
,,',

TARBELL BASIC Table of Contents October 19, 1978

Page Description

1 Introduction:

1-1 Introduction & Modes of Operation
1-2 Line Descriptors & Differences

2 Commands:

2-1 BYE, CLEAR, CONT, DELETE, ENTER, LIST, NEW
2~2 RUN, SYMBOL, EDIT

3 Statements:

3-1 APPEND, ASSIGN, BGET, BLOAD, BPUT, BSAVE, CHANNEL, CLOSE, DATA
3-2 DEF, DIM, DROP, END, FOR, GET
3-3 GOPROC, GOSUB, GOTO, IF, INPUT, LET
3-4 LOAD, NEXT, ON GOSUB, ON GOTO, OPEN, OUT, POKE, PRINT
3-5 PROCEDURE, PUT, READ, RECEIVE, REM, RESTORE, RETURN, SAVE, STOP, WAI'l

4 Intrinsic Functions:

4-1 ABS, ASC, ATN, CALL, CHR$, COS, EOF, EXP, FRE, HEX
4-2 HEX$, INP, INT, LEFT$, LEN, LOC, LOG, MATCH, MID$
4-3 OCT, OCT$, PEEK, POS, RIGHT$, RND, SGN, SIN, SPACES, SPC, SQR, STR$
4~4 TAB, TAN, USR, VAL

5 Special Functions:

5-1 Introduction, DISK, DO
5-2 FILE, RECORD, TYPE

6 Operators:

6-1 Arithmetic & String
6-2 Logical

Appendixes:

A Error Code Explanations
B Definitions of Terms
C Memory Usage
D Internal Formats
E InputjOuput Section
F Sample Run
G Program Example
H Reserved Words
I Known Bugs, Limitations, & Peculiarities
J How to Load BASIC

. K Related Publications
L Comparison to other BASIC's

Index

Copyright (c) 1978 Tarbell Electronics

TARBELL CASSETTE BASIC

Written by Tom Dilatush of REAL TIME MICROSYSTEMS, 2240 Main St.
No. 18, Chula Vista, CA 92011 for Don Tarbell of TARBELL ELECTRONICS,

,950 Dovien Place, Suite B, Carson, CA 90746.

~his manual describes TARBELL 'BASIC in such a way as to be
understood by those having previous experience with other BASIC's.
It is not intended as a tutorial, as there are several good
BASIC texts (see Appendix K). Where reasonable it is
upward compatible from ALTAIR* 8800 BASIC release 4.0 8k version.
Items which differ significantly from that version are marked
with an asterisk. Items enclosed in angles «ibem» are defined
in Appendix B. Items enclosed in brackets ([item]) ara optional.

Keyboard Control Characters:

7F rubout
15 control-U
03 control-C
09 control-I
13 control-S

deletes the last character entered (except in EDIT mode)
deletes the current line being entered
stops the program from running or a listing operation
tabs 8 spaces to the right
stops the program or printing temporarily until another
key is pushed

Modes of Operation:

Direct Mode:
Most TARBELL BASIC statements may be entered and executed while
in command level. This statement may be only one line, but
may be any length up to the limits of memory. Statements which
would modify allocated memory, such as DIM & LET, are not allowe"'l"!
in direct mode entries. Statement names are not allowed.
Multiple statements per line may be seperated by colons (:).

Entry Mode:
This mode is entered by typing "ENTER" or ":", and is
used for creating lines of program text from the keyboard.
it is also used for inserting lines. See ENTER command.

Edit Mode:
This mode is entered by typing "EDIT" and a line descriptor.
It is used for making changes to existing lines without
having to retype the whole line. See EDIT command.

Run Mode:
This is the normal, programmed mode. The stored TARBELL
BASIC program begins executing when a "RUNu command is entered.

To acquire a better feel for the modes of operation, and for using
TARBELL BASIC in general, see the sample run in Appeq.dix; F.

* ALTAIR is a trademark/tradename of Pertec COD,lputer Corp.

* Line Descriptors:
In TARBELL BASIC, lIne descriptors m&y not only be line
numbers, as in conventional BASIC'S, but also may be any
alphanumeric string of characters (including numbers),
except spaces or punctuation. If the descriptor is in a
statement that is referencing another statement, it may
have an offset appended. The offset is indicated by the
symbol "+" or "_no This feature may be used to greatly
increase readability, and thus increase maintainability of
programs.

Line descriptors need only be used on lines which are referred
to by another statement, such as a GOTO, GOSUB, GOPROC, RESTORE,
etc. Line descriptors are used in a similar fashion to the
labels in assembly language. A line descriptor may be a number,
just as in normal BASIC's, but need not be in any order. Line
descriptors usually are chosen with names that mean something
in the program, so that it will be easy for the programmer to
remember the name of a particular line or subroutine.

See Appendix G for more examples of the use of line descriptors.

Examples:

SORT A=B+6

GOTO SORT+l

GOSUB SORT - 5

"SORT" is the descriptor, in this case, the
name of the statement.
"SORT+l" is the descriptor, indicating a
transfer to the statement following "SORT". That
statement mayor may not have a name of it's own
"SORT - 5" is the descriptor, indicating a trans
subroutine call to the statement 5 lines before
the statement named "SORT".

10 FOR N=l TO 5
05 PRINT N,SQR(N)
20 NEXT N

Line numbers can still be used, but need
not be in order, and are not used to
edit in the same manner as other BASIC's

Running ALTAIR BASIC programs under TARBELL BASIC:

1. First, since the internal form of ALTAIR BASIC differs drastically
from the internal form of TARBELL BASIC, and since this is the form
that ALTAIR BASIC programs are saved onto cassette, these programs
will not directly load into TARBELL BASIC, even though they may be
stored on TARBELL cassette format. There are a few different ways
to handle this problem. The simplest, but also the most time
consuming, is to retype the whole program into TARBELL BASIC from
the keyboard. The second, which requires the use of a paper-tape
punch and reader, is to punch out the programs to paper tape, then
read them into TARBELL BASIC from paper tape instead of the keyboard
The third, which requires some technical know-how, is to replace the
ALTAIR BASIC console output routine with the cassette output routine
provided as part of the I/O section of TARBELL BASIC. The programs
could then be read directly into TARBELL BASIC by using LOAD.

2. The IF statement in ALTAIR BASIC evaluates a variable as true if it
is not zero. In TARBELL BASIC, true must be a minus one.

3. ALTAIR BASIC's CLOAD and CSAVE are replaced by GET, PUT, LOAD, SAVE,
BGET, BPUT, BLOAD, and BSAVE in TARBELL BASIC.

4. In TARBELL BASIC, strings must be quoted in a DATA statement.

1-2

Commands: (can only be used from command mode)

* BYE
Causes a jump to location 0000 in memory. Example: BYE

CLEAR [<expression>]
Sets all program variables to zero. Sets all strings to nulls.
Releases all string and array space. In ALTAIR BASIC,
"CLEAR «expression»" defines the amount of space to allot
fo: strings. TARBELL BASIC will automatically allot all spa?e n~t
being used for actual programs to strings and arrays. To ma1nta1n
compatability with ALTAIR BASIC, "CLEAR <expression>" will be
processed identically to the CLEAR command.
Examples: CLEAR CLEAR 2000 (does the same thing)

CaNT
Continues program execution after a controllC has been input or
after a "STOP" or "END" statement has been executed. Execution
resumes at the statement following the break, unless an input
from the terminal was interrupted. In the latter case, execution
resumes with the interrupted statement. Execution cannot be
continued if the program was modified by direct
mode entries. Example: CaNT

* DELETE <line descriptor> [<line descriptor>]
Eliminates the line(s) indicated from the stored program. If only
the first <line descriptor) is present, only that one line is deleted.
If both <line descriptor)'s are present, both those lines, and
all lines in between are deleted. If there is no such line
descriptor, an error message is issued.
Examples: DELETE START+4 DELETE LOOP LOOP+S

* ENTER [<line descriptor>] or : [<line descriptor>]
Causes TARBELL BASIC to go to program entry mode. Any input after
this statement is interpreted as program statements. A carriage
return delimits each line. The "ENTER" statement is provided to
allow statements without names to be entered. If <line descriptor>
is ommitted, entry begins after the last statement currently in
memory. If <line descriptor> is present, entry begins immediately before
the line indicated. Entry mode is terminated by two carriage returns
in a row. Multiple statements per line are allowed if separated by a colon.
The colon shown in the command format above, however, is a shorthand
form of ENTER, the same way that "7 H is a shorthand form of PRINT.
The first line in a program should always have a label.
If any of the following commands are invoked from entry mode, they
will be performed, then command mode will be reentered:

LIST,DELETE,EDIT,RUN.
Examples: ENTER ENTER ADDC+3 ENTER LOOP START+I

LIST [<line descriptor>] [<line descriptor>]
Lists the program starting from the statement corresponding with
the first <line descriptor>, until the end is reached, if there is no
second <line descriptor>, or until a controllC is entered.
If neither <line descriptor> is present, the whole program is listed.
Examples: LIST LIST START+lO LIST LOOP ENDl

NEW
Deletes the program in memory, clears all vari les, releases all
string and array space. Example: NEW

RUN [<line descriptor>]
If the line descriptor is included, starts execution of the BASIC
program at the line specified. If the line descriptor is omitted,

. execution begins at the first line in memory. In either case, a
£LEAR is automatically executed first.
Examples: RUN RUN COMO RUN SUBROUTINE+l

* SYMBOL
Types a table of variable names, line descriptors, their types and
their locations. Example: SYMBOL

* EDIT <line descriptor)
Causes the interpreter to enter the edit mode on the line described. The
line will be printed. Once in edit mode, single letter commands of
the form nXs are used, where n is the iteration constant (1 if ommitted),
X is the command (detailed below), and s is the search string (if required).
Note that if it is desired to use a command without the search string,
a carriage-return should be entered immediately after the command letter.

