
8500
MODULAR MDL SERIES

ASSEMBLER
CORE USERS MANUAL

for B Series Assemblers

This manual supports the
following TEKTRONIX products:

8550
Options

1T
1U
1V

Products

8300B15
8300B20
8300B26

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon

070-3856-00
Product Group 61

8560
Options

1A
1 B
1C
1G
1J
1K
1 L
1M

97077

Products

8560B01
8560B02
8560B04
8560B10
8560B15
8560B16
8560B17
8560B18

COMMITTED TO EXCELLENCE

This manual supports the following software
modules:

TE KT RON I X B Series Assembler V 01 (8550)
TE KT RON I X B Series Linker V 01 (8550)
TEKTRONIX B Series LibGen V 01 (8550)
TE KT RON I X B Series Assem blerV 01 (8560)
TEKTRONIX B Series Linker V 01 (8560)
TEKTRONIX B Series LibGen V01 (8560)

These modules are compatible with:

DOS/50 V 02 (8550)
TN IX V 01 (8560)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500
MODULAR MOL SERIES

ASSEMBLER
CORE USERS MANUAL

for B Series Assemblers

Serial Number ----------

First Printing AUG 1981
Revised FEB 1982

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer,.(b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or~c)used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combi ned with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright (01981 Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
potents and/or pendi ng patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and if are registered trademarks of
Tektronix, Inc TELEOUIPMENT is a registered trademork of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8500 Series B Assembler Core Users

CONTENTS

SECTION 1. LEARNING GUIDE Page

Introduction ... 1-1

About This Manual Package .. 1-1

System Overview. .. 1-3

Assembler Features ... 1-4

Linker Features .. 1-5

Library Generator Features ... 1-5

Syntax Notation ... 1-5

Introduction ... 1-5

Command Name ... 1-6

Parameters ... 1-6

For Continued Learning .. 1-7

SECTION 2. THE ASSEMBLER

Introduction ... 2-1

Assembler Invocation .. 2-1

Assembler Input ... 2-2

Introduction ' ... 2-2

Statement Fields .. 2-3

Symbols .. 2-7

Values .. 2-9

Text Substitution ... 2-12

Expressions ... ' 2-13

Functions .. 2-21

Assembler Execution ... 2-36

Two Passes .. 2-36

Forward Referencing .. 2-36

Execution Sequence .. 2-36

Assembler Output .. 2-37

Object Module ... 2-37

Assembler Listi ng .. 2 -37

Sample Source Program .. 2-44

@

Contents-8500 Series B Assembler Core Users

Page

SECTION 3. ASSEMBLER DIRECTIVES

Introduction ... 3-1

The Assembler Directive Dictionary ... 3-3

SECTION 4. MACROS

Introduction ... 4-1

Macro Expansion Process .. 4-1

Macro Definition .. 4-2

The MACRO Directive .. 4-2

The Macro Body ... 4-3

Macro Body Operators ... 4-3

The ENDM Directive ... 4-6

The EXITM Directive ... 4-6

Macro Invocation .. 4-7

Parameters ... 4-7

Macro Parameter Conventions .. 4-7

Macro Examples .. 4-10

SECTION 5. THE LINKER

Introduction ... 5-1

Linker Invocation .. 5-1

Explanation ... 5-5

Command Options ... 5-5

Examples .. 5-15

Linker Execution .. 5-16

Section Attributes ' ... 5-16

Allocation of Sections ... 5-18

ENDREL ... 5-19

Linking a Library File ... 5-19

Typechecking ... 5-20

Linker Completion Condition ... 5-20

Linker Output .. 5-21

Listing File ... 5-21

ii @

· Contents-8500 Series B Assembler Core Users

Page

SECTION 6. THE LIBRARY GENERATOR

Introduction ... 6-1

LibGen Invocation ... 6-1

Command Option Parameters .. 6-3

Command Options ... 6-4

Examples ... 6-6

LibGen Execution .. 6-9

LibGen Output ... 6-10

The New Library File .. 6-10

The Listing ... 6-10

SECTION 7. PROGRAMMING EXAMPLES

Introduction ... 7-1

Use of Conditional Assembly in Macros ... 7-2

Save-and-Restore Macro ... 7-2

The SAVE Macro .. 7-3

The RESTORE Macro .. 7-4

Sample Invocations .. 7-4

SVC Generation ... 7-5

Creating Service Request Blocks .. 7-5

Generating Service Calls ... 7-9

Creating Constant Values ... 7-10

The CONSTANT Macro .. 7 -11

The VARIABLE Macro ... 7 -13

Macro Invocation ... 7-13

Creating and Using a Subroutine Library ... 7-14

The ADD Module ... 7-15

The SUBTRACT Module ... 7-16

Assembling the Modules .. 7-17

Creating the Library .. 7-20

Using the ADD Module from a Program .. 7-20

Using the SUBTRACT Module from a Program 7-25

Linking Overlays .. 7-30

Using the "@" Constant within a Macro .. 7-33

Delay Loop Macro .. 7-33

Macro Invocation ... 7-34

@ iii

Contents-8500 Series B Assembler Core Users

Page

SECTION 7. PROGRAMMING EXAMPLES (Cont.)

The Assembler INCLUDE Directive ... 7-34

Including Constant Definitions ... 7-34

Including COMMON Declarations .. 7-35

Including Macro Definitions ... 7-35

Authorship and Copyright Notices for Listings 7-36

SECTION 8. HOST SPECIFICS

SECTION 9. ASSEMBLER SPECIFICS

SECTION 10. TECHNICAL NOTES

Note 1. Differences Between the A Series and B Series Assemblers 10-1

SECTION 11. TABLES

Source Module Character Set ... 11-1

Assembler Directives ... 11-3

ASCII-Binary-Hexadecimal-Decimal Conversion 11-5

Decimal-Hexadecimal-Binary Equivalents ... 11-6

Hexadecimal Addition ... 11-7

Hexadecimal Multiplication .. 11-7

SECTION 12. ERROR MESSAGES

Introduction .. 12-1

Assembler Errors ... 12-1

Linker Errors .. 12-10

LibGen Errors ... 12-15

SECTION 13. GLOSSARY

SECTION 14. INDEX

iv @

8500 Series B Assembler Core Users

@

Section 1
LEARNING GUIDE

Page

Introduction .. 1-1

About This Manual Package ... 1-1

System Overview. .. 1-3

Assembler Features ... 1-4

Linker Features ... 1-5

Library Generator Features. .. 1-5

Syntax Notation .. 1-5

Introduction ... 1-5
Command Name ... 1-6
Parameters ... 1-6

Required Parameters .. 1-6
Optional Parameters ... 1-7
Choice of Parameters .. 1-7
Repeated Parameters .. 1-7

For Continued Learning ... 1-7

Fig.
No.

1 -1
1-2
1-3

ILLUSTRATIONS

Page

Sample 8 series assembler users manual package 1-2
Assembler programming process .. 1-3
Sample syntax block .. 1-6

1-i

8500 Series B Assembler Core Users About This Manual Package

@

Section 1

LEARNING GUIDE

INTRODUCTION
This Learning Guide gives an overview of features and functions of the TEKTRONIX 8500
Modular MDL 8 series assembler, linker, and library generator. The Learning Guide is divided
into the following topics:

• About This Manual Package. Explains how to use this manual with your assembler.

• System Overview. Describes the functions of the assembler, linker, and library generator.
Shows how these system programs interact with each other and with other programs in
the operating system.

• Features of the Assembler, Linker, and Library Generator. Lists features of these
programs that make them especially useful and powerful.

• Syntax Notation. Describes the syntax conventions used throughout this manual.

• For Continued Learning. Helps you decide where to go next in this manual to accomplish
your own tasks.

ABOUT THIS MANUAL PACKAGE
The TEKTRONIX 8500 Modular MDL 8 Series Assembler Users Manual Package includes:

• the Core Users Manual

• the Host Specifics Users Manual

• the Assembler Specifics Users Manual

• the Reference Card

The Core Users Manual contains information that applies equally to all microprocessors and
host systems supported; for example, the assembler directives, operand expressions, symbols,
constants, and some advanced programming features. The linker and library generator are also
discussed in the Core Users Manual.

The Host Specifics Users Manual contains the host-dependent information for your specific
host system, installation procedures, and a sample Demonstration Run.

The Assembler Specifics Users Manual contains information about the instruction set,
registers, addreSSing modes, and other processor-dependent information for your specific
microprocessor.

1-1

About This Manual Package Learning Guide-8500 Series B Assembler Core Users

1-2

The Reference Card contains brief reference information, such as the instruction set for your
microprocessor, assembler directives, assembler invocation, linker command options, and
library generator command options.

Each host system has a separate Host Specifics Users Manual. Each microprocessor has a
separate Assembler Specifics Users Manual. The Host Specifics Users Manual and Assembler
Specifics Users Manual are designed to be inserted into Section 8 and Section 9, respectively, of
the Core Users Manual. Figure 1-1 shows the B Series Assembler Users Manual Package for the
8550 MOL and 8086/8088 Assembler.

Programming examples in the Host Specifics section are specific to each host system. All
examples in other sections of the core users manual are completely host-independent and
processor-independent. Some examples use 8086/8088 instructions, but similar instructions
for any other microprocessor may be substituted without changing the validity of any example.

8500
MODULAR MOL SERIES

ASSEMBLER
CORE

USERS MANUAL
B Series A .. emblers

..
8086
8'088

8550 Microcompu!er
~:;eropmenl

Reference Card

Fig. 1-1. Sample B series assembler users manual package.

This figure shows the B Series Assembler Users Manual Package for the 8550 MOL and
8086/8088 Assembler. The Host Specifics and Assembler Specifics Users Manuals are to be
inserted into the Core Users Manual. The Reference Card is specific for the 8550 MOL and
8086/8088 Assembler.

3856-1

@

Learning Guide-8500 Series B Assembler Core Users System Overview

@

Library
File

Assembly
Language
Source
Files

Object
Files

Load
File

Operating system command
that loads object code

into memory

Program
Memory

Fig. 1-2. Assembler programming process.

The assembler translates assembly language programs (source code) into relocatable
machine language (object code). Frequently used object modules may be stored together in
library files created by the library generator. The linker combines object modules from
specified object files and library files into a load file of executable object code. The appropriate
operating system command copies object code from load files into program memory.

SYSTEM OVERVIEW

3856-2

Figure 1 -2 shows how an executable program is produced from assembly language source files.

An assembly language source program may be written by a programmer or may be produced by a
high-level language compiler.

1-3

Assembler Features Learning Guide-8500 Series B Assembler Core Users

1-4

The assembler translates assembly language statements (source code) into machine
instructions (object code) and stores the resulting object module in a file called an object file.
The TEKTRONIX 8500 Modular MDL B series assembler supports the translation of assembly
languages for microprocessors having addresses up to 32 bits.

The linker collects object modules from specified files, determines where in memory each
section of object code will reside, and produces a load file which contains the executable
program. You may then copy the executable code into memory using the appropriate operating
system command. (Under certain conditions you may load object modules without linking them.
See The Assembler section of this manual.)

Frequently used subroutines can be developed and assembled separately. The resulting object
code can then be stored with other object modules in a library file. When you include calls to
library routines in your source program, the linker inserts the necessary object modules into the
load file. The library generator creates and modifies library files.

ASSEMBLER FEATURES
Here are some important features of the TEKTRONIX 8500 Modular MDL B series assembler:

• Macros provide a convenient and powerful means for inserting and modifying frequently
used segments of source code.

• Conditional assembly allows a sequence of source code to produce object code that varies
according to specified conditions. This feature reinforces the assembler's macro
capabilities.

• Linker-related assembler directives allow you to specify in your source code howthe object
code will be arranged in memory.

• Operand expressions may contain bit and string manipulations and special assembler
functions as well as the standard arithmetic operations.

• Data constants may be entered as numbers in binary, octal, decimal, or hexadecimal
notation, or as strings of ASCII characters enclosed in single quotes.

• Each error message contains a brief description of the error, an error number that helps
you to locate more information in this manual, and a code that indicates the severity level of
the error (warning, non-fatal error, or fatal error). You may also write your own error
messages for use in conditional assembly.

• The assembler listing shows your source code, the object code, error messages, symbol
table, and cross reference listing produced by the assembler. Listing directives allow you to
select which segments of code or types of code are listed.

@

~,

Learning"Guide-8500 Series B Assembler Core Users Linker Features

@

LINKER FEATURES
Here are some important features of the linker: ":

• You may link object modules from any number of object files or library files.

• You may define or change any of the following section attributes at link time:

the class that groups logically related sections;

the relocation type of a section of object code;

the exact or approximate location of a section in memory;

the values assigned to global symbols;

the address of the first instruction to be executed.

• You may enter Ii.nker command options from the system terminal or from a command file.

• Each error message contains a brief description of the error, an error number that helps
you to loqHe more information in this manual, and a code that indicates the severity level of
the error '(warning, non-fatal error, serious error, or fatal error).

• Ttie linker listing gives a qetailed account of linker activity, showing the command options
executed, global symbols, module names, section names, memory maps, and statistics.

LIBRARY GENERATOR FEATURES
Here are some important features of the library generator (LibGen):

• You may create libraries with 100 modules, assuming five global symbols per module.

• You may modify libraries by inserting, deleting, or replacing object modules.

• You may copy individual object modules into files.
" ... ~

• You may enter library generator command options from the system terminal or from a
command file.

• Each error message contains a brief description of the error, an error number that helps
you to locate more-i~formation in this manual, and a code that indicates the severity level of
the error (warning, non-fatal error, or fatal error).

• The library generator listing shows the command options executed, global symbols, and a
summary of library generator activities.

SYNTAX NOTATION
,I ntrod uction

This manual uses syntax blocks to present operating system commands, assembler directives,
and assembler functions. The conventions used in the syntax blocks are described in this
subsection. Figure 1-3: illustrates a sample syntax block.

1-5

,
..

Syntax Notation Learning Guide-8500 Series B Assembler eore Users ,

1-6

SYNTAX

\
command param1 [/par-one]

;

\

[,pall param2j
,pbJ ~aram3

Fig. 1-3. Simple syntax block.

\

This figure illustrates a syntax block for a fictitious command line.

•

3856-3

•

In Fig. ,1-3, command represents a command name. pa, pb, param'l, param2, param3, and ...
par-one represent the command parameters. •

Delimiters (usually spaces or commas) separate the parameters from the co~mand name and
from each other. For the linker and library generator, spa~ef are th.e only ,alid del1V1iters.

Command Name \
A command name is a word that represents a command or assembler directive. In Fig. 1-3, the
command name is command. Boldface characters in the command line must be entered exactly
as shown.

Parameters \
Parameters specify or modify how the command is executed. Parameters may be names,
addresses, devices, numbers, characters, or symbols. Boldtacd parameters and a.ny special
characters, such as the comma, parentheses, "at"~sign (@), slas~ V), and equals sign (=), must
be entered exactly as they appear in the syntax block. ..

Regular type (not boldface) parameters are descriptive terms that identify the type of information
to be entered. Allowable entries appear in the PARAMETERS explanation for each command. In
this manual, parameters are sometimes represented in a syntax'block by"two w,rds, joined with
a hyphen. The hyphen shows that they' are not two separate parameters. n lthe example,
"par-one" represents one parameter. • ,.

•

Required Parameters • ~ \ \ ~
Parameters may be required or optional. Required parameters ap ar' in the command line
without braces or brackets. For example. "paraml" is a required P: ameter.. \

@

Learning Guide-8500 Series B Assembler Core Users For Continued Learning

@

Optional Parameters

Optional parameters are enclosed in brackets [] in the syntax block. In Fig. 1-3, "/par-one" is an
optional parameter. The special character slash (I) is required if "par-one" is used.

Choice of Parameters

Parameters are stacked one above another when there is a choice of two or more parameters. If
the parameters are stacked within braces { }, one of the parameters must be selected. If the
parameters are stacked within brackets [], the selection is optional. In the example, either
"param2" or "param3" must be selected. Either pa or pb may be selected, or they may be
omitted entirely. Notice that if either pa or pb is selected, it must be preceded by a comma.

Repeated Parameters

When three dots follow a parameter, the parameter may be repeated any number of times up to
the end of the current line. In the example, the choice of "param2" or "param3" may be repeated
as many times as the line permits.

FOR CONTINUED LEARNING
This Learning Guide has presented an overview of features and functions of the TEKTRONIX
8500 Modular MDL B series assembler, linker, and library generator. For a more detailed
explanation of how to use these system programs, refer to the following sections.

Section 2, The Assembler. Describes the fundamental elements of assembly language
statements. Gives rules for creating symbols, constants, and expressions. Describes special
characters and assembler functions. Explains the assembler listing.

Section 3, Assembler Directives. Describesf!te function and use of each assembler directive.
Includes one or more examples for each directive. Directives are arranged in alphabetical order.

Section 4, Macros. Shows you how to create and use assembler macros. Demonstrates the
macro features of the TEKTRONIX 8500 Modular MDL B series assembler.

Section 5, The Linker. Describes the function and use of the linker. Explains each command
option in the linker subsystem.

Secti~ 6, The Library Generator. Describes the function and use of the library generator
(LibGen). Explains each command option in the LibGen subsystem.

Section 7, Programming Examples. Demonstrates and explains useful applications of the
assembler, linker, and library generator.

1-7

For Continued Learning Learning Guide-8500 Series B Assembler Core Users

1-8

Section 8, Host Specifics. Provides a place to insert your Host Specifics supplements. Each
supplement gives reference information that ·is specific to a particular host system, and also
contains a Demonstration Run and installation instructions.

Section 9, Assembler Specifics. Provides a place to insert your Assembler Specifics
supplements. Each supplement gives information that varies with each microprocessor:
registers, instruction sets, special error messages, and any exceptions to the standard reference
material in this manual.

Section 10, Technical Notes. Provides miscellaneous technical information. Technical Note 1
discusses the differences between the A series and B series assemblers.

Section 11, Tables. Summarizes reference information in tabular form.

Section 12, Error Messages. Lists the error messages for the assembler, linker, and library
generator. Each error message is accompanied by a description of the problem.

Section 13, Glossary. Defines special terms used in this manual.

Section 14, Index. Gives you a place to start when you don't know where else to look.

@

8500 Series 8 Assembler Core Users

Section 2
THE ASSEMBLER

Page

Introduction 2-1

Assembler Invocation 2~1

Assembler Input 2-2

Introduction 2-2
Statement Fields 2-3

Label Field 2-4
Operation Field 2-5
Operand Field 2-6
Comment Field 2-7

Symbols ... 2-7
User-defined Symbols 2-8
Constructing Symbols 2-8
Defining Symbols 2-8
Predefined Symbols 2-9

Values ... 2-9
Numeric Values 2-9

Scalar Values 2-10
Address Values 2-10
Floating Point Values 2-10
Numeric Constants 2-10
Numeric Variables 2-11

String Values 2-11
String Constants 2-11
String Variables 2-11

Conversions 2-12
Text Substitution 2-12
Expressions 2-13

Introduction 2-13
Hierarchy 2-14
Operators 2 -1 5

Arithmetic Operators 2-16
Logical Operators 2-17
Relational Operators 2-19
String Operator 2-21

Functions /' 2-21

@

BASE-Determines whether two values have
a common base. '" 2-22

BITS-Returns specified bit string 2-24
DEF-Determines if a symbol has been defined .. 2-26
ENDOF-Returns the address of the last
byte of a section 2-27

HI-Returns high byte of low-order word 2-28
LO-Returns low byte of numeric value 2-29
NCHR-Returns number of characters in string .. 2~30
SCALAR-Converts address to scalar 2-31
SEG-Returns substring 2-32
STRING-Converts scalar to string 2-34
STRINGOF-Returns macro argument. 2-35

Page

Assembler Execution 2-36

Two Passes 2-36
Forward Referencing 2-36
Execution Sequence 2-36

Assembler Output 2-37

Object Module 2-37
Assembler Listing 2-37

Source Listing 2-38
Cross-Reference Listing 2-39
Symbol Table 2-39

Sample Source Program 2-44
Sample Source Listing 2-45
Sample Cross-Reference Listing 2-51
Sample Symbol Table 2-52

Table
No.

TABLES

2-1 Expression Operators and Functions 2-14
2-2 Hierarchy of Operators 2-15
2-3 Types of Comparisons with Relational

Operators 2-20
2-4 Result-Values 2-38

Fig.
No.

ILLUSTRATIONS

2-1 Formatted source file 2-4
2-2 Sample assembler source listing 2-40
2-3 Sample assembler cross-reference listing. 2-42
2-4 Sample assembler symbol table listing 2-43
2-5 Sample 8086/8088 source program 2-44

2-i

8500 Series B Assembler Core Users

@

Section 2

THE ASSEMBLER

INTRODUCTION
The assembler translates assembly language statements (source code) into machine
instructions (object code). The resulting object module, stored in a file, is suitable for input to the
linker or to the library generator (LibGen).

This section describes the Tektronix Assembler, and is divided into the following subsections:

• Assembler Invocation. Describes how to invoke the assembler.

• Assembler Input. Describes the source module.

• Assembler Execution. Describes the operations performed by the assembler.

• Assembler Output. Describes the output of the assembler: the object module and the
assembler listing. Includes an annotated assembler listing of a sample program.

ASSEMBLER INVOCATION
With the 8550 Microcomputer Development Lab orthe 8560 Multi-User Software Development
Unit, the assembler is invoked by the operating system command a5m.

NOTE

If you are using any system other than the 8550 or 8560, the assembler
invocation command may be different. Refer to the Host Specifics section of this
manual for further information.

Throughout this section, the same notation conventions are used as described in the Learning
Guide of this manual. Additionally, if you are using the 8550 Microcomputer Development Lab,
the command name asm may be entered in either upper or lower case.

2-1

Assembler Invocation The Assembler-8500 Series B Assembler Core Users

2-2

I a5m [object] [list] source ...

SYNTAX

PARAMETERS

object The name or filespec of the file to receive the object code output by the assembler.

list The name or filespec of the file to receive the listing output by the assembler.

source The name or filespec of the file that contains the source code to be processed by the
assembler.

EXPLANATION

The asm command invokes the Tektronix Assembler. The source code, residing in one or more
files, is translated into object code (machine language), which is written to the specified file or
device. An assembler listing is also generated and is written to the specified file or device.

The object file and listing file are optional; you may replace either orboth with a null parameter. If
you are using an 8550 system, you must enter two commas if you want to leave out one
parameter and three commas if you want to leave out two parameters. For example:

ASM "MY.ASML MY.ASM to leave out the object filespec.

ASM MY.OBJ"MY.ASM to leave out the listing filespec.

ASM ", MY. ASM to leave out both object and listing filespecs.

If you are using an 8560 system, you must replace the parameter with a null string. For example:

asm " mylist mysource to leave out the object filespec.

asm myobject "mysource to leave out the listing filespec.

asm " " mysource to leave out both object and listing filespecs.

You must always include the source filespec.

ASSEMBLER INPUT
I ntrod uction
The input to the assembler is made up of one or more source modules. The source module
consists of assembly language statements. There are three types of assembly language
statements:

• assembly language instructions,

• assembler directives, and

• macro invocations.

@

The Assembler-8500 Series B Assembler Core Users Assembler Input

@

Blank lines and comment lines (lines beginning with a semicolon) may be included in the input,
but have no effect on the assembler. Any other assembler input will cause an error.

If the assembler input resides in one or more source files, each filespec must be specified in the
assembler invocation line. The assembler makes two passes through the source code. If the
input is not read from a random access device, the statements must be entered twice. When the
assembler is ready to read the source code a second time, it displays the following message on
the system terminal:

*****Pass 2

If ttle statements entered on the second pass are not identical to those entered on the first pass,
assembly errors will result. Additionally, if the input is not read from a random access device, the
source code may not contain macros or REPEAT blocks. The source code within macros and
REPEAT blocks is not stored in core but is accessed each time it is needed.

The rest of this subsection discusses the Tektronix Assembler language elements and is divided
into the following topics:

• Statement Fields-Explains the four fields in an assembler source statement: label,
operation, operand, and comment.

• Symbols-Explains how symbols are used in assembler source programs.

• Values-Describes numeric and string values used by the assembler.

• Text Substitution-Describes the use of text substitution.

• Expressions-Describes the type of permitted expressions and their required formats.
Describes the use of operators in expressions.

• Functions-Defines and gives the results of assembler functions. The functions are listed
alphabetically for reference.

Statement Fields
An assembly language source program consists of statements. Each statement occupies one
line of text. Each statement may contain up to 127 characters; the line ends with a RETURN
character (end-of-line character; See the Host Specifics section of this manual for the actual
ASCII code). Blank lines can be used within the program for readability and have no effect on the
assembly.

A statement consists of four fields. Each field may vary in width, and certain fields may be
omitted, but the fields always occur in the following order:

Label Operation Operand Comment

Programs are easier to read when each field has a constant width on each line. This columnar
format can be implemented with tab settings. Figure 2-1 is an example of a formatted
8086/8088 source file.

2-3

Statement Fields The Assembler-8500 Series B Assembler Core Users

2-4

Label Operation Operand Comment

GLOBAL
PORTN EQU
START MOV

CALLS
HLT
END

PORTN~OUTSUB

15 PORT = 15
AL ~ #' ? ' CHARACTER = '?'
OUTSUB~OUTSUB; SEND '?' TO PORT 15 ...

... AND STOP.
START

Fig. 2-1. Formatted source file.

Each field has a constant width in this 8086/8088 source program, making it easier to read.

Label Field

3856-4

The label field, when used, must begin in the first character position of a line. A space, tab,
semicolon, or RETURN terminates the label field. A statement's label allows the statement to be
referenced by other statements.

The label is a user-defined symbol. The symbol must follow the rules for constructing symbols
(described later in this section). Embedded spaces are not permitted within a symbol. Every label
must be unique within each assembler source program. The assembler generates an error
message when duplicate labels are used.

A label is permitted in all assembly language instructions, macro invocations, blank lines, and
the following assembler directives:

ADDRESS
ASCII
BLOCK
BYTE
COMMON
END
EQU
FLOAT
GLOBAL

IF
INCLUDE
lONG
ORG
RESERVE
RESUME
SECTION
SET
WORD

A label is not permitted with the following assembler directives:

ELSE NAME
ElSEIF NOLIST
ENDIF PAGE
ENDM REPEAT
ENDR SPACE
EXITM STITlE
EXITR STRING
LIST TITLE
MACRO WARNING

@

The Assembler-8500 Series B Assembler Core Users Statement Fields

@

The meaning of the label in an assembler directive statement depends upon the particular
directive. For many directives the label is optional and not always meaningful. However, labels
are always required with the EQU and SET directives. See the Assembler Directives section of
this manual for the specific meaning in each directive.

Label Operation Operand Comment

PORTN EQU 15 ; PORT = 15

In this example, the label PORTN is given the value 15.

A label used in an assembly language instruction or macro invocation represents the memory
address of the first byte of the instruction.

Label Operation Operand Comment

START MOV AL,#'?' ; CHARACTER = '?'

In this line, the label START represents the address of the first byte of the MOV instruction.

An address is relative to the base address (beginning address) of the section in which it appears.
At link time, relocatable sections are assigned a new base address. Therefore, any symbol
representing an address is relocated relative to its base address at link time. (See the Address
Values discussion later in this section for more information on relative addresses.)

Operation Field

The operation field begins immediately after the label field. If the label is omitted, the operation
field may begin anywhere after the first character position in the line. The operation field is
terminated by a space, a tab, a RETURN, or a semicolon (indicating the beginning of a comment
field).

The symbol in the operation field indicates the type of action to be taken by the assembler. The
symbol may be an assembly language instruction mnemonic, an assembler directive, or a macro
invocation.

If the word in the operation field is an assembly language instruction, the assembler translates
the statement into a machine instruction.

Label Operation Operand Comment

START MOV AL,#'?' ; CHARACTER = ' ? '

MOV (an 8086/8088 mnemonic) is translated into a machine instruction by the assembler.

An assembler directive in the operation field specifies certain actions to be performed during
assembly. Assembler directives mayor may not generate object code.

Label Operation Operand CODment

GLOBAL PORTN,OUTSUB

In this example, the assembler directive GLOBAL in the operation field declares PORTN and
OUTSUB as global symbols.

2-5

Statement Fields The Assembler-8500 Series B Assembler Core Users

2-6

NOTE

The name of an assembly language instruction for a particular microprocessor
may be identical to a standard assembler reserved word. In that case, the name
of that assembler reserved word is changed. The Assembler Specifics section
for your microprocessor contains information about any changed assembler
reserved words.

A macro name in the operation field specifies the macro definition block to be expanded.
Label Operation Operand Comment

MACRO QQQ ; MACRO QQQ DEFINED

ENDM

QQQ ; INVOCATION OF MACRO QQQ

In this example, the macro QQQ is invoked when QQQ appears in the operation field.

If the operation field does not contain an assembly language instruction, an assembler directive,
or a macro name, the assembler rejects the entire statement and prints an error message. See
the Assembler Specifics section of this manual for a list of your processor's instruction
mnemonics. Assembler directives are presented alphabetically in the Assembler Directives
section of this manual. Macros are described in the Macros section of this manual.

Operand Field

The operand field specifies val ues required by the assembly language instruction, the assembler
directive, or the macro invocation in the operation field. The word in the operation field
determines the required type, number, and order of operands. For example:

Label Operation Operand Comment

START MOV AL,#'?' ; CHARACTER = '?'

The 8086/8088 MOV instruction requires two operands: a register, followed by a value. In this
example, register AL (a predefined symbol) and a string value are used.

The value in the operand field may be represented by an expression. (See the Expressions
discussion later in this section.) An expression may be one of the following:

• a numeric or string constant,

• a symbol, or

• a combination of constants and symbols with operators and functions.

@

The Assembler-8500 Series B Assembler Core Users

@

Symbols appearing in the operand field may be predefined or user-defined. (See the Symbols
discussion later in this section.) If a symbol appearing in the operand field is not predefined, it
must be defined in one of the following ways:

• the symbol must appear in the label field of an assembler statement (assembler directive or
assembly language instruction); or

• the symbol must appear in the operand field of a GLOBAL, STRING, SECTION, COMMON,
RESERVE, or MACRO directive.

The operand field may contain spaces to improve program readability. The spaces must not be
within symbols.

Label Operation Operand

BYTE 5,35,45,55

BYTE 5, 35, 45, 55

Both of the above statement lines produce identical results.

Comment Field

The comment field is optional, but may be included in any statement line. The comment field
begins with a semicolon (;) and ends with a RETURN. All characters following the semicolon are
considered a part of the comment. Comments are used for program documentation and have no
effect on the object code produced by the assembler. If no other fields are used, the comment
field may begin anywhere in the statement line.

Label Operation Operand Comment

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER
OUTSUB OUT #PORTN,AL ; OUTSUB STARTS HERE

In this example, the first statement has no effect on the object code produced; the semicolon (;) in
the first column causes the entire line to be treated as a comment. In the next line, the semicolon
causes 'OUTSUB STARTS HERE',to be treated as a comment.

Text substitution is the only type of action performed by the assembler within the comment field.
Text substitution is discussed later in this section. The double quote (") signals substitution.
Therefore, to include a double quote (") character within a comment, you must precede the"
character with an up-arrow (!\) character.

NOTE

The up-arrow (!\) character, in a macro parameter, comment, or literal string,
cancels the special significance of the immediately following character.

Symbols
A symbol is a user-defined or predefined word or mnemonic that represents a value, register
name, macro name, class name, module name, or instruction. Symbols make a program easier
to read, and reduce the risk of error when the program is modified.

Symbols

2-7

Symbols

2-8

The Assembler-8500 Series B Assembler Core Users

User-defined Symbols

A user-defined symbol is a word or mnemonic that you create to represent a numeric value
(scalar or address), a string value, or a macro name. By using symbols you can refer to a data
value or a memory address without using the specific value.

For example, if you need to refer to a data value frequently within a program, that value can be
assigned to a symbol. Then, if you need to change that value, you only need to modify the
defining statement, rather than modifying each statement that references the value.

PORTN EQU 15

In this statement, the symbol PORTN is defined by the EQU directive to have the value of 15.
PORTN can be used throughout. the program.

Constructing Symbols

A symbol consists of one or more characters beginning with a letter and containing only letters,
digits, periods, underscores, or dollar signs. Only the first 16 characters are considered
significant; any additional characters are discarded. In addition, a user-defined symbol must not
be a reserved word (see the reserved word list in the Assembler Specifics section of this
manual).

NOTE

There is no case distinction. . Internally, lowercase is converted to uppercase.

The following symbols are valid:
PORTN
HERE
LOOP. 5
LOOP_6
A123456$
TO_DO
UPPERand10wer (same as UPPERANDLOWER)
ANEXTREMELYLONGSYMBOL (same as ANEXTREMELYLONGS)

The following symbols are invalid:
1 SYMBOL (must begin with a letter) .
. LOOP (must begin with a letter)
STRING (must not be a reserved word)
ONE SYMBOL (must not contain blanks)

Defining Symbols

User-defined symbols are defined when they appear in: (1) the label field of an assembly
language instruction, macro invocation, or assembler directive, or (2) the operand field of a
GLOBAL, SECTION, COMMON, RESERVE, MACRO, or STRING directive. User-defined symbols
are assigned values during the assembler's first pass. When the symbols are encountered in the
second pass, they are replaced by the assigned values.

@

The Assembler-8500 Series B Assembler Core Users Numeric Values

@

A symbol in the label field of an assembly language instruction represents the address of the first
byte of that instruction. A label symbol allows you to transfer control to an instruction without
knowing its absolute address. For example, a destination address for a jump instruction (JMP in
8086/8088) can be represented with a symbol.

AGAIN INC CX

JMP AGAIN

AGAIN is a user-defined symbol representing the address of the INC (increment) instruction.

When a symbol is used in the label field of an assembler directive, its meaning depends upon the
directive. Generally, the symbol represents a data constant or the memory address of data. See
the Assembler Directives section of this manual for the specific meaning of a label with each
directive.

Generally, a symbol may not be redefined within a program. However, the SET directive may be
used to redefine a symbol previously defined by the SET directive. This allows you to temporarily
assign a value to an assembler variable during assembly.

Predefined Symbols
Predefined symbols include:

• assembler directives and options,

• assembler functions,

• assembly language instruction mnemonics,

• processor register names and symbols, and

• ENDREL-a global symbol that is assigned at link time to the lowest address that is above
all relocatable sections.

The assembler directives and options are listed in the Assembler Directives section of this
manual. Assembler functions are discussed later in this section. See the Assembler Specifics
section of this manual for a listof instruction mnemonics and reserved words foryour processor.
See the Linker section of this manual for more information about ENDREL.

Values
The assembler recognizes two kinds of values: numeric and string.

Numeric Values

The assembler recognizes three types of numeric values: scalar, address, and floating point.
Scalar and address values are 32-bit (2-word) quantities. Floating point values may be 32-bit
(single precision) or 64-bit (double precision) quantities. Scalars are signed values. Addresses
are unsigned values.

2-9

Numeric Values The Assembler-8500 Series B Assembler Core Users

2-10

Scalar Values. Scalar .values are signed integers ranging from -2,147,483,648 to
2, 147,483,647. (The two's complement of a positive number represents the corresponding
negative integer.) Scalar values can be used as numeric data within an assembly language
program.

Address Values. An address value specifies a memory location. An address value is an
unsigned 32-bit quantity that ranges from 0 to 4,294,967,295.

An address is defined relative to the beginning of the section in which it appears. The assembler
generates an object module (made up of one or more sections) with address values relative to the
beginning of each section. At assembly time, the beginning (base address) of each relocatable
section is zero. At link time, the linker relocates the individual sections, thus redefining the base
address of each section. (See the Linker section of this manual for a discussion on section
relocation.) The actual address of a byte is not known until after the linking process is complete.

During assembly, a location counter (which simulates the processor program counter) holds the
address of the object code being generated. The dollar sign ($), when used in the operand field,
represents the current value of the location counter (the address of the first byte ofthe machine
instruction or data item currently being generated). For example:

Label Operation Operand

IF $ > OFFH

In this statement, the current value of the location counter is compared with the value OFFH.

Floating Point Values. A floating point value is a constant generated by the FLOAT directive. It
may be 32 bits (single precision) or 64 bits (double precision).

No arithmetic may be performed on floating point constants during assembly. For more
information on floating point format, see the discussion of the FLOAT directive in the Assembler
Directives section of this manual.

Numeric Constants. Numeric constants may be entered in decimal, binary, octal, or
hexadecimal notation. The assembler assumes that a number is in decimal unless a suffix letter
identifies it as binary, octal, or hexadecimal. The following suffix letters are used:

• B denotes a binary number. For example, 1 01 08 and 111111118 are binary numbers.

• 0 (capital letter 0, not zero) or Q denotes an octal number. For example, 3770 and
1777770 are octal numbers.

• H denotes a hexadecimal number. For example, 1 A2CH and OFFFFH are hexadecimal
numbers.

NOTE

Numeric constants must begin with a numeric character. Any hexadecimal
number that has an alphabetic character in the first digit must be preceded with
a zero.

A numeric constant may be assigned to a symbol with the EOU directive.
PORTN EQU 15

@

The Assembler-8500 Series B Assembler Core Users String Values

@

In this example, PORTN is assigned the value 15.

Numeric Variables. During assembly, a symbol may be temporarily assigned a value with the
SET directive. A symbol defined with the SET directive is called an assembler variable. The value
associated with the variable may be changed by subsequent SET directives. When the variable is
encountered, the current value is used. A symbol used as an assembler variable must not have
been previously defined (except with another SET directive).

COUNT SET 1

In this example, the symbol COUNT is an assembler variable, and is assigned the numeric value
1 with the SET directive. When the symbol COUNT is encountered by the assembler, the current
value is used. If a subsequent SET directive assigns another value to COUNT, the reassigned
value is used.

String Values

Character strings may be used with the assembler. Individual characters are translated into
their ASCII representation (8 bits, with the leftmost bit set to zero).

String Constants. String values entered as constants in an assembler program are enclosed in
single quotes ('):

'STRINGS'

Any ASCII character, with the exception of the RETURN character, may be included in a string
constant. To include special characters, such as a double quote ("), a single quote ('), or an up­
arrow (!\) precede the special character with an up-arrow (!\).

NOTE

The up-arrow character (!\) cancels the special significance of the immediately
fol/owing character.

The null string (") contains zero characters.

String Variables. A character string may be assigned to a string variable with the SET directive.
The symbol to be used as the string variable must first be declared with the STRING directive.
The STRING directive specifies the maximum length ofthe string variable. The maximum length
(which defaults to 16) is enclosed in parentheses. For example:

STRING STVAR(lO)
STV AR SET ' CHARACTERS'

In this example, the symbol STVAR is a string variable. Up to 10 characters may be assigned to
the variable STV AR.

2-11

Conversion The Assembler-8500 Series B Assembler Core Users

2-12

The length of the string variable is the length of the character string currently assigned to the
variable. If you try to assign a character string that is longer than the declared length of the
variable, the character string is truncated and an error message is generated.

Strings are only used during assembly. There is no run-time storage space reserved for string
variables.

Conversions

A string constant may be assigned to a symbol with the EQU directive.
Label Operation Operand

SYMl EQU 'ABCD'

The string is converted to a two-word (four-byte) numeric value. The numeric value is the ASCII
representation of the string. If the string is longer than four characters, only the first four
characters are converted and an error message is generated. If the string is less than four
characters, the numeric value is padded with zeros to the left. The value of the null string (") is
zero. Here are some example conversions:

Character String

'A'
'A'
'7'
'ABCD'
'ABCDE'
'12'

OOOOOOOOH
00000041H
00OO003FH
41424344H

Numeric Value

41424344H (truncation error occurs)

00003132H

For an ASCII-to-hexadecimal conversion table, see the Tables section of this manual.

If a numeric value is assigned to a string variable, the numeric value is converted to its string
representation. The numeric value is treated as a literal string constant. For example:

Label Operation Operand Comment

STRING A,B(3)
A SET 6 ;SETS A TO '6'
A SET -3 ;SETS A TO '-3'
B SET 1234 ;SETS B TO '123' AND A TRUNCATION ERROR

OCCURS

Text Substitution
String values can be substituted within a statement line during assembly by the use of string
variables. The double quote (") is the substitution delimiter. When the assembler encounters a
string variable enclosed within double quotes ("variable"), the variable is replaced by the current
string value assigned to that string variable. The result of the string substitution may not contain
double quotes that are not enclosed in single quotes (text substitution may not be nested).

@

The Assembler-8500 Series B Assembler Core Users Text Substitution

@

When processing a statement, the assembler first performs all indicated text substitutions. For
example:

Label Operation Operand Comment

OP
STRING
SET

"OP"

OP
'WORD'

1,2,3 ; DO "OP" TO 1,2,3

When the assembler scans the line "'OP" 1 ,2,3', it first performs the following substitution:

WORD 1,2,3 ; DO WORD TO 1,2,3

The statement line then contains the assembler directive WORD.

During assembly, the percent sign (%) represents the current section name. With the use oftext
substitution, the current section name can be inserted into the assembly language program. For
example:

Label Operation Operand Comment

STRING
SECNAME SET

SECTION

RESUME

SECNAME(8)
"'%'" SAVE CURRENT SECTION NAME
QQ SWITCH TO NEW SECTION

"SECNAME" ; SWITCH BACK TO PREVIOUS SECTION

Parameter substitution performed during macro expansion is a form of text substituti.on. See the
Macros section for information on parameters.

Expressions
Introduction
An expression is a combination of constants (except floating point), variables, or functions that
yields a numeric or string value. The constants, variables, and functions can be connected by
operators. The assembler accepts expressions in the operand field. An operand expression is
evaluated at assembly time, and the numeric or string value is used. Table 2-1 lists the operators
and functions that can be used in expressions.

