Copyright

Copyright 1983 by TeleVideo Systems, Inc. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of TeleVideo Systems, Inc., 1170 Morse Avenue, Sunnyvale, California 94086.

Disclaimer

TeleVideo Systems, Inc. makes no representations or warranties with respect to this manual. Further, TeleVideo Systems, Inc. reserves the right to make changes in the specifications of the product described within this manual at any time without notice and without obligation of TeleVideo Systems, Inc. to notify any person of such revision or changes.

Warning!

This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user at his own expense will be required to correct the interference.

TeleVideo® is a registered trademark of TeleVideo Systems, Inc. Z80A® is a registered trademark of ZILOG Corporation. CP/M® is a registered trademark of Digital Research, Inc. SuperMouse™, TeleWrite™, TeleCalc™, and TeleChart™ are trademarks of TeleVideo Systems.

TeleVideo Systems, Inc., 1170 Morse Avenue, Sunnyvale, California 96086 408/745-7760
STATEMENT OF LIMITED WARRANTY

TeleVideo Systems, Inc. ("TeleVideo") warrants to its distributors, systems houses, OEMs, and national accounts ("Buyer") that products, except software, manufactured by TeleVideo are free from defects in material and workmanship. TeleVideo's obligations under this warranty are limited to repairing or replacing, at TeleVideo's option, the part or parts of the products which prove defective in material or workmanship within 180 days after shipment by TeleVideo. That Buyer may pass along to its initial customer ("Customer") a maximum of 90 days coverage within this 180-day warranty period, provided that Buyer gives TeleVideo prompt notice of any defect and satisfactory proof thereof.

Products may be returned by Buyer only after a Return Material Authorization number ("RMA") has been obtained from TeleVideo by telephone or in writing. Buyer must prepay all freight charges to return any products to the repair facility designated by TeleVideo and include the RMA number on the shipping container. TeleVideo will deliver replacements for defective products or parts on an exchange basis to Buyer, freight prepaid to the Buyer or the Customer. Products returned to TeleVideo under this warranty become the property of TeleVideo. With respect to any product or part thereof not manufactured by TeleVideo, only the warranty, if any, given by the manufacturer thereof, applies.

EXCLUSIONS

This limited warranty does not cover losses or damage which occur in shipment to or from Buyer or Customer, or is due to, (1) improper installation or maintenance, misuse, neglect or any cause other than ordinary commercial or industrial application, or (2) adjustment, repair, or modifications by other than by TeleVideo-authorized personnel, or (3) improper environment, excessive or inadequate heating or air conditioning and electrical power failures, surges or other irregularities or (4) any statement made about TeleVideo's products by salesmen, dealers, distributors or agents, unless confirmed in writing by a TeleVideo officer.

THE FOREGOING TELEVIDEO LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WHETHER ORAL, WRITTEN, EXPRESS, IMPLIED OR STATUTORY. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE DO NOT APPLY. TELEVIDEO'S WARRANTY OBLIGATIONS AND DISTRIBUTOR'S REMEDIES HEREUNDER ARE SOLELY AND EXCLUSIVELY AS STATED HEREIN. TELEVIDEO MAKES NO WARRANTY WHATSOEVER CONCERNING ANY SOFTWARE PRODUCTS, WHICH ARE SOLD "AS IS" AND "WITH ALL FAULTS". TELEVIDEO'S LIABILITY, WHETHER BASED ON CONTRACT, TORT, WARRANTY, STRICT LIABILITY OR ANY OTHER THEORY, SHALL NOT EXCEED THE PRICE OF THE INDIVIDUAL UNIT WHOSE DEFECT OR DAMAGE IS THE BASIS OF THE CLAIM. IN NO EVENT SHALL TELEVIDEO BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF USE OF FACILITIES OR EQUIPMENT, OR OTHER INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES.

TeleVideo Systems, Inc.
Table of Contents

1. **Introduction** ... 1.1
 - Software ... 1.2
 - Notation Conventions 1.2
 - Special Notes .. 1.3

2. **Setup** ... 2.1
 - Installing Your System 2.1
 - Power Cord Connection 2.1
 - Line Voltage Regulator 2.2
 - Switch Settings 2.2
 - Connecting Peripherals 2.4
 - Attaching Cables 2.4
 - Connecting a Parallel Printer 2.5
 - Changing the Default Printer Device 2.5
 - Connecting a Modem 2.5

3. **Using CP/M, the Operating System** 3.1
 - CP/M Terms ... 3.1
 - Starting Up CP/M 3.3
 - System Diskette 3.3
 - Start Up Review 3.3
 - Reset Command 3.4
 - System Prompt and the Logged Drive 3.4
 - CP/M Command Lines 3.5
 - Upper- and Lower-Case 3.5
 - Control Characters 3.5
 - Line Editing ... 3.5
 - Disk Files ... 3.6
 - Filenames ... 3.7
 - Wildcard File References 3.7
 - Resident Commands 3.8
 - Unrecognized Commands 3.9
 - DIR - List a Directory 3.9
 - ERA - Erase a File 3.9
 - REN - Rename a File 3.9
 - TYPE - List a File on the Screen 3.10
 - Transient Commands 3.10
 - STAT - List the Status of a File 3.11
 - PIP - Peripheral Interchange Program 3.12
 - Applications Software 3.13

4. **Keyboard** .. 4.1
 - Key Descriptions 4.1
 - Character Keys .. 4.1
 - Function Keys and Special Keys 4.2
 - Disabling/Enabling the Keyboard 4.6
 - Keypick and Bell 4.7
 - Function Keys .. 4.7
 - Programming the Function Keys 4.7
TPC I System Reference Manual

Table of Contents

5. Utility Programs
 - SETUPTPC Program .. 5.1
 - SYSGEN .. 5.2
 - FORMAT (Single Drive) 5.6
 - FORMAT (Dual Drive) 5.8
 - COPYDISK (Single Drive) 5.10
 COPYDISK Error Messages 5.12
 - COPYDISK (Dual Drive) 5.14
 COPYDISK Error Messages 5.17

6. Programming the Terminal Emulator
 - Subsystems Overview 6.1
 - Terminal Attributes Emulator 6.3
 Default Video Attributes 6.4
 Video Attributes 6.4
 Setting Video Attributes 6.5
 Escape Sequence Calls to the Terminal Emulator 6.6
 Escape Sequences for Clearing the Screen 6.6
 Escape Sequences for Cursor Display 6.7
 Cursor Control .. 6.7
 Cursor Addressing 6.8
 Tabs ... 6.9
 Text Editing Functions 6.10
 Monitor Mode ... 6.12

7. Video Graphics
 - Introduction to GSX 7.1
 - GSX (Graphics System EXtension) 7.1
 - Graphic Device Operating System 7.2
 - Graphic Input/Output System 7.2
 - GENGRAF Utility ... 7.3
 - How GSX Fits Into Your System 7.3
 - GSX Supported Peripherals 7.4
 - Graphics Primitives Driver 7.5
 - Calling the Graphics Driver 7.6
 - Graphics Driver Functions 7.8
 - SuperMouse .. 7.17
 - SuperMouse Support Functions 7.18
 Example SuperMouse Program 7.23
 - Graphic Character Font 7.25
 - Sample Graphics Access Program
 Using 8080 Assembly Code 7.27

8. TROUBLESHOOTING ... 8.1
 - Changing the Fuse 8.2

Appendices
 - TPC I Specifications A.1
 - Suggested References B.4
 - Buying Additional Diskettes C.6
 - Cable Specifications D.7
Appendices

A. TPC I Specifications. A.1
B. Suggested References. B.4
C. Buying Additional Diskettes. C.6
D. Cable Specifications. D.7
E. Port Addresses. E.8
F. Communications Port Driver. F.15
G. Changing the Default LST: Device. G.20
H. Default Device Assignment. H.24
I. ASCII Code Chart. I.26
J. System Diskette File List. J.27
K. Programmer's Quick Reference Guide. K.29
L. TPC I Demonstration Program. L.32
M. Configuring For 230 Volts. M.35
1. INTRODUCTION

The TeleVideo Portable Computer (TPC I) is an 8-bit computer with a 4 MHz Z80A CPU, providing a 64 Kbyte dynamic RAM, a 32 Kbyte alpha and graphic display memory, and an 8 Kbyte EPROM. CP/M is the operating system with the GSX extension from Digital Research for graphics.

The computer's processor is designed to allow both alphanumeric computing as well as standard business graphics. The alphanumeric display is 24 lines by 80 characters. The graphics display features a resolution of 640 x 240 pixels.

Figure 1-1

TPC I

The slim-line, 5 1/4-inch floppy disk drives are mounted vertically and side by side next to the screen providing 363.6 Kbytes of formatted disk storage per drive. You can order the TPC I with either one or two drives.

I/O ports consist of one RS-232C port for a modem, one parallel port for a printer, and one port for the TeleVideo SuperMouse, a cursor manipulation and input device. Available also as an option is the TPC I-N, an RS-422 card, to provide a port for connecting the TPC I to a TeleVideo network system.
The TPC I package includes, besides the hardware and the operating system, three applications programs. They are:

* TeleWrite for executive word processing
* TeleCalc for spreadsheet analysis
* TeleChart for business graphics

By adding the TeleVideo SuperMouse, many graphics and menu-driven applications programs become even easier to use. Contact your computer store or dealer for further information about the SuperMouse.

SOFTWARE

CP/M, developed by Digital Research, is the operating system for the TPC I. This system allows you to use CP/M-compatible applications program software.

The diskette that arrived with your system is labeled CP/M Version x.x. This diskette is referred to as the system diskette throughout this manual.

The TPC I can use any high-level programming language designed to run under CP/M. Some of the more popular languages that are used on the TPC I are BASIC, FORTRAN, COBOL, PASCAL, APL, ALGOL, PL/1, FORTH and "C".

Besides TeleCalc, TeleChart, and TeleWrite, there are many other applications programs commercially available for a wide range of tasks from payroll to security. In addition, you may write your own applications programs in any CP/M programming language.

NOTATION CONVENTIONS

Throughout this Manual and the User's Manual are a few symbols that have specific meanings. These symbols allow us to more easily communicate particular actions to you.

<Return> The <Return> symbol indicates that you are to press the key marked with the squared, left arrow key on the right of the typewriter keys. It is called the Return key and is like the carriage return key on a typewriter.

< > When a key, other than an alphabet letter or number key, is written, it is enclosed in brackets. For example, if you are to press the key marked Ctrl, it would be written like this, <Ctrl>.
In a command that requires spaces (such as `DIR B:<Return>`), for clarity the spaces are indicated by the spacebar symbol, `<BAR>`. Pressing the `<BAR>` enters a space character at the cursor. Our example command is written like this:

```
DIR<BAR>B:<Return>
```

This means to type `DIR`, press the space bar, type `B:`, and press the `<Return>` key.

To indicate the cursor, which is a blinking block on your screen, you will see the cursor symbol `_`.

For some commands, you must press two keys simultaneously. We show this action with the slash (`/`) symbol. For example, you may be asked to press the `<Ctrl>` and the C keys at the same time. The keys will be written with a slash dividing them. Using our example, when you are to press the `<Ctrl>` and C keys at the same time, you will see it as `<Ctrl>/C`. **Do not press the slash key when you see it in a command.** Press the slash key **ONLY** when it is enclosed in brackets like this: `</>`.

Special Notes

Two types of notes call attention to information of special importance.

NOTE! This is a general note emphasizing important information.

STOP! This indicates special information concerning possible loss of data or damage to the system. **When you see this, STOP and read the note before proceeding.**

Step-by-step procedures are used in this manual to show how to perform various functions. These procedures show what you are to do and how your computer responds to that action. The following is an example of the procedure format:

```
USER: 1. Your Action

SYSTEM: 2. Screen Display or Action
```

Read the entire procedure before beginning the operation and completely read the step you are working on before entering a response. Many steps offer a choice. All of your actions are shown in **bold print.**
2. SETUP

The step-by-step instructions for setting up the TPC I are in the User's Manual. This chapter gives information pertaining to the more technical aspects of the installation such as power sources, voltage regulators, switch settings, and peripherals and baud rates.

INSTALLING YOUR SYSTEM

For optimum performance, locate the system at least five feet from other computing equipment, electrical appliances, or equipment such as elevators, radio transmitters, and television sets, that generate magnetic fields.

Power Cord Connection

The power cord that came with your system plugs into the back of the main unit as shown in Figure 2-1. The source power supply and proper connections are described here.

Figure 2-1
Power Cord Connection

The TPC I requires a three-prong electrical outlet. The power cord has a three-prong plug. If you use it with a two-prong adapter, ground it with a pigtail. See Figure 2-1.
Internally, the power cord wires are color-coded as follows:

- Green: Earth ground
- Black: Primary power (hot)
- White: Primary power return (neutral)

The TPC I requires the following source power:

- USA: 115 VAC at 1.5 amperes
- International: 230 VAC at 0.75 amperes

NOTE! Appendix M gives directions for changing the TPC I to correspond to 230 volts, the international electrical power standard.

NOTE! Incorrect or fluctuating line voltages can cause disk errors or damage the system.

Line Voltage Regulator

We recommend using a line voltage regulator. By using a line voltage regulator, you can safeguard your system from power surges and voltage spikes that may interfere with the normal operation of your system. Contact your computer store for information on availability and installation.

Switch Settings

Switch settings control many system functions. Most switches can be set according to your preference, but others must be set in required positions. During installation, it is important that you check the switch settings to match your system requirements.

The TPC I has one DIP switch, located on the rear panel labeled SW. This switch contains eight sections (they look like small levers). These sections control various system functions. Figure 2-2 illustrates the positions of the sections as they are set by TeleVideo (default settings).

If you want to change any settings, see Table 2-1 for alternative switch settings.

STOP! The sections of the DIP switch are small individual switches. Gently push the switch to the desired position with a ball-point pen, and always give the switch a second push to make certain that it is seated properly in the position you have chosen. **DO NOT USE A PENCIL!** Pencil lead is an electrical conductor, and any small grains of lead falling into the switch sections may cause a malfunction.
Table 2-1 lists the settings for the DIP switch. Read through the table, and set the sections according to your requirements. The starred (*) settings are the default settings.

Table 2-1
Switch Settings

<table>
<thead>
<tr>
<th>Section</th>
<th>Setting (set to up or down)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>closed (down)</td>
<td>*Baud rate (see Table 2-2)</td>
</tr>
<tr>
<td>2</td>
<td>closed (down)</td>
<td>*Baud rate (see Table 2-2)</td>
</tr>
<tr>
<td>3</td>
<td>closed (down)</td>
<td>*Baud rate (see Table 2-2)</td>
</tr>
<tr>
<td>4</td>
<td>closed (down)</td>
<td>*Required</td>
</tr>
<tr>
<td>5</td>
<td>closed (down) open (up)</td>
<td>*Local Remote</td>
</tr>
<tr>
<td>6</td>
<td>closed (down)</td>
<td>*Not Used</td>
</tr>
<tr>
<td>7</td>
<td>closed (down) open (up)</td>
<td>*60 Hz (for 115V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 Hz (for 230V)</td>
</tr>
<tr>
<td>8</td>
<td>closed (down) open (up)</td>
<td>Black on yellow screen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Yellow on black screen</td>
</tr>
</tbody>
</table>

* Default settings
CONNECTING PERIPHERALS

Auxiliary devices such as a printer, a modem, a plotter, and the SuperMouse can be connected to the TPC I. Instructions are given here for connecting a printer and a modem. The parallel printer interface allows the TPC I to be used with most printers that support the Centronics parallel interface currently available on the market. The TPC I is also equipped with an RS-232C-compatible serial port for a modem that supports baud rates of 75, 150, 300, 600, 1200, 2400, 4800, and 9600.

The SETUPTPC Program allows you to quickly and easily change the baud rate and the modem port data format to adapt to a variety of peripherals. You can also indicate whether or not the SuperMouse is attached. A complete description of the capabilities of the SETUPTPC Program as well as step-by-step instructions for using it, are in Chapter 5.

NOTE! If you are adding a plotter or the SuperMouse, please follow the installation instructions that accompany those devices. Also see the SETUPTPC Program in Chapter 5.

Attaching Cables

Cables are needed to connect the TPC I to a printer or a modem. The types of cables needed are determined by the requirements of the device being attached to the TPC I. You can obtain the appropriate cables for attaching peripheral devices at your computer store.

Cable connectors commonly have D-shaped end connectors. (See Figure 2-3.) These fit onto a D-shaped connector on the rear panel of the system. To install a cable, turn the connector end of the cable to fit the pin connector on the device, then gently push the cable on to the connector. The screws can be finger tightened to prevent accidentally pulling the cable off.

Figure 2-3
D-Shaped Cable Connector
Leave some slack as you connect the cables. If you are using a round cable, coil it loosely and secure it with a rubberband. If you are using a flat, ribbon cable, fold it accordion-style as shown in Figure 2-4. Coiling ribbon cable can adversely affect system performance.

Figure 2-4
Correctly-Folded Excess Ribbon Cable

Connecting a Parallel Printer

The parallel port labeled PRINTER is ready to connect to a parallel printer when the unit is shipped from the factory. The TPC I is set to work with printers that support Centronics parallel interface printers. Be sure to read the instructions that came with your printer for correct interfacing information.

The TPC I and printer should be within 50 feet of each other.

Attach the end of the interface cable with the 25-pin D-shaped connector to the port labeled PRINTER. Attach the other end to the 36-pin connector on the printer. See Appendix E for a listing of the pin connector assignments.

Changing the Default Printer Device

To change the default printer device and to establish different power-up default values, refer to the instructions in Appendix G.

Connecting a Modem

You can connect a modem to the TPC I. The RS-232C port labeled RS 232 is ready to connect to a modem.

The TPC I and modem should be within 50 feet of each other.

Attach one end of an RS-232C interface cable to the port labeled RS 232. Attach the other end to the modem's RS-232C connector.

The default baud rate for a modem is 9600. The baud rate setting can be changed by the SETUPTPC program (See Chapter 5), or by changing the switch settings. See Table 2-2.
Table 2-2
Modem Baud Rate Switch Settings

<table>
<thead>
<tr>
<th>Dip Switch Section</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>C C C</td>
<td>9,600 (default)</td>
</tr>
<tr>
<td>O C C</td>
<td>4,800</td>
</tr>
<tr>
<td>C O C</td>
<td>2,400</td>
</tr>
<tr>
<td>O O C</td>
<td>1,200</td>
</tr>
<tr>
<td>C C O</td>
<td>600</td>
</tr>
<tr>
<td>O C O</td>
<td>300</td>
</tr>
<tr>
<td>C O O</td>
<td>150</td>
</tr>
<tr>
<td>O O O</td>
<td>75</td>
</tr>
</tbody>
</table>

Legend
C = Switch closed (down)
O = Switch open (up)
3. USING CP/M, THE OPERATING SYSTEM

CP/M stands for Control Program/Monitor or Control Program for Microcomputers. CP/M is a computer program, just like a word processor or accounts payable package and comes on a floppy diskette like other programs. CP/M is called an operating system because it controls all the operations and programs in your computer. The diskette that CP/M comes on is called the system diskette in this manual.

CP/M controls all of the operations in your computer. It controls the read and write operations to the disk drives. It loads the various applications programs that you want to run and supervises their execution. It organizes the data for communications to a printer or over a modem to a remote station. One way to think of CP/M is as the "personality" that resides in your computer: it is the overall set of commands that is used to run everything else on your system.

CP/M TERMS

The following table describes some of the basic technical terms used in computing. By becoming familiar with them, you will more easily be able to master the use of your computer.

Table 3-1
Technical Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Boot</td>
<td>On power up, or system reset, this is the process the computer goes through to check for hardware failures, clear memory, and load the operating system from the system diskette in drive A (in the TPC I). On the TPC I, a cold-boot is started by turning on the power or by pressing <Ctrl>/<Alt>/ simultaneously.</td>
</tr>
</tbody>
</table>
Command Line

This is the text line that you type to the right of the system prompt. The format of the input line for each command is detailed in the command description in the Transient Commands in this chapter and the Utility Programs chapter. Commands for editing the command line, before you send it to the computer with a <Return>, are described in the CP/M Command Lines section of this chapter.

Cursor

A display position indicator to emphasize a character to be corrected or a position in which data is to be entered or erased.

Logged Drive

The logged drive is the disk drive that CP/M is currently working from. The letter in the system prompt indicates the currently logged drive. If you enter a transient command, this is the drive that CP/M searches to load the command.

Operating System

A collection of programs that gives instructions to the computer for the execution of applications programs on a computer.

Resident Program

The kernel of CP/M is loaded once into a special area in memory, and resides there until memory is cleared with a cold boot or reset. The resident commands are a part of this kernel and the system can execute them without referring to the disk for more information.

System Diskette

The diskette that contains the CP/M operating system that came with the TPC I. It contains the resident commands on tracks 0 and 1, and the transient commands in .COM files.

System Prompt

The system prompt looks like this:

A>

It is displayed at the left side of your screen and indicates that CP/M is ready for you to enter a command.

Transient Program

This is any applications program or CP/M command that is stored on the diskette in a .COM file. When you issue a command to use the programs in these files, the programs are loaded into the user memory area (transient program area) and executed.
Warm Boot

By entering a <Ctrl>/C you cause CP/M to restart (press the <CTRL> and C keys simultaneously).

User Memory Area

The user memory area is the central region of the Random Access Memory (RAM) in your computer. The areas above (high memory) and below (low memory) are reserved for CP/M.

The user memory area is where transient programs are loaded and executed, while CP/M surrounds and supervises the execution. CP/M transient commands (such as STAT and PIP) and applications programs are stored on the diskette in .COM files until they are called into memory by your command.

The user memory area is also called the transient program area or TPA.

STARTING UP CP/M

There are several steps for starting your system and activating the operating system. The following is a quick review of those steps as they relate to CP/M.