Commands:

U Prints the line up to the present pointer position •
. nO Deletes n characters starting with the present pointer position.

K Kills (deletes) a whole line, then enters insert mode.
nSs Moves the pOinter to the n'th occurance of string s.

Is Performs command S first, then inserts characters at the
pointer position until a carriage return is entered.

nCs Changes the nth occurance of string following C to the
string inserted from keyboard.

Q Returns to command level.
P Prints the line in the edit line buffer. .
A Appends characters to the end of the line until a carriage

return is entered.
nL Lists n lines starting with the present line, and enters edit

mode on the last line listed.
T Type the rest of the line past the pointer, then the line up

to the pointer.
R Replace the edited line in source with the current edit buffer,

and print out new line. ***** IMPORTANT NOTE *****
until this command is executed, the source line is not changed.

nF Move forward n lines and enter edit mode there.
nB Move backward n lines and enter edit mode there.

Ms Move to (line descriptor) and enter edit mode there (search
string s is used for line descriptor).

nX Move pointer back n characters.
n<s,pace> Move pointer forward n characters.

A rubout during command entry will cause it to start allover with
the command entry.

Commands are not echoed -- this makes it much easier to see what you
are editing--if in doubt about what you typed, hit rubout and start over.

The rubout key functions on insert/change commands as a delete key.

')-.?

statements: (can be used from either command or RUN mode)

* APPEND [DISK«O-3» ,1<string expression>[,<string expression>]
Appends a section of program from the ASCII LOAD device (logical
unit #2) to the end of the program presently in memory. If the
optional line descriptor string is present, execution will begin there.
If optional DISK function is not used, last one or 0 is assumed.
Examples: APPEND DISK(3) ,"FOURIER" APPEND SUBNAM$

* ASSIGN <logical device number>,<physical device number>
Assigns a physical device to a logical device. Internally,
this command sets a bit in the MODES table. See Appendix E
for a list of the logical and physical devices.
Examples: ASSIGN 3,1 ASSIGN PR,CRT ASSIGN LOGICAL,PHYSICAL

* BGET [FILE«O-63»,]<variable list>
.Reads from Binary Input logical device into named variables.
If optional file number is not used, the file accessed will
be the one used in the last executed FILE function. An OPEN
statement with a matching file number must have been used already.
If the FILE function has not been used, file 0 is assumed.
Examples: BGET FILE(63) ,QTY,COST BGET X,Y(N)

* BLOAD [DISK«O-3»,]<string expression>[,<string expression>]
Reads a program named <string expression> into memory from the
binary input logical device. All characters of string are used.
The program must have been saved with BSAVE statement.
If optional DISK function not used, last value or 0 is assumed.
If optional line descriptor string used, starts execution at
that location, and can be used to chain programs in this way.
Examples: BLOAD "PAYROLL" BLOAD NEXTPROG$,"BEGIN"

* BPUT [FILE{<O-63» ,]<variable list>
Writes the named variables onto the binary output logical device.
The same rules about the FILE function apply as with BGET.
Examples: BPUT FILE(N) ,QTY BPUT A,B,C(N) BPUT X

* BSAVE [DISK«O-3»,]<string expression>
Writes a program named <string expression> onto the binary output
logical device. All characters of the string are used. Programs
saved using this command will save and load considerably faster
than those saved with the SAVE command.
Examples: BSAVE DISK(O) ,"PAYROLL" BSAVE PROGNAME$

CHANNEL
Prints a table of the assignments of physical to logical
devices. See Appendix E for the default assignments.

* CLOSE [FILE«O-63» ,]<numeric expression>
Discontinues use (closes) a file which was previously
opened under the logical unit <integer expression>.
The optional FILE function need only be used to name the
file being closed when it is different than the last used.
Examples: CLOSE FILE(35) ,3 CLOSE 5 CLOSE BINARY

* DATA <expression list>
Specifies data to be read by a "READ" statement. Expressions
are allowed. String constants must be enclosed by quotes.
Exarnpl~: . DA'rA 1,3,5,7, X+Y, Z "2, II DON" +"TARBELL"

DEF FN<function name>«variable list»=<expression>
Defines a function. The function name can be any legal variable
name. The variable list is a list of dummy variables representing
the variables in the function call. The value of the function is
determined by substituting the values of the variables into the
expression. Functions may be nested to any depth, and string
functions are legal. Any number of variables can be used.
Examples: DEF FNCUBE(X)=X*X*X DEF FNL3(S$)=LEFT$(S$,3)

DEF FNRMS(X,Y) = SQR(X A 2+y A 2)

DIM <array name>(integer) [,<array name>(integer)] ••.
Allocates space for array variables. Any number of dimensions
per array are allowed. The value of each expression gives the
maximum subscript permissible. The smallest is o. If no "DIM"
statement is encountered before a reference to an array,
an error message is given. Multiple arrays may be dimensioned.
Arrays are cleared to zero (numeric) or null (string). Real
subscripts are allowed in array references, and if used, the
integer part of the subscript will be used for the reference.
Examples: DIM PARTNO$(IOO) ,X(3,10) ,VERYLONGNAMESAREALLOWED(5)

* DROP <numeric expression>,<numeric expression>
Drops the assignment of the logical device selected by the first
expression to the physical device selected by the second expression.
Examples: DROP 1,1 DROP LOGICAL, PHYSICAL DROP PRINTD,TTY

END
Puts BASIC back into command mode without a message. Normally
the last statement in a program, but not required. Example: END

FOR <variable name> = <exprl> TO <expr2> [STEP <expr3>]
Execution sets <variable name> = <exprl>. The program then proceeds
until a "NEXT" statement is encountered. <expr3> (or I if STEP <expr3>
is omitted) is then added to <variable name>. If <expr3> < 0 and
<variable name> >= <expr2>, or if <expr3> >0 and <variable name> <= <expr3>,
then the program continues with the statement following the "FOR" statement.
Otherwise, the program continues after the "NEXT" statement.
Examples: FOR N=l TO 5 FOR IND=START TO FINISH STEP INCR

* GET [FILE«0-63» ,]<variable list>
Read from the ASCII mass storage device into the variables
on <variable list>. The data should have been previously
saved by a PUT statement. An OPEN statement using the same
FILE number should have previously been executed. No FILE
number is required if dt is the same file as last accessed.
Examples: GET FILE(2) ,DES$(N) GET X GET X,Y$,Z

* GOPROC <line descriptor>[,<variable list>]
Calls the statement <line descriptor>, passing the variables on the
list. Similar to GOSUB, except it allows the subroutine to have
local variables, which are not affected by assignments outside
the procedure. Also allows passing variables to the subroutine.
The subroutine need not contain a PROCEDURE statement, which is
only used to declare local (not global) variablea •
. Examples: GOPROC SEARCH,STRl$,STR2$,POSITION oopaoc SORT

GOSUB <line descriptor>[,<variable list>]
A subroutine call is made to the line indicated. Tbat la,
execution continues at <line descriptor> until a RmJRH atatement
is encountered, at which time execution is continued at the
statement following the GOSQB statement. Variablea on the
optional <variable list> are passed to the subroutine on the
control stack, and may be picked up by a RECEIVE atateaent,
in the same way that they are in a GOPROC operation.
Examples: GOSUB CALC,X,A$ GOSUB 10570 . GOeUB GIT+I

GOTO <line descriptor>
An unconditional branch is made to the line indicated. That is,

.execution continues at <line descriptor> instead of the next
statement. Examples: GOTO 100 GOTO LOOP+2 GOTO.J.AST-S

