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1. Introduction

Now that it has become feasible to build large parallel computer architectures it should be possible

to take advantage of parallelism by applying large numbers of processors to a problem. Unfortunately,

writing programs for parallel Machines has turned out to be very difficult. In fact, it is not even clear how

to build parallel architectures that are useful for an) general class of parallel algorithms or applications.

There are to basic difficulties: 1) expressing the parallelism of a computation, and 2) exploiting that

parallelism on a parallel arcl :turc. Traditional programming languages for serial Machines do not

inLorporate any wy to express parallelism in a computation. It may be possible to write a compiler that

finds parallelism in a programs written for serial Machines but this possibility seems limited. A new

methodology that is nlore natural for programming parallel Machines is needed. This thesis will develop

a methodology for programming the Connection Machine (CM). a highly parallel computer. This

methodology is meant to exploit the specific architecture of the Connection Machine and may have only

limited usefulness on other architectures.

The Connection Machine consists of a large collection of simple processors connected by a

communication network. Each processor has a unique address in the communication network. Each

processor also has a small amount of local memory and a simple ALU for operating on its local memory.

Local memory can store data, including the addresses of other processors. If processorA has the address

of processor-B then processorA can send a message containing a finite amount of data to processorB

using the communication network. (See figure <sending mail>.) Graphs of arbitrary topology can be

built using a processor for each vertex. The processor representing each vertex contains the addresses of

the other processors representing the vertices to which it is connected. These pointers form the arcs of a

directed graph. If two processors have each other's addresses then the arc is bidirectional; this is called a

Conneclion. he topology of the software graph is independent of the topology of the communication

network that interconnects the processors. Since addresses are data, addresses can be sent in messages.

This is a very important feature of the Connection Machine: the software graph can be manipulated by

passing processor addresses in messages.



Fig. . Sending Mail
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The datum in processor-A is sent to the mailbox in processor-B. The address of the mailbox
in Processor-B is stored in Processor-A.

The programming methodology presented in this thesis is fdirly simple: the entire computation is

represented by a software graph in thc Connection Machine and a program that controls the individual

processors in the graph. The Connection Machine provides two basic forms of parallelism:

1) Each processor can operate on its local memory concurrently with every
other processor.

2) Messages are delivered by the communication network in parallel.

Messages sent from any number of vertices along an arc can be delivered concurrently. The graph

abstraction limits the number of cells that can send a given cell a message. Local communication within

the graph avoids communication bottlenecks, where one processor receives a large number of messages

at once. The major part of this thesis is concerned with techniques for using this methodology to solve

interesting problems.

I



.9-

1.1 Thesis Outline

Chapter 2) Concepts

This chapter discuses thdie important concepts of the architecture of the Connection Machine and

programming the Connection Machine. This chapter should bce rcad.

Chapter 3b Notation

This chapter introducer a notation for prograrmming t.. Connection Machine. The main purpose

of this cahpter is to give cxampler of simple progrms for the Connection Machine. It is not particularly

important to understand the details of this chapter.

Chapter 4) N-cube Algorithms

Many algorithms can be performed very quickly using any regular highly interconnected

communication topology. This chapter describes some algorithnls that we hase found to be useful and

their implementation using a boolean N-cube connection topology. The particular implementation of

these algorithms should be transparent to most programmers.

Chapter 5) Tree Algorithms

Binary trees are an important grahpical abstraction for parallel processing. This chapter describes

algorithms for manipulating binary trees on the Connection Machine.

Chapter 6) Application: GAl

This chapter explains how the Connection Machine can be used to explore a search space in

parallel. GA1, an expert system that analysis DNA molecule stnicture, is used as an example.

Chapter 7) Application: Combinators

This chapter describes the implementation of a graph reduction interpreter on the Connection

Machine. A graph language is introduced that is interpreted by reductions performed on the graph.

Chapter 8) Application: Rlcationl Ita Base
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This chapter illustrates an application that takes advantage of the particular connectivity of the

communication network for communication.

Chapter 9) Conclusions

This chapter summarises the ideas of programming the Connections Machine.
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2. Concepts

The purpose of this chapter is to present some examples of programming the Connection Machine

which will serve as a framework for the details presented in later chapters. The first section describes the

architecture of the Connection iMachine. The second section discusses some programming examples.

The third section outlines several applications that could be run on the Connection Machine.

2.1 The Conner )n Machine Arclitecture

This section outlines the major parts of the Connection Machine. A fordlcomming paper should

describe the details of the architecture.

The Connection Machine has 3 main parts:

1) 1 million processors, each with a small amount of local memory

2) a communication network that connects the processors

3) a controlling computer

The communication network is a batch packet switching network that delivers messages between

processors. The controlling computer broadcasts a single instruction stream which all of the processors

execute. Each part will be discussed in detail below.

2.1.1 The Processors

The processors themselves are very simple: each has about 300 bits of memory and a 1 bit ALU.

There are also 16 1 bit flags which perform special functions. (See figure <CM processor>.) The power of

the the Connection Machine is in the number of processors, not the speed of any single processor.

Processors are very simple (32 will fit on a chip) so that millions can be fabricated. Each processor has a

unique address. A processor can store the address of another processor in its memory. Graph vertices are

represented by processors; an arc between processtr A and processor B is represented by processor A

containing the address of processor B.
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The ALU operates on 2 bits from the registers and one of the flags and produces two I-bit results.

The first result is optionally written back into one of the operand bits. The second is written into a flag.

An instrnction specifies:

which two bits from the registers will be operated on

which flag will be operated on

which operation thdic, U will perform

whether thc first result should be written to one of the operands

which flag to write the second result to

There arc two special flags: Global and COND.1 These two flags can be read or written normally.

Execution of the instruction stream is conditionalized on the COND flag. If the COND flag of a

processor is set that processor is active It is possible to set the COND flag in every processor since once a

processor is deactivated it cannot activate itself. Special hardware is used to OR every Global flag from

each processor in the machine and provide the result to the controlling computer. This mechanism is

used to determine if any processors are in a particular state.

2.1.2 Communication

There are two separate communication networks on the connection machine. The comnmunicaion

network is a highly connected network used for global communication. Special hardware is used at each

vertex of this network. The NEWS netnork is a 2-d toroidal grid of all the processors. The NEWS

network is used for local communication and is also useful for diagnostics since it is much simpler than

the communication network.

Communication Network

1. The desrriplion or the COND flag is a somewhat simplified venion of actual conditional mcchanismn implecneled on the
Connection Machine.
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Fig. 2. CM Processor

a so-B? UIISEI ..k Fil

Architecture of the Connection Machine processor. There are 8 32-bit registers, 1 ALU, and 8
flags.

The communication network is a independently addressable batch packet switching network.

Independenily addressable means that messages can be independently addressed to any processor. Batch

means that a set of messages are delivered concurrently in a batch, or a Delivery Cycle. It should be

noted that processors do not compute during a Delivery Cycle. Packet switching means that messages

have a fixed size. Messages are delivered by passing them back and forth between nodes, or routers, in

the communication network. A router is a special piece of hardware that routes messages through the

communication network. A single router is connected to some small number of processors. A single

processor is connected to one router.

The communication network acts as a mailman: picking up addressed messages from processors

with messages to send. delivering messages to the processors at the indicated addresses. This is an

important abstraction; we do not wish to deal with the particular topology of the communication

network when writing programs. It is only important to understand the functionality of the

communication network.
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'Therc are some considerations that must bc taken into account when designing the communication

network to fit the above abstraction cfficicntly. he network should be homogeneous since messages can

potentially bce sent from any pan of the network. A homogeneous network looks the same from any cell

within the network. A cube is a homogeneous network because the topology looks the same from every

corner of the cube; a tree is not a homogeneous network. To efficicntly route messages around the

network the degree of connectivity should bc as high as possible. Generally speaking the higher the

degree of connectivity of the communication network the high';' the throughput the network. Of

course. there arc practical limits to the degree of connectivity for large numbers of vcrticies.

In the prototype Connection Machine currently under construction the topology of the

communication network is a 15 dimensional hypercube (or 15-cube) with a router at each vertex (or

corner). Each router is connected to 32 processors. An N-cubc is an N dimensional cube; each vertex of

the cube has a single neighbor in each direction. There are 2N corners in a boolean N-cube and each

vertex is connected to N other corners, one in each dimension. The distance between two verticies is the

minimum number of arcs travi:rsed to get from one to the other The maximum distance between verticies

is N; potentially one step in each dimension. Each vertex of an N-cube has a unique N bit address

relative to a single arbitrarly chosen venex of the N-cubc. Each bit (Bn: nth bit) of the address represents

a dimension (Dn: nth dimension). The neighbor of cornerX in dimension Dn has the same address as

corncrX except that bit Bn is toggled. The addresses of neighboring corners only differ by one bit.

Figure (4 dimensional N-cube> cxhibits an example of addressing in a 4-cube.

Each processor can only store a small number of messages because each processor has only a small

amount memory. There are two bad effects of a single cell receiving a large number of messages:

1) Only a small number of them can be stored

2) The router that is connected to hat processor becomes very congested
because it has to deal with all of those messages.

A single processor should nevcr receive a large number of messages. A simple way to achieve this is to

limit the number of processors that have the address of a single processor. If a processor always has

enough memory to store a message from every processor that has its address then there will ncvcr be a

problem.
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Fig. 3. 4 l)imcnsional cube

1

II

NEWS Network

Processors are also connected to one another in a 2-d toroidal grid called the NEWS Network. The

NEWS network is not independantly addressablec; data can be sent from processors their neighbors in one

of the 4 directions (North. East, West, or South). The NEWS network does not require special routing

hardware since the sender and receiver are well defined and connected by a wire. The overhead of

routing is not required so local communication using the NEWS Network is quite fast although it is quite

resticted. The NEWS network is also useful for diagnostics since it is much simpler than the

communication network.

2.1.3 Controlling Computer

The third part of the CM is the controlling computer (or CC). lhe Connection Machine has a

single instruction stream which is controlled by the CC. Each processor is connected to the global

instruction bus and interprets the single instruction stream; thus, each processor is doing exactly the same

thing. At the lowest k-vcl a Connection Machine program is one long stream of instructions. (See figure

<instruction stream>) During Delivery Cycles the instnlction steam is used to control processors

communicating with their router Pro.gals have the form: CO.I''UTA1TO.V dlilhr-cOcr
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COAIPUTA TION' delivcr-crle eic.

Fig. 4. Instruction Stream

NI

}

PRIIOC11O II s111OetleT

IELIVIRY CYCLE

POCECISISO lSlYUCTIONS

The single instruction stream of the Connection Machine contols the processors. Thc
processors can either be manipulating stored data (processor instructions) or communicating
with the communication network (delivery cycle).

Conditional Execution

It is useful to have processors do different things. depending on the data contained in the memory.

This is accomplished by each processor conditionally executing the instruction stream using its special

COND flag. A processor only executes the instruction stream if its COND) flag is set. A processor is

de-activated by clearing the COND flag. The CC has the ability to set all COND flags: effectively

turning all processors on. More complex control structures can be built using this simple mechanism.

Consider the following program:

A: I x>y then JUMP B else JUMP C
B: <action B> JUMP D
C: action C JUMP D
D: END
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Fig. 5. Conditional Execution

IOCO 

". & .CIV
GLOBAL PC 

LOSAL PC a · . I

OLOSAL PCm C I--

ACTIVE
ILOAL PC P *.o^, wc . e _

· ~~OIILC mb

PmOCIISO a

PCs&

TIIIC.

ICII .

This figurc illustrates how the single instruction stream can control 2 different processors
depending on their internal state.

This program is sent one instruction at a time to every processor. The CC does not execute any

jumps because there may be some processors that need to execute action B and some processors that need

to execute oclion C. The global-PC is the current instruction being executed in the linear instruction

strecan.

The objective is to have each cell perform either action-B or action-C depending on the outcome of

the comparison xy. Action-1l and action-C can be arbitrarily complex, perhaps even containing

conditionals themselves. One method of achieving this control structure would be to have a local-PC on

each processor. If an active processor interprets a jump instruction it sets its local-PC to the new value

and deactivates itself. After every instruction block the CC sends out the value of the global-PC to all

active and inactive processors. The processor is reactivated whcn local-PC = global-PC. Active

processors continue to execute instructions until deactivated. Figure <conditional execution> shows an

example of two processors activating and dctiveating while running the above program.

Tlic GL,ORAL flag

I
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GLOBAL flag of every processor. It is often useful to know if all processors are in a particular state

(for example, if an) processors are active.) The CC can use this value to control a conditional jump

within the program. G1.OBAL is most often used as the end-tcst of an iteration. Each processor may

require a variable number of iterations through the same code to terminate. Each processor uses the

global bit to indicate that the computation has NOT terminated. The CC checks the value of the globally

OR-cd G0OB13 . flag after each iteration. If any processor has not terminated (the GLOBAL flag of that

processor is set) then the CC would broadcast the body of ... iteration again.

2.1.4 Summary of Connection Machine Architecture

The Connection Machine is a very fine grain parallel computer. There are 1 million processors;

each processor has 300 bits of local memory. Communication between processors is accomplished by an

independent communication network which delivers indepcndanly addressed messages. Processors store

the address of other processors in the network forming a software graph. The Connection Machine is a

single instruction stream computer. This instruction stream is controlled by a Controlling Computer. To

implement conditional control structure there are two special flags: COND which controls conditional

execution, and GLOBAL, which is globally OR-ed with the GLOBAl. flags of all other processors. The

result of OR-ing GLOBAL flags is used by the Controlling Computer to control the instruction stream.

2.2 Programming Examples

There are two basic paradigms of computation using graphs on the Connection Machine:

1) Concurrently passing data within the graph perfonning computations in
parallel on the data.

2) Concurrently modifying the graph by passing addresses.

Here are two simple examples to illustrate the two types ofcomputation.
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Example : Passing data in a graph: Constraint Propagation

A combinational logic circuit is represented as a graph in which the logic gates art the vertices. The

wire Connections between the output of gate-] and the input of gate-2 are represented by the processor

that represents gate-1 containing the address of the processor that represents gate-2. When the output of

gate-i changes the new output value is sent to gatc-2. The output can be calculated in O(depth of circuit)

time.

Fig. 6. Constraint Propag:ation

INPUTS

A
INPUTS

I~a

OUTPUT

C (A X ) + (C X

C

'0

The logic circuit shown on the left is represented by the graph shown on the right. Rectangles
within the processor boxes represent mailboxes for receiving mail. The Ovals represent
address of other processors.

Consider the more complex circuit in figure (fan out> below. Because the output of any gate can be

the input of an- number of other gates and each processor can only store a finite number of addresses

(because it has a finite amount of memory) we need to introduce two more processors called fan-out

processors that take one value in and send it to two other processors. 'Thcse fan-out processors can be

arranged in a tree so that one output can be the input to an arbitrary number of logic gates.
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Fig. 7. Fan Out

SPLOTTER

(la X Ad Ix e + *)

(A X ) 4 (C + )

C

S

Fan out cells (or splitters) arc used to connect one cell to two others. Fan out trees built of fan
out cells can connect a single cell to an arbitrary number of cells.

The output of such a combinational logic circuit can be computed in time proportional to the

number of levels in the circuit. Values for the inputs are passed to the first level of gates which calculate

the appropriate function of the inputs and pass the results to the second level of gates. This is procedure

is iterated until the final output is calcultatred. The important point in this example is that the

computation is accomplished by local message passing in the graph, which is done in parallel. The

computation performed at each node is also done in parallel but the time required for this is small

compared to the time required for communication.

