
CnC Network Accessors

Latex of CMNA.tex on November 14, 1990
This document is owned by Cindy Spiller

It may be found in /pl/cm5/doc/cnc/CMNA.tex

1 ,

R .A

i
i

i

4-.I 1

Contents

1 Introduction
1.1 Related Documents

2 CnC Overview
2.1 Coding Conventions
2.2 Definition

3 Constants

4 Variables
4.1 CMNA-selfaddress
4.2 CMNAscalar.address
4.3 CMNApartitionsize

5 Participating and Abstaining from network
5.1 initial configuration
5.2 changing participation

5.2.1 EstablishBroadcaster
5.2.2 OnlyPesCMNAcom
5.2.3 ScalarCMNA-comsAlso
5.2.4 ReduceToScalarOnly
5.2.5 ReduceToPesOnly
5.2.6 ReduceToAll

.o

.

.

activity
.

.

o

.

.o.

.

.

.

6 Global
6.1 Global

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

6.2 Global
6.2.1
6.2.2
6.2.3

Sync
CMNA or global sync bit
CMNA.globalsynccomplete.
CMNAglobal-syncread
CM NAglobal-sync read ready
CMNAglobalsync.
Async...................................
CMNAor global async-bit
CMNA-globalasync-read
CMNA.global async

7 Broadcast Network Accessors
7.1 Broadcast Basic Accessors
7.2 Checking Broadcast Network Status

7.2.1 CMNAbc.send.first
7.2.2 CMNA-bcsend-word
7.2.3 CMNAbc.receiveword
7.2.4 CMNAbc sendfifo.amount
7.2.5 CMNAbcreceive

7.3 Broadcasting C types

2

4
4

4
4
4

5

5
5
6
6

6
6
7
7
7
8
8
8
8

8
8
8
9
9
9
9

10
10
10
10

11
11
11
13
15
16
17
18

. 19

.

.

.

.

.

.

.

.

.

...........................

...........................

...........................

...........................

...........................

...........................

...........................

8 Router
8.1 Router basics

8.1.1 CMNA.dr.status.
8.1.2 CMNA-drsendfirst, C
8.1.3 CMNAdr-sendword.
8.1.4 CMNA-drreceive-word

8.2 Router functions and macros
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

CMNA.setcount-mask
CMNA-dr-send.msg
CMNA-dr-receive msg
CMNAstartemptying
CMNA router-emptied

9 Combine (Scan)
9.1 CMNAcom basics

9.1.1 CMNA comstatus
9.1.2 CMNAcom-sendfirst
9.1.3 CMNAcomsendword
9.1.4 CMNAcom-receive.wo

9.2 Combine functions and macros
9.2.1 CMNA segment start
9.2.2 CMNAcomsend...
9.2.3 CMNA-comireceive
9.2.4 CMNA.com......

10 Synchronous messages between
10.1 Sending from Scalar to one PE

10.1.1 Write*ToProcessor
10.2 Read*FromScalar
10.3 Sending from one PE to Scalar

10.3.1 WriteMsgToScalar
10.3.2 Write*ToScalar

...................................

·

MNAJdrsendfirst, CMNAdrsendfirst

, CMNAJdreceive.word, CMNA.rdrreceiveword

·............. ,.....

router

rd.................
.............................. ,.....
·

Scalar
.. . .

and Pe's
.

.

A Example Code

B Compiling CandC for execution on simulators and hardware

21
21
21
23
24
25
26
26
27
28
29
30

31
31
31
34
35
36
37
37
38
39
40

41
41
41
41
42
42
42

43

.......................

.......................

.......................
.......................
.......................
.......................

49

1 Introduction 4

C and C, or CnC, is the name given to C functions which provide access to the hardware in order to facilitate
communication between the pe's and the scalar. This document specifies the C functions in the scalar, and
the C functions in the pe (C and C) required to acces each of the networks.

1.1 Related Documents

The following documents are related and should be read in conjunction with this one:

* CM5 System Architecture Specification (currently danny's Darpa proposal addendum)

* NI Architecture (/pl/cm5/doc/concepts/ni-architecture.tex)

* Control network architecture: /pl/cm5/doc/concepts/cn-architecture.tex

* data router architecture: /pl/cm5/doc/concepts/data-router.text

* Diagnostics Network Specification (/pl/cm5/doc/modules/dn/dn.tex)

2 CnC Overview

2.1 Coding Conventions

CandC Network Accessors are considered the lowest level programing language of the CM5, or the assembly
language. CandC functions and variables use all lower case letters for the each word of a name. Underscores
are used between words, and each function name starts with CMNA. Ex. CMNAdr-send.msg.

* Function names and variables use lower case letters for each character in words of name.

* Constants are all capital letters with underscores separating words.

* Typedefs are all capital letters with underscores separating words and a T at the end.

2.2 Definition

CandC provides functions for the data router, combine, broadcast, global, and sync networks. Communica-
tion on these networks is controlled by the NI chip. CnC's main objective is to provide an abstract access
to the control of this chip, yet be as efficient as possible. The users of CnC will be the C* compiler, Fortran
compiler, CM Run Time, diagnostics, the debugger, and operating system developers. CnC may also be
made available to other users as the low level (assembly type) language.

Note that the term /em function will be used to express the action to be performed by CnC. Howevep,
this term is used loosely, and the action may be performed by a true C function interface, or whenever
possible, by a macro.