* IF <logical expression> GO TO <line descriptor>
If the value of <logical expression> = -1, then execution

. continues at the line indicated. Otherwise, execution continues
with the line following the IF statement. The logical connectives
allowed in <logical expression> are: AND, OR, NOT, >, <, • •
See Appendix B for explanation of logical expressions.
Examples: IF X<128 AND X>31 GOTO EXTRA IF STR$<>-NO· GOTO 100

* IF <logical expression> THEN <statement> [ELSE <statement>]
If the value of <logical expression> = -1 (true), then the first
<statement> is executed. Otherwise, it is not. If the ELSE option is
used, the second statement is executed if the value of <logical
expression> is false. See Appendix B for def. of logical expression.
Examples: IF ANS$=-YES· THEN GOSUB INSTR IF 3*Y-4 THEN PRINT "OK"

IF ARRAY(N)=O THEN GOTO LOOP ELSE STOP

INPUT ["<string>"]1<variable list>
Assigns entries from the INPUT (logical unit '0) device to the
variables on the list. Prompts may be included by enclosing a
string in quotes, separated from the variables by semicolons.
With no prompt, a "?" is printed. A carriage return must be
used to terminate string input. If a carriage return alone is
entered, the variable is set to a null for strings or to a zero
for numbers. If a number is entered in "e" format, be sure to
put a sign or a space after the E, then two digits.
Examples: INPUT A,B$ INPUT "FILENAME",NAM$

[LET] <variable name>=<expression>
, Assigns the value of <expression> to <variable name>. The word

"J;,ET" is optional. Examples: LET X$=Y$+Z$ LET INDEX-S X=2+2

* LOAD [DISK«O-3» ,]<string expression>[,<string expression>]
Loads a program [rom the ASCII LOAD (logical unit #2) device
into memory. A I'lF~l command is automatically issued before the
program is loaded. If the optional line descriptor string is
u$ed, execution begins automatically at that line. This
ffiqkes it possible to chain ASCII programs the same way that
the BLOAD can chain binary programs. If the optional DISK

.function is not used, the last use of it or 0 is used.
ExafTlples: LOAD D]:SK(3) ,"CHESS" ,"START" LOAD "STARTREK"

NEXT [<variable list]
Terminates a "FOR" loop. Without the optional variable list,
it terminates the most recent loop. See the "FOR" statement.
After leaving the loop, the index variable remains the last value.
Examples: NEXT NEXT N NEXT I,J,K

ON <numeric expression> GOSUB <line descriptor list>
Calls a subroutine at the line in the list corresponding to
the value of <numeric expression>. If <numeric expression>
equals zero, or if it's greater than the number of line
descriptors, execution continues with the next statement. If
it's less than zero, an error results.
Examples: ON I GOSUB 20,5,100,10 ON 2*1 GOSUB TEST+2,SUBR5

ON <numeric expression> GOTO <line descriptor list>
Trdn~fers execution (branches) to the line in the list corresponding
to til€.: value of TNT{ <numeric expression». If <numeric expression>=O
or if it's greater than the number of line descriptors, execution
continues with the next statement. If it's <0 an error results.
E:x.:lmple~,: ON N GOrrO 10,20,30,40 ON N-2 GOTO FIRST,CALC,LAST

OllEN [<special function>,]<numeric expression>[,<string expression>]
Makt·,; d file available for use through the logical device specified
by ttl,_, llumeric expression. Normally, this would be logical
(1t'Vh'C'!) 2, 3, 4, or 5. BLOAD, BSAVE, LOAD, SAVE, and APPEND do not
requirp an OPEN or a CLOSE statement, only BPUT, BGET, PUT, and GET.
Set: U 1::;1\, FILE, REeOHD, and TYPE spec ial funct ions. The optional
~~; t t i i,q express i on > need only be used to name a file when
till' I lIe name is different than the last file accessed.
CX,.lIl:[)h's: OPEN 3 OPEN 3,"DATAII OPEN FILE(7) ,DISK{l) ,3,"DATA"

011'1' '"11 Ui1!C[ic expression #1>, <numer ic expression #2>
S"t"i:; by te resu 1 t i ng f rom the first expression to the port
dc'tt'lrlined by the second expression.
Ex. ltlq '1 t'::..i: OUT I, 7 OUT PORT, DATA OUT X-5, Z+2

}\i!,i' "numeric expression #l>,<numeric expression #2>
StC[C:i byte from second expression into memory location of the first.
l::x;n:lples: POKE 4096,255 POKE ADDRESS,BYTE POKE A+256,48+N

PH [~~T ,express ion 1 ist> or ?<expression 1 ist>
PI ir.U; the value of each expression on the expression list ,:n t u t lie PRINT dev ice (log ical uni t #1). Spacing between elements is
llcl1ned by punctuation. A comma starts the following element at the
next 14 column field. A semicolon starts the following
cle~cnt immediately after the preceeding element. If the last
\.'tldi,' ·ter of the list is a comma or a semicolon, no carriage
tt.'t~l[n will be printed at the end of the statement. Otherwise,
::i ,~.:rl iage return will be printed at th-€ end of the statement.
LX,li'ples: PRIN'l' "X::;",X PRINT 33*X,A$,CHR$(7) ?FRE(O)

* PROCEDURE <variable list>
Used to declare local variables. The variables on the list can
be used without disturbing their original ~alues in the main
program. The original value of each variable will be restored by
the next RETURN statement. (See GOPROC, RECEIVE, RETURN)
Examples: PROCEDURE ANS$,X PROCEDURE A,B,RESULT

* PUT [FILE«0-63»,]<variable list>
Write from variables on <variable list> to the ASCII SAVE device.
The FILE used should have been previously OPEN'd.
Examples: PUT FILE(7) ,PART$,COST PUT X,Y

READ <variable list>
Assigns the value of each expression of a "DATA" statement to
a variable on the variable list, starting with the first element
of the first "DATA" statement. Expressions of the "DATA"
statement(s) are evaluated when the first element of the "DATA"
statement is read. (See DATA and RESTORE statements.)
Examples: READ X,Y READ X,y,Z$ READ TABLE(N)

* RECEIVE <variable list>
Transfers values of variables from "GOPROC" or "RETURN" statement
to <variable list>. The variables on the list are filled in
the same order that the variables appear on the GOPROC or RETURN
statement. Examples: RECEIVE X RECEIVE RES$,ANSWER

REM [anything]
Allows insertion of remarks in the program text. The remarks
must follow the REM statement on the same line.

'Examples: REM THIS PROGRAM CALCULATES TRIG TABLES

RESTORE [<line identifier>]
Sets the READ DATA pointer to the first data statement, or,
optionally, to the statement <line identifier>. This allows
reading seperate tables or seperate portions of a table without
having to read through all DATA statements.
Examples: RESTORE RESTORE TABLE2 RESTORE START+S

RETURN [<variable list>]
Causes execution to continue at the statement following the last
GOSUB or GOPROC statement executed. If the optional variable list is
included, passes the values of the variables on the list to
the variables on the list of a "RECEIVE" statement.
Examples: RETURN RETURN N RETURN X$,ANSWER,RESULT$

* SAVE [DISK«0-3»,]<string expression>
Writes the BASIC program from memory onto the ASCII save device.
Examples: SAVE DISK(2) ,·STARTREK n SAVE PROGNAME$

STOP
Terminates execution of the BASIC program, and returns back to
the command mode with the message: STOP IN <line descriptor> •
Example: STOP

WAIT <num. expr. #l>,<num. expr. #2>[,<num. expr. 13>1
An input from port <expr1> is performed. The byte received
is XOR'd with <expr3> if included, then AND'ed with <expr2>.
The above operation is repeated until a non-zero result is
obtained, upon which the next statement is executed.
Example: WAIT 0,1 WAIT PORT,MASK,INVERT

INTRINSIC (BUILT-IN) FUNCTIONS

.A FUNCTION, built-in or otherwise, can be used anywhere that
an expression can be used. It can be a part of an expression,
and it can have an expression as it's argument. It returns a
single value, which is defined by the descriptions below.
Some functions return string values, and some return numeric ones.

