
)
I

, / ,
Part Number 91 0-3452

CHAMELEON 32
APPLICA TION

PROGRAMMING
INTERFACE

Version 1.0

TEKELEC
26580 Agoura Road

Calabasas. California
91302

Copyright@ 1990, Tekelec.

All Rights reserved.

This document in whole or in part, may not be copied, photocopied, reproduced, translated or reduced
~ to any electronic medium or. machine-readable form without prior written consent from TEKELEC.

Tekelec@ is a registered trademark of TEKELEC.

Chameleon" is a registered trademark of TEKELEC.

\
l
)

CHAPTER

ONE

TWO

THREE

FOUR

TABLE OF CONTENTS

DESCRIPTION PAGE

CHAMELEON 32 APPLICATION PROGRAMMING INTERFACE

Introduction .. 1-1
Installation Instructions 1-3
User Interface Components 1-4
Application Programming Interface Library 1-5

API Functions 1-5
API Requests 1-7

APPLICATION PROGRAMMING INTERFACE
DEVELOPMENT ENVIRONMENT

Introduction .. 2-1
Application Programming Interface Files 2-1
Building an Interface File 2-3
Global Initializations 2-3

APPLICATION PROGRAMMING INTERFACE LIBRARY FUNCTIONS

Introduction .. 3-1
add Newline 3-3
cSToggle ... 3-4
eraseEOS ... 3'6
filiBoxArea 3-7
getBoxArea .. 3-8
getFileChoice 3-9
initUI .. 3-12
unMark .. 3-13
userlnterface 3-14

APPLICATION PROGRAMMING INTERFACE LIBRARY REQUESTS

Introduction .. 4-1
Notes .. 4-2

Requests
BOX_INPUT 4-3
BOX_REO .. 4-6
DSP _REO 4-13
ERASE_FIELD 4-15
ERASEB_REO 4-17
ERASEW_REO 4-18
INPUT_REO 4-19
RELREQ .. 4-26
WINDOW_REO 4-27

Toe - 1 • 7/30/90

CHAPtER

FIVE

Appendix A

Appendix B

TABLE OF CONTENTS (continued)

DESCRIPTION PAGE

APPLICATION PROGRAMMING INTERFACE EXAMPLES

Introduction .. 5-1
Example One: Pull Down Menu Logic 5.1-1
Example Two: Parameter Input 5.2-1
Example Three: Listing Files from a Directory 5.3-1

Inlcude File UI.H

Include File MAINSYM.H

TOC - 2 • 7/30/90

)

Introduction

TEKELEC

Chapter 1:
CHAMELEON 32

APPLICATION PROGRAMMING INTERFACE

The Application Programming Interface (API) is designed to
provide a uniform user interface for applications created on
the Chameleon 32. These applications and the user interface
are created within the Chameleon 32 C Development System.

The look and feel provided by this package is similar to pull
down menu packages common in many other environments.

The library provides tools to develop standardized and
modular application code facilitating enhancements, readability
and transferability of code.

This document assumes some familiarity with the Chameleon
32 C Package. For more detailed information than what is
provided here, refer to the Chameleon 32 C Manual, Volume
IV.

Applications developed using the API can be run on both a
Chameleon 32 and a Chameleon 20 containing the C run-time
module.

API provides a quick and effective way to develop a user
interface. Using this type of interface, you can:

• transfer information to and from the application

• provide easy access to the current configuration
parameters

• modify the parameters during runtime

• verify that any changes made are within a valid range

• make selections from a list of options

• select a file from a specified path

• chain lists and parameter input fields in any order

,-, 727,90

... Application Programming Interface Ch. 1: Introduction

TEKELEC

The functions within the API library provide you with complete
control over all of the attributes regarding both the look and
function of each part of the display.

• The boxes and windows can be overlayed.

• For each box or window, the following attributes are easily
controlled:

~ location of the window or box on the screen
~ appearance of the window or box including:

borders
surrounding arrows
highlighting of current selection
position of the text within the box or window
color of the text, highlight and outline
parameter input as either hex, integer or string
automatic range checking
prompting the user when input is required

1·2 7-27'90

)

)

Application Programming Interface Ch. 1: Introduction·

Installation
Instructions

TEKELEC

The API software is installed through the Chameleon 32 C
shell using the batch file INSTALL included on the diskette.

To install the software, at the C prompt %, enter:

BATCH B:IINSTALL

This batch file creates the necessary directories and copies
both the Library and Example files. The files are copied to the
directories shown in Figure 1.1.

FILENAME DESCRIPTION DIRECTORY

libui.a API Library A: LIB

mainsym.h General symbols A:.lNCLUDE

ui.h API specific symbols A:'JNCLUDE

SELECT.C Ex. 1, Pull Down Menus A: USRAPI\EXl

MAKEFILE Creates example 1 A:·USR'APIIEXl

UITAB.C API table for example 1 A: ,USRIAPllEXl

UITAB.H API externals for example 1 A: USRAPIEXl

EX2.C Ex. 2, Parameter Input A: USRAPIIEX2

MAKEFILE Creates example 2 A:USR'API'EX2

UITAB.C API table for example 2 A:,USRIAPIIEX2

UITAB.H API externals for example 2 A:USRIAPIIEX2

EX3.C Ex. 3, Listing Files A: .USR'APIIEX3

MAKEFILE Creates example 3 A: USR'APIIEX3

UITAB.C API table for example 3 A: ,USRIAPIIEX3

UITAB.H API externals for example 3 A: ·USRIAPIIEX3

Figure 1.1: Installation and File Directories

Note that the UITAB.C and UITAB.H files for each example are
not the same. They contain the unique definitions that create
the display for each example.

1-3

Application Programming Interface Ch. 1: Introduction

User Interface
Components

TEKELEC

A user interface created using the Application Programming
Interface consists of boxes and windows. A box, or list
selector, contains several strings of information, with each
string· made up of one field. These are typically used to
display a group of options, for example commands or
messages, and then to accept a selection from the user.

There are two types of windows. The simplest type displays
strings of information that can scroll either up or down within
the window. The second type displays strings of information
at a fixed location.

Within the second type of window, the information displayed
can take two forms, either an unformated string or a field
made up of two parts, a title or description and a value. A
field can be used to accept user input, this is called an input
field. A window can contain a sequence of input fields.

Figure 1.2 is an example of an interface created using the
application programming interface. This menu is used in the
NTITE Simulator for the Chameleon 32 or 20. It consists of
three windows and one box.

• The first window displays the menu strip along the top edge
of the page. On this window, the borders and the selection
highlight are turned off. This is an unformatted string.

• The second window displays the name of the application
along the bottom edge.

-G I NTTE r-
SESSION EXEC PROGRAM EDIT CON FIG
Retrieve
Save

> SI.tus
Exit

Simulator: NT
Protocol: BRI
Standard: CCITT 88
EXC:
SCR:
MSG:
CNF:
CND:
TRA:

TEKELEC NT Simulator Version 3.0 Copyright (C) 1990

Figure 1.2: The User Interface

1-4 727'90

- Application Programming Interlace Ch. l: Introduction

• The status shown on the page is shown within the third
window. Each field has a description with an associated
value. For example, the description of the first variable is
Simulator and the value is NT. This is an example of a
window containing fields.

• The box is the session list selector. It is used to select
from a group of session commands.

A standard set of keys are used to move around or exit from
the boxes and windows. The arrow keys, i ~ -, are used to
move within a frame, where a frame is either a box or a
window. The keys GO, ESC, CAN and RTN are used to exit a
frame. The action taken is determined through the software.

Application Programming
Interface Library

TEKELEC

The Application Programming Interface Library provides nine
functions and nine commands or requests. The functions,
described in Chapter 3, use the data structures established
through the requests, to display the appropriate information.
This section provides a brief description of each function and
request.

FUNCTIONS

Two of the functions provide the majority of the API
functionality.

• initUl

This function is used to initialize the user interface. It is
used only once, when the interface is first started. It
performs the following functions:

~ it specifies the window and box administration areas
~ it defines the number of windows and boxes that make

up the display
~ it initiates an error window

• userlnterface

The user interface is a request oriented library. To initiate
any of the nine requests, the appropriate data structures
are set up and a call is made to the function
userlnterface.

This is the primary function within the API. All requests are
initiated through this function.

1-5 7·27'90

Application Programming Interface Ch. 1: Introduction

TEKELEC

The seven additional functions, shown in Figure 1.3, are used
in conjunction with the request BOX_REO. They are used to
control the information displayed within a box.

FUNCTION OPERATION DESCRIPTION

addNewLine Adds a new line to a list selector.

Toggles between a tag, for example the character "
cSToggle and a blank space at a designated location within a

list selector.

eraseEOS Erases the screen from line 3 downward.

filiBoxArea Initializes a box for use.

getBoxArea Allocates space to the scrolling area of a list selector.

getFileChoice
Initializes a list box to display file names from a
specified path.

unMark Removes all Marks set within a list selector.

Figure 1.3: Additional API Functions

Each of these functions are described in detail in Chapter 3.
Examples showing their use are provided in Chapter 5.

1-6 7'2790

)

)

, .• Application· Programming Interface Ch. 1: Introduction

TEKELEC

REQUESTS

The nine requests are summarized in Figure 1.4. The details
can be found in Chapter 4.

REQUEST PAGE OPERATION DESCRIPTION

BOlLlNPUT 4.3
Create a list selector at run-time. This
allows a dynamic creation of choices.

BOX_REO 4.5 Display a box or list selector.

DSP_REO 4.11 Display text within the window.

ERASE_FIELD 4.13
Erase an entire field, both the value
and the description, from the screen.

ERASEB_REO 4.15 Erase a box or list selector.

ERASEW~REO 4.16 Erase a window from the screen.

INPUT_REO 4.17
Display a sequence of fields to be
edited.

REL_REO 4.22
Releases the memory allocated for a
specific window.

WINDOW_REO 4.23 Initialize the window description.

Figure 1.4: Application Programming Interface Requests

1-7 7/2790

J

)

Introduction

Chapter 2:
APPLICATION PROGRAMMING INTERFACE

DEVELOPMENT ENVIRONMENT

The Application Programming Interface (API) is accessed in
the format of a library similar to the other libraries available
within the Chameleon 32 C Development system. Refer to the
Chameleon 32 C Manual, Volume IV for general information on
include files, library files and the method of building an
application.

Application Programming
Interface Files

TEKELEC

There are five files used' during the development of an
application program interface. The first three are provided

. with the Application Programming Interface package. They
provide the following functions:

• IibuLa

The file libui.a is the library file which contains all of the
logic behind the library functions. It is located in the
directory A:ILlB.

This file is used at link time. For example -LU I in the
command, cc -0 MENU uitab.c -LUI, links the ui.a library to
your source code.

• ui.h

The file ui.h is the header file which includes all of the
definitions and structures used as arguments for the library
functions. It is located in the directory A:\include.

Ui.h is shown in Appendix A of this document. It must be
included in the source code as shown in the examples
found in Chapter 5.

#include < ui.h >

2·1

Application Programming Interface Ch. 2: Development Environment

TEKELEC

• mainsym.h

The file mainsym.h is the header file which includes the
definitions for internal type declarations and Chameleon
specific attributes such as key codes or colors. It is
located in the directory A:\include.

Mainsym.h is shown in Appendix B of this document. It
must be included in the source code as shown in the
examples provided in Chapter 5.

#include < mainsym.h >

NOTE: mainsym.h must be included before ui.h.

The remaining two files are application unique. They are part
of the application files. These files are not required but are
recommended to provide a uniformity between all applications
using this package.

• uitab.c
The file uitab.c is the user interface program file which
contains the initialization of structure parameters for each
menu request. It is located in the development directory.

• uitab.h
The file uitab.h is the header file which includes the
external declaration of the declarations made in uitab.c. It
is located in the development directory.

2·2 7/27/90

Application Programming Interface Ch. 2: Development Environment

Building an
Interface File

Global
Initializations

TEKELEC

The following example illustrates how these files are used to
build the executable interface file.

cc -0 MENU menu.c uitab.c -LUI

Each part of this command is defined as follows:

• cc The.command used to compile and link.

• -0 This option for the cc command is used to name
the resulting executable file other than the
standard A.out. In this example, the file is output
to MENU.

• MENU This is the name associated with the -0
command. After a successful link and compile, it
will contain the executable file.

• menu.c The main program of the sample application.

• uitab.c Initialization code for the request parameters.

• . -LUI The user interface library (Iibui.a) to link with.

When using the API library, the following structures and
definitions must be declared:

NUM_OF _WINDOWS

NUM_OF _BOXES

DISPLAY
BOX

dsp [NUM_OF _WINDOWS]
box [NM_OF _BOXES]

error_window
err_str
errDsp
noTitle

The example shown on the following page illustrates these
initializations. Further examples can be found in Chapter 5.

2-3 7/27/90

_. Application Programming .interface Ch. 2: Development Environment

TEKELEC

f" Mandatory definitions and external declarations,
for example in the file uitab.h */

#define ERROR_WIN 0
f" These parameters */

#define NUM_OF _WINDOWS 30 f" define the number of */
define NUM_OF _BOXES 30 f" windows and boxes '/

f" active at any time */
f" within an application. */

extern DISPLAY . dsp[];
extern BOX box[];

extern WINDOWREQ error_win;

extern FIELD errStr = {22, 1, NIL};

f" Mandatory declarations, for example in the file uitab.c */

DISPLAY dsp[NUM_OF _WINDOWS]; f" System configuration. */
BOX box[NUM_OF _BOXES]; f" System configuration. */

FIELD errStr = {22, 1, NIL};

DSPREQ errDsp =
{
DSP_REQ,
0,
ERR_WIN,
(byte *) &errStr
};

FIELD noTitie = {1, 1, ""};

WINDOWREQ err_win =
f" empty string

{WINDOW-REQ, 0, ERROR-WIN, STATIC, 40, 40, '2', 1, 20,
FALSE, 20, 20, NOF, FALSE, '7', &noTitle, NIL};

*/

2-4 7/27/90

) Chapter 3:
APPLICATION PROGRAMMING· INTERFACE

LIBRARY FUNCTIONS

Introduction A user interface created using API directs any input from the
keyboard or' output to the screen through a set of requests.
All types of requests are initiated through the function
userlnterface(} with the first parameter defining the request
type. This function, along with initUI for interface initialization
provide the main functionality of the user interface. These are
summarized in Figure 3.1 .

TEKELEC

REQUEST PAGE OPERATION DESCRIPTION

initUI 3.12 Initializes the user interface.

userlnterface 3.14 Provides access to the user interface.

Figure 3.1: API (Main) Functions

The seven additional functions can be thought of as Help
functions. They are used with the request types BOX_REQ
and BOX_INPUT. These functions are summarized in Figure
3.2.

REQUEST PAGE OPERATION DESCRIPTION

add NewLine 3.3 Adds a new line to a list selector.