Example 2: Modifying the network: An algebraic simplifier

An algebraic expression can be represented as a tree. Simplifications of the expression can be

performed by making local modifications to the tree. Each reducible part of the network can be modified

in parallel. For this example the branches of the tree are the binary operators plus and ines {+ *}. A

binary operator has a left branch and a right branch. A branch can be a value or another algebraic

expression represented as a tree. Values are either a variable {x} or {1 0. A root vertex is connected to

the top of the expression tree. As an example, the algebraic expression:

I
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( ( ( o) ( a 0))

is shown in figure (example cxprcssion>.

Fig. 8. Exanple Exprcssion

Graphic representation of the expression: (* (+ (* x o) (+ o)) 1)

Reductions can be carried out by using the following rules:

(+ x 0)
(+ 1 0)
(+ 0 O)
( A O)
(* 1 0)
(* 0 O)
(* x I)
(° x 2)

m., x
., 1

., 0

0). 0

), 0

a> X

To reduce. each operator and value sends a message to its parent telling the parent its type. The

parent (which is an operator or the ROOT) then decides if a reduction is possible. If a reduction is

possible then the parent sends the reduced expression (one of its branches in this case) to its parent which

replaces its branch with the new value and sends its address to the new branch to complcte the

Connection (that is, make it bidirectional). For simplicity assume that reductions are done in cycles: all

operators that can bhe reduced arc reduced in a c)cle. When one cycle is complete another cycle begins
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until no further reductions can be performed.
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The program for the operator linmes {" might look like this:

Send cmessage-type: TYPE, value: *) to parent:
When cmessage-type: TYPE received from both children do

BEGIN
If <my left child or my right child is O0 then become a 0;
else If my left child and my right child are 1 then become a 1;
else If cmy left child is a 1> then

send cmessage-type: REPLACE, value right-child> to parent
else If cmy right child is a 1> then

send message-type: REPLACE, vale left-child> to parent;
END

When message-type: ,.EPLACE received from left child do
BEGIN
Set left child to be the value of the message
Send message-type: UPDATE-PARENT value: self> to left child
END

When message-type: REPLACE received from right child do
BEGIN
Set right child to be the value of the message
Send message-type: UPDATE-PARENT, value: self> to right child
END

When message-type: UPDATE-PARENT received do
BEGIN
Set parent to be the value of the message
END

If these rules are applied to the example expression 4 reductions are performed in 2 reduction

cycles; 3 during the first, and 1 during the second. This transformation is illustrated in the figure <Two

Reduction Cycles).

Fig. 9. Two Reduction Cycles

Two reduction cycles arc applied to the graph on the lcft. Threc operations are reduced on
the first cycle; one operation is reduced on the second cycle.

e
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There is a synchroni7ation problem with this scheme. Consider the expression:

(+ ( x ) 0)

The program given above will fail because 2 reductions arc operating on the same part of thc network at

during the same reduction cyclc. (See the figure <Incorrect Rcdlction>.) The problem is that more than

one reduction can overlap the same vertices in the graph; this is a fundamental problem for many graph

ma' ipulation computations.

Fig. 10. Incorrect Reduction

Example of an error using the simple reduction algorithm.

To avoid this synchronization problem allow the value of a reduction to be the value of a reduction. If a

branch determines that it can reduce then it checks to see if the branch with which it will replace itself

(one of its children) is also reducing. If so then the parent branch must wait until it receivs the value of

its reducing child before it can send the new value to its parent. Notice that there is some synchronization

required to perform the reductions so that the tree remains consistent. Consider the following algorithm:
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step 1: branches decide if they can perform a reduction and which branch to replace (local)
check if replacement branch is also reducing: if so then wait until ncu value is attained before
sending replacement valuc up the tree.

ONLY GO ON TO STEP 2 WHEN EVERYONE IS DONE w'1rii STEP 1

step 2: send new values up the trec waiting when necessary.

Fig. 11. Correct Reduction

i

I

The ncw reduction algorithm produces the correct reduction.

The resulting code would be:

I
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STEP 1:
set wlit-for-right-child false
set wlt-for-left-child false
set replace-left-child false
set replace-right-child) false

Leaf Nodes:
Send message-type: TYPE, value: O> to parent;

Branch Nodes:
When message-type: TYPE> s received from both children do

BEGIN
If my left hild or my rigil child is 0> then become a leaf node;
else If <my left child and my right child are 1> then become a I leaf node;
else If nmy left child is a 1> hen

set replace-with-right-child true;
else If <my right child is a 1> then

set replace-with-left-child true:
If replace-with-left-child or replace-with-right-child> then
send message-type: child-reducing> to parent;

END
When message-type: child-reducing> received from left-child do
If replace-with-left-child then set wait-for-left-chilc true:

When message-type: child-reducing> received from right-child do
If replace-with-right-child then set wait-for-right-child true;

STEP 2:
If replace-with-right-child and (not wait-for-right-child) then

send message-type: REPLACE, value right-child> to parent;
If replace-with-left-child and (not wait-for-left-child) then

send tmessage-type: REPLACE, value left-child> to parent;

LOOP-UNTIL no messages are sent in the network>
BEGIN
When <message-type: REPLACE> received from left-child DO
IF wait-for-left-child THEN
Send message-type: UPDATE-PARENT, value: self> to left-child

ELSE
BEGIN
Set left-child to value of message;
Send message-type: UPDATE-PARENT, value: self> to left-child
END

When message-type: REPLACE> received from right child DO
IF wait-for-right-child then
send <message-type: REPLACE, value: value of message> to parent;

ELSE
BEGIN
Set right-child to value of message;
Send cmessage-type: UPDATE-PARENT, value: self> to right-child
END

When message-type: UPDATE-PARENT received do
BEGIN
Set parent to be the value of the message
END

END

This program, written in the notation introduced in the next chapter, will appear in an appendix.
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2.3 Applications

The Connection Machine was originally designed to process semantic networks. [Hillis81] The

architecture is gneral enough to be useful, though perhaps not optimal. for a larger class of applications.

One goal of this thesis is to begin to define this larger class of applications. Thc next section discusses

semantic networks. The following section classifics several types of applications at could be cffic -)tly

implemcntce · the Connection iMachine such as digital circuit simulation and data flow computations.

2.3.1 Semantic Networks

A semantic networkl is a directed graph in which the vertices are nodes and arcs are relations

between nodes. Consider the example in figure <semantic network). This structure states that Apple-3 is

a Apple; an Apple is a Fruit; and Fruit tastes sweet. Apple-3 will inherit the fact that it tastes sweet. The

semantic network will be represented on the Connection Machine as a softw are structure by representing

nodes as processors. Semantic Networks allow a node to have an arbitrarily large number of relations.

Unfortunately CM processors only have a small amount of memory and cannot store the address of all

the processors they are liked to by a relation. The same method that was used in the circuit example to

solve the problem of multiple outputs can be used to deal with multiple relations in a semantic network.

A node will become the root of two binary trees, the fan-in and fan-out trees. The branches of the fan-in

and fan-out tree hold links to the fan-in and fan-out trees of related nodes. The leaves of these two trees

are called LINK nodes. Each LINK in a fan-out tree will also be in the fan-in tree of the node to which

the relation points. Link nodes store the type of relation. There are four types of processors in this

scheme:

I This thesis will only deal with a simple model of semantic networks. See "What's in a l.ink' b) Woods. "NI:TI." by F'ahlman.
and "Lpiscmologx Status of Semanic Scl-vorks" by Brachnman for more inifornlalion on sermanuc networks.
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1) Nodes; represent the nodes of the network.

2) fan-in cells; one branch in a binary tree which stores links TO a node.

3) fan-out cells; one branch of a binary tree which stores links TO other
nodes.

4) L.inks; connect two nodes via the fan-out trcc of one to the fan-in tree of the
other.

For example. there are man) kinds of fruit: therefore., there will be many nodes related to the Fruit node.

An example semantic network is shown in figure (semantic network). Figure <CM Graph of Semantic

Network> shows how this part of a semantic network would be represented on the CM.

Fig. 12. Semantic Network
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Apple-259 is a Apple. Apple is a Fruit. Fruit tastes Swcet.

There arc several operations that are important to perform quickly on large semantic networks that

are very slow on serial Machines, and could be efficiently implemented on a parallel machine. Here are

two cxamples:
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Fig. 13. CNM Graph or Semantic Network

APPL-15, APPLE IUIT IIWw

IS1-A US1-A TASTES

Graphical representation of a semantic network using fan-in and fan-out trees to hold
multiple relations.

Example 1: Simple Queries

This class of problems involves a simple search of the graph. Property inheritance is such a

problem. Given the semantic network above a user might ask the question "Docs Apple-259 taste

sweet?". APPLE-259 does not have an explicit TASTE relation; it inherits it from APPLE which inherits

it from FRUIT. APPLE-259 could inherit this relation from more than one sources. A serial computer

would have to search each possibility sequentially. The Connection Machine explores each possibility in

parallel.

How fast is the Connection Machine versus a serial computer? For a simple calculation, model a

query as a simple tree search on a balanced binary tree with N leaves. Communication amoung

processors on CM is roughly 100 times slower than memory access on a serial computer. For simple data

operations involving no communication, processing on CM is just as fast as a serial Machine. The serial

Machine will have to traverse the entire trec which will take (2N)*(communication time + processing

time) where N is the number of leaves in the tree. he CM can perform a parallel breadth first search

will will take (log N)*(00*communication time + processing time). The CM is a factor of 2N/(log N)

faster in processing time because each level of the tree can he processed in parallel. The more significant
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comparison is the communication timc. Since communication on the CM is slower than memory accesses

on a serial Machine N must be rathcr large (N > 500) for CM to be significantly faster.

Example 2: Adding New Relations

Another important operation is adding new relations to the semantic network in parallel. In the

example below part of a family tree is represented using only the father-of link. The goal ic to add a

paternal-grand-father rclar' n whercever possible in thc f: -y tree. New structure must be added for

every istance of paternal-gar.J-father. It is relatively) easy to add a signal relation but there may be

thousands to add throughout the network. The Connection Machine can add the new relations in

parallel.

Fig. 14. Adding New Relations

· PAri OF p&?Y-OF j

AIiFADI -T E-f

The grandfather relation is added to a father's father.
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2.3.2 Classes of Applications

There arc several classes of applications that could potentially take advantage of the parallel

architecture of the Connection Machine. Some of theses classes that have been identified will be

discussed below.

Semantic N'ctorks: Semantic network operations use the CM to concurrently manipulate a large

data structure. Thc semantic network operations discussed above use the parallel communication abilities

of the connection machine to traverse the entire graph in parallel. The ability to modify the network by

passing addresses in parallel is also useful. Operations such as set intersection that could take advantatge

of associative memory can take advantage of parallel processing. In fact, without the communication

network the Connection Machine is just a hairy associative memory.

Constraint Propagation: The CM can also be used to process constraint networks. lhe constraint

network is represented as a software graph. Values are propagated in parallel along the arcs of the

network. The digital gate example given earlier in this chapter is an example of a constrant propogation

network. Another potentially useful application of constraint propocation is switch level simulation of

VLSI circuits. Current VLSI chips can contain as many as 500,000 elements. Simulating large systems is

very expensive on serial machines because only one element can be considered at a time. The Connection

Machine can propagate signals through the network in parallel. Systolic Algorithms: A systolic array

performs a parallel opereration by passing data through a network of connected processors. Each

processor performs some simple operation on the data as it is passed through. Systolic arrays rely on

regular grids of interconnected processors to process data. The algorithm is tied to the topology of the

communication network. An example of NxN array multiplication in O(N) time using a hexagonally

mesh connected network is given in [Mead and Conway80 pg 276-280]. The Connection Machine can

simulate a systolic array by either 1) projecting the interConnection topology of the systolic array onto

the CM communication topology, or 2) building a software structure that models the topology of the

systolic array. In either case the Connection Machine can simulate the systolic array within a constant

factor of speed. The Connection Machine could bce used as an cfficicnt simulation tool for systolic array

designers. If the application did not warrant the cost of building special purpose hardware (tle systolic

array) the Connection Machine would still be much fastcr than a serial computer.
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Gcnerate and Test: Generate and test is a method for exploring a search space; points in the search

space are generated and tested for success. Generate and test applications can take advantage of the

Connection Machine b) generating the search space in parallel and testing generated possibilities in

parallel. 'Ihc search space is often a tree which can be generated breadth first one level at a time. Testing

of generated structures is also done in parallel. The implemcntation of G\l, an expert system that infers

the structure of DNA molecules, will bc examined in a letter chapter.

Graph Reduction :aluation: Computations can be represented as graphs. An operater is a branch

of the graph and its operands are the children of the branch. Evaluation is done by reducing the graph by

replacing an application of an operatcr to its operands with the result. The algebraic simplifier that was

described earlier in the introduction is a simple example of this. Tlurncr [?] describes an implementation

of SKI combinators which translates lambda calculus expressions into a graph which can be evaluated by

performing simple local reductions on the graph. The implementation of SKI combinators on the

Connection Machine will be discussed in a latter chapter. In graph reduction evaluation the data and the

program are represented as data structures in the Connection Machine. The CM instruction stream acts

as the interpreter for the program represented as a software structure.

Data Flow: Data flow languages represent a program as a fixed graph. Evaluation is performed by

passing streams of messages through the graph. For example: the procedure

(defun oo (x y ) ( (- X y) (+ x)))

can be represented as a graph shown in figure [data flow].

Exploiting the communication ntorl, topology: Even though the underlying philosophy of the

Connection Machine is to use the communication network abstractly, any regular topology can be

exploited. For example, highly connected topologies can be used as sorting Machines [Kung]. A sorting

Machine can remove duplicate elements in a set by sorting all of the elements and eliminating all but one

of each clement type. This is the Projection operation in the Relational Algebra described in [Date]. A

latter chapter will examine using the CM for processing Relational Data Bases.

At a lower lever of abstrcaction there are certain operations which are useful for manipulating

graph structures which can be accomplished mush more cfficiiently by using the underlying topology of

the network. For example: locating free cells to build new structure. Operations that rely on the
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Fig. 15. Data Flow

i..4 ToS Ia1

OUTPUT-I

Data Flow graph of(dcfun foo (x y z) (* (- x y) (+ z x)))

communication topology can be formulated as atomic operations: the programmer is not concerned with

the particular implementation. If the underlying topology changes only the atomic operations need be

reimplemcnted. It is useful to form hybrid systems in this way.
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3. Notation: MP

This chapter describes a simple notation for writing programs for the Connection Machine. It is

included for the interested reader; it is not necessary understanding the rest of the thesis. A more abstract

language for programmimg the Connection Machine is described in [Bawden83].

TIe MP language ;- assembly language for the CM. MP Expressions arc easily reduced into the

machine instructions of the single instruction stream which all processor interpret. The major features of

MP are named variables, expression evaluation, conditionals, and special features for handling mail.

3.1 Variables

MP has a type system similar to PASCAL. Because there are only a small number of bits availible

to each processor the number of bits allocated for each variable is limited. It is possible do declare types

as sets or as scalars. Here is an example:

;;;Type declarations
DCL-SET-TYPE bit: (0 1)
DCL-SCALAR-TYPE random-set: {0 .. 17)
DCL-SET-TYPE another-random-set: red yellow orange green)
DCL-SCALAR-TYPE register: (0 .. 2e32-1)

;;;variable declarations
VAR foo: bit
VAR bar: another-random-set

Variables can be assigned and tested for equality. Scalars can be compared to other scalars using

greater-than and less-than. The results of tests can only be used in conditionals which will be described

next. Here is an example:

(if ( bar 'red)
(progn
(set foo 0)
(set bar 'blue))

(toggle foo))
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3.2 Conditionals

(itf conditional> then-clause> (else-clause))

IF has the same semantics (for a single processor) as IF in any serial language. IF offers a nice

abstraction for handling conditional execution using the single instruction stream. An IF expression

expands to code that ns on the appro. itc processors (depending on the value of the conditional) to

evaluate the appropriate iuses of the cxpr. i:)n. Expressions can bce grouped together to form a clause

by (progn <expl> ... expN>). Consider this example.