ABS«numeric expression>}
. Returns the absolute value of <numeric expression>. In other words,
the expression is evaluated; if the result is minus, the minus
sign is removed to make it positive.
Examples: ABS(X-5*SIN(Y» ABS(B A 2-4*A*C)

ASC«string expression»
Returns the ASCII code of the first character of <string expression>.
(i.e. the number which corresponds with the ASCII character)
Examples: ASC("A") ASC(ANS$) ASC(A$(N»

ATN«numeric expression»
Returns the arctangent of <numeric expression>, which is in radians.
Examples: ATN(RADIANS) ATN(DEGREES*PI/180) ATN(.053)

* CALL«numeric expression>,<numeric expression»
Calls a machine language subroutine at the address indicated by
the first <numeric expression>, with the value of the second
<numeric expression> in registers D&E. The CALL function
evaluates to the number which is returned in registers D&E.
The returned value in D&E is in the range -32768 to +32767.
Example: PRINT CALL(PLOT,X)

CHR$«numeric expression»
Returns a single character string whose ASCII code is <numeric expression>.
Examples: CHR${7) CHR$(48+NUM) CHR${CONTROL)

COS«numeric expression»
Returns the cosine of the angle <numeric expression>, which
is in radians. Example: COS(DEG*3.14l59/l80)

EOF«numeric expression»
Returns false (O) if an end-of-file has not been encountered,
or true (-1) if an end-of-file has been encountered, during
the last read operation from a file through the logical unit
spe~ified by <numeric expression>.
Examples: IF EOF(2) THEN GOTO QUIT LET CASFLG=EOF(4)

EX?«numeric expression»
Returns the constant e (2.718282) to the <numeric expression> power.
Examples: EXP(l) EXP(O) EXP(X+Y*2)

FRE«expression»
Returns the amount of free (unused) space in memory. Because
the null string ("") takes less space in memory, this form will
return a slightly larger number than a numeric argument.
Examples: FRE("") FRE(O) FRE(l)

* HEX«hexadecimal string»
Returns the decimal equivalent of the <hexadecimal string>.
Examples: LET ADDR=HEX(HADDR$} FOR N=O TO HEX{91A")

* HEX$«numeric expression»
Returns the hexadecimal string representation of the decimal
value of <numeric expression> with no leading zeroes.
Examples: HEX$(ADR+OFFSET) HEX$(N) HEX$(99)

INP«numeric expression»
Performs a read from the machine input port <numeric expression>.
Returns the value of the machine input port <numeric expression>.

INT«numeric expression»
Returns the largest intege~ which is less than or equal to
<numeric expression>. Examples: INT(-3.5) INT(O) INT(3.l4l59)

LEFT$«string expression>,<numeric expression»
Returns the leftmost <numeric expression> characters of
<string expression>. Examples: LEFT$(ANS$,3) LEFT$(A$+B$,N-M)

LEN«string expression»
Returns the length of <string expression>.
Examples: LEN(A$+B$} LEN (ALPHABET$) LEN("ABC"+STRING$)

* LOC«variable name»
Returns the decimal address of the location in memory
of the variable's value. Useful for passing addresses
to routines which are accessed via the CALL function.
Examples: LOC(ARRAY$(N)} LOC(N) LOC(A$}

LOG«numeric expression»
Returns the natural logarithm (base e) of <numeric expression>.
Examples: LOG(l) LOG(X A 2 +Y/5) LOG(.5*SIN(X+Y»

* MATCH«string expression>,<string expression>,numeric expression»
Returns the position of the first occurence of the first string
expression in the second string expression, starting with the
character position indicated by the numeric expression. A
zero will be returned if no match is found. The following pattern
matching features are implemented:

1)
2)
or
3)

Examples:

A pound sign(#) will match any digit (0-9).
An exclamation mark (1) will match any upper

lower case letter.
A question mark (?) will match any character.

MATCH("DEP","ABCDEFGHIJ",l) (returns 4)
MATCH (PATTERN$,OBJECT$,START)

MID$«string expression>,<numeric expression>[,<numeric expression>])
Without the optional second numeric expression, returns rightmost
characters of <string expression> starting with the first
<numeric expression>. With the second numeric expression, returns
a string whose length is determined by the second numeric expression,
starting with the character of <string expression> whose position
is determined by the first numeric expression.
Examples: MID$(A$,5) MID$(STRING$,POSITION,LENGTH)

A-?

OCT«string
Returns the
$hould be a
Examples:

expression»
decimal equivalent of the string
valid octal number.

OCT("3??") OCT (OCTADR$)

* OCT$«numeric expression»

expression, which

Returns a string which represents the octal value of the numeric
expression. Examples: OCT$(lO) OCT$(X+Y) OCT$(DECIMAL)

PEEK«numeric expression»
Returns the value of the byte in memory address <numeric expression>.
Examples: PEEK(O) PEEK (l024+0FFSET) PEEK (DECIMALADDRESS)

POS«expression»
Returns the current position of the PRINT device. If used within a
PRINT statement, zero will always be returned, since the function is
e~aluated before the line is printed. This function is normally used
after a PRINT statement ending with a semicolon.
Examples: POS(O) POSen") POS(anything)

RIGRT$«string expression>,<numeric expression»
R~turns the rightmost <numeric expression> characters of
<string expression>. Examples: RIGHT$(SENT$,l) RIGHT$(S$,NUM)

RND«numeric expression»
If <numeric expression> is less than zero, starts a new sequence of
random numbers. If it's equal to zero, returns the same number as
the' last RND returned. If it' s greater than zero, returns the next
random number in the sequence. .
Examples: RND(-l) RND(O) RND(l) RND(X)

SGN«numeric expression»
If <numeric expression> is greater than zero, returns 1.
If it's equal to zero, returns Of if less than zero, returns -1.
Examples: SGN(-2.57) SGN(O) SGN(353.2) SGN(X A 3+Z)

SIN«numeric expression»
Returns the sine of angle <numeric expression>, which is in radians.
Examples: SIN(DEG*PI/180) SIN(.256) SIN(X/Y)

SPACE$«numeric expression»
Returns a string of <numeric expression> spaces.
Examples: SPACES$(BUFFERSIZE) SPACES$(4+LEN(LINE$»

SPC«numeric expression»
Prints <numeric expression> spaces on the PRINT device.
Examples: SPC(20) SPC(N/3) SPC(INT(X*2»

SQR«numeric expression»
Returns the square root of <numeric

• will result if <numeric expression>
Examples: SQR(B*B-4*A*C) SQR(2)

STRS«numeric expression»

expression>. An error message
evaluates to a negative number.

SQR(X)

Return$.the string representation of <numeric expression>,
~~thout leading or trailing spaces.
Examples: STR$(3052.6?} STR$(NUMBER) STR$(X*Y/Z)

4-3

TAB«numeric expression»
Spaces to column <numeric expression> on the PRINT device.
If tabbed column is less than the present position, the next
output from PRINT will go on the next line in the correct
position.
Examples: TAB(20) TAB(30) TAB(N*2) TAB(POSITION)

TAN«numeric expression»
Returns the tangent of angle <numeric expression>, which is in radians.
Examples: TAN(DEGREES*3.14/180) TAN(.25) TAN(X A 2/Y)

USR«expression»
Calls a user (machine language) subroutine at the address in
location USER. The address of location USER is in the 11th
and 12th bytes after the start of BASIC (see appendix C) •
The <numeric expression> is evaluated and placed in registers
D&E. The USR function returns with the value that is returned
in registers D&E. For example, if the machine language subroutine
decremented D&E by 5, the value of the USR function would be 5
less than it's argument. Of course, anything may be done in a
USR subroutine, but it is recommended that all registers that
are changed besides D&E should be saved and restored on a stack.
Example: USR(O) USR(N) USR(N*M) USR(ARG)

VAL«string expression»
Returns the numerical value of the string <string expression>.
Leading spaces are ignored. If the string expression is not a
valid number, zero is returned.
Examples: VAL(FIELD4$) VAL (COST$) VAL(A$} VAL("3.14")

Special Functions:

. The purpose of the special functions is to set values into
. memory locations, so that these values can be used by external
. subroutines. Invocation of any of these functions does not

cause control to leave BASIC, as it does with the USR and CALL
functions. Thus, the functions may be used without having any
routine that actually uses their results. One thing peculiar
about these functions is that they have no value. That is,
no value is returned when they are used. They may be used
.nearly anywhere, except that they must be separated from all
'other ~lements of an expression by commas, and if they are
used in an assignment statement (LET or FOR), they must be
the last elements of the expression. Normally, they are used
in disk input/output statements, such as LOAD, SAVE, OPEN,
CLOSE, GET, PUT, etc. to pass useful parameters. Another
thing common to all these functions is that once the function
is used, the associated parameter(s) remain that way until it
'is used again. That way, the functions only need to be used
when it a change is required from the current values. The
parameters are all initialized to zero by the I/O section
when BASIC is first entered.

DISK«numeric expression between 0 and 3»
This function is normally used to specify the number of the
disk drive which you wish to select. If the function is not
used, the last drive selected will be used. The value
of <numeric expression> is placed in the location DISK. See
appendix C for the address of the pointer. The I/O section
normally initializes the location of DISK to zero (disk A).
Examples: OPEN DISK(l) ,FILE(8) ,3,nDATATEST"

LOAD DISK(O) , "STARTREK"

DO«expression>,<expression»
Each expression can be either a numeric expression or a
string expression. If numeric, the 2-byte number is passed.
If string, the string's address is passed. The first
expression is passed to location DO. The second expression
is passed into location DOPARA. The addresses of these
locations are in the address table at the beginning of BASIC.
See appendix C. The main idea of the DO function is to use
the first expression to decide on the type of function, and
to use the second expression to pass the argument. The present
l/O section does not support any particular DO operation.