System Diskette

In the User's Manual you learned how to set up your TPC I for comfortable and safe operation. It is important that you make a copy of the master system diskette and use the copy as your everyday working copy. See the chapter, Utility Programs, for instructions on how to make a working copy of the system diskette using the COPYDISK utility program. Keep the original system diskette as a backup in case your working copy is damaged or wears out.

Start Up Review

Open the floppy drive by turning the latch to the vertical position and turn the computer's power switch ON. This message, followed by a blinking cursor, appears on the screen telling you that the cold boot self-tests are running:

System "boot" (x-Rev.x) from floppy disk in progress
If no hardware errors occur, insert the system diskette and close the floppy drive door by turning the latch to the horizontal position. CP/M displays this sign-on message:

```
TeleVideo System TPC I Vx.x
(c) 1983 TeleVideo Systems, Inc.
xxK CP/M version y.y (double or single drive)
```

A>

Reset Command

The following paragraphs discuss how to use the CP/M commands. If you enter a command that doesn't seem to work, or the system "freezes" after you enter a command, remember that you can always reset (cold boot) CP/M by pressing the keys

```
<Ctrl>/<Alt>/<Del>
```

Press the <Ctrl>, <Alt>, and keys simultaneously. This command causes the computer to clear its memory and reload the CP/M operating system. This is the same as turning the power off and on. If this does not work, try turning the power off and on, being sure to open the drive doors first. Close the drive doors after you turn on the power. If you still have problems, run through the installation procedure in Chapter 2 a few times and check the Troubleshooting section in Chapter 8. If the problem persists, contact your computer store.

SYSTEM PROMPT AND THE LOGGED DRIVE

When CP/M is successfully loaded into memory, the system prompt is displayed at the left margin of your screen:

```
A>
```

The system prompt tells you that CP/M is waiting for your next command, which will be displayed just to the right of the greater-than (>) character as you type it in. The A in the prompt tells you that the logged drive is logical drive A.

The logged drive is the disk drive that CP/M is currently working from. For example, if you want to look up the status of a file on disk using the STAT command and you don't specify which disk drive the file is on, CP/M assumes that you mean the logged drive. You can change the logged drive with this command:

```
A>b:<Return>
```

B>

The second line is CP/M's response, showing you that the logged drive is now B and that it is ready for another command.
CP/M COMMAND LINES

CP/M takes your commands in the form of a command line. A command line is a string of characters that names the command and supplies any data necessary (such as a filename). The command line is terminated and sent to the computer for processing when you press the <Return> key.

CP/M also accepts several control characters as commands such as Ctrl. These are directly interpreted without entering <Return>, and are useful for editing a command line or entering an override command.

Upper- and Lower-Case

You may have noticed that CP/M accepted a lower-case b in the example above, but displayed an upper-case B in its response. CP/M does not distinguish between cases on characters that you type. You may find it convenient to enter commands in lower-case so that you can distinguish your entries from CP/M responses on the screen. When you name a file with lower-case letters, the name is displayed in upper-case letters in the diskette directory.

NOTE: Please note that this is only a characteristic of CP/M; other programs, such as BASIC, do not behave in the same way.

Control Characters

The key marked Ctrl is the CONTROL key. To use the <Ctrl> key, press the <Ctrl> and a character key simultaneously. For example, the command to restart CP/M is:

\(<\text{Ctrl}\)/C

Press down the CTRL and C keys simultaneously.

You use this command often to abandon a program and to restart CP/M. This form of restart is called a warm boot because CP/M is already loaded in memory and is not reloaded from the system diskette.

Line Editing

CP/M has several control characters and single-key commands that allow you to edit a complex command line before you send it to the computer with a <Return>. Table 3-2 summarizes the available functions.
Table 3-2
CP/M Control Functions

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>^C</td>
<td>System warm boot; doesn't clear user memory.</td>
</tr>
<tr>
<td>^E</td>
<td>Physical end of line; cursor wraps to beginning of next line, but <Return> not sent.</td>
</tr>
<tr>
<td>^H</td>
<td>Backspace; moves cursor back one space and deletes character that was there.</td>
</tr>
<tr>
<td>BACK SPACE</td>
<td>Same as ^H.</td>
</tr>
<tr>
<td>DEL</td>
<td>Delete character to the left of cursor when used in the sequence DEL<Return>. The character(s) that are to be deleted are displayed (echoed) on the screen.</td>
</tr>
<tr>
<td>^I</td>
<td>Moves the cursor to the next tab (8, 16, 24...).</td>
</tr>
<tr>
<td>^P</td>
<td>Activates the printer; deactivates the printer with a second ^P (toggle).</td>
</tr>
<tr>
<td>^R</td>
<td>Re-display command line; useful after DEL echoes deleted characters on command line.</td>
</tr>
<tr>
<td>^S</td>
<td>After a file or a list starts to display on the screen, ^S starts or stops (toggles) the scrolling of the display.</td>
</tr>
<tr>
<td>^U</td>
<td>Cancel current command line; positions cursor under command line for easy re-typing.</td>
</tr>
<tr>
<td>^X</td>
<td>Backspace to prompt (erases current line).</td>
</tr>
<tr>
<td>Return</td>
<td>Send command line to computer; <Return>.</td>
</tr>
<tr>
<td></td>
<td><Ctrl>/<Alt>/ System cold boot; clears memory and reloads CP/M from drive A.</td>
</tr>
</tbody>
</table>

DISK FILES

The disk file is the basic unit of organization in CP/M. All resident commands refer to file operations. Each diskette directory can hold up to 64 file entries, but large files may prevent you from using all 64. A file can hold any kind of information: text, machine language program code, or graphics commands. Every file is labeled with a unique filename so that the computer can always find the exact file specified in a given command.
Filenames

A filename is composed of three parts:

drive prefix:filename.extension

A full unique filename might be:

A:ACCOUNTS.BAS

The drive prefix is a single letter that corresponds to a specific drive. By leaving the drive prefix and colon off the unique filename, CP/M assumes the currently logged drive.

The filename is a unique combination of letters and numbers that identifies the file in the disk directory. You can use one to eight characters in the filename, mixing numbers and letters any way you want to arrive at a file-naming scheme that is useful to you.

The extension is designated by a period at the end of the filename, followed by three characters. It is an extension of the filename and is useful for identifying different types of files in the disk directory. Table 3-3 lists some common filetype extensions.

Table 3-3
Common Filetype Extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>.ASM</td>
<td>Assembly program source file</td>
</tr>
<tr>
<td>.BAK</td>
<td>Back-up file</td>
</tr>
<tr>
<td>.BAS</td>
<td>BASIC program source file</td>
</tr>
<tr>
<td>.COB</td>
<td>COBOL program source file</td>
</tr>
<tr>
<td>.COM</td>
<td>CP/M executable file (transient command)</td>
</tr>
<tr>
<td>.DOC</td>
<td>Document file</td>
</tr>
<tr>
<td>.HEX</td>
<td>Intel hexadecimal code file</td>
</tr>
<tr>
<td>.REL</td>
<td>Relocatable machine code file</td>
</tr>
<tr>
<td>.SUB</td>
<td>SUBMIT command file</td>
</tr>
<tr>
<td>.TXT</td>
<td>Text file</td>
</tr>
<tr>
<td>.$$$</td>
<td>System temporary file</td>
</tr>
</tbody>
</table>

Wildcard File References

In the example above, you saw that you could leave off the drive prefix so that CP/M would supply the currently logged drive. This is handy for speeding up your file manipulation work. You can also insert special wildcard characters into a file specification so that CP/M can find multiple files based on a controlling prefix or extension.
* (asterisk) In the place of a filename or file extension means "substitute all directory entries here."

? (question mark) In the place of one or several character positions in the file specification means "substitute all possible characters here."

When CP/M finds a wildcard in a file specification it tries to do a file-match. It performs the desired command on all files that match the specification. For example:

A>STAT<BAR>*.BAS<Return>
returns the status for all .BAS files on the logged drive (no drive prefix was given).

A>stat<BAR>b:sam.*<Return>
returns the status for all files named SAM on drive B, regardless of their filetype extension. (Remember, CP/M converts lower-case to upper-case when you enter a command.)

Use the "?" wildcard for single- and multiple-character substitutions:

A>era<BAR>d???.*<Return>
erases all files on the logged drive that begin with "d" followed by up to three characters. (It also erases files that begin with "d" and have less than four characters.) This is known as a file-match "mask." The following command erases all files beginning with the letter d:

A>era<BAR>d*.<Return>

RESIDENT COMMANDS

When CP/M is loaded into memory it includes a kernel (core group) of built-in or resident commands. These are executable directly from their "home" in memory.

CP/M also has a set of transient commands which stay on the system disk until they are needed. See the section, Transient Commands, in this chapter. This section describes the CP/M command line format for each of the resident commands. The resident commands discussed in this chapter are:

- DIR List a diskette directory
- ERA Erase a file
- REN Rename a file
- TYPE Display or list a file on the screen
Unrecognized Commands

If you type in a command that is not recognized by CP/M, usually by making a typing error, CP/M repeats the command as you entered it on the next line followed by a question mark:

```
A>stat<Return>
STAT?
A>
```

DIR - List a Directory

The DIR command displays a directory of the files on a diskette.

```
A>dir<BAR>x:filename.ext<Return>
```

By typing `dir<Return>` you get a full directory listing for the currently logged disk. You can narrow the listing down, or list the directory for a different drive by supplying a file specification with or without "wildcard" characters.

ERA - Erase a File

The ERA command erases the file or files specified.

```
A>era<BAR>x:filename.ext<Return>
```

In the special case of "erase all files" on a diskette:

```
A>era<BAR>b:*.*<Return>
```

ERA responds with a safety verification:

```
ALL (Y/N)?
```

Type Y to erase all the files, N to cancel the command, followed by <Return>.

REN - Rename a File

The REN command is used to rename a file in the diskette directory.

```
A>ren<BAR>newname.ext=oldname.ext<Return>
```

Notice that the replacement goes right-to-left, that is, the existing file comes second in the command line and will end up with the name at the beginning. This "parameter order" is important! See the transient command PIP also.
If you enter as a new name the name of a file that already exists, you get the message:

FILE EXISTS

If you enter an incorrect file to be renamed, the computer won't be able to find it, and displays the message:

NO FILE

TYPE - List a File on the Screen

This command displays the contents of a file on the screen:

A>TYPE<BAR>x:filename.ext<Return>

The computer sends information to the screen as fast as it can scroll, so a long file seems to fly by. Use the ^S command to stop and start the scrolling action.

TRANSIENT COMMANDS

CP/M comes with a set of very useful utility programs called transient commands. Some of them are powerful program development aids such as the text editor ED, a dynamic debugging monitor DDT, and a file printing routine called DUMP. You can see a list of the transient commands that came on your CP/M system diskette by typing:

A>DIR<BAR>*.COM<Return>

The filetype extension .COM is used to denote a file that contains an executable CP/M program or "COMmand." Buying programs is a matter of adding to the number of .COM files available to your system. For example, the word processing program TeleWrite is usually stored in a file called "TW.COM." So the CP/M transient command to run TeleWrite is:

A>TW<Return>

The program is loaded from disk into the user memory area, or Transient Program Area (TPA), and begins execution.

Two of the transient command programs supplied with CP/M are very useful to the beginning computer operator, and they are described below. For a description of the more advanced program development tools, refer to one of the books recommended in Appendix B.
The two transient commands discussed below are:

STAT List the **STATus** of a file. Use this to get a alphabetical column display of the files on your disk.

PIP The Peripheral Interchange Program. Use this to move and to copy files.

STAT - List the Status of a File

The **STAT** command is used for a variety of tasks. The primary function is to list the status of a file, or files, or of an entire diskette. This status list is displayed on the screen. **STAT** can also be used to change the protection status on a file or group of files. Finally, **STAT** can be used to change the status of the logical device assignments on your system.

To list the status of the files on a diskette enter:

```
A>stat(BAR)*.*(Return)
```

This causes a column listing of the diskette files in alphanumeric order. This is often more useful than the DIR all-on-a-line listing. In addition to the sorted listing, **STAT** displays other useful information about each file. The **STAT** listing looks like this:

```
Recs  Bytes  Ext  Acc
  4     12k   1  R/W  A:ASM.COM
 13     62k   5  R/W  A:DUMP.COM
 11     43k   3  R/O  A:PIP.COM
  3      9k   1  R/W  A:STAT.COM
```

where:

- **Recs** is the number of 128-byte records in the file.
- **Bytes** is the length of the file in bytes.
- **Ex** is the number of logical extents (16k-byte blocks).
- **Acc** is the file access status.

Acc is the file access status. The file access status can be used to protect valuable files from unwanted overwriting or accidental erasure. **R/W** means that a file can be read from and written to. **R/O** means that a file can be read only. To change the access status of a file use the command line:

```
A>stat(BAR)x:filename.ext(BAR)$R/O<Return>
```

By adding the $R/O to the **STAT** you are adding a parameter to the command line. **STAT** relabels the file as Read Only. You can use the **STAT** command again to change the file back to Read/Write.
PIP - Peripheral Interchange Program

PIP is used to copy files from one disk drive to the other. The basic format for a PIP command is:

```
PIP<BAR>y:file2.ext=x:file1.ext[zzz]<Return>
```

where:

- `file2.ext` is the destination file, where the copy will end up
- `file1.ext` is the source file, where the copy comes from
- `zzz` are parameters that allow special handling
- `x` and `y` are the disk drives

Notice that, like REN, the action proceeds from right-to-left on the command line.

To copy a file from drive A to drive B, use the command line:

```
A>pip<BAR>b:=a:myfile.bas<Return>
```

There are now two copies of the same data, one in the file "MYFILE.BAS" on drive A, and one in the file "MYFILE.BAS" on drive B. You may, or may not want to ERASE the old copy (disk space is a premium, so developing good housekeeping practices can help you get the most out of your system. Don't wait for a disk-full error message!)

By omitting any drive specifications and using a different filename, you can make copies of a file on the same disk.

```
A>pip<BAR>yourfile.bas=myfile.bas<Return>
```

One special parameter is very useful, and easy to append to the PIP command line:

```
v
```

causes PIP to verify that the copy is an exact duplicate of the original file by doing a byte-by-byte comparison. This may cause delays on long (200K plus) files.

To use this parameter in the file transfer from the above example, use the command line:

```
A>pip<BAR>b:=a:myfile.bas[v]<Return>
```

This command assures that the file is copied with no errors. The parameters are enclosed in square brackets, and added directly after the file extension.
For more details about the PIP command, refer to one of the excellent CP/M books listed in Appendix B.

APPLICATIONS SOFTWARE

CP/M is the most popular operating system for microcomputers. This means that the widest possible library of applications software programs is available for your TPC I. You may want to purchase additional software for some of the following applications:

* word processing
* accounting
* financial analysis
* business graphics
* program development
* entertainment

Included with the TPC I are three applications programs:

* TeleWrite for executive word processing
* TeleCalc for spreadsheet analysis
* TeleChart for graphics presentation of spreadsheet data

A minimum of nine CP/M-compatible programming languages including ALGOL, APL, BASIC, C, COBOL, FORTH, FORTRAN, PASCAL, and PL/1 can be used on TeleVideo systems for your programming applications.

Ask the computer software specialists at your computer store for name of software programs and languages run well on your TPC I.
4. KEYBOARD

The TPC I has a detachable, low-profile keyboard that includes a numeric keypad and programmable function keys. This chapter discusses the types of keys on the keyboard and lists each key and its function.

KEY DESCRIPTIONS

The keyboard has a separate numeric keypad for accounting applications and ten programmable function keys in addition to the alphanumeric and character keys of the main keypad. All of the keys on the numeric keypad perform one function when the <Num Lock> key is pressed, and another function when the <Num Lock> key is pressed again. The <Num Lock> key acts as a toggle switch changing the keys on the numeric keypad from the numeric mode to the cursor movement and editing mode.

Figure 4-1
Character Keys

Character Keys

The character keys highlighted in Figure 4-1 include all alphabet characters (A through Z), numerals (0 through 9), punctuation marks, and mathematical symbols. All character keys repeat when pressed for more than one-half second.

There are several special keys that make inputting information easier. This chapter includes a description of the special keys.
on the main keypad and on the numeric keypad, and of the function keys for a programmer.

Many of the special keys are not programmed to be used as labeled when you are using CP/M, the operating system. They are available for customization by a programmer to a specific applications program. Therefore, if you use them, you may see some symbols and characters on the screen that do not seem to make any sense.

Figure 4-2
Function Keys and Special Keys

Table 4-1 summarizes the function of the special keys which are highlighted in Figure 4-2.

Table 4-1
Key Functions

<table>
<thead>
<tr>
<th>Keycap Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Bar</td>
<td>Causes a blank space to appear on the display and transmits an ASCII space code.</td>
</tr>
<tr>
<td>The <Shift> key (wide, up arrow), located on each side of the main keypad, selects the upper character inscribed on a key, changes operation of most special keys, and capitalizes alpha characters.</td>
<td></td>
</tr>
</tbody>
</table>
Toggles the alpha keys so that they transmit codes for upper-case characters. Press again to toggle back to lower-case characters.

The <Tab> key (forward and backward arrow to line) moves the cursor forward to typewriter tabs. The cursor moves to the next tab setting in that line. When it reaches the last tab setting in that line, it stops. If the cursor is beyond the last tab set on a line, pressing <Tab> has no effect.

Moves the cursor backward to typewriter tabs. If no tab has been set between the first column position and the cursor position, the cursor moves to the first column position.

These keys, when pressed simultaneously, enable the user to toggle the display from graphics to alphanumerics and vice versa without affecting the running program.

Generates 32 normally-nondisplayed ASCII control codes when used with another key.

The control key combinations are used for special action by the terminal and/or the applications program in the computer.

When the <Ctrl> key is used with an alpha or symbol key, the output data of the character which is typed becomes 00 through 3F Hex, thus changing the code transmitted by that character. For example, if M alone is pressed, the code for M is sent. If you press ^M, the code for <Return> is sent.

The <Esc> key sends an ASCII code for escape to the display processor. The key is generally used to momentarily leave (escape) an applications program in order to use a special feature or function.

Another function of the <Esc> key is to display on the screen the next control character entered. This avoids having to use the system mode monitor feature.
When the display is in the alphanumeric mode, the <Shift>/<Esc> key sequence allows you to change or access the display attributes without transmitting them to the computer. After the <Shift>/<Esc> key sequence is pressed, the next character entered is interpreted as a command by the terminal.

NOTE! The <Esc> key is used with another character(s) in the command sequence; i.e., the <Esc> key is pressed and released before the second key is pressed.

The <Return> key (squared, left arrow located on the right of the main keypad) is used like the carriage return on a typewriter. It sends the ASCII code for a carriage return <Return> to the display processor within the TPC I. Depending on the communication mode used, the code causes the display processor to transmit a <Return> to the computer.

NOTE! The computer features an auto wraparound function that eliminates the need to manually enter an <Return> and a linefeed (LF) at the end of each 80-character line.

The left arrow key on the top right of the main keypad acts like a back space key on a typewriter. It moves the cursor one character to the left. If the cursor is at home, it has no effect.

Each function key sends a three-code sequence to the computer. This sequence may initiate a special form or subroutine in the program that causes the video display to display or perform a particular function. Six more function keys may be obtained if needed by pressing <Ctrl>/F1 - F6.

NOTE! The following keys function as described when the <Num Lock> key is on the numeric keypad is pressed. You can toggle back and forth between the numeric mode (where the keys operate as numerals) and special key mode (where the keys operate as described here) by pressing the <Num Lock> key.
The <Home> key moves the cursor to column one of row (line) one. This position is referred to as the home position.

The left arrow key numeric keypad moves the cursor one character to the left. If the cursor is at home, it has no effect.

The up arrow key on the numeric keypad moves the cursor key is pressed) up one line. If the cursor is on the top line, it has no effect.

The down arrow key moves the cursor down one line. If the cursor is on the bottom line of the screen, it has no effect.

The right arrow key moves the cursor one character to the right. If the cursor is at the end of the line, it goes to the first column position of the next line. If the cursor is at the end of the screen, it scrolls up the screen.

Pressing <Ins> alone or <Shift>/<Ins> or <Caps Lock>/<Insert> inserts a line consisting of spaces at the cursor position. This causes the cursor to move to the start of the new line and all following lines to move down one line, resulting in the loss of the last line of the page. If half intensity is on, half-intensity spaces replace the erased characters.

Pressing <Ctrl>/<Ins> or <Ctrl>/<Shift>/<Ins> causes the character at the cursor to move right one column position and enters a space at the cursor position. As characters are inserted, characters reaching column 80 are lost. If half intensity is on, half-intensity spaces replace the erased characters.

Pressing the 5 key on the numeric keypad deletes all characters from the cursor to the end of the line.
The key sends an ASCII DEL character to the computer. The cursor moves to the right displaying the character(s) deleted.

Pressing <Shift>/ or <Shift>/<Ctrl>/ deletes the character at the cursor position and moves all following characters left one position. At the end of the delete function, a space is written into the last position on the line. If half intensity is on, half-intensity spaces replace the erased characters.

Pressing <End> deletes the line at the cursor position and all following lines move up one line. The cursor moves to column one of the line and spaces are loaded into the last line of the page. If half intensity is on, half-intensity spaces replace the erased characters.

These keys are not supported on the TPC I:

PrtSc
PgUp
PgDn
Scroll Lock/Break

DISABLING/ENABLING THE KEYBOARD

You can disable (lock) all keys and the function keys by using a command sent from the computer.

Once the keyboard is disabled, it can only be enabled by another command from the computer or by resetting the system.

STOP! If your applications program echoes all codes, the keyboard may be accidentally disabled.

To disable the keyboard, send:

ESC #

The keyboard remains disabled until one of the following occurs:

The terminal emulator receives an ESC " sequence.

You reset the system by pressing <Ctrl>/<Alt>/ simultaneously. This might result in data loss.
KEYCLICK AND BELL

You can control the keyclick (the noise made as each key is activated) and the bell with the code sequences in Table 4-2.

