . .

30 3.00

31 3.00

32 3.00

(b*b+c)/sqrt(3.69*a + 25.0*b)

B= C. Host Node

0.06 19.00 5.34 5.34

0.88 19.00 3.43 3.43

0.24 19.00 4.60 4.60

0.25 19.00 4.60 4.60

0.54 19.00 3.90 3.90

0.04 19.00 5.48 5.48

0.91 19.00 3.41 3.41

< other values omitted >
0.50 19.00 3.97 3.97

0.41 19.00 4.16 4.16

0.06 19.00 5.38 5.38

FORTRAN STOP
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VU Memory Mapping
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This appendix describes in more detail the relationship between the physical and
virtual memory mappings of the CM-5 vector units. Note: The diagrams shown
here are a simplification of the detailed memory maps provided in Appendix B.

A.1 VU Physical Memory Mapping

The SPARC IU's physical memory is divided up into memory regions, one for
each possible VU grouping. The memory regions are located at physical address
Noooooooo hex, where Nis one of:

Memory Region (N)
0-3

8
9
B
F

Purpose
VU 0-3 memory and data regs (read/write).
All VUs (write only).
VUs 0 and 1 (write only).
VUs 2 and 3 (write only).
VU control registers and ROM.

Within each of the VU memory regions (with the exception of the control regis-
ter region, described separately below) there are three subdivisions, indicated by
the second hex digit of the physical address:

Physical Address (hex)
N8 ommmmmm
Noommmmmm

N4ooo0000mmm

Purpose
Instruction memory space.
Data memory space.
VU data registers.

In each case, the mmmmmm indicates the range of addresses permitted within the
corresponding memory space.
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A.1.1 VU Memory Spaces

The data space and instruction space of a VU memory region in fact refer to the
same piece of VU memory. A single memory location can thus be accessed in
two ways: by an instruction space address, which triggers a VU operation, or by
a data space address, which does not.

VU instruction space memory addresses trigger VU operations. A VU operation
begins when a singleword or doubleword DPEAC instruction is written to an
address in instruction space memory. The address written to provides the
memory operand for the DPEAC instruction. The VU space in which the address
is located selects the VUs that execute the instruction.

VU data space memory provides access to the parallel memory of the VUs with-
out an accompanying VU operation. Data space memory operations are treated
as normal memory accesses.

A.1.2 VU Parallel Stack and Heap

The memory region referred to by the data and instruction areas includes two
regions: parallel stack and parallel heap. These occupy "stripes" of memory
across the memory regions of all possible VU groupings:

Physical Memory Sample Darallal Ummn I uni It
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A.1.3 VU Register Spaces

The VU data register region occupies 128 words of space, from physical address
N40000000ooooo to N400001FF hex. This memory region corresponds to the 128
registers (R - R127) accessible through DPEAC.

The VU control register region of VU physical memory is itself subdivided into
regions for each possible VU combination.

Physical Memory VU Register Regions VU Register Areas

Physical Address (hex) Purpose
FFNommmm ROM memory.
FFN8Ommmm Control registers (supervisor area).
FFN88mmmm Control registers (user area).

Again, N represents the seven possible combinations of VUs, as listed above.
Remember that the pair of VUs on a single chip share all control registers except
for dp vector mask and dp_vectormaskbuf fer. Any change to a shared
register affects both VUs that share it.

A.2 VU Virtual Memory Mapping

The virtual memory mapping for each CM node is established by CMOST, the
CM-5 operating system. The VU memory and register regions are mapped into
virtual memory by function, rather than by VU:

Virtual Address (hex)
40000000
60000000

80000000

AO000000

C0000000

Purpose
Instruction space stack regions.
Instruction space heap regions.
Data space stack regions.
Data space heap regions.
VU register (control and data) regions.
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Each of the five virtual memory regions is divided into VU regions, with offsets
as follows:

Address Offset (hex)
00000000

04000000

08000000

OC000000

10000000

14000000

18000000

Purpose
VU 0 region.
VU 1 region.
VU 2 region.
VU 3 region.
All VUs region.
VU 0/1 region.
VU 2/3 region.

Pictorially, the virtual memory mapping is as follows:

Virtual Memory
NT

parallel heap 
- Instr Space -

parallel stack
parallel heap

- Data Space -
Darallel stack \

0

VU Regions

m,-V:U:*. : :.~ · .Parallel Stack

v u _ VU _ V L ........ . .. . .... v u i _ !i
.. '..........0 2 3.
ALL ~, : V U : 1 2ii, !

VU 3
VU 2
VU 1 
VU 0

The VU control and data registers for each VU
into a single region:

combination are mapped together

Virtual Memory VU Register Regions
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A.3 VU Virtual Memory Symbolic Constants

For each virtual memory region and VU combination, there is a corresponding
symbolic constant that specifies the starting address of the corresponding
memory region. These constants are defined in the header file <cmsys/dp .h>.
The names and current values of these constants are shown in the tables below:

Instruction Space Stack:

Programming Constant Name
DPVSTACK INST PORT 0

DPV STACK INSTPORT_1

DPVSTACK INSTPORT_2

DPV_STACK_INSTPORT_3

DPV_STACKINSTPORTALL

DPV_STACK INSTPORT 0_AND_1

DPV_STACX_ INST_PORT_2_AND_3

Address (hex)
0x40000000

0x44000000

0x48000000

0X4c000000

0x50000000

0x54000000

0x58000000

Instruction Space Heap:

Programming Constant Name
DPV_ HEAPINST PORT 0

DPV_ HEAPINST PORT2

DPV_ HEAP INST PORT 2

DPVHEAPINST PORT 3
DPV_HEAPINST_PORTALL

DPV HEAP INSTPORT_0_AND_1

DPV HEAP_ INST PORT2 AND _3

Address (hex)
0x60000000
0x64000000
0x68000000
0x6c000000
0x70000000
0x74000000
0x78000000

Data Space Stack:

Programming Constant Name
DPV_STACKDATA_0

DPVSTACK DATAI_

DPVSTACK DATA_2

DPV_STACKDATA_3

DPV_ STACK DATAALL

DPV_S TACK_DATA_0_AND_

DV_S TACK_ DATA_ _ AND_3

Address (hex)
0x80000000
0X84000000

0x88000000

Ox8cOOOOOO

0x90000000

0x94000000

0x98000000

VU Region
VU 0
VU1
VU 2
VU 3
All VUs
VU 0/1
VU 2/3 

VU Region
VU 0
vU 0
VU 0
VU 0
All VUs
VUO/1
VU 2/3

VU Region
VU 0
VU1
VU 2
VU3
All VUs
VUs 0/1
VUs 2/3
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Data Space Heap:

Programming Constant Name
DPVHEAPDATA 0

DPVHEAP DATA_ I

DPV HEAP DATA 2

DPVHEAPDATA 3

DPVHEAP DATAALL

DPVHEAPDATA_0_ AND_1

DPV HEAP DATA 2 AND_3

Address (hex)
OxaOOOOOOO
Oxa4000000
OzaBOO80000
OxacOO0000
OxbOO0000O
Oxb4000000
Oxb8000000

VU Data Registers:

Programming Constant Name
DPV_DATA_REGS_0

DPV DATA REGS-1

DPV_DATA_ REGS_2

DPV_DATA_REGS_3

DPV DATA REGS ALL

DPV_DATA_REGS_0AND_I

DPVDATA REGS_2_ AND_3

Address (hex)
Oxc0800000
Oxc4800000

Oxc8800000

Oxcc800000

OxdOOOOOO8

0xd4800000

Oxd8800000

VU Control Registers (user area):

Programming Constant Name
DPV CTL REGS_0

DPV CTL REGS_1

DPV CTL REGS 2DPV CTL REGS 3

DPV CTL REGS ALL

DPV CTL REGS 0 AND 1

DPVCTL REGS2_ AND_3

Address (hex)
0xcoo0000000
Oxc4000000

Oxc8000000

OxccOO00000

OxdOOOOOOO

Oxd4000000

OxdBOO8000000

CMosr Version 2, August 1993
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VU Region
VU 0
vu1
VU 2
VU 3
All VUs
vu 0/1
VU 2/3

VU Region
VU 0
Vu1
VU 2
VU 3
All VUs
vu 0/1
VU 2/3

VU Region
VU 0
Vu 1
VU 2
VU 3
All VUs
vu0/1
VU 2/3

.
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A.4 VU Physical/Virtual Memory Correspondence

The diagram below summarizes the above description of the relationship
between physical and virtual VU memory regions:
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Appendix B

VU Memory Maps
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On the following pages are a two-sided memory and register map showing the
overall layout of VU virtual memory and of the VU data and control registers,
a one-page diagram showing the relationship between VU physical and virtual
memory, and a quick-reference sheet showing the starting memory addresses of
the various VU stack and heap regions.
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VU Heap
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Appendix C

VU Pipeline
N H _E IN ME AM 9MIM11= -------.-

C.1 VU Instruction Pipeline

The VU accelerator chips execute vector instructions in a pipelined fashion, so
that the operations on successive elements of vector operands can begin on
successive clock cycles.

There are 9 stages to the VU pipeline, each two SPARC cycles long, through
which a VU operation must pass for each element of a vector operand.

Pop. Count Result
Acc. Context Count
Immediate Operand

Rb (load)
LDVM Status Bits to

VA V-a*r. lra.,

Rbs
(Double-Precision

Store)

Ria (Register Indirection)
Ris (Single-Precision Load)
Pop. Count Load

A new vector element is started at each VU pipeline stage. Thus, the result of the
operation for element 0 is not generally available until four operations later.
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For example, assuming a four-element vector length, the pipeline pattern is:

Tinme

Vector
Elements

Next lnstructic

Element 0 Result Written

i

Element 0 Operands Read

Generally, a destination register (rD) is readable four vector element operations
later. For example, the upper marked box in the diagram above shows a register
written in the second half of the eighth VU pipeline stage for element 0. The
lower marked box shows the same register being read as an operand in the first
half of the fourth stage for element 0 of the next vector operation. The read takes
place in the succeeding SPARC cycle to the register write, so the value read will
be the value written to the register. Any attempt to read the register earlier than
shown above will return the prior contents of the register instead.

C.1.1 Pipeline Hazards

When two or more vector operations are executed in sequence, the VU chips
attempt to execute them without breaking the pipeline, so that their execution can
overlap. This creates the potential for pipeline hazards, conditions in which
otherwise correctly written instructions can execute improperly when overlapped
in the VU pipeline. These pipeline hazards can be corrected in one of two ways:

* by inserting a dpaynch instruction (see Section 4.4.1) between the
offending instructions to prevent pipeline overlap

* by using the [no]pad modifier to insert padding between instructions

* by rewriting the instructions so the hazard condition no longer exists

CMos Version 7.2, August 1993
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There are seven possible pipeline hazards:

Hazard 1: Reading from a register written fewer than 4 VU operations ago.

The results of an operation typically cannot be used until 4 operations later.
By default, the VUs pad all operations to a vector length of 4 (including scalar
operations). Thus, an operation of vector length 2 is executed as: operationO,
operationl, NOP, NOP. This avoids hazards as long as vectored data is always
accessed from ascending registers, since the result from the first vector ele-
ment of one vectored instruction will not be needed until the beginning of the
next vectored instruction, which is guaranteed (by the padding) to be 4 opera-
tions later. There are three exceptions to this rule, described under Hazards
2, 3, and 4 below.

Hazard 2: Storing a register value to memory after fewer than 7 SPARC cycles.

If an instruction stores data to memory from a vector of registers, and the data
in the registers is the result of an arithmetic operation, the data must be writ-
ten to the registers 7 pipeline stages before it is stored in memory (for double-
precision), or 5 pipeline stages (for single-precision data). This implies that
a vector length of 7 or more is required for the data to be stored correctly,
assuming registers are computed in the order in which they are stored on the
subsequent instruction (for example, in ascending Rnn order).

Performance Note: The dpas assembler, by default, avoids this hazard by
inserting an fnops operation before all instructions that perform stores. Such
operations are padded to 8 cycles. This is effectively the same as assembling
the instruction with a pad modifier of pad: 8.

Hazard 3: Memory indirection after fewer than 8 SPARC cycles.

If an instruction uses indirect addressing of memory, and the vector of
indirection offsets (Ria) is calculated by an arithmetic operation, each offset
must be written to its register at last 8 pipeline stages before it is used. Thus,
assuming the offsets are used in the order in which they were computed (for
example, in ascending Rnn order), a vector length of 8 is required for this
instruction sequence to work correctly. This does not apply to indirect regster
accessing, which has the normal latency of 4 operations.

Performance Note: The dpas assembler, by default, avoids this hazard by
inserting an fnopu operation before each instruction that uses memory
indirection, effectively padding it out to 8 cycles. (This is effectively the same
as assembling the instruction with a pad modifier of pad: 8.)
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Copyright © 1993 Thinking Machines Corporation

Appndix C YU Pipeline 141



142.. .... VU P.grmmr. Handbo

Hazard 4: Loading from second ALU operand after fewer than 3 cycles.

A relaxation of the 4-cycle latency rule is that a number of arithmetic opera-
tions (specifically, those that use the ALU circuitry of the accelerator chip)
only require their second ALU operand (the first operand for shift operations)
to have been written at least 2 operations previously rather than 4. This is
because the second operand is read 2 cycles later in the pipeline than operands
are normally read. The operations for which this exception applies are:

* neg and not

* enc, clas, exp, and mat

* type conversion operations: cvtf, df tof, f todu, etc.