;first level conditional
(if ( bar 'red)

;first level then
(progn
(set foo 0)
:second level conditional
(if (> number 3)

;second level then-clause
(set foo 1)))

;first level else
(toggle oo))

Assume all processors are interpreting the instruction steam. All processors perform the test (= bar

'red). Those processors for which the result is true execute the <then-clause>; the rest evaluate the

<else-clause>. While cvaluating the first clause thcrc is another conditional. Only those processors that

are evaluating the first level <then-clause> will evaluate the second conditional. Only those processors

for which both the first level conditional and second level conditional are true will evaluate the second

level conditional. Notice that at each level of conditional a subset of the previously active processors will

become active to evaluate the next level of the conditional. This is called subset selection. For a graphical

interpretation of what is happening see figure [graphic-intl.

3.3 NEWS communication

Values can be passed along the 2 dimensional toroidal NEWS communication network.

(get <NEWS-FLAG source-var <destination-var>)
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Fig. 16. Graphical Interpretation of lF

t#I.1

j

;first level conditional
(if (- bar 'red)

;first level then
(progn
(set foo 0)
;second level conditional
(if (> number 3)

:second level then-clause
(set foo 1)))

;first level else
(toggle foo))

All processors {A B C D E F} are initially interpreting the instruction stream. The first
conditional (= bar 'rcd) is true for {A B C D}. Those processors remain activc. The first level
<then-clasue) is evaluated. The second conditional (> number 3) is true for the subset {C D}
of {A B C D). {C D} remain active. The second level (thcn-clausc> is cvalued. After the
first level (then-clausc) has completed evaluation the subset {A B C D} are deactivated and
the subset {E F) are activated. The first level (else-clause> is evaluted. All processors are
rcactivced.

corresponding to North, South, East, and West.

@0
TNEU*0RNOI @.

The effect of this command is to set (destination-var) in a cell to the value of <source-var> in the

cell neighboring it in the direction indicated by <NEWS-flag>. Valid directions are {N E W S}

I
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3.4 Example: Conway's Life

Conway's Life is a popular animated graphics demonstration. The state next state of a pixel is

determined b) the state of its 8 neighbors. Pixels have 2 states: ON and OFF. If 3 neighhors are ON

then the next state of that pixel is ON. If there arc fewer than 2 or more than 3 neighbors that are ON

then the next state of that pixel is OFF. Otherwisc, the state of that pixel remains unchanged.

Conway's Lift:
VAR count: {0 .. 8)
VAR temp. state: {0 1}

;;;initialization
(set count 0)

;;;for each neighbor get it's state and conditionally increment count
;;;(get NEWS-flag> <source-var> <destination-var>)
;;:Diagonal neighbors require 2 steps (ex: get NW neighbor by going
;;;west, then north)
(get N state temp)
(if ( temp 1) (increment count))
(get E state temp)
(if ( temp 1) (increment count))
(get W state temp)
(if (- temp 1) (increment count))
(get S state temp)
(if (- temp 1) (increment count))
(get N state temp)
(get W temp temp)
(if ( temp 1) (increment count))
(get N state temp)
(get E temp temp)
(if ( temp 1) (increment count))
(get S state temp)
(get W temp temp)
(if (- temp 1) (increment count))
(get S state tmp)
(get E temp temp)
(if ( temp 1) (increment count))

;;;conditionally update
(if (- count 3)

(set state 1)
(if (not (- count 2))

(set state )))

This program expands into about 100 micro instructions.

3.5 Mail

There arc several types and variables fior handling mail and pointers. A Pointer is a composite data

type that contains the address of another processor and a mailbox ithin that processor.

DCL-TYPE MBX (LEFT-CHILD RIGHT-CHILD PARENT)
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DCL-TYPE ADDRESS (0 .. 2e20-1)
;;;Pointers are composite data types
DCL-TYPE POINTER composite (MBX ADDRESS)

(get-ntx pointer> var>)
(get-adoress pointer> <var>)
(set-mbx poiner> var>)
(set-address <pointer> var,)

Fig. 17. Pointer lype
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The command set-mbx sets the mbx part of the pointer to the value of <var. The command

get-mbx sets the variable (var> to the value of the mbx part of the pointer. The commands get-address

and set-address are analogous.

For every symbol quux) declared to be a MBX a boolean quux>-mail is also declared. This

lboolean is set by the communication netv ork when a message is delivered to that mail box. In the

example code above there would be three booleans (LET-C ILLD-MAIL RIGHT-CHILD-AlAIL

PARENT-MAIAIL) declared.

Sending mail is done by invoking a Grand Delivery Cycle. This is done using the command:

(send (varl var2 var3 var4) pointer)

'When a message arrixes in a MIBX the boolean (quux-mail is set indicating that mail has arrived in that
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MBX. A MBX is abstract buffer that holds the parts of the message. Data is extracted from the mailbox

by the command:

(get-msg <mbx, <index>)

Get-msg will get the indicated message. It is used either as the value of an assignment or as the argument

to a predicate.

There is another important abstraction that &, used for sending messages. S · he timc it takes rc

execute a CM program is usually dominated by communication time it is useful to share GDCs.

(set-up-send (varl .. vrN) pointer)

Set-up-send will mark the cell and move the values of the variables into an output buffer where they will

be sent. Only one message can be sent to a pointer in this way since there is only one output buffer per

pointer. Buffered messages arc all sent at once by send-buffered-messages.

(send-buffered-messages)

Send-buffcred-messages sends all buffered messages.

3.6 Iteration

The iteration branching mechanism is implemented by branching conditionaly on the GLOBAL

flag. This is the only way to look at the result of ORing all GLOBAL flags together in MP.

(while <global-exp>
Body)

(global-exp> is an expression that is computed at all active cells, the result of which is put in the

GLOBAL flag. The body is executed until <global-cxp> is false for all active cells.

3.7 Example: Tree Addition

To show how these commands arc used here is a simple program that computes the sum of values

stored in the leaves of a binary tree.
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DCL-TYPE MBX (LEFT-CHILD RIGHT-CHILD PARENT)
DCL NODE-TYPE fan-in leaf TOP)
DCL LEFT-CHILD POINTER
DCL RIGHT-CHILD POINTER
DCL PARENT POINTER
DCL ACCUM NUMBER

(define fan-in-add
;;:;initialize accum
(if (- NODE-TYPE 'fan-in)

(set accum 0))
;;:leaves send to parent
(if ( NODE-TYPE 'leaf)

(send accum parent))
;;;iteration loop
(while (or (= left-child-mail true)

(= right-child-mail true)) ;while there is mail
(if (- NODE-TYPE 'TOP)

(progn
(if (- left-child-mail true)

(add accum (get-msg left-child-mbx 1)))
(if (- NODE-TYPE 'fan-in)

(progn
;;add mail from left-child to accum
(if ( left-child-mail true)

(add accum (get-msg left-child-mbx 1))) ;accum <- accum + (gm c 1)

;;;add mail from right-child to accun
(if ( right-child-mail true)

(add accum (get-msg right-child-mbx 1)))
;;;set up send to parent
(if (or left-child-mail right-child-mail)

(set-up-send (accum) parent))
(set left-child-mail false)
(set right-child-mail false)))

;;;**other code for other processors
(send-buffered-nessages))

U,
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Fig. 18. Adding lea3ces of a Tree
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4. Algorithms for N-cubes

This chapter presents several useful algorithms for a parallel computer that has a boolean N-cube

communication topology. These algorithms perform operations that would be inefficient to implement at

the levcl of abstraction where the programmer does not care about the topology Of communication

network of the specific machine he is programming. A programmer would view these algorithms as

primitive operations: like CONS in LISP. Hopefully, these algorithms could be adapted to run chciently

on any parallel machine with a highly interconnected communication network.

Example 1: A programmer would like to write a CM program in which cells in
a data structure build more structure in parallel. This requires that new free
clls be located to form the new structure. It turns out to be very efficient to
do a global computation that calculates the address of a free cell for each cell
that wants to cons.

Example 2: Thcre arc two sets called A and B. The goal is to form a new set C
that is the cartesian product of sets A and B. A primitive is supplied for
performing this computation. Primitives are also supplied to access elements
from a set one at a time.

The general idea of many of the algorithms in this chapter is to acomplish the computation by a

regular patern of passing messages. This tends to utilize the communication much more efficiently than a

random pater of passing messages. For example, a delivery cycle where the distance between the sender

and recipient is only one step in the N-cube would be much faster than if the distance between sender

and recipient was 2 or more.

4.1 Mapping Notation

Many algorithms in this section operate on the absolute address of a cell. In a boolean n-cube the

corners are defined by an n bit address. -Each corner has n neighbors, one in each dimension. Each bit in

the address corrcsponds to one dimension. The address of a cell's neighbor in the Mth direction is that

cell's address (SELF) with the Mth bit toggled. I use a special notation for dealing with sets of addresses

and mappings between sets. x represents either a I or a 0. lhe mapping between two sets (ex: xl sends

a message to xO) is defined by each member of the first set mapping to and address in the second set such
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that for each dimension:

1) if there is an x in the Mth position in the first set and an x in the Mth
position in the second set. addresses in the first set with either a 0 or I in the
Mth position would map to the address in the second set with the same value
(xl - xO: 11 maps to 0, and 01 maps to 00).

2) if there is an x in the Mth position in the first sct and a 1 (or 0) in the Mth
position in die second set, addresses in the first set with either a 0 or 1 in the
Mth position would map to the address in the second set with (or 0) in the

iMth position (xl -) 00: 01 maps to 00, and 01 maps to 00).

Example: lxxx send message to Olxx. lxxx defines a set of 23 cells. Olxx defines a set of 22 cells. Each

cell of the second set will receive a message from 2 cells in the first set:

1000. 1100 -, 0100
1001, 1101 -0 0101
1010, 1110 -> 0110
1011, 1111 -, 0111

This notation is useful for describing sets and message passing patterns.

4.2 Dimension Projection

Dimension projection is a way of imposing a spanning tree onto a boolean n-cube using the arcs

between corners of the cube as arcs between branches of the tree. These trees are called calculated rees

because the parents and children of a branch are calculated as a function of the address of the branch.

The advantage of calculated trees is that tree operations can be accomplished very quickly becausc arcs

between branches are real communication paths. The calculated trees of Dimension Projection span all

processors in the n-cube.

4.2.1 Folding Tree

One calculated spanning tree is called the Folding Tree. ach cell in a boolean n-cube has n bits of

address. In the folding tree the address of a cell's parent is calculated by toggling the first non-zero bit in

that cells address. ilie number of leading zeroes in a processor's address defines the level and number of

children of that processor. TIhis definition produces a tree that has a non-uniform branching factor. All

children are nearest neighbors in the boolcan n-cube. Iherefore cach child is in a different dimension.
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The children of O0]xxx would bc:

(1001xxX DOlOxxX OOllxxx)

If dimcnsions are handled one at a time cach branch will receive a maximum one message from its child

in that particular dimension. Figure <Folding Dimension Projection> shows a folding tree imposed on a

3-cubc.

iig. 19. Folding l)imension Projection
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The Folding Trec spanning a 3-cubc. Step i: lxx -> Oxx: Step 2: Olx -> OOx; Step 3: 001 ->
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Calculated trees arc often used for collecting data from the branches and leaves. Example: Each

processor stores a number in a variable called ACCUM. 'The goal is to compute the sum of every

ACCUM. The sum is computed by sending data up the tree from the leaves to the higher branches of the

tree. The root of a folding tree imposed on an N-cube will have N children. If dimensions are handled

one at a time cach branch can receive a maximum of one message. When a processor receives a message

it adds thai . luc to ACCUM. iterate through all dimensions starting from the dimension corresponding

to the most sig.ificant bit (most significant dimension). Each successive iteration deals with the the next

most significant dimension. The computation is complete in N iterations. This calculated tree is called

the folding tree because on the first iteration half of the cells send a message to the other half; on each

successive itcration half of the cells that just received messages send a message to the other half of the

cells that just received messages. T'he final effect is that the cell with address 0000... will contain the sum

of every ACCUM.

ACTIVE: aTRUE

Iterate: DIM * Start with most significant bit of address.
on each iteration assign DIM to next most
significant bit.

;;:;STEP 1:
IF ACTIVEsTRUE and NTH-BIT(SELF) * 1 then

Send ACCUM to Toggle(SELF DIM)
ACTIVE: FALSE

;;;STEP 2: after mail is delivered
IF message is received THEN

ACCUM:' ACCUM + datun just received

4.2.2 Binary tree

It is oftcn useful to impose a binary tree on the N-cubc. One advantage is that information can be

pipelined up the tree because each branch only has two children. It is impossible to impose a binary tree

on a N-cube using only nearest neighbors. This section describes an algorithm for calculating parents

such that the distance fron a branch to one of its children is edge of the N-cube and the distance to the

other is 2 edges of the N-cube.

The parent of a cell is calculated by toggling the first non-zero bit in its own address and setting the

next least significant bit to I. Successive levels of the tree, starting from the lcaves (Ixxx) to the root

(0001) look like this:
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IxAR -), OtR
Oi - O00l
OOl - 0001

Figure (Rinary Dimcnsion Projection> shows a binary trec imposed on a 3-cube.

Fig. 20. Binary I)ilmension Projection
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This figure shows 3 binary tree projected onto a 3-cube. Step 1: lxx -) Olx: Step 2: Olx -> 001.
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4.3 Enumeration

Enumeration, the assignment of unique number from 0 to M-1 to M marked cells, is the basis of

many important algorithms. Abstractly, enumeration can be viewed as ordering a disjoint set of cells.

Enumeration is done by a process called subcube induction.l Subcube induction works by

combining two b-cube with certain prop- itcs into one (b + )-cube that also maintains these properties.

Cells that are to be cnuir .ted are marked. Assume that each b-cube has the following two properties:

Evcry clement knows how many marked cells arc in this b-cube (call this
NUMBER-MARKED)

Marked cells are enumerated uniquely from 0 to 'IUMBER-MARKED - 1.
(call this ID)

Assume that there is a one-to-one mapping between elements in two b-cubes.

The goal is to combine two b-cubes into one (b+ 1)-cube maintaining the properties described

above. Each element in both b-cubes send their NUMBER-MARKED to the congruent element in the

other b-cube. Each element receives a message from the congruent element in the other cube (call it

OTHER-NUMBER-MARKED). Each element sets NUMBER-MARKED to the sum of

NUMIBER-MARKED and OTHER-NUMBER-MARKED. NUMBER-MARKED is now the total

number of marked cells in both b-cubes. Within only one of the b-cubes all marked cells set ID to the

sum of OTHER-NUMBER-MARKED and ID. Marked cells are now uniquely enumerated from 0 to

NUMBER-MARKED - 1. Both properties are maintained in the (b+])-cube. Figure <enumeration>

shows two 2-cubes combined into one 3-cube.

Now we shall show how this process of combining two enumerated b-cubes to form a (b + 1)-cube

can be applied to enumerating an N-cubc. Initially there are 2N 0-cubes. A 0-cube is just a single cell. In

a 0-cube if the cell is marked then NUMBER-MARKED is 1 and ID is 0; if the cell is not marked

NUMBER-MARKED 0 and ID is undefined. 0-cubcs are paired and combined into 2N- I 1-cubes.

1-cubes are paired and combined into 2 N2 2-cubes. This process is iterated until there is 1 N-cubc.

1. Invented by Alan Bawden in the context of the Connection Machine.
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Fig. 21. Enumerltion
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Two enumerated 2-cubes combine to form one enumerated 3-cube.

When this is done all marked cells will be uniqucly enumerated. This requires N iterations of pairing and

combining.

