

TeleVideo[®] TS 1605/TS 1605H Technical Reference

TeleVideo Systems, Inc., • 1170 Morse Avenue • P.O. Box 3568 • Sunnyvale, CA 94088 • (408) 745-7760

TeleVideo[®] Tele-PC and Tele-XT Models TS 1605 and TS 1605H Technical Reference Manual

TeleVideo Part Number 123181-01 Rev. A 15 June 1984

Copyright

This document contains reference information to be used in specifying, operating, and maintaining the TS 1605 and TS 1605H Personal Computer systems. The contents of this document are copyrighted by TeleVideo Systems, Inc. 1984, and must not be photocopied, duplicated, or reproduced without the express written permission of TeleVideo Systems, Inc.

Disclaimer

TeleVideo Systems, Inc. reserves the right to make improvements to products without incurring any obligations to incorporate such improvements in products previously sold. Specifications and information contained in this manual are subject to change without notice.

Material describing applications of components supplied by independent vendors such as Intel, Synertek, and Western Digital have been based in large part upon handbooks, technical manuals, and similar information distributed by such vendors. For a complete description of those parts and the ways in which they may be used, reference should be had to vendors' texts, which will be more complete.

TeleVideo is a registered trademark of TeleVideo Systems, Inc.

TeleVideo Systems, Inc., 1170 Morse Avenue, P.O. Box 3568, Sunnyvale, CA 94088

COMPUTER SYSTEMS DIVISION BUYER'S LIMITED WARRANTY

TeleVideo Systems, Inc. ("TeleVideo") warrants to Buyer that its products, except software, will be free from defects in materials and workmanship for 90 calendar days after date of sale. TeleVideo's obligations under this warranty will be limited to repairing or replacing, at TeleVideo's option, the part or parts of the products which prove defective in material or workmanship, provided that Buyer gives TeleVideo prompt notice of any defect and satisfactory proof thereof.

If service is required under this warranty, Customer must return the product to an Authorized TeleVideo Dealer or the original Dealer from which the unit was purchased. With respect to any product or part thereof not manufactured by TeleVideo, only the warranty, if any, given by the manufacturer thereof will apply.

EXCLUSIONS

All statements, technical information, and recommendations in this document and in any manuals or related documents are believed to be reliable, but the accuracy or completeness thereof is not guaranteed.

This limited warranty does not cover losses or damage which occurs in shipment to or from Buyer, or is due to (1) improper installation or maintenance, misuse, neglect, or any cause other than ordinary commercial or industrial application or (2) adjustment, repair, or modifications by other than TeleVideo authorized personnel or (3) improper environment, excessive or inadequate heating or air conditioning, and electrical power failures, surges, or other irregularities or (4) any statements made about TeleVideo's products by salesmen, dealers, distributors, or agents unless confirmed in writing by a TeleVideo officer.

The foregoing TeleVideo limited warranty is in lieu of all other warranties, whether oral, written, express, implied, or statutory. Implied warranties or merchantability and fitness for a particular purpose will not apply. TeleVideo's warranty obligations and buyer's remedies hereunder are solely and exculsively as stated herein. TeleVideo makes no warranty whatsoever concerning any software products, which are sold "as is" and "with all faults."

TeleVideo's liability, whether based on contract, tort, warranty, strict liability, or any other theory, shall not exceed the price of the individual unit whose defect or damage is the basis of the claim. In no event shall TeleVideo be liable for any loss of profits, loss of use of facilities or equipment, or other indirect, incidental, or consequential damages. TABLE OF CONTENTS

1.	INTRODUCTION	1.1
2.	FUNCTIONAL DESCRIPTION	2.1
	System Board	2.3 2.6 2.6
3.	CIRCUIT DESCRIPTION	3.1
	CPU Controller Section	3.3 3.7 3.10 3.12 3.15 3.20 3.22 3.25 3.25 3.25 3.25 3.25 3.27 3.28 3.29 3.29 3.31 3.34 3.35 3.37 3.40
4.	HARDWARE PROGRAMMING	4.1
	System Interrupts	4.1 4.5 4.5 4.6 4.7 4.8 4.10 4.10 4.10 4.11 4.12 4.13 4.14 4.16 4.25 4.25 4.25

TeleVideo Systems, Inc.

	Command Status Register 34Serial Port4Line-Control Register4Programmable Baud Rate Generator4Line-Status Register4Interrupt-Identification Register4Interrupt-Enable Register4Modem-Control Register4Modem-Status Register4Receiver Data Register4Transmitter Holding Register4I/O Channel4Winchester Disk Controller Board4Task File Register Functions4	27 28 30 31 32 33 34 35 36 36 37 39 41
5.	ROM BIOS AND SYSTEM USAGE	5.1
	ROM BIOSInterrupt %10Video I/O - Interrupt %10Character Handling RoutinesGraphics Interface RoutinesEquipment Check - Interrupt %11Memory - Interrupt %12Diskette I/O - Interrupt %13Fixed Disk I/O - Interrupt %13RS-232C Communications - Interrupt %14Keyboard - Interrupt %16Printer - Interrupt %19Time of Day - Interrupt %19Time of Day - Interrupt %1AKeyboard Break Address - Interrupt %1BState Parameters - Interrupt %1EDiskette Parameters - Interrupt %1EState Disk Parameters - Interrupt %41StatesStatesSpecial Key CombinationsSpecial Key Combinations	$5 \cdot 1 = 23$ $5 \cdot 5 \cdot$
APPEN	DICES	
A. B. C. D. E. F. G. H. I.	References	A.1 B.2 C.4 D.5 E.6 F.7 .12 .13 .14

LIST OF FIGURES

2-1 3-1	TS 1605 System Board	•••	• •	. 2.2 . 3.2
3-2	Control Section	••	• •	. 3.4
3-3	RAM Main Memory	• •	• •	. 3.8
3-4	DMA Control	• •	• •	• 3•11 2 12
3-5	DMA CONCLOSE	• •	•	· 3.13
3-0	Asynchronous Communications	• •	• •	3 16
3-8	I/O Interface Diagram	• •	• •	, J.10 3 17
3-9	Parallel Printer Logic	••	• •	3,19
3-10	Keyboard Circuit	•••	•	. 3.21
3-11	Speaker Drive System			3.24
3-12	Floppy Disk Controller	•••	•	. 3.26
3-13	Winchester Disk Controller Board Block Diag	ram	• •	. 3.28
3-14	Writing Disk Data		•	. 3.32
3-15	Reading Disk Data		•	. 3.34
3-16	CRT Controller and Video Memory Block Diagra	am.	• •	. 3.38
3-17	Video Monitor	• •	•	. 3.42
4-1	System Memory Map	• •	• •	. 4.5
4-2	Software-Selectable Palettes	• •	•	. 4.9
4-3	Graphic Memory Addresses	• •	•	. 4.15
5-1	BIOS Memory Map	• •	•	. 5.11
D-1	ASCII Character Code Chart	• •	•	. D.5
LIST	OF TABLES			
2-1	I/O Port Addresses	• •	•	. 2.5
3-1	CPU Devices		• •	. 3.5
3-2	Main Memory Components	• •	•	. 3.9
3-3	I/O Component	• •	•	. 3.18
3-4	Major Parallel I/O Components		• •	. 3.20
~ -		• •		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3-5	Keyboard Interface Components	•••	• •	• 3.22
3-5	Keyboard Interface Components	•••	•	. 3.22
3-5 3-6 3-7	Keyboard Interface Components	•••	•	· 3.22 · 3.27 · 3.28
3-5 3-6 3-7 3-8	Keyboard Interface Components	•••	• •	. 3.22 . 3.27 . 3.28 . 3.29
3-5 3-6 3-7 3-8 3-9	Keyboard Interface Components Floppy Disk Controller Components Winchester Controller Interface Components System/Controller Interface Components	• •	•	. 3.22 . 3.27 . 3.28 . 3.29 . 3.30
3-5 3-6 3-7 3-8 3-9 3-10	Keyboard Interface Components Floppy Disk Controller Components Winchester Controller Interface Components System/Controller Interface Components	• • • • • • • •		. 3.22 . 3.27 . 3.28 . 3.29 . 3.30 . 3.30
3-5 3-6 3-7 3-8 3-9 3-10 3-11	Keyboard Interface Components	• • • • • • • • • • • •		. 3.22 3.27 3.28 3.29 . 3.30 . 3.30 . 3.32
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12	Keyboard Interface Components	• • • • • • • • • • • • • • •		· 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13	Keyboard Interface Components	• • • • • • • • • • • •		· 3.22 3.27 3.28 3.29 . 3.30 . 3.30 . 3.32 . 3.35 . 3.37 2.20
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14	Keyboard Interface Components	oner		· 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-1	Keyboard Interface Components	oner	· · ·	. 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3	Keyboard Interface Components	oner		. 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3 4-4	Keyboard Interface Components	oner		. 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.5
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3 4-4 4-5	Keyboard Interface Components	oner	nts.	 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.6 4.7
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3 4-4 4-5 4-6	Keyboard Interface Components		its.	 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.6 4.7 4.10
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3 4-4 4-5 4-6 4-7	Keyboard Interface Components	oner	nts	 3.22 3.27 3.28 3.29 3.30 3.30 3.32 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.6 4.7 4.10 4.11
3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8	Keyboard Interface Components			<pre>. 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.6 4.7 4.10 4.11</pre>
3-5 3-6 3-7 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9	Keyboard Interface Components		its.	<pre>. 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.6 4.7 4.10 4.11 4.11</pre>
3-5 3-6 3-7 3-9 3-10 3-11 3-12 3-13 3-14 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10	Keyboard Interface Components		its.	<pre>. 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.6 4.10 4.11 4.11 4.12 4.13</pre>
3-5 3-6 3-7 3-9 3-10 3-11 3-12 3-13 3-14 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-100 4-100 4-100 4-100 4-100 4-100 4-	Keyboard Interface Components			<pre>. 3.22 3.27 3.28 3.29 3.30 3.30 3.30 3.32 3.35 3.37 3.39 4.1 4.2 4.3 4.6 4.7 4.10 4.11 4.11 4.12 4.13 4.13</pre>

4-13	Medium-Resolution Byte Usage	•	4.15
4-14	Medium-Resolution Color Selection Logic	•	4.15
4-15	Digital-Output Register	•	4.16
4-16	FDC Status Register		4.17
4-17	FDC Command Summary	•	4.17
4-18	FDC Command Symbols		4.23
4-19	HART I/O Register Addresses	•	4.28
4-20	Line-Control Register	•	4 29
4 20	Divisor Latches	•	1 30
4-22	Divisor Baud Patos	•	1 30
4-22	Lino-Status Posistor	•	4.30
4-23	Interrupt Identification Designer	•	4.01
4-24	Interrupt-Identification Register	•	4.32
4-25	Interrupt Control Functions	•	4.33
4-26	Interrupt-Enable Register	•	4.33
4-27	Modem-Control Register	•	4.34
4-28	Modem-Status Register	•	4.35
4-29	Receiver Data Register	٠	4.36
4-30	Transmitter Holding Register	•	4.37
4-31	Data Output Port	•	4.37
4-32	Output Control Port	•	4.38
4-33	Control Signal Input Port	•	4.38
4-34	I/O Channel Signals	•	4.39
4-35	TS 1605 Registers	•	4.41
4-36	Error Register Bit Assignments	•	4.42
4-37	Command Register Format		4.44
5-1	Interrupt Vectors		5.1
5-2	Character Codes		5.12
5-3	Numeric Keypad Keys		5.13
5-4	Keyboard Extended Codes	•	5.14
5-5	Special Key Combinations	•	5 15
B-1	I/O Port Addresses	•	P 2
D 1 P_1	Closepry of Agronyme	•	D.2 F 6
D-1	Glossaly of Actonyms \ldots \ldots \ldots \ldots \ldots	•	E.7
r - 1	Connector P1 (Serial 1/0)	•	F•/
r - Z	Connector P2 (Paraller $1/0$)	•	г./ п.О
F-3	Connector P3 (1/0) Channel)	•	F.8
F-4	Connector P5 (Power Supply)	•	F.9
F-5	Connector P/ (Floppy Disk Controller)	٠	F.9
F-6	Connector P9 (Programmable Interval Timer)	•	F.10
F-7	Connector P8 (Winchester Hard Disk Controller		
	Interface)	•	F.10
F-8	Connector Pll (Keyboard Interface)	•	F.10
F-9	Connector VP1 (Composite Color Monitor Port)	•	F.11
F-10	Connector VP2 (RGB Color Monitor Port)	•	F.11
F-11	Connector VP3 (Standard TeleVideo Video Monitor)	•	F.11

1. INTRODUCTION

The TeleVideo TS 1605 and TS 1605H computer systems are based on the Intel 8088 microprocessor, using the same circuit board in different configurations. The 8088 microprocessor is an 8-bit external, 16-bit internal device with a 20-bit address bus.

The TS 1605 is an integrated stand-alone system with two slim line floppy disk drives. The vertically-mounted floppy disk drives are 48 TPI drives with a formatted storage of 360 kilobytes per drive.

The system board contains an RS-232 serial I/O port, configured for asynchronous communication. An IBM-compatible parallel I/O port is configured for a parallel printer or other general communications device. Keyboard I/O is handled by a programmable peripheral interface device. An IBM-type I/O channel can interface with any I/O devices not on the system board.

The TS 1605H is similar to the TS 1605, except that it features a 3 1/2-inch 10 megabyte Winchester hard disk drive and a single floppy disk drive. The controller for the Winchester drive is contained on a separate board.

Standard main memory for the TS 1605 is 128 kilobytes, expandable to 256 kilobytes with an expansion board or added memory chips. Standard main memory for the TS 1605H is 256 kilobytes. An & kilobyte system ROM device is used for system power-on self-test, disk drive bootstrap loader, and input/output drivers.

The color/graphics monitor interface, capable of operating in black and white or color, is designed around the Synertek 6845R CRT controller. Graphics memory uses 16 kilobytes of static RAM. Resolution is 640 pixels horizontal by 200 pixels vertical for the monochrome graphics display and 320 pixels by 200 pixels for the color graphics display. The alphanumeric display is 25 lines by 80 columns of characters, featuring hidden attributes for the monochrome display, and eight background colors and sixteen foreground colors for the color display.

The TS 1605 and TS 1605H use an IBM-style keyboard and standard TeleVideo video driver circuits.

See Appendix A for a list of suggested technical references that include more information about the TS 1605 and the TS 1605H.

2. FUNCTIONAL DESCRIPTION

The TS 1605 and TS 1605H are single-board systems (see Figure 2-1). The TS 1605H has interface circuitry for a Winchester hard disk controller board.

Figure 2-1 TS 1605 System Board

Multiplexer Socket

SYSTEM BOARD

The system board contains circuits for control and video processing functions. An Intel 8088 8-bit HMOS microprocessor device performs logical and computational functions of the running software, handles graphics processing, and updates video memory.

Arithmetic and comparison operations can be handled with the addition of an optional Intel 8087 Numeric Data Processor. The CPU and numeric data processor operate at a frequency of 4.77 MHz, which is divided down from a 14.31818-MHz crystal through an Intel 8284A Clock Generator.

An Intel 8237A-5 DMA controller device allows external devices to transfer information directly to or from system memory. The DMA provides four channels of 16-bit address space. Twenty bits of address space can be obtained by programming a hardware latch for the highest four bits of address. One DMA channel is used to refresh dynamic memory. The three remaining DMA channels are used for data transfers of the floppy disk, hard disk, and I/O channel.

All necessary signals for dynamic memory reads and writes are generated by the TeleVideo Memory Control Gate Array. The memory control gate array works together with an Intel 8288 Bus Controller to control timing when the DMA uses the buses.

An Intel 8259A Interrupt Controller provides eight prioritized levels of interrupt for the system.

Main memory is configured in 64K x 1 dynamic RAM chips with a minimum data access time of 150-200 nanoseconds. Standard main memory capacity is 128 Kbytes of dynamic RAM for the TS 1605 and 256 Kbytes for the TS 1605H. Main memory can be expanded in three ways:

- * Up to 256 Kbytes on the TS 1605 by adding 64K x 1 RAM chips into the existing sockets on the system board.
- * Up to 512 Kbytes by replacing the 64K x 1 RAM chips with 256K x 1 RAM chips (64K chips cannot be mixed with 256K chips). This requires installing a multiplexer 74LS158 chip into the existing socket on the system board (see the Multiplexer Socket in Figure 2-1).
- * Up to 640 Kbytes by connecting an expansion board via a 64pin ribbon cable to the expansion slot on the system board (see the I/O Bus Connector in Figure 2-1). Before connecting the expansion board, all 64K x 1 RAM chips must be installed on the system board.

TS 1605/1605H Technical Reference

Read-only memory is configured in a single 8-Kbyte ROM chip. This memory contains codes for system boot and power-up diagnostics. Graphics memory has 16 kilobytes of static RAM. The I/O ports are decoded with two devices. I/O port decoder #1 enables the programmable interrupt controller, programmable DMA controller, programmable interval timer, and programmable peripheral interface. I/O decoder #2, a read-only device, enables the floppy disk controller, serial I/O port, parallel I/O port, and Winchester disk controller board.

A list of I/O port addresses is contained in Table 2-1 and Appendix B. The I/O port decoders are addressed on lines XA5 through XA8 and A2 through A9. The decoder enables, along with the internal I/O device registers, configure the system and pass data to system peripheral devices.

Table 2-1 1/0 Port Addresses

Device

Address

DMA	Channel Channel Channel Channel	0 1 2 3	DMA re I/O ch FDC da Hard d	fresh annel ta transfer or I/O channel isk transfer or I/O channel	%000-%00F
Progr	ammable	Int	errupt	Controller	%020-%021
Progr	cammable Channel Channel Channel Command	Int 0 1 3 Reg	erval Time c Dynami Audio ister	Timer of day .c RAM refresh speaker tone	%040-%043 %040 %041 %042 %043
Progr	ammable PA (Inpu PB (Outp PC (Inpu	Per it) put)	iphera Keybo PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0 PC1	al Interface oard scan code Speaker gate Speaker data Spare Read switch high/low bits Spare Enable I/O channel check Force keyboard clock low Clear keyboard SW1 SW2	%060-%063 %060 %061 %062
	Command	/Mod	PC2 PC3 PC4 PC5 PC6 PC7 le Regi	SW3 SW4 Speaker data Timer channel 2 output I/O channel check Always low ister (set to %99)	%063

Description

TS 1605/1605H Technical Reference

Description

DMA Page Register	%080-%083
NMI Mask Register To enable NMI, write data %80 into address % To disable NMI, write data %00 into address	%0A0 80A0 %0A0
Serial Port (Primary) Tx Buffer/Rx Buffer/ Divisor Latch LSB Interrupt Enable/Divisor Latch MSB Interrupt Identification Register Line Control Register Modem Control Register Line Status Register Modem Status Register	\$3F8-\$3FF \$3F8 \$3F9 \$3FA \$3FB \$3FD \$3FD \$3FD \$3FE
Floppy Disk Control Port Select drive A Select drive B Reset 8272A FDC Disable interrupt/DMA operation Enable interrupt/DMA operation Turn on both motors	<pre>%3F2 D0 = 0 D0 = 1 D2 = 0 D3 = 0 D3 = 1 D4 = 1 or D5 = 1</pre>
Floppy Disk Controller FDC Main Status Register FDC Data Register	%3F4-%3F5 %3F4 %3F5
Parallel Data Port (Read/write)	%3BC
Parallel Control Port (Read/write) STROBE (-) AUTO FD XT INIT (-) SLCT IN (-) INTERRUPT ENABLE	%3BE D0 D1 D2 D3 D4
Parallel Status Port (Read only) ERROR (-) SLCT PE ACK (-) BUSY (-)	%3BD D3 D4 D5 D6 D7
Winchester Disk Control Register To enable interrupt: To disable interrupt: To enable DMA operation: To disable DMA operation:	<pre>%0E0 D6 = 1 D6 = 0 D7 = 1 D7 = 0</pre>

Winchester Disk C	Controller Board Task File Register	: %330-337
Read Data	Write Data	%330
Error flag	Write precomp cylinder	%331
Sector count	Sector count	8332
Sector number	Sector number	8333
Cylinder low	Cylinder low	8334
Cylinder high	Cylinder high	8335
SDH	SDH	8336
Status registe	er Command register	8337

The serial I/O port is contained in a WD8250 serial I/O device as a general purpose, asynchronous RS-232 port. This device can be programmed for data rates of from 50 baud to 9600 baud. Currentloop operation is also supported in the serial port.