* shifts: shli, shr, etc. (first operand, value to be shifted)

* add, sub

* sub

* 2-operand bitwise logicals: and, nand, xor, etc.

* comparisons: cirp, le, gt, etc.

* triadics: dum, mad, mob, etc. (the operand that is not in the multiply)

An additional hazard occurs with this 2-cycle latency operand because it is
read 2 cycles later in the pipeline. In a vector operation of these instructions,
in the last two element calculations, the second operand register (as it is being
strided) is vulnerable to loads (from memory, or from ACC or EPC opera-
tions) of that register done in the first two cycles of the next instruction.

Hazard 5: Accessing a VU register from the SPARC while the reg is in use.

Another hazard occurs when the SPARC reads or writes registers (via the
dprd and dpwrt instruction) that are being read or written by a currently
active instruction. The dprd and dpvrt operations are not synchronized to
the pipelined instruction stream by the accelerator chip, and therefore can
interact unpredictably. When the SPARC reads a register, as many as three of
the previous instructions can be actively writing the register. When the
SPARC writes a register, only the immediately preceding instruction can be
active.

Performance Note: dpas automatically inserts synchronization code before
dprd and dpwrt instructions to avoid this hazard, though this can be dis-
abled.

CMosr Version Z2, August 1993
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Hazard 6: Generating status bits in a VU that is subsequently disabled.

The current implementation of the accelerator architecture has hazard poten-
tial when collecting status. Two VUs are housed on each accelerator chip. If
an instruction is issued that collects meaningful status into vector_mask for
one VU of a pair, and the next instruction is issued only to the other VU on
the same chip, the vector_mask register will be corrupted in the disabled
VU, effectively losing the status collected by the first instruction. To correct
for this, rather than disabling the VU, you can operate it with conditionaliza-
tion enabled and a vector mask of O's.

Hazard 7: Chain loading into destination register of a VU exchange.

The current implementation of the assembler architecture disallows chain
loading into a register that is also used as the destination register when the
exchange modifier is used. In particular, the following is illegal:

dumovev V2,V2; duloadv [%il],V2; exchange

This must be recoded to use different source and destination registers in the
arithmetic operations. For example,

dumovev V2,V6; duloadv [%il],V2; exchange

C.1.2 Avoiding Pipeline Hazards

You can avoid hazards by applying the following usage guidelines in writing
your code:

1. Always use aligned vectors: start operations on vector register boundaries
(that is, refer to vector registers by name, vo, vi, etc.) and process vectors
in ascending order (always use a positive stride).

2. Do not use scalar registers (so through s31) simultaneously as scalar and
as vector operands.

3. Don't override the sync default in dprd and dpwrt instructions, and
don't override the pad: 8 default in DPEAC instructions.

4. When executing an operation that generates status bits, don't execute a
subsequent instruction that deselects some of the VUs.

5. Don't chain load into the rD operand in an exchange operation.

CMor Version 7Z2, August 1993
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Appendix D

VU Arithmetic Operations

This appendix presents a description of each of the arithmetic operations pro-
vided by the CM-5 vector units, including information about the VU status bits
that are modified by each operation.

D.1 Arithmetic Status Results

The computation of each element in a scalar or vector arithmetic operation gen-
erates status information. Arithmetic status is written to the dpstatus mode
register as an 18-bit value after each individual computation. Each bit of this
status word indicates a particular item of status.

The dp_status mode register is overwritten after each individual computation.
Therefore, one cannot retrieve the status bits for each vector element in a vector
operation. Instead, bits can be chosen to contribute to (be logically OR-ed into)
a single status bit that is shifted into the vector mask.

The table below lists the bits in the dp_status control register, along with their
programming mask symbols, as defined by the DPEAC and CDPEAC header
files. The symbols shown are defined as integer masks for the indicated bit.

The first five status bits, marked with (*), are the exceptions defined by the
iEEE754 Floating-Point Arithmetic Standard.

Note: The opcode descriptions in Section D.2 include a list of status bits for each
opcode, indicating which of the status bits may be set to 1 by the opcode. Any
status bits not included in an opcode's list are always set to zero by the operation.
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Mask Symbol
DPSTATUSENABLEMASKINEXACT

DP STATUS3ENABLEMASK DIVIDEBY ZERO

DP STATUSENABLE MASK_ UNDERFLOW

DP STATUS ENABLEMASK OVERFLOW

DP STATUS ENABLE MASK INVALID OPERATION

DP STATUS ENABLE MASK NT-OVERFLOW

DP STATUSENABLEMASK NEGATIVE UNSIGNED

DP STATUS ENABLE MASK DENORMINPUT

DP STATUSENABLE_MASK ZERO

DPSTATUSENABLE_MASKPOSITIVE

DPSTATUSENABLEMASK_NEGATIVE

DPSTATUSENABLEMASK INTEGER CARRY

DP.STATUSENABLEMASK INFINITY

DPSTATUSENABLE MASK NAN

DPSTATUSENABLEMASK DENORM

DP STATUS ENABLE MASK _UNORDEREDO

DPSTATUS_ENABLEMASK_ UNDER

DP STATUSENABLE_MASRK DENO

Status
Float result is inexact(*)
Division by zero(*)
Float underflow(*)
Float overflow(*)
Invalid operation(*)
Integer overflow
Negative integer result
Float input denormalized
Float/integer result of zero
Float/integer result positive
Float/integer result negative
Integer carry
Float result is +/- infinity
Float result is a NaN
Float result is denormal
(Internal, do not use)
(Internal, do not use)
(Internal, do not use)

The status bits are defined as follows:

inexact is asserted when the delivered result after rounding differs from
what would have been computed were both the exponent range and preci-
sion unbounded. inexact is never asserted when invalid is active.

* divideby_zero is active when a division by zero is attempted, and the
operands are not invalid.

* underflow is active when an IEEE floating-point underflow is detected
after rounding. This flag is also active when an IEEE denormalized num-
ber is clipped to zero in fast mode. underflow is never active when an
integer result is produced.

Implementation Note: Currently, the underflow signal is generated by
the logical OR of the under status with the logical AND of the deno and
zero status bits.

* overflow is active when a floating-point result exceeds in magnitude,
after rounding, the largest finite number in the destination format, were the
exponent range unbounded. It is never active when the result of a com-
putation is an integer.
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* invalid_operation becomes active when any of the following occur:

1. A floating-point operation that generates status has a signaling NaN
as an operand.

2. Two infinities with opposite signs are added.

3. An infinite floating-point number is an operand in a floating-point-
to-integer conversion. In this case, the result is saturated to the
maximum integer of the proper sign, and int_overflow is set.

4. An attempt is made to convert to an integer a floating-point number
that is out of the range of the integer. In this case, the result is satu-
rated to the maximum integer of the proper sign, and the
int_overflow bit is set.

5. A NaN is an operand in a floating-point-to-integer conversion. The
result will be a zero, and the zero flag will be raised.

6. An attempt is made to multiply 0 times infinity.

7. An attempt is made to divide 0 by 0 or infinity by infinity.

8. A square root of a non-zero number less than zero is attempted.

* The int_overflow flag is raised when an integer result is to be produced
from an arithmetic operation or conversion, and an overflow occurs. This
occurs in the following situations:

1. For two's complement addition, this is the XOR of the msb and the
nmsb+l bits.

2. For unsigned results, this is the value of the msb+ 1 bit, if the operands
are both positive.

3. For conversions, this occurs when a floating-point number outside
the range of a destination integer is converted to integer. (This is sim-
ilar to the '"v"r overflow bit that one would see on a microprocessor.)

4. For integer multiplication, this occurs when a 1 is found in the upper
half of the result.

* negative_unsignedis active when a negative result is generated for an
unsigned integer during arithmetic and conversions. The result is forced
to zero, and the zero flag is set.
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* denorm_input is active when a denormal operand is detected. This flag
can be active regardless of the underflow handling mode.

* zero is active when the integer or floating-point result is zero. Negative
floating-point zero is also indicated with this flag.

* positive is active when the integer result is not zero or positive, or the
floating-point result is not zero, positive, or a NaN. In the current imple-
mentation, the pos-result signal is generated by the logical NOR of the
zero, negative, and nan-result bits (i.e., positive is set when
these are all clear).

negative is used during comparison operations, to indicate that the
second operand is larger than the first operand. (For integer arithmetic
operations, this flag is similar to the "s" or "N" flag found on microproces-
sors.) When an answer is in two's complement format, the negative flag
will be the value of the msb of the result. When an unsigned result is pro-
duced, the negative flag will always be zero. In floating-point
operations that produce status other than comparisons, the negative flag
will be equal to the sign bit in the result. During conversions, negative
will be equal to the sign of the result.

* integer_carry indicates that a carry has been generated from the msb
of the result in the ALU's adder during an integer arithmetic instruction.
For shift instructions, integercarry is equal to the bit to the left of the
msb or the bit to the right of the Isb, depending on the direction of the shift.

• infinity indicates the floating-point result is an infinity of either sign.

* nan indicates that the result is a quiet NaN. It is valid for instructions that
produce floating-point results in the ALU, with the exception of the one
and move instructions. The enc instruction will not set this status bit, even
if a quiet or signaling NaN is created.

* denorm is active when the result after rounding and after fast mode clip-
ping is an EE denormal number. It is not active when a result after
rounding is an inexact zero. denorm indicates the class of the result and
not necessarily the occurrence of the IEEE tny condition.

In the current implementation, the denorm signal is generated by the log-
ical AND of deno and the logical NOT of zero.
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Implementation Note

The following signals are only used in the current accelerator
implementation, and are included merely to facilitate testing.

* unordered is active for the comparison operation when at least one of the
operands is a signaling or quiet NaN.

* under is active when an IEEE floating-point underflow is detected after
rounding. It is never active when an integer result is produced.

* deno is active when the result after rounding and before fast mode clip-
ping is an IEEE denormal number. It is not active when a result after
rounding is an inexact zero. deno indicates the class of the result and not
necessarily the occurrence of the IEEE tiny condition.

D.2 VU Arithmetic Operations

D.2.1 {i,di,f,dfabs

Takes the absolute value of its operand.

Possible status outputs:

invalid
int-overflow
zero

positive
integer-carry

infinity
nan

denorm
(deno)

Invalid operand; operand was a signaling NaN.
Result overflows the destination integer format.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Integer carry out was generated during negation

of a two's complement integer.
Result is an infinity.
Result is a quiet NaN.
Result is a denormal number.
Result is a denormal number before fast mode clipping.
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D.2.2 i,di,u,du,f,df}add, sub, subr

The add operation adds its first two operands.
The sub operation subtracts the second operand from the first.
The subr operation subtracts the first operand from the second.

Integer overflows during addition are signaled, but the result is not saturated.
Negative results for unsigned integers are saturated to zero, and the negative-un-
signed flag is asserted.

Note: The accelerator chip handles unsigned subtraction in a nonstandard way.
Whenever a larger number is subtracted from a smaller number, the result is zero,
rather than wrapping. This can occur in the unsigned variants of the subtract
instructions and the triadics with negated operands.

Possible status outputs:

inexact Result cannot be represented exactly.
underflow Result underflows the destination format.
overflow Result overflows the destination floating-point format.
invalid Invalid operand; operand was a signaling NaN or

operands are oppositely signed infinities.
int-overflow Result overflows the destination integer format.
negative-unsigned

A negative result was generated for an unsigned integer.
zero Result is zero.
positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.
integer-carry Integer carry out was generated.
infinity Result is an infinity.
nan Result is a quiet NaN.
denorm Result is a denormal number.
(deno) Result is a denormal number before fast mode clipping.

D.2.3 i,di,u,du}addc, subc, sbrc

These three functions are similar to the add, sub, and subr operations, except
that the addc, subc, and sbrc operations include a carry bit in the computation.
The bits being shifted off of the vector mask (normally used for conditionaliza-
tion) are used here as the carry input.
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As a result, these operations always operate unconditionally, regardless of the
setting of the vectormaskmode control register and ignoring any use of the
modifiers affectiong conditionalization (always, condmem, and condalu). If
the vminvert modifier is used, the bit shifted from the vector mask is complem-
ented before being used in the computation. If a memory operation accompanies
these arithmetic operations, it is conditionalized normally by the vector mask
bits.

Note: The accelerator chip handles unsigned subtraction in a nonstandard way.
Whenever a larger number is subtracted from a smaller number, the result is zero,
rather than wrapping. This can occur in the unsigned variants of the subtract
instructions and the triadics with negated operands.

Possible status outputs:

int-overf low
negative-unsigned
zero

positive

negative

integer-carry

Result overflows the destination integer format.
A negative result was generated for an unsigned integer.
Result is zero.
Result is not zero or negative.
Result has a negative sign.
Integer carry out was generated.

Note: In the current implementation, for subc and sbrc, if the operands and
carry are zero, then integer-carry is set to 1.

D.2.4 lu,duland, andc, nand, or, nor, xor

These operations perform, respectively, a bitwise logical AND, a bitwise AND
with the first operand complemented, a bitwise NAND, a bitwise OR, a bitwise
NOR, and a bitwise XOR of the two operands.

Possible status outputs:

zero

positive
Result is zero.
Result is not zero.
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D.2.5 f,df}clas

Floating-point number class function. Produces an integer indicating the number
class of the operand. (The size of the integer will be the size of the operand.)
Does not flag signaling NaNs as an exception. Encodes the integer result as:

Integer Result
Hex 0001
Hex 0002
Hex 0004
Hex 0008
Hex 0010
Hex 0020
Hex 0040
Hex 0080
Hex 0100
Hex 0200

Interpretation
Signaling NaN.
Quiet NaN.
Negative infinity.
Negative normalized finite non-zero.
Negative denormalized.
Negative zero.
Positive zero.
Positive denormalized.
Positive normalized finite non-zero.
Positive infinity.