Table 4-2
Keyboard Audio Commands

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyclick on</td>
<td>ESC></td>
</tr>
<tr>
<td>Keyclick off</td>
<td>ESC<</td>
</tr>
<tr>
<td>Ring bell</td>
<td>'G</td>
</tr>
</tbody>
</table>

FUNCTION KEYS

The function keys (F1 through F16) send a user-defined or default code. For example, the user-defined code may be a frequently-used escape or control code sequence in a text editing application.

There are ten function keys, but you can obtain six more function keys by pressing <Ctrl>/F1 through F6 simultaneously which become F11 through F16. Using them in combination with <Shift> allows up to 32 sets of codes to be transmitted.

Programming the Function Keys

When the terminal is first turned on, the function keys are already programmed with default messages. If you do not program the function keys, the default values shown in Table 4-3 are transmitted by each function key.

Table 4-3
Default Function Key Values

<table>
<thead>
<tr>
<th>Key</th>
<th>Unshifted Code</th>
<th>Shifted Code</th>
<th>Ctrl/ Unshifted</th>
<th>Ctrl/ Shifted</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>^ A B CR</td>
<td>^ A e CR</td>
<td>^ A J CR</td>
<td>^ A j CR</td>
</tr>
<tr>
<td>F2</td>
<td>^ A A CR</td>
<td>^ A a CR</td>
<td>^ A K CR</td>
<td>^ A k CR</td>
</tr>
<tr>
<td>F3</td>
<td>^ A B CR</td>
<td>^ A b CR</td>
<td>^ A L CR</td>
<td>^ A l CR</td>
</tr>
<tr>
<td>F4</td>
<td>^ A C CR</td>
<td>^ A c CR</td>
<td>^ A M CR</td>
<td>^ A m CR</td>
</tr>
<tr>
<td>F5</td>
<td>^ A D CR</td>
<td>^ A d CR</td>
<td>^ A N CR</td>
<td>^ A n CR</td>
</tr>
<tr>
<td>F6</td>
<td>^ A E CR</td>
<td>^ A e CR</td>
<td>^ A O CR</td>
<td>^ A o CR</td>
</tr>
<tr>
<td>F7</td>
<td>^ A F CR</td>
<td>^ A f CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>^ A G CR</td>
<td>^ A g CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>^ A H CR</td>
<td>^ A h CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>^ A I CR</td>
<td>^ A i CR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You may program the function keys by following the procedure described here.

Enter the following code in the exact sequence shown:

\(<\text{Shift}>/\langle\text{Esc}\rangle\) \(p1\) \(p2\) message \(^Y\)

where

\(p1\) is the number of the function key. The values of \(p1\) are in Table 4-4.

Table 4-4: Function Key Values

<table>
<thead>
<tr>
<th>Key</th>
<th>Unshifted</th>
<th>Shifted</th>
<th>Ctrl/Unshifted</th>
<th>Ctrl/Shifted</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1</td>
<td><</td>
<td>;</td>
<td>F</td>
</tr>
<tr>
<td>F2</td>
<td>2</td>
<td>=</td>
<td>G</td>
<td>L</td>
</tr>
<tr>
<td>F3</td>
<td>3</td>
<td>></td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>F4</td>
<td>4</td>
<td>?</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td>F5</td>
<td>5</td>
<td>@</td>
<td>J</td>
<td>O</td>
</tr>
<tr>
<td>F6</td>
<td>6</td>
<td>A</td>
<td>K</td>
<td>P</td>
</tr>
<tr>
<td>F7</td>
<td>7</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F8</td>
<td>8</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9</td>
<td>9</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td></td>
<td>:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(p2\) is the following value:

1 = Send to the computer

message can contain up to 63 bytes per key

\(^Y\) is the termination character

Because the control, escape, cursor position, and similar function keys are not normally stored, a \(^P\) embedded in the text of the function key message may be used to store the next character entered.
For example, assume that the message desired for key Fl is:

TURN ON THE PRINTER

Precede this message with the following:

<Shift>/<Esc>1
The key number (1 for key Fl)
The value 1 (for send to computer)

The entry is:

<Shift>/<Esc> 1 1 TURN ON THE PRINTER <Return> ^Y

NOTE!

1. Entering the message followed by <Return> enters a carriage return at the end of the function.

2. Entering the message without <Return> then requires the user to manually press <Return> to execute the command.
TeleVideo has supplied a set of utility programs to facilitate the use of the TPC I. These programs perform several housekeeping functions such as formatting blank diskettes, making backup copies of the operating system, and copying diskettes. The SETUPTPC utility program allows you to customize the TPC for specific peripherals.

The four utilities included on the system diskette are:

SETUPTPC SETUPTPC is a menu-driven utility software program for customizing the CP/M operating system running under TPC hardware.

SYSGEN Generates a resident CP/M system on tracks 0 and 1 of a new diskette or a master applications program diskette. Use this to copy the portion of CP/M that has the resident commands to another diskette.

FORMAT Formats a blank diskette for use on the TPC I. The directions are divided into two parts - a section for the single-drive TPC and a section for a dual-drive TPC.

COPYDISK Copies data from one diskette to another diskette. The directions are divided into two parts - a section for the single-drive TPC and a section for a dual-drive TPC.

The utility programs differ from the standard transient commands in that they require more operator interaction than the single command line format. Each program is illustrated below in a SYSTEM/USER dialogue, or script. Just type in your part!

NOTE! If you have one drive, the screen messages tell you when to remove the diskette in the drive and replace it with another.

If you have two drives, always put the system diskette in drive A (the left drive). The screen message tells you when to insert a diskette in drive B.
SETUPTPC PROGRAM

SETUPTPC is a menu-driven utility software program for customizing the CP/M operating system running under TPC I hardware. SETUPTPC provides the capability to change systems attributes, such as baud rate and printer protocol. For example, a user need only specify the new baud rate to change the baud rate of the RS-232 modem port. SETUPTPC makes the change to the system. This change is effective after the next reset and is permanent.

The capability of the SETUPTPC program is as follows:

1. Changing the default I/O BYTE

 After power-on or reset, a default physical device is selected for each logical device based on the value of the default I/O BYTE. The default I/O BYTE may be changed to select any one of the four physical devices associated with logical devices.

2. Configuring the modem port

 The modem port can be configured to be used as a second printer port for different printer protocols.

3. Configuring the port attribute

 The port attribute configuration allows for baud rate specification for an external device such as a printer or modem, and for transmit/receive data format.

4. Turning on and off the SuperMouse hardware flag for graphics

5. Configuring the autoload feature

 Any command file may be automatically executed during the cold boot. Cold boot occurs after power-on or a system reset has been performed.

The following example illustrates how to change the baud rate for the RS-232 port.

Be sure that the file, SETUPTPC.COM exists in the currently-logged drive.

USER: 1. Enter

```
SETUPTPC<Return>
```
SYSTEM: 2. Displays

SYSTEM SETUP Version x.x TeleVideo Systems, Inc.

Please select the following system type:

1) Stand alone TPC I
2) Multi user TPC I
3) Abort SETUP and return to CP/M

-- Enter appropriate number followed by RETURN or CTRL-C to return to CP/M

USER: 3. Enter

1<Return>

SYSTEM: 4. Displays

SYSTEM SETUP Version x.x TeleVideo Systems, Inc.

Current system: TPC I
Operating system: Stand alone CP/M
Current Mouse status: OFF

Select modification category:
1) To attach mouse
2) To detach mouse
3) To change CP/M default I/O byte
4) To change Modem port BAUD rate
5) To change Modem port data format
6) To change Autoload file name
7) To save current configuration permanently and return to CP/M
8) To save current configuration temporarily and return to CP/M
9) To abandon this setup

-- Enter appropriate number followed by RETURN or CTRL-C to return to CP/M

USER: 5. Enter

4<Return>
SYSTEM: 6. Displays

SYSTEM SETUP Version x.x TeleVideo Systems, Inc.

Current system: TPC I
Operating system: Stand alone CP/M
Current Modem port BAUD rate: 9,600 DIPSW

Please select the following baud rate:

1) 9,600 BAUD
2) 4,800 BAUD
3) 2,400 BAUD
4) 1,200 BAUD
5) 600 BAUD
6) 300 BAUD
7) 150 BAUD
8) 75 BAUD
9) Set BAUD rate from switch
10) Use current BAUD rate and exit

-- <--Enter appropriate number followed by RETURN or CTRL-C to return to CP/M

USER: 7. Enter

4<Return>

(if you wish to change baud rate to 1200)

SYSTEM: 8. Displays

SYSTEM SETUP Version x.x TeleVideo Systems, Inc.

Current system: TPC I
Operating system: Stand alone CP/M
Current Modem port BAUD rate: 1,200

Please select the following baud rate:

1) 9,600 BAUD
2) 4,800 BAUD
3) 2,400 BAUD
4) 1,200 BAUD
5) 600 BAUD
6) 300 BAUD
7) 150 BAUD
8) 75 BAUD
9) Set BAUD rate from switch
10) Use current BAUD rate and exit

-- <--Enter appropriate number followed by RETURN or CTRL-C to return to CP/M
USER: 9. Enter

10<Return>

(if you wish to use the current BAUD rate and exit)

SYSTEM: 10. Displays

SYSTEM SETUP Version x.x TeleVideo Systems, Inc.

Current system: TPC I
Operating system: Stand alone CP/M
Current Mouse status: OFF

Select modification category:
1) To attach mouse
2) To detach mouse
3) To change CP/M default I/O byte
4) To change Modem port BAUD rate
5) To change Modem port data format
6) To change Autoload file name
7) To save current configuration permanently and return to CP/M
8) To save current configuration temporarily and return to CP/M
9) To abandon this setup

-- <--Enter appropriate number followed by RETURN or CTRL-C to return to CP/M

USER: 11. Type

7<Return>

(if you wish to save current configuration permanently)

SYSTEM: 12. Displays

End of execution

A>

(if the system you are currently logged onto is drive A.)

USER: 13. Reset the system by pressing simultaneously

<Ctrl>/<Alt>/

The baud rate for the RS-232 port should now be permanently changed to 1200 baud.
SYSGEN

SYSGEN copies the system tracks (0 and 1) of the system diskette to a new diskette. To use your applications program diskettes in drive A, you must run SYSGEN. This allows you to boot from your applications program diskette and use drive B for your data files.

USER: 1. Insert the system diskette into the drive (drive A if you have two drives).

2. If the system prompt is not displayed, reset the TPC I by pressing <Ctrl>/<Alt>/ simultaneously. If the system prompt is displayed, go to step 4.

SYSTEM: 3. Displays

TeleVideo System TPC I Vx.x
(c) 1983 TeleVideo Systems, Inc.
xxK CP/M version y.y (double drive)

A>

USER: 4. Type

SYSGEN<Return>

SYSTEM: 5. Displays

SYSGEN Vx.x
(c) 1982 TeleVideo Systems, Inc.

SOURCE DRIVE NAME (OR RETURN TO SKIP)

USER: 6. Enter

A

SYSTEM: 7. Displays

SOURCE ON A:, THEN TYPE RETURN

USER: 8. Press

<Return>

SYSTEM: 9. Displays

FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
USER: 10. a. If you have one drive, remove the system diskette from the floppy drive and insert a formatted diskette or an applications program master diskette in the floppy drive and enter A

b. If you have two drives, insert a formatted diskette or an applications program master diskette in drive B and enter B

SYSTEM: 11. a. Displays (if you have one drive)
DESTINATION ON A:, THEN TYPE RETURN

b. Displays (if you have two drives)
DESTINATION ON B:, THEN TYPE RETURN

USER: 12. Press <Return>

SYSTEM: 13. Displays
FUNCTION COMPLETE
(The destination diskette now contains the CP/M resident program on tracks 0 and 1.)

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

USER: 14. a. To copy the CP/M tracks 0 and 1 on another diskette, remove the destination diskette, insert another diskette, and go to Step 10.

b. To end the program, press <Return>

SYSTEM: 15. Displays
A>
FORMAT (SINGLE DRIVE)

FORMAT formats floppy diskettes. All new diskettes must be formatted before they can be used. Used diskettes containing data can also be formatted. If a used diskette is formatted, all data on the diskette is erased; once formatted, the used diskette is ready for new data.

THESE DIRECTIONS ARE FOR THE SINGLE-DRIVE TPC ONLY!

STOP! FORMAT OVERWRITES ALL DATA PRESENTLY ON THE DISKETTE; ANY FILES AND PROGRAMS ON THE DISKETTE ARE ERASED.

USER: 1. Put the system diskette in the drive.

2. If the system prompt is not displayed, reset the TPC by pressing <Ctrl>/<Alt>/ simultaneously or by turning the power off and on. If the system prompt is displayed, go to Step 4.

SYSTEM: 3. Displays

TeleVideo System TPC I Vx.x
(c) 1983 TeleVideo Systems, Inc.
xxK CP/M version y.y (single drive)

A>

USER: 4. Enter

FORMAT<Return>

SYSTEM: 5. Displays

FLOPPY DISK FORMAT Vx.x
(c) 1983 TeleVideo Systems, Inc.

1. TS 801/802 AS STAND ALONE
2. TS 801/802 AS SATELLITE USERSTATION
3. TS 802H AS STAND ALONE/SATELLITE USERSTATION
4. TS 803/803H/TPC I AS STAND ALONE
5. TS 803/803H/TPC I AS SATELLITE USERSTATION
6. TS 806
7. EXIT

Select system configuration option by number

USER: 6. Type 4
SYSTEM: 7. Displays

TS 803/803H/TPC I AS STAND ALONE is selected.
Press RETURN if correct. (SPACE BAR to retry, ESC to abort.)

USER: 8. Press

<Return>

SYSTEM: 9. Displays

Insert a diskette to be formatted into floppy disk drive.
Press RETURN when ready. (ESC to abort.)

USER: 10. Remove the system diskette and put the diskette
that you want to format into the floppy drive.

11. Press

<Return>

SYSTEM: 12. Displays

formatting.................................

USER: 13. Listen for a clicking sound as the program formats
the diskette.

SYSTEM: 14. Displays

Formatting Completed.

Format another?
Insert a diskette to be formatted into floppy disk drive.
Press RETURN when ready. (ESC to abort.)

USER: 15. a. To format another diskette, insert it in the
floppy drive and go to Step 11.

b. To end the program, press

<Esc>

SYSTEM: 16. Displays

Insert SYSTEM diskette back into the drive.
Press ANY KEY when ready.

USER: 17. Press any key.

SYSTEM: 18. Displays

End of Execution
A>
FORMAT (DUAL DRIVE)

FORMAT formats floppy diskettes. All new diskettes must be formatted before they can be used. Used diskettes containing data can also be formatted. If a used diskette is formatted, all data on the diskette is erased; once formatted, the used diskette is ready for new data.

THESE DIRECTIONS ARE FOR THE DUAL-DRIVE TPC I ONLY!

STOP! FORMAT OVERWRITES ALL DATA PRESENTLY ON THE DISKETTE; ANY FILES AND PROGRAMS ON THE DISKETTE ARE ERASED.

USER: 1. Put the system diskette in drive A.

2. Insert the diskette to be formatted into drive B.

3. If the system prompt is not displayed, reset the TPC by pressing <Ctrl>/<Alt>/ simultaneously. If the system prompt is displayed, go to Step 5.

SYSTEM: 4. Displays

TeleVideo System TPC I Vx.x
(c) 1983 TeleVideo Systems, Inc.
xxK CP/M version y.y (double drive)

A>

USER: 5. Enter

FORMAT<Return>

SYSTEM: 6. Displays

FLOPPY DISK FORMAT Vx.x
(c) 1983 TeleVideo Systems, Inc.

1. TS 801/802 AS STAND ALONE
2. TS 801/802 AS SATELLITE USERSTATION
3. TS 802H AS STAND ALONE/SATELLITE USERSTATION
4. TS 803/803H/TPC I AS STAND ALONE
5. TS 803/803H/TPC I AS SATELLITE USERSTATION
6. TS 806
7. EXIT

Select system configuration option by number

USER: 7. Enter
TPC I System Reference Manual

Utility Programs

SYSTEM: 8. Displays

TS 803/803H/TPC I AS STAND ALONE is selected.
Press RETURN if correct. (SPACE BAR to retry, ESC to abort.)

USER: 9. Press

<Return>

SYSTEM: 10. Displays

Drive?(A or B. ESC to abort.)

USER: 11. Enter

B

(the drive indicating where the diskette to be formatted is)

SYSTEM: 12. Displays

Insert a diskette into floppy disk drive B
Press RETURN when ready.(ESC to abort.)

USER: 13. Press

<Return>

SYSTEM: 14. Displays

formatting..

USER: 15. Listen for a clicking sound as the program formats
the diskette.

SYSTEM: 16. Displays

Formatting Completed.

Format another?
Drive?(A or B. ESC to abort.)

USER: 17. a. To format another diskette, insert it in
drive B and go to Step 11.

b. To end the program, press

<Esc>

SYSTEM: 18. Displays

End of Execution
A>
COPYDISK (SINGLE DRIVE)

COPYDISK copies the contents of one floppy diskette onto another floppy diskette. During the copying, the program checks for data transfer errors.

Use COPYDISK to copy the TPC I system diskette as well as applications program diskettes. Store the original program diskettes in a safe place as a backup to the working copy.

THESE DIRECTIONS ARE FOR THE SINGLE-DRIVE TPC ONLY!

NOTE! Before you run COPYDISK, remember to format all new floppy diskettes before using them. If you do not know how to format a new diskette, refer to the utility program FORMAT.

USER: 1. Insert the system diskette into the drive.

2. If the system prompt is not displayed, reset the TPC by pressing <Ctrl>/<Alt>/ simultaneously. If the system prompt is displayed, go to Step 4.

SYSTEM: 3. Displays

TeleVideo System TPC I Vx.x
(c) 1983 TeleVideo Systems, Inc.
xxK CP/M version y.y (single drive)

USER: 4. Enter

COPYDISK<Return>

SYSTEM: 5. Displays

COPYDISK (TS 803/TS 803H/TPC I) Vx.x
(c) 1983 TeleVideo Systems, Inc.

Warning: COPYDISK will destroy all data on destination disk with no chance of recovery. If a destination disk is inserted as a master disk by mistake, all data on master disk will be destroyed. Press RETURN when ready. (ESC to abort.)

USER: 6. Press

<Return>
SYSTEM: 7. Displays

Copying (Track) -->
Insert " MASTER " diskette in the drive. Press RETURN when ready.

USER: 8. Insert the source diskette to be copied into the floppy drive.

9. Press

<Return>

SYSTEM: 10. Displays

Insert "DESTINATION" diskette in the drive. Press RETURN when ready.

USER: 11. If you have one drive, remove the diskette presently in the drive (the source diskette), insert another diskette (the destination diskette), and press

<Return>

12. Listen for a clicking sound as the program copies the diskette.

SYSTEM: 13. Displays alternately several times while copying

Insert " MASTER " diskette in the drive. Press RETURN when ready.

Insert "DESTINATION" diskette in the drive. Press RETURN when ready.

14. Displays when complete

Disk copy completed.

Copy another?
Warning:COPYDISK will destroy all data on destination disk with no chance of recovery.
If a destination disk is inserted as a master disk by mistake, all data on master disk will be destroyed.
Press RETURN when ready.(ESC to abort.)

USER: 15. a. To copy more diskettes, go back to Step 6.

b. To end the program, insert the system diskette in drive A and press

<Esc>
SYSTEM: 16. Displays

Insert SYSTEM diskette into the drive. Press ANY KEY when ready.

USER: 17. Press any key.

SYSTEM: 18. Displays

A>

COPYDISK Error Messages

If this error message appears on the screen

Data Transfer Error(s) on "Drive Name"
Verification Error(s).

try one of the suggestions listed below.

1. Run COPYDISK again, reversing the source and destination drive designations.

2. Make sure that the diskette used as the destination is not defective or damaged; if necessary, use a new formatted diskette.

3. Try copying another diskette.

4. Run the program using another system diskette.

COPYDISK (DUAL DRIVE)

COPYDISK copies the contents of one floppy diskette onto another floppy diskette. During the copying, the program checks for data transfer errors.

Use COPYDISK to copy the TPC system diskette as well as applications program diskettes. Store the original program diskettes in a safe place as a back-up to the working copy.

THESE DIRECTIONS ARE FOR THE DUAL-DRIVE TPC ONLY!

NOTE! Before you run COPYDISK, remember to format all new floppy diskettes before using them. If you do not know how to format a new diskette, refer to the utility program FORMAT.
USER: 1. Make sure the system diskette is in drive A.

2. If the system prompt is not displayed, reset the TPC by pressing the <Ctrl>/<Alt>/ keys simultaneously. If the system prompt is displayed, go to Step 4.

SYSTEM: 3. Displays

TeleVideo System TPC I Vx.x
(c) 1983 TeleVideo Systems, Inc.
xxK CP/M version y.y (double drive)

A>

USER: 4. Enter

COPYDISK<Return>

SYSTEM: 5. Displays

COPYDISK (TS 803/TS 803H/TPC I) Vx.x
(c) 1983 TeleVideo Systems, Inc.

Source Drive:(ESC to abort.)

USER: 6. Enter

A

(Either drive can be the source from which the copy is made.)

SYSTEM: 7. Displays

Destination Drive:(ESC to abort.)

USER: 8. Enter

B

(The diskette in this drive will contain the new copy.)

SYSTEM: 9. Displays

Confirmation:COPYDISK from "A" to "B".

Warning:COPYDISK will destroy all data on destination disk with no chance of recovery. Press RETURN when ready.(ESC to abort, BAR to re-start.)
10. Remove the system diskette from drive A (if you want to copy a different diskette than the system diskette).

11. Insert the diskette to be copied into drive A (source drive).

12. Insert the diskette you want to copy onto in drive B (destination drive).

13. Check the labels of the inserted diskettes to make sure they are in the correct drives.

NOTE! If you entered incorrect drive names for the source drive and destination drive, press the space bar to re-enter the correct drive.