_____ 5 ... 1.

FILE«numeric expression from 0 to 63»
This function is used to specify the number of the file
being used. It is not used when loading or saving programs,
only data. The initial file number is zero. Since the file
number stays the same until the FILE function is used, it is
not necessary to use this function until it is required to
access a data file different than the last one accessed.
The file number can be any arbitrary number from 0 to 63.
It should be used in the OPEN statement for the file, and
any time a different file number is required.
Examples: OPEN FILE(34) ,DISK(l) ,3,"DATAFILE"

PUT FILE(34) ,TESTDATA$
GET FILE(34) ,TESTDATA$
CLOSE FILE(34),3

* TYPE«numeric expression»
The value of the expression is placed in location TYPE,
described in appendix C. This function is normally used to
specify the type of file which is being accessed. The
following conventions will be used by the I/O sections
provided by Tarbell Electronics: 0 for sequential,
I for random. TYPE is initialized to 0 by the I/O section.
Examples: SEQ=O:RAN=l

OPEN DISK{I) ,FILE(7) ,TYPE (RAN) ,RECORD(80),2,"RANFILE"
GET FILE(7) ,RECORD(N) ,X,Y$,Z

RECORD«numeric expression»
The value of the expression is placed in location RECORD,
described in appendix C. This function is normally used to
specify the record number of a random file, as part of a
GET or PUT operation, or to specify the number of bytes
per record, as part of an OPEN operation.
See examples above.

NOTE: As of October 23, 1978, the TYPE and RECORD
functions had not yet been implemented in the
input/output section.

OPERATORS

Arithmetic Operators (in order of precedence)

1.
2 •.
3.
4~
5.
6.

, 7.
. 8.
9.

expressions
A

* /
+
relational

NOT
AND
OR

=
<>
<
>
<=
>=

enclosed in parenthesis
exponentiation
negation
multiplication and division
addition and subtraction

operators (same for all)
equal
not equal
less than
greater than
less than or equal
greater than or equal
inversion of all bits
logical multiplication of each
logical addition of each bit

bit

String Operators

1. + Concatenates (hooks together) two strings end-to-end.

2. Comparison Operators

= equals
> greater than
< less than
<= less than or equal
>= greater than or equal
<> not equal

Comparison is made by comparing the ASCII codes of each character
of each string, starting with the first character of each string.
The comparison continues with each set of corresponding characters
until there is a mismatch, at which time the string with the code
having the higher ASCII value is declared the greater. If there
is no mismatch, the strings are of equal value. If one string is
shorter than the other, the longer string is considered greater.

6-1

Logical Operators:

OR, AND, and NOT are used as logical operators in IF statements.
OR and AND operate on the logical expressions between which
they are placed, while NOT operates on the logical expression
following it. Remember that the value of a logical expression
must be either -1 (true) or 0 (false).

OR
When OR is placed between two logical expressions, the total
expression is true if either or both of the two logical expressions

·are true.

AND
When AND is placed between two logical expressions, the total
expression is true if and only if both of the two logical
expressions are true.

NOT
When NOT is placed before a logical expression, the total
expression is true if the logical expression is false,
and the total expression is false if the logical expression
is true.

Below are truth tables for the three logical operators, where
T stands for TRUE (-1), F stands for FALSE (0),
and A and B are logical expressions:

A B A OR B A AND B NOT A

F F F F T
F T T F T
T F T F F
T T T T F

Examples:

0 AND 1 equals 0
1 AND 1 equals 1
2 AND 1 equals 0
2 AND 3 equals 2

0 OR 1 equals 1
1 OR 1 equals 1
2 OR 1 equals 3
2 OR 3 equals 3

NbT o equals -1
NOT -1 equals 0
NOT 1 equals -2

6-2

ERROR CODE EXPLANATIONS
!. , ", ., .

The system of programming error detection and reporting
in TARBELL BASIC is :a comp!omlse between .the n~ed fo~
clear error reporting, and the memory required for error
detection and messages. Some systems use er ror codenumbe,rs,
Or 1 or 2 code letters., ,The;se,:luS\J;;\lily"l1~lVe ,t:o; . ..pe 100k~d,up
in the reference manual, so they waste time. Some use long
english explanations, which are nice, but take up a ,lQ~ Of
memory space. TARBELL BN)ICusefJ flPPJ.e,v~~ted .~essa,9'f:,s" wpiph;,
are hopefully easy to remember after tney're looked up the first
time.

No. Mnemonic

1 OVRFLW
2 'UNDRFLW
3 /0
4 EX»
,5 BIN CON »
6 -LOG
7 LINE DES
8 COMM ",
9 VRBL AS S:1AT~
10 SYNTAX
'II V~BL NM
'12 »)
13 »(
14 2 OPERS
15 2 OPANDS

'16 ILGL FUNe
17 STATE AS VRBL
'18 NEW SYMB
19 NO TO
22 CAN'T CONT
23 READ
24 STRING
25 COMl-tA
26 OPRND
27 <*mem*.>,
28 UNDU1
29 SUBSCPT»
30 SUBSCPTOVFJ:,W
31 ASSIGN '
32 STR AS NUM,
33 NUM AS S'l'R
34 CNTRL STCK

35 ON GOTO
36 «DATA
37 RCV DATA
39 -SQR
40 LOGICAL

'De'scription
, ',,' " .' , ,'1;

1\r it.pm~ticC QY~!2=:p,q~w ·~tool.argep. numb~.~:1~
Arithmetic Underflow (too small a number>.
A division by zero was attempt..ed~ !

E;xppnent! wa,s too, ,larg.e (EXP,f,liilC~ion)I"
Number too' 'large to' convert fo binary.
Attempted to take log of a minus number.
Illegal line descriptor.
I11e9alc9mll\~n}l.! ,
Y:i~riab+e n,ame.~e4!la~: ~ta~em~pt:,.n~me.
~he ptate;~~nt:)}rIas ,nQ.t P,tO~Fl:y fo~~ed,.
l-ll~g al V a rJa~J.~ In~me,.".,
Too man~~ight parenthesis~
Too,' manY'l~ft:,lPare,~th~sJ~,;.:
T~i)operators,d.n a row.

::.!!,wp:, ,oper;i;t~s ,~n a row.
Illeg,allJ:,~~r~ef ined function.
Statement name used as variable.
New symbol when in command mode.
No"·TO" in ",FOR" statement .. , ,',
Can I t continue 'causeprogrflmw,as' ~odif ~e~h
An error was detected on a tape o~ disk read.
Illegal string usage.
IlJ.ega)..comma ;of p~mi~olon.
Illegal Ope,rand.
O~t of .memory.).
Undi~ensionedarr~Yf~f~renG,d.
f\n ar.ray supsG,r,~pt; w,i,\stoo .l~rgf;.
Subscript, overflow •. .i. ' .

Anassi9nmenttoanon~var:ip.bl'e. (4=4).
A stri,ng;is"us,ed wherea,nu~ber;i.$ neep.~d •.
A numbe,r is used where a .strJng is nf;ededo:

The control stack is whereth~ following
items are placed: returnlocatibn ~or
subroutines & procedures, arguments for
subroutines & procedures, index variables
for FOR-NEXT loops.
ON ••• GOTO, GOSUB index out of limits.
Out of Data.
Receive data error.
The square root of a minus number is illegal.
A true (-1) or false (0) was expected.

The message BASIC IS CRASHED indicates that the BASIC interpreter
has be written into, thus making the interpreter unreliable.

A

DEFINITIONS OF TERMS USED IN THIS MANUAL

<numeral>
~ny of the following: 0 1 2 3 4 5 6 7 8 9

<upper case letter>
~nYQf the following: ABCDEFGHIJKLMNOPQRSTUVWXYZ

,(lower case letter>
Any of the following: abcdefghijklmnopqrstuvwxyz

<letter>
Any <upper case letter> or <lower case letter>.

<alphanumeric character>
'A <numeral>, a <letter>, or a dollar sign ($).

<special character>
'Any of the following: l"'$%"O=_A,{}[]+;*:<>,.?/
or a space~·

<control character>
Control characters are bytes that do not normally print
~ visible character on a terminal, but instead, may perform
some particular function in the terminal or terminal driver.
Examples of common control characters are listed below:
00 null 03 quit 07 bell 08 backspace
09 horz tab OA line feed OB vert tab OC form feed
OD carriage-return 13 stop temporarily
15 cancel line lA end-of~file
l~ escape 7F rupout

<character>
~ <alphanumeric character>, <special character>, or
~ <control character>.