Possible status outputs:

positive Always asserted.

D.2.6 {i,di,u,du,f,df}cmp

The generic mp operation is supported only for completeness. More specific
compares (such as fgtv) are preferred. For mp, a third argument is given that
specifies the compare code (0-7).

Possible status outputs:

invalid
zero

positive

negative

unordered

Invalid operand; at least one operand is NaN.
Operands are equal.
Result is not zero, negative, or a quiet NaN.
Second operand is greater than the first.
At least one operand is a NaN.
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D.2.7 cvtf, cvtfi, cvti, cvtir

The general conversion opcodes (cvtf, cvtfi, cvti, and cvtir) are sup-
ported only for completeness. The specific conversion opcodes, such as f toiv,
are preferred. The specific opcodes expect two operands, a source and a destina-
tion. The general opcodes take three operands: a source, a convert code, and a
destination. The convert code specifies the conversion done.

The cvtir opcode performs the same float-to-integer conversions as the cvti
opcode, except that cvti truncates its result and cvtir rounds the result to the
nearest integer.

Possible status outputs:

inexact

underflow
overflow
invalid

int-overflow

negative-unsigned

zero

positive
negative

infinity
nan

denorm

(deno)

Result cannot be represented exactly.
Result underflows the destination format.
Result overflows the destination format.
Invalid operand; operand could be a NaN, infinite, or

outside the range of the destination integer.
Integer overflow; operand is outside the range of

the destination integer.
Attempt to convert negative value to unsigned.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
Result is an infinity.
Result is a quiet NaN.
Result is a denormal number.
Result is a denormal number before fast mode clipping.

D.2.8 f,dfldiv

This instruction divides the first operand by the second operand. When an oper-
and is NaN, infinity, or zero, the division timing will be the same as for
normalized operands and results. Note: In the current accelerator chip, the div
function cannot be used in conjuunction with a memory operation.
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These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N*k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where k is taken from the following
table:

Operation
fdiv{v,s }
dfdiv{vs I

k Value
4
5

Possible status outputs:

inexact
divide-by-zero

overflow
underflow
invalid

denorm-input

zero

positive
negative
infinity

nan

(deno)

Result cannot be represented exactly.
Division of zero into a non-zero finite number.
Result too large to be represented in destination format.
Result too small to be represented in destination format.
Result cannot be represented exactly; may be caused by

a signaling NaN, 0/0, or infinity / infinity.
Denormal input.
Result is zero.
Result is not zero, negative or a quiet NaN.
Result has a negative sign.
Result is an infinity.
Result is a quiet NaN.
Result is a denormal number before fast mode clipping.

D.2.9 dum[hj]{s,m,o,x}a,i,t}

These multiply-logical operations combine a 64-bit multiply and a 64-bit bitwise
logical operation. These can be used to implement "shift-and-mask" type
constructions. The use of multiply rather than a true shift allows more compli-
cated shifting patterns. Either the least significant or the most significant 64 bits
of the multiply result can be used.

These operations all work on 64-bit unsigned values (type du). The logical func-
tion is based on the "s,m,o,x" choice:

s (select)
m (mask)
0o

x

gives the AND function
gives the AND-NOT function
gives the OR function
gives the XOR function
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The last letter of the opcode indicates the triadic form:

a accumulative
i inverted
t triadic

The optional "h" causes the most significant 64 bits of the multiply result to be
used as the first operand to the logical operation, rather than the least significant
64 bits. The high half can simulate a right shift. For example, multiplying by
2^{164-N} and using the high half of the result is effectively a right shift by N.

The result status is reported for the ALU boolean only. The other status is derived
entirely from the multiplication.

Possible status outputs:

int-overflow A 1 was found in the upper half of the result (MULT).
zero Result is zero (ALU).
positive Result is not zero (ALU).

D.2.10 {u,du)enc

This operation generates a floating-point number by placing the first operand in
the exponent field and the second operand in the mantissa field. For both oper-
ands, the values are given as unsigned integers in least significant bits. The
exponent is given in biased form. The output is a floating-point value.

For floating-point values in the normalized range, the mantissa operand must
contain the hidden bit. Denonrmal numbers are constructed from an exponent
equal to 1 and a mantissa with the hidden bit cleared. The resulting denormal
value will have a zero in its exponent field. No checking is performed on the
resulting floating-point number.

Possible status outputs:

positive Always asserted.
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D.2.11 etrap

This operation is not a vector operation. It forces a trap to occur if the result of
logically ANDing the value of dp_status with the bits in the register
dpinterrupt_enable_green is non-zero. Since the dp_status register
contains the status from the last element computed, this is really only useful for
diagnostic purposes. This operation sets no status flags.

D.2.12 f,df}exp

This operation extracts the biased exponent of its operand, a floating-point value.
The sb of the exponent becomes the sb of the resulting integer. The precision
of the floating point operand becomes the precision of the resulting integer. The
format of the result is the same as that required for the enc instruction.

The result of NaN and infinity operands is a left-justified string of ones equal to
the width of the exponent field of the operand. Denonrmal numbers produce an
integer with a value of 1.

Possible status outputs:

invalid Invalid operand; first operand was a signaling NaN.
positive Always asserted.

D.2.13 {udu}ffb

The ffb (fmnd first bit) instruction returns the number of leading (most signifi-
cant) zeroes above the most significant 1 bit in the operand. For example, duffb
of binary 0001... returns 3. If no Is are present in the operand, a zero is returned.
The single-precision version, duffb, views its operand as a 64-bit unsigned
number constructed by padding the 32-bit argument with zeroes. As a result,
uffb(OxPFFFFFFFF) gives 32. The result of the ffb instruction on an operand
equal to zero is zero.

Possible status outputs:

zero Result is zero.
positive Result is not zero.
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D.2.14 ftodf, dftof

These operations convert a floating-point operand to a floating point result of
another precision.

Possible status outputs:

inexact

underflow

overflow
invalid
zero
positive
negative
infinity

nan
denorm
(under)
(deno)

Result cannot be represented exactly.
Result underflows the destination format.
Result overflows the destination floating-point format.
Invalid operand; operand was a signaling NaN.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
Result is an infinity.
Result is a quiet NaN.
Result is a denormal number.
Result underflows dest format before fast mode clipping.
Result is a denormal number before fast mode clipping.

D.2.15 {f,dfinv

This operation takes the reciprocal of its operand. When the operand is NaN,
infinity, or zero, the reciprocal timing will be the same as for normalized oper-
ands and results.

Note: In the current accelerator chip, the inv function cannot be used in con-
junction with a memory operation.

These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N*k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where k is taken from the following
table:

Operation
fdiv{v,s}
dfdiv{v,s }

k Value
4
5
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Possible status outputs:

inexact

divide-by-zero

overflow
underflow
invalid
denorm-input

zero

positive
negative
infinity

nan

(deno)

Result is inexact.
/0 was attempted.
Result too large to be represented in destination format.
Result too small to be represented in destination format.
Invalid operand; operand is a signaling NaN.
Denormal input.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
Result is an infinity.
Result is a quiet NaN.
Result is a denormal number before fast mode clipping.

D.2.16 f,dflisqt

This operation divides the first operand by the square root of the second operand.
No status is generated by this instruction.

This operation does not obey the EEE standard with respect to rounding or
exception detection. First, isqt always rounds the result toward zero. The error
in the result will be at most one Isb in the mantissa when compared to an infi-
nitely precise answer, and the result will be equal to or smaller than the infinitely
precise answer. Second, the only exception detected is when the operand is nega-
tive and non-zero or a NaN, in which cases a NaN result is generated and the
dp_status_nanresult bit in the dp_status register is set. Notably, no
divide-by-zero detection is done for the case when the-argument is zero, nor is
underflow signaled when the result is too small. The positive status bit is always
set.

Note: In the current accelerator chip, the isqt function cannot be used in con-
junction with a memory operation.
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These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N*k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where k is taken from the following
table:

Operation k Value
fisqtIv,s} 5
df isqt{v,s} 7

When an operand is NaN, infinity, or zero, the AINVSQRTB timing will be the
same as for normalized operands and results.

Possible status outputs:

positive Always asserted.

D.2.17 Ivdm

Required syntax: ldvm U-register

This operation moves the low order 16 bits of a specified register into both the
vector mask (dp_vector mask) and the vector mask buffer (dpvec-
tor_maskbuffer). This operation has a fairly significant cost both in
execution speed and in pipeline delay, and should be used sparingly.

This instruction may not be combined with a memory operation (load, store),
and is not affected by conditionalization. Possible status outputs: None.

D.2.18 (i,di,u,du,f,df}lt, le, gt, ge, eq, ne, un, Ig

These operations compare the two operands. No result is written to the register
file. The result of the compare (a bit if true, otherwise a 0 bit) is shifted into
the vector mask. The rotate mode (vmrotate) is used by default, but the
vmcurrent modifier can be added to change to the current mode. (See Section
4.3.1 for DPEAC, Section 6.7.1 for CDPEAC.)

In addition, the status bits are set as if the two values were subtracted (operand
1 minus operand 2), as shown below. At most one of zero, negative, and
unordered will be set.
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Possible status outputs:

invalid
zero
positive
negative
unordered

At least one operand is a signaling NaN.
Operands are equal.
Result is not zero, negative, or a quiet NaN.
The second operand is greater than the first operand.
At least one operand is a NaN.

D.2.19 {i,di,u,du,f,df}mad, msb, msr, nma

These operations perform a multiply followed by some other operation (for
example, an add). There are three forms, the accumulative, the inverted, and the
triadic. These differ in the way in which they apply the operands in the computa-
tion. The form is signaled by the suffix on the instruction: a - accumulative,
i = inverted, t = true triadic.

Integer overflows during addition are signaled, but the result is not saturated.
Negative results for unsigned integers are saturated to zero, and the negative-
unsigned flag is asserted. The result status (zero, negative-result, etc.)
reflects the final result only. Exception status (e.g., overflow) is derived by OR-
ing the status from both operations.

Possible status outputs:

inexact
invalid
overflow
underflow
int-overflow

negative-unsigned
denorm-input
zero

positive
negative
integer-carry
infinity
nan
denorm
(under)
(deno)

Result cannot be represented exactly.
Invalid operand.
Result overflows the destination floating-point format.
Result underflows the destination format.
MULT: a '1' was found in the upper half of the result.
ALU: result overflows the destination integer format.
A negative result was generated for an unsigned integer.
Denormal input.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
Integer carry out was generated.
Result is an infinity.
Result is a quiet NaN.
Result is a denormal number.
Result underflows dest format before fast mode clipping.
Result is a denormal number before fast mode clipping.
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D.2.20 f,df}mant

The operation extracts the mantissa of its operand, a floating-point number. If
the operand is normalized the hidden bit is present in the result. The isb of the
mantissa becomes the sb of the resulting integer. A double-precision floating-
point operand produces a double-precision integer result, and a single-precision
floating-point operand produces a single-precision result. The format of the
result is the same as that required for the enc instruction. A NaN input returns
the value of the mantissa, with the hidden bit set to 1, and sets the invalid
status.

Possible status outputs:

invalid Invalid operand; first operand was a signaling NaN.
positive Always asserted.

D.2.21 {i,di,u,du,f,df}move

The first operand is passed through the ALU. Invalid operands are not converted
into a quiet NaN. Possible status outputs:

positive Always asserted.

D.2.22 {u,dujmrg

The merge instruction merges two vectors under control of the vector mask. Bits
shifted off of the vector mask, normally used for conditionalization, are used in
a different way. Specifically, for each element, the bits control which operand is
moved to the destination. If the bit shifted from the vector mask is a ' 1', the result
is taken from the first operand; otherwise, it is taken from the second operand.
If you use the vminvert modifier, which inverts the sense of the vector mask,
the merge is done in the opposed fashion. As a result, this operation always oper-
ates unconditionally, regardless of the setting of the vectormask_mode
control register, and it ignores the modifiers affecting conditionalization
(always, condmem, and condalu). Any memory operation that accompanies
these arithmetic operations is conditionalized normally by the vector mask bits.

Possible status outputs:

positive Always asserted.
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D.2.23 {i,u,f,df}mul

This operation multiplies its two operands. Multiplication with the double inte-
ger format can be accomplished with the {di,du)mul and di,du)mulh
instructions. Multiplication of 32-bit integers will produce a 64-bit result When
an operand is NaN, infinity, or zero, the multiplication timing will be the same
as for normalized operands and results.

Possible status outputs:

inexact
overflow
underflow
invalid 

int-overflow
denorm-input
zero
positive
negative
infinity

nan

(under)
(deno)

Result cannot be represented exactly.
Result overflows the destination floating-point format.
Result underflows the destination format.
Invalid operand; caused by 0 times infinity or by

a signaling NaN operand.
A '1' was found in the upper half of the result.
Denormal input.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
Result is an infinity.
Result is a quiet NaN.
Result underflows dest format before fast mode clipping.
Result is a denormal number before fast mode clipping.

D.2.24 {di,dulmul, mulh

These operations generate the low (mul) and high (mulh) 64 bits of the multi-
plication of the two integer operands.

Possible status outputs:

int-overflow
zero

positive
negative

A '1' was found in the upper half of the result.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
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D.2.25 i,di,f,df}neg

This operation subtracts the first operand from zero. Integer overflows are sig-
naled, but the result is not saturated. Negative results for unsigned integers are
saturated to zero, and the negative-unsigned flag is asserted.