Toggles between a tag, for eachample
cSToggle 3.4 the character ., and a blank space at a

designated location .

eraseEOS 3.6
Erases the screen from line 3
downward.

fill BoxArea 3.7 Initializes a box for use.

getBoxArea 3.8
Allocates space to the scrolling area of
a list selector.

getFileChoice 3.9
Initializes a list box to display file names
from a specified path.

Removes all Marks set within a list
unMark 3.13 selector. (See cSToggle to remove just

one Mark.)

Figure 3.2: Additional API (Help) Functions

3-1 7-'27'90

.. Application· Programming Interface Ch. 3: Library Functions

TEKELEC

A complete description of both types of functions can be found
in an alphabetical listing in the following pages.

The structures corresponding to the different request types,
shown in capital letters, are defined in the include file, ui.h ,
and in Chapter 4 of this document. .

3-2 7127190

)

)

Application Programming Interface Ch. 3: Library Functions

addNewLineO

Declaration

Description

Return Value

Related
Functions

Example

TEKELEC

addNewLine (s, str)
SCRAREA 's;
byte 'str;

The function addNewLine inserts one line at a time to a list
selector. This function should be used in conjunction with
getBoxAreaO·

AddNewLineO should be used when filiBoxAreaO is not
convenient, for example, when the contents of a list selector is
determined during runtime of the application or the entries are
to be retrieved from a file.

The last line inserted must be equal to the empty string. An
error will occur if more lines are added than defined by the
BOXREQ parameter lines. You can however, have less
entries.

The parameters· used with this function are defined as follows:

None

's A pointer to the scrolling area of a BOXREQ.

'str A pointer to the string to be inserted. All
inserted strings must be the same length.

getBoxAreaO

The following example uses add Newline to define the
contents of a list selector.

BOXREQ myBoa = { •...•.• };

getBoxArea (&myBox):

addNewLine (myBox.p, "Title String"):
addNewLine (myBox.p, "My Choice"):

addNewLine (myBox.p, "Your Choice"):

addNewLine (myBox.p, ""):

'* initialized parameters*'

userlnterface (&myBox, &conf, dsp, box);

3-3 7/27/90

,Application Programming Interface Ch. 3: Library Functions

cSToggle 0

Declaration

Description

Return Value

Related
Functions

TEKELEC

cSToggle (s, n, mode, ch, ch1)
SCRAREA 's;
int n, mode;
char ch, ch1;

The cSToggle function is used to mark a specified position
within a box or list selector with a character, for example an
asterisk. This feature can be used in two ways.

• When multiple selections are made within the list selector,
this can be used to mark each selection.

• For a single selection box, it can be used to clarify the
selection.

The parameters used with this function are defined as follows:

s A pOinter to the scrolling area within a BOXREO

n The position within the box

mode 0 Toggle

1 Set

ch First marker character

ch1 Second marker character

If mode is set to Toggle, the function checks for the current
state of the marker. If it currently contains ch 1, it is set to ch.
For anything else, it is set to ch 1.

Note: In order 10 use this feature, each selectable entry in a
box should begin with a blank.

The structure BOX REO is defined in Chapter 4 with the
command BOX_REO.

The output is a value of 0 or 1.

• 0 Set to first marker, ch.

• 1 Set to second marker, ch1.

The function unMarkO can be used to clear all marks within a
box.

3-4 7.'27/90

Application Programming Interface Ch. 3: Library Functions

Examples

TEKELEC

The first example illustrates the function when several test
cases are chosen from the list for a particular scenario. Each
test case selected is marked with an asterisk. Note that a test
case can be deselected by chosing it again and calling the
functioncsToggleOwhich is set to toggle.

Test Cases
tst1. tst

• tst2.tst
.. tst3. tst

tst4.tst
.. tst5. tst
• tst6.tst

tst7.tst
tst8.tst

for (;;)

{
userlnterface(&test_box,&conf,dps,box);
if (conf.exe==GO or conf.ext==ESC) break;
csToggle (text_box.p. conf.choice, 0, '.', , ');
test_box.setRow = conf.row;/· see BOX_REO for */

I·description of setRow *j

test_box.offset conf.choice;
}
test box.setRow test_box. row;
test box.offset 0;

In the second example, a list of .c files is presented in a list
selector. The file tst3.c has been selected: The function
csToggleO is used to mark the selection, then redisplay the
box. At this point, no additional choices are given to the user.

Fi 1 es
tstl. c
tst2.c

• tst3.c
tst4. c
tst5. c
tst6.c

userlnterface(&file_box,&conf,dps,box);
csToggle (file_box.p. conf.choice, O. '.', '.');
file_box,choice = FALSE;
userlnterface(&file_box,&conf,dps,box);
file_box.choice = TRUE;

3-5 7/27/90

.:Application Programming Interface Ch. 3: library Functions

eraseEOSO

Declaration

Description

Return Value

Related
Functions

TEKELEC

eraseEOSO

This function erases the screen from line 3 downward. It is
useful in conjunction with pull down menu logic.

There are no parameters required with this function.

None

None

3-6 7'27'90

)

--,,-- -Application Programming Interface -,- Ch, 3: Library Functions

filiBoxArea 0

Declaration

Description

Return Value

Related
Functions

Example

TEKELEC

filiBoxArea (req, strlist)
BOXREQ 'req;
byte 'strlist[];

This function initializes the scrolling linked list located within
the structure BOXREQ. This must be done once, typically in
the beginning of the program, before a box or list selector can
be accessed through a call to userlnterfaceO.

The parameters are defined as follows:

req A pointer to BOXREQ

strlist address of the array containing the strings to be
entered in the list box

The structure BOXREQ is defined in Chapter 4 with the
command BOX_REQ.

None

None

This example illustrates the use of the function filiBoxAreaO.

BOXREQ message_list::: { } /* initialized with parameters *;
byte *messList[J = {" SETUP", j* observe that each *;

} ;

ALERT",
CALL PR·'.

fillBoxArea (&message_'ist, messList):

/* string must have */
/* the same length *;

See the beginning of example 1 in Chapter 5 for an efficient
way of initializing several boxes in a row.

3-7 7/27/90

-- - -·_·Application Programming: Inteliace Ch. 3: Library Functions

getBoxAreaO

Declaration

Description

Return Value

Related
Functions

TEKELEC

getBoxArea (breq)
BOXREQ 'breq;

This function allocates space to the scrolling area of a list
selector. The linked list is also initialized. II the area needs to
be re-initialized at any point, this function can be called again.

No strings are put into the list selector. This is done with the
function addNewLineO.

The pointer 'breq, points to the structure BOXREQ. This
strucutre is define in Chapter 4 with the command BOX_REQ.

None

addNewLineO
liliBoxAreaO

3·8 7127/90

-. -Application Programming Interlace -:--, Ch: 3:' Library Functions

) getFileChoice 0

Declaration

Description

TEKELEC

getFileChoice (boxName, fPath, ext, bTitle, errMsg,
ins Flag, inserts, Inum, conf)

BOXREQ "boxName;
byte "tPath;
byte 'ext;
byte "bTitle;
byte "errMsg;
int ins Flag
byte - inserts;
int fnum;
BOXCONF "conf;

This function is used to display a list of files. The function
reads the directorj specified by the path for each occurance
of a file with the specified extension. For each occurance, the
filename is loaded into the list selector.

A call to the function filiBoxAreaO is not necessary to initialize
the scroll area within the box as that is done within the function
getFileChoiceO·

The parameters used with this function are defined as follows:

'boxName
"fpath
'ext

'bTitle

"errMsg

insFlag t

-inserts t

A pointer to BOXREQ

The directory path
The file extension, three character
maximum without the period
The title string to be displayed within the
list selector
The error string that will be displayed at the
bottom of the screen if no files exist. It is
recommended to end this string with Press
CAN to continue since this is required to
continue.
When set to TRUE, this inserts the number
of lines specified in fnum into the list box.
Otherwise, set to FALSE.

A pointer to an array 01 strings to be
inserted when insFlag = TRUE. Otherwise
set to NIL

3-9 7.'27/90

"'Application Programming Interface Ch. 3: Library Functions

Return Value

Related
Functions

TEKELEC

Inum t When ins Flag is set to true, this is the
number of lines to be inserted.

'conf A pointer to the BOXCONF structure.

The structures BOXREO and BOXCONF are defined in Chapter
4 with the command BOX_REO.

t This function contains an optional insert feature that permits
you to insert strings into the list selector prior to the filenames.
The insert strings are defined by an array of pOinters. This
utilizes the parameters insFlag, '"'inserts and fnum.

The second example illustrates this feature.

Note: Each time the function getFileChoice is called, the
BOXREQ scroll area is reinitialized and all entries are
reloaded into the list selector.

Refer to Example 3 in Chapter 5 at the function
handle_loadO, for an illustration on using this
function in conjunction with csToggle.

The BOXCONF structure contains exit information.

This parameter conf.str contains the filename which can be
used to open the specified file.

None

3·10

)

)

"""Application Programming Interface "" Ch. 3: Library Functions

Example

TEKELEC

The first example uses the function getFileChoice(} to display
a box containing the file names in the directory
A:ITEKELECISYSTEM with the extension .co. It does not
include the optional inserts.

BOXREQ my_box· { }; /* initialized parameters */

getFileCho;ce (&my_box, N\\Tekelec\\system\\", "co". "CO FILES".
"Sorry no .co files. Press CAN to continue", FALSE,
NIL, 0, &conf);

;* conf.str contains file name ft./

The second example illustrates that same list selector with the
additional inserts. Note that the strings within the insert must
be the same length as the title string. The length of the title
string must be calculated to fit within the length specified by
the parameter len in the BOXP,EQ structure.

BOXREQ mLbox • { }; 1ft. initialized parameters */

byte *mylnserts[] = {" NEW
" DelETE ",
" DEFAULT "};

getFileCho;ce (&my_box. "\\Tekelec\\system\\", "co", "CO FILES",
"Sorry no .co files. Press CAN to continue", TRUE,
mylnserts, 3, &conf);

1* conf.str contains file name */

3-11

. ",··Application Programming Interface . Ch. 3: library Functions

ini1UI 0

Declaration

Description

Return Value

TEKELEC

initUI (dsp, box, req, nw, nb)

DISPLAY 'dsp;
BOX 'box;
WINDOWREQ 'req;
int nw;
int nb;

This function initializes the user interface. initUIO must be
called before any other call is made to the interface.

The parameters used with this function are defined as follows:

'dsp A pointer to the window administration area

"box A pointer to the list box administration area

"req window initiation of ERROR_WINDOW
(This is required)

nw NUM_OF _WINDOWS

nb NUM_OF_BOXES

The structure types DISPLAY and BOX are internal to the
userlnterface function. In order to use the API, both of these
administration areas must be initialized within the user
application. This is typically done within uitab.c.

Refer to Chapter 2 for the declaration of dsp, box,
NUM_OF _WINDOWS, NUM_OF _BOXES and ERROR_WINDOW

The structure type WINDOWREQ is defined in Chapter 4 with
the command WINDOW_REQ.

None.

3-12 7.27'90

- -.Application Programming Interface Ch. 3: Library Functions

unMark 0

Declaration

Description

Return Value

Related
Functions

Example

TEKELEC

unMark (s)
SCRAREA 's;

This function removes all marks used to identify selections
within a list box. The parameter used with this function is
defined as follows:

's A scroll area within the box to be. cleared

None

See cSToggleO for information on marking selections.

The following example clears all selections within the box
specified by my80x.

BOXREQ mybox = { }; j* initialized parameters */

unMark. (myBox. p);

3-13 7'2790

.... Application ·Programming·lnterface Ch. 3: l:.ibrary Functions

userlnterface 0

Declaration

Description

Return Value

TEKELEC

userlnterface (req, conf, dsp, box)
byte 'req;
byte 'conf;
DISPLAY 'dsp;
BOX 'box:

This function gives the user access to the user interface.
Each of the requests or commands described. in Chapter 4 is
initiated through a call to this function.

The parameters used with this function are defined as follows:

req A pointer to the structure containing the request
type or event

cont A pointer to the return value

dsp A pointer to the window administration area

box. .A pointer to the list box administration area

Note: The administration areas dsp and box must have
been previously initialized by calling the function
initUIO. This is typically done at the beginning of the
program.

The output is put in a structure of the type CONFIRM, where
applicable. This is defined uniquely for each of the requests in
Chapter 4.

3·14 7/27/90

I Chapter 4:

,
!

APPLICATION PROGRAMMING INTERFACE
LIBRARY REQUESTS

Introduction The Application Programming Interface library provides nine
requests or commands. A brief description of each of these is
shown in Figure 4.1.

TEKELEC

FlEQUEST PAGE OPEFlATION DESCRIPTION

Create a user edited list selector. This
BOX_INPUT 4.3 allows runtime configured lists of

choices.

BOX_REO 4.4 Display a box or list selector.

DSP_REO 4.7 Display text within the window.

ERASE_FIELD 4.9
Erase an entire field, both the value
and the description, within a window .

. . ERASEB_REO 4.11 Erase a box or list selector.

ERASEW_REO 4.12 Erase a window from the screen.

INPUT_REO 4.13
Display a sequence of fields to be
edited.

RELREO 4.17 Releases the memory allocated for a
specific window.

WINDOW_REO 4.18 Initialize the window description.

Figure 4.1: Application Programming Interface Requests

Each of these requests is made up of structures defining the
parameters required to complete the request. Once the
parameters within each structure are defined, a call is made to
the function userlnterface. It utilizes the information in the
structures to complete the request.

The userlnterface function, along with initUl and the
additional API (Help) functions are described in Chapter 3 of
this document.

4-1 7/30/90

.... Application Programming Interface Ch. 4: . Library Requests

Notes

TEKELEC

• All definitions of constants (uppercase parameters) can be
found in the files a:\include\ui.h and mainsym.h.

• The KEYS shown for each command are those keys that
will·return execution to the calling procedure. You must
define the response to each of these keys.

• When colors are used within the request, they are identified
using the following numbering scheme shown in Figure 4.2.

COLOR IDENTIFICATION

BLACK '0'

RED " ,

GREEN '2'

YELLOW '3'

BLUE '4'

MAGENTA '5'

CYAN '6'

WHITE '7'

Figure 4.2: Display Color Encoding

Within this table, the right column is used as an entry to a
. request. Using. the. actual name of the color will cause· an
error.

4-2 7/30/90

.. Application Programming . Interface Ch. 4: Library Requests

Description

Keys

Parameters

TEKELEC

The request BOX_INPUT is used to create a list box of
selections at run-time. This allows for dynamic creation of
choices within a box.

The command BOX_INPUT is similar to the command
BOX_REQ. You must be familiar with that command before
you use BOX_INPUT.

The following keys are used to edit the fields:

• CTRL A Append
• CTRL I Insert
• CTRL 0 Delete line

The following keys can be used to exit from the list selector:

• ESC
• CANCEL
• GO

The structure type BOXREQ is used to define the box. This is
the same structure type used for the BOX_REQ command.
The only difference between the two structures will be the
event parameter. In this case it is set to BOX:_.JNPUT.