A single combination will nm very quickly if the mapping between the two combining cubes is

along communication lines. Observe that a set of B bits of the address bits defines a B-cube that is

embedded in the N-cube assuming the remainder of the bits are fixed. For example, in an 7-cube:

xxxOOOO
xxx1000

defines 2 3-cubes embedded in the 7-cube. There is one-to-one mapping along arcs of the 7-cube

between the two 3-cubes (this should be fairly obvious). To perform the enumeration on an 7-cube

would require 8 iterations of pairing and combination. Communication will be between the cells as

paired below. The leading Xs represent the b-cubes; the trailing Xs represent the number of b-cubes

being combined. Thcrc will be 2'128 messages sent each iteration.

Oxxxxxx
ixxxxxx

128
0-cubes

x0xxxxx
xlxxxxx

64

1-cubes

xxO xxxx

Nxixxxx
32

2-cubes

xxxOxxx
xxxlxxx

16
3-cubes

xxxxOxx

xxxxlxx
8
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xxxxx0x
xxxxxix

4
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xxxxx0
xxxxxxl

2
6-cubes
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. lt m



-49-

4.4 Consing

Dynamically building structure in parallel is an improtant capability of the Connection Machine.

Cells, being sicwed as active processes, must be able to "cons" free cells quickly and in parallel. Problem

Statement:

There are two sets: A set of marked cells want to find the address of a free cell and a set of
marked free cells. Assume that the set of free r'ls is larger than '.. set of cells that wants to
cons. 'Th goal is 'ae each cell that wants to c,,~ ;ccive a unique a, Jress of a free cell.

Historically this has been

one of the more interesting problems that the CM group has tried to solve.

The algorithm presented here consists of two parts:

1) Uniquely enumerate cells that want to cons. then enumerate free cells. The
time required for this operation is roughly 20 delivery cycles per enumeration.
Enumeration was described in the last section.

2) Use the ID (enumeration number) of the cells in both sets as the address of
an intermediate cell. Cells in both sets send a return address to this
intermediate cell. Intermediate cells will have to have 2 mailboxes free to
handle these two messages. Intermediate cells send the return address of the
free cell TIO the return address of the cell that wants to cons. When complete
each cell that wants to cons has the address of a unique free cell. This takes 2
delivery cycles. See figure <consing>.

There are two refinements which can be made to this algorithm.

First, the intermediate cells should be spread throughout the

communication network as much as possible because

messages coming into intermediate cells will be serialized.

This is easily avoided by having one intermediate cell per

chip. If more are required then there could be 2 intermediate cells per

chip, etc. The second refinement is to enumerate all free cells

initially creating a kind of a free list After a consing cycle

the total number of consed cells is known globally (because of the

enumeration of the cells that want to cons). All free cells

decrement this number from their ID number. IThis is analogous
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Fig. 22. Consing
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to the concept of afree lisi. The difference is that

it is accessed in parallel by address arithmetic.

It is often uscful to allocate more than one free cell at a time.

Marked cells may want the address of some independent number of free cells.

Some might want to cons 3, others 7, etc.

Call this number DELTA.

Goal: Enumerate the

cells that want to cons so that the next enumerated cell from a

given enumerated cell will bce ID+ DELTA.

For example:

cell A: deltea3 id-O
cell : delta-2 id-3
cell C: delte-5 id-4
cell D: delta-2 d-9

Once this is done cells that want to cons will point to the first cell in a block of DEILTA intermediate

cells. Free cells can be collected by accessing the contiguously addressed intermediate cells. See figure

<consing blocks>. This is easily accomplished by modifying the initial conditions of the enumeration

ez
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Fig. 23. Consing Blocis of Frcc Cells
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algorithm. Using the enumeration algorithm presented in the last section just count yourself DELTA

times when setting up the 0-cubes. NUMBER-MARKED = DELTA initially for the 0-cubes.

4.4.1 Free List Consing

Another modification of this algorithm would be to directly calculate the address of free cells instead of

using intermediate cells. This can be done by organizing free cells into a linearly contiguous region. A

method for doing this is described in the section on grey code transformations. The address of the first

frec cell is a globally known number: NEW. Enumeration is done as usual. Instead of going through the

intermediate cells the address of a free cell is directly calculated. When the consing is complete NEW is

incremented b the total number of cons cells allocated in the consing cycle. This is the next free cell in

the list.

Define the list to be a linear ordering of all cells in the machine which wraps around from the end

to the beginning. Non-free cells are located between a pointer called OLD and NEW. If Non-free cells

can be reclaimed from the cells directly ahead of O.D then NFW can wrap around allocating new cells

until it reaches OLD without ever having to perform garbage collection. If NEW ever hits O1.1) then

garbage collection is required.
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Fig. 24. Free List Consing
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Gargabe collection for this scheme requires that active structure that is distributed through the

linear array be compacted to a contiguous region at the beginning of the linear array. The rest of the

linear array will be free cells and free list consing can continue. This operation is accomplished in three

steps:

1) Enumerate cells that are part of active structure. Active cells are numbered
from 0 to M. Each cell's ID will be its new address at the beginning of the
linear array.

2) Pointers within the active structure must be updated with the new
addresses. Since each cell knows its new address this operation is easy.

3) Once address have been updated each cell moves to its new address.
Moving data to a cell that is itself moving data to another cell is no problem if
there is a small amount of temporary storage available at each processor. New
data just replaces ile old data.

The time required to do Garbage collection is independent of the amount of data to be moved and

logarithmicly proportional to the size of the N-cube (enumeration) if one assumes that dcliery cycle time

is constant. Enumeration takes 20 delivery cycles which is logarithmicly proportional to size of the

N-cube. Updating connections (bidirectional pointers) can be done in constant time because each cell
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can only have a small number of connections. Moving cells requires time proportional to the amount of

data containcd in each ccll.

4.5 Grey code transformations

This section describes how to find a Hamiltonian pathl through an N-cubc, or a subcube of the

N-cubc. The N bits can be subdivided into S sets (Si bits in each) which will define an S dimensional

space with 2Si elements in each dimension. For example, the 20 bits in the addrcss .f each processor in

the 20-cube could be divided into 3 sets: S S2 S3. SI would be 6 bits; S2 would be 6 bits; and S3 would

be the remaining 8 bits. This would define a 26x26x28 3-dimensional space embedded within tile

N-cube. See figure <3-d space projected onto N-cubc>.

Fig. 25. 3-d space projected onto N-cube
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AD0I89

The address space of the machine is divided into 3 sections which define a 64x64x256 3
dimensional space.

I. Visit every menbcr is set exactly once.

:>
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A Grc) coding is a numbering where the binary representation of each number is only different

from its predecessor by I bit. Such a numbering will define a Hamiltonian path through an N-cube. An

algorithm is prcsented for convening boolcan numbers to grey coded numbers and convening grey coded

numbers to boolean numbers.

(defun number-to-grey (number)
(do ((i bits-In-pointer (- i))

(result number))
((- i 0) result)

(if ( (nth-bit i number) 1)
(setq result (toggle-bit (1- ) result)))))

(defun grey-to-number (number)
(do ((i bits-in-pointer (- i))

(result number)
(first-I-p nil))

((a i -1) result)
(cond (first-I-p

(cond ((- 1 (nth-bit (1+ ) result))
(setq result (toggle-bit i result)))))

((not first-l-p)
(cond ((- (nth-bit number) 1)

(setq first-I-p t)))))))



Example: 5-cube

* . base 2
0 00000
1 00001
2 00010
3 00D011
4 00100
5 00101
6 C00110
7 00111
B 01000
9 01001
10 01010
11 01011
12 01100
13 01101
14 01110
15 01111
16 l0000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11D000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111

Grey Coded N
00000
00001
00011
00010
00110
00111
00101
00100
01100
01101
01111
01110
01010
01011
01001
01000
11000
11001
11011
11010
11110
11111
11101
11100
10100
10101
10111
10110
10010
10011
10001
10000

4.6 Projection or a tree onto a linear sequence

This section describes projecting a tree onto a linear sequence. This operation is useful for

accessing linear sequences of cells in log time instead of linear time. For example: hllcre are 100 linear

blocks of 1000 cells each. A unique datum in the first cell of each block is to be copied to every element

of the respective linear blocks. It would be advantagcous if a tree could be superimposed on the linear

blocks.

This turns out to be very easy by combining the ideas of dimension projection and grey coding.

The first step is to define the position of each ccll in the block rclative to the first cell by the folding tree

dimension projection algorithm. Once this is done the either dimension projection algorithm can be used

by using the position of the cell in dithe block as its address offset by the address of the first cell in the

block.

55-
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The goal is to have each cell in tie block know its position in the block (from which it can calculate

the address of the first cell). Thc block is a set of contiguous cells ordered by a grey code numbering.

The first cell knows the number of cells in the block. We will number the cells in the block by using the

folding tree dimension projection algorithm to calculate children. The calculation of each child is done

by using the offset from the first element as the address and then grey code adding the address of the first

element. This is best illustrated by example shown in figure <linear projection>. In this example there is

a 5 clement block starting at address 011, 2 in grey code numbering. The first child of 011 calculated

using the folding tree dimension projection algorithm (the rule is 000 -) 001) would be 010 (011 grey+

001 = 010, or 2 + I = 3). During the second step 000 (index:000) and 010 (index:001) would calculate

children using the rule 00x -> 01x. The child of 000 is 110 (011 grey+ 011 = 110, or 2 + 2 = 4). The

child of 010 is 111 (01] grey+ 010 = 111, or 2 + 3 = 5). The next step uses rule Oxx -> lxx. The child

of 000 would be 101. All other cells calculate children that are outside of the block.

A B C D
0 000
1 001
2 011 0 000
3 010 1 001
4 110 2 010
5 111 3 011
6 101 4 100
7 100

A-index
Beaddress. sequence is defined by grey code numbering
Cublock offset
D-tree folding dimension projection address (same as C)

Folding Tree Rule (use E)
lxx -> Oxx
01x - OOx
001 -> 000

4.7 Cartesian Product

The Cartesian Product calculation can be done by using the ideas of enumeration and linear

projection. Given two sets A and B the cartesian product of these two sets is the set of pairs of each

possible combinations of I element from A and 1 element from B. The cartesian product will have

IA*llBI elements.



57 -

Fig. 26. Linear Projection
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Step 1: Enumerate set A and set B.

Step 2: Each element of A is sent to IDB. (ID is the enumeration)

Step 3: Each element from A in the linear block replicates itself B times
into the next B elements from where it started. This is done by
linear projection.

Step 4: Each element of B is sent to ID. This takes one delivery cycle.

Step 5: Each of these elements replicates
itself A times. Each successive element is offset by lBI .

Step takes 2*logN PDC for 2 enumeration. Step 2 takes 1 GDC. Step 3 takes 2*logJBJ PDC. Step 4

takes 1 GDC. Step 5 takes loglAl GDC. Obviously it is better to call the smaller set A because replication

does not follow a nice pattern.

4.8 Sifting

Even though locality is not important in our model of the Connection Machine it is the case that

cells that are closer together can communicate faster than cells that arc separated by large distances.

Sifting is a global algoridhm for moving cells around the communication network in such a way that cells

are closer together. Pointers TO a cell must be updated when that cell moves. An optimization makes it

possible to move several times before updating pointers.

1
- . .
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Fig. 27. Cartesian Product
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The basic idea is to pair processors and compare the pointers stored by the cells on those two

processors. If trading positions is mutually beneficial then the cells trade places. Pairing is done by

choosing a dimension and comparing processors along that dimension arc. When cells trade places the

processors remember when (what iteration) the trade took place. Several iterations can be made without

updating pointers TO the moving cells. After several iterations cach cell sends a message to the processor

where the cell it pointed to used to live. This message then traces the trail left by the cell. When the cell

is found then a message containing the new address is sent back to the origin of the message. The

procedure would be done for each pointer TO a cell.

An example is shown in figure (Sift). Cell X points to cell A which lives in processor 1. Cell A

moves from processor 1 through 2 and 3 to processor 6. Cell X sends a message to processor 1 which

knows that the cell that used to live there moved to processor 2 on the first iteration of the SIFT. The trail

is followed to processor 2 which knows that the cell that lived there after the first iteration moved to

processor 3. The trail is eventually followed to processor 6 where cell A now lives. A message is sent back

to X with the new address.



59-

Fig. 28. Sift

4.9 Arbitration

Given a set of active cells Arbitration selects a single element This is useful for accessing elements

in a set one at a time.

Step 1: All cells in the set are activated.

Step 2: Iterate through all bits of the address.
For each bit: If there are any active cells whose address
is a I in this particular dimension then those cells stay
activated and all others are deactivated. Existence of active
cells is determined by using the GLOBAL bit. In the case
where all cells are turned off just back up one step.

When this algorithm is complete the element of the set with the highest address is active. This

computation requires O(N) 1-cycles. An example is shown below. Initially all cells are active. The goal is

to deactivate all but one.

StepO Stepl Step2 Step3 Step4 Steps
01101
10011 10011
11001 110010 01 01 11001
11011 11011 11011 11011 11011 11011
10111 10111
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4.10 Sorting; no, not again

Using the CM as a sorting machine can be very useful. For example, to remove duplicate elements

from a set: Sort the set and only keep first of duplicate elements. Sorting on highly connected networks

has been described in [Kung] will not be described here.

4.11 Macro Co'ls

Abstractly, it would be desirable if cells were not strictly limited to be contained on a single

processor. To state it another way, granularity 2 should only loosely be defined by processor size. Cells

will still have to be fairly small to run efficiently on the machine but cells should scale up gracefully.

Large cells can be made from smaller cells by connecting them together to form a conglomerate structure.

Unfortunately this requires that large cells communicate by using delivery cycles which is fairly

inefficient. It would be better if large cells be contained in contiguous memory so that communication

would be done ovfer real communication paths. NEWS flags arc used to group cells together to form

macro cells. A macro cell lives on 2 or more contiguous processors. NEWS communication can be used

because communication is well defined and the overhead of general message passing is not needed.

Macro cells arc easily grouped into 2 dimensional areas. Mail to the cell could be delivered to any of the

processors that comprise the cell. Abstractly, mailboxes could be located on any of the processors in the

cell. This should all be transparent to the programmer.

1. Kune usesa parallel version of a HBtcher merge sort
2. Granularity is the amount of memor) required for a cell.
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Fig. 29. Macro Cells

Single cells are grouped together to fromn larger Macro cells.
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5. Algorilhnls for Binary Trees

This chapter deals with algorithms for manipulating binary trees as data structures on the ChM.

Trees are a useful structure for parallel machines because they relate a root to N leaves through logN

levels using N-I branches. Many interesting things can be done by using regular message passing

patterns within trees.

There arc two typcs of trees discussed in this thesis:

Calculated trees: The address of the parent and two children of a branch are a
function of the address of the branch. Note that the topology of a calculated
binary tree cannot change. Calculated trees arc usually projected onto some
other topology so that it can be treated as a tree. An1 example of a calculated
binary tree is the spanning binary tree used in Dimension Projection described
in Chapter "N-cube Algorithms".

Explicit trees: The address of the parent and children of a branch are stored
explicitly by the branch. The advantage of explicit trees is that they can be
manipulated quite easily.

Algorithms described in this chapter that treat a binary tree as static structure can be used on either

calculated or explicit trees. For example, the collection algorithm can be run on either a calculated tree or

an explicit tree. Algorithms that modify the structure of the tree (eg. tree balancing) can only be used on

explicit trees because the structure of a calculated tree can't be changed without modifying the function

that calculates the addresses of parents and children.