Possible status outputs:

invalid Invalid operand; operand was a signaling NaN.
int-overflow Result overflows the destination integer format.
zero Result is zero.
positive Result is not zero, negative, or a quiet NaN.
negative Result has a negative sign.
negative-unsigned Attempt to convert negative value to unsigned.
integer-carry Integer carry out was generated during negation

of a two's complement integer.
infinity Result is an infinity.
nan Result is a quiet NaN.
denorm Result is a denormal number.
(deno) Result is a denormal number before fast mode clipping.

D.2.26 fnop{v,s}

This operation is, as its name suggests, a NOP. It does nothing.

Possible status outputs: None.

D.2.27 u,du}not

This operation performs a bitwise logical NOT of its first operand.

Possible status outputs:

zero
positive

Result is zero.
Result is not zero, negative, or a quiet NaN.
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D.2.28 u,du}shl, shir

This operation performs an integer logical left shift.

For shl, the first operand is the value to be shifted, and the unsigned value of
the low 6 bits of the second operand is the shift distance. The bits in the second
operand above the sixth bit are ignored. The reversed shift, shlr, shifts the
second operand by the value in the low 6 bits of the first operand. These alterna-
tives are provided so that the Rsl operand, which has improved accessibility and
striding capability, can be used as either operand.

Zeros are shifted into the low end of the result. The status integer-carry will be
the value of the bit to the left of the msb. A negative two's complement integer
is sign-extended beyond the msb, so a zero shift on a negative two's complement
number will produce integer-carry. As a result of the 6-bit shift value, it is
not possible to stt a double-precision value by a full 64 bits. (It is, however,
possible to shift a 32-bit integer by 32).

Possible status outputs:

integer-carry Value of the msb+ 1 bit.
zero Resmult i 7.rn

positive Result is not zero, negative, or a quiet NaN.

D.2.29 u,du,i,di}shr, shrr

This operation performs an integer shift right (logical or artihmetic). For shr, the
first operand is the value to be shifted and the unsigned value of the low 6 bits
of the second operand is the shift distance. The bits in the second operand above
the sixth bit are ignored. For shrr, the reverse shift is performed: the second
operand is the value to be shifted, and the low 6 bits of the first operand provide
the shift distance.

For the unsigned data types (u and du), the shift is a logical shift; thus, zeros are
shifted into the high end of the result. For the signed data types (i and di), an
arithmetic shift is performed: i.e., the bits shifted into the upper end of the result
are a copy of the original sign bit of the operand. For example, shifting the 32-bit
hexidecimal value 80000008 right one bit by an arithmetic shift yields
C0000004, while a logical shift of the same value yields 40000004. The inte -
ger-carry status is the value of the bit to the right of the sb.
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Possible status outputs:

integer-carry

zero

positive
negative

Value of the LSB-1 bit.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.

D.2.30 stvm

Required syntax: tvm -register

This operation moves the 16-bit value in the vector mask (dp_vectormask)
into the specified VU-register. This instruction may not be combined with a
memory operation and is not affected by conditionalization. This operation has
a significant cost in speed and pipeline delay, and, should be used sparingly.

Possible status outputs: None.

D.2.31 d,dfsqrt

The operation takes the IEEE square root of the first operand.

Note: In the current accelerator chip, the sqrt function cannot be used in con-
junction with a memory operation.

These operations do not execute one-per-cycle as do the other operations. Specif-
ically, for a vector length of N, these instructions will take 2N k Mbus (SPARC)
cycles to execute, rather than the usual 2N, where k is taken from the following
table:

Operation
fsqrttv,s)
dfsqrt{v,s}

k Value
6
8

When the operand is a NaN, infinity, zero, or negative, the square root timing
will be the same as for normalized operands and results.
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Possible status outputs:

inexact

underflow
invalid

denorm-input

zero
positive
negative
infinity

nan

(under)
(deno)

Result cannot be represented exactly.
Result underflows the destination format.
Invalid operand; operand is a negative non-zero number

or a signaling NaN.
Denormnal input.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
Result is an infinity.
Result is a quiet NaN.
Result underflows dest format before fast mode clipping.
Result is a denormal number before fast mode clipping.

D.2.32 {i,di,u,du,f,dfjtest

This operation adds the first operand to zero. Unlike move, the test instructions
do assert status outputs to reflect the value moved. Specifically, test is exactly
like adding zero to the operand, as far as the setting of status flags is concerned.

Possible status outputs:

invalid
zero

positive
negative
infinity

nan

denorm
(deno)

Invalid operand; operand was a signaling NaN.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
Result is an infinity.
Result is a quiet NaN.
Result is a denormal number.
Result is a denormal number before fast mode clipping.
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D.2.33 f,dflto{i,di,u,dul{[r]}

These operations convert a floating-point operand to integer format. Overflows
are saturated to the maximum integer value in the output format, and underflows
are forced to zero. Converting a negative floating-point number to unsigned
causes the negative-unsigned status and saturates the result to zero. Conver-
sions from NaN formats to integers create a zero result, and set the invalid
status. Conversions from infinities are saturated like overflows; they, too, cause
the invalid status. The "r" forms round by the current rounding mode (set by
default to "nearest"); the non-"r" forms simply truncate toward zero.

Possible status outputs:

inexact
invalid

int-overflow
negative-unsigned

zero
positive
negative

nan

Result cannot be represented exactly.
Invalid operand; operand could be a NaN, infinity,

or outside the range of the destination integer.
Result overflows the destination integer format.
Attempt to convert negative value to unsigned.
Result is zero.
Result is not zero, negative, or a quiet NaN.
Result has a negative sign.
The first operand is a NaN.

D.2.34 {i,di,u,dultojf,df}

These operations convert an integer operand to floating-point format.

Possible status outputs:

inexact
negative

positive

zero

Result cannot be represented exactly.
Result has a negative sign.
Result is not zero, negative, or a quiet NaN.
Result is zero.

D.2.35 trap

This operation, which is not a vector operation, forces a trap to occur. This trap
will be a green interrupt identical to the trap caused by a masked status trap.
Possible status outputs: None.
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Appendix E

The dpas Assembler
. .. . .... _

E.1 The dpas Assembler

The dpas assembler is used to assemble a DPEAC source file. dpas is an exten-
sion of the SPARC as assembler; it translates DPEAC instructions into SPARC
instructions, then passes the translated instructions to as for assembly.

I object code 

The dpas command line format is

dpas [switches...] [source-file] [switches...]

where source-file is a text file containing a DPEAC program, and having a file-
name extension of ". dp" (if omitted, stdin is used). Assembled object code is
written to a file with the same name but with an extension of ". o".

Optional switches can precede and follow the source-file argument. Typing
"dpas -h" gives a list of the current switches.

Typing "dpas -Fw" puts dpas in "filter" mode; you can type in a DPEAC state-
ment to see if its syntax is correct, and to see what SPARC code it produces.

dpas also includes its own preprocessor that provides C-like lexical directives
(#define, #ifdef, etc.) and macro definitions.
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The dpas assembler provides the following lexical directives:

#comment comment-text...

#define
#undef
#set

symbol text...
symbol
symbol expression

#def ine name(params) bod

#macro name parameter[=-
#endmacro

#include filename

#if
#ifz
#ifdef
#ifnde
#if an
#ifnsa
#ifbla
#ifnbl
#ifz
#else
#elif
#else
#else
#endif

expression
expression
symbol

if symbol
ie stringi, string,
me stringl, string
mk [text]
L.ank [text]

expression
expression
expression

ifxxx expression

#repeat count
#endxepeat count

#print item, item,...
#warning item, item,...
#error item, item,...

#ident text...

2
2

- Comment line.

- Preprocessor symbol.
- Undefine preprocessor symbol
- Sets symbol to value of expression.

;... - Preprocessor macro.

fefault]... - Multi-line macro.
- End of macro body.

- Include named file (as in C code).

- Assemble if expression is non-zero.
- Assemble if expression is zero.
- Assemble if symbol is #defined.

- Assemble if symbol is not #defined.
- Assemble if strings are exactly identical.
- Assemble if strings are different.
- Assemble if rest of line is blank
- Assemble if rest of line is not blank.
- Assemble if expression is zero.
- Else case for #if directive.
- Else-if case.
- Else case, starts new #ifxxx directive.
- Final else clause for #ifxxx directive.
- End of #if directive.

- Repeat block
- End of repeat block

- Print items (strings or expressions).
- Print items, signal assembler warning.
- Print items, signal assembler error.

- Entire line passed to output unchanged.

dpas pre-defines the symbol "dpas" to the string ".1" before preprocessing a
file; this symbol can be used to conditionally assemble code depending on
whether or not dpas is being used as the assembler.
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The dpcc Compiler
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F.1 The dpcc Compiler

The dpcc compiler is used to compile a CDPEAC program. dpcc is an extension
of the GNU C compiler gcc; it translates a CDPEAC procedure into the corre-
sponding DPEAC code, then calls dpas to assemble the code.

I CDPEAC CodeH gcc compilation dpasassembly bectc

... ... ...: 

The dpcc command line format is

dpcc [switches...] [source-file] [switches...]

where source-file is a text file containing a CDPEAC program, and having a file-
name extension of ". cdp". Assembled object code is written to a file with the
same name but with an extension of ". o".

Optional switches can precede and follow the source-file argument. Typing
"dpcc -h" gives a list of the current switches.
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Appendix G

How CDPEAC Works

This appendix describes the way that GNU CC's asm statement and macro
facilities are used to define the CDPEAC instruction set.

Note: This information is provided for those readers interested in how CDPEAC
operates - this is not essential knowledge for simply using CDPEAC, however.

G.1 GNU CC's ASM Statement

GNU CC (or "GCC", as it is often abbreviated) is a C compiler provided with
the GNU operating system. The full description of GNU CC's asm statement is
best left to the GCC user's manual. The description below concentrates on how
GCC is currently used to permit DPEAC programming from C.

GCC's ASM statement has the basic form:

asm( pattern: outputs: inputs: clobbered);

where

* pattern is a string containing an assembly-language instruction.

* inputs and outputs are descriptions of C variables that represent the oper-
ands passed into the instruction and the values (if any) that are returned.

* clobbered is a series of strings naming any internal chip registers that are
modified (or "clobbered") by the instruction.

Note: For the purposes of CDPEAC, the outputs argument can be ignored.
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For example:

asm( "dfloadv %0, V5" : m" (*source) : "%g2", "%g3" )

In this example, the DPEAC instruction dfEloadv directs each VU to load into
vector register v5 a vector's worth of data from the memory location specified
by the C variable source. (The "mi indicates that the source variable is a
pointer into memory.) As with most DPEAC operations, this instruction clobbers
the SPARC registers %g2 and %g3.

When a C program containing this asm statement is compiled by GCC, the asm
statement might translate into the following actual DPEAC code:

dfloadv [%il], V5

where the [%ill indicates that the pointer contained in the source variable has
been moved into the SPARC register %il for use by DPEAC.

G.1.1 The Pattern and Input Arguments

In an asm statement, the pattern argument is a string (or a series of strings) con-
taining a "template" for an instruction. This template can contain pattern
variables %o, %1, %2, etc., indicating where the input and output arguments of the
asm statement should appear in the final assembled instruction.

The pattern variables %o, %1, %2, etc., enumerate in order the arguments appear-
ing in the output and input fields of the asm statement. (Since the output field is
not used by CDPEAC, these variables effectively enumerate the input argu-
ments.)

Each input argument consists of two parts:

* a constraint string, which indicates the type of the input argument

* a C expression defining the argument's value

The constraint typically contains a single letter giving the argument's type. For
example, "%" indicates a memory operand, "r" a general register operand, "i"
an immediate integer value, etc. (The GCC documentation includes a list of these
constraint strings and their specific meanings.)

Note: If the pattern argument consists of multiple strings, these strings are con-
catenated in order when the asm statement is compiled.
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G.2 Using GCC Macros to Produce ASM Statements

The preprocessor macro facility of GCC makes it easy to construct asm state-
ments for DPEAC instructions. For example, the asm statement presented above
could be rewritten as:

asm( "df" "loadv %, " "V5" : : "m" (*source) :

"%g2", "%g3" )

Since the pattern argument of this statement is now separated into parts, these
parts can be provided by macro arguments. For example, a general C macro for
defining loadv instructions might be defined as follows:

#define loadv(type, source, data_register) \
asm(#type "loadv %, " dataregister : :

"m" (*source) : "%g2", "%g3")

The loadv macro expects type to be a literal symbol representing the data type
of the load operation (the # in front of type converts it into a string). The source
and dataregister arguments are assumed to be strings representing the source
variable and the VU data register, respectively.

The loadv macro can be called from a C program like this:

loadv( df, source, "V5 )

Note: To reduce the number of quotation marks, CDPEAC defines macro sym-
bols for all the VU data registers. For example, the "vs" string in the example
above could be replaced by CDPEAC's literal vs symbol, which is defined as:

#define V5 "V5"

G.2.1 Going Generic with Macros

Because many DPEAC instructions have similar formats, one can define a
generic macro in which the instruction opcode is also provided as an argument.
For example:

#define mem(mnemonic, source, data_register) \
asm(mnemonic " %, " data_register : :

"m" (*source) : "%g2", "%g3")
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CDPEAC defines a number of these internal, generic macros, and uses them to
define the macros for the CDPEAC instruction set. The definitions of the loadv
and storev instructions, for example, might be:

#define loadv(type, source, dataregister) \
mem(#type "loadv", source, data_register)

#define storev(type, source, dataregister) \
mem(#type "storev", source, data_register)

G.2.2 Handling Argument Syntax with Macros

DPEAC instructions often indicate special strides or modes by attaching markers
to instruction operands. In CDPEAC, this is handled by macros that construct the
appropriate DPEAC syntac. For example:

/* Data register offset syntax */

#define dreg_x(dreg, index) \
dreg ## [ ## index ## ]

/* Data register indirection */

#define dreg_i(dreg, ireg) \
dreg ## ( ## ireg ## )

/* Stride marker macros */

#define dreg_u(dreg, stride) \
dreg ## : ## stride

#define dreg_s(dreg, setstride) \
dreg ## := ## setstride

#define dregus(dreg, stride, setstride) \
dreg ## : ## stride ## = ## setstride

(In these examples, the "##" operator is an ANSI C convention that concatenates
the surrounding arguments together into a single C symbol, eliminating any
space in between.)