<numeric constant>
A number, represented by a series of numerals, preceeded by
an optional plus (+) or minus (-) sign, including an optional decimal
pOint (.), and ending with an optional "E R , followed by a +, =, or
a space, followed by a power of ten. Three characters must follow
the "E". A space may be used instead of a plus sign (+).
The range of a floating point number (one with a decimal point) is
from 9.9999999E+99 to 9.9999999E-99, plus and minus. The range of
a integer number is from 0 to 9999999999, plus and minus. Expressions
evaluate to integers if and only if every element of the expression
~valuates to an integer.

8-1

<string constant)
A string constant is a sequence of any characters, represented
literally, either <alphanumeric character>s or <special character>s
~enclosed in quotes ("), or CHR$ functions with a constant argument.
There is no limit to the length of a string constant. Quotes may
be represented by a double quote (""), or by CHR$(34). Control
characters may be represented by using the CHR$ function.
Examples: "ABCDEFGHIJKLr·iNOPQRSTUVWXYZ 0123456789 !" ";fj: $%& I () II

<constant>
A value which is named as such explicity
either a <string constant> or a <numeric
Examples: "DON TARBELL" 3.14159

in the program.
constant>.
2 "ABCDEFG"

May be

<expression>
A sequence of constants and/or variables, separated by operators
according to certain rules (see page~ 14&15) and optionally grouped
by parenthesis.
~xamples: 1 X "ABC"+REST$ 3*(X/Y) SQR(B"2-4*A*C)

<numeric expression>
An expression which evaluates to a number.
Examples: 1+1 2*(3+5) N/2 4*LEN(STRING$) SIN(X)

<string expression>
'An expression which evaluates to a string.
Examples: LEFT$(IABCDEFG",3) "123"+"ABC"+A$ CHR$(N+64)

<expression list>
,A sequence of expressions normally separated by commas or semicolons.
Examples: "THE COST IS ",COST1" DOLLARS.",TOTAL,X*5/Y X,Y X

'<variable>
. An entity which can assume different values, either string or numeric.

<variable name>
A sequence of <alphanumeric character>s, beginning with a letter,
which is used to identify a particular variable. If a variable
name ends with a dollar sign ($), it is forced to a string.

B-2

<variable list>
A sequence of variable names, seperated by commas or semicolons.

<logical constant>
A constant which has the value of either -1 (true) or 0 (false).
Notice that in some systems, any integer other than zero is
considered true. This can produce an ambiguity, however, in
that a NOT TRUE operation could produce a TRUE value.

<logical operator>
AND, OR, and NOT are the logical operators. When the AND
operator is between two logical constants, the combination
is true if both values are true. When the ",R operator is
between two logical expressions, the combination is
t~ue if either value is true. When the NOT operator is
b~fore a logical expression, the combination produces a TRUE

'value if the expression were FALSE, and a FALSE value if the
'expression were TRUE. The logical operators all perform
,as if they were operating on each bit of a l6-bit
binary number, with all bits operated on in parallel.

,Examples: 2 AND 3 produces 3
1 OR 4 produces 5
NOT 0 produces -1

, (logical variable>
A variable whose value is either -1 (true) or 0 (false).

,<logical expression>
An expression which evaluates to either a -1 (true) or 0 (false) •

. ,E,xamples:

LET TRUE=-l:LET FALSE=O
TRUE AND TRUE produces TRUE
TRUE AND FALSE produces FALSE
FALSE AND TRUE produces FALSE
FALSE AND FALSE produces FALSE
TRUE OR TRUE produces TRUE '
TRUE OR FALSE produces TRUE
FALSE OR TRUE produces TRUE
FALSE OR FALSE produces FALSE
NOT TRUE produces FALSE
NOT FALSE produces TRUE

<line descriptor>
A ~equence of <alphanumeric character>s, which
starts with the first character position (left-hand margin)
in a TARBELL BASIC statement line, and which is terminated

,by either a space 0[. a tab (ctl-I), and which is not one of
the reservea words in Appendix H. If the descriptor is in
a statement referencing another statement, a + or - offset
may be included.

<line descriptor list>
A sequence of line descriptors, seperated by commas.

·Address Range
(hexadecimal)

0000 - OOFF

010.0 - 04FF

0500 - 0502

0503 - 0562

0563 - 53C5

53C6 - XXXX

. XXXX - XXXX

X:X:XX - XXXX

XXXX - XXX X

XXXX - XXXX

XXXX - XXXX

XXXX - XXXX

XXX X - XXXX

MEMORY USAGE - version 7

Description

Unused, available space for your stuff, except in
CP/M systems, where it is used by CP/M.

Standard Input/Output Routines (Listing Included).
There may be extra room here. See the listing.

A jump instruction into TARBELL BASIC.

A table of addresses, each of which point to a
useful table, subroutine, or parameter in BASIC.
These addresses may be used from outside the
main body of the interpreter. Examples of this
are shown in the Tarbell BASIC I/O system listing.
See page C-2 for a li~t of these addresses.

rhe TA~BELL BASIC interpreter, which may be in ROM.
Note that these addresses may change with versions.

Interpreter Workspace, must pe in ~AM. (fixed length)
This can be seen on the last page of the source
listing as a series of OS's.

Program Source, in internal form. Fixed at RUN time.
Defined by pointers FSRC and ESRC.

Variables and Array Pointers. Fixed at RUN time.

FOR/NEXT and local variable stack. Dynamic.

Input Line Space. Dynamic.

Array and String Space. Dynamic.

Symbol Directory. Fixed at RUN time.

Symbol Table. Fixed at RUN time.
End of Specified Memory.

Allocation Notes:
Before runtime, will consist only of moving the symbol directory
as the symbol table grows. At runtime, variable and array pointers
fished out of symbol directory and space assigned. As local variables
are encountered, they are assigned on the stack. Arrays and strings
are assigned by sequential assignment-randomrelease~ clean up garbage
when full.

C-I

Address Range
(hexadecimal)

OS03 - OS04
050S - OS06
OS07 - OS08

OS09 - OSOA

'OSOB - OSOC,

OSOD - OSOE
OSOF - OSlO
OSII - OS12
OS13 - OS14
OSlS - OS16
OS17 - OS18
OS19 - OSlA
OSlB - OSlC

,OSlO - OSlE
051F - OS20

'OS2l - OS22
OS23 - OS24
OS2S - OS26
OS27 - OS28
OS29 - OS2A
OS2B - OS2C

,OS2D - OS2E
OS2F - OS30

OS3l - OS32
0533 - 0534
OS3S - OS36
OS37 - OS38
OS39 - OS3A
OS3B - OS3C

'OS3D - OS3E
OS3F - OS40
OS4l - OS42
OS43 - OS44
OS4S - OS46
OS47 - OS48
OS49 - OS4A
OS4B - OS4C
OS4D - OS4E
OS4F - OSSO
OSSI - OSS2
OSS3 - OSS4
OSSS - OS56

. OSS7 - 05S8
OSS9 - OSSA

. OSS8 - 05SC
, OSSD - OSSE

OSSF - OS60
. OS6l - OS62

TABLE OF ADDRESSES - version 7

Description

CHANL - Contains the address of the Channel Table.
TRMNL - Contains the address of the Terminal Table.
SSSS - Defines the end of useable memory. If zero,
causes BASIC to use all available memory.
CNVRA - Defines the number of digits that will be printed·
in normal (as opposed to scientific) notation.
USER - Contains the address of a location which contains
the address of a user routine accessed by the USR function.
MODES - Contains the address of the MODES Table.
FSRC - Address of pointer to start of source.
ESRC - Address of pointer to end of source.
ERROR - Pointer to error routine.
TSCN - Points to token just scanned.
NSCN - Points to token to be scanned next.
CHCK - Points to checksum routine.
INFL - Integer to Floating, (HL) to (DE).
FLIN - Floating to Integer, (HL) to (DE).
STNM - String at (HL) to number at (DE).
NMST - Number at (HL) to string at (DE).
CMPR - Zero and carry set as for (HLl-(DE).
SINE - Sine(HL) to (DE).
SICO - Cosine(HL) to (DE).
TANG - tangent(HL) to (DE).
ATAN - Arctangent(HL) to (DE).
BCDB - Number at (HL) to binary in HL.
BBCD - Binary number in HL to number at (DE).
ETOX - E to the (HL) power to (DE).
LOGX - Log base E (HL) to (DE).
SQUR - (HL) to 1/2 to (DE).
PWRS - (HL) to the (DE) power to (BC).
ADDER - (HL)+(DE) to (BC)
SUBER - (HL)-(DE) to (BC)
MULER - (HL)*(DE) to (BC)
DIVER - (HL)/(DE) to (BC)
KILL - Kill allocated dynamic RAM block.
AMBL - Allocate a dynamic RAM block.
EOF - End-of-file flag byte address.
RECORD - Address of random file record number.
FILE - Address of (file # or adr of name).
TYPE - Address of .file type number.
NAME - Address of address of file name.
CMP16 - Address ofl6-bit compare routine.
SUB16 - Address of l6-bit subtract routine.
MOVE - Address of block move routine.
MULT - 8 by 8 multiply, DE=D*E.
ZERO - Zeroes A bytes starting at HL.
DIV - L=HL/E. unrounded, h=remainder.
DO - Address of first parameter of DO function •
DOPARA - Adr of 2nd parameter of DO function.
DISK Address of disk number.
KIND - Adr of Kind (of transfer.) byte.