CandC is provided as a library to be linked with users code. The header file /pl/cm5/os/include/CMNA .h
specifies the constants required when linking with CandC Network Accessors.

CandC functions are called by the processors in a partition, called pe's, as well as by the scalar processor.
The scalar processor is usually a large capacity cpu which is physically distinct from the pe's. Throughout
this document, a description of the action performed will be dependent on whether the function is being
called from a pe or from the scalar, or if it is the same when called by all processors. Whenever the term
'all processors' is used, this refers to all pe's and scalar. The term 'all pe's' refers to all the processors in the
partition except the scalar.

There is another distinction regarding processor status. There can be a pe within the partition which
obtains the status of 'broadcaster'. The term broacaster simply means that this pe has control of the
broadcast network, and it can send broadcasts while everyone else can receive them. Generally the scalar
will be the broadcaster, but this power can be relinquished to any pe in the partition. Of course this power
can only be given to one pe at any one time. This pe will be refered to as the 'broadcaster'.

The scalar usually does not participate in contributing to combine operations, but receives the result of a
combine operation which has been 'reduced'. However, any pe in the partition can be set up to not combine,
yet have the reduce result sent to him.

3 Constants

* MAXROUTERMSGWORDS Maximum number of words which can be placed in the router fifo for
one message. Current maximum is 6 words including the destination.

* MAXBROADCAST.MSGWORDS Maximum number of words which can be placed in the broadcast
fifo for one message. Current maximum is 15 words.

* MAXCOMBINEMSG-WORDS Maximum number of words which can be placed in the combine fifo
for one message. Current maximum is 4 words.

* etc.

4 Variables

4.1 CMNA-selfaddress

int CMNA-self-address;

Relative address of this PE or scalar within the partition.

4.2 CMNA-scalar.address

int CMNAscalar-address;

Address of scalar processor.

4.3 CMNApartition-size

int CMNApartitionsize;

Number of PE's in the partition. This does not count the scalar, spares, or IO devices in the partition.

5 Participating and Abstaining from network activity

Each processor in the partition is connected to the following networks: Broadcast, Combine, Router, and
Global. The networks assume that since the PE is connected to the network, that it will participate in all
activity on the network. If the pe wishes to not participate in some activity, it can set a bit to indicate which
activity it wishes to abstain from.

The logical activities that a processor would wish to abstain from are the ones which require synchroniza-
tion from all the processors before the operation will complete. If a processor does not plan to contribute,
then it must set its abstain bit to indicate this so that the operation will complete without it.

The processor can abstain from receiving or sending to the broadcast network. However, only one
processor (called the broadcaster) can be broadcasting at any time, so any processor enabling its abstain bit
to allow sending broadcasts has to be coordinated with all the other processors.

The processors can abstain from contributing to the combine operation, and can abstain from receiving
combine reduce results.

Since the router network does not require that every processor participate in an operation to complete,
there are no abstain bits for the router network.

5.1 initial configuration

Note: add hardware reset state.

Initially, the abstain bits are set such that the scalar is the broadcaster, and all pe's will receive the
broadcast. All the pe's will participate in the combine operations, and all the pe's will receive reduce results.
The PE's will also participate in the Sync operation. The scalar will not participate in Sync, combine, or
reduce receive.

6

5.2 changing participation 7

At various times after initialization, different processors will need to change their participation. These
functions provide that capability. The activity that can be participated in or which can be abstained from
include:

NIREDUCERECEIVE

* NIBCRECEIVE

* NICOMBINE

* NISYNCGLOBAL

CMNAparticipatein(activity)

int activity;

Example:

CMNA_participatein (NI_REDUCE_RECEIVE I NI_SYNC_GLOBAL);

CMNAabstain_from(activity)

int activity;

Example:

CMNA_abstain_from(NI_SYNCGLOBAL);

5.2.1 EstablishBroadcaster

NOTE: This section not available yet.

This function must be synchronized amoung all processors, therefore all processors in the partition
(including the scalar) must execute this function before it will return. The processor whose address is
specified will become the broadcaster.

5.2.2 OnlyPesCMNAcom

Sets up the combine network so that only the pe's in the partition (not the scalar) contribute to the combine
operation.

5.2.3 ScalarCMNA_comsAlso

All pe's and the scalar contribute to the combine operation.

5.2.4 ReduceToScalarOnly

A combine reduce result is available in the scalar only.

5.2.5 ReduceToPesOnly

The combine reduce result is available to the pe's in the partition only.

5.2.6 ReduceToAll

The combine reduce result is available to all pe's as well as the scalar.

6 Global

The global network or interface provides a bit which can be globally updated by every processor in the
partition including the scalar. There are three bits available. The synchronous bit, and two asynchronous
bits, one for the user and one for the supervisior. The asynchronous bits are updated almost instantly without
the need for input from any other processor. The synchronous bit is updated only after every processor has
contributed its bit.

6.1 Global Sync

The synchronous global facility provides a way for each processor in the partition to OR a bit with every
other processor in the partition. Each processor presents a bit which the hardware then OR's with a bit
from every other processor which is participating (not abstaining) in the sync. When all the participating
processors have presented their bits, then the hardware indicates that the sync is complete. The result is
available to be read.

6.1.1 CMNAorglobal_syncbit

This function takes a 32 bit quanity, of which only the least significant bit is relevant. This bit is presented
to be OR'ed with the other processors' bits.