2-13

Expressions The Assembler-8500 Series B Assembler Core Users

2-14

Table 2-1
Expression Operators and Functions

Type Operator IFunction Meaning

Unary Arithmetic + Identity
- Sign inversion

Binary Arithmetic * Multiplication
I Division
+ Addition
- Subtraction
MOD Modulus
SHL Left shift
SHR Right shift

Unary Logical \ NOT (bit inversion)

Binary Logical & AND
! Logical OR
!! Exclusive OR

Relational = Equal
<> Not equal
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal

String Concatenation

Logical Functions BASE Base address comparison
DEF Symbol definition

Numeric Functions BITS Bit string
ENDOF End of section
HI High byte
LO Low byte
SCALAR Conversion to scalar

String Functions NCHR Number of characters

SEG Substring
STRING Conversion to string
STRINGOF Return ~acro argument

Hierarchy
In an expression involving more than one operator, the operators are performed according to a
predefined order of precedence. Table 2-2 shows the operator hierarchy.

@

The Assembler-8500 Series B Assembler Core Users Expressions

@

Precedence

1. BASE BITS
HI LO
SEG STRING

2.

3. + -

4. * /

5. + -

6. = <> > >= < <=

7. &

8. ! !!

Table 2-2
Hierarchy of Operators

Operators

DEF ENDOF
NCHR SCALAR
STRINGOF

\

MOD SHL SHR

Type of Operator

Functions

Concatenation

Unary; logical NOT

Multiplication, division,
modulus, shifts

Addition, substraction

Relational

Logical AND

Logical OR, exclusive OR

Table 2-2 shows that the functions have the highest precedence and that the OR operator has
the lowest. Operators with the highest precedence are performed first. Operators with the
lowest precedence are performed last. Operators in the same group have equal precedence, and
are performed from left to right within the expression.

Parentheses may be used to override the order of precedence. Up to three levels of nested
parentheses are allowed in an expression (including function argument delimiters). The most
deeply nested subexpressions are evaluated first. It is possible to create an expression that is too
complex for the assembler to evaluate (parentheses nested more than 3 levels deep). If the
expression entered is too complex, an expression error message is displayed.

Operators

An operator within an expression acts upon one or more terms. The operators and types of terms
permitted for each operator are discussed in the following paragraphs.

If an operator requires a numeric operand, and a string operand is provided, the string operand is
converted to a numeric value. (See the Conversions discussion earlier in this section.)

2-15

Operators The Assembler-8500 Series B Assembler Core Users

Arithmetic Operators. Arithmetic operators act on numeric values.

+ Unary plus

- Unary negative

* Multiplication

/ Division

+ Addition

- Subtraction

MOD Modulus

SHL Shift left

2-16

Identity operator: does not change the value of the term. May be
applied to scalar or address values.

Indicates sign inversion. (Two's complement.) May be applied to
scalar values only.

Multiplies two scalar values.

Divides two scalar values.

Adds two terms (scalar or address), as follows:

Scalar + Scalar::: Scalar
Scalar + Address = Address
Address + Scalar = Address
Address + Address = error

Subtracts two terms (scalar or address), as follows:

x

Scalar - Scalar = Scalar
Address - Scalar = Address
Address - Address = Scalar (addresses must have same base)
Scalar - Address = error

The remainder that results when the first term is divided by the
second. Both terms must be scalar values. The sign of the returned
value is determined by the sign of the second term. For example:

Y XMODY

2 2 0
5 2
5 ~2 -1

-5 2 1
-5 -2 -1

The first term is shifted to the left the number of bit positions specified
by the second term. Both terms must be scalar values. The second
term (the number of bits to be shifted) must be a non-negative scalar
value. For example:

1 SHL 1 results in 2

o
0000

o
0000

o
0000

o
0000

o
0000

o
0000

000
0000 0000 0000

o 1
0000 0001

a
0000

000 2
0000 0000 0000 0010

@

The Assembler-8500 Series B Assembler Core Users Operators

@

SHR Shift right

When the bits are shifted, the leftmost bits are discarded; the vacated
bit positions on the right become zeros. For example:

OFOFOFOFOH SHL 1 results in OE1 E1 E1 EOH

F 0 F 0 F 0 F 0
1111 0000 1111 0000 1111 0000 1111 0000

E 1 E 1 E 1 E 0
1110 0001 1110 0001 1110 0001 11100000

If the second term is greater than 32, the result is zero, and an error
message is generated.

The first term is shifted to the right the number of bit positions
specified by the second term. Both terms must be scalar values. The
second term (the number of bits to be shifted) must be a non-negative
scalar value. For example:

2 SHR 1 results in 1

0 0 0 0 0 0 0 2
0000 0000 0000 0000 0000 0000 0000 0010

0 0 0 0 0 0 0 1
0000 0000 0000 0000 0000 0000 0000 0001

When the bits are shifted, the rightmost bits are discarded; the
vacated bit positions on the left become zeros. If the second term is
greater than 32, the result is zero, and an error message is generated.

Logical Operators. The logical operators, NOT (\), AND (&),.QR (I), and exclusive-OR (II),
correspond to their Boolean algebra equivalents, as shown in the following truth table.

x V ·\X X&V X!V X!!V
0 0 0 0 0
0 1 1 0 1 1

0 0 0 1 1
1 0 1 0

Logical operators may only be applied to scalar values.

2-17

Operators

\ NOT

&ANO

, OR

The Assembler-8600 Series B Assembler Core Users

Returns the one's complement of the following term by
complementing each bit in the term. (Returns a 1 if the bit is 0, and
returns a 0 if the bit is 1 .)

\ OFOFOFOFH results in OFOFOFOFOH.

o F 0 F 0 F 0 F
0000 1111 0000 1111 0000 1111 0000 1111

F 0 F 0 F 0 F 0
1111 0000 1111 0000 1111 0000 1111 0000

Returns the logical AND of two terms. Compares the terms bit-by-bit;
returns a 1 if both bits are 1, otherwise returns a O.

Example:

OVAL EOU OFOFOFOFOH & OAAAAAAAOH

F 0 F 0 F 0 F 0
1111 0000 1111 0000 1111 0000 1111 0000

A A A A A A A 0
1010 1010 1010 1010 1010 1010 1010 0000

OVAL is assigned the value OAOAOAOAOH.

A 0 A 0 A 0 A 0
1010 0000 1010 0000 1010 0000 1010 0000

Returns the logical OR of two terms. Compares the terms bit-by-bit;
returns a 1 if either bit is 1, returns a 0 if both bits are O.

Example:

RVAL EOU OFOFOFOFOH' OAAAAAAAOH

F 0 F 0 F 0 F 0
1111 0000 1111 0000 1111 0000 1111 0000

A A A A A A A 0
1010 1010 1010 1010 1010 1010 1010 0000

RVAL is assigned the value OFAFAFAFOH.

F A F A F A F 0
1111 1010 1111 1010 1111 1010 1111 0000

@

The Assembler-8500 Series B Assembler Core Users Operators

@

II Exclusive-OR Returns the logical exclusive-OR of two terms. Compares the terms
bit-by-bit; returns a 1 when the bits are different, returns a 0 when
the bits are the same.

Example:

ERVAL EQU OFOFOFOFOH !! OAAAAAAAOH

F 0 F 0 F 0 F 0
1111 0000 1111 0000 1111 0000 1111 0000

A A A A A A A 0
1010 1010 1010 1010 1010 1010 1010 0000

ERVAL is assigned the value 5A5A5A50H.

5 A 5 A 5 A 5 0
0101 1010 0101 1010 0101 1010 0101 0000

Relational Operators. Relational operators compare two terms and return the value -1
(FFFFFFFF) for a true expression and 0 for a false expression.

= Equal

<> Not equal

> Greater tha n

>= Greater than or equal

< Less than

<= Less than or equal

Relational operators allow comparison of scalar values, address values, and string values.

Scalar values are compared as signed numeric values. For example:
Label Operation Operand

COUNT SET
IF
IF

F EQU

1
COUNT < 5
COUNT > -1

7 = COUNT

The relational operators in this example compare signed numeric (scalar) values.

2-19

Operators The Assembler-8500 Series 8 Assembler Core Users

2-20

Address values are compared as unsigned numeric values. Address values are compared as
offsets from their base address. Address values from different sections may only be compared
for equality (=) or inequality «»: They are always un~qual.

START MOY

NEXT MOY
T EQU

AI..,#"? '

AH,#O
START < NEXT

The less-than «) operator in this example compares two unsigned numeric (address) values
within the same section.

If only one term is an address, a relational operator performs an unsigned numeric comparison
between the scalar and the address offset.

String values are compared numerically according to the ASCII collating sequence. (See the
Tables section of this manual.) Comparison proceeds left to right, character-by-character. Two
strings are considered equal if they have the same length and contain identical character
sequences. If they are identical in sequence but one string is longer than the other, the longer
string is considered greater. The following examples show the results of various string
comparisons:

'AB' = 'AB'
'A' > 'B'
'ABC' > 'ABC '
'ACB' > 'ABC'

results in
results in
results in
results in

-1 (true)
o (false) A less than B
o (false) the right term is longer
-1 (true) C greater than B .

""If only one term is a string, the first four characters of the string are converted to a scalar value
and a numeric comparison is performed.

The types of comparisons are summarized in Table 2-3.

Table 2-3
Types of Comparisons with Relational Operators

Right Operand
Left Operand String Scalar Address

String String Signed Numeric Unsigned Numeric
Comparison Comparison Comparison

Scalar Signed Numeric Signed Numeric Unsigned Numeric
Comparison Comparison Comparison

Address Unsigned Numeric Unsigned Numeric UnSigned Numeric
Comparison Comparison Comparison

@

The Assembler-8500 Series B Assembler Core Users Functions

@

String Operator.

: Concatenation Combines two strings into a single string. For example:
Label

STRl
STRZ
STR3

Functions

Operation

STRING
SET
SET
SET

Operand

STRl(5) ,STR2(6) ,STR3(ll)
'HELLO'
, THERE'
STRl : STRZ

STR3 now is 'HELLO THERE'.

If the resulting string is assigned to a variable, the length of the
resulting string must not exceed the length specified forthat variable
by the STRING directive.

Numeric values may not be concatenated.

,The following predefined functions return a value when used in an expression:

• Logical Functions

BASE-Determines whether two values have a common base.

DEF-Determines if a symbol has been defined.

• Numeric Functions

BITS-Extracts a bit-string.

ENDOF-Returns the address of the last byte of a section.

HI-Returns the high byte of the low-order word of a numeric expression.

LO-Returns the low byte of a numeric expression.

SCALAR-Converts an address value to a scalar value.

• String Functions

NCHR-Returns the current length of a string variable.

SEG-Extracts a substring of a string.

STRING-Converts a scalar value to a string.

STRINGOF-Creates string expression from macro parameter.

Each of these functions is described in detail in the following pages. The conventions used in
these descriptions are the same as those described in the Learning Guide.

2-21

Functions: BAS E
Determines whether two values have common base The Assembler-8500 Series B Assembler Core Users

2-22

I BASE(numvaluel,numvalue2)

SYNTAX

PARAMETERS

numvalue Any expression that evaluates to a numeric value. Usually a label symbol.

EXPLANATIPN

The BASE function compares two numeric values to see if they have the same base. The BASE
function returns a -1 (true) if the values have the same base. The BASE function returns a 0
(false) if the values do not have the same base.

All addresses within a section share the same base. All scalar values share the same base.
Scalar values and address values do not have the same base. Each SECTION, COMMON, and
RESERVE directive defines a new address base. The default section (any statements not
preceded by a SECTION or COMMON directive) has a separate base. All unbound globals are
assumed to have unique bases.

The BASE function is typically used to compare label symbols in a conditional assembly
statement.

EXAMPLES

Label Operation Operand

Q EQU 5

} Both scal.r.

R EQU 15
IF BASE(Q,R)

f
Statements are assembled
because Q and Rshare
common base

ENDIF

In this example, the two scalar values Q and R are compared. Since both Q and R represent
scalar values, they share a common base. The function BASE(Q,R) returns a -1 (true) and the
statement lines between IF and ENDIF are assembled.

@

Functions: BAS E
The Assembler-8500 Series B Assembler Core Users Determines whether two values have common base

@

Label Operation Operand

SECTION
HERE BLOCK
THERE BLOCK

IF

ENDIF

SECI
lOOH
lOOH
BASE (HERE, THERE)

! Statements are assembled.
because HERE and THERE
are in the same section

In this example, the statements between IF and ENDIF are assembled because HERE andTHERE
share the same base.

Label Operation

SECTION
HERE BLOCK

COMMON
THERE BLOCK

IF

ENDIF

Operand

SEC2
lOOH
WKSPACE
lOOH

BASE (HERE, THERE)

! Not assembled
because HERE and THERE
are not in same section

In this example, the statements between IF and ENDIF are not assembled because HERE and
THERE do not share the same base.

Label Operation Operand

THERE BLOCK lOOH

IF BASE ($,THERE)

ENDIF
! Only assembled if

THERE is in the
current section

In this example, the statements between IF and ENDIF are assembled if THERE is in the current
section. The dollar sign ($) represents the current value of the location counter.

2-23

Functions: BITS
Returns specified bit string The Assembler-8500 Series B Assembler Core Users

2-24

SYNTAX

BITS(bit-source,start-bit,length)

PARAMETERS

bit-source Any expression that results in a numeric value, either scalar or address. The
expression may not be an unbound global.

start-bit The position of a bit in the bit-source: any expression that results in a positive
numeric value which is less than or equal to 31. However, the sum of start-bit and
length must be less than or equal to 32.

length The length of the bit-string: any expression that results in a positive numeric value
which is less than or equal to 32. However, the sum of start-bit and length must be
less than or equal to 32.

EXPLANATION

The 81TS function returns a bit string which is a substring of bit-source. The bits in bit-source
are numbered from 0 to 31: bit 0 is on the right, and bit 31 is on the left. The substring consists of
bits starting from start-bit and continuing to the left until the substring contains length bits.

The following table shows various bit strings returned by the 81TS function.

Expression

81TS(1 01 0018,0,3)
81TS(1 01 0018,3,3)
81TS(1 01 0018,6,3)
81TS(1 01 0018,0,0)

8it String

001
101
000
o

If bit-source is a relocatable address, no further assembly time operations may be performed on
the bit string that 81TS produces. This is because the function must wait until link time to be
evaluated.

@

The Assembler-8500 Series B Assembler Core Users

EXAMPLE

Label Operation Operand

BITE MOV AL,#BITS (01234567H, 6, 8)

start-bit = 6

t
bit-source = 0000 0001 0010 0011 0100 0101 0110 0111 ... ",

31 0
length = 8 bits

BITE = 0001 0101 = 15H

@

Functions: BITS
Returns specified bit string

2-25

Fu~ctions: DE F
Determines if symbol is defined The Assembler-8500 Series B Assembler Core Users

2-26

I DEF(symbol)

SYNTAX

PARAMETERS

symbol Any user-defi ned symbol.

EXPLANATION

The DEF function tests whether a symbol has been defined during the current assembler pass.
(See the discussion of Assembler Execution, later in this section, for a description of the two
passes of the assembler.) A value of -1 (true) is returned if the symbol has been defined. Avalue
of 0 (false) is returned if the symbol has not been defined.

Label Operation Operand

;Q EQU 0

IF
WORD
BYTE
ENDIF

DEF(Q)
15
5

EXAMPLE

In this example, the semi-colon (;) in the first line flags the line as a comment and the line is not
assembled. Thus, the statements after the IF directive are not assembled, since Q has notbeen
defined in the current assembler pass. If the semicolon is removed, the IF condition becomes
true and the statements are assembled.

Label Operation Operand

IF DEF(P)
BLOCK P
ENDIF

P SET 100

In this example, the statement within the IF block (BLOCK P) will not be assembled because Pis
not defined until further on in the source code.

@

The Assembler-8500 Series B Assembler Core Users
Functions: END 0 F

Returns end address of section

@

I ENDOF(section-name)

SYNTAX

PARAMETERS

section-name The name of a section defined in the assembler source program.

EXPLANATION

The ENDOF function returns the address of the last byte of a section. The linker may relocate the
individual sections during linking. Therefore, the ENDOF function is evaluated at link time. (The
Linker section of this manual discusses how sections are relocated.) Further arithmetic
operations may not be performed on the result of an ENDOF function.

EXAMPLE

Label Operation Operand

RESERVE
MOV

STACK, 100
SP,ENDOF(STACK)

This 8086/8088 example reserves 100 bytes for the stack (STACK) and loads the stack pointer
register (SP) with the address of the end of the stack. The stack pointer register holds the
effective address of the high byte of memory reserved for STACK.

2-27

Functions: H I
Returns high byte of low-order word The Assembler-8500 Series B Assembler Core Users

2-28

SYNTAX

HI(numeric-expression)

PARAMETERS

numeric-expression Any expression that returns a numeric value, either scalar or address.

EXPLANATION.

The HI function returns the most significant byte in the low-order word of a numeric expression.
The result is a one-byte numeric value equivalentto BITS(numeric-expression,S,S). The numeric
expression may be either an address or a scalar value. If the expression is an address, further
operations may not be performed on the result.

EXAMPLE

Label Operation Operand

SECTION TABLE,INPAGE
Q BLOCK 50

SECTION MAIN
MOV BH,HI(TABLE)

MOV BL,LO(Q)
MOV AX, [BX]

In this SOS6/S0SS example, the high byte of the 16-bit address of the section TABLE is loaded
into the BH register. The low byte of address Q is then loaded into the BL register. Data can be
transferred without changing the BL register.

@

The Assembler-8500 Series B Assembler Core Users
Functions: LO

Returns low byte of numeric value

@

I LO(nu merie-expression)

numeric-expression

SYNTAX

PARAMETERS

Any expression that results in a numeric value, either scalar or
address.

EXPLANATION

The LO function returns the least significant byte of a numeric expression. The result is a one­
byte numeric value equivalent to BITS(numeric-expression,O,8). The numeric expression may
be either an address or a scalar value.lfthe expression is an address, further operations may not
be performed on the resu It.

EXAMPLE

See the HI function example.

2-29

Functions: N C H R
Returns number of characters in string The Assembler-8500 Series B Assembler Core Users

2-30

SYNTAX

NCHR(string-expression)

PARAMETERS

string-expression Any expression that returns a string.

EXPLANATION

The NCHR function returns the current number of characters in the specified string. The result is
a scalar value.

NOTE

The current length of a character string is not necessarily the same as the
maximum length of a string symbol as declared with the STRING directive. See
the Assembler Directives section of this manual for information on the STRING
directive.

EXAMPLE

The following example shows one use of the NCHR function within a macro repeat block:
Label Operation Operand

STRING STR(5)
STR SET ~HELLO~

Q SET 1
REPEAT Q <= NCHR(STR)
ASCII SEG(STR,Q,l),~ ~

Q SET Q + 1
ENDR

The repeat loop is repeated for Q = 1,2,3,4, and 5. When Q = 6, the REPEAT condition is false and
the assembly continues with the statement following ENDR. The ASCII representations of the
individual characters 'H ELL 0 ' are stored in consecutive bytes.

@

Functions: SCALAR
The Assembler-8500 Series B Assembler Core Users Converts address to scalar

@

I SCALAR(address)

SYNTAX

PARAMETERS

address Any expression that returns an address value.

EXPLANATION

The SCALAR function converts an address (unsigned numeric) value into a scalar (signed
numeric) value.

The only arithmetic operations that can be performed directly on address values are: addition
with a scalar value, subtraction of a scalar from an address, and subtraction of addresses. To
perform any other operations on address values, you must first convert the addresses to scalar
values with the SCALAR function.

EXAMPLE

Label Operation Operand

100 TABLE BLOCK
XXX EQU SCALAR(TABLE) / 2 + TABLE

This example shows how an address (TABLE) is converted to a scalar so that the division
operator may be applied to it.

Note that XXX is an address because the sum of a scalar and an address (TABLE) is an address.

2-31

Functions: S E G
Returns substring The Assembler-8500 Series B Assembler Core Users

2-32

SYNTAX

SEG(string,start-position,char-count)

PARAMETERS

string Any expression that returns a character string.

start-position A numeric expression that indicates the position in the string of the first
character of the substring counting from the left. Must be greater than
zero.

char-count Any numeric expression that evaluates to the number of characters to be
returned. Must be positive.

EXPLANATION

The SEG function returns a substring of a character string. The first character in the substring is
the character in the start-position. Each successive character is included, counting from the
left, until char-count characters are included or the end of the string is encountered.

The following table shows various substrings returned by the SEG function:

Expression

SEG('ABCOE',2,2)
SEG(,ABCOE',4,3)
SEG(,ABCOE',6,1)
SEG(,ABCDE',1,6)

Label Operation

STRING
STR SET
LST SET

Substring

'BC'
'DE'

'ABCOE'

Operand

EXAMPLE

STR(12), LST(l)
, CHARACTERS'
SEG(STR,NCHR(STR) ,1)
--~l

L number of characters
to be returned

first character of substring
(NCHR function returns the
number of characters in STR)

character string

@

The Assembler-8500 Series B Assembler Core Users
Functions: S EG

Returns substring

@

Although the character string STR has a maximum length of 12, NCHR(STR) returns the current
length which is 10. The start-position of the substring is the tenth character. The char-count is
1. Thus, the tenth character'S' is assigned to the string variable LST.

2-33

Functions: STRING
Converts scalar to string The Assembler-8500 Series B Assembler Core Users

2-34

I STRING(scalar)

SYNTAX

PARAMETERS

scalar Any expression that evaluates to a scalar value.

EXPLANATION

The STRING function converts a scalar value to its string representation. The string
representation is 11 characters long. The first character is a zero or minus (-), depending on the
sign of the number. The remaining ten characters are the decimal representation of the value,
padded with leading zeros (if necessary). The following table shows how values are converted to
their string representation.

Value String

o
-1
400
200H

'00000000000'
, -0000000001 '
'00000000400'
'0000000051 2'

Label Operation

STRING
XVAL SET
YVAL SET

MATSIZE SET
DIGIT4 SET

EXAMPLE

Operand

MATSIZE(6), DIGIT4(1)
4
50

STRING(XVAL * YVAL)
SEG(MATSIZE,9,1)

This example converts the value of XVAL times YVAL(4 * 50 = 200) to the string '00000000200'.
DIGIT4 is defined to be the ninth character in the string MATSIZE ('2').

NOTE

Note that there is also a STRING directive, which is quite different from the
STRING function.

@

Functions: STR I N G 0 F
The Assembler-8500 Series B Assembler Core Users Returns macro argument

@

I STR I NGO F(a rg ument -nu mber)

SYNTAX

PARAMETERS

argument-number Any expression that results in a valid macro argument number.

EXPLANATION

The STRINGOF function returns the macro argument (in string form) whose number is
argument-number, if the function is used inside a macro. If the function is used outside a macro,
the argument number is invalid, or the argument number is greater than the number of
parameters passed, a null string is returned.

Label

ARGI
ARG2
ARG3

ENDM

Operation

MACRO
STRING
SET
SET
SET

EXAMPLE

Operand

MACRONAME
ARGl(20),ARG2(20),ARG3(20)
STRINGOF(l)
STRINGOF(2)
STRINGOF(3)

MACRONAME 'These', 'are', 'arguments' t--- macro invocation

In this example, ARG 1, ARG2, and ARG3 are set to be 'These', 'are', and 'arguments',
respectively, when the macro MACRONAME is called with those parameters.

2-35

Assembler Execution The Assembler-8500 Series B Assembler Core Users

2-36

ASSEMBLER EXECUTION
Two Passes
The assembler makes two passes through the input. During the first pass, the assembler
examines each statement, records any symbol it encounters in a symbol table, and assigns a
value to each symbol. That value is used in the second pass.

When the END statement or the end of the last source file is encountered, the assembler reads
the input again. During the second pass, the assembler:

• generates an object module,

• generates a listing file, and

• lists on the terminal any error messages generated.

Forward Referencing
Since the assembler generates a symbol table on the first pass, your programs can include
forward referencing. For example:

JMP DOWN

DOWN CALL OUTS

The symbol DOWN can be referenced before it is defined. If any symbol has a different value
during the second pass, a phase error results.

Execution Sequence
As the assembler reads each statement of the source program, it first makes any necessary text
substitution. The assembler replaces any text substitution construct, such as "1", "@", or
"VARNAME", with the parameter, symbol, or string that the construct stands for.

The next action depends on the type of statement:

• assembly language instruction-The assembler translates each assembly language
instruction into the corresponding machine instruction.

• assembler directive-The assembler performs the action specified by the directive. Not all
assembler directives produce object code. (See the Assembler Directives section of this
manual for the effect of individual directives.)

• macro invocation-The assembler processes each statement within the previously
defined macro. (See the Macros section of this manual for more information about macros.)

@

The Assembler-8500 Series B Assembler Core Users Assembler Output

@

ASSEMBLER OUTPUT
The assembler generates an object module and an assembler listing. Any assembler errors are
displayed on the system terminal.

Object Module
The assembler generates an object module which is stored in binary format. This assembler­
created object module is suitable for one of the following uses:

• It may be linked with other modules to form an executable load file. (See the Linker section
of this manual.)

• It may be inserted into a library file. (See the Library Generator section of this manuaL)

• It may be loaded into program memory and executed provided that the module does not
contain any unbound global symbols and does not contain any sections that must be
relocated. (See the Linker section of this manual for information on relocatable sections.)

Assembler Listing
The assembler generates an assembler listing consisting of three parts: the source listing, the
symbol table, and the cross-reference listing. Figures 2-2, 2-3, and 2-4 show the assembler
listing of a sample program. Both the listing and the sample program that generates it are
examined in more detail later in this section.

The assembler listing shown in this section consists of four pages: pages 1 and 2 (Fig. 2-2) show
the source listing, which includes the source program and the object code generated for each
statement; page 3 (Fig. 2-3) shows the symbol table; and page 4 (Fig. 2-4) shows the cross­
reference listing. Refer to Figs. 2-2, 2-3, and 2-4 as you read the following descriptions.

2-37

Assembler Output The Assembler .. -:8500 Series B Assembler Core Users

2-38

Source Listing
Each line of the source listing (Fig. 2-2) contains the following five fields:

1. The line number (decimal). This value is incremented with each line processed (including
blank lines and expanded macros, REPEAT blocks, and INCLUDE files).

2. The value of the location counter (hexadecimal) appears if the statement generates
object code or alters the location counter. The value shown is the value before the
statement is processed.

3. The assembled object code (hexadecimal) or result-value. (Object code is left justified in
this field; result-values are right justified.) For some directives, the assembler generates a
result-value in this field. Table 2-4 lists those directives and an explanation of the result­
values.

4. The line indicator:

G = unbound global
J = text from INCLUDE file

M = text from macro or REPEAT expansion
R = relocatable
S = text substitution

This field provides miscellaneous information about the line and may be empty.

5. The source statement.

If any statement contains an error, the appropriate error message appears on the line directly
after the s~atement. See the Error Messages section of this manual for further information about
error messages.

Directive

BLOCK

ELSEIF

EQU

IF

ORG

SET

Table 2-4
Result-Values

Explanation of Result-Value

Indicates the size (in bytes) of the block being reserved.

Indicates whether the condition-value is false (0) or true (anything but 0).

Indicates the value of the symbol being assigned.

Indicates whether the condition-value is false (0) or true (anything but 0).

Indicates the new value of the location counter.

Indicates the value of the symbol being assigned or, if the symbol is a string,
indicates the length of the string (in bytes).

@

The Assembler-8500 Series B Assembler Core Users Assembler Output

@

Cross-Reference Listing

The cross-reference listing (Fig. 2-3) is a listing of all the user-defined symbols and the line
numbers of each statement in which they appear. Only those symbols encountered while the
XREF option is on will appear in the cross-reference listing. The symbols are listed in
alphabetical order. If the symbol appears in the label field, that line number is followed by a
pound sign. Symbols in comments are not cross-referenced.

Symbol Table

The assembler symbol table (Fig 2-4) displays the value and type of each symbol. The symbol
table is divided into the following groups:

1. Scalars-Scalar symbols are listed in this group. The letter 'V' indicates a variable defined
with the SET directive. The absence of a 'V' indicates the variable was defined with an
EQU directive. The number (hexadecimal) that follows the symbol is the value assigned to
the symbol. The value for each variable is the last value assigned to the variable during
assembly.

2. Strings and Macros-Symbols that are declared as string variables or defined as macro
names are listed in this group. The letter'S' associated with the symbol indicates a string
variable and 'M' indicates a macro. A number (in hexadecimal) follows each string
variable. That number represents the number of bytes required by the assembler to store
the character string.

3. Sections-Each section of the program is listed alphabetically within this group. The
following information appears with each section:

• Section type-SECTION, RESERVE, or COMMON. See the Linker section of this
manual for the definition of section types.

• Relocation type-Absolute, Aligned, Page, Inpage, or Byte Relocatable.

• Length of section-the number of bytes of object code generated (in hexadecimal).

• Class name-if specified.

• All address symbols within the section-with the address of each symbol, relative to
the beginning of the section. 'E' indicates that the ENDOF function is used to
determine the address. 'T' indicates that BITS, HI, or LO is used. 'G' indicates that the
symbol is a bound global.

4. Unbound Globals-Global symbols used in this module but defined elsewhere. Any
symbols based on an unbound global are listed in this group.

5. Undefined Symbols-Any undefined symbols encountered by the assembler are listed at
the end of the symbol table.

6. Statistics-Three summary lines of statistics appear at the end of the symbol table. The
first line shows the number of source lines read. The second line shows the number of
lines processed, including expanded REPEAT blocks, macros and INCLUDE files. The
quantity in the second line is never less than that in the first line. The third line lists the
number of errors. A fourth line, showing the number of undefined symbols, will appear if
any undefined symbols were encountered in the source file. These lines of statistics also
appear on the system terminal at the end of the assembly process.

2-39

Assembler Output The Assembler-8500 Series B Assembler Core Users

Tektronix ASM 8086/8088
Vxx.xx-xx (xxxx)

SAMPLE PROGRAM Page 1
xxxxxx.xxxxxxxx

2
3
4
5
6
7
8
9

10
11
ASM: 1
12
13
14
15

(W)

3E8
A
9

C6

FFFFFFFF

IF4

SEATS
MYSELF
VOTERS
CONTRIB
; DEFINE

SEATS

LIST LINE(80),XREF
STRING VOTERS(20),MYSELF(20)
STRING SENTENCE(40)
SET 1000
SET 'KEN DEDATE'
SET 'ENGINEERS'
SET 198
RESERVE SECTION 'SEATING'.
IF HI (CONTRIB) = 0
WARNING ; CONTRIBUTION TOO SMALL

SET SEATS - 500
ENDIF
RESERVE SEATING,.SEATS

16 DEFINE MACRO 'PROMISE'.
17 MACRO PROMISE
18 THIS MACRO CONCATENATES ALL PARAMETERS INTO
19 A SINGLE SENTENCE.
20 SENTENCE SET
21 PARAM SET 1 ; POINT TO FIRST PHRASE.
22 REPEAT PARAM <= "#" REPEAT
23 SENTENCE SET SENTENCE:" : "PARAM" FOR
24 PARAM SET PARAM + 1 EACH
25 ENDR PHRASE.
26 ASC I I ' "SENTENCE'"
27 ENDM
28
29 00000000 00000000 DELIBERATE ERROR

*** ASM: 107(E) Undefined ope ode "DELIBERATE"

30
31
32

0000

33 E R
34 1 R
35 00000000 9AOOOOOO R

00
36 00000005 9AOOOOOO R

00
37 OOOOOOOA EAOI0000 R

00
38
39
40
41 00000100
42
43

100
80

180 R

DEFINE PROGRAM SECTION 'CAMPAIGN'.
GLOBAL SPEAK,KISSBABY
SECTION CAMPAIGN

ELECTION EQU ENDOF(CAMPAIGN)
NEXTBABY EQU KISSBABY + 1
FIRST CALLS SPEAK,SPEAK

THEN CALLS KISSBABY,KISSBABY

LAST JMPS NEXTBABY,KISSBABY

DEFINE COMMON SECTION 'SPEECH'.
COMMON SPEECH,ABSOLUTE
ORG lOOH

APPLAUSE BLOCK 80H
MESSAGE EQU $

PROMISE VOTERS,'WILL ALWAYS HAVE'
~ ~ '--".-'" ---""-.... ---------..... v,,-----------'''
line location
number counter

object line
code indicator

source
text

Fig. 2-2. Sample assembler source listing (part 1 of 2).

This sample assembler listing, and the source program that generated 'it, are discussed inthe text.

2-40

macro
definition

3856-5

@

The Assembler-8500 Series B Assembler Core Users

@

Tektronix ASM 8086/8088 SAMPLE PROGRAM Page 2
xxxxxxxxxxxxxxx Vxx.xx-xx (xxxx)

57 00000180 20454E47 MS ASCII , ENGINEERS WILL ALWAYS HAVE'
494E4545 M
52532057 M
494C4C20 M
414C5741 M
59532048 M
415645 M

59
77 0000019B 20412046 MS

5249454E M
4420494E M
204B454E M
20444544 M
41544520 M
2E

79
93 000001B4 2054454C MS

4C20594F M
55522046 M
454C4C4F M
5720454E M
47494E45M
455253 M

95
96
97 M
98 M
99 0 M

100 1 M
101 MS
102 C MS
103 2 M
106 17 MS
107 3 M
110 19 MS
III 4 M
114 000001CF 20544F20 MS

115
116

564F5445 M
20464F52 M
204B454E M
20444544 M
41544520 M
2E M

PROMISE 'A FRIEND IN' ,MYSELF,' .'
ASCII ' A FRIEND IN KEN DEDATE

PROMISE 'TELL YOUR FELLOW' ,VOTERS
ASCII ' TELL YOUR FELLOW ENGINEERS'

LIST ME; SHOW FULL MACRO EXPANSION
PROMISE 'TO VOTE FOR',MYSELF,'.'

THIS MACRO CONCATENATES ALL PARAMETERS INTO
A SINGLE SENTENCE.

SENTENCE SET
PARAM SET

REPEAT
SENTENCE SET
PARAM SET
SENTENCE SET
PARAM . SET
SENTENCE SET
PARAM SET

ASCII

ENDM
END

1 ; POINT TO FIRST PHRASE.
PARAM <= 3 ; REPEAT
SENTENCE:' ':'TO VOTE FOR' ; FO
PARAM + 1 ; EACH
SENTENCE:' ': MYSELF ; FOR
PARAM + 1 ; EACH
SENTENCE:' ':'.' ; FOR
PARAM + 1 ; EACH
, TO VOTE FOR KEN DEDATE .'

- --~-- --~---'---- ,~--------------------~v~------------------~~
line location
number counter

object line
code indicator

source
text

Fig. 2-2. Sample assembler source listing (part 2 of 2).

This sample assembler listing, and the source program that generated it, are discussed in the
text.

Assembler Output

complete
macro
expansion
listed

3856-6

2-41

Assembler Output The Assembler-8500 Series B Assembler Core Users

Tektronix ASM 8086/8088 CROSS REFERENCE Page 3
Vxx.xx-xx (xxxx) xxxxxxxxxxxxxxx

APPLAUSE---------- 41#
CAMPAIGN---------- 32 33
CONTRIB----------- 8# 10
DELIBERATE-------- 29
ELECTION---------- 33#
FIRST------------- 35#
KISSBABy---------- 31 34 36 36 37
LAST-------------- 37#
MESSAGE----------- 42#
MYSELF------------ 3 6# 59 69 96 106
NEXTBABy---------- 34# 37
PARAM------------- 47# 48 49 50# 50 52 53 54#

54 56 63# 64 65 66# 66 68
69 70# 70 72 73 74# 74 76
83# 84 85 86# 86 88 89 90#
90 92 100# 101 102 103# 103 105

106 107# 107 109 110 111# III 113
PROMISE----------- 17 43 59 79 96
SEATING----------- 14
SEATS------------- 5# 12# 12 14
SENTENCE---------- 4 20# 23# 23 26 46# 49# 49

53# 53 57 62# 65# 65 69# 69
73# 73 77 82# 85# 85 89# 89
93 99# 102# 102 106# 106 110# 110

114
SPEECH------------ 39
SPEAK------------- 31 35 35
THEN-------------- 36#
VOTERS------------ 3 7# 43 79

Fig. 2-3. Sample assembler cross-reference listing.

This sample assembler listing, and the source program that generated it, are discussed in the
text.

3856-7

@

The Assembler-8500 Series B Assembler Core Users Assembler Output

@

Tektronix ASM 8086/8088
Vxx.xx-xx (xxxx)

Scalars

CONTRIB-----------000000C6 V
SEATS-------------00000IF4 V

Strings & Macros

MYSELF------------00000014 S
SENTENCE----------00000028 S

SYMBOL TABLE

PARAM-------------00000004 V

PROMISE------------------- M
VOTERS------------00000014 S

Section = %SAMPLEASM, Aligned to 00000010, Size = 00000008

Section = CAMPAIGN, Aligned to 00000010, Size = OOOOOOOE

ELECTION----------OOOOOOOE E
LAST--------------OOOOOOOA

FIRST-------------OOOOOOOO
THEN--------------00000005

Page 4
xxxxx.xxxxxxxxx

}
}

scalars

strings
and
macros

sections

Reserve Section = SEATING, Aligned to 00000010, Size = 000001F4

Common Section = SPEECH, Absolute, Size = 000001E8

APPLAUSE----------OOOOOIOO

Unbound Globals

KISSBABY----------OOOOOOOO
SPEAK-------------OOOOOOOO

Undefined Symbols

DELIBERATE

48 Lines Read
116 Lines Processed

2 Errors
1 Undefined Symbols

MESSAGE-----------00000180

NEXTBABY----------OOOOOOOI

Fig. 2-4. Sample assembler symbol table listing.

}
}
}

unbound
globals

undefined
symbols

statistics

This sample assembler listing, and the source program that generated it, are discussed in the
text.

3856-8

2-43

Sample Source Program The Assembler-8500 Series B Assembler Core Users

2-44

Sample Source Program

Figure 2-5 shows the sample source program that generated the assembler listing shown in
Figs. 2-2, 2-3, and 2-4. The program has no practical application, but is purposely contrived to
illustrate a variety of listing features.

TITLE 'SAMPLE PROGRAM'
LIST LINE(80),XREF
STRING VOTERS(ZO),MYSELF(ZO)
STRING SENTENCE (40)

SEATS SET 1000
MYSELF SET 'KEN DEDATE'
VOTERS SET 'ENGINEERS'
CONTRIB SET 198

DEFINE .RESERVE SECTION 'SEATING'.
IF HI (CONTRIB) = 0
WARNING ; CONTRIBUTION TOO SMALL

SEATS SET SEATS - 500
ENDIF
RESERVE SEATING,SEATS

DEFINE MACRO 'PROMISE'.
MACRO PROMISE

THIS MACRO CONCATENATES ALL PARAMETERS
A SINGLE SENTENCE.

SENTENCE SET

INTO

PARAM SET
REPEAT

SENTENCE SET
PARAM SET

ENDR

1 ; POINT TO FIRST PHRASE.
PARAM <= "#" REPEAT
SENTENCE:' ': "PARAM" FOR
PARAM + 1 EACH

ASCII
ENDM

'"SENTENCE'''

DELIBERATE ERROR
DEFINE PROGRAM SECTION 'CAMPAIGN'.

GLOBAL SPEAK,KISSBABY
SECTION CAMPAIGN

ELECTION EQU ENDOF(CAMPAIGN)
NEXTBABY EQU KISSBABY + 1
FIRST CALLS SPEAK,SPEAK
THEN CALLS KI SSBABY, KISSBABY
LAST JMPS NEXTBABY,KISSBABY

DEFINE COMMON SECTION 'SPEECH'.
COMMON SPEECH,ABSOLUTE
ORG 100H

APPLAUSE BLOCK 80H
MESSAGE EQU $

PHRASE.

PROMISE VOTERS, 'WILL ALWAYS HAVE'
PROMISE 'A FRIEND IN' ,MYSELF,' .'
PROMISE 'TELL YOUR FELLOW' ,VOTERS
LIST ME; SHOW FULL MACRO EXPANSION.
PROMISE 'TO VOTE FOR',MYSELF,'.'
END

Fig. 2-6. Sample 8086/8088 source program.

This source program generated the sample assembler listing that was shown in Figs. 2-2, 2-3,
and 2-4. The text discusses each line in this source program, and the object code that it
generates.

3856-9

@

The Assembler-8500 Series B Assembler Core Users Sample ,Source Program

@

Sample Source Listing

Let's compare the source program (Fig. 2-5) with the assembler listing (Fig. 2-2). The first line of
the source program is:

TITLE 'SAMPLE PROGRAM'

The TITLE directive creates a title on each page of the assembler program listing. The TITLE
directive itself does not appear on the program listing and does not generate any object code.

Tektronix ASM 8086/8088 SAMPLE PROGRAM
" "

Page 1
Y'

• title

The next statement in the source program is:
LIST LINE(80),XREF

The LIST directive controls various features of the assembler listing. The LlNE(80) option prints
the assembler listing in a 80-character width instead of the default width. The XREF option
specifies that the cross-reference is to be included in the listing. Although this line appears in
the assembler listing, it does not generate object code.

STRING VOTERS(20),MYSELF(20)
STRING SENTENCE (40)

These two lines of source code declare the symbols VOTERS, MYSELF, and SENTENCE as string
variables. These lines do not generate object code. The variables appear in the symbol table of
the assembler listing (Fig. 2-4). The'S' following each symbol indicates that it is a string variable.