All of the other parameters are described in detail within the
BO>LREQ command. The structure is as follows:

typedef struct
{
Int event;
int taskld; -
int box;
int len;
byte color;
int col;
int row;
int clear;
int choice;
int maxAow;
int frame;
byte bcolor;
byte rev;
int lines;
SCRAREA 'p;
int offset;
int setAow;
}BOXREQ;

4-3 7/30/90

· Application .Programming Interface Ch. 4: Library Requests

Return
Structure

TEKELEC

An array of pointers, containing at least two entries, must be
initialized before you can initialize a BOX_INPUT. This can be
done by calling tiliBoxAreaO.

The example shown on the following will illustrate.

The return parameter cont is of the type BOXCONF. This
structure contains the information regarding the selection
within the list selector, the keystroke used to exit the list, the
current selection position on the screen and a pointer to the
selected string.

The structure is defined as follows:

typedef struct
{
Int event;
int exit;
int choice;
byte 'str;
int row;
}BOXCONF;

event

exit

BOX_CONF

The key used to exit the list selector
(GO, RTN, ESC, CAN, LEFT or RIGHT.)

choice The number of the selected parameter where 1 is
the first non-title string

'str

row
A pointer to the actual string chosen.

The row number on the screen. This defines where
the selection is actually located. This value is
useful in combination with setRow.

4-4 7/30/90

I ,

Application· Programming Interface Ch. 4: Library Requests

Example

TEKELEC

The example shown below illustrates the logic used to edit the
contents of a list selector. Note that an entry can always be
removed by the user by pressing CTRL-D .

. This example shows the editing of completely free format data
(gets()). This logic is normally replaced by some format
specific to the application.

For example, a string displayed within another list selector can
be retrieved and copied into the edited list. Note that each
string must be adjusted to be the same length.

BOXREQ my_box = {BOX_INPUT •...... }. /·initialized parameters·/

byte *myBox[] = {"This is the title",
End Str "};

fillBoxArea (&my_box, myBox); /*;n the beginning of the program·/

exit = FALSE:

do

{
userlnterface (&my_box. &conf. dsp, bOx);

switch (conf.exit)
{

CNTRL_A;
CNTRL_I: positionCursor (conf.row, my_box.col);

ESC:
CAN:

GO:

}
}

whi1e (lexit);

gets (conf.str); /·get an unformatted·/
fillTolength (conf.str. my_box. len) j* string·/
my_box.setRow = conf.row;
my_box.offset = conf.choice;
break;

fil1BoxArea (&my_box, myBox);
exit = TRUE;

break;

exit = TRUE;
break;

4-5

I-make sure it has·/
I·the same length */

/*as other strings·/

I·reset contents-I
I- to original -I

I-Ex;t by keeping -I
I-editions made in-I
I- this session *1

7/30/90

.. _ "Application,P.rogramming Interface Ch. 4: Library Requests

SD}LREO

Description

Keys

. Parameters

TEKELEC

A BOX_REQ is used to display a list of selections from which a
choice can be made. The UP and DOWN arrow keys are used
to move from one choice to another within the box. When the
list of choices is longer than the frame size, the list will scroll.

This request returns a structure, type BOXCONF, as described
below. This structure contains information about the selection
made.

Chapter 5 provides an example showing how this request is
used to implement a pull down menu application.

The following keys can be used to exit from a list selector:

• GO • RIGHT
• ESC • LEFT
• CAN • RETURN

The structure type BOXREQ is used to define the box. This
includes information on the length of the text strings, the color
the border, text and reverse video, the column and row of
locations for the text strings, size and amount of interaction
possible. The structure is defined as follows:

typedef struct
{
Int event;
int taskld;
int box;
int len;
byte color;
int col;
int row;
int clear;
int choice;
int maxRow;
int frame;
byte bcolor;
byte rev;
int lines;
SCRAREA 'p;
int offset;
int setRow;
}BOXREQ;

Each of these parameters are defined on the following page.

4-6 7/30/90

j

. . .. Application Programming Interface .. Ch. 4: Library Requests

TEKELEC

event

taskld Reserved. Set to 0

box .. The box identification number, n, where
o ~ n ~ NUM_OF _BOXES.

Observe that each BOXREQ definition is associated
with a unique box number. The recommended
procedure is to increment the value for each box
definition.

len The length of the string to be displayed + 1. This
determines how the outline is drawn around the
text. All strings to be displayed should be of the
length = len (including the \0).

color The color of the text, this is specified according to
the Figure 4.2.

col The starting column number for each text string.

row The row number to position the first text string. The
top line is in row 1 so begin with row 2 when using
a frame.

clear Determines if the area under the box will be erased
before displaying. This is important with overlapping
boxes.

• TRUE
• FALSE

erase area before displaying
don't erase area before displaying
(this can be a time saving selection.)

choice Determines if the interface will wait for user input
before returning to the application.

• TRUE wait for user input
• FALSE do not wait for user input. Return to

the application immediately after
displaying the list. See the function
cSToggle() for an example of this.

maxRow Defines the number of rows that will be shown
within the box and locates the the bottom border.

frame

Refer to the notes following these descriptions for
information on how this works with lines.

A box can be bounded by a frame, and arrows on
any of the sides. This parameter is used to select
which portions of the border and which arrows will
be displayed.

4·7 7/30/90

,.Application Programming Interface - Ch. 4: Library Requests

TEKELEC

FRAME
COMMANDS

FRM

TOPF

BOTF

RIGHTF

LEFTF

NOF

bcolor

rev

lines

'p

offset

The following border and arrow selections are
available:

DESCRIPTION
ARROW

DESCRIPTION
COMMANDS

A complete frame ARS All four arrows

Top of frame TAL Top arrow only

Bottom of frame BAR Bottom arrow only

Right side of frame RAR Right arrow, only

Left side of frame LAR Left arrow only

No frame

Figure 4.3: Frame and Arrow Commands.

Multiple commands can be combined using +. For
example, to display a complete border with arrows
on the left and right, enter FRM + LAR + RAR.

The color of the border, specified according to
Figure 4.2.

The color of the selection highlight if it is enabled
(see choice). It is specified according to Rgure
4.2.

The total number of strings contained in the box,
(Add two for the title and terminating line.)

Refer to the notes following these descriptions for
information on how this works with maxRow.

This should always be set to NIL. It is initialized by
the call to fillBoxAreaO, getFileChoiceO or
getBoxArea(}.

The line number of the selection currently
highlighted. This refers to the line number within
the box. It is initialized to O.

Refer to the notes following these descriptions for
information on how this works with setRow.

setRow The position (row number on the screen) of the
selection currently highlighted. This should be
initialized to the same value as row.

Refer to the notes following these descriptions for
information on how this works with offset.

4·8 7/30/90

)

·. ".Application Programming Interface Ch. 4:· Library Requests

Notes:

TEKELEC

Some of the parameters seem to identify the same attributes.
This section is meant to clarify those parameters and show
how they work together to provide flexibility within the user
interface.

Initialization of a List Selector

A list selector differs from other API requests in that it consists
. of two building blocks .. First, the BOXREQ structure itself, and

secondly an array of pointers to strings that correspond to the
possible selections within the list selector. The scrolling area
within the BOXREQ (SCRAREA 'p;) is initialized with these
strings by using the function filiBoxAreaO. See the previous
chapter for details.

The array of pointers has the following format:

byte -example [J = {" TITLE STRING".
" FIRST CHOICE".
"SECOND CHOICE".

" END STRING "};

When using filiBoxAreaO, the parameter lines within the
BOXREQ must be initialized to the exact number of strings as
declared in the array of pointers.

All strings except the TITLE STRING and END STRING are
selectable. If a title and end string are not required in the list
selector being defined, both strings can be initialized to an
empty string "". This displays only the selectable strings.

NOTE: All of the strings initialized within the array of pointers
must be of the same length.

If the selections are to be marked using the function
cSToggleO, the first character in each selectable string should
be a blank.

Note: The functions getBoxAreaO and addNewLineO can
be used to build a list selector by adding one line at a
time to the end of the list. These functions are
described in detail in Chapter 3.

4-9 7/30/90

-- -Application-Programming Interface Ch_ 4: Library Requests

TEKELEC

max Row vs. lines

These parameters together define the size of the box and the
number of fields to be displayed within the box. This is most
easily seen by an example.

Session
> ~i!.i~!~~i

Choice 2
Choice 3
Choi ce 4
Choice 5
Choice 6
Exit 7

The Session list selector shown here is
made up of seven selectable strings and a
title. The end string is an empty string ('''').
To accomodate this list, Jines should be set
to nine (7 lines plus 2). This determines the
total number of selectable strings including
the title and terminating line. It does not
determine maxRow.

Displaying all of the choices may
take up more space on the screen
than allocated for this box. By
setting maxRow to row + 4, five
rows of information are displayed
at any time.

Choice 2
Choice 3
Choice 4 if-- maxRow

The additional information is
displayed by scrolling through the
choices using the arrow keys.

Choi ce 3
Choice 4
Choi ce 5
Choice 6

> ;:;~~~ij:~nMIt

By pressing the down arrow three times, the
title and first selections are scrolled out of
the box and replaced with the additional
selections.

If the first string was originally placed in row
2, Choice 3 is now in row 2 and Exit in row 6.

4·10 7/30/90

·, - ·Application Programming,. Interrace Ch:.4:Libra<y Requests

Returned
Structure

TEKELEC

offset VS. setRow

These parameters are used to redisplay a box with the
highlight on the most recent selection. This is done by
combining a location within the list (offset) and the actual
location on the screen (setRow).

Another example will illustrate.

. Session·

> !1~"i~ii1!iM
The' box is initially' displayed with the first
selection highlighted. This is set up as:

Choice 2
Choice 3
Choice 4

my_box. offset = 0
my_box.setRow = row

You can then move down to Choice 3 and
select it.

To automatically highlight Choice 3 when the
box is redisplayed, set:

my_box. offset = cont.choice
my_box.setRow = cont.row

These parameters are located within the
structure BOXCONF. This is the information
returned by the function as defined below.

Refer to the function csToggleO for an
example of how this is used.

Session
Choice 1
Choice 2

> tlffi!i!1~~'m~t
Choice 4

The return parameter canf for a BOX_REO is of the type
BOXCONF. This structure contains the information regarding
the selection within the list selector, the keystroke used to exit
the list, the current selection position on the screen and a
pointer to the selected string.

The structure is defined as follows:

typedef struct
{
Int event;
int exit;
int choice;
byte 'str;
int row;
}BOXCONF;

4-11 7130/90

.. · .. ApplicatiorrProgramming Interface Ch. 4: tibrary Requests

Example

TEKELEC

event BOX_CONF

exit The key used to exit the list selector
(GO, RTN, ESC, CAN, LEFT or RIGHT.)

choice··The number of the selected parameter where 1 is
the first non-title string

'str A pointer to the actual string chosen.

row The row number on the screen. This defines where
the· selection is actually -located. This value is
useful in combination with setRow.

The following example sets up a list of choices (Box10j
LIST 1 as the titles and Choice 1 initially highlighted.
outline is magenta and the text· is yellow.

with
The

Since maxRow - row + 2 < lines (5-2 + 2 < 7), the list will
scroll.

#define BOX_l 1

byte 'Boxl[] =
{"LIST!
"Choice!
"Choice2
"Choice3
IIChoice4
"Choice5
IIH} ; I-The end string is the empty string-;

BOXREQ bOLl
{BOX_REQ, 0, BOX_I, II, '3', 26, 2, TRUE,

TRUE, 5, FRM, '6', '5', 7, NIL, 0, 2};

The call to the function is made as follows:

fillBoxArea (&box_l, Box!): /* Initialize box to contain strings·;

userlnterface (&box_l, &conf, dsp. box):

4-12 7/30/90

\

··Application -Programming Interface Ch. 4: Library Requests

eSP_REa

Description

Keys

Parameters

This command is used to display text within a window. The
type of window, defined by WINDOW_REO, determines how
the command is used. The window must be initialized using
the WINDOW_REO command before using DSP _REO. Refer
to WINDOW_REO for a description of the different types of
windows.

Note that this command does not redisplay the border around
the text.

None

The structure type DSPREQ is used to specify the information
to be displayed. It is defined as follows:

DSPREQ This identifies the window to contain the
display and a pointer to the text to be
displayed.

J typedef struct

TEKELEC

{
Int event;
int taskld;
int window;
byte *text;
}DSPREO;

event DSP _REO

taskld This bit is reserved. It is always set to O.

window The window identification number, where
o :s n :S NUM_OF _WINDOWS

*text If the window is defined as SCROLLING, then this is
the pointer to the string to be displayed.

If the window is defined as STATIC, with the output
field in the WINDOW_REO defined as NIL, then the
pointer is to a structure of the type FIELD.

Otherwise, with the window defined as STATIC and
the output field defined to point at a FIELD_SEO,
this parameter is set to NIL.

4-13 7/30/90

. Application Programming Interface Ch. 4: Library Requests

Example

TEKELEC

The three examples that follow illustrate uSing the command
DSP_REQ.

The first example illustrates a window type defined as
SCROLLING.

#define TEST_WIN 1
WINOOWREQ my window • {WINDOW_REQ, TEST_WIN, ... , SCROLLING, ... },
byte testStr[]· "Test DSP _REQ";
DSPREQ myDSP· {DSP_REQ, 0, TEST_WIN, NIL};
userlnterface (&myWindow, &ch. dsp, oox); I-byte ch*J

myDsp.txt = testStr:
userlnterface (&myOsp, &ch, dsp. box);

The second example illustrates a STATIC window with the
output field defined as NIL.

#define TEST_WIN 1
byte testStr[]. "Test DSP _REQ";

FIELD errStr • {10, 1, NIL};
DSPREQ myDSP • {DSP_REQ, 0, TEST_WIN, (byte')&errStr};
WINDOWREQ my Window • {WINDDW_REQ, TEST_WIN, ... ,STATIC, ... ,NIL};
userlnterface (&myWindow. &ch. dsp, box); I·byte ch*/

errStr.str = testStr;
userInterface (&myDsp, &ch, dps, box);

The third example illustrates a STATIC window with the output
field set as a pointer to FIELD_SEQ. The DSP _REQ redisplays
only the FIELD_DEF entries with the change flag set to true.
When the DSP _REQ is completed, all change flags are set to
false.

#define TEST_WIN 1
FIELO_OEF el· { };
FIELD_DEF e2· { };
FIELO_SEQ ee = {&el, &e2, NIL};
DSP_REQ myDsp· {OSP_REQ, 0, TEST_WIN, NIL};
WINOOWREQ my Window • {WINDOW_REQ, ... , STATIC,
userInterface (&myWindow, &ch, dsp. bOx);

;=0:

&ee};
I· byte ch*!

while (ee.f[iJ) ee.f [i++]-+changed = TRUE /* set all changed

flags to TRUE, ;n other Situations
you may only want to set the flags selectively *j

userInterface (&myDsp, &ch, dsp, box);

4-14 7/30/90

j

)

" '.' ',"Application Programming Interface " Ch.· 4: Library Requests

Description

Keys

Parameters

TEKELEC

This is a request to erase a specific field from a window. This
will erase both the description and the associated value.