8

9

CMNAorglobalsyncbit(value)
unsigned int value;

6.1.2 CMNA-global-synccomplete

After CMNA or-globalsyncbit() is called, the hardware has to coordinate all the other processors to obtain
the result. When this result is available CMNAglobalsynccomplete will return true. It will return false
until this result is available, and will become false again after the next call to CMNA or.globalsyncbit().

int CMNA_globalsynccomplete()

6.1.3 CMNAglobal-sync.read

Note: explain what happend if this is executed before sync complete .

After CMNA globalsync.complete() returns true, the result can be read. CMNAglobalsyncread re-
turns a 32bit quantity which only the least significant bit is relevant.

int CMNAglobalsync_read()

6.1.4 CMNA-global-syncreadready

After CMNAorglobal-syncbit() has been called, the user can call CMNAglobalsync-readWhenComplete()
which will wait until the result is available, and then return the result.

int CMNAglobalsync_readWhenComplete()

6.1.5 CMNA-globalsync

The entire global sync operation can be performed in one call. CMNAglobalsync takes the 32 bit quantity,
presents it to the hardware, waits for the operation to complete, and then returns the result.

10

int CMNA_global_sync (value)
unsigned int value;

6.2 Global Async

This facility is like the Global Sync in that one bit is presented from a processor, OR'ed with the bits from

every other processor, and the result is updated in all pe's. The major difference is that one or more pe's
can present its bit, and the result is calculated without the the need for all processors in the partition to
participate. Therefore there is no need for abstaining from Global Async, just do not participate.

6.2.1 C MNAor_global_asyncbit

CMNAor_global_asyncbit(value)

unsigned int value;

This function takes a 32 bit quanity, of which only the least significant bit is relevent. This bit is OR'ed

with the other processors' bits, however, the other processors do not have to all update this bit before the
result becomes available.

6.2.2 CMNAglobal-asyncread

int CMNA_globalasync_read()

When a processor presents its bit, the hardware must OR this with the bits previously presented by all the
other processors. This takes a few cycles to perform, and there is no indication of when this is completed. If
this bit is going to be written and read immediately (calling CMNAor-globalasyncbit() and then immedi-

ately calling CMNAglobal-async read()), CMNA-globalasync should be called. CMNAglobal-asyncread

should be used only when inspecting the current value of the global async bit.

6.2.3 CMNA_globalasync

Note: explain worst case cycles.

This function logically calls CMNAor-globalasyncbit() and then guarantees (by waiting for worst case
cycles) that the result must be valid, and returns the result.

11

int CMNAglobalasync (value)
unsigned int value;

7 Broadcast Network Accessors

The following routines allow broadcasting units of data between the broadcaster and all other pe's. Any
pe or the scalar can acquire the control of the broadcast network and issue a broadcast. This must be
synchronized, so that only one processor in the partition controls the network at any one time. All other
processors in the partition can receive the message from the broadcast net. The processors can abstain from
receiveing any broadcast messages if requested.

7.1 Broadcast Basic Accessors

Any broadcast architecture functionality can be accomplished by applying a combination of the following
functions (plus the abstain functions) into the proper algorithm. In order to use these functions, you must
proclaim yourself an expert of the entire architecture of the CM5. These are the building blocks used to
implement the macros and functions in the remainder of this section. It is highly recommended that the
macros and functions be used instead of these. If the architecture changes, these functions will most likely
become invalidated.

7.2 Checking Broadcast Network Status

CMNA_bcstatus

Purpose: Returns the status of the broadcast network.

Prototypes:

extern CMNA_bcstatus _AP(());

Definitions: The CMNAbcstatus routine returns returns the value in the broadcast status register. Bit
maps are provided to map out any combination of the values available in the status register. Also, macros
are provided to obtain all the fields in the status register.

Performance Notes: *missing*

Networks Used: Broadcast network. 12

Restrictions: *missing*

13Bitmaps:

* NISENDSPACEP NISENDSPACEL

NIRECOKP NIRECOKL

* NISENDOKP NISENDOKL

* NISENDEMPTYP NISENDEMPTYL

* NIRECLENGTHLEFTP NILRECLENGTHLEFTL

Macros:

* SENDSPACE(status)

* RECEIVEOK(status)

* SENDOK(status)

* SENDEMPTY(status)

* RECEIVE-LENGTH_LEFT(status)

Example of using these Macros:

int LengthLeft;

LengthLeft = RECEIVELENGTH_LEFT(CMNAbcstatus());

Example of using the bit maps:

#define RECEIVELENGTHLEFT(status) \
((status >> NI_RECLENGTH_LEFT_P) & ('O << NI_REC_LENGTHLEFT_L))

7.2.1 CMNAbcsendfirst

CMNAbcsendfirst

Prototypes:

14extern CNAbcsend_first AP((int length, unsigned msg));

Formats:

length: The length in words to be sent.

msg: Pointer to the data to be sent. Data must be word aligned.

Definitions: The CMNLbcsendfirst routine sets up the length to be sent, and sends the first word into
the broadcast network.

Performance Notes: *missing*

Networks Used: Broadcast network.

Restrictions: *missing*

7.2.2 CMNAbcsendword

CMNA_bc sendword

Prototypes:

extern CMNA_sbc_word _AP((int data));

Formats:

data: 32 bits of data to be sent.

Definitions: The CMNLbc_sencLword routine sends 32 bits of data into the broadcast network.

Performance Notes: *missing*

Networks Used: Broadcast network.