5.1 Passing data in trees

The most basic operation on a tree is passing data between the root and the leaves. Sending data

from the root to the leaves is called broadcasting because a single datum is send from the root to many

leaves. Sending data from the leaves is called scrialization because many data from the leaves are sent to

the root which receives them serially.
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5.1.1 Serialization

Problem Statement: Each of a subset of the lcaves of a binary tree contains a datum. The goal is to

take the data out of the tree at the root one at a time to form a serial stream. This is to be accomplished

by sending the data through thc branches of the tree towards the root. Note that the cells that make up

the tree (the fan cells) have a fixed amount of memory to buffcr data. ssume each cell has enough

memory to buffer one mcss.ce (excluding mcmory used f. ;cceiving mail). 1h a cell is buffering a

message we will say that it isful/ i it is not buffcring a message we will say that it is empt).

Fig. 30. Serialization

3 

M number of leaves
log depth of tree
I * number of leaves containing data

This operation runs in O(M) time on a serial machine because it has to traverse the entire tree to identify

leaves that contain data. This operation can bce done in O(max[log M, N]) on the CM. Although there is

no dramatic decrease in running time between running this operation on the CM and a serial machine, it

is useful to see how this operation is performed ith decentralized control on the CM. This section

�) (()(7) ��\ ) )
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outlines an algorithm for tree scrializaton and some useful extensions.

Algorithm for linear serialization:

Initially leaves with data are marked.

Repeat steps 1 through 3 until there are no data is left in the tree.

Step : Each full cell (either leaf cells or fan-in cells) sF''s the datum it
is buffering to its parei .

Step 2: Each cell cell in the tree ce., receive 0, 1. or 2
messages. Every cell always has enough room to receive a
message from each of its children.
If the cell received no messages it does nothing.
If the cell received 1 message and it is empty then the new datum
is put in the buffer. If a empty cell
receives 2 messages it puts one in the buffer.
If a cell put a new message in its
buffer it sends a 'confirm" message to the child that sent it.

Step 3: Each cell that receives a confirm message sets itself to the
empty state.

VAR value: number
VAR datur-present: {yes no)
VAR confirm: {yes no)
VAR right-child-mail, left-child-mail: {yes no)
VAR right-child, left-child, parent: connection ;;;also declares mbx
VAR right-mail, left-mail, parent-mail: {yes no)
VAR right-mbx, left-mbx, parent-mbx: MBX
VAR aux: pointer
VAR cell-type: node fan leaf)

;;;assume leaves of the tree are marked ( datun-present yes)
(until (not (global (eq DATUM-PRESENT 'yes)))

;;;STEP1
;;;DATUM-PRESENT at the root means data at the root
(if (and (eq cell-type 'node)

(eq DATUM-PRESENT 'yes))
(progn

;;;do whatever you want with the value
(set DATUM-PRESENT 'no)))

(if (and (or (eq cell-type 'fan)
(eq cell-type 'leaf))

(eq DATUM-PRESENT 'yes))
(sent value parent))
;:;STEP2
(if (and (- left-mail 'yes)

(a datum-present 'no))
(progn
(set value left-mbx)
(set datum-present 'yes)
(set aux Left)
(set confirm 'yes))

(if (and (a right-mail 'yes)
(a datum-present 'no))

(progn
(set value right-mbx)
(set datum-present 'yes)
(set aux Right)
(set confirm 'yes))))
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(set left-mail 'no)
(set right-ma1l 'no)
;:;;f a datum was taken, confirm to the sender
(if (eq confirm 'yes)

(send NULL aux))
(set confirm 'no)
;::STEP3
(if ( parent-mail 'yes)

(set datum-present 'no))
(set parent-mail 'no))

Assurnin; that the trece is balanced this algorithm nins in time O(d + n) where n is the ,iumber of

data to be serialized and d is the number oflevcls in the tree. It takes C(d) time for the first data to reach

the root. t then takes O(n) to extract the n data.

PROOF: I shall prove that n data contained in a set of n connected set of branches including the root can

be extracted in O(n). In a connected set of branches containing the root the parent of each branch is also

in the set. Assume that the data can be moved into such a set in O(d) time. Each fan-in cell in a tree is

the root of a "cannonical binary subtree". A canonical binary subtree is a root cell with two children (left

and right). Each canonical binary subtrec is in the start position. <see figure: tree states) We will try to

prove that if the root of any subtree is empty for more than 2 "cycles" (steps 1 through 3 twice) then

there are no data in the either of its children or their children. Assume this is the case for the leaves of

the canonical binary subtree. We will try to prove it for the root of the subtree. From the start position

all possible transitions from the start state to the end state are drawn in figure b. There is no way to

change states in such a way that the root is empty for more than 2 cycles. (Assume this for the leaves of

the canonical subtree.) By induction a single datum can be extracted from the root of each canonical

subtree 2 cycles after the last datum was extracted until the canonical subtree is empty. This is also the

case for the root of the tree.

Fairness

Instead of serializing a single datum from each leaf say an infinite stream of data is being fed in at

each lecaf. We would like our algorithm to have the property that data from each leaf will eventually get

to the root. The previous algorithm fails in this requirement because it always chooses data from the left

branch. Fairness can be accomplished by each fan-in cell remembering which branch it chose the last

time it had to choose between a datum from left-child and a datum from right child. The next time the
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Fig. 31. Tree States

fan-in cell has a choice it will take the datum from the other child. This mechanism works because a

datum can never be blocked indefinitely. If it is blocked once it will be selected on the next opportunity

to move up the tree.

Sorting

A useful extension to serialization is extracting the data in sorted order. This is accomplished in 2

steps: 1) Data are initially sorted into a heap; 2) The choice between the data from the two children at

each branch of the tree is based on a comparison. Assume that the comparison operation is greater-than

and we want to form a stream from smallest to largest.
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W-Number of data
D-Depth of tree

Step 1:
Divide the fan-tn cells into two sets
(odd and even) based on their depth in the tree. The root is even (level ).

STEP 2: Forming a Heap
Apply the following steps to the tree until no date are exchanged:

Step 2-1-even: All odd cells send datun to the even cell above.

Step 2-2-even: Even cells take the minimum
of the the de from their children and the
datum they are uuffering. If the smallest datum s
from a child, the old datum is replaced
by the smallest datum in the buffer. The old
datum is sent to the child that sent the
smallest datum.

Step 2-3-even: Odd cells that received data replace the old datum
(now buffered above) with the new datum.

Step 2-4-odd: All even cells send datum to the odd cell above.

Step 2-5-odd: Odd cells take the minimum of the the data from
their children and the datum they are buffering. If the
smallest atum is from a child, the old datum is replaced
by the smallest datum in the buffer. The old
datum is sent to the child that sent the smallest datum.

Step 2-5-odd: Even cells that received data replace the old datum (now
buffered above) with the new datum.

It takes O(D) to form the heap.

STEP 3: Removing Data
Once the data are in a heap the next step is take then out in sorted order.
This is done by taking on element out of the top of the tree after
running steps 2-1-even through 2-6-odd.
Notice that after an iteration empty cells, or bubbles", will always
be on an even level. This is important because
2 adjacent bubbles will allow a datum to go up to the next level of
the tree without being compared to the datum being stored at its sibling.
This algorithm runs in O(N) time.

This algoritlm is significantly faster than heap sort on a serial machine because the heap need not

be totally reset after removing an clement from the top. Running time on a serial machine is O(N * D)

versus O(N + D) on CM.

5.1.2 Broadcasting

Sending a datum from tlhc root to the leaves is called Broadcasting. A single datum can be

replicated 21) times in 0(1)) time. Algoridthm:

Step 1: If you receive mail from Parent send it to Left-Child and Right-Child.
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Fig. 32. ScrialiNation Sorting

Fig. 33. Broadcasting
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5.2 Adding Leaves

It is important that trees be balalnced because the efficiency of many algorithms is proportional to

the depth of the tree.

Definition of a Balanced Tree: A tree where the number of leaves
below the left side of a branch is within of the number of leaves
below the right side of the branch.

It is useful if trec r difications maintain a balanc( :rce. This section cscribes an algorithm for adding

single elcment to a bala.:ed tree resulting in a balanced tre.

Thle address of the new leaf starts at the root of the tree. ibis address is passed down thie branches

of the tree until it reaches the fringe where it is added to the tree by adding a ncw branch. To maintain a

balanced tree each branch remembers which branch the last new element was sent down. The next new

element is sent down the other branch. Since new elements alternate between the left and right side of

each branch is obvious that this maintains a balanced tree. See figure (Adding I.caves>.

Fig. 34. Adding Leaves

I. This algorithm is decribcd in If lilli] and [Browning].

'L
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5.3 Deleting Elements

The algorithm given in this section deletes a subset of leaves from a binary tree. The resulting tree

in not necessarily balanced. See figure <Deleting l.caves.

Step 1: Deleted leaves send an empty" message to Parent.

T' .ate Step 2 until no messages are sent:
S. p 2:
If a fan cell receives and empty message from one
of its sides (left or right) and has not received an .;npty" message
form the other side it sends a replace" message with the address
of the other side.
If a fan cell receives an empty" message from one side
and has received and empty' message from the other side then
that branch sends an empty" message to Parent.
If a fan cell receives a replace" message from one its sides
it will replace that side with the address contained in the
message.

Step 3: Each fan cell sends its address to each side that has been replaced.
The cells that receive these messages replace Parent with the new address.
This makes the links between branches bidirectional.

Fig. 35. Deleting Leaves

I
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5.4 Collection

The goal of collection is to create a new tree from the subset of the leaves of another tree called the

master ree. The resulting tree is not necessarily balanced. This algorithm is particularly useful for

collecting a tree of marked cells that are not connected in any way by using the spanning binary tree

introduced in Chapter "N-cubc Algorithms".

As in all parallel algorithms, we would like to distribute the computation as much as possible and

keep the total amount of communication low. The goal is to form subtrecs in the leaves of the master tree

and pass them up the branches of the master tree merging them together. The formation of the new tree

with N elements will require N-1 new cons cells. It would be convenient if these new cells could be

consed at the same time because it more efficient to cons many cells at once. A tree with a single element

is created from the new cell. The left side of this tree leaf of the master tree that created the new cell; the

right side is null. Two of these trees can be merged together to form a tree whose left side is a tree that

contains the left sides of the original tree and %whose right side is null. This tree can be merged with others

of this form. See figure <collection>.

Fig. 36. Collection

Add·I
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STEPI: form subtrees at the leaves that weant to be collected
Each leaf that wants to cons gets a new
cell (see cons a19 in n-cube section).
It is only necessary to form a uni-directional
tree while merging. The uni-directional
tree can be made into a bidirectional tree in
one step when the main iteration
collection step is complete. At the end of this step each leaf points to the
root of a canonical subtree.

STEP2: iterate:merge trees send result to parent.
This Per can be done in : DCs. The nice thing about this step is that the
merging can be done concurrently with passing the ubtrees
up the neaster tree.

5.5 Copying

Copying a tree or a graph can be easily done in constant time (assuming a constant number of

connections per cell) once the structure is marked so the parts know they arc copying themselves. First,

each cell makes a copy of itself. Each cell then passes the address of the new cell to all cells it is connected

to. These cells pass the address to the copies of themselves so the new graph will have the same

interconectivity as the original network. See figure (copying>.

Fig. 37. Copying

Ab£A

I
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Step : mark the tree (or network)

Step 2: Each cell that is coping Conses a copy of itself.

Step 3: Send address-of new cell to all cell you are connected to.

Step 4: Send received address to new cells and form new graph structure.

5.6 Enumeration

Enumeration is useful for establishing priority and calculating hashing fctions. The algorithm

presented this will enumerate the leaves of a tree in 0(I)) time where D is the depth of the tree. See

figure (enumeration).

Fig. 38. Enumeration

STEP1: Each branch counts the leaves to below in on its left side and
its right side. These numbers are left-children and right-children.

STEP2: The root of the tree sends the number O to its left side and
the number left-children to its right side. Semantically this means
the left subtree numbers its leaves from 0 to left-children - and the
right subtree numbers its leaves from left-children to left-children +
right-children. Each branch receives a number N from Parent. The
branch sends to its left side and N + left-children to its right side.
The number that the leaf receives will be its enumeration.

I
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5.7 Balance

It is often easy to build unbalanced trees, but most algorithms work much faster if trees arc

balanced. The algorithm presented in this section uses the binary tree projected on the boolean N-cube

as a template for the balanced tree. The Icaves of the tree that is to be balanced calculate where they fit

into the tree and send their address to tihe appro- 'ate branch which ill be the new Parent.

The first step i to enumerate tie N leaves of the tree 0 to N-1. lic root also broadcasts the total

number of leaves to each leaf. Assume that cells I through N- are to be used for the template of the tree.

We will use a slight modification of the algorithm for projecting a binary tree onto an N-cube to calculate

parent of each cell. Here is the algorithm repeated:

1xxx > O1xx *> O00x > 0001

left is ost significant

To make the this algorithm work for a linear sequence of address reverse the low order M-1 bits on the

Mth level of the tree. See figure <Balanced tree)>. The bits to be reversed are in parenthesis. Each leaf

calculates the address of its new Parent by reversing the low order M-1 bits (depending on its level) and

applying the algorithm for calculating its Parent given above. Call this number New-Parent

Fig. 39. Tree Balancing

00Im
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The root of the tree will cons N-1 new cells which will be the branches of the balanced tree. The

Dew cells are in a linear block of addresses from Q to Q+ N-1. The new cells calculate their parent within

this linear block using the algorithm above. The address Q is broadcast to all leaves of the tree. 'Ihe

actual address of the new parent will be Q + Ncw-Parcnt.

Figure <T(rec Balance Example) shows an example of balancing a tree with 5 leaves. The first step

is to enumeratc hc lcavecs of Lth irec from 5 to 9 (N + 0 to 4). .: root of the tree i,-iss 4 ncu cells in a

linear block that will be used as fan cells. T'hc first cell is at address Q. This address is broadcast to the

unbalanced tree so that each cell can calculate the address of its parent. Each ccll in the linear block also

calculates its parent.

Fig. 40. Tree Balance Example

CEO Tart

LIll
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6. Application: GAI on the connection machine

GAll is an expert system which infers the structure of DNA molecules from data about their

segmentation by enzymes. Genctisists use GA] implemented on a serial computer. Unfortunately, the

practical scale of problems that can be solved by GA] on a serial computer is limited by computational

complexity (rather than memory limitations). GA1 explores a search space of possible solutions. This

chapter examines the feasibility of impleme;. ing GAI on the Connection :hine by explorinll this

search space in parallel.

Because genctisists want to find all solutions, GAI uses an exhaustive generator to propose all

possible structures which are then tested for correctness. This approach is sometimes called

generate-and-test. Since the solution space is very large (ic >>108 for small problems) GA1 relies on

early pruning to reduce the number of structures that are considered. The space is generated

incrementally by filling in partial descriptions of the DNA structures. The generator defines the search

space by incrementally building up partial descriptions. The partial descriptions form a tree where each

successive level is a more complete description. The leaves of the tree are complete descriptions. Each

partial description represents a class in the solution space, or, a branch in the generation tree where the

leaves of the class are represented by the common branch. When a partial description is pruned, the

entire class it represents is also pruned. The key point is that there is enough information so that partial

descriptions can be eliminated with incomplete description. As the tree is generated level by level

"pruning rules" are used to eliminate impossible branches of the tree therefore saving the cost of

generating the pruned branch's offspring. The use of pruning rules drastically reduces the solutions

space that needs to be searched.

1. Stcfik]
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6.1 Generate and Test Three Letter Words

For example, let the search space be the set of 3 letter "words". The generator builds up partial

descriptions by placing letters one at a time into a template which has 3 slots for 3 letters. For each of the

3 slots there are 26 possibilities. one for each letter of the alphabet. 'hc branching factor of the tree is 26

and the tree has 26 leaves. All of the leaves need not be generated though. If it is known that there are

no 3 letter ,.ords wherc the first two letters are the same and not vowels then branches of t' tree that

match "**_" can bc pruned. This simple prune will save 262 leaves from being generated.