A general-purpose parallel I/O port provides a parallel printer interface. Interrupts are enabled or disabled by program control.

The I/O channel is used to interface to any I/O devices not on the system board. The I/O channel provides data and address lines, control signals, interrupt lines, and DMA control lines. Devices are addressed using I/O mapped address space. The I/O channel provides power to expansion slot J1.

An Intel 8272A Floppy Disk Controller device and FDC9229B Data Separator support double-sided, double-density format for the system floppy disk drives.

An eight-section DIP switch pack can be read by program control through an Intel 8255 Programmable Peripheral Interface device. The DIP switch provides all system information to firmware and software. Settings for this switch pack are given in the system User's Manual.

Scan codes from the keyboard, which are in serial data format, are converted into parallel data format and read by the programmable peripheral interface. The peripheral interface also controls the audio speaker tone and enable/disable I/O channel error check.

VIDEO MONITOR INTERFACE

The video monitor interface is configured around the Synertek 6845R CRT Controller. The interface is capable of operating in either monochrome or color.

WINCHESTER DISK CONTROLLER BOARD

A Western Digital WD1010-05 Controller on a WD1000-05 3 1/2-inch Winchester Disk Controller board is used to interface with the 5 1/4-inch Winchester hard disk drive.

TeleVideo Systems, Inc.

3. CIRCUIT DESCRIPTION

This section contains circuit descriptions of the major functional blocks of the TS 1605 and TS 1605H system board, as well as a description of the WD1000-05 Winchester Disk Controller Board.

The system board contains the CPU, main memory, I/O ports, controllers, and video display circuits for the system.

Figure 3-1 is a block diagram of the main board for the system.

Figure 3-1 Block Diagram of

the Main Board

TS 1605/1605H Technical Reference

Circuits

CPU CONTROLLER SECTION

The control section block diagram illustrates the processing of the control, data, and address buses. The 8284 time (U63) sends three signals to the 8088 and 8087 processors. The clock signal is a 4.77 MHz signal with a 33% duty cycle. The RESET signal halts CPU operation. The RDY signal inserts wait states between times T3 and T4 of the system bus cycle.

There are four signals that tie the 8088 to the 8087 coprocessor. QSO and QSI are input to the 8087 so it can monitor the status of the 8088's internal queue. The RQ/GTI signal of the 8088 is connected to the RQ/GTO pin of the 8087. This signal allows the co-processor (8087) to take over the local bus to perform its functions. The TEST signal to the 8088 is examined by a WAIT instruction. If the TEST input is LOW, execution continues. Otherwise, the processor waits in an "idle" state.

Signals S0-S2 leave the 8088 with status information used and decoded by the 8288 bus controller. When decoded by the bus controller, these signals become the control bus signals IORD, IOWC, MRDC, and MWTC. However, during a DMA cycle, bidirectional transceiver U44 is the path for control bus signals which come from the DMA controller.

The 8288 bus controller also issues control signals DEN, DT/R, and ALE. The DEN signal enables bidirectional transceiver U45 which enables data onto the system data bus at T3 of the bus cycle. The DT/R signal controls the direction of the data flow through bidirectional transceiver U45. When active HIGH, the ALE signal latches address lines A0-A19 into latches U29, U30, and U31. These address lines are then buffered by U21, U22, and U23.

The 8259 interrupt controller accepts one of eight designated interrupts and issues an interrupt request (-INT) to the 8088. The 8288 bus controller checks the SO-S2 status lines from the 8088 and issues the interrupt acknowledge signal (-INTA) to the interrupt controller. TeleVideo Systems, Inc.

Page

3.4

The major components of the CPU Controller section are:

U55	Intel 8088 CPU System Microprocessor
U 4 1	Intel 8087 Numeric Data Processor
U63	Intel 8284A Clock Generator
U29,U30,U31	Address Latches, #1,#2,#3
U45,U14	Transceivers, #1,#2
U21,U22,U23	Address Buffers, #1,#2,#3
U39	Intel 8259A Programmable Interrupt Controller
U28	Intel 8237A-5 Programmable DMA Controller
U40	Intel 2764 System ROM
U27	Intel 8254 Programmable Interval Timer

Table 3-1 lists the devices or lines on the CPU and their description.

Table 3-1 CPU Devices

- $ -$	Device	or	Line	Source	/Description
---------------	--------	----	------	--------	--------------

- 8088 CPU Operated in the maximum mode, the CPU handles central processing functions, graphics display-related processing, and all writes to video memory. CPU timing conforms to the standards shown in the Intel Component Data Catalog.
 - -RD CPU. Read signal indicates that the CPU is performing a memory or I/O read cycle.
 - RDY CPU. Ready acknowledges that when not busy, addressed memory or I/O device will complete a data transfer. -S2,S1,S0 CPU. Status signal is active during clock high of T4, T1, and T2 and is returned to the passive state (1,1,1) during T3 or during Tw when RDY is high. Status signals are used by bus controller to generate all memory and I/O access control signals.
 - -RQ/GT0,-RQ/GT1 Request/Grant signals are used by other local bus masters to force the CPU to release the local bus at the end of the CPU's current bus cycle.
 - -LOCK CPU. This signal indicates that other system bus masters are not to gain control of system bus while LOCK is active (low).
 - QS1,QS0 CPU. Queue status signal allows external tracking of the internal CPU instruction queue.

TS 1605/1605H Technical Reference

Circuits

Numeric DataProvides instructions anddata types for
high-performance numeric applications.
Serves as a co-processor to the CPU.

- Clock Generator Generates the system clock for the CPU. Using a 14.31818-MHz crystal, the clock generator divides down a 4.77-MHz frequency source for the CPU and numeric data processor.
- Address Latch #1 Address latch #1 converts CPU lines AD0 through AD7 to address lines A0 through A7.
- Address Latch #2 Address latch #2 converts CPU lines AA8 through AA15 to address lines A8 through A15.
- Address Latch #3 Address latch #3 converts CPU lines AS16 through AS19 to address lines A16 through A19.
- Data Transceiver Converts CPU lines AD0 through AD7 to data #1 lines D0 through D7.
- Data Transceiver Converts data lines D0 through D7 to data #2 lines DD0 through DD7.
- Address Buffer Buffers address lines A0 through A7, which #1 become XA0 through XA7.
- Address Buffer Buffers address lines A8 through Al5, which #2 become XA8 through XAl5.
- Address Buffer Buffers address lines Al6 through Al9, which #3 become XAl6 through XAl9.
- ProgrammableHandles vectored interrupts for the CPU,Interruptaccepting interrupt requests from peripheralsControllerand determining priority.
- Programmable DMA Allows peripheral devices to directly transfer information from or to system memory.
- System ROM Addressed on lines XAO through XA7, XA8 through XA13, and data lines DDO through DD7, system ROM allows CPU to operate without generating wait states to the system.

Programmable A three-channel,counter-timerdevice. Interval Timer Channel 0 is used for time-of-day implementation, and channel 1 times out dynamic memory refresh. Channel 2 supports tone generation for the speaker.

Page 3.6

MAIN MEMORY

The addresses on the TS 1605/1605H RAM are multiplex. The RAM address MUX signal selects either the Row address (RAS) or the column address (CAS) lines. For $64K \times 1$, U60 is not used. The total address is 16 bit - the upper 8 bits are used for column, and the lower are used for row. READ comes from memory to the CPU. WRITE comes from the CPU to memory. Refer to Figure 3-3 for a block diagram of the RAM main memory.

TS

1605/1605H Technical Reference

Circuits

TeleVideo Systems, Inc

Page 3.8

The major components of main memory are:

U50 TeleVideo Memory Control Gate Array Intel 8288 Bus Controller U51 U128,U93,U119, Bank 0 Dynamic RAM U86,U110,U77, U101,U69 U127,U92,U118, Bank 1 Dynamic RAM U85,U109,U76, U100,U68 U126,U91,U117, Bank 2 Dynamic RAM U84,U108,U75, U99,U67 U125,U90,U116, Bank 3 Dynamic RAM U83,U107,U74, **U98,U66**

Table 3-2 lists the components of the main memory and their description.

Table 3-2 Main Memory Components

Device or Line	Source/Description
Memory Control Gate Array	Generates all necessary signals for reads and writes to dynamic memory.
A16-A19	CPU address latch #3. Address lines to memory control gate array. Provide address for memory data bus exchanges.
S0,S1 -RAS0, -RAS1 -RAS2, -RAS3	CPU. Status lines to memory control gate array. Memory control gate array. Row select -RAS2,-RAS3 signals to main memory. -RAS0 selects row address for bank 0, -RAS1 for bank 1, -RAS2 for bank 2, and -RAS3 for bank 3.
-CAS0,-CAS1, -CAS2,-CAS3	Memory control gate array. Column select signals to main memoryCASO selects column address for bank 0, -CAS1 for bank 1, -CAS2 for bank 2, and -CAS3 for bank 3.
-RAM SEL	Memory control gate array. Control signal selects one of four banks of main memory.
Bus Controller	Decodes status lines and provides the system with all bus control signals. Together with memory control gate array, provides command and control timing generation and bipolar bus drive capability.

-MEMR Bus controller. Control signal into memory control gate array to generate memory reads to main memory.

-MEMW Bus controller. Control signal into memory control gate array to generate memory writes to main memory.

INTERRUPT SYSTEM

The system can generate one of eight designated interrupts to the 8259 interrupt controller. The INT controller then issues an interrupt signal to the CPU. Status lines -SO, -Sl, and -S2 go from the CPU to the 8288 bus controller. The signal tells the 8259 to run an interrupt. The 8288 issues an INTA (two signal pulses) to the 8259. The first pulse freezes the interrupt priority in the 8259. The second pulse causes the 8259 to put an 8-bit word on the data bus to the CPU. This is a partial address of the interrupt vector in the lower 1K of system RAM.

The CPU issues a 10-bit address that accesses one of a possible 256 locations in memory. Each of these 256 memory locations consists of 32 bits of memory. These 32 bits are segmented to establish the current address of the interrupt subroutine.

See Figure 3-4 for a diagram of the interrupt system.

U39

INTR

I/О СН

SERIAL PORT HARD DISK FLOPPY DISK PARALLEL PORT

	SUMMARY OF	INTERRUPT LEVELS
HIGHEST LEVEL	NMI	I/O CHANNEL CHECK, NUMERIC PROCESSOR
	IRQ Ø	SYSTEM TIMER OUTPUT 8254 CHANNEL Ø
	IRQ 1	KEYBOARD SCAN CODE INTERRUPT
AVAILABLE ON THE BUS	IRQ 2	I/O CH
	IRQ 3	I/O CH
	IRQ 4	RS-232-C SERIAL PORT
	IRQ 5	HARD DISK INTERRUPT
	IRQ 6	DISKETTE DRIVE STATUS
	IRQ 7	PARALLEL PORT

U55

Circuits

DMA

There are four DMA channels, 0, 1, 2, and 3.

- 0 = refresh
- 1 = optional I/O channel
- 2 = floppy disk controller
- 3 = optional I/O channel

The DMA cycle is initiated by a DMA request from one of the four above channels. For example, if the FDC requests a DMA request, it sends an FDC DRQ signal to the memory control gate array. The gate array issues a signal to the DMA controller. See Figures 3-5 and 3-6 for diagrams of the DMA.

TeleVideo Systems, Inc

٠

Page 3.13

TS 1605/1605H Technical Reference

TeleVideo Systems, Inc.

SERIAL I/O

The serial communications port interfaces with an RS-232 asynchronous communications-type device at 50 - 9600 baud rate, such as a serial printer or modem. There is a transmit and receive line, and handshaking protocol. Figure 3-7 shows a diagram of the asynchronous communications of the TS 1605/1605H.

Circuits

.

TS 1605/1605H Technical Reference

Circuits

The major serial I/O component is:

Ull WD8250 or INS8250BSerial I/O Controller

A block diagram of the serial I/O port is shown in Figure 3-8.

Figure 3-8 I/O Interface Diagram

TeleVideo Systems, Inc.

Table 3-3 lists the major component of the serial I/O and its description.

Table 3-3 I/O Component

Device or Line	Source/Description		
Serial I/O Controller	An RS-232Cdevice thatis usedfor asynchronous communications only, but is capable of supporting current loop operation. Enabled by CPU lines XA0 through XA2 and DB0 through DB7 and control signals -IOR, -IOW, and -8250 CS. This device can be programmed from 50 baud to 9600 baud.		

PARALLEL PRINTER PORT

The parallel port is a general purpose I/O port configured on the TS 1605/1605H to interface to a parallel printer. Interrupts can be enabled or disabled under program control. Since a 25-pin, D-type connector is used in this system, a special cable is required for interface to a standard Centronics-type printer. See Figure 3-9 for a diagram of the parallel printer port.

U8 is a bidirectional receiver with the direction controlled by the parallel chip select or an I/O read.

Write data in U6 is read back through U10. Then write control and write information goes into INIT, SLST N, AUTO FD XT, STROBE. Read control is enabled to read those control signals. Once read, the system and hardware are functioning properly. Then status is read from the printer for error, busy, ACK, PE, or select. Then write data is sent to the printer. STROBE then goes to low. This initiates read status to read busy and ACK signals from the printer. When okay, reads information into the CPU via the data bus. Then a write data into U6, then strobe data with write control signal into parallel printer. Then another read status cycle. This process continues until all of the data is transferred.

NOTE!

Read control is performed for the data latch only when the system is first booted up.

Page 3.19

ΠS **1605/1605H Technical Reference**

Figure 3-Parallel

Printer

Logic

ω I

Ò

Circuits

The major parallel I/O components are:

U 6	Data Latch
U10	Data Buffer
U12	Status Buffer
U 9	Control Latch
U 20	Multiplexer

The major parallel I/O components are in Table 3-4.

Table 3-4 Major Parallel I/O Components

Device or Line Source/Description

- Data Latch Used as a temporary storage buffer for data transmitted to the parallel printer on output lines DATA0 through DATA7. Data is written into the data latch by the CPU when signals -PAR CS and -IOW are activated. Data lines DB0 through DB7 carry data transfers to this latch.
- Data Buffer Buffers output lines DATA0 through DATA7 into data lines DB0 through DB7.
- Status Buffer Buffers status signals, -ERROR, SLCT, PE, -ACK, and BUSY that go from the parallel printer to the CPU. These signals are read by the CPU when -IOR and -PAR CS are activated.
- Control Latch Control signals -STROBE, -AUTO FEED, -INIT, and -SLCT IN are transmitted to the parallel printer when the CPU enables lines -IOW and -PAR CS.

KEYBOARD INTERFACE

The TeleVideo and IBM keyboards are not plug-compatible. A TeleVideo keyboard must be used with the TeleVideo system. Under normal keyboard conditions, the output register of 8255, PB bits 6 and 7, control the keyboard-enabling circuit - bit 6 is high, bit 7 is low. In this condition, the keyboard circuit can receive data from the keyboard. Whenever the key is pressed, the data goes from the keyboard to input A of the Ull6 input register (see Figure 3-10). At the same time, the keyboard clock sends information through inverter U19 and through AND gate U25 and then to the clock of the shift register. This clocks the 8-bit code representing the number of the key that was pressed. The start bit is the MSB (QH). When the information is stored in the shift register, QH is fed back to the data input of D flip-flop When the clock goes in, it generates interrupt IRQ1. This U127. sends the microprocessor into the interrupt service routine which processes the key.

TeleVideo Systems, Inc.
When the interrupt is generated at the Q output with a logic high, the Q is a logic 0 which is sent back to the keyboard data input via U7 and that prevents the keyboard from sending more data. It also inhibits U25 to prevent the keyboard clock from shifting more data into the shift register.

Figure 3-10 Keyboard Circuit

The major components of the keyboard interface are:

- U37 Intel 8255A-5 Programmable Peripheral Interface (PPI)
- U38 Serial Shift Register

The major components of the keyboard interface and their description are listed in Table 3-5.

Table 3-5

Keyboard Interface Components

Device or Line	Source/Description
Programmable Peripheral Device	Programmed by system software, this device reads the eight-position DIP switch and interfaces to keyboard receiving and transmitting scan code. Controls audio speaker tone and enable/disable I/O channel error check. Enabled by address lines XAO through XA1, data lines DDO through DD7, and control signals -IOR, -IOW, and -8255 CS.
PA0-PA7, PB0-PB7, PC0-PC7	PPI. Ports A, B, andC. Each port is composedof eightbits, configured by system software. Accepts commands from read/write control logic, receives control words from the internal data bus, and issues the proper commands to the associated ports.
A0-A1	CPU. Port select input signals, in conjunction with -RD and -WR signals, control the selection of one of three ports or the control word registers.
Serial Shift Register	Permits complete control over incomingdata lines PAO through PA7. Data at serial inputs may be changed while clock is high or low, but only information meeting set-up requirements is entered. Clocking occurs in low-to-high transition of clock input.

SPEAKER DRIVE SYSTEM

You can control the frequency of the speaker output by programming the different frequencies coming from timer 8254 (see Figure 3-11). The speaker frequency is controlled by the frequency divider in the 8254 timer 2. The frequency can be controlled by programming so you can change it through software. Bit 0 of the output register PB of the 8255 is used to control the speaker gate so you can turn the timer on and off. The timer clock is ANDed with the 8255 output register PB bit 1. The output of U26 provides the information to speaker drive Q25.

TeleVideo Systems, Inc.

The speaker driver is controlled by 8255. 0 enables the speaker interface. Channel 2 timer clock is used to supply the oscillating frequency to control the speaker.

When you want to turn on a speaker, use 8255 PB 1.

PB1 = 1 = turn on speaker
PB1 = 0 = turn off speaker

Page 3.24

Circuits

TS 1605/1605H Technical Reference

INPUT/OUTPUT CHANNEL

The input/output channel, located on the system board, provides interface to I/O devices external to the system board. This channel consists of a connector with data and address buses, control signals, interrupt lines, DMA control lines, and power and ground lines. The I/O channel pin configuration is listed in Appendix F. A block diagram of the input/output channel is shown in Figure 3-8.

FLOPPY DISK CONTROLLER

The floppy disk control circuitry is based around the 8272A (U96) floppy disk controller chip. The 9229B FDC does all write precompensation functions. The 8272A keeps track of where the floppy heads are currently located and stores more internal memory than previous floppy disk controllers. Also, data being read from the disk is intercepted by a 9229B (U81) Data Separator. The Data and Clock pulses that compose MFM data on the diskette are separated and synchronized with the 8272A internal clock to ensure accurate data exchanges. The 8272A FDC is programmed to operate in the burst transfer mode at system initialization by the EPROM.

The other important support ICs are the bidirectional buffer (U13) and the floppy disk latch (U42). They control the selection of the disk drive and the turning on of the floppy motor. These are taken as control words from the system data bus.

The basic functions of the floppy disk controller circuitry are 1) writing data to the diskette, 2) reading data form the diskette 3) determining where to write on the diskette, and 4) turning the drive off and on and selecting drive A or B. 1, 2, and 3 are all controlled by the 8271A FDC.

3.26

The major components of the floppy disk controller are:

U 96	Intel 8272A Floppy Disk Controller Device
U42	Floppy Disk Drive Control Latch
U81	FDC9229B Data Separator

The floppy disk controller components and their description are listed in Table 3-6.

Table 3-6

Floppy Disk Controller Components

- Device or LineSource/DescriptionFloppy Disk
ControllerProvides parallel-to-serial conversion of
data from the system to the floppy disk, and
serial-to-parallel conversion from the floppy
disk to the system, as well as all drive
control functions, such as head step, head
direction, write protect, and track 0
detection. The controller can be programmed
to handle seek track, read sector, write
sector, read address, read track, and write
track operations. The DB0-DB7 Data
Transceiver carries data and programming
signals between the FDC and CPU.
 - -COMP READ DATA FDD. Carries composite read data to floppy disk drives.
 - -COMP WR DATA FDC. Carries composite write data to floppy disk drives.
 - Floppy Disk Drive Controls floppy disk drive number selection, Control Latch motor on/off, enable/disable interrupt, enable/disable DMA operation, and FDC reset.
 - Data Separator Performs write precompensation and data separation.

WINCHESTER CONTROLLER INTERFACE

The major components of the Winchester controller interface are:

U8Data/Address TransceiverU18Control Signals Buffer

A block diagram of the Winchester controller interface is shown in Figure 3-8.

The Winchester controller interface components and their description are listed in Table 3-7.