14. Press
<Return>

SYSTEM: 15. Displays

Copying (Track) --> 0123456789012345678901234567890123456789
Disk Copy Completed.

USER: 16. Listen for a clicking sound as the program copies the diskette.

SYSTEM: 17. Displays

Source Drive: (ESC to abort.)

USER: 18. a. To copy more diskettes, go back to Step 6.

b. To end the program, insert the system diskette in drive A and press
<Esc>

SYSTEM: 19. Displays

A>
COPYDISK Error Messages

If this message appears on the screen

Data Transfer Error(s) on "Drive name"
Verification error(s).

try one of the suggestions listed below.

1. Run COPYDISK again, reversing the source and destination drive designations.

2. Make sure that the diskette used as the destination is not defective or damaged; if necessary, use a new formatted diskette.

3. Try copying another diskette.

4. Run the program using another system diskette.
6. PROGRAMMING THE TERMINAL EMULATOR

This chapter explains the procedures that a programmer must follow to take advantage of the video attributes of the TPC I. Those users with little technical background need not read this information. They should carefully read the earlier chapters of this manual, as well as any documentation that accompanies the applications programs they want to run on the TPC I.

SUBSYSTEMS OVERVIEW

The TPC I video display can be described as comprising several basic subsystems:

- CPU
- Terminal Emulator/Graphics Driver (EPROM)
- System RAM
- Graphics RAM

These subsystems operate together to control the video display for either screen I/O operations or display graphics. The sections of this chapter describe the various functions that are available to the programmer to control the video display. Figure 6-1 illustrates the relationships of these subsystems to one another.
The CPU is a ZILOG Z80A operating at 4 MHz. The system has three different kinds of memory: an 8K EPROM containing the system boot, diagnostics, and display control; a 32K block of video display memory which is divided into a 12K alphanumerics section and a 20 Kbyte graphic memory section as a 640 x 240 pixel bitmap or 80 x 24 line display; and a 64K block of system RAM. System logic and BIOS enhancements control the memory bank switching which is illustrated in Figure 6-2.
After the power is first turned on, or after a system reset, the hardware automatically selects the memory configuration shown on the left of Figure 6-2. This includes the system EPROM at addresses 0000 - 1FFF, the graphics RAM block at 4000 - BFFF, and the upper 16K of system RAM at C000 - FFFF.

The EPROM contains all necessary initialization logic for loading the CP/M program. CP/M is loaded into the high RAM addresses above 48K. When loading is complete, the control logic switches to the full 64K RAM memory configuration and the software initializes the lower RAM system scratch space.

The EPROM then serves as a video display graphics driver. When special graphics functions, BIOS calls are made from applications software, the graphics memory configuration (PAGE 0) is swapped in and the CPU fetches instructions from the EPROM firmware. The CPU then updates the graphics/alphanumerics RAM which it shares with the video controller on alternate cycles.

TERMINAL ATTRIBUTES EMULATOR

The video display on your TPC I is controlled by firmware stored in the 8K on-board EPROM. The firmware has two sections: the Terminal Attributes Emulator, and a Graphics Primitives Driver. Both are easily accessed by the programmer. The Terminal Emulator controls all standard video terminal display functions, such as alphanumerics, as well as special video attributes and cursor addressing. For a description of function calls to the graphics driver, see Chapter 7, Video Graphics.
Default Video Attributes

The video display of the TPC I can be set for black characters on a yellow background, by closing the eighth section of the DIP switch. Yellow letters on a black background can be set by opening the eighth section of the DIP switch (this is the default setting). Chapter 2 shows the location of the DIP switch and illustrates the procedure for changing a switch setting. See Table 2-2 and Appendix K for the switch settings.

The display intensity (brightness) can be adjusted with the contrast knob on the lower-left side of the screen on the front panel of the main unit.

Video Attributes

The video attributes of each character as well as the spaces (blanks) on the screen can be controlled to define the appearance of the screen. The following attributes are available.

Table 6-1
Video Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Video</td>
<td>Restores the background of the screen to that selected by rear switch settings.</td>
</tr>
<tr>
<td>Reverse Video</td>
<td>Changes the background of the screen to the reverse of that which appears at power on (default). If the screen is normally black with yellow characters, it will now be yellow with black characters.</td>
</tr>
<tr>
<td>Underline</td>
<td>Creates a solid line below all characters on the line (including the line created by the underscore key). This attribute starts with the cursor position and continues until another attribute is encountered.</td>
</tr>
<tr>
<td>Blink</td>
<td>Causes all characters to blink. This attribute starts with the cursor position and continues until another attribute is encountered.</td>
</tr>
<tr>
<td>Invisible</td>
<td>Causes all data entered on the line to be invisible to you although the cursor moves and is transmitted to the computer. (A typical application might be for entering passwords to access a program.) This attribute starts with the cursor position and continues until another attribute is encountered.</td>
</tr>
</tbody>
</table>
Half Intensity Changes the intensity to half of normal on a character-by-character basis.

NOTE! Half intensity differs from other visual attributes in two ways:

1. Once it is set, it affects all characters entered, regardless of cursor position, until it is turned off.
2. This attribute character never occupies a character space.

Setting Video Attributes

1. Your program should place the cursor one position before you want the attribute to start.

NOTE! Remember that each attribute occupies a character position. If your program types over the attribute, it is lost.

2. Your program should send the appropriate escape sequence as listed in Table 6-2.

NOTE! Escape sequences are shown with spaces. These spaces are included only for the sake of clarity and are not to be included in the sequence.

Escape Sequence Calls to the Terminal Emulator

The Terminal Emulator is a gate array processor that intercepts escape sequences when they are sent from the CPU to the console device and sets the appropriate terminal attribute or function. These escape sequences are ASCII characters sent in a sequential array just as in normal terminal communications.

The typical escape sequence is indicated by ASCII character 27 (decimal value) ESC. Some of the cursor control functions are represented by ASCII control characters. For example, the cursor up function is ^K, ASCII character 11 (decimal).

You can send a local escape to the Terminal Emulator directly from the keyboard (by-passing the CPU) by pressing the <Shift> and <Esc>, (<Shift>/ESC), keys simultaneously. This allows you to experiment with the terminal attributes without a code-compile-run overhead problem.
Table 6-2
Escape Sequences for Video Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Escape Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (default) video</td>
<td>ESC G 0</td>
</tr>
<tr>
<td>Invisible normal video</td>
<td>ESC G 1</td>
</tr>
<tr>
<td>Blink</td>
<td>ESC G 2</td>
</tr>
<tr>
<td>Invisible blink</td>
<td>ESC G 3</td>
</tr>
<tr>
<td>Reverse video (reverse of default)</td>
<td>ESC G 4</td>
</tr>
<tr>
<td>Invisible reverse</td>
<td>ESC G 5</td>
</tr>
<tr>
<td>Reverse and blink</td>
<td>ESC G 6</td>
</tr>
<tr>
<td>Invisible reverse and blink</td>
<td>ESC G 7</td>
</tr>
<tr>
<td>Underline</td>
<td>ESC G 8</td>
</tr>
<tr>
<td>Invisible underline</td>
<td>ESC G 9</td>
</tr>
<tr>
<td>Underline and blink</td>
<td>ESC G :</td>
</tr>
<tr>
<td>Invisible underline and blink</td>
<td>ESC G ;</td>
</tr>
<tr>
<td>Reverse and underline</td>
<td>ESC G <</td>
</tr>
<tr>
<td>Invisible reverse and underline</td>
<td>ESC G =</td>
</tr>
<tr>
<td>Reverse and underline and blink</td>
<td>ESC G ></td>
</tr>
<tr>
<td>Invisible reverse and underline and blink</td>
<td>ESC G ?</td>
</tr>
<tr>
<td>Half intensity on</td>
<td>ESC)</td>
</tr>
<tr>
<td>Half intensity off</td>
<td>ESC (</td>
</tr>
</tbody>
</table>

Escape Sequences for Clearing the Screen

The clear function is used to clear data from screen memory. Clear commands are summarized in Table 6-3.

Table 6-3
Clear Commands Escape Sequences

<table>
<thead>
<tr>
<th>Clear Command</th>
<th>Escape Sequence</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear All to Nulls</td>
<td>ESC :</td>
<td>Clears all data on the page to nulls or to half-intensity nulls if half intensity is on.</td>
</tr>
<tr>
<td>Clear All to Half-Intensity Spaces</td>
<td>ESC ,</td>
<td>Clears all data on the page to half-intensity spaces.</td>
</tr>
<tr>
<td>Clear All to Spaces</td>
<td>ESC + or ^Z</td>
<td>Clears all data on the page to spaces or to half-intensity spaces if half intensity is on.</td>
</tr>
<tr>
<td>Clear All to Nulls and Reset Half Intensity</td>
<td>ESC *</td>
<td>Clears all data on the page to nulls. Resets half intensity.</td>
</tr>
</tbody>
</table>
Escape Sequences for Cursor Display

The cursor display may appear any one of five ways. To change the appearance of the cursor, enter one of the following escape sequences in Table 6-4.

Table 6-4
Cursor Display Escape Sequences

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor not displayed</td>
<td>ESC . 0</td>
</tr>
<tr>
<td>Blinking block cursor</td>
<td>ESC . 1</td>
</tr>
<tr>
<td>Steady block cursor</td>
<td>ESC . 2</td>
</tr>
<tr>
<td>Blinking underline cursor</td>
<td>ESC . 3</td>
</tr>
<tr>
<td>Steady underline cursor</td>
<td>ESC . 4</td>
</tr>
</tbody>
</table>

Cursor Control

The cursor can be directed to a location on the screen by using the cursor control commands in Table 6-5, or by sending the cursor to a screen address as described in the section on Cursor Addressing in this chapter.

Table 6-5
Cursor Control Commands

<table>
<thead>
<tr>
<th>Cursor Control</th>
<th>Control Code</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>^K</td>
<td>Moves the cursor up one line until it encounters the top of the screen. Once it reaches the top of the screen, receipt of further codes has no effect.</td>
</tr>
<tr>
<td>Down</td>
<td>^V</td>
<td>Moves the cursor down one line. If the cursor is on the bottom line of the screen, the code has no effect.</td>
</tr>
<tr>
<td>Left</td>
<td>^H</td>
<td>Functions the same as BACKSPACE. Moves the cursor to the left. If the cursor is currently in the first column of the line, it moves to the last column of the preceding line. If the cursor is on home, it has no effect.</td>
</tr>
</tbody>
</table>
Right \(^L \) Moves the cursor right one column. If the cursor is at column 80, the cursor moves to the first column of the next line. If the cursor is at the last column of the last line, it causes the screen to scroll up and moves the cursor to the first column of the new line.

Home \(^>\) \((<\text{Ctrl}>/>)\) Moves the cursor to column one of the first line. If the cursor is already at the home position, the code has no effect.

Carriage Return \(^M \) Moves the cursor left to column one of the current line.

To move the cursor up one line, send

\[\text{ESC} \ j \]

A reverse linefeed moves the cursor up one line for each reverse linefeed code received. The screen scrolls down one line when the cursor reaches the top line of the screen. As the display scrolls down one line, a new line of data appears at line one of the screen and the last line of the display is deleted. The data consists of spaces.

Cursor Addressing

The computer can also position the cursor to a specific location without repetitive cursor movement commands. This is called loading or addressing the cursor.

To address the cursor, enter

\[\text{ESC} = r \ c \]

where

- \(r \) is the desired row (line). Refer to Table 6-6 to find the ASCII code representing the desired row.
- \(c \) is the desired column. Refer to Table 6-6 to find the ASCII code representing the desired column.

NOTE: If your applications program inserts nulls between characters, loading the cursor does not function as described. Instead, the cursor goes to an unpredictable position.
For example, if you want the cursor to go to Row 9 of Column 50, send

\[\text{ESC} = (\text{Q} \]

Table 6-6
Cursor Coordinates

<table>
<thead>
<tr>
<th>Row*</th>
<th>ASCII Code Transmitted</th>
<th>Column</th>
<th>ASCII Code Transmitted</th>
<th>Column</th>
<th>ASCII Code Transmitted</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Space</td>
<td>33</td>
<td>()</td>
<td>65</td>
<td>`</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>!</td>
<td>34</td>
<td>A</td>
<td>66</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>35</td>
<td>B</td>
<td>67</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td>36</td>
<td>C</td>
<td>68</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$</td>
<td>37</td>
<td>D</td>
<td>69</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>%</td>
<td>38</td>
<td>E</td>
<td>70</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>&</td>
<td>39</td>
<td>F</td>
<td>71</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(</td>
<td>40</td>
<td>G</td>
<td>72</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>)</td>
<td>41</td>
<td>H</td>
<td>73</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>)</td>
<td>42</td>
<td>I</td>
<td>74</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>43</td>
<td>J</td>
<td>75</td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>44</td>
<td>K</td>
<td>76</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>,</td>
<td>45</td>
<td>L</td>
<td>77</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>46</td>
<td>M</td>
<td>78</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.</td>
<td>47</td>
<td>N</td>
<td>79</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>/</td>
<td>48</td>
<td>O</td>
<td>80</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>49</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>50</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>51</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>52</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>53</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>54</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>55</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>56</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>57</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>58</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>:</td>
<td>59</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>;</td>
<td>60</td>
<td>[</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td><</td>
<td>61</td>
<td>\</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>=</td>
<td>62</td>
<td>]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>></td>
<td>63</td>
<td>^</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>?</td>
<td>64</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Row (line) value may not exceed 24.
Tabs

The cursor may be moved on the screen to preset typewriter-style tabs. Tab controls are summarized in Table 6-7.

Table 6-7
Tab Controls

<table>
<thead>
<tr>
<th>Action</th>
<th>Control Code</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set tab*</td>
<td>ESC 1</td>
<td>Sets a typewriter-style column tab.</td>
</tr>
<tr>
<td>Tab</td>
<td>^I</td>
<td>Causes the cursor to advance to the next tab set. If no tabs are set, the code has no effect and the cursor does not move.</td>
</tr>
<tr>
<td>Back Tab</td>
<td>ESC 1</td>
<td>Causes the cursor to go back to the previous tab position set. If no tabs are set or if the cursor is on the first tab position on the line, this code moves the cursor to the first column on the line.</td>
</tr>
<tr>
<td>Clear Tab**</td>
<td>ESC 2</td>
<td>Clears the tab where the cursor is located when this code is entered.</td>
</tr>
<tr>
<td>Clear All Tabs***</td>
<td>ESC 3</td>
<td>Clears all tabs regardless of the position of the cursor when the code is entered.</td>
</tr>
</tbody>
</table>

*To set a tab, move the cursor to the column position where you want a tab. Be sure you enter a numeral one, not a lower-case L.
**Position the cursor at the tab to be cleared before entering the sequence.
***The position of the cursor when this code is entered is not important.

Text Editing Functions

Changing text can involve the following three actions:

- Replacing (typing over) existing text; referred to here as editing
- Inserting new text which pushes existing text to the right from the cursor position
- Deleting existing text (by character or line) by moving text backward toward the cursor

Editing, inserting, and deleting can occur within the line on
which the cursor is positioned. Text which reaches the beginning or the end of a line by these actions are, if moved further, lost (fall off that line).

Table 6-8 summarizes the effects of the available editing commands.

Table 6-8

<table>
<thead>
<tr>
<th>Editing Commands</th>
<th>Escape Sequence</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character Insert</td>
<td>ESC Q</td>
<td>Causes character at the cursor to move right one column position and enters a space at the cursor position. As characters are inserted, characters reaching column 80 are lost. If half intensity is on, half-intensity spaces replace the erased characters.</td>
</tr>
<tr>
<td>Character Delete</td>
<td>ESC W</td>
<td>Deletes the character at the cursor position and moves all following characters left one position. At the end of the delete function, a space is written into the last position on the line. If half intensity is on, half-intensity spaces replace the erased characters.</td>
</tr>
<tr>
<td>Line Insert</td>
<td>ESC E</td>
<td>Inserts a line consisting of spaces at the cursor position. This causes the cursor to move to the start of the new line and all following lines to move down one line, resulting in the loss of the last line on the page. If half intensity is on, half-intensity spaces replace the erased characters.</td>
</tr>
<tr>
<td>Line Delete</td>
<td>ESC R</td>
<td>Deletes the line at the cursor position and all following lines move up one line. The cursor moves to column one of the line and spaces are loaded into the last line of the page. If half intensity is on, half-intensity spaces replace the erased characters.</td>
</tr>
<tr>
<td>Erase to End of Line</td>
<td>ESC T</td>
<td>Erases all characters from the cursor to the end of the line and replaces them with spaces. If half intensity is on, half-intensity spaces replace the erased characters.</td>
</tr>
</tbody>
</table>
Erase to End of Line with Nulls

Erase to End of Page

Erase to End of Page with Nulls

Monitor Mode

You can display all characters (including all escape and control sequences) sent from the keyboard or generated by a program. This feature is called monitor mode. Having the escape and control commands on the screen provides visual clues to make program debugging easier.

To enable monitor mode, send:

ESC U

To terminate the display of the control commands, send either ESC u or ESC X

Table 6-9 lists the monitor mode control characters and shows the monitor mode control characters as they appear.

Table 6-9
Monitor Mode Control Characters

<table>
<thead>
<tr>
<th>Code</th>
<th>ASCII</th>
<th>Hex</th>
<th>Character Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>^@</td>
<td>NULL</td>
<td>00</td>
<td>none</td>
</tr>
<tr>
<td>^A</td>
<td>SOH</td>
<td>01</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>^B</td>
<td>STX</td>
<td>02</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>^C</td>
<td>ETX</td>
<td>03</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>^D</td>
<td>EOT</td>
<td>04</td>
<td>E</td>
</tr>
<tr>
<td>^E</td>
<td>ENQ</td>
<td>05</td>
<td>E</td>
</tr>
<tr>
<td>^F</td>
<td>ACK</td>
<td>06</td>
<td>A</td>
</tr>
<tr>
<td>^G</td>
<td>BEL</td>
<td>07</td>
<td>B</td>
</tr>
<tr>
<td>^H</td>
<td>BS</td>
<td>08</td>
<td>B</td>
</tr>
<tr>
<td>^I</td>
<td>HT</td>
<td>09</td>
<td>H</td>
</tr>
<tr>
<td>^J</td>
<td>LF</td>
<td>0A</td>
<td>L</td>
</tr>
<tr>
<td>^K</td>
<td>VT</td>
<td>0B</td>
<td>V</td>
</tr>
<tr>
<td>^L</td>
<td>FF</td>
<td>0C</td>
<td>F</td>
</tr>
<tr>
<td>^M</td>
<td>CR</td>
<td>0D</td>
<td>C</td>
</tr>
<tr>
<td>^N</td>
<td>SO</td>
<td>0E</td>
<td>S</td>
</tr>
<tr>
<td>^O</td>
<td>SI</td>
<td>0F</td>
<td>S</td>
</tr>
<tr>
<td>^P</td>
<td>DLE</td>
<td>10</td>
<td>D</td>
</tr>
<tr>
<td>^Q</td>
<td>DC1</td>
<td>11</td>
<td>D</td>
</tr>
<tr>
<td>^R</td>
<td>DC2</td>
<td>12</td>
<td>D</td>
</tr>
<tr>
<td>^S</td>
<td>DC3</td>
<td>13</td>
<td>D</td>
</tr>
<tr>
<td>^T</td>
<td>DC4</td>
<td>14</td>
<td>D</td>
</tr>
<tr>
<td>^U</td>
<td>NAK</td>
<td>15</td>
<td>N</td>
</tr>
<tr>
<td>Key</td>
<td>Function</td>
<td>Code</td>
<td>Programming</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>^V</td>
<td>SYN</td>
<td>16</td>
<td>S</td>
</tr>
<tr>
<td>^W</td>
<td>ETB</td>
<td>17</td>
<td>E</td>
</tr>
<tr>
<td>^X</td>
<td>CAN</td>
<td>18</td>
<td>C</td>
</tr>
<tr>
<td>^Y</td>
<td>EM</td>
<td>19</td>
<td>E</td>
</tr>
<tr>
<td>^Z</td>
<td>SUB</td>
<td>1A</td>
<td>S</td>
</tr>
<tr>
<td>^[</td>
<td>ESC</td>
<td>1B</td>
<td>E</td>
</tr>
<tr>
<td>^\</td>
<td>FS</td>
<td>1C</td>
<td>F</td>
</tr>
<tr>
<td>^]</td>
<td>GS</td>
<td>1D</td>
<td>G</td>
</tr>
<tr>
<td>^`</td>
<td>RS</td>
<td>1E</td>
<td>R</td>
</tr>
<tr>
<td>^~</td>
<td>US</td>
<td>1F</td>
<td>U</td>
</tr>
<tr>
<td>DEL</td>
<td>DEL</td>
<td>7F</td>
<td></td>
</tr>
</tbody>
</table>
This chapter discusses how to access the graphics features, what graphics features are available, and how to access the SuperMouse support functions.

The functions described in this chapter are specific to the TPC I. We recommend that you use the GSX-80 driver instead of these functions so that you can take advantage of the GSX-80 drivers for other devices that are supplied on the system diskette. Your programs will also be more portable. You can order a GSX-80 programmer's manual from TeleVideo through your computer store.

The GSX-80 driver for the TPC I calls the functions described in this chapter, but provides much more functionality than is available in the firmware.

INTRODUCTION TO GSX

This section provides you with information about how a graphics system is built when using GSX. It is intended for those who want to familiarize themselves with the basic capabilities of GSX. For more specific information about how to fit the graphics capabilities into your system, you should consult the GSX User's Guide.