SEATS SET
MYSELF SET
VOTERS SET
CONTRIB SET

1000
'KEN DEDATE'
'ENGINEERS'
198

The SET directive assigns a value to a variable. In the first of these four SET statements, a
numeric value is assigned to the numeric variable SEATS. The value 1000 (decimal) appears in
the object code column (Fig. 2-2, line 5) as 3E8 hexadecimal. No memory location appears on the
line because the value is not stored in the object program. MYSELF and VOTERS are string
variables. They are assigned the values enclosed in single quotes. The length of these strings(in
bytes) is shown in the listing as A and 9, respectively. The numeric value 198 (C6H) is assigned to
the numeric variable CONTRIB.

; DEFINE RESERVE SECTION 'SEATING'.

The semicolon (;) designates this line as a comment line. Comment lines appear in the assembler
listing, but have no effect on the object code.

2-45

Sample Source Program The Assembler-8500 Series B Assembler Core Users

2-46

IF HI (CONTRIB) = 0
WARNING ; CONTRIBUTION TOO SMALL

SEATS SET SEATS - 500
ENDIF

These four statements are a conditional assembly block. The IF directive causes the block of
statements between the IF and ENDIF to be assembled if the condition is true. In this case, the
condition 'HI(CONTRIB) = 0' is evaluated. The current value of the variable CONTRIB is:

0000 00C6 (198 decimal)
~

Lhi9h byte of least significant word

The function HI(CONTRIB) returns the value 00, the high byte of the least significant word of
CONTRIB. Since the condition value of the IF statement is true (shown in the listing by the value
FFFFFFFF), the block is assembled and the statements appear in the assembler listing (Fig. 2-2,
lines 10-13). The WARNING directive generates a user-defined error message. This message
appears both on the terminal display during assembly and in the assembler listing.

SEATS SET SEATS - 500

The SET directive changes the value of the symbol SEATS from 3E8H (1000 decimal) to 1 F4H
(1000-500 decimal). See line 12 of the assembler listing.

RESERVE SEATING,SEATS

This assembler directive reserves a section in memory. The section is named SEATING and is
allocated 01 F4H bytes (the currentvalue of SEATS). The section SEATING appears in the symbol
table (Fig. 2-4), with the word 'Reserve' identifying the type of section.

Next, notice the blank line in the sample program. A blank line has no effect on the object code,
but it does generate a line in the assembler listing.

; DEFINE MACRO 'PROMISE'.

Although this comment line appears in the assembler listing (Fig. 2-2, line 16), it has no effect on
the object code.

MACRO PROMISE
; THIS MACRO CONCATENATES ALL PARAMETERS
; A SINGLE SENTENCE.
SENTENCE SET

INTO

PARAM SET
REPEAT

SENTENCE SET
PARAM SET

ENDR

1 ; POINT TO FIRST PHRASE.
PARAM <= "#" REPEAT
SENTENCE:' ': "PARAM" FOR
PARAM + 1 EACH

ASCII '"SENTENCE'''
ENDM

PHRASE.

This block of source code is a macro definition. The location of the statements in a macro
definition is stored by the assembler. When the macro is invoked, the statements within the
macro are assembled, generating any indicated object code. The macro wi" be explained later,
when it is invoked.

@

The Assembler-8500 Series B Assembler Core Users Sample Source Program

@

Another blank line in the program code improves the readability of the program, setting the
macro definition apart, but has no effect on the assembler.

DELIBERATE ERROR

This line is an invalid statement: DELIBERATE, which appears in the operation field, is not an
assembly language instruction, an assembler directive, or a macro invocation. Eight bytes of
zeros are generated as object code and an error message is printed on the terminal and listed in
the assembler listing (Fig. 2-2, line 29).

; DEFINE PROGRAM SECTION 'CAMPAIGN'.

This line is another comment line and has no effect on the object code.

GLOBAL SPEAK,KISSBABY

The assembler directive GLOBAL declares SPEAK and KISSBABY to be global symbols. They are
unbound globals; that is, they are used in this module, but defined elsewhere. No object code is
produced.

SECTION CAMPAIGN

The assembler directive SECTION begins the definition of program section CAMPAIGN. The
lines of source code following this statement define the section.

ELECTION EQU ENDOF(CAMPAIGN)

The assembler directive EaU assigns a value to the symbol ELECTION. The ENDOF function
returns the address of the last byte of the section CAMPAIGN. This line appears in the assembler
listing as:

33 E R

+
ELECTION EQU ENDOF(CAMPAIGN)

relocation indicator

The relocation indicator (R) shows that the object code for this source line (an address) will be
adjusted by the linker at link time. Sincethe section CAMPAIGN is relocatable, the address ofthe
last byte is not determined until link time. The hexadecimal value E is the value assigned to
ELECTION, telling us that there are 15 bytes (00000000-0000000 E) in the section. (The
beginning address of every relocatable section is 00000000 at assembly time.)

NEXTBABY EQU KISSBABY + 1

The assembler directive EaU assigns a value to the symbol NEXTBABY. The value assigned
(KISSBABY + 1) is dependent on the value of the unbound global KISSBABY. In the assembler
listing (Fig. 2-2, line 34), the relocation indicator again shows that the object code will be
adjusted by the linker. The 1 indicates thatthe adjusted address will be +1 relative to the address
of KISSBABY.

2-47

Sample Source Program The Assembler-8500 Series B Assembler Core Users

2-48

FIRST CALLS SPEAK, SPEAK

This 8086/8088 assembly language instruction calls the subroutine SPEAK. The assembler
listing shows the object code that is generated:

r,oPCOde of the instruction CALLS

I offset address of SPEAK

• r-10W byte of segment of SPEAK

.---.......--.---
35 00000000 9AOOOOOO R FIRST CALLS SPEAK, SPEAK

- 00

t . L high byte of segment of SPEAK

Llocation counter

Since this is the first statement in section CAMPAIGN that produces object code, the memory
location assigned is 00000000. 9A is the opcode for the instruction CALLS. Since SPEAK is an
unbound global variable, it does not have an address in this module. (The dummy value 0000
appears in the object code for the address and the segment.) The 'R' indicates that the address
and segment values will be adjusted at link time.

THEN CALLS KISSBABY,KISSBABY

This statement calls the subroutine KISSBABY, another unbound global. In the assembler listing
(Fig.2-2, line 36), the memory location is 00000005, since the previous instruction (CALLS
SPEAK,SPEAK) occupies bytes 00000000-00000004.

LAST JMPS NEXTBABY,KISSBABY

This 8086/8088 assembly language instruction generates the object code EA01 000000. (See
line 37 in the assembler listing.) EA is the opcode for the instruction JMPS. NEXTBABY has the
value 1. This value will be adjusted by the linker, depending on the address of the section
KISSBABY.

; DEFINE COMMON SECTION' /SPEECH/.

This is another comment line.

COMMON SPEECH,ABSOLUTE
ORG 100H

The assembler directive COMMON declares the next block of statements to be a new section of
type COMMON. The name of the section is SPEECH and it is an absolute section. The ORG
statement defines the location of th,e first byte of the section to be 100H.

@

The Assembler-8500 Series B Assembler Core Users Sample Source Program

@

APPLAUSE BLOCK 80H

This statement generates the first byte of the common section SPEECH. The memory location of
the first byte is 000001 DOH.

41 00000100 80 APPLAUSE BLOCK 80H
'-

Llocation counter

This BLOCK directive reserves a block of 80H bytes. The symbol APPLAUSE represents the
address of the first byte of the block (00000100).

MESSAGE EQU $

The EQU directive assigns a value to the symbol MESSAGE. The dollar sign ($) in the operation
field returns the value of the location counter. The assembler listing shows that the value 0180
was assigned to MESSAGE.

42 180 R MESSAGE EQU $

The location counter was advanced to 180H when the directive 'BLOCK 80H' was assembled.
MESSAGE represents the address of the next byte of object code to be generated.

PROMISE VOTERS,'WILL ALWAYS HAVE'

This statement invokes the macro PROMISE, which was previously defined. There are two
macro parameters: (1) the symbol VOTERS and (2) the character string WILL ALWAYS HAVE'.
This Single source line generates eight lines in the assembler listing:

43

52532057 M

PROMISE VOTERS,'WILL ALWAYS HAVE'
ASCII ' ENGINEERS WILL ALWAYS HAVE' 57 00000180 20454E47 MS",

494E4545 M

494C4C20 M text substitution indicator
414C5741 M
59532048 M
415645 M

lASCIl representation of ' ENGINEERS WILL ALWAYS HAVE'

When the macro is invoked, the assembler processes the lines of the macro definition. The
assembler listing shows us only the one source line that generates object code, namely:

ASCII ' ENGINEERS WILL ALWAYS HAVE'

Notice that the line number jumps from 43 to 57. The line counter is incremented with every line
processed. More of these lines would have been listed if the ME/MEG list option was set to ME.
(This is done for the last macro invocation in this sample program.)

At this time, let's look at the statements in the macro definition:
SENTENCE SET

This SET directive assigns the null string (") to SENTENCE.

2-49

Sample Source Program The Assembler-8500 Series B Assembler Core Users

2-50

PARAM SET 1 ; POINT TO FIRST PHRASE.

This SET directive assigns the value 1 to the numeric variable PARAM.

REPEAT PARAM <= "#" REPEAT
SENTENCE SET SENTENCE:' ':"PARAM" FOR
PARAM SET PARAM + 1 ; EACH

ENDR ; PHRASE.
This block of statements (a repeat block) is assembled repeatedly until the REPEAT operand
(PARAM <= "#") is false. When a macro is assembled, the "#" is replaced with the number of
parameters passed from the macro invocation. In this statement, the "#" is replaced with 2 (two
parameters), so the block of statements is repeated twice. (See 'Determining Parameter Count'
in the Macros section of this manual.)

The first time the block is assembled "PARAM" is replaced with VOTERS, since PARAM has the
value 1 and VOTERS is the first parameter. The second statement in the block concatenates the
current value of the string variable SENTENCE ("), a space (' '), and the value of VOTERS
('ENGINEERS'); the resulting string is assigned to SENTENCE. SENTENCE now has the value of:

, ENGINEERS'

The next statement increments the current value of PARAM by one. PARAM now holds the
value 2. Since the repeat condition (PARAM <= "#") is still true, the block of statements is
repeated. This time, "PARAM" is replaced with WILL ALWAYS HAVE', the second parameter.
The statement concatenates the current value of SENTENCE (' ENGINEERS'), a space (' '), and
the character string 'WILL ALWAYS HAVE'. SENTENCE now has the value of:

, ENGINEERS WILL ALWAYS HAVE'

PARAM is incremented to 3. The repeat condition is no longer true, so the assembly continues
with the statement following the ENDR:

ASCII "'SENTENCE'"

This statement generates object code and is therefore listed in the assembler listing. The object
code generated is the ASCII representation of each character of the string in the operand field.
The assembler first makes the text substitution indicated by the double quotes (" ").
'"SENTENCE''' is replaced with' ENGINEERS WILL ALWAYS HAVE'. Notice that the text
substitution is shown on the source listing, along with the text substitution indicator (S) and the
macro expansion indicator (M).

Assembly continues with the statement following the macro invocation.

PROMISE 'A FRIEND IN', MYSELF,'.'

This statement invokes the macro PROMISE again. This invocation has three parameters: (1) the
character string 'A FRIEND IN', (2) the symbol MYSELF, and (3) the string '. '. The resulting object
code is the ASCII representation of ' A FRIEND IN KEN DEDATE .'

PROMISE 'TELL YOUR FELLOW', VOTERS

This next statement invokes the macro PROMISE with two parameters, the string 'TELL YOUR
FELLOW' and the symbol VOTERS. The resulting object code is the ASCII representation of:

, TELL YOUR FELLOW ENGINEERS'

@

The Assembler-8500 Series B Assembler Core Users Sample Source Program

@

The next statement in the sample program is:
LIST ME ; SHOW FULL MACRO EXPANSION.

The LIST directive turns on various features of the assembler listing. This statement sets the
ME/MEG option to the ME setting. Under the ME setting, when a macro is invoked, the
assembler listing shows all of the assembled statements of the macro expansion.

PROMISE 'TO VOTE FOR',MYSELF,'.'

This macro invocation returns the ASCII representation of' TO VOTE FOR KEN DEDATE .' Notice
in the assembler listing starting on line 101, that the text substitution indicator appears on five
lines. The "#" is replaced by '3' and "PARAM" is replaced by the appropriate parameter.

Also notice in the assembler listing that a character is missing from the end of the line:
102 C MS SENTENCE SET SENTENCE:' ': 'TO VOTE FOR' ; FO

In the source program, the comment was '; FOR'. The 'R' does not appear in the source listing
because the LIST LlNE(BO) directive had previously instructed the assembler to truncate the
listing to BO characters.

The last statement of the source code is:
END

This statement marks the end of the source program.

Sample Cross-Reference Listing

The sample cross-reference listing shown in Fig. 2-3 lists all the user-defined symbols in our
sample program. Matched with these symbols are the line numbers of the lines in which they
appear (except those in comments). If the symbol appears in the label field of a statement, a
pound sign (#) is printed after that number.

Let's look at a particular example:
CONTRIB----------- 8# 10

This entry shows that CONTRIB is used on lines Band 10. The # shows that CONTRIB appears in
the label field of line B.

PARAM------------- 47# 48 49 50# 50 52 53 54#
54 56 63# 64 65 66# 66 68
69 70# 70 72 73 74# 74 76
83# 84 85 86# 86 88 89 90#
90 92 100# 101 102 103# 103 105

106 107# 107 109 110 111# 111 113

This entry shows that PARAM appears on many more lines than shown in the assembler source
listing (Fig. 2-2). This is because, as explained in the discussion of the sample symbol table,
some lines that were processed were not listed. Variables in substitution constructs are also
cross-referenced.

2-51

Sample Source Program The Assembler-8500 Series B Assembler Core Users

110 19 MS SENTENCE SET SENTENCE:' ':'.' ; FOR

In this line, "PARAM" was replaced by the third parameter (PARAM was equal to 3 at this point).
This is the reason that the number 110 appears in the cross-reference listing for PARAM.

Note, also, that some line numbers are listed more than once for some variables. There is a
cross-reference for each occurrence of a symbol.

Sample Symbol Table

Now let's examine the symbol table for the sample program (Fig. 2-4).

Listed under Scalars are the scalar symbols used in the program (CONTRIB, PARAM, and
SEATS). Each variable is listed with the last value assigned to it. The 'V' indicates that the values
were assigned with the SET directive.

Listed under Strings and Macros are four symbols: MYSELF, PROMISE, SENTENCE, and
VOTERS. The'S' indicates that MYSELF, SENTENCE, and VOTERS are string variables. The 'M'
indicates that PROMISE is a macro. After each string variable is a number that indicates the
number of bytes (hexadecimal) reserved for that variable. This number is equal to the number of
bytes specified in the string declaration (or default length, if none is specified).

There are four Sections in our program: %SAMPLEASM, CAMPAIGN, SEATING, and SPEECH.
Section = %SAMPLEASM, Aligned to 00000010, Size = 00000008

This line shows that there were 8 bytes in an unnamed section. An unnamed section is the result
of the generation of object code before any SECTION or COMMON directives are encountered. In
this case, the 8 bytes were generated when the following line was processed.

DELIBERATE ERROR

The default name for an unnamed section is derived as follows:

1. Eliminate all characters except letters and digits from the name ofthe object file specified
in the assembler invocation line.

2. Take the first 15 characters.

3. Add the prefix '%'.

The name of the object file which contains the object code generated from the sample source
program is SAMPLE.ASM. After removing the period and adding a percent sign, the default
name is %SAMPLEASM.

By default, all sections generated for the 8086/8088 microprocessor are aligned on 16-byte
boundaries (addresses that are multiples of 16).

Section = CAMPAIGN, Aligned to 00000010, Size = OOOOOOOE

ELECTION----------OOOOOOOE E FIRST-------------OOOOOOOO
LAST--------------OOOOOOOA THEN--------------00000005

2-52 @

The Assembler-8500 Series B Assembler Core 'Users Sample Source Program

@

In this section summary, the name of the section is CAMPAIGN, which is of type 'Section'. The
section is aligned on 16-byte boundaries. It is E (14) bytes long. The addresses of the four
symbols, ELECTION, FIRST, LAST, and THEN, are relative to the base address of the section and
are subject to relocation, since the section is relocatable. The 'E' that follows the symbol
'ELECTION' indicates that the ENDOF function is used to determine the value.

Section SEATING is a 'Reserve' section that is 01 F4 (hexadecimal) bytes long. Section SPEECH
is a 'Common' section that is not relocatable (absolute) and is 01 E8H bytes long, including the
100H-byte gap at the beginning of the section.

In our sample program, the symbols KISSBABY and SPEAK are the only unbound globals.
NEXTBABY is defined with an unbound global, so it is listed here too. Since NEXTBABY was
defined by adding 1 to KISSBABY, NEXTBABY contains the value 1. At link time, the value of
KISSBABY will be added to NEXTBABY.

Let's look at the lines of statistics:
48 Lines Read

116 Lines Processed
2 Errors
1 Undefined Symbols

There are more Lines Processed (116) than Lines Read (48) because the macro invocations and
REPEAT block cause some of the source lines to be assembled more than once.

There are two Errors listed for this sample program: (1) the user-defined warning, and (2) the
error generated by the line 'DELIBERATE ERROR'. DELIBERATE is the Undefined Symbol.

2-53

8500 series B Assembler Core Users

Section 3
ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVES INDEX Page

Listing Control Directives

LIST-Turns on listing options 3-31
NOLIST -Turns off listing options 3-39
PAGE-Skips to new page in listing 3-45
SPACE-Inserts blank lines into listing 3-58
STITLE-Creates listing subtitle 3-59
TITLE-Creates listing title 3-62
WARNING-Displays warning 3-64

Symbol Definition Directives

EQU-Assigns value to symbol 3-18
SET-Assigns value to variable 3-55
STRING-Declares string variable(s) 3-61

Data Storage Control Directives

ADDRESS-Initializes memory with data in address
format .. 3-3

ASCII-Generates ASCII data 3-5
BLOCK-Reserves block of memory 3-6
BYTE-Generates byte(s) of data 3-7
FLOAT-Initializes memory with data in floating
point format 3-21

LONG-Initializes memory with 32-bit value(s) 3-36
WORD-Generates word(s) of data 3-65

Macro Definition Directives

ENDM-Ends macro definition 3-16
EXITM-Stops macro expansion 3-19
MACRO-Begins macro definition 3-37

File Inclusion Directive

INCLUDE-Assembles source code from
another file 3-30

Conditional Assembly Directives

ELSE-Begins alternate conditional block 3-12
ELSEIF-Begins alternate conditional block 3-13
ENDIF-Ends IF block 3-15
EN DR-Ends REPEAT block 3-17
EXITR-Stops repeat process 3-20
IF-Begins conditional assembly block 3-26
REPEAT-Begins repetitive assembly 3-46

@

Page

Module Definition Directives

COMMON-Declares common section 3-8
END-Ends source module 3-14
GLOBAL-Declares global symbol(s) 3-24
NAME-Declares object module name 3-38
ORG-Sets location counter 3-40
RESERVE-Reserves section of memory 3-50
RESUME-Resumes definition of section 3-52
SECTION-Declares program section 3-53

Table
No.

3-1

Fig.
No.

3-1
3-2
3-3
3-4
3-5
3-6
3-7

TABLES

LIST Options 3-34

ILLUSTRATIONS

COMMON directive example 3-10
Single precision format 3-22
Double precision format 3-22
Allowed forms of IF block nesting 3-28
Sections before linking 3-42
Sections after linking 3-43
Allowed forms of REPEAT block nesting ... 3-47

3-i

8500 Series B Assembler Core Users

@

Section 3

ASSEMBLER DIRECTIVES

INTRODUCTION
This section describes the directives you may use with the TEKTRONIX 8500 Series B
Assembler. The directives are arranged in alphabetical order for easy reference. A functional
index appears at the front of this section to help you when you do not know a directive by name.

Each assembler directive description may consist of any or all of the following parts: a syntax
block, parameter definitions, an explanation of the use and limits of the directive, and one or
more examples of its use.

The syntax block shows the required format of the directive. Assembler directive statements
may contain information in any of the four fields: label, operation, operand, and comment. Since
the comment field is strictly optional for any directive, it does not appear in the syntax block.

The syntax blocks in this section use the notation conventions explained in the Learning Guide
of this manual. For example:

Label Operation

[symbol] DIRECT

SYNTAX

Operand

expression[,expression] ...

The above example shows the syntax for DIRECT, a fictitious directive. You may interpret this
syntax block as follows:

• A label is optional for this directive.

• The operation field must contain the word 'DIRECT'.

• The operand field must contain at least one expression. If two or more expressions are
entered, they must be separated by commas. The number of expressions is limited only by
the maximum line length of 127 characters plus RETURN. (The line may be a maximum of
131 characters after text substitution.)

3-1

Labels

3-2

Assembler Directives-8500 Series B Assembler Core Users

LABELS
For each assembler directive, a label may be required, optional, or prohibited, depending on the
directive.

• Only the EQU and SET directives require labels. EQU and SET each assign the value in the
operand field to the symbol in the label field.

• The following directives must not have a label. These directives do not affect the location
counter.

ELSE
ElSEIF
ENDIF

ENDM
ENDR
EXITM

EXITR
LIST
MACRO

NAME
NOLIST
PAGE

REPEAT
SPACE
STITlE

STRING
TITLE
WARNING

• The following directives generate object code and therefore often have labels. The label is
assigned the address of the first byte of code generated.

ADDRESS BLOCK FLOAT WORD
ASCII BYTE LONG

• The following directives affect the location counter but do not generate object code, sothey
do not normally have labels. The value assigned to the label depends on the directive.

COMMON ORG RESERVE RESUME SECTION

• The following directives do not generate object code nor do they affect the location counter
and so do not normally have labels. The label, if any, takes the current value ofthe location
counter. In the dictionary entry for each of these directives, the label is shown as optional
but is not discussed as a parameter.

END GLOBAL IF INCLUDE

See The Assembler section of this manual for information on forming labels (user-defined
symbols).

@

ADDRESS
Assembler Directives-8500 Series B Assembler Core Users Initializes memory with data in address format

@

Label Operation

[symbol] ADDRESS

SYNTAX

Operand

expression[,expression]. .,

PARAMETERS

symbol A user-defined label representing the address of the first byte of data.

expression Any label or expression in proper format. Some microprocessors require different
parameters. See the Assembler Specifics section for information about your
microprocessor.

EXPLANATION

The ADDRESS directive stores the specified expression(s), in address format, in consecutive
bytes of the object file. The address format is microprocessor-dependent. Using this directive
ensures that the data stored conforms to address format conventions for your microprocessor.

EXAMPLES

Label Operation Operand

JAN ASCII ' JANUARY' , 0
FEB ASCII ' FEBRUARY' , 0
MAR ASCII 'MARCH', 0
APR ASCII ' APRIL', 0
MAY ASCII 'MAY', 0
JUN ASCII 'JUNE', 0
JUL ASCII ' JULY', 0
AUG ASCII ' AUGUST', 0
SEP ASCII ' SEPTEMBER' , 0
OCT ASCII ' OCTOBER', 0
NOV ASCII 'NOVEMBER', 0
DEC ASCII 'DECEMBER', 0
MONTHS ADDRESS OOOO,JAN,FEB,MAR,APR,MAY,JUN

ADDRESS JUL,AUG,SEP,OCT,NOV,DEC

3-3

ADDRESS
Initializes memory with data in address format Assembler Directives-8500 Series B Assembler Core Users

3-4

These statements store 12 null-terminated strings and an array of pointers to the strings. The
appropriate string may be referenced indirectly through the corresponding pointer. For example:

Label Operation Operand

MOV SI,MONTHS[BX]
STRLOOP LODB

LOOPNE STRLOOP

These 8086/8088 statements could be used inside a subroutine that processes strings. The
program would loop and test for the null character until the entire string had been processed.

@

ASCII
Assembler Directives-8500 Series B Assembler Core Users Generates ASCII data

@

Label Operation

[symbol] ASCII

SYNTAX

Operand

expression[,expression]. ..

PARAMETERS

symbol A user-defined label representing the address of the first character in the string or
the first byte of data.

expression Any expression that yields either a string value or a scalar in the range -128 to 266.

EXPLANATION

The ASCII directive stores the ASCII codes for the characters of the specified string(s) in
consecutive bytes of the object program. Refer tothe Tables section of this manual for an ASCII
conversion table.

If the expression yields a numeric value, the action taken is identical to the BYTE directive.

EXAMPLES

Label Operation Operand

CHESSMEN ASCII 'PAWN ROOK KNIGHT'
ASCII 'BISHOP','QUEEN ','KING

These two statements generate 36 consecutive bytes of ASCI.! code: one 18-character string and
three 6-character strings, stored as a single 36-character sequence. CHESSMEN isthe address
of the first character from the first string. The following hexadecimal object code is generated:

source: PAW N ROO K K N I G H T
object: 60 41 67 4E 20 20 62 4F 4F 48 20 20 48 4E 49 47 48 64

source: 8 ISH 0 P QUE E N KIN G
object: 42 49 63 48 4F 60 61 66 46 46 4E 20 4B 49 4E 47 20 20

3-5

BLOCK
Reserves block of memory Assembler Directives-8500 Series B Assembler Core Users

3-6

Label Operation

[symbol] BLOCK

Operand

byte-count

SYNTAX

PARAMETERS

symbol A user-defined label that re'presents the address of the first byte of the block.

byte-count The number of bytes to be reserved: any positive scalar expression.

EXPLANATION

The BLOCK directive reserves a specified number of bytes. It does not initialize memory. BLOCK
is used primarily to allocate memory for data that may change during program execution.

The byte-count expression must yield a positive scalar value. Every symbol in the expression
must have been defined previously.

Label

LASTNAME
SSN
AGE
SALARY

EXAMPLES

Operation Operand

BLOCK 20
BLOCK 11
BLOCK 1
BLOCK 2

These statements allocate space for a 20-character name, an 11-character social security
number, an age in the range 0 to 255, and a salary in the range 0 to 65535.

@

BYTE
Assembler Directives-8500 Series B Assembler Core Users Generates byte(s) of data

@

SYNTAX

Label Operation Operand

byte-value£,byte-value] ... [symbol] BYTE

PARAMETERS

symbol A user-defined label that represents the address of the first byte of data.

byte-value Any expression that yields a scalar in the range -128 to 255.

EXPLANATION

The BYTE directive stores the specified values in consecutive bytes of the object program. If a
value is outside the range -128 to 255, only the least significant byte is stored and a truncation
error is issued.

The byte-value parameter may be a single character enclosed in single quotes. In this case the
ASCII value of the character is stored in memory. If the string length exceeds one character, the
ASCII value of the last character is stored and a truncation error is generated (See example 2).

EXAMPLES

BYTE Example 1
Label Operation Operand

MONTHS BYTE 31,28,31,30,31,30
BYTE 31,31,30,31,30,31

In this example, 12 bytes of object code are generated. The Nth byte contains the number of days
in the Nth month. MONTHS is the address of the first byte.

BYTE Example 2
Label Operation Operand Comment

ME . BYTE 'I' , 'AM' " A' , 'PROGRAMMER' ;ONLY 4 BYTES STORED

In this example, four bytes are stored; the last character of each string is converted to its ASCII
representation and stored in memory. A truncation error is generated.

source: MAR
o~ect: 49 40 41 52

3-7

COMMON
Declares common section Assembler Directives-8500 Series B Assembler Core Users

3-8

SYNTAX

Label Operation

[symbol] COMMON

Operand

section-name[,relocation-type][,CLASS=class-name]

symbol

section-name

relocation-type

class-name

PARAMETERS

A user-defined label (usually omitted) that represents the address of the
first byte of the common section.

The name assigned to the section.

An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE-The common section is relocated to the beginning of a page of
memory. A frequently used page size is 256 bytes. See the Assembler
Specifics section of this manual for the page size for your microprocessor.

ALlGN(address-mod)-The common section may be relocated to any
address that is a multiple of the address-mod. Address-mod 'represents a
positive scalar expression. Each symbol in the expression must have been
defined previously.

INPAGE-The common section may be relocated to any address, so long
as the entire section lies within one page of memory.

ABSOLUTE-The section is not relocated. You may not assign a class
name to an absolute section.

If you do not specify PAGE, ALIGN, INPAGE, or ABSOLUTE, the section is
attributed with the default relocation type. This default relocation type is
microprocessor-dependent. See the Assembler specifics section for
information about the default relocation type for your microprocessor.

The class name assigned to the section. You may not assign a class name
to an absolute section.

EXPLANATION

The COMMON directive declares a section of type COMMON and defines the name, relocation
type, and class name of the section. The contents of the section are defined by the statements
following the COMMON directive, up to the next SECTION, COMMON, or RESUME directive.

The class name is not used by the assembler. It is passed to the linker so that the linker
commands may refer to this section by its class name rather than its section name. Refer to the
Linker section of this manual for further information on class names.

Different source modules may declare the same common section, and thus share the contents of
that section. (See Example 1.) The relocation type of the section must be the same in every
module in which the section is declared.

@

COMMON
Assembler Directives-8500 Series B Assembler Core Users Declares common section

@

The linker assigns the same starting address to all common sections with the same name.
Memory is allocated for the largest section with that name. (See Example 2.)

You may use the directives ADDRESS, ASCII, BYTE, FLOAT, LONG, orWORD to initialize values
in a common section. (See Example 3.) If two or more modules specify values for the same
location in a common section, the module loaded last takes precedence; the error is not flagged.

The name of a common section is a global symbol whose value is the address of the first byte of
the section. A section name should not be declared with a GLOBAL directive in any module in
which the section is defined with a COMMON directive.

EXAMPLES

COMMON Example 1
This example illustrates how program modules can communicate with each other through
values stored in a common section.

Assume that source modulesA, B, and C each contain the following common section definition:
Label Operation Operand

COMMON CUSTOMER
CNAME BLOCK 30
ADDRESS BLOCK 30
CITY BLOCK 16
STATE BLOCK 2

During program execution, module A might define the customer's name, module B might define
the address, and module C might define the city and state. All 78 bytes of customer information
in the common section may be used or changed by any of the three modules.

COMMON Example 2
A common section may also be used as a scratch area. Some subroutines use blocks of memory
for temporary storage. If all modules use the same common section for temporary storage, less
memory is required than if each module uses a different block of memory.

This example illustrates:

• how a common section may be used as a scratch area by one or more modules; and

• how the linker treats common sections with the same name but different lengths.

In source module A, the following statements define common section SCRATCH:
Label

Xl
X2

Operation

COMMON
BLOCK
BLOCK

Operand

SCRATCH
4
6

In source module B, SCRATCH is defined as follows:

Yl
Y2

COMMON
BLOCK
BLOCK

SCRATCH
5
10

3-9

COMMON
Declares common section Assembler Directives-8500 Series B Assembler Core Users

3 .. 10

At link time, one area of memory is allocated to section SCRATCH. The size of the area is 15
bytes-the length of the larger section named SCRATCH. Both subroutines may usethis area of
memory.

A B

b~es {
X1 1 Y1

2
5

3 >, bytes

4

X2 5
~

6 Y2

6 7

bytes -< 8

9

10 10 ...
11 bytes

12

13

14

15)
3856-10

Fig. 3-1. COMMON directive example.

COMMON Example 3
This example demonstrates how you may initialize data in a common section.

Source module A defines common section CALENDAR and provides text for array DAYS:
Label Operation Operand

COMMON CALENDAR
MONTHS BLOCK 36
DAYS ASCII ' SUNMONTUEWED'

ASCII 'THUFRISAT'

Source module B also defines CALENDAR and provides text for array MONTHS:

MONTHS

DAYS

COMMON
ASCII
ASCII
ASCII
BLOCK

CALENDAR
, JANFEBMARAPR'
, MAY JUNJULAUG'
'SEPOCTNOVDEC'
21

Modules A and B both specify the same length for common section CALENDAR (57 bytes).

@

COMMON
Assembler Directives-8500 Series B Assembler Core Users Declares common section

When the section is loaded into memory, its contents will be as follows:

bytes 1-9 source: J A N F E B M A R
object: 4A 41 4E 46 45 42 4D 41 52

bytes 10-18 source: A P R M A Y J U N
object: 41 50 52 4D 41 59 4A 55 4E

bytes 19-27 ' source: J U L A U G S E p MONTHS

o~ect: 4A 55 4C 41 55 47 53 45 50
bytes 28-36 source: 0 C T N 0 V D E C

object: 4F 43 54 4E 4F 56 44 45 43

bytes 37-45 source: S U N M 0 N T U E
object: 53 55 4E 4D 4F 4E 54 55 45

bytes 46-54 source: W E 0 T H U F R I
object: 57 45 44 54 48 55 46 52 49 DAYS

bytes 55-57 source: S A T
object: 53 41 54

@ 3-11

ELSE
Begins alternate conditional block Assembler Directives-8500 Series B Assembler Core Users

3-12

SYNTAX

Label Operation Operand

ELSE

EXPLANATION

The ELSE directive marks the beginning of an ELSE sub-block. The end of this sub-block is
marked by an ENDIF directive. Statements within the sub-block are assembled if all prior
condition-values within the present IF block were false (zero or undefined). Otherwise, the
statements in the ELSE sub-block are not assembled.

Only one ELSE directive per corresponding IF directive is allowed.

See the IF directive for more information.

EXAMPLES

Label Operation Operand Comment

IF
NDAYS EQU

ELSE
NDAYS EQU

ENDIF

YEAR MOD 4 = 0
366 LEAP YEAR • Assembled if YEAR is

divisible by 4.

365 NOT LEAP YEAR~Assembled if YEAR is
not divisible by 4.

If the value of YEAR is evenly divisible by 4, the first EQU directive is assembled and the symbol
NDAYS is assigned the value 366. Otherwise the second EQU directive is assembled and
NDAYS takes the value 365.

@

Assembler Directives-8500 Series B Assembler Core Users
ELSEIF

Begins alternate conditional block

@

Label Operation

ELSEIF

condition-value

Operand

condition-value

SYNTAX

PARAMETERS

Any expression that yields a numeric value. The condition is considered
false if the value is zero or undefined and true if the value is nonzero.

EXPLANATION

. The ELSEIF directive marks the beginning of an ELSEIF sub-block. The end of this sUb-block is
marked by either another ELSEIF directive, an ELSE directive, or an ENDIF directive. Statements
within the sub-block are assembled if all prior condition-values within the present IF block were
false (zero or undefined) and the condition-value associated with the ELSEIF is true.

See the IF directive for more information.

3-13

END
Ends source module Assembler Directives-8500 Series B Assembler Core Users

3-14

SYNTAX

Label Operation Operand

[transfer-address] [symbol] END

PARAMETERS

transfer-address The 'address of the first instruction to be executed.

EXPLANATION

The END directive marks the end of the source module. If the source module contains no END
directive, assembly continues to the end of the last source file named in the assembler
invocation command.

The transfer address, if present, is the address of the first instruction to be executed when the
program is run. The transfer address is usually specified in a source module, often in the module
that contains the main program. However, the transfer address can also be defined or changed
at link time. (See the Linker section of this manual.) If more than one module contains a transfer
address, the transfer address in the first module linked is used.

EXAMPLES

Label Operation Operand

START MOV AX,#VALUE

END START

In this example, END is the last statement in the main program source module. START is the
transfer address: program execution starts with the 8086/8088 MOV instruction.

@

Assembler Directives-8500 Series B Assembler Core Users

Label Operation

ENDIF

Operand

SYNTAX

EXPLANATION

ENDIF
Ends IF block

The ENDIF directive marks the end of an IF block of statements. See the IF directive for more
information.

3-15

ENDM
Ends macro definition Assembler Directives-8500 Series B Assembler Core Users

3-16

SYNTAX

Label Operation Operand

ENDM

EXPLANATION

The ENDM directive marks the end of a macro definition. See the MACRO directive for more
information.

@

EN DR
Assembler Directives-8500 Series B Assembler Core Users Ends REPEAT block

@

Label Operation

ENDR

Operand

SYNTAX

EXPLANATION

The ENDR directive marks the end of a REPEAT block of statements. See the REPEAT directive
for more information.

3-17

EQU
Assigns value to symbol Assembler Directives-8500 Series B Assembler Core Users

3-18

Label Operation

symbol EQU

Operand

expression

SYNTAX

PARAMETERS

symbol A user-defined symbol to be assigned a value by this statement.

expression Any expression that yields a numeric value.

EXPLANATION

The EQU directive assigns a value to a symbol. A" other attributes are also transferred (for
example, relocation type). The symbol cannot be redefined in the same source module.

A symbol defined in an EQU directive may be used by any statement in the module, with the
following restriction: the EQU directive must precede any BLOCK, ElSEIF, EQU, IF, ORG,
REPEAT, SET, or STRING directive that refers to the symbol that is defined by the EQU directive.

EXAMPLES

Label Operation Operand Comment

MOV AL,#ROWS NUMBER OF ROWS TO AL REGISTER.
MOV AH,#COLS NUMBER OF COLUMNS TO AH REGISTER.

ROWS EQU 10 DEFINE NUMBER OF ROWS ...
COLS EQU 3 . .. AND NUMBER OF COLUMNS.

TABLE BLOCK ROWS*COLS ~ ALLOT SPACE FOR A 30-BYTE TABLE.

The symbol ROWS is assigned the value 10 and the symbol COlS is assigned the value 3. Note
that the two 8086/8088 MOV instructions may refer to ROWS and COlS, even though the
symbols are not defined until later in the module. On the other hand, the BLOCK directive that
refers to the symbols must follow the EQU directives that define the symbols.

@

Assembler Directives-8500 Series B Assembler Core Users
EXITM

Stops macro expansion

@

Label Operation

EXITM

Operand

SYNTAX

EXPLANATION

The EXITM directive terminates the current macro expansion. Note that EXITM does not mark
the end of a macro definition.

EXITM is valid only in macros. It is generally used to stop macro expansion in the middle of an IF
block or REPEAT block.

EXAMPLES

Label Operation Operand Comment

MACRO TESTBYTE
PARAM SET 1 POINT TO FIRST PARAMETER.

REPEAT PARAM <= "#" DO FOR EVERY PARAMETER:
IF "PARAM" < 0 ; IF PARAMETER IS BAD ...

WARNING ; NEGATIVE PARAMETER
EXITM ; ... ABORT MACRO EXPANSION.

ELSE ; OTHERWISE STORE THE VALUE.
BYTE "PARAM"

ENDIF
PARAM SET PARAM + 1 INCREMENT PARAMETER POINTER ...

ENDR . .. AND REPEAT.
ENDM

Macro TESTBYTE generates one BYTE directive for each parameter in the macro invocation. The
variable PARAM counts from 1 to the number of parameters passed ("#"). The construct
"PARAM" is replaced by the parameter pointed to by PARAM. If a negative parameter is
encountered, the WARNING and EXITM directives are assembled and macro expansion ends
before all parameters have been processed.

The macro invocation
TESTBYTE 10,20,-1,-2,30

yields the following macro expansion:
BYTE 10
BYTE 20
WARNING ; NEGATIVE PARAMETER

If the EXITM statement were omitted, macro expansion would continue until all parameters
were processed:

BYTE 10
BYTE 20
WARNING ; NEGATIVE PARAMETER
WARNING; NEGATIVE PARAMETER
BYTE 30

3-19

EXITR
Stops repeat process Assembler Directives-8500 Series B Assembler Core Users

3-20

SYNTAX

Label Operation Operand

EXITR

EXPLANATION

The EXITR directive terminates the most currently active REPEAT process. It does not mark the
end of a REPEAT block. The EXITR directive may only be used inside of a REPEAT block.

The EXITR directive is generally used in conjunction with an IF directive to provide control over a
REPEAT process.

See the REPEAT directive for more information.

@

Assembler Directives-8500 Series B Assembler Core Users
FLOAT

Initializes memory with data in floating point format

SYNTAX

Label Operation Operand

[symbol] FLOAT mantissa [{ ~} exponent] [mantissa [{ ~} exponen~] ...

PARAMETERS

symbol A user-defined label representing the address of the first byte of data.

mantissa- A series of one or more digits with an optional decimal point; optionally preceded by
a plus or minus sign.

exponent A series of digits preceded by an optional plus or minus sign.

EXPLANATION

The FLOAT directive initializes memory with data in floating point format. The specified floating
point value may be contained in 32 bits or 64 bits, depending upon which precision flag is used (E = single
precision, D = double precision).

Format
Any decimal number can be expressed as a binary number in the form:

1. ffffff... * 2n (where f is a binary digit)

Since the first digit is always a 1, it is left off and assumed. This allows one additional bit of
accuracy in representing the mantissa. This string of binary digits, without the leading 1., is
called the significand.

In order to be able to represent negative exponents, a number, called the bias, is added to the
exponent before being stored in the exponent field (X). For single precision, the bias is 127; for
double precision, the bias is 1023.

The most significant bit is the sign bit. This bit is a one if the quantity is negative and zero if the
quantity is positive.

REV SEP 1981 3-21

FLOAT
Initializes memory with data in floating point format Assembler Directives-8500 Series B Assembler Core Users

3-22

Figure 3-2 shows the format for single precision (32-bit).

sign bit

exponent (biased by 127)

significand

F

23 22 o
3856-11

Fig. 3-2. Single precision format.

Figure 3-3 shows the format for double precision (64-bit).

sign bi~

exponent(biased by 1023)

significand

E F

63 62 52 51 o
3856-12

Fig. 3-3. Double precision format.

On overflow, the exponent field (X) is set to 255 (2047 for double precision) and the significand
(F) is set to zero. On underflow, both X and F are set to zero.

No arithmetic operations may be performed on floating-point constants during assembly.

@

FLOAT
Assembler Directives-8500 Series B Assembler Core Users Initializes memory with data in floating point format

@

NOTE

If more than one floating point value is stored, it is more efficient to store them
with as few FLOAT directives as possible. For example:

FLOAT O,3.5ElO,4E4

would not take as long to assemble as:
FLOAT 0
FLOAT 3.5ElO
FLOAT 4E4

The floating point conversion routine must be called each time the FLOA T
directive is encountered.