Fig. 41. Word Generation Example

De-

AAZ

The factored search space for complex problems is still too large for feasible computation. There

are two major parts of the computation:

1) time required to generate new branches;

2) time required to run pruning rules on a generated partial description.

The time complexity of the serial version is proportional to the total number of nodes that are generated

and evaluated. Generating and evaluating the tree in parallel would be more efficient. Pnruning rules can
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still be used when searching the tree in parallel to prune impossible partial descriptions so memory

requirements for the parallel machine versus the serial machine would bc within a constant factor. The

time complexity of a parallel approach is proportior.al to the depth of the tree times the log of the

branching factor assuming there are always enough processors available to store the partial descriptions

of thc tree. Since the scarch tree produced by the GAI generator tends to be bushy (high branching

factor) the parallel solution is theoretically faster.

nc space complexity of the serial approach depends on the search strategy. If a breadth first

search is used where the levels of the tree are generated one level at a time the space complexity of the

serial approach for cach level of the generated search space will be proportional the valid partial

descriptions at that level. Since the parallel approach is essentially a parallel breadth first search the space

complexity of the parallel approach at each level of the generated search space is also proportional to the

number of valid partial descriptions at that level.

6 time to generate new partial description
E a evaluation time
L * levels in the tree
N branching factor
T total cells generated after pruning

Serial: GET
Parallel: (EL)(GlogN)

For GA1:
T >> LloQ
G E
L * 10 -> 30
N * 10 -> 50
T * 10'3 -, 10*8

6.2 Description of Segmentation Problems: segments and sites

The goal is to infer the structure of a circular DNA molecule from expcrimentul data.

The structure of a DNA molecule is defined as an ordered set of enzyme recognition sites on the

circular strand. Each solution is a sequence of segments separated by sites that is consistent with the

experimental data. Segments are measured in arbitrary units. For example: figure (Circular DNA

strand>. depicts a circular DNA molecule with 6 sites and 6 segments
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Fig. 42. Circular DNA strand

saw

t.I

.t7 BAN

Simple examplc of a circular DNA strand cut by three enzymes.

6.2.1 Experimental Data

An enzyme recognition site is a point where a particular enzyme cuts the circular DNA strand. The

BAM enzyme would cut the ring into two pieces at the places labeled BAM. Using the enzyme BAM to

cut the segment would result in 2 segments with size 2.35 and 1.65. Experiments are carried out using

one or more enzymes to cut the strand at all of the recognition sites cut by those enzymes. The size of the

resulting segments can then be measured. For the purposes of this discussion assume that the data is

error free.

6.2.2 A Template for the Solution

A template is a data structure with slots for each site and segment of the physical structure. Once

the template is defined the sites and segments for filling it in must be determined. The generator

produces descriptions by placing these sites and segments into the template. Abstractly the problem can

be viewed as a slotted table top and a set of blocks that fit into the slots.
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Fig. 43. Bam Cuts

BAN
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The first goal in calculating the template is to determine the number of sites and segments in the

circular structure. This is done by counting the segments in all of the -enzyme digests. The number of

segments resulting from -enzyme digests determine the number of that particular enzyme recognition

site in the solution. For example: The -enzyme digest using Bam resulted in 2 segments; therefore we

know there arc 2 Barn recognition sites. The sum of the individual sites is the total number of sites. The

number of segments is equal to the number of sites.

The ncxt step is to find the set of segments that will be used to fill the template. The size of the

segments bet een the sites can be determined from the 2-enzyme digests. All 2-enzyme digests will

include all of the segments between 2 sites. here arc (N(N-1))/2 2-enz)me digests for N enzymes. All

segments betweecn any two adjacent sites will be produced by one of these digests.

In the example problem 6 digests would be performed. The table below contains the segment sizes

produced byusing the indicated enzyme or enzymes.

I
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Fig. 44. Blocks and Slots

EGMENTS: .18 1.0 12 .27 1.87 .95 .18 1.6 1.4.75.25

a SITES: BAM BAM ECO ECO HIND HIND

1-enzyme digests:
Hind III: 3.82 .18
Bam: 2.35 1.65
Eco RI: 3.0 1.0

2-enzyme digests:
Hind III & Bam: 2.35 1.2 .27 .18
Hind III & Eco RI: 1.87 1.0 .95 .18
Ban & Eco RI: 1.6 1.4 .75 .25

The segments sizes for filling in the template arc a subset of the segments in the 2-enzyme digests with

some duplicates. In the example problem that set would be:

(.18 1.0 1.2 .27 1.87 .95 .18 1.6 1.4 .75 .25)

The goal is to take this information and induce the structure of the DNA molecule.

6.3 Generate and test

The strategy for finding solutions is the same for the parallel and serial approach: generating a

search tree and pruning losers. The considerations for making the search fast vary considerably. This

section is a discussion of the generate and test strategy independent of the target machine.

I
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6.3.1 The Generator

The generator is a procedure that produces the offspring of a branch in the search tree. A branch of

the search trec is a partial description of a final structure. A partial description is a template and a set of

sites and segments, some placed in the template, some unplaced. For the GAI problem the template is a

sequence of alternating slots for sites and segments. At level N of the trec the generator generates the

data stnirlure for new offspring of each partial description at level N-1. The general-; then copies the

data of the parcnt to offspring and places one of the unplaccd sites or segments (segment if level is even,

site if level is odd) at each of the new partial descriptions. The branching factor at cach level is the

number of unplaced sites or segments. Figure (example generation> shows a branch (a partial

description) of a template with 3 sites and 3 segments. One site and one segment are placed. The

generation places an unplaced site. There are two unplaced sites so the branching factor will be 2.

Fig. 45. Example Generation

A

UNPLACED SITES: A
UNPLACED SEGMENTS: 2 4

-- NEXT SITE

UNPLACED SITES: A B
UNPLACED SEGMENTS: 2 4

24

24

After the new partial descriptions have been constructed the pruning nirules are applied to them,

pruning inconsistent descriptions.

I

I

Ill
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6.3.2 Pruning rules

Once partial descriptions are generated they arc evaluated to determine if they are consistent with

the experimental data. This section will discuss 2 pruning rules and used to eliminate inconsistent

structure. For the complete set of pruning rules see appendix <pruning niles>.

Rule P: If a .;gment is about to be placed which would increase
.he mass of the .rrent structure to be greater than the expected

' molecular weight and there are more sites to be placed, then this
branch of the generation may be pruned.

In the previous example: It is known that the total size of the molecule is 7. Segments 4, 3, and 2

are placed in the three segment slots the total size would be 9. This branch may be pruned because the

summation of placed segments is larger that the known size of the molecule.

Definition P13: Allowable inter-site segments. For recognition sites
E1 and E2. a segment is said to be allowable between El and E2 when
it appears in the appropriate digests. Specifically, if E1 is distinct
from E2. the segment must appear in the 2-enzyme complete digest involving
E1 and E2. Otherwise it must appear in the 2-enzyme complete digest for El.

Rule P14: If a site El is about to be placed and there is another site E2
preceding it in the description (and there is no site equal to El or E2
between them) and the sum of the intermediate segments is not an allowable
segment for E and E2, then this branch of the generation may be pruned.

Using the data in example <example generation>: a site A is placed, then segment 1 is placed, then a

site A is placed. The segment 1 does not appear in the -cnz)me digest using enzyme A. This branch

may be pruned because a segment of size 1 cannot be the only segment between two A sites.

6.3.3 Canonicalization rules

In the systematic generation of descriptions multiple partial descriptions are generated that represent the

same physical structure corresponding to reflections and rotations. Generating these redundant

descriptions is wasteful and unnecessary. Canonicalization rules prune reflection and rotated descriptions

early in the generation. These rules are applied at the same time as pruning rules. See appendix

(pruning rules) for a list of these rules for circular structures.
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Fig. 46. uivielcnt Structures

B
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6.3.4 Generator Loop

The processes of exploring the search tree is by expanding one level of the tree and then pruning

inconsistent partial descriptions. The search is complete when the template of each leaf of dithe tree is full

(ic. a site is in every site slot and a segment is in every segment slot.)

Generator Loop:
2) alternately place site or segnent in all active partial descriptions
until ten;late is full. (place a segment first)

2) apply pruning rules to illuminate inconsistent partial descriptions

6.4 Implementation Considerations for Serial and Parallel Search

The parallel and serial approaches differ in their use of time and memory. The running time of the

serial approach is bounded by the number of nodes that have to he generated (and therefore cvaluated)