Table 3-7 Winchester Controller Interface Components

Source/Description
The transceiver and buffer pass data, address, and control signals to an external Winchester disk controller board.
Data/Address Transceiver. Buffered data lines to the Winchester controller board. WAO-WA2 Control signals buffer. Buffered address lines to the Winchester controller board.
Control signals buffer. Buffered control signals to the Winchester controller board.

WINCHESTER DISK CONTROLLER BOARD

The Winchester disk controller board provides all control and data handling functions needed to interface the system with a 3 1/2-inch Winchester disk drive. Figure 3-13 shows a block diagram of the Winchester disk controller board.

Figure 3-13 Winchester Disk Controller Board Block Diagram

The major components of the Winchester disk controller board are:

U 24	WD1100-21 Host Interface, Head and Drive Select,
	and Buffer Ram Controller
U23	WD1010-05 Winchester Disk Controller
U 16	WD1100-10 Write Precompensation and Data Separator
U25	Type 6116 Buffer RAM
U 26	Board Busy Tristate Buffer
◊ U5	Error Amplifier
U11,U18	Pump Logic
(U13	Voltage Controlled Oscillator (VCO)
U27	Host Interface Bus Transceiver
2 U3	Differential Line Receiver
່ ບ17	Precompensation Logic
° U4	Differential Line Transmitter
1	

System/Controller Interface

The system programs the Winchester disk controller board by accessing the WD1010-05 controller device task file registers.

The system/controller interface lines are shown in Figure 3-2.

Table 3-8 lists the system/controller interface components and their description.

Table 3-8 System/Controller Interface Components

Active Line	Source/Description
A0 to A2	System. Task file register address.
-WE or -RE	SystemWE to activate task file write, or -RE to activate task file read.
D0 to D7	System. Data or command.

Operations With Buffer RAM

The Winchester disk controller board uses 1 kilobyte of a 2 kilobyte-by-8-bit buffer RAM to interact with the system during disk read and write operations. When writing to disk, the system writes the data to the buffer RAM by sector. After a sector of data is loaded into the buffer RAM, the WD1010-05 reads the data from the buffer RAM to the disk. The lines used in the operations with buffer RAM are shown in Figure 3-2.

Table 3-9

Write From Buffer RAM

Active Line	Source/Description
D0 to D7	System. Sets up Task File Register and Write Sector command in WD1010-05 task file and writes data to buffer RAM.
-BCR	WD1010-05. Strobed to zero counter in WD1100-21.
DRQ	WD1010-05. Active to indicate that the buffer RAM is empty.
-BCS	WD1010-05. Set high to enable host control of buffer RAM. Transceiver direction is ready for write.
-WE	System. Loads buffer and increments counter with -CS.
-BRDY	WD1100-21. Active to indicate buffer full.
-BCS	WD1010-05. Active to disconnect host control of buffer RAM. Board busy tristate buffer on line WD7 is activated by -BCS to prevent system access during next operation.
-RE	WD1010-05. Reads buffer RAM to transfer data to disk (See Writing Disk Data).
-BCS	WD1010-05. Set high to allow next operation by system. Board busy tristate buffer inactive.
INTRQ	WD1010-05. Signals end of command to system.

Reads of buffer RAM occur after a sector of data has been loaded to the RAM from the disk. For a read from buffer RAM, see Table 3-10.

Table 3-10 Read From Buffer RAM

Active Line Source/Description

D0 to D7 System. Sets up Task File Registers and places Read Sector command in WD1010-05 task file.

Circuits

-BCS	WD1010-05. Active to disconnect host control of buffer RAM. Board busy tristate buffer on line WD7 is activated by -BCS to prevent system access during next operation.
-BCR	WD1010-05. Strobed to zero counter in WD1100-21.
-WE	WD1010-05. Loads buffer from disk (See Reading Disk Data), and increments counter with -CS.
BRDY	WD1100-21. Active to indicate buffer full.
-BCR	WD1010-0d. Strobed to zero counter in WD1100-21.
-BCS	WD1010-05. Set high to enable system control of buffer RAM. Board busy tristate buffer inactive.
DRQ	WD1010-05. Active to initiate transfer to system.
-RE	System. Reads buffer RAM and increments counter with -CS.
-BRDY	WD1100-21. Active to indicate buffer empty.
-INTRQ	WD1010-05. Set high to stop operation.

Writing Disk Data

The write sector command requires that the Winchester controller locate the place on the disk that is to receive the data, control the write operation to buffer RAM by the system, then read the data from the buffer RAM, condition the data into MFM format, and write the data to disk.

Under MFM, clock bits are recorded only when two successive data bits are missing in the serial data stream. Using MFM reduces the total number of bits required to record a given amount of information on the disk. Because this effectively doubles the amount of disk capacity, it is termed "double density."

Encoding MFM follows three rules: 1) if the current data cell contains a data bit, then no clock is generated, 2) if the previous data cell contained a data bit, then no clock is generated; 3) if the previous data cell and the present data cell are vacant, then a clock is generated in the current clock cell. Data and clock cells are defined by the state of the write clock line, WC. If WC is low, it is a data cell; if WC is high, it is a clock cell. Both clock and data cells are 100 nanoseconds long in ST506-compatible drives.

TeleVideo Systems, Inc.

TS 1605/1605H Technical Reference

1990. 1

Circuits

The active lines for writing disk data are diagrammed in Figure 3-14.

11

Figure 3-14 Writing Disk Data

Table 3-11 Writing from Buffer RAM

Active Line Source/Description D0 to D7 System. Contains write sector command. When the WD1010-05 receives this command, it checks its cylinder registers against the current cylinder position. -BCR WD1010-05. Strobed to begin write to buffer RAM by system. BRDY WD1100-21. Buffer RAM full. -BCS WD1010-05. Active to disconnect host control of buffer RAM. Board busy tristate buffer on line WD7 is activated by -BCS to prevent system access during next operation. -STEP, -DIRET WD1010-05. Moves head to locate cylinder.

TeleVideo Systems, Inc.

Circuits

SEEK COMPLETE Drive. Informs WD1010-05 that the head settling time for the current step is expired. If current step is not the required cylinder position, the head is moved again. After seek to desired cylinder, controller checks for desired sector address by reading data from drive.

WG WD1010-05. Write gate signal to WD1100-10.

WC

--WD

WDll00-10. Carries 5 MHz write clock, derived from 2XDR clock signal, to WDl010-05.

-RWC WD1010-05. Reduced write current signal; turns on precompensation circuits for write to disk.

WD1010-05. Write data as read from buffer RAM and serialized by WD1010-05.

-EARLY, -LATE WD1010-05. Precompensation signals to WD1100-10.

> Precompensation is used to counteract the effects of dynamic bit shift when writing the inside recorded tracks of the disk. Dynamic bit shift results when a bit on the disk influences the position of an adjacent bit. The leading edges of the bits are moved closer together, or further apart, depending upon the polarity of each bit. Because the positions of the bits shift as they are written to the disk, the data is harder to recover without error. Write precompensation is applied to counteract the effects of dynamic bit shift.

> Precompensation predicts the direction a bit will be shifted, then writes the bit out of position in the opposite direction to the shift. The prediction is done in the WD1010-05 by checking the next two data bits, the last bit written, and the present bit.

EARLY, NORMAL, LATE WD1100-10. Precompensation signals to precompensation logic. Data is shifted +/-12 nanoseconds from normal position through a delay line.

Data

-BCS

Differential Line Driver. Carries MFM formatted, precompensated, RS-422 write data to drive head.

Set high to allow next operation by system. Board busy tristate buffer inactive.

TeleVideo Systems, Inc.

Reading Disk Data

For disk reads, the Winchester disk controller board locates the sector to be read, identifies the start of the data field, reads the data in from the disk, separates the data and clock signals, writes the data to buffer RAM, and controls the system read of the data out of buffer RAM.

The active lines for reading disk data are diagrammed in Figure 3-15 and are listed with a description in Table 3-12.

Figure 3-15 Reading Disk Data

Table 3-12 Disk Data	
Active Line	

D0 to D7	System. Contains read sector command. When the WD1010-05 receives this command, it checks its cylinder registers against the current cylinder position.
-BCS	WD1010-05. Active to disconnect host control of buffer RAM. Board busy tristate buffer on line WD7 is activated by -BCS to prevent system access during next operation.
-STEP,-DIRET	WD1010-05. Moves head to locate cylinder.
-SEEK COMPLETE	Drive. Informs WD1010-05 that head settling time for ts enter C below and each item

Source/Description

VIDEO SECTION

The major integrated circuits in the video display section include the following:

CRTC	U 9 0
Video gate array	U150
Character generator ROM	U151
Shift register	U143
16K of video display RAM	

The CRTC has several outputs which affect video display operation. Both the vertical and horizontal sync pulses originate at the output of the CRTC. During power up, the CRTC's internal registers are initialized with the proper vertical and horizontal operating frequencies. The vertical sync operates at 60 Hz and the horizontal frequency rate is approximately 16 KHz. Cursor movement is controlled by the cursor output of the CRTC. The CRTC has four output signals RAO-RA3, the scan line count signals, which increment upon completion of each horizontal scan line.

During a display cycle, the CRTC addresses video memory. Latches Ull2 and Ull3 are enabled by the DISP CYCLE signal and the addresses are passed to the latch outputs by the CRT LATCH clock. Each character that is displayed occupies two bytes of video memory. One byte represents the character to be displayed while the following memory location stores the attribute of the character. The function of the EVEN/ODD signal is to alternately select either the address of the character or its associated attribute.

TS 1605/1605H Technical Reference

The information stored in video memory is passed to both the video gate array and character latch U59. The outputs of the character latch, access the appropriate memory location in the character generator ROM, U151. The TS 1605 employs an 8 x 9 character matrix. Therefore, the scan line count signals to the ROM, reset with the completion of the ninth scan line. Parallel data from the ROM is loaded into the parallel to serial shift register, U143, at the character clock rate of 1.7895 MHz. Data is shifted out of the register by the Dot clock, which is an output of the video gate array. The data is shifted out of U58 serially, at the Dot clock rate of 14.31 MHz. The output of U143 is sent to one of the input lines of the video gate array for processing.

There are many outputs to the video gate array, many of which are not shown in the block diagram. Outputs EG (green voltage), EB (blue voltage), ER (red voltage), and EI (half-intensity video are mixed in a transistor circuit prior to becoming the raw video signal sent to the video module board. Signals I2 (video and color), I3 (horizontal and vertical blanking), and I4 (sync) are mixed in a transistor and sent to a phono jack at the back panel of the TS 1605, as the composite video signal.

During a CPU cycle, video information can either be written into video memory or read from video memory by the CPU. During a CPU cycle it is the CPU that addresses video memory. The signal, CPU CYCLE, enables buffers UllO and Ulll. The CRTC and CPU cannot address video memory simultaneously.

Video Memory

The CPU performs all writes to video memory, and reads data from video memory to perform graphics formatting. All graphics control firmware is in system ROM and is acted on by the CPU. The CRT controller reads data from video memory to perform screen updates.

The major components of video memory are:

U62,U70,U78, Type 6167 Static RAM devices U87,U94,U102, U111,U120 U47,U54 CPU Address Buffer

A block diagram of video memory is shown in Figure 3-3.

The video memory components and their description are listed in Table 3-13.

TeleVideo Systems, Inc.

Table 3-13 Video Memory Co	mponents	
Device or Line	Source/Description	

GD0-GD7	CPU. Buffered data lines D0 through D7, carry write data to video memory.
-CPU CYC	CPU. Toggles alpha graphics for the CPU.
XA0-XA7,XA8-XA13	CPU. Buffered address lines to video memory
DMD0-DMD7	Video memory. Carry read data from video memory.

CRT Controller and Character Generator

The CRT controller retrieves data from the video memory for screen updates. Alphanumeric data from the video memory is passed through a character generator and shifted into a serial bit stream for the video display circuits. Graphics data is sent directly to the shift register. The major components of the CRT controller and character generator are:

Synertek SY6845R CRT Controller
CRT Data Transceiver
CRT Latch
Character Generator ROM
Display Buffer
TeleVideo Video Gate Array
Video Shift Register
Video Drivers

A block diagram of the CRT controller and character generator is shown in Figure 3-16.

Figure 3-16 CRT Controller

and

Table 3-14 lists the CRT controller and character generator components and their description.

Table 3-14

CRT Controller and Character Generator Components

- Device or Line Source/Description
- CRT Controller Performs screen updates and generates control signals for video display. Internal registers define and control the raster-scan CRT display.
 - -DISP CYCLE CRT controller. Toggles alpha graphics for the CRT.
 - GD0-GD7 CPU. Buffered data lines D0 through D7, carry write data to the CRT controller.
 - CRT VS,CRT HS CRT controller. Vertical and horizontal synchronization signals for video monitor.
 - CRT CUR CRT controller. Indicates the position of the graphics cursor.
 - RA0-RA3 CRT controller. These lines form the address to the character generator.
- CRT Latch Latches address lines MA0 through MA12 of video memory to refresh the screen.
- Character A read-only memory containing two different Generator ROM Character fonts. Character size for the high resolution mode is 8 dots x 9 dots. A jumper option, El3, provides a single-dot font or double-dot font in a character size of 8 dots x 9 dots.
- Display Buffer Defines display characters, with each character having a corresponding character attribute. Takes the alpha video bit stream and the character bytes and generates attributes of the screen. The most significant bit of the character determines whether the character is shown blinking or not.
- Video Gate Array Performs all the logic and timing functions of the graphics section. Takes in CPU lines GDO through GD7 and XAO through XA2, CPU signals -MEMR, -MEMW, and -GMEMSEL, and lines DMDO through DMD7 from video memory. Handles screen attributes for the video monitor.

Video Shift	Creates the dot serial bit stream fromthe
Register	character generator that is then sent to the video gate array on the DOT SERIAL line.
	Takes in alpha data and creates a serial bit stream for the video drivers.
Video Drivers	Boost the video signal on the VIDEO line for application to the video monitor. Supports RGB, composite, and monochrome.

VIDEO MODULE

The Video Monitor is made up of two sections: the vertical amplifier and the horizontal amplifier. These amplifiers provide the voltages necessary to drive the CRT yoke, which deflects the electron beam across the CRT.

The electron beam which is generated by the CRT electron gun is swept across and down the screen to create scan lines. The movement of the beam is driven by vertical and horizontal sweep rates. These sweep rates are determined by the display circuitry on the logic board. The horizontal sweep is approximately 16 KHz and the vertical sweep is 60 Hz for domestic and 50 Hz for international applications.

The horizontal sync pulses coming into the Video Monitor are inverted by transistor Q305 and then trigger IC301. In the precision timing mode of operation, the pulse width of IC301 is precisely controlled by R304, R306, and C312. The output of IC301 is then coupled by Q303 and Q301 to drive transformer T301. The output of T301 is amplified by drive transistor Q302. This transistor drives both the horizontal yoke windings and the stepup transformer that produces the anode high voltage and the grid voltage for the CRT grid in the neck of the CRT. A new width coil is used for better raster width control.

The vertical sync pulses come into the Video Monitor and are converted to a sawtooth wave form. The sawtooth pulse goes from a negative leading edge to a positive falling edge and goes through transistor Q202 where it is inverted to its usable form. The pulse now goes from a positive 2 volt leading edge to a negative 2.5 volt falling edge. The timing is critical because within one sawtooth pulse there are 250 horizontal pulses. This is the total number of horizontal scan lines on the CRT. The sawtooth pulse has to be proportional to all of the previous pulses or the timing will be wrong for the vertical sweep and the horizontal sweep. When the vertical sweep is negative, Q201 conducts and Q202 discharges. During the positive time that C202 is charging, the electron beam is scanning. The vertical sweep scans from top to the bottom. When the scan reaches the bottom of the page, a (blank) occurs, the video beam is turned off, and it is retraced back to the top of the screen, where C202 is now discharging.

After the retrace, the beam is once again turned on and begins its scan routine. Adjusting SFR1 (vertical height) and SFR2 (vertical linearity) changes the rate of charge of C202 thus changing the slope of the sawtooth pulse.

Figure Video I Monitor 3-17

TS

1605/1605H Technical

TeleVideo Systems, Inc .

Page 3.42 Reference

Circuits

HARDWARE PROGRAMMING 4.

This section provides the experienced programmer with the coding tables, command codes, and registers needed to interface with the system hardware.

SYSTEM INTERRUPTS

The programmable interrupt controller provides eight prioritized levels of interrupts with level 0 having the highest priority. The interrupt levels are shown in Table 4-1.

Table 4-1 Hardware Interrupt Listing

Interrupt Level	Input	Type Code	Device
0	IRQ0	808	Timer channel 0
1	IRQ1	809	Keyboard
2	IRQ2	80A	I/O channel
3	IRQ3	%0B	I/O channel
4	IRQ4	80C	Serial port or I/O channel
5	IRQ5	%0D	Hard disk or I/O channel
6	IRQ 6	%0E	Floppy disk or I/O channel
7	IRQ7	%0F	Parallel port or I/O channel

An interrupt source can be disabled by setting the respective bit of the interrupt controller interrupt mask register (%21) to 1.

The other active interrupt controller register is the interruptcommand register at %020. Upon completion of an interrupt service routine, an end of interrupt (EOI) command must be sent to the interrupt control register. The EOI command is represented by the value %20.

PROGRAMMABLE INTERVAL TIMER PROGRAMMING

Each channel of the programmable interval timer contains a 16-bit latch register and a 16-bit counter register. The three access ports (%40-%42) are the least significant bits of the channel latch registers. Each channel also has two input signals (clock and gate) and one output signal (out). The clock inputs of all three channels are tied to a 1.19318-MHz signal and the gate inputs of channels 0 and 1 are tied to a positive high signal (always enabled). The gate for channel 2 is controlled by bit 0 of the programmable peripheral interface device, (PPI) port B at %061.

To place a count value in the count register, the value must be programmed into the latch register and transferred to the count register. The count value is then decremented by one each time a clock pulse is received. When the count register reaches zero, a signal is output on the out line.

The programmable interval timer is programmed by writing a command to the command register (%043) and then reading or writing the appropriate latch register. If both bytes of a latch register need to be accessed, two read or write instructions are needed. The command format is outlined in Table 4-2. The six possible timer modes are described in Table 4-3.

Table 4-2 Timer Command Format

7	6		5 4		3 2	2	1		0		
1	I		I	I	ł	I	I		I		
1	1		1	I	1	1			0	=	Decremented in
1	1		1	1	1	1					binary format
1	1		1	1	1	1			1	=	Decremented in BCD
1			1	I I	1	1	1				format
1	1		1	1	ł	I					
1			1	l –	0	0	0	=	Mod	le	0
1			1	1	0	0	1	Ξ	Mod	le	1
1	l l		l	I	0	1	0	=	Mod	le	2
1	1		I	1	0	1	1	=	Mod	de	3
1	1		1	1	1	0	0	=	Mod	de	4
1	- 1		1	1	1	0	1	=	Mod	de	5
1	- 1		I	1							
1			0	0 =	Latch	pres	ent	t (cour	nte	er value
1	1		0	1 =	Read/	write	MS	SΒ	on	ly	
1	1		1 (0 =	Read/	write	\mathbf{LS}	SB	on	ly	
1	1		1	1 =	Read/	write	LS	SB	, tł	ner	n MSB
1	1										
0	0	=	Program	m c	hannel	0					
0	1	=	Program	m c	hannel	1					
1	1	=	Program	m c	hannel	2					
	7 	7 6	7 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1	7 6 5 4 	7 6 5 4 1 1 1 1 1 1 1 1	7 6 5 4 3 	7 6 5 4 3 2 	7 6 5 4 3 2 1 	7 6 5 4 3 2 1 	7 6 5 4 3 2 1 0 	7 6 5 4 3 2 1 0

Table 4-3 Timer Modes

Mode Description

0

2

When the latch register is loaded the following occurs:

- 1. The value is transferred from the latch register to the count register
- 2. The out signal goes low
- The counter begins to decrement (if the gate is high)
- 4. When the count reaches zero, the out signal goes high and remains high
- 5. The count register continues to decrement below zero
- 1 When the latch register is loaded the following occurs:
 - 1. The value is transferred from the latch register to the count register
 - 2. The out signal goes low
 - 3. The counter begins to decrement when the gate goes high
 - 4. When the count reaches zero, the out signal goes high and remains high

If the gate is dropped low before the count reaches zero, the counting will stop. If the gate is again brought high, the count value is reloaded into the count register (from the latch register) and counting will begin again.