This command is valid only for a STATIC window request with
the output field set to FIELD_SEQ. Refer to the command
WINDOW_REQ for details on this type of window.

The structure type FIELD_DEF is defined with the command
WINDOW_REQ. The changed field within that structure must
be set to ERASE_FIELD for this command. Once the
command is executed, the changed flag is set to false.

None

The structure type ERASEFIELD is used to specify the window
to be erased. It is defined as follows:

ERASEFIELD This specifies the type of request and window
identification.

typedef struct
{
Int event;
int taskld;
int window;
}ERASEFIELD;

event ERASE_FIELD

tasklD This bit is reserved. It is always set to O.

window The window identification number, where
o ::; n ::; NUM_OF _WINDOWS

4·15 7/30/90

,. Application Programming Interface Ch. 4: Library Requests

Example

TEKELEC

This example initializes a window with three sets of fields,
each a description and a value. The window is identified as
window #5. Any of the fields (eO, e1 or ez) which have
FIELD_DEF.changed set to ERASE_FIELD, will be erased
when an ERASE_FIELD request is initiated.

FIELD_DEF eO =
{TRUE, 5, 7. "Oese. fieldl", 5, 25, init. value1};

FIELD_DEF el =
{TRUE, 6, 7,"Oese. field2", 6, 25,init. value2};

FIELD_DEF ez =
{TRUE, 7, 7,"Oesc. field3", 7 , 25,init. value3};

FIELD_SEQ ee = { &eO, &e1, &ez, NIL};

WINDOWREQ dsp_win =
{WINDOW_REQ, 0, 5, STATIC, 40,60, '3', 5, 5,
FALSE, 10, 20, FRM, FALSE, '5', &noTitle, &ee };

The FIELD_DEF structure for fieldez is then changed to
indicate that it will be erased and the ERASE_FIELD structure
set up.

ez.changed = ERASE_FIELD
ERASEFIELD era = {ERASE_FIELD, 0, 5 };
userlnterface (&dsp_win. &ch, dsp, box);

userlnterface (&era. &ch. dsp, box);

4·16 7/30/90

)

. ' .. Application Programming Interface . Ch. 4: Library Requests

Description

Keys

Parameters

Returned Values

Example

TEKELEC

This requests that an entire list box be erased from the
screen.

None

The structure required for this request is of the type
ERASEREO. It is defined as follows:

typedef struct
{
Int event;
int taskld;
int box;
}ERASEREO;

event

taskld

box

ERASEB_REO

None

This bit is reserved. It is always set to O.

The box identification number, where
o oS n oS NUM_OF _BOXES

This example displays and erases a box.

#define MY_BOX 1
BOXREQ myBox • {BOX_REQ. O. MY_BOX •... };
ERASEREQ eraMyBox· {ERASEB_REQ. O. MY_BOX}:

userlnterface (&myBox. &conf, dsp. box;

userlnterface (&eraMyBox, &conf. dsp. box};

4-17 7/30/90

'. Application Programming Interface Ch, 4: Library Requests

ERASEW_REQ

Description

Keys

Parameters

Returned Values

Example

TEKELEC

This requests that a window be erased from the screen.

None

The structure required for this request is of the type ERASERQ,
It is defined as follows:

typedef struct
{
In! event;
int taskld;
int box;
}ERASEREQ;

ERASEW_REQ event

taskld

box

This bit is reserved. It is always set to O.

The'identification number for the window, where
o ~ n ~ NUM_OF _WINDOWS

None

This example displays and erases a window.

#define MY_WINDOW 1

WINDOWREQ myWindow = {WINDOW_REQ. O. MY_WINDOW. , .. }:
ERASEREQ eraMyWindow = {ERASEW_REQ. 0, MY_WINOOW}:

userlnterface (&myWindow, &conf, dsp, box;

userlnterface (&eraMyWindow, &conf, dsp. box};

4-18 7/30'90

}

.. Application Programming Interface Ch. 4: Library Requests

Description

TEKELEC

This command is used to display a sequence of fields to be
edited, for example, configuration parameters.

The fields can be different types, integers, strings, hex or
binary. The min & max parameters of the INPUT_FIELD_TYPE
are used to limit the range of values that can be entered for a
particular field.

Use the arrow keys, i t -H-, to move around between the
fields.

The fields making up the sequence are numbered. The arrow
keys are set to these numbers in order to control the
sequence the fields are selected in.

Thefoilowing keys can be used during runtime operation to
modify the field values.

• CTRL·N Go to the next field

• CTRL·P Go to the previous field

• CTRL-I Insert mode (Default mode is overwrite)

• CTRL-D Delete to end of line

• CTRL-A' Go to the beginning of the line

• CTRL-E Go to the end of the line

• RETURN Go to the next field

• Space Bar Toggle between preset values

A unique prompt can be associated with each input field. This
text is displayed, in a position specified within the request,
each time the cursor is positioned at that field. The prompt
text is typically used to tell the user the permitted range for a
value.

Messages indicating the current mode, either insert or blank
for overwrite, or an error when a value outside of the specified
range are displayed. These are located as specified in the
INPUT_REO structure.

This field does not display a frame around the input
parameters. To display a frame, initiate a static
WINDOW_REO without fields before calling INPUT_REO.

4-19 7l 30/90

·Application Programming Interface Ch. A: Library Requests

Keys

Parameters

TEKELEC

The recommended strategy to use this command is to define
a structure type corresponding to the input field sequence
defined for the screen. Declare two structures of this type.
The first will be used as the configuration description for the
applicati6h ·ahd the second to be used as a work area for the
INPUT_REO. If the input fields for the INPUT_REO definitiori
are set to point at entries in the work structure, the following
logic is both efficient and convenient.

SCREEN_DESR_TYPE param,paramWork; ;* Structure describing screen *;
INPUTREQ mylnput = { } I·initialized parameters·j
paramWork = param; /* assign the work structure the values

of the current configuration. */

userInterface (&mylnput. &resultChar, dsp. box);
if (resultChar == GO) / .. Use the parameters only if the user·!

param = paramWork; /* decided to save the configuration */

The following keys can be used to exit from or cancel the
command:

• CAN
• ESC
• GO

There are three types of structures required to initiate an
INPUT_REO. They are defined on the following pages.

This command uses different color definitions than those
previously defined (Figure 4.2). These are shown in Figure
4.4. Refer to the examples at the end of the command to see
how these are used.

BLACK

RED

GREEN

YELLOW

BLUE

MAGENTA

CYAN

WHITE

Figure 4.4:
Color Definitions for INPUT_REO

4-20 7/30/90

· . -.Application Programming Interface

! INPREQ

event

tasklD

'fp

) fi

*i_color

"Lcolor

"c_color

c_row/
c_col

"s_color

s_row/
s_col

j

TEKELEC

Ch. 4: Library Requests

This defines the location and color of
parameters displayed, the prompt text and
other messages.

typedef struct
{
Int event;
int taskld;
INPUT _FIELD_TYPE 'fp;
byte fi;
char "Lcolor;
char *Lcolor;
char "c_color;
byte c_row;
byte c_col;
char "s_color;
byte s_row;
byte s_col;
}INPREO;

INPUT_REO

This bit is reserved. It is always set to O.

A pointer to the INPUT _FIELD_TYPE structure.

An index initializing the offset to the first
selectable field. Set to zero if the cursor is to be
on the first field when the INPUT_REO is called.

The color of the value field, specified according
to Figure 4.4.

The color of the description field, specified
according to Figure 4.4.

The color of the help prompt, specified
according to Figure 4.4.

The location of the help prompt.
(row and column number)

The color of the insert mode and invalid value
messages, specified according to Figure 4.4.

The location of the insert mode and invalid value
message (row and column number)

4-21 7/30/90

. Application- Programming Interiace Ch. 4: Library Requests

INPUT_FIELD_TYPE

TEKELEC

rowl
column

len

*buff

This structure defines a field on the screen.
This includes the position on the screen, the
title and input value, the field type and the
allowed range.

To define a sequence of fields, an array of
these structures is declared. The last entry of
this array is defined as {O, 0, 0, 0 ,0 , ... } or
zero for all values.

The arrow keys are set to go from field to
field.

typedef struct
{
byte row;
byte column;
byte len;
byte *buff;
byte type;
byte leflag;
byte arrow_flag;
byte c_row;
byte c_column;
byte *c_text;
byte *c_buff;
byte up;
byte down;
byte right;
byte left;
byte num_chk;
unsigned int min;
unsigned int max;
FKEY _FIELD_TYPE "tk_ptr;
} INPUT_FIELD_TYPE;

The screen location for the input field
(row and column number)

The maximum number of characters for input
on the screen.

• For string input, this is equal to the string
length.

• For integer input, where no range checking
is configured, it corresponds to the
maximum integer value.

A pointer to the area where the result will be
stored.

4-22 7/30/90

)

. ,- Application, Programming Interface

TEKELEC

type

ILfiag

c_rowl
c_column

'c_text

'c_buff

up

down

right

left

num_chk

min

max

*fk_ptr

, Ch. 4: Library Requests

The input data type, where:
o string
1 byte or int
2 hex (returns an ascii hex string)
3 binary (returns an ascii binary string)

Set to 1 to insert a line feed before the (\0)
field terminator. This allows for easier file
retrieval, for example, fgetstringO from the
standard C library.

Set to 1 to display a red arrow pOinting to the
selection. Otherwise, set to O.

Fields that toggle between values are
automatically marked with a red arrow.

The screen location for the field title
(row and column number)

Pointer to the field description or title text
string

Pointer to the help field text string positioned
through INPREQ (prompt text).

The next field in response to an up arrow

The next field in response to a down arrow

The next field in response to a right arrow

The next field in response to a left arrow

Set to 1 to check that the input is within a
specified valid range. This uses the next two
parameters.

A minimum value for the valid range

A maximum value for the valid range

• A pointer to the FKEY _FIELD_TYPE, if
used. These values are a fixed set,
defined by this structure array. The red
arrow is automatically displayed. With this
selection, the user toggles between preset
values with the space bar.

• Set to NIL if it is not used.

4-23 7/30/90

• :Application'Programming Interface Ch. 4: Library Requests

TEKELEC

FKEY _FIELD_TYPE

This structure defines the preset acceptable
values for a field.

To set a sequence of values, define an array
of these structures with the last entry equal to
{Oxff, '''', "", NIL}. This will define the end of
the value options.

typedef struct
{
byte fkey;
byte 'disp_text;
byte *value;
byte 'link;
}FKEY _FIELD_TYPE;

fkey This is a flag indicating either the last entry, or
an additional value option,

*value

'link

• ON display the text string
• Oxff end of toggle fields.

The text or description of the field. Note that
each entry must be the same length.

This is the text seen when the value is toggled
to his choice. This entry can be symbolic or
numeric, for example "ON" or "1".

The actual value associated with this entry. This
value is specified as a string and converted
according to the type of field.

A pointer to a choice within another toggle field
to be blocked as a result of this choice.
This field is set to NIL is no fields are to be
blocked.

4-24 7'30/90

J

)

· Application .Programming·lnterface Ch; 4: Library Requests

Returned Value

Example

TEKELEC

The key used to exit the input screen is returned in the byte
sized parameter, ie an unsigned character.

For example, in the example shown on page 4-20, the return
value declaration would be:

byte resultChar;

The following example initializes a window with five fields and
their associated help messages. Four of the five fields can be
edited by entering a number within the range provided. The
field Encode is changed by pressing the space-bar to toggle
between the choices NRZ and NRZI.

FKEY-FIELD_TYPE

{

encode_fkey[J =

{ON,"NRZ ","OH,NIL}. {ON,"NRZI","l",NIL}.
{oxff, "". ,," .NIL}
);

INPUT_FIELD_TYPE conf2_fields[]

{
(10,16.3,&irWork.tei, 1,0,0, 10.5, "HI
"HLCOM" , 4,1,4,3. l,O,12l,NIL),

(12,16,2,&irWork.sapi, 1,0.0. 12,5, "SAPI
"SAP I_COM" , 0,2,0,4, 1,0,63. NIL),

."

:" .

{14,16,l.&irWork.encode, 1,0,0, 18,5, "Encode .. t
"ENCCOM", 1.3,1.3,O,O,O,encode_fkey),

);

{10,3B,3,&irWork.n201, 1,0,0, 10,2B,"N201
"N20t_COM", 2,4,0,4,l,1,512,NIL}.

(12,3B,4,&irWork.n200, 1,0,0, 12,2B,"N200
"N200_COM", 3,0,1,0, l,l,9999,NIL),

(O,O,O,O,O, 0,0,0,0,0,0,0)

INPREQ confZ_input =

."

." . ,

(INPUT-REQ, confLfields, 0, CYAN, YELLOW, GREEN, 20, 23,
MAGENTA, 20, 5);

4-25 7/30:90

.Application Programming Interface Ch. 4: library Requests

RELREQ

Description

Keys

Parameters

Example

TEKELEC

This request is used to de-allocate the memory set aside for a
window and releases the associated window number. This
should be done when a window will not be used again.

You can then reinitialize the window number with new
attributes.

None

One structure is required to initiate a REL_REQ. It is used to
identify the window that wili be released. it is defined as
follows:

typedef struct
{
Int event;
int taskld;
int window;
}RELREQ;

event Defines the type of request, REl_REQ

taskld This bit is reserved. It is always set to O.

window The window identification number, where
o oS n oS NUM_OF _WINDOWS

RELREQ exmp3 {REL_REQ, 0, WINDOW_NUM};

userlnterface (&exmp3, NIL, dsp, box);

4-26 7130190

)

.. ··Application .Programming Interface Ch.-4: Library Requests

Description

Parameters

TEKELEC

The command WINDOW_REO can be used in two ways. It
can be used to initialize a window which will display
information or it can display a frame around an input request.

There are three types of windows defined through
WINDOW_REO.

• SCROLLING
A scrolling window displays. information each time a
DSP _REO is made. The window is a fixed size, with the
information scrolling either forward, with new information
added at the bottom of the list, or backward, with new
information added at the top.

• STATIC without field sequences

A static window displays information at a fixed location
within a window. The information does not remain in an
allocated memory position, and requires a subsequent
DSP _REO to redisplay. This can be used to draw a frame.

• STATIC with field sequences

A static window with field sequences displays information
from an allocated memory position to a fixed location within
a window. A field sequence is made up of several titles
and values.

The parameters for the WINDOW_REO are incorporated into
four structures. Each of these structures are shown below
with a brief description of each of the internal parameters.