Restrictions: *missing*

15

7.2.3 CMNA_bcreceive_word 16

CMNAbc-receive_word

Prototypes:

extern AP((unsigned data)) CMNA\bc_receive_word ;

Definitions: The CMNAbc.receiveword routine returns 32 bits of data from the broadcast network. Re-
ceive Ok must be true, and there must be a word in the receive fifo to extract.

Performance Notes: *missing*

Networks Used: Broadcast network.

Restrictions: *missing*

If the broadcaster has some data which can be sent out in one message, i.e. is less then MAXBC_MSGWORDS,
and is already constructed, then it can use CMNAbc.sendfifo-amount to send the data. After assuring
that it has control of the network, the broadcaster issues a CMNA-bc-send-fifo.amount to broadcast a unit
of data, and the pe's execute a CMNA bc receive to receive the unit of data being broadcast.

7.2.4 CMNAbcsendfifoamount

CMNA_b csend_fifoamount, CMNAbc-send msg

Purpose: Broadcasting data from Broadcaster to rest of partition.

Prototypes:

extern CMNAbc_send_fifoamount _AP((void*msg, int length));
extern CMNA_bcsendmsg _AP((void*msg, int length));

Formats:

msg: Pointer to the data to be sent. Data must be word aligned

length: The length in WORDS to be written.

Definitions: The CMNAbcsendfifoamount routine writes length words into broadcast network. length
must be less than or equal to the MAX.BCFIFOWORDS which is the maximum words which will fit in one fifo.
The CMNALbc.send.msg routine writes length words into the broadcast network. It takes care of packaging
large messages into fifo amounts. The corresponding function CMNAbcreceive must be called in all the
other PE's which are participating in broadcast receive.

Performance Notes: *missing*

Networks Used: Broadcast network.

Restrictions: *missing*

7.2.5 CMNA_bc..receive

CMNAbcreceive

Purpose: Receiving data from the broadcast network.

Prototypes:

extern CMNAbcreceive AP((void*msg, unsigned length));

Formats:

msg: Pointer to the data to be received. Data must be word aligned. If the pointer is null, then
the length will be read from the network and discarded.

length: The length in WORDS to be read.

Definitions: The CMNA_bc..receive routine reads length words from the broadcast network. Since words
do not arrive in packets, there is no notion of fifo amount no receive.

Performance Notes: *missing*

Networks Used: Broadcast network.

Restrictions: *missing*

18

7.3 Broadcasting C types 19

These broadcast functions are more efficient if the unit being broadcast is of the type: int, unsigned int,
float, or double.

CMNAbcread_*

Purpose: Reading C types from Broadcast Network.

Prototypes:

extern int CMNAbcreadint \AP(());
extern unsigned CMNAbc_readuint \AP(());

extern float CMNAbcreadfloat AP(());

extern double CMNAbcread_double AP(());

Performance Notes: *missing*

Networks Used: Broadcast network.

Restrictions: *missing*

BroadcastRead* is called by the pe's to accept a data unit from the broadcast network. The scalar muQ
be executing a Broadcast* to inject this unit of data into the broadcast network.

CMNAbcwrite_*

Purpose: Writeing C types to the broadcast network.

Prototypes:

extern CMNAbcwriteint _AP((int data));
extern CMNAbcwriteuint _AP((unsigned data));
extern CMNAbcwritefloat _AP((float data));
extern CMNAbcwritedouble AP((double data));

Formats:

data: C type

Definitions: The CMNAlbcwrite_* routines write C types to the broadcast network.

Performance Notes: *missing*

Networks Used: Broadcast network.

Restrictions: *missing*

8 Router 21

The router network functions are higher level routines which correctly incorporate the Network Interface
(NI) accessors to perform the steps necessary to perform a router command.

This section needs more work. More functions are to be defined.

8.1 Router basics

Any router architecture functionality can be accomplished by applying a combination of the following func-
tions (plus the abstain functions) into the proper algorithm. In order to use these functions, you must
proclaim yourself an expert of the entire architecture of the CM5. These are the building blocks used to
implement the macros and functions in the remainder of this section. It is highly recommended that the
macros and functions be used instead of these. If the architecture changes, these functions will most likely
become invalidated.

8.1.1 CMNA_dr_status

CMNAdrstatus, CMNAldr-status, CMNArdrstatus

Purpose: Returning the status of the Router Network

Prototypes:

extern CMNAdrstatus _AP(());

extern CMNA_ldr_status _AP(());

extern CMNA_rdr_status _AP(());

Definitions: The CMNAdr_status returns the value in the router status register. Bit maps are provided to
map out any combination of the values available in the status register. Macros are provided to use extract the
fields in the status register. CMNA_ldr_status returns the status of the left data router, and CMNArdrstatus
returns the status of the right data router.

Performance Notes: *missing*

Networks Used: Router network.

Restrictions: *missing*

These bitmaps include:

* NISENDSPACEP NISENDSPACEL

* NLRECOKY NLRECOOKL

* NISENDOKP NISENDOKL

* NIRECLENGTHLEFTP NIRECLENGTHLEFTl

* NIRECLENGTHP NIRECLENGTHL

* NIDRRECTAGP NILDRRECTAGL

* NIDRSENDSTATEP NIDRSENDSTATEL

* NIDRRECSTATE NIDRRECSTATEL

Macros:

* SENDSPACE(status)

* RECEIVEOK(status)

* SENDOK(status)

* DRROUTERDONE(status)

* RECEIVELENGTH-LEFT(status)

* RECEIVELENGTH(status)

* DRRECEIVETAG(status)

* DRSENDSTATE(status)

* DRRECEIVESTATE(status)

Example of using these Macros:

int Tag;

Tag = DRRECEIVETAG(CMNAdr_status());

Example of using the bit maps:

#define DRRECEIVETAG(status) \

((status >> NIRECTAGP) & '('O << NI_REC_TAG_L))

22

8.1.2 CMNA_drsendfirst, CMNAldrsendfirst, CMNAldr_sendfirst 23

CMNAxdr-send first

Purpose: Set up the length of the packet and send the destination address.