G.2.3 CDPEAC: Macros on Macros

Similar definitions are used for the other elements of the CDPEAC instruction
set, makldng it, in essence, a very large macro package.
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Appendix H

CMRTS and CM Memory Allocation

This appendix describes the features of the CM Run-Time System (CMRTS) that
you are likely to use in DPEAC and CDPEAC programming. It also discusses
methods for allocating parallel CM memory, both through the CMRTS and by
other means.

Note: To make direct use of the CMRTS functions and data structures described
in this chapter, you must include the CMRTS header file in your program:

#include <cm/rts.h>

H.1 The CM Run-Time System (CMRTS)

The CMRTS is a set of low-level CM code libraries that define and manipulate
array data structures in CM parallel memory. CMRTS functions allocate blocks
of CM memory and manipulate their contents at run time" (that is, during
execution of CM programs), hence the name of the library. The CMRTS is
divided into three main libraries of functions:

* CMRT - The CM Run-Time Library.

* CMCOM - The CM Communications Library.

* CMIP - The CM In-Processor Library.

The CMRT layer is the topmost layer of the RTS software, and represents an
"external," machine-independent interface for the RTS. CMRT functions and
data types provide access to all CM operations defined in the RTS. The CMCOM
and CMIP layers are "internal" support software for the CMRT layer. CMCOM
functions perform CM communication operations (sends, scans, etc.). CMIP
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functions perform in-processor operations (arithmetic and logical computations,
etc., that don't require communication between CM processors). If your program
makes any direct calls to the CMRTS, it is typically through the CMRT func-
tions. However, references to data structures defined at the CMCOM level (in
particular, CMCOM machine geometries) are common.

H.1.1 Arrays in the CMRTS

A high-level CM array, as defined in a parallel programming language such as
CM Fortran or C*, is represented in the RTS by an array descriptor, of type
CMRTdeac_t. This array descriptor is the topmost level of a hierarchy of data
structures (see Figure 18) that form a bridge between high-level arrays and the
physical memory of the CM hardware.

high-level array/pvar
array descriptor (in CM Fortran or C*)

7
I I"RTdeac_ t I| ------ _ 111//7///7//

array geometry
I RT_arraygeomet -yt

Array Axis Extents,
Garbaae Mask

Garbage
Data

/

Node Distribution,
machine geometry Subgrid Memory Layout I_I I / 7- -~~~~~~~~~~~~~~~~~ /~~

| C [COMmachinegeometryt -Node oe 1

/ /
i Node .. ..Node 3 ./

I i

Figure 18. Internal Structure of a CM Array.
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A high-level parallel array can have any reasonable shape and size, as permitted
by the syntax of the programming language in use, and by the memory space
available on the CM. However, the number of processing nodes available on the
CM and the amount of memory available within each node typically remains
fixed, placing a physical constraint on the sizes and shapes of arrays that can be
conveniently stored in parallel memory.

The RTS allocates array memory in bands across the individual memory banks
of the nodes, so that the starting memory address and size of the array region is
the same for each node. (If the CM has vector units, these bands are across the
individual memory banks of the VUs, as shown in the above figure.)

Implementation Note: The RTS memory allocation routines ensure that each
allocated region of memory is double-word aligned (that is, starts at an address
that is a multiple of 8 bytes).

An array with a number of elements that is an exact multiple of the number of
processing nodes (or VUs) can be stored very neatly in such a memory stripe. But
if the array is not an exact multiple of the machine size (or if the program that
uses the array is run on a CM of a different size), then the array cannot be stored
in CM memory without wasting some space on one or more of the nodes. This
garbage space must be kept track of, so that the invalid values it contains are not
confused with the actual data of the array.

The many-layered structure of RTS arrays deals with these hardware constraints
by using data structures known as geometries to define the arrangement of array
data in CM memory. Two types of geometry are used to define the layout of a
high-level array:

* A machine geometry, of type CMCOmachine_geometry_t, which
describes the structure of an arbitrary array that is sized and shaped to fit
exactly into a stripe of CM memory.

* An array geometry, of type CMRT_array_geometry_t, which refers to
a specific machine geometry and selects a region of it to represent the
actual data of a high-level array. (The unused space defined by the
machine geometry is considered garbage data, and is ignored.)

A CM array descriptor (a CMRT_desc_t data structure) includes:

* An array geometry, which defines the layout of the array.

* A parallel memory location, of type CMRT_cm_location_t, which
defines the start of the band of parallel memory that holds the array data.
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For the Curious: This multi-layer array data structure saves storage space, since
a single machine geometry data structure can be shared between the descriptors
of many array geometries. It also makes it possible to use a simple pointer com-
parison to determine whether two arrays have the same machine geometry.

H.1.2 An Example of A CMRTS Array

Let's take a specific example. Suppose that we have a CM-S with a very small
number of processing nodes - four, to be exact (see Figure 19). This CM-5 has
vector units, so that the number of processing elements in the machine is 16: four
nodes with four VUs per node. (If this CM-5 did not have vector units, then there
would be only four processing elements - the four processing nodes them-
selves.)

Parttion
Manager

Node 1

vulul ulvu1 2 3

=1..=

Node 2
VU VU VU VU
0 1 2 3

Node 3
VU VU VU VU
0 1 2 3

Figure 19. A hypothetical 4-node CM-5 system (with VUs).

Suppose further that we compile and run a CM Fortran program on this machine,
defining a floating-point array as follows:

DOUBLE PRECISION LUCKY (7,11)

How is this array stored in the memory of the CM? First, look at the array itself:
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I
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10 11

It's a two-dimensional array of 77 elements, each of which is a double-precision
floating-point number. This is not evenly divisible across 16 VUs, so a small
number of garbage elements will need to be added. In general, the garbage space
of an array is added by extending the axes of the array, adding garbage elements
at the high ends of one or more axes.

The amount of garbage space to add is determined as follows:

* Enough garbage space must be added so that the array can be divided into
pieces of equal size and shape for each CM node.

* The part of the array assigned to each node must furthermore be divisible
into 4 parts of equal size and shape, one for each of the node's VUs.

* Each node's portion of the array should be of the same rank as the entire
array, and should have the same basic shape.

* The amount of added garbage space should be as small as possible.

In addition, there is an implementation-dependent restriction: the number of
array elements assigned to each VU must be a multiple of 8. (In a forthcoming
version of CM Fortran, you will be able to supply a compiler switch,
-nopadding, which removes this restriction.)

Following these guidelines, a 7-by-11 array is padded out into an 8-by-16 array,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I
2
3
4

5

6
7

8

-4- -4 . -.-. -9.- 9-9 -.
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and is divided among the nodes and VUs as follows:

1
2

3

4

5

6
7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No eO _ 
VU VU VU VU VU 
0 1 2 3 

.... ..... ---...-T ib i

VU Vvulvu0- Ivulvu

Note that this assigns a 4-by-2 portion of the array to each vector unit.

The portion of the array assigned to each vector unit is called the array's subgrid.
This subgrid is the same size and shape for each VU, and basically represents the
part of the array that is stored in the memory of each VU. The size of the subgrid
determines the total amount of parallel memory allocated for the array. Exactly
enough memory for one subgrid is allocated in the memory bank of each VU.

The subgrid of our sample array contains 8 double-precision floating-point val-
ues. A double-precision float in Fortran occupies two words of memory, so 16
words of parallel memory must be allocated on each CM node to contain the
array. The n-dimensional subgrid stored on each VU is "unwrapped" and stored
as a one-dimensional series of VU memory words.

As you might expect, this is done systematically by defining a single memory
storage order for all subgrids. In the case of the sample (7,11) array, the memory
storage order is as shown below (remember that each double-precision subgrid
element is stored as 2 words in memory):

0

-oV,.0
co
.-

1

2

3

4

subgrid axis 1
1 2

1 2 3 :4

5 6 7 8

9 10 11 .12

13 14 15 16
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The resulting actual memory distribution of the array is shown below:
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Figure 20. The actual memory distribution of a 7-by-11 CM Fortran array.

As you can see, this arrangement of array data values in CM memory bears
almost no relation to the shape of the original high-level array. It is the array's
geometry alone that determines how the array data in CM memory is interpreted.
With a different array geometry, the values of this two-dimensional array could
just as readily be accessed as a one-dimensional array or a three-dimensional
array, by suitably adjusting the axis lengths.

A complete discussion of the algorithms used to determine the layout of a CM
array in memory is beyond the scope of this appendix, but the above example
should help you understand the information found in CMRTS array descriptors
and geometry objects, as described in the following sections.
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H.1.3 CMRTS Data Structures

CMRTdesc_t

This is the top-level array descriptor data structure. (See Figure 18.) It contains
references to all component data structures that define a single high-level array.

The user-accessible structure slots are:

CMRTcmlocationt cmlocation

This is the parallel memory location (the same address on each VU) at
which the array's allocated memory region begins. The amount of
memory allocated is determined by the array size and shape specified in
the array_geometry structure.

CMRT_array_geometry_t array_geometry

This is the array geometry, which specifies the size, shape, and garbage
region of the array. See the description of the CMRT_arraygeometry_t
data structure below.

int4 elementsize

This is the size, in words of memory, of a single array element.

The CMRTS functions used to access these structure slots are:

CMRT_cm_location_t CMRT_desc_get_cmlocation(descriptor)
CMRTdesct descriptor;

CMRT_array_geometry_t CMRT_desc_get_geometry(descriptor)
CMRT desc t descriptor;

int4 CMRT_desc_get_elementsize(descriptor)
CMRTdesct descriptor;

CMos Version 7.2, August 1993
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CMRTarray_geometry_t

This is the array geometry, which specifies an array's extents, garbage space, and
machine geometry (only the first two are directly specified by the array geome-
try; the machine geometry is specified by referring to a CMCOM data structure).

Figure 21. The CMRT_array_geometry data structure.
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The user-accessible structure slots are:

int4 rank

This is the rank (number of dimensions) of the array. This is typically the
same as the rank specified by the machine_geometry.

int8 number ofelements

This is the total number of actual (non-garbage) data elements in the array
(basically the product of the array's axis extents, defined below).

int8 *extents, *lowerbounds, *upperbounds

These are integer arrays specifying the lengths and lower and upper axis
indices for each array axis. Note that these values are completely indepen-
dent of the array extents specified by the machinegeometry - the
bounds arrays specify what part of the array is used for actual data.

Note: The lower and upper bound values in these arrays are zero-based,
unlike Fortran array indices which are one-based. The CMRTS is coded
in C, and thus follows the C conventions for array indexing.

CMCOM_machine_geometry_t machinegeometry

This is the machine geometry, which specifies the parallel memory layout
for the array. See the description of the CMCOM_machine_geometry_t
data structure below.

CMRT_cm_location_t garbagemask

This is the garbage mask array, a region of parallel memory that defines
the garbage space of the array. The garbage mask contains boolean values,
with a TRUE value representing garbage elements. Essentially, the garbage
mask provides the same information as the extents and bounds arrays
described above, but in an array format that is more convenient for some
CMRTS operations. The garbage mask is typically stored in a compressed
format to save space, so extracting the appropriate boolean value for a
given array element is non-trivial.

CMosr Version 7.2, August 1993
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To access these slots, you can use the following accessor functions. (Note that
these functions are applied to the array descriptor, not to the geometry object.)

int4 CMRT_descget_rank(descriptor)

CMRT_ desct descriptor;

int8 CMRTdesc_getnumberofelements(descriptor)

CMRT_ desct descriptor;

(The following accessors take an extra axis argument, zero-based as in C.
The appropriate value for the specified array axis is returned.)

int8 CMRT_desc_get_ lowerbound(descriptor,

CMRTdesct descriptor;

int4 axis;

int8 CMRT_desc_get_upper_ bound(descriptor,

CMRT_ desct descriptor;

int4 axis;

axis)

axis)

You can also access the structure slots directly (you must do this to access the
extents and machine_geometry slots, for example):

( arraydescriptor->array_geometry ) -> extents[axis]

( array descriptor->array geometry ) -> machine_geometry

CMOST Version 7.2, August 1993
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CMRT_machinegeometryt

This is the machine geometry, which specifies the actual parallel memory layout
of the array (the division of the array among the nodes and VUs, and the size and
shape of the subgrid stored in each VU's memory).

array geometry
I CRT machine aeometrv t L~ ... __...
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Figure 22. The CMCOMmachinegeometry data structure.

The user-accessible structure slots are:

int4 rank

This is the rank (number of dimensions) of the array. This is typically the
same as the rank specified by the array geometry.

unsigned char total_off_chip_length

This is the logarithm (base 2) of the total number of subgrids (specifically,
this is the total number of physical, or "off-chip" bits required in send
addresses of array elements). Note: While this value typically represents

CMosr Version 7.2, August 1993
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the number of VUs in your CM, it may sometimes be less. This is particu-
larly the case for small arrays that do not use all of the nodes of the CM
to store array data.

int4 productsubgridlengths

This is the total number of elements in each subgrid (that is, the product
of all the subgrid axis lengths).