4·27 7130/90

Application,Rwgramminglnteriace Ch~ 4: Library Requests

TEKELEC

WINDOWREQ This identifies the window and sets up the
basic attributes that determine how the
window will be displayed.

event

taskld

window

type

typedef struct
{
Int event;
int tskld;
int window;
int type;
int len;
int strLen;
byte color;
int col;
int row;
int clear;
int minRow;
int maxRow;
int frame;
int back;
byte bcolor;
FIELD "title;
FIELD 'output;
}WINDOWREO;

The event defines the type of request, in this
case WINDOW_REO

This bit is reserved. It is always set to O.

The window identification number, where
o < n :S NUM_OF _WINDOWS

Either STATIC or SCROLLING, where;

• STATIC

The information is displayed in a fixed location
within the window as defined by the DSP _REO
made to this window number. This can be
done with or without field sequence, where a
field sequence is a list of titles, associated
value fields and a flag indicating that the field
has been displayed.

~ With a Field Sequence

The field sequence is located in a storage
area containing all of the information
displayed within this window type. The
contents can be modified before they are
displayed. They are displayed using a
DSP _REO or WINDOW_REO.

4·28 7/30/90

)

)

\
i

'.' ,Application -Programming Interface'

TEKELEC

len

strLen

color

col, row

Ch. 4: Library Requests

~ Without a Field Sequence

With this type of window, no storage area
is allocated. The location of each string is
defined by the DSP _REO. Once a string is
erased, it cannot be redisplayed without a
new DSP _REO. This window type can be
used to display a frame .

• SCROLLING

Each string of information is displayed either
at the top or bottom of the existing
information. This is determined by the
parameter back. Note that all strings will be
visible until the window frame is full.

TRUE Each new line is added to the top
of the list, pushing existing
information out of the bottom of the
window.

FALSE Each new line is added to the
bottom of the list, pushing existing
information out of the top of the
window.

With the first WINDOW_REO, an area in
memory is allocated, corresponding to the
size of the window. For subsequent calls to
WINDOW_REO for this window number, the
complete contents of this area is displayed.

The size of the scroll area, or window, is
determined by the number of lines in the
window description and the length of a
displayable string. The length of the
displayable string is equal' to the parameter
strLen, the length of the window (len) plus the
number of characters required by an optional
escape sequence.

This determines the actual width of the window.

For STATIC windows, this should be set to O.

For SCROLLING windows, strLen is set to the
parameter len plus the number of non-printing
characters added to a string within this window.
This, for example, allows you to change te color
in the middle of a string.

The color of the text displayed within a window,
specified according to Figure 4.2

The first row below the window frame and the first
column to the left of the left frame.

4-29 7/30;90

-. . Application Programming Interface

TEKELEC

clear

min Row

maxRow

frame

FRAME
COMMANDS

FRM

TOPF

BOTF

RIGHTF

LEFTF

NOF

- Ch. 4: Library Requests

Determines if the area under the window will be
erased before displaying. This is important with
overlapping windows. The top window must
erase the area before displaying to avoid overlap.

• TRUE erase area before displaying
• FALSE don't erase area before displaying

(This can save time)

This parameter applies to scrolling windows only.
It"-specifies the upper boundary of the scrolling
area for a forward scrolling window, the lower
boundary for a backward scrolling window.

This, combined with maxRow, defines the area of
the window and screen that will contain scrolling
data.

The last row above the lower frame edge.

A window can be bounded by a frame, with
arrows on any of the sides. This parameter is
used to select which portions of the border and
which arrows will be displayed.

The following border and arrow selections are
available:

DESCRIPTION
ARROW

DESCRIPTION
COMMANDS

A complete frame ARS All four arrows

Top of frame TAL Top arrow only

Bottom of frame BAR Bottom arrow only

Right side of frame RAR Right arrow only

Left side of frame LAR Left arrow only

No frame

Figure 4.5: Frame and Arrow Commands.

Multiple. commands can be combined using +
For example, to display a complete border with
arrows on the left and right, enter
FRM + LAR + RAR.

4-30 7·30'90

)

" Application Programming Interlace

TEKELEC

back

bcolor

'title

'output '

FIELD

row
Icol

'str

Ch. 4: Library Requests

This defines the direction of scrolling when the
window type is SCROLLING. With other types of
windows, it has no effect.

TRUE scroll backward
FALSE scroll forward

The color of the outline, specified according to
Figure 4.2.

,A pointer to the structure FIELD described below
which can be used to initialize the title of a
window. This title is redisplayed each time the
window is redisplayed.

This is used with static windows with field
sequences only. It uses a FIELD_SEQ structure
containing a sequence of FIELD_DEF structures,
to display a window of information.

For other window types, this field must be set to
NIL.

This contains the location and text that make up
the title of a window.

typedef struct
{
Int row;
int col;
byte 'str;
} FIELD;

The location of the text string containing the title.
(Rowand column information)

A pointer to the text string

4-31 7'30;90

.. ·Application Programming Interface Ch. 4: . Library Requests

TEKELEC

FIELD_DEF typedef struct

{
Int changed;
int rowT;
int colT;
byte 'title;
int rowO;
int colO;
byte 'output;
} FIELD_DEF;

changed This parameter, set to TRUE, indicates that the
information for this field will be redisplayed when
an additional WINDOW_REQ or a DSP _REQ is
initiated on this window.

rowTI
colT

'title

rowO;
colO

'output

Note that this same structure is used to erase a
field within the window simply by changing this
parameter to ERASE_FIELD.

The screen position of the title of the field
description. (Rowand column number.)

A pointer to the text string containing the field
title.

The screen position of the field value.
(Rowand column number.)

A pointer to the text string containing the value

FIELD_SEQ This contains pOinters to the series of FIELD_DEF
structures making up a static window. Note that
a field sequence must be terminated with NIL.

typedef struct
{
FIELD_DEF 'f[MAX_FIELDS];
} FIELD_SEQ;

'f [MAX_FIELDS] This contains the sequence of FIELD_DEF
strings to be set up.

4-32

l
i

\

. -Application Programming Interface . Ch. 4: Library Requests

Examples

TEKELEC

The following examples illustrate the use of WINDOW_REO.
The first sets up a static window, the second, a scrolling
window.

Example 1

The first example sets up a static window with two field
definitions in a field sequence. The outline of the box will be
magenta and the text yellow.

fIELD conf2Title = {8,13,"EXAMPLE I");

fIELD_DEf eO =
{TRUE, 5, 7, "MESSAGE:" , 5, 16," "};

FIELD_DEf 01 =
{TRUE, 5, 40,"NAME:", 5, 47," "};

fIELD_SEQ exl = { leO, &el, NIL);

WINDOWREQ conf2_win =
{WINOOW_REQ, 1, STATIC, 44,60, '3', 3. 8.
TRUE, 4, 20, fRM, fALSE, '5', &conf2Title, &exl);

Note: The output fields are initialized to blanks. They can
be initialized to point to anything.

Example 2

The second example sets up a scrolling window with a title. It
receives the text from a DSP _REO which is not shown.

The initial DSP _REO displays the text on line 10 (minRow).
Each successive DSP _REO displays the test on lines 11, 12,
13 and so on to line 20 (maxRow). Once line 20 is reached,
further use of the DSP _REO scrolls the text up and displays
the new text on line 20.

The outline of the box is white and the text is green.

fIELD Title2 = {8,30,"EXAMPLE 2");

WINDOWREQ dsp_win =
{WINDOW_REQ, 2, SCROLLING. 71,60, '2', 5, 5,

fALSE. 10, 20, fRM, fALSE. '7', &Title2, NIL);

4·33 7'30·90

Introduction

I
"

)

TEKELEC

Chapter 5:
APPLICATION PROGRAMMING INTERFACE

EXAMPLES

There are three examples provided with the application
programming interface, each illustrating a different aspect of
the interface. These examples, including

Section 5.1: Example 1, Pull Down Menu Logic

Section 5.2: Example 2, Parameter Input

Section 5.3: Example 3, Listing Files from a Directory

A sample display and brief description of each of the
examples is provided at the beginning of the associated
section.

5-1 7/30/90

I

I

)

)

,
)

.. Application Programming Interface Ch. 5.1: Example 1

Introduction

TEKELEC

EXAMPLE ONE:
PULL DOWN MENU LOGIC

This appendix contains the files for example 1. This example
is made up of three files:

• Select.c
• uitab.c
• uitab.h

This example is composed of 5 boxes or list selectors. These
provide the menu strip along the top edge and the four pull
down menus.

A window, as shown in Figure 5.1-1, is displayed when a
selection if made from one of the boxes.

--G I NTTE f-
SESSION Menu2 Menu3 Menu4

> Load
Save
Exit5

String Window and Choice Number

Save 2

Figure 5.1-1: Example 1

5.1-1 7/30/90

Application Programming Interface Ch. 5.1: Example 1

TEKELEC

/ ~••••.•.............................
•
•
•
•
o

•
o

•
•
•

File name:

Description:

Version

1.0

select.c

Display four 1 ;'st boxes to choose from. Once a
selection has been made. show the string and choice
number.

Date ID Comment

030790 RHT Created. •..•••••.....•••••••.•........••.••.........•••.........••.•••••....... ,
'include nmainsym.h"
#include "ui.h"
#include Ituitab.h"

main()
{

BOXCONF conf;
int i;

/ /
I' INITIALIZE MENU SYSTEM 01
/ /
initUI(dsp,box,&error_win,NUM_OF_WINDOWS,NUM_OF_BOXES);

j ••• /

I' MOVE STRING FIELDS INTO THEIR ASSOCIATED ARRAYS 01
; ..•...•••••••.........••••....•...•..•••••......... /
1=0;
while (fillboxes[i].box) {

fillBoxArea(fillboxes[i].box,fillboxes[i].list);
i++;

}

/ /
I' DISPLAY THE OPTIONS HEADERS ONLY °1
/ ••••.......•.••.•.........••.••..... /
userInterface(&box_Titles,&conf,dsp,box);

5.1-2 7130190

· .Application Programming Interface Ch. 5.1: Example 1

}

TEKELEC

j •• /

/, DISPLAY EACH LIST BOX UNLESS ESC OR CANCEL IS SELECTED ,/
/ .. /
;=0;
for(: :) {

)

all_bo'Ci].bo,-)event • BOX_REQ:
al'_box[i].box-)choice = TRUE;
userlnterface(al'_box[i].box,&conf,dsp,box);
all_bo'Ci].box-)event = ERASEB_REQ:
userlnterface(al'_box[i].box,&conf.dsp,box);
userlnterface(al'_box[4].box,NIL,dsp,box);
switch(conf.exit) {

/' init. req. type *j

)

/' set re-display */
/' display list box */

/' set erase flag
/' erase list box
/' display titles

/ ... /
/" GO TO THE NEXT LIST BOX, ERASE THE WINDOW "/
/'ANDRESET THE HIGHLIGHT BACK TO CHOICE 1 ,/

1···/
case GO:
case RIGHT: if(i++) 2) i = 0:

choice_win.event = ERASEW_REQi
userlnterface(&choice_win,NIL,dsp,box};
all_box[i].box->offset 0;
all_box[i].box->setRow = 2:
break.;

1· ••.••·.·····•••••••····•••.•· .. ···•·•.••· .. ·1
/, GO TO THE PREVIOUS LIST BOX, ERASE THE WINDOW ./
/, AND RESET THE HIGHLIGHT BACK TO CHOICE 1 ,/

1···1
case LEFT: if(i-- == 0) i = 3:

choice_win.event = ERASEW_REQ;
userlnterface(&choice_win,NIL,dsp,box);
all_box[i].box->offset 0;
all_box[i].box->setRow = 2;
break.;

1···1
/' CALL THE APPROPRIATE FUNCTION AND SET '/
/, THE HIGHLIGHT TO THE CHOICE MADE '/

1···1

'/
,/
,/

case RTN: (*all_box[i].func){conf.choice,conf.str): I· handle_boxN ./
all_box[i];box->offset conf.choice; 1* highlight the ·1
al'_box[i].box->setRow = conf.row; Ie selec. position. el
break.;

1·······························1
/, RESET AND CLEAR THE SCREEN, ,/
/, THEN EXIT THE PROGRAM '/

1·······························1
case ESC:
case CAN!
default: end_program():

5.1-3 7/30/90

. _.:" .. Applieation Programming Interface Ch.5.1: Example 1

TEKELEC

,. EACH OF THE FOLLOWING FUNCTIONS ARE IDENTICLE. THE ONLY REASON THEY
ARE PRESENT IS TO SHOW HOW 4 SEPARATE FUNCTIONS CAN BE ORGANIZED AND
ACCESSED. EACH LIST BOX AND SELECTION MADE WITHIN THE LIST BOX, IN
AN ACTUAL APPLICATION, WILL BE HANDLE DIFFERENTLY.

, .
• Display a window containing the string and choice number selected.
0'

handle_boxl(choice,pstr)
int choice;
byte ·pstr;
(

}

if(choice == 3) end_program();

1····································/
,. SET THE STRING AND CHOICE NUMBER 0'
1····································/
Choice_Conf.title = pstr;
·Choice_Conf.output = choice + Ox30;

1····················/
;* DRAW THE OUTLINE ~I

1* exit program */

choice_win.event = WINDOW_REQ;
userInterface(&choice_win.NIL,dsp,box);

/ ..•.•••••••....•.......•••••....... ;
,. INSERT THE TEXT INTO THE WINDOW"'

t···································/
choice_win,event = DSP_REQ;
Ch_C.f[O]->changed = TRUE;
userInterface(&choice_win,NIL,dsp,box):

5.1-4 7/30/90

,.,Application Programming Intertace- Ch. 5.1; Example 1

TEKELEC

jO

• Display a window containing the string and choice number selected.
OJ

handle_box2(choice,pstr)
iot choice;
byte ·pstr;
{

}

jO

/ /
jO SET THE STRING AND CHOICE NUMBER OJ
/•••••••.........•.••........ /
Choice_Conf.title = pstr;
-Choice_Conf,output = choice + Ox30;

/••••••••...... /
jO DRAW THE OUTLINE OJ

choice_win.event = WINDOW_REQ;
userlnterface(&choice_win,NIL,dsp,box);

/ /
/* INSERT THE TEXT INTO THE WINDOW */
; •••••••••••••• $ •••••••••••••••••••• /

choice_win,event = DSP_REQ:
Ch_C.f[O]->changed = TRUE;
userlnterface(&choice_win,NIL,dsp,box):

• Display a window containing the string and choice number selected.
'j

handle_box3(choice,pstr)
int choice;
byte ·pstr:
{

}

'/ ;
jO SET THE STRING AND CHOICE NUMBER 'j ,•••••••..........•..••......... ;
Choice_Conf.title = pstr:
·Choice_Conf.output = choice + Ox30;

j' DRAW THE OUTLINE OJ
/ /
choice_win.event = WINDOW_REO;
userlnterface(&choice_win,NIL,dsp,box);

; •••.•.•...•...••••••..........•.... /
jO INSERT THE TEXT INTO THE WINDOW OJ
/ /
choice_win.event = DSP_REQ;
Ch_C.f[O]->changed = TRUE;
userlnterface(&choice_win,NIL,dsp,box);

5.1-5 7/30/90

., Application Progmmming Interface Ch. 5.1: Example 1

TEKELEC

I'
S Display a window containing the string and choice number selected . . /

handle_box4(choice,pstr)
iot choice;
byte ·pstr:
(

}

/0 ••••••••••••••••••••••••••••••••••• /

/. SET THE STRING AND CHOICE NUMBER '1

1····································/
Choice_Conf,title = pstr:
-Choice_Conf.output = choice + Ox30;

1····················/
/. DRAW THE OUTLINE '/

1····················/
choice_win.event = WINDOW_REQ:
userlnterface(&choice_win,NIL.dsp,box);

1···································/
/~ INSERT THE TEXT "INTO THE WINDOW */
/ ••••••••••••••••••••••••••••••••• $./

choice_win.event = DSP_REQ;
Ch_C.f[O]->changed = TRUE;
userlnterface(&choice_win,NIL,dsp,box):

end_program{) /* exit the program */
(

}

printf(RESET) ;
printf(CLEAR) ;
enablecur(_stdvt) ;
exit(O);

5.1-6 7/30/90

"Application· Programming Interface Ch. 5.1: Example 1

TEKELEC

/ .. .
•
•
•
•
•
•
•
•

File name:

Description:

Version

1.0

uitab.c

Initialize all user interface windows and boxes.