GSX (Graphics System EXTension)

GSX-80 is the Graphic System eXTension for the CP/M family of operating systems. It incorporates graphics capability into the operating system and provides a host-independent and device-independent interface to your applications programs. Graphics primitives are provided for implementing graphics applications with reduced programming efforts. In addition, GSX-80 offers program portability by allowing an applications program to run on any CP/M system with the GSX-80 option. GSX-80 also promotes programmer interface to graphics which is compatible with one of the world's most widely used operating systems, CP/M.
GSX-80 is implemented as an integral part of your operating system. Applications programs interface to GSX-80 through a standard calling sequence similar to the BDOS conventions. Drivers for specific graphics devices translate the standard GSX-80 calls to the unique characteristics of the device. In this way, GSX-80 provides device-independence since the peculiarities of the graphics device are not visible to the applications program. GSX-80 consists of several parts that work together to give your system graphics capability:

* The Graphics Device Operating System (GDOS)
* The Graphic Input/Output System (GIOS)
* The Gengraf Utility

Graphic Device Operating System

The Graphic Device Operating System (GDOS) contains the basic host and device independent graphics functions that can be called by your application program. GDOS provides a standard interface to graphics which is constant regardless of specific devices or host hardware, just as the BDOS standardizes disk interfaces. Your applications program accesses GDOS through a mechanism analogous to the normal BDOS systems calls.

GDOS loads at runtime with your graphics applications program, so it consumes system memory space only when required, leaving the normal Transient Program Area for non-graphic programs.

GDOS performs coordinate scaling so that your program can specify points in a normalized coordinate space. It uses device specific information to translate the normalized coordinates into the corresponding values for your particular graphics device.

Multiple graphics devices can be supported under GSX-80 within a single application. By referring to devices with a workstation identification number, graphics information can be sent to any of the several resident devices. GDOS dynamically loads a specific device driver when requested by the applications program, overlaying the previous driver. This technique minimizes memory size requirements since only one driver is resident at any time.

Graphic Input/Output System

The Graphic Input/Output System (GIOS) is similar to the basic I/O system or BIOS. It provides the device specific code required to interface your particular graphics device to GDOS.
GIOS consists of a set of device drivers that communicate directly with the graphic devices through the appropriate host ports. A unique device driver is required for each different graphics device on your system. The term GIOS refers to the collection of available device drivers as well as the particular driver that is loaded into memory when required by your application. Although a single program can use several graphic devices, only one driver is loaded by GDOS at a time.

GIOS performs the graphics primitives of GSX-80 consistent with the inherent capabilities of your graphics device. In some cases a device driver will emulate standard GDOS capabilities which are not provided by the graphics device hardware. For example, some devices may require that dashed lines be simulated by a series of short vectors generated in the device driver.

GSX-80 is supplied with drivers for many of the most popular graphics devices for microcomputer systems.

A list of devices supported by the GSX supplied by TeleVideo for the TPC I, TS 803, TS 803H, TS 1603, and TS 1602 is supplied in this chapter. Some manufacturers of graphics devices supply drivers for their devices.

GENGRAF Utility

The GENGRAF utility is used to combine your applications program and the GSX loader into one executable .COM file. The GSX loader is a small program that loads the GDOS and GIOS into memory at run time and establishes the links between your applications program and GDOS. The GSX loader is attached to your applications program after it has been compiled/assembled and linked with the required external routines and libraries.

How GSX Fits Into Your System

Your applications program may be written in any language provided the GDOS protocol is observed. You may compile/assemble and link your application in the normal manner, yielding a .COM executable file. One additional step must be performed, however, before executing your graphics program: the GSX Loader must be attached to the front of your program so that it can prepare the operating system environment for your graphics application.

The GENGRAF utility (provided with the GSX-80 distribution) allows you to attach the loader to your program with one simple command:

\texttt{GENGRAF<BAR><filename><Return>
For example, if your graphics application program were in an executable file named MYFILE.COM, then the following command string would attach the GSX Loader and place the result into file MYFILE.COM.

`GENGRAP<BAR>MYFILE<Return>`

The resulting MYFILE.COM file would be ready to run.

You should be aware of the total memory space available to your applications program in the TPA. This will be less for graphics applications than for normal programs because of the GDOS and device driver requirements.

GSX Supported Peripherals

TeleVideo supplies the following device drivers for their systems with graphic capabilities, like the TPC I, TS 803, TS 803H, TS 1602 and TS 1603:
GSX-80 supports:

* Printers
 - Epson MX-80 with Graftrax Plus
 - Epson MX-80 type III
 - Epson FX-80
 - Epson-100

* Plotters
 - Hewlett-Packard 7470
 - Hewlett-Packard 7220
 - Houston Instruments HiPlot 7M
 - Houston Instruments HiPlot 3M

* CRT device drivers
 - TPC I
 - TS 803
 - TS 803H

GSX-86 supports:

* Printers
 - Epson MX-80 with graftrax Plus
 - Epson MX-80 type III
 - Epson FX-80
 - IDS MicroPrism 480
 - IDS Prism 80/132 (monochrome)
 - IDS Prism 80/132 (color)
 - Okidata Microline 92
 - Printronix MPV
 - Printronix P300/P600

* Plotters
 - Hewlett-Packard 7470A
 - Hewlett-Packard 7220
 - Houston Instruments HiPlot DMP-3/4-443
 - Houston Instruments HiPlot DMP-6/7
 - Strobe Model 100

* CRT device drivers
 - TS 1602
 - TS 1603 (plus graphic option)

GRAPHICS PRIMITIVES DRIVER

The EPROM firmware in the TPC I serves three functions:

 System boot and diagnostic routines
 Alphanumeric Generator/Terminal Attributes Emulator
 Graphics Primitives Driver
The Graphics Primitives Driver is the lowest level interface to the graphics memory. The Graphics Driver accesses the 20K segment of the 32K graphic memory block as a 640 x 240 pixel bit map through the CPU, mapping the graphics to be displayed by the video controller. The CPU updates the display on alternate cycles with video controller access.

The programmer can have programs access the display memory with calls to the Graphics Primitives Driver. The following sections describe the procedures by which calls can be made to the graphics driver.

Figure 7-1
Graphics Display

The TPC I is also equipped with an optical SuperMouse interface. The SuperMouse has eight software-support functions which are described in the SuperMouse Support Functions section of this chapter. These functions can be directly accessed by the user through a single-entry point. There are also six graphic hardware cursor functions.

CALLING THE GRAPHICS DRIVER

The following procedure enables you to access the graphics driver.

1. Load register "C" with the desired graphics function identifier as listed in Table 7-1.

2. Load the parameters as specified by Table 7-1 either into registers HL, and DE or into a parameter array.

NOTE! The address of the parameter array mentioned above is contained in address OFF00h and OFF01h.

OFF00h contains low byte of address.
OFF01h contains high byte of address.
3. Perform a restart instruction (RST 28h in Z80 or RST 5 in 8080). The restart instructions direct the call to a location in the BIOS. It then moves to the graphics entry point in the EPROM where the graphics function is carried out.

Notice that the array for an extended parameter list is stored in high RAM memory so that it is still available after the memory bank switches from graphics mode to alpha mode and vice versa.

The following is an example of how to access the graphics driver in Z80 code. A complete list of examples of how to access the graphics driver is listed in the section of this chapter called Sample Graphics Access Program Using 8080 Assembly Code.

Suggestion: it is very useful to create a macro for access to the graphics output primitives.

```
grout macro
   RST 28h ;access graphics
endm
```

This macro can be called each time the registers are set appropriately for a particular graphics function call.

Example 1: To draw a line in Z80 code.

```
CSEG .Z80
ld C,1 ;"initialize to graphics mode"
grout
ld C,2 ;clear graphic display
grout
ld C, 11
ld HL, 1 ;set line style to solid.
grout
ld C, 12
ld HL, 1 ;set line color to 1.
grout
ld C, 14
ld HL, 1 ;set writing mode to replace.
grout
ld C,4 ;"move to" 0,0
ld HL,0 ;
ld DE,0 ;
grout
ld C,5 ;"line to" 639,239
ld HL,639 ;
ld DE,239 ;
grout
END
```

The preceding program draws a diagonal line across the bit map from pixel 0,0 to pixel 639,239.
Example 2: To draw a graphics character string in Z80 code.

```
CSEG
.Z80
ld C,1
grout
ld C,2 ; clear graphic display
grout
ld C,13
ld HL,1 ; set character color to 1.
grout
ld C,14
ld HL,1 ; set writing mode to replace.
grout
ld HL,(0FF00h) ; get pointer to string array
ld (HL),5 ; put length of string into array
INC HL ;
INC HL ; point at string
ld DE,string ;
ld b,5 ;
loop:
ld a,(DE) ;
ld (HL),a ; load characters onto parameter array.
INC DE
INC HL
INC HL ; load one character per word.
DJNZ loop ;
ld C,6 ; "draw string"
grout

string: Db 'Hello'
END
```

See Figure 7-2 for the parameter array whose address is contained in FF00h and FF01h.
Figure 7-2
Parameter Array Contents

<table>
<thead>
<tr>
<th>Character count #</th>
<th>= byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Used</td>
<td>= byte 2</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Character #1 (H)</td>
<td>= byte 3</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Not Used</td>
<td>= byte 4</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Character #2 (e)</td>
<td>= byte 5</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Not Used</td>
<td>= byte 6</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Character #3 (l)</td>
<td>= byte 7</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Not Used</td>
<td>= byte 8</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Character #4 (l)</td>
<td>= byte 9</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Not Used</td>
<td>= byte 10</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Character #5 (o)</td>
<td>= byte 11</td>
</tr>
</tbody>
</table>

GRAPHICS DRIVER FUNCTIONS

The TPC I Graphics Primitives Driver supports the following functions. They are listed by function identification number (passed in register C) in Table 7-1.

Table 7-1
Graphics Driver Functions

<table>
<thead>
<tr>
<th>Function Number</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C = 0</td>
<td>Initialize to alphanumeric mode. Does not clear display.</td>
</tr>
<tr>
<td>1</td>
<td>C = 1</td>
<td>Initialize to graphics mode. Does not clear display.</td>
</tr>
<tr>
<td>2</td>
<td>C = 2</td>
<td>Clear graphics screen (memory).</td>
</tr>
<tr>
<td>3</td>
<td>C = 3 array</td>
<td>Polyline. Draws a connected sequence of lines in the current line style, line color, and writing mode. The first point is taken as the current position. The last end-point of the sequence becomes the current position (CP).</td>
</tr>
</tbody>
</table>
The parameters are passed in an array. The address of the array is contained in locations OFF00h and OFF01h.
Maximum number of vertices \((x,y) = 63 \)
Parameter array contents:

\[
\begin{align*}
\text{word 0} &= \text{count (n vertex points)} \\
\text{word 1} &= x_1 \quad ; \text{move to vertex \((x_1, y_1)\)} \\
\text{word 2} &= y_1 \\
\text{word 3} &= x_2 \quad ; \text{line to vertex \((x_2, y_2)\)} \\
\text{word 4} &= y_2 \\
\text{word 5} &= x_3 \quad ; \text{line to vertex \((x_3, y_3)\)} \\
\text{word 6} &= y_3 \\
&\quad \text{(etc.)}
\end{align*}
\]

4 \hspace{1cm} C = 4 \hspace{1cm} \text{MoveTo. Updates the current position. Used only with LineTo and DrawString.}

5 \hspace{1cm} C = 5 \hspace{1cm} \text{LineTo. Draws a line from current position to } x,y \text{ then updates the current position. The current linestyle, line color, and writing mode are used.}

6 \hspace{1cm} C = 6 \hspace{1cm} (array) \hspace{1cm} \text{DrawString. Draws character string starting at current position. It does not update the current position when done. The string is stored in an array whose address is contained at memory locations OFF00h and OFF01h. Character count max = 80.}

\textbf{NOTE!} \hspace{1cm} Address of parameter array is contained in OFF00h, OFF01h.
Figure 7-3
DrawString Parameter Array Contents

| Word 1 = Character count |
| Word 2 = Character 1 |
| Word 3 = Character 2 |
| " |
| " |
| Word n = Character n |

NOTE!
A graphics character is formed by an 8-bit by 8-bit character cell. The graphics character string starts at the character cell's baseline at the current (X,Y) position. The current position can be changed by the MOVETO command.

Figure 7-4
8x8 Graphics Character Cell

Scan Out Horizontal Line. This routine scans out a horizontal line with the current fill interior style, fill style index, and fill color. The end points of this horizontal scan line are passed in the array as shown in Figure 7-5.
Figure 7-5
Scan Out Parameter Array Contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y - Coordinate</td>
<td>word 1</td>
</tr>
<tr>
<td>X1 - Coordinate</td>
<td>word 2</td>
</tr>
<tr>
<td>X2 - Coordinate</td>
<td>word 3</td>
</tr>
</tbody>
</table>

NOTE! Address of array is contained in OFF00h and OFF01h.

This routine internally adjusts the area style (i.e. pattern or crosshatch) according to the starting coordinate (X,Y) passed to it from the user. This routine is particularly useful for scanning out the horizontal sections of a polygon or bar fill.

NOTE! X2 must be greater than or equal to X1.

Crosshair. This function can be used to draw a cross-hair cursor of size specified by the user. This function overrides the current line style, line color and writing mode with a solid line style, white line color, and XOR writing mode. The current attributes are restored when exiting this function.

Reg HL = 0 Use data passed in parameter array.

HL = 1 Use data from last entry to this function (used for erasing).

NOTE! The crosshair is drawn using XOR writing mode, but the current writing mode remains the same.
The parameters needed are passed in the array as follows:

Figure 7-6
Crosshair Parameter Array Contents

<table>
<thead>
<tr>
<th>Y Value of horizontal line of cross-hair</th>
<th>= Word 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 Value of left endpoint of horizontal line</td>
<td>= Word 2</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>X2 Value of right endpoint of horizontal line</td>
<td>= Word 3</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>X Value of vertical line of cross-hair</td>
<td>= Word 4</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Y1 Value of bottom endpoint of vertical line</td>
<td>= Word 5</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Y2 Value of top endpoint of vertical line</td>
<td>= Word 6</td>
</tr>
</tbody>
</table>

Crosshair Cursor

$$(X, Y_2)$$

$$(X_1, Y)$$-----------------$$(X_2, Y)$$

$$(X, Y_1)$$

9 C = 9

This function fills a BAR with the currently selected fill attributes: fill interior style, fill-style index, and the fill-color index. The lower-left and upper-right corner coordinates are passed in the parameter array as in Figure 7-7.
Figure 7-7
Parameter Array Contents

| X1 - Coordinate | Word 1 |
|------------------|
| Y1 - Coordinate | Word 2 |
| X2 - Coordinate | Word 3 |
| Y2 - Coordinate | Word 4 |

(X2, Y2)

10 RESERVED RESERVED

11 C = 11 HL = style
 Set LineStyle. Valid parameters are 1 through 8:
 1 - solid
 2 - dashed
 3 - dotted
 4 - dash-dot
 5 - long-dash
 6 - short-dash
 7 - dot-dot-dash
 8 - long-dot

12 C = 12 HL = color
 Set LineColor. Valid parameters are 0 or 1:
 1 - white
 0 - black

13 C = 13 HL = color
 Set Character Color. Sets the current character color. Valid parameters are 0 or 1:
 1 - white
 0 - black
Set Write Mode. Sets the current writing mode for all output primitives. Valid parameters are 1 through 8.

1 - Replace
2 - Logical <OR>
3 - <XOR>
4 - <NOT>
5 - Complement then Replace
6 - Complement then logical <OR>
7 - Complement then <XOR>
8 - Complement then <NOT>

Writing Mode Logic

1 - Plane = (Color Index) AND (Pattern)
2 - Plane = (Plane) OR [(Color Index) AND (Pattern)]
3 - Plane = (Plane) XOR [(Color Index) AND (Pattern)]
4 - Plane = (Plane) AND [(Color Index) AND (Pattern)]
5 - Plane = (Color Index) AND (Pattern)
6 - Plane = (Plane) OR [(Color Index) AND (Pattern)]
7 - Plane = (Plane) XOR [(Color Index) AND (Pattern)]
8 - Plane = (Plane) AND [(Color Index) AND (Pattern)]

NOTE: Plane refers to the Graphics Display. The Color Index and Pattern corresponds to the respective output primitive selected such as text, line, or fill.
15 \(C = 15 \)

Fill Interior Style. This routine sets the type of interior style to be used in the horizontal scan routine. The style selected is passed on the first word of the parameter array:

```
array  | Style  # | word 1
--------
```

Table 7-2
Fill Interior Styles

<table>
<thead>
<tr>
<th>Style #</th>
<th>Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hollow</td>
</tr>
<tr>
<td>1</td>
<td>Solid</td>
</tr>
<tr>
<td>2</td>
<td>Pattern</td>
</tr>
<tr>
<td>3</td>
<td>Cross-hatch</td>
</tr>
</tbody>
</table>

16 \(C = 16 \)

Fill-Style Index. This routine sets the style index of the currently-selected interior style. The style index only affects the pattern and cross-hatch interior styles. The style index is passed on the first word of the parameter array.

```
array  | Style Index | word 1
--------|-------------|
```

Table 7-3
Graphics Styles

<table>
<thead>
<tr>
<th>Current Interior Style</th>
<th>Style Index</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollow</td>
<td>None</td>
<td>Style Index has no effect.</td>
</tr>
<tr>
<td>Solid</td>
<td>None</td>
<td>Style Index has no effect.</td>
</tr>
<tr>
<td>Pattern</td>
<td>0</td>
<td>Low Intensity</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>High Intensity</td>
</tr>
</tbody>
</table>
Cross-Hatch

0 Vertical
1 Horizontal
2 Diagonal 45 degrees
3 Diagonal -45 degrees
4 Vertical/Horizontal
5 Vertical/Diagonal 45 degrees
6 Vertical/Diagonal -45 degrees
7 Cross Diagonals

17 C = 17 Fill Color Index. This routine affects the area style to be written into memory in the following way:

1 = white
0 = black

array | Color Index | Word 1

18 RESERVED RESERVED

19 C = 19 GetPix. Returns all of a scan line of pixels. Returns the scan line in the array. Bytes in the array are packed with the most significant bit corresponding to the lower x value. The bytes are loaded into the array in order of increasing x (from left to right) on the scan line.

HL = y scan line value (0-239)

SUPERMOUSE

The TPC I provides eight SuperMouse support functions which you can access. The SETUPTPC program allows you to attach or detach the SuperMouse from the system. Once the SuperMouse is attached, the SuperMouse must be initialized (function 1) before support functions (2-7) (see Table 7-4) become operational. The SuperMouse opens a completely new dimension in human interface to the computer. There are also six graphic hardware cursor support functions which are discussed in the section, Mouse Support Functions.

Figure 7-8
SuperMouse

TeleVideo Systems, Inc. Page 7.17
The SuperMouse is attached to the system through the SETUPTPC program.

SUPERMOUSE SUPPORT FUNCTIONS

You can access the SuperMouse functions by following these instructions:

1. Load register "Cn with the function number identifier (see Table 7-4).

2. Input/Output parameters are passed in registers HL, DE, and A, as listed in the SuperMouse functions below.

3. Perform a RESTART instruction.

 RST 6 - for the 8080 instruction set.
 RST 30h - for the Z80 instruction set.

The eight SuperMouse support functions and six hardware graphics cursor support functions that you may access are listed in Table 7-4.

Table 7-4
SuperMouse Functions

<table>
<thead>
<tr>
<th>Function Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = 0</td>
<td>INQUIRE. Inquire if SuperMouse is available.</td>
</tr>
<tr>
<td></td>
<td>Inquire if hardware cursor available.</td>
</tr>
</tbody>
</table>

 USER: Enters nothing
 SYSTEM: Returns
 Reg. A - 0 SuperMouse not available.
 - 0FFh SuperMouse available.

This function returns to the user a flag (Register A) which indicates if a SuperMouse is available or not. This flag is initially set by attaching or detaching the SuperMouse through the SETUPTPC program.
C = 1 **INITIALIZE.** This is to initialize the SuperMouse.

USER: Enters

Reg. - HL Initial X-coordinate position of SuperMouse (0 to 639).

Reg. - DE Initial Y-coordinate position of SuperMouse (0 to 239).

SYSTEM: Returns nothing

This function enables the SuperMouse interrupt, and sets the initial position of the SuperMouse.

NOTE! When the SuperMouse is initialized, the default ASCII characters for the SuperMouse keys are implemented, and the SuperMouse key mode is set at 0.

Mode 0 means that the pressing of the SuperMouse key is treated as a keyboard entry and that the SuperMouse stops tracking its movement until the key is released.

The ASCII character associated with the SuperMouse key can be altered through SuperMouse function 6.

The character placed in the keyboard queue because of the SuperMouse key depression can be retrieved through a BDOS call, such as BDOS function 6.

Use a CP/M BDOS CALL to access the characters placed in the keyboard queue.

For example: BDOS CALL FUNCTION 6

```
ld   c, 6 ;direct console
        Input/Output
ld   e, 0ffh ;set input flag.
call 5 ;BDOS CALL
        ;BDOS returns character
        ;in Register A or loads
        ;Register A with 0 if no
        ;character is available.
```

The current status of the SuperMouse keys (up/down) can be inquired through SuperMouse function 3.
The default ASCII characters are as follows:

SuperMouse Key(left) - ASCII character 32 (space)
SuperMouse Key(middle) - ASCII character 33 (1)
SuperMouse Key(right) - ASCII character 34 ("")

C = 2 RANGE. Inquires for the SuperMouse's coordinate range.

USER: Enters nothing
SYSTEM: Returns

Reg. - HL SuperMouse's X-coordinate range (640).
Reg. - DE SuperMouse's Y-coordinate range (240).

This function returns to the user the (X,Y) coordinate range of the SuperMouse.

C = 3 INPUT. This returns the SuperMouse coordinates to the user.

USER: Enters nothing
SYSTEM: Returns

Reg. - HL SuperMouse's current X-coordinate position.
Reg. - DE SuperMouse's current Y-coordinate position.
Reg. A - 0 No change in SuperMouse coordinate position since last input or no SuperMouse key has been pressed.
 - OFFh New SuperMouse coordinate position or SuperMouse key has been pressed since last input.