When the latch register is loaded the following occurs:

- 1. The value is transferred from the latch register to the count register
- 2. The out signal goes high
- 3. The counter begins to decrement
- 4. When the counter reaches one, the out signal goes low for one clock period
- 5. The counter register is reloaded from the latch register and the operation repeats

This mode produces a low pulse on the out line for one clock cycle out of every N clock cycles, where N is the value loaded in the latch register.

3

4

5

- When the latch register is loaded the following occurs:
- The value is transferred from the latch register 1. to the count register
- 2. The out signal goes high
- 3. The counter begins to decrement
- When the count reaches half of the original count 4. value, the out signal goes low
- 5. When the count reaches zero, the count value is reloaded into the count register and the operation is repeated

This mode can be used to create a square wave on the out line with the frequency of the clock input signal divided by the value programmed into the latch register.

When the latch register is loaded the following occurs:

- 1. The value is transferred from the latch register to the count register
- 2. The out signal goes high
- The counter begins to decrement (if the gate is 3. high)
- 4. When the count reaches zero, the out signal goes low for one clock cycle and then returns high

When the latch register is loaded the following occurs:

- 1. The value is transferred from the latch register to the count register
- 2. The out signal goes high
- The counter begins to decrement when the gate goes 3. hiqh
- When the count reaches zero, the out signal goes 4. low for one clock cycle and then returns high

If the gate is dropped low before the count reaches zero, the counting stops. If the gate is again brought high, the count value is reloaded into the count register (from the latch register) and counting begins again.

When power is applied to the system, the BIOS initializes channel 0 to operate in mode 3 with a count value of %0000. This results in 65536 counts before zero is reached again. The output is a square wave with a frequency of 18.2 Hz. When the 0 level interrupt is enabled, this output is used by the BIOS for the time-of-day clock.

Timer channel 1 is programmed by the BIOS to operate in mode 2. A count value of 18 is used to send DMA refresh pulses every 15 microseconds.

TeleVideo Systems, Inc.

Page 4.4

MEMORY

Both read only memory (ROM) and read/write memory (RAM) are used. An 8-kilobyte EPROM contains the system power-on self-test, the disk drive bootstrap loader, and the I/O drivers. The system read/write memory consists of 128 kilobytes of dynamic memory which can be expanded to 256 kilobytes. The video display uses 16 kilobytes of static read/write memory. Figure 4-1 shows the system memory map.

Figure 4-1 System Memory Map

Address		Usage
800000	 128K DRAM Standard	 System RAM
%1FFFF %20000		
	128K DRAM Optional	System RAM
*3FFFF	1	
		r
%B8000	16K SRAM	 Display RAM
%BBFFF		
%FE000	 	·
%FFFFF	8K EPROM	I System EPROM

PROGRAMMABLE PERIPHERAL INTERFACE DEVICE

When power is applied to the system, the BIOS initializes the PPI by sending a value of %99 to the command register at address %063. This configures the PPI so that PA and PC are considered input ports and PB is an output port. Table 4-4 lists the I/O map for the PPI. Table 4-4 8255A-5 I/O Bit Map Addr **I/O** Port Function \$0060 Ι PA 0 +Keyboard Scan Code 0 (PA = Port A)1 1 2 2 3 3 4 4 5 5 6 6 7 7 +Timer 2 Gate (Speaker) 80061 PB 0 0 +Speaker Data 1 2 Spare 3 0 - Read Switches 5-8/1 - Read Switches 1-4 4 Spare 5 -Enable I/O Channel Check -Hold Keyboard Clock Low 6 7 -(Enable Keyboard) or +(Clear Keyboard) 80062 PC 0 Ι Operation *SW-1 Display Mode SW-5 8087 Installed SW-2 or Display Mode SW-6 1 5 1/4 Drive SW-7 2 RAM Size SW-3 3 RAM size SW-4 5 1/4 Drive SW-8 4 Speaker Data 5 +Timer Channel 2 Output 6 +I/O Channel Check 7 Spare (low) %0063 Command/Mode Register Mode Register = %99 * Refer to the system User's Manual for switch settings NOTE! A plus (+) indicates a bit value of 1 performs the specified function A minus (-) indicates a bit value of 0 performs the specified function SPEAKER INTERFACE The system contains a small speaker, which can be driven from one or both of the following sources: 1. Alternating the value of bit 2 of port B of the PPI. 2. Programming channel 2 of the programmable interval timer.

TeleVideo Systems, Inc.

Page 4.6

KEYBOARD

The keyboard is controlled by an Intel 8048 microprocessor. The 8048 performs keyboard scanning, buffering of up to 16-key scan codes, bidirectional communications with the system board, and executes the handshake protocol required by each scan-code transfer.

The keyboard sends scan codes back to the system board as shown in Table 4-5. All keys are typematic and generate a make and break scan code. Break codes are formed by adding %80 to the make code.

Table 4-5 Keyboard Scan Codes

	Code	e		Code			
Кеу	Decimal	Hex	Кеу	Decimal	Hex		
Function	Keys						
Fl	59	%3B	F6	64	840		
F2	60	%3C	F7	65	841		
F3	61	83D	F8	66	842		
F4	62	%3E	F 9	67	843		
F5	63	83F	F10	68	844		
Alphanum	eric Keys						
1	2	82	А	30	%1E		
2	3	83	S	31	%1F		
3	4	%4	D	32	820		
4	5	85	F	33	821		
5	6	86	G	34	822		
6	7	87	Н	35	823		
7	8	88	J	36	824		
8	9	%9	K	37	825		
9	10	80A	\mathbf{L}	38	826		
0	11	%0B	;	39	827		
-	12	80C	i	40	828		
=	13	%0D	`	41	%29		
Q	16	%10	Λ	43	%2 ₿		
W	17	%11	Ζ	44	%2C		
Е	18	%12	Х	45	%2D		
R	19	%13	С	46	%2 E		
Т	20	814	V	47	82F		
Y	21	%15	В	48	830		
U	22	%16	N	49	831		
I	23	817	М	50	832		
0	24	%18	,	51	833		
Ρ	25	%19	•	52	834		
[26	%1A		53	\$35		
]	27	%1B	PrtSc	55	\$37		
			SPACE B	AR 57	839		

Numeric Keypad

7 8 9 - 4 5 6	71 72 73 74 75 76 77	847 848 849 84A 84B 84C 84C 84D	+ 1 2 3 0 (Ins) . (Del)	78 79 80 81 82 83	84E 84F 850 851 852 853
Control Esc	Characte	rs %1	Shift (R)	54	\$36

ESC	T	81 1	Shift (R)	54	*30
Backspace	14	80E	Alt	56	*38
Tab	15	%0F	Caps Lock	58	83A
Enter	28	%1C	Num Lock	69	845
Ctrl	29	%1D	Scroll Lock	70	846
Shift (L)	42	%2A			

VIDEO SECTION

The video section operates in an alphanumeric mode and a bitmapped graphics mode.

The alphanumeric mode provides two resolutions. The lowresolution mode is a 40-column by 25-row display using an 8-dots wide by 9-dots high character box and 7 dots x 7 dots with one descender character font. The high-resolution mode is an 80column by 25-row display with an 8-dots wide by 9-dots high character box and 7 dots x 7 dots with one descender character font. The alphanumeric modes support 256 different character codes (see Appendix D). An 8-kilobyte ROM character generator contains the two different fonts and a jumper option gives a single-dot font or double-dot font in a character size of 8 dots x 9 dots in any alphanumeric mode.

The black-and-white mode provides reverse video, blinking, and highlighting character attributes. The color mode has 16 foreground and eight background colors for each character. Blinking on a per-character basis is also available.

There are 16 kilobytes of static memory used for the display buffer. In the alphanumeric modes, eight screen displays can be stored in the 40 x 25 mode and four screen displays can be stored in the 80 x 25 mode. The start of each display page begins at an even 2- or 4-kilobyte offset and is accessed by changing the offset in the start-address registers.

Two resolutions are provided in the bit-mapped graphics mode; a medium resolution color graphics mode of 320 X 200 pixels and a high resolution black-and-white mode of 640 X 200 pixels.

TeleVideo Systems, Inc.

Each pixel can have one of four colors in the medium-resolution mode. The background color can be one of sixteen colors, with one of two software-selectable palettes providing the three remaining colors. One palette contains red, green, and brown and the other palette contains cyan, magenta, and white, as shown in Figure 4-2. Since both graphics modes require 16 kilobytes of the buffer to define the screen display, the high resolution is available only in black-and-white.

Figure 4-2 Software-Selectable Palettes

Controller Programming

There are nineteen internal registers in the CRT controller that define and control a raster-scan CRT display. The 5-bit, write-only Index register is used as a pointer to the other eighteen registers. This register is loaded from the CPU by executing an OUT instruction to I/O address %3D4.

Any one of the 18 controller registers can be loaded by loading the Index register at 3D4 with the necessary pointer (0-17) decimal) and then loading the Data register with the desired value using an OUT instruction to %3D5. Table 4-6 lists the values that are loaded into the CRT controller registers for controlling the various operational modes.

Table 4-6 **CRT Controller Registers**

Reg. No.	Register	1/0	40x25 Alpha Hex	8 2 E	80x25 Alpha Iex	G M H	raphics lode lex
R0	Horizontal Total	WO	838		871		%38
Rl	Horizontal Displayed	WO	828		850		828
R2	Horizontal Sync Position	WO	%2D		85 9		€2D
R3	Horizontal Sync Width	WO	80A		%0A		80A
R4	Vertical Total	WO	%1C		%1C		%7F
R5	Vertical Total Adjust	WO	801		%01		806
R 6	Vertical Displayed	WO	819		%1 9		864
R7	Vertical Sync Position	WO	%1A		%1 9		870
R 8	Mode Control	WO	802		802		%02
R 9	Max. Scan Line Address	WO	808		808		801
R10	Cursor Start	WO	808		808		80
R11	Cursor End	WO	808		808		80
R12	Start Address MSB	WO	80(Pq	0)	%0(Pq	0)	80
R13	Start Address LSB	WO	%0(Pq	0)	%0(Pq	0)	80
R14	Cursor Address MSB	R/W			2		
R15	Cursor Address LSB	R/W					
R16	Light Pen Address MSB	RO	MA8 -	MAIS	3		
R17	Light Pen Address LSB	RO	MA0 -	MA7			

NOTE! Addresses in start-address and cursor-address registers are offsets into graphics memory. The CRT controller views these values as offsets into the character positions, ignoring attribute bytes; therefore, the offsets are 1/2 the offset value as viewed by the CPU.

Mode-Select Register

The 6-bit, write-only mode-select register is located at %3D8 and is used to select the video mode. Table 4-7 lists the bit assignments for the mode-select register and Table 4-8 summarizes this register.

Table 4-7 Mode-Select Register

Bit	State	Function
0	0 1	40 x 25 alphanumeric mode 80 x 25 alphanumeric mode
1	0 1	Selects alphanumeric mode Selects 320 x 200 graphics mode
2	0 1	Selects color mode Selects black-and-white mode
3	1	Enables the video signal at certain times when modes are being changed (the video signal should be disabled when changing modes)
4	1	Selects 640 x 200 high-resolution black-and- white graphics mode
5	1	Enables blinking attribute in alphanumeric modes

Table 4-8 Mode-Select Register Summary

5	4	Bits 3	2	1	0	Mode Selected
1	0	1	1	0	0	40 x 25 Alphanumeric Black-and-
						White
1	0	1	0	0	0	40 x 25 Alphanumeric Color
1	0	1	1	0	1	80 x 25 Alphanumeric Black-and-White
1	0	1	0	0	1	80 x 25 Alphanumeric Color
х	0	1	1	1	0	320 x 200 Black-and-White Graphics
х	0	1	0	1	0	320 x 200 Color Graphics
х	1	1	1	1	0	640 x 200 Black-and-White Graphics

Color-Select Register

The 6-bit, write-only color-select register, located at 3D9 controls the border colors in alpha mode and background colors when in the 320 x 200 graphics mode. Table 4-9 lists the bit assignments for the color-select register.

,

.

Table 4-9 Color-Select Register

Bit	Function	40x25 Alpha	MODE 320x200 Graphic	640x200 Graphic				
0	Set Blue	Border Color	Background	Foreground				
1	Set Green	Border Color	Background	Foreground				
2	Set Red	Border Color	Background	Foreground				
3	Set Intensity	Border Color	Background	Foreground				
4	Set Background Background Intensified Set Intensity							
5	Palette Select		0 - red, green 1 - cyan, mage	, brown nta, white				
6	Not used							
7	Not used							
When	bit 5 is set t	o 0, colors are	determined as	follows:				
C1 0 0 1 1	C0Set0Back1Gree0Red1Brow	Selected ground, as dete n n	rmined by bits	0-3				
When	bit 5 is set t	o l, colors are	determined as	follows:				
C1 0 0 1 1	CO Set O Back 1 Cyan O Mage 1 Whit	Selected ground, as dete nta e	rmined by bits	0-3				

Status Register

The 4-bit, read-only status register is located at %3DA. Table 4-10 lists the status register bit assignments.

Hardware Programming

Table 4-10 Status Register

Bit	Function	Description			
0	Display Enable	A l indicates a display cycle is active.			
1	Light Pen	A l indicates that a positive going edge of the signal Trigger Set from the light pen has set the light pen's trigger. This trigger is reset upon power-on and may be cleared by performing an I/O OUT command to address %3DB. No specific data setting is required, the action is address-activated.			
2	Light Pen	Indicates the status of the light pen switch. A 0 indicates that the switch is on.			
3	Vertical Sync	When active, indicates that the raster is in a vertical retrace mode.			
4-7	Not used	15 In a vertical retract mode.			

Alphanumeric Mode

The alphanumeric mode supports 256 character codes (refer to Appendix D). Each display character is defined by two bytes in the display buffer memory. An even-numbered byte contains the character code and the following odd-numbered byte contains the corresponding character attribute. Table 4-11 lists the bit assignments for the character attribute byte.

Table 4-11 Character Attribute Byte

		Attribut				. Byte					
Funct	ion	7 Blk	6 R	5 G	4 R	З [¯] т	2 R	1 G	0 B	Background	Foreground
- unoc.		DTU	**	U	2	*	1.	Ŭ	2		00101
Normal		BL	0	0	0	In	1	1	1	Black	White
Revers	se Video	BL	1	1	1	In	0	0	0	White	Black
Blank	(Black)	BL	0	0	0	In	0	0	0	Black	Black
Blank	(White)	BL	1	1	1	In	1	1	1	White	White
NOTE !	R =	Red	ed BL = 1: Blinking, 0: steady								
	G = B =	Blu	en e		I	n :	= 1 = 1	.: I	nte	ensity set,	0: normal

Bits 0-3 indicate the foreground color and bits 4-6 indicate the background color. The standard display will produce white characters on a black background with all other foreground/background code combinations. A color monitor will produce the foreground or background colors listed in Table 4-12. The background intensity is set in bit 4 of the color-select register.

Table 4-12 Color Codes

R	G	В	Ι	Color
0	0	0	0	Black
0	0	1	0	Blue
0	1	0	0	Green
0	1	1	0	Cyan
1	0	0	0	Red
1	0	1	0	Magenta
1	1	0	0	Brown
1	1	1	0	White
0	0	0	1	Gray
0	0	1	1	Ligĥt Blue
0	1	0	1	Light Green
0	1	1	1	Light Cyan
1	0	0	1	Light Red
1	0	1	1	Light Magenta
1	1	0	1	Yellow
1	1	1	1	White (High Intensity)

NOTE! Not all RGB monitors recognize the intensity bit.

Graphics Mode

There are two graphics modes: a 320 x 200 pixels mediumresolution color graphics mode and a 640 x 200 pixels highresolution black-and-white mode. Both modes use memory-mapped graphics and require 16 kilobytes to define the screen.

The graphic information for the screen display is stored in two 8-kilobyte banks as shown in Figure 4-3.
Figure 4-3 Graphic Memory Addresses

Address	Function
%B8000	Even Scans
%B9EF0	8 kilobytes
	Not Used
%BA000	 Odd Scans (1 - 199)
%BBF3F	8 kilobytes
%BBFFF	Not Used

In the medium-resolution mode, each byte contains information for four pixels as shown in Table 4-13.

Table 4-13 Medium-Resolution Byte Usage

7	6	5	4	3	2	1	0
C1	C0	Cl	C0	Cl	C0	C1	C0
First disp pixe	t lay l	Secon displ pixel	nd .ay	Third displ pixel] Lay L	Fourt displ pixe]	ch Lay L

Each pixel may have one of four colors, while the background color may be one of 16 colors. One of two software-selectable palettes provides the remaining three colors, and are selected by bit 5 of the color-select register. Table 4-14 shows the color selection logic.

Table 4-14 Medium-Resolution Color Selection Logic

Cl	C0	Color
0	0	l of 16 preselected background colors
0	1	If palette 1 Green If palette 2 Cyan
1	0	Red Magenta
1	1	Brown White

In the high-resolution black-and-white mode, each bit of a display byte contains the state of one display pixel. Bit 7 corresponds to the first display pixel and bit 0 corresponds to the eighth display pixel.

FLOPPY DISK CONTROLLER

The floppy disk controller (FDC) uses a write only, digitaloutput register at %3F2 to control drive motors, drive selection, and feature enable. Table 4-15 lists the digital-output register bit assignments.

```
Table 4-15
Digital-Output Register
```

Bits	7	6	5	4	3	2	1	0								
	1	1	1	1	1			1								
	- 1	1	1	1	1	1	0	0	= D	rive	еA	sele	cted			
			I		1		0	1	= D	rive	эB	sele	cted			
	1	1	I	1	1	1										
		1	1		1	0	$= \mathbf{F}$	DC	hel	d re	eset					
	1	1	1	1	1	1	$= \mathbf{F}$	DC	ena	bled	E	•				
			1	1	1											
	1	1	I	1	0	= I	nte	rru	ipt	and	DMA	req	uest	I/0	drive	r
						đ	isa	ble	đ			-				
	1	1	1	1	1	= I	nte	rru	ipt	and	DMA	req	uest	I/0	drive	enabled
	1		I	1					_			-				
	1	1	1	0	= D	riv	еA	mc	otor	of:	£					
	- 1	1	1	1	= D	riv	еA	mc	otor	on :						
	1	1														
			0	= D	riv	еВ	mo	tor	c of	f						
			1	= D	riv	e B	mo	toi	c or	l						
	1	1														
N	lot	use	d													

The FDC has two registers accessible to the CPU: a status register at %3F4 and a data register at %3F5. The status register contains status information on the FDC, as shown in Table 4-16 and may be accessed at any time. The data register stores data, commands, and parameters and provides floppy disk drive (FDD) status information. Data bytes are read from or written to the data register in order to program or obtain results after a command.

```
Table 4-16
FDC Status Register
(%3F4)
Bit
                  3
                    2
    7
        6
           5
              4
                        1
                           0
     L
                  1
                     1
                           1
                           1 = FDD A is in the seek mode
     L
           1
               1
                  1
                     L
                  1
     1
           1
               L
                     L
                        1
                        1 = FDD B is in the seek mode
     Ł
        1
           1
                  ł
        1
           1
                 E
               Ŧ.
        1
           1
              l not used
     L
     1
        1
              - 1
     1
        I
           1
              1 = FDC is busy - a read or write command is in
        1
     1
            1
                                  progress
        1
           1 = FDC is in the non-DMA mode
     ŧ
     1
     0 = Data transfer from CPU to FDC data register
     1 = Data transfer from FDC data register to CPU
     1 = Data register is ready to send or receive data
```

The FDC is capable of performing 15 different commands. Commands are initiated by a multi-byte transfer from the CPU. The result after execution of a command may include a multi-byte transfer back to the CPU. Table 4-17 is a summary of the FDC commands. Table 4-18 defines the symbols used in the command table.

Table 4-17 FDC Command Summary

Command										
Phase	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Remarks
				R	EAD	DATA	L			
Command	W W	MT X	MF X	SK X	0 X	0 X	1 HD	1 1151	0 US0	Command Codes
	W W	~			С Н			001	0.50	Sector ID information
	W W				R N	l				prior to command
	W				EO	T				execution
	W W				GP DT	L L				

•

Executio	n		Data transfer between FDD and
Result	R	<u>Տ</u> መባ	system. Status
Rebuic	R	STI	after command
	R	ST2	execution.
	R	С	Sector ID
	R	Н	information
	R	R	after command
	R	N	execution.