Date ID Comment

030790 RHT Created. ... /

Ninel ude "mainsym.tl"
Ninel ude "ui • h It
#include "uitab.h"

DISPLAY dsp[NUM_Of_WINDOWS]; /* System
BOX box[NUM_Of_BOXES]; /* System

/ /
f' DISPLAY ENTIRE BOX Of CHOICES 'f

byte 'Boxl[]
{"SESSION

"Load
"Save
"ExitS
""} ;

byte 'Box2[]
{"MENU2

"Choicet
"Choicel
"Choice3
"Choice4
"Choice5
"Choice6
"Exit7
""} i

byte 'Box3[]
{"MENU3

"Choicet
"Choice2
"Choice3
"Choice4
"ExitS
""} i

byte 'Box4[]
{"MENU4

"Choicet
"Choice2
"Choice3
"Choice4
"Ex itS
""} ;

5.1-7

configuration. of
configuration. of

7/30/90

· Application Rrogramming Interface

TEKELEC

BOXREQ box_l
{ BOX_REQ,O,11,'3', 5, 2, TRUE,

TRUE, 5, FRM, '6' . '5' • 5, NIL,O,2}:

BOXREQ box_2
{ BOX_REQ,l,11,'3'. 26, 2, TRUE,

FALSE, 7, FRM, '6' . '5 g. 9, NIL,O,2}:

BOXREQ box_3
{ BOX_REQ,2,l1, '3'. 47, 2, TRUE,

FALSE, 5, FRM, '6' . '5' • 7, NIL,O,2}:

box_4 BOXREQ
{ BOX_REQ,3,il, '3', 68, 2, TRUE,

FALSE, 6, FRM, '6', '5'. 7, NIL,O,2}:

/·····~·······················I
/. DISPLAY TITLE OF BOX ONLY '/

1·····························/
byte 'BoxTitles[]

{"SESSION MENU2
.tlt} ;

box_Titles BOXREQ
{ BOX_REQ,4,72,'3', 5, 2, FALSE,

FALSE, 2, NOF. '6', '5',2, NIL,D,l}:

/ /
/' ORGANIZE THE FILLING OF EACH BOX "/

1····································/
FILLBOXES fillboxes[] =

{ { &box_l, Boxl },
{ &box_2, Box2 },
{ &box_3, Box3 },
{ &box_ 4, Box4 },
{ &box_Titles. BoxTitles }.
{ NIL, NIL}

}:

/•••..••.........•••••........ /
/' ORGANIZE THE ADDRESS OF EACH BOX ,/
; /
ALLBOX all_box[] =

{ { &box_l, handle_boxl },
{ &box_2, handle_box2 },
{ &box_3, handle_box3 },
{ &box_4, handle_box4 },
{ &box_Titles, NIL}

}:

5.1-8

Ch. 5.1: Example 1

MENU3 MENU4",

7/30/90

)

,
i

.,'·:Application Programming Interface

1··/
" NEEDED fDR THE INITIALIZATIDN Of THE MENU SYSTEM *' , •........•••.•.......••••••..•......•••••.•......... /
fIELD errStr = {22,I,NIL};

DSPREQ errDsp
{
DSP _REQ,
0,
ERROR_WIN,
(byte *) &errStr
};

FIELD noTitle = {l.l,"" }; '* empty string */

WINDOWREQ error_win
{ WINDOW_REQ,O,ERROR_WIN, STATIC, 40,40, '2', I, 20,

fALSE, 20, 20, NOf, fALSE, '7', &noTitle, NIL };

/ ... ;
,. USED TD DISPLAY WHICH CHOICE WAS MADE *'
1···/
FIELD Title = {10.26."String Window and Choice Number" };

byte p_ch[2] = {OxOO, OxOO};

FIELD_DEF Choice_Conf
{TRUE, 12, 26, NIL, 12, 46, p_ch };

DSPREQ
{

Choice_Str =
DSP_REQ, 0, CHOICE_WIN,

WINDOWREQ chOice_win

"" };

{ WINDOW_REQ,O,CHOICE_WIN, STATIC, 35,35, '2', 26, 10,
TRUE, 12, 15, fRM, FALSE, '7', &Title, &Ch_C };

Ch. 5.1: Example 1

j*------------------- end uiTab.c ----------------*j

TEKELEC 5.1-9 7/30/90

Application· Programming Interlace Ch. 5.1: Example 1

TEKELEC

/ .. .
"
'" File name:
•
• Description:
•
• Version

•
• 1.0

uiTab. h

,Def·init·:;ons u.sed for the user interface.

Date ID Comment

030790 RHT Created.
••• j

#define
#define

,"

NUM_OF_WINDOWS 30
NUM_OF_BOXES 30

• System arrays.

"'
extern DISPLAY dsp[]:
extern BOX box[];

#define
#define

'"

ERROR_WIN
CHOICE_WIN

o
1

/* Number of windows */
/* Number of structures */

• External declaration of box structures. (declared in uiTab.c)

"

typedef struct
{
BOXREQ -box;
int (*func)(); /* Pointer to a specific function */
} ALLBOX:

typedef struct
{
BOXREQ "box;
byte ·list;
} FILLBOXES;

5.1-10 7/30/90

. Application Programming Interface Ch. 5.1: Example 1

..
) /'

• External declaration of boxes.
'/

extern BOXREQ box_l ;
extern BOXREQ box_2;
extern BOXREQ box_3:
extern BOXREQ box_ 4;
extern BOXREQ box_Titl es;

extern handle_boxl():
extern handle_box2():
extern handle_box3():
extern handle_box4():

extern ALLBOX all_box[] :
extern FILLBOXES fillboxes[]:

extern WINDOWREQ error_wi n;
extern WINDOWREQ choice_win;

extern DSPREQ Choice_Strj
extern FIELD_DEF Choice_Conf;
extern FIELD_SEQ Ch_C:

extern byte 'Boxl[]:
extern byte 'Box2[]:
extern byte 'Box3[]:
extern byte 'Box4[]:
extern byte ·BoxTitles[];

/._------------------- end uiTab.h ----------------------*j

TEKELEC 5.1-11 7/30/90

1

.. ':Application Programming Interface Ch. 5.2: Example 2

Introduction

TEKELEC

EXAMPLE TWO:
PARAMETER INPUT

This appendix contains the files for example 2. There are
three required files.

• ex2.c
• uitab.c
• uitab.h

Note that the uitab.c and uitab.h files are not the same files as
used for example 1. These files contain the text to be
displayed in the box and window.

This example consists of one box, the list selector shown in
Figure 5.2-1, and two windows. Only one of the windows will
be displayed at any given time, depending on the selection
made.

If Load or Save are selected, a scrolling window is displayed
containing information or which selection was made.

If Setup is selected, the Layer 2 configuration window, Figure
5.2-1, is displayed. This window utilizes an INPUT _REQ to
allow the user to change the configuration parameters. This
also illustrates overlaying windows.

-G I C-Sheli [-

SESSION
> Load

Save
set'!f
Exit

Layer 2 configuration

TEl : 127 N201 : 260

SAPI : 63 N200 : 10

T200 : 10 Window :3

T203 : 20 Modulus : 128

Encode : NRZ TEl val : AUTO

TEl value 0 ~ 127

Figure 5.2-1: Example 2

5.2-1 7/30/90

--Application Programming Interface Ch. 5.2: Example 2

TEKELEC

/•................•..•..•••...................•.•......
,
o File name: ex2.c

• ,
• ,

Description: Depending on the choice made within a list box,
either display a scrolling window or an input request
allowing fields to be edited.

,
, Vers ion Date ID Comment ,
, 1.0 030790 RHT Created.
.............•... ;

#include "mainsym.h"
#include "ui.h"
#include "uitab.h"

main()

{
BOXCONF confj

/ ;
/, INITIALIZE MENU SYSTEM 0/

1··························/

1··/
/' MOVE STRING FIELDS INTO THEIR ASSOCIATED ARRAY 0/
/ .. ;
fi 11 BoxArea(&box_l. Box 1) ;

I·· •••• 1
/, DISPLAY EACH LIST BOX UNLESS ESC OR CANCEL IS SELECTED ,/
1 ••••.•.......•.•••••... 0 ••••••••••••••••••••••••••••• ·····1
for(; ;) {

box_i. choice = TRUE;
userlnterface(&box_l.&conf,dsp,box);
switch(conf.exit) {

case GO: 1························1
case RIGHT:/' IGNORE THESE ENTRIES '/

case LEFT: 1························1
break;

I· set re-display ·1
I· display list box ·1

1····································1
/' HANDLE THE CHOICE MADE AND SET ,/
/. THE HIGHLIGHT TO THE SAME CHOICE ,/

1····································1
case RTN: handle_choice(conf.choice);

box_i.offset
box_i. set Row

break.;

5.2-2

conf.choice:
conf.row;

1* highlight the ·1

I· selec. position ·1

7/30/90

Application Programming, Interface Ch. 5.2: Example 2

TEKELEC

}

}
}

case ESC: 1·································/
case CAN: f' RESET, CLEAR SCREEN THEN EXIT 'f
default: / ••••••••••••••••••••••••••••••••• ;

printf(RESET);

printf(CLEAR) ;

enablecur(_stdvt};
exit(O);

handle_choice(choice)
int choice;

{

}

byte ch;

switch (choice) {

}

case 1: userlnterface(&dsp_w; n, NIL, dsp. box); 1* di spl ay wi ndow • /

message. text = msgl;
userlnterface{&message,NIL,dsp,box.}; 1* display message */

break;

case 2: userlnterface(&dsp_win,NIL,dsp,box); 1* display window *;
message. text = msg2;
userlnterface(&message,NIL,dsp,box); 1* display message */

break.;

case 3: userlnterface(&dspwERA,NIL,dsp,box}; 1* erase dsp_win */

userlnterface(&conf2_win,NIL,dsp,box);/* display window */
irWork. = ir;.
userlnterface(&conf2_input, &ch);
if (ch == GO) ir = irWorK;
conf2_win.event = ERASEW_REQ;

/* display contents */

j* save choices on GO */

userlnterface(&conf2_win,NIL.dsp,box);/* erase window */
conf2_win.event = WINDOW_REQ;
break.;

case 4: printf(RESET);

printf(CLEAR) ;

enablecur(_stdvt);
exit(O);

5.2-3

/* exit program */

7/30/90

.-AppliGation·Programming Interface Ch.S.2: Example 2

TEKELEC

I··· ...•..•.•...•••••.
"
• File name: uitab.c
•
• Description: Initialize all user interface windows and boxes.
•
• Version Date ID Comment
•
• 1.0 030790 RHT Created.
... ;

#include "mainsym.h"

#include "ui.h"
#include "uitab.h"

DISPLAY dsp[NUM_OF_WINDOWS); /' System configuration.
BOX box[NUM_OF_BOXES]; ./. System configuration.

byte msgl[]
byte msg2[]

"The text for choice 1 - Load.";
"The text for choice 2 - Save.";

/. OISPLAY ENTIRE BOX OF CHOICES 'j

/ /
byte 'Boxl[]

{"SESSION
"Load
"Save
"Setup
"ExitS
""} ;

BOXREQ box_I.
{ BOX_REQ,O,O,l1,'3', 5, 2, TRUE,

TRUE, 6, FRM, 'S', '5',6, NIL,O,2};

j •• /

/. NEEOEO FOR THE INITIALIZATION OF THE MENU SYSTEM ./
/ ••........•.••......••••.........•.................. /
FIELO errStr 0 {22,I,NIL};

OSPREQ errDsp
{
OSP_REQ,
0,
ERROR_WIN,
(byte .) &errStr
};

FIELD noTitle {20,l,NIL}; /* empty string *j

5.2-4

./

"/

7/30/90

_., Application" Programming Interface Ch. 5.2: Example 2

TEKELEC

WINDOWREQ error_win
{ WINDOW_REQ,O ,ERROR_WIN , STATIC, 40,40, '2', 1, 20,

FALSE, 20, 20. NOF, FALSE, '7', &~oTitle. NIL };

/ /
,. DISPLAY MESSAGE FOR SELECTION MAOE .,
j •••••••••••••••••••••••••••••••••••••• /

FIELD Title = {6,45,"\033[35mScrolling Window Title" };

WINDOWREQ dsp_win
{ WINDOW_REQ, 0, DSP_WIN, SCROLLING, 35,35, '2', 40, 5,

FALSE, 8, 10, FRM, FALSE, '7', &Title, NIL }:

DSPREQ message
{
DSP_REQ,
0,

DSP_WIN,
NIL};

ERA8REQ dspwERA
{
ERASEW_REQ,
0,
DSP _WIN};

/••...•....••••••.•... /
,. WINDOW USED FOR USER INPUT .,
j •••••••••••••••••••••••••••••• /

FIELD conf2Title = {8,13,"Layer 2 configuration"}:

WINDOWREQ conf2_win
{ WINDOW_REQ,0,CONF2_WIN, STATIC, 44,60, '3', 3, 8,

TRUE, 4, 20, FRM, FALSE, '5', &conf2Title, NIL }:

,. ALLOW FOR SPACE-BAR TOGGLE OF FIELD WITH DEVEOLPER DEFINED RESULTS 0,
j •• /

SETUP_TYPE irWork. ir: /* initial and saved values */

FKEY FIELD_TYPE
{ {ON,"NRZ ","O",NIL}. {ON,"NRZI" ,"1" ,NIL}. {Oxff,"","",NIL} };

FKEY FIELD_TYPE
{{ON,"S ","On,NIL}. {ON,"128","1",NIL}. {Oxff,"","",NIL} };

{ {ON,MAUTO ","O",NIL}. {ON,"FIXED","2",NIL}, {Oxff,"",~",NIL} };

5.2-5 7/30/90

-y Application Programming Interface Ch. 5.2: - Example 2

TEKELEC

/ .. /
/. WHERE AND HOW TO DISPLAY THE USER I/O WINDOW -/
j •• j

INPUT_FIELD_TYPE conf2_fields[] =
{
{10,16,3,&irWork..tei, 1,0,0. 10,5.

l,O,127,O}.
"TEl :". "TEl_COM " 9,1,5,5, .