before pruning. he number of potential final descriptions (Icaves of the search tree) is:

~~~

A cr
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N · total segments to be placed
N · segnents slots n template
[ numer of enzyme slots in template
TI · for each enzyme i, T is the number of sites of that type

(NI/(N-M) )(E I /PI(TiI ))(1/(4+E)

For the example problem with 6 sites and 6 segments this number is:
N 11
M * 6

-6
T1 · 2 ;:co
12 -2 ;bam
T3 2 ;hind III

(,11/51)(61/212'21)(1/12) 2 494 800

The number of branches of the search tree is proportional to the number of leaves. Most branches

arc pruned early in the search so only a small fraction of the search tree is ever generated.

The running time of the serial search is limited by the number of partial descriptions generated;

memory is no a primary consideration. Thercfore being able to prune the tree as early as possible is the

primary consideration for the scrial approach. This implies that the pruning rules should be as effective

as possible at ceding out losers early.

On CM. the tree is generated in parallel. Pruning rules arc necessary because there is not enough

storage to store the whole tree. The primary cost on CM is proportional to the communication costs of

generating a nw levels of the search tree which is proportional to the branching factor. Because of this

limitation the storage space for representing a partial result should be as small as possible.

6.5 GA1 on the connection machine

The goal of the parallel implementation is to search the tree in parallel. Each partial description is

stored at an individual CM cell. Generation, pruning, and placement can be done in parallel. The key

factors in this application are the simple processors of CM and high communication costs. The SIMD

processors require the template to be set up in such a way that a pruning rule be executed in parallel at

each cell in the machine. A similar constraint applies to segment and site placement. The most important

consideration is being able to generate new partial description clffcicntly because of the high

communication costs. The amount of storage required for each partial description should be as small as

possible to reduce the time needed to copy that data to new partial descriptions.
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6.5.1 Tcmplate Structure

The partial description require a site-stack and a segment-stack to place new sites and segments.

Unplaced-site-stack and unplaccd-scgment-stack arc used to store unplaced sites and segments. When

placing a site, a site is taken out of the unplaced-site-stack and placed on top of the site-stack.

6.5.2 Generator on CM

Givcn a partial description with N site; or segments to place will generate N new partial descriptions ec-ch

with a differcnt site or segment placed. This is accomplished by finding N free cells and enumerating

them 0 to N-] (call it ). copying the data to all the new cells, and then placing one of sites or segments as

function of 1. The limiting step is copying the data to the N new free cells.

Initially a segment is placed in a single partial description, the root of the tree. The generator is

then applied to all partial descriptions alternately placing a site or a segment

Generator:
1) first place segment in the root

LOOP UNTIL TEMPLATE IS FULL:
Generate new partial descriptions from all unpruned
partial descriptions in the last level. Branching factor
will be the number of unplaced sites or segments (depending
on which is being placed). Call the branching factor .
Each child is enumerated I fron I to N.
2) alternately place site or segment
3) if site:
3.1) push the Ith unplaced site on the placed site stack
3) else if segment
3.2) push the Ith unplaced segment on the placed segment stack

A possible variation for site and segment placement: Instead of storing all unplaced sites and

segments, this information can be broadcast to all partial descriptions. They would have to calculate

which elements had not been placed. Selection of an unplaced element would still be a function of I.

This method has the advantage of decreasing the amount of data that needs to be copied but increases the

amount of processing and broadcasting that needs to be done. The feasibility of this approach depends

on the communication speed and broadcast bandwidth of the machine.
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6.5.3 Pruning rules

Pruning rules are executed in parallel on every partial structure. The rules are in the form of an

instruction stream from the CC. Partial descriptions that arc inconsistent with experimental data are

marked for pruning (ic. they arc forgotten and become free storage.)

After site placement: a site of type X has been placed a) all 1 and 2-digest segment sizes are sent out.

For each digest XY, for each en7yme Y, the summation of scgm. .. s since the last Y ,ite was placed must

be in the data for that digest unless the summation to the last Y site is greater than the distance to the last

site of type X. Otherwise this branch may be pruned.

After segment placement: a) CC sends out total size. If summation of segments so far is greater

than that size this branch may be pruned.

6.6 Generating New Levels of the Search Tree

The speed of the search at each level of the tree is limited by the speed at which N new cells can be

found and data copied to them where N is the branching factor at that level of the tree. The amount of

data used to represent a partial state should be kept as small as possible to limit the amount of data that

must be copied. Running the pruning rules and placing sites or segments arc relatively fast compared to

generating levels of the tree.

Problem Statement: To generate a new level of the tree each partial description at the fringe must

find N free cells and copy its state to them. The new free cells must be uniquely enumerated 1 to N.

This can be done by using the free list consing algorithm to cons N new cells for each partial

description at the fringe of the tree. The cells are enumerated by projecting a tree onto the linear

structure in O(LogN) time. Data is copied from the old partial description into the first (number 1) new

cell. The data is copied using the same projected tree.

Figure (Expanding a PD> shows how a partial description (call it the old-PI)) would expand into 11

new cells. 11 new cells in a linear array are consed. The address of the first cell is known by the old-PD.

The arcs show the tree that is imposed on the linear array. Each arc spans a distance of a power of 2 in the

linear array. On the first iteration cell-I sends a message to ccll-9. The address is calculated by adding 8
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Fig. 47. Expanding a PI)

OLD-PC

NEW CELLS

to the address of cell-I. The message contains the enumeration of the sender and the total number of new

cells in that linear array. On each successive iteration cell-9 will also send a message to enumerate other

cells. This procedure is repeated until all cells are enumerated. Note that a cell does not send a message

to a cell that beyond its linear array. Four iterations are required to enumerate all cells. Copying data

from old-PD to each new cell uses the same arcs.

6.7 Conclusions

Parallc Exploration of a search space is a good application for the Connection Machine. The

implementation of GAl described in this chapter utilizes the Connection Machines ability to allocate cells

in parallel and test partial description in parallel. The potential gain in speed is proportional to the

number of partial descriptions being considered in parallel.
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7. Application: Combinators

This chapter examines a parallel implementation of Combinator Graph reduction (outlined in

[Turncr791) for the connection machine. The first section of this chapter reviews evaluation of

combinatory logic. The second section describes how combinator expressions an be represented as a

graph. An implementation of a parallel graph reducing interpreter for combinator expressions on the

connection na:hinc will be discussed in the third section. he !)al of this chapter is to show hr · graph

representing a computation can be reduced in parallel on the Conncrtion Machine. The system for graph

reduction outlined in this chapter is similar to the algebraic reduction program described in that chapter

"Concepts".

7.1 Introduction to SKI Combinators

This section defines the translation of LISP lambda expressions to combinator expressions that

contains no bound variables. Evaluation of combinator expressions is the same as LISP: The first

element in an expression is a function which is applied to the rest of the elements. The value of the

expression is the result of the functions. All functions return a value. Combinator expressions have the

following properties:

All functions in combinator expressions take only one argument.
The translation of functions of multiple arguments to a function that
only takes argument will be described below.

Three new functions S. K, and I will be introduced that are used
In combinator expressions.

Higher Order Functions

A higher order function takes a function as an argument and returns another function. A function

of several arguments can be reduced to a higher order function that takes one argument Consider the

expression:

(+ 2 3)

This expression would be translated into the expression:

((plus 2) 3)
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The expression (plus 2) returns a function that adds two to its argument. W'hen this function is applied to

3 the result is 5. All functions in combinator expressions will take only one argument. Consider another

example:

(if false 6 7) - (((if false) 6) 7) which evaluates to: 7

The interpretation of this is that (if true) returns a function that takes one argument. That function is

applied to 6. The result is a ;nction that takes one argument. That fuinction is .jplicd to 7. he result is

7.

Translating Lisp cxprcssions: Removing Free 'ariables

Combinator expression use 3 new functions S, K, and I (known as combinators) defined below:

(((S f) ) ) . ((f x)( x))
((K x) y) -> x
(I X) x)> 

The translation of lambda expressions to expressions without variables is defined below:

Goal: Remove the variable x fron (lambda (x) <expression>)
Notation: [x]E means remove the variable x from expression E.

Cx)(E1 E2) *> ((S Ix]jE) t[x]2)
[x)x - > I
[x]y *> (K y)

Where y s a constant or a variable other than x.

More than one variable can be removed from a expression by applying removing variables one at a time

from the expression.

Removing more than one variable:
Goal: Remove the variable x and y from (lambda (x y) expression>)

[x]([y]E)

An cxample translation is given below:

Example 1:
(defun plusl (x) (plus 1 ))

[x)(plus I x)
((S ([x](Plus 1))) x3x)
((S ((S (K plus))(K ))) 1)

The atom fact s bound to this expression.

An example evaluation of ((lambda (x) (plus ] x)) 3) is given below. Only the left most reduction is
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performed on each line.

(((S ((S (K plus))(K 1))) 1) 3)
((((S ( plus))(K 1)) 3)(1 3))
(((K plus)(J 3))((K 1)(1 3)))
((plus ( 3))((K 1)(I 3)))
((plus 3)((K 1)(I 3)))
((plus 3) 1)
4

7.2 Representing Expressions as Graphs

Combinator expressions can be represented as graphs. The application of a function to an

argument is represented by as a Application Cell. The car of the application cell is the function; the cdr is

the argument. Figure (ski reduction> shows the graphical interpretation of S, K, and I and their

associated reductions. Figure (reduction example> shows an example reduction of ((lambda (x) (plus 1

x)) 3).

The representation of the graph on the connection machine is strait forward. Arcs in the graph are

represented as connections. Applications cells have two parts:

2) The function

2) the operand

If more than one application cell points to something (either another application cell or an atom) a fan

tree is used to hold the multiple connections. Figure <S reduction> in the next section shows an example

of a fan tree holding multiple connections.

7.3 Parallel Reductions on the Connection Machine

This section will describe how the functions S, K, and I are reduced in parallel. The method for

reducing other functions such as plus and if will also be discussed.

At any time there may be several reductions that can be done. The order of reduction doesn't

make any difference because the combinator expression has no side effects. In fact, all possible

reductions at a given time could be done concurrently.
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Fig. 48. SKil reductions
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Evaluation will be done by performing a series of reduction cycles. All possible reductions at the

beginning of the reduction cycle will be done during the reduction cycle. After a reduction cycle new

reductions will be possible. Reduction cycles are performed until there are no possible reductions left.

At this point the evaluation is done.

-

- -

I

1 r Y. 
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Fig. 49. Reduction Example: ((Iambda (x) (plus I x)) 3)

K, ; V

The first step in any reduction is to find all possible reductions. This can be easily done by local

inspection of the graph in parallel. In the following discussion each application cell will know which part

of a reduction it is part of. The term "Application Cell" will be abbreviated to AC for brevity.

S Reduction

The S graph reduction is shown in figure (SKI reduction). An S reduction is composed of 7 graph

nodes: AC1, AC2, AC3, S, f, g, and x. For each S-ACI cell the following steps are taken:

Step 1) Create two new S-AC cells: S-AC4 and S-AC5

Step 2) Add a connection from S-AC4 to f

Step 3) Add a connection from S-AC5 to 

Step 4) Add a connection from S-AC4 to x and from S-AC5 to x

An S reduction is the only reduction that produces new graph structure. Two application cell will be

needed. Each S-ACI cell create two new application cells which are called S-AC4 and S-ACS. There will

be one AC4 and one AC5 for every S-AC1. The new ACs are created by consing which is described in

chapter "N-cube algorithms".

C

P3.3~~~~~~~~~~~~~~~~~~ ~ ~ ~

a,' '

V p~s K '
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Fig. 50. Adding Connections in Parallel
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Adding the connections is more difficult. Notice that several S-AC1 cells can point to any single

S-AC2 cell. There may also be several S-AC2 cells for each single S-AC3 cell. There may be several

connections to add to a single cell. Consider step 3: A connection from each AC5 to g must be added.

This operation can be done in parallel by collecting pointers to S-AC5 in the fan tree that connects S-ACI

cells to S-AC2 cells. This tree of connections can then be collected in the fan tree from S-AC2 to g.

Figure <Collecting connections in parallel> shows this process. The final tree of pointers can then be

added to g. Adding pointers from S-AC4 to and S-AC4 and S-AC5 to x are handled in the same way.

See figure <collecting pointers>. Algorithms for collection and adding pointers to trees are given in

chapter <tree algorithms). Adding each connections in Step 2 and Step 4 is handled in the same way as

Step 3.

I Reduction

Reducing a I expression can be done easily by replacing the entire expression by one of its parts (x

in this case). Assuime that connections betwecen cells and atoms always go through a fan-in tree. This
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simplifies a problem when the -ACI of one reduction is the x of another reduction.l All AC cells that

point to the I expression are held in a fan-tree that points to the I expression (the -ACI cell). Call this

tee the fan-in-trec-l-AC1. The I-AC] cell is connected to a fan-tree that holds the connections to x. Call

this tree the fan-in-trec-x. The I reduction is done by connecting the root of the fan-in-trec-l-ACl to a

leafof the fan-in-tree-x.

gorithm:

Step 1: Each -ACI cell sends the address of the fan-in-tree-x to the
root of the fan-in-tree-I-AC1. The root of the fan-in-tree-I-ACI
stores the address of the fan-In-tree-x in the connection
that used to point to I-ACI. This is half of the new connection.

Step 2: Each I-ACI cell sends the address of the fan-in-tree-I-ACI to
the leaf of the fan-in-tree-x. The leaf of the fan-in-tree-x
stores the address of the fan-in-tree-I-ACI in the connection
that used to point to I-AC1. This completes the connection
between the root of the fan-in-tree-I-ACt and the leaf of
the fan-in-tree-x.

Step 3: Each I-ACI cell deletes its connection to its function and
marks itself as garbage to be reclaimed.

Fig. 51. 1 reduction trees

1. This problem is analogous to the synchronization problem of the algebraic reduction program described in chaptcr 'Conccpts'.

l

I

F
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K reduction similar to I reduction. The reducing K expression is replaced by one of its parts. y in

the case of a K expression.

Other Reduction

All other rcdltions replace thr :ducing expression with a function of their arguments. For

example: ((plus would replace itslf with 5. Most expressions require that all arguments be reduced

before that expression can be reduced. It would bce difficult to reduce ((plus 2) <expression>) since plus is

only defined for numerical arguments. Reducing these expressions is very similar to I or K reduction

except that the arguments must be reduced.

One interesting exception is IF. IF only requires the predicate to be reduced before reducing itself.

(((IF predicate) then-expression) else-expression):

(((IF true) then-expression) else-expression) -) then-expression
(((IF false) then-expression) else-expression) -, else-expression

Once the predicate has been evaluated the expression can be reduced to either the then-expression or the

else-expression depending on the value of dthe predicate. The other expression is thrown away.

7.4 Garbage Collection

During the course of evaluation many cells and connections will be created and thrown away. It is

possible to throw away entire expressions that will continue to evaluate because they don't know they

have been thrown away. Some of these expression could be infinitely recursive and will never terminate.

Consider the example of factorial.

(defun fact (x) (if ( x 0) ( x (fact (minus n )))))

When factorial is called on 0 the both branches of the IF expression are evaluated in parallel. The clause

that will eventually be thrown away will be:

(( 0)(fact -1))

which is infinitely recursive. Garbage collection is needed to recover parts of the graph that have been

thrown away.
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There arc several diffcrcnt methods that could be used for garbage collection.

1) Wait until the machine is full. At this point mark all cells
that can be reached from the root of the expression. Delete
all other connections. Deletion of multiple pointers from
fan trees is described in chapter tree algorithms>. All good cells
are saved and all other cells are marked as free clls.

2) The connections in the graph are a built in reference counting
mechanism. After each reduction cycle find all cells that are
not being pointed to. Mark them as garbage and delete all
their connections. Continue this process util all structure
that is garbage is collear d. The probler !ith scheme is that
a GC is rcquired after j reduction cy:le.

', It is possible to collect garbage incrementally by modifying
method 2. Instead of finding all garbage by tracing deleted pointers
on every reduction cycle
only trace garbage a fixed distance. This scheme does not guarantee that
all garbage will be collected because the graph can grow exponentially
in depth, although if this is the case the machine will be filled
rapidly anyway so it is probably not a practical problem.

It is not clear which garbage collection scheme is the best in general. This will probably be

determined empirically.

7.5 Conclusions

The point of this chapter was to show that the Connection Machine can be used as an interpreter

that concurently evaluates expressions represented as a software graph of cells. It is not clear that the

evaluation of SKI combinators or any conventional language (ex. LISP) represented as a graph is a good

application for the Connection Machine; although, the idea of parallel graph reduction may be useful in

some other context.
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8. Application: Relational Data Base

This chapter discusses the implementation of a relational data base on the connection machine. The

primary goal of this chapter is to show how global operations using the topology of the communication

network can be used to implement a moderately complex system. An implementation of a relational data

base is discussed using sort, cartcsian product, and enumeration. These operations are described in

chapter N-cubc algorithms. A brief introdu- .. to relational ata bases is given, followed by a

representation scheme on the connection machine. Algorithms for the operations Union, Intersection,

Differcnce, Cartesian Product, Select, Projection, and Join arc given for the representation scheme on the

connection machine.

The definition of relational data base and the definition of the operations are taken from [Codd7?].

8.1 Definition Of a Relational Data Base

Given a collection of sets D1, D2, ..., D n (not necessarily distinct), R is a relalion on these n sets if it

is a set of ordered n-tuples <dl, d2, ..., dn) such that d i belongs to D1, d2 belongs to D2, ..., d, belongs to

Dn. Sets D1, D2,.... Dn are the dontains of R. The value n is the degree of R.

The table below illustrates a relation called PART, of degree 5, defined on domains P# (part

number), PNAME (PART NAME), COLOR (part color), weight (part weight), and CITY (location

where the part is stored). The domain COLOR, for example, is the set of all valid colors; note that there

may be colors included in this domain that do not actually appear in the PART relation at this particular

time.

Relation: PART
Fields: P PNAME COLOR WEIGHT CITY

P1 But Red 12 London
P2 Bolt Yellow 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Canm Blue 12 Paris
P6 Cog Red 19 London
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8.2 Representing a Relational Data Base on CM

This section describes a representation of a relational data base on thc connection machine. This is

not necessarily the best way to implement a relational data base on the connection machine, although it

does have some interesting properties. The purpose of this representation is to illustrate how global

operations using the topology of thc communication network can bo used to do interes:ig things.

Each element of a set (I: ) is ascigned a unique ID wit; that set. il)s arec contiguous numbers.

For example: if there are 302 elemnlts in a set ther. those elements are assigned IDs from 1 to 302. The

number of elements may be larger or smaller than the address space of the machine.

Tuples arc represented as cells. For each field a cell representing a tupic stores an ID relative to