Reg. B SuperMouse Key Status. Contains SuperMouse key status in bits 2, 1, and 0 for the left, middle, and right SuperMouse keys respectively.

If bit returned is:

1 - key is depressed
0 - key is not depressed
C = 4 **TERMINATE.** This terminates the SuperMouse.

USER: Enters nothing
SYSTEM: Returns nothing

This function terminates the SuperMouse interrupt.

C = 5 **SuperMouse Key Mode**

USER: Enters

Reg. A - 0 The tracking of movement by the SuperMouse is discontinued until the SuperMouse key is released. The ASCII character associated with the SuperMouse key that is pressed is placed in the keyboard queue (single character per key depression).

- 1 The tracking of movement by the SuperMouse continues even while the SuperMouse key is pressed. The ASCII character associated with the SuperMouse key that is pressed is not placed in the keyboard queue.

SYSTEM: Returns nothing.

NOTE! In both modes the status of the three SuperMouse keys can be inquired through SuperMouse function 3.

C = 6 **SuperMouse Key Programming**

USER: Enters

Reg. H Contains ASCII character to be associated with left SuperMouse key.

Reg. L Contains ASCII character to be associated with middle SuperMouse key.

Reg. D Contains ASCII character to be associated with right SuperMouse key.

SYSTEM: Returns nothing.
C = 7
Move. This moves the SuperMouse.

USER:
Enters

Reg. HL
New X-coordinate position of SuperMouse.

Reg. DE
New Y-coordinate position of SuperMouse.

SYSTEM:
Returns nothing.

NOTE!
This function will clip the new coordinates to the screen resolution.

$X = 0-639$

$Y = 0-239$

C = 8
Inquire cursor attributes and status.

To BIOS:
Nothing

From BIOS:

Reg. ACC
Bit

<table>
<thead>
<tr>
<th>LSB</th>
<th>0 = 1</th>
<th>Small crosshair/nonblinking supported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 = 1</td>
<td>Full screen crosshair/nonblinking supported</td>
</tr>
<tr>
<td>2 = 1</td>
<td>Small crosshair/blinking supported</td>
<td></td>
</tr>
<tr>
<td>3 = 1</td>
<td>Full-screen crosshair/blinking supported.</td>
<td></td>
</tr>
<tr>
<td>4,5,6,7</td>
<td>Currently not used.</td>
<td></td>
</tr>
</tbody>
</table>

C = 9
Initialize cursor attributes and status.

From BIOS:
Nothing

To BIOS:

Reg. HL = Initial X-coordinate (screen coordinate)

DE = Initial Y-coordinate (screen coordinate)
Reg. Acc Bit
LSB: 0 = 1 Small crosshair/nonblinking
 1 = 1 Full-screen
crosshair/nonblinking
 2 = 1 Small crosshair/blinking
 3 = 1 Full-screen crosshair/blinking
 4,5,6 Currently not used
 7 = 0 Does not display cursor
 = 1 Display cursor

C = 10 Set cursor attributes.
From BIOS: Nothing
To BIOS:

Reg. Acc Bit
LSB: 0 = 1 Small crosshair/nonblinking
 1 = 1 Full-screen
crosshair/nonblinking
 2 = 1 Small crosshair/blinking
 3 = 1 Full-screen crosshair/blinking
 4,5,6 Currently not used
 7 = 0 Does not display cursor
 = 1 Display cursor

C = 11 Move cursor.
From BIOS: Nothing.
To BIOS:

Reg. HL = Current X-coordinate of cursor
 (screen coordinate 0-639)
DE = Current Y-coordinate of cursor
 (screen coordinate 0-239)

C = 13 Terminate hardware cursor.
From BIOS: Nothing.
To BIOS: Nothing.

Example SuperMouse Program

This program is a graphics doodle routine that utilizes the SuperMouse
as the pen. Pressing any key on the SuperMouse or the keyboard
terminates the program and returns the control to CP/M.
To create MSCDRAW.COM (executable file)

USER:

1. Check that the following files reside on your system diskette:

 ASM.COM
 LOAD.COM

2. Type in the program as shown below under the filename mscdraw.asm.

3. Type

 ASM MSCDRAW<Return>

4. Type

 LOAD MSCDRAW<Return>

5. Attach SuperMouse to your system and initialize the SuperMouse through the SETUPTPC program on your diskette.

6. Type

 MSCDRAW<Return>

7. Move the SuperMouse on its pad which in turn will doodle on the graphics screen.

 BDOS EQU 0005H ; BDOS entry point.
 ORG 100H

START:

 MVI C, 1 ; Initialize graphics display.
 RST 5
 MVI C, 2 ; Clear Graphics screen.
 RST 5
 MVI C, 11 ; Set solid line style.
 LXI H, 1
 RST 5
 MVI C, 12 ; Set to white line color.
 LXI H, 1
 RST 5
 MVI C, 14 ; Set to replace writing mode.
 LXI H, 1
 RST 5
 MVI C, 1 ; Initialize the SuperMouse position (0, 0).
 LXI H, 0
 LXI D, 0
 RST 6
 MVI C, 4 ; Move to (0,0).
 LXI H, 0
 LXI D, 0
 RST 5
 LXI H, 0
 LXI D, 0
GRAPHIC CHARACTER FONT

Table 7-5 is a map of the graphic characters associated with each ASCII character. The font is stored in the EPROM. Each cell of the font can be individually accessed through the DRAWSTRING function.

Internally, this is done as follows:

1. The ASCII character sent by the USER through the DRAWSTRING routine in Table 7-1 is used as an index into the graphics character font as shown in Table 7-5.

2. From the font, the graphics routines can access the bytes that comprise the graphics character desired (as shown in Figure 7-4).

NOTE: Sixteen area fill styles have also been stored in the FONT. These styles were stored in place of sixteen non-printable control characters (as shown in Table 7-5).

Table 7-5
Character Font

<table>
<thead>
<tr>
<th>Contents</th>
<th>ASCII Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>0</td>
<td>Control codes</td>
</tr>
<tr>
<td>SOH</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>STX</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fill Style Index</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Fill Style Index 0</td>
<td>4</td>
<td>Half-tone patterns</td>
</tr>
<tr>
<td>Fill Style Index 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fill Style Index 2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fill Style Index 3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Fill Style Index 4</td>
<td>8</td>
<td>Cross-hatch patterns</td>
</tr>
<tr>
<td>Fill Style Index 5</td>
<td>9</td>
<td>Vertical</td>
</tr>
<tr>
<td>Fill Style Index 6</td>
<td>10</td>
<td>Horizontal</td>
</tr>
<tr>
<td>Fill Style Index 7</td>
<td>11</td>
<td>Diagonal 45 degrees</td>
</tr>
<tr>
<td>Fill Style Index 8</td>
<td>12</td>
<td>Diagonal -45 degrees</td>
</tr>
<tr>
<td>Fill Style Index 9</td>
<td>13</td>
<td>Vertical/Horizontal</td>
</tr>
<tr>
<td>Fill Style Index 10</td>
<td>14</td>
<td>Vertical/Diagonal 45</td>
</tr>
<tr>
<td>Fill Style Index 11</td>
<td>15</td>
<td>Vertical/Diagonal -45</td>
</tr>
<tr>
<td>Fill Style Index 12</td>
<td></td>
<td>Cross diagonals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marker symbols</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Dot</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Plus Sign</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Star</td>
</tr>
<tr>
<td>(octagon)</td>
<td>19</td>
<td>Octagon</td>
</tr>
<tr>
<td>X</td>
<td>20</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
SAMPLE GRAPHICS ACCESS PROGRAM USING 8080 ASSEMBLY CODE

ORG 100H

main: call start ;initialize graphics, clear screen.
call text ;draw graphic text.
call line ;draw a line, using moveto and lineto.
call plylin ;draw using poly-line.
call fill ;fill a square using horizontal scan.
jmp 0 ;exit to CP/M

How to initialize to graphics mode and clear the graphics display.

start: mvi c, 1 ;initialize to graphic mode.
rst 5
mvi c, 2 ;clear graphics display.
rst 5
mvi c, 14 ;set writing mode
lx h, 1 ;to replace mode.
rst 5
ret
TPC I System Reference Manual

TeleVideo Systems, Inc.

Page 7.28

How to set the line style attributes and then draw a line from (x1,y1) to (x2,y2).

```
line:  mvi c, 11 ;set line style
       lxi h, 1 ;solid line style.
       rst 5
       mvi c, 12 ;set line color
       lxi h, 1 ;set to white.
       rst 5
       mvi c, 4 ;move to (x1,y1) = (400,50)
       lxi h, 400 ;load x1 coordinate
       lxi d, 50 ;load y1 coordinate
       rst 5
       mvi c, 5 ;line to (x2,y2) = (500,50)
       lxi h, 500 ;load x2 coordinate
       lxi d, 50 ;load y2 coordinate
       rst 5
       ret
```

How to execute the polyline function.

```
move to (x1,y1) = (100,120)
line to (x2,y2) = (150,150)
line to (x3,y3) = (200,120)
line to (x4,y4) = (250,150)
```

```
plylin:  mvi c, 3 ;polyline function
       lxi h, OFF00h
       mov e, m
       inx h
       mov d, m
       xchg ;hl now points to the top of
       ;the parameter array.
       mvi m, 4 ;load vertice's count.
       inx h
       xra a
       mov m, a
       inx h
       mvi m, 100 ;load low byte of x1
       inx h
       mvi m, 0 ;load high byte of x1
       inx h
       mvi m, 120 ;load low byte of y1
       inx h
       mvi m, 0 ;load high byte of y1
       inx h
       mvi m, 150 ;load low byte of x2
       inx h
       mvi m, 0 ;load high byte of x2
       inx h
       mvi m, 150 ;load low byte of y2
       inx h
       mvi m, 0 ;load high byte of y2
       inx h
       mvi m, 200 ;load low byte of x3
       inx h
```
How to draw a string of graphic text. For example, draw 'Hello' starting at location (x=400, y=120).

text:

loop1:

string:
How to fill a square with the selected fill attributes using the horizontal scan routine \((c=7)\). Square's corner points \((x1=100,y1=50), (x2=200,y2=50), (x3=200,y3=100), (x4=100,y4=100)\).

```
fill:
mvi c, 15 ;Set fill interior style.
lxi h, OFF00h
mov e, m
inx h
mov d, m
xchg ;hl points to top of parameter table.
mvi m, 3 ;Select cross-hatch fill style
rst 5
mvi c, 16 ;Set fill style index.
lxi h, OFF00h
mov e, m
inx h
mov d, m
xchg ;hl points at top of parameter table.
mvi m, 0 ;select vertical cross-hatch style.
rst 5
mvi c, 17 ;Set fill color.
lxi h, OFF00h
mov e, m
inx h
mov d, m
xchg ;hl points to top of parameter table.
mvi m, 1 ;select color = white.
rst 5
lxi h, OFF00h
mov e, m
inx h
mov d, m
xchg ;hl points to top of parameter table.
mvi m, 50 ;load y coordinate.
inx h
mvi m, 0
inx h
mvi m, 100 ;load x1 coordinate.
inx h
mvi m, 0
inx h
mvi m, 200 ;load x2 coordinate.
inx h
mvi m, 0
mvi b, 50 ;load scan line count.
loop2:
push b ;save count
mvi c, 7 ;select horizontal scan routine.
rst 5
pop b
lxi h, OFF00h
mov e, m
inx h
mov d, m
xchg ;hl points to top of parameter table.
inr m
```
dcr b
jnz loop2 ;fill square from bottom to top.
ret
end
8. TROUBLESHOOTING

The information provided in this section might help you resolve many operating problems without placing a service call. If your system does not work properly after you have followed the suggestions given here, place a service call to your computer store or service center. See Chapter 9 of the User's Manual called Care, Service, and Travel, for further information.

Table 8-1
Troubleshooting Procedures

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC I IS NOT OPERATIONAL AFTER POWER IS TURNED ON</td>
<td>Unplug power cord and plug it in again.</td>
</tr>
<tr>
<td></td>
<td>Test for power by plugging something else in the same electrical outlet.</td>
</tr>
<tr>
<td></td>
<td>Check the line fuse as described in the section, Changing the Fuse, in this chapter, and replace it if necessary. If the fuse blows again, call your computer store.</td>
</tr>
<tr>
<td>SYSTEM MESSAGE 'SYSTEM "BOOT" (X-REV.X) FROM FLOPPY DISK IN PROGRESS' APPEARS, BUT PROMPT DOES NOT APPEAR</td>
<td>Remove the diskette and turn the power off and on. Reinsert the diskette in the drive and turn the drive latch to the horizontal position.</td>
</tr>
<tr>
<td></td>
<td>Use the master system diskette and then make a new working copy.</td>
</tr>
<tr>
<td>SCREEN DISPLAYS SYSTEM PROMPT BUT DOES NOT RESPOND TO OPERATOR COMMAND</td>
<td>Check to see that the appropriate diskette is in the active drive.</td>
</tr>
<tr>
<td></td>
<td>Be sure the active drive latch is in the horizontal position.</td>
</tr>
<tr>
<td></td>
<td>Make sure the keyboard is connected.</td>
</tr>
<tr>
<td>TPC I IS USED WITH MODEM AND DOES NOT RESPOND OR TRANSMIT TO NETWORK PROCESSOR</td>
<td>Unplug the modem and replug it on again. Turn its power on and off, and reconnect the modem to the TPC I RS-232 port.</td>
</tr>
</tbody>
</table>
TPC I APPEARS TO BE RUNNING BUT CURSOR DOES NOT APPEAR

Adjust contrast knob on front panel.

TPC I VIDEO DISPLAY ATTRIBUTES DO NOT CORRESPOND TO RECENTLY-CHANGED SWITCH SETTINGS

Reset the system by pressing <Ctrl>/<Alt>/ simultaneously so the software can scan the new switch settings.

TPC I LOCKED UP (DOES NOT RESPOND TO KEYBOARD)

Turn the drive latches to the vertical position and turn the power off and back on. Turn the latches back to the horizontal position.

Check keyboard connector.

TPC I SCREEN IS DEAD

Turn TPC I off and check the fuses.

PRINTER DOES NOT PRINT WHAT IS TYPED

Reconnect printer cable, being sure it is completely on the pin connector.

Check printer cable configuration.

Check for printer fault (out of paper or ribbon).

HARDWARE ERROR MESSAGE APPEARS

Reset the system by turning the power off and on.

ESCAPE AND CONTROL COMMANDS DO NOT FUNCTION AS ANTICIPATED

Re-enter commands, paying particular attention to whether upper- or lower-case characters, ones or zeroes, are needed.

CHANGING THE FUSE

The TPC I has one exterior fuse which is accessible from the rear panel.

To check or change the exterior fuse, turn the power off, pull the plug out of the power outlet, and unscrew the fuse holder (see Figure 8-1).

The fuse is a small glass cylinder. If the thin wire inside the fuse is still intact, the fuse should be functional (see Figure 8-2). If the thin strip is broken and/or if the glass is slightly black, the fuse has blown and must be replaced (see Figure 8-3). If the glass is totally black, do not replace the fuse. The problem could be with the system or with the power outlet. Call your computer store.
To replace the fuse, slip the old fuse from the fuse holder and insert a new fuse. The fuse rating is shown on a label above the fuse holder. See Appendix N for more information about fuses. You can purchase new fuses from your computer store.

If the newly-replaced fuse blows out immediately, do not replace it with another fuse. Call your computer store.
MICROPROCESSOR/MEMORY

CPU
- Z80A 8-bit microprocessor
 (processor speed 4 MegaHertz)

MEMORY
- 64 Kbyte dynamic RAM (expandable to 128 Kbytes)
- 32 Kbyte alpha and graphic display memory
- 8 Kbyte EPROM

SOFTWARE

OPERATING SYSTEM
- CP/M 2.2

GRAPHICS DRIVER
- GSX-80

APPLICATIONS SOFTWARE
- TeleWrite executive word processor
- TeleCalc spreadsheet
- TeleChart business graphics

DISK DRIVES

TYPE
- 5 1/4-inch slim-line floppy disk drive (two maximum)

DISKETTES
- Standard double-sided, double-density
- 5 1/4-inch floppy diskettes
- Soft sectored, 256 bytes/sector, 18 sectors/track, 40 tracks/side, 2 sides/diskette, skew rate 6

STORAGE CAPACITY
- 368.6 kilobytes (formatted)
- 500 Kbytes per drive (unformatted)

TRANSFER RATE
- 250 kilobits/second

ACCESS TIME
- 84 milliseconds (average)
- 120 milliseconds (maximum)
INPUT/OUTPUT

I/O
One parallel port for a printer
One RJ11C port for SuperMouse connection
One RS-232C serial port for a modem
Asynchronous: Switch-selectable baud rates for RS-232C serial port (75, 150, 300, 600, 1200, 2400, 4800, 9600)
Word structure: Eight data bits, one stop bit

OPTIONAL
RS-422 port

POWER REQUIREMENTS

EXTERNAL
U.S. 115 VAC (+/- 12 VAC)
INTERNATIONAL 230 VAC (+/- 12 VAC)

POWER CONSUMPTION
1.30 amp maximum at 115 VAC
0.65 amp maximum at 230 VAC

POWER CORD
NEMA standard 5-15R, 3-prong receptacle (US only)

ENCLOSURE

DIMENSIONS
Height: 8 inches (20.3 cm)
Width: 18 inches (45.7 cm)
Depth: 15 inches (38.1 cm)

COMPOSITION
Injection-molded plastic

ENVIRONMENT

OPERATING
50 to 85 degrees Fahrenheit
10 to 30 degrees Celsius
Maximum humidity 95 percent relative, non-condensing
Maximum altitude 10,000 ft above sea level

NONOPERATING
(SHIPPING) 32 to 120 degrees Fahrenheit
0 to 50 degrees Celsius

CRT SPECIFICATIONS

SCREEN
9 inches measured diagonally
Yellow phosphor
DISPLAYED CHARACTER SET

96-character ASCII characters
32 control characters
24 lines
80 characters per line
1920 characters per screen

Video attributes:
 Half intensity
 Invisible
 Blinking
 Reverse video
 Underline

CHARACTER FONT

8 x 10 dot matrix
7 x 7 resolution

REPEAT

20 cps auto-repeat

EDITING FEATURES

Typeover
Clear screen to space or null
Character insert and character delete
Line insert and line delete
Absolute cursor addressing
Erase to end of line or field
Line edit

CURSOR

Controls: Left, right, up, down, address
Graphics mode: hardware controlled, full screen and single character, blinking or fixed
Alphanumeric mode: full block and underline, blinking or fixed

GRAPHICS FEATURES

RESOLUTION

640 pixels horizontal x 240 pixels vertical

FIRMWARE

Built-in firmware for graphics
APPENDIX B
SUGGESTED REFERENCES

The following books are useful references for using the CP/M operating system in addition to the basic concepts presented in this manual. Ask at your computer store for the availability of these books.

 This is an excellent self-teaching guide, highly recommended for the user unfamiliar with CP/M but perhaps familiar with computers. Assumes no prior knowledge about operating systems.

 A complete book for the beginning computer operator. Covers all aspects of computer operation and CP/M use. Organization and presentation are outstanding.

 Giving very complete details of CP/M, this book gives more detail than many beginners will want.

 An excellent introduction to both CP/M and microcomputers.

6. Townsend, Carl, How to Get Started with CP/M, Dilithium Press, Post Office Box 606, Beaverton, OR 97075.

 A succinct discussion of CP/M. Also includes a listing of CP/M software suppliers.

 GSX-80 User Manual, Digital Research, P.O. Box 579, Pacific Grove, CA 95950.

 Published by Digital Research, these references are available through your computer store from TeleVideo.

8. **Mostek** (for the STI chip), 1215 W. Crosby Rd., Carrollton, TX 75006.

TeleVideo welcomes comments from you about these books as well as names of others that you find useful.
APPENDIX C
BUYING ADDITIONAL DISKETTES

SOURCES
Any TeleVideo Systems dealer or distributor
Retail Computer Center

SPECIFICATIONS
Any new diskettes should meet these specifications to ensure data integrity:

<table>
<thead>
<tr>
<th>Type</th>
<th>Floppy minidiskettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>5 1/4-inch</td>
</tr>
<tr>
<td>Technology</td>
<td>Double-sided, double-density</td>
</tr>
<tr>
<td>Format</td>
<td>Soft-sectored</td>
</tr>
<tr>
<td></td>
<td>Guaranteed for 48 tpi drives</td>
</tr>
<tr>
<td></td>
<td>40 tracks per side</td>
</tr>
</tbody>
</table>

RECOMMENDED BRAND(S)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Part No.</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysan Diskettes</td>
<td>800272 (40 tracks)</td>
<td>Dysan Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Clara, CA</td>
</tr>
</tbody>
</table>

QUALITY

You should purchase the best quality diskettes available to ensure data integrity. Diskettes are not that expensive to replace, but the time spent getting data onto them is very expensive.

LIFE EXPECTANCY

Depending on the care and amount of use given your diskettes, they may last from six months to two years. Many users automatically phase out diskettes periodically. Factors such as number of disk accesses, quality of diskette, environment, and care can significantly affect their life expectancy.

One of the first signs of diskette wear is incorrect data. The care with which you handle and store diskettes is probably the most important single factor in life expectancy of diskettes.
APPENDIX D
CABLE SPECIFICATIONS

The cables that you use should be no more than 50 feet long. Use of improper cables can result in noncompliance with FCC regulations.