{12,16,2.&irWork.sapi, 1,0,0. 12.5. "SAPI :". "SAPI_COM" ,0.2,6,6,
1,0,63. D}.

{14.16.4.&irWork.t2DD. 1.0.0. 14,5, "HOD :" ,"T20C_COM",l,3,7,7,
0,0,0, D}.

{16.16.4.&irWork.t2D3. 1,0,0. 16,5, "T2D3 :", "T203_COM" ,2 ,4, 8,8.

0,0,0, D}.
{18,16,l,&irWork.encode.l,O,O, 18.5. "Encode :" ,!tENe COM " 3.5.9.9.

O,O,O,encode_fkey}.

{ID.38.3.&irWork.n2DI.
1,I,512,D}.

{12,38.4.&irWork.n2DD,
1,1.9999,D}.

1,0,0. ID,28."N2Dl ;","N201_COM",4,6,O,O,

1,0,0, 12,28,~N200 :","N200_COM",5.7,l,1,

{14,38,l,&irWork..window, 1,0,0. 14.Z8,"Window :","WIN_COM

1,1,7. OJ.
{16.38,l,&i rWork..modulus, 1, 0,0, 16,28. "Modulus :". "MOD_COM

D.D.D,mod_fkey},

6 ,8,2, 2.

7.9.3,3,

{18,38, 1,&; rWork. tei_flag, 1,0,0, 18,28, "TEl val :", "TElA_COM" ,8 ,a, 4,4,

a,O,O,tei_fkey},

{O,O.O,O,O. a,a,a,a,a,O,O}
};

INPREQ
{

conf2_ input =

INPUT_REQ,D,conf2_fields.D.CYAN,YELLOW.GREEN.2D,23,
MAGENTA.2D,5};

/-------------------- end uiTab. c ---------------_./

5.2·6 7/30/90

)

.. Application. Programming Interface Ch. 5.2: Example 2

TEKELEC

j •••

•
• File name: uiTab.h
,

" Description: Definitions used for the user interface.
•
• Version Date ID Comment
•
• 1.0 030790 RHT Created.
... /

#define NUM_OF _WINDOWS 30 /. Number of windows */
#define NUM_OF_BOXES 30 /. Number of structures "/

extern DISPLAY dsp[]; /. System arrays. ./

extern BOX box[] ; /, System arrays. "/

#define ERROR_WIN 0
#def ; ne DSP_WIN
#define CONFZ_WIN 2

/.

• External declaration of boxes . . /
extern BOXREQ box l' - .
extern byte 'Boxl[] ;

extern WINDOWREQ error_win;
extern WINDOWREQ dsp_win;
extern WINDOWREQ conf2_win;

extern DSPREQ message;

extern ERABREQ dspwERA;

extern INPREQ conf2 _input;
extern INPUT_FIELD_TYPE conf2_field.[];

5.2-7 7/30/90

Application,Programming ..interface Ch. 5.2: Example 2

typedef struct
{
int portnum;

int tei;
int sap; ;
int mode;
int D_chan;

int Bl _chan;

int B2 _chan:
int interface:
int station;
int encode;
unsigned int bitrate;
i nt tei_fl a9;
int t200;
int t203;
int n201;
int n200;

int window;
int modulus;

int config:
int phys_setup;
int bit _1n\l;

int nt_power;
} SETUP_TYPE;

/" Structure for setup layer 1 and 2 ,/

TEKELEC

extern SETUP_TYPE ir;
extern SETUP_TYPE irWork;

;- Text message output -/
extern byte msgl[]:
extern byte msg2[];

/--------------------- end uiTab.h ----------------------./

5.2-8 7/30/90

J

\

. Application· .. Programming ·Interface Ch. 5.3: Example 3

Introduction

TEKELEC

EXAMPLE THREE:
LISTING FILES FROM A DIRECTORY

This appendix contains the files for example 3. There are
three required files.

• ex3.c
• uitab.c
• uitab.h

Note that the uitab.c and uitab.h files are not the same files as
used for examples 1 and 2. These files contain the text to be
displayed in the box and windows.

This example consists of two box, the two list selectors shown
in Figure 5.3-1 and two windows. The boxes and windows
displayed depend on the selection made.

If Load is selected, the display will appear as shown in Figure
5.3-1. The second box or list selector is displayed using
getFileChoice to display the list of files. Once a file is
selected, it is marked with an asterisk, the border of the box
changes to include an arrow and a static window showing the
choice is displayed.

-G I C-Shell f-
SESSION

} Load
Save
B<itS

ASYNC.CO
BSC.CO
BSCTAB.CO
CHAMPS.CO String Selected - Choice Number
CONVERT. CO
CPM.CO ... DDCMP.CO 1 ·DDCMP.CO
FLH.CO
FLHD.CO
FRAMEM.CO
FRMDMI.CO
FRMENU.CO

Figure 5.3-1: Example 3

If Save is selected, a scrolling window is displayed with the
message The choice made was SAVE.

5.3-1 7/30/90

-,:- - Application Programming Interface Ch; 5.3: Example 3

TEKELEC

I···
*
•
*
*
*

File name: ex3.c

'Description: Oepending on the choice made from a list box, display
either a scroll ing window or another' box. This other

*
*
•

box displays a list of directory files. When a selection
has been made it is marked and a static window displays
the filename and choice number,

*
* Version Date ID Comment
•
* 1.0 030790 RHT Created.
......•.•.••.•••...........•.•.•............•.••.............••........ /

#include "mainsym.h"
#include "ui.h"
#include "uitab.h"

main()
{

BOXCONF eonf;

j •••••••••••••••••••••••••• /

f* INITIALIZE MENU SYSTEM of

1··························/

1··1
f* MOVE STRING FIELDS INTO THEIR ASSOCIATED ARRAY *(

I··j
fillBoxArea{&box_l.Boxl);

I··· ·1
f* DISPLAY EACH LIST BOX UNLESS ESC OR CANCEL IS SELECTED *(

I··· ••... /
for(;;) {

box_l.choice = TRUE;
userlnterface{&box_l,&conf,dsp,box);
switeh(eonf.exit) {

case GO: 1························1
case RIGHT: f* IGNORE THESE ENTRIES 'f

case LEFT: 1························1
break;

5.3-2

I· set re-display ·1
I· display list box ·1

7/30/90

)

)

. Application:!?rogramming Interface Ch. 5.3: Example 3

TEKELEC

j •••••••••••••••••••••••••••••••••••• /

,. HANDLE THE CHOICE MADE AND SET .,
,. THE HIGHLIGHT TO THE SAME CHOICE 0,
/ /

case RTN: handle_choice(conf.choice}:
conf.choice;

box_l.setRow = conf.row;
break.;

j* highlight the *;
j* selee. position */

}
}

"

}

case ESC: / •••••••••••••••••••••••••• /

case CAN: ,. RESET, CLEAR THEN EXIT .,
default: / ••••••••••••••••••••••••• $/

• Determine how to handle the choice made . . ,
handle_choice(choice)
int choice;
{

}

switch (choice) {

}

case 1: /* load */

handle_load() ;
break;

case 2: j* save *j

userlnterface(&excbERA,NIL,dsp,box):
userlnterface(&choicewERA,NIL,dsp,box):
userlnterface(&dsp_win,NIL,dsp,box):
userlnterface(&message,NIL,dsp,box):
break;

case 3: /* ex.it program */

end_program() ;

5.3-3

j* erase excF_box */

/* erase choice_win */

/* display window */
/* display message */

7/30/90

·Application.·Programming Interface Ch. 5.3: Example 3

TEKELEC

, .
• Display a box containing a list of the files within \tekelec\system
$ which end with the extension 'co' . . ,

handle_load()
{

byte ·pfile;
BOXCONF conf;

userlnterface(&dspwERA,NIL,dsp.box);
userlnterface{&choicewERA,NIL.dsp,box); /. erase choice_win *j

}

"

pfile = getFileChoice(&excF_box,EXC_PATH,"co",
excFtitle,excErr,FALSE,NIL,O,&conf);

if(conf.exit == CAN I I conf.exit == ESC) return;
cSToggle(excF_box.p,conf.choice,O,'·'. ' ,) ; ,"
excF box.choice = FALSE; ,.

-
excF_box.frame = FRM+RAR; ,.
excF box,satRow - = conf. row; ,.
excF_box,offset = conf .choice; ,"
userlnterface(&excF_box,&conf,dsp.box); " excF_box.choice = TRUE; ,.
excF_box.frame = FRM; " excF_box.setRow = excF _box. row; " excF_box.offset = 0; ,.
handle_box(conf.choice,pfile); ,"

mark choice "' highlight off .,
add arrow .,
keep the 1 is t .,
displayed "' display box .,
highlight on "
remove arrow .,
reset the list .,
displayed "
display choice "

$ Display a window containing the string and choice number selected.

"
handle_box(choice,pstr)
int choice;
byte ·pstr; .
{

}

1····$·······························1
" SET THE STRING AND CHOICE NUMBER "

1····································1
Choice_Cenf.title = pstr;
itoa(choice,Choice_Conf,output):

1····················1
" DRAW THE OUTLINE "

1····················/
choice_win,event = WINDOW_REQ;
userlnterface(&choice_win,NIL.dsp,box);

/ •.•......•••••......•••........•••. /
,. INSERT THE TEXT INTO THE WINDOW"
/ /
choice_win.event = OSP_REQ;
Ch_C.f[O]->changed = TRUE;
userlnterface(&choice_win,NIL,dsp.box);

5.3·4 7/30/90

)

:"Application Programming Interface Ch. 5.3: Example 3

TEKELEC

jO

• Convert the integer to an ascii string.
'j

ito.{n, s)

int n;
byte s[4];
{

int i=O.j,tmp;

do { /. convert integers to ascii in reverse order -/
s[i++] n % 10 + '0';

} while{ (n j= 10) > 0);

s[;]='\O';

for{i=O, j=strlen{s)-I; i<j; i++, j--) {

tmp = s[i];

/- fix the order of digits ./

s[i] s[j];
s[j] = tmp;

}
}

j'

• Reset attributes. turn curSor on and then exit to the C-shell.
OJ

end_program()

{

}

printf{RESET):

printf{CLEAR) ;

enablecur(_stdvt);
exH{O) ;

5.3-5
•

7/30/90

C" Application Programminglnteriace Ch. 5.3: Example 3

TEKELEC

, ...•••••••••.........••••••••.......••.............•••.........••.••...
o

• File name: uitab.c
•
o Description: Initialize all user interface windows and boxes.

•
• Version Date ID Comment
•
• 1.0 030790 RHT Created.
... /

#include "mainsym.h"
#include Itui.h"
#include "uitab.h"

DISPLAY dsp[NUM_OF_WINDOWS]; 1* System configuration. OJ
BOX box[NUM_OF_BOXES]; 1* System configuration. *J

; /
/. DISPLAY ENTIRE BOX OF CHOICES 0/

byte 'Box1[]
{"SESSION

"Load
"Save
~Exit5

BOXREQ box_l

{ BOX_REQ,D,SESSION_BOX,l1, '3.', 5, 2, TRUE,

TRUE, 5, FRM, '6 1
• '5', 5, NIL.O.2};

j ••••••••••••••••••••••••••••••••• ;

/. DISPLAY CHOICES OF FILE NAMES ./
/ •.......•.•........••••.......... /
BOXREQ

{

excF_box
BOX_REQ, 0, FILE_BOX, 17, '2', 5, 8, TRUE,

TRUE, 19. FRM, '4'. '5'. lOa, NIL,I,S};

byte excFtitle[16] 'DIRECTORY FILES';

byte excErr[41] = "NO '·.co' FILES, PRESS CANCEL TO CONTINUE";

5.3-6 7/30/90

•..... " Application·Programming Interface

TEKELEC

; .. /
ja NEEDED FOR THE INITIALIZATION OF THE MENU SYSTEM OJ

1··/
FIELD errStr ~ {ZZ,l,NIL}:

DSPREQ
{

errDsp

OSP_REQ,
0,
ERROR_WIN,
(byte a) &errStr
} ;

FIELD noTitle = {ZO,I,NIL}; ja empty string Of

error_win WINDOWREQ
{ WINDOW_REQ,O,ERROR_WIN, STATIC,

FALSE, 20, ZO, NOF, FALSE, '7',
40,40, '2', 1,20,
&noTitle, NIL };

1··/
ja DISPLAY A MESSAGE FOR THE SAVE SELECTION aj , .. /
FIELD Title = {6,45,"\033[36mScrolling Window Title" };

WINDOWREQ dsp_win
{ WINDOW_REQ, 0, DSP_WIN, SCROLLING, 35,35, 'Z', 40, 6,

FALSE, 8,10, FRM, FALSE. '7', &Title. NIL};

1···/
ja USED TO DISPLAY WHICH CHOICE WAS MADE OJ

t···/
FIELD TitleZ {10,30,"String Selected - ChOice Number" };

byte p_ch[4] ~ {OxOO, OxOO, OxOO, OxOO};

FIELD_DEF Choice_Conf
{TRUE, lZ, 32, NIL, IZ, 52, p_ch };

Choice_Str = OSPREQ
{ DSP REQ, 0, CHOICE_WIN, NIL} ;

WINDOWREQ choice_win
{ WINDOW_REQ,O,CHOICE_WIN, STATIC, 35,35, '2', 30, 10,

TRUE, 12, 15, FRM, FALSE, '7', &TitleZ, &Ch_C };

5.3-7

Ch. 5.3: Example 3

7/30/90

""',Application' Programming Interface

TEKELEC

/ /
/" RE-DISPLAY AND ERASE WINDOWS "/
/••..................... /
DSPREQ message

{
DSP_REQ.
0,

DSP_WIN.
"The choice made was SAVE"};

ERABREQ dspwERA
{
ERASEW_REQ.
0,
OSP _WIN};

ERABREQ excbERA
{
ERASEB_REQ.
O.
FILE_BOX};

ERABREQ choice.ERA
{
ERASEW_REQ,
0,

CHOICE_WIN};

/*------------------- end uiTab.c

5.3-8

Ch:·'5.3: Example 3

----------------*/

7/30/90

•
I

I
/

.c-Application Programming Interface Ch._5.3: Example 3

j ••• ••••••••••••••••••

•
• File name: uiTab. h

•
• Description: User interface definitions.
•
• Version Date 10 Comment

•
° 1.0 030790 RHT Created.
••• j

#define NUM_Of_WINDOWS 30 jO Number of windows *;

#define NUM_Of_BOXES 30 j' Number of structures OJ

#define EXC_PATH "\\tekelec\\system\\"

#define ERROR_WIN ° #define DSP_WIN 1
#define CHOICE_WIN 2

#define SESSION_BOX ° #define fILE_BOX 1

extern BDXREQ box l' - ,
extern BOXREQ excF_box;

extern byte 'Box 1[];

extern WINDOWREQ error_win;
extern WINDOWREQ dsp_win;
extern WINDOWREQ choice_win:

extern DSPREQ message;
extern DSPREQ Choice_Str;

extern fIELD_DEf Choice_Conf;
extern fIELD_SEQ Ch_C;

extern ERABREQ dspwERA;
extern ERABREQ excbERA;
extern ERABREQ choicewERA;

extern byte *getFileChoice();

extern byte excftitle[];
extern byte excErr[];

'*-------------------- end uiTab. h ----------------------*'

TEKELEC 5.3-9 7/30/90

i
!