CMCOM_axis_descriptor *axisdescriptors

This is an array of axis descriptor data structures, one for each axis of the
array. See the description of the CMCOM axisdescriptor data struc-
ture below.

To access the product.subgridlengths slot, you can use the following
accessor function:

int4 CMRTdesc_getsubgridsize(descriptor)
CMRTdesct descriptor;

You can also access the structure slots directly (you must do this to access the
remaining slots):

CMCOM_machine_geometry_t m_geometry =

array_descriptor->array_geometry -> machine_geometry

mgeometry -> rank

m_geometry -> total_offchip_length

m_geometry -> axis_descriptors[axis]

CMosr Version Z2, August 1993
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CMCOMaxis_descriptor

This is the array descriptor data structure, which defines the geometry informa-
tion for a single axis of a machine geometry.
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array geometry

8
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subgrid_outerincrement
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subgridorthogonal length

1
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6 7

array subgrid

axis_length

Figure 23. The CMCOM_axisdescriptor data structure.

The user-accessible structure slots are:

int4 subgrid_length, poweroftwo

The subgrid_length is the number of subgrid elements along the given
axis. The power_of_two slot is a flag that is TRUE if and only if the sub-
grid length is an exact power of two.

int8 axis_length

This is the total length (number of array elements) of the array axis. (This
is basically the subgrid length along the given axis times the number of
subgrids).
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int4 subgridaxis_increment

This is the number of array elements in memory that must be skipped to
move from each subgrid element along the given axis to the next element.

int4 subgrid_outer_increment

This is the product of the subgrid_axisincrement and the
subgrid_length; in other words the number of array elements in
memory that must be skipped to move past all the subgrid elements along
a single axis. (If subgrid_axis_increment is the distance between
elements in a row, for example, then subgrid outer_increment is
the distance between the first elements of successive rows of the subgrid.)

int4 subgridoutercount

This is the result of dividing the subgrid size (number of elements) by the
value of subgrid outer increment. In other words, it is the number
of iterations that would be needed to step through the entire subgrid using
increments of subgrid_ outerincrement. (his slot is used internally
in the CMRTS to quickly calculate looping limits for operations that take
place over the entire subgrid.)

int4 subgrid_orthogonal_length

This is the product of the subgrid lengths of all other axes in the array. In
other words, this is the number of subgrid elements in a single multi-di-
mensional "slice" through the array that is perpendicular to the given axis.
(In a three-dimensional array, for example, this would be the number of
rows and columns of elements in each horizontal "slice" of the vertical
axis.)

CMosr Version Z , August 1993
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(The remaining slots are used to specify the send addresses of array elements.
These slots are not shown in Figure 23.)

unsigned char off_chip positions, offchip_length
unsigned4 off_chip_mask

These slots specify the physical, or "off-chip" part of an array element's
send address that corresponds to the given axis. (Literally, these values are
the starting position of the physical, or "off-chip" bits assigned to the axis,
the number of bits assigned to the axis, and a binary mask that selects only
those bits from a send address.)

unsigned char subgridbitsposition, subgrid_bits_length;
int4 subgrid_bitsmask;

These slots specify the subgrid part of an array element's send address that
corresponds to the given axis. (Literally, these values are the starting posi-
tion of the subgrid bits assigned to the axis, the number of bits assigned
to the axis, and a binary mask that selects only those bits from a send
address.)

Note: The subgrid_bits slots are only valid if the poweroftwo slot
is TRUE - in other words, if the number of elements in the subgrid is an
exact power of two.

To access the subgrid_length slot, you can use this accessor function:

int4 CMRT_desc_get_subgriddimension(descriptor, axis)
CMRTdesct descriptor;

int4 axis;

You can also access the structure slots directly (you must do this to access the
remaining slots):

CMCOM_machine_geometry_t m_geometry =

array_descriptor->array_geometry -> machine_geometry

CMCOMaxis descriptor axis d =
m_geometry -> axis_descriptors[axis]

axis_d -> axis_length

axis_d -> subgrid_axis_increment

axisd -> subgridouter_count

CMos Version 7.Z2, August 1993
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H.2 CMRTS Parallel Memory Allocation

For some special-purpose applications, it is necessary to allocate parallel CM
memory other than by using a high-level language to define an array. (For exam-
ple, you may need to allocate memory to hold a temporary value on each node.)
To do this, you can use the memory allocation functions of the CMRTS.

H.2.1 Standard CMRTS Memory Allocation Functions

As described in Appendix A, parallel VU memory is mapped into two general
regions of memory, the parallel stack and the parallel heap. Both the stack and
the heap regions grow upward, toward higher memory addresses. When you allo-
cate new space in these regions, it is allocated as a stripe across the physical
memory of the VUs.

There are two ways to allocate either stack or heap memory space: by a physical
block of memory, or by a geometry block of memory. The difference is essen-
tially one of convenience. If you know exactly how many bytes of memory you
want to allocate on each VU, use the physical memory allocation functions:

CMRT cm location t

CMRTallocate physical_stack_field (num_bytes)

int4 num_bytes;

CMRTcmlocationt

CMRT_allocatephysical_heap field(nurm_bytes)

int4 num_bytes;

Both functions take a number of bytes as an argument, and return a
CMRT_cm_locationt pointer to the allocated stack or heap memory region.
To deallocate a memory region allocated in this way, use the functions:

CMRT_deallocate physical_stackthxough(field, numbytes)

CMRTcmlocationt field;

int4 num_bytes;

CMRTdeallocatephysical_heapfield(field, num_bytes)

CMRTcmlocationt field;

int4 num_bytes;

CMos Version 7Z2, August 1993
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These functions take a starting address and a number of bytes, and return the
indicated space to free storage. (Note that deallocating a stack field implicitly
deallocates all stack fields with higher stack addresses.)

If, on the other hand, you have a specific CMRT_array_geometry_t and want
to allocate enough memory to give each element of the geometry a specific num-
ber of bytes, you should use these allocation functions:

CMRT_ cm location t

CMRT_allocate_stack_field(geometry, num_bytes)

CMRT_array_geometry_t geometry;

int4 num_bytes;

CMRT cm location t

CMRT_allocate_heap_field (geometry, num_bytes)

CMRT_array_geometry_t geometry;

int4 num_bytes;

Both functions take a geometry object and a number of bytes, and return a
CM Tcmlocationt pointer to the allocated stack or heap region. The differ-
ence between these functions and the physical ones shown above is that these
functions allocated the specified number of bytes for each element of the array's
subgrid - the num_bytes argument is multiplied by the array's subgrid size.
Thus, the following equivalences hold:

CMRTallocatestack_field(geometry-, num_bytes) ==

CMRT_allocatephysical_stack_field (num_bytes *

geometry->machine_geometry->product_subgrid_lengths)

CMRTallocate_heap field(geometry, num_bytes) ==

CMRT_allocate_physical heap field (num_bytes *

geometry->machinegeometry->product_subgrid_lengths)

To deallocate these fields, you can use the following deallocation functions:

CMT_deallocatestackfield through

(field, geometry, num_bytes)

CMRT cm location t field;

CMRT_array_geometry_t geometry;

int4 num_bytes;

CMRT_deallocate_heap_field

(field, geometry, num_bytes)

CMRT cm location t field;

CMRT_array_geometry_t geometry;

int4 num_bytes;

CMosr Version 7.2, August 1993
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H.2.2 Node-Level Stack Operations

When you are writing a node-level routine that is to be called as part of a global
program, you can also use CMRTS functions to allocate temporary stack space
independently on each node. The only condition to this is that you must ensure
that the allocated space is freed before your node-level routine returns.

The following routines can be used at this level:

CMCOM_cm_addesst MCOM e_getstack pointer ()

CMCOM cm address t

CMCOM pe_allocate_stack space (nbytes)

int4 nbytes;

CMCOM esetstackpointer (new_sp)

CMCOM_cm_address_t new_sp;

The proper (and recommended) method to do this is:

* At the start of a node-level subroutine, get the current value of the stack
pointer and store it in a temporary variable:

CMCOM cm address t temp;

temp = CMCOMpe_get_stack_pointer ();

* When you need to allocate stack space, call the allocation function:

space = CMCOM_pe_allocate_stack_space (nbytes);

* At the end of the routine (or before any return point), free all allocated
stack space by resetting the stack pointer to its original value.

CMCOM pe_set_stackpointer (temp);

Important: This method is only applicable for node routines that are called
directly as part of a global (PM and nodes) program. If you are running code
under the global/local version of the RTS, in which each node is treated as a par-
allel machine in and of itself, you can make calls to the standard RTS memory
allocation routines as described in Section H.2.1 above. These will work in either
the global or the local parts of a global/local program.

CMosr Version 7Z2, August 1993
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H.3 Non-RTS (CMMD) Parallel Memory Allocation

For some applications (in particular, when writing DPEAC or CDPEAC code
that is to be called from CMMD message-passing routines), it is necessary to
allocate parallel CM memory without using the standard memory allocation and
deallocation routines provided by the CMRTS. Methods for allocating parallel
memory without use of the CMRTS are described in the sections below.

Important: The methods described below must not be used in any application
that makes calls to the CMRTS - directly accessing the stack and heap pointers
as described here is incompatible with the CMRTS memory management code.

H.3.1 Parallel Memory Addressing

Using the memory allocation routines described here requires that you refer to
memory regions by their actual memory addresses (as opposed to using a
memory location data type, such as CaRT_cm_location t, as a "handle").

Parallel memory locations are referenced by their all-VU, instruction space
address. This is the address in the region of VU memory that causes all four VUs
to execute a DPEAC instruction simultaneously. Both CMRTS routines and
CMMD routines take addresses of this type as arguments.

When you are using and manipulating these kinds of addresses, whether you are
coding in DPEAC or CDPEAC, you should include this header file:

#include <cmsys/dp.h>

This header file defines a number of symbolic constants that are helpful in
constructing and interpreting addresses in the VU memory regions.

For example, the base of the parallel stack (in all-VU instruction space) is given
by the symbol DPV_STACK_INST_PORT_ALL (zSoooooo0000000), and the base of
the parallel heap region is given by the symbol DPV_ HEAPINST_PORT_ALL
(0X70000000). You can construct an address within these regions by adding a
byte offset to these base addresses.

Important: Before you can access a stack or heap word, the memory region
must have been expanded to include the address (that is, you must allocate the
memory before you can legally access it).

CMosr Version 7.2, August 1993
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H.3.2 Expanding the Stack or Heap

When you want to expand the stack or heap, you make a CMOST system call to
manipulate the pointer of the appropriate memory region. You can do this either
from the partition manager or from a processing node. If you do this from a node,
only one processing node must (and should) make the allocation call. To access
the appropriate CMOST routines, include the header file:

#include <cmsys/cm_memory.h>

The memory pointer system calls from the partition manager are:

CM memaddr t

CM_set dp.stack_ptr (CM_memadd3_t new_limit)

CMmemaddr t
CM_setdpheapptr (CM_memaddr_t new_limit)

CM_memaddr_t CM_get_dp_stack_ptr ()

CM_memaddr_t CMgetdp_heapptr ()

The equivalent calls from the node are:

CMmemaddrt
CMPEset_dp_stackptr (CM_memaddr_t newlimit)

CM memaddr t

CMPEset_dp_heap_ptr (CM_memaddr_t new_limit)

CM_memaddr_t CMPEget_dp_stack_ptr ()

CM_memaddr_t CMPE_get_dp_heap_ptr ()

All these routines return a CM_memaddrt value, which is an all-VU, instruction
space address, representing the current position of the memory pointer (in the
case of the set routines, this is the value of the pointer after you have modified
it). The value of the pointer is always one more than the highest allocated address
in the memory region.

You cannot access allocated memory using the CM_memaddr_t values returned
from these system calls, because they are in all-VU instruction space. You must
translate this value into a single-VU, data space pointer, as described in Section
H.3.3 below.

To use the set system calls, you pass in the highest address that you want to have
allocated. The pointer value the call returns will always be greater than this value
(unless there is insufficient memory remaining, in which case zero is returned),
but it may not be exactly one more than the address you passed in.

CMosr Version 7.2, August 1993
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Important: Don't make a "copy" of the stack or heap pointer and expect the
copy to remain valid. Stack and heap memory can be allocated for reasons other
than explicit system calls from your program. Thus, the stack and heap pointers
can change without warning. You should always use the current value returned
by the system calls mentioned above when determining the current size of the
stack or heap.

If you want to deallocate parallel memory (in other words, shrink the stack or
heap regions), call the appropriate set function with the new lower limit.

Note: CMosT currently does not allow the regions to shrink, and thus the call
described above will have no effect, and the current limit will be returned. Never-
theless, it is sensible to include deallocation calls, for compatibility with later
software versions.

H.3.3 Translating Stack and Heap Addresses

You can change CMmemaddr_t values into valid data space addresses using the
following C macro, which is defined in cmsys/dp.h:

data_address = TOGGLE_DPVSPACE(instructionaddress);

Note that the returned data space address is still an all-VU address. It cannot be
used to read from memory, and if used to store to memory, the stored value will
be written to all four VUs (broadcast).