INTERNAL FORMATS

Symbol Table Format: ASCII, last character has bit 7 set=l.

Symbol Directory Format:
Bytes 0&1 are pointer to location (0 if
Byte 2 bits have meanings as follows:

O-statement name I-variable
3-channel name 4-array
6-has been stored to 7-trace on

inactive dummy) •

2-function
5-unused

Numeric Array Format:
bytes n,n+l = back pointer
bytes 2+n to n+x+l = number of elements per dimension
where n=(table pointer), and x=number of dimensions
bytes 2+n+x to 1+n+x+(6*E) = number storage

. where E=total number of elements
To locate an element within an array, location=base+offset,
where base=2+n+x, and offset computed by:

N=l
OFFSET=S (N)

LOOP N=N+l
OFFSET=(OFFSET) (D(N»+S(N)
IF N<>LAST DIMENSION GOTO LOOP
OFFSET=OFFSET*6
END

Where S is subsoript, D cements in a dimension, () mean contents of.
Example: Array dimensioned 3,4,5; Get element 2,1,4.

N Offset
1 2
2 2*4+1=9
3 9*5+4=49
3 49*6=294

String Locator:
bytes n,n+l=back pointer.
bytes n+2 to n+l+m=number of elements per dimension.
bytes m+n+2 to n+l+(2E}+m=string pointers.
Where m=number of dimensions, and E=number of elements.
2 Bytes per pointer, same organization as elements of
numeric arrays. If (pointer)=O, string is (null).
Otherwise, points to first address of (string).

String Format:
bytes n,n+l=back pointer.
n+2 to n+l+m=ASCII data.
Where m=number of characters.
All other characters have bit

D-l

Last character as bit 7=1.
7=0.

INTERNAL FORMATS (continued)

String Array Pointer Format:
Byte 0: bit O-not used, bit 1=0, bit 2=0, bit 3=1, bit 4=0,

bit 5=0, bit 6=0 if not array.=l if array, bit 7 not used.
Byte 1 = number of dimensions.
Bytes 2&3 is a pointer to string locator or string.
Bytes 4&5 are not used.

String variables are treated internally as single dimension arrays.

Numeric Array Pointer Format:
Byte 0: bit 0=0 if integer, 1 if floating point.

bit 1=0, bit 2=1, bit 3=0, bit 4=0, bit 5=0,
bits 6&7 are unused •

. Byte 1 = number of dimensions.
Bytes 2&3 is a pointer to table loc~tion.
Bytes 4&5 are not used.

Numeric Format (constants and variables)
Byte 0: bit 0=0 if integer, 1 if floating point.

Byte 1 =
Byte 2 =
Byte 3 =
Byte 4 =
Byte 5 =

bit 1=1. bit 2=0, bit 3=0, bit 4=0, bit 5=0,
bit 6 is sign of exponent, bit ~ sign of mantissa.
BCD exponent if floating point, MSD, MSO-l if integer.
LSO+7, LSO+6
LSO+5, LSO+4
LSO+3. LSO+2
LSO+l, LS~

0-2

INPUT/OUTPUT

The input and output facilities of TARBELL BASIC were designed
·to create a new standard of flexibility. Essentially, commands

are provided to allow any output statement to transfer data
to most output devices, and any input statement to transfer data

.from most input devices. In order to do this, devices are
grouped into logical devices and physical devices. Logical
devices are those that are activated by the input and output
commands, and are listed in the table on the left. Physical
devices are actual pieces of hardware, such as a CRT, printer,
cassette, and disk. There is a table, called the MODES table,
which remembers the assignment of physical devices to logical
devices. The MODES table has ten byte~, numbered from 0 to 9.
Each byte represents a corresponding I/O device driver in the
I/O section. Each bit in each byte corresponds to one of the
eight possible logical devices, numbered from 0 to 7. The
table below shows the logical and physical devices, and their
.default assignments for TARBELL CASSETTE BASIC:

Logical Device Number Physical Device Number

'INPUT 0 Console Keyboard 0
PRINT 1 Console Printer 1

,LOAD 2 Cassette Input 2
.sAVE 3 Cassette Output 3
BGET & BLOAD 4 Cassette Input 2

, BPUT & BSAVE 5 Cassette Output 3
Spare 6 Spare Input/Output 4
Spare 7 Listing Device Output 5

Reader Input 6
Punch Output 7
Disk Input 8
Disk Output 9

The current assignments may be viewed by entering the
CHANNEL statement. Every place an X occurs, an assignment
exists between the physical device to the left and the logical
device above. The ASSIGN and DROP statements can be used to
set and reset bits in the table, respectively.

To get an idea of how this works, just type DROP 1,1.
This will drop the console output device as the PRINT device.
Don't worry! Nothing's wrong. Your keyboard is still feeding
commands to the console INPUT device, you just can't see the
echo. Now simply say ASSIGN 1,1 and you'll be back in business.

Note that the I/O section (see seperate listing)
creates the default assignments by transfering ten bytes
to the MODES table. If you wish to change the default
assignments, just change these ten bytes (at IMODES).

INPUT/OUTPUT (continued)

Mass storage (cassette or disk) flag useage:

When a file is opened, the zero flag in the 8080
CPU is set upon entering the mass storage output routine.
When a file is closed, the carry flag in the 8080
CPU is set upon entering the mass storage output routine.
If the carry flag is set upon returning from a mass storage
input routine, it is an indication to the BASIC interpreter
than an error has occured on a read operation.

Console (CRT, teletype, etc) flag usage:

When an input routine is entered with the zero flag set,
it is a check for control-C or control-S, rather than an
actual keyboard read operation. If a control-C was pressed
on the keyboard, a return is made with the zero flag set.

The Terminal (TRMNL) Table:

This is a table located in the scratch area above BASIC.
There are ten entries, with three bytes per entry, each
entry corresponding to one of the ten I/O channels defined
by the CHANL table. The first byte of each entry is the
terminal width, that is. the number of characters after
which there is a carriage-return issued. The second byte
is the current terminal position. The third byte is used
to determine the rubout. The low 7 bits of the byte is
the code which is sent to the terminal when a 7F(hex) is
received from the keyboard. If the upper bit is 0, the
internal pointer is not decremented. If it is 1, it is.

The KIND byte:

This is a byte located in the scratch area above BASIC.
It is set every time any mass storage (cassette or disk)
operation is invoked. It's purpose is to make available
to the I/O section information about the kind of transfer
being made. Only the low 5 bits are currently used.

Content
o
1
2
3
4
5
6
7
8

.20
21

Statement
LOAD
SAVE
BLOAD
BSAVE
GET
PUT
BGET
BPUT
APPEND
OPEN
CLOSE

Bit
o
1
2
3
4

If 0
input
ASCII
program

not append
not opn/cls

If 1
output
binary
data
append
open/close

These ,fords ShOlllci not be used as line descriptors or
variuble nl1Pies:

ADS }\tiD 7'1, r-T)\f:r.irCN ATN

,BGE? Br,O,.D npUT n:i\VE BYf;

Cl.DD cr~Lr. CHAtJNEL CHR$ CLEAR CLOSE CaNT COS

DATA DEF DELETE DIn DISK DO DROP

EDIT ELSE EnD ENTER EOF EXP

FILE FOR FRE

GET GOPROC GOSUB GOTO

HEX HEX$

IF INP INPUT INT

LEFT$ LEN LET LIST LOAD LaC LOG

r'lATCH MID$

NEW NEXT NOT

OCT OCT$ ON OPEN OR OUT

PEEK POKE pas PRINT PROCEDURE PUT

READ RECEIVE RECORD REt., RESTORE RETURN RIGHT$ RND

SAVE SGN SIN SPACES SPC SQR STEP STOP STR$ SYI-1BOL

TAB TAN THEN TO TYPE

USR

VAL

WAIT

H

RUN

Known Bugs, Limitations, and Peculiarities

Hopefully this section will remain small. We have, however,
decided to not ignore the fact, like some manufacturers do,
that there will be forever bugs and other strange things in
the system. To expect us to be perfect is asking too much,

. but we will at least work toward that objective. In that

. direction, we have already spent several months searching
for these vermin, and exterminating them as quickly as
possible. But we know that our customers will find some for
us, so we'd appreciate it if you would let us know, preferably
in writing, when you see any of these creatures creeping about.
This page of the manual will change from one release to the
next, with an effort to make the page match the release.