				RE	AD D	DELEI	red I	DATA		
Command	W W	МТ х	MF x	SK x	0 x	1 x	1 HD	0 US1	0 US0	Command Codes
	W				C	2				Sector ID
	W				H	I				information
	W				F	2				prior to
	W				N	1				command
	W				EC)T				execution
	W				GF	PL				
Frequeion	W				DI	.г				Data transfor
Execution										between FDD and system. Status
Result	R				SI	0				information
	R				SI	1				after command
	R				SI	[2				execution.
	R				C					Sector ID
	R				E E	i				information
	R				r	х л				arter command
	К				Г	N				execution.
					WR]	TE I	oata			
Command	W	МT	MF	0	0	0	1	0	1	Command Codes
	W	х	х	х	Х	х	HD	USl	US0	
	W				C	2				Sector ID
	W				F	ł				information
	W				F	2				prior to
	W				1	N N				command
	W				EC)T				execution

GPL

 \mathbf{DTL}

TeleVideo Systems, Inc.

W

W

Execution										Data transfer between FDD and system. Status			
Result	R R R R R R				ST ST ST C H R N) L 2				after command execution. Sector ID information after command execution.			
WRITE DELETED DATA													
Command	W W	MT X	MF X	0 x	0 x	1 x	0 HD	0 US1	l USO	Command Codes			
	W W W W W W				C H R EO GP DT	r L L				Sector ID information prior to command execution			
Execution										Data transfer between FDD and system. Status			
Result	R R R R R R R				ST ST ST R N	0 1 2				ID information after command execution. Sector ID information after command execution.			
				J	READ	A T	RACE	τ					
Command	W W W W W W W	0 x	MF x	SK x	0 x H R N EO GPI DT	O x T L	0 HD	l US1	0 US0	Command Codes Sector ID information prior to command execution			

Execution										Data transfer between FDD and system. FDC reads all cylinders from index hole to EOT.
Result	R R P				ST ST	0 1 2				Status information after command
	R				C	2				Sector ID
	R				н					information
	R				R					after command
	R				N					execution.
Execution										First correct ID information cylinder is stored in data register.
Result	R				\mathbf{ST}	Status information				
	R				ST	1				after command
	R				ST	2				execution.
	R				С п					Sector ID
	R D				n D					during execution
	R				N					during execution.
				т		nn a	መከእሰ	72		
				I	UNHA	1 8	IKA	-N		
Command	W W	0 x	MF X	0 x	0 x	l x	l HD	0 US1	0 US 0	Command Codes
	W				N					Bytes/Sector
	W				SC					Sector/Track
	W				GP	L				Gap 3 filler
Fuequeien	W				D					byte. EDC formats an
EXECUTION										entire cylinder
Result	R				Status					
	R				ST	1				information

ST2

С Н

R

Ν

R

R

R R

R

after command

execution. In this case, ID

has no meaning.

information

Command	W W W W W W W	MT x	MF X	SK x	l x H R EO GP DT	0 x T L	0 HD	0 US1	1 US0	Command Codes Sector ID information prior to command execution
Execution										Data compared between FDD and
Result	R R R R R R R				ST ST C H R N	0 1 2				information after command execution. Sector ID information after command execution.
				SCI	AN L	OW OI	R EQ	QUAL		
Command	W W W W W W W	MT X	MF X	SK x	1 x C H R SO GP	l x T L	0 HD	0 US1	l USO	Command Codes Sector ID information prior to command execution
Execution	VY				D1.	L				Data compared between FDD and
Result	R R R R R R R				ST ST C H R N	0 1 2				system. Status information after command execution. Sector ID information after command execution.

SCAN EQUAL

Command	W W W W W W W	MT x	MF x	SK x	1 x H R N EO GPI DTI	l x r L	l HD	0 US1	1 US0	Command Codes Sector ID information prior to command execution			
Result	R R R R R R R				ST ST ST R N	0 1 2				bata compared between FDD and system. Status information after command execution. Sector ID information after command execution.			
RECALIBRATION													
Command Execution	W W	0 x	0 x	0 x	0 x	0 x	1 0	l USI	1 US0	Command Codes Head retracts to track 0.			
			SE	NSE	I NTE	RRUP	r si	ratus	5				
Command Result	W R R	0	0	0	0 ST PC	1 0 N	0	0	0	Command Codes Status FDC information at end of seek operation			
				SP	ECIF	Y							
Command	W W W	0 I	0 SRT-	0 HLT-	0 I	0	0 F	1 HUT 	l ND	Command Codes			
				SEN	SE D	RIVE	ST	ATUS					
Command Result	W W R	0 x	0 x	0 x	0 x ST	0 x 3	1 HD	0 US1	0 US 0	Command Codes Status FDD information			

SCAN HIGH OR EQUAL

ST0 = \$80.

						SEEI	K			
Command	W W W	0 x	0 x	0 x	0 x N(l x CN	1 HD	l USl	1 US0	Command Codes
Execution										Head positioned over proper cylinder on diskette.
						I NVA	LID			
Command	W			Inva	alid	Code	es			Invalid command codes (NoOp-FDC goes into standby state).

- Result R STO
- Table 4-18 FDC Command Symbols

Symbol	Name	Description
С	Cylinder Number	The current/selected cylinder (track) number.
D	Data	The data pattern that is written into a sector.
D7-D0	Data Bus	8-bit data bus, where D7 stands for the most significant bit and D0 the least significant bit.
DTL	Data Length	When N is defined as 00, DTL stands for data length that users read from or write to the sector.
EOT	End of Track	The final sector number on a cylinder.
GPL	Gap Length	The length of gap 3 (spacing between sectors excluding VCO sync field).
Н	Head Address	The head number 0 or 1, as specified in the ID field.
HD	Head	A selected head number 0 or 1. (H=HD in all command words.)
HLT	Head Load Time	The head load time in the FDD (4 to 512 milliseconds in 4-millisecond increments).

~

Hardware Programming

HUT	Head Unload Time	The head unload time after a read or write operation has occurred (0 to 480 milliseconds in 32-millisecond increments).
MF	FM or MFM Mode	If MF is low, FM mode is selected. If it is high, MFM mode is selected only if MFM is implemented.
МТ	Multi-Track	If MT is high, a multi-track operation is to be performed. (A cylinder under both HDO and HDI will be read or written.)
N	Number	The number of data bytes written in a sector.
NCN	New Cylinder	A new cylinder number to define the desired position of the head after the seek operation.
ND	Non-DMA Mode	Operation in the non-DMA mode.
PCN	Present Cylinder	Cylinder number at the completion of sense-interrupt-status command that indicates the position of the head at present time.
R	Record	The sector number to be read or written.
R/W	Read/Write	Either a read or write operation.
SC	Sector	Indicates the number of sectors per cylinder.
SK	Skip	Skip deleted-data address mark.
SRT	Step Rate Time	FDD stepping rate 2 to 32 microseconds (in 2-microsecond increments).
STO ST1 ST2 ST3	Status O Status 1 Status 2 Status 3	One of the four command status registers that store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the main status register. These registers may only be read after a command has been executed and contain information relevant to that particular command.

STP Scan Test If STP=1 during a scan operation, the data in contiguous sectors is compared byte-by-byte with data sent from the CPU. If STP=2, then alternate sectors are read and compared.

Command Status Register 0

Bit	Name		Description
USO USI	Unit	Select	Aselecteddrive number encodedthe same as as bits 0 and 1 of the digital-output register.
D0 D1	Unit Unit	Select O Select l	Used to indicate a drive unit number at interrupt.
D2	Head	Address	Used to indicate the state of the head at interrupt.
D3	Not F	leady	This bit is set when the FDD is in the not- ready state and a read or write command is issued.
D4	Equip Check	pment	This bit is set if a fault is received from the FDD, or if the track 0 signal fails to occur after 77 step pulses (recalibrate command).
D5	Seek	End	This bit is set when the FDC completes the seek command.
D6	Inter	rupt	
D7	Code D7	D6	Normal termination of command Command was
	0	0	completed and properly executed.
	0	1	Abnormal termination of command. Execution of the command was started, but was not successfully completed.
	1	0	Invalid command issue. The command that was issued was never started.
	1	1	Abnormal termination because, during execution, the ready signal from the FDD changed states.

Command Status Register 1

Bit Name

Description

Hardware Programming

- D0 Missing Address This bit is set if the FDC cannot Mark detect the ID address mark. Note, the missing address mark in the data field of status register 2 is also set.
- Dl Not Writeable This bit is set if the FDC detects a write- protect signal from the FDD during execution of a write data, cylinder command.
- D2 No Data This bit is set if 1) the FDC cannot find the sector specified in the ID register during execution of a read data, write deleted data, or scan command, 2) the FDC cannot read the ID field without an error during execution of the read ID command, or 3) starting sector cannot be found during execution of the read a cylinder command.
- D3 Not used Always set = 0
- D4 Over Run This bit is set if the FDC is not serviced by the main system during data transfers within a certain time interval.
- D5 Data Error This bit is set if the FDC detects a cyclic redundancy check (CRC) error in either the ID field or the data field.

D6 Not used Always set = 0

D7 End of Cylinder This bit is set when the FDC tries to access a sector beyond the final sector of a cylinder.

Command Status Register 2

Bit	Name	Description
D0	Missing Address Mark in Data Field	Thisbit is set if the FDC cannot find a data address mark or deleted data address in Data Field when data is read from the medium.
Dl	Bad Cylinder	This bit is set when contents of C on the medium are different from that stored in ID register, when contents of C are %FF.

Hardware Programming

- D2 Scan Not Satisfied This bit is set if FDC cannot find a sector on the cylinder that meets the condition during execution of scan command.
- D3 Scan Equal Hit This bit is set if equal condition is satisfied during execution of scan command.
- D4 Wrong Cylinder This bit is set when the contents of C on the medium are different from that stored in the ID register.
- D5 Data Error in This bit is set if the FDC detects a CRC Data Field error in the data.
- D6 Control Mark This bit is set if the FDC encounters a sector containing a deleted data address mark during execution of read data or scan command.

D7 Not used Always = 0

Command Status Register 3

Bit	Name	Description
D0	Unit Select O	The status of the unit-select-0 signal from the FDD.
Dl	Unit Select l	The status of the unit-select-l signal from the FDD.
D2	Head Address	The status of the side-select signal from the FDD.
D3	Two Side	The status of the two-side signal from the FDD.
D4	Track O	The status of the track 0 signal from the FDD.
D5	Ready	The status of the ready signal from the FDD.
D6	Write Protect	The status of the write-protected signal from the FDD.
D7	Fault	The status of the fault signal from the FDD.

TeleVideo Systems, Inc.

SERIAL PORT

The WD8250 UART can be programmed to operate from 50 to 9600 baud. Five, six, seven, or eight bit characters with 1, 1-1/2, or 2 stop bits are supported. A fully prioritized interrupt system controls transmit, receive, error, line status, and data set interrupts. Appendix F lists the pin connector assignments for the serial port.

Different modes of operation are selected by initializing the appropriate UART registers. The divisor latch access bit (DLAB), bit 7 of the line-control register, is used to select certain registers. Table 4-19 lists the UART I/O register addresses.

Table 4-19 **UART I/O Register Addresses**

Address I/O		1/0	Register Selected	DLAB State			
Р	5						
%3F8	%2F8	0	Transmitting Holding	0 (Write)			
%3F8	%2F8	I	Receiver Data Register	0 (Read)			
%3F8	82F8	0	Baud-rate Divisor LSB	1			
%3F 9	82F 9	0	Baud-rate Divisor MSB	1			
%3F 9	82F9	0	Interrupt Enable	0			
%3FA	82FA	I	Interrupt Identification				
%3 FB	82FB	0	Line Control				
%3FC	82FC	0	Modem Control				
%3FD	%3FD	I	Line Status				
%3FE	%3FE	I	Modem Status				

P = Primary, S = Secondary

The serial port primary adapter uses interrupt line IRQ4. To allow the port to send interrupts to the system, bit 3 of the modem control register must be set high. With bit 3 high, any interrupts allowed by the interrupt enable register will cause an interrupt. A secondary adapter may be utilized with the addition of an optional board.

Line-Control Register

The format of the asynchronous data communication is specified through the line-control register (the contents of this register may be retrieved for inspection). Table 4-20 lists the bit assignment of the line-control register.

1

Table 4-20 Line-Control Register

Bit Assignment

0	Character length select bit 0
1	Character length select bit 1
2	Number of stop bits
3	Parity enable
4	Even parity select
5	Stick parity
6	Set break
7	Divisor Latch Access Bit

Bits 0 These bits set the number of bits in each transmitted transmitted or received serial character. They are encoded as follows:

	Bit l	Bit O	Character	Length
	0 0 1 1	0 1 0 1	5 Bits 6 Bits 7 Bits 8 Bits	
Bit 2	This bit s	specifies t	the number	of stop bits as follows:
	Bit 2	Character	Length	Stop Bits
	0 1 1	5 - 8 5 6 - 8		1 1-1/2 2
Bit 3	Parity ena	able bit.	0 = No par 1 = Parity	tity bit y bit generated
Bit 4	This bit l	has the fol	llowing ef:	fect:
	Bit 4	Bit 3	<pre># of Data</pre>	bits and parity bit
	0 1	1 1	Odd number Even numbe	c er
Bit 5	This bit l	has the fo	llowing ef:	fect:
	Bit 5	Bit 4	Bit 3	Parity bit state
	1 1	0 1	1 = 1 =	1 0
Bit 6	Set break output (SC regardles	control b: OUT) is for s of other	it. When s ced low an transmitte	set to l, the serial nd remains there er activity.

Page 4.29

Bit 7 Divisor Latch Access Bit. This bit must be set to 1 to access the divisor latches of the baud rate generator during a read or write operation. This bit must be set to 0 to access the receiver data register, the transmitting holding register, or the interrupt enable register.

Programmable Baud Rate Generator

The UART contains a programmable baud rate generator that is capable of taking the clock input and dividing it by any divisor from 1 to 65,535. The output frequency of the baud rate generator is 16 times the baud rate.

divisor # = input frequency / (baud rate x 16)

Two 8-bit latches store the divisor in a 16-bit format. These divisor latches must be loaded during initialization in order to ensure the desired operation of the baud rate generator. The address bits for the divisor latches are shown in Table 4-21. The divisor baud rates are listed in Table 4-22.

Table 4-21 Divisor Latches

(DLAB=1)				% 3E	?9							8	3F8				
Address	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Divisor	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Table 4-22

Divisor Baud Rates

Desired	Baud	Rate		Divisor	
			Нех		Decimal
50			80 9	00	2304
75			%06	00	1536
110			804	17	1047
134.5			%03	59	857
150			803	00	768
300			%01	80	384
600			800	C0	192
1200			800	60	96
1800			800	40	64
2000			800	3A	58
2400			800	30	48
3600			800	20	32
4800			800	18	24
7200			800	10	16
9600			800	0C	12

Line-Status Register

The line-status register provides status information on data transfer. Table 4-23 lists the line-status register bit assignments.

Table 4-23 Line-Status Register (%3FD or %2FD)

Bit Assignment

0	Data	Rea	ıdy
1	Overn	un	error

- 2 Parity error
- 3 Framing error
- 4 Break interrupt
- 5 Transmitting holding register empty
- 6 Transmitting shift register empty
- 7 Set = 0
- Bit 0 Data Ready indicator. This bit is set to 1 whenever a complete incoming character has been received and transferred into the receiver buffer register. This bit is reset to 0 either by the CPU reading the data in the receiver buffer register or by writing a logical 0 into it from the CPU.
- Bit 1 Overrun error indicator. This bit indicates that data in the receiver buffer register was not read by the CPU before the next character was transferred into the receiver buffer register. This bit is reset whenever the CPU reads the contents of the line status register.
- Bit 2 Parity error indicator. This bit indicates that the received data character does not have the correct even or odd parity, as selected by the even parity-select This bit is set to 1 upon detection of a parity bit. error and reset to 0 whenever the CPU reads the contents of the line status register.
- Bit 3 Framing error indicator. This bit indicates that the received character did not have a valid stop bit. This bit is set to 1 whenever the stop bit following the last data bit or parity bit is detected as a zero bit.
- Bit 4 Break Interrupt indicator. This bit is set to 1 whenever the received data input is held in the 0 state for longer than a full word transmission time.
- NOTE! Bits 1-4 are the error conditions that produce a receiver line status interrupt whenever any of the corresponding conditions are detected.

Page 4.31

- Bit 5 Holding register empty indicator. This bit indicates that the UART is ready to accept a new character for transmission. In addition, this bit causes the UART to issue an interrupt to the processor when the transmit holding register empty interrupt enable is set high. Bit 5 is set to 1 when a character is transferred from the transmitter holding register into the transmitter shift register. The bit is reset to 0 when the CPU loads the transmitter holding register.
- Bit 6 Transmitter shift register empty. This bit is set to 1 whenever the transmitter shift register is idle. It is reset to 0 upon a data transfer from the transmitter holding register to the transmitter shift register. Bit 6 is a read-only bit.
- Bit 7 This bit is set permanently to 0.

Interrupt-Identification Register

The interrupt-identification register is used to indicate that a prioritized interrupt is pending and the type of interrupt. Table 4-24 shows the interrupt-identification register bit assignments and Table 4-25 describes the interrupt control functions.

Table 4-24 Interrupt-Identification Register (%3FA or %2FA)

Bit Assignment

0	0 if interrupt pending
1	Interrupt ID bit 0
2	Interrupt ID bit 1
3-7	Set = 0

- Bit 0 Indicates whether an interrupt is pending. When set to 1, no interrupt is pending and polling (if used) is continued.
- Bit 1 & 2 These two bits identify the highest priority interrupt pending as indicated in **Table 4-25.**

Hardware Programming

Table 4-	·25	
Interrup	t Control	Functions

Inte	rupt	ID		Interrupt Set and Reset Functions			
Regis 2	ster 1	Bits O	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Action	
0	0	1		None	None		
1	1	0	First	Received character error (break condition)	Overrun error or Parity error or Framing error or Break interrup	Read the line-status register t	
1	0	0	Second	Received data available	Receiver data available	Read the receiver data reg.	
0	1	0	Third	Transmitter ready	Transmitter holding reg. empty	Output a character to the transmitter holding register	
0	0	0	Fourth	Modem status changed	Clear to send or Data set ready or Ring indicator or Received line	Read the modem status register	

Interrupt-Enable Register

The interrupt-enable register is used to enable the four types of interrupts used in the UART. Table 4-26 lists the bit assignments for the interrupt enable register.

Table 4-26 Interrupt-Enable Register (%3F9 or %2F9 DLAB=0)

Bit Assignment

0	l = Enable Data Available Interrupt
1	1 = Enable Transmitter Holding Register Empty Interrupt
2	1 = Enable Receive Line Status Interrupt
3	1 = Enable Modem Status Interrupt
4-7	Set = 0

Modem-Control Register

The modem-control register controls the interface with the modem or data set. Table 4-27 lists the bit assignments for the modem control register.

Table 4-27 Modem-Control Register (%3FC or %2FC)

Bit	Assignment
0 1 2 3 4 5-7	Data Terminal Ready (DTR) Request to Send (RTS) Out 1 Out 2 Loop Set = 0
Bit O	When this bit is set to 1, the UART -DTR output is forced low (logic 0).
Bit l	When this bit is set to 1, the UART-RTS output is forced low (logic 0).
Bit 2	When this bit is set to 1, the UART -OUT 1 output is forced low (logic 0). This bit must be set to 1 for the UART to send interrupts to the system bus.
Bit 3	When this bit is set to 1, the UART -OUT 2 output is forced low (logic 0).
Bit 4	This bit provides a loopback feature for diagnostic testing. When set to 1, the following occurs:
	 The transmitter serial output is set low The receiver serial input is disconnected The output of the transmitter shift register is looped back into the receiver shift register input The four modem control inputs are disconnected The four modem control outputs are internally connected to the four modem control inputs
	In the diagnostic mode, data that is transmitted is immediately received. This feature allows the CPU to verify the transmit-and receive-data paths of the UART.
	In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The modem-control interrupts are also operational but the interrupt's sources are now the lower four bits of the modem- control register instead of the four modem-control inputs. The interrupts are still controlled by the

interrupt-enable register.

Bits 5-7 These bits are permanently set to 0.

Modem-Status Register

The modem-status register provides the current state of the control lines from the modem to the processor. In addition to the current-state information, four bits provide change information. Table 4-28 lists the bit assignments for the modem status register.