You can change the data space address to point to a single VU by using one of
the following macros:

VU 0_address = CHANGEDP(dataaddress, DP_0);
VU_1_address = CHANGE_DP(data_address, DP_1);

VU_2_address = CHANGE_DP(data_address, DP_2);
VU_3_address = CHANGEDP(dataaddress, DP_3);

The resulting addresses are pointers to words (or doublewords) in stack or heap
memory and can be used, for example, as a C pointer value to read or write
memory values.

Note: Parallel memory accessed by the node processor is always mapped with
caching disabled. Thus, access to words/doublewords in the above fashion will
be 2 to 3 times slower than normal cached accesses. Also, all attempts to
read/write parallel memory using pointers that are not word-aligned will result
in memory faults.
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(rL4), register indirection syntax, in DPEAC,

42
%rn]l, memory address syntax, in DPEAC,
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En], register offset syntax, in DPEAC, 23
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in CDPEAC, 99
in DPEAC, 53

-condmem, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53
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immedate format suffix, in CDPEAC, 86
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90
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register stride suffix, in CDPEAC, 67,90

u
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.us
memory stride suffix, in CDPEAC, 68,90
register stride suffix, in CDPEAC, 67,90
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90
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_x, register offset suffix, in CDPEAC, 67,90
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accelerators, vector unit (VU), 3
accessor instructions, SPARC, in DPEAC, 58
accumulated context count

CDPEAC statement modifier, 101
DPEAC statement modifier, 55
VU feature, 17

align
CDPEAC statement modifier, 99
DPEAC statement modifier, 53

alignment guarantee
CDPEAC statement modifier, 99
DPEAC statement modifier, 53

ALDPS, VU selector
in CDPEAC, 69
in DPEAC, 26

ALL PHYS NM Ds, VU selector
in CDPEAC, 69
in DPEAC, 26

ALU status and contextualization, 15
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in CDPEAC, 99
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arithmetic instructions
in CDPEAC, 62,71
in DPEAC, 19,28
list of

for CDPEAC, 91
for DPEAC, 45

arithmetic mode register, VU control register,
13

arithmetic no-op instruction
for CDPEAC, 96
for DPEAC, 51

array descriptor, CMRTS, 178, 184
array geometry, CMRTS, 179,185
array_geometry, CMRT_desc_t structure

slot, 184
arrays in CMRTS, 178
arrays, passing, into C/DPEAC routines, 109
as assembler, 5, 169
as-expression, DPEAC syntax, 21
as-register, DPEAC syntax, 22
ASCII constants, DPEAC syntax, 21
asm statement, in the C language, 61
axis_descriptors, CMRTS machine

geometry slot, 189
axis_length, CMRTS axis descriptor slot,

190

C
C variables, in CDPEAC instructions, 65
CDPEAC accessor instructions, list of, 102
CDPEAC argument macros, 65, 90
CDPEAC code, 62
CDPEAC header file, 7
CDPEAC instruction set, 6, 61
CDPEAC instructions, 70

list of, 89
CDPEAC join statement order, 64
CDPEAC procedure, 62
CDPEAC special instruction, 63
CDPEAC statement formats, 74
CDPEAC statement modifiers, 98

for conditionalization, 99
special modifiers, 100

CDPEAC subroutine, 106
in a C/DPEAC program, 108

CDPEAC syntax, 65
CDPEAC VU accessor instruction, 63
chain loading

in CDPEAC, 64
in DPEAC, 20

CM Run-Time System (CMRTS), 177
cm_location, CMRT_desc_t structure slot,

184
CM-5 assembly code, 4
CM-5 computing environment, 2
CM-5 hardware, 2
CM-5 networks, 2
CM-5 processing node, 3
CM-5 software layers, 4
CM-5 vector units (VUs), 1, 3, 9
CMCOM layer, of CMRTS, 177
CMCO_axis_descriptor, CMRTS data

structure, 190
CMCOM_machine_geometry_t, CMRTS

data structure, 179, 188
CMCOMpe_allocatestack_space,

CMRTS memory allocation function,
195

CMCOM pe get stackpointer, CMRTS
memory allocation function, 195

CMCOMpe_set_stack_pointer, CMRTS
memory allocation function, 195

CMIP layer, of CMRTS, 177
CMPE_, prefix, of node interface functions, in

C/DPEAC program, 108
CMRT layer, of CMRTS, 177
CMRTallocate-heapfield, CMDRTS

memory allocation function, 194
CMRTallocatephysical heap_field,

CMRTS memory allocation function,
193

CMRT_allocatephysical_stack_field,

CMRTS memory allocation function,
193

CMRT allocatestack field, CMRTS

memory allocation function, 194

CMosT Version 7.2, August 1993
Copyright © 1993 Thinking Machines Corporation

202 VU Programmer S Handbook



I n d e x 2 03-- -

ClRT-arrxay geometryt, CVRTS data
type, 179,185

CMRTcm location.t, CMRTS parallel
memory location, 179

CKRT deallocate heapfield CMRTS
memory allocation function, 194

CMRTdeallocatephysicalheapfiel
d, CMRTS memory allocation
function, 193

CMRTdeallocate_physical-stack-thr

ough, CMRTS memory allocation
function, 193

CMRTdeallocate_stack_field_thoug
h,CMRTS memory allocation
function, 194

CRT-desc_get-cm location, CMRTS
accessor function, 184

CKRTdescget.element-size, CMRTS
accessor function, 184

CMRTdesc_get_geometry, CMRTS
accessor function, 184

CRT_descget_lowerbound, CMRTS
accessor function, 187

CMRTdesc_getnumber_of_elements,
CMRTS accessor function, 187

CMRT.desc_getrank, CMRTS accessor
function, 187

CMRTdesc_get_subgriddimension,
CMRTS accessor function, 192

CURTdescgetsubgrid_size, CIMRTS
accessor function, 189 --

CMRT desc_get_upperbound, CMRTS
accessor function, 187

CmT_des_t, CMRTS array descriptor, 178,
184

code
CDPEAC, 62
DPEAC, 19

comments, DPEAC syntax, 21
comparison instructions, list of

for CDPEAC, 93
for DPEAC, 48

condalu, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53

conditional instructions, list of, for DPEAC,
47,93

conditionalization, 15
conditionalization bit sense

CDPEAC statement modifier, 100
DPEAC statement modifier, 54

conditionalization mode, 15
CDPEAC statement modifier, 99
DPEAC statement modifier, 53

conditionalization modifiers
of CDPEAC statements, 99
of DPEAC statements, 53

condmem, mask mode modifier option
in CDPEAC, 99
in DPEAC, 53

constant-expression, DPEAC syntax, 21
context bit, 15
context bit sense, 15
context count, VU feature, 17
contextualization, 15
Control Network, 2
control register constants, of VU registers, 18
control register region, 127, 128
control registers, VU, 13

in CDPEAC, 66
in DPEAC, 24

conversion instructions, list of
for CDPEAC, 95
for DPEAC, 49

current mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vector mask shift mode, 16

D
Data Network, 2
data register region, 127, 128
data registers, VU, 12

in CDPEAC, 66
in DPEAC, 23

data space, 126
in VU memory, 11
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data types
of a CDPEAC instruction, 71
of a DPEAC instruction, 28

depc
CDPEAC statement modifier, 100
DPEAC statement modifier, 54

descriptor, array, in CMRTS, 178, 184
doubleword, 12
doubleword alignment guarantee

CDPEAC statement modifier, 99
DPEAC statement modifier, 53

dpalu mode, VU control register, 13
DPn, VU selector

in CDPEAC, 69
in DPEAC, 26

DP PHYS NNM 0 AND1, VU selector

in CDPEAC, 69
in DPEAC, 26

DPPHYS NUM 2AND3, VU selector
in CDPEAC, 69
in DPEAC, 26

DP PrSNUMn, VU selector
in CDPEAC, 69
in DPEAC, 26

dp_status, VU control register, 13, 15
dp_statusenable, VU control register, 13,

15
dpstride_memory

default memory stride, 104
in CDPEAC, 68
in DPEAC, 25

VU control register, 13
dp_stridersl

default rSl register stride, 104
in CDPEAC, 67,75
in DPEAC, 24, 32

VU control register, 13
dp_vectorlength

default vector length register, 104
in CDPEAC, 70,85
in DPEAC, 27,42

VU control register, 13
dp vector mask

vector mask register, 52, 98
VU control register, 13, 15

dp_vector mask buffer, VU control
register, 13, 17

dp_vectormaskdirection, VU control
register, 13, 16

dpvectormask mode, 53
vector mask mode register, 99, 104
VU control register, 13, 15

dpas assembler, 169
dpas assembler symbol, 170
dpas command line format, 169
dpas lexical directives, 170
dpas preprocessor, 169
dpas switches, 169
dpas, DPEAC assembler, 5
dpcc command line format, 171
dpcc compiler, 171
dpcc switches, 171
dpcc, CDPEAC compiler, 6
dpchgbk, register accessor instruction

for CDPEAC, 102, 103
for DPEAC, 56,57

dpchgsp, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56,57

dpcleanup, CDPEAC special instruction,
104

DPEAC accessor instruction, 20
DPEAC accessor instructions, list of, 56
DPEAC and CDPEAC, using, 7
DPEAC code, 19
DPEAC header file, 7
DPEAC instruction set, 5, 19
DPEAC instructions, 19, 27

list of, 45
DPEAC statement, 19
DPEAC statement formats, 31
DPEAC statement modifiers, 52

for conditionalization, 53
special modifiers, 54

DPEAC statement order, 20
DPEAC subroutine, 106

in a C/DPEAC program, 108
DPEAC syntax, 21
dpentry, SPARC accessor instruction, in

DPEAC, 58
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dlpget, register accessor instruction
for CDPEAC, 102
for DPEAC, 56

dpld, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56,57

dprd, register accessor instruction
for CDPEAC, 102
for DPEAC, 56

dpregs, SPARC accessor instruction, in
DPEAC, 59

dpretn, SPARC accessor instruction, in
DPEAC, 59

DPSo0 ANDl 1, VU selector
in CDPEAC, 69
in DPEAC, 26

DPS 2AND_3, VU selector
in CDPEAC, 69
in DPEAC, 26

dpset, register accessor instruction
for CDPEAC, 102
for DPEAC, 56

dpsetup, CDPEAC special instruction, 104
dpst, register accessor instruction

for CDPEAC, 102, 103
for DPEAC, 56, 57

dpsync, register accessor instruction
for CDPEAC, 102, 103
for DPEAC, 56,57

dpunset, SPARC accessor instruction, in
DPEAC, 59

dpwrt, register accessor instruction
for CDPEAC, 102
for DPEAC, 56

dreg_.i
CDPEAC register indirection macro, 86
register indirection macro, 90

dreg._ (), CDPEAC register stride macro,
67,90

dreg_u (), CDPEAC register stride macro,
67,90

dreg u_s (), CDPEAC register stride macro,
67,90

dregx (), CDPEAC register offset macro,
67,90

dyadic arithmetic instructions
in CDPEAC, 71
in DPEAC, 28
list of

for CDPEAC, 92
for DPEAC, 46

dyadic comparison instructions, list of
for CDPEAC, 93
for DPEAC, 48

dyadic conditional instructions, list of
for CDPEAC, 93
for DPEAC, 47

dyadic conversion instructions, list of
for CDPEAC, 95
for DPEAC, 49

dyadic mult-op instructions, list of
for CDPEAC, 94
for DPEAC, 48

E
effects of VU control registers, 14
element size, CMRTdesct structure slot,

184
epc

CDPEAC statement modifier, 100
DPEAC statement modifier, 54

etrap, VU trap instruction, in DPEAC, 57
exchange

CDPEAC statement modifier, 101
DPEAC statement modifier, 55

expressions, DPEAC syntax, 21
extents, CMRTS array geometry slot, 186

F
file naming conventions, in CqDPEAC

program, 107
flags, VU status register, 16
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G
garbage data, in CMRTS arrays, 179
garbagemask, CMRTS array geometry slot,

186
general-expression, DPEAC syntax, 21
geometries, CMRTS, 179

H
hazards, VU pipeline, 140
header file

for CDPEAC, 7
for DPEAC, 7

heap, in VU memory, 11, 126
host interface file, in C/DPEAC program, 107
host interface function, in a C/DPEAC

program, 106, 108

1, immediate format suffix, in CDPEAC, 77,
90

immediate format
in CDPEAC, 74,77
in DPEAC, 31, 34

instruction pipeline, 139
instruction space, 126

in VU memory, 11
instruction suffixes, in CDPEAC, 64, 90
inverting, context bit sense, 15