Prototypes:

extern CMNAdrsendfirst _AP((unsigned tag, int length, unsigned msg));
extern CMNAldrsendfirst AP((unsigned tag, int length,
unsigned msg));
extern CNArdrsendfirst _AP((unsigned tag, int length,
unsigned msg));

Formats:

msg: Destination processor number.

length: The length in WORDS of the packet to be written.

Definitions: The CMNAxdrsend-first routine sets up the length words to be sent to the router net-
work. The destination PE address msg is pushed to the fifo. This word is not counted in the length.
CMNAdrsend_first sends into the middle data router, CMNAldr_sendf irst sends into the left data router,
and CMNA..rdrsend-first sends into the right data router.

Performance Notes: *missing*

Networks Used: Router network.

Restrictions: *missing*

8.1.3 CMNA_drsendword

CMNA xdrsendword

Purpose: Pushes a word onto the Router fifo.

Prototypes:

extern CMNA_dr_sendword AP((unsigned msg))
extern CMNA_ldrsendword _AP((unsigned msg))
extern CMNArdrsendword AP((unsigned msg))

Formats:

msg: 32 bits of data to be pushed.

Definitions: The CMNA_xdrsendword routine pushes 32 bits onto the router fifo after CMNAxdr-sendcfirst
has been called.

Performance Notes: *missing*

Networks Used: Router network.

Restrictions: *missing*

24

8.1.4 CMNA _drreceive_word, CMN AJdrreceiveword, CMNArdrreceiveword

CMNA-xdrreceiveword

Purpose: Pushes a word onto the Router fifo.

Prototypes:

extern AP((unsigned msg)) CMNAdrreceiveword
extern AP((unsigned msg)) CMNAldr-receive word
extern AP ((unsigned msg)) CMNA_rdr_receiveword

Definitions: The CMNA_xdr-receivewordroutine pops 32 bits from the router fifo.

Performance Notes: *missing*

Networks Used: Router network.

Restrictions: *missing*

25

8.2 Router functions and macros

These following functions are the ones recommended to be used. These functions combine the router basic
functions in the correct algorithm to perform the given task.

8.2.1 CMNA.set_countJnask

The router only counts messages which tags have been set in the count mask register. This function provides
a way to ensure that your router messages will be accounted for when doing a RouterEmpty. (This may
only be available to the supervisior in the future). Currently, tags 8 through 15 are available for the user.

CMNA-setcount-nask

Purpose: Sets the mask which causes messages to be counted.

Prototypes:

extern CMNA_setcountmask AP ((unsigned mask))

Formats:

mask: Sets the mask of messages to be counted

Definitions: The CMNALset_countamask routine

Performance Notes: *missing*

Networks Used: Router network.

Restrictions: *missing*

26

8.2.2 CMNA_drsendnmsg

This function sends word length words that are pointed to by source-base, and sends them to the specified
destination processor. This function takes care of chopping up large data streams into packets that fit into
the send fifo, and sequencing them to be re-assembled at the receiving end. CMNA.dr receive.msg must be
called in the destination processor to receive this message and re-assemble it.

CMNAdrsen dmsg

Prototypes:

extern CMNAdrsend_msg _AP((unsigned destproc, void*sourcebase,
int wordlength,
unsigned tag));

extern CMNA-ldrsendmsg _AP((unsigned destproc, void*sourcebase
int wordlength,
unsigned tag));

extern CNArdr_sendmsg _AP((unsigned destproc, void*sourcebase
int wordlength,
unsigned tag));

V

Formats:

destproc: Destination processor number.

sourcebase: Word aligned pointer to message to be sent.

wordlength: Length in words of message to be sent.

tag: Tag of message being sent.

Definitions: The CMNAxdrsendimsg sends length words pointed to by sourcebase onto the Router
Network using the tag specified. This function takes care of packaging long messages into fifo amounts and
sending these into the router network. CMNA.xdr-receivemsg must be called on the processor which this
message is intended for.

Performance Notes: *missing*

Networks Used: Router network.

Restrictions: *missing*

27

.,

8.2.3 CMNAcdrnreceivei nsg 28

This function receives ifo length packets which were sent by CMNAdr-send msg, and asembles them back
into the original message. It returns when the wordlength specified has been received.

CMNAdr-send_msg

Prototypes:

extern
extern
extern

void CMNAdrreceive_msg AP((void*base, int wordlength));
void CMNAldrreceivemsg AP((void*base, int wordlength));
void CMNArdrreceive_msg AP((void*base, int wordlength));

Formats:

base: Word aligned pointer for message to be received into.

word_length: Length in words of message to be received.

Definitions: The CMNAxdr..eceivemsg receives word length from the Router Network and stores it in
the location pointed to by base. If base is null, the data is thrown away. This function takes fifo amounts
off the router network in any order and then re packages them into the correct order. It must be receiving
data from the CMNAxdr_send.msg function.

Performance Notes: *missing*

Networks Used: Router network.