Table 4-28 Modem-Status Register (%3FE or %2FE)

Bit Assignment

0	Delta Clear to Send
1	Delta Data Set Ready
2	Trailing Edge Ring Indicator
3	Delta Receive Line Signal Detect
4	Clear to Send
5	Data Set Ready
6	Ring Indicator
7	Receive Line Signal Detect

- Bit 0 Delta Clear to Send bit. This bit indicates that the UART -CTS input to the device has changed state since the last time it was read by the CPU.
- Bit 1 Delta Data Set Ready bit. This bit indicates that the UART -DSR input to the device has changed since the last time it was read by the CPU.
- Bit 2 Trailing Edge Ring Indicator bit. This bit indicates that the UART -RI input to the device has changed from an on (logical 1) to an off (logical 0) state.
- Bit 3 Delta Receive Line Signal Detect bit. This bit indicates that UART -RLSD input has changed state.
- **NOTE!** Whenever bit 0, 1, 2, or 3 is set to 1, a modem status interrupt is generated.
- Bit 4 Clear to Send bit. This bit is the complement of the UART Clear to Send (-CTS) input. If bit 4 (LOOP) of the modem control register is 1, this is equivalent to the Request to Send bit in the modem control register.

- Bit 5 Data Set Ready bit. This bit is the complement of the UART Data Set Ready (-DSR) input. If bit 4 (LOOP) of the modem control register is 1, this bit is equivalent to the Data Terminal Ready bit in the modem control register.
- Bit 6 Ring Indicator bit. This bit is the complement of the UART Ring Indicator input. If bit 4 (LOOP) of the modem control register is 1, this bit is equivalent to the OUT 1 bit of the modem control register.
- Bit 7 Receive Line Signal Detect bit. This bit is the complement of the UART Received Line Signal Detect input. If bit 4 of the modem control register is 1, this bit is equivalent to the OUT 2 bit of the modem control register.

Receiver Data Register

The receiver data register contains the received character as listed in Table 4-29.

Table 4-29 Receiver Data Register (%3F8 or %2F8 DLAB=0 Read Only)

Bit Assignment

Data bit 0 (least significant bit - first bit received) 0 Data bit 1 1 2 Data bit 2 3 Data bit 3 4 Data bit 4 5 Data bit 5 6 Data bit 6 7 Data bit 7

Transmitter Holding Register

The transmitter holding register contains the character to be serially transmitted as listed in Table 4-30.

```
Table 4-30
Transmitter Holding Register
(%3F8 or %2F8 DLAB=0 Write Only)
```

```
Bit Assignment
```

0 Data bit 0 (least significant bit - first bit transmitted) Data bit 1 1 2 Data bit 2 3 Data bit 3 4 Data bit 4 5 Data bit 5 6 Data bit 6 7 Data bit 7

PARALLEL PORT

The parallel port uses three ports for data transfer and control. Tables 4-31, 4-32, and 4-33 list the three I/O ports, their addresses, and bit assignments.

Table 4-31 Data Output Port (%3BC)

Bit	Signal	Pin 🛊
0	Data O	2
1	Data l	3
2	Data 2	4
3	Data 3	5
4	Data 4	6
5	Data 5	7
6	Data 6	8
7	Data 7	9

```
Table 4-32
Output Control Port
(%3BE)
Pin
                17 16 14 1
   7 6 5 4 3 2 1 0
Bit
         1
       1
             1
                     1
                        1 0 = Normal setting
    not used |
                1
                T
                   1
                      1 = Pulse bit to 1 to output data to
             1
                   L
                      printer
             1
                1
                L
                   T
                     0 = No auto line feed (normal setting)
                1
                   1
             1
                     l = Auto line feed after carriage return
                I
                0 = Pulse bit must be set low for at least
                       50 microseconds to initialize printer
              I
                1
                   1 = Normal operation
             T
                1 = To allow printer to read output
             1
             0 = Printer interrupt disabled
             1 = IRQ7 interrupt enabled on printer Acknowledge
                 signal pulse
Table 4-33
Control Signal Input Port
(%3BD)
Pin 11 10 12 13 15
Bit
    7
       6
          5 4 3 2 1
                         0
           1
     I
        I
             1
                1
                   1
     1
           l not used
     L
           1
               | 0 = Printer error
     1
           | 1 = Printer normal
     1
          I
        ł
     I
        1
            0 = Printer not on line
     L
        1
            1 = Printer on line
        1
     1
           1
       0 = Printer has paper
     L
         1 = Printer out of paper
     0 = Acknowledge pulse
     1
       1 = Normal input
     0 = Printer busy, do not send data
     1 = Printer not busy, send data
```

Once the printer is initialized, data can be output using the following steps:

- 1. Send a data character to the data output port (%3BC).
- Check the printer status by reading the control-signal input port (%3BD). Note, bit 7 must be set to 1 before data can be strobed into the printer.
- 3. When the printer is ready, pulse bit 1 of the output-control port to 1 and then reset it to 0. Note, bit 3 must be set to 1 for the printer to read the data character.
- 4. When the printer has processed the data character, it sends back an acknowledge signal by pulsing bit 6 of the controlsignal input port low. The procedure is then repeated for the next data character.

I/O CHANNEL

The I/O channel provides data bus lines, address bus lines, interrupt lines, DMA control lines, and power and ground lines. These lines and signals are described in Table 4-34.

Table 4-34 I/O Channel Signals

Signal	Name	I/0	Descri	ption

- Address Bits O Lines A0 through A19 address system memory and I/O devices, allowing access of up to 1 megabyte of memory. A0 is the leastsignificant bit and A19 is the mostsignificant bit. Active high, these lines are addressed by the CPU or DMA.
- Address Enable O The Address Enable line disables the CPU and other devices from the I/O channel for DMA transfers. The DMA controls address and data lines and read/write command lines when this line is active high.
- Address Latch O Provided by the bus controller, Address Latch Enable Enable latches valid CPU addresses. When used with Address Enable, it indicates a valid address to the I/O channel. CPU addresses are latched with falling edge of Address Latch Enable.
- Data O Active low, these lines acknowledge DMA Acknowledge requests and refresh system dynamic memory.

- Data Bits I/O Lines D0 through D7 provide data bus bits for the CPU, memory, and I/O devices. Active high, D0 is the least significant bit and D7 is the most significant bit.
- Data Request I The peripheral devices use these asynchronous channel requests to gain DMA service. Request 1 is prioritized as the highest and request 3 as the lowest. A request is initiated by making a request line active high and holding it high until the corresponding data acknowledge line goes active.
- Interrupt I Whenan I/O device needs attention, Interrupt Request Request lines signal the CPU. Request 2 is prioritized as the highest and request 7 as the lowest. An interrupt request is initiated by raising the interrupt request line from low to high and holding it high until it is acknowledged by the CPU.
- I/O Channel I The I/O Channel line provides the CPU with Check parity information on I/O channel devices. A parity error is indicated by an active low signal.
- I/O Channel I I/O cycles are lengthened by an I/O device pulling the I/O channel line low, which allows slower devices to be easily attached to the I/O channel. When a slow device uses this line, it immediately drives it low as it detects a valid address and a read or write command. This line is held no longer than 10 clock cycles.
- I/O Read O Input/Output Read command line instructs an I/O device to drive its data onto the data bus. This active low line may be driven by the CPU or DMA.
- I/O Reset O I/O Reset signal initilizes or resets system logic upon power-up or a low line voltage outage. This active high signal is synchronized to the falling edge of clock.
- I/O Write O Input/Output Write command signal instructs an I/O device to read data on the data bus. It may be driven by the CPU or the DMA and is active low.
- Memory Read O Memory Read command signal instructs memory to drive its data onto the data bus. This active low line may be driven by the CPU or the DMA.

- Memory Write O Memory Write command signal instructs the memory to store the data on the data bus. This active low line may be driven by the CPU or the DMA.
- Oscillator 0 The oscillator is a high speed clock with a 70-nanosecond period (14.31818 MHz) and a duty cycle of 50%.
- System Clock 0 The system clock is a divide-by-three of the oscillator with a 210-nanosecond period and a duty cycle of 33%.
- Terminal Count O Active high, this line provides a pulse when the terminal count for a DMA channel is reached.

WINCHESTER DISK CONTROLLER BOARD

The Winchester disk controller board contains a WD1010-05 Winchester disk controller device to perform executive control over disk operations. To command the board, the system addresses a set of task file registers in the WD1010-05 with the I/O port address of each of the individual registers. Table 4-35 is a list of the individual registers, along with their I/O port addresses for the TS 1605H:

Table 4-35 TS 1605 Registers

Address	Read	Write
%0020	System Access	System Access
%0021	Error Flags	Write Precomp Cylinder
%0022	Sector Count	Sector Count
%0023	Sector Number	Sector Number
80024	Cylinder Low	Cylinder Low
%0025	Cylinder High	Cylinder High
80026	Sector/Drive/Head	Sector/Drive/Head
%0027	Status Register	Command Register

A detailed description of the WD1010-05 device is given in the referenced Western Digital documentation.

Task File Register Functions

For a typical operation, the task file registers are written to or read for status, and a command is given to the command register. The WD1010-05 then tri-states the address bus and executes the command. At the end of the operation, the task file is again opened to the system.

Error Register. Contains error flags for bad block detect, CRC data field, ID not found, aborted command, TK0000 error, and data address mark error. During read operations, the error register is read after the data is read out of buffer RAM, that is, after the byte count goes to zero. The error register bit assignments are listed in Table 4-36.

Table 4-36 Error Register Bit Assignments

Bit Description

- 0 This bit is set during a read sector command if the address mark is not found after the proper sector ID is read.
- This bit is set only by the restore command. It indicates 1 that the head is not positioned over track 000 after 1024 stepping pulses.
- 2 This bit is set if a command was issued while the status register shows a drive fault (bit 5), or command disable (bit 6) condition. This bit is also set if an undefined command is issued.
- 4 This bit is set when the desired cylinder, head, sector, or size parameter cannot be found after 8 revolutions of the disk. This bit is also set if a cyclic redundancy check error has occurred.
- This bit is set if a data field CRC error has occurred or 6 the data mark address has not been found.
- 7 This bit is set if an ID field has been encountered that contains a bad block mark (used for bad sector mapping).

Write Precomp. Defines the starting cylinder number at which reduced write current (RWC) begins. This value is in the range 0 to 255, and is internally multiplied by four to obtain the actual cylinder.

Sector Count. Contains the number of sectors that are to be transferred to buffer RAM. Because this is a decrementing function, all zeros are written for a 256-sector transfer and a 1 is written for a one-sector transfer.

Sector Number. Contains the starting sector of a transfer in the range 0 to 255. This register is incremented with every transfer.

Cylinder Number Low. Least significant eight bits of the starting cylinder number in the range 0 through 1023.

Cylinder Number High. Carries the most significant bits of the starting cylinder number as bits 0(8) and 1(9). The other bits of this register are unused.

Page 4.42

Sector/Drive/Head Register. Contains the sector size, drive number, and head number parameters for the operation:

Bit 7 6 5 4 3 2 1 0 1 1 1 1 Т 1 1 T 1 | 0 0 0 =Select head 0 1 1 | 0 0 1 =Select head 1 1 | 0 0 1 =Select head 1 1 | 0 0 1 =Select head 1 1 ł 1 1 | 1 1 1 = Select head 7 1 1 0 0 =Select drive 1 1 0 = 1 = 1 Select drive 2 1 1 1 I 1 $1 \quad 0 =$ Select drive 31 1 = Select drive 41 1 0 =Sector size 256 I. 0 0 = 1 = 512Ł 1 $1 \quad 0 = \text{Sector size } 1024$ 1 =Sector size 128L = Extension bit

Bit 7 is an extension bit that extends the data field by seven bytes when ECC codes are used. When set to 1, CRC is not appended to the end of the data field; the data field becomes sector size + 7 bytes long.

The SDH byte written into the ID field is different than the SDH register contents. The recorded SDH byte does not have the drive number written and contains a bad block in bit 7.

Status Register. Contains status bits for device busy, device ready, write fault (same as WF line), seek complete (same as SC line), data request (same as BDRQ line), command in progress, and error register flags set.

Bit Description

- 0 This bit is set whenever any bits in the error register are set. This bit is reset when a new command is written into the command register.
- 1 When this bit is set, a command is being executed and a new command should not be loaded.
- 3 This bit is set when the sector buffer should be loaded or read (depending on the command). It is reset upon completion of the operation.
- 4 This bit is set during a seek, and reset when the head settling time has expired.
- 5 This bit indicates a fault condition at the drive when set. An interrupt is generated when this bit is set.

This bit must be set for commands to execute. 6

7 This bit is set whenever the disk is being accessed. Commands should not be loaded into the command register when this bit is set. This bit is reset at the end of all commands except the read sector command. This bit is reset after the sector buffer is filled on the read sector command.

Command Register. This write-only register is used to load the desired command. A command begins to execute immediately upon loading. This register should not be loaded while bits 1 or 7 are set in the status register.

The command set consists of six commands, as shown in Table 4-37. Prior to loading a command, the task file registers must be set with the proper parameters. Except for the command register, the task file registers can be loaded in any order.

RESTORE - Restore heads. The restore command is usually used on a power-up condition. The head is stepped back to track 000. If after 1024 stepping pulses, the head is not over track 000, bit 1 of the error flag is set. The stepping rate used is determined by the head settling time. The rate entered into the rate field of the restore command is stored in an internal register and used in future commands with implied seeks (the default stepping rate is 7.5 ms.)

SEEK - For seek operations between multiple drives. Since all commands feature an implied seek, the seek command is primarily used for overlap seek operations on multiple drives. The rate field step rate is used and then stored in an internal register for future use. The direction and number of step pulses needed

Table 4-37 Command Register Format

Command	7	6	5	4	3	2	1	0
Restore	0	0	0	1	R3	R2	Rl	R0
Seek	0	1	1	1	R3	R2	Rl	R0
Read sector	0	0	1	0	Ι	М	0	0
Write sector	0	0	1	1	0	М	0	0
Scan ID	0	1	0	0	0	0	0	0
Write format	0	1	0	1	0	0	0	0

Notes 1.	s: R0	throu	ıgh	R 3	is the rate field:
	R3	R2	Rl	R	0
	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 0 1 1 1	0 0 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	<pre>= approx. 35 microseconds = 0.5 milliseconds = 1.0 milliseconds = 1.5 milliseconds = 2.0 milliseconds = 2.5 milliseconds = 3.0 milliseconds = 3.5 milliseconds = 4.0 milliseconds = 4.5 milliseconds = 5.0 milliseconds = 5.5 milliseconds = 6.0 milliseconds = 6.5 milliseconds = 7.0 milliseconds</pre>
2.	Mi	s the	e mu	lti	iple sector flag: 0 = transfer 1 sector 1 = transfer multiple sectors
3.	Whe ope	en li: erati	mite ons,	ed 1 , M	RAM buffer size does not allow multiple sector must be set to 0.
4.	I is	the	int	ter	rupt enable:
		0	= s i r	set is s read	interrupt when bit 3 of the status register set (sector buffer is ready to be loaded or d)
		1	= 5	set	
	The cy] stc cor	e valu Linde ored nmand	ue i r hi inte l is	igh/ erna tei	calculated by comparing the contents of the /low registers to the cylinder position number ally. After all steps have been issued, the rminated.
READ foll sect	owin or c	CTOR ng pr comma	- T ogra nd:	lran amm	nsfers one or more sectors to disk. The aing sequence should be used with the read
a.	Che rec	eck t giste	he s r un	sta nti]	tus of the Busy bit (bit 7) of the status l a reset condition is found.
b.	Wr: pai	ite t camet	o ti ers:	he ' :	task file registers with the transfer
		Pr Se Se Cy SD	econ ctor ctor lind H =	mp r co r nu der Des	<pre>reg = Desired precomp start track/4 ount = 1 umber = Sector number to read high/low = Desired cylinder number sired sector size, drive number, and head number</pre>

Page 4.45

TS 1605/1605H Technical Reference Hardware Programming

- с. Send the read sector command to the command register
- d. Delay 1 or 2 NOP instructions
- Check the status of the Busy bit (bit 7) of the status e. register until a reset condition is found.
- f. Read the data buffer (total number of bytes is equal to the sector size).
- Read the status register and check the error bit (bit 0). g.
- h. If the error bit is set, read the error register for error information.

WRITE SECTOR - Writes one or more sectors to disk. The following programming sequence should be used with the write command:

- Check the status of the Busy bit (bit 7) of the status a. register until a reset condition is found.
- Write to the task file registers with the transfer b. parameters:

Precomp reg = Desired precomp start track/4 Sector count = 1Sector number = Sector number to write Cylinder high/low = Desired cylinder number SDH = Desired sector size, drive number, and head number

- Send the write command to the command register. с.
- d. Write a sector of data to data buffer.
- e. Delay 1 or 2 NOP instructions.
- f. Check the status of the Busy bit Register (bit 7) of the status register until a reset condition is found.
- Re-read the status register and check the error bit (bit 0). q.
- h. If the error bit is set, read the error register for error information.

SCAN ID - Updates the head, sector size, sector number, and cylinder registers. The internal cylinder position is also updated. This operation is used for multiple drives for an implied seek.

WRITE FORMAT - Used to format a single track using the task file and sector buffer. The sector buffer is used for additional parameter information instead of sector data. The following programming sequence should be used with the write format command:

- Check the status of the Busy bit (bit 7) of the status a. register until a reset condition is found.
- Write to the task file registers with the transfer b. parameters:

Precomp reg = Desired precomp start track/4 Sector count = Number of sectors to be formatted. Sector number = Number of bytes minus three to be used for Gap 1 and Gap 3. Gap $\overline{3}$ is determined as follows:

Gap 3 = 2 * M * S + K + E

M = motor speed variation (.03 for +-3%)where: S = sector length in bytesK = 25 for an interleave factor of 1 0 for any other interleave factor E = 7 if the sector is to be extended

Cylinder high/low = Desired cylinder number SDH = Desired sector size, drive number, and head number (set extension = 0)

- Send the write format command to the command register. c.
- d. Fill the interleave table in the sector buffer. Each sector to be formatted requires a two-byte sequence. The first byte indicates whether a bad block mark is to be recorded in the sector's ID field. A 80H indicates a bad block mark for that sector, a 00H is normal. The second byte indicates the logical sector number to be recorded. Using this scheme, sectors may be recorded in any interleave factor desired. The remaining memory in the sector buffer may be filled with any value (but must be filled with one sector size worth of data).
- Delay 1 or 2 NOP instructions. e.
- Check the status of the Busy bit (bit 7) of the status f. register until a reset condition is found.
- Re-read the status register and check the error bit (bit 0). q.
- If the error bit is set, read the error register for error h. information.

5. ROM BIOS AND SYSTEM USAGE

This chapter explains how the assembly language programmer can use the basic input/output system (BIOS) to perform block (diskette and disk) or character-level operations.

ROM BIOS

Located in system ROM, BIOS provides device level control for the major I/O devices. BIOS routines are accessed through CPU interrupts. Table 5-1 is a listing of the interrupt vectors.

Table 5-1 Interrupt Vectors

Intern Number	upt	Name	Initialized by		
80 81 82 83 84 85 86 87	8088 Interrupt Vectors	Divide by zero Single step Nonmaskable Breakpoint Overflow Print screen Not used Not used	DOS DOS BIOS DOS BIOS		
88 89 8A 8B 8C 8D 8E 8F	Interrupt Controller Interrupt Vectors	Time of day Keyboard Not used Not used Communications Disk Diskette Printer	BIOS BIOS BIOS BIOS BIOS		
<pre>%10 %11 %12 %13 %14 %15 %16 %17 %18 %19 %1A %1B %1C </pre>	BIOS Entry Points User Supplied	Video Equipment Check Memory Diskette/Disk Communications Reserved Keyboard Printer Reserved Bootstrap Time of day Keyboard break Timer tick	BIOS BIOS BIOS BIOS BIOS BIOS BIOS BIOS		

TeleVideo Systems, Inc.

%1D	BIOS	Video initialization	BIOS
%lE	Parameters	Diskette parameters	BIOS
%lF		Video graphics characters	BIOS

An interrupt routine is called by using the INT opcode with the interrupt number as the operand. All parameters passed to and from the BIOS routines are transferred through the CPU registers. The BIOS routines normally save all registers except for AH/AL and the flags. Other registers are modified on return only if they are returning a value to the caller. If a BIOS function has several possible operations, the AH register is used at input to indicate the desired operation.

The following sections describe the BIOS entry point interrupt routines.

