

�w�i�t�h�-�p�r�o�c�e�s�s�o�r�s�-�a�l�l�o�c�a�t�e�d�-�f�o�r�-�v�~�e�t� *Lisp Dictionary
! r f fill: Ell ;; i Ii! liD �I�l�n�m�f�:�!�~�i�i�:�i�i�i�i�:� I ilmttii

supplied body fonns and finally calls deallocate-processors-for-vp-set to deinstanti
ate vp-set.

EXAMPLES

A sample call to �w�l�t�h�-�p�r�o�c�e�s�s�o�r�s�-�a�l�l�o�c�a�t�e�d�-�f�o�r�-�v�~�e�t� is

(def-vp-set my-vp-set nil
:*defvars ' ((value-pvar (self-address! !»»

(with-processors-allocated-for-vp-set (my-vp-set
: dimensions ' (32 32 32»

(*with-vp-set my-vp-set
(*set value-pvar (*!! value-pvar (!! 2»)
(ppp value-pvar :end 8»)

o 2 4 6 8 10 12 14

The following example shows how a flexible VP set can be used repeatedly to process
a set of data files. In the example, a single flexible VP set is used, which is instantiated
and deinstatiated once for each file in such a way that it is just large enough to hold
each file's data.

(def-vp-set file-data-vp-set nil
:*defvars ' ((file-data-pvar»)

(dolist (file files-to-be-processed)
(let ((file-size (get-file-size file»)

(with-processors-allocated-for-vp-set file-data-vp-set
:dimensions (next-power-of-two->= file-size)

(*with-vp-set file-data-vp-set
(*set file-data-pvar (read-file-data!!»
(process-file-data file-data-pvar»»)

REFERENCES

748

See also the following flexible VP set operators:
allocate-vp-set-processors

deallocate-vp-set-processors

�s�e�t�-�v�~�e�t�-�g�e�o�m�e�t�r�y�

�a�l�l�o�c�a�t�e�-�p�r�o�c�e�s�s�o�r�s�-�f�o�r�-�v�~�e�t�

�d�e�a�l�l�o�c�a�t�e�-�p�r�o�c�e�s�s�o�r�s�-�f�o�r�-�~�e�t�

Version 6.1, October 1991

*Lisp Dictionary *with-vp-set
J EI1 : j,g : it :'. %m~~..;.wT::'f~~i$l%..'tt,.%Wi(§;%Mm'.J:a::'$.W~'!w.$,W!W!m,tml,"*li!!m:: =w.·~wm:m@i@i"'·"':'lm

*with-vp-set [Macro]

Dynamically binds the supplied VP set as the current VP set for the duration of the supplied
body forms.

SYNTAX

*with-vp-set vp-set &body body

ARGUMENTS

vp-set VP set object. VP set to be made current. Must be defmed and
instantiated.

body *Lisp forms. Body forms to be evaluated.

RETURNED VALUE

body-value Scalar or pvar value. Value of final form in body.

SIDE EFFECTS

Temporarily changes the current VP set to vp-set during the evaluation of the supplied
body forms.

DESCRIPTION

This macro is used to temporarily switch VP sets for the duration of a section of code.

The currently selected VP set is dynamically scoped. The *with-vp-set form tempo
rarily binds the current VP set to vp-set. Thus, while a *with-vp-set form" is executing,
the global variables related to VP sets are dynamically bound according to the size,
shape, and properties of vp-set.

The following global variables are affected when the current VP set is changed:

current-cm-configuratlon

current-send-address-Iength

Version 6.1, October 1991

current-grld-address-lengths

current-vp-set

749

*wlth-vp-set *Lisp Dictionary
l!ii_:m:m~§:ml: ;:m,:mq:mn:m::m:: :ml :mIl! :mm :mg; w: WII IW§imi :im:imHiml lim!1ii:mnM"lM.: MMMliMiMflM: §MWMII :m'@Wl.nnnlnnrnngw. W,WT0··;nnI!I\'~nnnn:··r: I un *~~~

Iog-number-of-processors-llmit
number-of-processors-limit
ppp-default-start

number-of-dimensions
ppp-default-end
til nil II

EXAMPLES

750

Each VP set maintains its own currently selected set of processors. Nested calls to
*wlth-vp-set that switch between VP sets also switch between the currently selected
sets maintained by the VP sets. This is illustrated by the example shown below.