Figure D-1
RS-232C

TeleVideo Systems, Inc.
APPENDIX E
PORT ADDRESSES

<table>
<thead>
<tr>
<th>Description</th>
<th>Hex Address</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP switch</td>
<td>OOH</td>
<td></td>
</tr>
<tr>
<td>STI port*</td>
<td>20H - 2FH</td>
<td>(modem port)</td>
</tr>
</tbody>
</table>

DART Channel Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Hex Address</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>DART Channel A (Data)</td>
<td>30H</td>
<td>R/W (keyboard)</td>
</tr>
<tr>
<td>DART Channel A (Command/Status)</td>
<td>32H</td>
<td>R/W (keyboard)</td>
</tr>
<tr>
<td>DART Channel B (Data)</td>
<td>31H</td>
<td>R/W (speaker)</td>
</tr>
<tr>
<td>DART Channel B (Command/Status)</td>
<td>33H</td>
<td>R/W (mouse in)</td>
</tr>
</tbody>
</table>

SIO (Option Port)

<table>
<thead>
<tr>
<th>Description</th>
<th>Hex Address</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel A (RS-422)</td>
<td></td>
<td>R/W</td>
</tr>
<tr>
<td>data</td>
<td>40H</td>
<td></td>
</tr>
<tr>
<td>command/status</td>
<td>42H</td>
<td></td>
</tr>
</tbody>
</table>

Channel B (not used)

<table>
<thead>
<tr>
<th>Description</th>
<th>Hex Address</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>41H</td>
<td>R/W</td>
</tr>
<tr>
<td>command/status</td>
<td>43H</td>
<td>R/W</td>
</tr>
</tbody>
</table>

Floppy Disk Drive Controller

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>Ready (active high)</td>
</tr>
<tr>
<td>D1</td>
<td>Motor on (active low)</td>
</tr>
<tr>
<td>D2</td>
<td>Side select (active low)</td>
</tr>
<tr>
<td>D3</td>
<td>Double density (active low)</td>
</tr>
<tr>
<td>D4</td>
<td>Drive select 0 (active low)</td>
</tr>
<tr>
<td>D5</td>
<td>Drive select 1 (active low)</td>
</tr>
<tr>
<td>D6</td>
<td>Drive select 2 (active low)</td>
</tr>
<tr>
<td>D7</td>
<td>Drive select 3 (active low)</td>
</tr>
</tbody>
</table>

Floppy Disk Controller: Western Digital 1770

See Appendix B for suggested references for the Mostek STI chip.

Floppy Disk Controller: (Western Digital 1793-02)
TPC I System Reference Manual

command/status 80H R/W
track register 81H R/W
sector register 82H W
data register 83H R/W
Parallel Data Port 70H W
Parallel Control Port 60H R/W

Command

DO Data strobe (-)
D1 Auto feed (-)
D2 Init (-)
D3 Select in (-)

Status

D3 Error (-)
D4 Select
D5 Out of paper
D6 Acknowledge (-)
D7 Busy

System Control Port 1 10H W

D0 LED 0 (active low)
D1 LED 1 (active low)

System Control Port 2 11H W

D0 LED 2 (active low)
D1 LED 3 (active low)

System Control Port 3 12H W

D0 RS 422 enable (active low)
D1 RS 422 WAIT enable (active low)

System Control Port 4 13H W

D0 = 0 and D1 = 0 Enable memory bank 0
D0 = 1 and D1 = 0 Enable memory bank 1
D0 = 0 and D1 = 1 Enable memory bank 2
Control Register for Alpha or Graphics Mode Selection

C4H \text{ W}

Bit 0 = 0 \quad \text{alpha mode}
\begin{align*}
1 \quad & \text{graphics mode} \\
\end{align*}

Bit 1 = 0 \quad \begin{align*}
\text{page 1 (alpha mode only)} \\
1 \quad & \text{page 2 (alpha mode only)} \\
\end{align*}

Bit 2 = 0 \quad \begin{align*}
\text{alpha memory access (round off)} \\
1 \quad & \text{graphics memory access (normal CPU address)} \\
\end{align*}

Bit 3 = 0 \quad \begin{align*}
=1 & \text{clears the screen} \\
\end{align*}

Table E-2

<table>
<thead>
<tr>
<th>Description</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>W</td>
</tr>
<tr>
<td>R1</td>
<td>W</td>
</tr>
<tr>
<td>R2</td>
<td>W</td>
</tr>
<tr>
<td>R3</td>
<td>W</td>
</tr>
<tr>
<td>R4</td>
<td>W</td>
</tr>
<tr>
<td>R5</td>
<td>W</td>
</tr>
<tr>
<td>R6</td>
<td>W</td>
</tr>
<tr>
<td>R7</td>
<td>W</td>
</tr>
<tr>
<td>R8</td>
<td>W</td>
</tr>
</tbody>
</table>

BIT 3 = 0 \quad \begin{align*}
\text{for video display RAM addressing} \\
\text{straight binary} \\
\end{align*}

R9 Maximum scan line address \quad W

R10 Cursor start raster \quad W

bit 6,5 - 00 \quad \begin{align*}
00 & \text{no blinking} \\
01 & \text{no cursor} \\
10 & \text{blink at 1/16 field rate} \\
11 & \text{blink at 1/32 field rate} \\
\end{align*}

R11 Cursor end raster \quad W

R12 Start address high byte \quad R/W

R13 Start address low byte \quad R/W

R14 Cursor position high byte \quad R/W

R15 Cursor position low byte \quad R/W

CONNECTOR AND SWITCH DESCRIPTION

The positions of all the connectors on the TPC I board are shown in Figure E-1. The connector functions are listed in Table E-3.
Table E-3
Connector Functions

<table>
<thead>
<tr>
<th>Connector</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Power</td>
</tr>
<tr>
<td>P2</td>
<td>Video</td>
</tr>
<tr>
<td>P3</td>
<td>Keyboard</td>
</tr>
<tr>
<td>P4</td>
<td>SuperMouse</td>
</tr>
<tr>
<td>P5</td>
<td>Parallel</td>
</tr>
<tr>
<td>P6</td>
<td>RS-232C (modem)</td>
</tr>
<tr>
<td>P7</td>
<td>Floppy Disk</td>
</tr>
<tr>
<td>P8</td>
<td>Composite video (not used)</td>
</tr>
<tr>
<td>P9</td>
<td>Option board (for RS-422 board)</td>
</tr>
</tbody>
</table>

Figure E-1
Board Connectors

The following tables describe the pin assignment of each connector.

Table E-4
RS-232C Terminal Interface - P6

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frame ground</td>
</tr>
<tr>
<td>2</td>
<td>Transmit data</td>
</tr>
<tr>
<td>3</td>
<td>Receive data</td>
</tr>
<tr>
<td>4</td>
<td>Request to send</td>
</tr>
<tr>
<td>5</td>
<td>Clear to send</td>
</tr>
<tr>
<td>7</td>
<td>Signal ground</td>
</tr>
<tr>
<td>8</td>
<td>Data carrier detect</td>
</tr>
<tr>
<td>20</td>
<td>Data terminal ready</td>
</tr>
</tbody>
</table>
Table E-5
RS-422 User Connector (Optional) - P9

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>TXD +</td>
</tr>
<tr>
<td>3</td>
<td>RXD +</td>
</tr>
<tr>
<td>4</td>
<td>RTS +</td>
</tr>
<tr>
<td>5</td>
<td>CTS +</td>
</tr>
<tr>
<td>6</td>
<td>TXCK -</td>
</tr>
<tr>
<td>7</td>
<td>RXCK -</td>
</tr>
<tr>
<td>8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>TXD -</td>
</tr>
<tr>
<td>10</td>
<td>RXD -</td>
</tr>
<tr>
<td>11</td>
<td>RTS -</td>
</tr>
<tr>
<td>12</td>
<td>CTS -</td>
</tr>
<tr>
<td>13</td>
<td>TXCK +</td>
</tr>
<tr>
<td>14</td>
<td>RXCK+</td>
</tr>
<tr>
<td>15</td>
<td>Test</td>
</tr>
</tbody>
</table>

Table E-6
Power Connector - P1

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- 12 V</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>+ 5 V</td>
</tr>
<tr>
<td>5</td>
<td>+ 12 V</td>
</tr>
</tbody>
</table>

Table E-7
Video Connector - P2

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hsync</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>Video</td>
</tr>
<tr>
<td>5</td>
<td>Vsync</td>
</tr>
</tbody>
</table>
Table E-8
Floppy Disk Drive Connector - P7

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Drive select 3</td>
</tr>
<tr>
<td>8</td>
<td>Index/sector</td>
</tr>
<tr>
<td>10</td>
<td>Drive select 0</td>
</tr>
<tr>
<td>12</td>
<td>Drive select 1</td>
</tr>
<tr>
<td>14</td>
<td>Drive select 2</td>
</tr>
<tr>
<td>16</td>
<td>Motor on</td>
</tr>
<tr>
<td>18</td>
<td>Direction select</td>
</tr>
<tr>
<td>20</td>
<td>Step</td>
</tr>
<tr>
<td>22</td>
<td>Composite write data</td>
</tr>
<tr>
<td>24</td>
<td>Write enable</td>
</tr>
<tr>
<td>26</td>
<td>Track 0</td>
</tr>
<tr>
<td>28</td>
<td>Write protected</td>
</tr>
<tr>
<td>30</td>
<td>Composite read data</td>
</tr>
<tr>
<td>32</td>
<td>Side select</td>
</tr>
</tbody>
</table>

All the odd number pins are ground.

Table E-9
Keyboard Connector - P3

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frame Ground</td>
</tr>
<tr>
<td>2</td>
<td>+ 12V</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>Receive data</td>
</tr>
<tr>
<td>5</td>
<td>Clock</td>
</tr>
<tr>
<td>6</td>
<td>Reset -</td>
</tr>
</tbody>
</table>

Table E-10
SuperMouse Connector - P4

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No connect</td>
</tr>
<tr>
<td>2</td>
<td>No connect</td>
</tr>
<tr>
<td>3</td>
<td>Receive data</td>
</tr>
<tr>
<td>4</td>
<td>+5 V</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Table E-11
Parallel Port - P5

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strobe -</td>
</tr>
<tr>
<td>2</td>
<td>Data bit 0 +</td>
</tr>
<tr>
<td>3</td>
<td>Data bit 1 +</td>
</tr>
<tr>
<td>4</td>
<td>Data bit 2 +</td>
</tr>
<tr>
<td>5</td>
<td>Data bit 3 +</td>
</tr>
<tr>
<td>6</td>
<td>Data bit 4 +</td>
</tr>
<tr>
<td>7</td>
<td>Data bit 5 +</td>
</tr>
<tr>
<td>8</td>
<td>Data bit 6 +</td>
</tr>
<tr>
<td>9</td>
<td>Data bit 7 +</td>
</tr>
<tr>
<td>10</td>
<td>Acknowledge -</td>
</tr>
<tr>
<td>11</td>
<td>Busy +</td>
</tr>
<tr>
<td>12</td>
<td>Out of paper +</td>
</tr>
<tr>
<td>13</td>
<td>Select +</td>
</tr>
<tr>
<td>14</td>
<td>Auto feed -</td>
</tr>
<tr>
<td>15</td>
<td>Error -</td>
</tr>
<tr>
<td>16</td>
<td>Initialize -</td>
</tr>
<tr>
<td>17</td>
<td>Select input -</td>
</tr>
<tr>
<td>18-25</td>
<td>Ground</td>
</tr>
</tbody>
</table>
APPENDIX F
COMMUNICATIONS PORT DRIVER

TPC I MODEM PORT BASED ON MOSTEK 3801

The following information provides an example of how to program the MOSTEK 3801 STI UART/TIMER chip. This specific example is more oriented for asynchronous communications, but could be easily adapted for synchronous communications.

3801 STI REGISTER ADDRESSES

<table>
<thead>
<tr>
<th>Register</th>
<th>EQU</th>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDR</td>
<td>EQU</td>
<td>20H</td>
<td>INDIRECT DATA REG</td>
</tr>
<tr>
<td>GPIP</td>
<td>EQU</td>
<td>21H</td>
<td>GENERAL PURPOSE I/O REG</td>
</tr>
<tr>
<td>PVR</td>
<td>EQU</td>
<td>28H</td>
<td>POINTER/VECTOR REG</td>
</tr>
<tr>
<td>TABCR</td>
<td>EQU</td>
<td>29H</td>
<td>TIMER A AND B CONTROL REG</td>
</tr>
<tr>
<td>TADR</td>
<td>EQU</td>
<td>2BH</td>
<td>TIMER A DATA REG</td>
</tr>
<tr>
<td>UCR</td>
<td>EQU</td>
<td>2CH</td>
<td>USART CONTROL REG</td>
</tr>
<tr>
<td>RSR</td>
<td>EQU</td>
<td>2DH</td>
<td>RECEIVER STATUS REG</td>
</tr>
<tr>
<td>TSR</td>
<td>EQU</td>
<td>2EH</td>
<td>TRANSMITTER STATUS REG</td>
</tr>
<tr>
<td>UDR</td>
<td>EQU</td>
<td>2FH</td>
<td>USART DATA REGISTER</td>
</tr>
</tbody>
</table>

COMMUNICATIONS PORT INITIALIZATION

Application calls the routine at absolute address 0200H to initialize the communications port. This might be done when the program is first loaded or whenever you want to raise or lower DTR. On entry to the communications port initialization routine, registers B through E specify how the communications port is to be set up, as listed in Table F-1.

Table F-1
Regs B Through E

<table>
<thead>
<tr>
<th>B</th>
<th>BAUD RATE</th>
<th>C</th>
<th>PARITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>110</td>
<td>0</td>
<td>NONE</td>
</tr>
<tr>
<td>1</td>
<td>300</td>
<td>1</td>
<td>ODD</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>2</td>
<td>EVEN</td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>D</td>
<td>DATA BITS</td>
</tr>
<tr>
<td>4</td>
<td>2400</td>
<td>0</td>
<td>8 BITS/CHAR</td>
</tr>
<tr>
<td>5</td>
<td>4800</td>
<td>1</td>
<td>7 BITS/CHAR</td>
</tr>
<tr>
<td>6</td>
<td>9600</td>
<td>E</td>
<td>DTR STATUS</td>
</tr>
<tr>
<td>7</td>
<td>19200</td>
<td>ZERO</td>
<td>DROP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NON-ZERO</td>
<td>ASSERT</td>
</tr>
</tbody>
</table>

Whenever the communications port initialization is done, any pending input characters should be discarded.
COMIN: PUSH D ;SAVE D AND E
 MVI D,0
 IN TABCRR ;READ CURRENT TIMER
 STA TABD ;SAVE FOR LATER
 LXI H,BRBTB ;GET BIT PATTERN FOR CORRECT BAUD RATE
 MOV E,B
 DAD D
 MOV A,M
 STA TADRD ;BAUD RATE
 POP D
 MVI B,0
 LXI H,PTYTB
 DAD B
 MOV A,M
 LXI H,DTBTB
 MOV C,D
 DAD B
 ORA M ;COMBINE WITH DATA BITS
 ORI 88H ;DIVIDE BY 16 AND 1 START/STOP BIT
 STA UCRD
 LXI H,DTRD ;INITIAL DTR STATUS
 MOV A,E
 ORA A
 JZ CMIN6
 MVI A,20H ;ASSERT DTR
CMIN6: ORA M
 STA DDRD
 MVI A,6
 OUT PVR
 LDA DDRD ;SET DDR
 OUT IDR
 SUB A
 OUT GPIP ;SET HANDSHAKE LINES
 MVI A,7
 OUT PVR
 MVI A,80H
 OUT IDR ;RESET CHANNEL A
 MVI A,0
 OUT TABCRR ;STOP A AND B
 LDA TADRD
 OUT TADR ;SET BAUD RATE
 LDA TABD
 OUT TABCRR ;RESTART
 LDA UCRD
 OUT UCR ;SET FORMAT
 MVI A,01H
 OUT RSR ;TURN ON RXD
 MVI A,05H
 OUT TSR ;TURN ON TXD
 SUB A
 RET

TADRD: DB 0 ;BAUD RATE STORAGE
TABD: DB 0 ;A AND B CONTROL WORD STORAGE
UCRD: DB 0 ;FORMAT STORAGE
DDRD: DB 0 ;DTR AND RTS BITS

Table F-2
Baud Rate Bits

BRBTB: DB 64 ;150
 DB 32 ;300
 DB 16 ;600
 DB 8 ;1200
 DB 4 ;2400
 DB 2 ;4800
 DB 1 ;9600

Table F-3
Parity Bits

PTYTB: DB 0 ;NONE
 DB 04H ;ODD
 DB 06H ;EVEN

Table F-4
Character Length Bits

DTBTB: DB 0 ;8 DATA BITS
 DB 20H ;7 DATA BITS

DTRD: DB 04H ;RTS HI DTR LOW

RELEASE COMMUNICATIONS PORT

Applications call the routine at absolute address 0210H to release communications port, that is, to restore it to its original condition. This routine could be called immediately before applications returns to CP/M.

COMRL: RET

GET COMMUNICATIONS PORT INPUT STATUS

Applications call the routine at absolute address 0220H whenever it wishes to determine if there is an incoming byte on the communications port available to be read from the UART. On return from this routine, register A should be zero if no byte is available and should be non-zero if a byte is available.

COMIS: IN RSR ;READ STATUS REGISTER
 ANI 80H ;LOOK ONLY AT RELEVANT STATUS BIT
 RET
READ COMMUNICATIONS PORT INCOMING BYTE

Applications call the routine at absolute address 0230H to read the incoming data byte into register A (note that all 8 bits are read). This routine is not called unless a previous call to the routine at addr 0220H has indicated that there is a byte available!

COMIB: IN UDR ;INPUT BYTE
 RET

GET COMMUNICATIONS PORT OUTPUT STATUS

Applications call the routine at absolute address 0240H whenever it wishes to determine if the communications port UART is ready to accept another byte to be transmitted. On return from this routine, register A should be zero if the UART is not ready and should be non-zero if the UART is ready.

COMOS: IN TSR ;READ STATUS REGISTER
 ANI 80H ;LOOK ONLY AT RELEVANT STATUS BIT
 RET

OUTPUT BYTE TO COMMUNICATIONS PORT

Applications call the routine starting at absolute address 0250H whenever it wishes to output a byte via the communications port UART. The byte itself should be supplied in register A. Note that all 8 bits are set. Applications will not call this routine unless communications port readiness to accept a byte has been indicated by calling the status routine at 0240H above.

COMOB: OUT UDR ;OUTPUT BYTE
 RET

COMEN: RET ;ENABLE COMM PORT

COMDS: RET ;DISABLE COMM PORT

SEND BREAK

Applications call the routine at absolute location 0280H whenever it wishes to transmit a break condition for approximately one sec.

COMBS: MVI A,09H ;SEND BREAK
 MVI B,255
COMB2: OUT TSR
 DCR B
 JNZ COMB2
 MVI A,01H ;STOP
 OUT TSR
 RET
CHECK CARRIER DETECT STATUS

Applications call the routine at absolute address 0290H whenever it wishes to determine carrier detect (EIA PIN 8) status on the communications port. On return, register A is zero if carrier is not asserted, non-zero if carrier is asserted.

COMCS: IN GPIP ;READ STATUS REGISTER
 ANI 01H ;LOOK ONLY AT RELEVANT BIT
 XRI 01H ;READY IF BIT 0 = 0
 RET
APPENDIX G
CHANGING THE DEFAULT LST: DEVICE

The TPC I arrives with the default LST: device set to UL1:. The following procedure allows you to change the default LST: device to LPT:.

Using the CP/M SYSGEN and DDT programs, you change a byte in CP/M and save the modified CP/M on the system area of a disk. Follow this procedure. User responses are shown in bold print.

USER: 1. Boot the system.

2. Enter

SYSGEN<Return>

SYSTEM: 3. Displays

SYSGEN Vx.x
(c) 1982 TeleVideo Systems, Inc.

SOURCE DRIVE NAME(OR RETURN TO SKIP)

USER: 4. Enter

A

SYSTEM: 5. Displays

SOURCE ON A:, THEN TYPE RETURN

USER: 6. Press

<Return>
SYSTEM: 7. Displays

FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

USER: 8. Press

<Return>

SYSTEM: 9. Displays

A>

USER: 10. Enter

SAVE 60 CPMXX.COM<Return>

(where CPMXX.COM represents the filename of the modified CP/M)

SYSTEM: 11. Displays

A>

USER: 12. Enter

DDT<BAR>CPMXX.COM<Return>

SYSTEM: 13. Displays

DDT VERS X.Y
NEXT PC
3DO0 0100
-

USER: 14. Enter

SLFDA<Return>

SYSTEM: 15. Displays

1FDA D5

USER: 16. Enter

95<Return>

(where D5 is the code to enable the UL1 device and 95 changes it to LPT. Table G-1 lists the available device codes.)
Table G-1
Available Device Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>TTY: Serial printer, pin 20 for DTR</td>
</tr>
<tr>
<td>55</td>
<td>CRT: Serial device using XOn/XOFF protocol through modem port</td>
</tr>
<tr>
<td>95</td>
<td>LPT: Serial device using ETX/ACK protocol through modem port</td>
</tr>
<tr>
<td>D5</td>
<td>UL1: Parallel printer port</td>
</tr>
</tbody>
</table>

NOTE: In the above procedure, we have selected device LPT.

SYSTEM: 17. Displays

1FDB 0D

(this is the next hexadecimal address)

USER: 18. Enter

.<Return>

(BE SURE TO ENTER A PERIOD BEFORE <Return>. This is entered because you do not want to change this address.)

SYSTEM: 19. Displays

- 20. Enter

^C

SYSTEM: 21. Displays

A>

USER: 22. To generate the modified system, run SYSGEN again. Enter

SYSGEN<Return>
SYSTEM: 23. Displays

SYSGEN Vx.x
(c) 1982 TeleVideo Systems, Inc.

SOURCE DRIVE NAME (OR RETURN TO SKIP)

USER: 24. Press

<Return>

SYSTEM: 25. Displays

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

USER: 26. Press

A

SYSTEM: 27. Displays

DESTINATION ON A:, THEN TYPE RETURN

USER: 28. Press

<Return>

SYSTEM: 29. Displays

FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

USER: 30. Press

<Return>

SYSTEM: 31. Displays

A>

Now you can test your new system by booting the system from the drive containing the new version. The modifications will not take effect until the system is booted on the new customized CP/M.