Video I/O - Interrupt %10

This routine interfaces with the CRT, providing the following functions:

AH = 0	$ \begin{array}{rcl} AL &= & 0 \\ AL &= & 1 \\ AL &= & 2 \\ AL &= & 3 \\ AL &= & 4 \\ AL &= & 5 \\ AL &= & 6 \\ \end{array} $	40x25 Black-and-white 40x25 Color 80x25 Black-and-white 80x25 Color 320x200 Color 320x200 Black-and-white 640x200 Black-and-white
AH = 1	Set curso CH = CL =	type Start line for cursor in bits 0-4 (0-8 valid) (Erratic blinking or no cursor results when bits 5 or 6 are set.) End line of cursor in bits 0-4 (0-8 valid)
AH = 2	Set curso DH,DL = R BH = Disp	r position ow, column: 0,0 is upper left corner lay page number (0 for graphics modes)
AH = 3	Read curs BH = Disp On exit,	or position lay page number (0 for graphics modes) DH,DL = Row, column of current cursor CH,CL = Currently set cursor mode
H = 4	Read light On exit, A	<pre>pen position H = 0 Light pen switch not down/not triggered AH = 1 Valid light pen value in registers DH,DL = Character light pen position row, column CH = Raster line, 0 - 199 BX = Pixel column, 0 - 319 or 619</pre>

TS 1605/1605H Technical Reference

- AH = 5 Select active display page for alphanumeric modes AL = New page value: 0-7 for modes 0 and 1, 0-3 for modes 2 and 3
- AH = 6 Scroll up active page AL = Number of input lines blanked at window bottom AL = 0: entire window is blanked CH,CL = Row, column of upper left scroll corner DH,DL = Row, column of lower right scroll corner BH = Blank line attribute
- AH = 7 Scroll down active page AL = Number of input lines blanked at window top AL = 0: entire window is blanked CH,CL = Row, column of upper left scroll corner DH,DL = Row, column of lower right scroll corner BH = Blank line attribute

Character Handling Routines

AH =	: 8	Read attribute/character at current cursor position BH = Display page for alphanumeric modes On exit, AL = Character read AH = Character attribute
АН =	: 9	Write attribute/character at current cursor position BH = Display page for alphanumeric modes CX = Count of characters to write AL = Character to write BL = Character attribute

AH = 10 Write character only at current cursor position BH = Display page for alphanumeric modes CX = Count of characters to write AL = Character to write

Graphics Interface Routines

AH = 11 Set color palette BH = Palette color ID being set, 0-127 BL = Color value used with color ID Color ID = 0 selects background color, 0-15 Color ID = 1 selects palette: 0 = Green: 1 | Red: 2 | Blue: 3 1 = Cyan: 1 | Magenta: 2 | White: 3 Value 0-31 indicates the border color used for palette color 0 in 40x25 or 80x25 alphanumeric modes.
TS 1605/1605H Technical Reference

ROM BIOS

AH	=	12	<pre>rite dot X = Row number X = Column number L = Color value (If bit 7 of AL = 1, the color value is exclusive OR'd with the current contents of the dot</pre>
AH	=	13	ead dot X = Row number X = Column number L = Returns dot read

Equipment Check - Interrupt %11

This routine determines, when possible, the optional devices to be attached to the system.

Input No registers

Output AX is set, indicating attached I/O

Bits 15,14 = Number of attached printers Bit 13 is not used Bit 12 is not used Bits 11,10,9 = Number of RS-232C ports Bit 8 is not used Bits 7,6 = Number of diskette drives 0,0 = 10,1 = 2Bits 5,4 = Initial video mode $0,1 = 40 \times 25 BW$ $1,0 = 80 \times 25 BW$ Bits 3,2 = RAM size Always 1,1 Bit 1 is not used Bit 0 = IPL from diskette, indicating diskette drives are in the system.)

Memory - Interrupt %12

Memory quantity in the system is determined by this routine, as represented on the rear panel of the computer by switch SW.

Input No registers

Output AX = Number of contiguous 1 kilobyte memory blocks

Diskette I/O - Interrupt %13

This routine accesses the 5 1/4-inch diskette drives.

Input AH = 0 Reset diskette system AH = 1 Read the system status into AL

TeleVideo Systems, Inc.

Page 5.4

Registers for Read/Write/Verify/Format DL = Drive number (0-1 allowed, value checked)DH = Head number (0-1 allowed, not value checked) CH = Track number (0-39, not value checked) CL = Sectornumber (1-8, not value checked, not usedfor format) AL = Number of sectors (Max = 8, not value checked, not used for format) ES:BX = Buffer address (not required for verify) AH = 2Read the desired sectors into memory AH = 3Write the desired sectors from memory AH = 4Verify the desired sectors AH = 5Format the desired track The buffer pointer, ES:BX, points to the collection of desired address fields for the track during the format operation. There are 4 bytes in each field (C,H,R,N). C = track number, H = head number, R = sector number, and N = number of bytes per sector (00=128, 01=256, 02= 512, 03=1024). An entry is required for every sector on the track to find the requested sector during read/write access. AH = Operation status Output 80 = Attachment failed to respond 40 = Seek operation failed 20 = Controller has failed 10 = Bad CRC on diskette read 09 = Attempt to DMA across 64 kilobyte boundary 08 = DMA overrun on operation 04 = Requested sector not found 03 = Write attempted on write-protected disk 02 = Address mark not found 01 = Bad command passed to diskette I/O CY = 0Successful operation (AH = 0 on return)CY = 1Failed operation (AH has error reason) For Read/Write/Verify DS, BX, DX, CH, CL preserved

AL = Number of sectors actually read (may not be correct if time out error occurs)

Fixed Disk I/O - Interrupt %13

This routine accesses the 5 1/4-inch fixed disk through the Winchester disk controller board (TS 1605H).

Input

Input	AH	=	Hex	value
		=	%UU ≏01	Reset disk (DL = 800 , $801//diskette$
		-	401	Read Status of the last disk operation into R
				$\frac{DI}{V} > \frac{880}{V} = \frac{DISKette}{V}$
		=	%02	Read the desired sectors into memory
		=	803	Write the desired sectors from memory
		=	804	Verify the desired sectors
		=	805	Format the desired track
		=	%06	Format the desired track and set bad sector
		-	<u>۶</u> 07	Format the drive starting at the desired
			007	track
		=	808	Return the current drive parameters
		=	809	Initialize drive pair characteristics
				Interrupt %41 points to data block
		=	80A	Read long
		=	%0B	Write long
				Note: Read and write long encompass 512 + 4
				bytes ECC
		=	80C	Seek
		=	\$0D	Alternate disk reset
		=	&UE	Read sector buffer
		=	\$UF	write sector burier (recommended practice
		-	\$ 1 A	Derore formatting) Test drive ready
		=	810 811	Recalibrate
		=	\$12	Controller RAM diagnostic
		=	\$13	Drive diagnostic
		=	814	Controller internal diagnostic
	Reg	gis	sters	used for fixed disk operations
	DL	=	Driv	e number (%80-%87 for disk, value checked)
	DH	=	Head	number (0-7 allowed, not value checked)
	СН	=	Cyli	nder number (0-1023, not value checked)
	CL	=	Sect	or number (1-17 decimal, not value checked)
	NO	TE .	!	High 2 bits of cylinder number are placed in
				the high 2 bits of the CL register (10 bits
				total)
	λт		numb	or of soctors (maximum possible range 1-980
	7311	_	for	read/write long %01-%79)
	ES	: B2	ζ = B	Suffer addressfor reads and writes (not
			r	equired for verify)
Output	AH	=	Stat	us of current operation
		ş	BOFF	= Sense operation failed
		ç	€0BB	= Undefined error occurred
			880 • 40	= Attachment failed to respond
			₹ 40 ๔ว∩	= Seek Operation Tailed - Controllor bag failed
			620	- CONCLUTTEL HAS LATTED

TeleVideo Systems, Inc.

Page 5.6

%11 = ECC corrected data error %10 = Bad ECC on disk read %0B = Bad track flag detected %09 = Attempt to DMA across 64 kilobyte boundary %07 = Drive parameter activity failed %05 = Reset failed %04 = Requested sector not found %02 = Address mark not found %01 = Bad command passed to disk I/O CY = 0 Successful operation (AH = 0 on return) = 1 Failed operation (AH has error reason) DL = Number of consecutive acknowledging drives attached DH = Maximum usable value for head number CH = Maximum usable value for cylinder number

CL = Maximum usable value for sector number and cylinder number high bits

RS-232C Communications - Interrupt %14

This routine provides byte stream I/O to the RS-232C serial port.

AH = 0 Initialize the port AL = Initialization parameters

> 2 0 7 6 5 4 3 1 | parity | |stopbit| |char length| | baud rate | 0=1 000 = 110x0 = none10 = 7 bits 001 = 15011 = 8 bits 01 = odd1=2 010 = 300ll = even011 = 600100 = 1200101 = 2400110 = 4800111 = 9600

AH = 1 Send the character in AL (AL register is preserved).

On exit, if the routine was unable to transmit the data byte over the line, bit 7 of AH is set. When this bit is not set, the remainder of AH is set as in a status request, reflecting the current line status. AH = 2 Receive an AL character from the line before returning to caller.

On exit, AH has the current status of the line set by the status routine, but the only bits remaining on are the error bits (7,4,3,2,1). These bits are not predictable if AH has bit 7 on (time out). AH is nonzero only when there is an error.

AH = 3 Return the port status in AX

AH contains the line status Bit 7 = Time out Bit 6 = Transmitter shift register empty Bit 5 = Transmitter holding register empty Bit 4 = Break detect Bit 3 = Framing error Bit 2 = Parity error Bit 1 = Overrun error Bit 0 = Data ReadyAL contains the modem status Bit 7 = Received line signal detect Bit 6 = Ring indicatorBit 5 = Data Set Ready Bit 4 = Clear to Send Bit 3 = Delta receive line signal detect Bit 2 = Trailing edge ring detector Bit 1 = Delta Data Set Ready Bit 0 = Delta Clear to Send

DX = Parameter indicating which RS-232C (0 and 1 allowed) Output AX modified according to parameters of call

Keyboard - Interrupt %16

This routine provides support for the keyboard.

Input AH = 0 Read the next ASCII character in the buffer and return the result in AL (scan code in AH). If the buffer is empty, the routine waits for a key to be pressed.

> AH = 1 Set the Z flag to indicate if an ASCII character is available to be read ZF = 0 Code is available ZF = 1 No code available If ZF = 0, the next character in the buffer to be read is in AX, and the entry remains in the buffer

TS 1605/1605H Technical Reference

	AH	= 2	<pre>Return current shift status in AL register. Bit 7 - 1 = Insert mode is on 6 - 1 = Caps lock state is on 5 - 1 = Num lock state is on 4 - 1 = Scroll lock state is on 3 - 1 = Alternate shift key depressed 2 - 1 = Control shift key depressed 1 - 1 = Left shift key depressed 0 - 1 = Right shift key depressed</pre>
Output	Onl	y AX ar	d flags changed
Printer -	Int	errupt	817
This routi	ne	provide	es communication with the printer.
Input	AH	= 0	Print the character in AL
			On exit, AH = 1 if character could not be printed (time out). Other bits set as on normal status call
	AH	= 1	Initialize the printer port
			On exit, AH = printer status
	АН	= 2	<pre>Read the printer status into AH 7 - 1 = Not busy 6 - 1 = Acknowledge 5 - 1 = Out of paper 4 - 1 = Selected 3 - 1 = I/O error 2 - not used 1 - not used 0 - Time out</pre>
	DX	= Print	er to be used (0,1,2)
Output	AH	is modi	fied
Bootstrap	- I	nterrup	pt %19
This routi (segment (ine), o	reads t ffset 7	rack 0, sector 1 into the boot location 7C00), where control is transferred.
Time of Da	ay -	Interi	upt %lA
This routi	ine	allows	the clock to be set or read.
Input	АН	= 0	<pre>Read the current clock setting Returns, CX = High portion of count DX = Low portion of count AL = 0 If timer has not passed 24 hours since last read <> 0 if on another day</pre>

Page 5.9

AH = 1 Set the current clock CX = High portion of count DX = Low portion of count

Note: Counts occur at approx. 18.2/sec

Keyboard Break Address - Interrupt %1B

This vector points to the code called when the Ctrl and Break keys are pressed (keyboard interrupt) and is initialized by power-on routines to point to an IRET instruction. This prevents anything from occurring when the Ctrl and Break keys are pressed. If a different value is set, control should be returned using an IRET instruction.

Timer Tick - Interrupt %1C

This vector points to the code called on every system-clock tick (timer interrupt) and is initialized by power-on routines to point to an IRET instruction. If a different value is set, control should be returned using an IRET instruction.

Video Parameters - Interrupt %1D

This vector points to those parameters necessary for CRT controller initialization, and is initialized by power-on routines to point to parameters in the ROM video routines.

Diskette Parameters - Interrupt %1E

Power-on routines initialize the vector to point to the parameters contained in the ROM diskette routine.

Graphics Character Extensions - Interrupt %1F

The ASCII code point character is developed in the graphics mode by the read/write character interface, using a set of dot patterns. ROM contains the first 128 code points, while the second 128 code points are accessed by pointing the vector to a table of up to 1 kilobyte. Each code point is then represented by eight bytes of graphic information. Power-on routines initialize this vector to 000:0.

Interrupt %40

This vector is used to revector the diskette pointer for the hard disk on the TS 1605H.

Fixed Disk Parameters - Interrupt %41

This vector points to the parameters necessary for the fixed disk drive, and is initalized by power-on routines to point to the parameters in the ROM disk routine.

BIOS Memory Usage

Beginning at absolute addresses %400 to %4FF, the BIOS routines use 256 bytes of memory. Figure 5-1 shows an overall BIOS memory map.

Figure 5-1 BIOS Memory Map

Starting Address	Function
800000	I BIOS I
	Interrupt Vectors
%00080	 Available
	Interrupt
800400	BIOS Data
	Area
800500	User
	Read/Write Memory
%C8000	 Disk
	Adapter
%F0000	1
%FE000	BIOS
	Program Area

KEYBOARD ENCODING AND USAGE

Keyboard scan codes are translated into an extended ASCII code by BIOS keyboard routines. Included in the extended ASCII code are one-byte character codes with values from 0-255, extended codes for certain extended keyboard functions, and functions handled within the keyboard routine or through interrupts.

The keyboard routine suppresses the typematic action of the Ctrl, Shift, Alt, Num Lock, Scroll Lock, Caps Lock, and Ins keys. Table 5-2 lists the character codes that are passed through the BIOS routine to the system or program. For key numbers, refer to Table 5-2. For a complete listing of character codes, refer to Appendix D.

Table 5-2 Character Codes

Key #	Base	Shift	Alt	Ctrl
1	Esc	Esc	See note	Esc
2	1	!	Table 5-4	See note
3	2	e	Table 5-4	Nul
4	3	#	Table 5-4	See note
5	4	\$	Table 5-4	See note
6	5	e e e e e e e e e e e e e e e e e e e	Table $5-4$	See note
7	6	^	Table 5-4	RS (030)
8	7	۶.	Table $5-4$	See note
9	8	*	Table $5-4$	See note
10	9	(Table $5-4$	See note
11	0)	Table $5-4$	See note
12	–		Table $5-4$	
13	=		Table $5-4$	See note
14	Backspace	Backspace	See note	
T .1	(008)	(008)	Dee note	(127)
15	Tab	Backtab	See note	See note
	(009)	(Note 1)		
16	q	Q	Table 5-4	DC1(017)
17	Ŵ	Ŵ	Table 5-4	ETB(023)
18	е	Е	Table 5-4	ENO(005)
1 9	r	R	Table 5-4	DC2(018)
20	t	т	Table $5-4$	DC4(020)
21	v	Ÿ	Table 5-4	EM(025)
22	ů	Ū	Table 5-4	NAK (021)
23	i	T	Table $5-4$	HT (009)
2.4	-	ō	Table $5-4$	ST (015)
25	n í	p	Table $5-4$	DLE(016)
26	۲ ا	·	See note	$E_{SC}(0.27)$
27	ì	3	See note	GS(02)
28	C B	C R	See note	LF(010)
29 Ctrl	See no	ta Saannta	See note	See note
30			Table 5-4	
31	a	C C	$\frac{1}{2} \frac{1}{2} \frac{1}$	DC2 (010)
30	2	ы П		
22	u f	D F		
27	I a	r C	Table 5-4	
34 25	g L	G	Table 5-4	BEL(00/)
35	n -	H	Table 5-4	BS(008)
30]	J	Table 5-4	LF (010)
37	K	K	Table 5-4	VT(UII)
38	1	L	Table 5-4	FF(012)
39	i		See note	See note
40		"	See note	See note
41		~	See note	See note
42 Shif	t See no	te See note	See note	See note
43	Λ	I	See note	FS(028)
44	Z	Z	Table 5-4	SUB(026)
45	х	Х	Table 5-4	CAN(024)
46	С	C	Table 5-4	ETX (003)
47	v	v	Table 5-4	SYN(022)
48	b	В	Table 5-4	STX (002)

49		n	N	Table 5-4	SO(014)
50		m	М	Table 5-4	CR(013)
51		1	<	See note	See note
52		•	>	See note	See note
53		1	?	See note	See note
54 8	Shift	See note	See note	See note	See note
55		*	Table B-5	See note	Table 5-4
56 2	Alt	See note	See note	See note	See note
57		Space	Space	Space	Space
58		See note	See note	See note	See note
59		Table 5-4	Table 5-4	Table 5-4	Table 5-4
60		Table 5 -4	Table 5-4	Table 5-4	Table 5-4
61		Table 5-4	Table 5-4	Table 5-4	Table 5-4
62		Table 5-4	Table 5-4	Table 5-4	Table 5-4
63		Table 5-4	Table 5-4	Table 5-4	Table 5-4
64		Table 5-4	Table 5-4	Table 5-4	Table 5-4
65		Table 5-4	Table 5-4	Table 5-4	Table 5-4
66		Table 5 -4	Table 5-4	Table 5-4	Table 5-4
67		Table 5-4	Table 5-4	Table 5-4	Table 5-4
68		Table 5-4	Table 5-4	Table 5-4	Table 5-4
69		See note	See note	See note	Pause
70		See note	See note	See note	Break

The keys in the numeric keypad only have meaning in the states listed in Table 5-3. The shift key reverses the current Num Lock state.

Table 5-3 Numeric Keypad Keys

Key	Paga	Took	N	0t - 1
•	base	LOCK	NUM AIC	CELI
71	See Table 5-4	7	See note	Clear screen
72	See Table 5-4	8	See note	See note
73	See Table 5-4	9	See note	Top of Text and Home
74		-	See note	See note
75	See Table 5-4	4	See note	Table 5-4
76	See note	5	See note	See note
77	See Table 5-4	6	See note	Table 5-4
78	+	+	See note	See note
79	See Table 5-4	1	See note	Table 5-4
80	See Table 5-4	2	See note	See note
81	See Table 5-4	3	See note	Table 5-4
82	Ins	0	See note	See note
83	Tables 5-4, 5-	5.	Table 5-5	Table 5-5

NOTE!

The combination is suppressed in the keyboard routine.

Extended Codes

An extended code is used for certain functions that cannot be represented in the standard ASCII code. If a nul (000) is returned in the AL register, the system or program should check the AH register for a second code, normally the scan code of the primary key that was pressed. Table 5-4 lists the second code and its function.

Table 5-4 Keyboard Extended Codes

Second Code	Function
3 15	Nul character Backspace
16 - 25	Alt Q, W, E, R, T, Y, U, I, O, P
30 - 38	Alt A, S, D, F, G, H, J, K, L
44 - 50	Alt Z, X, C, V, B, N, M
59 - 68	FI - FIO
71	Home
72	Cursor up
73	Page up and Home cursor
75	Cursor left
77	Cursor right
79	End
80	Cursor down
81	Page down and home cursor
82	Insert
83	Delete
84 - 93	Fll - F20 (Upper-case Fl to Fl0)
94 - 103	F21 - F30 (Ctrl F1 to F10)
104 - 113	F31 - F40 (Alt F1 to F10)
114	Ctrl PrtSc
115	Ctrl Cursor left (Back one word)
116	Ctrl Cursor right (Advance one word)
117	Ctrl End (Erase to end of line)
118	Ctrl Pgdn (Erase to end of screen)
119	Ctrl Home (Clear screen and home)
120 - 131	Alt 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -, =
132	Ctrl PgUp (Top 25 lines and Home cursor)

Shift States

The keyboard routine handles most of the shift states so they appear transparent to the system or applications program. The following keys initiate the shifted states:

Shift The shift keys temporarily shift keys 2-13, 15-27, 30-41, 43-53, 55, and 59-68 to upper-case, or base-case if in the Caps Lock state. The shift keys also temporarily reverse the state of the numeric keypad keys 71, 73, 75, 77, and 79 through 83.