(def-vp-set fred' (1024 32))
(def-vp-set anne ' (512 512)

:*defvars «x (!! 1) nil (field-pvar 16))
(y (self-address! I))))

(*with-vp-set fred
(*when (evenp!! self-address!!))

(*with-vp-set anne
(*set x (-!! y x))

;32,768 VP's
;16,384 VP's

;262,144 VP's

(*with-vp-set fred ;16,384 VP's
(*when (not!! (zerop!! (self-address!!)))

(setq zero-off (*sum (!! 1))) ;16,383 VP's

(setq zero-on (*sum (!! 1))))))
(*sum (!! 1))) => 32768

zero-off => 16383
zero-on => 16384

;16,384 VP's

When a VP set is created, it is defmed to have all processors selected, so the initial call
to *with-vp-set fred selects the fred VP set with all virtual processors active. The fIrst
*when statement reduces the number of active processors in fred by half by selecting
only even-numbered processors, and the call to *with-vp-set anne selects the anne VP
set, which has 262,144 virtual processors.

The second invocation of*with-vp-set fred reselects the fred VP set with the same cur
rently selected set as before: only processors of even-numbered addresses are active.
The second call to *when further restricts the selected set of fred by deactivating proc
essor O. Inside this *when statement, a call to (*sum (" 1)) returns 16383, the number of
active processors in fred. The call to (*sum (II 1» immediately following the *when
returns 16384, the number of active processors in fred with processor 0 included.

Version 6.1, October 1991

*Lisp Dictionary *with-vp-set
_.WWBU&~· ;;: ::B:! &B.] f q.: :::~: T: mn::: II I I: :: :.m~. .: ;;[""""] Wi :m : iiI::

When execution passes back into the *with-vp-set form that originally selected the
fred VP set, all processors are again active and (*sum (111» returns 32768, the total num
ber of virtual processors in frect.

If the body of a call to *with-vp-set must be evaluated with all processors selected,
rather than only those processors currently active in the selected VP set, it should be
surrounded by a call to *all, as in

(*with-vp-set fred
(*all

(*set x (-!! y x))))

REFERENCES

See also the related operation
set-vp-set

Version 6.1, October 1991 751

*Lisp Dictionary *xor
Hili ~ i H 11. 1";1· n:: !i!n: i::: ffi" B iii! at !1T!W m Ti::::: non n: U II 11m: "

*xor [*Defun]

Takes the logical XOR of all values in a pvar, returning a scalar value.

SYNTAX

*xor pvar-expression

ARGUMENTS

pvar-expression Pvar expression. Pvar to which global XOR is applied.

RETURNED VALUE

xor-scalar Scalar boolean value. The logical XOR of the values of
pvar-expression in all active processors, i.e., the value t if an odd
number of the values are non-nil, and the value nil otherwise.

SIDE EFFECTS

None.

DESCRIPTION

752

The *xor function is a global operator. It takes the logical XOR of all values in a pvar, re
turning a scalar value. Effectively, *xor treats the value of pvar-expression in all active
processors as a set of boolean values. It returns the value t if an odd number of those
values are non-nil, and returns the value nil.

If there are no active processors, this function returns nil.

Version 6.1, October 1991

*Lisp Dictionary
~ II iii w::::nmg;;::mun r: 1[::: ::mMlWf1H~!111I1 1 lP Il: f 1: : m!2! 1 ~ . 1

EXAMPLES

(*xor t!!)
(*xor nil!!)