Introduction

TEKELEC

Appendix A:
INCLUDE FILE UI.H

This appendix contains the file uLh. This file must be included
in ali applications using the user interface as describe in this
document. This file contains the structure definitions and
global variable definitions.

/•........................•..............•.....................
•
• File name: ui.h
•
• Description:
•
•
•
• Functions:
•
•
• Version

This file contains the definition of the
structures and contants used when interacting
with the windowing user interface.

Date 10 Comment · -----'-------,- - --- ----------- --- ---------- ---- - ---- ------- --- - ---

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

O.L
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
2.0
2.1

. 121288
021188
021489
022189
02ZZ89
022289
030189
030289
030689
030789
030889
032989
032989
041389
112089

TEKELECIIA
TEKELECIIA
TEKELEC/IA
TEKELEC/EvdM
TEKELEClEvdM
TEKELECIIA
TEKELECIIA
TEKELEC/IA
TEKELECIIA
TEKELECIIA
TEKELECIIA
TEKELEC/IA
TEKELECIIA
TEKELECIIA
TEKELECIIA

First created
Switch Release 1.0
Ntsim development
Input
Input Field Struct
choice in BOX_REO
EDIT_REQ & EDITREQ
ERASE_FIELD & BINARY INPUT
SCROLL_INPUT
scrol1Buf in EDITREQ
SCROLL_REQ & SCROLLREQ
offset parameter in list box
row in BOXCONF
NTITE SIMULATOR
BOXREQ edit sim 3.0

... /

A·1 7/30/90

Application Programming Interlace

TEKELEC

f'
• Window types.
·f

#define STATIC
#define SCROLLING

f·

• Frame Flags.
·f

#define NOF
#define LEFTF
#define TOPF
#define RIGHTF
#define BOTF
#define FRM

f·

• Arrow Fl ags.
·f

#define LAR
#define TAR
#define RAR
#define BAR
#define ARS

f·

• Edit modes.
·f

#define
#define

typedef struct
{
byte *area;
byte ·next;
byte ·previous;
}LINE;

typedef struct
{

LINE *free;
LINE ·used;
LINE .1ast;
} SCRAREA;

o
1

OxOOOO
Ox0001
Ox0002
Ox0004
Ox0008
LEFTF+TOPF+RIGHTF+80TF

Ox0100
Ox0200
Ox0400
Ox0800
LAR+TAR+RAR+BAR

o
1

A-2

App A: ui.h

7/30/90

";

!

)

·. Application 'ProgrammiAg Interface

TEKELEC

,"
" Window administration structure.

"'
typedef struct

,"

{
byte
byte
byte
int
int
int
int
int
int
int
byte
int
SCRAREA
int
int

posES];
co10r[6];
text[500];
col;
row;
minRow:
1f18xRow;
1 en;
strLen;
frame;
beolor;
init;
.p:
type;
back.;

int oldRow;
}DISPLAY;

• Box admi~istration structure.

"'
typedef struct

{
byte posES];
byte co10r[6];
byte text[500];
int col;
int row;
int minRow;
int maxRow;
int len:
int strLen;
int frame;
byte bcclor;
int init:
SCRAREA .p;
byte rev[5];
byte dummy;
int lines:
int offset;
int setRow;

," int edit; "' }BOX;

A-3

/*1.10·/
/·1.12*/

App A: ui.h

7/30/90

.. Application·, Programming Interface

TEKELEC

,"
•
• System arrays.

"
"'

extern DISPLAY dsp[];
extern BOX box[];

" •
, STATIC WINDOW DEFINITIONS. ,
"

#define MAX_FIELDS 30

typedef struct
{
int changed;
int rowT;
int colT;
byte ·title;
int rcwO;
;nt colO;
byte ·output;
} FIELO_DEF;

typedef struct
{
FIELD_DEF 'f[MAX_FIELDS];
} FIELD_SEO;

" , Event definitions.

"

#define WINDOW_REO 10 /* user interface signals
#define DSP_REO 11
#define REL_REQ 12
#define LED_REO 13
#define BOX_REO 14
#define BOX_CONF 15
#define ERASEB_REO 16
#define ERASEW_REO 17
#define INPUT_REQ 18
#define EDIT _REQ 19
#define STR_EDIT 2D
#define ERASE_FIELD 21
#define BINARY_INPUT 22
#define SCROLL_INPUT 23 /*t.7*/
#define SCROLL_REO 24 /*1.9*/
#define BOX_INPUT 25 /*1.9*/

A·4

App A: ui.h

"

7/30/90

\
/

\

Application Programming . Interface

" • Event structure definitions.

TEKELEC

"

typedef struct
{
int event;
int taskld;
int window;
byte ·text:
}DSPREQ;

typedef struct
{
int event;
i nt taskld;
int window:
byte ·scrollBuf;
byte ·max;
}EDITREQ; "1.8"

typedef struct
{
int event;
int taskld;
int window:
byte ·scrollBuf;
byte ·max;
}SCROLLREQ;

typedef st ruet
{
int event;
int taskld:
int window:
}ERASEFIELD;

typedef struct
{
int event;
int task.ld;
int window:

}RELREQ;

typedef struct
{
int event:
i nt taskld;
int box;
}ERABREQ;

A-5

App A: ui.h

7/30/90

,".Applieation,·Programming Interface

TEKELEC

typedef struct
{
int row;
int col;
byte ·str;
} fiELD;

typedef struct
{
int event:
int taskld;
int window;
int type;
int 1 en;
int strLen;
byte color:
int col;
int row;
int clear:
int minRow:
int maxRow;
int frame;
int back.;
byte beolor;
fIELD -title;
FIELD ·output:
}WiNDOWREQ;

typedef struct
{
int event;
int taskId;
int box;
int len;
byte color;
int col;
int row;
int clear;
int choi ce;
int max Row;
int frame;
byte beD lor;
byte rev;
int lines;
SCRAREA .p;
int offset;
int setRow;

," int edit:
}BOXREQ;

App A: ui,h

/*1.10*;
/*1.12*/

"'

A·S 7/30/90

)

· Application Programming Interface

TEKELEC

typedef struct
{
int
int
long int
byte

event;
taskld;
vtnum;
·pleds;

long int ledword;
}LEDREQ;

typedef struct
{
int event;
int exit;
int choice;
byte ·str;
int row; /*2.11./
}BOXCONF;

typedef struct
{
byte fkey;
byte *disp_text;
byte * ... a1ue;
byte ·link;
} FKEY_FIELD_TYPE;

typedef struct
{
byte row;
byte column;
byte len;
byte ·buff;
byte type;

byte If _flag;

byte arrow_nag:
byte e_row;
byte e_column:
byte 'c _teJlt:
byte *c_buff;
byte up;
byte down;
byte right;
byte left;
byte nUffi_chk;
unsigned int min;
unsigned int max;
fKEY_fIELD_TYPE 'fk_ptr;
} INPUT_FIELD_TYPE;

A-7

App A:· ui.h

;* x position for field input */
;* y position for field input *j

j* Max len of field */

/* Input buffer *'
/* If 1, input = byte or int */
/* If 0, input = string *j

j* If 1, insert 1f before null *j

/* for string input *;
t* */
j* *f

/* *;
/* */

/* *;
/* *;
j* */
/* *j

j* *j

j* */

I'

I'

I'

'I
'I

'I

7/30 190

.'. Application Programming Interface

TEKELEC

typedef st ruct
{
int event;
int taskld;
INPUT_FIELD_TYPE 'fp;
byte fit
char ·i_color;
char
char
byte
byte
char
byte
byte
}INPREQ;

extern DSPREQ

extern FIELD

"t_color;
"c_color;
c_row;
c_col;
·s_col or;
s_row;
s_col;

errDsp;

errStr;

/,,--------------------

App A: ui.h

" Index of start field ./

/" Color of field content ./
/' Color of field 1 abel ./
/. Color of commnet ./

j" Color of status info ./

end ui.h ----------------------,,/

A-8 7/30/90

)

Introduction

,
)

TEKELEC

Appendix B:
INCLUDE FILE MAINSYM.H

This appendix contains the file mainsym.h. It must be included
in all applications using the user interface as described in this
document. It includes the following information:

• General symbols
• Keyboard codes
• Color commands
• Screen attributes and commands
• Port Definitions
• Definitions for UI frame and FSearch
• Record structure

j ••• ••••••••••••••••••

•
• File name: mainSym.h
•
• Description: This file contains the global symbols.
•
• Version Date 10 Comment
•
• 1.0 030790 RHT Created. •..........•.•.........••...•........••••........•............••....... /

#include <fcntl.h>
#include <mtosux.h>
#include <stdio.h)

8-1 7/30/90

Application Programming Interface App B: mainsym.h

j'

• GENERAL USEFUL SYMBOLS
OJ

#define byte unsigned char

extern byte orgC;
extern byte termC;
extern byte *i nterFace. -device;
extern int stand_type;
extern byte *mal1ocRe() ;
extern byte 'findChar() ;
extern long int get_dest() ;
extern int rxlen;
extern long _stdvt,getch() ;
extern char 'mallac() ;
extern byte *findElement() ;
extern int Semafore;

#define STOP 0
#define CONT 1
#define NIL OL
#define TRUE -1
#define FALSE 0
#define YES 0
#define NO 1
#define OFF 1
#define ON 0
#define MOD(x,y) (x % y
#define AND &&
#define OR II
#define NONE -1

#define MAX_NUM 51

#define ELE_BUF _LEN 25.7

tldefine MSG_BUF_LEN 256

#define MAX_MSG_LEN MSG_BUF LEN

#define NUM_OF_MESSAGES 21

#define NUM_OF_CCITT 30

TEKELEC B-2 7'30/90

· Application'Programming Interface App B: mainsym.h

jO

o KEYBOARD CODE DEFINITIONS
OJ

#define Fl OxBl
#define F2 OxB2
#define F3 Ox83
#define F4 Ox84
#define F5 Ox85
#define F6 Ox86
#define F7 Ox87
#define F8 Ox88
#define F9 Ox89
#define FlO Ox8a
#define ,eyO Ox30
#define ,eyl Ox31
#define ,ey2 Ox32
#define ,ey3 Ox33
#define ,ey4 Ox34
#define ,ey5 Ox35
#define key6 Ox36
#define ,ey7 Ox37
#define ,ey8 Ox38
#define ,ey9 Ox39
#define UP OxOb
#define DOWN OxOa
#define RIGHT OxOc

) #define LEFT Ox08
#define RTN OxOd
#define DELETE Ox7f
#define ESC Oxlb
#define CAN Ox18
#define GO Ox19
#define CTRL_A OxOl
#define CTRL_B Ox02
#define CTRL_C Ox03
#define CTRL_D Ox04
#define CTRL_E OxOS
#define CTRL_I Ox09
#define CTRL_N OxOe
#define CTRL_P Oxl0
#define CTRL_Q Oxll

f'
0 SCREEN COMMAND MACRO
Of

#define setScr(x) printf(x);fflush(stdout);

TEKELEC B-3 7'30'90

. ,',Application Programming Intertace

/*

° COLOR COMMANDS
0/

#define BLACK "\033[30m"
#define RED "\033[31m"

TEKELEC

#define GREEN
#define YELLOW
#define BLUE
#define MAGENTA
#define CYAN
Ndefine WHITE
#define SBLACK
#define BRED
#define BGREEN
Ndefine BYElLOW
#define BBlUE
#define BMAGENTA
#define BCYAN
#define BWHITE

/*

° SCREEN ATTRIBUTES
0/

#define RESET
#define HIGHLIGHT
#define UNDERLINE
Ndefine BLINK
#define REVERSE

/0

• SCREEN COMMANOS
0/

#define
#define
#define
#define

/0

POS_CUR
DEl_EOl
DEl_EOS
CLEAR

° PORT DEFINITIONS
0/

#define
Ndefine

PORTA
PORTB

'\033[3lm"
"\033[33m"

"\033[34m'
"\033[35m"

"\033[36m"
"\033[37m"

"\033[40m"
"\033[41m"

"\033[4lm"
"\033[43m"

"\033[44m"
n\033[45m"
"\033[46m"

"\033[47m"

"\033[Om"
"\033[lm"
"\033[4m'

"\033[5m"
"\033[7m"

"%c[%d;%df".Oxlb
"%c[OK",Oxlb
"%c[OJ",Oxtb

"%c[lJ" ,Oxlb

o
1

B-4

App B: mainsym,h

7'30,90

.... Application Programming· Interface

TEKELEC

fO

° DEFINITION FOR UI FRAME
of

'define UI Ox03
#define MEl OxOf
#define IDREQ Ox01
#define IDASS Ox02
Ndef;ne IDDENY Ox03
#define IDCHK Ox04
#define IDCHKACK Ox05
#define IDREL Ox06
#define IDCONF Ox07

fO

° DEFINITION FOR FSearch
Of

j* Di rectory record data lengths Of

#define FN_LEN 8
#define EX_LEN 3
#define AT_LEN 1
#define RS_LEN 10

/* Directory Record Structure *t
struct DREC

{
char
char
char
char
unSigned ·short
unsigned short
unsigned short
unsigned long
} ;

dc_fn[FN_LEN];
dc_ex[EX_LEN];
dc_at;
dc_rs[RS_LEN] ;

dc_tim;
dc_dat;
dc_str;
dc_fsz;

B-5

fO

f'
fO
fO

App B: mainsym.h

;* filename length */
/* extension length *j

f* file attributes length */
f* reserved bytes length */

fO file name *j

fO file extension Of

f' file attributes Of
fO reserved bytes Of

time file was created Of

date of file creation Of

starting cl uster number Of

file size (bytes) Of

7/30/90

I

I

I

I
I

I
I

I

I

I

I

I
I

I

I

I

I

I
I

I
I

I