J
j oin macro, in CDPEAC, 63, 89
J oinn (), CDPEAC instruction joining

macro, 64, 89

L
ldvm

CDPEAC special instruction, 104
vector mask instruction, in DPEAC, 58

load, SPARC accessor instruction, in
DPEAC, 59

long format statement
in CDPEAC, 74
in DPEAC, 31

lowerbounds, CMRTS array geometry slot,
186

M
machine geometry, CMRTS, 179, 188
machinegeometry, CMRTS array

geometry slot, 186
maddr

CDPEAC statement modifier, 68, 98
DPEAC statement modifier, 25, 52

main program file, in C/DPEAC program, 107
makefile, in C/DPEAC program, 107,117
memory allocation

in CMRTS, 193
non-CMRTS, 196

memory argument, of a CDPEAC instruction,
72

memory correspondence, physical/virtual, 131
memory indirection

in CDPEAC, 86
in DPEAC, 43

memory instruction
in CDPEAC, 72
in DPEAC, 29

memory instructions
in CDPEAC, 62
in DPEAC, 19
list of

for CDPEAC, 97
for DPEAC, 51

memory mapping, 125
memory maps, 133
memory no-op instruction

for CDPEAC, 97
for DPEAC, 51

memory operand
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
of a DPEAC instruction, 29
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memory operand stride, VU control register,
13

memory operand syntax, in DPEAC, 29
memory stride default

in CDPEAC, 68
in DPEAC, 25

memory stride format
in CDPEAC, 74,79
in DPEAC, 31,36

memory stride indirection variant, of mode set
format

in CDPEAC, 83
in DPEAC, 40

memory stride markers, in DPEAC, 25
memory striding

in CDPEAC, 68
in DPEAC, 25

mode, stride marker, in CDPEAC, 67
mode set format

in CDPEAC, 74,80
in DPEAC, 31, 37

modifiers
of a CDPEAC statement, 62, 73,98
of a DPEAC statement, 19, 30,52

monadic arithmetic instructions
in CDPEAC, 71
in DPEAC, 28
list of

for CDPEAC, 91
for DPEAC, 45

mult-op instructions, list of
for CDPEAC, 94
for DPEAC, 48

N
naming conventions, interface function, in

C/DPEAC program, 108
naming conventions, source file, in C/DPEAC

program, 107
Network Interface (I), 3
no-op, arithmetic

for CDPEAC, 96
for DPEAC, 51

no-op, memory
for CDPEAC, 97
for DPEAC, 51

noalign
CDPEAC statement modifier, 99
DPEAC statement modifier, 53

node, 3
node interface file, in C/DPEAC program,

107
node interface function, 106

in a C/DPEAC program, 108
noezchange

CDPEAC statement modifier, 101
DPEAC statement modifier, 55

nopad
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

numberof_elements, CORTS array
geometry slot, 186

numbers, DPEAC syntax, 21

0
of fchiplength, CMRTS axis descriptor

slot, 192
offchip_mask, CMRTS axis descriptor

slot, 192
of fchippositions, CMRTS axis

descriptor slot, 192
one-source (monadic) instructions

in CDPEAC, 71
in DPEAC, 28

one-source (monadic) instructions, list of
for CDPEAC, 91
for DPEAC, 45

operators, arithmetic, DPEAC syntax, 21

P
pad

CDPEAC statement modifier, 98
DPEAC statement modifier, 52
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padding
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

parallel heap, 126
in VU memory, 11

parallel memory allocation
in CMRTS, 193
non-CMRTS, 196

parallel stack, 126
in VU memory, 11

partition, 2
partition manager (PM), 2
passing arrays, into C/DPEAC routines, 109
physical memory mapping, 125
physical memory regions, 125
physica/virtual memory correspondence, 131
pipeline hazards, 140
pipeline overlap, 140
pipeline stages, 139
pipelining, 139
population count

CDPEAC statement modifier, 100
DPEAC statement modifier, 54
VU feature, 17

population count variant, of mode set format
in CDPEAC, 83
in DPEAC, 40

powerof_two, CMRTS axis descriptor slot,
190

procedure, DPEAC, 62
processing elements, 180
processing node, 3
processor, RISC, 3
product_subgrid_lengths, CMRTS

machine geometry slot, 189

R
rank

CMRTS array geometry slot, 186
CMRTS machine geometry slot, 188

rD, register argument, 27, 70
register arguments, in CDPEAC, 70
register file, VU, 12

register offsets
in CDPEAC, 67,90
in DPEAC, 23

register operands, in DPEAC, 27
register restrictions

SPARC, in DPEAC, 22
VU

in CDPEAC, 66
in DPEAC, 23

register stride format
in CDPEAC, 74, 78
in DPEAC, 31, 35

register stride indirection
in CDPEAC, 86, 90
in DPEAC, 42

register stride indirection variant, of mode set
format

in CDPEAC, 82
in DPEAC, 39

register stride markers, in DPEAC, 24
register striding

default, of vector instructions
in CDPEAC, 71
in DPEAC, 28

in CDPEAC, 90
in DPEAC, 24

restrictions, rS2 argument, in CDPEAC, 71
restrictions, rS2 operand, in DPEAC, 28
rnA, register argument, 27, 70
RISC processor (CPU), 3
rLS, register argument, 27, 70
Rnn, VU data register

in CDPEAC, 66
in DPEAC, 23

rotate mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52
vector mask shift mode, 16

rotation mode of vector mask
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

routine, DPEAC, 19
rSl, register argument, 27, 70
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rS1 argument, in CDPEAC short statement
format, 75

rSl operand, in DPEAC short statement
format, 32

rSl register operand stride, VU control
register, 13

rSI stride restriction
in CDPEAC, 67
in DPEAC, 24

rsl stride variant, of mode set format
in CDPEAC, 81, 82
in DPEAC, 38, 39

rS2, register argument, 27,70
rS2 argument restrictions, in CDPEAC, 71
rS2 operand restrictions, in DPEAC, 28
Run-Time System (CMRTS), 177

S
scalar instruction variant, of mode set format,

in DPEAC, 41
scalar instructions

in CDPEAC, 70
in DPEAC, 27

scalar registers
in CDPEAC, 66
in DPEAC, 23

scalar (), CDPEAC register stride macro,
67,90

scalar/vector agreement
in CDPEAC, 70
in DPEAC, 27

sD, register argument, 27, 70
set_mem stride (), CDPEAC special

instruction macro, 104
setrslstride (), CDPEAC special

instruction macro, 104
setvector_length (), CDPEAC special

instruction macro, 104
set vectorlengthandrslstride (),

CDPEAC special instruction macro,
104

setvectorlength_and_rsl _stride_a

nd vode (), CDPEAC special
instruction, 104

set_vector_length_andvmmodeO(),

CDPEAC special instruction macro,
104

set_vmmode (), CDPEAC special instruction
macro, 104

short format statement
in CDPEAC, 74, 75
inDPEAC, 31,32

sLA, register argument, 27,70
single-/doubleword performance, in DPEAC,

72
single-/doubleword performance, in DPEAC,

29
singleword, 12
sLS, register argument, 27, 70
snn, VU scalar data register

in CDPEAC, 66
in DPEAC, 23

SPARC, processor, in CM-5 nodes, 3
SPARC accessor instructions, in DPEAC, 58
SPARC as assembler, 5, 169
SPARC assembly code, 19
SPARC register restrictions, in DPEAC, 22
SPARC registers, DPEAC syntax, 22
special modifier variant, of mode set format

in CDPEAC, 84
in DPEAC, 41

special modifiers
of CDPEAC statements, 100
of DPEAC statements, 54

sSI, register argument, 27,70
sS2, register argument, 27,70
stack, in VU memory, 11, 126
stages of VU pipeline, 139
statement formats

in CDPEAC, 74
in DPEAC, 31

statement modifiers
in CDPEAC, 62,73
in DPEAC, 19, 30

statement order
in CDPEAC, 64
in DPEAC, 20
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statements
in CDPEAC, 62
in DPEAC, 19

status bit rotation mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

status bits, from VU arithmetic operations, 16
status enable register, VU control register, 13,

15
status flags, in VU status register, 16
status register, VU control register, 13, 15
stride, of vector registers, 12
stride macro, for register arguments in

CDPEAC, 67
stride marker, in DPEAC, 24
stride restriction, rSI register

in CDPEAC, 67
in DPEAC, 24

striding, of VU operations, 9
stm

CDPEAC special instruction, 104
vector mask instruction, in DPEAC, 58

subgrid, in CMRTS arrays, 182
subgridaxisincrement, CMRTS axis

descriptor slot, 191
subgrid bits length, CMRTS axis

descriptor slot, 192
subgridbitask, CMRTS axis

descriptor slot, 192
subgrid bitsposition, CMRTS axis

descriptor slot, 192
subgridlength, CMRTS axis descriptor

slot, 190
subgridorthogonallengtb CMRTS

axis descriptor slot, 191
subgridoutercount CMRTSaxis

descriptor slot, 191
subgid outer-increment, CMRTS axis

descriptor slot, 191
subroutine code file, in C/DPEAC program,

107
suffixes, instruction, in CDPEAC, 90
supported operators, in DPEAC expression

syntax, 21

symbolic constants, for VU virtual memory
regions, 129

syntax
CDPEAC, 65
DPEAC, 21

T
three-source (triadic) instructions

in CDPEAC, 71
in DPEAC, 28

three-argument mult-op instructions, list of
for CDPEAC, 96
for DPEAC, 50

total_o ff_chiplength, CMRTS
machine geometry slot, 188

trap, VU trap instruction, in DPEAC, 57
triadic arithmetic instructions

in CDPEAC, 71
in DPEAC, 28

triadic instructions, list of
for CDPEAC, 96
for DPEAC, 50

triadic mult-op instructions, list of
for CDPEAC, 96
for DPEAC, 50

triadic rLS register restriction
in CDPEAC, 71
in DPEAC, 28,29

two-source (dyadic) instructions
in CDPEAC, 71
in DPEAC, 28

two-argument mult-op instructions, list of
for CDPEAC, 94
for DPEAC, 48

two-source (dyadic) instructions, list of
for CDPEAC, 92
for DPEAC, 46

type abbreviations, for CDPEAC type
argument, 89

type argument, of a CDPEAC instruction, 71

CMosr Version 7.2, August 1993
Copyright 0 1993 Thinkldng Machines Corporaion

VUPrograamer k Handook210



I'...." 211.~*:':,~ '"':.. ' ,~~~~ ""'"*k ~"'.Zi~~~-~~. .'./ii 'T" ."~. ":',,...J'-?..:' .~~.~~ '~~, ~'"~"¢ ?

U
upper bounds, CMRTS array geometry slot,

186
using DPEAC and CDPEAC, 7

V
variables, in CDPEAC instructions, 65
vD, register argument, 27, 70
vector instructions

in CDPEAC, 70
in DPEAC, 27

vector length
in CDPEAC, 70
in DPEAC, 27

vector length instruction suffixes, of mode set
format, in CDPEAC, 85

vector length modifier, of mode set format, in
DPEAC, 42

vector length padding
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

vector length register, VU control register, 13
vector mask and conditionalization, 15
vector mask bit sense

CDPEAC statement modifier, 100
DPEAC statement modifier, 54

vector mask buffer, VU control register, 17
vector mask conditionalization mode, VU

control register, 13
vector mask copy buffer, VU control register,

13
vector mask copy mode

CDPEAC statement modifier, 100
DPEAC statement modifier, 54

vector mask instructions, in DPEAC, 58
vector mask mode

CDPEAC statement modifier, 99
DPEAC statement modifier, 53

vector mask mode register, VU control
register, 15

vector mask register, VU control register, 13,
15

vector mask rotation mode
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

vector mask shift direction, VU control
register, 13, 16

vector mask status bits, 16
vector registers

in CDPEAC, 66
in DPEAC, 23
VU, 12

vector stride
in CDPEAC, 70
in DPEAC, 27

vector unit (VU) accelerators, 3, 9
vector unit registers

in CDPEAC, 66
in DPEAC, 23

vIA, register argument, 27, 70
virtual memory mapping, 127
virtual memory regions, 128
virtual memory symbolic constants, 129
vLS, register argument, 27,70
vmcount

CDPEAC statement modifier, 101
DPEAC statement modifier, 55

vmcurrent

CDPEAC statement modifier, 98
DPEAC statement modifier, 52

vminvert
CDPEAC statement modifier, 100
DPEAC statement modifier, 54

vmmode
CDPEAC statement modifier, 99
DPEAC statement modifier, 53

vmnew
CDPEAC statement modifier, 100
DPEAC statement modifier, 54

vmnop
CDPEAC statement modifier, 100
DPEAC statement modifier, 54

vmold
CDPEAC statement modifier, 100
DPEAC statement modifier, 54
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vmotate
CDPEAC statement modifier, 98
DPEAC statement modifier, 52

vmtrue

CDPEAC statement modifier, 100
DPEAC statement modifier, 54

vnn, VU vector data register
in CDPEAC, 66
in DPEAC, 23

vSl, register argument, 27, 70
vS2, register argument, 27, 70
VU chips, 10
VU control register constants, 18
VU control register region, 127, 128
VU control registers, 13

effects of, 14
in CDPEAC, 66
in DPEAC, 24

VU data register region, 127, 128
VU data registers, 12

in CDPEAC, 66
in DPEAC, 23

VU data space, 126
VU instruction, in CDPEAC, 62
VU instruction pipeline, 139
VU instruction space, 126
VU instructions, 3
VU memory layout, 10
VU memory mapping, 10, 125
VU memory maps, 133
VU memory regions, 10
VU memory spaces, 126
VU memory stride markers, in DPEAC, 24
VU memory striding, in CDPEAC, 68

VU on-chip data swapping
CDPEAC statement modifier, 101
DPEAC statement modifier, 55

VU physical memory mapping, 125
VU physical memory regions, 125
VU physical/virtual memory correspondence,

131
VU pipelining, 139
VU register accessor instructions, list of

for CDPEAC, 102
for DPEAC, 56

VU register file, 12
VU register restrictions

in CDPEAC, 66
in DPEAC, 23

VU register spaces, 127
VU register stride macros, in CDPEAC, 67
VU register stride markers, in DPEAC, 24
VU registers, 12
VU selection

in CDPEAC, 68
in CDPEAC accessor instructions, 69
in DPEAC, 25
in DPEAC accessor instructions, 26

VII selectors
in CDPEAC, 69
in DPEAC, 26

VU status flags, in VU status register, 16
VU striding, 9
VU trap instructions, in DPEAC, 57
VU vector registers, 12
VU virtual memory mapping, 127
VII virtual memory regions, 128
VU virtual memory symbolic constants, 129
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