Restrictions: *missing*

8.2.4 CMNAstart_emptyingrouter 29

This function indicates that the user is going to stop sending messages, and wait until the router network
is emptied of all messages. The processor will receive all messages still in the network. This is a syn-
chronization function, therefore requires that all processors in the partition call this function before the
emptying can complete. The router empty operation uses the combine network. Any combines issued after
a CMNAstartemptyingrouter will not complete until after CMNArouteremptied returns true.

CMNAstart_emptyingrouter

Prototypes:

extern CMNA_start_emptyingrouter AP(());

Definitions: The CMNA_start_emptyingrouter initiates a Router Done operation.

Performance Notes: *missing*

Networks Used: Combine network.

Restrictions: *missing*

8.2.5 CMNA-router_einptied

CMNA _ router _ e m ptied

Prototypes:

extern _AP(()) CMNA_router_emptied _AP(());

Definitions: Returns true when all processors have called CMNAstartemptyingrouter, and all messages
in the router have been received by the appropriate processor (the router is empty).

Performance Notes: *missing*

Networks Used: Combine network.

Restrictions: *missing*

30

9 Combine (Scan) 31

The Combine interface allows the pe's to perform a given pattern and combine operation on a unit of data.
The allowable patterns are: SCANFORWARD, SCANBACKWARD, SCANREDUCE, and the combines
are: ORSCAN, XORSCAN, ADD-SCAN, UADDSCAN, and MAXSCAN. For example, this amounts to
the pe's OR'ing their data with the data from everyone else in the partition. The result of this operation
can be sent to the scalar by using the SCANREDUCE combiner.

The combine interface allows these operations to be performed on up to MAXCOMBINEMSGWORDS.
The operations are performed as though the data is one long word which is length * 32 bits long.

The Scan network allows the pe's to perform forward and backward scans, and it allows the scalar and/or
all the pe's to receive the reduce of any of these operations.

9.1 CMNAcomn basics

Any combine architecture functionality can be accomplished by applying a combination of the following
functions into the proper algorithm. In order to use these functions, you must proclaim yourself an expert
of the entire architecture of the CM5. These are the building blocks used to implement the macros and
functions in the remainder of this section. It is highly recommended that the macros and functions be used
instead of these. If the architecture changes, these functions will most likely become invalidated.

9.1.1 CMNA_com.status

CMNAcom-status returns the value in the combine status register. Bit maps and macros are provided to
map out any combination of the values available in the status register.

CMNA_com-status

Prototypes:

extern _AP((int)) CMNA_com_status();

Definitions: The CMNA_com_status returns the status fo the cmobine network.

Performance Notes: *missing*

Networks Used: Co dntrolmbine network.

Restrictions: *missing* 32

33Bitmaps:

· NISENDSPACEP NISENDSPACEL

· NIRECOKP NILRECOKL

* NISENDOKP NISENDOKL

* NISENDEMPTYP NISENDEMPTYL

* NIRECLENGTHLEFTP NIRECLENGTHLEFTL

NIRECLENGTHP NIRECLENGTHL

* NICOMOVERFLOWP NICOMOVERFLOWL

Macros:

* SENDSPACE(status)

* RECEIVEOK(status)

* SENDOK(status)

* SENDEMPTY(status)

* RECEIVELENGTH-LEFT(status)

* RECEIVELENGTH(status)

. COMBINEOVERFLOW(status)

Example of using these Macros:

int Overflow;

Overflow = COMBINEOVERFLOW(CMNA_com_status());

Example of using the bit maps:

#define COMBINE_OVERFLOW(status) \

(status & (1 << NI_COM_OVERFLOW_P))

9.1.2 CMNAcom send-first

CMNAcomrsendfirst

Purpose: Set up the length of the packet and send the destination address.

Prototypes:

extern CMNAcom_sendfirst _AP((int combiner, int pattern, int length,
unsigned msg));

Formats:

combiner: Either of the combine types

pattern: Either SCAN-FORWARD, SCAN-BACKWARD, or SCAN-REDUCE

msg: pointer to message to be sent.

length: The length in words of the packet to be written.

Definitions: The CMNA_comsendirst routine sets up the length words to be sent to the control network.
The first word of the message is pushed to the fifo.

Performance Notes: *missing*

Networks Used: Control network.

Restrictions: *missing*

34

9.1.3 CMNA_com-send_word

CMNAcom-sendword

Purpose: Set up the length of the packet and send the destination address.

Prototypes:

extern CMNAcom_sendword _AP((unsigned data));

Formats:

data: word of data to be sent.

Definitions: The CMNA.com.sendword routine pushes a word onto the fifo, it can only be calledc after
calling CMINAcom-sendirst.

Performance Notes: *missing*

Networks Used: Control network.

Restrictions: *missing*

35

9.1.4 CMNAcomreceiveword

CMNAcomreceiveword

Purpose: Receives a word from the network.

Prototypes:

extern _AP((unsigned)) CMNA_comreceive_word();

Definitions: The CMNAcomreceive_word routine pops a word from the fifo. There must be a word to pop
when this function is called.

Performance Notes: *missing*

Networks Used: Control network.

Restrictions: *missing*

36

9.2 Combine functions and macros 37

9.2.1 CMNAsegment_start

CMNAsegment_start

Purpose: Sets the scan start bit to indicate that the combine operation will be performed with this PE at
the start of a segment..

Prototypes:

extern CMNAsetsegmentstart _AP((unsigned value));

Formats:

value: A 1 to set the segment or a 0 to unset the segment bit.