EXAMPLES

Label Operation Operand

FLOATVALUE FLOAT 1.25E4

In this example, the value stored at FLOATVALUE is

S X F
a 1000100 1000011 01 01 000000000000

31 30 23 22 0

3-23

GLOBAL
Declares global symbol(s) Assembler Directives-8500 Series B Assembler Core Users

3-24

Label Operation

[symbol] GLOBAL

SYNTAX

Operand

global-sym[,global-sym] ...

PARAMETERS

global-sym A symbol to be declared global.

EXPLANATION

The GLOBAL directive declares one or more symbols to be global. A global symbol defined in one
module may be referred to by other modules. Both the module that defines the symbol and the
module that refers to it must declare the symbol to be global. The linker will make the value of the
global symbol available to all modules that declare it.

The GLOBAL directive that declares a symbol must precede the statement that defines that
symbol. The symbol may not be defined more than once in any group of modules to be linked.

A global symbol that is given a value in the current module is called a bound global. A bound
global that is also an address is called an entry point, since it often represents an instruction that
is jumped to from outside the module.

A global symbol that is not defined in the current module is called an unbound global; its value
must be provided at link time, either by another module or by the linker command DEFINE.

A section name (defined by a COMMON, RESERVE, or SECTION directive) is a global symbol; it
should not be declared with a GLOBAL directive in the same module in which the section is
defined.

EXAMPLES

This example demonstrates the use of global symbols in three modules: MYMOD, HISMOD, and
HERMOD.

Label Operation Operand

NAME MYMOD
GLOBAL HIM, HER, VALUE

VALUE EQU 3
CALLS HIM,HIM
CALLS HER, HER
CALL MYSELF

MYSELF MOV AX,#VALUE

@

Assembler Directives-8500 Series B Assembler Core Users
GLOBAL

Delcares global symbol(51

@

In module MYMOD, HIM and HER are unbound globals, but VALUE is a bound global, since it is
assigned a value by the EQU directive. MYSELF does not need to be declared global, since it is
defined in MYMOD (as the address of the 8086/8088 MOV instruction) and is not used in any
other module.

HIM

NAME
GLOBAL
MOV

HISMon
HIM, VALUE
AX,#VALUE

In module HISMOD, VALUE is an unbound global. HIM is defined as the address of the MOV
instruction, so HIM is an entry point (a bound global address).

HER

NAME
GLOBAL
CALLS

HERMOn
HER,HIM
HIM,HIM

In module HERMOD, HIM is an unbound global. HER is defined as the address of the CALLS
instruction, so HER is an entry point.

In summary:

• HIM is defined in HISMOD and used in MYMOD and HERMOD;

• HER is defined in HERMOD and used in MYMOD;

• VALUE is defined in MYMOD and used in HISMOD.

Each symbol is declared to be global wherever it is defined or used. Since MYSELF is defined in
MYMOD and used only in MYMOD, it does not need to be declared global.

3-25

IF
Begins conditional assembly block Assembler Directives-8500 Series B Assembler Core Users

3-26

Label Operation

[symbol] IF

condition-value

Operand

condition-va I ue

SYNTAX

PARAMETERS

Any expression that yields a numeric value. The condition is considered
false if the value is zero or undefined and true if the value is nonzero.

EXPLANATION

The IF directive marks the beginning of a conditional assembly block. The end of this conditional
assembly block is marked by the corresponding ENDIF directive. The blocks may be nested.
Assembly is turned off if the condition-value is evaluated to zero or undefined.

Two optional directives that may be used to control assembly within an IF ... ENDIF block are ELSE
and ELSEIF. There may be any number of ELSEIF sub-blocks within an IF ... ENDIF block.
However, there may be only one ELSE sub-block, and it must be the last sUb-block before the
ENDIF directive.

The ELSE directive turns the assembly on if it has been turned off by the corresponding IF
directive. The ELSEIF directive turns the assembly on if it has been turned off by the
corresponding IF directive and the associated expression is evaluated true (nonzero). All this
implies that only one group of statements will be assembled: either those following the IF
statement, those following the ELSEIF statement, or those following the ELSE statement.

Since both the ELSEIF and ELSE blocks are optional, either one or both may be omitted.

IF ... ENDIF

An IF ... ENDIF block has the following structure:

IF condition-value
(statements to be assembled
if condition-value is true)
ENDIF

If the condition-value is true (nonzero), the statements between the IF directive and the ENDIF
directive are assembled. If the condition-value is false (zero or undefined), those statements are
skipped. (See Example 1.)

@

IF
Assembler Directives-8500 Series B Assembler Core Users Begins conditional assembly block

@

IF ... E LS ElF ... ELS E ... EN 0 I F

An IF ... ELSEIF ... ELSE ... ENDIF block has the following structure:

IF condition-value1
(statements to be assembled
if condition-value1 is true)
ELSEIF condition-value2
(statements to be assembled
if condition-value1 is false
and condition-value2 is true)
ELSE
(statements to be assembled
if both condition-value 1 and
condition-value2 are false)
ENDIF

If condition-value1 is true (nonzero), the statements between the IF directive and the ELSEIF
directive are assembled. If condition-value2 is true and condition-value1 is false, the statements
between the ELSEIF directive and the ELSE directive are assembled. Otherwise, the statements
between the ELSE directive and the ENDIF directive are assembled. (See Example 2.)

NOTE

A relational expression (for example, J <0) yields the value -1 (all bits are ones)
when true and the value 0 (all bits are zeros) when false. Thus, the bit
manipulation operators &(AND), !(OR), and !!(XOR) may be used in complex
relational expressions. (See Example 1.) The Assembler section of this manual
explains expressions and operators in detail

An IF block may be nested inside a REPEAT block or another IF block. Blocks may be nested as
deep as available memory in the assembler permits. An IF block may not lie partially inside and
partially outside a REPEAT block, another IF block, a macro expansion, or statements from an
INCLUDE file. (Any IF block in an INCLUDE file must be wholly contained in that file.) Figure 3-4
shows the allowed forms of nesting for IF blocks.

3-27

IF
Begins conditional assembly block Assembler Directives-8500 Series B Assembler Core Users

3-28

Q
REPEAT

r- IF

L.. ENDIF

ENDR

start of ~acro
I expansion [J

IF

L- end of m.acro
expansion

ENDIF

start of [J
IF

.

,INCLUDE file
L- end of

INCLUDE file

ENDIF

Allowed

r--- IF

I REPEAT

L- EN DR

~ELSE

r- IF

L- ENDIF

~ENDIF

start of macro

IIF O
expansion

L.- ENDIF

end of ~acro
expanSion

start of

[J
INCLUDE file

,IF

L- ENDIF

end of
INCLUDE file

Fig. 3-4. Allowed forms of IF block nesting.

Not Allowed

CE
EPEAT

IF

ENDR

ENDIF

start of ~acro
expansion Cf

F

ENDIF

end of macro
expansion

start of
INCLUDE file

ENDIF Cf
F

end of
INCLUDE field

3856-13

An IF block may not lie partially inside and partially outside a REPEAT block, another IF block,
a macro expansion, or statements from an INCLUDE file.

@

IF
Assembler Directives-8500 Series B Assembler Core Users Begins conditional assembly block

@

EXAMPLES

IF Example 1

Label Operation Operand

IF M>N & N<P & P=Q
WARNING ; TROUBLE
ENDIF

In this example, the conditional expression of the IF statement contains three relational
subexpressions: 'M>N', 'N<P', and 'P=Q'. Each subexpression yields the value -1 (true) or 0
(false). The three subexpression values are ANOed together to yield the value (-1 or 0) to be used
by the IF directive. Thus, the WARNING directive is assembled only if:

• M is greater than N, and

• N is less than P, and

• P is equal to Q.

IF Example 2

This example shows the use of an IF ... ELSEIF ... ELSE ... ENDIF block in a macro.
Label Operation Operand

MACRO WORDS

IF STRINGOF(l) = 'BLUE'
COLOR SET 1

ELSE IF STRINGOF(l) = 'RED'
COLOR SET 2

ELSEIF STRINGOF(l) = 'YELLOW'
COLOR SET 3

ELSE
COLOR SET 0

ENDIF

ENDM

In this example, the first parameter passed to the macro is tested. If the parameter is 'BLUE',
'RED', or 'YELLOW', COLOR is set to a predetermined digit code. Otherwise, the digit code is set
to zero.

3-29

INCLUDE
Assembles source code from another file Assembler Directives-8500 Series B Assembler Core Users

3-30

SYNTAX

Label Operation Operand

filespec-string [symbol] INCLUDE

PARAMETERS

filespec-string An expression that yields a string representing a filespec.

EXPLANATION

The INCLUDE directive causes the assembler to process the statements in the specified file as if
they were part of the current source file.

INCLUDE files may be nested (an INCLUDE file may contain an INCLUDE directive).

MACRO, IF, and REPEAT blocks begun in the original source file may not be terminated in an
INCLUDE file. Also, blocks beginning in an INCLUDE file must beterminated in thatfile. Any END
directives encountered in an INCLUDE file are ignored. The entire INCLUDE file is included.

If the INCLUDE directive is contained in a macro, the file is included at macro expansion time.
However, statements in the INCLUDE file cannotuse the specialtext-subsiitutron'~'c-onsTructs'
usually allowed in macros ("N" for the Nth parameter, "#" for the number of parameters, "@"for
a unique label). See the Macros section of this manual for information about these constructs.

Listing options are returned to their original values when the INCLUDE file is exited.

Label

EXAMPLES

Operation Operand Comment

NAME
INCLUDE
INCLUDE

MAINMOD
'MACR.ASM'
'/SYS/COM.ASM'

DEFINE STANDARD MACROS.
DEFINE COMMON BLOCK.

In this example, the statements in files MACR.ASM and /SYS/COM.ASM are assembled atthe
beginning of module MAINMOD. MACR.ASM contains macro definition blocks; /SYS/
COM.ASM defines a common section.

@

LIST
Assembler Directives-8500 Series B Assembler Core Users Turns on listing options

@

Label Operation

LIST

SYNTAX

Operand

[I isti ng-option[, listi ng-option] ...]

PARAMETERS

listing-option One of the following listing options:

CND-Lists statements that are not assembled because of unsatisfied IF or
REPEAT conditions. Defaults to OFF: Only those statements that are actually
assembled are listed.

CON-Lists assembly errors on the system terminal as well as in the source
listing. Defaults to ON.

DBG-Causes the assembler to generate an internal (local) symbols list in the
object module. Defaults to OFF.

LINE (width)-Sets the line length to width characters per line. If the line is
longer than width characters, the line is truncated. The width parameter must
be a positive scala r. If width is less than 1, the line width is set to default and an
error is generated~ Defaults to 72 if output is to terminal, defaults to 132
otherwise.

ME-Sets the ME/MEG option to the ME setting: lists all macro expansion
statements that are assembled. The ME/MEG option defaults to MEG.

MEG-Sets the ME/MEG option to MEG: lists only those macro expansion
statements that generate object code. The ME/MEG option defaults to MEG.

PAGE (length)-Sets the page size to length lines per page. The length
parameter must be a positive scalar and greater than or equal to 4. If length is
less than 4, page size is set to 65536 and an error is generated. Defaults to 55.

SYM-Lists the symbol table. Defaults to ON.

XREF-Includes cross-reference information in the listing. Defaults to OFF.

If no option is specified, the source listing is turned ON.

EXPLANATION

The LIST directive turns on the listing option(s) named in the operand field. The NOLIST directive
may be used to turn any of these options off. Line size and page size are not affected by the
NOLIST directive.

3-31

LIST
Turns on listing options Assembler Directives-8500 Series B Assembler Core Users

3-32

Each option controls a different listing feature and may be turned on or off anywhere in the
source module. If an option is changed during a macro or INCLUDE file expansion, its previous
setting is restored when the expansion ends.

An assembler listing contains three parts:

1. The source listing, which shows the source code and object code for each statement
assembled.

2. The cross-reference listing, which lists each symbol and its associated line number(s).
3. The symbol table, which lists the symbols used in the source module.

The master option (LIST /NOLlST), CND option, and ME/MEG option determine which lines of
code appear in the source listing, and are discussed in the following paragraphs. The listings of
the symbol table and the cross-reference table are controlled by the SYM and XREF options,
respectively. The SYM and XREF options, along with CON, DBG, LINE, and PAGE are discussed
under the heading Other Options.

Source Listing
Master Option (LIST /NOLlST). The master option (which controls the source listing) is
normally ON. The directive NOLIST (without operands) turns the master option OFF,
suppressing display of all statements except erroneous ones. When the master option is OFF,
any PAGE and SPACE directives are suppressed, and the CND and ME/MEG options are
overridden. The directive LIST (without operands) turns the master option back ON.

eND. Normally the CND option is OFF; any statement that is not assembled because of an
unsatisfied IF or REPEAT condition is not listed. When the CND option is ON, even unassembled
statements are listed.

ME/MEG. The ME/MEG option controls the display of statements in macro expansions. It has
three settings: ME, MEG, and OFF. At the default setting, MEG, only those statements that
generate object code (assembly language instructions and ADDRESS, ASCII, BLOCK, BYTE,
LONG, and WORD directives) are listed. Note that other directives that directly affect the object
module (COMMON, EQU, GLOBAL, NAME, ORG, RESERVE, RESUME, SECTION) are not listed.

The directive LIST ME changes the ME/MEG setting to ME, causing every assembled statement
in a macro expansion, except IF and REPEAT conditions, tobe listed. The directive NOLISTME or
NOLIST MEG turns the ME/MEG option OFF, suppressing display of all macro expansion
statements except erroneous ones. The directive LIST MEG returns the ME/MEG option to its
default setting.

@

LIST
Assembler DireGtives-:-8500 Series B Assembler Core Users Turns on listing options

@

Other Options

CON. Normally the CON option is ON, and every erroneous statement and its accompanying
error message are displayed on the system terminal as well asin the source listing. When the
CON option is OFF, erroneous statements and their error messages appear only in the source
listing.

DBG. If the DBG option is at its default setting (OFF) when assembly ends, the object file will
contain no internal (non-global) symbols list for the current module. If the DBG option is ON
when assembly ends, an internal symbols list will be created, and will include all symbols in the
module. The DBG option is determined by the last LIST directive in which it is specified. This
option must be specified if symbolic debugging will be performed on the object module.

LINE. Normally the line size is set to 72 characters per line (if the output device is the system
terminal; otherwise it is set to 132 characters per line). This includes about 32 columns
containing the line number, location counter, and object code. Line size can be set to a different
value with the LINE option. Lines longer than the specified line size are truncated.

PAGE. Normally the page size is set to 55 lines per page. The page size may be changed with the
PAGE option. If you try to set the page size to less than four lines, an error will be generated and
the page size will be set to 65535 lines.

NOTE

Make sure that you don't confuse the PAGE option in the LIST directive with the
PAGE directive. The PAGE option sets the number of lines per page. The PAGE
directive skips to a new page in the source listing.

SYM. If the SYM option is at its default setting (ON) when assembly ends, the assembler listing
will contain the symbol table as well as the source listing. If the SYM option is OFF when
assembly ends, no symbol table is listed. The symbol table is described in The Assembler section
of this manual.

XREF. Normally the cross-reference will not be listed. If you use the XREF option in a LIST
directive, however, a cross-reference listing will be generated. Only those symbols encountered
while XREF is on will appear in the cross-reference listing. See The Assembler section of this
manual for more information on the cross-reference listing.

Summary. Table 3-1 summarizes the LIST options.

3-33

LIST
Turns on listing options Assembler Directives-8500 Series B Assembler Core Users

3-34

Option Default

CND OFF

CON ON

DBG OFF

LINE 72,terminal
132,otherwise

ME OFF

MEG ON

PAGE 55

SYM ON

XREF OFF

Table 3-1
LIST Options

With LIST

Lists conditional assembly
blocks that a re not
assembled.

Displays errors on terminal.

Internal symbol list is in-
cluded in object file for
use with linker.

Sets line size.

Lists all macro expansions.

Lists only macro expansions
that produce object code.

Sets page size.

Lists symbol table.

Lists cross-reference

EXAMPLES

Label Operation Operand

LIST DBG

With NOLIST

Only lists conditional assembly
blocks that are assembled.

Does not list errors on terminal
unless the terminal is the output
device.

Internal symbol list not included.

Illegal.

Suppresses listing of all macro
expansions.

Suppresses listing of all macro
expansions.

Illegal.

Suppresses listing of symbol
table.

Suppresses listing of
cross-reference.

This statement causes the assembler to generate an internal symbols list for this module when it
is assembled.

LIST CND,ME

This directive causes all statements (assembled and unassembled, mainline statements and
macro expansion statements) to appear in the source listing.

NOLIST

LIST

@

. LIST
Assembler Directives-8500 Series B Assembler Core Users Turns on listing options

@

The NOLIST directive turns off the source listing. The LIST directive turns the source listing back
on. While the source listing is suppressed, the settings of other options may be changed;
however, changes to the eND and ME/MEG options do not become apparent until the listing is
turned back on.

NOLIST SYM

This statement suppresses display of the symbol table.

See The Assembler section of this manual for a sample listing.

3-35

LONG
Initializes memory with 32-bit value(s) Assembler Directives-8500 Series B Assembler Core Users

3-36

SYNTAX

Label Operation Operand

[symbol] LONG expressio n[, express ion]. ..

PARAMETERS

symbol A user-defined 1abel representing the address of the first byte of data.

expression Any expression that yields a value which may be stored in 32 bits (numbers ranging
from -2,147,483,648 to 4,294,967,295 or character strings of up to 4 ASCII

. characters).

EXPLANATION

The LONG directive stores 32-bit values in 2 words (4 bytes) of contiguous memory. Depending
on the microprocessor, the high and low words and/or the high and low bytes of each word may
be swapped. See the Assembler Specifics section of this manual for information concerning
your microprocessor.

EXAMPLES

Label Operation Operand

POWERS_OF_2 LONG
LONG
LONG
LONG
LONG

1,2,4,8,16,32,64,128,256,512,1024,2048,4096
8192,16384,32768,65536,131072,262144,524288
.1048576,2097152,4194304,8388608,16777216
33554432,67108864,134217728,268435456
536870912,1073741824,2147483648

In this example, successive powers of 2 are stored in memory, so that a value in the form 2" may
be referenced by the expression (POWERS-OF _2 + N * 4).

@

MACRO
Assembler Directives-8500 ,Series B Assembler Core Users Begins macro definition

@

Label Operation

MACRO

Operand

macro-name

SYNTAX

PARAMETERS

macro-name The name of the macro being defined.

EXPLANATION

The MACRO directive marks the beginning of a macro definition block. The macro consists of all
statements between, but not including, the MACRO directive and the next ENDM directive.

The Macros section of this manual describes macros in detail.

EXAMPLES

The following macro converts the value of a variable to its two's complement:
Label Operation Operand

MACRO NEGATE
"1" SET \ "1" + 1

ENDM

The macro invocation
NEGATE VALUE 1

yields the following macro expansion:
VALUE 1 SET \ VALUEI + 1

Every occurrence of the substitution construct ("1") is replaced by the first parameter (VALUE1).
The two's complement of the specified value is then formed.

3-37

NAME .
Declares object module name Assembler Directive-8500 Series B Assembler Core Users

3-38

Label Operation

NAME

Operand

module-name

SYNTAX

PARAMETERS

module-name A name for the object module being created: any symbol.

EXPLANATION

The NAME directive gives a name to the object module created by this assembly. If more than
one NAME directive appears in a module, only the first name specified is used. If the source
module contains no NAME directive, the default name *NONAME* is assigned to the object
module.

The library generator (LibGen) requires that each module in a library file have a unique name.

EXAMPLES

Label Operation Operand

NAME SUBSMOD

This statement assigns the name SUBSMOD to the object module being created.

@

NOLIST
Assembler Directive-8500 Series B Assembler Core Users Turns off listing options

@

Label Operation

NOLIST

SYNTAX

Operand

[listing-option£, listing-option]. ..]

PARAMETERS

listing-option One of the following listing options:

CND-Suppresses listing of statements that are not assembled because of
unsatisfied IF or REPEAT conditions.

CON-Suppresses display of assembly errors on the system terminal.

DBG-Suppresses the internal symbols list for this module.

ME-Suppresses display of all macro expansion statements.

MEG-Suppresses display of all macro expansion statements.

SYM-Suppresses listing of the symbol table.

XREF-Suppresses cross-reference listing.

EXPLANATION

The NOLIST directive turns off the listing option(s) named in the operand field. These options are
explained in detail under the LIST directive. If the NOLIST directive is used without parameters,
all output is suppressed except error messages, symbol table, and cross-reference listing. The
NOLIST directive does not affect page size or line size.

3-39

ORG
Sets location counter Assembler Directives-8500 Series 8 Assembler Core Users

3-40

SYNTAX

Label Operation Operand

[symbol] ORG {
address }
/ address-mod

symbol

address

PARAMETERS

A user-defined label (usually omitted) that is assigned the value of the
updated location counter.

A new value for the location counter: any expression that yields an address or
a scalar. If an address is used it must be in the current section. Each symbol in
the expression must have been defined previously.

address-mod Any numeric expression. The location counter is advanced to the next
address that is a multiple of the address-mod. Each symbol in the expression
must have been defined previously.

EXPLANATION

The ORG directive sets the location counter to the specified address.

If the / (slash) operator is used, the location counter is set to the next address that is a multiple of
the address-mod. If the cu rrent va I ue of the location cou nter is a Iready a multiple of the address­
mod, the location counter is unaffected. If the address-mod is zero and the value in the location
counter is even, the location counter is set to the next odd value.

The location counter is ani nternal cou nter, rna i ntai ned by the assembler, that holds the address,
relative to the beginning of the current section, of the next byte of code to be assembled. The
location counter starts at zero for each section and is automatically updated as object code is
generated.

The ORG directive is generally used to initialize the program counter for an absolute section, or
to begin the next block of object code on a new page of memory.

NOTE

A void using ORG in a byte-relocatable or inpage-relocatable section: the
conditions that you use ORG to create are likely to be lost when the section is
relocated

If, through use of the ORG directive, you break your section into noncontiguous blocks of code,
the linker may place other sections in the gaps between these blocks. (See Example 1.) Every
byte in a section retains its position relative to the beginning of the section even if the section is
relocated.

@

Assembler Directives-8500 Series B Assembler Core Users

@

NOTE

If you use ORG incorrectly, you may end up specifying more than one value for
the same byte of object code. (5 ee Example 2.) 5 uch a situation is not detected by
the assembler, linker, or loader.

EXAMPLES

ORG Example 1

Label Operation Operand Conment

; DEFINE SECTION ABS (AN ABSOLUTE SECTION).
SECTION ABS,ABSOLUTE
ORG lOOH START ON PAGE 1

ABSl BLOCK 80H 128 BYTES OF MEMORY
ORG /100H GO TO BEGINNING OF NEXT PAGE.

ABS2 BLOCK 40H 64 BYTES
ORG 400H GO TO PAGE 4.

ABS3 BLOCK 80H ; 128 BYTES
; DEFINE SECTION REL (A BYTE-RELOCATABLE SECTION).

SECTION REL
REL1 BLOCK 40H 64 BYTES

ORG /lOOH GO TO BEGINNING OF NEXT PAGE
REL2 BLOCK 80H 128 BYTES

ORG
Sets location counter

3-41

ORG
Sets location counter Assembler Directive-8500 Series B Assembler Core Users

3-42

In this example, two sections of object code are generated. Section ABS is divided into three
blocks and section REL is divided into two blocks. Figure 3-5 shows the layout of the two
sections.

ABS REL

00000000 00000000
REL1

00000100 00000100

ABS1 REL2

00000200
ABS2

00000300

00000400

ABS3

3856-14

Fig. 3-6. Sections before linking.

@

Assembler Directive-8500 Series B Assembler Core Users

@

Figure 3-6 shows how the linker will arrange the two sections:

00000000

00000100

00000200

00000300

00000400

ABS1

ABS2

REL1

REL2

ABS3

Section REL is relocated. as a whole.
to the first gap of sufficient size.

Fig. 3-6. Sections after linking.

Notice that section REL is placed between blocks ABS2 and ABS3 of section ABS. Notice also
that block REL2 began on a page boundary before it was relocated. but not after.

ORG
Sets location counter

3856-15

3-43

ORG
Sets location counter

ORG Example 2

Label Operation Operand

ORG
ASCII
ORG
ASCII

400H
'A LINE OF TEXT'
405H
,*****,

yields the same object code as:
ORG
ASCII

400H
'A LIN*****TEXT'

Assembler Directive-8500 Series B Assembler Core Users

The five asterisks overwrite the information stored previously.

3-44 @

PAGE
Assembler Directive-8500 Series B Assembler Core Users Skips to new page in listing

@

Label Operation

PAGE

Operand

SYNTAX

EXPLANATION

A PAGE directive causes the next source line listed to appear at the top of a new page. The PAGE
directive itself is not listed.

If the source listing is suppressed by a NOLIST directive, the PAGE directive has no effect.

EXAMPLES

Label Operation Operand Comment

TITLE 'THIS IS THE TITLE'

PAGE
SECTION MAIN

SKIP TO A NEW PAGE TO
BEGIN CODE FOR MAIN.

These statements cause the source code for section MAIN to begin on a new page. The top of the
new page looks like this:

Tektronix ASM xxxxxxxxx
Vxx.xx-xx (xxxx)

THIS IS THE TITLE

SECTION MAIN

Page x
xxxxxxxxxxxxxxx

BEGIN CODE FOR MAIN.

3-45

REPEAT
Begins repetitive assembly Assembler Directive-8500 Series 8 Assembler Core Users

3-46

SYNTAX

Label Operation Operand

REPEAT {
n TIMES }
condition-va I ue[, limit]

PARAMETERS

n The number of times to repeat the block: any positive scalar.

condition-value Any expression that yields a scalar value. The condition is considered false
if the value is zero or undefined and true if the value is nonzero.

limit The maximum number of times the block may repeat: any expression that
yields a scalar in the range from 0 to 65535. Defaults to 255.

EXPLANATION

The REPEAT directive is used to control the number of times a block of assembler statements is
assembled. The REPEAT block is terminated by the ENDR directive. The statements between the
REPEAT and ENDR directives are assembled, repetitively, until one of the following conditions is
met:

1. The condition-value is evaluated to false (zero or undefined). The evaluation occurs before
each pass. If the condition-value is false before the first repetition, the REPEAT ... ENDR
block is not assembled at all.

2. The block has been assembled limit times. Ifthis happens, an error message is generated
and assembly resumes starting with the statement following the ENDR.

3. The TIMES option is used and the block has been assembled n times.

4. EXITR is assembled. This is usually used in conjunction with the IF directive.

The condition-value may be a relational expression (for example,J < 0). See the IF directive for a
note on the relationship between numeric and relational expressions.

A REPEAT block may be nested inside an IF block or another REPEAT block. Blocks may be nested
as deep as available memory in the assembler permits. A REPEAT block may not lie partially
inside and partially outside an IF block, another REPEAT block, a macro expansion, or
statements from an INCLUDE file. Figure 3-7 shows the allowed forms of nesting for REPEAT
blocks.

@

REPEAT
Assembler Directive-8500 Series B Assembler Core Users Begins repetitive assembly

@

-REPEAT

r-IF

L-ENDIF

r- REPEAT

L- ENDR

-ENDR

O
st~~p~fnr;:~~ro

,REPEAT

'-- ENDR

end of macro
expansion

O
REPEAT

start of r- INCLUDE file

'-- end of
INCLUDE file

ENDR

Allowed

O
IF

I REPEAT

'-- ENDR

ENDIF

r-- start of n:-acro
expansion

~
I REP:::her

macro
expansion

ENDR

""'--- end of ~acro
expansion

start of

O
INCLUDE file

,REPEAT

L-ENDR

end of
INCLUDE file

NOT Allowed

~
EPEAT

IF

ENDR

ENDIF

LE
E PEAT

start of n:-acro
expansion

EN DR

end of macro
expansion

LE
EPEAT

start of
INCLUDE file

ENDR

end of
INCLUDE file

Fig. 3-7. Allowed forms of REPEAT block nesting.

A REPEAT block may not lie partially inside and partially outside an IF block, another REPEAT
block, a macro expansion, or statements from an INCLUDE file.

3856-16

I
3-47

REPEAT
Begins repetitive assembly Assembler Directive-8500 Series B Assembler Core Users

3-48

REPEAT Example 1:

Label

COUNT

COUNT

The statement

Operation

MACRO
SET
REPEAT

'/IF
WARNING
EXITR
ENDIF
BYTE
SET
ENDR
ENDM

Operand

LOOPI
1

EXAMPLES

COUNT <= "1"
"1" > 1000
;ERROR : EXCESSIVE ITERATION

"2"
COUNT + 1

LOOP 1 3,0

invokes the above macro and produces the following expansion (the IF block is not shown since
its condition is false here):

COUNT SET

COUNT

COUNT

COUNT

REPEAT
BYTE
SET
ENDR
REPEAT
BYTE
SET
ENDR
REPEAT
BYTE
SET
ENDR

1
COUNT <= 3
o
COUNT + 1

COUNT <= 3
o
COUNT + 1

COUNT <= 3
o
COUNT + 1

(COUNT is incremented to 2.)

(COUNT is incremented to 3.)

(COUNT is incremented to 4.)

This sequence generates three bytes of zeros. Note that with the listing options at their default
settings, only the BYTE directives would appear in the listing:

BYTE 0
BYTE 0
BYTE 0

See the LIST directive for more information ·on listing options.

If the macro were invoked with the statement:
LOOP 1 1001,0

The user-defined warning message would be generated and the REPEAT block would not be
assembled at all.

@

REPEAT
Assembler Directive-8500 Series B Assembler Core Users Begins repetitive assembly

@

REPEAT Example 2:

Label Operation Operand

COUNT SET 1
REPEAT 100 TIMES
WORD COUNT

COUNT SET COUNT + 1
ENDR

This sequence would produce 100 words of data. The values would range from 1 to 100, in
consecutive order.

3-49

RESERVE
Reserves section of memory Assembler Directive-8500 Series B Assembler Core Users

3-50

Label Operation

[symbol] RESERVE

symbol

sect-name

length

relocation-type

class-name

SYNTAX

Operand

sect-name,length[,relocation-type] [,CLASS=class-name]

PARAMETERS

A'user-defined label (usually omitted) that represents the first byte of the
relocated reserve section.

The name aSSigned to the section.

The number of bytes in the section: any non-negative scalar expression.

An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE-The section is relocated to the beginning of a page of memory. A
frequently used page size is 256 bytes. See the Assembler Specifics
section of this manual for the page size for your microprocessor.

INPAGE-The section may be relocated to any address, so long as the
entire section lies within one page of memory.

If you do not specify PAGE or INPAGE, the section is attributed with the
default relocation type. This default relocation type is microprocessor­
dependent. See the Assembler specifics section for information about the
default relocation type for your microprocessor.

The class name assigned to the section.

EXPLANATION

The RESERVE directive creates a section with the specified name, length, relocation type, and
class name. Different modules may allocate space for the same reserve section; the linker
concatenates all reserve sections with the same name into a single section.

Since you can specify the length, but not the contents, of a reserve section, RESERVE is used
primarily to set aside memory for a workspace or stack.

A reserve section may not have the relocation type ABSOLUTE or ALIGN; however, you may use
the linker command LOCATE to place the section at the desired position in memory. See the
Linker section of this manual.

The RESERVE directive has no effect on the section currently being defined.

The relocation type of a reserve section must be the same wherever the section is declared. A
section must not be declared more than once in the same module.

@

RESERVE
Assembler Directive-8500 Series B Assembler Core Users Reserves section of memory

@

The name of a section is a global symbol whose value isthe address of the first byte of the
section. A section name should not be declared with a GLOBAL directive in any module in which
the section is defined with a RESERVE directive.

The class name is not used by the assembler. It is passed to the linker so that the linker
commands may refer to this section by its class name rather than its section name. Refer to the
Linker section of this manual for further information on class names.

Label Operation Operand

NAME
SECTION

RESERVE

MODI
SECI

STACK, 40

EXAMPLES

Conment

BEGIN DEFINITION OF SECI.

SET ASIDE 40 BYTES FOR STACK.
RESUME DEFINITION OF SECI.

In the above example, 40 bytes are allocated to a byte-relocatable reserve section called
STACK. The statements on either side of the RESERVE directive refer to section SEC1.

NAME MOD2

RESERVE STACK, 20 ; SET ASIDE 20 BYTES FOR STACK.

When modules MOD1 and MOD2 are linked, reserve section STACK will occupy 60 bytes of
memory: 40 bytes from MOD1 and 20 bytes from MOD2.

3-51

RESUME
Resumes definition of section Assembler Directive-8500 Series B Assembler Core Users

3-52

SYNTAX

Label Operation Operand

[section-name] [symbol] RESUME

symbol

PARAMETERS

A user-defined label (usually omitted) that is assigned the current value of the
location counter of the resumed section.

section-name The name of the section to be resumed. If no name is given, the default section is
resumed.

EXPLANATION

The RESUME directive stops definition of the current section and resumes the definition of the
specified section. It is illegal to RESUME a RESERVE section.

If no section name is given, the definition of the default section is continued. The default section
is described under the SECTION directive.

Once a section is defined, it may be resumed any number of times.

Label

TEMP

Operation Operand

SECTION

MOV
SECTION
BLOCK
RESUME

MAINPROG

TEMP ,AX
RAM
1
MAINPROG

EXAMPLES

Cormnent

BEGIN DEFINITION OF MAINPROG.

USE A TEMPORARY LOCATION.
SWITCH TO RAM ...
... TO ALLOT SPACE FOR TEMP.
GO BACK TO ORIGINAL SECTION.

In this example, the definition of section MAINPROG is interrupted to reserve one byte for
temporary storage. The RESUME directive continues the definition of section MAINPROG.

@

SECTION
Assembler Directive-8500 Series B Assembler Core Users Declares program section

@

Label Operation

[symbol] SECTION

symbol

section-name

relocation-type

class-name

SYNTAX

Operand

section-name[,relocation-type][,CLASS=class-name]

PARAMETERS

A user-defined label (usually omitted) that represents the address of the
first byte of the section.

The name assigned to the section.

An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE-The section is relocated to the beginning of a page of memory. A
frequently used page size is 256 bytes. See the Assembler Specifics
section of this manual for the page size for your microprocessor.

ALlGN(address-mod)-The section may be relocated to any address that
is a multiple of the address-mod. Address-mod represents a positive scalar
expression. Each symbol in the expression must have been defined
previously.

INPAGE-The section may be relocated to any address, so long as the
entire section lies within one page of memory.

ABSOLUTE-The section is not relocated. You may not assign a class
name to an absolute section.

If you do not specify PAGE, ALIGN, INPAGE, or ABSOLUTE, the section is
attributed with the default relocation type. This default relocation type is
microprocessor-dependent. See the Assembler specifics section for
information about the default relocation type for your microprocessor.

The class name assigned to the section. You may not assign a class name
to an absolute section.

EXPLANATION

The SECTION directive declares a section of type SECTION and defines the name, relocation
type, and class name of the section. The contents of the section are defined by the statements
following the SECTION directive, up to the next SECTION, COMMON, or RESUME directive.

The class name is not used by the assembler. It is passed to the linker so that the linker
commands may refer to the section by its class name rather than its section name. Refer to the
Linker section of this manual for further information on class names.

3-53

SECTION
Declares program section Assembler Directive-8500 Series B Assembler Core Users

3-54

Any section that contains instructions (as opposed to data) should be of type SECTION.

NOTE

In this discussion, the word 'SECTION' (al/ uppercase) refers to a section
declared with a SECTION directive, rather than with a COMMON or RESERVE
directive.

Unlike a common or reserve section, a SECTION must be defined entirely in one module. Use the
RESUME directive to add code to a section that has already been defined in the current module. If
the linker encounters more than one SECTION with the same name, the linker issues an error
message and links only the first SECTION with that name.

The name of a section is a global symbol whose value is the address of the first byte of the
section. A section name should not be declared with a GLOBAL directive in the same module in
which the section is defined with a SECTION directive.

The default section of a module contains all object code generated before the first SECTION or
COMMON directive is assembled. The name of the default section is derived as follows:

1. Eliminate all characters except letters and digits from the name of the object file.

2. Take the first 15 characters.

3. Add the prefix '%'.

For example, the default section for object file IUSR/FRED/OBJ is %USRFREDOBJ. When no
object file is generated, the default section is called %.

EXAMPLES

Label Operation Operand

SECTION MAINPROG
(source code for section MAINPROG)

SECTION TABLE,INPAGE
(source code for section TABLE)

SECTION INTERRUP,ABSOLUTE
ORG 100H

(source code for section INTERRUP)

In this example, section MAINPROG may be relocated by the linker to any address. TABLE is
relocatable to any address, so long as the entire section lies within one page of memory.
INTERRUP, which is not relocatable, begins at address 100H.

@

SET
Assembler Directive-8500 Series B Assembler Core Users Assigns value to variable

@

SYNTAX

Label

string-variable

Operation

SET

Operand

string-expression
numeric-expression numeric-variable SET

PARAMETERS

string-variable A user-defined label for a string variable.

numeric-variable A user-defined label for a numeric variable.

string-expression Any expression that yields a character string.

numeric-expression Any expression that yields a numeric value.

EXPLANATION

The SET directive assigns a value to a symbol. The symbol is called a variable because it may be
assigned a new value with a subsequent SET directive. A variable may be used anywhere the
value it represents is permitted.

A variable must not be a global $ymbol. SET may not redefine a symbol unless that symbol was
originally defined with a SET directive.

There are two types of variables: string and numeric.

• A string variable represents a character string. A string variable must be declared with a
STRING directive before it may'be assigned a value. _~w,,_

... oowl~ir.:.::.l'

• A numeric variable represents a scalar or address. A numeric variable need not be
declared; it becomes defined the first time a SET directive assigns it a value.

If the type of the variable does not match the type of the value assigned to it, the value is
converted to match the type of the variable.

• If you assign a string value to a numeric variable, the variable takes the ASCII value of the
first four bytes of the string (32 bits). If the string exceeds four characters, the assembler
issues an truncation error.

If the string contains less than four characters, zeros are padded into the remaining high­
order bytes.

• If you assign a numeric value to a string variable, the numeric value is treated as a literal
string constant.

See The Assembler section of this manual for further information on conversions.

3-55

SET
Assigns value to variable Assembler Directive-8500 Series B Assembler Core Users

3-56

Text substitution (signaled by double quotes" ") often involves variables. A string variable in
double quotes(e.g., "STVAR") isrepl~c~d by the string the variable represents. The substituted
string is not enclosed in quotes. A numeric variable in quotes (e.g., "N") is 'legal only in macros,
and is replaced by the Nth parameter in the macro invocation. See The Assembler section of this
manual for information on text substitution.

EXAMPLES

Label Operation Operand Conunent

MACRO
N SET

REPEAT
BYTE

N SET
ENDR
ENDM

BYTES
1
N <= "#"
"N",-"N"
N+l

SET POINTER TO FIRST PARAMETER.
REPEAT FOR EACH PARAMETER:
ALLOCATE TWO BYTES FOR THE NTH PARAM.
INCREMENT PARAMETER POINTER.

In this example, N is a numeric variable that counts from 1 to the number of parameters in the
macro invocation ("#"). The construct "N" is replaced by the Nth parameter. The invocation

BYTES

yields the macro expansion
BYTE
BYTE
BYTE

10,20,MAX

10,-10
20,-20
MAX,-MAX

ALLOCATE TWO BYTES FOR THE NTH PARAM.
ALLOCATE TWO BYTES FOR THE NTH PARAM.
ALLOCATE TWO BYTES FOR THE NTH PARAM.

In the following example, string variables VOL and FILE are assigned values and then
concatenated to form the filespec of an INCLUDE file.

Label

VOL

FILE

Operation Operand

STRING

SET

SET

INCLUDE

VOL(8),FILE(8)

'/SYS'

'INC.ASM'

VOL:' /' :FILE

The statements from file INC.ASM in the system directory (/SYS/INC.ASM) are assembled
following the INCLUDE directive.

@

SET
Assembler Directive-8500 Series B Assembler Core Users Assigns value to variable

@

In the following example, the name of the current section ("%") is stored in string variable
SECNAME and is later substituted into the RESUME directive.

Label

SECNAME

Operation Operand

STRING
SECTION

SET

RESUME

SECNAME(8)
MAINPROG

°SECNAMEO

The above lines are assembled as follows:
STRING SECNAME(8)
SECTION MAINPROG

SECNAME SET 'MAINPROG'

RESUME MAINPROG

3-57

SPACE
Inserts blank lines into listing

Label Operation

SPACE

Operand

[line-count]

SYNTAX

Assembler Directive-8500 Series B Assembler Core Users

PARAMETERS

line-count The number of blank lines to be generated: any expression that yields a positive
scalar. Defaults to 1.

EXPLANATION

The SPACE directive generates the specified number of blank lines in the source listing. If no
. line-count is given, one blank line is generated. The SPACE directive itself is not listed.

If the line count is negative or exceeds the number of lines left on the current page, the SPACE
directive merely skips to the top of the next page.

If the source listing is suppressed by a NOLIST directive, the SPACE directive has no effect.

EXAMPLES

Label Operation Operand

END OF SECTION AAAA.
SPACE 5
SECTION BBBB

BEGIN SECTION BBBB.

These lines of code will be listed as follows:
; END OF SECTION AAAA.

} 5 blank lines

SECTION BBBB
BEGIN SECTION BBBB.