Crossover cable must be used to connect between modem port and printer port when ETX/ACK protocol printer is used. Refer to Appendix H for cable configuration.
APPENDIX B
DEFAULT DEVICE ASSIGNMENT

CON: = CRT:
RDR: = PTR:
PUN: = PTP:
LST: = ULL:

ULL: device uses Centronics interface as the response to the printer busy status. Types of printers supported: Epson Centronic parallel interface printers.

A Centronic parallel printer cable must be used with a 25-pin D-shell on the computer end.

Optional device assignment:

1. LST: = TTY:
 TTY: device uses DTR protocol for a modem port. Crossover cable must be used.

2. LST: = CRT:
 CRT: device uses X-ON/X-OFF protocol for a modem port. Crossover cable must be used to connect from the modem port to the printer device.

3. LST: = LPT:
 LPT: device uses ETX/ACK protocol for a modem port. Types of printers supported are NEC Spinwriter and Diablo daisywheel. Crossover cable must be used.
Table H-1
Crossover Cable Configurations

<table>
<thead>
<tr>
<th>System RS-232C Modem Port Pin #</th>
<th>Printer Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>6 and 8</td>
</tr>
</tbody>
</table>
APPENDIX I
ASCII CODE CHART

Figure I-1 ASCII Code Chart

<table>
<thead>
<tr>
<th>Bits</th>
<th>Column</th>
<th>Row</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NUL</td>
<td>DLE</td>
<td>SP</td>
<td>@</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>SOH</td>
<td>DC1</td>
<td>!</td>
<td>A</td>
<td>Q</td>
<td>a</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>STX</td>
<td>DC2</td>
<td>'</td>
<td>B</td>
<td>R</td>
<td>b</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>ETX</td>
<td>DC3</td>
<td>#</td>
<td>C</td>
<td>S</td>
<td>c</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>EOT</td>
<td>DC4</td>
<td>$</td>
<td>D</td>
<td>T</td>
<td>d</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>ACK</td>
<td>SYN</td>
<td>&</td>
<td>F</td>
<td>V</td>
<td>f</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>BEL</td>
<td>ETB</td>
<td>'</td>
<td>G</td>
<td>W</td>
<td>g</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>BS</td>
<td>CAN</td>
<td>(</td>
<td>H</td>
<td>X</td>
<td>h</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>SKIP HT</td>
<td>EM</td>
<td>)</td>
<td>I</td>
<td>Y</td>
<td>i</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>LF</td>
<td>SUB</td>
<td>*</td>
<td>:</td>
<td>J</td>
<td>Z</td>
<td>j</td>
<td>z</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>VT</td>
<td>ESC</td>
<td>+</td>
<td>;</td>
<td>K</td>
<td>[</td>
<td>k</td>
<td>]</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>FF</td>
<td>FS</td>
<td>.</td>
<td><</td>
<td>L</td>
<td>\</td>
<td>l</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>CR</td>
<td>GS</td>
<td>=</td>
<td>M</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SO</td>
<td>HOME RS</td>
<td>.</td>
<td>></td>
<td>N</td>
<td>^</td>
<td>n</td>
<td>~</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SI</td>
<td>NEW LINE US</td>
<td>/</td>
<td>?</td>
<td>O</td>
<td>_</td>
<td>o</td>
<td></td>
</tr>
</tbody>
</table>

ASCII Code Table
Abbreviations For Control Characters

NUL null FF form feed CAN cancel
SOH start of heading CR carriage return EM end of medium
STX start of text SO shift out SUB substitute
ETX end of text SI shift in ESC escape
EOT end of transmission DLE data link escape FS file separator
ENQ enquiry DC1 device control 1 GS group separator
ACK acknowledge DC2 device control 2 RS record separator
BEL bell DC3 device control 3 US unit separator
BS backspace DC4 device control 4 SP space
HT horizontal tabulation NAK negative acknowledge DEL delete
LF linefeed SYN synchronous idle
VT vertical tabulation ETB end of transmission block

TeleVideo Systems, Inc. Page I.26
APPENDIX J
SYSTEM DISKETTE FILE LIST

This is a list of the files that were on the TPC I system diskette when it was initially released. TeleVideo reserves the right to change these files without notification to the customer. If you have any questions about the files on your diskette, contact your computer store.

Table J-1
System Diskette Files

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVCPM.COM*</td>
<td>Program to relocate the CCP and BDOS to generate a CPMxx.COM file.</td>
</tr>
<tr>
<td>DDT.COM*</td>
<td>Debug program (Dynamic Debug Tool) for the assembly language.</td>
</tr>
<tr>
<td>SYSGEN.COM*</td>
<td>CP/M utility program to copy system tracks 0 and 1.</td>
</tr>
<tr>
<td>COPYDISK.COM</td>
<td>Utility program to copy an entire diskette.</td>
</tr>
<tr>
<td>GENGRAF.COM*</td>
<td>Utility to combine applications program and GSX loader into executable .command file.</td>
</tr>
<tr>
<td>DD7220.PRL*</td>
<td>GSX graphics driver to support a plotter (Hewlett Packard 7220).</td>
</tr>
<tr>
<td>DDMX80.PRL*</td>
<td>GSX graphics drive to support a printer (Epson MX80).</td>
</tr>
<tr>
<td>DDTS803.PRL</td>
<td>GSX graphics driver to support the TPC I.</td>
</tr>
<tr>
<td>PIP.COM*</td>
<td>CP/M utility program to copy files.</td>
</tr>
<tr>
<td>ED.COM*</td>
<td>CP/M text editing program.</td>
</tr>
<tr>
<td>LOAD.COM*</td>
<td>Program to generate an executable program (.command file) from the HEX file generated by the assembler.</td>
</tr>
<tr>
<td>SETUPTPC.COM</td>
<td>Utility program to reconfigure the system parameters.</td>
</tr>
<tr>
<td>DD7470.PRL*</td>
<td>GSX graphics driver to support a plotter (Hewlett Packard 7470A).</td>
</tr>
<tr>
<td>File Name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>GSX.SYS*</td>
<td>Graphics System Extension file (GSX loader).</td>
</tr>
<tr>
<td>SURF1</td>
<td>Graphics data for demonstration program.</td>
</tr>
<tr>
<td>STAT.COM*</td>
<td>CP/M utility program. For capabilities of the STAT command, see Chapter 3.</td>
</tr>
<tr>
<td>SUBMIT.COM*</td>
<td>CP/M utility program for submitting CP/M commands in a batch mode. Works with XSUB.COM.</td>
</tr>
<tr>
<td>DUMP.COM*</td>
<td>Program to display a file in HEX numbers.</td>
</tr>
<tr>
<td>TOD.COM</td>
<td>Time of Day program.</td>
</tr>
<tr>
<td>DDHI3M.PRL*</td>
<td>GSX graphics driver to support a plotter (Houston Instruments DMP 3/4).</td>
</tr>
<tr>
<td>ASSIGN.SYS</td>
<td>Graphics file that works with the demonstration program for determining the output device of the demo.</td>
</tr>
<tr>
<td>DEMOTXT2.BIN</td>
<td>Data file used by the system demonstration program.</td>
</tr>
<tr>
<td>ASM.COM*</td>
<td>8080 assembler program. Generates a HEX file which can be used by the load program.</td>
</tr>
<tr>
<td>XSUB.COM*</td>
<td>Works with the SUBMIT file submitting CP/M commands.</td>
</tr>
<tr>
<td>FORMAT.COM</td>
<td>Utility program to format a diskette.</td>
</tr>
<tr>
<td>DDHI7M.PRL*</td>
<td>GSX graphics driver to support a plotter (Houston Instruments DMP 6/7).</td>
</tr>
<tr>
<td>GSXREAD.ME</td>
<td>Explanation about GSX (Graphics System EXTension) and the TPC I demonstration program.</td>
</tr>
<tr>
<td>TPCIDEMO.COM</td>
<td>System demonstration program.</td>
</tr>
<tr>
<td>DEMOSCRN</td>
<td>Contains data needed by the demonstration program.</td>
</tr>
</tbody>
</table>

* Digital Research, Inc. (DRI) files
APPENDIX K
PROGRAMMER'S QUICK REFERENCE GUIDE

This information can also be found on the easy-to-use reference card that came with the TPC I this Manual.

The spaces shown in the escape codes are for clarity and should not be entered.

Table K-1
Escape Sequence List

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONITOR</td>
<td></td>
</tr>
<tr>
<td>Monitor mode ON</td>
<td>ESC U</td>
</tr>
<tr>
<td>Monitor mode OFF</td>
<td>ESC X or ESC u</td>
</tr>
<tr>
<td>DISABLE/ENABLE KEYBOARD</td>
<td>ESC #</td>
</tr>
<tr>
<td>Disable keyboard</td>
<td>ESC "</td>
</tr>
<tr>
<td>Enable keyboard</td>
<td></td>
</tr>
<tr>
<td>CURSOR</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>^M</td>
</tr>
<tr>
<td>Carriage return</td>
<td>^J or ^V</td>
</tr>
<tr>
<td>Linefeed/cursor down</td>
<td>^K or ESC j</td>
</tr>
<tr>
<td>Cursor up</td>
<td>^H</td>
</tr>
<tr>
<td>Backspace/cursor left</td>
<td>^L</td>
</tr>
<tr>
<td>Cursor right</td>
<td>ESC . 0</td>
</tr>
<tr>
<td>Blinking block cursor</td>
<td>ESC . 1</td>
</tr>
<tr>
<td>Steady block cursor</td>
<td>ESC . 2</td>
</tr>
<tr>
<td>Blinking underline cursor</td>
<td>ESC . 3</td>
</tr>
<tr>
<td>Steady underline cursor</td>
<td>ESC . 4</td>
</tr>
<tr>
<td>KEYCLICK AND BELL</td>
<td></td>
</tr>
<tr>
<td>Keyclick on</td>
<td>ESC ></td>
</tr>
<tr>
<td>Keyclick off</td>
<td>ESC <</td>
</tr>
<tr>
<td>Ring bell</td>
<td>^G</td>
</tr>
</tbody>
</table>
VISUAL ATTRIBUTES
Default video (green on black) ESC G 0
Invisible normal video ESC G 1
Blink ESC G 2
Invisible blink ESC G 3
Reverse video (reverse of default)
Invisible reverse ESC G 5
Reverse and blink ESC G 6
Invisible reverse and blink ESC G 7
Underline ESC G 8
Invisible underline ESC G 9
Underline and blink ESC G :
Invisible underline and blink ESC G ;
Reverse and underline ESC G <
Invisible reverse and underline ESC G =
Reverse and blink and underline ESC G >
Invisible reverse and blink and underline ESC G ?
Half Intensity ON ESC)
Half Intensity OFF ESC (

ADDRESS CURSOR
Address cursor (row column) ESC = r c

TAB
Set (column) tab ESC 1
Tab ^I
Back tab ESC I
Clear tab ESC 2
Clear all tabs ESC 3

EDITING TEXT
Character insert ESC Q
Character delete ESC W
Line insert ESC E
Line delete ESC R
Erase to end of line ESC T
Erase to end of line with nulls ESC t
Erase to end of page ESC Y
Erase to end of page with nulls ESC y
CLEAR
Clear all to spaces ESC + or ^Z
Clear all to nulls ESC :
Clear all to half-intensity spaces ESC ,
Clear all to nulls and reset half intensity ESC *

FUNCTION KEYS
Program function keys <Shift>/<Esc> | p1 p2 message ^Y
(p1=number of function key
p2=1
^Y= termination character)

Table K-2
Switch Setting List

<table>
<thead>
<tr>
<th>Section</th>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>closed (down)</td>
<td>Baud rate</td>
</tr>
<tr>
<td>2</td>
<td>closed (down)</td>
<td>Baud rate</td>
</tr>
<tr>
<td>3</td>
<td>closed (down)</td>
<td>Baud rate</td>
</tr>
<tr>
<td>4*</td>
<td>closed (down)</td>
<td>TPC I</td>
</tr>
<tr>
<td>5*</td>
<td>closed (down)</td>
<td>Local</td>
</tr>
<tr>
<td></td>
<td>open (up)</td>
<td>Remote</td>
</tr>
<tr>
<td>6*</td>
<td>closed (down)</td>
<td>Not used</td>
</tr>
<tr>
<td>7*</td>
<td>closed (down)</td>
<td>60 Hz</td>
</tr>
<tr>
<td></td>
<td>open (up)</td>
<td>50 Hz</td>
</tr>
<tr>
<td>8</td>
<td>closed (down)</td>
<td>Black on yellow screen</td>
</tr>
<tr>
<td></td>
<td>open (up)</td>
<td>Yellow on black screen</td>
</tr>
</tbody>
</table>

* required settings

Table K-3
Baud Rate List

<table>
<thead>
<tr>
<th>Switch Section</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>C C C</td>
<td>9,600</td>
</tr>
<tr>
<td>O C C</td>
<td>4,800</td>
</tr>
<tr>
<td>C O C</td>
<td>2,400</td>
</tr>
<tr>
<td>O O C</td>
<td>1,200</td>
</tr>
<tr>
<td>C C O</td>
<td>600</td>
</tr>
<tr>
<td>O C O</td>
<td>300</td>
</tr>
<tr>
<td>C O O</td>
<td>150</td>
</tr>
<tr>
<td>O O O</td>
<td>75</td>
</tr>
</tbody>
</table>

C=closed
O=open
APPENDIX L
TPC I DEMONSTRATION PROGRAM

The Digital Research GSX (Graphics System eXtension) gives programs the ability to easily display images on a number of different graphics devices. It provides a standard interface so that different graphics devices look the same to applications programs.

We have included a demonstration program to show some of the capabilities of the GSX on the TPC I. To run the program, you need the following files on your logged disk:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPCIDEMO.COM</td>
<td>Demonstration program itself</td>
</tr>
<tr>
<td>assign.sys</td>
<td>Explained below</td>
</tr>
<tr>
<td>demotxt2.bin</td>
<td>Data for text fonts</td>
</tr>
<tr>
<td>surfl</td>
<td>Data for a curved surface</td>
</tr>
<tr>
<td>ddts803.prl</td>
<td>Software to talk to the TPC I</td>
</tr>
<tr>
<td>demoscrn</td>
<td>Contains data needed by demonstration program</td>
</tr>
</tbody>
</table>

NOTE! Plotters must be connected to the RS-232 port and printers must be connected to the printer port.

To run the program, enter

TPCIDEMO<Return>

The program asks you if you want the demonstration displayed on the CRT, a printer, or a plotter. To see the demonstration on the TPC I screen, follow these instructions.

USER: Enter

```
1<Return>
```

SYSTEM: Displays

```
reading in data
```

After about 30 seconds, the program will start displaying a series of different screens giving information about the TPC I. The program runs unattended, and continues to run until you press the D key. The program then finishes drawing the current page and returns to CP/M.

If you wish to look at any single page, press any key other than D while the page is being drawn. That page stays on the screen until you press any other key.

TeleVideo Systems, Inc.
Hardcopy Options

For the following printers, you can see the screens from the demonstration on the printer by choosing option number 21 when the demonstration program starts running. The Epson must be plugged into the TPC I printer port, located on the back panel of the main unit.

- Epson MX-80 printer with Graftrax-Plus
- Epson MX-80 type 3
- Epson FX-80
- Epson MX-100

For the following plotter, you must plug it into the RS-232 port of the TPC I, and select number 11 when the program starts. If you do not get output on the plotter, you can use the SETUPTPC Program to check the baud rates and data formats and make sure that the PUN: logical device is set up to be the URL: physical device.

- Hewlett Packard 7470 plotter

How the Assign.sys File Works

If you have a printer or plotter and wish to see output on it, you must make sure that software support is provided for that device. See Tables L-1 and L-2 for the printers and plotters that are supported.

Table L-1
Supported Printers

<table>
<thead>
<tr>
<th>Printer Name</th>
<th>File for Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epson MX-80 with Graftrax Plus*</td>
<td>ddmx80.prl</td>
</tr>
<tr>
<td>Epson MX-80 type 3</td>
<td>ddmx80.prl</td>
</tr>
<tr>
<td>Epson FX-80</td>
<td>ddmx80.prl</td>
</tr>
<tr>
<td>Epson MX-100</td>
<td>ddmx80.prl</td>
</tr>
</tbody>
</table>

Table L-2
Supported Plotters

<table>
<thead>
<tr>
<th>Plotter Name</th>
<th>File for Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewlett-Packard 7470*</td>
<td>dd7470.prl</td>
</tr>
<tr>
<td>Hewlett-Packard 7220</td>
<td>dd7220.prl</td>
</tr>
<tr>
<td>Houston Instruments HiPlot 7M</td>
<td>ddi7m.prl</td>
</tr>
<tr>
<td>Houston Instruments HiPlot 3M</td>
<td>ddi3m.prl</td>
</tr>
</tbody>
</table>

* The Epson MX-80 printer with Graftrax-Plus and the Hewlett-Packard 7470 plotter have been tested by TeleVideo to be fully compatible to the TPC I. The other drivers have not been tested by TeleVideo System.
The file named ASSIGN.SYS determines which device will get output. The file comes set up to talk to the TPC I screen, the Epson MX-80 printer or the Hewlett-Packard 7470 plotter, and should look like:

21 @:ddmx80
01 @:ddts803
11 @:dd7470

The dd portion of the filename stands for device driver. The @ (at-sign) stands for the default drive. For example, if you are running from drive A, CP/M takes the "@" to mean "A." The format of the file must be as shown: two digits specifying the device number, followed by a space, the disk letter and file name. GSX assumes a .pel extension, so you should not include the extension in specification of the filename.

Note that the numbers at the beginning of each line correspond to the numbers asked for by the demonstration program. When you specify a number to the demonstration program, it tells the GSX to look for that number in the assign.sys file. The GSX uses the file name associated with that number to send graphics commands to the device associated with the file.

The GSX assumes that device 1 (screen driver - DDTS803.PRL) is the default console, so 1 should always be set to the TPC I. Devices 1-10 are CRTs, 11-20 are plotters and 21-30 are printers. The ASSIGN.SYS file that comes with the system uses 1, 11 and 21.

GSX assumes that the printer has been set up as the LST: device and the plotter as the RDR and PUN: device. You can use the SETUPTPC Program to make sure that the TPC I is set up correctly.

Changing the ASSIGN.SYS File

If you have a printer other than the Epson MX-80, or a plotter other than the HP 7470, you must edit the ASSIGN.SYS file using a text editor. For example, the Houston Instruments HiPlot 7M uses the DDHI7M.PRL file. You should change the third line in the file to read

11 @:ddhi7m

and save the new version of the file. The largest driver should be on the first line in the ASSIGN.SYS file, so use the stat program to check the driver sizes if you change the ASSIGN.SYS file. You must plug the Hi plotter into the RS-232 port on the back of the TPC I, and check the baud rates and data formats.
APPENDIX M
CONFIGURING FOR 230 VOLTS

To reconfigure the TPC I for 230 volts, you must change the fuse, change a switch setting on the back of the unit, and change the voltage switch on the back of the unit. See Chapter 2, Setting Up Your TPC I, in the User's Manual for information about the switch settings.

INSERTING THE FUSE FOR 230 VOLTS

The TPC I is shipped with the fuse installed to correspond to 115 volts. You need to acquire a 230 volt fuse that corresponds to the requirements in Table M-1.

Table M-1
Fuse Table

<table>
<thead>
<tr>
<th>Amperes</th>
<th>Maximum Fuse Voltage</th>
<th>Power Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>250VAC</td>
<td>115V U.S.</td>
</tr>
<tr>
<td>.75</td>
<td>250VAC</td>
<td>230V International</td>
</tr>
</tbody>
</table>

To change the fuse to correspond to 230VAC, be sure that the power is turned off and the power plug is not connected.

Unscrew the fuse holder from the back panel of unit and remove the 1.5A fuse. Place one end of the .75V fuse into the holder and insert the fuse into the unit. Press gently while screwing the holder back into place. See Figure M-1.

Figure M-1
Fuse
Changing the Voltage Switch to 230 Volts

The system is configured at the factory for 115 VAC.

To change the voltage configuration to 230 VAC you need to switch the voltage switch on the back panel of the system.

The voltage switch is locked into place by a bar that is removable. To remove the bar and switch from 115 VAC to 230 VAC, follow these directions:

1. Using a Phillips screw driver, remove the screw from the bottom of the bar that spans the 230V side of the switch. See Figure M-2.

Figure M-2
Voltage Switch

2. Carefully remove the bar.

3. Firmly push the switch to the 230V position (to the right).

4. Match the screw hole of the bar with that under the 115V position and fit the top horizontal section carefully into the slot above the 115V position.

5. Insert and tighten screw.

STOP! Contact your dealer if you are not sure that your power requirements match that of the unit. Trying to operate the unit with the wrong power configuration can seriously damage the system.
TeleVideo invites your comments regarding the TPC I User's Manual and the TPC I System Reference Manual. Your suggestions will help us to develop documentation that will enhance the value of TeleVideo computers to our customers.

You may wish to comment on the manuals' organization, clarity, accuracy, and completeness. If you find discrepancies, please list them by page, figure, or table number. If you need more space, please attach a separate sheet.

User's Manual. Is the manual clear and complete? If not, please comment, giving the date of publication (listed on the lower right hand back cover) and giving specific references.

__
__
__
__
__

System Reference Manual. Is the manual clear and complete? If not, please comment, giving the date of publication (listed on the lower right hand back cover) and giving specific references.

__
__
__
__
__

What is the title/occupation of the primary user?

Check the description that applies to you:

_____ End User _____ Dealer _____ Distributor _____ OEM

Name______________________________________ Phone_____/_____-_______

Title_____________________________________

Company____________________________________

Address____________________________________

City___ State______ Zip_____
BUSINESS REPLY MAIL
First Class Permit No. 1467 Sunnyvale, CA

POSTAGE WILL BE PAID BY THE ADDRESSEE

TeleVideo Systems, Inc.
1170 Morse Avenue
Sunnyvale, California 94088-9990
Attn: Marketing Publications — Systems