Definitions: The CMNAsegment-start routine specifies to the network that this processor starts a new
segment.

Performance Notes: *missing*

Networks Used: Control network.

Restrictions: *missing*

e

9.2.2 CMNA_comsend

CMNA com-send

Purpose: Sends a combine operation into the combine network.

Prototypes:

extern CMNA_com_send _AP((int combiner, int pattern, void*data,
int wordlength));

Formats:

combiner: Either of the combine types

pattern: Either SCANFORWARD, SCANBACKWARD, or SCAN-REDUCE

data: pointer to message to be sent.

length: The length in words of the packet to be written.

Definitions: CMNA-com-send takes a maximum of MAXCOMBINEMSGWORDS, sets up the send first
register, and then pushes length words onto the fifo. It then injects the fifo into the network, and returns
when the message has been sent.

Performance Notes: *missing*

Networks Used: Control network.

Restrictions: *missing*

38

9.2.3 CMNAcom-receive

CMNA_comreceive

Purpose: Receives the message in the combine receive fifo

Prototypes:

extern CNA_com_receive AP((void*result));

Formats:

result: Pointer to location to store result. If null, the current fifo is emptied, but the data is
discarded.

Definitions: CMNA_comreceive copies the data out of the combine receive fifo, and places it into the receive
buffer provided. The caller is expected to know how long this data is and what type it is. This function can
be called from the scalar or pe.

Performance Notes: *missing*

Networks Used: Control network.

Restrictions: *missing*

39

409.2.4 CMNAcom

CMNAcom

Purpose: Performs a combine operation both sending and receiving the combine data.

Prototypes:

extern CMNAcom _AP((int combiner, int pattern, void*data, int length,

void*result));

Formats:

combiner: Either of the combine types

pattern: Either SCANFORWARD, SCANBACKWARD, or SCANREDUCE

data: pointer to message to be sent.

length: The length in words of the packet to be written.

result: Pointer to location to store result of combine operation.

Definitions: The CMNlcom routine performs a complete combine operation doing a send with the combiner
and pattern specified for the length specified. The result is stored in result. This simply does a CM-
NA-com-send followed by a CMNAcom_receive.

Performance Notes: *missing*

Networks Used: Control network.

Restrictions: *missing*

10 Synchronous messages between Scalar and Pe's 41

10.1 Sending from Scalar to one PE

Write*ToProcessor is called from the scalar and results in this unit of data being sent to the specified pe.
The pe's must be executing a Read*FromScalar simultaneously in order to maintain synchronization. Note
that all the pe's will be executing this function, but only the specified one will accept the value. The contents
of the variable 'value' will remain unchanged in the pe's which were not recipents of the write.

The write to processor functions take a known type and send it. These are macros which execute faster
as the length is not required, and no type casting is necessary. WRITE MSG TO PROCESSOR could be
used for all these functions instead.

10.1.1 Write*ToProcessor

CMNA_write_int_to_pe(Pe, Value)

unsigned int Pe;

int Value;

CMNA_write_uint_to_pe(Pe, Value)

unsigned int Pe;

unsigned int Value;

CMNA_write_float_to_pe(Pe, Value)

unsigned int Pe;

float Value;

CMNA_write_double_to_pe(Pe, Value)

unsigned int Pe;

double Value;

10.2 Read*FromScalar

int CMNA_read_int_from_scalar

uint CMNA_read_uint_from_scalar

float CMNA_read_float_from_scalar

double CMNA_read_double_from_scalar 42

10.3 Sending from one PE to Scalar

Read*FromProcessor is called by the scalar and results in this unit of data being received from the specified
pe. The pe's must be executing a Write*ToScalar to maintain synchronization.

extern int CMNAreadintfrompe _AP((unsigned pe));

extern unsigned int CMNAreaduintfrom_pe AP((unsigned pe));

extern float CMNA_readfloat_frompe _AP((unsigned pe));

extern double CMNA_readdoublefrompe _AP((unsigned pe));

10.3.1 WriteMsgToScalar

WriteMsgToScalar(Value, Length)

unsigned int *Value;

int Length;

10.3.2 Write*ToScalar

CMNA_write_int_to_scalar(value)
int value;

CMNA_write_uint_to_scalar(value)

usigned value;

CMNA_write_float_to_scalar(value)

float value;

CMNA_write_double_to_scalar(value)

double value;

43A Example Code

Code is seperated into seperate files to split scalar code from the pe

code. The following file is the scalar code.

combine_test.c
#include <CMNA.h>

typedef unsigned int word;

int expected_results[8][4] =

{
0, 10, 21, 33,

Ox080000000, 10, 11, 12,

0, 10, 11, 15,

0, 10, 21, 33,

0, 10, 1, 13,

36, 25, 13, 0,

13, 13, 13, Ox080000000,

46, 46, 46, 46

#include "combines.intf"

/* This is the scalar stuff */

scalar_main()

{
test_combines();

}

test_combines()

{
extern pe_scan_test();

if (!CMNA_participatein(NI_REDUCERECEIVE))

printf("ERROR, can't participate in reduce receive\n");

/* tell PEs to run their half of scan test */

pe_scan_test(1, '2', 3);

/* run our half */

scalar_scantest();
}

int failurep = 0;

int verification = 1;