3-58 @

STITLE
Assembler Directive-8500 Series B Assembler Core Users Creates listing subtitle

@

Label Operation

STITLE

Operand

subtitle-string

SYNTAX

PARAMETERS

subtitle-string The subtitle for the source listing: any expression that yields a string of up
to 35 characters.

EXPLANATION

The STITlE directive creates a subtitle of up to 35 characters. The subtitle is printed below the
title line at the top of each page of the source listing. The STillE directive itself is not listed.

Each subsequent STITlE directive redefines the subtitle. If the STITlE directive precedes the
first source line listed on the current page, the new subtitle appears on the current page;
otherwise it first appears on the next page. Thus, if a STITlE directive immediately precedes or
follows a PAGE directive, the designated subtitle appears at the top of the new page.

If the subtitle string exceeds 35 characters, only the first 35 characters are used.

The STITlE directive is used for program documentation only. You may choose to change the
subtitle to reflect each new section of code.

EXAMPLES

Label Operation Operand CODlDent

TITLE 'THIS IS THE TITLE'
STITLE 'SUBTITLE FOR PAGES 1 AND 2'

THIS IS THE FIRST LISTABLE LINE.

PAGE

PAGE
STITLE

SKIP TO PAGE 2.

; SKIP TO PAGE 3.
'SUBTITLE FOR PAGE 3'

3-59

STITLE
Creates listing subtitle Assembler Directive-8500 Series B Assembler Core Users

The preceding statements produce the following page headings in the source listing:

Tektronix ASM xxxxxxxxx THIS IS THE TITLE Page 1
Vxx.xx-xx (xxxx) SUBTITLE FOR PAGES 1 AND 2 xxxxxx.xxxxxxxx

3 ; THIS IS THE FIRST LISTABLE LINE.

Tektronix ASM xxxxxxxxx THIS IS THE TITLE Page 2
Vxx.xx-xx (xxxx) SUBTITLE FOR PAGES 1 AND 2 xxxxxxxxxxxxxxx

Tektronix ASM xxxxxxxxx THIS IS THE TITLE
Vxx.xx-xx (xxxx) SuBTITLE FOR PAGE 3

Page 3
xx.xxxxxxxxx.xx

3-60 @

STRING
Assembler Directive-8500 Series B Assembler Core Users Declares string variable(s)

@

Label Operation

STRING

SYNTAX

Operand

stri ng-va riable[(length)I,stri ng -variable[(length)]] ...

PARAMETERS

string-variable A symbol to be used as a string variable.

vi

length The length of the longest string that may be assigned to string-variable: any
expression that yields a positive scalar value. Defaults to 16.

v

EXPLANATION

The STRING directive declares each symbol in the operand field to be a string variable. Each
symbol may be followed by anon~negative value indicating the length of thal-angest string that
may be assigned to that variable~- If n'o length parameter is specified, the maximum length
defaults to 16 characters.

A symbol J.tl!:g~t be declared with a STRING directive before it can be used as a string variable.
When a string variable is declared, its value is initialized to the null string (zero characters). Use
the SET directive to assign a value to a variable. ! . '

EXAMPLES

Label Operation Operand

STRING CITY(lO),STATE,HOMETOWN(26)

CITY SET 'BEAVERTON'

STATE SET 'OREGON'

HOMETOWN SET CITY: ' , ':STATE

In this example, the STRING directive declares CITY, STATE, and HOMETOWN as string
variables with maximum lengths of 1 Q,OS')nd 26, respectively. Subsequently, CITY is assigned
a 9-character string ('BEAVERTON'), SiAtE is assigned a 6-character string ('OREGON'), and
HOMETOWN is assigned a 17-character string ('BEAVERTON, OREGON').

3-61

TITLE
Creates listing title Assembler Directive-8500 Series B Assembler Core Users

3-62

Label Operation

TITLE

Operand

title-string

SYNTAX

PARAMETERS

title-string The title for the source listing: any expression that yields a string of up to 31
cha racters.

EXPLANATION

The TITLE directive creates a title of up to 31 characters to be printed at the top of each page of
the source listing. The TITLE directive itself is not listed.

Each subsequent TITLE directive redefines the title. If the TITLE directive precedes the first
source line listed on the current page, the new title appears on the current page; otherwise, it
first appears on the next page. Thus, if the TITLE directive immediately precedes or follows a
PAGE directive, the new title appears at the top of the new page.

If the title string exceeds 31 characters, only the first 31 characters are used.

The TITLE directive is used for program documentation only. You may choose to use the same
title throughout the module, or you may change the title or subtitle as often as you want.

Label

EXAMPLES

Operation Operand Comment

TITLE
STITLE

PAGE

PAGE
TITLE

'THE SAME OLD TITLE'
, THE SAME OLD SUBTITLE'

SKIP TO PAGE 2.

; SKIP TO PAGE 3.
, A NEW TITLE'

@

Assembler Directive-8500 Series B Assembler Core Users

The preceding statements produce the following page headings in the source listing:
Tektronix ASM xxxxxxxxx THE SAME OLD TITLE
Vxx.xx-xx (xxxx) THE SAME OLD SUBTITLE

Tektronix ASM xxxxxxxxx THE SAME. OLD TITLE
Vxx.xx-xx (xxxx) THE SAME OLD SUBTITLE

TektronixASM xxxxxxxxx A NEW TITLE
Vxx.xx-xx (xxxx) THE SAME OLD SUBTITLE

@

Page 1
xxxxxxxxxxxxxxx

Page 2
xxxxxxxxxxxxxxx

Page 3
xxxxxxxxxxxxxxx

TITLE
Creates listing title

3-63

WARNING
Displays warning Assembler Directive-8500 Series B Assembler Core Users

3-64

SYNTAX

Label Operation Comment

WARNING [;message]

PARAMETERS

message Any user-defined error message.

EXPLANATION

When a WARNING directive is assembled, it is treated as an erroneous statement: an error
message containing the text in the comment field is displayed on the system terminal and in the
source listing. The semi-colon (;) signifies the beginning of the comment field.

You may use the WARNING directive to detect unexpected conditions in your program.

Label

EXAMPLES

Operation Operand

SECTION ONE

IF M>N & N<P & P=Q
WARNING TROUBLE IN SECTION "%"
ENDIF

In this example, if M > Nand N < P and P = a, the WARNING is assembled and the following
message is displayed:

xxxxx WARNING ; TROUBLE IN SECTION ONE
*** ASM: l(W)

The construct "%" is replaced by the name of the current section.

@

Linker-8500 series B Assembler Core Users Listing File

The following is the Global Symbol Listing with Cross-Reference resulting from the example
linker command.
Tektronix 8086/8088 Linker Vxx. xx-xx (xxxx) Page 5
For LOADFILE

GLOBAL SYMBOL LISTING:

CHARIN 0 LAS8550A
CHAROUT 1000 LAS8550B
CHARBUFFIN FO LAS8550A
CHARBUFFOUT 1014 LAS8550B
DEFINE 2FO DATA.Al
ENDREL 1141 *********** [defined by the linker]

LAS 8550A LAS 8550B
GLOBAL 1 2FO DATA.Al
PORT 1 10 LAS8550A
PORT2 1010 LAS8550B

DATA. Al
PORT 3 2F2 DATA. Al

LAS8550A LAS 8550B
TESTZ 250 LAS8550B

Notice that some global symbols are referenced by more than one object module. For instance,
global symbol PORT3 is referenced by the two object modules: LAS8550A and LAS8550B.

Statistics
The Statistics listing gives the number of errors detected and reports whether an absolute load
file was generated. If one was generated, it also tells whether the load file can be relinked by the
Linker or debugged by the Symbolic Debugger.

The following is the Statistics listing resulting from the example linker command.

Tektronix 8086/8088 LinkerVxx.xx-xx (xxxx) Page 6
For LOADFILE

STATISTICS:

Number of warning errors: 0
Number of errors: 0

Transfer Address: 1000

Load file is not relinkable
Load file is not usable for symbolic debugging

REV SEP 1981 5-27

8500 Series B Assembler Core Users

Section 6
THE LIBRARY GENERATOR

Page

Introduction 6-1

LibGen Invocation 6-1

Command Option Parameters 6-3
Fi lespecs 6-3
Module Names 6-3
Command Files 6-3

Command Options 6-4
-c .. 6-4
-d .. 6-4
-h .. 6-4
-i .. 6-4
-I .. 6-4
-n .. 6-5
-0 .. 6-5
-r .. 6-5
-v .. 6-5
-x .. 6-5

Examples .. 6-6
Delete Library Modules 6-6
Create a New Library File 6-6
Specify the Header of New Library File 6-6
Add a Library Module 6-6
Display the Module List on System Terminal 6-7
Output the Module List to a File 6-7
Display the Entire LibGen Listing on the
System Terminal 6-7

Replace Old Modules with New Modules 6-7
Copy Module to Object File 6-8
Modify and List a Library File 6-8
Sample LibGen Command File 6-8

LibGen Execution. .. 6-9

@

Page

LibGen Output 6-1 0

- The New Library File•................... 6-10
The Listing 6-10

Command Log 6-10
Module List 6-11
Summary of Actions 6-11

Table
No.

TABLES

6-1 LibGen Command Options 6-2

Fig.
No.

6-1
6-2
6-3
6-4

ILLUSTRATIONS

-d command option example 6-6
-i command option example 6-7
-r command option example 6-8
LibGen information flow 6-9

6-i

8500 Series B Assembler Core Users

@

Section 6

THE LIBRARY GENERATOR

INTRODUCTION
The Library Generator (LibGen) is a genera I-purpose utility program used to create and maintain
object module libraries for use with the linker.

LibGen collects assembler-generated or compiler-generated object modules into library files.
From these library files, the object modules can be individually accessed by the linker, based on
the information provided in each object module.

This section describes the operations and use of LibGen, and is divided into the following
subsections:

• LibGen Invocation. Describes how to invoke LibGen. Presents a detailed description of
each command option used to control the operation of LibGen.

• LibGen Execution. Describes operations performed by LibGen.

• LibGen Output. Describes the listing file generated by LibGen.

Some typical uses of LibGen are presented in the Programming Examples section of this
manual.

LIBGEN INVOCATION
With the 8550 Microcomputer Development Lab or the 8560 Multi-User Software Development
Unit, the LibGen is invoked by the operating system command libgen.

NOTE

If you are using any system other than the 8550 or 8560, the LibGen invocation
command may be different. Refer to the Host Specifics section of this manual for
further information.

Throughout this section, the same notation conventions are used as described in the Learning
Guide of this manual. Additionally, if you are using the 8550 Microcomputer Development Lab,
the command name libgen may be entered in either upper or lower case.

6-1

LibGen Invocation LibGen-8500 Series B Assembler Core Users

6-2

IIibgen command-option ...

SYNTAX

PARAMETERS

command-option One of the command-options listed in Table 6-1.

Table 6-1
LibGen Command 0 ptions

Option Syntax Function

-c command-file invokes a LibGen command file

-d module-name ... deletes library module(s)

-h string specifies a header for the new library

-i fi lespec ... inserts new module(s) into library

-I specifies listing option

-n filespec designates new library file

-0 filespec specifies old library file

-r filespec ... replaces old module(s) with new module(s)

-v specifies detailed listing

-x module-name [filespec] extracts (copies) module to object file

command-file

module-name

string

filespec

The filespec of the command file containing a series of LibGen command
options.

The name of the library module.

An ASCII string that identifies the library. The string may contain any
printable characters and may not start with a dash (-). The length of the
string is limited to 76 characters.

The name of the file. Refer to the Host Specifics section of this manual for
restrictions on filespecs and filenames of your operating system.

LibGen-8500 Series B Assembler Core Users LibGen Invocation

EXPLANATION

The libgen command is used to create new library files, modify existing library files, or list
existing library files.

• To create a new library file, include the -n command option.

• To modify an existing library file, include both the -0 and -n command options. Any
unmodified contents of the old library file are copied to the new library.

• To list an existing library file, include both the -0 and -I command options.

The command options may be entered in any order. Only spaces are valid as delimiters in the
libgen command line.

Command Option Parameters
Filespecs

Any filespec included in a LibGen command option may contain up to 64 characters. Only the
following characters are allowed: printable characters from I (ASCII 21 H) to '" (ASCII 7EH),
except that a dash - (ASCII 2DH) may not be the first character in a filespec and a comma (ASCII
2CH) may not be included at all. Your operating system may place further restrictions on
filespecs. Refer to the Host Specifics section of this manual for further information.

If you try to create a file that already exists, the existing file will be renamed under the backup
name #filename.

Module Names

Each module name may contain up to 16 characters. If you enter a module name longer than 16
characters, the excess characters are discarded. A module name begins with a letter or percent
sign (%), and may contain only letters, digits, periods (.), underscores (_), dollar signs ($), or
percent signs (%).

Command Files

A LibGen command file contains a series of LibGen command options. It has the following
features:

• Only one command option per line is allowed.

• Each line is limited to 80 characters long, including the carriage return.

• A command option can be extended to multiple lines. To indicate that a command option
continues onto the next line, enter a space followed by an asterisk at the end of the current
command option line, before any comments. The continuation characters (*) can be
inserted wherever a delimiter is legal.

• Comments can be appended to a command option line by preceding the comment with
a space followed by a semicolon. Any text following the comment characters (;) until the
end of line will be ignored by LibGen. Blank lines will be ignored. A semicolon in the
leftmost column indicates that the entire line is a comment.

6-3

LibGen Command Options LibGen-8500 Series B Assembler Core Users

6-4

Command Options
-c
The -c command option invokes a LibGen command file. Command options are read from the
command file and processed as if you had entered them from the system terminal, until the end
of file is reached. Command options are echoed on the system terminal as they are processed.
When the end of the command file is reached, LibGen will continue with the rest of the libgen
command line.

Nested command files are allowed: a command file may invoke another commandfile. When the
end of the nested command file is reached, LibGen will read the next command option in the
upper-level command file. You can have as many levels of nested command files as the memory
allows. No checks are made to prevent recursive calls.

-d
The -d command option prevents the designated modules from being copied from the old library
file into the new library file. The old library file is not affected.

-h
The -h command option is used to identify the library. The string parameter is stored as header
information in the new library. It is printed on the listing generated by the -I and -v command
options.

You must specify -n when you specify -h. The -h command option is ignored ifthe -n command
option is omitted.

If more than one -h command option is specified, only the last -h command option is used to
identify the new library.

-i

The -i command option inserts object modules into the new library. Each specified object file
contains one object module. If more than one object file is specified, all designated object
modules are placed together in the given order. Object modules are always placed at the end of
the library.

-I
The -I command option displays the module list on the system terminal. Refer to the discussion
of LibGen Output later in this section for information on the contents of the module list.

The module list contains information about the new library if a new library(-n command option)
is specified. Otherwise, information about the old library is listed.

LibGen-8500 Series B Assembler Core Users LibGen Command Options

@

If your operating system permits you to redirect output from the system terminal default, you
may output the LibGen listing to a file or device other than the system terminal. See the
Examples part of this section.

-n
The -n command option designates the output file that is to receive the updated library (new
library). If more than one -n command option is entered in a libgen command line, only the file
specified in the last -n command option is used as the output library file.

-0

The -0 command option designates the input file that contains the existing library(old library). If
more than one -0 command option is entered in the libgen command line, only the file specified
in the last -0 command option is used as the input library file.

-r

The -r command option replaces the library module with the contents of an object file. The old
library module is deleted (as if the appropriate -d command option were entered), and the object
module contained within the object file is inserted at the end of the library.

If the name of the object module (within the specified object file) does not match any of the
library module names, an error occurs and the object module is inserted into the library.

-v
The -v command option displays the command log and a summary of actions on the system
terminal. Refer to the discussion of LibGen Output later in this section for information on the
contents of the listings.

You must specify -I when you specify -v. The -v command option is ignored if the -I command
option is omitted.

-x
The -x command option extracts (copies) the designated library object module to a file. If the
optional filespec parameter is omitted, LibGen uses the module name as the output filename.

8-6

LibGen Examples LibGen-8500 Series B Assembler Core Users

6-6

EXAMPLES

Delete Library Modules
libgen -0 mylib -n newlib -d mymod oldmod

This LibGen command prevents modules mymod and oldmod from being copied from the old
library file mylib into the new library file newlib. See Fig. 6~1.

mylib newlib

module1 module1

module2 - module2 -
mymod - module3

(
module3

oldmod

3856-20

Fig. 6-1. -d command option example.

Create a New Library File
libgen -n newlib -1 fpadd fpsub fpmult

This LibGen command creates a new library newlib which contains modules fpadd, fpsub, and
fpmult.

Specify the Header of New Library File
libgen -n newlib -1 fpadd fpsub -h Floating point package VI.I

This LibGen command creates a new library newlib which contains modules fpadd and fpsub.
This command also identifies newlib as a floating point package.

Add a Library Module
libgen -0 mylib -n newlib -1 10.obj

This LibGen command copies the old library file mylib into a new library file newlib, and adds the
contents of the file io.obj to the end of the library newlib. See Fig. 6-2.

LibGen-8500 Series B Assembler Core Users LibGen Examples

mylib newlib

module1 - module1

module2 module2

- io. mod

io.obj

io. mod

Fig. 6-2. -i command option example.

Display the Module List on System Terminal

1ibgen -0 my1ib -1

3856-21

This LibGen command displays the module list of the library file mylib on the system terminal.

Output the Module List to a File

NOTE

If you are using any system other than the 8550 or 8560, you may not be able to
redirect output, or the output redirection format may be different from what is
shown here. Refer to the Host Specifics section of this manual for further
information.

1ibgen -0 my1ib -1 >my1ist

This LibGen command designates file mylist to receive the module list of the library file mylib.

Display the Entire LibGen Listing on the System Terminal

1ibgen -0 my1ib -1 -v

This LibGen command displays the entire LibGen listing on the system terminal. The LibGen
listing includes the command log, module list, and summary of actions.

Replace Old Modules with New Modules
Assume that the file fpadd contains module modadd. To replace the module modadd contained
in the library mylib with the one contained in the file fpadd, use the -r command option.

6-7

LibGen Examples LibGen-8500 Series B Assembler Core Users

6-8

libgen -0 mylib -n newlib -r fpadd

This LibGen command copies the old library file mylib into a new library file newlib. During the
copying process, LibGen deletes the existing module modadd, then inserts the contents of
object file fpadd in its place. See Fig. 6-3.

mylib newlib

module1 module1

module2 -- module2

modadd - module3

U module3 modadd

fpadd

modadd

Fig. 6-3. -r command option example.

Copy Module to Object File

libgen -0 mylib -x io.mod

3856-22

This LibGen command copies the existing library module io.mod from the library file mylibtoan
object file with the same name (io.mod).

libgen -0 mylib -x io.mod io.obj
This LibGen command copies the existing library module io.mod from the library file mylib to
the object file io.obj.

Modify and List a Library File

libgen -0 mylib -n newlib -i modI mod2 -1 -d moda modb mode
This LibGen command copies the old library file mylib into a new library file newlib. During the
copying process, LibGen inserts modules mod1 and mod2, deletes modules moda. modb. and
mode, then displays the module list of newlib on the system terminal.

Sample LibGen Command File
A LibGen command file contains a series of LibGen command options. For example, command
file mycommand contains:

; LibGen command file: myeommand
-h Version 3.0
-1
-0 mylib
-d modI modZ mod3
-i myfile yourfile hisfile herfile itsfile *
ourfile theirfile
-n newlib ;end of myeommand

LibGen-8500 Series B Assembler Core Users LibGen Execution

To invoke the command file mycommand, enter:
libgen -0 myoommand

The command options in the command file mycommand are read and processed, until the end
of file is reached.

libgen -0 myoommand -v

This LibGen command invokes command file mycommand, also includes the command log and
summary of actions in the LibGen listing.

LIBGEN EXECUTION
LibGen performs operations on library files by copying an old library file into a new one. Any
changes specified by LibGen commands are made during the copying process. This process is
illustrated in Fig. 6-4.

Old Library

Object
Modules

NEWLIB
(-n)

~ _____ OLDlIB

Library
Generator
(LibGen)

(-0)

'--___ -------,r-J LIST

DELETE
(-d)

(-I), (-v)

EXTRACT
(-x)

Object
Modules

Fig. 6-4. LibGen information flow.

New library

Listing

This figure illustrates the information flow into and out of the Library Generator (LibGen).
LibGen takes information from the old library and designated object modules, and produces
the new library, listing, and object files. The LibGen command options that designate the
filespecs used for each file are shown along each data path.

3856-23

6-9

libGen Output LibGen-8500 Series B Assembler Core Users

6-10

Of course, you won't use all paths shown in Fig. 6-4 each time you invoke LibGen. For example, if
you are creating a new library, then you wouldn't need to specify an old library. If you are
examining an old library, then you wouldn't need to create a new library. If you do not need a
listing, do not specify one.

You may enter the LibGen command options in any order. After you enter the entire libgen
command line, LibGen processes the command options in the following order:

1. -x (extract)

2. -d (delete)

3. -i (insert)

The -r (replace) command option is processed as a combination of the -d (delete) and -i (insert)
command options.

LIBGEN OUTPUT
LibGen produces three different types of output: the new library file, the listing, and the object
file(s) (if specified with the -x command option).

The New Library File
The new library file contains all the object modules from the old library, plus any object modules
that were inserted, minus any object modules that were deleted.

The Listing
The listing summarizes the operations that LibGen has performed. The listing consists of three
parts:

1. a command log;

2. a new library module list; and

3. a summary of actions performed by LibGen.

Each of these listing parts is described in detail in the following paragraphs.

Error messages may also be generated by LibGen as a result of mistaken information or
requests. LibGen error messages are described in the Error Messages section of this manual.

Command Log
The command log lists each LibGen command option used in the current invocation.

@

LibGen-8500 Series B Assembler Core Users LibGen Output

@

Module List

In this part of the listing, LibGen records the following information for each module in the library:

1. name of the module;

2. global symbols contained within the module;

3. external references (if any) used by the module; and

4. cross-references (the modules that contain the external references in the same library).

Global symbols within each module are divided into four categories:

• Section name: The name of a SECTION, COMMON, or RESERVE contained within the
module. '

• Data area: A global symbol which is declared as a data area that can be referenced by other
modules.

• Entry point: A global symbol that represents a piece of code to be referenced by a
subroutine call.

• Constant: A scalar value declared global.

These symbols are preceded in the listing with either a (S), (0), (E), or (C), indicating section
name, data area, entry point, or constant, respectively.

Note that these global symbols are the factors that determine whether or not a module will be
included at link time. For example, assume that module X in the library has a section named "P",
an entry point named "P1 It, and a constant named "P9". At link time, if anyone of the symbols
"P", "P1", or "P9" has been referenced (through an unbound GLOBAL reference), and if this
library had been given as linker input, then module X would be included as if it were one of the
normal linker object modules.

Summary of Actions
The summary of actions describes the operations LibGen has performed during this execution.
LibGen actions include:

• generating a new library,

• deleting a module from the library,

• inserting a module into the library, and

• extracting (copying) a library module to an object file.

6-11

8500 Series B Assembler Core Users

Section 7
PROGRAMMING EXAMPLES

Page

Introduction 7-1

Use of Conditional Assembly in Macros 7-2

Save-and-Restore Macro 7-2

The SAVE Macro 7-3
The RESTORE Macro 7-4
Sample Invocations 7-4

SVC Generation 7-5

Creating Service Request Blocks 7-5
The SRB Macro 7-6
Explanation of the SRB Macro 7-6
Sample Invocations of the SRB Macro 7-9

Generating Service Calls 7-9
The SVC Macro 7-10
Explanation of the SVC Macro 7-10
Sample Invocation of the SVC Macro 7-10

Creating Constant Values 7-10

The CONSTANT Macro 7-11
The VARIABLE Macro 7-13
M aero Invocation 7-1 3

Creating and Using a Subroutine Library 7-14

The ADD Module 7-15
Explanation of the ADD Module 7-15
Entry Points 7-16

The SUBTRACT Module 7-16
Explanation of the SUBTRACT Module 7-17
Entry Points 7-17

Assembling the Modules 7-17
Creating the Library 7-20
Using the ADD Module from a Program 7-20

The Mainline Add Program 7-21
Explanation of the Mainline Add Program 7-21
Assembling and Linking the Program 7-22
Linking Explanation 7-24

Using the SUBTRACT Module from a Program 7-25
The Mainline Subtract Program 7-26
Explanation of the Mainline Subtract Program ... 7-26
Assembling and Linking the Program 7-26
Linking Explanation 7-29

@

Page

Linking Overlays 7-30

Using the "@" Construct within a Macro 7-33

Delay Loop Macro 7-33
Macro Invocation 7-34

The Assembler INCLUDE Directive 7-34

Including Constant Definitions 7-34
Including COMMON Declarations 7-35
Including Macro Definitions 7-35
Authorship and Copyright Notices for Listings 7-36

Fig.
No.

7-1
7-2

ILLUSTRATIONS

Linking the add program to the library 7-25
Linking the subtract program to
the library 7-30

7-i

8500 Series B Assembler Core Users

@

Section 7

PROGRAMMING EXAMPLES

INTRODUCTION
This section contains examples of some typical uses of the assembler, linker, and library
generator. These examples range from the basic (conditional assembly) to the more complex
(creation and use of a floating-point library).

In order to get the most out of this section, you should have some familiarity with assembly
language programming, and with the Tektronix 8500 Modular MOL B Series Assembler, Linker,
and Library Generator. These examples are not intended to be used during your initial
familiarization with these subsystems.

The examples in this section use 8086/8088 instructions, but similar instructions for other
microprocessors may be substituted without changing the validity of the examples.

The following examples are included in this section:

• Conditional assembly. This example suggests ways of using the IF assembler directive to
include or omit program segments, based on various conditions.

• Save-and-restore macro. This example uses a macro to perform a common programming
operation: saving registers on the stack and restoring the registers from the stack.

• SVC generation. This example shows how the macro and conditional assembly features of
the assembler can make it easier to generate service calls (SVCs).

• Creating constant values. This example uses an assembler macro to declare a constant
value in a separate assembler section. You can use this technique to keep instructions,
fixed data values, andvariable data values separate, so that you could eventually place your
program into ROM.

• Creating and using a subroutine library. This example shows how you can build a library
(a skeleton floating-point package), and then use parts of that library at a later time.
Relevant parts of the assembler, linker, and library generator are illustrated.

• Linking overlays. This example shows how you can use the linker to link overlay modules.

• Using the "@" construct within macros. This example shows typical uses of the "@"
construct within macros.

• The assembler INCLUDE directive. This example shows some typical uses of the
INCLUDE directive, such as providing common constant, COMMON, or macro
declarations. It also shows how to provide a copyright or authorship notice for your listings.

7-1

Conditional Assembly in Macros Programming Examples-8500 Series B Assembler Core Users

7-2

USE OF CONDITIONAL ASSEMBLY IN MACROS
This example illustrates some uses of the IF-ELSE-ENDIF and IF-ENDIF constructs for
conditional assembly in macros.

Conditional assembly is used primarily in macros. The main body of the program is usually
structured such that, once it is written, few changes will need to be made. Macros, however, are
designed to examine their parameters and make decisions which may vary with programming
and run-time conditions.

One use of conditional assembly in macros is to assemble statements only upon the first
invocation of the macro. For example, an error will occur if a string variable is defined more than
once; the following structure may be used to check for previous definitions.

IF \DEF(STRI) , If STRI has not been defined
STRING STRI(lOO) ; Define STRI with length of 100 bytes
ENDIF

These instructions determine whether or not the string variable STRI has been defined
previously. If it has not, the statement STRING STRI(1 00), which defines a string variable named
STRI with a maximum length of 100 characters, is assembled.

Another use of conditional assembly in macros is to verify that a symbol has previously been
defined.

MACRO
IF
GLOBAL
ENDIF
MOV
LD
CALLS
ENDM

CALLPRINT
\DEF(PRINT)
PRINT

AX, "1"
BX, "2"
PRINT, PRINT

If PRINT has not been defined yet ...
Define PRINT as a global
Continue with rest of macro
Move first parameter to AX
Move second parameter to BX

The conditional block in this macro checks to see if PRINT has already been defined. If PRINT has
not been defined, the statement GLOBAL PRINT is assembled. If PRINT has been defined
previously, the statement in the conditional block (GLOBAL PRINT) is skipped.

SAVE~AND-RESTORE MACRO
This example uses two assembler macros to perform a common assembly language operation:
saving and restoring microprocessor registers. The example uses the 8086/8088 instruction
set; however, the techniques illustrated here can be applied to nearly all stack-oriented
microprocessors.

@

Programming Examples-8500 Series B Assembler Core Users Save-and-Restore Macro

@

The SAVE Macro
The SAVE macro saves one or more registers on the stack. The parameters of the macro
invocation line designate the registers to be saved. The body of this macro examines those
parameters and generates the appropriate 8086/8088 PUSH instructions.

MACRO SAVE line 1
IF "#" line Z

SAVE $ SET 1 line 3
REPEAT SAVE $ <= "#" line 4
PUSH " SAVE $" line 5

SAVE $ SET SAVE$ + 1 line 6
ENDR line 7
ELSE line 8
SAVE AX, BX, CX, DX line 9
END IF line 10
ENDM line 11

Line 1 begins the macro definition, and gives the macro the name SAVE. This name is used in the
program to invoke the macro.

Line 2 begins an IF .. ELSE .. ENDIF block. This IF statement has one operand: the construct "#".
The assembler will replace this construct with the number of parameters present in the macro
invocation line. If the parameter count is not zero, the assembler processes all statements
between this IF statement and the corresponding ELSE statement (line 8).lfthe parameter count
is zero (meaning that the macro was invoked with no parameters), the assembler processes the
statements between the ELSE and ENDIF statements.

Lines 3 through 7 are processed if the macro invocation includes one or more parameters. Each
parameter is the name of one 8086/8088 register. The macro generates one PUSH instruction
for each parameter. A REPEAT..ENDR loop processes each parameter in turn.

Line 3 initializes the assembler variable SAVES to 1. This assembler variable is incremented
once for each parameter in the macro invocation line.

Line 4 is the beginning of the REPEAT .. ENDR block. The statements in the block are repeated as
long as the assembler variable SAVES is not greater than the number of parameters passed to
the macro ("#").

Line 5 generates an 8086/8088 PUSH instruction. The operand of the PUSH instruction is
obtained from the current value of SAVES. For example, if SAVES is 3, and the third parameter in
the macro invocation is ex, this statement generates an 8086/8088 PUSH ex instruction.

Line 6 increments the value of the assembler variable SAVES.

Line 7 marks the end of the REPEAT .. ENDR block. As long as the expression in the REPEAT
statement is true (non-zero), the assembler will process the group of statements within the
REPEAT .. ENDR block.

Line 8 terminates the IF .. ELSE block.

7-3

Save-and-Restore Macro Programming Examples-8500 Series B Assembler Core Users

7-4

Line 9 is processed only when the IF condition (in line 2) isfalse(#=zero).lfSAVE is invoked with
no parameters, the SAVE macro reinvokes itself with the four general purpose registers as
parameters, thereby saving all four general purpose registers.

Line 10 terminates the IF .. ELSE .. ENDIF block.

Line 11 statement terminates the definition of the macro.

The RESTORE Macro
The RESTORE macro retrieves the registers that were saved on the stack.

MACRO RESTORE
IF "#"

RESTORE$ SET I
REPEAT RESTORE$ <= "#"
POP "RESTORE$"

RESTORE$ SET RESTORE$ + I
ENDR
ELSE
RESTORE DX, CX, BX, AX
ENDIF
ENDM

The RESTORE macro is similar to the SAVE macro, with two changes:

1. The assembler variable is named RESTORE$ in this macro.

2. The order of the registers in the default macro invocation (no parameters) is reversed. The
stack operates in a last-in-first-out (LIFO) manner: the last register saved must be the first
register restored.

Sample Invocations
The SAVE and RESTORE macros are most commonly used at the beginning and end of
subroutines to insure that the subroutine does not destroy values in the registers needed by the
calling routine. For example, if all general purpose registers are used in a subroutine, you can
include the SAVE macro invocation (with no parameters) at the subroutine's beginning, and the
RESTORE macro invocation (again, with no parameters) at the subroutine's end, like this:

SUBR SAVE Beginning of subroutine SUBR; save all registers

RESTORE
RET

Body of the subroutine

Restore all registers
8086/8088 return-from-subroutine instruction

@

Programming Examples-8500 Series B Assembler Core Users SVC Generation

@

If some (but not all) registers are used in the subroutine, you can invoke SAVE and RESTORE
with a list of those registers to be saved on the stack. Note that the order ofthe registers must be
reversed when restoring them from the stack.

SUER SAVE AX, BX Save AX and BX

RESTORE BX, AX
RET

SVC GENERATION

Body of subroutine

Restore BX and AX
Return from subroutine

This example illustrates some of the features of the assembler that can make it easier for you to
use service calls. Two examples are discussed; creating service request blocks (SRBs), and
generating the microprocessor service call (SVC) instructions. These examples use the
8086/8088 instruction set, but similar techniques can be applied to most processors.

These examples assume you are familiar with the use of SVCs, as described in your system
user's manual.

Creating Service Request Blocks
The first task in using an SVC is to create an appropriate SRB. The SRB consists of seven fields
(12 bytes):

SR B Field Name

Function
Channel
Status
Reserved byte
Byte count
Buffer length
Buffer address

Bytes Used

1
2
3
4

5-6
7-8

9-12

The buffer (specified by the last 6 bytes) is used for I/O operations. This example uses a macro to
set up an SRB. Based on the parameters passed to it, the macro determines such things as
whether to generate an SRB location vector, what the names of the SRB components are, and
what the size of the liD buffer is. The following assembler source statements define a macro
that performs these functions. A line-by-line description follows the listing.

7-5

SVC Generation Programming Examples-8500 Series B Assembler Core Users

7-6

The SR B Macro

STRING SRB$SEC(8), SRB$BUF(16)
MACRO SRB

SRB$SEC SET ' "'Yo" ,
IF DEF(SRB.SEC)
RESUME SRB. SEC
ELSE
SECTION SRB.SEC
ENDIF

"l".FUN BLOCK
"l".CHN BLOCK
"l".STA BLOCK
"l".RES BLOCK
"l".CNT BLOCK

IF
"l".LEN BLOCK
"l".BUl BLOCK
"1".BU2 BLOCK
"1".BU3 BLOCK
"1".BU4 BLOCK

ELSE
IF

SRB$BUF SET
ELSE

SRB$BUF SET
ENDIF

"1" . LEN WORD
"l".BUl BLOCK
"1".BU2 BLOCK
"1".BU3 BYTE
"1".BU4 BYTE

IF
RESUME
ELSE

1
1
1
1
2
STRINGOF(3)="
2
1
1
1
1

STRINGOF(4)="
'''l''.BUF'

STRINGOF(4)

"3"
1
1
HI ("SRB$BUF")
LO("SRB$BUF")
DEF(BUF.SEC)
BUF.SEC

SECTION BUF.SEC
ENDIF

"SRB$BUF" BLOCK "3"
ENDIF
IF STRINGOF(2)<>"
IF DEF(SRB.VEC)
RESUME SRB . VEC
ELSE
SECTION SRB.VEC, ABSOLUTE
ENDIF
ORG
BYTE
BYTE
ENDIF
RESUME
ENDM

40H+4*("2"-1)
HI("l".FUN)
LO("l".FUN)

"SRB$SEC"

Explanation of the SRB Macro

The macro is invoked with the following parameters:

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11
line 12
line 13
line 14
line 15
line 16
line 17
line 18
line 19
line 20
line 21
line 22
line 23
line 24
line 25
line 26
line 27
line 28
line 29
line 30
line 31
line 32
line 33
line 34
line 35
line 36
line 37
line 38
line 39
line 40
line 41
line 42
line 43
line 44
line 45
line 46
line 47
line 48
line 49

1. The first parameter is the name of the SRB. The name must be one to twelve characters
long, and must be a valid symbol prefix. Many labels describing parts of the SRB and
buffer are derived from this name.

@

Programming Examples-8500 Series B Assembler Core Users SVC Generation

@

2. The second parameter is optional; if present, it designates the SVC number (1 to 8) that is
used with the SRB. If you provide this number, the macro creates the appropriate pointer
to this SRB in the 40H to 5FH area of memory. If you omit this parameter, you must use
other assembler statements to supply the pointer.

3. The third parameter is optional; if present, it designates the size of I/O buffer associated
with the SRB. The last six bytes of the SRB are altered to describe the buffer's size and
location, and a buffer of this size is created. If you omit the third parameter, the last six
bytes of the SRB are left empty.

4. The fourth parameter is optional; if present, it selects the name of the buffer associated
with this SRB. If you omit this parameter, the macro assigns a name derived from the SRB
name. This parameter is ignored if the third parameter is not present.

Line 1 creates two assembler string variables: SRB$SEC and SRB$BUF. These variables are
used within the body of the assembler macro to temporarily store data, so that it may be retrieved
later in the macro. These variables are discussed further when they are used.

Line 2 defines the beginning of the macro, and gives the macro the name SRB.

Line 3 saves the current section name in the assembler variable SRB$SEC. The current section
name is saved so that it may be restored later; the remaining statements in this macro switch
sections at least once.

Lines 4 through 8 switch the current section to SRB.SEC, sothat later assembler statements can
generate object bytes for an SRB. The IF statement determines if the section SRB.SEC was
previously defined: if so, a simple RESUME statement is processed, to continue object code
generation; if not, the section begins with a SECTION statement, as its first definition. This
technique of using IF DEF(section-name) to conditionally resume a section is used again,
starting at lines 31 and 39.

Lines 9 through 13 define the common part of the SRB. Each byte of the SRB is given a
descriptive name (label). This label consists of the SRB name (given as the first parameter at
invocation) followed by a four-character suffix. The suffix for each SRB byte indicates the
function of that byte. For example, if the first parameter at macro invocation is QQ, then the five
bytes generated by these five lines of code are: QQ.FUN (function), QQ.CHN (channel), QQ.STA
(status), QQ.RES (reserved byte), and QQ.CNT (I/O count).

Lines 14 through 37 generate the last six bytes of the SRB, according to the third and fourth
parameters, and create the buffer if necessary. Three possible combinations exist:

1. No third parameter; The last six bytes of the SRB are generated like the first five: labels
are generated and space is allocated, but no values are inserted into the SRB bytes.

2. Third parameter only; The last six bytes olthe SRB describe a buffer generated by this
macro. The name of the buffer is derived from the name of the SRB, in the same way as
the name of the SRB components.

3. Both third and fourth parameters; Again, the last six bytes of the SRB describe a buffer
generated by this macro, but the name of the buffer is explicitly given by the fourth
parameter.

7-7

SVC Generation Programming Examples-8500 Series B Assembler Core Users

7-8

Line 14 examines the third parameter: if it is absent, lines 15 through 19 are assembled; if
present, lines 21 through 36 are assembled. In either case, only one block of statements is
assembled.

Lines 15 through 19 generate the last six bytes of the SRB when the third parameter is absent.
Again, the names of the six bytes are derived from the SRB name given in the macro invocation
line. If the SRB name is QQ, for example, six bytes are generated: QQ.LEN (length of buffer-two
bytes), QQ.BU1, QQ.BU2, QQ.BU3, and QQ.BU4 (four bytes for buffer address).

Lines 21 through 25 determine the name of the buffer. If the fourth parameter is present, it is
used as the buffer name. If the fourth parameter is absent, the name of the buffer is created from
the SRB name; for example, an SRB name of QQ produces a buffer name of QQ.BUF. In either
case, the buffer name is assigned to the assembler string variable SRB$BUF. This variable is
used later in the macro.

Lines 26 through 30 generate the last six bytes of the SRB, using the given size and name of the
buffer. As with the other bytes of the SRB, each of these bytes is given a label derived from the
SRB name. For example, a SRB name of QQ generates the labels QQ.LEN, QQ.BU3, and
QQ.BU4. However, unlike the other bytes of the SRB, these bytes are given values at assembly
time. Because the location and size of the buffer are known, the correct values can be given to
these bytes.

Lines 31 through 35 change the current section to BUF.SEC, using the method described
previously (lines 4 through 8). Section BUF.SEC contains any 1/0 buffers generated by the
macro.

Line 36 generates the I/O buffer. The name is defined in the assembler string variable
SRB$BUF. The size is taken from the third invocation parameter.

Lines 38 through 47 generate a pointer tothe SRB in the SRB vector (fixed locations40H to 5FH).
These lines are assembled only if the second parameter is present.

Lines 39 through 43 define SRB.VEC as the current section. This section is absolute (non­
relocatable), because the vectors must be in fixed locations in memory.

Line 44 generates an assembler ORG directive to place the pointer in the proper location. The
operand of the ORG directive computes an address from the second parameter in the invocation;
this parameter is a digit from 1 to 8.

Lines 45 and 46 generate a pointer to the SRB's first entry, the function byte.

Line 48 restores the current section to the section name that was saved upon entry into this
macro.

Line 49 terminates the definition of the macro.

@

Programming Examples-8500 Series B Assembler Core Users SVC Generation

@

Sample Invocations of the SRB Macro

The SRB macro can be invoked in many different ways, depending on the needs of the situation.
For example, in its simplest invocation,

SRB QQQ

only an SRB is generated. The first parameter, QQQ, specifies the name of the SRB. The SRB
consists entirely of BLOCK assembler directives; your program is expected to place values into
the various bytes of the SRB.

The SRB macro can be invoked with an SVC number:
SRB RRR, 4

The SRB macro automatically places the appropriate pointer to the SRB (named RRR) at
locations 4CH to 4FH. Again, no part of the SRB is given a value at assembly time; your program
must supply all values (including pointers to buffers) at program execution time.

If you wish to specify a buffer, you must include the third and fourth parameters. For example,
SRB SSS" 128, BUFFER

specifies a BUFFER that is 128 bytes. long. The macro creates the buffer and places values
describing the location and length of the buffer into the last 6 bytes of the SRB.