=>
=>

NIL
NIL

; ; ; t in all processors
t in no processors

;;; t in every other processor
(*xor (evenp!! (self-address!!») => NIL
(*xor (oddp!! (self-address!!») => NIL

;;; t in every third processor (an odd number)
(*xor (zerop!! (mod!! (self-address!!) (!! 3»» => T

;;; an example using non-boolean values
(*xor (if!! (zerop!! (self-address!!»

nil! !
(self-address!!») => T

REFERENCES

See also the related global operators:
*and

*Iogior

*mln

*Integer-length

*Iogxor

*or

See also the related logical operators:
andll notll

Version 6.1, October 1991

orll

All but one non-NIL

*Iogand

*max

*sum

xorll

*xor
.m:llmm

753

xorll
12i

xorll

fii g iN 1 1 H!Ii' n: f i WI! 1

Performs a parallel logical XOR operation in all active processors.

SYNTAX

xorll &rest pvar-exprs

ARGUMENTS

*Lisp Dictionary
F~flllWmw

[Function]

pvar-exprs Pvar expressions. Pvars to which parallel XOR is applied.

RETURNED VALUE

xor-pvar Temporary boolean pvar. Contains in each active processor the log
ical XOR of the corresponding values of the pvar-exprs. If no
pvar-exprs are given then nllll is returned.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This perfQrms the XOR function on all the pvar-exprs. If no pvar-exprs are given then
nilll is returned. In each processor, xorll returns t if an odd number of the supplied pvar
exprs have the value t in that processor, and otherwise returns nil.

EXAMPLES

(xor! ! (evenp!! (self-address! I))
(oddp!! (self-address!!))) <=> t!!

(ppp (xor!! (self-address! !)
(evenp!! (self-address!!)))

:end 8)
NIL T NIL T NIL T NIL T

754 Version 6.1, October 1991

REFERENCES

See also the related global operators:
*and

*Iogior

*min

*xor

*integer-length

*Iogxor

*or

See also the related logical operators:
and!! not!!

Version 6.1, October 1991

*Iogand

*max

*sum

or!!

755

zeropll
2

zeropll

IT 1 HJ. r r r IT

Performs a parallel test for zero values on the supplied pvar.

SYNTAX

zeropll numeric-pvar

ARGUMENTS

numeric-pvar Numeric pvar. Tested in parallel for zero values.

RETURNED VALUE

*Lisp Dictionary

[Function]

zerop-pvar Temporary boolean pvar. Contains the value t in each active proces
sor where the corresponding value of numeric-pvar is zero.
Contains nil in all other active processors.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

This is the parallel equivalent of the Common Lisp function zerop.

EXAMPLES

756

(zerop!! (mod!! (self-address!!) (!! 2»)

<=>
(evenp!! (self-address!!»

Version 6.1, October 1991

,I

'~ ...

[

II [Function]

Returns a temporary pvar with the same value in each active processor.

SYNTAX

II scalar-expression

ARGUMENTS

scalar-expression Scalar expression. The value to be stored in each processor of the
returned pvar. The data type of scalar-expression must be either
a number, a character, an array, or a structure.

RETURNED VALUE

constant-pvar

SIDE EFFECTS

A temporary pvar with the value of scalar-expression in each
active processor.

Allocates the new temporary pvar on the stack.

DESCRIPTION

The *Lisp function II returns a temporary pvar containing the value of scalar-expres
sion in each active processor. The scalar-expression must be a number, a character, an
array, or a structure.

Note: The original purpose of II was to allow you to provide constant pvar arguments
to *Lisp functions, as in the expression

(+!! (!! 2) (!! 3) (!! 4»

*Lisp functions now allow you to pass scalar constants directly (the call to !! to convert
them to pvars is made automatically by *Lisp itself). This means that you will rarely
ever have to use the II function yourself.

Version 6.1, October 1991 757

II *Lisp Dictionary
liP Ililm 1m!! i! [[J !!JIm !1I1!JJm!ll Him ! HEW J J fJM

If scaiar-expression evaluates to an array, a complete copy of the array is stored in
each active processor. If the array has a fill pointer, it is ignored; all elements of the
array are copied into the CM. Adjustable arrays are copied and stored as fixed-size
arrays. Displaced arrays are copied and stored as non-displaced arrays. The data type
of the returned pvar depends on the data types of the elements in the array. If the array
contains elements of various types, the *Lisp rules of type coercion apply.