that field. Tuples themselves do not need to know which bits IDs are stored in. That information is

known globally. Tuples are dumb; they are manipulated by the instruction stream. Tuples also store a

tag which defines which relation it is a member of. A tuple can only be a member of one relation.

Relations have 2 parts. The first part is is a set of tuples defined by the fact that the tuples know

which relation they arc in. The second part is global information that defines how to access data in a

tuples. Each relation has a unique ID so that tuples can be appropriately tagged.

The example below shows how the relation PART cold be represented on the connection machine.

Relation: PART ID: 259
Pt PNAME COLOR CITY
P1:1 Nut :1 Red :1 London:1
P2:2 Bolt :2 Blue :2 Paris :2
P3:3 Screw:3 Green:3 Rome :3
P4:4 Can :4 Athens:4
P5:5 Cog :5
P6:6

The part would look like this (tuples are horizontal):
A single cell would contain tuple.

Pi PNAME COLOR WEIGHT CITY RELATION
I 1 1 12 i 259

2 2 3 17 2 259
3 3 2 17 3 259
4 3 i 14 1 259
5 4 2 12 2 259
6_ 5 1 19 1 259
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8.3 Operations on Relational Data Bases

This section defines several high-level operations on relations. A user would manipulate the

relational data base on the connection machine using these operations. The next section shall discuss how

these operation can be implemented.

For the operators union, intersection, and difference, the two relations must be of the same degree,

and the fh field of each relation must be from thr same domain.

Union

Thc union of two relations A and B is the set of all tuplecs i belonging to either A or B (or both).

Relation: A Relation: Relation: A Union B
Field: NAME Field: NAME Field: NAME

a b a
b d b
c e c
d d

0

Intcrsection

The intersection of two relations A and B is the set of all tuples i belonging to both A and B.

Relation: A Relation: B Relation: A Intersect B
Field: NAME Field: NAME Field: NAME

a b b
b d d
c a
d

Difference

The difference between two relations A and B (in that order) is the set of all tupcls t belonging to A

and not to B.
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Relation: A Relation: B Relation: A Difference B
Field: NAME field: NAME Field: NAME

a b &
b d c
C e
d

Cartesian Product

The cartesian product of two relations A and B is the set of all tuplcs such that is the

concatenation of a tuple a belonging to A and a tuple b belonging to B.

Relation: A Relation: B Relation: A Cartesian Product B
Field: NAME Field: NAME Field: NAME1 NAME2

a b a b
b d a d
C a a e
d b b

b d
b e
c b
c d
c e
d b
d d
d e

Selection

SELECT is an operator for constructing a "horizontal" subset of a rclation-i.e., that subset of tuples

within a relation for which a specified predicate is satisfied. The predicate is expressed as a boolean

combination of terms, each term being a simple comparison that can be established as true or false for a

given tuple by inspecting that tuple in isolation.

Relation: A
Field: Part Weight Color

P10 33 Red
P11 21 Blue
P12 17 Red
P13 27 Red
P14 25 Yellow
P15 16 Blue

Relation: A Select(Weight>20 Color-Red or Blue)
Field: Part Weight Color

PlO 33 Red
Pl1 21 Blue
P13 27 Red

Projection
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PROJECT is an operator for constructing a "vertical" subset of a relation-i.e., a subset obtained by

selecting specified fields and eliminating others. (and also eliminating duplicate tuples within the

attributes selected). The set of fields that arc to be eliminated is called the projection-domain. See figure

(projection example>.

Relation: A
Field: Paritt Weight Color

P10 33 Red
P11 21 Blue
P12 17 Red
P13 27 Red
P14 25 Yellow
P15 16 Blue

Relation: A Project(Color)
Field: Color

Red
Blue
Yellow

JOIN is an operator that combines to relations over a common set of fields. The common set of

fields is called the join-domain. The result of joining relation A on field X with relation B on field Y is

the set of all tuples t such that is a concatenation of a tuple a belonging to A and tuple b belonging to B,

where x = y. This is called Equi-Join because equality is used in the comparison of the join-domain.

Other kinds of joins can be defined using other comparisons (ex. greater-than, less-than etc.). See figure

<Equi-Join>.

Relation: A Relation: B
Field: Part Weight Color Field: Color Concept

P10 33 Red Red Ferrari
P11 21 Blue Blue Sky
P12 17 Red Yellow Submarine
P13 27 Red
P14 25 Yellow
P15 16 Blue

Relation: A Join 8 (over the Color Field)
Field: Part eight Color Concept

PlO 33 Red Ferrari
P11 21 Blue Sky
P12 17 Red Ferrari
P13 27 Red Ferrari
P14 25 Yellow Submarine
P15 16 Blue Sky

Join
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8.4 Implementation of Operations on the Connection Machine

This section describes an implementation of the relational data base operations described above on

the connection machine. When describing each operation there arc two cases of interest: 1) the domain

of interest (this could be several fields) is larger than the address space of the machine: and 2) the domain

of interest is smaller than the address space of the machine. he address space of the machine is the

number of processors that can receive a message. The size of a domain is 2(number of bits that define

the domain). if the size of the domain is smaller than the address space of the machin then each

element of a relation can send a message to the cell with the address that is equal to the bits that define

the domain. This is a very useful operation as we shall see.

8.4.1 Domain size is smaller than address space

This section assumes that the domain size is smaller than the address space of the machine. Tuples

can send mail to the address that is specified by the domain ofintrest.

Union

A UNION B:
Step 1:
Every tuple in A sends a message (no content) to the processor
specified by the bits of the domain.

Step 2:
Every tuple in B sends a message (no content) to the processor
specified by the bits of the domain.

Step 3:
Any cell that receives a message during Step or Step 2 create
a new tuple. The value of the domain is the address of the cell.

Intersection

A INTERSECT B:

Step and 2: Same as for UNION

Step 3:
Any cell that receives a message during Step and Step 2 create
a new tuple. The value of the domain is the address of the cell.

(optional example)
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Fig. 52. Union Example (Address Arithmetic)

A
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The union of set A and set B is done by using the entry as an address and sending a message
to that address. If a cell in the machine rccieves two messages then the entry that is that
address is a member ofthe resulting set

Difference

A DIFFERENCE B:

Step I end 2: Same as for UNION

Step 3:
Any cell that received a message during Step and not during Step 2
creates a new tuple. The value of the domain is the address of the cell.

8.4.2 Domain size is larger than the address space

Now assume that the domain is too large to be used as the address of a cell in the machine. An

alternative approach that uses sorting instead of hashing is presented below. These algorithms will work

on relations with duplicate tuples. The resulting relations will not contain duplicates.

Union

A UNION B

Step :
Each tuple n A and B creates a datum that contains the domain as a
value. The low order bit of this datum is 0 if the tuple is from set A

30 u

"S r 1F 1
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and I if the tuple is from set B. The effect of this is that equal
an equal data from A will be next to an equal datum from B if one exists.

Step 2:
Sort these data into a linear ordered set of processors.

Step 3:
Each processor that has a datum looks at the datum stored in
the next processor. If the datum stored at the next processor is equal
to the datum stored at this processor then mark this datum as a duplicate.
All processors that contain a datum from either A or B create a new
tuple whose domain is the value of the datum without the lowest order bit.

Fig. 53. UNION example (Sort)

I I rl.al l r,2s.L30,A1 *a a

In this case entries are too large to use as addresses. Sort the entries in set A and set B into
another set. If there are two contiguous identical entries then that entry is a member of the
resulting set.

Intersection

Step I and 2: Same as for UNION.

Step 3:
Each processor that has a datum from A looks at the datum stored in
the next processor. If the datum stored at the next processor is
equal to the datum stored at this processor and is from B then
then create a new tuple whose domain is the value of the datum without
the lowest order bit.

Difference
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Step and 2: Same as for UNION.

Step 3:
Each processor that has a datum from A looks t the datum stored n
the next processor. If the datum stored at the neat processor is
not equal to the datum stored at this processor then a new tuple
is created whose domain is the value of the datum without the
lowest order bit.

8.4.3 Cartesian Product, Projection, Join

Ti.- s7C of the domain is not important for these operations because they do not use address

hashing.

Cartesian Product

This algorithm is described in chapter N-cube algorithms.

Projection

PROJECT A (over some set of fields called the projection-domain)

Step 1:
For each tuple in A create a datum that is the data of the
projection-domain. Sort these data into a linear ordered set
of processors; one datum to one processor.
Sorting is described in chapter N-cube algorithms.

Step 2:
Once the date have been sorted each processor that contains a datum
sends a copy of the datum to the next processor in the linear
ordering. If the datum received is equal to the datum stored then
mark the datum stored at this processor as a copy.

Step 3:
All processors that are storing data not marked as copies create a
new tuple whose domain is the value of the datum. The result of the
projection is the set of all these tuples.

JOIN

A Join B (over the join-domain) can be done quite easily by forming the cartesian product of the

two relations and doing the join comparison in parallel at every tuple of resulting relation. If the

comparison is true then that tuple is a member of the resulting relation. Unfortunately this requires IAI 

I B I processors.
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Fig. 54. Projection Example

3 l an5 1

Equi-Join (comparison is equality) can be done more easily than b) forming the cartesian product

of both relations. The general idea is that tuples with equal join-domains are grouped together by sorting.

Tuples with equal domains from relation A and B find each other and from a local cartesian product over

the domain. The union ofthese cartesian products will be the result.

Step :
Each tuple in A and B forms a datum that contains its state.
Data from A is sorted into a set of linear contiguous processors.
Data from is sorted into another set of linear contiguous processors.
Comparisons for sorting are just over the oin-field. The result is
that oata with equal join fields are grouped together. Call a set of
data with equal join-fields an equal-set'.

Step 2:
The object of this step is twofold: 1) To exchange the start address of
corresponding equal-sets from A and B and
2) find out how many cells are in each equal-set. Each processor
with the first element of an equal set creates a datum that contains
its address. the join-field, and a bit that indicates if it is from set
A or B. These data are sorted into a set of linear contiguous processors
using the join-field for comparisons.
The start address for the equal-set from A will be next to the start
address for the corresponding equal-set from B if it exists. Also,
the number of elements in an equal set from one relation can be
determined by finding the next processor that contains a datum from
the same relation. The return address allow this information to be
sent back to the first element of each equal set.

Step 3:
The cartesian product of corresponding equal-sets can now be done.
Corresponding equal-sets cons a block of linear contiguous processors.
This block will contain lequal-set from Al0lequal-set from BI processors.

ff

f I Is
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All cartesiln products cn be done in prallel. The UNION of the
resulting Cartesian products will be the result of the EQUI-JOIN.

Fig. 55. Equi-Join
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8.5 Conclusions

This chapter discused using the CM as a relational database processor. The use of relations is an

alternatc to semantic networks as a method of knowledge representation on the CM. Many of operations

(sorting, enumeration, etc.) require that the entire machine be working because they depend on the

topology of the routing network. A fiture goal of the CM project will be to make these algorithms fault

toler-Int
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applications use a combination of synchronization techiniqucs.

Several applications have been proposed for thc Connection Machine using the graphical

programming methodology. These applications include: Semantic Networks, Relational Data Bases,

Constraint Networks, Graph Reduction Evaluation, and Data Flow Evaluation. The common property

of all these applications is that each requires a large number of fairly simple computations and irregular

communication patterns. The simple processors of the Connection Machine 'xecute simple

computations in parallel: thc fl'ibility of the communication t..ork allows irrcgular and dynamic

communication patterns.
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9. Conclusion

This thesis presents a programming methodology that exploits the highly parallel architecture of the

Connection Machine. Using this methodology a computation is represented as a graph with a processor

at each vertex. Two types of parallelism are exploited on the Connection Machine:

I) Each processor operates on its local memory in parallel.

1) Indepcndantly addressed messae,: are delivered by the communication
network n parallel.

The communication network allows parallel communication between connected vertices of an arbitrary

graph represented on the Connection Machine as a data structllrc. The communication network is the

feature that gives the Connection Machine its flexibility.

Three levels of abstraction for programming in the Connection Machine were introduced:

1) N-cube Level: Several low level operations quickly executed by taking
advantage of the connection topology of the communication network.

2) Tree Level: Vertices are limited to 3 connections: a parent and two children.

3) Graph Level: Graph can have an arbitrary number of connections to other
vertices in the graph.

Operations implemented at the N-cube and Tree level of abstraction are supplied as primitive operations

for programming at the Graph level of abstraction.

Synchronization is the basic difficulty in parallel programming. Several methods of handling

synchronization are used in the algorithms presented in this thesis. At the lowest level the single

instruction stream of the Connection Machine allows direct control of synchronization. Enumeration by

subcube induction is an example of an operation where it is important that all processors be synchronized

tightly. Programming at this level is efficient but is very tedious. At a higher level of abstraction

synchronization can be achieved by communication protocols between connected nodes. The

Scriali7ation algorithm uses this form of synchronization when a datum is accepted an confirmation

message is sent to the sender. It is not important that every processor be running in lock step. Most
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10. Appendix 1: Algebraic reduction example in MP

This appendix describes an MP program for the algebraic reduction computation described in

Concept Primer. 'Ilis program gives the code for multiplication; addition would be similar.

VAR NODE-TYPE: {ROOT OPERATOR LEAF INACTIVE)
VAR OPERATOR-TYPE: (e +)
VAR LEAF-TYPE: (1 0 X)
VAR WAIT-FOR-RIGHT-CHILD: BOOLEAN
VAR WAIT-FOR-LEFT-CHILD: BOOLEAN
VAR REPLACE-LEFT-CHILD: BOOLEAN
VAR REPLACE-RIGHT-CHILD: BOOLEAN
VAR MESSAGE-TYPE: TYPE. CHILD-REDUCING, REPLACE, UPDATE-PARENT)

;;;leaves send type to parent
(if (a node-type 'leaf)

(send ('TYPE leaf-type) parent))

;;;operator nodes decide what to do
(if ( node-type 'operator)

(progn
;;;if either branch is a zero
(if (or (and (- left-child-mail true)

(- (get-msg left-child-mbx 2) 0))
(and (- right-child-mail true)

(- (get-msg left-child-mbx 2) 0)))
(progn

(set node-type 'leaf)
(set leaf-type 0)
;;;delete left and right child
(set-up-send ('DELETE-POINTER) left-child)
(set-up-send ('DELETE-POINTER) right-child)))

;;;if left and right are 1
(if (and (and (- left-child-mail true)

(- (get-msg left-child-mbx 2) 1))
(and (- right-child-mail true)

(- (get-msg right-child-mbx 2) 1)))
(progn

(set node-type 'leaf)
(set leaf-type 1))

;;;else if only the left is a 
(if (and (- left-child-mail true)

(a (get-msg left-child-mbx 2) 1))
(progn
(set-up-send ('DELETE-POINTER) left-child)
(set-up-send ('CHILD-REDUCING) parent)
(set replace-with-left-child true))

;;:;else if only the right branch is 
(if (and (- right-child-mail true)

(- (get-msg right-child-mail 2) 1))
(progn
(set-up-send ('DELETE-POINTER) right-child)
(set-up-send ('CHILD-REDUCING) parent)
(set replace-with-right-child true)))))

;;;reset mail
(set left-child-mail false)
(set right-child-mail false)
;;;if this branch is to be replaced notify parent
(send-buffered-nessages)))

;;;process the DELETE-POINTER message
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(if (and (- parent-mail true)
(- (get-msg parent-mbx 1) 'DELTE-POINTER))

(PROGN
(set node-type 'INACTIVE)
(set parent-mail false)))

;:;Process the CHILD-REDUCING message
(If (and (- node-type 'operator)

(- left-child-mail 1)
(- (get-msg left-child-mbx 1) 'CHILD-REDUCING)
(a REPLACE-WITH-LEFT-CHILD true))

(progn
(set WAIT-FOR-LEFT-CHILD true)
(set left-child-mail false)))

(if (and (- node-type 'operator)
(- right-child-mail 1)
(- (get-msg right-chld-mbx 1) 'CHILD-REDUCING;
(- REPLACE-WITH-right-CHILD true))

(progn
(set WAIT-FOR-RIGHT-CHILD true)
(set right-child-mail false)))

;;;STEP 2: intial step of reducing the tree
(if (and (- replace-with-right-child true)

(- wait-for-right-child false))
(set-up-send ('REPLACE Y) Z))

(if (and (- replace-with-left-child true)
(- wait-for-left-child false))

(set-up-send ('REPLACE X) Z))
(send-buffered-messages)
;;;loop
(while (and (- left-child-mail false)

(= right-child-mail false)
(- z-mail false))

(dispatch-on-type
left-child-mbx
('REPLACE
(if ( wait-for-left-child true)

(set-up-send ('UPDATE-PARENT SELF) left-child)
(progn
(set left-child (get-nsg left-child-mbx 2))
(set-up-send ('UPDATE-PARENT SELF) left-child)))))

(dispatch-on-type
right-child-mbx
('REPLACE
(if ( wait-for-right-child true)

(set-up-send ('UPDATE-PARENI SELF) right-child)
(progn
(set right-child (get-msg right-child-mbx 2))
(set-up-send ('UPDATE-PARENT SELF) right-child)))))

(dispatch-on-type
parent-mbx
('UPDATE-PARENT
(set parent (get-msg parent-mbx 2))))

(send-buffered-messages))

WI
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11. Appendix 2: GAI Pruning Rules

These rules are taken directly from [Steflk].
Canonical Form Rules: These rules prune rflected and rotated partial structures.
Rule F3. If circular structures are being generated, only the smallest segment in the list of

initial segments should be used for the first segmecnL
Rule F. If circular structures are being generated and the second segment is about to beplaced and there are several segments to be placed and the segment is the largest of theremaining segments. then this branch of the generation can be pruned.
Rule FS. If circular structures are being generated and a segment cqtll to the first segmentis about to be placed and the total mass is less than the molecular wcieht (so that at least onemore segment will be placed) and all remaining segments are less than the secod segment of the

structure, then this branch of the generation may be pruned.
Rule F6. If circular structures are being generated and a segnent equal to the first segmentis about to be placed and the previous segment is less than the second segment, then this branch

of the generation may be pruned.
Pruning rules: These rules prune partial structures that are not consistent with the

experimental data.
Definition P3. Allowable sites for segments. Recognition sites are allowable for terminatinga segment only if the segment appears in the 2-enzymc complete digests for the correspondingenzymes. (If there is only one enzyme in the experiment, then only its sites are allowable.)
Rule P4. If a segment is about to be placed and the previous site is not one of the

allowable sites for this segment, then this branch of the generation may be pruned.
Rule P5. If a site is about to be placed and it is not an allowable site for the previous

segment, then this branch of the generation may be pruned.
Definition P6. Required termination sites for segments. If only one enzyme was used in theexperiment then the site for that enzyme is required for every segment. If two enzymes wereused. then for each segment which does not appear in a -enzyme digest, both enzyme sites arerequired. If three or more enzymes were used, then for each segment which appears in exactlyone 2-enzyme complete digest, the sites for the enzymes involved in that digest are both required.
Rule P7. If a segment having required sites is about to be placed and the previous site is

not one of them, then this branch of the generation may be pruned.
Rule P8. If a site is about to be placed and the previous segment has required sites and

this site is not one of them, then this branch of the generation may be pruned.
Rule P9. If a site is about to be placed and the previous segment has two required sitesand the previous site is one of the two required sites but this site is not the other one, then this

branch may be pruned.
Rule PIO. If a segment is about to be placed which would increase the mass of the currentstructure to be greater than the expected molecular weight and there are more sites to be placed,

then this branch of the generation may be pruned.
Rule P. If circular structures are being generated and the first segment i unique andappears in the -enzyme complete digest for enzyme El, then a recognition site for El can be

placed in front of the first segment
Definition P13. Allowable inter-site segments. For recognition sites El and E2, a segment issaid to be allowable between El and E2 when it appears in the appropriate digests. Specifically,if El is distinct from 2., the segment must appear in the 2-nzyme complete digest involving Eland E2. Otherwise it must appear in the l-cnzyme complete digest for El.
Rule P14. If a site El is about to be placed and there is another site E2 preccdin it in thestructure (and there is no site cqual to El or 1-2 between them) and the sum of the intermediatesegments in not an allowable segment for El and 1-2, then this branch of the generation may be
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pruned.
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