If you do not require a specific buffer name, you may omit thefourth parameter. The buffer name
will be derived from the SRB name. You still specify the third parameter, to tell the macro the
length of buffer to be created. For example, the macro invocation

SRB TTT" 64

creates a 64-byte buffer named TTT.BUF.

You can create the buffer and SRB pointer simultaneouslyby including all four parameters in the
SRB macro. For example, the invocation

SRB UUU, 3, 80, MYBUF

creates an SRB named UUU, a pointer to the SRB at addresses 48H to 4BH (the SVC 3 vector
location), and an 80-byte buffer named MYBUF.

Generating Service Calls
The task of generating a service call consists of placing three microprocessor-dependent
instructions in your program. The first instruction is usually a data transfer instruction; the
second and third are no-operation instructions. For an 8086/8088 microprocessor, the OUT and
NOP instructions are used for SVCs.

You can use an assembler macro to assist you in creating the OUT /NOP instruction sequence.
The following listing presents a sample macro. A line-by-line description follows the listing.

7-9

Creating Constant Values Programming Examples-8500 Series B Assembler Core Users

7-10

The SVC Macro

MACRO SVC
IF STRINGOF(l)="
WARNING ; Missing SVC Number
ELSE
OUT OFFF8H-"1", AL
NOP
NOP
ENDIF
ENDM

Explanation of the SVC Macro

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9

This macro is invoked with one parameter, the SVC number: a single digit between 1 and 8.

Line 1 defines the name of the SVC-generation macro.

Lines 2 through 8 form an IF .. ELSE..ENDIF block. If the first parameter is absent, line 3 is
processed. If the first parameter is present, lines 5, 6 and 7 are processed.

Line 3 (processed only if no first parameter is given) generates an error message. This message
indicates that the required parameter has not been given in this invocation of the macro. The
error message appears on the listing and the system terminal.

Lines 5,6 and 7 generate an 8086/8088 service call instruction sequence. Line 5 generates an
OUT instruction; the address of the OUT instruction is computed from the first macro parameter.
Lines 6 and 7 generate the NOP (no-operation) instructions to allow time for the service call to be
processed.

Line 9 terminates the macro definition.

Sample Invocation of the SVC Macro
The SVC macro is invoked with one parameter, the SVC number. For example,

svc 4

generates the proper instruction sequence for SVC 4. If the parameter is omitted, an error
message is generated.

CREATING CONSTANT VALUES
This example illustrates the use of a macro to declare a constant value in a separate assembler
section. In this example, two versions of the macro are shown: one to define values to be stored
in ROM, and the other to define values to be stored in RAM. By using these two macros, you can
store constants in either ROM or RAM from anywhere within your program.

@

Programming Examples-8500 Series B Assembler Core Users Creating Constant Values

@

Here's how the macro works: first, it switches from the current section to an alternate section.
Then, it generates the object code for the statements specified. Finally, it switches back to the
original section. By using statements with data storage directives (such as ASCII, BYTE, BLOCK,
and WORD), you can store values in the alternate section.

The macro may be invoked by one of two methods:

• Method 1. The statement lines to be assembled in the alternate section are passed as
parameters in the operand field of the macro invocation .

• Method 2. The statement lines to be assembled in the alternate section are a sequence of
lines following the macro invocation. The macro invocation has no parameters in the
operand field. The invocation of a second macro terminates the sequence of lines and
resumes the original section.

Sample invocations are presented later in this example.

The CONSTANT Macro
This version of the macro stores values in a section ROM.CODE, which can be assigned to ROM
memory at link time.

STRING CON$SAVE,CON$SEC line 1
CON$SEC SET 'ROM. CODE' line 2

MACRO CONSTANT line 3
CON$SAVE SET ' "%'" line 4

IF DEF("CON$SEC") line 5
RESUME "CON$SEC" line 6
ELSE line 7
SECTION "CON$SEC" line 8
END IF line 9
IF "#" line 10

CON$CNT SET 1 line 11
REPEAT CON$CNT <= "#" line 12

"CON$CNT" line 13
CON$CNT SET CON$CNT + 1 line 14

ENDR line 15
END CONS TANT line 16
END IF line 17
ENDM line 18

MACRO END CONSTANT line 19
RESUME "CON$SAVE" line 20
ENDM line 21

Line 1 creates two string assembler variables, CON$SAV and CON$SEC. These variables are
used within the body of the macro to temporarily store data.

Line 2 assigns the character string 'ROM.CODE' to the variable CON$SEC. The variable is used
for the name of the section in which the constants are stored.

Line 3 defines the beginning of the macro and gives it the name CONSTANT.

7-11

Creating Constant Values Programming Examples-8500 Series B Assembler Core Users

7-12

Line 4 saves the current section name in the variable CON$SAVE so that the section may be
resumed later.

Lines 5 through 9 switch the current section to the section ROM.CODE (the value ofthe variable
CON$SEC). The IF statement determines whether or notthe section ROM.CODE was previously
defined (started): if so, the RESUME statement (line 6) continues the section definition; if not, the
SECTION statement (line 8) begins the section definition.

Li ne 10 tests for the presence of a parameter. The assembler replaces the construct "#" with the
number of parameters in the macro invocation line. If the parameter count is non-zero, the
assembler processes lines 11 through 16. Otherwise, the assembler skips to line 18.

Line 11 initializes the assembler variable CON$CNT to designate the first parameter. This
variable is incremented later (line 14) for each parameter.

Lines 12 through 15 form a conditional repeat block. In this block, the invocation parameters are
processed within the macro. The first time the repeat loop is processed, the value of CON$CNT is
1, and the construct "CON$CNT" (in line 13) is replaced by the first parameter. As CON$CNT is
incremented (line 14), each successive parameter is processed, until the value of CON$CNT
exceeds the number of parameters passed ("#" in line 12).

Line 16 invokes the macro ENDCONSTANT, which is defined in lines 19 to 21.

If "#" was zero in line 1 0, the assembler proceeds to line 18 (the first statement following the
ENDIF). This statement terminates the macro. The assembler then processes the statement
lines following the invocation of the CONSTANT macro. These statements provide data for
section ROM.CODE. The statement lines will continue to be processed within section
ROM.CODE until macro ENDCONSTANT is invoked.

Lines 19 through 21 define macro ENDCONSTANT. The macro ENDCONSTANTswitches back
to the section name that was saved at the beginning of this macro (line 4).

@

Programming Examples-8500 Series B Assembler Core Users Creating Constant Values

@

The VARIABLE Macro
A similar macro can be created to store variables in RAM. The section RAM.CODE can be
assigned to RAM memory at link time.

STRING VAR$SAVE, VAR$SEC
VAR$SEC SET 'RAM. CODE'

MACRO VARIABLE
VAR$SAVE SET "'%'"

IF DEF (''VAR$SEC'')
RESUME "VAR$SEC"
ELSE
SECTION ''VAR$SEC''
END IF
IF "#"

VAR$CNT SET 1
REPEAT V AR$CNT <= "#"

''VAR$CNT''
VAR$CNT SET VAR$CNT + 1

ENDR
ENDVAR I ABLE
END IF
ENDM

The ENDVARIABLE macro definition is:
MACRO
RESUME
ENDM

1\11 acro Invocation

ENDVARIABLE
''VAR$SAVE''

Assume that you want to store a character string in a section of ROM memory and call a routine
to print that character string. (This example assumes that your program supplies a subroutine
PRINT in a section named OUTPUT. The subroutine prints each successive character pointed to
by the BX register until a return character is encountered.) The following invocation ofthe macro
CONSTANT could be used to store the message to be printed.

SECTION PRINCON
LEA BX, MES1
CONSTANT MES1 ASCII 'HELLO THERE',[BYTE 13]

~~------~v~------~~ •
1 st parameter 2nd parameter

CALLS PRINT, OUTPUT

The first line declares section PRINCON.

The second line is an 8086/8088 instruction that loads the BX register with a pointer to MES1.

7-13

Creating and Using a Subroutine Library Programming Examples-8500 Series B Assembler Core Users

7-14

The third line invokes the macro CONSTANT with two parameters. The first parameter is an
assembler statement that stores the ASCII representation of the character string 'HELLO
THERE' and has the location MES1. The second parameter [BYTE 13] generates one byte of data
with the value 13 (the ASCII return character). The space in the first position of the parameter
causes the BYTE to be treated as an assembler directive, and not as a label. These two lines are
processed within the section ROM.CODE. The macro then switches back to the section
PRINCON.

The last line of this example, CALLS PRINT, OUTPUT invokes the subroutine PRINT.

If you invoke the macro CONSTANT without parameters, it simply switches to section
ROM.CODE. Any assembler statements between the invocation of CONSTANT (without
parameters) and a matching invocation of ENDCONSTANT are generated into section
ROM.CODE. For example, the following assembler statements produce identical results to the
previous example:

SECTION PRINCON
LEA BX,MES1
CONSTANT

MES1 ASCII ~HELLO THERE ~
BYTE 13
ENDCONSTANT
CALLS PRINT, OUTPUT

In this invocation, the invocation of macro ENDCONSTANT terminates th~ alternate section and
resumes the original section.

With the use of macro VARIABLE, you could establish a data block in a section destined for RAM.
In this example, the symbol DATA.TAB points to a block of 512 bytes. The macro can be invoked
with either this sequence of statement lines:

LEA BX,DATA. TAB
VARIABLE DATA.TAB BLOCK 512
CALL PROCESS

or this sequence:
LEA BX,DATA. TAB
VARIABLE

DATA.TAB BLOCK 512
ENDVARIABLE
CALL PROCESS

CREATING AND USING A SUBROUTINE LIBRARY
'~1

This example shows you how to create a library using the assembler and library generator, and
how to write programs that use selected modules from the library.

The example develops a portion of a floating-point package. The floating-point package uses
processor instructions to manipulate floating-point numbers such as 10000. or 1T (3.14159 ...).
For this example, assume that any floating-point number can be stored in eight consecutive
bytes. (The method of storage is not relevant to this example.)

@

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

To keep things simple, only two primitive floating-point operations are shown: addition and
subtraction. Modules that perform these two operations are the nucleus of the library. Later,
other modules, such as multiplication, could be added to the library.

In this example, the addition and subtraction modules are written as subroutines. They pass and
return data using a predefined COMMON section: a floating-point accumulator.

This example, then, consists of seven 'major tasks:

1. Develop the library ADD module.

2. Develop the library SUBTRACT module.

3. Assemble the modules.

4. Create the floating-point library from the two object modules using the library generator.

5. Develop a sample mainline program that uses the library module ADD.

6. Assemble and link the sample mainline program.

7. Develop, assemble, and link a parallel mainline program that uses the library module
SUBTRACT.

The ADD Module
The following assembler source statements present a 'skeleton' of the library ADD module. The
actual microprocessor instructions to perform the addition are not included, but are represented
by assembler BLOCK directives of comparable length. A line-by-line description of the source
module follows the listing.

SRCI
SRC2
DEST

FP.ADD
FP.AD2

LIST LINE(80)
NAME FP$ADD
GLOBAL FP . ADD, FP. AD2
COMMON FP$ACC
BLOCK 8
BLOCK 8
BLOCK 8
SECTION FP.-AOD
BLOCK 40
BLOCK 350
END

Explanation of the ADD Module

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11

Line 1 specifies that the assembler listing contain a maximum of 80 characters per line. Any line
longer than this will be truncated in the listing.

Line 2 declares the name of the object module. This name is essential in all LibGen references to
this particular library element. The name (FP$ADD) indicates the module's function (floating­
point addition).

7-15

Creating and Using a Subroutine Library Programming Examples-8500 Series B Assembler Core Users

7-16

Line 3 designates FP.ADD and FP.AD2 as global symbols. Both of these symbols are defined in
this module. These symbols are entry points into the subroutine; they are used by other modules
to select this library module at link time.

Lines 4 through 7 define the structure of the floating-point accumulator. This COMMON section
is named FP$ACC (floating-point accumulator). The accumulator provides space for three
floating-point numbers: two operands (SRC1 and SRC2) and a result (DEST).

Lines 8 through 10 define the assembler section containing the instructions that perform the
addition. The BLOCK directives represent the approximate number of bytes consumed by the
instructions. Two entry points are defined in this section: FP.ADD and FP.AD2.

Line 11 designates the end of this assembler module.

Entry Points

This library module defines two entry points:

• FP.ADD-Your program can call this subroutine at FP.ADD to add SRC1 to DEST, leaving
the result in DEST. This entry point is useful when you are maintaining a running total. To
simplify the discussion, assume that the routine beginning at FP.ADD simply copies the
contents of DEST to SRC2, then falls through to the routine at FP.AD2 .

• FP.AD2-Your program can call this subroutine at FP.AD2 to add SRC1 to SRC2, leaving
the result in DEST. This entry point is used when you do not wish to incur the additional
overhead of the first entry point.

The SUBTRACT Module
The SUBTRACT module, as represented here, is very similar to the ADD module. The assembler
statements present a 'skeleton' of this SUBTRACT module. A line-by-line description of the
source module follows the listing.

LIST LINE(80)
NAME FP$SUB
GLOBAL FP . SUB, FP. SU2
GLOBAL FP . ADZ, FP_ADD
COMMON FP$ACC

SORCI BLOCK 8
SORCZ BLOCK 8
DST BLOCK 8

SECTION FP_SUB
FP.SUB BLOCK 70
FP.SU2 BLOCK 30

CAlLS FP . ADZ, FP_ADD
BLOCK 35
END

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11
line 12
line 13
line 14

@

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

Explanation of the SUBTRACT Module

Line 1 specifies that the assembler listing contain a maximum of 80 characters per line. Any line
longer than this will be truncated in the listing.

Line 2 declares the name of the object module: FP$SUB (floating-point subtraction).

Line 3 designates FP.SUB and FP.SU2 as global symbols. These address symbols form entry
points into this routine.

Line 4 declares FP.A02 as a global symbol. Unlike the other global symbols, FP.A02 is defined in
another module (the ADD module). When the SUBTRACT module is linked with a program, the
linker notes the FP.A02 symbol and attempts to locate a definition for it in another module.

Lines 5 through 8 define the structure of the floating-point accumulator. The COMMON section
is named FP$ACC, as before. However, the components of FP$ACC are given different names in
this module: the operands are named SORC1 and SORC2, while the destination is named OST.
This module illustrates how two modules can refer to the same portions of memory with
independently selected names.

Lines 9 through 13 define the assembler section that contains the instructions that perform the
subtraction. Two entry points are defined here: FP.SUB and FP.SU2.

Line 14 designates the end of this assembler routine.

Entry Points
This library module defines two entry points:

• FP.SUB-Your program can call this subroutine at FP.SUB to subtract SORC1 from OST,
leaving the result in OST. The contents of OST are copied to SORC2 and execution
continues at FP.SU2 .

• FP.SU2-Your program can call the subroutine at FP.SU2 to subtract SORC1 from SORC2,
leaving the result in OST. The subtraction is accomplished by changing the sign ofSORC1,
and calling FP.A02. (The 8086/8088 instruction at line 12 is a call to a subroutine, and
returns to the address following the instruction.)

Assembling the Modules
You may use the operating system editor to enter these two modules into their respective
assembler source files. Place the ADD module in a file named fpa.asm, and the SUBTRACT
module in a file named fps.asm. After entering the programs, you may assemble them to
generate the necessary object modules for the library.

Enter the following command to assemble the source file fpa.asm into the object file fpa.obj.
The listing is output to the file fpa.asml, so that you may examine it.

asm fpa.obj fpa.asml fpa.asm [assembler invocation]

7-17

Creating and Using a Subroutine library Programming Examples-8500 Series B Assembler Core Users

7-18

Now look at fpa.asml:
Tektronix ASM 8086/8088
Vxx.xx-xx (xxxx)

1
2
3
4
5 00000000
6 00000008
7 00000010

LIST
NAME
GLOBAL
COMMON

8 SRCI BLOCK
8 SRC2 BLOCK
8 DEST BLOCK

Page 1
dd-mmm-yy/xx:xx:xx

LINE(80) line 1
FP$ADD line 2
FP.ADD, FP.AD2 line 3
FP$ACC line 4
8 line 5
8 line 6
8 line 7

8 SECTION FP_ADD line 8
9 00000000 28 FP.ADD BLOCK 40 line

10 00000028 l5E FP.AD2 BLOCK 350 line
11 END line

Page 2 Tektronix ASM 8086/8088 SYMBOL TABLE
Vxx.xx-xx (xxxx) dd-mmm-yy/xx:xx:xx

Section = %FPAOBJ, Aligned to 00000010, Size = EMPTY

Common Section = FP$ACC, Aligned to 00000010, Size = 00000018

DEST--------------o000ooIo
SRC2--------------00000008

SRCl--------------OOOOOOOO

Section = FP_ADD, Aligned to 00000010, Size = 00000186

FP.AD2------------00000028 G FP.ADD-----------~OOOOOOOO G

11 Lines Read
11 Lines Processed

o Errors

Now assemble fps.asm into fps.obj:
asm ips. ob j ips. asml ips. asm [assembler invocation]

9
10
11

@

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

The listing file contains:
Tektronix ASM 8086/8088 Page 1
Vxx.xx-xx (xxxx) dd-mmm-yy/xx:xx:xx

1
2
3
4
5
6 00000000 8
7 00000008 8
8 00000010 8
9

10 00000000 46
11 00000046 IE
12 00000064 9AOOOOOO R

13 00000069
14

00
23

SORCI
SORC2
DST

FP.SUB
FP.SU2

LIST LINE(80)
NAME FP$SUB
GLOBAL FP.SUB,
GLOBAL FP .AD2,
COMMON FP$ACC
BLOCK 8
BLOCK 8
BLOCK 8
SECTION FP_SUB
BLOCK 70
BLOCK 30
CALLS FP .AD2,

BLOCK 35
END

FP.SU2
FP_ADD

FP_ADD

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11
line 12

line 13
line 14

Page 2 Tektronix ASM 8086/8088 SYMBOL TABLE
Vxx.xx-xx (xxxx) dd-mmm-yy/xx:xx:xx

Section = %FPSOBJ, Aligned to 00000010, Size = EMPTY

Common Section = FP$ACC, Aligned to 00000010, Size = 00000018

DST---------------00000010
SORC2-------------00000008

SORC1-------------00000000

Section = FP_SUB, Aligned to 00000010, Size = 0000008C

FP.SU2------------00000046 G FP.SUB------------OOOOOOOO G

Unbound G1oba1s

FP.AD2------------00000000

14 Lines Read
14 Lines Processed
o Errors

FP_ADD------------OOOOOOOO

7-19

Creating and Using a Subroutine Library Programming Examples-8500 Series B Assembler Core Users

7-20

Creating the Library
Now you can use the library generator (LibGen) to create the floating-point library. LibGen is
discussed in the Library Generator section of this manual.

Enter the underlined characters to create the floating-point library fp.lib from the two object
modules.
libgen -1 -v -n fp.lib -i fps.obj fpa.obj >libgen.lst [LibGen invocation]

Look at the listing in libgen.lst.
Tektronix Library Generator Version X.X.x COMMAND LOG

-n fp.lib
-i fpa.obj
-i fpa.obj

Tektronix Library Generator Version x.x.x SUMMARY OF ACTION

New Library Generated:
fp.lib

Module: FP$SUB INSERTED
from: fps. obj

***libgen: 8(W)Duplicate symbol name: FP$ACC
Module: FP$ADD INSERTED

from: fpa.obj

Tektronix Library Generator Version x.x.x MODULE LISTING

New Library Generated:
fp.lib

Module: FP$ADD
Int Symbols: (S)FP_ADD;

(S)%FPAOBJ;

Module: FP$SUB
Int Symbols: (S)FP_SUB;

(S)FP$ACC;

Ext Symbols: (D)FP_ADD;
Ext References:

FP$ADD

END OF LISTING

(D)FP.AD2;

(D)FP.SU2;
(S)%FPSOBJ;

(D)FP.AD2;

Using the ADD Module from a Program

(D)FP.ADD;

(S)FP.SUB;

Page 1

Page 2

Page 3

The information stored in the library can be used by a mainline program that references one of
the library module's global entry points. The following mainline program uses the FP$ADD
module of the library; a line-by-line annotation follows the listing.

@

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

The Mainline Add Program

LIST LINE(80) line 1
NAME MAIN.ADD line 2
GLOBAL FP.ADD, FP_ADD line 3
COMMON FP$ACC line 4

Sl BLOCK 8 line 5
S2 BLOCK 8 line 6
DESTN BLOCK 8 line 7

SECTION MAIN line 8
ENTRY BLOCK 40 line 9

CALLS FP . ADD , FP_ADD line 10
MORE BLOCK 50 line 11

END ENTRY line 12

Explanation of the Mainline Add Program
Line 1 specifies that the assembler listing contain a maximum of 80 characters per line. Any line
longer than this will be truncated in the listing.

Line 2 declares the name of the object module to be MAIN.ADD.

Line 3 declares the symbol FP.ADD as a global symbol. This symbol is not defined in this object
module; therefore, the symbol is called an 'unbound' global. At link time, the linker will attempt
to locate a definition for FP.ADD; the library fp.lib (created earlier) will provide this definition.

Lines 4 through 7 define the structure of the floating-point accumulator. In this module, the two
source fields and the destination field are called S 1, S2, and DESTN.

Line 8 begins the definition of the main section (called MAIN). All object bytes generated after
this directive are in the MAIN section.

Line 9 sets aside memory space for processor instructions; these instructions load values into
S1 and DESTN for processing. In a functional program, this BLOCK directive would be replaced
with microprocessor instructions, such as data transfer instructions or 1/0 operations.

Line 10 is an 8086/8088 instruction that calls the subroutine FP.ADD (contained in the floating­
point library). The contents of S 1 are added to the contents of DESTN, and the subroutine returns
to the memory location following the CALLS instruction.

Line 11 represents more microprocessor instructions following the invocation of the ADD
routine. These instructions might perform some type of output to display the results of the
addition.

Line 12 defines the end of this source module. The symbol ENTRY is designated as the starting
address of the instructions. From this value, the linker will determine the transfer address of the
module.

7-21

Creating and Using a Subroutine Library Programming Examples-8500 Series B Assembler Core Users

7-22

Assembling and Linking the Program
You may use your operating system editor to enter the mainline add program. Place the mainline
add program in a file named mna.asm. After entering the mainline add program, you can
assemble and link it using the following command entries:

asm mna.obj mna.asml rona.asm [assembler invocation]

Now look at mna.asml :
Page 1 Tektronix ASM 8086/8088

Vxx.xx-xx (xxxx) dd-mmm-yy/xx:xx:xx

1
2
3
4
5 00000000 8
6 00000008 8
7 00000010 8
8
9 00000000 28

10 00000028 9AOOOOOO R

11 0000002D
12

00
32
o

Sl
S2
DESTN

ENTRY

MORE

LIST LINE(80)
NAME MAIN.ADD
GLOBAL FP.ADD, FP_ADD
COMMON FP$ACC
BLOCK 8
BLOCK 8
BLOCK 8
SECTION MA,IN
BLOCK 40
CALLS FP.ADD, FP_ADD

BLOCK 50
END ENTRY

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10

line 11
line 12

Page 2 Tektronix ASM 8086/8088 SYMBOL TABLE
Vxx.xx-xx (xxxx) dd-mmm-yy/xx:xx:xx

Section = %MNAOBJ, Aligned to 00000010, Size = EMPTY

Common Section = FP$ACC, Aligned to 00000010, Size = 00000018

DESTN-------------00000010
S2----------------00000008

Sl----------------00000000

Section = MAIN, Aligned to 00000010, Size = OOOOOOSF

ENTRY-------------OOOOOOOO MORE--------------0000002D

Unbound G1oba1s

FP.ADD------------OOOOOOOO FP-AOD------------OOOOOOOO

12 Lines Read
12 Lines Processed
o Errors

@

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

Now enter the following command to link the mainline object file (mna.obj) with the necessary
modules from the floating-point library (fp.lib).
link -1 -0 mna.obj fp.1ib -0 mna.10ad ~a.1nk1 [linker invocation]

Now look at mna.lnkl:
Tektronix
For mna. load

8086/8088 Linker Vxx.xx-xx (xxxx) Page

MODULE AND FILE MAP:

LINK FILES:
MAIN.ADD
fp.1ib

mna.obj
fp.1ib

Tektronix 8086/8088 Linker Vxx.xx-xx
For mna. load

MEMORY AND SECTION MAP:

NONAME:
o - FFFFF

FP_ADD 0- 18S
MAIN 190- lEE
FP$ACC 1FO- 207

Tektronix 8086/8088 Linker Vxx.xx-xx
For mna.10ad

MODULE AND SECTION MAP:

MODULE(S) IN LINK FILE(S):
MODULE: FP$ADD

SECTION: FP$ACC 1FO-

SECTION: FP_ADD 0-

FP.AD2 --------- 28 FP.ADD

MODULE: MAIN. ADD

SECTION: FP$ACC 1FO-

SECTION: MAIN 190-

(xxxx) Page

186 SECTION ALIGNED FP$ADD
SF SECTION ALIGNED MAIN. ADD
18 COMMON ALIGNED MAIN.ADD

(xxxx) Page

207 18 COMMON ALIGNED

18S 186 SECTION ALIGNED

--------- 0

207 18 COMMON ALIGNED

lEE SF SECTION ALIGNED

1

2

3

7-23

Creating and Using a Subroutine Library Programming Examples-8500 Series B Assembler Core Users

7-24

Tektronix
For mna.load

8086/8088 Linker Vxx.xx-xx (xxxx)

GLOBAL SYMBOL LISTING:

ENDREL
FP$ACC
FP.AD2
FP.ADD
FP_ADD
MAIN

208
IFO
28
o
o

190

MAIN.ADD
FP$ADD
FP$ADD
FP$ADD
MAIN.ADD

Tektronix
For mna.load

8086/8088 Linker Vxx.xx-xx (xxxx)

STATISTICS:

Number of warning errors: 0
Number of errors: 0

Load file is not relinkable
Load file is not useable for symbolic debugging

Linking Explanation

Page 4

Page 5

The library module containing the floating-point addition routine is automatically linked in with
the mainline program. The linker determined that two global symbols (FP.ADD and F~ADD) had
not been given a value by any of the non-library modules. The linker then scanned the library and
found that module FP$ADD provided values for these global symbols. The linker included
module FP$ADD in the load module. This process is illustrated in Fig. 7-1.

@

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

Mainline Add Program
(mna.obj)

'1 need FP.ADD' -­
'1 need F~ADD'

(from mna.obj)

Floating Point library (fp.lib)

FP$SUB

'1 have FP.SUB'
'1 have FP.SU2'
'1 have Fp...SUB'
'1 need FP.AD2'
'1 need F~ADD'

r
I
I

FP$ADD

'1 have FP.ADD'
'1 have FP.AD2'
'1 have Fp,.ADD'

~----------------------_I----------I
I _____ J

The linked Program (mna.load)

Fig. 7-1. linking the add program to the library.

In this example, mna.obj needs a definition for its unbound global symbols, FP.ADD and
FP_ADD. The linker examines the contents of the library fp.lib, and locates module FP$ADD,
which provides definitions for FP.ADD and FP_ADD. Both mna.obj and module FP$ADD are
then included in the final load file. Since FP$SUB does not provide definitions for any
unbound globals, it is not included in the final load file.

Using the SUBTRACT Module from a Program

3856-24

Let's modify the mainline program to invoke the subtract routine. In this way, we can watch the
linker extract one module from the library to resolve a reference in the mainline program, and
another module from the library to resolve a reference in the first library module.

7-25

Creating and· Using a Subroutine Library Programming Examples-8500 Series B Assembler Core Users

7-26 '

The Mainline Subtract Program

LIST LINE(80) line 1
NAME MAIN. SUB line 2
GLOBAL FP.SUB, FP_SUB line 3
COMMON FP$ACC line 4

Sl BLOCK 8 line 5
S2 BLOCK 8 line 6
OESTN BLOCK 8 line 7

SECTION MAIN line 8
ENTRY BLOCK 45 line 9

CALLS FP.SUB, FP_SUB line 10
MORE BLOCK 35 line 11

END ENTRY line 12

Explanation of the Mainline Subtract Program
The mainline subtract program is similar to the mainline add program, with the following
exceptions:

1. The name of the module in line 2 is MAIN.SUB, not MAIN.ADD.

2. The global symbols requested in lines 3 and 10 are FP.SUB and FP_SUB, not FP.ADD and
FP....ADD.

3. The size of the code representations in lines 9 and 11 has been altered, to show the
relocatability of the library sections.

Assembling and Linking the Program
You may use your operating system editor to enter the mainline subtract program. Place the
mainline subtract program in a file named mns.asm. The mainline subtract program can be
assembled and linked using the following command entries:

asm mns.obj mns.asml mns.asm

Look at mns.asml.
Tektronix ASM 8086/8088
Vxx.xx-xx (xxxx)

1
2
3
4
5 00000000 8
6 00000008 8
7 00000010 8
8
9 00000000 20

10 00000020 9AOOOOOO R
00

11 00000032 23
12 0

[assembler invocation]

Page 1
dd-mmm-yy/xx:xx:xx

LIST LINE(80) line 1
NAME MAIN. SUB line 2
GLOBAL FP.SUB, Fe.. SUB line 3
COMMON FP$ACC line 4

Sl BLOCK 8 line 5
S2 BLOCK 8 line 6
OESTN BLOCK 8 line 7

SECTION MAIN line 8
ENTRY BLOCK 45 line 9

CALLS FP.SUB, FP_SUB line 10

MORE BLOCK 35 line 11
END ENTRY line 12

@

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

Page 2 Tektronix ASM 8086/8088 SYMBOL TABLE
Vxx.xx-xx (xxxx) dd-mmm-yy/xx:xx:xx

Section = %MNSOBJ, Aligned to 00000010, Size = EMPTY

Common Section = FP$ACC, Aligned to 00000010, Size = 00000018

DESTN-------------ooooooIo
S2----------------00000008

Sl----------------00000000

Section = MAIN, Aligned to 00000010, Size = 0000005F

ENTRY-------------OOOOOOOO

. Unbound Globals

FP.SUB------------OOOOOOOO

12 Lines Read
12 Lines Processed
o Errors

MORE--------------0000002D

FP~UB------------OOOOOOOO

Now link the mainline object file(mns.obj) with the necessary object modules from the floating­
point library (fp.lib) using the following command line:
link -1 -0 mns.obj fp.lib -0 mns.load ~s.lnkl

Look at mns.lnkl.
Tektronix
For mns. load

8086/8088 Linker Vxx. xx-xx (xxxx)

MODULE AND FILE MAP:

LINK FILES:
MAIN. SUB
fp.lib

mns.obj
fp.lib

[linker invocation]

Page 1

7-27

Creating and Using a Subroutine Library Programming Examples-8500 Series B Assembler Core Users

Tektronix 8086/8088 Linker Vxx.xx-xx (xxxx) Page 2
For mns.load

MEMORY AND SECTION MAP:

NONAME:
o - FFFFF

FP_SUB 0- 8B 8C SECTION ALIGNED FP$SUB
MAIN 90- E4 55 SECTION ALIGNED MAIN. SUB
FP$ACC FO- 107 18 COMMON ALIGNED MAIN. SUB
FP_ADD 110- 295 186 SECTION ALIGNED FP$ADD

Tektronix 8086/8088 Linker Vxx.xx-xx (xxxx) Page 3
For mns.load

MODULE AND SECTION MAP:

MODULE(S) IN LINK FILE (S) :
MODULE: FP$ADD

SECTION: FP$ACC FO- 107 18 COMMON ALIGNED

SECTION: FP_ADD 110- 295 186 SECTION ALIGNED

FP.AD2 _________ 138 FP.ADD --------- 110

MODULE: FP$SUB

SECTION: FP$ACC FO- 107 18 COMMON ALIGNED

SECTION: FP_SUB 0- 8B 8C SECTION ALIGNED

FP.SU2 _________ 46 FP.SUB --------- 0

MODULE: MAIN. SUB

SECTION: FP$ACC FO- 107 18 COMMON ALIGNED

SECTION: MAIN 90- E4 55 SECTION ALIGNED

7-28 @

Programming Examples-8500 Series B Assembler Core Users Creating and Using a Subroutine Library

@

Tektronix
For mns.load

8086/8088 Linker Vxx.xx-xx (xxxx)

GLOBAL SYMBOL LISTING:

ENDREL
FP$ACC
FP.AD2
FP.ADD
FP.SU2
FP.SUB
FP_ADD
FP_SUB
MAIN

296
FO

138
110

46
o

110
o

90

MAIN . SUB
FP$ADD
FP$ADD
FP$SUB
FP$SUB
FP$ADD
FP$SUB
MAIN. SUB

Tektronix
For mns . load

8086/8088 Linker Vxx.xx-xx (xxxx)

STATISTICS:

Number of warning errors: 0
Number of errors: 0

Load file is not relinkable
Load file is not useable for symbolic debugging

Linking Explanation

Page 4

Page 5

The mainline subtract program has two unbound global references, FP.SUB and FP_SUB. The
library module FP$SUB has bound global definitions for FP.SUB and FP-...SUB. The linker brings
module FP$SUB into the final load module. However, FP$SUB itself contains references to the
unbound global symbols, FP.AD2 and FP_ADD. The definitions for these unbound global
symbols are found in the FP$ADD library module. The linker must include both modules from the
library to satisfy a" requests for global symbols. This process is illustrated in Fig. 7-2.

7-29

Linking, Overlays Programming Examples-8500 Series B Assembler Core Users

7-30

Floating Point Library (fp.lib)

Mainline Subtract Program
(mns.obj)

'1 need FP.SUB'
'1 need FP_SUB'

fI-­

I

FP$SUB

'1 have FP.SUB'
'1 have FP.SU2'
'1 have Fe,.SUB'
'1 need FP .AD2'
'1 need Fp.,.ADD' - - -

I
I
I

"'-----

I

The Linked Program (mns.load)

Fig. 7-2. Linking the subtract program to the library.

FP$ADD

'1 have FP.ADD'
'1 have FP.AD2'
'1 have FP_ADD'

In this example, mns.obj requests definition for the unbound global symbols, FP.SUB and
FP.-SUB. The linker scans the library and locates definitions for FP.SUB and FP_SUB in
module FP$SUB. However, FP$SUB itself contains references to the unbound global
symbols, FP.AD2 and FP_ADD. The linker continues to scan the library and finds definitions
for these symbols in library module FP$ADD. Thus, the final load file contains all three
modules (mainline mns.obj, and FP$SUB and FP$ADD from the library) linked together.

LINKING OVERLAYS

3856-25

This example shows how to use the linker to link overlays. Overlays are normally used when
there is not enough core memory to contain an entire program. The program is broken up into
segments in such a way that there is a minimum of overlaying required. There must be a root
segment that does not get overlaid. The root segment calls in the overlay modules. In order for
the root to be able to communicate with the overlays, the unbound global references in each
must be resolved. I n addition, each overlay must be relocated to an address that is just above the
root segment. The linker performs both of these functions.

To illustrate this process we will create an overlay version ofthefloating-pointsubtract program
presented in the previous subsection. The mainline subtract program will call the subtract
module as before, but the subtract module will not call the add module. Instead, when the

@

Programming Examples-8500 Series B Assembler Core Users Linking Overlays

@

subtract module is done, it will return contrql to the mainline subtract program which will
overlay the subtract module with the add module and call the add module at the appropriate
entry point.

The new source modules look like this:

mna.asm
LIST LINE(80) line 1
NAME MAIN. SUB line 2
GLOBAL FP.SUB, FP_SUB line 3
GLOBAL FP.AD2, FP_ADD line 4
COMMON FP$ACC line 5

Sl BLOCK 8 line 6
S2 BLOCK 8 line 7
DESTN BLOCK 8 line 8

SECTION MAIN line 9
ENTRY BLOCK 45 line 10

CALLS FP.SUB, FP_SUB line 11
LOADOVL BLOCK 40 line 12

CALLS FP.AD2, FP_ADD line 13
MORE BLOCK 35 line 14

END ENTRY line 15

The following changes were made:

• line 4 declares the add module's entry points as unbound globals.

• line 12 represents the block of statements that load the overlay into memory. In the
development stage, the loading may be accomplished with a service call. In your final
microprocessor-based product, the method used to load the overlays is dependent upon
the prototype's operating system.

• line 13 calls the add module.

fps.asm

SORCI
SORC2
DST

FP.SUB
FP.SU2

LIST DBG
NAME FP$SUB
GLOBAL FP. SUB, FP. SU2
COMMON FP$ACC
BLOCK 8
BLOCK 8
BLOCK 8
SECTION FP_SUB
BLOCK 70
BLOCK 30
END

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11

This module no longer calls the add module; thus, the entry points of the add module need not be
declared global in this module.

7-31

Linking I. Overlays

fpa.asm

SRCI
SRCZ
DEST

FP.ADD
FP.ADZ

LIST DBG
NAME FP$ADD
GLOBAL FP . ADD, FP. ADZ
COMMON FP$ACC
BLOCK 8
BLOCK 8
BLOCK 8
SECTION FP_ADD
BLOCK 40
BLOCK 350
END

There are no changes in the add module.

Programming Examples-8500 Series B Assembler Core Users

line 1
line Z
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11

After entering and assembling these modules, the following linker commands will resolve all
global references and relocate the overlay.properly.

link -r -0 mns.obj -0 mns.root
1

This command relocates the root so that
the linker will know where to place the
overlays in subsequent commands.

Tektronix Linker Vxx.xx-xx (xxxx)
link:lll (E) Unresolved global
link:lll (E) Unresolved global
link:lll (E) Unresolved global
link:lll (E) Unresolved global
link:lll (E) Unresolved global
link:lll (E) Unresolved global
Listing file not generated

reference
reference
reference
reference
reference
reference

link-r -s mns.root -0 fps.obj -0 fps.ovl

Tektronix Linker Vxx.xx-xx (xxxx)
link:119 (W) Transfer address undefined
Listing file not generated

link -r -s mns.root -0 fpa.obj -0 fpa.ovl

Tektronix Linker Vxx.xx-xx (xxxx)
link:119 (W) Transfer address undefined
Listing file not generated

FP.SUB at
FP_SUB at
FP_SUB at
FP.ADZ at
FP_ADD at
FP_ADD at

ZD
ZD
ZE
55
55
56

These error messages
indicate the
location of the
unresolved global
references. These
references will be
resolved in the last
linker invocation in
the overlay procedure.

1
This command relocates fps.obj
to the first empty space above
the root.

1
This command relocates fpa.obj
to the first empty space above
the root.

link -s fps.ovl -s fpa.ovl -0 mns.obj -0 mns.load t
This command resolves
all of the unbound
global references in

Tektronix Linker Vxx.xx-xx (xxxx)
Listing file not generated

the root (mns.obj).

7-32 @

Programming Examples-8500 Series B Assembler Core Users Using the "@" Construct within a Macro

@

USING THE "@" CONSTRUCT WITHIN A MACRO
This example illustrates the use of the "@" (at) construct in a macro. Each time a macro is
invoked, any "@" construct appearing in the macro body is replaced with a unique eight­
character hexadecimal value. When this value is appended to a one-to-eight character symbol
within the macro body, a unique 9-to-16 character label is created. This construct allows you to
use a label symbol within a macro. Even though the macro is invoked more than once, the label
symbol is unique for each invocation.

The example shown here is a delay loop that uses the "@" construct for a label symbol. Even
though this macro is invoked more than once, DEL 1 "@" will be unique each time the macro is
invoked.

The number of delay loops (1 to OFFFFH) is passed to the macro as the single parameter.

This example uses the 8086/8088 instruction set, but similar techniques can be applied to most
processors.

Delay Loop Macro

MACRO
PUSH
MOV

DEL1"@" LOOP
POP
ENDM

DELAY
CX
CX, #"1"
DEL1"@"
CX

line 1
line 2
line 3
line 4
line 5
line 6

Line 1 defines the beginning of the macro and gives it the name DELAY.

Line 2 is an 8086/8088 assembly language instruction that stores the value of the ex register
on the stack in order to be able to restore the ex register to its previous value after the delay.

Line 3 moves the value of the parameter (number of delay loops) to the ex register.

Line 4 is an 8086/8088 assembly language instruction that decrements the ex register until it .
is zero.

Line 5 retrieves the previous value of the ex register.

Line 6 marks the end the of macro definition.

7-33

The Assembler INCLUDE Directive Programming Examples-8500 Series B Assembler Core Users

7-34

Macro Invocation

DELAY 10H SHORT DELAY

DELAY OFFFFH ; LONG DELAY

In this example, the first time DELAY is invoked, the number of delay loops is 1 OH. The second
time it is invoked, the number of delay loops isOFFFFH. Each time the macro is invoked, DEL"@"
represents a different address.

THE ASSEMBLER INCLUDE DIRECTIVE
This example illustrates some uses of the INCLUDE directive. The INCLUDE directive causes the
assembler to process statements from the specified file as though they were a part of your
source file.

Frequently used blocks of code and macro definitions may be stored in files. These statements
may be included in programs when needed, by simply entering the INCLUDE directive and the
filespec of the file. The contents of the file are then assembled into the object module.

This example illustrates four ways in which the INCLUDE directive is typically used: (1) defining
constants, (2) defining COMMON sections, (3) defining macros, and (4) providing authorship
notices in your listings.

Including Constant Definitions
If you're using the same set of constants for a number of programs, you may store them in a file.
You can INCLUDE them in your program, where they'll be processed with your source
statements at assembly time. This feature can save you a great deal of time. For example, a file
named cnst.asm contains the constant definition block listed below.