If scaiar-expression evaluates to a scalar structure object (of a structure type defmed
by a call to *defstruct) an equalp copy of the object is stored in each active processor
of the returned pvar.

EXAMPLES

758

By distributing a single scalar value to all processors, the II function provides the same
functionality in *Lisp as scalar values provide in Common Lisp (see Figure 6).

A typical call to II is very simple.

(!! 5) ;;; Returns a pvar with 5 in each processor

(II 5)
I

Figure 6. The expression (II 5) distributes a scalar value (5) to all processors.

In *Lisp, II is most often used to pass a constant value to a function, as in

(random!! (!! 10»

The function random II expects a single pvar argument whose value in each processor
is the upper bound of the random number to be calculated in that processor. The above
example returns a temporary pvar containing a random value between 0 and 9 in each
processor. Note that this differs from

(random!! (1+!! (self-address!!»)

Version 6.1. October 1991

*Lisp Dictionary
2!!!: liT I liHIIIIT!!IIWP!!12 [j P li! !:!!1iI!lIliTCl! jj Iii: Em :i.iI! ji En

II
TV

which returns a pvar whose value in each processor is a random number between 0 and
the processor's send address. Here, the pvar argument has a different value in every
processor.

As the following example demonstrates, II is very useful in comparisons.

«!! (self-address!!) (!! 256»

This returns a pvar with t in each processor whose send address is less than 256, and
nil in all other activ~ processors.

The following is a call to II with an array argument:

(*defvar parallel-array (!! #(1 2 3»)

(ppp parallel-array)
(1 2 3) # (1 2 3) # (1 2 3) . . . # (1 2 3) # (1 2 3)

(setq *print-array* t)
(pref parallel-array 1) => #(1 2 3)

This creates a pvar with a copy of the array #(123) in each processor. Using pref, the
copy of the array in each processor is accessed. Individual elements of the parallel
arrays may be accessed using aref.

Nested arrays of arbitrary depth are legal arguments to II. For instance, an array of
arrays is a permissible argument to II. The expression

(!! #(#(2 4) #(612) #(716) #(520) #(256) »

creates a pvar with an array of arrays in each processor. Calling " with nested arrays
can be a very slow operation.

An example using structures is

(*defstruct elephant
(wrinkles 30000 :type (unsigned-byte 16»
(tusks t :type boolean»

(!! (make-elephant :wrinkles 0 :tusks nil»

This creates a pvar with a wrinkle-free, tuskless elephant in each processor.

Version 6.1, October 1991 759

II
I mgT IT 1Ii r IF r w % r mn iW fl I fl H! If I UITf .

*Lisp Dictionary
WE fl!l! m !In! IF

NOTES

It is an error to call II with an array containing elements that cannot~ according to the
*Lisp rules of type coercio~ be coerced into a single~ fixed-size type. For example~

(!! #(1 2 3 #\e #\r #\r #\0 #\r #\!)}

is in error because the array argument contains both integers and characters.

Implementation Note:

In Lucid and Sun Common Lisp versions of *Lisp~ front-end floating-point numbers
are always stored as double-precision numbers~ regardless of thier actual precision.
This means that the expression

(!! 3.14)

is ambiguous-there~s no way to tell whether you intended to create a single-precision
or a double-precision floating-point pvar~ even if you declare the returned type of the
II expression!

For this reason~ *Lisp has an internal variable~ *115p-1::*default-fioat-preci5ion*~ that
specifies the "default" precision of an ambiguous floating-point II expression. This
variable can be set to either :5lngle or :double~ and defaults to :5Ingle.

This only affects the *Lisp interpreter. The *Lisp compiler has more information about
the types of values in these expressions~ so compiled code doesn't have this problem.