TeleVideo Systems, Inc.

Page 5.14

- Ctrl The Ctrl key temporarily shifts keys 3, 7, 12, 14, 16-28, 30-38, 43-50, 55, 59-71, 73, 75, 77, 79, and 81 to the Ctrl state.
- Alt The Alt key temporarily shifts keys 2-13, 16-25, 30-38, 44-50, and 59-68 to the Alt state.

The Alt key is also used to enter character codes from 0 to 255 into the system. Hold down the Alt key and enter the decimal value of the desired character using the number keys on the numeric keypad. If more than three digits are entered, a modulo-256 is created. The system interprets these three digits as a character code and transmits them through the keyboard routine to the system or applications program.

Caps Lock The Caps Lock key shifts keys 16-25, 30-38, and 44-50 to upper-case. The Caps Lock key works as a toggle between the base-and upper-case state.

In cases where combinations of the Alt, Ctrl, and shift keys are pressed, the Alt key has first priority, followed by the Ctrl key, and then the shift keys.

Special Key Combinations

Table 5-5 lists special key combinations that perform system functions.

Table 5-5

Special Key Combinations

Function		Key Combinati	on Description
Reset		Ctrl/Alt/Del	When these three keys are pressed simultaneously, a system reset is initiated.
10	-	ci ci	W W Table 5-4
10	e	E	Table $5-4$ ENQ(005)
19	r	R	Table 5-4 DC2(018)
20	t	Т	Table 5-4 DC4(020)
21	У	calling in	terrupt %1B.
Pause		Ctrl/Num Lock	This key combination causes the keyboard interrupt routine to loop, waiting for any key except the Num Lock key to be pressed. This provides a

method of temporarily

code is discarded.

suspending and then resuming operation. The resume key

Print	Scree	en S	hift	t/Prt	:Sc

This key combination results in the keyboard routine calling interrupt %5 (Print Screen). This routine works in both the alpha and graphics modes and prints unrecognizable characters as blanks.

APPENDIX A REFERENCES

The following publications contain information on the TS 1605 and TS 1605H microcomputer systems:

- * TS 1605 Computer System User's Manual, TeleVideo
- * Tele-XT Computer System User's Manual, TeleVideo
- * TS 1605 TeleDOS User's Manual, TeleVideo
- * TS 1605 Field Replaceable Units Manual, TeleVideo
- * Intel Component Data Catalog, Intel
- * Intel Microprocessor and Peripherals Handbook, Intel
- * Synertek SY6845R CRT Controller Data Sheet, Synertek
- * How to Get Started with MS-DOS, Dilithium Press
- * The 8086/8088 Primer, Hayden Book Company
- * The 8086 Book, Osborne/McGraw-Hill
- * Western Digital Components Handbook, Western Digital Corporation

APPENDIX B I/O PORT ADDRESSES

Table B-1 I/O Port Addresses (Repeated here from Table 2-1 for easy access)

Device	Address
DMA Channel 0 DMA refresh Channel 1 I/O channel Channel 2 FDC data transfer or I/O channel Channel 3 Hard disk transfer or I/O channel	%000-%00F
Programmable Interrupt Controller	%020 - %021
Programmable Interval Timer Channel 0 Time of day Channel 1 Dynamic RAM refresh Channel 3 Audio speaker tone Command Register	%040-%043 %040 %041 %042 %043
Programmable Peripheral Interface PA (Input) Keyboard scan code PB (Output) PBO Speaker gate PB1 Speaker data PB2 Spare PB3 Read switch high/low bits PB4 Spare PB5 Enable I/O channel check PB6 Force keyboard clock low PB7 Clear keyboard PC (Input) PC0 SW1 PC1 SW2 PC2 SW3 PC3 SW4 PC4 Speaker data PC5 Timer channel 2 output PC6 I/O channel check PC7 Always low	<pre>%060-%063 %060 %061 %062</pre>
Command/Mode Register (set to %99)	8063
DMA Page Register	8080-8083
NMI Mask Register To enable NMI, write data %80 into address %0A0 To disable NMI, write data %00 into address %0A0	%0A0

TS 1605/1605H Technical Reference

Serial Port (Primary) Tx Buffer/Rx Buffer Interrupt Enable/Di Interrupt Identific Line Control Regist Modem Control Regis Line Status Registe Modem Status Regist	/ Divisor Latch LSB visor Latch MSB ation Register er ter r er	%3F8-%3FF %3F8 %3F9 %3FA %3FB %3FC %3FD %3FE
Floppy Disk Control P Select drive A Select drive B Reset 8272A FDC Disable interrupt/D Enable interrupt/DM Turn on both motors	ort MA operation A operation	%3F2 D0 = 0 D0 = 1 D2 = 0 D3 = 0 D3 = 1 D4 or D5 = 3
Floppy Disk Controlle FDC Main Status Reg FDC Data Register	r ister	%3F 4- %3F5 %3F4 %3F5
Parallel Data Port (R	ead/write)	%3BC
Parallel Control Port STROBE (-) AUTO FD XT INIT (-) SLCT IN (-) INTERRUPT ENABLE	(Read/write)	%3BE D0 D1 D2 D3 D4
Parallel Status Port ERROR (-) SLCT PE ACK (-) BUSY (-)	(Read only)	%3BD D3 D4 D5 D6 D7
Winchester Disk Contr To enable interrupt To disable interrup To enable DMA opera To disable DMA oper	ol Register : t: tion: ation:	%0E0 D6 = 1 D6 = 0 D7 = 1 D7 = 0
Winchester Disk Contr Read Data Error flag Sector count Sector number Cylinder low Cylinder high SDH Status register	oller Board Task File Reg Write Data Write precomp cylinder Sector count Sector number Cylinder low Cylinder high SDH Command register	ister %330-%337 %330 %331 %332 %333 %334 %335 %336 %337

APPENDIX C POWER-ON SELF TEST

The TS 1605/1605H has a power-on self test that checks the system unit, keyboard, video display, and disk drives. The self test resides in the system's operating ROM and runs automatically when power is applied to the system.

When the test finds a malfuntion, it indicates the source by displaying one of these error messages on the screen:

101	System Board (DMA, Interval Timer)
201	RAM (excluding first 16 kilobytes of memory)
301	Keyboard
601	Diskette Drive
1701	Hard Disk Drive (on TS 1605H only)

If the "301" error message appears on the screen, check the keyboard plug. Ensure the keyboard is plugged in properly and repeat the self test by turning the system off and then on again. If the error message reappears, or if other error messages appear, call your authorized dealer.

Because malfunctions in static RAM, the CRT controller, and the video display cannot be displayed on the screen, the system indicates these errors with one long beep and two short beeps from the system's speakers. Should this occur, call your authorized dealer.

When it completes the self tests, the system sounds one short beep. It then attempts to boot the operating system from drive A (TS 1605) or the hard disk (TS 1605H). If it loads the operating system successfully, a blinking cursor appears on the screen indicating the system is ready for operation. If it fails to load the operating system, an error message appears on the screen.

If the system completes the self test and boots the operating system properly but does not operate, run the special diagnostics (available from your authorized dealer) or return the system to your dealer.

APPENDIX D ASCII CHARACTER CODE CHART

Figure D-1 ASCII Character Code Chart

	7 -	6 -5			**	°°0	⁰ 0 ₁	⁰ 1 ₀	⁰ 1 ₁	¹ 0 ₀	¹ 0 ₁	¹ 1 ₀	¹ 1
DIIS	4	3	2	1	Column + Row	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	0	P		р
	0	0	0	1	1	SOH	DC1	!	1	A	Q	а	q
	0	0	1	0	2	STX	DC2	•	2	В	R	b	r
	0	0	1	1	3	ЕТХ	DC3	#	3	С	S	с	S
	0	1	0	0	4	EOT	DC4	\$	4	D	т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	E	υ	e	u
	0	1	1	0	6	ACK	SYNI	&	6	F	v	1	v
	0	1	1	1	7	BEL	ЕТВ	•	7	G	w	g	w
	1	0	0	0	8	BS.	CAN	(8	н	x	h	x
	1	0	0	1	9	SKIP HT	EM)	9	I	Y	i	У
	1	0	1	0	10(a)	LF	SUB	*	:	J	z	j	z
	1	0	1	1	11(b)	vt t	ESC	+	;	к	í	k	{
	1	1	0	0	12(c)	FF ·	FS		<	L	Λ	I	
	1	1	0	1	13(d)	CR	GS		=	м]	m	}
	1	1	1	0	14(e)	SO	HOME RS		~	N	٨	n	~
	1	1	1	1	15(f)	SI	NEW LINE US	1	?	0	—	0	DEL RUB

ASCII Code Table Abbreviations For Control Characters

NUL	null	FF	form feed	CAN	cancel
SOH	start of heading	CR	carriage return	EM	end of medium
STX	start of text	SO	shift out	SUB	substitute
ETX	end of text	SI	shift in	ESC	escape
EOT	end of transmission	DLE	data link escape	FS	file separator
ENQ	enquiry	DC1	device control 1	GS	group separator
ACK	acknowledge	DC2	device control 2	RS	record separator
BEL	bell	DC3	device control 3	US	unit separator
BS	backspace	DC4	device control 4	SP	space
ΗΤ	horizontal tabulation	NAK	negative acknowledge	DEL	delete
LF	linefeed	SYN	synchronous idle		
VT	vertical tabulation	ETB	end of transmission block		

.

APPENDIX E GLOSSARY OF ACRONYMS

Table E-1 Glossary of Acronyms

Abbreviation	Description
BIOS	Basic Input/Output System
CRC	Cyclic Redundancy Check
CRT	Cathode Ray Tube
CTS	Clear To Send
DIP	Dual-In-Line Package
DLAB	Divisor Latch Access Bit
DMA	Direct-Memory Access
DSR	Data Set Ready
DTR	Data Terminal Ready
ECC	Error Checking And Correction
EPROM	Erasable Programmable Read-Only Memory
FDC	Floppy Disk Controller
FDD	Floppy Disk Drive
LSB	Least Significant Bit (Byte)
MFM	Modified Frequency Modulation
MSB	Most Significant Bit (or Byte)
PPI	Programmable Peripheral Interface

TeleVideo Systems, Inc.

Page E.6

APPENDIX F CONNECTOR PIN ASSIGNMENTS

Table F-1 Connector P1 (Serial I/O)

Pin Number	Signal Designator	Signal Description
1	GND	Signal Ground
2	TXD	Transmitted Data
3	RXD	Received Data
4	RTS	Request to Send
5	CTS	Clear to Send
6	DSR	Data Set Ready
7	GND	Signal Ground
8	RLSD	Received Line Signal Detector
9	TXD CL RET	Transmit Current Loop Data Return
11	TXD CL	Transmit Current Loop Data
18	RXD CL	Receive Current Loop Data
20	DTR	Data Terminal Ready
22	RI	Ring Indicator
25	RXD CL RET	Received Current Loop Data Return

Table F-2

Connector	P2	(Parallel	I/0)

Pin Number	Signal Designator	Signal Description
1	-STROBE	Strobe
2	DATA O	Data O
3	DATA 1	Data l
4	DATA 2	Data 2
5	DATA 3	Data 3
6	DATA 4	Data 4
7	DATA 5	Data 5
8	DATA 6	Data 6
9	DATA 7	Data 7
10	-ACK	Acknowledge
11	BUSY	Busy
12	PE	Paper Empty
13	SLCT	Select
14)	-AUTO FD	Auto Feed
$\overline{(15)}$	ERROR	Error
16	-INIT	Initialize Printer
17	-SLCT IN	Select Input

Pins 18 through 25 are signal ground.

Table F-3 Connector P3 (I/O Channel)

Pin Number	Signal Designator	Signal Description
1	GND	GROUND
2	I/O CH CK	I/O Channel Check
3	I/O RESET	I/O Reset
4	D7	Data Line 7
5	+5V	+5 Volts
6	D6	Data Line 6
7	IRQ2	Interrupt Request 2
8	D5	Data Line 5
9	-5V	-5 Volts
10	D4	Data Line 4
11	DERQ2	Data Request 2
12	D3	Data Line 3
13	-12V	-12 Volts
14	DZ	Data Line 2
10	+5V	+5 Volts
10		Data Line I
10		+12 VOLTS
10		Data Line U
7.9		Ground
20	-MEMU T/O	Momente White I/O
21	-MEMW 1/0	Memory write 1/0
22	MEND I/O	Momory Road I/O
23		Addrogg Line 19
25		I /O Write
26	A18	Address Line 18
27	-TOR T/O	I/O Pood I/O
28	A17	Address Line 17
29	-DACK3	Data Acknowledge 3
30	Alf	Address Line 16
31	DERO3	Data Request 3
32	A15	Address Line 15
33	-DACK1	Data Acknowledge 1
34	A14	Address Line 14
35	DERO1	Data Request 1
36	A13	Address Line 13
37	-DACK0	Data Acknowledge 0
38	A12	Address Line 12
39	CLK	Clock
40	A11	Address Line 11
41	IRQ7	Interrupt Request 7
42	A10	Address Line 10
43	IRQ 6	Interrupt Request 6
44	A9	Address Line 9
45	IRQ5	Interrupt Request 5
46	A8	Address Line 8
47	IRQ4	Interrupt Request 4
48	A7	Address Line 7

- -

49	IRQ3	Interrupt Request 3
50	A6	Address Line 6
51	-DACK2	Data Acknowledge 2
52	A5	Address Line 5
53	тС	Terminal Count
54	A4	Address Line 4
55	ALE	Address Latch Enable
5 6	A3	Address Line 3
57	+5V	+5 Volts
58	A2	Address Line 2
5 9	OSC	Oscillator
60	Al	Address Line l
61	GND	Ground
62	AO	Address Line 0
63	GND	Ground
64	+5V	+5 Volts

Table F-4 Connector P5 (Power Supply)

Pin Number	Signal Designator	Signal Description
1	-12V	-12 Volts
2	Not Used	Not Used
3	GND	Ground
4	+5V	+5 Volts
5	+12V	+12 Volts

Table F-5

Connector P7 (Floppy Disk Controller)

Pin Number	Signal Designator	Signal Description
6	-DR SEL 4	Select Drive 4
8	-INDEX	Index
10	-DR SEL 1	Select Drive l
12	-DR SEL 2	Select Drive 2
14	-DR SEL 3	Select Drive 3
18	-DIR SEL	Direction Select
20	-STEP	Step
22	-COMP WE DATA	Composite Write Data
24	-WRITE EN	Write Enable
26	-TRACK 0	Track O
28	-WR PROTECTED	Write/Read Protected
30	-COMP READ DATA	A Composite Read Data
32	SIDE SEL	Side Select

All odd pins are ground.

٢

Table F-6

Connector P9 (Programmable Interval Timer)

 $\sim t_{\rm c}$

Pin	Signal	Signal		
Number	Designator	Description		
1	SPEAKER OUT	Speaker Out		
2	SPEAKER RET	Speaker Return		

Table F-7

Connector P8 (Winchester Hard Disk Controller Interface)

Pin Number	Signal Designator	Signal Description
1	WD 0	Data Line O
3	WDl	Data Line l
5	WD2	Data Line 2
7	WD3	Data Line 3
9	WD 4	Data Line 4
11	WD5	Data Line 5
13	WD6	Data Line 6
15	WD7	Data Line 7
17	WAO	Address Line O
19	WAl	Address Line 1
21	WA2	Address Line 2
23	-WCS	Controller Board Select
25	-WWE	Controller Write Enable
27	-WRE	Controller Read Enable
29	WMR	Controller Reset
35	WINTRQ	Controller Interrupt Line

All even pins are ground.

Table F-8 Connector Pll (Keyboard Interface)

Pin Number	Signal Designator	Signal Description
1	GND	Ground
2	+12V	+12 Volts
3	GND	Ground
4	KEY DATA	Key Data
5	KEY CLOCK	Key Clock
6	-KEY RESET	Key Reset

Table F-9

Connector VP1 (Composite Color Monitor Port)

Pin Number	Signal Designator	Signal Description
1	-	Peak-to-Peak Amplitude
2	GND	Chassis Ground

Table F-10

Connector VP2 (RGB Color Monitor Port)

Pin Number	Signal Designator	Signal Description
1	GND	Ground
2	GND	Ground
3	R	Red
4	G	Green
5	В	Blue
6	I	Intensity
7	Reserved	Reserved
8	RGB HS	Red, Green, Blue Horizontal Sync
9	RGBVS	Red, Green, Blue Vertical Sync

Table F-11 Connector VP3 (Standard TeleVideo Video Monitor)

Pin Number	Signal Designator	Signal Description
1	HYS	Horizontal Sync
2	Not Used	Not Used
3	GND	Ground
4	VIDEO	Video
5	VSYN	Vertical Sync

APPENDIX G DISK DRIVE SPECIFICATIONS

DISKETTE DRIVE

TYPE	Slim-line 5 1/4-inch TEAC floppy disk drives
DISKETTES	48 TPI double-sided, double-density 5 1/4- inch floppy diskettes
STORAGE CAPACITY	500 Kbytes per drive unformatted 368.6 Kbytes per drive formatted 737.2 Kbytes total (formatted)
TRANSFER RATE	250 Kbits/second
ACCESS TIME	84 milliseconds average 120 milliseconds maximum
HARD DISK DRIVE	
TYPE	Rodine RO252 3 1/2 inch winchester disk drive
DISKS	2
HEADS	4
STORAGE CAPACITY	<pre>12.75 Mbytes unformatted 10.0 Mbytes formatted 8192 bytes per track 256 bytes per sector 32 sectors per track 306 cylinders</pre>
TRANSFER RATE	5 Mbits per second
SEEK TIMES	(in milliseconds, including settling):
	18 track to track 85 average 180 maximum 8.3 average latency

APPENDIX H JUMPERS

This section describes jumpers on the system board.

COMMUNICATIONS PORT CONFIGURATION

E7, E8, The default setting for E7, E8, and E9 configures the asynchronous communications port for RS-232.

When you change them all, you reconfigure the asynchronous communications port to a Current Loop.

All three must be changed as a set for each configuration.

DYNAMIC RAM CONFIGURATION

E10, E11, The default setting for E10, E11, and E12 configures E12 the board for 64K dynamic RAM.

When you change them all, you reconfigure the board for 256K dynamic RAM.

All three must changed as a set for each configuration.

VIDEO CONFIGURATION

E13 Default setting configures the board for double-dot character display.

Remove the jumper for single-dot character display.

El4 Default setting maps the monochrome display memory address B0000 - B7FFF to be the same as the color graphics memory address B8000 - BFFFF. For those applications that require monochrome only, leave the jumper at default.

When you change the jumper, you disable the monochrome display memory address map B0000 - B7FFF, thus leaving only the color graphics memory address map enabled. For those applications that can be dynamically configured to run with color graphics, remove the jumper.

El5 When the jumper is connected, the board is configured for an internal video controller.

When the jumper is removed, the board is configured for an external video controller.

APPENDIX I SCHEMATICS

This section contains board assembly schematics and logic diagrams. Parts for TeleVideo systems are available from TeleVideo distributors.

OPTION	DESCRIPTION
-00	FOR SYSTEM 1605 (BASIC SYSTEM)
-01	FOR SYSTEM 1605H ADD IC PART NO. 125016-00 TO DESIGNATIONS: 166,67,74,75,83,84 90,91,98,99,107,108,116,117,125,126
-02	FOR SYSTEM 1600 DELETE IC P/N 123433-00 181 DEL ETE IC P/N 123431-00 196

3

Ť

800 80

12.67

1428

1217 340

D

2

.

B

c

RELIN TEEL

PROD REL-

PROD REL PER ECO

PROD REL PER ECO

NOTES: UNLESS OTHERWISE SPECIFIED

7

- I. ALL RESISTORS ARE VALUED IN OHMS AND ARE 1/4 WATT, ±5%.
- 2. ALL CAPACITORS ARE VALUED IN uf AND ARE 16VDC, ±20%.
- 3. THE FOLLOWING I.C'S ARE SPARES, U123, 130, 131 132, 139, 140, 147, 148, 124, 115.
- 4 THE FOLLOWING COMPONENTS ARE NOT USED; CI5,16,18,20,22,28-30, R12, R13
- 5 THE FOLLOWING COMPONENTS ARE CUSTOMER OPTION 141,60

4

5