ROWS EQU 20 , Defines the number of rows
COLS EQU 15 ; Defines the number of columns

The main program, which uses this block of constants, is shown below.
NAME MAINPRO
INCLUDE 'cnst.asm' Constant definitions
MOV BX, ROWS Number of rows to BX
MOV CX,COLS Number of columns to CX

TABLE BLOCK ROWS*COLS Allocates space for a 300-byte table.

@

Programming Examples-8500 Series B Assembler Core Users The Assembler INCLUDE Directive

@

When the program MAINPRO is assembled, the constant definitions are included and the
program looks like this:

NAME MAINPRO
INCLUDE 'cnst.asm'

ROWS EQU 20 Defines the number of rows
COLS EQU 15 Defines the number of columns

MOV
MOV

BX,ROWS
CX,COLS

TABLE BLOCK ROWS*COLS

Number of rows to BX
Number of columns to CX

Allocates space for a 300-byte table

Including COMMON Declarations
A group of COMMON statements is usually used in more than one program. You may store these
statements in a file and include them in the various programs that require the same COMMON
declarations.

A file named comm.asm contains the COMMON declarations for the program MAINPRO.
COMMON CUSTOMER

CNAME BLOCK 30
ADDRESS BLOCK 30
CITY BLOCK 16
STATE BLOCK 2

Defines a COMMON section named CUSTOMER
Reserves 30 bytes for CNAME
Reserves 30 bytes for ADDRESS
Reserves 16 bytes for CITY
Reserves 2 bytes for STATE

MAINPRO is the program which uses the COMMON declarations from the file comm.asm.
NAME MAINPRO
INCLUDE 'comm.asm' ; Defines the COMMON section

When MAINPRO is assembled, the object module will contain the COMMON declarations as
follows:

NAME MAINPRO
INCLUDE 'comm.asm'
COMMON CUSTOMER

CNAME BLOCK 30
ADDRESS BLOCK 30
CITY BLOCK 16
STATE BLOCK 2

Defines a COMMON section named CUSTOMER
Reserves 30 bytes for CNAME
Reserves 30 bytes for ADDRESS
Reserves 16 bytes for CITY
Reserves 2 bytes for STATE

Including Macro Definitions
A frequently used macro may be defined in a file and included in your program with the INCLUDE
directive.

7-35

The Assembler INCLUDE Directive Programming Examples-8500 Series B Assembler Core Users

7-36

In this example, file mabc.asm contains the macro definition to be included in the program
MAINPRO. The BYTE directive has a parameter which will be given when the macro is invoked.

MACRO ABC
BYTE "1"
WORD 40
ENDM

Beginning of macro definition
Generate a byte of the first parameter
Generate a word containing the value 40
End of macro definition

MAINPRO, the program which includes the file mabc.asm for its macro definition, is listed
below.

NAME MAINPRO
INCLUDE 'mabc.asm' INCLUDEs the definition for macro ABC

ABC 5 Invokes ABC with a parameter of 5

ABC 15 Invokes ABC with a parameter of 15

Once the macro ABC has been included in MAINPRO, each invocation of macroABC causes the
macro to be expanded at assembly time.

Authorship and Copyright Notices for Listings

The INCLUDE directive may be used to print authorship and copyright notices on program
listings.

@

Programming Examples-8500 Series B Assembler Core Users The Assembler INCLUDE Directive

@

Let's say that a file named cpyr.asm contains the heading information that you wish to placeon
each program listing .

. ** ,
;* *
;*
;*

COPYRIGHT (C) 1981 BY *
*

;**
;*
;*
;*
;*
;*
;*
;*
;*
;*
;*
;*

******* *
* *
* *** *
* * * * *
* **** ***
* * * *
* ********

*
*

* ****
* *
* *
* *

* *** *

*
* *

*
**** **** **** * * * *

* * * * * * * *
* * * * * * R *
* * * * * * * *

**** * * * * * *
*

COMMITTED TO EXCELLENCE *
*

;**
;*
.* ,
;*
;*
;*

TEKTRONIX, INCORPORATED, BEAVERTON, OREGON 97077

ALL RIGHTS RESERVED

*
*
*
*
*

.** ,

.** ,
;*
;*
;*

AUTHOR: KEN DEDATE
*
*
*

;**

7-37

The Assembler INCLUDE Directive Programming Examples-8500 Series B Assembler Core Users

7-38

Using a single statement, INCLUDE 'cpyr.asm', your assembler listing will take the following
format. .

NAME MAINPRO
INCLUDE 'cpyr.asm'

;**
;*
;* COPYRIGHT (C) 1981 BY

*
*

.* * ,
;**
;*
;*
;*
· * ,
;*
· * ,
;*
;*
· * ,
.* ,
;*

******* *
* *
* *** *
* * * * *
* **** ***
* * * *
* ********

*
*

* ****
* *
* *
* *

* *** *

*
* *

*
**** **** **** * * * *

* * * * * * * *
* * * * * * R *
* * * * * * * *

**** * * * * * *
*

COMMITTED TO EXCELLENCE *
*

;**
· * ,
;*
· * ,
;*
;*

TEKTRONIX, INCORPORATED, BEAVERTON, OREGON 97077

ALL RIGHTS RESERVED

*
*
*
*
*

.** ,
;**
.* ,
· * ,
;*

AUTHOR: KEN DEDATE
*
*
*

;**

@

8500 Series B Assembler Core Users

@

Section 8

HOST SPECIFICS

System-specific information is contained in the Host Specifics supplement for each host system.
Each supplement is designed as a subsection to this manual.

The Host Specifics supplements are numbered as if they were separate sections of the manual.
For example, the 8550 supplement is labeled "Section 8A", and the first illustration is numbered
"Fig. 8A-1". Similarly, other supplements are labeled Section 88, 8C, etc. Figures, pages, and
tables are numbered accordingly.

Each subsection presents the following information:

• Operating System Features. Describes the filespecs, filenames, and other operating
system features that are related to assembler operation.

• Installation. Shows you how to install the software for your specific assembler.

• Assembler Invocation. Describes how to invoke the assembler with your operating
system.

• Linker Invocation. Describes how to invoke the linker with your operating system.

• LibGen Invocation. Describes how to invoke the library generator with your operating
system.

• Demonstration Run. Shows how to enter and assemble a simple program and subroutine,
and how to prepare the resulting object modules for loading into memory.

Each supplement has its own table of contents.

8-1

8500 Series B Assembler Core Users

@

Section 10

TECHNICAL NOTES

NOTE 1: DIFFERENCES BETWEEN THE A SERIES
AND B SERIES ASSEMBLERS
This technical note is intended for users of the TEKTRONIX 8300AXX (A series) and the 8002A
assemblers. In this note, all references to "A series assembler" apply equally to the 8002A
assembler.

This note describes the differences between the A series assembler and the TEKTRONIX 8500
MOL B series assembler, as described in this manual.

This note lists only the differences between the microprocessor-independent parts of the two
assemblers. Differences between the microprocessor-dependent parts are under the heading
"Irregularities" in the corresponding Assembler Specifics section of this manual.

String Substitution Delimiter. In the A series assembler, the delimiter denoting the insertion of
strings, macro arguments, and current section names is a single quote ('). In the B series
assembler, this delimiter is a double quote (").

String Delimiter. In the A series assembler, the delimiter surrounding string literals is a double
quote ("). In the B series assembler, this delimiter is a single quote (').

Symbol Length. The A series assembler uses only the first 8 characters of a symbol, and .
discards the rest of the symbol. (AVERYLONGSYMBOL is equivalent to AVERYLONGNAME.)
The B series assembler uses the first 16 characters of a symbol. (AVERYLONGSYMBOL is
different from AVERYLONGNAME.)

Value Size. The A series assembler performs all arithmetic with 16-bit integers; values are
limited to the range of -32768 to 32767 (or 0 to 65535 for addresses). The B series assembler
performs arithmetic with 32-bit integers, yielding a range of values from -2147483648 to
2147483647 (or 0 to 4294967295 for addresses).

Default String Length. In the A series assembler, all strings declared with the STRING directive
have a default length of 8 characters. In the B series assembler, the default string length is 16
characters.

Macro and REPEAT Block Storage. The A series assembler stores macro and REPEAT block
text in core. The B series assembler rereads (from the source file) the macro or REPEAT block text
upon each expansion.

10-1

10-2

Technical Notes-8500 Series B Assembler Core Users

Page Size. In theA series assembler, the listing page size is 55 lines per page, at either 72 or 132
characters per line (selected by the LIST TRM directive). In the B series assembler, these limits
are completely user-selectable (see the LIST directive).

Conversion of Numbers to Strings. In the A series assembler, when a string value is needed
and a numeric value is supplied, the assembler converts the numeric value into a fixed-format
6-character string padded with leading zeros. In the B series assembler, the conversion creates
a variable-length literal decimal representation, with no leading-zero padding.

LONG, ADDRESS. and FLOAT Directives. The LONG, ADDRESS, and FLOAT data storage
directives are available only in the B series assembler. (See the Assembler Directives section of
this manual for further information.)

ASCII Directive. In the A series assembler, the ASCII directive accepts only a series of string
expressions. In the B series assembler, the ASCII directive accepts both string and numeric
expressions.

BITS and STRINGOF Functions. The BITS and STRINGOF functions are present only in the B
series assembler. (See the Assembler section of this manual for further information.)

CLASS and ALIGN Attributes. The CLASS and ALIGN attributes on SECTIONs, COMMONs,
and RESERVEs are present only in the B series assembler. (See the Linker section of this manual
for further information.)

Nested INCLUDE Files. The B series assembler allows an INCLUDE file to contain an INCLUDE
directive. The A series assembler does not allow nesting of INCLUDE files.

ELSEIF Directive. The B series assembler provides the ELSEIF directive to allow more flexibility
in composing alternate source code blocks. The A series assembler does not provide this feature.

TIMES Option and EXITR Directive. In the B series assembler, the TIMES option (on the
REPEAT directive) and the EXITR directive allow you to have more precise control in repeated
source text. The A series assembler does not provide these features.

Repeat Blocks Outside of Macros. The A series assembler requires you to place repeated
source text inside macro definition blocks. The B series assembler allows you to place this
repeated source text inside or outside macro definition blocks.

Nested Brackets in Macro Parameter Lists. The B series assembler allows brackets [] to be
nested (similar to parentheses in a numeric expression). The A series assembler does not allow
nesting; the first right bracket is paired with the first left bracket, regardless of any additional left
brackets encountered.

No Labels on Some Directives. The A series assembler allows a label on nearly every directive,
including those that generate no object code. The B series assembler does not allow labels on
several directives. See the Label Field discussion in The Assembler section of this manual for a
list of directives that may not have labels.

Label on a Line by Itself. The 8 series assembler allows a label to stand by itself on a separate
line (equivalent to "Iabel EQU $"). The A series assembler does not allow this.

@

Technical Notes-8500 Series B Assembler Core Users

@

Cross Reference Listing. The B series assembler provides a cross reference listing of symbols.
The A series assembler does not provide this feature.

Reserved Words. The words ADDRESS, ALIGN, BITS, CLASS, ELSEIF, EXITR, FLOAT, LONG,
STRINGOF, TIMES, and XREF are reserved in the B series assembler, but not in the A series
assembler.

Line Number Count. The B series assembler increments the line number counter for each line
processed, including those that are assembled because of macro expansion or repetition. The A
series assembler increments the line number counter only for each source line read from the
source file or INCLUDE file.

Current Listing Flags. The B series assembler saves the current listing flags (set by the LIST and
NOLIST directives) when it begins to process a macro invocation or an INCLUDE file, and
restores the flags at the end of processing the macro or INCLUDE file. The A series assembler
performs this save-and-restore operation only for macro expansion.

Object Code Format. The object code formats of the A series assember and B series assembler
are totally incompatible.

10 .. 3

8500 Series B Assembler Core Users

@

Table
No.

11-1
11-2
11-3
11-4
11-5
11-6

Section 11
TABLES

Source Module Character Set .. 11-1
Assembler Directives .. 11-3
ASCII-Binary-Hexadecimal-Decimal Conversion 11-5
Decimal-Hexadecimal-Binary Equivalents 11-6
Hexadecimal Addition .. 11-7
Hexadecimal Multiplication•......................... 11-7

11-i

8500 Series B Assembler Core Users

@

Symbols

A .. Z

0 .. 9

$

Section 11

TABLES

Table 11-1
Source Module Character Set

Definition

letters used in symbols, strings, functions, hexadecimal constants (A-F only),
and other constants as the radix (H, 0, a, and B); lowercase characters (other
than in strings and comments) are interpreted as the corresponding uppercase
characters

numbers used in symbols and constants

used in symbols, and to represent assembler location counter contents

used in symbols and floating point constants

_(underscore) used in symbols

precedes a comment

,(comma) delimiter for operand items

'(single quote) string delimiter

string concatenation operator

string substitution delimiter

total number of arguments passed to current macro expansion

[] treat everything within brackets as a single macro argument

@ provide unique labels for each macro expansion

% replaced by name of current section via string substitution

* binary arithmetic operation, multiplication

/ binary arithmetic operation, division

+ unary or binary arithmetic operator, addition

unary or binary arithmetic operator, subtraction

11-1

Source Module Character Set Tables-8500 Series B Assembler Core Users

11-2'

Symbols

()

\

&

II

SPACE

TAB

RETURN

/\

/\/\

=

<>

>

<

>=

<=

Table 11-1 (cont.)

Definition

override precedence of operators

unary logical operator, NOT

binary logical operator, AND

binary logical operator, inclusive OR

binary logical operator, exclusive OR

field delimiter

field delimiter

field and line delimiter

allow following special character to have literal meaning

allow the second up-arrow character to have literal meaning

relational operator, equal

relational operator, not equal

relational operator, greater than

relational operator, less than

relational operator, greater than or equal

relational operator, less than or equal

@

Tables-8500 Series B Assembler Core Users Assembler Directives

Directive

ADDRESS

ASCII

BLOCK

BYTE

COMMON

ELSE

ELSEIF

END

ENDIF

ENDM

ENDR

EQU

EXITM

EXITR

FLOAT

GLOBAL

IF

INCLUDE

LIST

LONG

MACRO

NAME

@

Table 11-2
Assembler Directives

Operation

initializes memory with data in address format

initializes memory with data in ASCII format

reserves a data block

initializes memory with 8-bit value(s)

declares program section, assigns name, defines type to be common

turns on assembly if it has been turned off by an IF statement

turns on assembly if it has been turned off by an IF statement and the associated
expression is evaluated true (nonzero)

marks the end of an assembly source module

marks the end of an IF block

marks the end of a macro

marks the end of a REPEAT block

assigns a value to a symbol(s)

terminates macro expansion before the ENDM

terminates repeat process before the ENDR

initializes memory with data in floating point format

declares global symbol

turns off assembly if the associated expression is evaluated false (zero or
undefined)

inserts text from another source file

turns on assembler listing options

initializes memory with 32-bit value(s)

defines the beginning of a macro source block

declares object module name

11-3

Assembler Directives

11-4

Directive

NOLIST

ORG

PAGE

REPEAT

RESERVE

RESUME

SECTION

SET

SPACE

STITLE

STRING

TITLE

WARNING

WORD

Tables-8500 Series B Assembler Core Users

Table 11-2 (cont.)

Operation

turns off assembler listing options

assigns an address to the assembler location counter

advances listing to a new page

causes source statements to be assembled repeate~ly

reserves memory space and defines a section

resumes the definition of a section

declares a program section, assigns name

assigns or reassigns a value to a variable

inserts blank line(s) in listing

creates a listing page subtitle

declares a string variable

creates a listing page title

displays a warning message

initializes memory with 16-bit value(s)

@

Tables-8500 Series B Assembler Core Users ASCII-Binary-Hexadecimal-Decimal Conversion

B 17

I 16

T 15

S
14 13 12 11

II II II II

It II , 1

II , 1 II

II , 1 1

• 1 , II

II 1 e 1

II 1 1 II

II 1 1 1

1 "
, •

1 II , 1

1 If 1 "
1 " 1 1

1 1 8 ,
1 1 " 1

1 1 1 II

1 1 1 1

@

Table 11-3
ASCII-Binary-Hexadecimal-Decimal Conversion

IJ • II II 1 1 1
e e 1 1 II IJ

II 1 II 1 II 1

1
1 1

II 1

CONTROL SYMBOLS UPPERCASE LOWERCASE

a - 10
1. 20 32 30 .. 40 .. 50 NI 60 .. 70 '12

NUL OLE SP , @ P
,

P

1 1 11 17 21 33 31 4. 41 .5 51 .1 61 .7 71 113

SOH OC1 ! 1 A .0 a q

2 2 12 II 22 34 32 10 42 .. 52 12 62 .. 72 114

STX OC2 " 2 B R b r

3 3 13 " 23 35 33 5' 43 17 53 13 63 " 73 115

ETX OC3 # 3 C S c S

4 4 14 2f 24 31 34 52 44 .. 54 .. 64 1. 74 11'

EOT OC4 $ 4 0 T d t

5 5 15 21 25 37 35 53 45 .. 55 15 65 1" 75 117

ENO NAK % 5 E U e u

6 8 16 22 26 31 36 S4 46 7' 56 .. 66 1_2 76 III

ACK SYN & 6 F V f v

7 7 17 23 27 31 37 55 47 7' 57 17 67 1_3 77 II'

BEL ETB I 7 G W 9 W
IEll

8 • 18 24 28 40 38 Sf 48 72 58 .. 68 I" 78 '21

BS CAN (8 H X h X
lACK SPACE

9 9 19 25 29 41 39 57 49 73 59 It 69 "5 79 121

HT EM) 9 I Y i Y

A 't 1A 26 2A 42 3A 51 4A 74 5A .. 6A 1. 7A 122

LF SUB * : J Z j Z

8 11 18 27 28 43 38 5. 48 75 58 " 68 '17 78 '23

VT ESC + ; K [k {

C '2 1C 21 2C 44 3C 60 4C 78 5C 92 6C 'II 7C 124

FF FS , < L \ I :

0 13 10 29 20 45 3D 61 40 77 50 93 60 119 70 125

CR GS - = M] m }
RETURN

E '4 1E 3t 2E 46 3E 82 4E 71 5E M 6E 11' 7E 126

SO RS > N A n "-'

F 15 1 F 31 2F 47 3F 63 4F 79 5F 95 6F 111 7F 127

SI US / ? 0 - 0 DEL
RUIOUT

11-5

Decimal-Hexadecimal-Binary Equivalents Tables-8500 Series B Assembler Core Users

Hexa- Binary
Oeci- deci- 8-bit
mal mal Code

0 00 00000000
1 01 00000001
2 02 00000010
3 03 00000011
4 04 00000100
5 05 00000101
6 06 00000110
7 07 00000111
8 08 00001000
9 09 0000 1001
10 OA 0000 1010
11 OB 0000 1011
12 OC 00001100
13 00 00001101
14 OE 0000 1110
15 OF 0000 1111
16 10 0001 0000
17 11 0001 0001
18 12 0001 0010
19 13 0001 0011
20 14 0001 0100
21 15 0001 0101
22 16 0001 0110
23 17 0001 0111
24 18 0001 1000
25 19 0001 1001
26 1A 0001 1010
27 1B 0001 1011
28 1C 0001 1100
29 10 0001 1101
30 1E 0001 1110
31 1F 0001 1111
32 20 00100000
33 21 00100001
34 22 00100010
35 23 00100011
36 24 00100100
37 25 00100101
38 26 00100110
39 27 00100111
40 28 00101000
41 29 00101001
42 2A 00101010
43 2B 0010 1011
44 2C 0010 1100
45 20 0010 1101
46 2E 00101110
47 2F 00101111
48 30 0011 0000
49 31 0011 0001
50 32 0011 0010
51 33 0011 0011
52 34 0011 0100
53 35 0011 0101
54 36 0011 0110
55 37 0011 0111
56 38 0011 1000
57 39 0011 1001
58 3A 0011 1010
59 3B 0011 1011
60 3C 0011 1100
61 30 0011 1101
62 3E 0011 1110
63 3F 0011 1111

11-6

Table 11-4
Oecimal-Hexadecimal-Binary Equivalents

Hexa- Binary Hexa- Binary
Oeci- deci- 8-bit Oeci- deci- 8-bit
mal mal Code mal mal Code

64 40 01000000 128 80 10000000
65 41 01000001 129 81 10000001
66 42 01000010 130 82 10000010
67 43 01000011 131 83 10000011
68 44 01000100 132 84 10000100
69 45 01000101 133 85 10000101
70 46 01000110 134 86 10000110
71 47 01000111 135 87 10000111
72 48 0100 1000 136 88 1000 1000
73 49 0100 1001 137 89 1000 1001
74 4A 0100 1010 138 8A 10001010
75 4B 01001011 139 8B 10001011
76 4C 0100 1100 140 8C 1000 1100
77 40 0100 1101 141 80 1000 1101
78 4E 01001110 142 8E 10001110
79 4F 0100 1111 143 8F 1000 1111
80 50 0101 0000 144 90 1001 0000
81 51 0101 0001 145 91 1001 0001
82 52 0101 0010 146 92 1001 0010
83 53 0101 0011 147 93 1001 0011
84 54 0101 0100 148 94 1001 0100
85 55 0101 0101 149 95 1001 0101
86 56 0101 0110 150 96 1001 0110
87 57 01010111 151 97 1001 0111
88 58 0101 1000 152 98 1001 1000
89 59 0101 1001 153 99 1001 1001
90 5A 0101 1010 154 9A 1001 1010
91 5B 0101 1011 155 9B 1001 1011
92 5C 0101 1100 156 9C 1001 1100
93 50 0101 1101 157 90 1001 1101
94 5E 0101 1110 158 9E 1001 1110
95 5F 0101 1111 159 9F 1001 1111
96 60 01100000 160 AO 10100000
97 61 01100001 161 A1 10100001
98 62 01100010 162 A2 10100010
99 63 01100011 163 A3 10100011
100 64 01100100 164 A4 10100100
101 65 01100101 165 A5 10100101
102 66 01100110 166 A6 10100110
103 67 01100111 167 A7 10100111
104 68 0110 1000 168 A8 1010 1000
105 69 01101001 169 A9 10101001
106 6A 01101010 170 AA 1010 1010
107 6B 01101011 171 AB 10101011
108 6C 01101100 172 AC 10101100
109 60 01101101 173 AO 10101101
110 6E 01101110 174 AE 1010 1110
111 6F 0110 1111 175 AF 10101111
112 70 0111 0000 176 BO 1011 0000
113 71 0111 0001 177 B1 1011 0001
114 72 0111 0010 178 B2 1011 0010
115 73 0111 0011 179 B3 1011 0011
116 74 0111 0100 180 B4 1011 0100
117 75 0111 0101 181 B5 1011 0101
118 76 01110110 182 B6 1011 0110
119 77 0111 0111 183 B7 1011 0111
120 78 0111 1000 184 B8 1011 1000
121 79 0111 1001 185 B9 1011 1001
122 7A 0111 1010 186 BA 1011 1010
123 7B 0111 1011 187 BB 1011 1011
124 7C 0111 1100 188 BC 1011 1100
125 70 0111 1101 189 BO 1011 1101
126 7E 0111 1110 190 BE 1011 1110
127 7F 0111 1111 191 BF 1011 1111

Hexa- Binary
Oeci- deci- 8-bit
mal mal Code

192 CO 11000000
193 C1 11000001
194 C2 11000010
195 C3 11000011
196 C4 11000100
197 C5 11000101
198 C6 11000110
199 C7 11000111
200 C8 1100 1000
201 C9 1100 1001
202 CA 1100 1010
203 CB 11001011
204 CC 1100 1100
205 CO 11001101
206 CE 11001110
207 CF 1100 1111
208 00 1101 0000
209 01 1101 0001
210 02 1101 0010
211 03 1101 0011
212 04 1101 0100
213 05 1101 0101
214 06 1101 0110
215 07 1101 0111
216 08 1101 1000
217 09 1101 1001
218 OA 1101 1010
219 OB 1101 1011
220 OC 1101 1100
221 00 1101 1101
222 OE 11.01 1110
223 OF 1101 1111
224 EO 11100000
225 E1 11100001
226 E2 11100010
227 E3 1110 0011
228 E4 11100100
229 E5 11100101
230 E6 11100110
231 E7 1110 0111
232 E8 1110 1000
233 E9 11101001
234 EA 11101010
235 EB 11101011
236 EC 11101100
237 EO 11101101
238 EE 11101110
239 EF 11101111
240 FO 11110000
241 F1 1111 0001
242 F2 1111 0010
243 F3 1111 0011
244 F4 1111 0100
245 F5 1111 0101
246 F6 1111 0110
247 F7 1111 0111
248 F8 1111 1000
249 F9 1111 1001
250 FA 1111 1010
251 FB 1111 1011
252 FC 11111100
253 FO 1111 1101
254 FE 1111 1110
255 FF 1111 1111

@

Tables-8500 Series B Assembler Core Users

@

Table 11-5
Hexadecimal Addition

Example OF + 8 = 17 (hexadecimal).

Table 11-6
Hexadecimal Multiplication

Example 9 * 8 = 48 (hexadecimal).

Hexadecimal Addition

11-7

1500 Series B Assembler Core Users

@

Section 12
ERROR MESSAGES

Page

Introduction . .. 12-1

Assembler Errors ... 12-1
Linker Errors .. 12-10
LibGen Errors ... 12-15

12-i

8500 Series B Assembler Core Users

@

Section 12

ERROR MESSAGES

INTRODUCTION
This section describes three categories of error messages: those originating from the assembler,
those originating from the linker, and those originating from the library generator. Each group of
error messages is separately listed in numeric order. Each error message is followed by a
description of the problem.

Each error message appears in the following format:
*** source:nnn (severity-code) message-text

The three asterisks *** are present in the listing, but do not appear on the terminal.

source indicates the source of the error: ASM, LINK, or LlBGEN. However, if the assembler,
linker, or library generator is invoked using another name, that name will be substituted.

nnn is the error number.

The severity-code indicates the severity of the error, and may be anyone of the following:

• W-warning

• E-error

• S-serious

• F-fatal

The message-text briefly describes the nature of the error.

For example:
*** ASM: 4 (E) Missing closing , or "

This example shows that the error message was issued by the assembler (ASM), that it is a non­
fatal error (E), and that a quotation mark was omitted.

Assembler Errors
Assembler errors in the range 0-199 are described in this section. Assembler errors in the range
200-299 are microprocessor-dependent. Refer to the Assembler Specifics section of this
manual for a list of microprocessor-dependent errors.

12-1

Assembler Errors Error Messages-8500 Series B Assembler Core Users

All assembler errors are listed on the terminal and in the listing file.

The severity-code may be one of the following:

W (warning)-The error should have no effect on assembled program's execution.

E (error)-The assembled program probably won't execute properly.

F (fatal)-The error directly affects the assembler's execution. The assembler closes all open
channels and returns to the operating system.

In some error messages, a symbol in single quotes is used to represent a filename, digit-string,
or other information that will be included in the actual message. For example:

ASM: 44 (E) Illegal character in 'digit-string'

This symbol is replaced with a string
of digits when the message is generated.

ASM: 0 (F) Internal assembler error 'number'. Serious problems have been detected.
Contact your Tektronix service representative if this error persists.

ASM: 1 (W) This is a user-defined error., See the WARNING directive in the Assembler
Directives section of this manual for more information.

ASM: 2 (E) Nonprinting character; ignored. A character that is not in the assembler
character set has been used outside of single quotes. Refer to the 'Source
Module Character Set' in the Tables section of this manual for a list of valid
characters.

ASM: 3 (E) Label symbol is reserved; line ignored. The symbol in the label field is a
reserved word. See the Assembler Specifics section of this manual for a list of
reserved words.

ASM: 4 (E) Missing closing' or ". An opening quotation mark is not matched by a closing
quotation mark.

ASM: 5 (W) Label not allowed; accepted. A symbol is not allowed in the label field of this
directive. The symbol is assigned the current value of the location counter. See
the Assembler Directives section of this manual for a list of directives that may
have labels.

ASM: 6 (E) Label phase error. There is a difference between pass 1 and pass 2 in the value
of a label; or, a label is encountered on pass 2 that was not encountered on pass
1. This could be the result of string substitution and/or conditional assembly.

ASM: 7 (E) Symbol 'symbol' previously defined; ignored. This error occurs if the specified
symbol has already been defined. The symbol retains the value given the first
time it was encountered.

ASM: 8 (E) String too long for conversion; truncated. The length of a string used as a
number exceeds four characters.

12-2 @

Error Messages-8500 Series B Assembler Core Users Assembler Errors

ASM: 9 (E) Illegal escape sequence. An escape (1\) is the last character before the end-of­
line.

ASM: 10 (E) Source line too long; truncated. The source line is too long. Maximum length is
127 characters plus RETURN (maximum of 131 after text substitution).

ASM: 11 (E) Bad substitution construct; line ignored. The substitution construct (symbol
inside double quotes) is null or erroneous. This could be caused by misspelling
the symbol within quotes.

ASM: 12 (E) Negative parameter pointer. A substitution construct or a STRINGOF function
contains a negative number.

ASM: 13 (E) No macro active. Either a STRINGOF function, a number within double quotes,
a #, or a @ is encountered outside of a macro.

ASM: 14 (E) Conditional assembly nesting error. There is an overlap of IF and/or REPEAT
blocks or an ENDIF directive is encountered when no IF block is active.

ASM: 15 (E) Misplaced ELSE; ignored. Either an ELSE directive is outside an IF-ENDIF
block, or more than one ELSE directive is within an IF-ENDIF block.

ASM: 16 (E) Misplaced ELSEIF; ignored. An ELSEIF directive is outside an IF-ENDIF block.

ASM: 17 (E) BYTE value too large; truncated. The value entered exceeds one byte. The
allowable range is -128 to +255. The value is truncated to fall within this range.

ASM: 18 (E) WORD value too large; truncated. The value entered exceeds one word. The
allowable range is -32768 to +65535. The value is truncated to fall within this
range.

ASM: 19 (E) BITS selection too large; truncated. The size of the receiving field is smaller
than the bit string specified and the bit source (first parameter in BITS function)
is relocatable.

ASM: 20 (W) Scalar value required. An address value has been used where a scalar is
required.

ASM: 21 (E) Undefined operand. No value has yet been assigned to a symbol used in an
expression.

ASM: 22 (E) Negative string length. A declaration in the STRING directive specifies a
maximum length that is negative.

ASM: 23 (E) Symbol value phase error. There is a difference between pass 1 and pass 2 in
the value of a symbol. This message may occur if a SET directive has a forward
reference in conjunction with conditional assembly.

ASM: 24 (E) Illegal operation on unbound global. An unbound global has been encountered
in the operand field of a SET directive.

@ 12-3

Assembler Errors Error Messages-8500 Series 8 Assembler Core Users

ASM: 25 (E) String value truncated. More characters are assigned to a string than were
specified in the STRING directive that defined it.

ASM: 26 (E) Illegal use of class name. The only legal use of a class name in an assembler
source program is to assign its value with a SECTION, COMMON, or RESERVE
directive.

ASM: 27 (W) Cannot open error message text file. The error message text file is missing or
otherwise inaccessible.

ASM: 28 (E) String value required. A numeric value appears where a string is required.
Concatenation, SEG or NCHR functions, and TITLE or STITlE directives all
require string operands.

ASM: 29 (E) Expression too complex; line ignored. Parentheses in expression are nested
more than 3 levels deep.

ASM: 30 (E) Illegal address comparison. An attempt has been made to subtract or compare
addresses based on different sections.

ASM: 31 (E) Division by zero. A division or a MOD operation attempted to use zero as a
divisor.

ASM: 32 (E) Illegal scalar -address. An attempt has been made to subtract an address from a
scalar value.

ASM: 33 (E) Illegal address + address. An attempt has been made to add two addresses.

ASM: 34 (E) BITS index out of range. The second parameter inthe BITS function is negative
or greater than 31.

ASM: 35 (E) BITS length out of range. The sum of the second and third parameters is greater
than 32.

ASM: 36 (E) Illegal operation on complex result. Arithmetic is being performed on a value
that will not be evaluated until link time (relocatable).

ASM: 37 (E) Cannot close file 'filename'. The assembler is unable to close the specified file.

ASM: 38 (E) Null expression for INCLUDE file name. Either there is no filename in the
operand field of an INCLUDE directive or the string variable used contains the
null string.

ASM: 39 (E) Cannot open file 'filename'. The assembler is unable to open the specified file.
Make sure that the filename is spelled correctly and is accessible by you.

ASM: 40 (E) File 'filename' read error. The assembler is unable to read the specified file.
Make sure that the filename is spelled correctly and is readable by you. This
message may result from a hardware error.

12-4 @

Error Messages-8500 Series B Assembler Core Users Assembler Errors

@

ASM: 41 (E) Illegal use of an unbound global inaSETorEQU. An attempt has been madeto
take the difference of two unbound globals or to apply the BITS function to an
unbound global.

ASM: 42 (E) Invalid line size; default used. The expression in the LINE option of the LIST
directive is less than 1 or greater than 132. The line size is set to its default value.
(72 characters if the output device is the system terminal; 132 otherwise)

ASM: 43 (E) Invalid page size; default used. The expression in the PAGE option of the LIST
directive is less than 4 or undefined. The page size is set to its default value.
(65536)

ASM: 44 (E) Illegal character in 'digit-string'; ignored. An illegal digit or radix has been used.
See The Assembler section of this manual for information about numeric
constant notation.

ASM: 45 (E) Subtitle truncated. The expression in the operand field of the STITLE directive
exceeds 35 characters. The excess characters are ignored.

ASM: 46 (E) Title truncated. The expression in the operand field of the TITLE directive
exceeds 31 characters. The excess characters are ignored.

ASM: 47 (E) ENDM without matching MACRO; ignored. An ENDM directive is
encountered outside a macro definition.

ASM: 48 (E) EXITM outside macro expansion; ignored. An EXITM directive is encountered
outside a macro definition.

ASM: 49 (E) Macro nesting error. A macro definition overlaps with an IF block or another
macro.

ASM: 50 (E) Unmatched [. An opening bracket is not matched by a closing bracket.

ASM: 51 (E) Garbage follows closing]. The information following a bracketed macro
parameter has been ignored. For example, [BC]DE results in a parameter of BC
(and generates this error message). Refer to the Macros section of this manual
for further information on macro parameter conventions.

ASM: 52 (E) End of file encountered during macro definition. The end-of-file or an END
directive is encountered during a macro definition. This message may result
from omitting an ENDM directive.

ASM: 53 (E) MACRO encountered during macro definition or expansion. A MACRO
directive occurs within a macro definition block. The MACRO directive is
ignored.

ASM: 54 (E) Assembly too complex. The nesting complexity of IF blocks, REPEAT blocks,
macro expansions, and/or INCLUDE files, in conjunction with the number of
symbols, exceeds the capacity of the assembler.

12-5

Assembler Errors Error Messages-8500 Series B Assembler Core Users

ASM: 55 (E) Syntax error: 'illegal-expression'. A statement does not conform to the required
syntax. Refer to the Assembler Directives section of this manual for the correct
syntax.

ASM: 56 (E) Section phase error. The specified section relocation option or the length of a
section differs between pass 1 and pass 2. This error may occur if a SET directive
has a forward reference in conjunction with conditional assembly.

ASM: 57 (E) Object module name already defined; ignored. The NAME directive has been
used more than once.

ASM: 58 (E) Invalid conditional expression. The conditional expression in the REPEAT
directive does not yield a scalar.

ASM: 59 (E) Invalid iteration expression. The iteration expression in the REPEAT directive is
not a scalar.

ASM: 60 (E) Negative iteration count. The iteration expression in the REPEAT directive is
negative.

ASM: 61 (E) Iteration count exceeded. An attempt has been made to assemble a REPEAT
block more than the number of times specified in the second parameter of the
REPEAT directive. If that parameter is not specified, the error message is
displayed after 256 repeat cycles are completed.

ASM: 62 (E) EN DR without matching REPEAT; ignored. An EN DR directive is encountered
outside a REPEAT block.

ASM: 63 (E) REPEAT-ENDR improperly nested. A REPEAT block overlaps with an IF block,
macro expansion or INCLUDE'file.

ASM: 64 (E) EXITR outside REPEAT-ENDR; ignored. An EXITR directive is encountered
outside a REPEAT block.

ASM: 65 (E) EXITR improperly nested. An EXITR is encountered, in a macro or an INCLUDE
file, that matches a REPEAT outside the macro or INCLUDE file.

ASM: 66 (E) ENDR encountered before end of REPEAT block; ignored. Text substitution
and/or conditional assembly has placed an ENDR directive within a REPEAT
block.

ASM: 67 (E) Undefined BLOCK size. The operand of a BLOCK directive is either undefined or
is a forward reference. This error may occur if a misspelled or undefined symbol
appears in a BLOCK directive, or if these directives reference a symbol that has
not yet been assigned a value.

ASM: 68 (E) Negative BLOCK size. The operand of the BLOCK directive is negative.

ASM: 69 (E) Invalid alignment expression. The alignment expression used is not a positive
scalar.

12-6 @

Error Messages-8500 Series B Assembler Core Users Assembler Errors

ASM= 70 (E) Too many global symbols. The number of global symbols exceeded 253. This
number includes all section, common, reserve, class, and global names. The
current global declaration is not accepted by the assembler.

ASM= 71 (E) END encountered in INCLUDE file; ignored. An END directive is present
within an INCLUDE file. The entire INCLUDE file is included.

ASM = 72 (E) Invalid transfer address expression. The label used for a transfer address on an
END directive is undefined.

ASM: 73 (E) Global phase error on 'symbol'. There is a difference in globals between pass 1
and pass 2. This message may be caused by declaring the same global twice or
by declaring a global through string substitution.

ASM: 74 (E) Class phase error. A class name was encountered on pass 2 that was not
encountered on pass 1 . This could be caused by declaring a class name through
string substitution.

ASM= 75 (E) Undefined origin expression. The operand of an ORG directive is either
undefined or a forward reference. This error may occur if a misspelled or
undefined symbol appears in an ORG directive, or if these directives reference a
symbol that has not yet been assigned a value.

ASM: 76 (E) Origin outside current section. The expression used with an ORG directive is
not an address within the current section. This error may occur if a misspelled or
invalid symbol is used within an ORG expression or if a SECTION or RESUME
statement is missing.

ASM: 77 (E) Invalid RESERVE expression. The value specified as the length of the
RESERVE section is not a positive scalar.

ASM: 78 (E) Undefined section name on RESUME. The resumed section has not been
previously defined with a SECTION or COMMON directive. This error may occur
if the parameters of the SECTION or COMMON directives are misspelled or
contain invalid characters.

ASM: 79 (E) Symbol not a section name. The symbol in the operand field of the RESERVE
directive is not a section name.

ASM: 80 (E) RESUME of RESERVE section. A RESUME directive has been used with a
RESERVE section name. It is illegal to RESUME a RESERVE section.

ASM: 81 (F) Symbol table overflow. The assembler symbol table is filled. This error occurs
when too many symbols have been used. The source module must be divided
into smaller pieces to permit assembly.

ASM: 82 (F) Cannot use class on an absolute section. A class name is specified for an
absolute section.

@ 12-7

Assembler Errors Error Messages-8500 Series B Assembler Core Users

12-8

ASM: 83 (F) Usage: asm [obj] [1st] src. No input file was specified upon assembler
invocation.

ASM: 84 (F) Not enough memory. An internal work area of the assembler is full. This error
may occur if the source program is too big, or if system memory has been
removed or otherwise made unavailable to the assembler.

ASM: 85 (F) Cannot open listing file. The assembler is unable to open the specified file.
Make sure that the filename is spelled correctly and is accessible by you.

ASM: 86 (F) Cannot open object file. The assembler is unable to open the specified file.
Make sure that the filename is spelled correctly and is accessible by you.

ASM: 87 (F) Source file used as object or listing file. The source file has been named as
object or listing file. This would cause the source file to be overwritten. Control is
returned to the operating system.

ASM: 88 (E) Object and listing file names not unique. The object filename and the list
filename are the same.

ASM: 89 (E) Address operand required. An address value is required.

ASM: 91 (E) Nesting error. An IF or REPEAT block is still open when end-of-file is
encountered. This message may result from omitting an ENDIF or ENDR
directive.

ASM: 92 (E) Improperly terminated source line; accepted. The last line in the source file is
not terminated with a RETURN.

ASM: 94 (E) ENDM encountered before end of MACRO text; ignored. A text substitution
has placed an ENDM directive within an macro.

ASM: 95 (E) Assembler overlay not found. Part of the assembler is missing or has been
renamed.

ASM: 97 (E) Macro definition phase error. The macro has been defined in the second (but
not the first) pass of the assembler. This error may be caused by conditional
assembly and/or text substitution.

ASM: 98 (E) String length phase error. The declared length in the STRING directive differs
between the first and second assembler passes. This error may be caused by
conditional assembly and/or text substitution.

ASM: 99 (E) Bad floating point syntax 'float-expression'; ignored. The expression in the
operand field of a FLOAT directive is not in proper format. See the Assembler
Directives section of this manual for information concerning the proper format.

ASM: 100(E) File 'filename' write error. The assembler is unable to write tothe specified file.
Make sure that the filename is spelled correctly and writable by you.

@

Error Messages-8500 Series B Assembler Core Users Assembler Errors

@

ASM: 101 (E) SEG index is zero. The starting position parameter of the SEG function is zero.

AS~: 102(E) Negative SEG argument. A parameter of the SEG function is negative.

ASM: 103(E) Section larger than address space. The section contains more bytes than the
microprocessor is capable of addressing.

ASM: 105(W) 'float-expression' too large; set to infinity. The operand used in the FLOAT
directive is too large. See the Assembler Directives section of this manual for
information about what is stored.

ASM: 106(W) 'float-expression' too small; denormalized. The operand used in the FLOAT
directive is too small. See the Assembler Directives section of this manual for
information about what is stored.