REFERENCES

760

See also the pvar allocation and deallocation operations
allocate II arrayll

*deallocate

front-endll
make-arrayll

*deallocate-*defvars

*Iet
typed-vectorll

*defvar

Iet

vectorll

Version 6.1, October 1991

*Lisp Dictionary =11,1=11, <II, <=11, >11, >=11
mill PM! 1m m 1 T mlf Il$'i m 1m IT 1 in mmmlll1; 1111111 j[nlTI ilc;rliWliiiillfiillllll

=" 1=" <II <=" >" >=" .. , .. , .. , .. , .. , .. [Function]

Perform parallel numerical comparisons on the supplied pvar arguments.

SYNTAX

=11, 1=11, <II, <=11, >11, >=11 numeric-pvar &rest numeric-pvars

ARGUMENTS

numeric-pvar, numeric-pvars Pvars to be compared.

RETURNED VALUE

These functions each return a single temporary boolean pvar, as described below:

equal-pvar The value t in each active processor where the numeric-pvar argu
ments are equal, and nil in all other active processors.

not-equal-pvar The value t in each active processor where the numeric-pvar argu
ments are IEt~ and nil in all other active processors.

1Vf~
less-than-pvar The value t in each active processor where the numeric-pvar argu-

ments are~ and nil in all other active processors.
~

not-greater-pvar The value t in each active processor where the numeric-pvar argu-
ments are SEtllal, and nil in all other active processors.

<..\00-
greater-pvar The value t in each active processor where the numeric-pvar argu

ments are-eqtiEll, and nil in all other active processors.
'>

not-less-pvar The value t in each active processor where the numeric-pvar argu
ments are ~, and nil in all other active processors.

>::::

SIDE EFFECTS

The returned pvar is allocated on the stack.

Version 6.1, October 1991 761

=11, I-II, <II, <=11, >11, >-" "'Lisp Dictionary
fll. ImilfTIl m TI!lflf rnr H I TV 1 1 II 1111211 jf[! WlRlmlillliflr:lf ! 1:1

DESCRIPTION

These functions perform parallel comparisons; each function returns a temporary pvar
that contains t in each active processor where the argument pvars pass the correspond
ing relational test (equality, less-than, greater-than, etc.), and nil in all other active
processors. These functions provide the same functionality for numeric pvars as the
Common Lisp operators =, 1=, <, <=, >, and >= provide for numeric scalars.

If only one argument pvar is given, the returned pvar is til.

EXAMPLES

These functions can be used to compare the values of a pvar with some constant value.
For example, if numeric-pvar contains the values 0, 5, 1, -4, 5, etc., then the pvar
returned by

(=!! numeric-pvar (!! 5»

contains the values nil, t, nil, nil, t, etc.

Similarly, one pvar can be compared with another. The expression

«!! numeric-pvar (self-address!!»

returns a pvar with the value t in each processor for which numeric-pvar is less than
the processor's send address.

These functions are especially useful in combination with the processor selection oper
ators. For example,

(*when (>!! data-pvar (!! 10»
(*set data-pvar (*!! data-pvar (!! 2»»

multiplies data-pvar in processors where data-pvar is greater than 10. The macro
*when is used with >11 to select processors where data-pvar is greater than 10. The val
ue of data-pvar in those processors is multiplied by 2 using *11 and stored back into
data-pvar by *set.

NOTES

762

An error is signalled if any of the numeric-pvar arguments contains a non-numeric
value in any active processor.

Version 6.1, October 1991

./

*Lisp Dictionary
1 : q J : ::rmmH:m c:::r Imp in· liTII :::mml§l :lIm IT Iilm

~II, --II, *11, III

+11, -II, *11.111
nm I I II' II mnn

[Function]

Perform parallel addition, subtraction, multiplication, or division on the supplied pvars.

SYNTAX

+11, *11
-II, III

&rest numeric-pvars
numeric-pvar &rest numeric-pvars

ARGUMENTS

numeric-pvar, numeric-pvars Numeric pvars to be combined arithmetically.

RETURNED VALUE

result-pvar Temporary numeric pvar. In each active processor, contains the re
sult of the arithmetic operation on the numeric-pvars.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

These functions provide the same functionality for numeric pvars as the Common Lisp
arithmetic operations +, -, *, and I provide for numeric scalars. Each function performs
an arithmetic operation on the supplied numeric-pvars.