44

verify(index, string)
int index;
char *string;

int pe;
int result;
int overflow;

pe = O;
printf("%s\n\nResults: ", string);

while(pe < CMNA_partition_size)

result = CMNAreadintfrom_pe((unsigned int) pe);
overflow = CMNA_readintfrompe((unsigned int) pe);
printf (" %d", result);
if (overflow) printf("(OV)");

if (verification)
{
if (expectedresults[index] [pe] != result)

failurep = 1;

printf("<--ERROR");
}

pe++;

}
printf ("\n\n");

scalarscantest()

unsigned *scanread();
unsigned int result;

if (CMNApartitionsize != 4)

{
printf("WARNING: this test set up for 4 pe's in partition\n");
printf(" No verification will be performed for this run!\n\n\n");
verification = 0;

printf("Testing Combine network \n");

verify(O, "Add scan forward");

verify(l, "Max scan forward");

verify(2, "Or scan forward");

45

verify(3, "Uadd scan forward");

verify(4, "Xor scan forward");

verify(5, "Add scan backward");

verify(6, "Max scan backward");

CMNA_com_receive(&result);

printf("Scalar received %d from add reduce\n", result);

verify(7, "Add scan reduce");

/* make sure everyone has synched up */

CMNA_com_receive(&result);

if (verification)

{
if (!failurep)

printf("Tests ran successfully!\n");

else

printf("Tests FAILED!\n");

I
else printf("No verification was performed. Verify results manually\n");

/* Here's the PE stuff */

CMPEpe_scan_test(argl, arg2, arg3)

int argl;

char arg2;

int arg3;

{
int me = CMNA_selfaddress;

unsigned int in;

unsigned *scan();

unsigned result;

int words_to_send;

if ((argi != 1) II (arg2 != '2') 11 (arg3 != 3))

{
printf("ERROR: arguments are not being passed correctly\n");

exit(-99);

}

srandom(me+time(O));

in = CMNA_selfaddress + 10;

46

CMNA_setsegmentstart(random() % 2);

CMNA_set_segment_start(O);

words_to_send = sizeof (in) / sizeof (int);

while (WAITING)

if (CMNA_participate_in(NIREDUCE_RECEIVE)) break;

CMNA_globalsync((unsigned) TRUE);

CMNA_com(ADD_SCAN, SCAN_FORWARD, &in, words_to_send, &result);

SENDRESULT_TO_SCALAR(result, COMBINE_OVERFLOW(CMNA_comstatus()));

CMNA_com(MAX_SCAN, SCAN_FORWARD, &in, words_to_send, &result);

SEND_RESULTTO_SCALAR(result, COMBINE_OVERFLOW(CMNAcom_status()));

CMNA_com(OR_SCAN, SCAN_FORWARD, &in, wordsto_send, &result);

SEND_RESULT_TO_SCALAR(result, COMBINE_OVERFLOW(CMNA_com_status()));

CMNA_com(UADD_SCAN, SCAN_FORWARD, &in, wordsto_send, &result);

SEND_RESULT_TO_SCALAR(result, COMBINE_OVERFLOW(CMNA_com_status()));

CMNA_com(XORSCAN, SCAN_FORWARD, &in, words_to_send, &result);

SEND_RESULTTO_SCALAR(result, COMBINE_OVERFLOW(CMNAcomstatus()));

CMNAcom(ADDSCAN, SCAN_BACKWARD, &in, words_to_send, &result);

SEND_RESULT_TO_SCALAR(result, COMBINE_OVERFLOW(CMNA_com_status()));

CMNA_com(MAXSCAN, SCAN_BACKWARD, &in, wordsto_send, &result);

SEND_RESULT_TOSCALAR(result, COMBINE_OVERFLOW(CMNA_com_status()));

CMNA_com(ADD_SCAN, SCAN_REDUCE, &in, words_to_send, &result);

SEND_RESULTTOSCALAR(result, COMBINE_OVERFLOW(CMNA_com_status());

while (WAITING)

if (CMNA_abstain_from(NIREDUCE_RECEIVE)) break;

CMNA_com_send(ADD_SCAN, SCAN_REDUCE, &in, words_to_send);

}

SEND_RESULT_TO_SCALAR(result, overflow)

unsigned int result;

int overflow;

{
int pe = 0;

while (pe < CMNA_partition_size)

{ 47

CMNA_write_intto_scalar(result);

CMNA_write_int_to_scalar(overflow);

pe++;

I

The following file is all of the pe code 48

combine_test_pe.c

B Compiling CandC for execution on simulators and hardware

It is highly recommended to run code on the simulator until it works correctly there. In fact, that is the
only choice you have right now!

The simulators are being designed such that code written in CandC will not have to be modified in any
way to run on the simulator, and also run on the hardware. The only difference in preparing code to run
on the simulator versus preparing code to run on the hardware is to re-compile the code with a different
CandC.h, and then link it with the appropriate library. The step of re-compiling with new CandC.h is only
necessary because some of the CandC functions are macros.

Compiling the two example programs to run on the process simulator. This simulator provides a C/Saber
debug environment for the scalar as well as the pe's in the partition.

cc - -o combines combines.c -psim

cc - -o combinespe combinespe.c -psim

It is more likely that the code will not run correctly at first and will have to be debugged. To debug this
code efficiently, you must be familiar with Saber C. Copy saber init file /pI/cmn5/psim/testsuite/.saberxwindows
to your working directory, invoke saber, and load in the two files. You can type 'run' now, and a partition
of four pe's will be established. See /pl/cm5/psim/doc/psimtutorial for more on this.