CTL STK ERROR message is somewhat obscure.

A space is required after all statements.

Assignments of values to variables are not allowed in command
mode unless the variable has been previously defined in a
program.

The expression 1/2 will evaluate to 0, since integer mode
is retained until a floating point value is seen. Use the
expression 1./2 or 1/2. to get the correct answer of .5 •

The LET statement name gets put in if you don't use it.

Parentheses may get rearranged to an equivalent sequence.
This is a product of the way expressions are represented internally.

Tabs are not allowed in the middle of a statement.

Random numbers evidently always end in the digit 5.

When entering a number in exponential (E) format, always put either
a space, minus sign, or plus sign after the E, then two digits.

Sometimes goes into ENTRY mode at the wrong time.

The expression X/y*Z is evaluated in the wrong order.

How to Load Tarbell BASIC

If you have TARBELL BASIC on a CP/M disk, simply put the disk
into the drive. and type TBASIC. You can ignore the rest
of this page.

If you have TARBELL BASIC on cassette (Tarbell, of course),
first examine the listing of the I/O section that carne with
the TARBELL BASIC.

Compare the console and cassette I/O routines to the ones you
normally use in your system, to determine if there are any
differences. If there are, mark the necessary changes on
the listing.

Using either the bootstrap program or input program in the
Tarbell cassette interface manual, or the Read-Only-Memory
Program, or other monitor, read the TARBELL BASIC interpreter
from the cassette into your main memory, using the starting
address and length which is specified on the cassette.

NOTE: TARBELL BASIC is stored on tape at a rate of 1500
bits per second, or 800 bits per inch. A several-second
leader of clock cycles is followed by the start-byte (3C),
then the sync-byte (E6), then the number of bytes of program
indicated on the cassette label under ~length", then the
checksum, all in one big block. The start-byte and sync
byte are detected by the hardware, and it is up to the
software to read the proper number of bytes after that,
and to check the checksum for errors, if desired.

If you need to make changes in the I/O section, now is the
time to do it, using either your front panel DEPOSIT button
or suitable monitor in ROM. Note that the top of memory
address which is put into location SSSS is done automatically
in CP/M systems, but may need changing for other systems.
The default in cassette versions is to search for end of memory.

start your computer running at the starting address specified
on the cassette, by doing an examine and run at that location,
or by using your ROM monitor to jump to it.

You should now get the opening message.

Comparisons With Other BASIC's

Speed:

TARBELL BASIC will generally run slower than ALTAIR BASIC
by a factor up to three, in most tests involving numbers.
This is because TARBELL BASIC uses 10 digits of BCD instead
of 8 digits of binary. This precludes penny roundoff errors.

One place where TARBELL BASIC is faster, however, is in
variable and label (line number/descriptor) references.
This advantage in speed will not be significant on small
benchmark programs, but only on the larger programs, with
many variables and labels. The reason for the higher
speed in this area is that TARBELL BASIC substitutes
pointers for variable and label references, so instead of
having to make a lengthy search through a table or program,
the item is found immediately by a vectoring method.

If you purchase the source, you may notice that several
of the subroutines are equivalent to Z-80 instructions.

,One good way for Z-80 users to drastically improve the
speed of their TARBELL BASIC, is by patching in Z-80
instructions for these subroutines.

Readability:

This is where TARBELL BASIC really shines. Since most other
BASIC's use line numbers, and are restricted to a few sig
nificant characters in the variable names, TARBELL BASIC
allows line descriptors and long variable names.

Formatted PRINT output (PRINT USING):

Although PRINT USING is not currently part of TARBELL BASIC,
it is easier to implement in a subroutine than in most other
BASIC's. This is because arguments are allowed for the
GOSUB and GOPROC statements, and local variables are allowed
by using the PROCEDURE statement.

Interpreter vs Compiler:

The current implementation of TARBELL BASIC is as an
interpreter. This allows the programmer to debug a
program online, instead of continually going back and
forth between edit, compile, and run operations. It
does, however, take up more memory than a compiler.
For example, whereas TARBELL BASIC requires about
22k of memory, CBASIC requires only 15k. There is
one ray of hope, though. Since we make the source
available at low cost, it is quite feasible to remove
all those portions of the interpreter that a user
doesn't need for a particular situation.

ABS 4-1
alphanumeric B-1
Altair BASIC 1
AND 6-1, B-2
angles 1-1
append

from cassette 3-1
in edit mode 2-2

ASC 4-1
ASSIGN 3-1
ATN 4-1
BASIC texts K
BGET 3-1
BLOAD 3-1
BPUT 3-1
brackets 1-1
branch 3-3
BSAVE 3-1
bugs I
BYE 2-1
CALL 4-1
cassette E-l
change 2-2
CHANNEL 3-1
CHR$ 4-1
CLEAR 2-1
colon 1-1, 2-1
commands 2-1,2
constant B-1
CONT 2-1
Control Characters 1-1, E-3
COS 4-1
DATA 3-1,5
DEF 3-2
definitions B
delete characters 2-2
DELETE lines 2-1
DIM 3-2
Direct Mode 1-1
DROP 3-2
EDIT 2-2
Edit Mode 1-1, 2-2
ELSE 3-3
END 3-2, 2-1
ENTER 2-1
Entry Mode 1-1, 2~1

error codes A
execution 2-2
EXP 4-1
expression

definition B-1
list B-1
logical B-2
string B-1

FOR 3-2,4
FRE 10
functions

built-in 4-1,2,3,4
special 5-1,2
user-defined 3-2

GET 3-2
GOPROC 3-3
GOSUB 3-3
GOTO 3-3
HEX 4-1
HEX$ 4-2
IF 3-3
INP 4-2
INPUT 3-3
input 3-1,3,4, 4-2, E
output 3-1,4,5, E
insert

characters 2-2
lines 2-1

INT 4-2
internal formats D
intrinsic functions 4-1,2,3,~
LEFT$ 4-2
LEN 4-2
LET 3-3
letter B-1
limitations I
line descriptors 1-2
LIST 2-1
LOAD 3-4
loading BASIC J
LaC 4-2
LOG 4-2
logical

device 3-1,2, E-2
operations 3-3, 6-2
operators 6-2, B-2

loop 3-2,4
machine language

input/output 3-4, 4-2, E
memory access 3-4, 4-2, 4-3
subroutines 4-1,4

MATCH 4-2
memory usage C
MID$ 4-2
Modes of Operation 1-1
multiple statements 1-1
NEW 2-1
NEXT 3-4
NOT 6-2, B-2
numeral B-1
numeric constant B-1
numeric expression B-1
OCT 4-3
OCT$ 4-3
ON 3-4
operators

arithmetic 6-1
string 6-1
logical 6-2

OR ·6-2, B-2
OUT 3-4
peculiarities I
PEEK 4~3

physical device 3-1,2, E-2
pointer
, edit 2-2

internal D
POKE 3-4
POS 4-3
power 4-1, 6-1
PRINT 3-4
PROCEDURE 3-5
program examples G
publications K
PUT 3-5
question mark 2-1, 3-4
READ 3-5,1
RECEIVE 3-5,4

,REM 3-5
reserved words H
RESTORE 3-5,1
return from edit mode 2-2
RE',I'URN 3-5,3

RIGHT$ 4-3
RND 4-3
rubout 1-1, 2-2
RUN 2-2
Run Mode 1-1
sample runs F
SAVE 3-5
search 2-2, 4-2
semicolon 3-3,4
SGN 4-3
SIN 4-3
SPACE$ 4-3
SPC 4-3
SQR 4-3
statements 3-1,2,3,4,5
STEP 3-2
STOP 3-5, 2-1
STR$ 4-3
string

commands 2-2
definition B-1
functions 4-1,2,3,4
internal format D
operators 6-1

,statements 3-2,3,4,5
subroutine 3-3,5

SYMBOL 2-2
tab 1-1
TAB 4-4
TAN 4-4
THEN 3-3
TO 3-2
user defined

functions 3-2
subroutines 4-1,4

USR 4-4
VAL 4-4
variable

assignment 3-1,3,5
definition B-1
list B-2
loc(,11 3-5
location 2-2, 4~2
name B-1
representation D

WAIT 3.-5