The +11 function performs parallel addition, returning (II 0) when no arguments are
supplied. The *11 function performs parallel multiplication, returning (II 1) when no
arguments are supplied.

The -II function performs parallel subtraction, or negation, if only one argument is
supplied. The III function performs a parallel division, or inversion, if only one argu
ment is supplied.

Note: Both -II and III require at least one numeric-pvar argument. Also, since *Lisp
lacks "rational number pvars", III always returns a floating-point or complex pvar.

Version 6.1, October 1991 763

+11, -II, *11, /II
1

*Lisp Dictionary
1 RnMll 7 nr f r r] fli 11 1 7 II

EXAMPLES

The function +11 can be used to increment a pvar by some constant value. For example,

(+!! numeric-pvar (!! 5»

returns a pvar whose value in each processor is the value of numeric-pvar plus 5.

Similarly, -II can be used to fmd the difference of several pvars. The expression

(-!! particles-pvar protons-pvar neutrons-pvar)

returns a temporary pvar containing in each processor the result of subtracting
protons-pvar and neutrons-pvar from particles-pvar in that processor.

The *11 operator can be used together with the processor selection operators to modify
the values of a selected group of processors. For example,

(*when (>=!! baggage-weight-pvar (!! 150»
(*set passenger-charge-pvar

(*!! current-rate-pvar (!! 2»»

uses *11 to change the fare for passengers with excess baggage. The macro *when is
used with >=11 to select those processors in which baggage-welght-pvar is greater than
or equal to 150. In these processors, *11 is used with ·set to store twice the value of
current-rate-pvar in passenger-charge-pvar.

NOTES

764

For III, if there is only one numeric-pvar argument, it is an error if the pvar has the
value 0 in any active processor. If there is more than one argument, it is an error if any
numeric-pvar other than the first argument has the value 0 in any active processor.

An error is signalled if any of the numeric-pvar arguments contains a non-numeric
value in any active processor.

If the data types of the argument pvars differ, the *Lisp rules of type coercion apply.

Version 6.1, October 1991

---" "

·Lisp Dictionary 1+11,1-11
IIllIll i H lI!ITliIIP!f! mn MT m millE i ffll Ii 1 !1ir: gfflllllt:ffll :111 nmI!!lI : 111 n mil "m 1m limn!!? nlT1

1+11 [Function]

Performs parallel addition/subtraction of 1 to/from the supplied pvar.

SYNTAX

1+11 numeric-pvar
1-11 numeric-pvar

ARGUMENTS

numeric-pvar

RETURNED VALUE

Numeric pvar. Incremented or decremented in paralle1.

increment-pvar Temporary numeric pvar. In each active processor, contains a copy
of the value of numeric-pvar incremented or decremented by one.

SIDE EFFECTS

The returned pvar is allocated on the stack.

DESCRIPTION

The 1 +11 function performs a parallel increment, and the 1-11 function performs a paral
lel decrement. Both functions return a copy of the numeric-pvar with values either
incremented or decremented by 1. These functions provide the same functionality for
numeric pvars as the Common Lisp functions 1+ and 1- provide for numeric scalars.

EXAMPLES

The 1+11 function is a contraction of the expression

(+!! numeric-pvar (!! 1»

and performs identically.

Version 6.1, October 1991 765

1+11,1-11 *Lisp Dictionary
111111 I mUN m Hi Ii mlHlmlfi! N!liU lHi!H 11 Il ITm !!l 1m! Uffill

The 1-11 function is a contraction of the expression

(-!! numeric-pvar (!! 1»

and performs identically.

NOTES

An error is signalled if the numeric-pvar argument contains a non-numeric value in
any active processor.

REFERENCES

766

The function *incf can be used to destructively increment its argument pvar. See the
dictionary entry on *Incf for more information.

The function *decf can be used to destructively decrement its argument pvar. See the
dictionary entry on *decf for more information.

Version 6.1, October 1991

I
I

\~