ASM: 107(E) Undefined opcode 'illegal-opcode'. The assembler is unable to recognize or
process a symbol or character in the operation field of a statement. This error
may occur if an instruction is misspelled or if an invalid delimiter follows a label.

ASM: 108(E) Symbol 'symbol' previously defined; value changed. A symbol has been
redefined. This error occurs if the same symbol is equated to two different values
(with EQU directives). The symbol assumes the value given in the latest EQU
directive.

ASM: 109(E) Unable to restore previous input. The assembler is unable to reopen the
original source file after an INCLUDE file is read. The source file was changed
while the INCLUDE file was being read.

ASM: 11 O(E) Memory wraparound. The program counter exceeds FFFFFFFF (4,294,967,295
decimal).

ASM: 111 (E) Section larger than page size. A section with the relocation type INPAGE
exceeds one page in length. Assembly continues. The program probably won't
link correctly. See the Assembler Specifics section of this manual for the page
size of your microprocessor.

ASM: 112(E) Section larger than segment size. The section is larger than the segment size of
the target microprocessor. Assembly continues. The program probably won't
link correctly. See the Assembler Specifics section of this manual for the
segment size of your microprocessor.

ASM: 113(E) Invalid alignment. The data or instruction is out of alignment. Some
microprocessors require instructions and/or data to begin on certain
boundaries (for example, word boundaries). See the Assembler Specifics
section of this manual for the alignment requirements for your microprocessor.

12-9

Linker Errors Error Messages-8500 Series B Assembler Core Users

12-10

Linker Errors
There are two types of linker errors:

1. Command processing errors are errors detected while the linker is interpreting the
invocation command. These errors are numbered in the range 1-99.

2. Linking errors are errors that are encountered during the linking process. These errors
are numbered in the range 100-199.

All linker errors are listed on the standard error device (usually the terminal). They may also be
listed in the listing file if the -I command option has been processed before the error is detected
and standard output has been redirected. If the -I command option is used without standard
output being redirected, any error messages will appear twice on the terminal.

The severity-code may be one of the followi\ng:

W (warning)-The error should have no effect on the linked program's execution.

E (error)-The linked program probably won't execute properly.

S (serious)-The linked program will not execute properly. The load file is not generated.

F (fatal)-The error directly affects the linker's execution. The linker closes all open channels,
deletes the load file, and returns to the operating system.

In some error messages, a symbol in single quotes is used to represent a filename, digit-string,
or other information that will be included in the actual message. For example:

LlNK:112 (E) Section 'name' not found in files. -..-
This symbol is replaced with the name of
a section when the message is generated.

LINK: 1 (F)

LINK: 2 (F)

LINK: 3 (F)

LINK: 4 (W)

LINK: 5 (W)

LINK: 6 (W)

Usage: link -<CDLOcdlmorstx> [object files). The command was not
recognized. This error occurs when an illegal command option is used.

Invalid filename. A filename containing non-printing ASCII characters has been
encountered in the command line.

Cannot open command file. The specified command file cannot be opened.
This usually occurs if the file doesn't exist or the name was mistyped.

Syntax error. The syntax of the command is invalid. See the Linker section of
this manual for information about command syntax.

Extraneous information ignored. Extra characters were included on a
command line after the required parameter(s). The extra characters are
ignored.

Invalid name. An invalid symbol name has been found in a command line.
See the Linker section of this manual for information about forming valid
symbol names.

@

Error Messages-8500 Series B Assembler Core Users Linker Errors

LINK: 7 (W)

LINK: 8 (W)

LINK: 9 (W)

LINK: 10 (W)

LINK: 11 (W)

LINK: 12 (W)

LINK: 13 (W)

LINK: 14 (W)

LINK: 15 (W)

LINK: 16 (W)

LINK: 17 (W)

LINK: 18 (W)

LINK: 19 (W)

LINK: 20 (W)

LINK: 21 (W)

LINK: 22 (W)

@

Invalid number. An invalidvalue has been found inthe-D, -t, or-xcommand
option.

Invalid range. One of the range specifications in the -m or -L command
options is invalid. The starting address must be lower than the ending
address.

Invalid address. One of the address specifications in either the -m or -L
command option is invalid.

Undefined memory. A logical memory name specified in the BASE or RANGE
specification of the -L command option was not defined in a previous -m
command option.

Memory range undefined. A -m command option was given after a -L
command option.

Memory definition overlap. Two logical memory areas have overlapped.

Invalid option. An invalid parameter option was specified. For example, an
invalid relocation type may have been specified in a -L command option.

Section already in a class. A section appears in two -C command options.
The section belongs to the class specified in the first -C command option.

Class or section located twice. Two -L command options for the same
section or class have been encountered. The second -L for the section is
ignored.

Relocation type redefined. Two -t command options of different relocation
types for the same section or class have been encountered. The second -t
command option is ignored.

No continuation line provided. A command continuation indicator (*) in the
command file is followed by an end-of-file.

Missing link files. No input files were specified. Always specify at least one
input file when you invoke the linker.

Memory previously defined. The same logical memory name is specified
more than once in -m command options.

Missing command file. The command file was not specified in the -c
command option.

Section already located to memory. The section named in the -C command
option was already located to an area of memory.

Map undefined. A memory name is used in a -L command option when no
-m command option has been processed.

12-11

Linker Errors

LINK: 23 (W)

LINK: 24 (W)
'"

LINK: 25 (W)

LINK: 26 (W)

LINK: 27 (W)

LINK: 28 (W)

LINK: 29 (W)

LINK: 30 (W)

LINK: 31 (W)

LINK: 32 (W)

LINK: 33 (F)

LINK: 34 (W)

LlNK:100 (8)

LlNK:101 (F)

LlNK:102 (F)

LlNK:103 (F)

12-12

Error Messages-8500 Series B Assembler Core Users

Bad base. A global symbol in a -0 command option is based on a logical
memory name or a class name.

The following command line is too long. The command line is longer than
80 characters (including RETURN). Only the first 79 characters are
processed.

Missing class or section name. No class or section name is given in a -t
command option.

Missing class name. No class name is given in the -C command option.

Missing define parameter. No name to define is given in the -0 command
option.

Missing locate parameter. No parameter is given in the -L command option.

Missing load file. No filename is given in the -0 command option.

Missing map definition. No memory name is given in the -m command
option.

Missing type parameter. No parameter is given in the -t command option.

Missing transfer address. No address is given in the -x command option.

Input and output filenames not unique. The input and output filenames are
the same.

Name previously defined. A symbolic name has been given conflicting
definitions during command processing. The first definition is used.

Name 'name1' in section 'name2' previously defined. An attempt has been
made to redefine a global symbol. This occurs when two modules both define
a global symbol of the same name. The first symbol value encountered is
used. If the global symbol is a section name, the linker will only include the
first section encountered in the load module.

Internal linker error. Serious problems have been detected. Contact your
Tektronix service representative if this problem persists.

Memory overflow. The linker has run out of memory during allocation of one
of its internal data structures. Linking is terminated. The total number of
global symbols, modules, or input files must be reduced in order to link in the
memory available.

Operating system error. An error has occurred in the operating system.
Consult your system user's manual for information about this problem.

@

Error Messages-8500 Series B Assembler Core Users Linker Errors

LlNK:104 (F)

LlNK:105 (F)

LlNK:106 (F)

LlNK:107 (F)

LlNK:108 (E)

LlNK:109 (E)

LlNK:110 (E)

LlNK:111 (E)

LlNK:112 (E)

LlNK:113 (E)

LlNK:114 (E)

LlNK:115 (E)

LlNK:116 (S)

LlNK:117 (S)

@

File 'filespec' read error. The operating system reported an error when trying
to read from an input file. Make sure that the filespec is spelled correctly and
is readable by you. This error may result from a hardware problem.

Checksum error in 'filespec'. A checksum is incorrect, indicating an error
during a read. Try again.

Invalid object format for 'filespec'. The object file is not in valid format.

No object files. No object files were specified. Always specify at least one
input file when you invoke the linker.

Cannot open 'filespec'. The linker is unable to open the specified file. Make
sure the filespec is spelled correctly and the file is accessible by you.

File 'filespec' write error. The linker is unable to write to the specified file.
Make sure the filespec is spelled correctly and the file is writable byyou. This
error may result from a hardware problem.

No memory allocated to 'name'. The specified section is too big to relocate in
the available contiguous memory in the range specified.

Unresolved global reference 'name' at 'address'. An undefined global
symbol was referenced at the specified address. This error occurs when a
global symbol is used in one module but never defined. The unresolved
reference is zero-filled in the load file.

Section 'name' not found in files. A section specified in a command was not
found in any object file.

Section 'name' does not fit in logical memory. A section in a symbol file
does not fit entirely within a logical memory.

Absolute section 'name' 'name' conflicts with -L switch. An attempt has
been made to relocate an absolute section. The command is ignored.

Truncation error at 'address'. A value calculated during relocation was
truncated when replaced in the load module because the receiving field was
smaller than the calculated value.

Section 'name' too big. The length of a RESERVE section is greater than the
addressing space of the microprocessor. The section is not included in the
load module. This error may occur when the combined length of several
RESERVE sections is too large.

Name 'name1' in file 'name2' previously defined. A symbolic name has been
given conflicting definitions during command processing. The first definition
is used.

12-13

Linker Errors Error Messages-8500 Series B Assembler Core Users

LlNK:118 (W) Transfer address undefined. No transfer address was specified. The linker
outputs a transfer address of 0 in the load module.

LlNK:119 (W) Processor changed from 'name1' to 'name2'. The current input module has
been generated for a different microprocessor than the previous object
modules. Be aware that differences between microprocessors may cause
incompatibility during linking (such as page size, alignment).

LlNK:120 (W) Data 'name' typing error. Type definitions of the named global are different
in the referencing and referenced modules.

LlNK:121 (W) Subroutine 'name' typing error. Type definitions of the parameters or the
function types are not matched in the referencing and referenced modules.

LlNK:122 (W) Section 'name1' already linked to 'name2'. The class name in the linker
command conflicts with the class name specified in the object file. The name
given in linker the command supersedes that given in the object file.

LlNK:123 (W) Relocation type conflict for 'name'. There is a conflict in the relocation type
for the COMMON or RESERVE section among the declarations in different
modules. The first declaration encountered is used.

LlNK:124 (W) Number of globals in 'name' does not match. The linker detects a
discrepancy in the number of global symbols. This could happen if some
global symbols were not processed due to an earlier error, such as a multiple
definition.

LlNK:125 (W) Reserved name 'name' used incorrectly. ENDREl, a reserved name, was
used as something other than as a global symbol.

LlNK:126 (W) Invalid type 'name' found. A type name from the compiler had been used
previously as something other than a type.

LlNK:127 (W) Relocation type redefined for section 'name'. The relocation type specified
in the -t command option differs from that specified in the assembler source
file. The relocation type specified in the -t linker command option is used.

LINK: 128 (E) Absolute Qr symbol file section 'name' cannot be relocated. An absolute or
symbol file section name was used in a -t, -C, or -L command option.

LlNK:129 (E) Symbol not linked. An attempt has been made to use a section name which
belongs to an empty section.

12-14 @

Error Messages-8500 Series B Assembler Core Users LibGen Errors

@

LibGen Errors
All LibGen errors are listed on the standard error device (usually the terminal). They may also be
listed in the listing file if the -I command option has been processed before the error is detected
and standard output has been redirected. If the -I command option is used without standard
output being redirected, any error messages will appear twice on the terminal.

The severity-code may be one of the following:

W (warning)-Theerror should have no effect on program's execution.

E (error)-The program probably won't execute properly.

F (fatal)-The error directly affects LibGen's execution. LibGen closes all channels and
returns to the operating system.

In the following discussion, 'oldlib' refers to the filespec associated with the -0 command option
and 'newlib' refers to the filespec associated with the -n command option.

In some error messages, a symbol in single quotes is used to represent a filename, digit-string,
or other information that will be included in the actual message. For example:

LlGBEN : 10(F) Invalid file name 'filespec'

LlBGEN : 1 (F)

LlBGEN : 2(F)

LlBGEN : 3(F)

LlBGEN : 4(F)

LlBGEN : 5(F)

LlBGEN : 6(E)

,

This symbol is replaced with the filespec
of the file when the message is generated.

Both oldlib and newlib are missing. An attempt has been made to
modify, list, or create a new library without providing an existing
library filespec or valid new library filespec. Always provide the
filespec of the library to be modified, listed, or created.

Cannot find end block for module in file 'filespec'. 'filespec' is not a
valid object file. Verify that you have specified the correct filespecs in
your -i and -r command options.

Cannot find end block for module 'module-name' of library 'oldlib'.
The specified module contained in library file 'oldlib' has an invalid
object format. You must recreate the module file.

Cannot find library end block in library 'filespec'. LibGen cannot find
the end of the library block when modifying or listing an existing
library. You must recreate the library file.

Checksum error in file 'filespec'. The checksum value calculated by
LibGen does not equal the value stated by the module file or library
file. The module format is incorrect. You must recreate the module
file or library file.

Command line too long. A command line in the command file has
more than 80 characters. Only the first 79 characters are processed.

12-15

LibGen Errors

LlBGEN : 7 (E)

LlBGEN : 8 (W)

LlBGEN : 9 (F)

LlBGEN : 10(F)

LlBGEN : 11 (F)

LlBGEN : 12(F)

LlBGEN : 13(W)

LlBGEN : 14(F)

LlBGEN : 15(E)

LlBGEN : 16(F)

LlBGEN : 17(E)

12-16

Error Messages-8500 Series B Assembler Core Users

Duplicate module name: 'module-name'. The specified module to be
inserted into the library is already defined in the library. The new
module is not inserted and LibGen processing continues. When
creating a library, be sure to give each object module a unique name
with the assembler NAME directive.

Duplicate symbol name: 'symbol-name'. Two or more global
symbols within the library file have the same name. This condition
does not affect the performance of the linker when selecting
modules, but makes future modification and maintenance of the
library difficult. When creating a library, be sure to give each symbol a
unique global name.

Cannot open file 'filespec'. 'filespec' does not exist. Verify that the
file exists and that the file is accessible by you.

Invalid file name: 'filespec'. 'filespec' contains invalid character(s).
Verify that the filespec contains only legal characters.

Invalid object format for file 'filespec'. 'filespec' is not a valid object
file. Verify that you have specified the correct filespecs in your -i and
-r command options.

I/O error on file 'filespec'. The operating system reported an I/O
error while accessing the specified file.

Library file is replaced by 'filespec'. The -0 command option is
entered more than once in the same LibGen invocation line. Only the
last -0 command option is recognized.

Memory overflow. LibGen has run out of memory during allocation
of one of its internal data structures. The total number of global
symbols, modules, or input files must be reduced.

Module not found in library: 'module-name'. The module specified
in a -d, -x, or -r command option was not found in the old library. In
the case of the -d or -x options, the command option is ignored. In the
case of the -r option, the module is still placed in the library.

Newlib filespec missing. An attempt has been made to modify a
library without providing a valid filespec for the output library file.
Always provide a valid output filespec when modifying an existing
library.

No continuation line provided. A command continuation indicator
(*) in the command file is followed by an end-of-file.

@

Error Messages-8500 Series B Assembler Core Users LibGen Errors

LlBGEN : 18(F)

LlBGEN : 19(F)

LlBGEN : 20(W)

LlBGEN : 21 (F)

LlBGEN : 22(W)

LlBGEN : 23(F)

LlBGEN : 24(F)

LlBGEN : 25(F)

@

Oldlib filespec missing. An attempt has been made to modify or list
an existing library file without providing a valid filespec for the old
library. Always provide a valid input filespec when modifying or
listing an existing library.

'Oldlib' not a library. 'Oldlib' is not a library file. Verify that you have
specified proper filespec in the -0 command option.

'Symbol-name' has type conflict. The specified symbol contained in
an existing library or new library has more than one type definition.

Syntax error: command. The command option does not conform to
the proper syntax for that command option. Refer to the Library
Generator section of this manual for proper command option syntax.

Type conflict with 'nnn' external symbol(s). The library contains the
specified number of external symbol(s) that have type conflicts. To
locate the symbol(s), look for warning messages contained in the
listing.

'filespec' write error. LibGen is unable to write to the specified file.
Make sure that the filespec is spelled correctly and that you have
write permissi'on to the file.

'filespec' read error. LibGen is unable to read the specified file. Make
sure the filespec is spelled correctly and you have permission to read
the file.

Usage: LlBGEN -<cdhilnorvx> [mod name] [filespec]. LibGen must.
be invoked with the legal command options. Legal options are -c, -d,
-h. -i, -I, """n, -0, -r, -v, and -x. Any other command option is illegal.

12-17

8500 Series B Assembler Core Users

@

Section 13

GLOSSARY

Absolute. Having a specified location in memory: not relocatable. An absolute address specifies
the actual location of a byte in memory.

Actual Parameter. See Parameter.

Address. A number or symbol that specifies a byte in memory. A 32-bit address has a value in
the range 0 to FFFFFFFF (hexadecimal).

Assembler. A system program that translates assembly language programs into machine
language.

Assembly Language. A microprocessor-specific programming language that allows the
symbolic representation of any processor operation. Each operation is coded as one assembly
language statement.

Base. The base of a section of object code is the location of the first byte in the section.

Binary. The base 2 numbering system. A binary digit, or bit, has the value 0 or 1. A binary
constant in an assembly language program requires the suffix B or b. For example, the decimal
number 29 may be written as 11101 B or 11101 b.

Bound Global. See Global.

Byte-Relocatable. See R elocatable.

Carriage Return. See Return.

Code. To translate a step-by-step procedure into a series of assembly language statements. This
series of statements constitutes an assembly language program. The statements of such a
program are called source code. The machine instructions produced by assembling the source
code (usually done by the assembler) are called object code. Object code represents the
assembly language program in a form that the microprocessor understands.

Command File. A file containing commands to be processed by the operating system or by a
system program such as the linker or library generator.

Comment. A source program line, or part of a line, that is ignored by the assembler. Comments
are used for program documentation. A semicolon (;) signifies that the rest of the line is a
comment. Comments may also be embedded within Linker and LibGen command files (if the
semicolon is not the first character in the command line, a space must precede it).

13-1

13-2

Glossary-8500 Series B Assembler Core Users

Common. A section of memory that may be shared by any number of subprograms. The
assembler directive COMMON declares a common section. The linker assigns the same area of
memory to all common sections with the same name.

Concatenation. Connecting end-to-end. For example, the concatenation 'FLlP':'FLOP' yields
the string 'FLIPFLOP'. The colon (:) is the concatenation operator used in assembly language
programs.

Conditional Assembly. A feature of the TEKTRONIX Assembler that allows a block of source
code to be assembled a certain number of times or not at all, depending on conditions defined
earlier in the source module.

Constant. A value expressed in literal form rather than as a symbol. A numeric constant is
written as a string of digits, optionally followed by a letter that indicates the radix (for example,
29, 11101 B, 350, 1 DH). A string constant is written as a character string enclosed in single
quotes (for example, 'TEXT', 'P.O. Box 500', "). See also Floating Point Constant.

Data Item. A byte or sequence of bytes of object code that contains data other than machine
instructions. A data item is defined by an ADDRESS, ASCII, BYTE, FLOAT, LONG, or WORD
directive.

Default Value. A predefined value for a parameter, used when no value for the parameter is
explicitly specified.

Defined Symbol. A symbol that has been assigned a value.

Directive. An assembly language statement that does not represent a machine instruction but
does provide special information to the assembler. Also called a pseudo-operation, pseudo­
instruction, or quasi-instruction.

Expression. A formula that contains symbols, constants, or functions related by operators, and
yields a numeric or string value when evaluated. Symbols, constants, and functions are
themselves trivial expressions.

Floating Point Constant. A constant, specified by the FLOAT assembler directive, that is stored
in 32 or 64 bits of memory, according to the proposed IEEE Floating Point Formats.

Formal Parameter. See Parameter.

Forward Reference. Use of a symbol, in the current assembly language statement, that has not
yet been defined by any of the preceding statements; that is, the symbol is defined in a
succeeding statement in the current source module.

Function, Assembler. A predefined function that may be used in assembly language
expressions. An assembler function has the form func(expr), where func is the name of the
function and expr is one or more expressions separated by commas.

@

Glossary-8500 Series B Assembler Core Users

@

Global (or Global Symbol). A symbol that is assigned a value in one module and referenced in
another. A bound global is defined in the current module by its use as a label. An unbound
global is undefined in the current module; its value must be supplied by another module or by the
linker command -D.

Hexadecimal. The base 16 numbering system. Hexadecimal digits include the digits 0 through
9, and the letters A through F to represent the decimal values 10,through 15. A hexadecimal
constant in an assembly language program requires the suffix H or h, and must begin with a
decimal digit (to distinguish it from a symbol). For example, the decimal number 29 may be
written as 1 DH or 1 Dh. The decimal number 15 may be written as OFH orOFh (but not FH or Fh).

Inpage-Relocatable. See Relocatable.

Instruction. A machine instruction is a sequence of bytes that directs a microprocessor to
perform an elementary operation such as load, store, add, or branch. An assembly language
instruction is an alphanumeric representation of a machine instruction. The assembler
translates an assembly language instruction (source code) into the corresponding machine
instruction (object code).

label. A symbol, located in the label field of a source line in an assembly language program, that
represents an address, variable, or constant.

library. A collection of object modules that usually contains commonly-used subroutines. You
may include calls to library routines in your source program; the linker includes the necessary
object modules in the load file.

library Generator (libGen). A system program used to create anq maintain librarjes of object
modules.

linker. A system program that combines object modules into a single executable load file.

listing. A file or printout that summarizes the actions of a program such as the assembler,
linker, or library generator.

local. Not global. In an assembly language program, a local symbol is referenced only by
statements in the same source module.

location Counter. An internal counter maintained by the assembler that marks the location,
relative to the beginning of the section, of the next machine instruction to be assembled. A
symbol in the label field of an assembly language statement is usually assigned the current
value of the location counter.

Machine Instruction. See Instruction.

Machine language. The binary language of a microprocessor. A high-level or assembly
language program must be translated into machine instructions before the microprocessor can
execute the program. Relocatable machine language produced by the assembler may require
adjustment by the linker in order for the instructions to execute properly.

13-3

13-4

Glossary-8500 Series B Assembler Core Users

Macro. A frequently-used group of assembler statements that are inserted into the program at
assembly time wherever the macro is invoked.

Macro Definition. A group of assembler statements that define a macro. A macro definition
begins with a MACRO directive and ends with an ENDM directive. Statements in the macro
definition may contain formal parameters, which are replaced with actual parameters wherever
the macro is invoked.

Macro Expansion. The process of replacing a macro invocation with the macro definition block
it invokes.

Macro Invocation. An assembler statement containing the name of a macro in the operation
field and, optionally, a list of actual parameters in the operand field.

Mnemonic. A symbol that represents a machine instruction. Usually the symbol is an
abbreviation that suggests the machine operation to be performed. For example, the
8086/8088 mnemonic MOV represents a machine instruction that moves data from a register
or memory location into another register or memory location.

Module. A program unit that is complete for purposes of assembling, linking, or loading. It may
be combined with other modules to produce a complete program. An object module contains all
the object code produced in a single assembler run. A source module is a set of assembly
language statements (ending with an END directive or an end-of-file) that produces an object
module when assembled.

Nest. (1) To include a block of assembly language statements inside another block of
statements. (2) To include a subexpression within an expression.

Null String. An empty character string (").

Object Code. Machine language produced by the assembler from source statements. An object
module contains one or more sections of object code, plus special information used by the
linker, library generator, or the operating system command that loads the object code into
memory. An object file is a file that contains an object module.

Octal. The base 8 numbering system. The eight octal digits areOthrough 7.An octal constant in
an assembly language program requires any of the suffix letters 0 ,0, a, or q. For example, the
decimal number 29 may be written as 350 ,350, 35a, or 35q.

Operand. A number or other value on which an operation is performed. The expression X + 3
performs an add operation on the operands X and 3. The 8086/8088 assembly language
statement NEG BX performs a two's complement operation on the byte addressed by the
operand BX.

@

Glossary-8500 Series B Assembler Core Users

@

Operator. A character or symbol that represents an operation to be performed on one or more
operands. Operators used in assembly language programs are:

*
\
=

/
&
<

+
! !!
<= >

MOD
SHL SHR
>= <>

(arithmetic)
(bit manipulation)
(relational)
(string concatenation)

Page. A subdivision of memory. Page size is processor-dependent and reflects addressing
considerations. For example, in a 64K memory with 256-byte pages, the high-order byte of a
16-bit address selects one of the 256 pages, and the low-order byte of the address selects a
byte within that page.

Page-Relocatable. See Relocatable.

Parameter. I n an operating system command, a parameter is a name or number thatfollows the
command word and tells something about how the command is to be executed.

In an assembler macro, a parameter is a valuethat remains undefined until the macro is invoked.
A formal parameter is a place holder in a macro definition block; the first formal parameter is
written as "1 ", the second as "2", and so on. An actual parameter is a character string in a
macro invocation that replaces each occurrence of the corresponding formal parameter in the
macro block. Parameter may refer to either a formal parameter or an actual parameter.

Program Memory. The memory used as a su bstitute for prototype memory in the early stages of
prototype development (emulation modes 0 and 1). User programs run in program memory, as
do the assembler, linker, library generator, and certain other system programs.

Relocatable. A relocatable section is a section whose location in memory is not determined until
link time. A page-relocatable section must begin on a page boundary; an inpage-relocatable
section may not cross page boundaries; a byte-relocatable section may be positioned anywhere
in memory; an aligned-relocatable section may start at any address that is an integer multiple of
a specified value; an absolute section must start at a specified address. (However, depending on
the microprocessor, a byte-relocatable section may have to start on a certain boundary, such as
a word boundary. See the Assembler Specifics section of this manual for more information.)

Reserved Word. A predefined symbol that has a special meaning to the assembler and may not
be used as a label or section name. Reserved words include mnemonics, register names, and
assembler directives and functions.

Return. The RETURN character is also called CR or carriage return. This character marks the end
of a command or an assembly language statement. See the Host Specifics section of this manual
for the ASCII code value representing the carriage return.

Scalar. A 32-bit signed numeric value not used as an address. A scalar takes a value in the range
-2147483648 to +2147483647.

13-5·

13-6

G lossary-8500 Series B Assembler Core Users

Section. A section of object code is a block of contiguous bytes, and is the fundamental,
indivisible unit handled by the linker. A section of source code comprises the statements that
will produce a section of object code when they are assembled. Each section of source code
begins with a SECTION, COMMON, or RESERVE directive.

Source Code. Program statements written in assembly language. A source module is a set of
source statements (ending with an END directive or an end-of-file) that produces an object
module when assembled. A source file is a file containing all or part of a source module.

String. A sequence of ASCII characters. A string enclosed in single quotes (for example,
'ELEPHANT') is called a string constant.

Symbol. A string of 1 to 16 characters beginning with a letter and containing only letters, digits,
periods, underscores, or dollar signs. Predefined symbols include assembler directives and
functions, mnemonics, and register names. User-defined symbols represent addresses, data
items, variables, macros, or sections.

Transfer Address. The address of the first machine instruction to be executed in a load file. A
transfer address may be specified in the END statement of a source module or in the linker
command option -x.

Unbound Global. See Global.

,Variable. In an assembly language program, a symbol whose value may be altered during
assembly time. A variable is defined and redefined by the use of the SET directive.

@

8500 Series B Assembler Core Users

A

Absolute, defined, 13-1
Absolute relocation type, 3-8, 3-53
Actual parameter, defined, 13-5
Address, defined, 13-1
ADDRESS directive, 3-3
Address values, 2-10

comparisons, 2-20
Addressing modes, section 9

ALIGN, relocation type, 3-8, 3-53, 5-14, 5-17
Allocation of sections, 5-18
Arithmetic operators, 2-16
ASCII codes, table of, 11-5
ASCII directive, 3-5
ASM command, 2-2
Assembler:

defined, 13-1
execution, 2-36
features, 1-4
input, 2-2
invoking the, 2-1
macro. See Macro
object module, 2-37
output, 2-37
variable, 2-11

Assembler directives, section 5
defined, 13-2
labels with, 3-2
list of, 11-3

Assembler listing, 2-37
explanation of, 2-38, 2-45
example, 2-40
headings, 3-59, 3-62
options, 3-31
statistics, 2-39, 2-53

Assembler specifics, section 9
Assembly:

conditional:
blocks, 3-26, 3-46
defined, 13-2
example of, 7-2

Assembly language, defined, 13-1
Assembly language instructions:

defined, 13-3
notational conventions for, section 9

B

BASE function, 2-22
Base, defined, 13-1
Binary, defined, 13-1
BITS function, 2-24

@

Section 14

INDEX

BLOCK directive, 3-6
Bound global:

description, 3-24
defined, 13-3

BYTE directive, 3-7
Byte-relocatable, defined, 13-5

c
Carriage return, 2-3, 13-5
Characters, special:

@ (at sign), 4-4, 7-33
$ (dollar sign), 2-10
% (percent sign), 2-13, 4-5
(pound sign), 4-5
/\ (up arrow), 2-7, 2-11, 4-6, 4-9
disabling significance of, 2-7, 2-11, 4-6, 4-9

Class name, 3-8, 3-50, 3-53, 5-16
CND (listing option), 3-32
Code, defined, 13-1
Command file, 5-8, 5-15, 6-3, 6-4

defined, 13-1
Command file invocation:

LibGen, 6-3, 6-4
linker, 5-8, 5-15

Command name, 1-6
Comment, defined, 13-1
Comment field, 2-7
Common, defined, 13-2
COMMON directive, 3-8
Common section, 3-8
CON listing option, 3-33
Concatenation:

defined, 13-2
string, 2-21

Conditional assembly, 3-26, 3-46
defined, 13-2
examples, 7-2

Constant:
defined, 13-2
numeric, 2-10
string, 2-11

Constant values, example of creating, 7-10
Conversions, 2-12
<CR> (carriage return), 2-3

defined, 13-5
Cross-reference listing:

controlling display of, 3-33
description, 2-39
example of, 2-42
explanation of, 2-51

Current section name, 4-5

14-1

o
Data item, defined, 13-2
DBG listing option, 3-33
Decimal-hexadecimal-binary equivalents, table of, 8-6
DEF function, 2-26
Default object module name, 3-38
Default section, 2-52, 3-54
Default value, defined, 13-2
Defined symbol, defined, 13-2
Differences between Series A assembler and Series

B assembler, section 10
Directive, defined, 13-2

See also each directive by name.

E

ELSE directive, 3-12, 3-26
ELSEIF directive, 3-13, 3-26
END, directive, 3-14
ENDIF directive, 3-15
ENDM directive, 3-16, 4-6
ENDOF function, 2-27
ENDR directive, 3-17
ENDREL, 2-9, 5-19
Entry point, 3-24
EaU directive, 3-18
Error messages:

assembler, 12-1
LibGen, 12-15
linker, 12-12
processor-specific, section 9
user-defined, 3-64

Escape character (A), 2-7, 2-11, 4-6, 4-9
Execution, assembler, 2-36
EXITM directive, 3-19, 4-6
EXITR directive, 3-20
Expression, 2-13, 3-27, 13-2

F

Field:
comment, 2-7
defined, 2-3
label. 2-4
operand, 2-6
operation, 2-5

File naming, section 8
FLOAT directive, 3-21
Floating point constant, 13-2

14-2

Index-:8500 Series B Assembler Core Users

Floating point values, 2-10
Formal parameter, defined, 13-5
Forward reference:

defined, 13-2
use of, 2-36

Functions, assembler, 2-21
defined, 13-2
BASE,2-22

G

BITS, 2-24
DEF,2-26
ENDOF,2-27
HI,2-28
LO,2-29
NCHR,2-30
SCALAR. 2-31
SEG,2-32
STRING, 2-34
STRINGOF, 2-35

Global:
bound,3-24
defined, 13-3
unbound, 3-24

GLOBAL directive, 3-24
Global symbols list, 5-26

H

Hexadecimal. defined, 13-3
Hexadecimal addition, table of, 11-7
Hexadecimal multiplication, table of, 11-7
HI function, 2-28
Host Specifics, section 8

IF directive, 3-26
IF ... ENDIF block, 3-26
INCLUDE directive, 3-30

using the, 7-34
INPAGE relocation type, 3-8, 3-50, 3-53, 5-14, 5-17
Inpage-relocatable, defined, 13-5
Input,

assembler, 2-2
linker, 5-5

Insta"ation, assembler software, section 8
Instruction, defined, 13-3
Instruction set, processor, section 9
Internal symbol list, 3-33, 3-34, 5-9

@

Index-!8500 Series B Assembler Core Users

L

Label, defined, 13-3
Label field, 2-4
Label generation, unique ('@'), 4-4
Labels with assembler directives, 3-2
LibGen:

command file, 6-3
command options, 6-2, 6-3, 6-4

-c,6-4
-d, 6-4
-h, 6-4
-i,6-4
-1,6-4
-n, 6-5
-0, 6-5
-r, 6-5
-v, 6-5
-x, 6-5

defined, 13-3
error messages, 12-15
execution of, 6-9
features, 1-5
invocation, 6-1

command file, 6-3
library file, 6-3, 6-4, 6-5, 6-6, 6-10
listing, 6-10

command log, 6-10
module list, 6-11
summary of actions, 6-11

output, 6-10
Library:

creating a subroutine, 7-14
defined, 13-3

Library file:
as LibGen output, 6-3, 6-4, 6-5, 6-6, 6-10
linking a, 5-19

Library generator. See LibGen
Library module:

adding a new, 6-4, 6-6
deleting a, 6-4, 6-6
extracting a, 6-5, 6-8
replacing a, 6-5, 6-7

LINE listing option, 3-33
Linker:

@

command file, 5-8
command options, 5-3, 5-5

-C,5-6
-0,5-7
-L, 5-7
-0,5-8
-c, 5-8
-d, 5-9
-1,5-9
-m,5-12
-0,5-13
-r,5-13
-s,5-14
-t,5-14
-x, 5-15

completion condition, 5-20
defined, 13-3
error messages, 12-10
execution, 5-16
features, 1-5
invocation, 5-1

command file, 5-8
listing file, 5-21
maps,

memory and section, 5-24
module and file, 5-23
module and section, 5-24

output, 5-21
PASCAL typechecking, 5-20
statistics, 5-27

Linker listing, 5-21
command log, 5-22
global symbol, 5-26
memory and section, 5-24
module and file, 5-23
module and section, 5-24

Linking to a library file, 5-19
Linking to an address range, 5-7
LIST directive, 3-31
Listing:

assembler:
control of, 3-31, 3-39
example of, 2-40
explanation of, 2-45

defined, 13-3
headings for assembler, 3-59, 3-62
LibGen, 6-10
linker, 5-21
source, 2-38
See also Assembler listing

LO function, 2-29
Local, defined, 13-3
Location counter:

defined, 13-3
described, 2 -10
setting the, 3-40

Logical operators, 2-17
LONG directive, 3-36

M

Machine instruction, defined, 13-3
Machine language, defined, 13-3
Macro:

body, 4-3
definition, 4-2

defined, 13-4
defined, 4-1, 13-4
expansion:

defined, 4-1, 4-2, 13-4
display of statements in, 3-32

invocation, defined, 4-2, 4-7, 13-4
name, 4-2
operators, 4-3
parameter:

accessing, 4-3, 4-7
brackets, 4-7
conventions, 4-7
determining number of, 4-5
null, 4-9
single quote character, 4-8

unique label generation, 4-4, 7-33
MACRO directive, 3-37, 4-2
ME listing option, 3-32
MEG listing option, 3-32
Memory, reserving an area of, 3-6, 3-50
Memory map, 5-24
Mnemonic, defined, 13-4
Mnemonics, processor, section 9
MOD (modulus) operator, 2-16
Module:

defined, 13-4
object, 2-37

Module map, 5-23, 5-24

14-3

N

NAME directive, 3-38
NCHR function, 2-30
Nest, defined, 13-4
Nesting conventions for assembly language

statements, 3-27, 3-46
NO LIST directive, 3-39
NONAME, 3-38

Null string, defined, 2-11, 13-4
Numeric values, 2-9
Numeric variable, 2-11

o
Object code defined, 13-4
Object file, defined, 13-4
Object module:

defined, 13-4
description of, 2-37
name of, 3-38

Octal, defined, 13-4
Operand defined, 13-4
Operand field, 2-6
Operation field, 2-5
Operators, 2-15

arithmetic, 2-16
defined, 13-5
hierarchy of, 2-14
logical, 2-17
relational. 2-19
string, 2-21
table of, 2-14, 2-15

ORG directive, 3-40
Overlay, linking, 7-30

p

PAGE:
directive, 3-45
listing option, 3-33
relocation type, 3-8, 3-50, 3-53, 5-14, 5-17

Page (of memory), defined, 13-5
Page size, processor, section 9
Page-relocatable, defined, 13-5
Parameter, defined, 1-6, 13-5
Parameter count (macro), 3-56, 4-5
Passes, assembler, 2-36
Program memory, defined, 13-5

14-4

Index-/8500 Series 8 Assembler Core Users

R

Register names, section 9
Relational operators, 2-19

comparison table, 2-20
Relocatable, defined, 13-5
Relocatable address, 2-10
Relocation indicator, 2-38

example of, 2-47
Relocation of sections, 5-18
Relocation type 3-8, 3-50, 3-53, 5-14, 5-17
REPEAT directive, 3-46
REPEAT ... ENDR block, 3-46
RESERVE directive, 3-50
Reserve section, 3-50
Reserved words, 2-9, section 9

defined, 13-5
RESUME directive, 3-52
Return character, 2-3

defined, 13-5

s
Scalar, defined, 13-5
SCALAR function, 2-31
Scalar values, 2-10

comparisons, 2-19
Section:

allocation of, 5-18
attributes, 5-16
default, 2-52, 3-54
defined, 13-6

SECTION directive, 3-53
Section name, determining current. 4-5
Section type, 5-16
SEG function, 2-32
Semicolon (comment), 2-7
Service call (SVC) generation, example of, 7-5
Service request blocks, example of creating, 7-5
SET directive, 3-55
SHL (shift left) operator, 2-16
SHR (shift right) operator, 2-17
Source code, defined, 13-6
Source file, defined, 13-6
Source listing:

control of, 3-31
description, 2-38
example of, 2-40

explanation of, 2-45

@

Index-8500 Series B Assembler Core Users

Source module, defined, 13-6
Source module character set, 11-1
Source program, example of, 2-44
SPACE directive, 3-58
Stack:

allocating memory for, 3-51
saving register values on, 7-2

Statement fields, 2-3
Statements, 2-2
STITLE directive, 3-59
String, defined, 13-6
String constant, 2-11
String conversions, 2-12
STRING directive, 2-11, 3-61
STRING function, 2-34
String operator, 2-21
String values, 2-11

comparisons, 2-20
String variable, 2-11

STRINGOF function, 2-35
Subroutine library, example of creating and using

a,7-14

SVC generation, example of, 7-5
SYM listing option, 3-33
Symbol. 2-7

assigning value to, 2-7, 2-8
constructing, 2-8
defined, 13-6
defining, 2-8
predefined, 2-9
user-defined, 2-8

Symbol table:
description, 2-39
controlling display of, 3-33
example of, 2-43

explanation of, 2-52
Syntax notation, 1-5

for assembler directives, 3-1

@

T

Text substitution, 2-12
current section name, 2-13, 3-57,4-5
macro parameters, 3-56, 4-3
parameter count 3-56, 4-5
unique label generation, 4-4

Text substitution indicator, 2-38
example of, 2-49

TIMES REPEAT option, 3-46
TITLE directive, 3-62
Transfer address, defined, 3-14, 5-15, 13-6
Two passes of the assembler, 2-36
Type conversion, 3-55

u
Unbound global. defined, 3-24, 13-3
Unique label generation, 4-4

example of, 7-33
User-defined error messages, 3-64

v
Variable:

w

defined, 13-6
numeric, 2-11, 3-55
string, 2-11, 3-55

WARNING directive, 3-64
WORD directive, 3-65

x
XREF listing option, 3-33

14-5

MANUAL CHANGE INFORMATION
COMMITTED TO EXCElLENCE Date: __ 1_-4_-_8_2 ____ Change Reference: _c_l,,:.../_18_2 ___ _

Product: 8500 Series B Assembler Core Users Manual Part No.: _0::::...:7~0:.....--=3...=.8..:.5_=_6_-0~0::::...__

DESCRIPTION

TEXT CORRECTIONS

Page 12-16 For LIBQEN error m •••• ge 9, repl.c. the text
p.r.gr.ph with the following inform.tion:

C.nnot ~ file
'filespec' exists
fi Ie.

'filelpec'. V.rifV that
.nd th.t vou c.n .CC.,. the

If vou .re using .n 8550 Microcomput.r
Development L.b, vou m.v be trving to u •• too
m.nv I/O channell (. m.ximum of a .re .llo~ed).
The console .nd printer e.ch r.~uire.n I/O
ch.nnel. Each of the follo~ing oper.tions
r.~uires a lep.r.te I/O channel: redirection
(», inlertion (-i), deletion (-d), extr.ction
(-x), old library (-0), and new libr.rv (-n).
Also, the Libr.rv gener.tor re~uire. .n I/O
channel for the tempor.rv file th.t it
gener.tes.

Page 1 of 1

MANUAL CHANGE INFORMATION
COMMITTED TO EXCELLENCE Date: _2_-_2_5_-8_2 ____ Change Reference: _C2_1_2_8_2 ___ _

8500 MDL: Assembler Core Users Manual Manual Part No.'. 070-3856-00
Product: for B Series Assemblers .

DESCRIPTION

TEXT CORRECTION

Page 12-17 Delete LibGen error message number 22(W) and the
corresponding text paragraph.

Page 1 of 1

